
G lioblastoma (GBM) is the most lethal primary 
brain tumor of the central nervous system in 

adults [1].  Despite the availability of multidisciplinary 
treatment including surgery,  chemotherapy,  radiation 
therapy,  and tumor-treating fields therapy,  the progno-
sis of GBM is still dismal,  with a median overall sur-
vival of less than two years [2-4].  Several clinical trials 
have been conducted on treatments for GBM,  including 
molecular targeted therapy and immunotherapy,  but 
the antitumor effects observed in these trials have been 
limited and these treatments have not improved sur-
vival [5-9].  GBMs often change their biological charac-
teristics during progression and recurrence,  and intra- 

and inter-tumor heterogeneity is recognized as one of 
the crucial factors hindering the therapeutic progress of 
GBM [10 , 11].

To better understand the determinants of GBM het-
erogeneity and treatment resistance,  numerous studies 
have been conducted to classify and characterize the 
molecular background of GBM on the basis of clinical,  
genomic,  and transcriptomic features.  Phillips et al.  
pioneered the definition of three signatures of GBM on 
the basis of gene expression: the proneural,  prolifera-
tive,  and mesenchymal signatures [12].  The proneural 
group expresses genes associated with neurogenesis,  
and younger patients with this subtype show a better 
prognosis compared with the other subtypes.  In con-
trast,  the proliferative and mesenchymal subtypes 
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Glioblastoma (GBM) is a fatal primary malignant brain tumor in adults.  Despite decades of research,  the prog-
nosis for GBM patients is still disappointing.  One major reason for the intense therapeutic resistance of GBM is 
inter- and intra-tumor heterogeneity.  GBM-intrinsic transcriptional profiling has suggested the presence of at 
least three subtypes of GBM: the proneural,  classic,  and mesenchymal subtypes.  The mesenchymal subtype is 
the most aggressive,  and patients with the mesenchymal subtype of primary and recurrent tumors tend to have 
a worse prognosis compared with patients with the other subtypes.  Furthermore,  GBM can shift from other 
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better understanding of the plastic nature of mesenchymal transition in GBM is pivotal to developing new ther-
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express genes related to cell proliferation and angiogen-
esis,  and elderly patients with these subtypes show a 
poor prognosis [12].  The Cancer Genome Atlas 
(TCGA) Research Network identified four transcrip-
tomic subtypes of GBM (proneural,  neural,  classical,  
and mesenchymal) on the basis of unsupervised tran-
scriptome analysis of 202 newly diagnosed GBM cases 
and indicated strong associations with genetic muta-
tions such as TP53,  EGFR,  and NF1 [13].  Gene expres-
sion data from three distinct platforms were integrated 
into one unified data set,  and 840 gene signatures were 
established to classify GBM into the four subtypes.  The 
proneural,  neural,  classical,  and mesenchymal sub-
types were characterized by alterations in PDGFRA and 
point mutations in IDH1,  expression of neuronal marker 
genes,  high levels of EGFR amplification,  and reduced 
NF1 expression caused by a localized hemizygous dele-
tion in the region of 17q11.2 containing the NF1 gene,  
respectively.  Although the literature indicates that the 
proneural subtype is associated with better outcomes 
and the mesenchymal subtype is associated with poor 
survival [12-16],  there was concern that these findings 
were influenced by the relatively favorable outcomes of 
IDH-mutant GBMs,  which are consistently classified as 
the proneural subtype [17].  TCGA further investigated 
the correlation between IDH wild-type GBM subtypes 
and the immune microenvironment by unsupervised 
clustering and defined three subtypes: the proneural,  
classical,  and mesenchymal subtypes [18].  The neural 
signature was not enriched in any cluster,  and the neu-
ral subtype was considered to represent normal cell 
contamination.  This result is consistent with other 
studies in which the neural subtype was not detected 
[17 , 19].

These approaches have been useful for characteriz-
ing the molecular diversity of tumor bulk,  namely 
intertumoral heterogeneity,  in GBM patients.  However,  
they have a limited view of intratumoral heterogeneity 
within individual GBM patients.  To analyze intratu-
moral heterogeneity,  Patel et al.  used single-cell RNA 
sequencing (scRNA-seq) to profile 430 cells from five 
primary IDH wild-type GBMs and found heteroge-
neous subtype expression in individual cells of single 
tumors [20].  Darmanis et al.  performed scRNA-seq on 
3589 cells obtained from the tumor core as well as sur-
rounding peripheral tissue in a cohort of four IDH wild-
type GBM patients and observed heterogeneity in intra-
tumor subtypes [21].  More recently,  Neftel et al.  

identified four cell states of IDH wild-type GBM on the 
basis of extensive gene expression analysis using 
scRNA-seq: the neural-progenitor-like (NPC-like),  
oligodendrocyte-progenitor-like (OPC-like),  astrocyte- 
like (AC-like),  and mesenchymal-like (MES-like) states.  
The authors found that most tumors contained all four 
states.  The authors further compared the fraction of 
cells in each of the four cell states in each tumor with the 
three TCGA subtypes [18] and found that the AC-like 
and MES-like meta-modules corresponded to the clas-
sical and mesenchymal subtypes,  respectively,  while the 
OPC-like and NPC-like meta-modules both corre-
sponded to the proneural subtype [22].  These studies 
suggest that despite the intratumoral subtype heteroge-
neity within GBMs,  the mesenchymal subtype exists at 
the single-cell transcriptome level in tumor cells.

The existence of tumor-initiating/propagating or 
cancer stem–like cells within brain tumors has been 
identified [23-25],  and substantial evidence has con-
firmed that GBM contains stem cell–like tumor-initiat-
ing cells called glioblastoma stem cells (GSCs) [26 , 27].  
GSCs are defined by the cellular capacity to self-renew,  
initiate tumors upon serial transplantation,  and reca-
pitulate tumor cell heterogeneity [26].  The significance 
of GSCs has been supported by previous studies show-
ing that GSCs promote resistance to conventional ther-
apies,  invasion,  angiogenesis,  and recurrence [28-32].  
Recent studies revealed that GSCs can be classified into 
two mutually distinct subtypes,  the proneural or mes-
enchymal subtype,  on the basis of their gene expression 
profiles and distinct biological characteristics [33-36].  
Recently,  Richards et al.  used a combination of scRNA-
seq and genome-wide CRISPR screening to character-
ize the cellular phenotypes of GSCs cultured from GBM 
patients and found that GSCs mapped along a tran-
scriptional gradient between two cellular states: the 
Developmental and Injury Response states.  Develop-
mental GSCs corresponded to the AC-like,  OPC-like,  
and NPC-like cell states,  whereas Injury Response 
GSCs corresponded to the MES-like state [37].

Although various sets of mesenchymal signature 
genes have been proposed,  multiple studies on the 
mesenchymal phenotype have indicated that GBM 
patients with the mesenchymal subtype tend to have 
shorter survival times than patients with other subtypes 
when the analysis is restricted to samples with low tran-
scriptional heterogeneity [38-40].  The mesenchymal 
subtype has been characterized as more aggressive,  
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invasive,  angiogenic,  inflammatory,  hypoxic,  necrotic,  
and multitherapy resistant compared with the other 
subtypes of GBMs [13 , 18 , 22 , 41-44].  Importantly,  the 
shift of GBM towards the mesenchymal subtype has 
been identified to be closely associated with treatment- 
induced phenotypic changes in recurrence.  In addition,  
the mesenchymal transition has been shown to be 
driven by genetic abnormalities,  the tumor microenvi-
ronment and immune cells,  and altered energy metab-
olism.  The mesenchymal transition of GBMs is described 
as analogous to epithelial-mesenchymal transition 
(EMT),  which is a reversible cellular program that plays 
a crucial role in the malignant progression of many 
types of cancer [12 , 45-48].  These findings suggest that 
understanding the plastic nature of the mesenchymal 
changes in GBMs is crucial for developing novel thera-
peutic strategies.  Thus,  in this review,  we will focus on 
the key factors that affect the course of GBM progres-
sion towards the mesenchymal signature.

Transcription Factors and Gene Mutations in 
Mesenchymal Transition of GBM

In an attempt to identify master transcription fac-
tors,  Carro et al.  used reverse-engineering and an unbi-
ased microarray technique to reveal the transcriptional 
network for the mesenchymal transition of GBMs and 

found that two transcription factors (C/EBP-β and 
STAT3) act as the master regulators in the mesenchy-
mal transition [42].  We previously demonstrated that 
annexin A2 (ANXA2) regulated oncostatin M receptor 
(OSMR) expression via STAT3 and drove mesenchymal 
transition in a STAT3-dependent manner in GBMs (the 
ANXA2–STAT3–OSMR axis) [49] (Fig. 1 and 2).  
Furthermore,  previous studies showed that STAT3 
modulated SLUG expression by directly binding to the 
Slug promotor,  inducing the mesenchymal transforma-
tion in GSCs [50 , 51].  In line with these results,  STAT3 
inhibitors such as AZD1480,  ruxolitinib,  and HJC0512 
were shown to abrogate the mesenchymal transition 
and exhibited antitumor effects in vitro and in vivo 
[52 , 53].

Another important master regulator of the mesen-
chymal gene expression signature is TAZ.  TAZ and its 
paralog YAP are transcriptional coactivators,  and active 
YAP/TAZ translocate to the nucleus and interact pre-
dominantly with TEAD transcription factors to play 
diverse roles in cancer-relevant functions via the Hippo 
pathway [54 , 55].  Bhat et al.  revealed that TAZ in a 
complex with TEAD2 was directly recruited to the gene 
promoters that encoded proteins that induce the mes-
enchymal transition and played an essential role in 
driving the mesenchymal differentiation of malignant 
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Fig. 1　 ANXA2 and OSMR expression in the two-dimensional representation of cellular states.  Both ANXA2 and OSMR were enriched in 
the MES-like state that corresponded to TCGA mesenchymal subtype [22].  Each quadrant represents one cellular state,  the exact location 
of the malignant cells (dots) reflects their relative score of the meta-modules,  and the colors reflect the gene expression level.  Source data 
is accessible from the Broad Institute Single-Cell Portal (https://singlecell.broadinstitute.org/single_cell/study/SCP393/single-cell-rna-
seq-of-adult-and-pediatric-glioblastoma) and GSE131928 [22] in the NCBI Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/).  AC,  
astrocyte; MES,  mesenchymal; NPC,  neural-progenitor-cell; OPC,  oligodendrocyte-progenitor-cell; TPM,  transcripts per million.



glioma.  Notably,  the targets of the mesenchymal net-
work induced by TAZ were relatively nonoverlapping 
with those driven by STAT3 and C/EBP-β,  suggesting 
that TAZ is an independent modulator of the mesen-
chymal signatures in GBM [56].  Consistent with this 
study,  Yee et al.  found that TAZ was significantly and 
more highly expressed in the mesenchymal subtype 
than in other subtypes in TCGA GBM dataset and pro-
moted tumor necrosis [57].  More recently,  Uneda et al.  
identified that the signature genes of differentiated 
GBM cells (DGCs) were associated with mesenchymal 
signature genes in the public GBM datasets,  and DGCs 
showed significantly enriched YAP/TAZ/TEAD expres-
sion compared with GSCs [58].  Furthermore,  
Vigneswaran et al.  reported that verteporfin,  a benzo-
porphyrin derivative that inhibits YAP/TAZ-TEAD-
mediated transcription,  induced apoptosis in 
patient-derived EGFR-amplified/mutant GBM cells and 
provided significant survival benefit in an orthotopic 
xenograft GBM model [59].

Intriguingly,  NF-κB is closely involved in the com-
plex mesenchymal transcriptional networks.  Bhat et al.  
revealed that TNF-α activated NF-κB,  and NF-κB regu-
lated three master transcription factors (STAT3,   
C/EBP-β,  and TAZ) to promote mesenchymal differen-
tiation of GSCs and poor radiation response [41].  Yin et 
al.  indicated that TNF-α-induced NF-κB activation 
upregulated TGM2 expression and that TGM2 triggered 
mesenchymal differentiation of GSCs by regulating 
these three master transcription factors.  The authors 
found that TGM2 induced the proteasomal degradation 
of GADD153,  a negative regulator of C/EBP-β,  and 
thus upregulated C/EBP-β expression [60].  Furthermore,  
Iwata et al.  discovered that TNF-α-induced NF-κB acti-
vation increased ICOSLG expression and that ICOSLG 
expression by mesenchymal GSCs induced IL-10-
producing pro-tumorigenic T cells [61].  Regarding the 
molecular mechanism of NF-kB activation,  Kim et al.  
reported that MLK4,  a serine-threonine kinase,  was an 
upstream regulator of NF-κB [62].
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Fig. 2　 Gene set enrichment analysis (GSEA) of subtype-related gene sets utilizing the TCGA GBM dataset (n=538).  GSEA of the 
TCGA GBM dataset revealed significant enrichment of multiple mesenchymal signature gene sets in GBM specimens with high expression 
of either ANXA2 or OSMR.  TCGA GBM dataset was downloaded from GlioVis [158] and analyzed using GSEA [159 ,160] (http://www.
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previously described [160].  The subtype-related gene sets were derived from Marques et al.  [65].  FDR,  false discovery rate; GBM,  glio-
blastoma; MES,  mesenchymal; NES,  normalized enrichment score; TCGA,  The Cancer Genome Atlas.



Genomic abnormalities in the NF1 gene,  such as 
deletions and mutations,  have been reported as one of 
the major hallmarks of mesenchymal GBMs 
[13 , 14 , 18 , 22 , 63].  NF1 deficiency has been shown to 
result in increased recruitment of tumor-associated 
macrophages to tumor sites [18],  and NF1 mutation 
along with the absence of EGFR amplification and 
PTEN deletion were strongly correlated with tumor- 
infiltrating lymphocytes in GBM [64].  Marques et al.  
recently reported that NF1 regulated FOSL1 expression 
via upregulating RAS/MAPK activity and that FOSL1 
played a vital role in the mesenchymal transition,  stem-
ness,  and tumor growth of GBMs [65].

Effects of Microenvironment Factors on 
Mesenchymal Signatures of GBM

Sottoriva et al.  collected four to six tumor fragments 
from spatially distinct regions within an individual 
tumor from individual GBM patients to evaluate the 
regional heterogeneity and identified that each region 
exhibited the distinct TCGA subtype [66].  Jin et al.  later 
identified that tumor cells in the enhancing region 
highly expressed proneural signature genes,  while those 
in the necrotic region showed high expression of mes-
enchymal signature genes [44].  Furthermore,  Puchalski 
et al.  described the anatomically-based comprehensive 
molecular pathology atlas of glioblastoma that assigned 
individual histological features to genomic alterations 
and gene expression patterns.  This analysis revealed an 
apparent correlation between anatomical features and 
molecular subtypes; the mesenchymal signature pre-
dominated in the pseudopalisading cells around necro-
sis and the microvascular proliferation areas,  while the 
proneural signature predominated in the infiltrating 
tumor and cellular tumor areas [67].  Minata et al.  also 
reported that two distinct types of GSCs exist in the 
invasive edge and tumor core in GBMs,  corresponding 
to the proneural and mesenchymal subtype,  respec-
tively [68].  Indeed,  hypoxia is considered a crucial 
microenvironment factor of the tumor core region of 
GBMs [11],  and GBM cells under the hypoxic and per-
inecrotic microenvironment showed increased expres-
sion of master mesenchymal regulators including  
C/EBP-β and STAT3 [69].  Furthermore,  previous 
studies demonstrated that the hypoxia-dependent mes-
enchymal transition was controlled by HIF1α or HIF2α 
[70-73].  Darmanis et al.  found that while macrophages 
were predominant in the tumor core,  microglia were 

the major population at the invasive edge.  This distri-
bution contributed to the shaping of a differential 
microenvironment,  in which anti-inflammatory and 
pro-angiogenic markers were expressed in the tumor 
core while inflammatory markers were expressed in the 
tumor periphery [21].  These results demonstrated that 
the mesenchymal transition of GBM is closely associ-
ated with microenvironmental factors.

The majority of the non-neoplastic infiltrates in the 
GBM microenvironment is macrophages/microglia 
[74-79].  Previous studies have shown that glioma-asso-
ciated macrophages/microglia were enriched in mesen-
chymal GBMs compared with other subtypes and con-
tributed to the mesenchymal transition [18 , 22 , 41 ,  
77 , 80-83].  Two recent studies using single-cell analysis 
demonstrated that MARCO,  a scavenger receptor 
expressed on tumor-associated macrophages,  drove a 
phenotypic transition towards the mesenchymal cellular 
state of GBMs and correlated with poor clinical out-
comes [84 , 85].  A subpopulation of tumor-associated 
macrophages characterized by MARCO expression was 
derived from bone marrow and existed exclusively in 
IDH wild-type GBMs [84].  Gene set enrichment analy-
sis revealed that the expression of pro-inflammatory 
gene signatures related to IFN-α response,  IFN-γ 
response,  allograft rejection,  and TNF-α signaling 
mediated by NF-κB were attenuated in MARCO-
expressing macrophages [84].  Hara et al.  recently 
reported that macrophages induced the MES-like state 
in GBM by activating STAT3 through the interaction 
between macrophage-derived OSM and its receptors 
OSMR/LIFR in complex with GP130.  The authors fur-
ther found that transition into the MES-like state,  in 
turn,  increased expression of a mesenchymal program 
in macrophages and cytotoxicity of T cells [43].  
Gangoso et al.  revealed that immune attack drove epi-
genetic changes to reconfigure transcriptional modules 
in mesenchymal GSCs,  conferring an immunosuppres-
sive microenvironment enriched with macrophages and 
monocytic-myeloid derived suppressor cells in mesen-
chymal GBMs.  The authors proposed a self-reinforcing 
feedback loop,  in which changes in DNA methylation 
pattern induced by immune attack triggered a myeloid- 
affiliated transcriptional program in mesenchymal 
GSCs,  resulting in increased recruitment of macro-
phages,  and IFN-γ provided by macrophages in turn 
promoted epigenetic changes [86].  Dumas et al.  found 
that GBM-initiating cells elicited mTOR signaling in the 
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microglia but not bone marrow–derived macrophages,  
and mTOR-dependent regulation of STAT3 and NF-κB 
activity facilitated a pro-inflammatory tumor microen-
vironment.  The mTOR and tumor-associated microglia 
signatures were most strikingly correlated in the mes-
enchymal subtype and not in the proneural subgroup of 
GBMs [87].

A previous study showed that some IDH wild-type 
GBMs harbored a substantial T cell infiltration,  
although not as high as brain metastases [77].  Rutledge 
et al.  demonstrated that tumor-infiltrating lymphocytes 
were more abundant in the mesenchymal subtype than 
in other subtypes in GBM and were strongly related to 
NF1 and RB1 mutations [64].  The differences in the 
distribution of infiltrating T cell populations (such as 
cytotoxic T cells,  helper T cells,  and regulatory T cells) 
among GBM subtypes have been less conclusive.  Kaffes 
et al.  reported that the infiltration of T cell populations 
of helper T cells,  cytotoxic T cells,  and regulatory T 
cells is higher in mesenchymal GBM than in other sub-
types [82].  Indeed,  some studies demonstrated that 
CD8+ T cells were mainly associated with mesenchymal 
GBMs [43 , 88 , 89].  In contrast,  Martinez-Lage et al.  
reported that the mesenchymal GBM was enriched in 
CD4+ T cells compared with other subtypes,  with no 
difference in CD8+ T cells [90].  Thus,  further studies 
are required to elucidate the relationship between the 
infiltrating T cell population and GBM subtypes.

Effects of Radiotherapy on Mesenchymal 
Signatures of GBMs

Although current treatment regimens have pro-
longed the median overall survival of GBM patients,  
these treatments are still inadequate in terms of efficacy.  
Radiotherapy has been a key component of GBM treat-
ment for decades and is used in the Stupp regimen [2].  
However,  the mesenchymal transition has been consid-
ered to contribute to radioresistance [18 , 41 , 68 , 91-94].  
Bhat et al.  denoted that a subset of proneural GSCs 
differentiated into the mesenchymal state in a NF-κB-
dependent manner,  which in turn elicited an increase in 
CD44-expressing cells and radioresistance [41].  
Moreno et al.  identified that GPR56,  a G-protein-
coupled receptor,  was enriched in the proneural and 
classical subtypes of GBMs and lost upon transition to 
the mesenchymal subtype,  and GPR56 inhibited the 
NF-κB signaling pathway and prevented radioresistance 
[93].  Furthermore,  radiotherapy induced the expres-

sion of master mesenchymal regulators such as STAT3 
and C/EBP-β and promoted the proneural-to-mesen-
chymal shift [92].  Goffart et al.  found that GSCs resid-
ing in the subventricular zone (SVZ) exhibit specific 
resistance to radiation in vivo,  and these cells have 
enhanced mesenchymal signatures upregulated by 
CXCL12 in vitro and in the SVZ environment [91].  In 
addition,  Minata et al.  reported that GSCs enriched for 
a CD133+ proneural signature at the tumor edge were 
converted to GSCs enriched for CD109+ mesenchymal 
signatures,  and CD109 activated the YAP/TAZ pathway 
contributing to radioresistance [68].  Several preclinical 
studies have been conducted to overcome radiotherapy 
resistance and radiotherapy-induced mesenchymal 
transition.  The combination of the STAT3 inhibitor 
such as AZD1480 and ruxolitinib with radiation attenu-
ated the mesenchymal transition and extended survival 
in vivo [52].  YM155,  a potent survivin suppressant and 
radiosensitizer,  decreased the mesenchymal signatures 
of GBM cells,  enhanced radiosensitivity,  and prevented 
a radiation-induced invasion by targeting STAT3 [95].

Effects of Chemotherapy on Mesenchymal 
Signatures of GBM

Temozolomide (TMZ),  a DNA alkylating agent,  has 
been widely used as standard chemotherapy for newly 
diagnosed GBM since the FDA first approved it in 2005,  
and the Stupp regimen has become widely used [2].  
TMZ induces hypermutation or mutagenesis,  and these 
alterations might contribute to the mesenchymal transi-
tion [96 , 97].  Herting et al.  established high-grade gli-
oma mouse models corresponding to the mesenchymal 
subtype by NF1 silencing and the proneural subtype by 
PDGFB overexpression and found that the NF1-deleted 
mesenchymal model was less sensitive to both radiation 
therapy and TMZ than the PDGFB-overexpressing pro-
neural model [98].  Wang et al.  established TMZ-
resistant glioma cells and showed that they exhibited 
upregulation of mesenchymal signatures mediated by 
CDC20 [99].  Other studies showed that transcriptional 
regulators such as FOXO1 or NF1A played a crucial role 
in TMZ resistance and the mesenchymal transition of 
GBM cells [100 , 101].

Because angiogenesis is one of the hallmarks of 
GBMs,  anti-angiogenic therapies such as bevacizumab,  
an anti-VEGF monoclonal antibody,  were expected to 
have therapeutic effects.  However,  phase III studies 
(AVAglio and RTOG-0825) showed no survival benefit 
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of bevacizumab for newly diagnosed GBM [5 , 6].  One 
possible reason for this insufficient therapeutic effect 
may be the mesenchymal transition induced by bevaci-
zumab.  Piao et al.  performed gene expression profiling 
and identified that genes associated with mesenchymal 
signatures were increased in GBM cells after VEGF 
treatment compared with untreated controls [102 , 103].  
Other studies revealed that bevacizumab treatment 
accentuated the mesenchymal transition and conferred 
resistance to bevacizumab through Wnt/β-catenin sig-
naling,  MET activity in a hypoxia-independent man-
ner,  ZEB1 expression that altered the metabolic state of 
bevacizumab-resistant cells via GLUT3 activity,  and 
bevacizumab-induced macroautophagy/autophagy in 
GSCs [104-108].  Furthermore,  a retrospective analysis 
of the AVAglio trial demonstrated that bevacizumab in 
combination with standard therapy prolonged PFS over 
placebo in GBM patients with the mesenchymal and 
proneural subtype,  but prolonged OS was only 
observed in patients with the proneural subtype [109].

Effects of Recurrence on Mesenchymal 
Signatures of GBM

Patients with GBM have a poor prognosis as tumor 
recurrence is inevitable with the current standard of 
care,  and recurrent tumors often have a more aggressive 
phenotype.  [110].  There is currently no standard treat-
ment for patients with recurrent GBM.  Numerous reg-
imens,  including immunotherapy,  antiangiogenic 
therapy,  molecular targeted therapy,  reirradiation,  
stereotactic radiosurgery,  and combination therapy,  
have been investigated in clinical trials [111-113].  
However,  the prognosis for patients with recurrent 
GBM remains poor.  Thus,  elucidating the properties of 
GBMs at recurrence is crucial for better understanding 
of the evolution of tumors and improving the treatment 
of GBMs [114].  Mesenchymal GBMs at tumor recur-
rence were found to have trends toward a worse overall 
survival,  and reduced expression of mesenchymal sig-
nature genes was correlated with more favorable sur-
vival and longer time to recurrence in GBM patients 
[115 , 116].  Importantly,  recurrent GBMs frequently 
shifted toward the mesenchymal subtype,  which was 
characterized by the loss of OLIG2 expression and the 
upregulation of YKL40,  CD44,  STAT3,  and VIM 
expression [12 , 117].  Furthermore,  elevated transcrip-
tional heterogeneity was associated with a higher sub-
type switching at tumor recurrence,  and recurrent 

GBMs,  especially those that underwent the mesenchy-
mal transition,  were associated with a higher enrich-
ment of tumor-associated macrophages [18 , 118].  
EGFR amplification or EGFRvIII mutation is a charac-
teristic of the classical subtype of GBM [13 , 18 , 116].  
Interestingly,  van den Bent et al.  showed that the EGFR 
amplification status and EGFRvIII expression remained 
stable in the majority of GBMs evaluated.  However,  
when focusing on EGFRvIII-expressing tumors,  
approximately half of them lost EGFRvIII expression at 
recurrence [119].  Cioca et al.  reported that both pri-
mary and recurrent GBMs displayed EGFR expres-
sion; approximately 42% of recurrent tumors had 
reduced EGFR expression compared with primary 
tumors,  and 54% had comparable expression in their 
cohort [120].  Another study demonstrated that loss of 
EGFRvIII expression in recurrent tumors was promi-
nently associated with a shift from the classical subtype 
to other subtypes [116].

Longitudinal transcriptional analysis conducted by 
TCGA revealed that 45% of IDH wild-type GBMs 
switched subtype upon recurrence [18].  Other studies 
showed that approximately 30-67% of primary GBMs 
underwent subtype changes at recurrence [13 , 116].  
The mesenchymal subtype has been considered as the 
most stable subtype with 45-55% retaining the same 
subtype at recurrence.  However,  it is important to note 
that the frequency of the transition to the mesenchymal 
subtype was not significant upon tumor recurrence and 
some tumors shifted to the proneural subtype and oth-
ers to the classical subtype at recurrence [18 , 116].  
More research is needed to elucidate the molecular bio-
logical mechanisms that predispose to the shift toward 
the mesenchymal subtype upon recurrence.

Effects of the ANXA2–STAT3–OSMR Axis on 
Mesenchymal Transition of GBM

We previously established two glioma cell lines,  
J3T-1 and J3T-2,  that exhibit distinct invasion patterns 
and molecular expression and have examined the 
molecular and pathological phenotypic shifts of GBMs 
[49 , 121-124].  We showed that the ANXA2–STAT3–
OSMR axis drove the pathological aggressiveness and 
mesenchymal transition of GBMs [49] (Fig. 3).  
Consistent with our findings,  several studies have 
reported that ANXA2 promoted tumor aggressiveness 
and mesenchymal transition in GBMs [125-132].  
OSMR and its ligand OSM have been reported to 
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induce tumorigenesis,  tumor aggressiveness,  mesen-
chymal transition,  radiotherapy and chemotherapy 
resistance,  shaping an immunosuppressive microenvi-
ronment in GBMs [43 , 133-140].  Notably,  OSM is 
produced by macrophages in the GBM microenviron-
ment and elicited the mesenchymal state in GBM cells 
via the interaction with its receptors OSMR and LIFR 
[43 , 137].  Given that ANXA2 has been reported to 
exert an effect on macrophage migration to the tumor 
site and activation [141-145],  the ANXA2–STAT3–
OSMR axis might drive macrophages to the tumor site 
and contribute to the development of a tumor ecosys-
tem distinct to GBM.  The humanized anti-OSM mono-
clonal antibody GSK2330811 has recently been vali-
dated in a phase II clinical trial to treat diffuse 
cutaneous systemic sclerosis (NCT03041025),  and 
GSK2330811 exhibited anti-tumor effects in cervical 
squamous cell carcinoma in vivo [146].  Whether 
GSK2330811 is a new therapeutic approach for GBM by 
inhibiting the ANXA2–STAT3–OSMR axis should be 
investigated.

Conclusions and Future Perspectives

In this review,  we have discussed the molecular 
mechanisms related to the mesenchymal transition of 

GBMs and the clinical significance.  There have been 
significant developments in our understanding of the 
inter- and intratumoral heterogeneity of GBMs and the 
interactions with the microenvironment.  However,  
these insights have not yet yielded significant improve-
ments in patient outcomes.  One issue is that there is 
currently no way to know the properties of an individ-
ual tumor prior to surgery,  making it difficult to 
promptly tailor treatment strategies on the basis of the 
characteristics of the tumor.  With the development of 
computational algorithms,  artificial intelligence meth-
ods are well poised to improve the accuracy of diagnosis 
and clinical decisions [147].  In particular,  machine 
learning and deep learning methods are being applied to 
radiomics and radiogenomics.  The term radiomics 
refers to the process of converting images into mineable 
data and analyzing the data to support decision making,  
and radiogenomics refers to the process of integrating 
radiological data with genome-scale data [148 , 149].  
These radiomics and radiogenomics tools have the 
potential to capture spatial and molecular heterogeneity 
through non-invasive sampling and to stratify patients 
into more precise initial diagnostic and therapeutic pro-
cedures.  In the field of neuro-oncology,  radiomics and 
radiogenomics can predict tumor grade and genetic 
status including IDH mutation and 1p19q-codeletion 
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Fig. 3　 Schematic diagram of the ANXA2‒STAT3‒OSMR axis.  We previously demonstrated that ANXA2 regulates OSMR expression 
through STAT3 phosphorylation in GBMs and that this ANXA2‒STAT3‒OSMR axis drives mesenchymal transition,  cell proliferation,  inva-
sion,  and angiogenesis [49].



status in glioma to clinically useful accuracies [150-
157].  Given these advances,  the classification of the 
molecular subtypes of GBM based on imaging alone 
may soon become a possibility.  Comprehensive efforts 
to further unravel the inter- and intratumoral heteroge-
neity of GBM and translate these insights into clinical 
decisions will ultimately contribute to improved patient 
outcomes.
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