
1
Tartu 2022

ISSN 1024-6479
ISBN 978-9916-27-064-6

DISSERTATIONES 
BIOLOGICAE 

UNIVERSITATIS  
TARTUENSIS

408

M
A

R
I TA

G
EL	

Finding novel factors affecting the m
utation frequency

MARI TAGEL

Finding novel factors affecting 
the mutation frequency:  
a case study of tRNA modification  
enzymes TruA and RluA



DISSERTATIONES BIOLOGICAE UNIVERSITATIS TARTUENSIS 

408 



DISSERTATIONES BIOLOGICAE UNIVERSITATIS TARTUENSIS 

408 
 
 
 
 

 
 
 

MARI TAGEL 
 
 

Finding novel factors affecting  
the mutation frequency: a case study of  

tRNA modification enzymes TruA and RluA 
  



Institute of Molecular and Cell Biology, University of Tartu, Estonia 
 
This dissertation is accepted for the commencement of the degree of Doctor of 
Philosophy in Molecular Biology on October 21st, 2022, by the Council of the 
Institute of Molecular Cell Biology, University of Tartu. 
 

Chair of Genetics, Institute of Molecular and Cell Biology, 
University of Tartu, Tartu, Estonia 

 
 Research Fellow Heili Ilves, PhD  

Chair of Genetics, Institute of Molecular and Cell Biology, 
University of Tartu, Tartu, Estonia 

 
 Associate Professor Jaanus Remme, PhD 

Chair of Molecular Biology, Institute of Molecular and Cell 
Biology, University of Tartu, Tartu, Estonia 

 
Reviewer:  Professor Maido Remm, PhD 

Chair of Bioinformatics, Institute of Molecular and Cell 
Biology, University of Tartu, Tartu, Estonia 

 
Opponent:  Principal Investigator Ivan Matic, PhD  

Institut Cochin, Université Paris Cité, Paris, France 
 
Commencement: Room No. 105, 23B Riia St., Tartu, on November 29th, 2022, 
at 10:15 am. 
 
The publication of this dissertation is granted by the Institute of Molecular and 
Cell Biology at the University of Tartu.  
 
 
 
 

 
ISSN 1024-6479 (print) 
ISBN 978-9916-27-064-6 (print) 
ISSN 2806-2140 (pdf) 
ISBN 978-9916-27-065-3 (pdf) 
 
Copyright: Mari Tagel, 2022 
 
 
University of Tartu 
www.tyk.ee 

Supervisors:  Professor Maia Kivisaar, PhD  



5 

CONTENTS 

LIST OF ORIGINAL PUBLICATIONS .......................................................  7 
ABBREVIATIONS ........................................................................................  8 
INTRODUCTION ..........................................................................................  9 
1.  REVIEW OF THE LITERATURE ...........................................................  11 

1.1.  Factors affecting mutation frequency ................................................  11 
1.1.1.  Chemical and physical factors ................................................  11 
1.1.2.  DNA replication ......................................................................  12 
1.1.3.  DNA repair pathways .............................................................  14 
1.1.4.  Transcription ...........................................................................  16 
1.1.5.  Mutation rate dependence on chromosome location ..............  17 
1.1.6.  Stress-induced mutagenesis ....................................................  18 
1.1.7.  Translation ..............................................................................  20 

1.2.  RNA modifications ............................................................................  22 
1.2.1.  tRNA modifications ................................................................  23 

1.2.1.1.  The role of tRNA modifications in translation ..........  27 
1.2.1.2.  tRNA modifications in stress response ......................  28 
1.2.1.3.  TruA and pseudouridines at the positions  

38, 39, and 40 in tRNA ..............................................  32 
1.2.1.4.  RluA and pseudouridine at the position 32 in tRNA ...  35 

2.  THE AIM OF THE THESIS .....................................................................  37 
3.  RESULTS AND DISCUSSION ...............................................................  38 

3.1.  The nucleoid-associated protein IHF influences mutation frequency  
in P. putida (Ref. I) ............................................................................  38 

3.2.  A new test system for identifying mutation rate-affecting genes  
in Pseudomonas species (Ref. II) ......................................................  40 

3.3.  Search for mutation-affecting genes in P. putida (Ref. II) ..................  42 
3.4.  Characterization of TruA and RluA (Ref. III and IV) .......................  43 

3.4.1.  The substrates of TruA and RluA ...........................................  43 
3.4.2.  The lack of Ψ38–40 and Ψ32 increases mutation  

frequency in P. putida .............................................................  44 
3.4.3.  The role of SOS response and the DNA repair pathways  

in P. putida mutator phenotype ...............................................  46 
3.4.4.  The effect of Ψ38–40 and Ψ32 on translation in P. putida, 

P. aeruginosa, and E. coli .......................................................  47 
3.4.5.  The effect of TruA and RluA on stress tolerance  

in P. putida, P. aeruginosa, and E. coli ..................................  49 
3.4.6.  The proteome of P. putida ΔtruA and ΔrluA strains ..............  51 
3.4.7.  Concluding remarks on TruA and RluA .................................  54 

 



6 

CONCLUSIONS ............................................................................................  56 
SUMMARY IN ESTONIAN .........................................................................  58 
ACKNOWLEDGEMENTS ...........................................................................  61 
REFERENCES ...............................................................................................  62 
PUBLICATIONS ...........................................................................................  79 
CURRICULUM VITAE ................................................................................  152 
ELULOOKIRJELDUS ...................................................................................  154 
 
  



7 

LIST OF ORIGINAL PUBLICATIONS 

I. Mikkel, K; Tagel, M; Ukkivi, K; Ilves, H; Kivisaar, M (2020). Integration 
Host Factor IHF facilitates homologous recombination and mutagenic 
processes in Pseudomonas putida. DNA Repair, 85, 102745. DOI: 
10.1016/j.dnarep.2019.102745.  

II. Tagel, M; Tavita, K; Hõrak, R; Kivisaar, M; Ilves, H (2016). A novel 
papillation assay for the identification of genes affecting mutation rate in 
Pseudomonas putida and other pseudomonads. Mutation Research/Funda-
mental and Molecular Mechanisms of Mutagenesis, 790, 41–55. DOI: 
10.1016/j.mrfmmm.2016.06.002.  

III. Tagel, M; Ilves, H; Leppik, M; Jürgenstein, K; Remme, J; Kivisaar, M 
(2021). Pseudouridines of tRNA Anticodon Stem-Loop Have Unexpected 
Role in Mutagenesis in Pseudomonas sp. Microorganisms, 9(1), 25. DOI: 
10.3390/microorganisms9010025.  

IV. Jürgenstein, K; Tagel, M; Ilves, H; Leppik, M; Kivisaar, M; Remme, J 
(2022). Variance in translational fidelity of different bacterial species is 
affected by pseudouridines in the tRNA anticodon stem-loop. RNA Biology, 
19:1, 1050–1058, DOI: 10.1080/15476286.2022.2121447 

 
 
My contribution to the articles is as follows:  
Ref I  –  participated in mutant frequency analyses experiments, provided the 

illustrations, conducted the statistical analysis, and took part in revision 
and editing of the manuscript. 

Ref II  –  participated in planning the experiments, conducting the experiments, 
and writing and editing the manuscript. 

Ref III  –  participated in planning the experiments, preformed experiments 
(except primer extension with tRNAs), analyzed data, provided the 
illustrations and statistical analysis, and wrote and edited the manu-
script. 

Ref IV  –  participated in planning the experiments, constructing the plasmids, 
and revision and editing of the manuscript. 

  



8 

ABBREVIATIONS 

aa  –  amino acid 
Amp  –  Ampicillin  
ASL  –  anticodon stem loop 
BER  –  base excision repair 
CFU  –  colony forming unit 
Cm  –  Chloramphenicol 
D  –  dihydrouridine 
dsDNA  –  double-stranded DNA 
GGR  –  global genomic repair 
Gm  –  Gentamycin 
Hm  –  Hygromycin B 
IHF  –  Integration Host Factor 
MBR  –  mutagenic DNA break repair 
MMC  –  Mitomycin C 
MMR  –  mismatch repair 
MMS  –  methylmethanesulfonate 
MoTT – modification tunable transcript 
NAP  –  nucleoid-associated proteins 
NER  –  nucleotide excision repair 
NQO  –  4-Nitroquinoline 1-oxide 
Phe –  phenol 
Pm  –  Puromycin 
Pol  –  polymerase 
PQ  –  Paraquat 
Rif  –  Rifampicin 
RNAP  –  RNA polymerase 
ROS  –  reactive oxygen species  
Sm  –  Streptomycin 
ssDNA  –  single-stranded DNA 
TAM  –  transcription-associated mutagenesis 
TCR  –  transcription-coupled repair 
Tet  –  Tetracycline 
TLS –  translesion synthesis 
TSM  –  translational stress-induced mutagenesis 
wt  –  wild type 
Ψ  –  pseudouridine 
  



9 

INTRODUCTION 

Bacteria have evolved to withstand even the harshest and seemingly unwel-
coming environmental conditions on Earth. For inhabiting different environments 
and ecological niches, genetic versatility is necessary. The sources of genetic 
versatility are mutations and horizontal gene transfer. Due to the potential 
harmful effect of mutations, their occurrence in a cell is kept as low as possible 
and many error correction, removal, and tolerance mechanisms have coevolved 
with bacteria. To understand bacterial evolution, it is vital to understand the 
mechanisms behind the mutations. The first studies of mutational processes of 
DNA are as old as the discovery of DNA itself but are far from conclusive. Recent 
achievements in technology have led to many new findings in the field of DNA 
mutations, making it possible, for example, to measure the mutation frequency 
patterns across the chromosomes (Foster et al., 2013; Niccum et al., 2019), or to 
detect population heterogeneity by identifying subpopulations of cells with 
higher mutation frequency (Matic, 2019; Pribis et al., 2022, 2019). Also, studies 
of stress induced mutagenesis have revealed that the networks affecting the 
switch to mutagenic repair can be bigger than previously known and many 
nonobvious factors affect the mutational outcome (Al Mamun et al., 2012). 
Although the studies of mutational processes have been thorough, our present 
knowledge is biased towards the well-studied model organism Escherichia coli. 
Furthermore, in many aspects E. coli seems to be rather exceptional and not the 
best representation of the prokaryotic world. 

In our research group, the genus Pseudomonas has been used as a model to 
study mutational processes. This genus contains a large group of bacteria with 
versatile habitats, broad metabolic capacity and great adaptive potential (Silby 
et al., 2011). Pseudomonas aeruginosa, although common in soil and water 
samples, is best known as an opportunistic human pathogen with an extraordinary 
ability to rapidly develop resistance to antimicrobial agents (Lister et al., 2009). 
Pseudomonas putida is a common soil bacterium which is often present in 
polluted areas. Its high tolerance to toxic compounds and ability to biodegrade 
versatile pollutants is the reason why P. putida is widely used in biotechnology 
(Kivisaar, 2020a). 

The initial aim of my thesis was to find and characterize new mutation fre-
quency affecting genes in the genus Pseudomonas. In the progress of this study, 
among others the most intriguing finding in P. putida was the significantly higher 
mutation frequency in strains lacking a specific tRNA modification enzyme. 
tRNAs are universal adaptor molecules that carry the building blocks of proteins 
from cytoplasm to ribosome and tie the amino acids with the mRNA sequence. 
Probably because the well conserved nature of a tRNA molecule and its wide 
variety of interaction partners, the tRNAs are abundantly covalently modified. To 
understand how the tRNA modification enzymes affect the cells physiology and 
potentially the formation of mutations, we investigated the mutation frequency, 
translation accuracy, stress tolerance, protein expression, and general fitness of 
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P. putida strains lacking tRNA modification enzymes TruA and RluA. Moreover, 
we compared the P. putida phenotypes with P. aeruginosa and E. coli. Intri-
guingly, while the substrate specificity of TruA and RluA is comparable in all 
studied strains, the phenotypes observed are markedly different. The finding, that 
a protein with the most obvious function in translation can affect the mutational 
outcome in cells of P. putida and P. aeruginosa, beautifully illustrates how a 
bacterial cell works as a whole, where all processes happen simultaneously, and 
can potentially affect one another.  
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1. REVIEW OF THE LITERATURE 

1.1. Factors affecting mutation frequency 

In broad terms, a mutation is an alteration in DNA molecule that can happen 
spontaneously during endogenic processes in a cell or is induced by exogenic 
factors. Mutations are vital for long-term adaption and evolution, but in short 
timescale are mostly neutral or deleterious. To avoid the harmful effects, there 
are numerous systems for removing, repairing, and tolerating the mutations in a 
cell. But on the other hand, there is no genotype which is optimally adapted for 
all of the potential present and future environments (Denamur and Matic, 2006). 
Therefore, for adapting to new conditions, there is constantly a need for genetic 
versatility, and in a bacterial cell, mutations are the main source of it. Next, I will 
describe the factors that can affect the mutational outcome of a bacterial popu-
lation and, through this, mediate the evolution. 
 
 

1.1.1. Chemical and physical factors 

All biomolecules in a cell can potentially be damaged by different chemical and 
physical factors, e.g., the presence of extensive amount of reactive chemicals, 
extreme pH, extreme temperature, high pressure, UV-radiation (Friedberg et al., 
2005). These factors usually originate from the environment. DNA is an intrinsi-
cally reactive molecule and because of it, it is susceptible to changes caused by 
chemical and physical factors. Furthermore, because the intactness of DNA is not 
only vital for cell’s life but also for its offspring and in a broader sense for the 
entire population, therefore from the beginning of life the mechanism for 
repairing DNA damages have evolved. 

Bacteria can inhabit all kind of environments and always there is something 
harmful in the environment. Both the ionizing radiation and UV radiation can 
cause damages in DNA. The direct absorption of the ionizing radiation energy by 
DNA can cause direct alterations in nucleobases and sugars, the latter can lead to 
single-stranded DNA (ssDNA) breaks. In addition, the ionizing radiation can also 
cause double-stranded DNA (dsDNA) breaks. Furthermore, the radiation can 
indirectly attack other molecules (e.g., water) and the resulting reactive species 
can react with DNA causing similar damage as the direct effect of radiation 
(Friedberg et al., 2005). The most common damage caused by UV radiation is the 
covalent linkages between neighboring pyrimidines which distort the DNA helix 
and require translesion synthesis polymerases (will be discussed later in detail) to 
replicate past them. Also, DNA and protein cross-linking and strand breaks can 
happen in response to extensive UV radiation. In addition to radiation, a wide 
range of harmful chemicals might be present in the environment: alkylating 
agents, aromatic compounds, and toxins from other lifeforms, etc. (Friedberg et 
al., 2005). However, not only the environmental factors affect the mutagenesis, 
many factors affecting mutations are simply byproducts of life. 
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For organisms living in oxygen-rich atmosphere, the reactive oxygen species 
(ROS) are an unavoidable byproduct of aerobic metabolism, usually as byproducts 
of electron transport chain of cellular respiration (Chatterjee and Walker, 2017; 
Friedberg et al., 2005). Furthermore, the exposure to radiation, and different 
synthetic and natural agents can induce the formation of ROS. For instance, the 
three major classes of bactericidal antibiotics with different targets of action, all 
induce the formation of hydroxyl radicals (•OH) which contribute to the cells 
death (Kohanski et al., 2007). Also, the innate immune system of a host produces 
ROS in response to colonization of bacteria. In addition to hydroxyl radical, other 
most abundant ROS are superoxide radicals (•O2

–) and hydrogen peroxide (H2O2) 
(Chatterjee and Walker, 2017). Oxidative damage is an important source of 
mutagenesis and ROS can damage DNA in many ways, e.g., by attacking the 
double bonds in nucleobase, attacking sugar base, causing breaks in DNA back-
bone (Chatterjee and Walker, 2017; Friedberg et al., 2005). To protect themselves 
against oxidative stress, numerous biochemical antioxidants and enzymes act to 
reduce the harmful effects of aerobic life. For example, many bacteria have spe-
cialized detoxifying enzymes like catalases and peroxidases for removing H2O2, 
and superoxide dismutases for eliminating •O2

– (Borisov et al., 2021). In addition 
to damaging DNA, ROS are the main factor spontaneously damaging carbo-
hydrates, lipids, RNA, and proteins as well. Moreover, it has been recently shown 
that oxidative stress directly affects aminoacyl-tRNA editing site leading to mis-
translation, which in turn leads to accumulation of misfolded proteins (Ling and 
Söll, 2010). To conclude, although the aerobic life is advantageous in terms of 
energy production, the cells constantly need mechanisms to overcome the harm-
ful effects of ROS. 

 
 

1.1.2. DNA replication 

Accurate DNA replication is the main mechanism maintaining genetic integrity. 
For consistency of life the cells need to replicate their whole genome and do it 
often and rapidly. It is unavoidable that a process so frequent makes mistakes. 
Also, these unavoidable mistakes are the source of genetic versatility. The overall 
DNA replication error rate is kept low at approximately 10–9–10–11 mutations per 
base pair (Fijalkowska et al., 2012). The replicative DNA polymerase itself is 
much more erroneous but the action of DNA mismatch repair (MMR) pathway 
reduces the mutation rate two to three orders of magnitude (Fijalkowska et al., 
2012; Schaaper, 1993).  

In general, the accurate DNA replication is combination of correctly selected 
dNTPs from the nucleotide pool, DNA polymerase 3’–5’ exonuclease activity, 
which is able to remove mis-incorporated nucleotides, and the action of MMR, 
which further improves the accuracy by removing errors that the polymerase 
missed (Fijalkowska et al., 2012). In E. coli the replication is carried out by a 
large replicase complex consisting usually of three copies of polymerase core, 
one for leading strand and two for lagging, coupled with other subunits (Kurth 
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and O’Donnell, 2013; Reyes-Lamothe et al., 2010). The core of replicative DNA 
polymerase III consists of three subunits: the DNA polymerase α subunit (dnaE 
gene), which is responsible for the correct nucleotide selection, the ε subunit 
(dnaQ gene) with proofreading activity, and the θ subunit (holE gene), which 
stabilizes the proofreading subunit interactions (Taft-Benz and Schaaper, 2004). 
Defects in both α (Maki et al., 1991) and ε (Taft-Benz and Schaaper, 1998) subunit 
cause mutator phenotypes, but in the case of α subunit mutant antimutator pheno-
types have also been described (Fijalkowska et al., 1993). In addition, other sub-
units of polymerase contribute to the fidelity as well. For instance, E. coli strains 
lacking holE have a moderate mutator phenotype in MMR defective background 
(Taft-Benz and Schaaper, 2004) and the strains carrying mutations in the end of 
dnaX gene (in τ subunit) have enhanced transversions and frameshift mutations 
(Pham et al., 2006). The τ subunit of the clamp loader is responsible for con-
necting Pol III α subunits to replisome (Fijalkowska et al., 2012; Kurth and 
O’Donnell, 2013).  

In addition to replicative DNA polymerase, the bacterial cells harbor numerous 
accessory polymerases, which can also contribute to the overall accuracy of the 
replication. Pol I (polA gene) is the most abundant polymerase in E. coli cells, 
and it is necessary for the replication of lagging strand where it removes the RNA 
primers and fills the gaps between Okazaki fragments (Patel et al., 2001). Another 
common example is usage of error-prone translesion synthesis (TLS) poly-
merases. The TLS polymerases are capable of filling a ssDNA gap at DNA repli-
cation blocking lesions sites, which are usually caused by exposure to exogenous 
DNA damaging agents. Because the TLS polymerases do not harbor proofreading 
activity and their action can be highly mutagenic, the gap filling by TLS poly-
merases is considered to be a DNA damage tolerance strategy, not a repair strategy 
(Fujii and Fuchs, 2020). The most common examples of TLS polymerases in 
E. coli are the Pol IV (dinB gene) and Pol V (umuDC genes). Although, usually 
the TSL polymerases contribute to mutagenesis, depending on the nature of DNA 
damage, the Pol IV can also be involved in error-free synthesis (Napolitano et al., 
2000). The upregulation of TLS in stress response will be discussed in more detail 
in chapter 1.1.6. It is most likely that in addition to stress conditions, during 
normal replication the high-efficiency replicative polymerase with tight catalytic 
center encounters a disruption which causes temporary replicase stalling. It might 
be due to a mismatch or a DNA lesion or a secondary structure. In this case the 
DNA polymerase switching can occur. This is a prosses where the replicative 
polymerase is exchanged with another polymerase and at least partially this can 
be mediated through the τ subunit (Fijalkowska et al., 2012). In E. coli the Pol II 
is able to participate in chromosomal DNA replication and thus it has been specu-
lated to act as a back-up polymerase and offer additional proofreading activity 
and error removal (Banach-Orlowska et al., 2005). Also, the mutation spectrum 
analysis indicate that there is a significant interplay between all five E. coli 
polymerases under certain conditions (Curti et al., 2009). Furthermore, recent 
studies have shown that most proteins in Pol III replisome are constantly exchanged 
during DNA replication, possibly providing additional flexibility for bypassing 
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obstacles (Beattie et al., 2017). Thus, the composition of replicative polymerase 
may be more heterogenous between cells in a population than previously believed 
(Vincent and Uphoff, 2020).  

Although in E. coli both DNA strands are replicated by the same replicative 
polymerase, the error rate differs in leading and lagging strand replication. The 
DNA replication of lagging strand in E. coli is more accurate (Fijalkowska et al., 
1998; Maslowska et al., 2018). In addition, in P. aeruginosa the mutation spectrum 
differs in the leading and lagging strand replication (Dettman et al., 2016). The 
nucleotide selection and proofreading are carried out by the same enzyme, but 
the overall replication strategy is different, while the leading strand is synthesized 
continuously, the lagging strand is synthesized in short Okazaki fragments. Thus, 
the differences in error rate are probably due to the different strategies and it has 
been proposed that the dissociability of polymerase on the lagging strand causes 
the higher fidelity phenotype (Maslowska et al., 2018). Thus, it can be concluded 
that both the composition of the enzyme replicating the genome and the strategy 
how the replication is carried out affect the mutational outcome. 

 
 

1.1.3. DNA repair pathways 

Obviously, the accuracy of replication depends upon the DNA itself and its 
integrity, but DNA is not only template for replication but also for transcription, 
recombination and repair processes, and all these processes can affect DNA 
integrity. For maintaining the overall DNA fidelity, there are several different 
repair pathways in the bacterial cell for repairing specific types of mutations 
caused by different stressors. Inactivation of common repair pathways leaves 
cells extremely vulnerable to DNA damage. Broadly, the DNA repair mecha-
nisms can be divided into six different strategies (reviewed in (Friedberg et al., 
2005)). Firstly, the direct reversal of DNA damage also, referred to as “direct 
reversal”, combines many unrelated processes directly eliminating a lesion in 
DNA and not including excision and re-synthesizing a part of DNA. This is 
usually highly specific to a mutation, error-free and is carried out as a single-step 
reaction by only one specific enzyme, e.g., photolyases, methyltransferases (Fried-
berg et al., 2005). Secondly, dsDNA breaks can be repaired by non-homologous 
end-joining (Shuman and Glickman, 2007) or by homologous recombination 
repair. The last one can also correct ssDNA gaps that are not resolved by other 
repair pathways, and homologous recombination is also important for the recovery 
of collapsed replication forks (Li and Heyer, 2008; Wyman et al., 2004). Usually, 
if there is a damage in one strand of a dsDNA, it is repaired by one of the three 
repair pathways: base excision repair (BER), nucleotide excision repair (NER) or 
mismatch repair (MMR). In BER, once the damage is recognized, the DNA 
glycosylase cleaves the N-glycosyl bond linking the nucleobase to deoxyribose-
phosphate backbone creating an apurinic/apyrimidinic (AP) site. This AP site is 
further removed from DNA leaving a single stranded gap, which can either be a 
single nucleotide long or a longer patch of DNA, that is filled with correct 
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nucleotide(s) (Zharkov, 2008). Next, I will briefly describe the two major DNA 
repair pathways – MMR and NER pathways. 

Firstly, all repair pathways need to recognize the DNA damage. Already this 
task could be challenging, since the copy number of repair enzymes can be rather 
low in bacteria. The MMR pathway functions as an error correction mechanism 
for replication and it is tightly coupled with replication (Hasan and Leach, 2015). 
MMR repairs single base pair misincorporations and up to 3–4 base pairs long 
insertion/deletion loops that bypass the DNA polymerase. In E. coli MMR, the 
errors are detected by the enzyme MutS. The homodimer of MutS recognizes the 
mutation in dsDNA, undergoes a conformational change and initiates the MMR 
machinery (Jiricny, 2013; Jun et al., 2006; Li, 2008). The MutL protein interacts 
with MutS and recruits and activates the endonuclease activity of MutH (Hall and 
Matson, 1999). While DNA is replicating, the newly synthesized strand is un-
methylated and this allows the MMR’s strand specificity to target and eliminate 
the mismatch from the daughter DNA strand only. The endonuclease MutH cleaves 
the unmethylated DNA strand at hemimethylated Dam methylase sites for removal 
of mismatch-containing strand. The mismatch is then removed. For this, first, the 
helicase UvrD unwinds the nascent strand, whereas the interaction of UvrD is 
also facilitated by MutL. Then exonuclease removes the new strand from the nick 
to the mismatch and the single-strand binding protein SSB, DNA polymerase III 
and DNA ligase carry out the repair (Jiricny, 2013; Jun et al., 2006; Li, 2008; 
Yang, 2000).  

Although the E. coli MMR system is the well-known model, the MMR path-
way can be rather different in other bacteria. The presence of mutH gene in the 
genomes of major pathogenic bacterial species is rather exception than a norm 
(Ambur et al., 2009). For example, P. aeruginosa, like other Pseudomonads, does 
not have Dam methylase nor MutH (Kivisaar, 2010; On and Welch, 2021). In 
brief, the roles of MutS, MutL and UvrD in P. aeruginosa MMR are similar to 
the ones in E. coli. Additionally, MutL has endonuclease activity and is respon-
sible for nicking the nascent DNA strand carrying the mutation (On and Welch, 
2021). But there are still many gaps in knowledge about this methylation-inde-
pendent MMR pathway. For instance, it is still unclear how the discrimination 
between daughter and parental strand is carried out.  

While the main role of MMR is improvement of the DNA replication fidelity 
(postreplicative repair), other repair pathways are important for repairing damage 
caused by exogenous mutagenic agents. NER is a unique repair pathway because 
of its diverse substrate specificity. It can repair a diverse set of structurally dif-
ferent damages, e.g., UV-induced photoproducts (Van Houten et al., 2005) or 
even DNA-peptide cross-links (Minko et al., 2005). The basic mechanisms of 
NER are similar to other excision repair pathways: the damage is detected, veri-
fied, damaged DNA strand is nicked at both sides of the damaged site, damage is 
removed, and the gap is filled by DNA polymerase and the new strand is ligated 
(Kisker et al., 2013). Depending on the damage detection mechanism, the NER 
can be divided into global genomic repair (GGR) and transcription-coupled repair 
(TCR). In GGR the UvrA2-UvrB2 complex scans the DNA, and the damage is 
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detected by UvrA. After initial recognition the DNA is passed from UvrA to 
UvrB. UvrB verifies the lesion and separates DNA strands. This is followed by 
the incision by endonuclease UvrC from both sides of the lesion. This damaged 
oligonucleotide is then removed from the DNA by UvrD helicase and the single-
stranded gap is filled by DNA polymerase I and ligated by DNA ligase I (Kisker 
et al., 2013). In TCR, the steps of repair are the same as in GGR, except the damage 
recognition differs. The TCR is triggered by transcription blockage when RNA 
polymerase (RNAP) in unable to transcribe the template DNA due to a blocking 
lesion. It causes the RNAP stalling and the RNAP blocks the lesion. A translocase 
Mfd binds to stalled RNAP and pushes it forward away from the lesion to allow 
NER enzymes to gain access to damage, and at the same time Mfd recruits UvrA 
(Spivak, 2016). Also, a Mfd-independent TCR has been described, where the 
helicase UvrD is able to slide RNA polymerase backward away from the DNA 
lesion and together with regulatory protein NusA recruit the NER complex to the 
damage (Epshtein et al., 2014). In conclusion, NER in cells is important for 
mending a wide variety of DNA lesions which are detected either by the NER 
enzymes independently scanning the DNA or by transcription machinery. 

 
 

1.1.4. Transcription 

In TCR the transcription can trigger the repair, enabling faster detection and 
removal of lesions, but at the same time transcription can contribute to genetic 
instability or so-called transcription-associated mutagenesis (TAM) (reviewed in 
(Jinks-Robertson and Bhagwat, 2014)). Thus, transcription can induce muta-
genesis as well as repair. While the DNA is transcribed into RNA, the dsDNA is 
unwound, and the non-transcribed strand is exposed and more susceptible to 
damage by different chemicals. For instance, in E. coli there is an increase in C to 
T mutations in the non-transcribed strand (Beletskii and Bhagwat, 1996). In addi-
tion, the transcription occurs simultaneously with replication and the genomic 
stability can be hindered if the DNA polymerase and RNAP collide, causing 
TAM. Since in prokaryotes the DNA polymerase is approximately an order of 
magnitude faster than RNAP, depending on a gene’s orientation, the replication 
can face RNAP head-on or co-directionally. The head-on collision has a greater 
negative effect on DNA replication than co-directional, leading to replication 
stalling and disassembly, breaks in DNA, and mutagenesis (Paul et al., 2013). In 
prokaryotes almost all the highly transcribed rRNA genes are co-oriented with 
replication (Rocha and Danchin, 2003), and it has been proposed that this com-
position of genome has been at least partly shaped to prevent the head-on collision 
of replication and transcription (Merrikh et al., 2012). Based on these obser-
vations, it has been proposed that the gene’s strand-specific orientation can be a 
mechanism for cells to gene-specifically and temporally accelerate the evolution 
of specific genes (Merrikh, 2017). 

However, it is hard to describe the exact cumulative effect of transcription to 
mutagenesis. Based on comparative genome analyses of 34 E. coli genomes, it was 
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shown that the highly expressed genes have lower rate of mutations, suggesting 
that the mutation frequency has been optimized to reduce the risk of obtaining 
deleterious mutations in highly expressed genes (Martincorena et al., 2012). On 
the other hand, in more recent work with E. coli mutation frequency throughout 
the genome, there was no negative or positive correlation between mutation 
density and gene expression (Foster et al., 2013). Furthermore, in budding yeast 
and in human germline, there is an elevation of mutation rate in highly expressed 
genes and on the genomic scale in eukaryotes, the TAM exceeds TCR (Park et 
al., 2012). However, there are many fundamental differences in eukaryotic and 
prokaryotic transcription, and therefore one cannot transmit these observations to 
prokaryotes. Yet, although in prokaryotes the net impact of transcription to muta-
tions may not be easily calculated, it is evident that a process using DNA as a 
template can hinder its integrity.  

 
 

1.1.5. Mutation rate dependence on chromosome location 

In addition to gene’s orientation, its chromosomal location can affect the muta-
tions. Since the mutation rate is kept at an extremely low level in cells, it has been 
historically challenging to study it, especially the overall mutation distribution in 
a genome. Almost all early studies of mutation rate were dependent on a reporter 
gene and were usually limited to few specific mutations. But already these experi-
ments indicate that the mutation rate is not constant throughout the genome and 
is chromosome position-dependent (reviewed in (Kivisaar, 2020b)). With the aid 
of new fast and cheaper sequencing possibilities, the whole-genome sequencing 
has improved our knowledge about mutation rate and factors affecting it (Lynch 
et al., 2016). With mutation-accumulation experiments followed by the whole-
genome sequencing in E. coli MMR defective strains, it has been shown that not 
only the mutation rate varies across the genome, but it does so in a spatial wave-
like manner. Interestingly, from the replication origin the large-scale pattern of 
mutations follows symmetrically two replichores (Foster et al., 2013). Similar 
pattern is also evident in other bacteria, e.g., P. aeruginosa (Dettman et al., 2016), 
B. subtilis (Niccum et al., 2019), and in the larger chromosome of Vibrio cholera 
and V. fischeri (Dillon et al., 2017). The further studies showed that the mutation 
rate across the genome is dependent on nucleoid-associated proteins (NAPs) (HU 
and Fis) and replication initiation, progression, and termination. The DNA poly-
merase appeared to be more accurate close to the replication origin and then the 
accuracy declines and after around 1/3 the accuracy rises again. This fluctuation 
can be at least partly explained by the fluctuations of dNTP pool (Niccum et al., 
2019).  

The dNTPs are the precursors of the DNA, and an optimal and undamaged 
dNTP pool is highly important for the accurate DNA replication. If the correct 
cellular dNTP levels are changed, the replication errors are induced, whereas the 
change in dNTP levels enhances also mutational specificity (Schaaper and 
Mathews, 2013). But not only the imbalance of dNTP ratios affects frequency of 
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mutations, but also if the amount of all dNTPs is increased the mutation rate is 
higher in E. coli (Gon et al., 2006). Generalizing, it can be said that everything 
that affects the DNA replication, can also affect the occurrence of mutations.  

 
 

1.1.6. Stress-induced mutagenesis 

Although most mutational studies have been carried out in laboratory under cont-
rolled and nutrient-rich environments, in natural environments bacteria con-
stantly encounter different stressors and optimal growth conditions are rarely met. 
Encountering different stresses, the bacterial cell can vastly reshape their gene 
expression. In addition to phenotypic changes, often for adapting new environ-
ments genetic changes are necessary. When the available genetic versatility is not 
sufficient for adapting to new conditions, bacteria can somewhat accelerate the 
evolution by transiently increasing the mutation rate (Denamur and Matic, 2006; 
Fitzgerald and Rosenberg, 2019; Matic, 2019; Rosenberg, 2001). Furthermore, 
endogenously stressed cells have higher DNA replication error rate (Woo et al., 
2018). 

The most obvious stress that triggers genetic changes is the stress caused by 
DNA damaging agents. In response to extensive DNA damage in bacteria the SOS 
response is induced. When cells encounter DNA replication blocking lesions, the 
emerging ssDNA fragment is first bound to ssDNA binding protein SSB which 
then is replaced by recombinase RecA. This nucleoprotein filament stimulates 
the self-cleavage of repressor LexA and the SOS response is triggered (Foster, 
2007). In E. coli the upregulation of at least 43 genes is caused by LexA cleavage, 
among them DNA damage tolerance and repair enzymes (Courcelle et al., 2001). 
In E. coli, three DNA polymerases are upregulated in SOS response – Pol II, 
Pol IV, and Pol V – the last two of these are low processivity and low fidelity 
TSL polymerases. While the Pol II and Pol IV are detectable under nonstress 
conditions as well, the Pol V is undetectable without the SOS induction (Fujii and 
Fuchs, 2020). In E. coli, if the SOS response is constitutively activated, both the 
Pol IV and Pol V increase the mutation frequency even without the DNA damage 
(Kuban et al., 2006). Regardless of the highly mutagenic effect of TLS poly-
merases, the presence of TLS polymerases is widespread from prokaryotes to 
higher eukaryotes (Ohmori et al., 2001) indicating that TLSs are likely to be 
beneficial in terms of evolution. Moreover, even without external DNA damaging 
agents, all three SOS polymerases contribute to competitive long-term survival 
and evolutionary fitness (Yeiser et al., 2002). 

Again, the well-described E. coli SOS response serves as a good model, but 
the SOS response in other bacteria can be noticeably different. The distribution 
of TLS polymerases differs and most studied genomes, including those of dif-
ferent Pseudomonas species, do not harbor the genes for TLS Pol V (umuDC 
operon in E. coli) (Ambur et al., 2009; Cirz et al., 2006; Erill et al., 2006). In both 
P. aeruginosa (Cirz et al., 2006) and P. putida (Abella et al., 2007) the number 
of genes belonging to LexA-regulated SOS regulon is markedly smaller than in 
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E. coli. Furthermore, in P. putida, two different LexA regulators have been de-
scribed, both have their own binding site and both are regulating a separate set of 
transcriptional units, whereas only one gene is regulated by both LexA1 and 
LexA2 (Abella et al., 2007). The LexA2 of P. putida regulates a damage inducible 
mutagenic gene cassette of lexA2-imuA-imuB-dnaE2, where DnaE2 (or ImuC) is 
a protein homologous to DNA pol III α subunit. This dnaE2 gene carrying operon 
is widespread among different bacteria (Abella et al., 2004). It has also been sug-
gested that genomes carrying the aforementioned gene cassette do not have TLS 
Pol V genes, indicating that these genes could functionally replace the role of Pol V 
(Erill et al., 2006). In addition, in P. putida, the basal level of dinB transcription 
is much higher than in E. coli, whereas the level of SOS induction of dinB pro-
moter is markedly smaller (Tegova et al., 2004). However, the overall induction 
of SOS response due to DNA lesions and its role in overcoming the DNA damage 
stress seems to be conserved among prokaryotes.  

Another targeted approach overcoming stress conditions is the general stress 
response. It is usually triggered by nutrition limitation and starvation, e.g., when 
cells enter the stationary phase, but also other stresses like extreme temperature 
shifts, low pH and high osmotic pressure can induce it (Battesti et al., 2011; Foster, 
2007). Furthermore, even subinhibitory concentrations of antibiotics can induce 
the general stress response (Gutierrez et al., 2013). The general stress response is 
controlled by sigma factor σS (RpoS) and the RpoS is required for stress-induced 
mutagenesis in carbon starved cells (Lombardo et al., 2004). Encountering stress 
conditions, the bacterial cells extensively reshape their gene expression pattern 
by replacing the housekeeping sigma factor RpoD in RNAP with RpoS, and this 
stationary phase sigma factor alters the RNAP promoter preferences. In E. coli 
almost 10% of the genes can be regulated by RpoS (Weber et al., 2005) and in 
P. aeruginosa the percentage of RpoS regulated genes is similar (about 14%) 
(Schuster et al., 2004). In the general stress response, a wide variety of different 
cellular pathways are affected and among them some can increase spontaneous 
mutation rate. In E. coli, in addition to SOS regulation, the induction of TLS 
polymerase Pol IV (dinB) is RpoS-dependent, and the levels of Pol IV increase 
in stationary phase (Layton and Foster, 2003). In P. putida PaW85, the Pol IV 
facilitates the occurrence of 1-bp deletions in stationary phase (Tegova et al., 
2004). Furthermore, in E. coli, the MMR pathway enzymes MutS and MutH are 
RpoS-dependently downregulated in stationary phase or carbon starved cells 
(Feng et al., 1996; Tsui et al., 1997). The action of Pol IV and the RpoS-dependent 
downregulation of MutS are also the causes of mutagenesis in the presence of 
subinhibitory concentrations of β-lactam antibiotics (Gutierrez et al., 2013). Also, 
the general stress response induces the movement of mobile genetic elements and 
increases genetic versatility through it (Foster, 2007; Ilves et al., 2001; Lamrani 
et al., 1999). 

Comparing the mutation frequency of one day old and 7 days old E. coli 
colonies from almost 800 different environmental isolates, on average, the mutation 
frequency elevated sevenfold and in 13% of the strains even more than 100-fold. 
The observed phenomena was called mutagenesis in aging colonies (Bjedov 
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et al., 2003). Based on example of one representative isolate tested, the muta-
genesis in aging colonies phenotype depends upon RpoS, downregulation of 
MMR pathway and SOS response-inducible polB (Pol II), but is SOS regulator 
LexA-independent (Bjedov et al., 2003). The results of this study well illustrate 
how the frequency of mutations can be increased in response of environmental 
conditions, which in turn could enhance the adaptive evolution. 

In unstressed conditions, the dsDNA breaks are repaired by non-mutagenic 
homologous recombination, but under stress conditions the repair is switched to 
mutagenic DNA break repair (MBR) which causes base substitutions and indels 
(reviewed in (Fitzgerald and Rosenberg, 2019; Pribis et al., 2022)). In E. coli, for 
the switch to homologous recombination-directed MBR, both the activation of 
SOS-response and the RpoS-mediated general stress response are needed (Ponder 
et al., 2005). The MBR of dsDNA breaks is also dependent upon TLS polymerase 
Pol IV (dinB) (Ponder et al., 2005; Shee et al., 2011), which is regulated by both 
above-mentioned responses. Also, just the stress response itself is sufficient to 
induce the MBR and the actual starvation is not necessary (Shee et al., 2011). 
Furthermore, the membrane protein stress regulator σE contributes to the MBR 
(Al Mamun et al., 2012; Gibson et al., 2010), indicating that the cells double (or 
triple) check the stressful environmental conditions before switching to the 
mutagenic repair in starving cells (Fitzgerald and Rosenberg, 2019). In studies of 
E. coli, a network of at least 93 proteins functioning in MBR was identified. Most 
of the proteins detected function in sensing the stress and transducing the signal 
to stress response regulators (Al Mamun et al., 2012). The vast majority of those 
proteins were not obvious to function in mutagenesis but additional functional 
studies showed that more than half of those affected mutation frequency (Al 
Mamun et al., 2012). The complexity of MBR network illustrates the tight 
regulation of mutational processes in response to stress conditions, but also indi-
cates that networks regulating mutagenesis might be more complex than previously 
expected.  

 
 

1.1.7. Translation 

Although seemingly translation and replication are two autonomous processes, 
they do affect each other. In some conditions increased mistranslation leads to 
translational stress-induced mutagenesis (TSM) (Humayun, 1998). A well-studied 
examples of this are the defective tRNAs genes, which cause a mutator phenotype 
in E. coli (Dorazi et al., 2002; Slupska et al., 1996). The mutator tRNAs (mutA and 
mutC) encode a glycine tRNA which normally decodes GGU and GGC codons, 
but due to a mutation in the anticodon it reads aspartic acid codons GAU and 
GAC instead (Slupska et al., 1996). These mistranslating cells bear a recombi-
nation-dependent (recA and recB) but SOS-response independent (umuD, umuC, 
dinB, lexA) mutator phenotype (Murphy and Humayun, 1997; Ren et al., 1999). 
The mutator phenotype is not only Asp → Gly mistranslation-specific, but also 
the general streptomycin-induced mistranslation (Balashov and Humayun, 2002), 
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ribosomes with increased mistranslation (Balashov and Humayun, 2003), and 
mistranslating alanine tRNAs (X → Ala mistranslation) (Dorazi et al., 2002) 
increase mutations. Comparable to mutA phenotype, the streptomycin-induced 
mutagenesis effect is also recombination-dependent and SOS-response-inde-
pendent (Balashov and Humayun, 2002). This leads to the speculation that a 
tRNA modification enzyme MiaA (discussed more in chapter 1.2.1.2) deficiency-
induced recA-dependent mutator phenotype (Connolly and Winkler, 1991, 1989; 
Zhao et al., 2001) is also caused by mistranslation. Although it is in good corre-
lation with the result showing that lack of miaA causes rise in translational frame-
shifting (Urbonavic̆ius et al., 2001), it does not take into consideration that miaB-
deficiency which also increases translational frameshifting (Urbonavic̆ius et al., 
2001), does not cause a mutator phenotype (Zhao et al., 2001). Furthermore, the 
TSM is not always dependent of recombination, as the cells carrying ribosomes 
with mutant S4 protein (Balashov and Humayun, 2003) or mistranslating alanine 
tRNAs (Dorazi et al., 2002) possess a recA-independent mutator phenotype. 

It is proposed that the TSM phenotype is rather induced by faulty DNA 
replication than by defective repair pathways. This is demonstrated by in vitro 
replication fidelity analyzes with purified polymerase III complex from the mutA 
cells (Al Mamun et al., 2002). The purified polymerase III complex from TSM 
phenotype-carrying cells is more error-prone compared to the control, but the 
effect is noticeably milder than the in vivo mutator phenotype (Al Mamun et al., 
2002; Slupska et al., 1996). It is suggested that along with the mutator phenotype 
in the mutA cells, the replication fork collapses more often and for the restoration 
of replication recombination is needed (Al Mamun et al., 2006). This would explain 
the recombination dependence of the phenotype. Recent studies of E. coli popu-
lation heterogeneity revealed that the subpopulation of cells with increased trans-
lation errors had also higher rate of replication errors (Woo et al., 2018). These 
results could also indicate that mistranslation leads to defects in DNA replication 
machinery. 

Although mistranslation has been connected with DNA damage and stress 
response in several other cases, the outcome of mistranslation is not always in-
creased mutation frequency. In E. coli measurements of mistranslating mutant 
due to genetically depleted initiator tRNA content showed higher survival of 
mutant cells under various kinds of DNA damage (UV radiation, H2O2 and cipro-
floxacin stress) and elevated temperature stress. Different experiments proved 
that in the case of this mistranslating mutant the threshold for SOS response 
induction was lower (RecA level was higher and LexA degradation was faster) 
but the overall mutation rate was comparable to wild type. The authors speculate 
that due to the mistranslation the Lon protease levels are increased, which in turn 
triggers the earlier induction of SOS response and this enables the cells to survive 
different stresses including DNA damage stress (Samhita et al., 2020). Similarly, 
E. coli cells with mistranslating ribosome have higher survival under oxidative 
stress that is caused by activation of general stress response by increasing the 
RpoS protein level (Fan et al., 2015). 
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The mistranslating mutants with an editing-defective aminoacyl-tRNA (ileSAla) 
had significantly higher mutation frequency in aging colonies (day 7) compared 
to wild type (Bacher and Schimmel, 2007) but in growing cells had no effect to 
the mutation frequency (Bacher et al., 2005). The effect on mutagenesis in aging 
colonies was via the induction of SOS response because the cells unable to induce 
the SOS response did not have higher mutation frequency (Bacher and Schimmel, 
2007).  

In addition to the general mistranslation, the overall well-being of the proteome 
is important for the cells. The induced oxidative protein damage triggers the rise 
in spontaneous mutation rate, whereas reducing the level of oxidative protein 
damages produces an anti-mutator phenotype (Krisko and Radman, 2013). All 
this clearly demonstrates how different processes in cells could affect each other 
and both the mistranslation and general defects in proteome can lead to increased 
mutation rate. To conclude, all these examples of factors affecting mutagenesis 
are illustrating perfectly how a bacterial cell works as a whole, and imbalances in 
central processes can lead to mutations. 

 
 

1.2. RNA modifications 

RNA carries the central roles in translation. In addition to the four standard 
nucleotides – C, G, U, and A – the nucleotides in RNA are highly modified with 
a wide variety of different covalent modifications. Modifications can be chemi-
cally very simple, e.g., an addition of a methyl group to a various position of 
nucleobase or ribose, or complex additions of a set of chemically diverse groups 
(Jackman and Alfonzo, 2013; Ontiveros et al., 2019). In the last case, a nucleotide 
can reach its fully modified state by the action of numerous different enzymes 
acting in a defined order. Modified nucleotides are found in all types of stable 
RNA species and in all kingdoms of life. In rRNAs the modifications are clus-
tered around catalytically important regions (Decatur and Fournier, 2002). 
tRNAs, being the universal adapter molecules, have been found to harbor the 
most versatile repertoire of modifications and are also the nucleic acid molecules 
with the highest percentage of modified nucleotides (Fig. 1). Gram negative 
bacterial tRNAs have about 10% of nucleotides modified and in eukaryotes an 
average of 16% (up to 25%) of nucleotides are modified (Björk and Hagervall, 
2014; Machnicka et al., 2014), whereas in bacterial rRNA there are approxi-
mately 1% of nucleotides modified. There is also a growing evidence of modi-
fications in mRNA coding sequences, mostly in eukaryotes but also in 
prokaryotes (Gilbert et al., 2016). The knowledge about mRNA modification and 
their relevance in translation is still limited.  
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1.2.1. tRNA modifications 

tRNAs carry the building blocks of proteins from cytoplasm to ribosome and tie 
amino acid sequence with genetic code, but even in addition to this obviously 
important role they have additional tasks. To name some of the noncanonical roles 
of tRNAs, the regulation of nucleotide alarmone synthesis, synthesis of small 
metabolites, and modification of macromolecules, e.g., lipids and peptidoglycan, 
etc., have been reported (Katz et al., 2016). The overall stability, structural stability 
and the functionality of tRNAs can be modulated through the posttranscriptional 
modifications (Björk and Hagervall, 2014; El Yacoubi et al., 2012; Shepherd and 
Ibba, 2015). The modifications can reshape the structural, thermodynamical, and 
chemical properties of nucleotides and through that contribute to the functioning 
of tRNA. 

Although studies of unmodified E. coli tRNAPhe revealed that the overall  
L-structure of mature tRNA can be achieved without modifications (Byrne et al., 
2010; Harrington et al., 1993), nevertheless, there are several structural differences 
compared to a fully modified one (Byrne et al., 2010). Also the translation 
accuracy of unmodified tRNAPhe in vivo is significantly affected (Harrington et 
al., 1993). Albeit addition of a single modification to an otherwise unmodified 
tRNAPhe anticodon stem loop (ASL) at 32 or 37 position did not significantly alter 
the structure (Cabello-Villegas et al., 2002; Cabello-Villegas and Nikonowicz, 
2005), the modifications affected the ASL in other ways, e.g., by increasing the 
mobility of nucleotides in the loop (Cabello-Villegas et al., 2002) or by increased 
the thermal stability (Cabello-Villegas and Nikonowicz, 2005). At the same time, 
the unmodified ASLs of tRNALys and tRNAGln were not able to bind to ribosome 
and addition of a single modification s2U34 restored the ribosomal binding of 
ASLLys(UUU) (Ashraf et al., 1999; von Ahsen et al., 1997). It could be concluded 
that the tRNA modifications can help tRNAs to attain their functional optimum. 
It is also interesting to note that the addition of magnesium ions can partially 
compensate the absence of modifications (Motorin and Helm, 2010).  

In bacteria, almost all the modifications are synthesized at polynucleotide 
level by specialized site-specific enzymes (Björk and Hagervall, 2014). The 
pattern of modifications can vary greatly among different tRNA species. For 
instance, the modifications m5U54 and Ψ55 are present in all elongator tRNAs of 
Gram negative bacteria (Machnicka et al., 2014). However, several specific 
modifications are found only in one tRNA species, meaning that there are tRNA-
modifying enzymes for making only one modification (usually for modifications 
at the positions 34 or 37, Fig. 1) (Björk and Hagervall, 2014; Machnicka et al., 
2014). Some of the modifications are found in all three kingdoms of life, and even 
more, they locate in a comparable set of tRNA species at comparable positions 
(e. g., m1G37, Ψ39, m7G46, m5U54, Ψ55, Fig. 1) (Machnicka et al., 2014). 
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Figure 1. Scheme of a tRNA and its modifications. All E. coli tRNA modifications known 
so far are presented. The number indicates the modified position, the responsible enzyme(s) 
and the resulting modifications (in brackets) are listed adjacently. Target positions of 
TruA are shown in green and target position of RluA is yellow, the anticodon is shaded 
dark grey (based on (Björk and Hagervall, 2014; de Crécy-Lagard and Jaroch, 2021; El 
Yacoubi et al., 2012)). 
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Generally, the modifications are located in single-stranded regions of tRNA, and 
by the locational clustering tRNA modifications can be divided roughly into two 
groups, in the ASL domain and in the structural core of the 3D L-shape structure 
(Helm, 2006). Modifications in the core are usually considered to play primarily 
the structural role and help to stabilize the overall L-shape structure of tRNA 
(Shepherd and Ibba, 2015). Some locations in the core are so frequently modified 
with conserved modifications that these modifications have begun to be a part of 
the tRNA structure nomenclature (e.g., D-loop and T-loop) (Agris, 2004). Inte-
restingly, the majority of these modifications are biosynthetically simple (Agris 
et al., 2017; Helm, 2006). At the same time, the modifications in the ASL can be 
very versatile and contribute directly to decoding of mRNA and translation 
efficiency and accuracy (Agris et al., 2017). Non-anticodon ASL nucleotides and 
their modifications play altogether such an important role in anticodon-codon 
interactions that the concept of “extended anticodon” has been proposed to describe 
the codon-binding of tRNAs (Grosjean and Westhof, 2016; Yarus, 1982).  

Positions 34 and 37 at ASL are modified most frequently (this varies between 
species but approximately 45% and 78%, respectively (Björk and Hagervall, 
2014; Machnicka et al., 2014)), and these positions have the highest diversity 
among modifications (Fig. 1). With the exception of few modifications in 
Archaea, all the complex modifications which require more than one enzyme for 
their synthesis, are located either at the position 34 or 37 (El Yacoubi et al., 2012). 
Both positions are important for translation. The nucleotide modifications at the 
position 37, which is located next to the 3’ end of anticodon (Fig. 2), is considered 
to improve both the efficiency and fidelity of translation, and it helps to maintain 
reading frame (Björk and Hagervall, 2014; Shepherd and Ibba, 2015; Urbona-
vic̆ius et al., 2003, 2001). The nucleotide modification at the position 34, which 
is the first nucleotide of anticodon and pairs with third nucleotide of codon 
(Fig. 2), directly improves codon-anticodon recognition (Agris, 2004; Agris et 
al., 2007; Ranjan and Rodnina, 2016) and through this modification the trans-
lation fidelity is improved (Urbonavic̆ius et al., 2003, 2001). The fact that out of 
the only few tRNA modifications which absence is lethal to bacteria all are 
located at the positions 34 or 37, illustrates the importance of the modifications 
at these positions (de Crécy-Lagard and Jaroch, 2021; El Yacoubi et al., 2012), 
e.g., in E. coli the modifications I34 (Wolf et al., 2002) and t6A37 (El Yacoubi 
et al., 2009). 

In addition to the positions 34 and 37, the ASLs of E. coli are also modified 
at the positions 38–40 (Ψ, catalyzed by the enzyme TruA (Kammen et al., 1988)), 
32 (different modifications s2C, Cm, Um, and Ψ, catalyzed by the corresponding 
enzymes (de Crécy-Lagard and Jaroch, 2021; Machnicka et al., 2014)) and in one 
tRNA species also at the position 35 (Ψ in tRNATyr, catalyzed by RluF (Addepalli 
and Limbach, 2016)) (Fig. 1). Based on the “extended anticodon” concept, all 
these modifications can participate in codon-anticodon interaction and through 
that in translation. 

Although in bacterial genome up to 10% of genes encode enzymes that are 
involved in modifying tRNA (Anantharaman et al., 2002; El Yacoubi et al., 
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2012), most of the modifications are not essential. Even today the role of many 
modifications is not well understood. The full repertoire of tRNA modification 
enzymes is known only for a couple of model organisms (de Crécy-Lagard and 
Jaroch, 2021), meaning that there is still a lot to learn about the repertoire and the 
functions of tRNA modifications. In addition to the above-mentioned involve-
ment in achieving and stabilizing the correct 3D structure, the tRNA modi-
fications can be important for overall stability of tRNA molecules. For example, 
the lack of m7G46 in combination with other seemingly nonessential modi-
fications outside ASL leads to rapid decay of tRNAVal(AAC) in yeast (Alexandrov 
et al., 2006). tRNAs use posttranscriptional modification to achieve both structural 
stability and uniformity to be recognized by ribosome and the originality for re-
cognizing specific codons (Agris, 2004; Agris et al., 2007). Also, the tRNA 
modifications can act as identity determinants or antideterminants for specific 
aminoacyl-tRNA synthases (Agris, 2004; El Yacoubi et al., 2012; Sylvers et al., 
1993). In addition, the availability and improvements of analytic tools have made 
it possible to study new aspects of tRNA modifications, and the list of tRNA 
modifications having a role in gene regulation is growing (de Crécy-Lagard and 
Jaroch, 2021; Endres et al., 2015; Pollo-Oliveira and de Crécy-Lagard, 2019). 
However, it is likely that the main and the initial role of tRNA modifications is 
to participate in fine-tuning of translation.  

 

Figure 2. Scheme of an ASL of tRNA pairing with mRNA. TruA target positions are 
highlighted in green and RluA target position is highlighted in yellow, the anticodon is 
highlighted in grey. The lines indicate hydrogen bonds in the anticodon stem and the 
dotted line represents non-canonical bifurcated hydrogen bonds between nucleotides 32 
and 38. 
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1.2.1.1. The role of tRNA modifications in translation 

Although there are 61 different amino acid-coding codons, not all corresponding 
tRNA genes are represented in a genome of one organism. Usually, in a bacterial 
genome there are around 40–50 different tRNA genes (e.g., in E. coli K12 49, in 
P. putida KT2440 42, in P. aeruginosa PAO1 44 (Jühling et al., 2009; Winsor et 
al., 2016)). The posttranscriptional modifications significantly improve the coding 
capacity, and this allows the organism to have less different tRNAs and still 
properly decode all the codons (Agris, 2004; Agris et al., 2007). The importance 
of tRNA modifications in decoding is also illustrated by the fact that in E. coli 
only 7 out of 61 codons are decoded by tRNAs without modifications at the posi-
tions 34 or 37 (Agris, 2004). 

It appears that the function of ASL modifications may vary greatly depending 
on the coding strategies of a tRNA. In the case of amino acids with many codons 
(four or six), modifications enable the cells to use fewer isoacceptor tRNAs for 
coding. Pro, Thr, Ala, Val and Gly all belong to a completely 4-fold degenerate 
codon box and only the tRNAs reading 4-fold degenerate codons carry the 
cmo5U34 modification (Yarian et al., 2002). In Salmonella Typhimurium out of 
the three proline tRNAs only one has a cmo5U34 modification. The cells carrying 
only the tRNA with cmo5U34 modification are viable, meaning that cmo5U34 can 
form a base pair with all four nucleotides at the third position of codon (Näsvall 
et al., 2004). Similar mechanisms have been identified in the case of other four 
codon box tRNAs; for example, in E. coli, there are two alanine tRNAs and in 
vitro the tRNA carrying cmo5U34 modification is capable to form codon-anti-
codon interaction with all four alanine codons (Kothe and Rodnina, 2007). 

In the case of tRNA species translating twofold degenerate codons, the modi-
fications are proposed to be necessary for their cognate codon recognition and for 
discriminating near-cognate codons (Agris, 2004; Agris et al., 2007). Modi-
fications are especially important for tRNAs with pyrimidine rich anticodon 
loops, which without modifications are often not able to bind to their cognate 
codons (e.g., tRNALys, tRNAGln, tRNAGlu) (Agris, 2004; Ashraf et al., 1999; von 
Ahsen et al., 1997). For instance, the addition of only s2U34 already restores the 
ability of E. coli tRNALys(UUU) ASL to decode Lys codons AAA and AAG (Ashraf 
et al., 1999), and discriminate the near-cognate Asn codons AAC and AAU (Yarian 
et al., 2002). While in the case of human tRNALys(UUU) the single incorporation of 
mnm5U34 or t6A37 restored ribosome binding to AAA codon, but for binding to 
alternative AAG codon, both modifications at 37 and 34 position are necessary 
(Yarian et al., 2000). 

As seen from above-discussed examples, not only the modification at the 
position 34 but also at the position 37 are important for decoding. There is also a 
good correlation that the weak anticodon-codon interaction (A1–U36 or U1–
A36) is often followed by a strongly stabilizing modification at the position 37 
(t6A or ms2i6A in E. coli) (Grosjean and Westhof, 2016). For instance, the t6A37 
in tRNALys(UUU) has an important role in preventing the base pairing of U33–A37 
and improving the stacking of nucleotides 37 and 38, and thus by helping to 
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maintain the right structure of ASL (Fig. 2), this modification plays a part in 
codon discrimination and also helps to improve the translation fidelity (Murphy 
et al., 2004; Stuart et al., 2000). 

Improving translation fidelity seems to be a common function of structurally 
different modifications, especially helping to maintain the reading frame. Although 
the effect of modifications is tRNA and codon specific, several modifications in 
E. coli and S. Typhimurium at the positions 34 and 37 help to prevent +1 frame-
shift (Urbonavic̆ius et al., 2001), whereas most of the measured modifications do 
not affect –1 frameshifting (with the exception of mnm5s2U34) (Urbonavic̆ius et al., 
2003). 

In addition to codon recognition and discrimination, the modifications can be 
important for other steps of protein synthesis. In S. Typhimurium, different modi-
fications in ASL at 3’ side of anticodon stimulate the selection of aa-tRNAs 
(m1G37, ms2io6A37, Ψ38) but these modifications can have very tRNA-depen-
dent effects (Li et al., 1997). Studies of translocation revealed that addition of just 
mnm5U34 or t6A37 modification to E. coli ASLLys did not restore the translocation 
of tRNA from A-site to P-site, but the doubly modified ASLLys translocated 
effectively (Phelps et al., 2004).  

The tRNA modifications can also act as identity elements for aminoacyl syn-
thases in the aminoacylation of tRNA. For example, the in vitro aminoacylation 
of tRNAGlu by E. coli glutamyl-tRNA synthase is less efficient when the modi-
fication mnm5s2U34 is missing (Sylvers et al., 1993). 

In conclusion, although the tRNA modifications have very specific effects 
depending on the tRNA nucleotide sequence, codon specificity, and interplay 
between different modifications, the modifications can affect every step of trans-
lation. It is most probable that the modifications provide moderate compensatory 
effects, enabling the cells to grow normally even without multiple modifications 
under nonstress conditions. Nonetheless, translation is such an essential process 
in cells and therefore it cannot be excluded that even modifications with moderate 
effects can turn out to be crucial in changing and stressful environments (Jackman 
and Alfonzo, 2013).  

 

1.2.1.2. tRNA modifications in stress response 

There is a growing number of evidence showing that tRNA modifications can 
modulate the stress response and take part in reprogramming the gene expression. 
Here it is important to note that the modification levels are often not static and may 
vary depending on different physiological conditions. It is proposed that cells 
modulate the stress response by dynamically adjusting the tRNA modification 
patterns, which in turn affects translation fidelity and selective protein expression 
(Agris et al., 2017; Chan et al., 2010; Dedon and Begley, 2014; Endres et al., 2015; 
Ranjan and Rodnina, 2016). For example, in Saccharomyces cerevisiae different 
stresses (exposure to H2O2, MMS, NaAsO2 or, NaOCl) cause non-random changes 
in tRNA modification levels, and the amount of specific tRNA modifications 
change dynamically in response to a growing stress (Chan et al., 2010). Although 
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there is less evidence for this in prokaryotes, there are proofs that the level of 
specific tRNA modifications in bacteria can be affected by salt stress (Fleming 
et al., 2022), growth phase (Emilsson et al., 1992), mild antibiotic stress and 
starvation (Galvanin et al., 2020), oxidative stress (Thongdee et al., 2019), and 
temperature (Shigi et al., 2006). 

tRNA modifications may also play a role in fine-tuning the optimal translation 
of particular genes under specific conditions by exploiting codon bias. The usage 
of synonymous codons varies between different organisms as well as between 
different genes within one organism (reviewed in (Quax et al., 2015)). tRNAs 
with modifications might favor some synonymous codons over others, differently 
modified tRNAs do not necessarily exist in a cell in equal amounts, and the decay 
of modified and unmodified tRNAs can be different. Through all this, modi-
fications can alter tRNA codon usage bias. Furthermore, it is important to note 
that the optimal translation of transcripts achieved by fully modified tRNAs may 
not be the optimal choice in particular stressful conditions and environments 
(Agris et al., 2017). 

Studies in yeast have revealed how a specific tRNA modification reshapes the 
gene expression in response to stress conditions. In S. cerevisiae Trm4 methylates 
C34 nucleotide in tRNALeu(CAA) and cells lacking Trm4 are hypersensitive to 
oxidative stress (Chan et al., 2010, 2012). In these studies, the oxidative stress 
increased the amount of m5C34 modified tRNALeu(CAA), which in turn led to 
increased translation efficiency of transcripts enriched with UUG codon. Among 
the other changes this translational reprogramming leads to increased protein 
expression of ribosomal protein Rpl22A, which, unlike its paralogue Rpl22B, is 
encoded by a TTG-rich gene. The lack of ribosomal protein paralogue Rpl22A 
caused sensitivity to oxidative stress and thus it is hypothesized to be an example 
of how cells reprogram their translation through tRNA modifications to survive 
stress (Chan et al., 2012). 

Similar reprogramming has been seen with other yeast tRNA modifications at 
the position 34. Trm9 modifies U nucleotide at the position 34 in tRNAArg(UCU) 
and tRNAGlu(UUC), and this modification solidifies the codon-anticodon pairing. 
From gene- and codon-clustering data it is evident that there is a clustered group 
of 425 genes with AGA and GAA codons overrepresented (compared to relative 
genome averages). This group is overrepresented in the functional categories of 
protein synthesis, energy and metabolism, and stress and damage responses 
(Begley et al., 2007). In further analyses, it was proven that the expression of 
proteins, which genes are enriched in AGA and GAA codons, was downregulated 
in cells lacking Trm9 under normal and stress conditions. Although the lack of 
Trm9 caused a significant shift in the expression of AGA- and GAA-enriched 
genes, the regulation was not “on-off” type. Among the proteins affected by Trm9, 
a remarkable proportion of proteins in translation machinery were downregulated 
in trm9Δ cells. Interestingly, in yeast the AGA and GAA codons cluster together 
more than they would be expected in the case of random distribution and such 
clustering can affect local translation rate (Deng et al., 2015). This strongly 
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supports the idea that modifications at Wobble position can dynamically alter the 
codon-based translation and reprogram translation machinery.  

The effect of tRNA modification at 34th position on translational reprog-
ramming has also been seen in prokaryotes. Under stressful conditions while 
infecting the host, the pathogenic Mycobacteriun bovis BCG cells enter a 
quiescent hypoxic persistence state and during different stages of this state and 
re-aeration the pattern of 40 different tRNA modifications changes, which can 
lead to selective translation (Chionh et al., 2016). More specifically, it was shown 
that the reading of Thr codons is considerably altered under hypoxia, where there 
was a remarkable shift in Wobble position modification of tRNAThr. The resulting 
change in codon preferences contributed to increased translation from less 
abundant ACG codon and reduced the translation from most abundant ACC 
codon. By reprogramming tRNAs to favor some codons over others, M. bovis 
could favor critical genes like the master regulator of hypoxic bacteriostasis dosR 
which gene displays significant ACG/ACC bias. Again, it was noteworthy that 
there was no uniform up- or downregulation of codon-biased transcripts as the 
expression of many proteins with ACG-enriched genes remained the same 
(Chionh et al., 2016). 

In P. aeruginosa several tRNA modifications are linked with oxidative stress. 
In P. aeruginosa PA14 the lack of TrmJ, which catalyzes the 2’-O methylation at 
position 32, causes sensitivity to H2O2. The overall catalase activity was remark-
ably lover in trmJ mutant and under H2O2 stress the transcription of katB and katE 
(but not katA) was lower in the trmJ mutant (Jaroensuk et al., 2016). In P. aeru-
ginosa PAO1 the lack of TtcA, which thiolates C32, also caused a ROS sensitive 
phenotype. In the ttcA deletion mutant the total catalase activity in exponentially 
growing and in stationary phase cells was decreased, and the activity of KatA was 
also decreased. In addition, the mutants lacking ttcA were less capable of in-
fecting Drosophila melanogaster than wild-type bacteria (Romsang et al., 2018). 
In P. aeruginosa PA14, the lack of trmB also causes a H2O2 hypersensitive pheno-
type. Unlike the previously described modifications, TrmB modifies G nucleotide 
at position 46, which locates in an extra loop and not in the ASL (Fig. 1). 
Although in this P. aeruginosa PA14 stain there are 23 tRNAs which are TrmB 
substrates, only the translation efficiency of repeated Phe and Asp codons was 
significantly decreased in trmB-deficient mutant (Thongdee et al., 2019). 
Interestingly, the TrmB made modifications is one of the few examples of tRNA 
modifications not located in the ASL but still affecting the translation accuracy. 
The overall catalase activity and KatA activity was decreased in the trmB-defi-
cient mutant, but the transcription level of KatA and KatB remained trmB-inde-
pendent, suggesting that TrmB mediates the stress response at translation level. 
In addition, analyses of katA and katB sequence revealed the genes to be enriched 
with clustered Phe and Asp codons, supporting the idea of TrmB-mediated trans-
lation regulation (Thongdee et al., 2019). 

The tRNA modification enzyme MiaA catalyzes the first modification i6A 
(addition of isopentenyl group to N6) of two-step modification at the position 37 
and the additional roles of MiaA have been actively studied for decades. Usually, 
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the MiaA made modification is further modified by enzyme MiaB. In E. coli K12, 
the lack of MiaA increased the rate of spontaneous mutations (Connolly and 
Winkler, 1989), whereas the increase in mutation frequency was due to GC–AT 
transversions (Connolly and Winkler, 1991) and recombination dependent (Zhao 
et al., 2001). On the other hand, the iron limitation increased mutation frequency 
in MiaA-proficient strain but not in miaA mutants (Connolly and Winkler, 1989). 
Also, MiaA could play a part in regulating gene expression, as MiaA was needed 
for the full expression of the highly regulated stress response sigma factor RpoS 
in E. coli (Thompson and Gottesman, 2014) and for the expression of vir genes 
in Agrobacterium tumefaciens (Gray et al., 1992). In the case of RpoS, its coding 
sequence is significantly enriched with UUN-Leu codons, which are read by 
MiaA-modified tRNAs (Thompson and Gottesman, 2014). The MiaA require-
ment for the rpoS translation was shown to be due to promoting the decoding of 
UUN-Leu codons (Aubee et al., 2016). In extraintestinal pathogenic E. coli 
(ExPEC), the lack of MiaA reduced fitness and virulence of bacteria (Fleming 
et al., 2022). Importantly, it has been shown already earlier that the lack of miaA 
causes an increase in +1 frameshifts in E. coli and in Salmonella strains (Urbo-
navic̆ius et al., 2003, 2001). Now, in addition to increasing frameshifting in 
ExPEC strain, it was demonstrated that both the lack of MiaA and overexpression 
of MiaA changed the proteome, and the changes in proteome were directed at 
least partially by UNN codon prevalence (Fleming et al., 2022). This indicates 
that tRNAs modified by MiaA can take part in regulating gene expression. 

Similarly to MiaA, in E. coli the enzymes TrmL and TusA are also necessary 
for the full expression of RpoS (Aubee et al., 2017). TrmL (methylates 2’-O) and 
TusA (2-thiolation) both modify the position 34 in the leucine tRNAs which are 
also substrates for MiaA and at least the effect of TrmL catalyzed modification 
on RpoS is UUN-Leu codon dependent (Aubee et al., 2017).  

The regulation of stress response is not always operated through the upregu-
lation of specific modifications but also via the stability and degradation of 
tRNAs, meaning that the modifications pattern can be changed because of the 
altered tRNA pool. Interestingly, it has been proposed that altering tRNA pool 
itself can add another regulatory level to protein synthesis in response to different 
stress conditions (Torrent et al., 2018). It is noteworthy that many modifications 
which appear to have no apparent role, could be crucial at extreme conditions, 
e.g., m6A37 in valine tRNA affects cell survival under temperature, osmotic and 
oxidative stress conditions in E. coli (Golovina et al., 2009). Furthermore, the 
tRNA modifications play important role for thermophilic bacteria living at extreme 
temperatures (reviewed in (Lorenz et al., 2017)). Thus, both the inducible and 
so-called housekeeping modifications, which levels are constant throughout the 
lifecycle of a cell, can be important in overcoming stressful conditions. 

It was proposed already decades ago that tRNA modifications can take part in 
regulatory processes in a cell (Persson, 1993) but with the aid of new quantitative 
methods, it has been possible to investigate the roles of tRNA modifications  
from new angles. The combination of genome-wide analyzes of codon usage, 
quantitative measurements of tRNA modification level, ribosome profiling, and 
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proteomics analyzes has greatly improved the understanding of different roles of 
tRNA modifications (Pollo-Oliveira and de Crécy-Lagard, 2019). This new 
knowledge has led to the use of a term “modification tunable transcripts” (MoTTs) 
(Dedon and Begley, 2014; Endres et al., 2015). Most of the examples discussed 
in this chapter can be classified as MoTTs. Although there are more and more 
examples of MoTTs in connection of stress response, there are many gaps in 
understanding the whole regulatory pathway of MoTTs. The tRNA modification-
mediated regulation adds another level on the top of other known regulatory 
mechanisms. Furthermore, it is usually not “on-off” type regulation and this makes 
understanding the precise regulatory role of tRNA modifications extra challenging.  

 

1.2.1.3. TruA and pseudouridines at the positions  
38, 39, and 40 in tRNA  

Pseudouridine (Ψ) is one of the most common nucleotide modification and also 
the first one described in RNA already in the 1950s (Cohn, 1959; Davis and 
Allen, 1957; Yu and Allen, 1959). It is a uridine isomer where the nucleobase and 
sugar are connected with a C–C glycosyl bond instead of a N–C glycosyl bond 
as in other nucleotides (Fig. 3). This uncommon bond affords greater rotational 
freedom to Ψ. Also, due to the free N1-H, Ψ has the potential to form an 
additional hydrogen bond (Fig. 3, reviewed in (Gray and Charette, 2000)). In 
E.coli tRNAs, in addition to universally conserved Ψ55 the Ψs are also found at 
the positions 13, 32, 35, 38–40, and 65 (Fig. 1) (de Crécy-Lagard and Jaroch, 
2021). In prokaryotic cells, the formation of Ψ is catalyzed by stand-alone 
enzymes Ψ synthases, which based on structural similarities belong to five 
distinctively different families (Hamma and Ferré-D’Amaré, 2006).  

E. coli TruA is one of the first Ψ synthase enzymes described and it belongs 
to the TruA enzyme family (Hamma and Ferré-D’Amaré, 2006). It carries out the 
isomerization reaction in tRNA at the positions 38, 39, and 40 (Fig. 1 and 2) 
(Kammen et al., 1988). A little less than half of the tRNAs in E. coli are substrates 
for TruA (Boccaletto et al., 2022). Most of the enzymes modifying RNA are 
highly specific to a substrate and its position, and not many enzymes are multi-
site-acting. TruA is one of the most common example of a multisite acting 
enzyme, as the same enzyme is able to modify U nucleotides in different sequence 
contexts and the distance between target nucleotides can be up to 15 Å (Hur and 
Stroud, 2007). 

Another uncommon feature of TruA is that the enzyme acts as a homodimer 
and recognizes not just the ASL but the whole specific shape of tRNA (Foster et 
al., 2000), while most of bacterial Ψ synthases act as monomers (Hamma and 
Ferré-D’Amaré, 2006). However, the pseudouridylation reaction is carried out by 
universally conserved aspartic acid residue, Asp60 in E. coli TruA (Foster et al., 
2000; Huang et al., 1998), and the overall reaction is similar in all Ψ synthases 
(reviewed in (Hamma and Ferré-D’Amaré, 2006)). 
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Figure 3. The differences between uridine (U) and pseudouridines (Ψ). The big arrow 
shows the molecule connected with ribose and the black arrows show hydrogen bond 
acceptors (a) and donors (d) (Gray and Charette, 2000).  
 
Compared to U, Ψ harbors improved stacking ability (Davis, 1995), which can 
contribute to structural stability. Ψ located in a single-stranded region next to a 
RNA duplex has a double-strand stabilizing ability, as in case of Ψ38 (Davis et 
al., 1998). Analyzes of yeast tRNAPhe ASL revealed that Ψ at the position 39 
increases the thermal stability of the ASL rather by increasing stacking ability 
and not by an extra hydrogen bond. Also, the Ψ39 does not significantly affect 
ribosome binding, but if the 31–39 base pair is disrupted, the thermal stability and 
the affinity for the ribosome are significantly lowered (Yarian et al., 1999). 
Analyzes of E. coli tRNALys (without modifications at 34 and 37 position) 
revealed that the Ψ39 increases base-stacking within the loop and stabilizes the 
31–39 base pair. Also, at lower pH the Ψ39 stabilizes both the 31–39 base pair 
and non-canonical C32–A38 base-pair (Fig. 2) (Durant and Davis, 1999). The 
incorporation of Ψ39 to otherwise unmodified human ASLLys significantly 
increased the thermostability (more than other modifications in Lys ASL), but 
did not restore ribosome biding while modifications at the positions 34 and 37 
contributed to ribosomal binding (Yarian et al., 2000). 

In S. Typhimurium, the lack of Ψ38–Ψ39 reduced the efficiency of amino acid 
tRNA selection of tRNALeus, but with the example of tRNAPro(GGG), it appeared 
that the Ψ40 had no effect on the selection (Li et al., 1997). Although the P-site 
slippage has been measured with different TruA substrate tRNAs (tRNAHis(AUG), 
tRNAPro(GGG) and 4 Leu tRNAs), only in case of tRNALeu(UAG) the lack of Ψ38 
increased translational +1 frameshifting in S. Typhimurium (Urbonavic̆ius et al., 
2001) and the Ψ39 did not affect –1 frameshift in E. coli and S. Typhimurium 
(Urbonavic̆ius et al., 2003). 

In S. cerevisiae, the enzyme Pus3p pseudouridylates the positions 38 and 39 
but not 40 in both cytoplasmic and mitochondrial tRNAs. The lack of these modi-
fications caused remarkable slow growth phenotype especially at higher tempe-
ratures (Lecointe et al., 1998). Although Pus3p modifies 19 different tRNA mole-
cules, it has been proven that the slow growth phenotype is due to the lack of Ψ38 

Uridine (U) Pseudouridine ( )
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in tRNAGln(UUC). It was hypothesized that the effect of Ψ38 might be caused by 
reduced coding ability of tRNAGln(UUC) (Han et al., 2015). Unlike in prokaryotes, 
in yeast the lack of Ψ38 and Ψ39 reduced +1 frameshift and stop codon read-
through (Lecointe et al., 2002). In addition, analyzes of natural viral –1 frameshift 
sequences showed that in the case of sequences with higher frameshifting fre-
quency there was a tRNA with Ψ39 at the E-site. Measuring few of high frequency 
constructs in yeast showed that the lack of Pus3p reduced –1 frameshifting, indi-
cating that higher frameshifting efficiency could be correlated with the presence 
of the tRNA with Ψ39 at the E-site at the time of slipping (Bekaert and Rousset, 
2005).  

Among yeast cytoplasmic tRNAs, with some exceptions, there appeared to be 
a biased distribution of Ψ39 – the tRNAs with an otherwise less stable anticodon 
stem had a Ψ39 more frequently (Han et al., 2015). This finding is in good 
correlation with the idea that the role of Ψ39 is to stabilize the ASL structure. 

In addition to the growth effect in yeast (Han et al., 2015; Lecointe et al., 1998), 
the absence of Ψ38–40 also affects growth, fitness and virulence in prokaryotes 
(Ahn et al., 2004; Tsui et al., 1991; Yang et al., 2019). In E. coli, the absence of 
TruA (HisT at that time) prolonged the lag phase and remarkably reduced the 
growth rate and exhibited abnormalities in cell division which lead to filament 
formation in minimal medium (Tsui et al., 1991). In S. enterica Typhimurium 
infection, the lack of truA caused a remarkably higher survival rate of mice, and 
the expression of truA was higher when the samples were treated with H2O2 
(Yang et al., 2019). In P. aeruginosa clinical isolate PAK, the lack of TruA did 
not affect growth of bacteria but TruA modulated the regulation of expression of 
type III secretion genes, and through that the virulence of the pathogen (Ahn 
et al., 2004). 

Overall, it appears that although the Ψs in the ASL participate in stabilization 
of tRNA structure, physiologically the Ψ38–40 can have different roles and 
effects, depending on the tRNA carrying the modification. Also, the role can most 
likely be affected by other nucleotides and nucleotide modifications nearby. This 
is also illustrated by the fact that in the consensus where about 400 elongator 
tRNAs were compared from all domains of life, at the position 40, there is very 
rarely a U nucleotide (less than 10% of cases) and at the position 39 almost half 
of the sequences carry U nucleotide (Grosjean and Westhof, 2016). Also, in the 
analyzed genomes of Gram positive bacteria, there was no evidence of Ψ at the 
positions 38 nor 40 (Machnicka et al., 2014), suggesting that the presence of Ψ 
in ASL is not uniform. However, the conserved nature of Ψ38 and Ψ39 in all 
three kingdoms of life indicates that these modifications may have a conserved 
function in tRNAs. As described above, the Ψ improves both the base stacking 
and rotational freedom of nucleobase (due to C–C glycosyl bond), and con-
sidering the different phenotypic effects of TruA, it is possible that in different 
organisms, distinctive features of Ψ have greater overall impact. 
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1.2.1.4. RluA and pseudouridine at the position 32 in tRNA 

RluA is a RluA family Ψ synthase with dual-specificity, it is able to make Ψ at 
the position 746 in 23S rRNA and at the position 32 in tRNA (Fig. 1 and 2) 
(Wrzesinski et al., 1995). In E. coli, RluA is modifying 4 tRNAs: tRNAPhe, 
tRNACys, tRNALeu(UAA), tRNALeu(CAA) (Hoang et al., 2006; Raychaudhuri et al., 
1999; Wrzesinski et al., 1995). The overall structure of RluA is similar to the other 
Ψ synthases (Hoang et al., 2006), and the pseudouridylation reaction is carried out 
by universally conserved Asp, Asp64 in E. coli (Ramamurthy et al., 1999; Rayc-
haudhuri et al., 1999).  

In addition to RluA in E. coli, so far, there is only one other Ψ synthase and 
one RNA methylase described with the ability to modify both rRNA and tRNA. 
The enzyme RluF catalyzes the formation of Ψ in 23S rRNA at the position 2604 
and in tRNATyr(QΨA) anticodon at the position 35 (Addepalli and Limbach, 2016). 
RlmN methylates A nucleotide at the position 2503 in 23S rRNA and at the 
position 37 of six tRNAs. In 23S rRNA, the local structure of the helices 89 and 
90–92 resembles the L-shape structure of tRNA and there are also some sequence 
similarities in all of the substrates of RlmN (Benítez-Páez et al., 2012). Similarly, 
all 5 RluA substrates share a common sequence surrounding the modification site – 
5’ ΨUXXAAA 3’ (Hoang et al., 2006; Raychaudhuri et al., 1999). In addition, 
stem-loop RNAs were shown to be good substrates for RluA, and the truncated 
ASL was almost as good substrate as the full size tRNA (Hamilton et al., 2006), 
illustrating that in addition to sequence similarities, the stem-loop region of ASL 
and 23S rRNA helix 35 structure can be important for RluA recognition. 

In general, the nucleotide 32 is important for the discriminatory ability of the 
tRNA in translation. For example, if the C32 in tRNAGly(UCC) was mutated to U in 
Mycoplasma mycoides, the tRNA’s ability to decode non-cognate Gly codons 
significantly diminished, while in wild type the tRNAGly(UCC) was able to read all 
Gly codons (Claesson et al., 1995). In E. coli, the mutation of U32 to C increased 
the ability to read near-cognate codon GGA and this also increased frameshifting 
at near-cognate codon GGA (O’Connor, 1998). Less is known about the role of 
Ψ32. Relative to unmodified molecule, the Ψ32 does not affect the overall struc-
ture of the ASL but it increases the stability at higher temperature (Cabello-
Villegas and Nikonowicz, 2005). 

Although usually the nucleotides at the positions 32 and 38 cannot form a 
Watson-Crick base pair, they do, in most of the cases, form a non-canonical base 
pair (with bifurcated hydrogen bond, Fig. 2) (Auffinger and Westhof, 1999). It 
was proposed that the 32–38 base pair helps to regulate the aa-tRNA binding to 
the ribosome A site (Olejniczak and Uhlenbeck, 2006) and in the case of synthetic 
tRNA, with an additional nucleotide between positions 37 and 38, the formation 
of 32–38 base pair is hindered, which in turn leads to +1 frameshift events 
(Maehigashi et al., 2014). Based on the consensus sequence, all RluA tRNA 
substrates carry A nucleotide at the position 38 which is able to form a base pair 
with Ψ32 (Auffinger and Westhof, 1999; Cabello-Villegas and Nikonowicz, 2005). 
There is a possibility that via this additional base pair, the Ψ32 can play a role in 
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translation accuracy. Also, formation of a Watson-Crick base pair between 32 
and 38 would require a conformational change in the loop structure leading to a 
less optimal anticodon conformation for pairing with codon, being thus less 
favorable (Grosjean and Westhof, 2016).  

In contrast to TruA the lack of RluA does not have many described pheno-
types. In E. coli, the lack of RluA did not affect growth rate but the cells lacking 
RluA were outcompeted by wild-type cells (Raychaudhuri et al., 1999). In yeast, 
Ψ32 is unusually synthesized by two different enzymes: Rib2/Pus8p in the cyto-
plasm and Pus9p in the mitochondria. The lack of pseudouridylation activity of 
these enzymes does not affect the growth rate of S. cerevisiae (Behm-Ansmant et 
al., 2004). 

In conclusion, although TruA and RluA both make Ψs in the ASL, the role of 
modifications Ψ38–40 seems to be more prevalent than the role of Ψ32. While 
the lack of truA can affect translation fidelity (Urbonavic̆ius et al., 2001), growth 
rate (Tsui et al., 1991), virulence (Ahn et al., 2004; Yang et al., 2019) and tRNA 
selection in translation (Li et al., 1997), the only described effect of the lack of rluA 
is the outcompeting by the wild type (Raychaudhuri et al., 1999). Nevertheless, 
both enzymes modify the nucleotides in the ASL, and as described above, the 
modifications in ASL can affect all the steps of translation and could also became 
especially important under particular stress conditions.   
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2. THE AIM OF THE THESIS  

Without genetic variability, there is no material for evolution. Mutations are the 
main source of genetic diversity in bacteria, and therefore for understanding evo-
lution, it is vital to understand the mutational processes. Obviously, the faithful 
DNA replication and the functionality of repair pathways are the key elements 
for genetic integrity. But one cannot overlook all the other processes involving 
DNA – transcription, recombination, nucleoid structure formation – that also affect 
its intactness. Furthermore, bacteria constantly face stress, induced by both endo-
genic and exogenic factors, which in turn evokes numerous changes in gene 
expression and some of these changes contribute to adaptation by increasing 
mutations.  

Our present-day knowledge about mutational processes relies mainly on 
research carried out with E. coli, which may not always be a best representative 
of bacteria. For instance, the methylation-based mismatch repair pathway (On 
and Welch, 2021) and the SOS regulated TLS polymerase Pol V (Ambur et al., 
2009), are not so widespread as thought previously. To shed light on mutational 
processes in non-enteric bacteria, the aim of this study was to find and charac-
terize new factors affecting the mutation frequency in the genus Pseudomonas. 
The genus Pseudomonas is outstanding for comprising bacteria with broad meta-
bolic abilities and diverse habitats. For instance human, plant, and insect patho-
gens, but also bacteria which can promote plant growth or be used for bio-
remediation (Silby et al., 2011). 

First, as the previously obtained results with P. putida have indicated a corre-
lation between recombination rate and the presence of nucleoid-associated protein 
(NAPs) biding sites (Tavita et al., 2012), one of the aims of my thesis was to 
elucidate the role of one of these NAPs, Integration Host Factor (IHF), in 
mutagenesis. 

To reveal more new factors affecting the mutation frequency, we first needed 
to establish mutation frequency-monitoring assay for Pseudomonas species. 
Hence, the following aim of my study was to create, describe and verify a test 
system and to evaluate its application in different Pseudomonas species. With the 
help of newly created test system, we found potential mutation rate-affecting 
genes in P. putida PaW85. Among numerous genes functioning in DNA repli-
cation and repair, we also found genes previously not known to be associated 
with mutations. The most intriguing of those was the gene of pseudouridine 
synthase truA. Thus, the subsequent part of my dissertation concentrated on the 
tRNA modification enzymes, pseudouridines synthase enzymes TruA and RluA 
by characterizing their role in mutagenesis and in cells physiology of P. putida 
PaW85.  
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3. RESULTS AND DISCUSSION 

3.1. The nucleoid-associated protein IHF influences 
mutation frequency in P. putida (Ref. I) 

Different nucleoid-associated proteins (NAPs) bind to DNA and affect the 
nucleotide structure dynamically by binding, bending, and wrapping DNA. By 
changing DNA accessibility, the NAPs contribute to the gene expression regu-
lation and in some extent it is hard to distinguish NAPs from conventional 
transcriptional regulators (Dillon and Dorman, 2010). Also, by affecting the DNA 
accessibility to different repair and recombination enzymes, NAPs can interfere 
efficient repair, but on the other hand, binding DNA can shield it, and in some 
cases, rather protects it from mutagenesis. Some of the most common NAPs in 
Gram negative bacteria are Fis, Hu, H-NS, Dps, and IHF (Dillon and Dorman, 
2010). The studies of E. coli mutation frequency across the chromosome have 
revealed that the mutation density is higher at the areas with HU- and Fis-
responsive genes expression, but the H-NS and Dps does not affect mutation 
frequency (Foster et al., 2013; Niccum et al., 2019). Although the NAPs can 
affect the mutation frequency in many ways, it has been speculated that the DNA 
replication becomes inaccurate in DNA regions with high superhelical density 
(Niccum et al., 2019).  

The previous studies published in our laboratory have predicted in silico a 
strong correlation between homologous recombination frequency and the 
presence of NAP biding sites (for at least Fis, IHF and MvaT/MvaU) in P. putida 
(Tavita et al., 2012). In subsequent studies, our goal was to study the role of NAPs 
in mutational processes in Pseudomonas. We investigated the role of IHF in 
mutagenic processes in P. putida strain PaW85 (Ref. I), which is isogenic to 
P putida KT2440 (Nelson et al., 2002). Our results revealed that IHF affects the 
occurrence of point mutations in P. putida. However, the effects of IHF varied 
depending on the test system (Ref. I, Fig. 4 and 5, Table S6 and S7). We used 
phenol (Phe) utilization-based test systems and the rifampicin (Rif) resistance 
acquisition-based test system. In the Phe-based test systems the cells carried a 
phenol monooxygenase gene pheA with premature stop codon (stop instead of 22. 
Leu codon) either in the plasmid (Ref. I, Fig. 4) or in the chromosome (Ref. I, 
Fig 5A) or a chromosomal pheA gene with deleted C nucleotide at position 221 
(Ref. I, Fig 5B). The cells were plated onto the minimal plates supplemented with 
Phe as the sole carbon source and the emergency of phenol utilizing mutants 
(Phe+ phenotype) was monitored. We observed that in the plasmidial test system, 
the lack of IHF reduced the base substitution in exponentially growing population 
but did not affect the mutant frequency in stationary phase cells. On the other 
hand, the overexpression of IHF increased the mutant frequency only in statio-
nary phase population (Ref. I, Fig 4). The opposite effects of IHF expression on 
mutation frequency at different growth phases indicates that the cellular levels of 
IHF have significant impact on mutation frequency: both the overexpression and 
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downregulation can cause imbalances in mutational processes. The growth phase-
dependent effect of IHF is not surprising since the expression of different NAPs 
is dynamic and highly dependent on growth phase of bacteria. In E. coli IHF 
reaches it maximum level at transition from exponential phase to stationary 
phase, but unlike many other NAPs, IHF is abundant throughout the growth curve 
(Ali Azam et al., 1999). In P. putida, the IHF content is almost an order of 
magnitude higher in stationary phase than in exponential phase (Valls et al., 
2002). Also, the experiments with P. putida indicate that the IHF is necessary for 
the physiological changes in cell that take place before entering to the stationary 
phase. For example, IHF downregulates RNAP alpha subunit and many ribo-
somal proteins (Silva-Rocha et al., 2013).  

In the chromosomal test systems, the lack of IHF also reduced the appearance 
of Phe+ mutants, but did not affect the appearance of RifR mutants (Ref. I, Fig. 5). 
This clearly illustrates how distinct test system can reveal different effects. While 
the Phe+ assay measures only certain mutations at the defined location in the pheA 
gene, the RifR assay is based on the detection of broader spectrum of mutations 
at different locations in the rpoB gene, which decrease the affinity of rifampicin 
binding to the enzyme (Jatsenko et al., 2010). In addition, not only the spectrum 
of mutations measured was different, but also the Rif assay is based on lethal 
selection and the Phe+ assay is nonlethal. Also, as mentioned in the literature, 
mutation frequency can be very different depending on the chromosomal location 
of the target (Kivisaar, 2020b; Niccum et al., 2019). Since the IHF is DNA-
binding protein, its effect on mutation frequency could be especially dependent 
on the genetic context and the presence of IHF binding sites in the flanking DNA 
regions.  

Although we did not observe the effect of IHF on the spectrum of Phe+ mutants, 
it is interesting to note that the mutation spectrum was significantly different if 
the same tester gene pheA was either in the chromosome or in the plasmid (Ref. I, 
Table 1). The different spectra of the chromosomal and plasmidial assays can be 
due to the fact that the chromosomal Phe+ assay allows mainly the detection of 
exponential phase mutations but the plasmidial assay enables also the detection 
of mutations occurring in stationary phase. The mutational spectrum of Phe+ 
mutants appeared to be more heterogeneous in stationary phase population 
(Ref. I, Table 1), indicating that the mutational processes are growth-phase 
dependent. These results are supported by our previous findings that the spectrum 
of TAG stop codon reversion mutations is more heterogeneous in the populations 
of stationary-phase bacteria than that in growing bacteria (Saumaa et al., 2006). 
Moreover, it has been shown that in P. putida carbon-starved cells the chromo-
somal DNA content decreases significantly compared to exponential phase cells, 
whereas no changes in the copy number of pKTpheA22TAG plasmid were 
detected (Ukkivi and Kivisaar, 2018). Thus, the decline of chromosomal DNA 
content could be one explanation why it was not possible to measure stationary 
phase mutation in the chromosomal Phe+ test system. In addition, the replication 
of plasmid is independent of chromosomal replication and different replication 
strategies and replication timing can affect mutations as well (Agier and Fischer, 
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2012). For instance, in bacteria with multiple chromosomes (Burkholderia and 
Vibrio) the replication from the smaller chromosome occurs later and also those 
genes tend to evolve faster (Cooper et al., 2010). 

In conclusion, we were able to determine a new mutation frequency affecting 
factor in P. putida – IHF. Its effect on mutational processes is both growth phase- 
and chromosomal location-dependent. Based on our present knowledge it is hard 
to determine whether IHF directly affects mutational processes or is the effect the 
consequence of different DNA accessibility due to IHF’s action. 

 
 

3.2. A new test system for identifying mutation  
rate-affecting genes in Pseudomonas species (Ref. II) 

Different test systems have historically greatly improved the knowledge about 
mutational process, but many of them are designed for a specific model organism 
and are difficult to transfer to other bacteria. For instance, numerous E. coli test 
systems are based on lactose utilization (Foster and Rosche, 1999; Rosenberg, 
2001), which are not applicable to organisms unable to metabolize lactose. Since 
our aim was to screen for new mutation rate-affecting genes in Pseudomonas 
species, we were in need for a new assay. The ability to form secondary micro-
colonies or so called papillae on the surface of the main colony has been a useful 
tool for studying mutational processes (Al Mamun et al., 2012; Miller et al., 1999; 
Yang et al., 2011). We developed a new in vivo papillation-based mutational 
assay lac-lsc, which enables the detection of mutations in lacI gene encoding the 
transcriptional repressor of the lac operon, LacI (Ref. II). The pervious works in 
our laboratory have proven the chromosomal lacI-Ptac gene cassette to be a good 
target for determining a diverse set of mutations in P. putida (Juurik et al., 2012). 
In the lac-lsc assay the levansucrase gene lsc-3 of Pseudomonas syringae pv. 
tomato DC3000 and the β-galactosidase gene lacZ of E. coli are placed under the 
control of Ptac promoter and its repressor lacI (Ref. II, Fig. 1A). This gene cassette 
was inserted into the chromosome of a strain of interest either as a part of mini-
transposon Tn5, which inserts into chromosome randomly, or as a part of Tn7, 
which inserts into an intergenic region downstream the glmS gene. Levansucrase 
is an extracellular enzyme which carries out sucrose hydrolysis into glucose and 
fructose and at the same time transfructosylates fructosyl units to a fructan polymer 
levan. When sucrose is added to the medium, the activity of levansucrase can be 
easily visually detected by the production of mucous levan. β-galactosidase is an 
enzyme that hydrolysis the glycosidic bond of β-galactose, but it can also 
hydrolyze the bond in chemical X-gal which product 5-bromo-4-chloro-3-
hydroxyindole is oxidized into easily detectable blue compound. 

Under normal conditions, the Ptac promoter is repressed by its repressor LacI, 
but if a spontaneous mutation inactivates the lacI gene or alters its operator area, 
the transcription of lsc-3 and lacZ is permitted. On indicator media containing 
sucrose and X-gal this expression is visually detectable as a transparent or a 
blueish mucous papilla (Ref. II, Fig. 1C–D). 
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We monitored the papillae formation in the P. putida wildtype cells, in the 
DNA mismatch repair (MMR)-deficient ΔmutS background, and in the presence 
of DNA damaging agent MMC (Ref. II, Fig. 1C–D, Table 1). The papillae forma-
tion was somewhat dependent upon the colony size as the colonies growing more 
densely formed less papillae than the ones growing more sparsely (Ref. II, Table 1). 
Possibly, if a colony is able to grow larger, it can undergo more cell-divisions and 
therefore, have more chance to obtain a beneficial mutation. Also, it should be 
mentioned that the papillae on a larger colony are easier to visually detect. In the 
developed assay, when the occurrence of mutations was exogenously induced 
with a mutagen MMC or endogenously elevated due to the lack of MMR, the 
formation of papillae significantly increased (Ref. II, Fig. 1B–D, Table 1). These 
colonies of bacteria either exposed to the mutagen MMC or lacked the functio-
nality of major DNA repair pathway MMR often carried numerous papillae, which 
almost never happened in the wild-type background (Ref. II, Fig. 1B–D). These 
results demonstrated that the assay developed could be a promising tool for 
screening mutation frequency-affecting genes in P. putida. 

We wanted to know whether this papillation-based assay is also applicable in 
other non-levan-producing bacteria. For this, we selected a set of Pseudomonas 
non-levan-producing strains from the Collection of Environmental and Labora-
tory Microbial Strains (CELMS; available in the Estonian Electronic Microbial 
database (EEMB) website http://eemb.ut.ee/eng/) and transferred the gene cassette 
lacI-Ptac-lsc3lacZ as a part of mini-Tn7 into the chromosome of these environ-
mental strains. We constructed the tester strains of the following species: P. cor-
rugata 7228, P. stutzeri 2C63, P. mendocina PC1, P. aeruginosa D10, P. migulae 
D67, P. guineae 2C3, P. anguilliseptica 2Bnah2, and P. thivervalensis N7. 
Although for some of the strains the insertion of the gene cassette into the 
chromosome changed the colony morphology on sucrose-containing medium, the 
mucous papillae were observable in all environmental strains investigated 
(Ref. II, Fig. 5 and Fig. S1). Interestingly, when the gene cassette was inserted 
into the chromosome of the laboratory strain P. aeruginosa PAO1, we were not 
able to detect the formation of papillae in the obtained tester strain PAO1lsc-lac7 
(Ref. II, Fig. 6A). Nevertheless, when the mutation rate in the tester strain 
PAO1lsc-lac7 was elevated by the deletion of uvrD, the papillae formation was 
detected (Ref. II, Fig. 6B). Taking together, although the test system needs 
optimization in some Pseudomonas strains, it is adaptable to a wide variety of 
non-levan-producing Pseudmonas species. 

Overall, in P. putida, the first papillae were detectable on the third day of 
incubation. Because of the leaky transcription of the reporter genes, after seventh 
day the papillae formation was hard to notice. The appearance of papillae was 
lower in the tester strain PaWlac-lsc5 than in PaWlac-lsc7 (Ref. II, Table 1) and 
therefore we chose the tester strain PaWlac-lsc5 to conduct the transposon muta-
genesis experiment for the detection of mutation frequency-affecting genes.  
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3.3. Search for mutation-affecting genes in P. putida (Ref. II) 

To detect mutation frequency-affecting genes, we conducted transposon muta-
genesis experiment with transposon mini-Tn5 and P. putida tester strain PaWlac-
lsc5. Approximately 27 000 transposon mutants from seven independent trans-
poson mutagenesis experiments were obtained, and the appearance of papillae 
was monitored for six days. The approximate number of colonies of transposon 
mutants per plate was about 400–900. By the sixth day 918 colonies formed at least 
one papilla and all those colonies were further analyzed in secondary screening on 
rifampicin and sucrose plates. From these transposon mutants 351 passed the 
secondary screening and were subjected to the identification of the chromosomal 
position of mini-Tn5. The chromosomal location of mini-Tn5 was determined for 
327 transposon mutants. We identified 34 different genes and one intergenic 
region that were repeatedly targeted and were further considered as potential 
mutation frequency-affecting genes or regulatory regions (Ref. II, Table 2).  

Most frequently the transposon had disrupted genes belonging to the functio-
nal class of DNA replication, recombination, and repair (Ref. II, Table 3). The 
fact that we were able to monitor the frequent transposon insertion into the genes 
already known to affect mutation frequency (mutS, mutL, uvrABC, uvrD) proved 
this assay to be applicable for the detection of mutation frequency-affecting genes 
in P. putida under the established experimental conditions. The experimental setup 
mimicked the natural conditions where readily available nutrients are exhausted 
during colony aging and through genetic adaptations some mutants can achieve 
growth advantages over other cells in population. We expected that under these 
circumstances we could identify genes affecting stress-induced mutagenesis and 
mutagenesis in aging colonies. For example, we detected transposon insertions 
into rpoS gene (Ref. II, Table 2). RpoS is a stationary phase sigma factor of the 
RNA polymerase, and in addition to regulating the general stress response, it 
regulates numerous other processes in a cell (e.g., biofilm formation and 
virulence) (Schellhorn, 2014). Our research group has previously shown that the 
RpoS-deficiency in P. putida elevates the occurrence of base substitutions during 
starvation due to enhanced sensitivity to oxidative damage (Tarassova et al., 
2009). This finding confirmed that the lac-lsc assay could enable to find factors 
affecting mutation frequency in starving population of bacteria.  

We further analyzed the transposon mutants previously not known to affect 
mutation frequency with the RifR assay and the Phe+ assay. The analysis revealed 
that although numerous mutants exhibited mutant frequency comparable to that 
of the wild-type strain, there were many mutants with significantly higher mutant 
frequency in either exponential or stationary growth phase (Ref. II, Fig. 2 and 
Fig 3). The stationary phase mutagenesis was promptly increased in transposon 
mutant carrying transposon insertions in gacS. GacS is a sensor kinase of a two-
component regulatory system GacS-GacA, which positively controls production 
of secondary metabolites, extracellular enzymes, and some carbon storage com-
pounds via the expression of noncoding small RNAs (Lapouge et al., 2008). In 
further work in our laboratory, it has been verified that the deficiency of both 
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gacS and gacA causes a remarkable increase in base substitution mutations in 
stationary phase but not in exponential phase (Uusaar, 2022). 

The highest RifR mutant frequency in exponential phase cells was observed in 
transposon mutants carrying insertions in the truA gene (Ref. II, Fig. 2). We further 
focused on understanding the mechanisms behind the elevated mutation frequency 
in the absence of TruA and describing the phenotypes of truA-deficient mutant. 

 
 
3.4. Characterization of TruA and RluA (Ref. III and IV) 

3.4.1. The substrates of TruA and RluA 

TruA is a tRNA pseudourdine synthase reviewed in chapter 1.2.1.3. The involve-
ment of tRNA modification enzyme in mutagenesis is surprising. According to 
our knowledge, only the tRNA modification enzyme MiaA have been shown to 
affect mutation frequency in E. coli (Connolly and Winkler, 1991, 1989; Zhao 
et al., 2001). However, to our knowledge, there is no previous record of pseudou-
ridines affecting mutation frequency. To investigate the role of pseudouridines in 
the ASL, we also included RluA to our further experiments. RluA is another 
pseudouridines synthase, which also modifies U nucleotide in the ASL of tRNA 
(reviewed in chapter 1.2.1.4). Since the substrate specificity of TruA and RluA 
in P. putida has not been studied before, we analyzed the substrates of TruA and 
RluA in P. putida PaW85. We verified with CMCT/alkali treatment and primer 
extension analyzes that the TruA modifies U nucleotide at the positions 38–40 in 
all the studied tRNAs (tRNASer(CGA), tRNACys(GCA), tRNALeu(CAA), tRNALeu(CAG) 

and tRNATyr(GUA)) (Ref. III, Fig. 1B, Fig. S2). These tRNAs are previously known 
to be modified by TruA in E. coli (except tRNASer(CGA)) (Boccaletto et al., 2022). 
The pseudouridylation reaction is carried out by conserved aspartic acid residue; 
in E. coli the Asp residue at the position 60 in TruA (Huang et al., 1998). We 
verified that the catalytically vital Asp residue in P. putida is located at the posi-
tion 70 of TruA and when the Asp70 was mutated, we detected no pseudouridines 
at the positions 38–40 (Ref. III, Fig. 1B, Fig. S2A). Analyzing tRNA sequences 
of P. putida, we concluded that in total there are 19 different potential TruA sub-
strate tRNA molecules in P. putida (Table 1; Ref. III, Table S2). Out of the mea-
sured tRNAs, RluA modifies U32 in three tRNAs (tRNASer(CGA), tRNACys(GCA), 
tRNALeu(CAA)), and based on RluA’s consensus sequence analyses it also modifies 
tRNAPhe(GAA) in P. putida (Table 1; Ref. III, Fig. 1B, Fig. S2 and Table S2). We 
further confirmed that the catalytic amino acid of P. putida RluA is Asp at the 
position 57 (Ref. III, Fig. 1B, Fig. S2A). We also analyzed the sequences of tRNA 
genes in P. aeruginosa PAO1 and predicted the substrates of TruA and RluA in 
this organism and compared potential substrates of these enzymes in P. putida, 
P. aeruginosa with those identified in E. coli (Table 1). We found that the poten-
tial substrate pattern of TruA and RluA is very similar in P. putida, P. aeruginosa 
and E. coli, and that there are only minor differences between these three species 
(Table 1). 
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Table 1. Comparison of TruA and RluA substrates in P. putida KT2440 (P.p.), P. aeru-
ginosa PAO1 (P.a.), and E. coli K12-MG1655 (E.c.). The codons and corresponding 
amino acids (aa) are followed by the presence of the tRNAs with corresponding anticodon 
in the respective strain (marked with *). If the cell is highlighted green, the tRNA with 
corresponding anticodon is a potential substrate for TruA (carries U nucleotide at position 
38–40) and if the cell is highlighted yellow, the tRNA with corresponding anticodon is a 
potential substrate for TruA and RluA (carries U nucleotide at position 38–40 and RluA 
consensus sequence). P. putida and P. aeruginosa results are based on the analysis of all 
tRNA gene sequences in the respective genomes (Winsor et al., 2016), and E. coli results 
are based on transfer RNA database (tRNAdb, used 20.06.2022) (Jühling et al., 2009). 
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  UUC F * * * UCC S * * * UAC Y * * *b UGC C * * * C 
  UUA L * * * UCA S * * * UAA * UGA * *se *se *se A 
  UUG L * * * UCG S * * * UAG *       UGG W * * * G 
C CUU L     CCU P   CAU H   CGU R * *   U 

    CUC L * * * CCC P * * * CAC H * * * CGC R    C 
    CUA L * * * CCA P * * * CAA Q * * * CGA R  * A 
    CUG L * * *b CCG P * * * CAG Q * CGG R * * * G 
  A AUU I     ACU T   AAU N   AGU S    U 
    AUC I * * * ACC T * * * AAC N * * * AGC S * * * C 
    AUA I     ACA T * * * AAA K * *  * AGA R * * * A 
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a – TruA modifies elongator methionine tRNAs not initiator methionine tRNAs 
b – TruA modifies at least two tRNAs with same anticodon but with differences in sequence 
se – tRNA of selenocysteine 
 
 

3.4.2. The lack of Ψ38–40 and Ψ32 increases mutation  
frequency in P. putida 

To investigate the role of TruA and RluA in mutagenesis, we measured mutant 
frequency of RifR colonies by fluctuation assay in P. putida strains lacking truA 
and/or rluA. The lack of truA caused 5-fold increase in mutant frequency (Ref. III, 
Fig. 2A), which is in good accordance with the initial results obtained with truA 
transposon mutants (Ref. II, Fig 2). As the P. putida strain with catalytically 
inactive TruA (D70A) still had 5-fold elevated mutant frequency, it illustrates 
that the increased mutant frequency was caused by the lack of pseudouridylation 
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activity of TruA and not by some yet unknown secondary function of it (Ref. III, 
Fig 2A). The lack of rluA also increased the mutant frequency but the effect was 
lower than that in truA-deficient cells. Both the lack of rluA and the lack of its 
pseudouriylation activity caused approximately 3-fold increase in mutant fre-
quency (Ref. III, Fig 2A). The double mutant strain carried a comparable mutator 
phenotype to that of ΔtruA strain (Ref. III, Fig 2A). To our knowledge, it is the 
first recorded case of pseudouridines in tRNA affecting mutant frequency. To 
investigate the prevalence of this effect, we measured the RifR mutant frequency 
in P. aeruginosa truA- and rluA-deficient mutants as well. The ΔtruA strain of 
P. aeruginosa had significantly increased mutant frequency, but the effect was 
markedly lower than in P. putida (Ref. III, Fig. 2B). The lack of rluA did not 
affect mutant frequency in P. aeruginosa (Ref. III, Fig. 2B). Previously, the effect 
of TruA to the frequency of spontaneous mutations has been measured in E. coli 
where the truA-deficiency did not cause a mutator phenotype (Connolly and 
Winkler, 1989). We have also attempted to measure the RifR mutant frequency in 
E. coli cells lacking truA, but since this strain grows very poorly, it was hard to 
obtain reliable results under comparable growth conditions of the mutant and the 
wild-type E. coli strain or under comparable growth conditions with Pseudomonas 
species. This indicates that although the TruA’s effect on mutation frequency 
could be a phenomenon possibly widespread among Pseudomonas species, it is 
not common for all the bacterial species carrying the Ψ at positions 38–40 in 
tRNAs. Furthermore, it is interesting to note that although the enzymes TruA and 
RluA of these three bacterial species have such a similar substrate pattern, the 
mutation frequency phenotype is noticeably different. 

As mentioned above, previously it has been described that the deficiency of 
tRNA modification enzyme MiaA causes a moderate mutator phenotype in E. coli 
(Connolly and Winkler, 1991, 1989; Zhao et al., 2001). MiaA modifies A nucleo-
tide in the ASL of tRNA at the position 37 by adding isopentenyl group to the N6 
nitrogen and creating i6A37. The MiaA-made modification is often found in UNN 
codon-recognizing tRNA molecules and this modification is usually further 
methylthiolated into ms2i6A37 by MiaB. The lack of MiaB does not cause a 
mutator phenotype (Connolly and Winkler, 1991). It has been shown that the 
effect of miaA-deficiency is abolished in strains lacking recA, recB and recD; 
thus, the phenotype is recombination-dependent (Zhao et al., 2001). Also, in E. coli 
the mistranslating glycine tRNAs induces recA- and recB-dependent mutator 
phenotype (Murphy and Humayun, 1997; Ren et al., 1999; Slupska et al., 1996). 
However, not always is the mistranslation induced mutator phenotype dependent 
on recombination (Balashov and Humayun, 2003; Dorazi et al., 2002). In 
P. putida, it has been previously shown that the lack of recA alone does not affect 
spontaneous mutations in the Phe+ phenotype-based assay (Tegova et al., 2004). 
We measured the RifR mutant frequency in P. putida ΔtruAΔrecA double mutant 
cells with RifR-based fluctuation assay. The mutants lacking both truA and recA 
genes still harbored a mutator phenotype, while cells carrying only recA deletion 
have mutant frequency comparable to wild type (Fig. 4). This indicates that the 
mutator phenotype caused by the truA-deficiency in P. putida is recombination-
independent.
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Figure 4. Comparison of RifR mutant frequencies of wild-type P. putida, recA deletion 
strain and recA truA double deletion strain. The mean values (line in the box) of RifR 
mutant frequencies per 109 cells are presented. The upper and lower borders of box 
represent third and first quartile, respectively, the whiskers represent non-outlier range 
and diamonds indicate outliers. The experiment has been performed as described in Ref. 
III chapter 2.7. 
 
 

3.4.3. The role of SOS response and the DNA repair pathways in 
P. putida mutator phenotype  

In addition to recombination, RecA also participates in the regulation of SOS 
response. In response to extensive DNA damage the SOS-response can transiently 
induce mutagenic processes. The SOS-response is also induced in different E. 
coli mutants with increased mistranslation (Bacher and Schimmel, 2007; Samhita 
et al., 2020). Although the SOS-response in E. coli is a well-studied regulatory 
network and a good example of stress induced mutagenesis, it is rather excep-
tional compared to other bacteria. For instance, in P. putida the number of genes 
regulated by SOS response is markedly smaller than in E. coli, the SOS response 
in P. putida is regulated by two LexA regulators, and the basal level of tran-
scription of Pol IV gene (dinB) under normal conditions is higher than that in 
E. coli (Abella et al., 2007; Tegova et al., 2004). Nevertheless, the action of 
“error-prone” TLS polymerases can increase the spontaneous mutation rate in 
cells (Kuban et al., 2006; Tegova et al., 2004). We measured the RifR mutant 
frequency in P. putida strains lacking the inducible “error-prone” DNA poly-
merases in addition to truA or rluA. The constructed Δpol strain had polB (Pol II), 
dinB (Pol IV) and imuABC (where imuC also known as dnaE2 codes for a DNA 
polymerase DnaE2) genes deleted. The mutator phenotype of truA- and rluA-
deficiency was still present in the DNA polymerases Pol II, Pol IV and DnaE2-
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deficient background (Ref. III, Fig. 3A) indicating that the TruA and RluA effect 
on mutation frequency in P. putida is SOS response- and TLS polymerases-
independent.  

If a mutation frequency increases, it always raises a question whether the DNA 
repair pathways are working correctly? In bacteria, there are many specialized 
DNA repair pathways for recognizing and mending damage in DNA. The main 
DNA repair pathways participating in maintaining genetic integrity are MMR, 
which removes errors in newly synthesized DNA, and NER, which repairs a wide 
repertoire of structurally unrelated lesions. Both these repair pathways need a 
DNA helicase UvrD to work properly. We analyzed whether the malfunction of 
these repair pathways could cause the elevated mutant frequency in ΔtruA and 
ΔrluA strains. For this we constructed mutant P. putida strains where in addition 
to truA or rluA the uvrD gene was also deleted. Measuring the RifR mutant fre-
quency, it was apparent that compared to the uvrD single deletion, double mutants 
with deleted uvrD and truA or rluA still harbored higher mutant frequency in 
P. putida (Ref. III, Fig. 3A). In addition, the action of specialized polymerases 
(Sidorenko et al., 2011) or malfunction of repair pathways (Lee et al., 2012; Long 
et al., 2015) usually affects the spectrum of mutations. We have sequenced a set 
of RifR mutants picked up in wild-type, ΔtruA and ΔrluA strains and observed no 
remarkable difference in mutation spectrum (Ref. III, Table S6). This further 
proves that the observed mutator phenotype is not the outcome of malfunctioning 
repair pathways or action of TLS DNA polymerases.  

 
 

3.4.4. The effect of Ψ38–40 and Ψ32 on translation  
in P. putida, P. aeruginosa, and E. coli 

Different tRNA modifications in ASL have been shown to affect translation 
fidelity (Agris, 2004; Urbonavic̆ius et al., 2001; Yarian et al., 2002). Also in many 
cases mistranslation leads to translational stress-induced mutagenesis (TSM) 
(Balashov and Humayun, 2003, 2002; Dorazi et al., 2002; Murphy and Humayun, 
1997; Slupska et al., 1996), indicating that tRNA modifications affecting trans-
lation accuracy could affect mutagenesis via mistranslation. It has been hypo-
thesized that miaA-deficient mutator phenotype is also caused by mistranslation 
(Humayun, 1998; Zhao et al., 2001). However, this hypothesis has some inconsis-
tencies because in S. Typhimurium the lack of both miaA and miaB increased the 
translational frameshifting (Urbonavic̆ius et al., 2001) but the mutator phenotype 
in E. coli was only present in the case of miaA deficiency but not in miaB-defi-
cient strain (Zhao et al., 2001). Nevertheless, it raises a question whether the 
absence of truA and/or rluA could increase mistranslation, which can in turn lead 
to a mutator phenotype. 

Based on the studied examples, the tRNA modification effects on translation 
can be very context- and tRNA-specific. In S. Typhimurium, the lack of Ψ38 
increased the +1 frameshift frequency when tRNALeu(CUA) was in the P-site, but 
not when other leucin tRNAs were studied (Urbonavic̆ius et al., 2001), whereas 
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in the measured sequences the –1 frameshifting was not affected by TruA (Urbo-
navic̆ius et al., 2003). To study the effect of pseudouridines in the ASL on 
translation accuracy in different bacteria, we inserted a dual-luciferase based 
reporter assays into a broad host range plasmid pSEVA. The assay uses a fusion 
protein of two luciferases, Rluc (renilla luciferase) and Fluc (firefly luciferase), 
and a test sequence inserted between them. The Rluc works as an internal control 
and the Fluc is synthesized only after frameshift event or stop codon readthrough. 
We measured the frequency of frameshift (5 different sequences, three –1 and 
two +1 frameshift sequences) and the stop codon readthrough (UAG and UGA 
stop codons) in the absence of truA or rluA in P. putida PaW85, P. aeruginosa 
PAO1 and E. coli MG1655 (Ref. IV, Fig. 1, 3, 5, and 6). To our surprise, the effect 
of TruA and RluA on translation errors significantly varied between different 
bacteria and different reporter sequencies (Ref. IV, Fig. 3, 5, and 6). In P. putida, 
the lack of truA increased significantly –1 frameshift frequency in one of the 
studied frameshift sequences but had no effect in the other two –1 frameshift 
constructs, and it did not affect +1 frameshifting (Ref. IV, Fig. 3). These results 
are opposite to that obtained in S. Typhimurium (Urbonavic̆ius et al., 2003, 2001). 
However, the measured context differed, and as it can be seen from our result, 
the role of tRNA modification is context specific. For example, the truA-defi-
ciency in P. putida increased UAG stop codon readthrough but had no effect on 
UGA stop codon readthrough (Ref. IV, Fig. 3). Contrarily to TruA, the lack of 
RluA had no effect on translation errors in P. putida in any of the measured 
reporters (Ref. IV, Fig. 3). In P. aeruginosa both the truA- and rluA-deficiency 
did not have any remarkable effects on translational accuracy (Ref. IV, Fig. 5). 
Out of the studied strains TruA had the greatest effect on translational accuracy 
in E. coli, affecting almost all the studied reporters, but again RluA had almost 
no effect on translational errors (Ref. IV, Fig. 6). Although from pervious results 
it can be seen that the tRNA modifications can have tRNA-specific effects (Li et 
al., 1997; Urbonavic̆ius et al., 2003), it is still surprising that in three related 
bacteria with comparable set of TruA and RluA modified tRNAs (Table 1), the 
effect of pseudouridines to mistranslation is vastly different. Still, it should be 
noted that while the TruA and RluA substrates are almost the same, different 
codon usage in different bacteria could affect the importance of TruA and RluA 
in respective strain.  

Although it can be concluded that Ψ38–40 in the ASL do affect the translation 
accuracy, we do not believe that this explains the mutator phenotype in P. putida 
and in P. aeruginosa. First, the lack of Ψ32 does not markedly affect the trans-
lation accuracy in any of the studied strains and especially not in P. putida, where 
the rluA-deficiency causes a mutator phenotype. Secondly, the results obtained 
with E. coli are opposite to the TSM hypothesis – the lack of truA increases mis-
translation (Ref. IV, Fig. 6) but does not affect mutation frequency (Connolly and 
Winkler, 1989). Thus, we concluded that the increase in mutation frequency in 
P. putida and in P. aeruginosa is not caused by TSM. Nevertheless, we cannot 
exclude the possibility that the absence TruA (and RluA) causes extreme mis-
translation at some very specific sequence which in turn leads to mutagenesis.  
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3.4.5. The effect of TruA and RluA on stress tolerance  
in P. putida, P. aeruginosa, and E. coli 

To determine whether the elevated mutant frequency could be caused by changed 
sensitivity of truA- and rluA-deficient strains to different stress conditions, we 
tested the growth of truA- and rluA-deficient strains of P. putida, P. aeruginosa, 
and E. coli at different temperatures or on agar plates containing different stres-
sors – e.g., ROS producing chemicals (NQO, PQ), translation affecting anti-
biotics (Sm, Km, Tet, Gm, Pm), and cell wall synthesis inhibiting antibiotics 
(Amp) (Table 2; Ref. III, Fig 2D-E). We observed that not only the TruA’s and 
RluA’s effect on mutagenesis and mistranslation were different in P. putida, 
P. aeruginosa and E. coli, but other phenotypes differed as well. While the truA-
deficiency caused reduced tolerance to almost all chemicals tested in P. putida 
and E. coli, it did not change the tolerance to most chemicals studied in P. aeru-
ginosa (Table 2; Ref. III, Fig 2D-E). Interestingly, this effect was comparable to 
the translation accuracy results where the lack of truA had almost no effect on 
mistranslation in P. aeruginosa (Ref. IV, Fig. 5). It is even more surprising that 
the increased tolerance to NQO and Sm were the only visible effects in P. aeru-
ginosa strain lacking truA, which is opposite to the effects observed in P. putida 
or E. coli (Table 2).  

In both P. putida and E. coli, the lack of truA remarkably decreased tolerance 
to many chemicals causing different type of stress (Table 2). Furthermore, as 
stated above the E. coli ΔtruA strain has remarkable growth retardation, what 
could nonspecifically contribute to the susceptibility of different stresses. As 
discussed in chapter 1.2.1.2, the importance of tRNA modifications could be 
revealed in stress conditions and tRNA modifications may participate in different 
stress responses. The results of our stress tolerance experiments indicated that the 
Ψ38–40 in the ASL could take part in the stress response to different stressors in 
P. putida and E. coli. 

For instance, the tRNA modifications can participate in ROS response in both 
prokaryotes (Jaroensuk et al., 2016; Romsang et al., 2018; Thongdee et al., 2019) 
and eukaryotes (Chan et al., 2012). Although adding ROS-scavenging agent 
thiourea to growth medium had no decreasing effect on mutant frequency in 
P. putida ΔtruA and ΔrluA strains (Ref. III, Fig. 3C), we observed that the 
P. putida strains lacking Ψ38–40 had increased sensitivity to ROS-producing 
chemicals NQO and PQ (Table 2; Ref. III, Fig. 3D). This is in good accordance 
with the results obtained from proteome analyzes indicating that the catalase 
KatE levels are downregulated in ΔtruA strain if compared to wild-type P. putida 
(Ref. III, Fig. 4B, Table 1). The downregulation of catalases causes reduced 
tolerance to ROS. There are four different catalase genes in P. putida (Kim and 
Park, 2014; Nelson et al., 2002), and the protein levels of the others were either 
not changed (KatA and KatG) or not detected (PP2887) (data is available in 
proteome database ProteomeXchange with identifier PXD022353). In P. aeru-
ginosa, it has also been shown that the catalase activity is decreased in different 
tRNA modification-deficient mutant strains, and that also only a subset of 
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catalases can be affected (Jaroensuk et al., 2016; Romsang et al., 2018; Thongdee 
et al., 2019). For instance, in P. aeruginosa lacking TrmJ, the transcription of 
katB and katE was reduced (Jaroensuk et al., 2016) and in P. aeruginosa trmB-
mutant the protein levels of KatA and KatB were reduced but the transcription of 
katA and katB was trmB-independent (Thongdee et al., 2019). Based on the 
results of our proteome analysis we cannot say whether the KatE is down-
regulated already at transcriptional level or at translational level but based on 
P. aeruginosa analogues we could speculate that TruA modulates partially the 
ROS stress response via KatE in P. putida cells. 

 
Table 2. The stress tolerance of P. putida PaW85, P. aeruginosa PAO1, and E. coli 
MG1655 truA- and rluA-deficient strains. The stress tolerance assay was done as de-
scribed in Ref. III Materials and Methods. P. putida strains were grown at 30 °C and 
P. aeruginosa and E. coli strains at temperature 37 °C. The overnight cultures were serially 
diluted and spotted on agar plates containing different stressors and incubated under 
different stress conditions. The growth of mutant strains was compared to respective 
strain under nonstress conditions. “0” no effect on growth compared to the same strain 
under nonstress conditions. “+” (if not stated otherwise) decreased growth compared to 
the same strain under nonstress conditions. “++” greatly decreased growth compared to 
the same strain under nonstress conditions. “nt” not tested on this stress condition. 

 P. putida P. aeruginosa E. coli 
Stressors Conts. ΔtruA ΔrluA Conts. ΔtruA ΔrluA Conts. ΔtruA ΔrluA 
NQO 300 µM + 0 300 µM +a 0 20 µM + 0 
PQ 0.05 mM ++ 0 nt nt nt nt 
MMC 5 µg/ml 0 0 1 µg/ml 0 0 1 µg/ml ++ 0 
Sm 25 µg/ml + 0 10 µg/ml +a 0 2.5 µg/ml ++ 0 
Km 2 µg/ml +a 0 15 µg/ml 0 0 1.5 µg/ml 0b 0 
Cm 35 µg/ml + 0 nt nt nt nt 
Tet 1 µg/ml ++ 0 2 µg/ml 0b 0 0.25 µg/ml 0 0 
Gm 2 µg/ml 0 0 2 µg/ml 0 0 2 µg/ml ++ 0 
Amp 250 µg/ml ++ 0 100 µg/ml 0c 0c 20 µg/ml + 0 
Pm 600 µg/ml ++ 0 nt nt nt nt 
Hm 250 µg/ml + 0 nt nt nt nt 
Temp. 42 °C   nt nt 0 0 0 0 
Temp. 37 °C  0 0 0 0 0 0 
Temp. 30 °C  0 0 0 0 0 + 
Temp. 20 °C  0 0 0 0 0 ++ 

a – increased stress tolerance compared to the same strain under nonstress conditions 
b – does not affect the viability but the colony size is smaller than wild type 
c – the lack of truA nor rluA does not affect the viability but the double mutant has decreased 
viability 
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Unlike the absence of TruA, RluA deficiency did not cause any changes in the 
stress tolerance (Table 2). And while the stress tolerance of truA-deficient strain 
varied greatly between different species, the effect of rluA-deficiency was compar-
able in all three bacterial species studied. The only exception was the tolerance 
to low temperatures in E. coli where the lack of RluA remarkably decreased the 
growth at 20 °C (Table 2). Many E. coli strains with ribosome assembly defects 
have a cold-sensitivity phenotype (Kaczanowska and Rydén-Aulin, 2007; Lilje-
ruhm et al., 2022). Since RluA with its dual-specificity also modifies 23S rRNA, 
the observed cold sensitivity phenotype of E. coli rluA-deficient strain could be 
attributable to the rRNA modification and not to the tRNA modifications. 

Although the P. putida ΔtruA strain’s noticeably changed tolerance to dif-
ferent stressors could contribute to increased spontaneous mutation rate, it is hard 
to believe that this could be the main reason of the mutator phenotype, since the 
absence of rluA did not change the stress tolerance of studied chemicals at all. 
Furthermore, there is no obvious external stressor in the experimental conditions 
of mutant frequency analyses. 

 
 

3.4.6. The proteome of P. putida ΔtruA and ΔrluA strains 

To investigate the cellular response to the absence of TruA and RluA, we per-
formed a label-free proteome analyses with exponentially growing P. putida 
PaW85 wild-type, ΔtruA and ΔrluA cells. In the ΔtruA and wild-type strain com-
parison we were able to quantify 2856 proteins and in the ΔrluA and wild-type 
strain comparison 2842 proteins. In ΔtruA strain there were 158 proteins which 
expression levels were changed statistically significantly, but only 18 of those 
differed at least two-fold (Ref. III, Fig 4B, Table 1, dataset PXD022353 in 
ProteomeXchange). In addition, there were 5 “on-off” regulated proteins, two of 
which were only detectable in wild type and three only in ΔtruA strain (Ref. III, 
Table 1). In ΔrluA strain only the downregulation of two proteins transcribed 
from the same operon was statistically significant (Ref. III, Fig. 4A, Table 1). 
Also, there were 2 proteins only detectable in wild type and one protein only 
detectable in ΔrluA strain (Ref. III, Table 1). Although the downregulation of 
proteins from a prophage-origin operon PP5487-PP5489 and upregulation of an 
oppositely transcribed regulator PP1935 just before this operon were the only 
changes detectable in both ΔtruA and ΔrluA mutant, the mutator phenotype was 
not caused by changes in the expression pattern (Ref. III, Fig. 5). 

Overall, most of the proteins with statistically significant expression change 
in ΔtruA strain were functionally unrelated. There were several proteins which 
genes belong to the same operon or are located consecutively in chromosome, 
e. g. PP5487-PP5489, hisC-hisD, PP1788-17989, but the genes of most of the 
proteins with changed abundance are not co-transcribed (Ref. III, Fig. 4A, Table 1). 
The reasons behind the changes of some protein’s expression have been discussed 
in the Discussion of Ref. III. The proteome results support many our conclusions 
presented above. For instance, in both ΔtruA and ΔrluA strain none of the main 
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repair pathway enzymes (MMR enzymes, NER enzymes) or replicative poly-
merase subunits had changed protein abundance level nor where there any changes 
in the cellular amount of SOS response regulators (LexA1, LexA2, RecA), or in 
the amount of RpoS (dataset PXD022353). If a strain would have slightly higher 
mistranslation, it would be not detected at the protein expression level, but the 
most common response to accumulating mistranslated proteins is the upregu-
lation of proteases and chaperons (Hartl et al., 2011; Ruan et al., 2008; Samhita 
et al., 2020). However, in the ΔtruA and ΔrluA proteome the abundance of detec-
ted well-known proteases and chaperons (e.g., LonI, LonII, ClpABPSX, DnaJK, 
GroLS, CspA-II) was not changed. The abundance of major cold shock protein 
CspA-I was slightly increased (1.77x) in ΔtruA stain, but this change was not 
statistically significant and in ΔrluA the CspA-I levels were not changed (dataset 
PXD022353). 

Intriguing results with yeast have shown that tRNA modifications can partici-
pate in translational reprogramming by changing the expression of specific ribo-
somal proteins (Chan et al., 2012). With this in mind, we also analyzed the 
expression of ribosomal proteins. In both ΔtruA and ΔrluA strains, the amounts 
of ribosomal proteins detected was not changed except for the amount of L34 
(gene rpmH). The protein L34 was 7.7x upregulated in ΔtruA and 8.3x in ΔrluA 
strain but in neither strain the upregulation was not statistically significant. It 
should be mentioned that the ribosomal protein L34 is a small protein (5.1 kDa) 
and only 4 unique peptides of this protein were detected in the analysis. Overall, 
there is not much knowledge about the precise function of L34. L34 is the ribo-
somal large subunit protein, it belongs to the minority of ribosomal proteins 
which are known to be not essential, and the corresponding genes can be deleted 
from the chromosome. However, the lack of L34 causes severe growth defects 
(Akanuma et al., 2014; Shoji et al., 2011). Also, the chromosomal location of 
rpmH is intriguing: it is in the same operon with rnpA and is located consecutively 
with in opposite direction transcribed dnaA. The RnpA is the protein subunit of 
RNase P which is a ribonuclease necessary for the processing of tRNAs (Evans 
et al., 2006) and DnaA is a protein necessary for the DNA replication initiation 
of bacterial chromosome. Both proteins take part in central processes of a cells, 
but the abundance of neither has changed in ΔtruA or ΔrluA strains (dataset 
PXD022353). Thus, the possible role of TruA and RluA in changed amount of 
L34 needs further investigation.  

Although the changed amount of several proteins in the ΔtruA proteome gives 
hints about the molecular mechanisms behind different phenotypes observed, it 
is hard to point out a specific change that could explain the increase in spontaneous 
mutation frequency.  

From the proteome analyses it can be seen that except for the downregulation 
of proteins in one operon, there are no significant differences in the ΔrluA strain 
compared to wild-type P. putida (Ref. III, Fig. 4A). This correlates with above-
described results demonstrating that the lack of rluA does not have any effect on 
translation accuracy nor in stress tolerance. One of the few rluA-deficiency pheno-
types described previously, is the outcompeting of the E. coli cells lacking RluA 
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by wild-type cells (Raychaudhuri et al., 1999). Based on this we conducted com-
petition experiment in P. putida. We marked the wild-type cells and ΔrluA or 
ΔtruA cells with either streptomycin (Sm) or gentamycin (Gm) resistance genes, 
mixed the cells together in 1:1 ratio and observed the population dynamics in 
30 days. While ΔtruA cells were almost outcompeted by wild-type cells by 
30th day (Fig. 5A), the proportion of ΔrluA cells remained in similar range with 
wild type (Fig. 5B). We conducted three independent competition experiments, 
and in each experiment, there were four parallels with Sm and four parallels with 
Gm marked ΔrluA cells. In each experiment the dynamics between wild-type and 
rluA population varied slightly, but the changes in CFU in ΔrluA and wild-type 
populations seemed to be random, and by the 30th day the differences between 
these two populations CFUs was not more than an order of magnitude. From the 
competition experiment it can be concluded that compared to the wild type the 
lack of truA considerably reduces the fitness of P. putida, while the lack of rluA 
does not.  

 

Figure 5. The results of representative competition experiment between P. putida PaW85 
wild type and ΔtruA strains (A) and wild type and ΔrluA strains (B). The cells were 
chromosomally marked with antibiotic resistance genes (either Sm or Gm) as a part of 
mini-Tn7, grown overnight at 30 °C and mixed in 1:1 ratio based on OD. 10 µl of mixture 
was diluted into 5 ml of fresh LB every second day during the 30 days-lasting experiment. 
The CFUs were determined on every 4th day. The experiment was conducted three times 
with 8 independent parallels: in half of these experiments wild type was carrying Sm 
resistance gene and mutant Gm resistance and the other half the strains had reverse 
marking. The figure represents the average CFUs of four independent cultures in one 
representative experiment with 95% CI. In the figure the wild type is marked with Gm 
and the mutant (ΔtruA on figure A and ΔrluA on figure B) is marked with Sm. 

 
In conclusion, the results of the proteome analysis revealed that the protein 
expression pattern of ΔrluA in exponential phase is comparable to that of the 
wild-type proteome. Also, in P. putida the lack of rluA does not affect note-
worthily the stress tolerance of measured chemicals nor the translation accuracy, 
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and the rluA-deficient cells are not outcompeted by the wild-type cells. We cannot 
exclude the possibility that the critical role of Ψ32 becomes evident under specific 
harsh environmental conditions. Nonetheless, it does not explain the increasing 
effect of RluA on mutation frequency in exponential growth phase. 
 
 

3.4.7. Concluding remarks on TruA and RluA 

Although we were able to find a new and intriguing link between pseudouridines 
in the ASL of P. putida and P. aeruginosa tRNAs and mutant frequency, we were 
not able to pinpoint the molecular mechanism behind it. To generalize the only 
comparable effect caused by the lack of TruA and RluA in P. putida was the 
increased mutant frequency, and although unlikely, we cannot eliminate the 
possibility that TruA and RluA affect mutations via different mechanisms. In all 
the other investigated phenotypes, the RluA-deficiency had almost no effect, 
whereas the TruA-deficiency greatly affected the cell’s wellbeing – it affected the 
translation accuracy, stress tolerance, protein expression and general fitness. All 
this could contribute to the P. putida ΔtruA strains mutator phenotype, but then 
the question remains – what causes the mutator phenotype in ΔrluA background?  

The role of tRNA modifications can be versatile. For instance, the MiaA, 
which also affects mutation frequency, regulates the gene expression through 
UUN-Leu codons (Aubee et al., 2016; Thompson and Gottesman, 2014). It could 
also be that both TruA and RluA affect the gene expression through specific 
codons, most probably through the RluA affected codons, that overlap with TruA 
ones. But if the expression of specific protein would drastically change, we 
should detect it in the proteome analyses. Yet, the only proteins with remarkably 
altered abundance in both mutant strains did not cause any changes in mutant 
frequency (Ref. III, Fig. 4–5, Table 1). However, it would be interesting to 
analyze the codon usage of genes with changed protein expression in ΔtruA and 
ΔrluA strain. Furthermore, the effect of tRNA modifications on translation 
accuracy varies greatly. For instance, in P. aeruginosa the lack of TrmB remark-
ably diminishes the translation accuracy of repeated Phe and Asp codons, but has 
no significant effect on other codons which respective tRNAs are also substrates 
for TrmB (e.g., Ala, Arg, and Val) (Thongdee et al., 2019). This illustrates that 
although we did not detect any remarkable changes in translation accuracy in the 
strain lacking RluA, it still could affect the translation accuracy of very specific 
transcripts, for example transcripts with repeated UUC-Phe or UUG-Leu codons. 

We have eliminated the possibilities that the increase in mutant frequency in 
ΔtruA and ΔrluA strains of P. putida is caused by endogenously elevated ROS 
(Ref. III, Fig. 3C), deficiency in MMR and NER (Ref. III, Fig. 3A), induction of 
SOS response and upregulation of TLS polymerases (Ref. III, Fig. 3B), and re-
combination (Fig. 5). In bacterial cells the main source of spontaneous mutations 
is the replicating polymerase itself. Although the abundance of subunits of DNA 
polymerase were not changed in the proteome of P. putida ΔtruA and ΔrluA 
strains (dataset PXD022353), this method does not detect the wellbeing of 
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proteins. For instance, if only a small subset of population would carry a DNA 
Pol III complex with defective proofreading or replicative subunit, this would 
already influence the mutation frequency. Furthermore, a bacterial population can 
carry a great cell-to-cell heterogeneity. Subpopulations of cells may have higher 
level of endogenic stresses or translation errors, which in turn can lead to more 
spontaneous mutations in replication (Matic, 2019; Woo et al., 2018). Also, the 
in vitro replication fidelity of purified DNA Pol III complex from E. coli mutant 
mistranslating due to the mutator tRNA, was shown to be lower than the DNA 
Pol III fidelity from wild-type cells (Al Mamun et al., 2002). However, the effect 
was mild and the same mutant exhibited greater mutator phenotype in vivo 
(Murphy and Humayun, 1997; Ren et al., 1999). Also, the less accurate DNA 
polymerase from mutant cells had changed mutation spectrum (Al Mamun et al., 
2002), but we did not observe any changes in the RifR mutant spectrum (Ref. III, 
Table S6). Nevertheless, erroneous DNA polymerase is one possibility what 
could explain our observed phenotype.  

Another interesting aspect about TruA and RluA is the dissimilarities in dif-
ferent but related bacterial species. We compared the phenotypes of strains lacking 
pseudouridines synthases TruA and RluA in P. putida, P. aeruginosa, and E. coli. 
It was surprising that although all strains have very similar TruA and RluA 
substrate patterns (Table 1), the observed phenotypes are eminently different 
(Table 2, Ref. IV, Fig. 2–6). Furthermore, while in our experiments with P. putida 
the truA-deficiency had moderate effect on growth, it has been recorded pre-
viously that in E. coli the truA-deficiency significant affects growth (Tsui et al., 
1991) and in P. aeruginosa there is no growth retardation (Ahn et al., 2004). This 
is in good accordance with our observations. The dissimilar importance of TruA 
and RluA in strains studied can be partially due to differences in codon usage or 
in the abundance of tRNAs. Nevertheless, this clearly illustrates the need to study 
the mutational as well as other processes in a broader selection of species when 
even a conserved protein with seemingly the same function can cause different 
phenotypes in closely related bacteria.   
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CONCLUSIONS 

It is widely acknowledged that the spontaneous mutation frequency of a bacterial 
cell is shaped by several independent but simultaneous processes – the DNA repli-
cation, the efficiency of repair enzymes, transcription, the presence of endogenic 
and exogenic stressors, the ability to adapt new conditions and many more. Further-
more, in cell, there are also other processes and reactions that do not so obviously 
affect the outcome of DNA mutations but still play a part in the overall wellbeing 
of a cell and consequently affect the mutation frequency, for instance, the faithful 
translation. The current study presents insight into some of the factors affecting 
mutation frequency of P. putida PaW85. The main findings can be summarized 
as follows: 
 
The nucleoid-associated protein integration host factor IHF 
• IHF affects the mutation frequency in P. putida PaW85. The effect appeared 

to be dependent of the growth phase of bacteria, the chromosome location of 
the mutational target, and the amount of IHF. To get insight how exactly the 
nucleoid structure and nucleoid-associated proteins (NAPs) affect the muta-
genesis, it would be useful to investigate the role of other NAPs as well.  

 
The test system created 
• The created levan papillae formation-based test system lac-lsc enables moni-

toring both exogenously and endogenously increased mutation frequency in a 
single bacterial colony. 

• The lac-lsc test system is applicable in a wide variety of non-levan producing 
environmental and laboratory strains from genus Pseudomonas. However, the 
strain-specific optimization would be necessary before conducting experiments 
with other species. 

• The transposon mutagenesis screen with P. putida tester strain enabled to 
identify among the already known genes affecting mutation frequency also 
several novel genes whose inactivation increased mutation frequency, e.g., 
truA that encodes for tRNA pseudouridine (Ψ) synthase.  

 
Phenotypes of TruA and RluA in P. putida 
• We were able to find an intriguing link between the lack of pseudouridylation 

activity of Ψ synthases TruA and RluA and the increased mutation frequency 
in exponentially growing P. putida PaW85. The observed mutator phenotype 
was not caused by the upregulation of TLS polymerases, malfunction of MMR 
or NER, recombination, or increased intracellular ROS. 

• The lack of TruA reduced remarkably the cells tolerance to chemicals affecting 
the translation, producing ROS or inhibiting peptidoglycan synthesis. These 
results indicated that TruA has a role in cells stress tolerance. At the same 
time, the absence of RluA did not change the tolerance to the same chemicals. 
Also, the TruA-deficiency caused remarkable reduction in general fitness, 
whereas the fitness of RluA-deficient mutant was comparable to the wild type.  
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• The proteome of exponentially growing P. putida remarkably differed in the 
absence of TruA but the lack of RluA evoked only minor changes. These 
results indicate that the Ψs at the positions 38–40 in tRNAs (done by TruA) 
have greater importance in the P. putida cells than Ψ at the position 32 (done 
by RluA). 

• In translation accuracy measurements we saw that the Ψs at the positions 38–40 
in the tRNA ASL increase the translation accuracy, although the effect greatly 
depends on the measured context. This demonstrated that at least one of the roles 
of tRNA modification Ψ in prokaryotic tRNAs is improving the translation 
fidelity. 

 
The comparison of P. putida, P. aeruginosa, and E. coli TruA and RluA 
• We demonstrated that the target positions of P. putida TruA and RluA in the 

ASL of tRNAs are the same as in E. coli, and the overall substrate pattern of 
P. putida, P. aeruginosa, and E. coli TruA and RluA is comparable. Based on 
this, it was surprising that mutants without TruA had noticeably different 
phenotypes in all three bacteria studied. Both the strains tolerance to different 
stressors and the translation accuracy varied greatly between the species.  

 
Altogether, it can be concluded that the mutational processes are affected by a 
complex network of obvious and not so obvious factors acting together and also 
depend upon exogenic and endogenic stressors. With the aid of this study, both 
the nucleoid-associated proteins and the tRNA modification enzymes can be 
added to the list of factors affecting the mutational processes in P. putida PaW85. 
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SUMMARY IN ESTONIAN 

Mutatsioonisagedust mõjutavate tegurite otsinguil:  
tRNA modifikatsiooniensüümid TruA ja RluA 

mutatsiooniprotsessides 

Bakterid suudavad elada väga erinevates keskkonnatingimustes, ka paikades kus 
elu tundub esmapilgul võimatu. Muutlikes keskkonnatingimustes kohanemise ja 
ellujäämise tagab geneetiline varieeruvus. Bakterites on geneetilise varieeruvuse 
allikateks mutatsioonid ja horisontaalne geeniülekanne. Potentsiaalselt võivad 
mutatsioonid olla rakkudele ohtlikud või isegi surmavad ja seetõttu on mutat-
sioonide tekkesagedus rakkudes nii madal kui võimalik. DNA terviklikkuse säili-
tamiseks on rakkudes hulgaliselt ensüüme, mis aitavad ära hoida mutatsioonide 
teket või vastutavad DNAsse tekkinud kahjustuste parandamise eest. Ent peaaegu 
alati leidub keskkonnas midagi, mis on elutegevusele kahjulik või piirav, ja 
sellest tulenevalt võib kahjustuda DNA. Samuti võivad DNAd kahjustada loomu-
liku elutegevuse kõrvalproduktid, näiteks reaktiivsed hapnikuühendid. Seega, 
mutatsioonid siiski tekivad ja on aluseks evolutsioonile. Mõistmaks evolutsiooni, 
on tarvis esmalt mõista mutatsioonide tekke molekulaarseid tagamaid. 

Ajaloolistel põhjustel on kujunenud bakterimaailma mudelorganismiks soole-
bakter Escherichia coli ehk soolekepike ning enamus mutatsiooniuuringuid on 
läbi viidud E. coliga. Samas, nii mõneski aspektis on E. coli erandlik ja üldistuste 
tegemiseks on kindlasti tarvis uurida laiemalt ka teisi liike. Meie uurimisgrupis 
uuritakse mutatsiooniprotsesse bakteriperekonnas Pseudomonas. Pseudomonase 
perekonda kuulub hulgaliselt erinevates keskkondades elavaid metaboolselt 
mitmekesiseid baktereid, näiteks taimede ja inimese patogeenid, aga ka vee- ja 
mullakeskkonna bakterid. Pseudomonas aeruginosa on kindlasti üks tuntumaid 
selle perekonna esindajaid, kes on oportunistlik inimese patogeen ja on silma-
paistev oma võime poolest äärmiselt kiiresti omandada resistentsus antimikroob-
sete ühendite suhtes. Pseudomonas putida on mullabakter, kes talub suurtes 
kogustes toksilisi ühendeid ja saasteaineid ning on võimeline lagundama ka 
sünteetilisi ühendeid. Seetõttu kasutatakse P. putidat palju biotehnoloogias. 

On ilmselge, et vigadevaba DNA replikatsioon ja korrektselt töötavad DNA 
vigade paranduse ensüümid on aluseks rakkude terviklikkusele ja madala mutat-
sioonisageduse hoidmisele. Ent palju muudki võib mõjutada mutatsiooni-
sagedust, näiteks geeni asukoht genoomis, ligipääs DNAle, transkriptsioon ja 
stressitingimused. Samuti ei tohi unustada, et üherakulises bakteris toimuvad kõik 
kesksed protsessid samaaegselt ja ruumiliselt eraldamata, ning seeläbi võivad 
need üksteist mõjutada. Paljude faktorite täpne roll mutatsiooniprotsessides pole 
selge ja samuti pole nende rolli vaadatud laiemalt erinevates bakterites. Sellest 
tulenevalt sai minu töö eesmärgiks leida ja kirjeldada uusi mutatsioonisagedust 
mõjutavaid geene bakteriperekonnas Pseudomonas. 

Esmalt oli selleks tarvis luua tööriist – testsüsteem, mille abil oleks võimalik 
tuvastada mutatsioonisagedust mõjutavaid geene Pseudomonase perekonna 
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bakterites. Loodud testsüsteem lac-lsc põhineb limase polümeeri levaani toot-
misel bakterikoloonia pinnale. Tulemustest võib järeldada, et see testsüsteem on 
kasutatav paljudes Pseudomonase perekonna bakterites ja see võimaldab jälgida 
nii eksogeenselt kui endogeenselt suurenenud mutatsioonisagedust. Bakteris 
P. putida õnnestus testsüsteemi kasutades tuvastada hulgaliselt varsemalt teada-
olevaid mutatsioonisagedust mõjutavaid geene, aga ka mitmeid uusi, varasemalt 
mutatsioonidega mitte seostatud geene. Uute leidude hulgas põhjustas suurima 
mutatsioonisageduse tõusu geeni truA katkestamine. 

TruA on tRNA modifikatsiooniensüüm, mis modifitseerib U nukleotiidi 
pseudouridiiniks (Ψks) tRNA antikoodoni vahetus läheduses. tRNAd on adapter-
molekulid, mis valgusünteesi käigus kannavad valkude ehitusplokke, amino-
happeid, ribosoomi ja dekodeerivad mRNA järjestuse. Oma keskse rolli täitmisel 
interakteeruvad tRNA molekulid paljude teiste molekulidega ja arvatavasti see-
tõttu on nukleotiidid tRNAs nii ulatuslikult keemiliselt modifitseeritud. Ψ on 
kõige levinum nukleotiidi modifikatsioon, mida leidub nii tRNAdes, rRNAdes 
kui ka mRNAdes. Lisaks TruAle teeb antikoodonist teisele poole sama modi-
fikatsiooni ensüüm RluA.  

Töö teises osas keskendusin TruA ja RluA rolli väljaselgitamisele P. putida 
rakkudes. Leidsime, et nii TruA kui RluA tehtavate Ψde puudumisel suureneb 
P. putida mutatsioonisagedus märkimisväärselt. Esmapilgul tundub üllatav, et 
ensüümid, mis on seotud ennekõike valgusünteesiga, mõjutavad DNA mutat-
sioonide teket, kuid see ilmestab väga selgelt, kuidas kõik protsessid võivad ühes 
terviksüsteemis üksteist mõjutada. Lisaks on see esimene kord, kus on näidatud, 
et Ψde puudumisel tRNA antikoodon-lingus tõuseb DNA mutatsioonisagedus. 

Järgnevatest katsetest P. putida tüvedega selgus, et mutatsioonisageduse tõusu 
TruA- või RluA-defektsetes tüvedes ei põhjusta vead põhilistes reparatsiooni-
süsteemides, vigu tegevad polümeraasid, rekombinatsioon ega ka rakusiseselt 
tõusnud reaktiivsete hapnikuühendite hulk. Samuti ei tundu mutatsioonisageduse 
tõusu põhjuseks olevat muutused translatsiooni täpsuses, sest kuigi TruA puudu-
misel muutub translatsioon ebatäpsemaks, siis nähtud efekt on väike ja RluA 
puudumine translatsiooni ei mõjuta. Samuti ei näinud me RluA puudumisel muu-
tuseid teistes fenotüüpides nagu näiteks üldises elulemuses või stressitaluvuses. 
Seevastu TruA puudumine mõjutas märgatavalt rakkude elulemust, stressi-
taluvust ja ka teisi fenotüüpe. 

Seejärel vaatlesime TruA ja RluA puudumise fenotüüpe võrdlevalt ka P. aeru-
ginosa ja E. coli rakkudes. Nägime, et TruA ja RluA substraat-tRNAd on kõigis 
kolmes bakteris väga sarnased, kuid sellest hoolimata varieeruvad fenotüübid 
liigiti suuresti. Lisaks eelpool kirjeldatud fenotüüpidele P. putidas suurenes 
TruA puudumisel mutatsioonisagedus ka P. aeruginosas, kuid RluA puudmine 
P. aeruginosas mutatsioonisgedust ei mõjutanud. Ensüümi TruA mõju nii trans-
latsiooni täpsusele kui stressitaluvusele oli eri liikides väga erinev, seevastu RluA 
ei mõjutanud translatsiooni täpsust ega stressitaluvust üheski uuritud bakteris. 
Need tulemused ilmestavad hästi seda, miks on vajalik teostada mutatsiooni-
uuringuid erinevate bakteritega, kuna sama funktsiooniga valgu puudumine võib 
isegi sama perekonna bakterites põhjustada väga erinevaid fenotüüpe. 
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Kokkuvõtteks võib öelda, et lõime testsüsteemi, mille abil on võimalik tuvas-
tada mutatsioonisagedust mõjutavad geene ja teostada alusuuringuid paljudes ka 
vähemuuritud Pseudomonase perekonna bakteriliikides. Lisaks õnnestus tuvastada 
mitmeid varem teadmata mutatsioonisagedust mõjutavaid geene mullabakteris 
P. putida, näiteks nukleoidiga seostuva valgu IHF geen. Neist üllatavaimad ja 
suurima efektiga olid aga geenid truA ja rluA. Käesolev doktoritöö näitab vaja-
likkust uurida erinevaid baktereid, mõistmaks samade ensüümide rolle erinevas 
taustsüsteemis.  
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