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Abstract 

Household sector is a key sector for deploying climate mitigation strategy. 

Previous research has mainly focused on the impact analysis of mitigation 

measures at supply side. However, how to implement climate mitigation 

measures for household consumption activities and evaluate health co-benefits 

among different populations resulting from household consumption changes 

when conducting mitigation strategies is an unanswered research question. To 

answer this research question, the household sector is added into an integrated 

assessment framework, coupling the energy inventory data, a Greenhouse Gas 

and Air pollution Interactions and Synergies (GAINS) model, a Global Exposure 

Mortality Model (GEMM), and a Health Economic Model. This integrated 

assessment framework is used to conduct an analysis of direct and indirect 

energy consumption of household activities, and health co-benefits of deploying 

mitigation strategies of household consumption. We then propose suggestions 

for improving policy making regarding household energy consumption.  

Household energy consumption is divided into the direct and indirect. In this 

thesis, first, an analysis of household direct consumption activities and health co-

benefits across age- and gender- specific populations, when deploying the clean 

energy transition for rural and urban households in China is conducted. Second, 

household indirect energy consumption is studied, and household consumption 

activities are classified into eight different categories: food; clothing; housing; 

household facilities articles and services (abbreviated as facilities); transport and 

communication services (transport); education; cultural and recreation services 

(education); medicine and medical services (health) and miscellaneous 

commodities and services (miscell). These categories are used to identify on 

which sources of energy consumption to put the emphasis of mitigation strategies, 

under the ongoing urbanization, in both rural and urban areas. Finally, 

implementing a mitigation strategy in household transport activities, to better 
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know the potential health co-benefits across subpopulations when households 

adopt a “greener” mode of transport or switch to electric vehicles. A case study 

is done in Beijing, China, exploring mitigation scenarios through household 

transport pattern changes. 

The findings of this thesis are: 1) The implementation of climate mitigation 

strategies in households’ direct and indirect consumption activities can potentially 

generate large health benefits and economic benefits, but the distribution of these 

co-benefits shows regional, provincial and gender- and age- heterogeneity. 2) 

During China's urbanization, energy consumption of household activities related 

to housing and transport are expected to increase several folds; to better deploy 

mitigation measures for household consumption activities, regions in the first 

wealth quintile have the highest average income should take up the responsibility 

of degrading its own consumption level, especially in the consumption of 

aspirational and opulent goods and services and improve its own industrial 

energy efficiency, especially in transport, storage and transport equipment and 

service sector. 3) When adopting climate mitigation strategies in households’ 

transport modes, a case study done in Beijing, China, finds that the combination 

of walking, cycling and use of public transport (abbreviated as “green” transport) 

and electric vehicles, can generate the largest health co-benefits, with the 

increased use of green transport having the highest impact.  

This study provides new insights into the climate mitigation measures on 

Chinese household consumption activities and their health co-benefits across 

different age and gender groups at the national/regional/provincial level. Taking 

into account different social groups’ benefits and disadvantages for the policy 

making is necessary to increase the environmental justice. 

 

Keywords: household energy consumption; climate mitigation; health co-

benefits; economic benefits; urban and rural 
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Chapter 1 Introduction 

1.1  Research background  

Global climate change is threatening the earth’s ecological safety as well as 
human survival and development and is one of the major global environmental 
challenges as well as the global health threat faced by humanity in the 21st 
century (He, 2016, Costello et al., 2009). Global carbon emissions have 
increased on an average of 3.1% per year since 2000 mainly due to the global 
economic growth (Le Quéré et al., 2013, Andres et al., 2012). This has 
heightened the urgency for economies to make mitigation policies to reduce 
greenhouse gas (GHG) emissions and to transit to sustainability (Lu et al., 2021, 
Costello et al., 2009). To avoid warming of 2 ℃ above pre-industrial temperatures 
by 2030 under the 2015 Paris Climate Agreement, climate change mitigation 
efforts are required by the United Nations Framework Convention on Climate 
Change (UNFCCC) committed countries beyond the Nationally Determined 
Commitments (NDCs) (Chang et al., 2017). The agreement is an important step 
forward, prompting countries to consider the range of climate policy options and 
their broader impacts (Chang et al., 2017).  

In 2008, due to rapid increase in production and consumption activities in 
last decades, China become the world’s largest carbon emitter (Guan et al., 2009, 
Yao et al., 2017). China has pledged to cap carbon emissions by 2030 and 
carbon neutrality by 2060 (Gallagher et al., 2019, Vaughan, 2020), implementing 
several policies to reduce its GHG emissions as well as promoting environmental 
sustainability by setting targets for reducing energy intensity, phasing out 
inefficient power plants and factories, developing renewable and low-carbon 
energy, etc. (Feng et al., 2011), mainly focusing on certain industrial production 
sectors (Feng et al., 2011), like iron and steel sector, transport sector, during 
period of the 11th five-year plan (FYP) (2006-2010),12th FYP (2011-2015) and 
13th FYP (2016-2020) (Elzen et al., 2016, Liu et al., 2013b). During these periods, 
China has achieved some progress on reducing carbon intensity by 29% from 
2000 to 2017(Cai et al., 2021a), reducing it’s share of coal in the total energy 
consumption (from 71.4% in 1997 to 57.7% in 2019 (NBSC, 2020)) , increasing 
the share of low-carbon electricity (hydropower, nuclear, wind, and solar power) 
(increased by 46.22% between 2000 to 2019; 2019, national low-carbon 
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electricity accounted for 31.13% of the total electricity generation) (Cai et al., 
2021a).  

However, China’s growth in final consumption and associated production 
process has offset endeavors in mitigation in the production sectors (Guan et al., 
2009), resulting in a general increase trend of China’s carbon emissions during 
historical period. In 2012, capital investment accounted for 48%, export 
contributed to 20% and consumption of products and services by households and 
governmental institutions was responsible for the remaining carbon emissions 
(32%), from the consumption-based accounting of carbon emissions 
(Wiedenhofer et al., 2017). China is transforming domestic consumption-oriented 
economy instead of export-oriented economy, moving towards carbon- and 
resource-intensive consumer lifestyles, following the lifestyle of high-income 
countries (Wiedenhofer et al., 2017, Liu et al., 2021a). It is expected that the 
China’s Gross Domestic Product (GDP) will continue to grow and domestic 
consumption would play a more significant role in Chinese GDP’s growth 
considering continuous increase in household income, further growth of 
urbanization and changes in technology and demographic shifts (Skelly, 2017). 
In 2020, consumption expenditure contributed 54.3% to China’s GDP, which hit 
the highest record in recent years of China (NBSC, 2021). Moreover, the average 
private consumption level in China is still below the global average. In 2019, 
China's per capita final consumption expenditure was merely 68.7% of the global 
average (WB, 2021). With the boom of wealth of Chinese residents and rising of 
middle class, it is expected that the consumption expenditure of residents would 
undergo a massive increase, and its attached carbon emissions cannot be put by 
negligence. Thereafter, it is imperative to put emphasis on mitigation in 
household consumption.  

1.2  Research about household consumption 

The analysis of household consumption and related environmental effects is 
one of the most popular topics in sustainability research in recent decades 
(Zhang et al., 2015). The most population topic about the household 
consumption’s environmental impacts is about the household carbon emissions, 
also called as the household carbon footprint (some also studied household 
energy consumption since the household carbon emissions are from using 
energy directly or indirectly, below we discuss the progress of household 
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energy/carbon footprint). In last two decades, household energy/carbon footprint 
and households’/consumers’ consumption patterns have attracted increasing 
attention and discussion among researchers (Bin and Dowlatabadi, 2005). A 
household not only uses direct energy in the form of gas, electricity and petrol, it 
also uses indirect energy embodied in consumer goods such as food, furniture 
and services (Vringer and Blok, 1995), with indirect energy consumption or 
carbon emissions higher than the direct. Bin and Dowlatabadi (2005) found that 
over 80% of energy consumption and carbon emissions in United States (US) 
were attributed to consumer demands and related economic activities and 
indirect effects of consumer behavior caused by energy consumption and CO2 
emissions were twice those of direct effects. The household sector in Korea 
resulted in over 60% indirect of the energy requirement (Peters et al., 2007). 
Wiedenhofer et al. (2017) found that households induced 17% of China’s carbon 
footprint in 2012. Zhang et al. (2017e) concluded that the sum of direct and 
indirect energy consumption caused by household consumption took up 40% of 
the total energy consumption in China during 2000-2010, while the CO2 emission 
caused by household consumption accounted for 41% of the total on average.  

In the late 1980s, research brought the concept of lifestyle (lifestyle is a way 
of living that influences and is reflected by one’s consumption behavior (Bin and 
Dowlatabadi, 2005)) into the study of personal energy consumption or carbon 
emissions. As a consequence of this innovation, Schipper et al. (1989) concluded 
that “about 45–55% of total energy use is influenced by consumers’ activities for 
personal transportation, personal services, and homes. Weber and Perrels (2000) 
quantified the impact of lifestyle factors on the 1990s and 2010s energy demand 
and related emissions in West Germany, France and the Netherlands. Bin and 
Dowlatabadi (2005) found and direct CO2 emissions of consumers accounted for 
41% of US total CO2 emissions and indirect (such as such as housing operations, 
transportation operations, food, and apparel) involved more than twice the direct 
energy use and CO2 emissions. Wei et al. (2007b) quantified the direct and 
indirect impact of lifestyle of urban and rural residents on China’s energy use and 
CO2 emission from 1999 to 2002 and found that Residence; home energy use; 
food; and education, cultural and recreation services are the most energy-
intensive and carbon-emission-intensive activities. Further research by Ding et al. 
(2017) found the indirect energy consumption of household consumption 
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activities is 1.35 times more than the direct energy consumption. Housing 
activities cause the most indirect energy consumption. 

In general, the research direction of household energy/carbon footprint is 
primarily about i) how to quantify household energy/carbon footprint; ii) what 
factors influencing household carbon footprint; iii) how to mitigation household 
carbon footprint. Various methods have been applied to quantify household 
carbon footprint, primarily including the input-output model, life cycle assessment, 
emission coefficient method and consumer lifestyle approach. And consumption 
data from consumer expenditure survey is also used to quantify household 
carbon footprint. The adoption of different methods listed above is likely to 
produce different results (Plassmann et al., 2010) and these methods have their 
own advantages and disadvantages. For example, the input-output model can 
provide a standard method of analysis which can be updated or applied to 
different populations in a uniform manner, but it assumes a fixed technology 
coefficient which couldn’t reflect technological improvement and elasticity, also it 
lacks reliability when forecasting long-run effects (Zhang et al., 2015). There are 
many factors influencing household energy or carbon emissions including the 
socio-economic factors (e.g., household income (Lyons et al., 2012)), household 
characteristics (e.g., age (Golley and Meng, 2012), gender (Büchs and Schnepf, 
2013) , education levels (Golley and Meng, 2012)) and geographic factors 
(Druckman and Jackson, 2008). For example, Peters et al. (2007) found that 
household carbon emissions was driven by the increased urban household 
expenditure and urbanization as household income in most regions continued to 
rise, more money was spent on recreation activities, education, transportation, 
communication services, etc.  Measures for carbon abatement have been 
proposed at the policy (Dai et al., 2012), technology(Monahan and Powell, 2011) 
and consumer levels (Druckman and Jackson, 2010). A reduced consumption 
scenario in UK found that a minimum income standard can reduce 37% of 
average household GHG emissions (Druckman and Jackson, 2010). However, 
few discussed the health co-benefits of mitigating household consumption since 
the health benefits has gradually recognizing as an important factor in policy 
making (Hanney, 2003). Zhao et al. (2018) found that if solid fuels by Chinese 
household had been replaced with clean fuels, it could have saved 33% of the 
PM2.5-induced mortality in 2015. 
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The research gap of household energy/carbon footprint are the shortage of 
data reliability; requiring advanced quantification methodologies; the need for 
more studies of different household consumption activities as well as in regional 
levels and the need for more studies about health co-benefits of mitigating 
household energy/carbon footprint. 

1.3  Research about climate mitigation measures  

Climate change mitigation generally refers to reductions in anthropogenic 
emission of GHG to limit the magnitude or rate of long-term global warming and 
its related effects (Fisher et al., 2007, IPCC, 2007). Moreover, mitigation may also 
be achieved by  removing carbon dioxide from Earth's atmosphere (IPCC, 2007), 
or increasing the capacity of carbon sinks, e.g., through reforestation (IPCC, 
2007). Climate mitigation measures to reduce GHG emissions can be 
categorized as the measures targeting at the supply-side and demand-side. 
Supply-side mitigation measures include increasing energy efficiency, phasing 
out fossil fuels by switching to low-carbon energy sources, like solar/wind/nuclear 
power, applying new energy-efficient technologies, etc. Demand-side mitigation 
measures are those targeting technology choices, consumption, behavior, 
lifestyles, coupled production–consumption infrastructures and systems, service 
provision and associated sociotechnical transitions (Niamir et al., 2020, Creutzig 
et al., 2018). The exiting literature has the tendency to investigated the supply-
side technology solutions and impacts (Creutzig et al., 2018) but few studied 
about the demand-side mitigation solutions. For a long time,  Intergovernmental 
Panel on Climate Change (IPCC) reports have been working more on the 
solutions and impacts of enhanced end-use efficiency but provided little attention 
on the nature, scale, implementation and potential of demand-side solutions, and 
ignored associated changes in lifestyles, social norms and well-being (Creutzig 
et al., 2018). Also, the current global scenarios based on the integrated 
assessment models (IAMs) emphasize on the supply side technologies and 
carbon dioxide removal  options to achieve long-term system transformation to 
meet the 1.5 °C ambition (Mundaca et al., 2018). But IAMs outcomes have the 
tendency to heavily rely on carbon dioxide removal  and storage technologies, 
particularly bioenergy with carbon capture and storage (Fuss et al., 2014, Millar 
et al., 2017) because IAMs have the unique ability to link mitigation strategies 
and technology choices to emission budgets and warming outcomes (Mundaca 
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et al., 2018).  Yet the demand-side solution is neglected in IAMs studies (Kriegler 
et al., 2018).However, in recent years, academia gradually recognized the 
important role of demand-side mitigation measures in achieving 1.5 °C ambition. 
The sixth assessment report, AR6 of the IPCC featured a chapter on demand, 
services and social aspects of mitigation. And the IPCC special report on 1.5 
degrees names “behavioral and lifestyle changes” as a vital climate change 
mitigation strategy complimentary to technological measures. Literature 
gradually increased the discussion about demand-side mitigation (Creutzig et al., 
2021, Creutzig et al., 2018, Mundaca et al., 2018, Grubler et al., 2018). Modeling 
studies consistently show that demand-side measures play a critical role in 
meeting ambitious mitigation targets (Clarke et al. 2014; Riahi et al. 2015). 
Creutzig et al. (2021) systematically assessed the mitigation potential of demand-
side options categorized into avoid, shift and improve, and their human well-being 
links and found that that these options, bridging socio-behavioral, infrastructural 
and technological domains, can reduce counterfactual sectoral emissions by 40–
80% in end-use sectors as well as achieving large beneficial effects in 
improvement in well-being.  

However, although demand-side mitigation is possibly in line with the 1.5 °C 
goal and there is  a plenty of demand-side measures yet these are not fully been 
“seen” or  captured by current quantitative tools or progress indicators (Mundaca 
et al., 2018). A comprehensive assessment of the underlying science and 
methods needed to provide realistic assessments of demand-side potential is still 
missing (Creutzig et al., 2018). The demand-side solutions require  a synthesis 
of social science and engineering research-- including (but not limited to) 
contributions from psychology, economics, sociology, political science, industrial 
ecology, technological innovation studies and energy system modelling  to 
understand the demand-side potential for climate change mitigation (Creutzig et 
al., 2018). 

1.4  Research about health co-benefits of climate mitigation 
measures  

To effectively implement mitigation strategies and provide impetus for 
countries/area to adopt mitigation strategies, it is also necessary to know the cost 
and benefits of these strategies. The cost of mitigation efforts is estimated to be 
several percent of global gross domestic product by the mid-century (Boyd et al., 
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2015); however these mitigations can deliver additional benefits as well, like 
improving air quality, lifestyles of humans (Patz and Thomson, 2018). These 
improvements are referred to as the co-benefits of climate mitigation strategies. 
In the 4th Assessment Report of the IPCC, co-benefits of climate mitigation are 
defined as the positive benefits related to the reduction of greenhouse gases 
(Helgenberger et al., 2019). However, although co-benefits of GHG mitigation 
can be large, they are often neglected, remaining unquantified by businesses and 
decision-makers. Appropriate consideration of co-benefits can greatly influence 
policy decisions concerning the timing and level of mitigation action, and there 
can be significant advantages to the national economy and technical innovation 
(Helgenberger et al., 2019). Studying the co-benefits of mitigation measures is 
vital, not only because it provides an additional rationale to adopt mitigation 
strategies especially for the UNFCCC committed countries to decrease their 
GHG emissions.  

Over the last three decades, researchers have attempted to quantify the 
health co-benefits (Chang et al., 2017, Jack and Kinney, 2010, Viscusi et al., 
1994, Ayres and Walter, 1991) of climate change mitigation. The Lancet series 
of papers provide a quantitative and methodological foundation for evaluating the 
costs and health co-benefits (Chang et al., 2017). Research has found that 
climate mitigation policies can improve health via improved air quality, physical 
activities, decreased meat consumption, reduced traffic accidents (Jack and 
Kinney, 2010, Friel et al., 2009, Woodcock et al., 2009). More specifically, 
Vennemo et al. (2006) found that China's Clean Development Mechanism 
potentially could save 3,000-40,000 lives annually through co-benefits of 
improved air pollution. The Stern Review (Stern, 2007) notes that limiting global 
mean temperature increase to 2°C and implementing the existing European air 
pollution control measures would save €10 billion annually and save €16–46 
billion in health costs. Reviewing forty-two papers published from 2009-2017, 
Chang et al. (2017) found that most studies indicated significant, nearer term, 
local ancillary health benefits; however the studies were not suited to providing 
specific accurate estimates of health co-benefits. Most mitigation policies are 
sector-specific, making its co-benefits analysis into sector-specific. Gao et al. 
(2018) found that public health co-benefits of GHG mitigation was primarily 
observed in five economic sectors, including energy generation, transportation, 
agriculture and food, residential and household and industrial sector.  
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However, most benefits of mitigation studies have assessed benefits solely 
in terms of their effects on pollutant emissions at the national or local level (Wu 
et al., 2011) but still the health co-benefits studies are scarce. Globally, previous 
studies have mostly focused on the total health co-benefit of mitigation measures 
(Maizlish et al., 2013, Wang et al., 2020, Woodcock et al., 2009, Cai et al., 2018, 
Liang et al., 2019) but to my best knowledge, few studies have examined the 
distribution of health co-benefits across subpopulations with mitigation measures, 
but studying the effects on subpopulations can enhance our knowledge about 
who is going to benefit or bear the loss of climate mitigation measures; hence, it 
can promote the climate justice to have just and fair decarbonization transition. 
What’s more, few research studied the impact of implementing climate mitigation 
strategies at demand-side (Creutzig et al., 2018). 

1.5  Research gap and research aim  

In Table 1.1, it summaries the research progress and research gap of the 
study of household consumption, climate mitigation measures and co-benefits of 
climate mitigation measures as mentioned previously.  

From the research gap of the research area in household consumption, 
climate mitigation measures and health co-benefits of climate mitigation 
measures, it can be primarily concluded that the i) few literatures studied different 
household consumption activities’ carbon footprint as well as in regional levels; ii) 
research on climate mitigation measures on demand-side is not sufficient; ii) 
study on health co-benefits of climate mitigation measures on subpopulations is 
not fully studied.   

It is recognized the possible contribution and position of household sector in 
climate policies is neither well understood, nor does household sector receive 
sufficiently high priority in current climate policy strategies (Dubois et al., 2019). 
Specific issues identified: 

(1) Although household energy consumption is one of major anthropogenic 
contributors of atmospheric pollutants in China, studies on the impact of the 
household energy consumption on air quality remain limited (Du et al., 2018, 
Zhao et al., 2019, Yun et al., 2020). The current evidence base has focused on 
elements of spatial and policy issues (Du et al., 2018, Zhao et al., 2019, Yun et 
al., 2020, Chen et al., 2018, Zhao et al., 2018) but has not fully accounted for the 
effect of household consumption on the health profile of different population 
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groups at different spatial scales or across rural and urban areas. Besides, the 
study of health co-benefits when adopting climate mitigation measures in the 
household direct consumption activities in China is limited. 

(2) Research on climate mitigation strategies on the demand-side research 
is limited (Creutzig et al., 2018, Bjørn et al., 2018). Research on the health co-
benefits when deploying climate mitigation strategies on the demand-side is 
limited. 

Given that more pronounced effect of China’s household consumption on 
energy consumption and carbon emissions (Fan et al., 2013), it is necessary to 
study the household indirect energy consumption in terms of different 
consumption activities and it is necessary to distinguish different household 
consumption activities’ embodied energy across regional areas and conduct 
mitigation strategies with pertinence. Based on the above analysis of research 
gaps, the research question in this thesis is: how to quantify health co-benefits 
across subpopulations of climate mitigation measures on household energy 
consumption (direct and indirect) in rural and urban areas? The aim of this thesis 
is to understand the energy consumption status caused by household direct and 
indirect consumption activities and health co-benefits of employing climate 
mitigation strategies on household direct and indirect consumption activities as 
well as understanding the health co-benefits across subpopulations to promote 
climate justice study; at the end, to propose suggestions for improving policy 
making regarding household energy consumption. Choosing to study the 
household energy consumption rather than the household carbon footprint, it is 
because the model I will use for this research is requiring the input of energy data 
rather than the carbon emission data. I will elaborate the methodology of this 
study in Chapter 2. 

Table 1.1 Summary of research progress and gap 

Research 
topic 

Household 
consumption  

Climate mitigation 
measures 

Co-benefits of climate 
mitigation measures 

Research 
progress 

1. The analysis of 
household 
consumption and 
related 
environmental 
effects is one of the 
most popular topics 
in sustainability 
research in recent 
decades  

Research on climate 
change mitigation 
tends to focus on 
supply-side 
technology solutions 
(Creutzig et al., 
2018) . 

1. For thirty years at least, 
researchers have attempted to 
quantify co-benefits  (Chang et 
al., 2017, Jack and Kinney, 
2010). 2. The Lancet series of 
papers in 2009 provided a 
quantitative and 
methodological foundation for 
evaluating the costs and health 
co-benefits  
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Table 1.1 Summary of research progress and gap (Continued) 

Research 
topic 

Household 
consumption  

Climate mitigation 
measures 

Co-benefits of climate 
mitigation measures 

Research  
progress 

(Zhang et al., 2015). 
2. The most 

population topic 
about the household 

consumption’s 
environmental 

impacts is about the 
household carbon 

emissions, also 
called household 
carbon footprint. 

 

(Chang et al., 2017); the health 
co-benefits literature has 
expanded significantly 

afterwards (Haines et al., 
2009). 

Research 
gap 

1. The adoption of 
different 

quantification 
methodologies to 

estimate household 
carbon footprint  is 
likely to produce 
different results 

(Plassmann et al., 
2010). 2.Few 

literature studied 
different household 

consumption 
activities’ carbon 

footprint as well as in 
regional levels. 3. 

Few research studied 
the health effect of 

mitigating the 
household carbon 

footprint. 

1. A better 
understanding of 

demand-side 
solutions is missing 

(Creutzig et al., 
2018).  2. A 

comprehensive 
assessment of the 

underlying science 
and methods needed 
to provide realistic 

assessments of 
demand-side 

potential is still 
missing (Creutzig et 

al., 2018). 

1.Most mitigation studies have 
assessed benefits solely in 
terms of their effects on 

pollutant emissions at the 
national or local level (Wu et 
al., 2011). 2. The impact of 
health co-benefits of climate 
mitigation on subpopulations 
has not been fully studied. 3. 

Few research studied the 
impact of implementing 

climate mitigation strategies at 
demand-side (Creutzig et al., 

2018). 

Conclusion  

1. Few literatures studied different household consumption activities’ carbon 
footprint as well as in regional levels 

2.Research on climate mitigation measures on demand-side is not sufficient. 

3. Study on health co-benefits of climate mitigation measures on 
subpopulations is not fully studied. 

1.6 Research contents and technical route 

The research content to answer for the research question in this thesis is 
arranged as below: 

(1) Study household direct energy consumption across rural and urban areas 
of China and quantify the adverse health impacts of household direct energy 
consumption on age- and sex- specific premature deaths from particular matter 
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2.5 (PM2.5) pollution at the Chinese provincial levels for 2015. Also examine the 
health co-benefits and economic benefits of switching from coal and biomass to 
electricity in the household direct energy structure. This content will be in Chapter 
3. 

(2) Study household indirect energy consumption in terms of eight broad 
consumption activities across rural and urban areas of China. Furthermore, study 
what consumption activity’s indirect energy consumption is going to increase by 
a large magnitude under the urbanization in China and give suggestions for 
policymakers for making climate mitigation strategies at the production and 
demand-side. This content will be in Chapter 4. 

(3) Based on the findings of objective 2, conduct a scenario study to study 
the health co-benefits of switching households’ consumption activity into a low-
carbon mode. Beijing, China is used as the case study subject to estimate the 
potential reduction of carbon and PM2.5 emission and health co-benefits by age 
and sex and quantifying the monetary benefits of four mitigation scenarios of 
passenger travel mode changes compared with the business as usual (BAU) 
scenario from 2020 to 2050. This content will be in Chapter 5. 

Figure 1.1 provides a graphical overview of the objectives of the thesis.  
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Figure 1.1 Research technical route 

1.7 Research significance and innovation  

Within this context, this thesis provides research significance and innovation 

by: 

(1) Coupling the household sector analysis into an integrated assessment 
framework with the energy inventory data with Greenhouse Gas and Air pollution 
Interactions and Synergies (GAINS) model, Global Exposure Mortality Model 
(GEMM) and health economic model to access the health co-benefits across 
different sex- and age- groups and regions when conducting mitigation strategies 
at one or multiple production or consumption activities.  

(2) Quantifying the health co-benefits of household energy consumption 
activities across different subpopulations in regional levels. 

(3) Providing mitigation suggestions for policymakers about what 
consumption activity ought to be prioritized by climate mitigation measures and 
implementing them at demand and supply side in regional levels as well as 
considering different groups to promote just and fair decarbonization transitions. 

1.8 Thesis structure 

There are six chapters in this thesis. The first chapter is the introduction part 
to introduce the research background, research question, research gap and 
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research significance. The second chapter is the method part to introduce the 
methodologies of energy footprint calculations and health co-benefits of climate 
mitigation measures. Chapter 3 to Chapter 5 are the major research contents 
which are briefly introduced in the 1.6 Research contents and technical route. 
Chapter 6 is the conclusion part to summarize the research result and give 
research implications, limitations and future research prospect as well as giving 
policy implications.  
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Chapter 2 Methods 

The research content of this thesis can be divided into two parts: i) energy 

footprint of household consumption activities, corresponding to Chapter 3 and 4 ; 

ii) health co-benefits of climate mitigation measures in household consumption 

activities, corresponding to Chapter 3 and 5. Therefore, the method of this thesis 

can be correspondingly divided into two parts.  

2.1 Energy footprint/carbon footprint calculation 

The energy footprint calculation is as same as the carbon footprint 

calculation and carbon footprint is more fully and widely studied in previous 

studies so for the energy footprint calculation, the carbon footprint calculation is 

referred.  

Carbon footprint is defined as a measure of the exclusive total amount of 

carbon dioxide emissions that is directly and indirectly caused by an activity or is 

accumulated over the life stages of a product (Wiedmann and Minx, 2008) so the 

carbon footprint is divided into the direct and indirect which is calculated by the 

production-based accounting (PBA) and consumption-based accounting (CBA), 

individually.  

Production-based accounting (PBA) is based on the production activity 

regardless of where the product is used or who accounts for the final demand 

(Atkinson et al., 2011, Steininger et al., 2014). It focuses on the direct carbon 

emissions of national emissions (Zhang and Da, 2015, Liu et al., 2015), regional 

emissions (Yu et al., 2012, Mi et al., 2015) or sectoral emissions (ie: residential 

sector (Fan et al., 2015, Fan et al., 2013, Harris et al., 2015), transport sector 

(Zhang et al., 2016), cement sector (Li et al., 2017a, Shan et al., 2016), steel 

industry (Wei et al., 2007a, Xu and Lin, 2016)) from domestic production, 
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including exports. PBA is widely applied in protocols pertaining to global climate 

change (Mi et al., 2019). PBA’s result help producers monitor their carbon 

emissions and emitting behavior and further promote producers to improve the 

energy efficiency of unit products (Mi et al., 2019). However, PBA doesn’t take 

account of the ultimate destinations and final consumers for goods and services 

(Steininger et al., 2014). Excluding indirect emissions so that the producer and 

consumer of goods and services will be geographically separated due to trade, 

resulting in interregional emission transfer and “carbon leakage” issue (Liu and 

Fan, 2017). For example, cities with low production but high consumption in 

China is usually regarded as low-carbon (Feng et al., 2013); consequently, a lack 

of including indirect failing in depicting the overall picture of carbon emissions will 

result in unfair assignments of emission reduction task, further affect global 

emission reduction efficiency and may even adversely affect active participation 

in reducing emissions (Mi et al., 2019). The method of carbon emissions with 

PBA is shown as below: 

𝐶! = 𝐴𝐷! × 𝑁𝐶𝑉! × 𝐶𝐶! × 	𝑂        (2.1) 

𝐶!  refers to CO2 emissions from fossil fuel i. 𝐴𝐷!  is the combustion volume of 

fossil fuel i. 𝑁𝐶𝑉! represents the net caloric value, that is heat value produced per 

physical unit of fossil fuel i combustion. 𝐶𝐶! is the carbon content of fossil fuel i 

and O refers to “oxygenation efficiency”, representing the oxidation ratio during 

fossil fuel combustion. 

Another one is consumption-based accounting (CBA), which takes account 

of carbon emissions of final consumption including imports, where the 

responsibility for carbon emissions is borne by consumers (Wiedmann, 2009). 

This approach attributes direct emission responsibilities to the final consuming 

sectors; consequently, it characterizes the impact of human consumption choices 

on climate change. Hence, CBA can be useful to provide plausible indicator for 
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discerning which consumption embodies that largest carbon emissions from the 

find demand perspective to better assess regional emission mitigation(Larsen 

and Hertwich, 2009) as well as providing more mitigation options and addressing 

carbon leakage (Peters and Hertwich, 2008, Peters and Hertwich, 2007). From 

the perspective of CBA, it also shows that the final demand including export, 

consumption and investment are the major drivers of carbon emissions (Leng, 

2012). 

The method of carbon emissions with CBA is shown as below: 

The current literature proposes three methods to calculate indirect energy 

consumption, including the consumer lifestyle approach (CLA) (Feng et al., 2011), 

environmental extended input-output analysis (EE IOA) (Wiedmann, 2009, Wang 

and Yang, 2016), and a hybrid method combing CLA and EE IOA (Bin and 

Dowlatabadi, 2005, Oswald et al., 2020). Input–output analysis has been widely 

recognized as a popular tool to estimate energy use, greenhouse gas emissions, 

pollutants embodied in consumer goods and services on a macro-scale (Hertwich 

and Wood, 2018, Peters et al., 2011, Skelton et al., 2011, Barrett et al., 2013). 

The Multi-Regional Input–Output (MRIO) analysis is applied in this thesis to do 

CBA.  

The MRIO analysis starts with the monetary flows between sectors and 

regions:  

⎝

⎜
⎛
x"
x#
x$
⋮
x$%⎠

⎟
⎞
=

⎝

⎜
⎛
A"," A",# A",$ ⋯ A",$%
A#," A#,# A#,$ ⋯ A#,$%
A$," A$,# A$,$ ⋯ A$,$%
⋮ ⋮ ⋮ ⋱ ⋮

A$%," A$%,# A$%,$ ⋯ A$%,$%⎠

⎟
⎞

⎝

⎜
⎛
x"
x#
x$
⋮
x$%⎠

⎟
⎞
+

⎝

⎜⎜
⎛
∑  ' ∑  ( y(

",'

∑  ' ∑  ( y(
#,'

∑  ' ∑  ( y(
$,'

⋮
∑  ' ∑  ( y(

$%,'⎠

⎟⎟
⎞
 (2.2) 

Where xr is the vector of total economic output for each sector in province r; Ar,s 

is the direct requirement coefficient matrix in which the columns reflect the input 

requirement by sector in region r to produce one unit of output of the sector in 
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region s;	𝑦(
),'is the final demand vector of category t for each sector that are finally 

produced in region r and consumed in region s. Here t = 1, 2⋯5, means 

consumption of household and government, capital investment, and exports, 

respectively. Equation (2.2) can also be abbreviated as: 

𝑥 = 𝐴𝑥 + 𝑦							(2.3) 

Where x, A, and y are the block matrix or vector in Equation (2.3). Solving for 

total output we can get: 

𝑥 = (𝐼 − 𝐴)*"𝑦				 (2.4) 

Where I is the identity matrix, and (I - A)-1 is the Leontief inverse matrix. 

Combined with the carbon intensity by sector, pollutant emissions embodied 

in the trade flow can be calculated as: 

𝑘 = 𝑒((𝐼 − 𝐴)*")𝑦						(2.5) 

Where e is the diagonalization of the vector of region-specific carbon emissions 

for unit output by sector (PJ). The region-specific carbon emissions used to 

produce e are calculated by fossil fuel consumption by the corresponding fossil 

fuel types and sectors multiply by the net caloric value (which is the heat value 

produced per physical unit of fossil fuel combustion), carbon content of fossil fuel 

and oxygenation efficiency, which can be find in Shan et al. (2018).  

Then, region- and sector-specific carbon emissions attributed to final demand 

or final use t in region s can be calculated as: 

𝑘(' = 𝑒(𝐼 − 𝐴)*"
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Where 𝑘(' =( 𝑒(
",', 𝑒(

#,', 𝑒(
$,'⋯𝑒(

$%,' ) ; 𝑘('  is a sector-specific vector for carbon 

emissions occurred in region r caused by final demand t in region s; 	𝑦(
),' is the 
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finished products produced in region r consumed in region s belonged to category 

t. 

2.2  Health co-benefits of climate mitigation measures 

2.2.1 Approaches 

Bell et al. (2008) summarized that there were general three key steps to 

assess the health-related ancillary costs and benefit of climate change policies: 

1) estimating changes in air pollutant concentrations, comparing levels in 

response to GHG mitigation to concentration under a baseline “business-as-

usual” scenario; 2) estimating the adverse health impacts avoided from reduced 

air pollution; 3) for some studies, estimating the monetary benefit from these 

averted health consequences, often with comparison to the cost of the climate 

change mitigation measure. Jack and Kinney (2010) concluded any plausible co-

benefits study has to take a stand on four questions: 1) what policy scenarios to 

model? 2) how will firms and individuals respond to climate policy, and how will 

these responses translate into changes in emissions of non-GHG pollutants? 3) 

how will emissions translate into exposures? 4) how will exposures affect health? 

To sum up, the co-benefits study involves four parts: policy scenarios setting, 

behavioral response, environmental modeling and health modeling.   

In many cases, study employed standard sector specific economic, 

atmospheric, transportation, health impact, and climate models (Chang et al., 

2017). To support this study, many models have been developed and applied, 

like the Asia-Pacific Integrated Model (AIM) (Mittal et al., 2015), Market Allocation 

(MARKAL) (Mondal et al., 2010)), Long-range Energy Alternatives Planning 

system (LEAP) model (Pan et al., 2013), etc. The integrate assessment model 

GAINS developed by International Institute of Applied System Analysis (IIASA) 

in Laxenburg, Austria, was the most widely used model to evaluate both air 
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quality and related health co-benefits of environmental policies on regional, 

national or provincial levels (Amann et al., 2011, Rafaj et al., 2012). Using these 

models, research suggested that greater consistency in selected modeling 

choices across the health co-benefits of climate mitigation research would 

facilitate evaluation of mitigation evaluation of mitigation options (Chang et al., 

2017, Remais et al., 2014, Liu et al., 2017a). In conclusion, this study needs 

integration of different models. 

In this thesis, an integrated assessment framework is set up to integrate 

different models, which, in general, couples the energy inventory data with 

GAINS model, GEMM and health economic model to access the health co-

benefits when conducting mitigation measures towards household sector. GAINS 

model is used to  estimate air-pollutants emissions and PM2.5 concentration so 

as to translate emissions into exposures. GEMM is adopted to assess mortality 

attributable to ambient PM2.5 pollution. Health economic model is applied to 

assess the health burden or benefits in monetary terms. 

2.2.2 Policy scenario setting  

Jack and Kinney (2010) summarized that there were three approaches to set 

policy scenarios. The first approach is to posit a change in emission. The Lancet 

series of papers assessed health benefits associated with actions to reduce GHG 

emissions by 50% 2050 versus 1990 in four different sectors, including electricity 

generation (Markandya et al., 2009), food and agriculture (Friel et al., 2009), 

household energy (Wilkinson et al., 2009) and transportation (Woodcock et al., 

2009). In Chang et al. (2017)’s review, this approached was defined as emission-

forced approach. But Jack and Kinney pointed out assuming a change in 

emissions simplifies the analysis considerably and provides illustrative findings 

but may lessen the salience of the results in policy discussions. The second 

approach is to use computable general equilibrium (CGE) models to find the 
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optimal scenarios by using a large number systems of simultaneous equations 

and data of all model sectors (Jack and Kinney, 2010). Bollen et al. (2009) and 

Rive (2010) each computed dynamically efficient CO2 reduction programs with 

and without health co-benefits for Europe using CGE models. This approach 

illuminates the synergy between GHG mitigation goals and air quality control, 

while the policy relevance of the resulting optimal pathways remains untested 

(Jack and Kinney, 2010). The third approach is to analyze the effects of actual, 

proposed, or plausible GHG mitigation (Jack and Kinney, 2010). For instance, 

Groosman et al. (2011) analyzed health benefits for the US related to GHG 

emissions controls in the electricity and transportation sectors contained in the 

proposed Warner Lieberman climate legislation.  

However, even though researchers try to set up policy scenarios in their 

study, the tension between policy realism and analytical tractability still exists 

(Jack and Kinney, 2010). Although policy scenarios positing well-defined 

changes in emissions are more tractable, it is hard to gain traction in policy 

debates (Jack and Kinney, 2010). And policy scenarios reflecting the incentive-

based policies are generally hard to model and most these policies is adopted in 

developed economies (Jack and Kinney, 2010). What’s more, a GHG mitigation 

policy scheme is shifting so rapidly in most countries that policy scenarios could 

be outdated when the research is done (Jack and Kinney, 2010).  

Therefore, it is essential that the policy scenarios are well matched to policy 

debated but not necessarily simulating the benefits of market-based policies and 

fundamentally researchers get the hang of and respond intelligently to the state 

of play in the policy domain (Jack and Kinney, 2010). 

In this thesis, we apply the third approach mentioned above to analyze the 

health co-benefits of actual, proposed and plausible mitigation measures. In 

Chapter 3, plausible mitigation measures about replacing the coal and biomass 
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to electricity for rural and urban households’ direct energy usage are applied 

given that the primary energy tends to be more and more transferred into 

electricity for usage in China. In Chapter 5, actual and proposed mitigation 

measures refer to Beijing’s government policies, for example, the Beijing City 

Master Plan (2016-2035), which proposed to increase the share of green 

transport to over 75% by 2020 and not less than 80% in 2035. 

2.2.3 Behavioral response 

Since a policy scenario is set, emitters like firms and individuals must 

respond to this policy scenario environment. But how GHG emitters will respond 

to these mitigation policies is a critical consideration in studies (Jack and Kinney, 

2010). The approaches to this question vary. The Lancet papers simply 

translated an assumed percentage reduction in GHG emission into emission 

reduction for health-relevant pollutants (Markandya et al., 2009, Friel et al., 2009, 

Wilkinson et al., 2009, Woodcock et al., 2009). Bollen et al. (2009) modelled 

responses to GHG and air pollution control policies based on sector-specific 

marginal abatement cost curves.  

It is necessary to understand baseline and control-scenario emissions of 

both CO2 and health-relevant pollutants such as PM, Ozone (O3) and SO2 

(Sulphur dioxide). Pollution emissions vary widely depending on sources, fuels, 

combustion processes, emission controls and other factors. Reliable information 

on emissions is often available in developed countries but largely lacking for 

developing countries. 

In Chapter 3 and 5, we set the baseline scenario in 2015 and the control-

scenario is based on the baseline in 2015. In Chapter 3, the control scenario is 

to assume if rural and urban households replace the amount of coal and biomass 

used in 2015 to electricity, what benefits would be obtained including reduced 

CO2, PM2.5 pollutants and avoided deaths? In Chapter 5, there are four control 
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scenarios which focus on four facets of urban land passenger travel modes 

changes. For instance, in the more electric vehicles transport scenarios, it 

assumes that passengers would use more electric vehicles to replace fossil fuel 

vehicles or have the preference to buy electric vehicles rather than fossil fuel 

vehicles in the future. 

2.2.4 Environmental modeling 

Most air pollution co-benefits work has focused on one or both of two key 

pollutants, particulate matter (either PM2.5 or particular matter 10 (PM10)) and 

ozone (Jack and Kinney, 2010). Once changes in emissions are estimated, it is 

necessary to analyze how these translate into changes in human exposure to 

health-relevant pollutants such as PM2.5 and/or ozone over space and time.  

The human exposure involves the intersection between people and pollution. 

The science and tools available for ambient air pollution modeling have advanced 

rapidly in recent decades. Some studies, particularly those based on CGE 

models, use highly simplified linear equations to scale emission changes to 

ambient concentration changes (Ezzati et al., 2004, O’Connor et al., 2003, Aunan 

et al., 2004). With this research field carrying one, it begins to employ global 

chemical transport models or air quality models to project the policy-induced 

changes in air quality (West et al., 2013), like regional-scale CMAQ model. 

However, due to computational costs and complications associated with required 

data input and processing, using complex air quality models for large suites of 

scenarios still represents a significant challenge in policy assessment (Xing et al., 

2011). To address this challenge, a real-time emission control/air quality 

response tool, Response Surface Methodology (RSM), has been developed to 

characterize the relationship between model outputs and input parameters in a 

relatively economical manner (Xing et al., 2011, Zhu et al., 2015). However, RSM 

techniques have only been tested and evaluated for a series of PM2.5 and ozone 
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assessments and policy analyses in the United States (U.S. Environmental 

Protection Agency, 2006a, U.S. Environmental Protection Agency, 2006b) but its 

localizations in other areas like China are still under development (Zhu et al., 

2015).  

Therefore, an integrate and simplified model for estimating health co-benefits 

of GHG emissions reduction measures is still needed to translate scientific 

evidence into policy decisions (Liu et al., 2017a). And other health-relevant 

pollutants, like black carbon and sulfate aerosols are nearly seldom be studied.  

In this thesis, the Greenhouse Gas and Air pollution Interactions and 

Synergies (GAINS)-ASIA model, which has been developed by International 

Institute for Applied Systems Analysis (IIASA), has been applied to estimate the 

CO2 emissions, pollutant emissions, and PM2.5 concentration caused by changes 

of household consumption activities.  

The GAINS model includes all key emission sources, with approx. 2000 end 

of control options (Amann et al., 2011). The model is applied for estimating air-

pollutants and PM2.5 concentration based on Ef,r,i,t (PJ). Emissions are calculated 

through a combination of three data categories: activity data, uncontrolled 

emission factors, the removal efficiency of emission control measures. Equation 

(2.7) represents the emissions estimates: 

𝐸+,! = ∑ ∑ 𝐴,,!𝑒𝑓,,-,+,!𝑋,,-,+,!-,        (2.7) 

Where 𝐸+,! represents emissions of pollutants p, in province i; 𝐴,,! is the activity 

level of type a (e.g., coal consumption in residential sector) in province i; 𝑒𝑓,,-,+,! 

is the emission factor of pollutant p for activity a in province i after application of 

control measure m; 𝑋,,-,+,! is the share of total activity of type a in province i to 

which a control measure m for pollutant p is applied. 

The resulting emissions are inputted into an atmospheric dispersion model, 

the EMEP Chemistry Transport Model (http://webdab.emep.int/) to compute 
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annual mean ambient PM2.5 concentration. GAINS employs reduced-form 

source-receptor relationships that have been derived from the EMEP 

atmospheric chemistry-transport model with a spatial resolution of 0.1° × 0.1° 

(Amann et al., 2020). The PM2.5 concentration are defined via:  

𝐶(𝑃𝑀#./)!= ∑[𝜋! × 𝐸𝑚(𝑃𝑃𝑀) + 𝜎! × 𝐸𝑚(𝑆𝑂#) + 𝛼! × 𝐸𝑚(𝑁𝑂0)+. 𝛽!	 ×

𝐸𝑚(𝑁𝐻$) + 𝛾! × 𝐸𝑚(𝑉𝑂𝐶!)] + 𝜇!        (2.8) 

Where 𝐶(𝑃𝑀#./)!  is the PM2.5 concentration in grid cell i. 𝐸𝑚(𝑃𝑃𝑀) represents 

the total primary PM2.5. The constants	𝜋，𝜎，𝛼，𝛽，𝛾 are the source-receptor 

matrices for the corresponding pollutants contribution to the PM2.5 concentration 

and the constants𝜇! are grid cell specific. More details of GAINS model can be 

found in Amann et al. (2011). 

2.2.5 Health modeling 

When emissions and concentrations have been estimated, the study will 

move to adverse health impacts (including premature mortality from 

cardiorespiratory disease, lung cancer, acute respiratory infection, etc and 

morbidity resulting from hospital admissions, long-term health care, asthma 

admissions, etc (Chang et al., 2017)) to exposed population. In this study, we 

consider the long-term health impacts from PM2.5 exposure with the use of the 

epidemiological relative risk (RR), which can link the concentration of PM2.5 to 

adverse health effects studies. As per the past studies (Lelieveld et al., 2015, Liu 

et al., 2017b, Maji et al., 2018), the PM2.5-induced long-term health impacts of 

disease-specific are estimated by multiplying the RRs with the baseline disease-

specific health impacts rate and the population exposed to PM2.5 with a specific 

age group. The equation is shown as below:  

𝐻𝐼 = 	 [(𝑅𝑅 − 1) 𝑅𝑅⁄ ] × 𝐵 × 𝐸𝑃		   (2.9) 
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Where HI is the disease-specific health impacts attributable to PM2.5 exposure. 

Here, the term [(RR − 1)/RR] term is the population attributable risk-potential 

reduction in the incidence of morbidity or mortality when an entire population 

would be exposed to pollution with reference concentration. B is the baseline 

disease-specific mortality rate for population groups. EP is the exposure 

population.  

There are four exposure-response functions to estimate RRs according to 

past literature:  the Integrated Exposure-Response (IER), Global Exposure 

Mortality Model (GEMM), log-linear (LL) exposure-response function and non-

linear power law (NLP) function. IER and LL exposure-response function have 

mostly been used in the research; GEMM and NLP have been developed recently.  

2.2.5.1 Integrated Exposure-Response (IER) function 

The integrated exposure risk (IER) function is developed by Burnett et al 

(2014) which is applied in Global Burden of Disease (GBD) study. The IER 

function incorporates data from cohort studies of indoor and outdoor pollution 

including ambient air pollution and second-hand smoking, etc. to describe the 

exposure-response relationship throughout the full distribution of ambient PM2.5. 

The cause-specific RR function is expressed as: 

𝑅𝑅2,,(𝐶!) =X
1																																																											𝑓𝑜𝑟𝐶! ≤ 𝐶%
1 + 𝛼\1 − exp(−𝛾(𝐶! 	− 𝐶%)3_						𝑓𝑜𝑟	𝐶! >	𝐶%

              (2.10) 

Where 𝑅𝑅2,,(𝐶!) is the relative risk of a given PM2.5 concentration in grid cell i for 

age specific a and health endpoint e; 𝐶%  is the threshold PM2.5 concentration 

below which there is no additional risk, in terms of counterfactual PM2.5 

concentration, which is selected to be a uniform distribution with lower and upper 

limits of were 2.4 and 5.9 ug/m3 respectively according to GBD 2017 (Stanaway 

et al., 2018); and α, γ, and δ are parameters describing the overall shape of the 

exposure-response curve resulting from a stochastic fitting process. Five causes 
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of deaths (>25 years old) are modelled by the IER model: chronic obstructive 

pulmonary disease (COPD ), lung cancer, ischemic heart disease (IHD), stroke 

and diabetes mellitus according to GBD 2017 (Stanaway et al., 2018). The RRs 

in IERs are age-specific for both IHD and stroke (Figure 2.1).  

 

Figure 2.1 Cause and age-specific IER functions with PM2.5 concentration ranging from 0 to 120 
ug/m3 

2.2.5.2 Global Exposure Mortality Model (GEMM) 

The Global Exposure Mortality Model (GEMM) is also developed by Burnett 

et al., (2018), but it is newly developed. The IER model conducted cohort studies 

in low-polluted Europe and North America. GEMM which incorporated cohort 

studies globally, especially added 15 cohorts study of Chinese men with long-

term outdoor PM2.5 exposures up to 84 μg/m3, thus greatly extending the range 

of exposures observed in cohort studies conducted in high-income countries in 

Europe and North America. Also, GEMM relaxed many strong assumptions 

required by the IER by relying solely on studies of outdoor PM2.5 pollution. The 

GEMM is expressed as:  
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𝑅𝑅2,,(𝐶!) =a
𝑒𝑥𝑝 c

4!,#567	(
$%&$'
(!,#

9")

"92;+<*
$%&$'&)!,#

*!,#
=
d 										𝑖𝑓	𝐶! > 𝐶%

1																																																							𝑖𝑓		𝐶! 	≤ 𝐶%				
    (2.11) 

Where 𝑅𝑅2,,(𝐶!) is the relative risk of a given PM2.5 concentration in grid cell i for 

age, a and health endpoint, e. 𝐶%  is the threshold PM2.5 concentration below 

which there is no additional risk, in terms of counterfactual PM2.5 concentration 

(2.4 ug/m3 in this study). And 𝜃2,,, 𝛼2,,, 𝜇2,,	and 𝑉2,, are parameters describing 

the overall shape of the concentration-response curve, provided by Burnett et al. 

(2018). GEMM considers five causes of deaths: IHD, stroke, COPD, lung cancer, 

and lower respiratory infections (LRIs), denoted as GEMM 5-COD. And almost all 

(>99%) nonaccidental deaths in the cohorts were due to noncommunicable 

diseases (NCD) and LRIs (NCD+ LRI), hence GEMM also considering NCD’s 

health impacts, and it is denoted as GEMM NCD+LRI.  

2.2.5.3 Log-linear (LL) function 

The log-linear (LL) function has been used to estimate health impacts in high 

PM2.5 polluted regions (Lelieveld et al., 2013) . The LL function has also been 

applied in PM2.5-attributed morbidity studies (Maji et al., 2018)。 The calculation 

of this function is shown as below: 

𝑅𝑅 = exp	[𝐸𝑅 × (𝐶! − 𝐶%)]    (2.12) 

Where ER is the exposure-response coefficients obtained from epidemiological 

studies, representing the incidence change of certain health impact per μg/m3 of 

PM2.5 increment.  

2.2.5.4 Non-linear power law (NLP) function 

Based on the global cohort studies exposed from ambient, household air 

pollution, active and second-hand smoking. Chowdhury and Dey (2016) 
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developed NLP function for four diseases (stroke, IHD, COPD and LC). The 

function equation is expressed as below: 

𝑅𝑅 = 1 + 𝛼 × (𝐶! − 𝐶%)>      (2.13) 

Where α and β are the two constants, having different values for each cause-

specific mortality. 

In this thesis, the GEMM model is applied given its advantages on 

considering more health endpoints including five causes of deaths (IHD, stroke, 

COPD, lung cancer, and LRIs) and noncommunicable diseases (NCD) as well 

as its newly cohorts’ studies in China. Also, in this research, we would consider 

the age and sex-specific health impacts and GEMM is also qualified to fulfill this 

requirement.  

2.2.5.5 Economic valuation estimation 

For valuation procedures, it means monetize the economic value of changes 

in health status and if appropriate, it will compare to the costs of mitigation policies. 

The monetization of mortality relies on non-market valuation methos due to the 

absence of economic market for human lives. The valuation approaches adopted 

by past literature include: value of statistical life (VSL) (used in cost/benefit 

analyses), value of life years lost with mortality analysis by age segmentation, 

benefits transfer approach, cost of illness (quantifies direct costs of morbidity). 

The VSL approach is widely applied to estimate the monetary cost of a reduction 

of mortality (Xie, 2011b). The VSL defines the monetary value of a mortality risk 

reduction that would prevent one statistical death (Andersson and Treich, 2011). 

The VSL is calculated in survey studies assessing individuals ‘willingness to pay’ 

(∂WTP) for a small reduction of mortality risk ∂R(Andersson and Treich, 2011, 

Viscusi and Masterman, 2017, Wang and Mullahy, 2006). The function of VSL is:  

𝑉𝑆𝐿 = 𝜕𝑊𝑇𝑃/𝜕𝑅    (2.14) 
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In this thesis, because we would like to improve the accuracy of economic 

valuation of health impact from PM2.5 exposure, we apply the age and sex-

adjusted and regional-specific VSLs of provinces in China in 2015 obtained from 

Yin et al. (2021), which takes account of the effects of variations in life expectancy, 

wealth distribution and life quality over the lifecycle (see Figure 2.2).  

 
Figure 2.2 VSL values in female and male at different ages of provinces in China in 2015 

2.2.6 Conclusion  

The health co-benefits of mitigation measures depend on the 

sources/economic sectors of GHG emissions being reduced. For instance, in 

energy generation sector, reducing GHG emissions influences on health via 

corresponding reductions of air pollutants, such as PM, BC, SO2, and NOx (Chen 

et al., 2013; Crawford-Brown et al., 2012; Dudek et al., 2003). In the 

transportation sector, shifting transport from vehicular to active travel can 

produces many benefits on health not only mortality and morbidity related to air 

pollution but also decreasing the cardiovascular disease, type 2 diabetes, colon 

and breast cancer and depression by increasing physical travel, like walking and 

cycling (Woodcock et al., 2009). Reducing intake of foods from animal sources 

in high-consumption populations could reduce GHG emissions and substantially 

benefit public health via reductions in type 2 diabetes, ischemic heart disease, 
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and the prevalence of obesity (Friel et al., 2009). In total, GHG mitigation 

strategies in different economic sectors could, simultaneously, bring ancillary 

health benefits, while comprehensive measures across various sectors tend to 

provide greater health gains (Gao et al., 2018).  

The study in health co-benefits of mitigation measures can provide valuable 

information for central and local governments, non-governmental organizations, 

policymakers, and other relevant stakeholders concerned with the development 

and implementation of low carbon technologies and policies. In addition, the 

potential health co-benefits and cost savings that offset or even outweigh the 

costs of implementing abatement measures can improve the acceptability of 

GHG mitigation strategies. This can help policymakers to identify the most cost-

effective mitigation measures in achieving the given reduction objectives and to 

prioritize the use of resources in the fight against climate change.  

Nevertheless, to some extents, estimating health co-benefits of GHG 

emissions reduction is alien to conventional epidemiological approaches and 

assessment studies, presenting several challenges or uncertainties (Bell et al., 

2008, Haines et al., 2009). Health professionals should work closely with those 

involved in strategic planning and performance appraisals in relevant sectors to 

ensure that the assumptions and scenarios on which they are based are 

transparent and founded on the best available evidence (Bell et al., 2008, Haines 

et al., 2009).Several important sources of uncertainty arise in relation to the key 

steps of health co-benefits assessment. Given the nature of the information on 

which the co-benefits assessments must draw, the limitations in data quality and 

availability and the debate over exposure–response functions for health 

outcomes, estimating the total health gains from the decrease in air pollution 

associated with GHG emissions reductions remains a challenge (Bell et al., 2008). 

Some insufficiencies were summed up as below: 
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2.2.6.1 Research locations  

Most research is still in developed countries/ area, like US and Europe, or 

on the rapidly developing economies of China and India with rapid urbanization 

and population growth (Jack and Kinney, 2010, Gao et al., 2018). And it is 

expected to increase the study in developing countries or areas, particularly in 

Africa and the Middle East (Gao et al., 2018) and also it is expected that the 

magnitude of co-benefits in developing countries is to be relatively large for two 

reasons. First, a given change in relative risk will accrue a larger benefit 

considering their background rates of disease are higher (Smith and Haigler, 

2008). Second, many developing countries wish to simultaneously promote 

economic growth and at the same time cut pollution, limit GHG emissions, and 

protect public health concerns (Gao et al., 2018). These goals are not necessarily 

inconsistent with one another although they are profoundly vital, but health co-

benefits of air quality improvement policies can be an incentive for GHG 

mitigation actions in developing cities (Bollen et al., 2009). Those studies which 

have studies the co-benefits of GHG reductions in developing regions generally 

report potentially considerable climate and health benefits (West et al., 2013, 

Shindell et al., 2012). What’s more, the health co-benefits of mitigation measures 

may contribute to reducing inequality both in GHG emissions reduction 

responsibilities and in the health consequences of climate change between low 

and high-income countries (Haines et al., 2009). 

2.2.6.2 Failure in policy-making application and difficulty in comparison of different 

mitigation strategies  

The co-benefits literature, while extensive and in some cases quite 

sophisticated, has so far largely failed to formulate convincing, policy-relevant 

estimates of co-benefits and been insufficient to inform local decision-makers 

efficiently for some reasons. First, most prior studies focus on large (regional, 
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national) scales while the small-scale policy assessment requires additional 

adjustments (Liu et al., 2013a). Second, the findings from existing studies are not 

consistent (West et al., 2013). Some propose that the co-benefits are substantial, 

while in other co-benefits account for a small fraction of cost (Markandya et al., 

2009, Haines et al., 2009). Among the factors causing the discrepant results, 

inconsistent methodologies, data sources and study designs seem to be 

important ones (Bell et al., 2008). Third, the causes of the gap between potential 

and actual policy impact are complex, and have not been fully elucidated (Jack 

and Kinney, 2010). Polices need to take into consideration not only scientific 

evidence, but also competing priorities, interests, and values, and perceptions of 

equity, fairness, and ethics (Bowen and Zwi, 2005), among other considerations. 

Therefore, iterative engagement between researchers and policymakers 

increases the capacity of policymakers to assess, evaluate, and use data in 

support of complex-policy interventions, and the capacity of researchers to link 

credible models of economic behavior, environmental processes, and health to 

provide policy-relevant results (Chang et al., 2017).  

2.2.6.3 Equity considerations  

Research has already noted that populations in low-income countries are 

likely to be particularly vulnerable to the adverse effects of climate change and 

the mitigation policy can improve the health and equity of people in poor countries 

and assist developing countries in adapting to climate change (Haines et al., 

2006). People exposed to higher levels of air pollution tend to be of lower 

socioeconomic status compared with the population as a whole, likely due to the 

lower value of homes in close proximity to major road traffic. However, the social 

distribution of these health benefits across populations, and hence potential for 

mitigation strategies to enhance and progress social justice, are less well 

established due to the health equity effects of each factor was difficult to quantify 
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(Chang et al., 2017). To date, while some air quality models consider regional 

equity, few research is studying the social distribution of health co-benefits of 

mitigation measures (Chang et al., 2017). The study by Dhondt et al. (2013) on 

co-benefits in transport sector by changing travel behavior towards more efficient 

transport is an exception. It found air quality improvement and increased active 

travel mainly had an impact at older age, while traffic safety mainly affected 

younger and middle-aged people (Dhondt et al., 2013), but the transport measure 

in this study is not aiming for reduce GHG emission.  

Hence, the health co-benefits analysis in this thesis is going to consider the 

above three types of insufficiencies, see Chapter 3 and Chapter 5. We coupled 

the energy inventory data with GAINS model, GEMM and health economic model 

to build an integrated assessment framework to conduct the health co-benefits 

analysis. 
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Chapter 3 Household direct energy consumption and 
health co-benefits of cleaner fuel usage  

3.1 Introduction 

The residential sector is one of largest energy consumers in China (Fan et 

al., 2013) and as such has a profound impact on the production activities, energy 

consumption and GHG emissions (Liu et al., 2011). With increasing living 

standards and wealth across the Chinese population, residential energy 

consumption is forecast to continually grow in the short and medium term (Fan et 

al., 2013). In China, solid fuels specifically coal and biomass (mainly wood and 

crop residues) are still important sources of energy for heating and cooking, 

largely in rural areas (Archer-Nicholls et al., 2016, Zhang and Smith, 2007, Yun 

et al., 2020). Combustion of solid fuels by households cause both indoor air 

pollution (Zhang and Smith, 2007, Clark et al., 2013) and ambient air pollution at 

a local or regional scale (Chen et al., 2018). The emitted pollutants interact to 

produce a mixture of hundreds of different and hazardous chemicals known as 

secondary pollutants through physical processes and chemical reactions in the 

atmosphere (Li et al., 2017b).  

Although household energy consumption is one of major anthropogenic 

contributors of atmospheric pollutants in China, studies on the impact of the 

household energy consumption on air quality remain limited (Du et al., 2018, 

Zhao et al., 2019, Yun et al., 2020). The current evidence base has focused on 

elements of spatial and policy issues (Du et al., 2018, Zhao et al., 2019, Yun et 

al., 2020, Chen et al., 2018, Zhao et al., 2018) but has not fully accounted for the 

effect of household consumption on the health profile of different population 

groups at different spatial scales or across rural and urban areas. There is some 

evidence that while rural households have lower energy consumption compared 
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to urban areas, they have higher rates of coal usage. And it is this element of fuel 

mix that may result in a higher burden for rural areas in terms of emissions and 

associated economic and public health outcomes. The difference in lifestyles, 

income, and population distribution between the rural and urban areas of China 

are pronounced (Hubacek et al., 2009). Hence analyzing the impact of different 

activities and lifestyles across urban and rural populations, across different 

demographic groups may help to explain differential health outcomes (Pachauri 

et al., 2004).  

This chapter therefore undertakes an integrated assessment of the adverse 

impacts of household energy consumption by various fuel types across rural and 

urban areas on age- and sex- specific premature deaths as a key outcome from 

PM2.5 pollution at the Chinese provincial levels for 2015. It does so through a 

modelling framework based on an existing integrated assessment model 

calibrated with data and sub-models for population, spatial distribution of 

population, and air pollution loading. This chapter then explores the health co-

benefits and economic benefits of switching from coal and biomass to electricity 

since primary energy tend to be more and more transferred into electricity for 

usage in China. 

3.2 Method  

The definition of rural and urban households is based on China Bureau of 

Statistics definition, whereby urban households are those who have been living 

within the governance of a village (xiang) or town authority over one year and 

urban households are those who has been living in those areas where local 

governments of the county level or higher are located 

(http://www.stats.gov.cn/tjsj/ndsj/2015/html/zb06.htm ). Land use in China is 

predominately rural: 91% of Chinese territory defined as rural. The analysis here 



 50 

focuses on households – these are, following standard definitions, individuals or 

groups of resident individuals who share the same living accommodation, and 

consume goods and services collectively (Ding et al., 2017). 56.5% of the total 

population of China lived in 9.5% of the territory of China, with 775 million urban 

households and 596 million rural households (excluding Taiwan, Hongkong and 

Macao) (NBSC, 2016). Sub-national data is provided for 30 provinces, cities and 

autonomous regions (Tibet is excluded due to a lack of energy inventory data). 

Fifteen fuel types are included in this study. These include electricity, gasoline, 

raw coal, heat, natural gas, LPG (liquefied petroleum gas), diesel oil, briquettes, 

other energy, other washed coal, coke oven gas, other gas, kerosene, fuel oil and 

coke. Heat as a form of energy usage, is additional energy produced by primary 

energy, such as coal combustion. Heat as a form of energy usage is 

predominately the result of coal combustion in China and is recorded in the 

Chinese energy balance table and as part of the energy inventory collected by 

China Emission Accounts and Datasets (CEADs, www.ceads.net). All data is 

from 2015 unless otherwise specified.  

3.2.1 Household energy consumption  

The calculation of household energy consumption is shown below: 

𝐸?,),!,( = ∑ 𝐴𝐷?,),!,( × 𝑁𝐶𝑉?				#%
?@"         (3.1) 

𝐸?,),!,( refers to sum of energy consumption from each fuel type f, from household 

in urban or rural area r, at provincial level i,in year t. The energy unit is petajoule, 

PJ. 𝐴𝐷?,),!,( refers to the activity data of the combustion volume of each fuel type 

f. 𝑁𝐶𝑉? represents the net caloric value, that is heat value produced per physical 

unit of fossil fuel combustion. Here, data for the 𝐴𝐷?,),!,( is taken from the energy 

inventory data from CEADs (www.ceads.net), which is collected from China 

Energy Statistical Yearbook. Data of 𝑁𝐶𝑉? is taken from Shan et al. (2018). 
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3.2.2 Pollutant emissions and PM2.5 concentration from household 
consumption activities  

Estimates from the household energy consumption model (Equation (3.1)) 

are treated as the input to the Greenhouse Gas and Air pollution Interactions and 

Synergies (GAINS)-ASIA model. The equation of GAINS model to output PM2.5 

concentration is in equation (2.7) and (2.8).  

3.2.3 PM2.5 related health impact assessment  

The long-term exposure to PM2.5 concentration on mortality as measured by 

premature deaths using the GEMM is considered in this study (Burnett et al., 

2018). Developed by Burnett et al., (2018), the GEMM assess excess mortality 

attributable to ambient air pollution on a global scale. 

Here. five leading causes of the PM2.5-related premature mortality is 

considered: ischemic heart disease (IHD), stroke, chronic obstructive pulmonary 

disease (COPD), lung cancer (LC), and lower respiratory infections (LRI). The 

premature deaths under scenarios are measured by sex (female and male) and 

age group (25-29, 30-34, 35-39, 40-44, 45-49,50-54,55-59, 60-64, 65-69,70-

74,75-79, 80+). For the purpose of this research, the “elderly” are individuals 

aged 65 years or more, in line with the World Health Organization (WHO) 

definition (WHO, 2010b, Orimo et al., 2006).  

The number of health outcomes are estimated by multiplying the relative risk 

(RR) with the population by sex and age and reported cause-specific incidence 

rate by sex and age, along with the corresponding uncertainties (95% confidence 

interval (CI)) and normally the percentage of exposed population is assumed to 

be 1 (Zhang et al., 2017d): 

𝑀A,2,,,B,(=(𝑅𝑅A,2,, − 1) 𝑅𝑅A,2,,⁄ × 𝐼2,,,B,(×𝑃,,B,!,(      (3.2) 
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Where 𝑀2,,,B,',(is mortality in grid cell, k for each health endpoint, e by age, a and 

sex, g in year t due to PM2.5. 𝑅𝑅A,2,,  is the relative risk of a given PM2.5 

concentration in grid cell k at health endpoint e for age specific a, which is 

obtained from the GEMM (Burnett et al., 2018). 𝐼2,,,B,(  is the mortality rate for 

health endpoint, e by age, a and sex, g in year t obtained from the Global Burden 

of Disease (GBD) Results Tool (http://ghdx.healthdata.org/gbd-results-tool) 

(Figure 3.1). 𝑃A,,,B,( is the exposed population for age, a and sex, g in grid cell k, 

in year t. The spatial distribution of the population as a  0.1°× 0.1°grid in China in 

2015 is taken from Xu (2017). Population data (NBSC, 2011) and death rates 

(Chen et al., 2020) by age group (5-year-old segments) and sex for 2010 are 

obtained at the provincial level. Following similar research, PM2.5 intake is 

assumed to be equally harmful irrespective of the PM2.5 composition and source 

and fuel of origin (Liu et al., 2017a). 

 

Figure 3.1  Incidence rate of health endpoints by age group and cause 

The function of GEMM to estimate RRs is in equation (2.11).  
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3.2.4 Attribution of premature death to household consumption 
activities  

As per the GBD (2016), given the nonlinear relationship of the GEMM 

functions, the direct proportional approach was used to estimate premature 

deaths attributed to the emissions related to a region's production and 

consumption. The direct proportional approach assumes that the health impact 

of one pollution source is directly proportional to its contribution to the ambient 

PM2.5 concentration. This proportional approach has also been applied to 

estimate the pollution health impacts related to household cooking (Chafe et al., 

2014), coal consumption (GBD, 2016), road transportation (Anenberg et al., 

2017), and international trade (Zhang et al., 2017a). In this research, the 

proportional approach is applied to estimate health impacts related to household 

energy consumption.  

For a given region, premature deaths due to different activity-based 

emissions (e.g., household consumption activities) can be calculated by 

multiplying the contributions of each to baseline ambient PM2.5 concentrations by 

the total PM2.5-related mortalities for each grid cell.  

𝑀),2,,,B,( = ∑ 𝑀A,2,,,B,(,C,'2 ×
D+,,,-#.!*D+,,,/

D+,,,-#.!A      (3.3) 

 𝑀),2,,,B,(  is the premature death of household consumption of rural or urban 

regions r for health endpoint e by age, a and sex, g in year t. 𝑀A,2,,,B,(  is the 

premature death of baseline scenario for health endpoint e by age, a and sex, g 

in year t in grid cell k. The baseline scenario uses modeled PM2.5 concentration 

is taken from the GAINS model which has been validated against PM2.5 

monitoring data. Please see www.gains.iiasa.ac.at for more 

information.𝐶A,(,C,'2 	 is the modelled PM2.5 concentration for grid cell k in the 

baseline scenario in year t. 𝐶A,(,) is the modeled PM2.5 concentration of grid cell k 
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in alternative scenarios where the emissions related to household consumption 

of rural or urban regions r in year t.  

3.2.5 Avoided premature deaths of replacing coal and biomass fuels 
into electricity  

For the scenario analysis, it is assumed that households replace all coal and 

biomass fuels including cleaned coal, other washed coal, briquettes, coke, coke 

oven gas, other gas, other coking products and other energy (large part is 

biomass) with electricity but the total amount of household energy consumption 

remained the same. The GAINS model was used to calculate the number of 

avoided premature deaths across urban and rural area if current levels of coal 

and biomass consumption shifted to electricity consumption: 

𝐴),2,,,B,(@∑ F+,!,#,0,,,-#.!*G+,!,#,0,,,/+          (3.4) 

Where 𝐴),2,,,B,( is avoided premature death by rural or urban populations, r for 

health endpoint e, by age, a and sex, g in year t. 𝑅A,2,,,B,(,) is the premature death 

attributable to household energy consumption without coal and biomass 

consumption but more electricity consumption of rural or urban regions r for 

health endpoint e by age a and sex g in year t in grid cell k. 

3.2.6 Economic benefit of replacing coal and biomass fuels into 
electricity  

This research uses the monetary value statistical life (VSL) approach to 

reflect health gains in monetary terms. The VSL defines the monetary value of a 

mortality risk reduction that would prevent one statistical death (Andersson and 

Treich, 2011). The provincial  age and sex-adjusted VSL for 2015 is obtained 

from Yin et al. (2021) (see Figure 2.2). The calculation of economic benefit is 

shown: 

𝐵),2,,,B,A,( = 𝑉𝑆𝐿,,B,!,(	 × 𝐴),2,,,B,(      (3.5) 
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Where 𝐵	is the economic benefit value of household consumption of rural or 

urban regions r in grid cell k for each health endpoint, e by age a and sex g in 

year t. 𝑉𝑆𝐿,,B,!,(	 is the value of a statistical life for age a and sex g in province i in 

year t. The exchange rate for US dollar and Chinese Yuan for 2015 was taken as 

1 US dollar equals 6.2284 Chinese Yuan 

(https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A060J&sj=2019). 

3.2.7 Uncertainty analysis 

Uncertainty in this analysis emerges in three areas:  

(1) The value of annual mean ambient PM2.5 concentration in China in 2015 

from the GAINS. To validate the performance of the PM2.5 concentration 

results from the GAINS, the linear regression model between observed 

results from 366 overserving sites in China and results from GAINS is 

applied.  

(2) Uncertainty based on the RRs of GEMM. For the GEMM, estimates of 

𝜃2,,  and its standard errors are obtained by using standard computer 

software that fit the Cox proportional hazards model. Bootstrap methods 

were used to obtain 95% uncertainty intervals. Details can be seen in 

Burnett et al. (2018)(Burnett et al., 2018). Moreover, there are two 

versions of GEMM. One is GEMM 5-COD which comprises five causes 

of death: IHD, stroke, COPD, LC, and LRI, and this one is applied in this 

research. Another one is GEMM NCD+LRI which covers risks from 

noncommunicable diseases (NCD) and LRI. Since the total mortality 

burden from PM2.5 exposure is represented by nonaccidental mortality 

and all almost all nonaccidental deaths were due to NCD and LRI. 

Therefore, the results from GEMM NCD+LRI would represent more 

health burden from PM2.5 so that premature deaths from these two 

versions of GEMM are compared to know the difference. 
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(3) In this research, the variant VSL by age and sex is taken account of. 

However, in most research, they mostly adopt invariant VSL, which 

means VSLs don’t vary by risk characteristics. So, the invariant VSL is 

applied to do the uncertainty analysis. Because the contingent valuation 

for VSL is limited in China, the VSL value from some Contingent 

valuation studies for Beijing is collected (Table 3.1). The VSL was 

2027,866 RMB (US$ 325,583.8) in 2015 for Beijing. As household 

income is positively correlated with people's WTP (Sun et al., 2016), the 

value-transfer method from Reference Case Guidelines for Benefit-Cost 

Analysis in Global Health and Development is adopted (Robinson et al., 

2019) to adjust VSL from Beijing to other provinces in China . Here the 

VSL is represented as the income ratio between Beijing and the other 

regions of interest using the following equation:                        

𝑉𝑆𝐿! = 𝑉𝑆𝐿H2!I!JB × m𝐼! 𝐼H2!I!JB⁄ n2        (3.6) 

Where 𝑉𝑆𝐿! and 𝑉𝑆𝐿H2!I!JB are value of a statistical life year for people in other 

provinces and Beijing in 2015 respectively; 𝑉𝑆𝐿! and 𝑉𝑆𝐿H2!I!JB	is GDP per capita 

in other provinces and Beijing in 2015 respectively. e is the income elasticity in 

VSL (e is about 1.0 for non-US countries (Viscusi and Masterman, 2017)).   

Table 3.1 Contingent valuation estimates of VSL for Beijing 

Study Fieldwork: city and 
year  

VSL (RMB) 

Mean Median 

Zhang (2002)  Beijing 1999 2,357,953 N/A 

Hammitt and Zhou (2006)  Beijing 1999 1,929,725 358,204 

Gao et al. (2015) Beijing 2011 N/A 660,204 

Xie (2011a) Beijing 2010 1,795,920 N/A 

Average (in 2015 value)  2,027,866 509203.72 
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3.3 Results  

3.3.1 Household energy consumption 

In 2015, the total household energy consumption in China was 10,500 PJ; 

nearly 1.6 times greater than rural household energy consumption (6,700 PJ) 

(Figure 3.2a). Heat (21.1%), electricity (21%), and gasoline (20.5%) accounted 

for 63 % of total urban household energy consumption. In contrast, raw coal 

accounted for 34% of the total rural household energy consumption (1,300 PJ), 

representing 2.8 times the amount of coal consumed by urban households. 

Electricity was the second largest fuel type used by both rural and urban 

households, that accounted for 1,100 PJ and 1,400 PJ, respectively (Figure 3.2b). 

Figure 3.2b indicates that fuel type usage is more homogenous than urban 

households, with the top three fuel types representing 77% of the total rural 

household energy consumption, whereas in urban areas, the top three fuel types 

represented 63% of the fuel used.  
(a)                                                                      (b)                                  

                                             
 

Figure 3.2 Energy consumption of rural and urban household in China in 2015 

(a) The total energy consumption (PJ) (b) Different fuel types of energy consumption of 
household 

To examine regional differences between urban and rural dominated regions, 

China is divided into eight economic zones according to a definition developed 

by the Development Research Center of the State Council (Wu, 2014) (Table 
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3.2) . These eight zones comprise the Northern coastal, Eastern coastal, 

Southern coastal, Northeastern, Northwestern, and Southwestern economic 

zones, as well as two economic zones defined to cover the middle reaches of the 

Yellow River and the middle reaches of the Yangtze River. Higher household 

energy consumption is more located in the Northern coastal, Eastern costal, 

Southern coastal and middle reaches of the Yellow River economic zone (Figure 

3.3a and 3.3b). Rural household energy consumption is highest in Hebei, 

Guangdong, Shandong, Henan and Hunan, that were 448, 293, 265, 243 and 

202 PJ, respectively. For urban household energy consumption, consumption is 

highest in Guangdong, Liaoning, Shandong, Hunan and Heilongjiang, 553, 472, 

433, 392 and 386 PJ, respectively. Regrading energy intensity，on average, 

energy intensity of rural households are larger than urban households and 

Northern coastal, Northeastern, Northwestern and Eastern coastal had higher 

energy intensities of household consumption.  

Table 3.2  Description of eight economic zones (Unit: for the population it is 10000 population; 
aging ratio is 100%; population weighted PM2.5 concentration is ug/m3) 

Economi
c zone Province 

Urban 
populatio

n 

Rural 
populatio

n 

Agin
g 

ratio 

Death
s 

Prematur
e deaths 
in per 

100,000 
people 

Population 
weighted 

PM2.5 
concentratio

n 

Northern 
coastal 

economi
c zone 

Beijing, 
Tianjin, 
Hebei, 

Shandong 
12581.4 8408.6 12% 31916 20.4 63.7 

 

Eastern 
coastal 

economi
c zone 

Shanghai, 
Jiangsu, 
Zhejiang 

11065.8 4864.2 14% 51914 41.4 47.4  

Southern 
coastal 

economi
c zone 

Fujian, 
Guangdon
g, Hainan 

10359.7 5239.3 10% 23347 21.1 21.4  
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Table 3.3  Description of eight economic zones (Unit: for the population it is 10000 population; 
aging ratio is 100%; population weighted PM2.5 concentration is ug/m3) (Continued)  

Economic 
zone Province 

Urban 
populatio

n 

Rural 
populatio

n 

Agin
g 

ratio 
Death

s 

Prematu
re deaths 

in per 
100,000 
people 

Population 
weighted 

PM2.5 
concentrati

on 

 

Middle 
reaches of 
the Yellow 

River 
economic 

zone 

Shanxi, 
Inner 

Mongolia, 
Henan, 
Shaanxi 

10017 9431 12% 2438
0 17.4 46.2  

Middle 
reaches of 

the Yangtze 
River 

economic 
zone 

Anhui, 
Jiangxi, 
Hubei, 
Hunan 

12238.4 11107 13% 5977
1 35.4 43.4  

Southweste
rn 

economic 
zone 

Guangxi, 
Chongqin

g, 
Sichuan, 
Guizhou, 
Yunnan 

11545.7 12743 13% 5544
3 32.8 29.1  

Northweste
rn 

economic 
zone 

Gansu, 
Qinghai, 
Ningxia, 
Xinjiang 

2902.3 3313.7 10% 752 1.8 25.2  

(a)                                                                         (b) 
 
 
 
 
 
 
 

 

Figure 3.3 Energy consumption and energy intensity of provinces of rural and urban households 
in China in 2015 

(a) Energy consumption of 30 provinces of rural and urban households (b) Energy intensity of 
30 provinces of rural and urban households; the energy intensity of rural or urban households = 
energy consumption of households in the rural or urban area /GDP in the rural or urban area in 

2015 
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3.3.2 PM2.5 concentration of China 

The average population weighted PM2.5 concentration calculated by the 

GAINS model. The average population weighted concentration of PM2.5 was 37 

ug/m3 in China in 2015, which has exceeded the national ambient air quality 

standard (NAAQ) (35 ug/m3) of China (MEE, 2012) and WHO air quality guideline 

(10 ug/m3). PM2.5 concentration was generally higher the Northern coastal 

economic zone (Jing-Jin-Ji area) with the highest average population weighted 

PM2.5 concentration, middle reaches of the Yellow River economic zone, middle 

reaches of the Yangtze River economic zone, Eastern coastal economic zone, 

Southern coastal economic zone, Sichuan Basin area in the Southwestern 

economic zone and Tarim Basin in the Northwestern economic zone and 

especially in urban areas. The five provinces with the highest population weighted 

PM2.5 concentration were Henan (68 ug/m3), Hebei (67 ug/m3), Beijing (66 ug/m3), 

Tianjin (65 ug/m3) and Shandong (58 ug/m3). 55% of the population is exposed 

to annual average PM2.5 concentration of more than 35 μg/m³ in 2015.  

3.3.3 Premature deaths of household consumption 

The total premature mortality attributable to PM2.5 concentration in China 

across five health endpoints of interest, COPD, IHD, LC, LRI and Stroke were 

1540,000 (95% CI：1270,000-1789,000). Rural household energy consumption 

activities resulted in 133,000 (95% CI: 104,476-159,389) premature deaths, 

representing 9% of the total premature deaths in China in 2015. Although, the 

total energy consumption of urban households was higher than that of rural 

households (Figure 3.2)，urban household energy consumption was associated 

with fewer premature deaths, 123,000 (95% CI: 96,136-147,450) premature 

deaths  (Figure 3.4). In total, 256, 000 (95% CI: 200,612-306,839) premature 

deaths was lost due to household consumption in China in 2015 (Figure 3.4).  
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Figure 3.4 Premature deaths attributable to PM2.5 concentration and PM2.5-related premature 
deaths attributable to rural and urban household energy consumption in China in 2015 

The age- and sex-specific premature deaths attributable to PM2.5 pollution 

associated with household energy consumption to varies across rural and urban 

areas. Premature deaths attributable to PM2.5 pollution are greater in rural than 

urban households (Figure 3.5a). Figure 3.9 shows that IHD was the largest health 

burden attributable to household sourced PM2.5 exposure (between 37.5% and 

37.8% premature deaths). The population aged over 80-year-old accounted for 

over half the total household energy consumption-PM2.5-related premature 

deaths (66.3% to 66.5%), with the age category 25 to 29-year-old recording the 

lowest (Figure 3.5b). Premature mortality is higher among the male population 

compared to the female population, ranging from 62.3% to 62.4% of household 

energy consumption PM2.5-related premature deaths (Figure 3.5b). 
(a) 
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(b) 

 

Figure 3.5 Health endpoint-, age- and sex-specific premature deaths attributable to PM2.5 

pollution by rural and urban household energy consumption in China in 2015 

(a) Value of health endpoint-, age- and sex-specific premature deaths attributable to PM2.5 

pollution by rural and urban household energy consumption in China in 2015 (b) Percentage of 
health endpoint-, age- and sex-specific premature deaths of the total premature deaths 

attributable to PM2.5 pollution by rural and urban household energy consumption in China in 
2015 

The number of premature deaths per 100,000 people had a positive 

correlation with PM2.5 concentration, as shown in Figure 3.6, with rural household 

energy consumption attributable to a larger number of premature deaths per 

100,000 people compared to urban household. When the PM2.5 concentration 

was less than 45 ug/m3, premature deaths was less than 20 per 100,000. Thirteen 

provinces (Henan, Hebei, Beijing, Tianjin, Shandong, Anhui, Shanghai, Jiangsu, 

Hubei, Chongqing, Shaanxi, Shanxi and Sichuan) had  PM2.5 concentration over 

45 ug/m3, with associated premature deaths per 100,000 people, ranging from 

65.9 (Chongqing) to 2.6 (Shanxi). The number of premature deaths associate 

with rural household energy consumption per 100,000 of the population were 

highest in Chongqing, Shanghai, Beijing, Hubei and Tianjin (65.9, 31.7, 28.8, 22.1 

and 21.5, respectively); while the number of premature deaths per 100,000 

associated with urban energy consumption was highest in Chongqing, Shanghai, 

Beijing, Hubei and Sichuan (65.7, 31, 22.5, 21.5 and 21, respectively). Although 

the highest levels of PM2.5 concentration were in the Northern coastal economic 

zone of China, the highest numbers of premature deaths per 100,000 people 

were more located in the Southern area of China which include the Southern 

coastal, the middle reaches of the Yangtze River and Yellow River, Eastern 
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coastal economic zones, and the Sichuan Basin area in the Southwestern 

economic zone. Provincial level premature deaths per 100,000 attributable to 

PM2.5 pollution by age- and sex-specific health endpoint (Figure 3.6).  

 

Figure 3.6 Provincial-level premature deaths per 100,000 people and population weighted PM2.5 
concentration by rural and urban household energy consumption in China in 2015 

The colorful dots show the aging ratio of population over 65-year-old and grey dots represents 
the size of population (million population) in 30 provinces in China in 2015 

3.3.4 Avoided premature deaths and economic benefits from 
reduced direct coal consumption 

If rural and urban households in China substituted electricity for coal and 

biomass, the model suggests that this could result in a significant reduction in 

deaths: such substitution could save 37,400 (95% CI: 31,800-41,800) deaths 

attributable to rural household consumption and 6,900 (95% CI; 6,100-7,900) 

lives attributable to urban household consumption, meaning on average 3 lives 

per 100,000 people can be saved in 2015. This corresponds to 28% and 6% of 

the total premature deaths caused by rural and urban household consumption in 

2015. Economically, such a shift would result in US$ 2.5 billion (95% CI: 2.1 -2.7) 

economic benefits for rural households, equaling 0.09% (95% CI: 0.08%-0.1%) 

of GDP of the rural region of China in 2015, and it could create 522 (95% CI: 468-
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594) million US$ economic benefits by urban household consumption, equaling 

0.006% (0.005%-0.007%) of GDP of the urban region of China in 2015. A shift to 

electricity by rural households would result in the largest economic benefits in 

Beijing (282: 252-307 US$), the highest number of deaths avoided in Hebei did 

(5,000: 4,400-5,450). A shift to electricity by urban households, would witness the 

Jiangsu area receive the largest economic benefits (75: 65-82 US$) and Sichuan 

recoding the largest reduction in premature motilities (697: 696-868) (Figure 3.7). 

 

Figure 3.7 Provincial-level economic benefits and avoided premature deaths by rural and urban 
household energy consumption in China in 2015 

The colorful dots show the aging ratio of population over 65-year-old and grey dots represents 
the size of population (million population) in 30 provinces in China in 2015 

3.3.5 Uncertainty analysis result  

Compared to the premature deaths from GEMM 5-COD, the premature 

deaths from GEMM NCD+LRI was approx. 1.9 times larger. In 2015, the rural 

household energy consumption resulted in 253,529 (95% CI: 228,299-276,707) 

deaths resulted from NCD and LRI while the urban household energy 

consumption led to 235,828 (95% CI: 212,030-257,786). From the results of the 

uncertainty analysis (Figure 3.8 and Figure 3.9), it finds that premature deaths 

from the five health endpoints is underestimated compared to results from GEMM 
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NCD+LRI (Figure 3.8). The economic benefits from changing household coal 

consumption into the electricity is also underestimated by the variant VSL 

approach relative to invariant VSL approach (Figure 3.8). Compared to the 

invariant VSL approach, results from invariant VSL were around 2.4 times larger. 

In 2015, the rural household energy consumption resulted in 5,966 (95% CI: 

5,092-6,627.8) million US$ while the urban household energy consumption led to 

1,255.6 (95% CI: 1,108.3-1,429.3) million US$. 

 

Figure 3.8 Premature deaths from GEMM 5-COD and GEMM NCD+LRI from rural and urban 
household consumption in China in 2015 
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Figure 3.9 Economic benefits of variant VSL and invariant VSL from rural and urban 
household consumption in China in 2015 

3.4 Discussion  

A number of recent studies have examined the health burden attributable to 

PM2.5 exposure in China (Maji et al., 2018, Liu et al., 2021b, Li et al., 2018a, Li et 

al., 2021, Song et al., 2017), and shown the scale of the challenge. This study 

confirms the scope and scale of the challenge and focuses specifically on the 

direct role of household energy consumption specifically. The contribution here 

builds on knowledge of household energy use (Chen et al., 2018, Yun et al., 2020, 

Zhao et al., 2018) to implement an integrated assessment approach connecting 

energy, emission, air pollution and health outcomes. Hence, the adverse impacts 

of household energy consumption by various fuel types across rural and urban 

areas on PM2.5 related age- and sex- specific premature deaths at provincial 

levels for 2015 are investigated. This provides new insights by estimating the 

premature death associated with each of the 15 fuel types used by households 

in China across different age and sex groups at the national/ regional/ provincial 
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levels for China. Further, a scenario analysis is applied to calculate the economic 

benefits from switching solid fuels into electricity. 

Our estimates found that in 2015, 17% of national premature deaths could 

be attributed to outdoor PM2.5 from residential energy sector. Although urban 

households consumed nearly 1.6 times energy than rural households, premature 

deaths attributable to PM2.5 exposure from household energy was 1.1 times 

higher from rural household consumption compared to urban households due to 

rural households’ use of solid fuel products. Regarding urban-rural differences, 

these findings are consistent with a similar study by Zhao et al. (2019) using data 

from 2012. However, Zhao et al. (2019)  reported higher estimates for premature 

deaths for rural areas compared to our study (18% vs 8.7%). Direct energy 

consumption was higher in 2012 than 2015, but the difference may also be 

underpinned by to cleaner energy sources in rural. In 2012, raw coal energy 

usage corresponded to 50% and 1.3% of the total energy consumption in rural 

and urban households, whereas in 2015, the proportion of raw coal proportion 

had decreased to 46% and 0.9% for respectively rural and urban households 

(NBSC, 2013, NBSC, 2016).  

Analysis at the regional level incorporating differences between urban and 

rural areas and age-sex specific mortality rates by five health outcomes, finds 

that between 37.5% and 37.8% premature deaths attributable to household 

energy consumption were due to IHD. Importantly, the analysis found that the 

distribution of household energy consumption-related premature deaths is not 

just a product of energy consumption and outdoor PM2.5 concentration, but also 

population density and demographic structure (Figure 3.8). The population aged 

over 80-year-old accounts for over half the total household energy consumption-

PM2.5-related premature deaths (66.3% to 66.5%), with the age category 25 to 

29-year-old recording the lowest. Premature mortality was higher among the 
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male population compared to the female population, ranging from 62.3% to 62.4% 

of household energy consumption PM2.5-related premature deaths. Household 

energy consumption-related premature deaths are shown to be highest in the 

Southern area of China, explained by a combination of high population density 

and an aging population. For example, Chongqing has the highest number of 

premature deaths as well as premature deaths per 100,000 and this was mainly 

attributable to its aging population (highest among the 30 provinces), population 

density (listed as 11/30) and PM2.5 concentration (listed as 10/30).  

The scenario analysis finds that if coal and biomass had been replaced with 

electricity in both urban and rural households, 28% (rural) and 6% (urban) 

premature deaths would have been avoided. Previous research by Zhao et al. 

(2018) similarly found that if solid fuels by Chinese household had been replaced 

with clean fuels, it could have saved 33% of the PM2.5-induced mortality in 2015. 

With regard to the lower estimates presented here, Zhao et al. (2018) also 

calculated the avoid deaths from indoor air pollution. This is equivalent to US$ 2.5 

billion (95% CI: 2.1-2.7) economic benefits for rural households and US$ 522 

million (95% CI: 468-594) for urban household consumption. The estimates 

presented here are also lower than those by Yun et al. (2020), who found that the 

residential sector contributed to 71% of the indoor PM2.5 concentrations and 67% 

of PM2.5-induced premature deaths in 2014 in China. However, once again our 

model may underestimate pre-mature deaths as indoor household energy 

consumption is not accounted for. 

This research suggests that households in Beijing would receive the largest 

economic benefits from cleaner air. However, it is important to note that the value 

of statistical life approach inevitably gives disproportionate weight to wealthier 

regions because of the innate characteristics of the method. Larger potential 

economic benefits of cleaner air to regions with high concentrations of wealth and 
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income remains a significant challenge in policy and decision-making, not least 

in the context of just and fair decarbonization transitions (Friel et al., 2008). This 

study illustrates the large positive health and economic impacts that would be 

obtained from a shift to cleaner energy types within households in China, 

particularly regarding rural households.  

From a policy perspective, this analysis suggests that mitigation measures 

such as promoting cleaner household fuel, through the subsidization of modern 

stoves within rural household will have large health and economic impacts, 

particularly in rural China. Li et al. (2019b) found that switching from solid fuels 

into carbonized fuels (higher thermal efficiencies and lower pollutant emissions) 

can generate environmental benefits for household residents. However, the 

health impacts of such a switch need to be more fully explored. For example, a 

recent clinical trial in the US found that cookstoves emitting lower 

PM2.5 emissions still had a negative impact on cardiac health (Cole-Hunter et al., 

2021). Irrespective of measures, the role of local municipalities will be crucial for 

the promotion and operationalization of new technologies, especially 

communities in poorer areas with resources are fewer higher baseline health 

risks than those in richer areas (Liu et al., 2021b).  

There are two major limitations in this research which can lead to further 

research. First, our estimates do not account for indoor household energy 

consumption. Indeed research by Yun et al. (2020) found that the residential 

sector contributed to 71% of the indoor PM2.5 concentrations and 67% of PM2.5-

induced premature deaths in 2014. As such this analysis is (i) a lower bound 

estimate of total premature deaths from direct household energy consumption 

and (ii) likely underestimates the impact on women as they may well have higher 

exposure to indoor air pollution due to their longer duration indoors in residential 

settings, as suggested by Hashim and Boffetta (2014). Secondly, we do not 
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consider fuel sources of power producing in our scenario analysis as electricity 

supplies are mostly from coal power plants in China (Hubacek et al., 2009), hence 

the health co-benefits from fuel switching and decarbonizing in our research may 

be even more significant than portrayed. Also, in this research, although we 

consider the health burden and health co-benefits across different age and sex 

groups, but we didn’t discuss the environmental justice issues in the household 

energy consumption and energy transition. It will be good to analyze who benefits 

the most/ least from the energy transition among household consumption and 

then give policy suggestions to subside or support household groups who 

benefits the least from the energy transition. 

 The Chapter 3 has analyzed the status of household direct energy 

consumption and heath co-benefits of its proposed energy transition. The next 

Chapter 4 is going to analyze the status of household indirect energy 

consumption in China in 2015.  
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Chapter 4 Climate mitigation for household 
indirect/embodied energy consumption of 
consumption activities 

4.1 Introduction  

Climate mitigation strategies tend to focus on supply-side technology, 

underemphasizing the significant potential for mitigation through managing 

consumption practices(Creutzig et al., 2018, Bjørn et al., 2018) or using 

interactions between demand-side and supply systems to leverage mitigation 

action (Creutzig et al., 2018, Ding et al., 2017). The household/residential sector 

is a major source of energy consumption, impacting even in countries with large 

manufacturing sectors such as China (Fan et al., 2013). Direct and indirect CO2 

emissions, related to household consumption accounted for 41% of the total CO2 

emissions in China between 2000-2010, with household energy consumption 

accounting for 40% of the total (Zhang et al., 2017e). With increasing living 

standards and wealth across the Chinese population, residential energy 

consumption is forecast to continually grow in the short and medium term (Fan et 

al., 2013). To achieve stated climate change mitigation goals, previous research 

for China has found that the energy intensity of household expenditure, and 

indeed the aggregate levels of consumption may have to decrease significantly 

in areas such as housing, food and transport activities (Ding et al., 2017).  

At the individual household level, the total amount of indirect energy 

consumption is not only affected by the energy intensity but also household 

income, with households with higher income or the anticipation of higher income, 

consuming more goods and services. As such, the income elasticity of different 

products and services will vary depending on household income. The economy 

of China is diverse across rural and urban regions: households in rural and urban 

regions have divergent profiles in terms of income, income elasticity and the 
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ability to meet basic household needs. Hence any mitigation strategy for the 

household sector in China needs to account for the continued economic 

development of poorer households and convergence between regions of China. 

There has been a long-standing debate that consumption practices drive 

unsustainability, notably in the consumption of goods and services with high 

emissions intensity that become more desirable with higher levels of income. If 

income elasticity of demand for type of goods and services is positively correlated 

with their emissions intensity, economic convergence within and across countries 

will increase consumption and thus emissions (Ivanova and Wood, 2020, Clune 

et al., 2017, Thøgersen, 2021). Already, there is evidence for this relationship in, 

for example, demand for leisure travel and emission-intensive diets (Ivanova and 

Wood, 2020, Clune et al., 2017, Thøgersen, 2021)). In response, a rich literature 

is emerging around the concept of sustainable consumption and economic 

development, specifically the definition of the necessary versus luxury 

consumption (Thøgersen, 2021, Lee and Ahn, 2016, Oswald et al., 2020, 

Kantenbacher et al., 2017). However, consumption activities and their 

classification as necessary or luxury will depend on societal conditions in which 

the consumption occurs, what is considered as a necessity in one country or 

region, may be viewed as a luxury good in another. From an economic 

perspective, basic and luxury goods and services are defined according to their 

income elasticity of demand.  

This research seeks to decompose embodied household consumption by 

urban and rural residency to understand where the greatest embodied energy 

savings may be made without compromising the continued economic 

convergence between Chinese regions. Specifically, data on household 

consumption patterns, an energy and expenditure extended input-output model 

and income elasticity of demand analysis is used, to examine embodied energy 

usage across eight broad consumption activities (food, clothing, housing, 
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household facilities, articles and services (abbreviated as facilities), transport and 

communication services (transport), education, cultural and recreation services 

(education), medicine and medical services (health) and miscellaneous 

commodities and services (miscell)). Given the large regional and urban/rural 

differentials in standards of living in China, this research disaggregates the notion 

of necessary (income elasticity less than 1) and luxury (income elasticity greater 

than 1) emissions by extending this classification to four income elasticity of 

demand categories. This classification is based on the ranges of income elasticity 

of demand of eight consumption activities to categorize them into four dimensions: 

• Households with subsistence demand (goods and services are demanded at 

a level that does not meet basic needs), income elasticity of demand between 0-

0.8; 

• Households with essential demand (goods and services are consumed at a 

level that meets basic needs), income elasticity of demand between 0.8-1; 

• Households with aspirational demand (goods and services are consumed at 

a level above that necessary for their daily life), income elasticity of demand 

between 1-1.2, and;  

• Households with opulent demand (goods and services are consumed at a 

level to reach a luxurious life), income elasticity of demand >1.2. 

Chinese regions produce and consume household goods and services at 

much different rates. To capture inter-regional trade, 31 provinces, cities, 

autonomous regions into five quintiles are classified according to their provincial 

average household income per capita in 2015. Then, regional demand-side and 

supply-side to account for inter-regional trade and supply chains are decomposed  

(Feng et al., 2013, Meng et al., 2013).  

To address the above research questions, the Consumer Lifestyle Analysis 

(CLA), an energy and expenditure extended input-output model and the income 

elasticity of demand concept in the microeconomics are applied  to estimate the 
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embodied energy consumption of eight broad household consumption activities 

across urban and rural China in 2015 and to distinguish these eight household 

consumption activities into the subsistence, essential, to aspirational and opulent 

categories and further to predicate the potential increasing category among eight 

consumption activities under the urbanization in China. Further, via building an 

integrated framework with CLA and input-output model, the demand-side 

consumption and supply-side production across eight broad household 

consumption activities of urban and rural China are combined.  

4.2 Method  

4.2.1 Data on embodied household energy consumption 

The definition of direct and indirect household energy consumption for the 

purpose of this research is shown in Table 4.1.  

Table 4.1 The goods and services; category of household consumption (Feng et al., 2011, 
NBSC, 2016-2020) 

Consumption 
activities 

categorization 

Consumer 
expenditure Goods and services 

Direct influence Home energy 
Space heating; air conditioning; water heating; 

refrigeration; other appliances and lighting; personal 
travel 

Indirect 
influence 

Food 

Food; starch and potatoes; dried beans and soy 
products; grease; meat and poultry and products; 
eggs; aquatic products; vegetables; condiments; 

sugar; tobacco; wine and beverages; dried and fresh; 
melons and fruits; pastry; milk and diary products; 
other food; dinning out; food processing service fee 

Clothing Garments; clothing material; footwear; clothing 
processing service fee 

Residence Housing construction; electricity use; heat use; fuel 
gas us; water use; leasing and business service 
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Table 4.1 The goods and services; category of household consumption (Feng et al., 2011, 
NBSC, 2016-2020) (Continued) 

Consumption 
activities 

categorization 

Consumer 
expenditure Goods and services 

Indirect  
influence 

Household 
facilities, 

articles and 
services 

Home equipment; supplies and services; consumer 
durables; interior decorations; bedding; household 
daily use; furniture materials; household services; 

miscellaneous goods 

Transport and 
communication 

services 

Road transport; rail transport; water transport; air 
transport; private cars; auto parts and accessories; 

electronic and telecommunications equipment; 
transportation equipment 

Education, 
cultural and 
recreation 
services 

Papermaking and paper products; printing and record 
medium reproduction; education (educational cost, 
personal tutors/studying exchanges, etc) ; cultural 
education and sports articles (recreational costs) 

Medicine and 
medical services 

Medical and pharmaceutical products; health and 
social work 

Miscellaneous 
commodities 
and services 

Wholesale, retail trade and catering; other goods and 
goods 

4.2.2 Calculating embodied household energy consumption 

The current literature proposes three methods to calculate indirect energy 

consumption, including the consumer lifestyle approach (CLA) (Feng et al., 2011), 

environmental extended  input-output analysis (EE IOA) (Wiedmann, 2009, Wang 

and Yang, 2016), and a hybrid method combing CLA and EE IOA (Bin and 

Dowlatabadi, 2005, Oswald et al., 2020). For CLA, the term “consumer” 

represents those who purchase and use products for individual or household 

consumption and lifestyle is a way of living and is reflected in consumption 

behavior (Bin and Dowlatabadi, 2005). Input–output analysis has been widely 

recognized as a popular tool to estimate energy use, greenhouse gas emissions, 
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pollutants embodied in consumer goods and services on a macro-scale (Hertwich 

and Wood, 2018, Peters et al., 2011, Skelton et al., 2011, Barrett et al., 2013).  

The energy intensity of an economic sector is : 

e = f𝑥*"    (4.1)                                               

Where f is the direct energy consumption of a sector, which are from Energy 

Inventory or Carbon Emissions Inventory from CEADs, and x is the total sector 

output in monetary term, which is from MRIO tables of China. The Leontief 

inverse matrix is given by: 

L = (𝐼 − 𝐴)*"   (4.2)                  

Where I is the identity matrix and A is the matrix block of normalized matrix of 

intermediate coefficients where the columns reflect the input from each sector in 

a region r required to produce one unit from each sector. The indirect energy 

intensity of each sector is produced as below:  

f= eL    (4.3)        

To map the indirect energy of each sector and each consumption activities, 

this research follows Liu et al. (2019) and links consumption activities with the 

sectors of the Chinese 2015 MRIO table (Zheng et al., 2020) . The MRIO 2015 

includes 31 provinces, cities and autonomous regions (Macao, Hong Kong, and 

Taiwan are not included) and 42 sectors.  

Three different linkages are possible including one-to-one correspondence 

between consumption activities and industrial sectors. In this case, the 

energy/carbon intensity of each consumption activity is equal to the indirect 

energy/carbon emission intensity of the corresponding sector; many-to-one 

correspondence between consumption activities and sectors. In this case, it is 

assumed that all consumption activities have the same energy/carbon emission 

factor which is equal to indirect carbon emission intensity of this sector; and finally, 

one-to-many correspondence between consumption activities and sectors. In this 
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case, the energy/carbon emission factor of a household activity was equal to the 

weighted sum of corresponding industrial sectors’ indirect carbon intensities. 

Please see Table 4.2 for an overview of the linkages for each sector and activities 

and Table 4.3 for the details of mapping among energy inventory data, MRIO 

table and household consumption activities.   

Table 4.2 Sectors in the MRIO tables related to consumption activities 

Consumer expenditure  Related sectors 

Food  Agriculture; food processing and tobaccos; hotel and 
restaurant 

Clothing Textile; clothing, leather, fur, etc.; resident services, 
repairs and other services 

Residence 

Coal mining; electricity and heat production and 
supply; gas and water production and supply; water 

production and supply; construction; real estate; leasing 
and commercial services; hotel and restaurant 

Household facilities, articles and 
services 

Wood processing and furnishing; chemical industry; 
nonmetal products; nonmetal products; metal products; 

electrical equipment; other manufacturing; resident 
services, repairs and other services 

Transport and communication 
services 

Petroleum refining, coking, etc.; transport equipment; 
electronic equipment; transport and storage; 

information transmission, software and information 
technology services 

Education, cultural and recreation 
services 

Paper making, printing, stationery, etc.; education; 
culture, sports and entertainment 

Medicine and medical services Specialist machinery; chemical industry; health and 
social work 

Miscellaneous commodities and 
services 

General machinery; specialist machinery; instrument 
and meter; resident services, repairs and other services; 
financial; scientific research; wholesale and retailing; 
water conservancy, environment and public facilities 
management; public management, social security and 

social organization 
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Table 4.3 Mapping sectors among energy inventory data, sectors from MRIO table and 
household consumption activities  

Consumption 
activities MRIO 42 sector Energy inventory 45 sectors 

Food 
Agriculture; food processing 

and tobaccos; hotel and 
restaurant 

Farming, forestry, animal husbandry, 
fishery & water conservancy; food 

processing; food production; 
beverage production; tobacco 

processing; other 

Transport and 
communication 

services 

Petroleum refining, coking, 
etc.; transport equipment; 

electronic equipment; 
transport and storage; 

information transmission, 
software and information 

technology services 

Petroleum processing and coking; 
transportation equipment; electronic 
and telecommunications equipment; 

transport, storage, postal & 
telecommunications services 

telecommunications services; other 

Education, cultural 
and recreation 

services; Medicine 
and medical services 

Paper making, printing, 
stationery, etc.; education; 

culture, sports and 
entertainment; specialist 

machinery; chemical sector; 
health and social work 

Papermaking and paper products; 
printing and record medium 

reproduction; cultural, educational 
and sports articles; raw chemical 
materials and chemical products; 

medical and pharmaceutical products; 
chemical Fiber; rubber products; 
plastic products; equipment for 

special purpose; ordinary machinery; 
other 
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Table 4.3 Mapping sectors among energy inventory data, sectors from MRIO table and 
household consumption activities (Continued) 

Consumption 
activities MRIO 42 sector Energy inventory 45 sectors 

Clothing; Housing; 
Household facilities, 
articles and services; 

Miscellaneous 
commodities and 

services 

Textile; clothing, leather, fur, 
etc.; resident services, repairs 

and other services; coal 
mining; electricity and heat 
production and supply; gas 
and water production and 

supply; water production and 
supply; construction; real 

estate; leasing and 
commercial services; hotel 

and restaurant; wood 
processing and furnishing; 
chemical sector; nonmetal 

products; nonmetal products; 
metal products; electrical 

equipment; other 
manufacturing; resident 

services, repairs and other 
services; general machinery; 

specialist machinery; 
instrument and meter; 

resident services, repairs and 
other services; financial; 

scientific research; wholesale 
and retailing; water 

conservancy, environment 
and public facilities 
management; public 

management, social security 
and social organization 

Coal mining and dressing; logging 
and transport of wood and bamboo; 
textile industry; garments and other 
fiber products; leather, furs, down 

and related products; timber 
processing, bamboo, cane, palm & 

straw products; furniture 
manufacturing; raw chemical 

materials and chemical products; 
medical and pharmaceutical 

products; chemical fiber; rubber 
products; plastic products; nonmetal 

mineral products; metal products; 
ordinary machinery; equipment for 
special purpose; electric equipment 
and machinery; instruments, meters 
cultural and office Machinery; other 

manufacturing industry; electric 
power, steam and hot water 
production and supply; gas 

production and supply; tap water 
production and supply; construction; 
wholesale, retail trade and catering 

service; other 

 
Petroleum and gas; Metal 
mining; Nonmetal mining; 

Metallurgy; Scrap 

Petroleum and natural gas extraction; 
ferrous metals mining and dressing; 

nonferrous metals mining and 
dressing; nonmetal minerals mining 
and dressing; other minerals mining 
and dressing; smelting and pressing 

of ferrous metals; smelting and 
pressing of nonferrous metals; scrap 

and waste 

It supposes that s (s > 1) sectors were related to activity c, and the carbon 

emission factor of consumption activity can be estimated as follows: 

𝑔K,( = ∑ 𝑤',( × 𝑓',(
+
"    (4.4)                                                                                                                           
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𝑤',( = 𝑐',( ∑ 𝑐',(
+
"⁄       (4.5)                                                                                                                         

Where 𝑓',( represents the embodied energy intensity in sector s in year t; 𝑓',( is 

the household final demand in sector s in the MRIO table；𝑤',(  shows the 

percentage of one sector’s household final demand on the sum of some (stands 

for p) sectors’ household final demand which are related to one consumption 

activity.  

The total embodied energy consumption of households can be computed by: 

𝐸𝑒𝑚𝑏𝑜𝑑𝑖𝑒𝑑,,),!,( = ∑ 𝑔K,(𝑌),!,(#%
?@"   (4.6)  

 𝐸𝑒𝑚𝑏𝑜𝑑𝑖𝑒𝑑?,),!,( is embodied energy consumption of rural or urban households  

(represented by r) in province i and in year t; respectively.	𝑔K,( is the vector of 

indirect energy intensities of  household consumption activities c in year t. 𝑌),!,( is 

the  household expenditure matrix  of rural or urban households  (represented by 

r) in province i and in year t,  which is the  product of household expenditure per 

capita and rural or urban population number in China. And  𝑌),!,( is adjusted by a 

balanced concordance matrix that maps the eight consumption activities 

identified in Table 1 and the 42 MRIO sectors.                                                                                                             

4.2.3 Income elasticity of demand 

The total amount of indirect energy consumption of the eight consumption 

activities is not only affected by the energy intensity but also the amount of money 

spent on each activity. As expenditure/demand is affected by income level, more 

money or anticipation of income, will result in more goods purchased by 

consumers. However, the income elasticity of demand (which is a measurement 

of the sensitivity of demand to changes in income, showing how the quantity 

purchased changes in response to a change in the consumer's income) of 

different products varies. Here, the income elasticity of demand of different 

consumption activities is calculated by employing a log-log regression of 
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expenditure per capita of eight categories of provinces from 2010  to 2015 and 

income per capita of provinces during the same period.  

logm𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒,,!,(,)n = 𝑏 logm𝑖𝑛𝑐𝑜𝑚𝑒!,(,)n + 𝑎   (4.7)                                                                              

r represents rural or urban households. Where 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒,,!,(,)   is the 

expenditure of a consumption activity by rural or urban households (r) in province 

i and in year t. 𝑖𝑛𝑐𝑜𝑚𝑒!,(,)  is the income of rural or urban households (r) in 

province i and in year t. The coefficient b of the modelled log-log regression is the 

required value of income elasticity of demand. If the income elasticity of demand 

is over 1, which means the change in the quantity demanded is greater than the 

change in consumer income, this demand is deemed as income elastic; if it is 

less than 1, it is said to be income inelastic.  

4.2.4 Consumption-based and production-based household energy 
consumption  

China is a vast country and the goods and services produced in one region 

may not be produced in that region. Production-based household energy 

consumption, that is the energy used in one region can be quantitatively 

decomposed into the components linked with consumption activities in that region 

as well as in other regions (Equation (4.8)). And the consumption-based 

household energy consumption, associated with regional consumption can be 

decomposed into the components generated within the region’s geographical 

boundary and those embodied in imports from outside of it, caused by region’s 

household consumption activities (Equation (4.9)). 

𝐸𝑃K) = 𝐸K)) +∑ 𝐸K)'$%
'   (4.8)                                     

𝐸𝐶K) = 𝐸K)) + ∑ 𝐸K')$%
'   (4.9)                                    

Where 𝐸𝑃K)  and 𝐸𝐶K) represent energy use relevant to household consumption 

activities c related to produced and consumed in a region r, respectively. s stands 
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for 30 Chinese provinces. 𝐸K))  represents household energy consumption 

activities c produced and consumed locally. 𝐸K)'  represents household energy 

consumption activities c produced in r but consumed in other Chinese provinces 

s. 𝐸K') represents household energy consumption activities c consumed in r but 

produced in other Chinese provinces s.  

4.3 Results 

4.3.1 Embodied energy consumption and expenditure of household 
consumption activities  

Household consumption is categorized into eight broad categories: food, 

clothing, housing, household facilities, articles and services (abbreviated as 

facilities), transport and communication services (transport), education, cultural 

and recreation services (education), medicine and medical services (health) and 

miscellaneous commodities and services (miscell). Total embodied energy 

consumption by urban households’ (15,000 PJ) is approx. 3 times that of rural 

household’s (5,000 PJ); corresponding to 17.6% and 6.1% of the total final 

energy consumption or 19.9 GJ/person and 9 GJ/person, respectively. Embodied 

energy consumption was highest across the food (24.7% in rural and 22.9% in 

urban), housing (20.2% in rural and 20.9% in urban) and transport (18.6% in rural 

and 19.6% in urban) consumer sectors in both rural and urban households. 

These three activities represented the largest share of household expenditure per 

capita (Table 4.4).  
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(a)                                                                         (b)                                                              

  

Figure 4.1 Embodied energy consumption and embodied energy consumption per capita of 
households in China in 2015 

(a) The total embodied energy consumption of household lifestyles in China in 2015 (b) The 
embodied energy consumption per capita of household lifestyles in China in 2015 

Table 4.4 Energy intensity of consumption activities and contributions to rural and urban 
household indirect energy consumption 

Consumpt
ion 

activities 

Embodied 
energy 

intensity 
(MJ/US$) 

Proportion of 
rural household 
expenditure per 

capita 

Proportion of 
urban 

household 
expenditure 
per capita 

Proportion of 
rural 

household 
embodied 

energy 
consumption 

Proportion of 
urban 

household 
embodied 

energy 
consumption 

Food 4.5 33.00% 29.90% 24.70% 22.90% 

Clothing 5.53 6.10% 8.20% 5.50% 7.50% 

Housing 5.63 21.10% 21.80% 20.20% 20.90% 

Facilities 9.64 5.70% 6.00% 9.60% 10.00% 

Transport 8.58 12.80% 13.40% 18.60% 19.60% 

Education 4.26 10% 11.00% 7.60% 8.00% 

Health 8.34 9.20% 7.10% 12.90% 9.50% 

Miscell 3.3 1.90% 2.60% 1.10% 1.50% 

4.3.2 Matrix of income elasticity of demand and embodied energy 
intensity and projection of household consumption lifestyles under 
urbanization  

A two-dimension matrix is built to relate activities’ status as subsistence, 

essential, aspirational and opulent to embodied energy intensity for respective 

rural and urban households. The matrix is segmented into eight quadrants 

defined by an elasticity of 0.8, 1 and 1.2 (below 0.8 is seen as the subsistent 
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products; between 0.8 and 1 is the essential products and over 1 is viewed as 

luxury products) in the y-dimension and the median of embodied energy intensity 

(in the x-dimension (Figure 4.2). Figure 4.2 indicates that for rural and urban 

households’ consumption activities regarding facilities and transport activity can 

be classified as essential and aspirational, respectively. For rural households, 

essential goods include goods consumed in the food, clothing and facilities 

activities; aspirational goods include goods consumed in the housing, transport, 

health, and miscell activities; opulent goods include goods consumed in the 

education activity. For urban household, subsistence goods include goods 

consumed in the food, clothing and health activities; essential goods include 

goods consumed in the facilities and miscell activities; aspirational goods include 

goods consumed in the transport and education activities; opulent goods include 

goods consumed in the housing activity.  

Figure 4.2 indicates that the ranking of embodied energy intensity for the 

eight categories is as follows: facilities > transport > health> 

housing>clothing >food>education> miscell. And facilities, transport, health and 

housing activities are represented as the high intensity activities and the rest of 

four are the low intensity activities. 
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Figure 4.2 A matrix of income elasticity of demand (y-dimension) and embodied energy 
intensity (x-dimension) for rural and urban households 

4.3.3 Scenario analysis of urbanization  

As per our findings in Figure 4.2, a further scenario analysis is conducted to 

know what consumption activities are going to increase by a larger magnitude by 

households under the urbanization in China in the near future. The urbanization 

process in China will have two effects on household embodied energy 

consumption: (i) more rural household transferring into urban households; (ii) the 

increase of income for rural and urban households (Liu and Lei, 2018, Al-mulali 

et al., 2013, Verma et al., 2021, Liu et al., 2011). The continued increase in 

household income will stimulate large increase of expenditure on luxury products 

compared to necessary products if the effect of income on expenditure is primarily 

considered. For urban households, expenditure on education, transport activities 

as the aspirational demand will increase at a higher rate relative to other activities 

while expenditure on housing activity will increase more than the education and 

transport activities. And for rural households, expenditure on the housing, health, 

transport and miscell activities as the aspirational demand will increase by a high 

rate while the increase rate of expenditure on the education activity will increase 

even higher. Comparing the rural and urban households, expenditure on the 
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clothing, food and health for urban households is lacking elasticity but to fulfill 

their minimal subsistence demand while for rural households, food and clothing 

activities are to fulfill their essential demand and health activity is to satisfy their 

aspirational demand; and rural and urban households regard the education and 

housing activities differently so that for the housing activity, expenditure of rural 

households will increase less than that of urban households, while for the 

education activity, the circumstance is on the contrary.   

Among the aspirational and opulent consumption activity categories, 

transport, housing and health activities have the highest intensity activity. 

Moreover, the largest share of Chinese households’ expenditure is on housing 

(21.1%-21.8%), transport (12.8%-13.4%) and health (7.1%-9.2%) (Table 4.4). 

The scenario analysis suggests that driven by continued urbanization, transport 

and housing consumption activities will produce the largest amount of embodied 

energy for urban households. For rural households, embodied energy usage will 

increase across transport, housing and health consumption activities. 

4.3.4 Effect of inter-regional trade on energy flow among regions by 
household consumption 

Regarding inter-regional trade, 31 provinces, cities, autonomous regions into 

five quintiles are classified according to their provincial average household 

income per capita in 2015 (see Table 4.4). The first quintile is the highest income 

and the fifth is the lowest. Also, the order of lifestyle activities according to their 

embodied energy intensity is ranked. Figure 4.3 presents the embodied energy 

consumption /production-based energy consumption per capita across the five 

regional income quintiles. Here it shows that embodied energy consumption is 

consistent with the region’s income levels except for the fourth quintile region, 

whereby the fourth quintile region is the largest energy producer and the second 

largest energy consumer (Figure 4.3a). it also finds that production-based energy 

was greater than its consumption-based energy (6,052 PJ > 4,667 PJ) in quintile 
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4, making it a net energy exporter. Food, housing and transport activities were 

the largest exporting categories for the fourth quintile region (Figure 4.4). In 

contrast, the second quintile region was the net importer for all eight categories 

(Figure 4.4).  

Table 4.3 Division of 31 provinces of China based on disposable income per capita of 
households 

Division Disposable income 
range (US$) Provinces 

First quintile, high income 8006-4473 Shanghai, Beijing, Zhejiang, Tianjin, 
Jiangsu, Guangdong 

Second quintile, middle high 3215-4473 Fujian, Liaoning, Shandong, Inner 
Mongolia, Chongqing, Hubei 

Third quintile, middle 2948-3215 Hunan, Hainan, Jilin, Heilongjiang, 
Jiangxi, Anhui 

Fourth quintile, middle low 2749-2948	 Hebei, Shanxi, Shaanxi, Ningxia, 
Sichuan, Henan 

Fifth quintile, low 1967-2749	 Guangxi, Xinjiang, Qinghai, Yunnan, 
Guizhou, Gansu, Tibet 

 (a)                                                                 (b) 

                

Figure 4.3  Discrepancy of energy consumption from local production (production-based) and 
consumption activities (consumption-based) 

(a) The total amount (b) per-capita number of production-based and consumption-based energy 
consumption of eight lifestyle activities of five income level regions of household energy 

consumption in China in 2015 
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Figure 4.4 Net energy exporter of five income level regions in eight lifestyle activities 

Examining the energy flow of food, housing, transport and activities (Figure 

4.5), the first regional income quintile was the largest consumer of all 

consumption activities except for the consumption of health activities, and the 

largest producer of transport and education related consumption. The fourth 

quantile region was the largest consumer of health relevant consumption activity 

and the largest producer of food, housing and health relevant consumption 

activities.  
(a) 

Food activity 
First 

quintile 
Second 
quintile 

Third 
quintile 

Fourth 
quintile 

Fifth 
quintile 

Consumption-
based 

Consumption-
based per 

capita 

Production-
based minus 

consumption-
based 

First quintile 891.0 60.6 247.6 121.6 107.8 1428.6 4.68 -465.2 

Second quintile 18.1 679.8 70.8 235.6 29.2 1033.5 3.51 -247.2 

Third quintile 18.7 17.1 538.8 192.6 29.4 796.6 3.19 178.7 

Fourth quintile 26.8 21.4 87.7 845.9 28.1 1009.9 3.04 399.8 

Fifth quintile 8.8 7.4 30.4 14.1 529.5 590.1 3.12 133.9 

Production-based 963.4 786.3 975.3 1409.7 724.0 4858.7  
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(b) 

Housing activity 
First 

quintile 
Second 
quintile 

Third 
quintile 

Fourth 
quintile 

Fifth 
quintile 

Consumption-
based 

Consumption-
based per 

capita 

Production-
based minus 

consumption-
based 

First quintile 1204.5 35.2 22.8 43.0 19.0 1324.5 4.34 -32.5 

Second quintile 32.4 577.1 13.3 194.4 10.7 828.0 2.81 -183.6  

Third quintile 21.8 13.4 503.5 165.8 7.5 712.0 2.85 -161.3 

Fourth quintile 18.2 9.9 5.9 883.9 5.5 923.4 2.78 375.5 

Fifth quintile 15.1 8.7 5.2 11.9 488.0 528.9 2.79 1.9 

Production-based 1292.0 644.4 550.7 1298.9 530.8 4316.8     

(c) 

Transport 
activity 

First 
quintile 

Second 
quintile 

Third 
quintile 

Fourth 
quintile 

Fifth 
quintile 

Consumption-
based 

Consumption-
based per 

capita 

Production-
based minus 

consumption-
based 

First quintile 961.2 67.4 36.7 58.3 17.8 1141.3 3.74 162.1 

Second quintile 97.0 577.8 29.0 193.4 11.6 908.8 3.09 -152.3 

Third quintile 78.7 37.6 364.5 123.8 8.2 612.8 2.45 -131.6 

Fourth quintile 93.8 34.2 26.3 751.0 9.0 914.4 2.75 240.1 

Fifth quintile 72.8 39.5 24.7 27.9 281.6 446.6 2.36 -118.3 

Production-based 1303.5 756.5 481.2 1154.5 328.2 4024.0  
 

(d) 

Education 
activity First 

quintile 
Second 
quintile 

Third 
quintile 

Fourth 
quintile 

Fifth 
quintile 

Consumption-
based 

Consumption-
based per 

capita 

Production-
based minus 

consumption-
based 

First quintile 420.0 12.3 3.1 7.5 3.6 446.6 1.38 55.9 

Second quintile 19.6 264.5 5.0 96.2 3.4 388.6 0.07 -80.5 

Third quintile 22.4 9.5 183.5 59.2 5.5 280.2 0.09 -73.3 

Fourth quintile 19.0 11.2 8.6 283.8 3.1 325.6 0.06 129.1 

Fifth quintile 21.4 10.6 6.7 8.0 162.5 209.1 0.11 -31.0 

Production-based 502.5 308.0 206.9 454.7 178.0   
 

(e) 

Health 
 activity First 

quintile 
Second 
quintile 

Third 
quintile 

Fourth 
quintile 

Fifth 
quintile 

Consumption-
based 

Consumption-
based per 

capita 

Production-
based minus 

consumption-
based 

First quintile 335.5 37.1 34.8 25.8 12.6 445.8 1.46 9.1 

Second quintile 17.8 332.9 12.6 100.6 4.9 468.9 1.59 -20.8 

Third quintile 31.4 22.9 239.5 73.5 7.7 374.9 1.50 -39.5 

Fourth quintile 47.2 38.4 32.8 464.8 13.4 596.6 1.80 82.1 

Fifth quintile 23.0 16.8 15.7 14.0 210.0 279.5 1.48 -30.8 

Production-based 454.8 448.1 335.4 678.7 248.6 2165.7  
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(f) 

Facilities activity 
First 

quintile 
Second 
quintile 

Third 
quintile 

Fourth 
quintile 

Fifth 
quintile 

Consumption-
based 

Consumption-
based per 

capita 

Production-
based minus 

consumption-
based 

First quintile 371.0 37.9 53.8 31.6 12.5 506.7 1.66 -40.0 

Second quintile 17.0 337.0 17.4 111.0 4.7 487.1 1.65 -54.9 

Third quintile 16.7 9.9 205.7 68.9 3.7 304.9 1.22 43.0 

Fourth quintile 40.3 31.7 46.7 377.3 11.9 507.8 1.53 95.9 

Fifth quintile 21.7 15.8 24.4 14.9 180.1 256.9 1.36 -44.0 

Production-based 466.7 432.3 347.8 603.7 212.9 2063.4  
 

(g) 

Clothing activity 
First 

quintile 
Second 
quintile 

Third 
quintile 

Fourth 
quintile 

Fifth 
quintile 

Consumption-
based 

Consumption-
based per 

capita 

Production-
based minus 

consumption-
based 

First quintile 337.7 32.5 13.1 23.7 2.6 409.6 1.11 112.2 

Second quintile 37.9 226.5 9.4 69.5 1.3 344.5 0.13 -5.3 

Third quintile 36.2 19.3 114.2 52.6 1.1 223.4 0.14 -59.8 

Fourth quintile 65.5 36.1 16.2 208.4 2.3 328.5 0.20 42.6 

Fifth quintile 44.6 24.8 10.8 16.8 56.9 153.8 0.24 -89.6 

Production-based 521.8 339.1 163.6 371.1 64.2 1459.8  
 

(h) 

Miscell  
activity First 

quintile 
Second 
quintile 

Third 
quintile 

Fourth 
quintile 

Fifth 
quintile 

Consumption-
based 

Consumption-
based per 

capita 

Production-
based minus 

consumption-
based 

First quintile 66.6 4.8 2.1 2.5 1.7 77.8 0.22 -4.2 

Second quintile 1.3 55.6 0.7 9.6 0.8 67.9 0.00 -1.5 

Third quintile 3.3 3.4 30.5 12.5 0.7 50.4 0.01 -16.0 

Fourth quintile 1.5 1.7 0.8 55.9 0.4 60.3 0.00 20.7 

Fifth quintile 0.9 0.9 0.4 0.5 31.3 34.1 0.00 0.9 

Production-based 73.6 66.4 34.5 81.0 35.0 290.5  
 

(i) 

Eight  
activities First 

quintile 
Second 
quintile 

Third 
quintile 

Fourth 
quintile 

Fifth 
quintile 

Consumption-
based 

Consumption-
based per 

capita 

Production-
based minus 

consumption-
based 

First quintile 4587.4 287.8 414.1 314.0 177.6 5780.9 15.04 -202.6 

Second quintile 241.0 3051.2 158.1 1010.3 66.7 4527.3 0.82 -746.2 

Third quintile 229.2 133.1 2180.1 748.9 64.0 3355.3 0.92 -259.9 

Fourth quintile 312.4 184.6 224.9 3871.1 73.6 4666.7 0.94 1385.7 

Fifth quintile 208.3 124.4 118.2 108.1 1939.8 2498.8 1.10 -177.0 

Production-based 5578.3 3781.1 3095.4 6052.4 2321.8 20829.0  
 

Figure 4.5 Consumption-based (horizonal direction) and production-based (vertical direction) 
energy consumption by eight household consumption activities 
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(a) food activity (b) housing activity (c) transport activity (d) education activity (e) health 
activity (f) facilities activity (g) clothing activity (h) miscell activity (i) eight activities within 

five regions 

A Sankey diagram is drawn to show the energy flow from eight categories of 

household consumption activities at the regional levels traced back to the 

production side at regional levels (Figure 4.6 and Table 4.5). Based on results 

above and the income elasticity of demand analysis, household health 

consumption activities will increase at a rapid pace. Health and social work sector, 

chemical sector and machinery sector provided 1284.8 PJ (59.3%), 870.1 PJ 

(40.2%) and 10.8 PJ (0.5%) to fulfil household’s health activity. For food activity, 

the amount of energy provided by food processing and tobaccos sector 

accounted for 57.1% of the total energy consumed by food activity followed by 

agriculture sector (30.2%) and service sector (12.6%). For the housing activity, 

the service sector and electricity, heat, gas and water production and supply 

sector and other sector accounted for 44.1%, 43.4% and 12.5%, respectively. For 

transport activity, transport, storage, and transport equipment sector accounted 

for 56.6%, followed by petroleum refining, coking, etc. sector (21.1%), service 

sector (16%) and machinery sector (6.3%). In sum, the service sector, food 

processing and tobaccos sector, transport, storage, and transport equipment 

sector, electricity, heat, gas and water production and supply sector and chemical 

sector were the top five sectors affected by household consumption activities, 

accounting for 25.9%, 13.3%, 10.9%, 9% and 8.3% of the total embodied energy 

consumption, respectively. 

The supply chain analysis indicates that the service sector consumed 43.5% 

goods from itself and 12.1% from electricity, heat, gas and water production and 

supply sector. For the food processing and tobacco sector, 30.4% was provided 

by itself followed by agriculture sector (15.6%) in terms of energy amount. For 

the transport, storage, and transport equipment sector, 51.6% was provided by 

within itself, followed by petroleum refining, coking, etc. sector (13.1%). Electricity, 
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heat, gas and water production and supply sector largely consumed 68.4% goods 

from itself and imported 13.2% goods from the other sector. For the chemical 

sector, 60.7% was provided by itself and 11.5% was provided by electricity, heat, 

gas and water production sector. In summary, the five major industrial sectors 

consumed between 30.4%-68.4% of its own energy. What’s more, embodied 

intensities of household activity tend to be relatively large compared to the rest of 

activities and chemical sector is the largest suppliers to this activity. For the 

chemical sector, 60.7% was provided by itself and 11.5% was provided by 

electricity, heat, gas and water production and supply sector. Herein, the 

chemical sector was the major reason for resulting in higher embodied intensity 

of household activity. 

 Finally, what regions provide the production of these five major industrial 

sectors is analyzed. For the first quintile region contributed the largest production 

to the transport, storage, and transport equipment sector (34.2%) and service 

sector (28%) while the fourth quintile region provided the largest production to 

the food processing and tobaccos sector (27.1%), electricity, heat, gas and water 

production and supply sector (30.1%) and chemical sector (28.7%).             

 

Figure 4.6 Energy flow from household lifestyle activities tracing back to production activities 
by supply chain 
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Table 4.4 Explanation of abbreviation of industrial sectors in the left part in Figure 4.6 

Abbreviation Detailed sectors 

Agriculture Agriculture 

Food Food processing and tobaccos 

Clothing Textile 
 Clothing, leather, fur, etc. 

Electricity Electricity and heat production and supply 
 Gas and water production and supply 
 Water production and supply 

Transport Transport and storage 
 Transport equipment 

Health Health and social work 

Machinery General machinery 
 Specialist machinery 
 Electrical equipment 
 Electronic equipment 
 Instrument and meter 
 Other manufacturing 

Service Wholesale and retailing 

Information transmission, software and information technology services 

Financial 

Leasing and commercial services 

Scientific research 

Water conservancy, environment and public facilities management 

Culture, sports and entertainment 

Public management, social security and social organization 

Hotel and restaurant 

Real estate 

Resident services, repairs and other services 

Education 

Other Coal mining 
 Wood processing and furnishing 
 Nonmetal products 
 Metal products 
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Table 4.4 Explanation of abbreviation of industrial sectors in the left part in Figure 4.6 
(Continued) 

Abbreviation Detailed sectors 

Other Paper making, printing, stationery, etc. 
 Construction 

Petroleum Petroleum refining, coking, etc. 

Chemical Chemical sector 

4.4 Discussion 

This study develops an integrated frame to connect demand-side 

consumption and supply-side production for Chinese households across eight 

broad consumption activities applying a Consumer Lifestyle Analysis (CLA) with 

an energy and expenditure extended input-output model. A matrix of income 

elasticity is built to distinguish eight discrete need/usage categories depending 

on household need for the product or service and the amount of energy the sector 

consumes. Four categories are (i) subsistence and low intensity; (ii) subsistence 

but high intensity; (iii) essential and low intensity; (iv) essential but high intensity; 

(v) aspirational and high intensity; (vi) aspirational but low intensity; (vii) opulent 

and high intensity; (viii) opulent but low intensity. 

Previous research of household consumption has predominately focused on 

studying direct and indirect energy consumption or carbon emissions at the 

national(Ding et al., 2017, Goldstein et al., 2020, Druckman and Jackson, 2009) 

or regional (Chen et al., 2019) level. This research extends this research by 

incorporating an urban/rural income elasticity of demand analysis to examine the 

impact of ongoing urbanization on future embodied energy consumption.  The 

analysis finds that Chinese households’ expenditure on four consumption 

categories, housing, education, cultural and recreation services (education), 

transport and communication services (transport), and medicine and medical 

services (health) are set to increase at a considerable rate compared to other 
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consumption activities. Categorized as aspirational, opulent and high energy 

intensity activities, consumption relating to housing and transport is estimated to 

increase by the largest magnitude. This finding are similar to recent work by 

McKinsey Consumer & Shopper Insights report: Meet the 2020 Chinese 

consumers (Atsmon et al., 2012) which predicted that higher than average growth 

rates across the housing, transport and recreation sectors. While data from China 

National Bureau of Statistics showed that average annual increase rates of per-

capita expenditure on health, education, housing and transport activities were 

12.4%, 9.3%, 9.1% and 8.3%, respectively during 2015-2019 whereas the annual 

increase rates of per-capita expenditure on food, clothing, facilities and miscell 

activities were 5.6%，3.5%，7.5% and 8.5%, individually (NBSC, 2016-2020).  

Regarding rural and urban households, this analysis also found that per-

capita expenditure of urban households will be higher than that of rural 

households. Although food and clothing activities belong to the necessary 

demand, rural and urban households treat these two activities differently, 

showing that expenditure on the food and clothing activities is more sensitive for 

rural households than for urban households to changes in income. This indicates 

that households in rural areas still have difficulties meeting their essential daily 

demand. For education activity, rural households are willing to spend relatively 

more than urban household relative to their change of income, indicating that 

rural households have a stronger desire to fulfill their educational than urban 

households. And for the health activity, it shows the similar meaning as the  

education activity but health activity more reflects the demand for personal care 

and well-being (Kaplan et al., 1976). For housing activity, the income elasticity is 

higher for urban households than the rural households, showing that urban 

households are more eager to experience higher quality of living (Hubacek et al., 

2009).  
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Regarding recent academic literature, Ding et al. (2017) found that housing, 

food and transport activities cause the most household  embodied energy 

consumption in China in 2012 and in our study, it found the food, housing and 

transport activities contributed the largest share to household embodied energy 

consumption in 2015. The average annual increase of per-capita expenditure on 

food was 4.6% while housing was 27.2% during 2012-2015 but the overall 

spending on food was over than the housing during these years meanwhile the 

embodied energy intensity of food activity has dropped by 14.3% from 2012-2015 

while for housing, it has increased by 18.5% so that from analyzing the factors of 

activity expenditure and energy intensity which both affect the final embodied 

energy consumption, it shows that energy intensity plays a vital role in reducing 

the embodied energy consumption and this finding is supported by Ding et al. 

(2017). From their scenario analysis, it found that the accelerated decrease of 

energy intensity play a more vital role  on energy conservation than the role of 

low-carbon consumption pattern (Ding et al., 2017).  

From an inter-regional trade perspective, it finds that household embodied 

energy consumption is positively related to household income/expenditure 

except for the fourth regional income quintile. However, this pattern is mainly 

because of its higher self-supplement rate (83%) (Appendices Figure A.1) and 

higher energy intensity of its local production which are majorly heavy industries 

like iron and steel production, coal mining, petroleum refining, coking, etc. On the 

other hand, although the first quintile region is the largest household embodied 

energy consumer (as its self-supplement rate ranked the second with 79% 

(Figure 4.3)) it did not import the largest energy. Instead, the second regional 

income quintile had the highest imports (Figure 4.4)). This is an interesting result, 

as although rich regions induced higher consumption-based energy usage 

(Wiedenhofer et al., 2017), regional self-sufficiency can decrease inter-regional 

differentials.  
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Since it finds that embodied household energy consumption from housing 

and transport are expected to rise at a large magnitude, it is necessary to reduce 

the expenditure on these two categories for five income level regions, especially 

for the first quintile region and reduce the  energy intensity of industrial sectors 

(primarily are service sector, transport, storage, and transport equipment sector, 

electricity, heat, gas and water production and supply sector) related to housing, 

transport and health activities. And these industrial sectors are majorly produced 

in different regions.  For instance, to enhance the energy intensity of households’ 

transport activities, it is vital to cut down the energy intensity of transport, storage, 

and transport equipment sector, and this sector is primarily produced in the first 

quintile region so that decreasing this sector’s energy intensity in the first quintile 

region is crucial. As the largest energy consumer, the first quintile plays a decisive 

role to reduce its own industrial sectors’ energy intensities since its self-sufficient 

rate was in the second rank. What’s more, the fourth quintile region is the largest 

net energy exporter so that reducing this region’s energy intensity is essential, 

especially in the food processing and tobaccos sector, electricity, heat, gas and 

water production and supply sector.  

Reducing the consumption level on aspirational and opulent and high 

intensity consumption activities is a natural and rational conclusion from our 

analysis and other research also indicated less consumption on energy-

consuming lifestyle replacing with low-carbon lifestyle (Ding et al., 2017, Lee and 

Ahn, 2016) . However, suggesting consumers to adopt a frugal lifestyle in housing 

and transport activities is not easy. But behavioral economics suggests that 

subjective factors like beliefs and preferences, can affect individual decision-

making (Kahneman, 1979). It shows that consumer environmental knowledge 

can affect behaviors (Frick et al., 2004) and environmental knowledge can lead 

to sustainable consumption (Press and Arnould, 2009). Also environmental 

beliefs and self-efficacy can indirectly effect on pro-environmental behavior, 
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including accommodating, promotional and proactive behavior through media 

use (television, newspapers and the Internet) since most people nowadays rely 

on the media to acquire information about climate change and global 

warming(Huang, 2016). Therefore, China’s government and environmental 

organizations can use the media to spread the knowledge about environmental 

protection and low-carbon lifestyles through various media channels to induce 

low-carbon and frugal lifestyles of individuals, like using the public transport to do 

commuting rather than private vehicles, reducing travel times and travel by public 

transport as often as possible, using energy efficient home applicants, not buying 

energy-consuming houses, turning off  electronic devices when not using them, 

etc. Also, government can incentivize this kind of lifestyle, like giving incentives 

for individuals/groups who buy low-caron houses and electric cars and adopt low-

carbon lifestyles. Generally, policymakers can adopt the ‘avoid–shift–improve’ 

approach, a well-established framework in the sustainable transport community 

(Creutzig et al., 2018), which provides a categorization of policy options so as to 

finally incentivize the public to take those low-carbon lifestyles in daily life.  

However, the existing of awareness-behavior gap also called as value -

action gap (Parkinson et al., 2014) may sabotage the intension of these efforts 

(Li et al., 2019a, Owens and Driffill, 2008, Bai and Liu, 2013). A method that has 

recently come to prominence in the last decade to influence behavior change is 

Nudge Theory(Thaler and Sunstein, 2008). Nudging works on the principle that 

small actions can have a substantial impact on the way people behave – and it 

creates ‘choice architectures’ for these actions that encourage (but don’t force) 

people to make better decisions. There are some nudging techniques which has 

been proved efficient: (i) optimize the defaulting options. For example, it was 

found that a greater number of consumers chose the renewable energy option 

for electricity when it was offered as the default option (Pichert and Katsikopoulos, 

2008);  (ii) provide visible information. Individuals tend to be more active in taking 
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action at things which can be measured and get quick feedbacks. For example, 

Meituan, a Chinese shopping platform, has released individuals’ cycling carbon 

reduction transcript on 17th September, 2021 so that their users who are using 

Meituan Bikes can know the number of carbon reduction they have contributed 

to by cycling(Ma, 2021); (iii) provide convenience of using facilities. The 

percentage of families who do recycling classifications when they receive 

garbagy can providing classification functions was nearly 50% higher than that of 

families who receive brochures about recycling classification; (iv) game design. 

A city painted giant and beautiful patterns on steps at its subways and it has 

increased the frequency of individuals to walk on steps rather than by elevators 

by 25% during peak times and 140% at non-peak times. There are many other 

techniques in nudging. In our research, although reducing individuals’ 

consumption on food is not easy since it is the basic need for individuals, using 

the nudging can avoid people eat excessive meat and encourage green diet by 

providing smaller plates at restaurants and putting low-caron food at salient 

places in a menu or relocating green food next to the cash register (Kroese et al., 

2016), etc.  

In our research, although reducing the industrial energy intensity is more 

important at this stage than decreasing the consumption level, it should not be 

neglected that the demand-side solution can have a profound effect on 

production activities and push the industrial production to do more technology 

innovation. Also it has been proved that conserving energy from the demand-side 

is more cost-effective both for the government and the public (Ding et al., 2017). 

And government should develop more policies on demand-side innovations, for 

example, carbon tax for goods and services is one of instruments which can be 

implemented to reduce the demand of high carbon-emitting goods and services 

with high carbon taxes. 
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There are two major limitations in this study. First, due to the data availability 

and limitation of input-output model, products in the same activity category 

consumed by rural and urban households are not distinguished, for example, 

rural and urban maybe tend to consumer different quality of food products, which 

then embrace different energy intensities.  Second, the scenario analysis to 

model the effect of urbanization in China on households’ embodied energy 

consumption is not applied, but this is an area of further research. 

The Chapter 4 is about the status of household indirect energy consumption 

within eight consumption categories. Since we find that household indirect energy 

consumption related to housing and transport categories are about to increase in 

a large amount. Hence, based on this result, in Chapter 5, we will conduct a case 

study in Beijing city to estimate the health co-benefits of households’ travel 

pattern changes under four climate mitigation scenarios.  
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Chapter 5 Health co-benefits from decarbonizing 
passenger transport: a scenario study 

5.1 Introduction 

There are recognized to be significant benefits from tackling transport 

pollution for both climate change and more localized pollutants. Carbon 

emissions are rising faster than emissions from other sectors and are projected 

to be 80% higher than current levels by 2030 (Kahn Ribeiro et al., 2007). At the 

same time, urban air pollution from the transport sector has been linked to 

approximately 0.8 million deaths per year globally with a further 1.2 million deaths 

per year due to road traffic and 1.9 million deaths per year by physical inactivity 

(WHO, 2002). Within this area, the distributional impact of air pollution across 

sections of exposed populations is widely recognized and well-established 

(Burnett and Cohen, 2020, Burnett et al., 2018, Burnett et al., 2014). For example, 

children, the elderly and those with predisposed respiratory and cardiovascular 

disease, are known to be more susceptible to the health impacts from air pollution 

due to their increased biological sensitivities and different exposure patterns 

(WHO, 2010a, Sun et al., 2013, Chen and Kan, 2008, Li et al., 2018b, Simoni et 

al., 2015, Bell et al., 2013). From a socioeconomic perspective, the distributional 

impacts of air pollution are amplified by historical patterns of segregated 

neighborhoods in cities and other legacies (Schell et al., 2020), and ability to 

afford cleaner technologies (Holland et al., 2019). Promoting a transition to low-

carbon transport is therefore a priority for climate change mitigation as well as 

reducing risk to many sections of the population.  

GHG mitigation measures in the transport sector include decreased use of 

motor vehicles, electrification of vehicles, increased levels of active travel 

(walking and cycling) and increased use of public transport (Haines et al., 2009, 

WHO, 2010a, Zhang and Fujimori, 2020). Recent research has examined several 
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mitigation measures or potential mitigation scenarios in the transport sector 

regarding energy consumption, GHG emission, atmospheric pollution and public 

health, etc (Wang et al., 2020, Wu et al., 2016b, Shindell et al., 2011, Wu et al., 

2011, Saikawa et al., 2011, Woodcock et al., 2009, Maizlish et al., 2013, Huo et 

al., 2014). Each of these impacts will have direct and indirect positive impacts on 

human health (Xue et al., 2015). Referred to as health co-benefits (Pan et al., 

2016), improvements in health outcomes from transport mitigation measures may 

include: reduction in mortality and morbidity attributable to air pollution exposure; 

reduced burden of obesity and chronic non-communicable diseases through 

increasing physical exercise from active travel; and reduced danger from road 

traffic (Woodcock et al., 2009, Perez et al., 2015, Maizlish et al., 2013, Shaw et 

al., 2014). Wang et al. (2020) studied vehicle emission control measures in China 

from 2000 to 2015 and found that without these control measures vehicular 

emissions during 1998–2015 would have been 2-3 times larger, and in 2015 

average concentration of PM2. 5 and O3 would have been higher by 11.7 μg/m3 

and 8.3 parts per billion, respectively, and the number of deaths attributable to 

2015 air pollution would have been higher by 510 thousand (95% CI: 360 to 730). 

Liang et al. (2019) developed multiple scenarios by considering various electric 

vehicles (EVs) penetration levels in China and found higher fleet electrification 

ratios can synergistically deliver greater air quality, climate and health benefits; 

estimating that the electrification of 27% of private vehicles could reduce the 

number of annual premature deaths nationwide by 17,456 (95% CI: 10,656–

22,160).  

Beijing, the capital of China, is an international metropolis with 21.5 million 

people in 2019 (BMBS, 2016-2020, UN, 2019). Accommodating the transport 

needs of this population, the energy consumption of Beijing’s transport sector is 

increasing year on year (BMBS, 2016-2020), while rapid socioeconomic 

development has resulted in personal motor vehicle ownership in Beijing 
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increasing by 146.4% (BTRC, 2012-2020) from 2005 to 2019. The rapid increase 

of passenger vehicles rapidly increases the energy consumption, GHG emission 

(He et al., 2016) as well as exacerbating traffic congestion and air pollution. 

Particulate pollution especially high concentrations of PM2.5 pollution, have been 

the foremost environmental problem for Beijing (Yang et al., 2013). In response, 

the Beijing government has implemented transport policy packages to tackle 

these problems (Appendices 1.2) to create a better living environment for citizens 

as well as reducing GHG and pollution emissions. However, to date, the majority 

studies of traffic pollution mitigation studies in China have assessed benefits 

solely in terms of their impacts on pollutant emissions at the national (Huo et al., 

2014, Wu et al., 2017) or local level (Wu et al., 2011, Zhang et al., 2017c) and a 

small number of studies have evaluated vehicular emissions’ impact on air quality 

in China (Li et al., 2015, Ke et al., 2017, Saikawa et al., 2011). This research 

seeks to build comprehensive insights into the impact of transport mitigation 

measures on population health, and on the distributional impact of such 

measures on different sub-populations. Furthermore, there is limited evidence on 

the economic benefits of mitigation measures in the transport sector in China (He 

and Qiu, 2016). 

To optimize the social and economic benefits of transport mitigation 

strategies as well as achieving socially progressive outcomes akin to 

environmental justice, it is necessary to also study the health co-benefits of 

mitigation measures across different populations. In response, the objective of 

this research is to estimate the potential emission reduction and health co-

benefits by age and sex, as well as quantifying the monetary benefits of four 

mitigation scenarios for Beijing in the urban land passenger sector compared with 

the BAU scenario from 2020 to 2050. An integrated assessment model with a 

Grey Forecast model, a low carbon traffic development model, the Greenhouse 

Gas and Air pollution Interactions and Synergies (GAINS)-ASIA model, a GEMM 
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and a health economic model are applied. Results at a spatial resolution of 0.1°× 

0.1°across Beijing’s central area are performed. This study therefore fills the 

current gap on detailed knowledge of the benefits of transport mitigation 

strategies studies for China at the city level. It also provides a reference for 

policymakers to compare different transport mitigation strategies or prioritizing a 

certain strategy so as to implement integrated climate mitigation measures that 

decreases carbon emission but also improves health outcomes for residents. The 

age-sex distributional analysis provides insights on the policy needs for different 

segments of the population. 

5.2 Methods  

5.2.1 Integrated transport and health model 

This study applies an integrated model framework on the basis of combining 

a Grey Forecast model, a low carbon traffic development model, the GAINS-ASIA 

model, a health assessment model (GEMM), and a health economic model 

(Figure 5.1).  

The Grey Forecast model is used to forecast the resident trips in the central 

area of Beijing per day from 2020 to 2050. The low carbon traffic development 

model is applied to calculate travel distances and energy consumption of different 

travel modes (TMs). The GAINS-ASIA model estimates future air pollutants 

emissions using data on energy consumption, industrial production and proposed 

environmental regulations under different scenarios. The GEMM model is used 

to examine premature deaths and avoided deaths attributable to ambient PM2.5 

caused by emissions related to regional production and consumption activities. 

Finally, the health economic model is to evaluate the related economic benefits 

from saving lives from mitigation in transport.   
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Figure 5.1 Research framework for assessment of health and economic outcomes of transport 
scenarios for Beijing 

5.2.2 Scenario description and research scope 

Due to data availability from Beijing Transport Annual Report (BTRC, 2012-

2020), the research area is the central area of Beijing, China, including 

Dongcheng, Xicheng, Chaoyang, Haidian, Shijingshan and Fengtai Districts. The 

transport sector was divided into freight, intercity passenger and urban passenger 

transport according to the classification of national statistical systems (Liu et al., 

2018). Data on urban land passenger transport defined as public passenger 

transport (buses, subway, walking and cycling) and private passenger transport 

(private cars and taxis) was used. The year 2015 was selected as the base year 

for this study and this baseline year data is from the Beijing Transport Annual 

Report (BTRC, 2016).  

A BAU scenario is used as the reference scenario, with four alternative 

mitigation scenarios proposed: IGT (increased green transport), MEV (more EVs), 

IGT_MEV (combining IGT and MEV scenarios) and Near zero CO2 emissions 

scenarios. Description of scenarios are in Table 5.1, basis for setting parameters 
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are in Table 5.2 (I majorly set scenarios according to climate mitigation measures 

of transport sector from the Beijing City Master Plan (2016-2035) (PGBM, 2017) ) 

and detailed assumption parameters for scenario setting are in Table 5.3. 

Table 5.1 Principal features of BAU scenario and for progressive transport scenarios for Beijing 

Scenario Description 

BAU 

Improve transport structure and energy structure; increase the share of green 
transport (including walking, cycling, subway and buses) in the central area 

of Beijing to 75% in 2020 as per 2020 Beijing Transport Annual 
Report(BTRC, 2012-2020)); reduce share of passenger cars and taxis  

IGT 

Increase share of green transport in the central area of Beijing, increasing the 
share of green transport to over 75% by 2020 and not less than 80% in 2035 

according to Beijing City Master Plan (2016-2035)(PGBM, 2017)  

MEV 

Based on BAU, focus on decarbonizing motor vehicles; increase diffusion of 
electric cars (ECs) according to Beijing Municipality regulations on 

quantifying the number of passenger cars and restricting usage of gasoline 
cars according to Beijing City Master Plan (2016-2035)(PGBM, 2017) 

IGT_MEV Aggregates the IGT and MEV scenario 

Near zero 

Based on the IGT_MEV scenario, 100% achieve electronification of 
passenger vehicles in Beijing by 2050; eliminate gasoline cars by time, 
making the total gasoline cars’ population reduce by time and the total 

passenger vehicles’ population gets less by time 

The BAU scenario takes account of transport structure improvement over 

time as well as any energy structure improvements in the transport sector. 

Historical share of different land passenger TMs in Beijing from 2007 to 2019 is 

shown in supplementary figure 1. In 2019, share of green transport in the central 

area of Beijing was 74.1%, with walking ranking the first (30.2%), followed by car 

(23.3%), subway (16.5%), bus (15.3%), cycling (12.1%) and taxi (2.6%) (Figure 

5.2). The IGT and MEV scenarios refer to policies of associated with Beijing’s 

transport development: Beijing City Master Plan (2016-2035) (PGBM, 2017). The 

IGT emphasizes increasing the share of green transport (walking, cycling and 

public transport) in Beijing, increasing the share of green transport to over 75% 

by 2020 and not less than 80% in 2035 (PGBM, 2017). The MEV scenario 

emphasizes the decarbonization of vehicles, which will affect the fuel 

consumption of vehicles. In this study, for passenger cars, two types of cars are 
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considered -- gasoline cars and ECs. There are three major types of ECs used 

by consumers in Beijing--battery EV, plug-in hybrid EV and range-extended EV 

(DaaS-Auto, 2015-2020). In this study, it is assumed that all EVs are carbon-free 

EVs (note: carbon-free EVs means they are carbon-free on a direct basis not on 

a well-to-wheel basis) like battery EVs and range-extended EV under the five 

relevant scenarios. This assumption is based on the current status of EVs’ 

populations in Beijing from 2015-2020 (Table 5.4) and projected industry trends 

in supply and demand towards using carbon-free EVs in the near future (Winton, 

2021). For example, Volkswagen declared 70% of its total European vehicle 

sales will be battery EVs by 2030 and investment bank UBS predicted that new 

cares would be 20% electric in 2025, 50% by 2030 and 100% by 2040 (Winton, 

2021). In this context, China is in a competitive market position for production and 

distribution of EVs, especially in battery EVs (Dabelstein et al., 2021). Therefore, 

100% using carbon-free EVs appears to be a justifiable and realistic assumption 

in these scenarios. 

 
Figure 5.2 Share of green transport and different shares of urban passenger travel modes in the 

central area of Beijing from 2007 to 2019 

The IGT_MEV scenario aggregates the IGT and MEV scenarios.  
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In 2020, China pledged to achieve carbon neutral by 2060 (Watkins, 2020). 

To align with the goals of the Paris Agreement and the China government a “Near 

zero” CO2 emissions scenario is set up. This scenario is based on IGT_MEV, but 

it further promotes 100% electronification of Beijing’s passenger transport 

including passenger cars, taxis, and buses by 2050.   

To compare results between scenarios the following five common 

assumptions are used:  

Annual total resident trips under the five scenarios are the same.  

Except for data for the transport sector, the data underpinning each scenario 

in the GAINS-ASIA model remains the same.  

All scenarios consider current policy to improve the gasoline and diesel fuels 

standard to China national VI standard and energy intensity of different fuels of 

vehicles stays as the China national VI standard in the studying period. 

All scenarios have same population number and demographic structure per 

year. 
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Table 5.2  Dimensions of private and public vehicle use in scenarios and sources for their 
parametrization 

Basis for setting parameters Passenger car Taxis Bus Green transport share  

13th FYP (2016-2020)   

Replaced the 
old public 
buses to 

renewable 
buses every 
year and the 

percentage of 
renewable 

buses 
population of 

the total 
public buses 

was over 
90%(Chen, 

2018) 

 

Beijing City Master Plan 
(2016-2035) 

In 2018, 2019 
and 2020, the 
total quota for 
new cars was 
100,000 with 

60,000 
allocated for 
electric cars 
(PGBM, 

2017, 
PGBM, 

2017-2020) 

  

Increased the share 
of green transport to 
over 75% by 2020 
and not less than 
80% in 203551 
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Table 5.2 Dimensions of private and public vehicle use in scenarios and sources for their 
parametrization (Continued) 

Basis for setting 
parameters Passenger car Taxis Bus Green transport 

share  

Assumptions 

 Two types of 
cars: gasoline 
and electric 

cars and all the 
electric cars are 

carbon-free; 
the total quota 
for new cars 

will stay 
100,000 per 

year from 2020 
to 2050 and 

since 2025, all 
the total quota 

will be for 
electric cars 
(Zhuang and 
Jiang, 2012) 

and population 
of gasoline cars 

stay 
unchanged; 
eliminate 

gasoline cars 
by 8% since 

2030, which is 
only applied in 
the Near zero 

scenario  

The 
percent
ages of 
populat
ions of 
gasolin
e and 

electric 
taxis 
are 

kept as 
same as 
that of 
cars 

From 2025 to 
2050, its 

percentage is 
100%, 

achieving100
% 

electrification  

  

Applied scenario  
MEV, 

IGT_MEV, 
Near zero 

BAU, 
IGT, 

MEV, 
IGT_M

EV, 
Near 
zero 

BAU, IGT, 
MEV, 

IGT_MEV, 
Near zero 

IGT 
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Table 5.3 Principal parameters of five transport scenarios for Beijing, 2020 to 2050 

Paramet
er TM BAU IGT MEV IGT_MEV Near zero  

Share of 
TM 

Goal
s of 

share 
of 

TM 

Share of 
green 

transport 
reaches 
75% in 

2020(BTR
C, 2012-

2020)  

Share of green 
transport 

reaches > 75% in 
2020 and <= 

80% in 
2035(PGBM, 

2017)  

Same as 
BAU 

Same as 
IGT 

Same as 
IGT 

Share of 
TM 

Bus 
Increase by 

0.1% 
annually  

Increase by 
0.2% 

annually  

Same as 
BAU 

Same as 
IGT Same as IGT 

Sub
way 

Increase by 
0.1% 

annually 

Increase by 
0.2% 

annually 

Same as 
BAU 

Same as 
IGT Same as IGT 

Taxi 
Decrease by 

0.05% 
annually  

Decrease 
by 0.08% 
annually  

Same as 
BAU 

Same as 
IGT Same as IGT 

Cycli
ng 

Increase by 
0.01% 

annually  

Increase by 
0.02% 

annually  

Same as 
BAU 

Same as 
IGT Same as IGT 

Walk
ing 

Increase by 
0.01% 

annually  

Increase by 
0.02% 

annually  

Same as 
BAU 

Same as 
IGT Same as IGT 

Percenta
ges of 

different 
fuel- 
type 

vehicles  

Car 

The 
percentages 
of gasoline 
and electric 

cars are 
99.3% and 

0.7%, 
respectively 

Same as 
BAU 

Since 2025, 
all of the 

quotas will 
be for 

electric 
cars(Zhuan
g and Jiang, 
2012)  and 
quota will 
be 100,000 
per year, 

and 
population 
of gasoline 
cars stay 

unchanged 

Same as 
MEV 

 Based on 
MEV before 

2030, but 
eliminate 

gasoline cars 
by 8% since 

2030; in 
2050, 

achieving100
% 

electronificati
on of 

passenger 
cars 

 
 



 112 

Table 5.3 Principal parameters of five transport scenarios for Beijing, 2020 to 2050 
(Continued) 

Parameter TM BAU IGT MEV IGT_MEV Near zero  

Percentag
es of 

different 
fuel-type 
vehicles 

Bus 

In 2020, the 
percentage of 
electric bus is 

90%; from 
2025 to 2050, 
its percentage 

is 100%, 
achieving100

% 
electronificatio

n  

Same as 
BAU 

Same as 
BAU 

Same as 
BAU 

Same as 
BAU 

Subway Use electricity Same as 
BAU 

Same as 
BAU 

Same as 
BAU 

Same as 
BAU 

Taxi 

The 
percentages of 
gasoline and 
electric taxis 

are 99.3% and 
0.7%, 

respectively 

Same as 
BAU 

Keep the 
same 

percentage 
as cars 

Same as 
MEV 

Keep the 
same 

percentage 
as cars 

Note: Assumption of shares of different TMs under scenarios is based on historical data 
of and trend of changes in different TMs from Beijing Transport Annual Report (BTRC, 
2012-2020). Generally, shares of bus, subway, cycling will increase in Beijing, while taxi 
and cars will decrease in the future. The annual 8% elimination rate of present gasoline 
cars is set according to the BTRC 2018(BTRC, 2012-2020).  

Table 5.4 Population of electric cars (EVs) in Beijing from 2015 to 2020 (DaaS-Auto, 
2015-2020) 

Type 2015 2016 2017 2018 2019 2020 

Battery EV 338 63,058 118,618 190,757 268,569 356,777 

Range-extended EV  7 23 25 193 3,868 

Plug-in hybrid EV  612 1,777 3,420 5,941 7,474 

Total 338 63,677 120,418 194,202 274,703 368,119 
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5.2.3 Modelling air pollutants emissions, scope of travel modes 
(TMs) and PM2.5 concentration 

The low carbon traffic development model is used to calculate the travel 

distance of each TMs under the five scenarios multiplying the energy intensity of 

different fuel vehicles. The IPCC (2006)’s bottom-up approach calculating GHG 

is used (IPCC, 2006). The equation for calculating the energy consumption of 

different TMs is shown as below:  

𝐸!,(,',? = 𝑁(,' × 𝑆!,(,' × 𝑇𝐷!,(,' × 𝑃!,(,',? × 𝐼!,?			(5.1) 																																						 

Where 𝐸!,(,',?  (PJ) is the energy consumption (PJ) of different fuels f 

(GSL(gasoline), MD (diesel), CNG (compressed natural gas), ELE (electricity)) of 

TMs i (bus, subway, taxis, car, cycling and walking) in year t under a scenario s ; 

𝑁(,' (104 times) is the total resident trips in year t under a scenario s; 𝑆!,(,' is the 

share of TMs i in year t under a scenario s (Table 5.5); TDi,t,s (km) is the per trip 

distance of TM i in year t under a scenario s, which is assumed to keep as same 

as that in 2015 (7.3km,13.3km, 9.9km, 13.2km, 3.6km,1.9km for bus, subway, 

taxi, car, cycling and walking, individually from the data of 2016 Beijing Transport 

Annual Report (BTRC, 2012-2020)); 𝑃!,(,',?   is the percentage of different fuel type 

vehicles f in one TM i in year t under a scenario s (Table 5.6); in another word, 

the percentage of different fuel type vehicles of the total population of vehicles 

(Table 5.7) and in this study, it is converted into the percentage of different fuel 

type vehicles f of the total distance travelled in one TM i in year t under a scenario 

s according to the percentage of different fuel type vehicles of the total population 

of vehicles; Ii,f is the energy intensity of different fuels f of vehicles i 

(PJ/passenger.104 km) (for cycling and walking, Ii,f is assumed to be zero and for 

different years and scenarios, Ii,f is assumed to be the same) (Table 5.8). 

The Grey Forecast model is applied to predict the total trips of residents 

(person-trip) in the central area of Beijing per day from 2020 to 2050 according 

to the total residents’ trips from 2001 to 2019 (BTRC, 2012-2020) as the resident 
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trips per day is an unclear process (BTRC, 2012-2020). By aggregating the 

original resident trip per day to make this variable show certain pattern, the Grey 

Forecast model is built: 

𝐷𝑁( =2213.81	× (1 − 𝑒%.%$L%"/M$) × 𝑒*%.%$L%"/M$×((*") 

(t=1, 2, 3……)   (5.2) 

Where DNt is the resident trips per day and Nt will be the DNt multiplies 365. t 

represents the order of years from 2001-2050. It is assumed Nt would be the 

same for all five scenarios. The results of Nt is showed in Figure 5.3.  

 

 

 

 

 

 

 

 
 
 

Figure 5.3 Total resident trips per day on weekdays from 2001 to 2050 (per day) 

Table 5.5 Share of TMs Sits under different scenarios (%) 

Year Scenario Bus Subway Taxi Car Cycling Walking Green transport 

2015 Baseline 19.7  19.8  4.3  25.2  9.8  21.4  70.7  

2020 BAU 15.4  16.8  2.6  22.5  12.3  30.5  75.0  

2025 BAU 15.9  17.3  2.3  20.7  12.8  31.0  77.0  

2030 BAU 16.4  17.8  2.1  19.0  13.3  31.5  79.0  

2035 BAU 16.9  18.3  1.8  17.2  13.8  32.0  81.0  

2040 BAU 17.4  18.8  1.6  15.5  14.3  32.5  83.0  

2045 BAU 17.9  19.3  1.3  13.7  14.8  33.0  85.0  

2050 BAU 18.4  19.8  1.1  12.0  15.3  33.5  87.0  

2020 IGT 15.5  16.9  2.5  22.1  12.4  30.6  75.4  

2025 IGT 16.5  17.9  2.1  18.5  13.4  31.6  79.4  
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Table 5.5 Share of TMs Sits under different scenarios (%) (Continued) 

 

 

 

 

Year Scenario Bus Subway Taxi Car Cycling Walking Green transport 

2030 IGT 17.5  18.9  1.7  14.9  14.4  32.6  83.4  

2035 IGT 18.5  19.9  1.3  11.3  15.4  33.6  87.4  

2040 IGT 19.5  20.9  0.9  7.7  16.4  34.6  91.4  

2045 IGT 20.5  21.9  0.5  4.1  17.4  35.6  95.4  

2050 IGT 21.5  22.9  0.1  0.5  18.4  36.6  99.4  

2020 MEV 15.4  16.8  2.6  22.5  12.3  30.5  75.0  

2025 MEV 15.9  17.3  2.3  20.7  12.8  31.0  77.0  

2030 MEV 16.4  17.8  2.1  19.0  13.3  31.5  79.0  

2035 MEV 16.9  18.3  1.8  17.2  13.8  32.0  81.0  

2040 MEV 17.4  18.8  1.6  15.5  14.3  32.5  83.0  

2045 MEV 17.9  19.3  1.3  13.7  14.8  33.0  85.0  

2050 MEV 18.4  19.8  1.1  12.0  15.3  33.5  87.0  

2020 IGT_MEV 15.5  16.9  2.5  22.1  12.4  30.6  75.4  

2025 IGT_MEV 16.5  17.9  2.1  18.5  13.4  31.6  79.4  

2030 IGT_MEV 17.5  18.9  1.7  14.9  14.4  32.6  83.4  

2035 IGT_MEV 18.5  19.9  1.3  11.3  15.4  33.6  87.4  

2040 IGT_MEV 19.5  20.9  0.9  7.7  16.4  34.6  91.4  

2045 IGT_MEV 20.5  21.9  0.5  4.1  17.4  35.6  95.4  

2050 IGT_MEV 21.5  22.9  0.1  0.5  18.4  36.6  99.4  

2020 Near zero 15.5  16.9  2.5  22.1  12.4  30.6  75.4  

2025 Near zero 16.5  17.9  2.1  18.5  13.4  31.6  79.4  

2030 Near zero 17.5  18.9  1.7  14.9  14.4  32.6  83.4  

2035 Near zero 18.5  19.9  1.3  11.3  15.4  33.6  87.4  

2040 Near zero 19.5  20.9   0.9  7.7  16.4  34.6  91.4  

2045 Near zero 20.5  21.9  0.5  4.1  17.4  35.6  95.4  

2050 Near zero 21.5  22.9  0.1  0.5  18.4  36.6  99.4  
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Table 5.6 Percentage of different fuel-type vehicles in one TM under scenarios 

TMs Year Scenario GSL MD CNG ELE 

Bus 

2015 Baseline 0 81.6 15.3 3.1 

2020 
BAU/IGT/MEV/ 
IGT_MEV/Near 

zero 
0 8.4 1.6 90 

2025-2050 
BAU/IGT/MEV/ 
IGT_MEV/Near 

zero 
0 0 0 100 

Subway 

2015 Baseline 0 0 0 100 

2020-2050 
BAU/IGT/MEV/ 
IGT_MEV/ Near 

zero 
0 0 0 100 

Taxi/Car 

2015 Baseline 99.3   0.7 

2020-2050 BAU/IGT 99.3   0.7 

2020 MEV/IGT_MEV 92.8   7.2 

2025 MEV/IGT_MEV 86.2   13.8 

2030 MEV/IGT_MEV 79.1   20.9 

2035 MEV/IGT_MEV 73.1   26.9 

2040 MEV/IGT_MEV 68   32 

2045 MEV/IGT_MEV 63.5   36.5 

2050 MEV/IGT_MEV 59.5   40.5 

2020 Near zero 92.8   7.2 

2025 Near zero 86.2   13.8 

2030 Near zero 71.4   28.6 

2035 Near zero 54.2   45.8 

2040 Near zero 37.8   62.2 

2045 Near zero 24.7   75.3 

2050 Near zero 0     100 
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Table 5.7 Projection of car population (104) in Beijing 

Year 

MEV/IGT_MEV Near zero 

Petrol cars Electric cars  Total  Petrol cars Electric cars  Total  

2020 470.7 36.7 507.4 470.7 36.7 507.4 

2025 480.7 76.7 557.4 480.7 76.7 557.4 

2030 480.7 126.7 607.4 316.8 126.7 443.6 

2035 480.7 176.7 657.4 208.8 176.7 385.5 

2040 480.7 226.7 707.4 137.6 226.7 364.3 

2045 480.7 276.7 757.4 90.7 276.7 367.4 

2050 480.7 326.7 807.4 0.0 326.7 326.7 

Note: From 2020 to 2050, under MEV, IGT_MEV and Near zero CO2 emissions scenario, 
total quota for new cars stay 100000 annually (He et al., 2019). Under MEV, IGT_MEV 
and Near zero CO2 emissions scenario, from 2020 to 2025, the quota for electric cars is 
60000, 70000, 80000, 90000, 100000 respectively (He et al., 2019), and after 2025, all 
the quota for new cars is assumed for electric cars (Zhuang and Jiang, 2012). Under MEV 
and IGT_MEV scenario, after 2025, the ownerships of gasoline cars stay the same while 
under Near zero CO2 emissions scenario, after 2025, the ownership of gasoline cars 
reduces 8% annually. The annual 8% elimination rate of present gasoline cars is set 
according to the BTRC 2018(BTRC, 2012-2020). 

Table 5.8 Energy intensity of different fuels of vehicles 

Vehicle Energy type MJ/passenger.km PJ/passenger.104 km 

Bus GSL 0.59840 5.984×10-6 

 MD 0.43645 4.3655×10-6 

 CNG 0.65532 6.5532×10-6 

 ELE 0.12933 1.2933×10-6 

Subway ELE 0.176 1.76×10-6 

Taxi GSL 1.87 1.87×10-5 

Car GSL 1.87 1.87×10-5 

 ELE 0.30612 3.0612×10-6 

Note: The data is taken from Zhuang and Jiang (2012). 

Owing to the complexity of transport data including a variety of TMs, vehicle 

types and vehicle owners (organizations or individuals), the calculation of energy 

consumption for land passenger transport was based on a study (Wang et al., 

2015) conducted on Beijing’s urban passenger transport in 2012. Based on this 
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study, it assumes that in 2015, taxis and subway were using gasoline and 

electricity, individually, while buses are using diesel, CNG and electricity and also 

their percentages of different types of buses are 81.6%, 15.3% and 3.1%, 

respectively.  

Here we apply the GAINS model to model the PM2.5 concentration using the 

energy consumption of different travel modes as the data input into this model. 

The PM2.5 concentration function used in this model is in equation (2.7) and (2.8).  

5.2.4 PM2.5 related health impact assessment  

This study considers the long-term exposure to PM2.5 concentration on 

mortality as measured by premature deaths. It is modelled by a more recent 

GEMM, which incorporated recent epidemiological evidence including cohort 

study on outdoor PM2.5 pollution in China (Burnett et al., 2018). GEMM modeled 

the shape of the association between PM2.5 and nonaccidental mortality using 

data from 41 cohorts from 16 countries, whose results were deemed aligned 

better with the census-based estimation of PM2.5 related deaths than results of 

the integrated exposure-response (IER) model (Burnett et al., 2014, Xue et al., 

2019), which was applied in the GBD studies. There are two versions of GEMM. 

One is GEMM NCD+LRI which covers risks from nonaccidental NCD and LRI 

and another one is GEMM 5-COD which comprises five causes of death: IHD, 

stroke, COPD, LC, and LRI. In this study, these two versions are applied to 

assess premature deaths of scenarios and premature deaths from additional 

nonaccidental noncommunicable diseases (ANCD) are defined via subtracting 

five causes of death by GEMM 5-COD from GEMM NCD+LRI. The premature 

deaths under scenarios are measured by sex (female and male) and age group 

(25-29, 30-34, 35-39, 40-44, 45-49,50-54,55-59, 60-64, 65-69,70-74,75-79, 80+). 

Following similar research, PM2.5 intake is assumed to be equally harmful 

irrespective of the PM2.5 composition and source and fuel of origin (Liu et al., 

2017a). The number of health outcomes is estimated by multiplying the RR with 
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the population by sex and age in the central area in Beijing and reported cause-

specific mortality rate by sex and age, along with the corresponding uncertainties 

(95% CI) and normally the percentage of exposed population is assumed to be 

1(Zhang et al., 2017d): 

𝑀2,,,B,',(=(𝑅𝑅2,,,! − 1) 𝑅𝑅2,,,!⁄ ×	𝐼2,,,B×𝑃,,B,!,',( (5.4) 

Where 𝑀2,,,B,',(is the mortality at health endpoint e for age specific a and sex 

specific g by scenario s in year t due to PM2.5. 𝑅𝑅2,,,! is the relative risk of a given 

PM2.5 concentration in grid cell i for age specific a for health endpoint e , which is 

obtained from the GEMM (Burnett et al., 2018). 𝐼2,,,B is the mortality rate of a 

health endpoint e for age specific a and sex specific g in 2015 from China Health 

Statistics Yearbook (National Health Commission, 2016). Mortality rates for all 

scenarios were assumed to be the same and due to data limitations, mortality 

rates in China are applied to stand for Beijing’s mortality rates (Figure 3.1). 

𝑃,,B,!,',( is the exposed population for age specific a and sex specific g in grid cell 

i in a scenario s in year t. The Beijing’s central area’ population for age specific a 

and sex specific g from 2020 to 2050 is adjusted by the population projection of 

China from https://www.populationpyramid.net/china/2050/, projection of 

Beijing’s population under five SSPs (Jiang et al., 2017), Beijing City Master Plan 

(2016-2035)(PGBM, 2017) (which requests from 2035, the total resident 

population in Beijing is controlled under 23 million) and population distribution in 

six districts in Beijing in 2015 (BMBS, 2016-2020) (Figure 5.4).  

The expression of GEMM is in equation (2.11). 
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Figure 5.4 Population demographic structure in central area of Beijing for age specific and 
gender specific from 2015 to 2050 

5.2.5 Benefits from decarbonizing urban land passenger transport  

To better understand as well as compare different mitigation scenarios, two 

types of benefits for the four mitigation scenarios compared to BAU are 

considered. These include health co-benefits related to pollution and benefits of 

reducing CO2. It was estimated that social cost of carbon (SCC) in China was 

US$ 24 (4–50) per tCO2 in 2015 (Ricke et al., 2018).  

𝐵',( = 𝑉𝑆𝐿 × 𝐻𝑓',(	 + 𝑆𝐶𝐶 × 𝐶',( (5.6) 

Where 𝐵',(	is the benefit value provided in a scenario s in year t; VSL is the 

value of a statistical life from equation (5.7); 𝐻'( is the total premature deaths 

saved in a scenario s in year t; SCC is the social cost of carbon, 𝐶',( is the reduced 

amount of CO2 in a scenario s in year t.  

In this study, monetary VSL is adopted to reflect the monetary health gains, 

defining the economic benefits of avoiding premature death as a valuation of 

increased life expectancy (National Research Council, 2008). The Beijing ag and 
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sex-adjusted VSL in 2015,which takes account of the effects of variations in life 

expectancy, wealth distribution and life quality over the lifecycle is obtained from 

Yin et al. (2020). 

5.2.6 Uncertainty analysis and sensitivity analysis 

The uncertainty intervals are based on the following sources of uncertainty:  

(1) Future pathways in transport sector, representing as different scenarios 

in this study;  

(2) Uncertainty around RRs of GEMM model. For the GEMM model, 

estimates of. 𝜃2,, and its standard errors are obtained by using standard 

computer software that fit the Cox proportional hazards model. Bootstrap 

methods were used to obtain 95% CIs (Burnett et al., 2018). Moreover, 

there is another exposure-response function developed by Burnett et al. 

(2014), known as the IER model, which using air pollution, secondhand 

cigarette smoke and active smoking evidence to evaluate the PM2.5-

health endpoints exposure-response relationship. So, compare the 

results from the GEMM with IER results;  

(3) Due to data availability, the future mortality rate of each health endpoint 

remains. the same as that in Beijing under each scenario.  

(4) Following previous research in epidemiologic and economics literature 

(National Research Council, 2008), the value of a person’s willingness-

to-pay (WTP) and the corresponding VSL to changing his or her mortality 

risk in a given period by a small amount (National Research Council, 

2008), does not vary with population or risk characteristics. 

(5) Future total population and age/sex structure and geographic distribution 

of. population. Due to lack of future projection of demographic structure 

in Beijing and future uncertainty, the age and sex structure of Beijing 

from 2020 to 2050 refers to the demographic structure in China from 

https://www.populationpyramid.net/china/2050/. However, it is assumed 
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the geographic distribution of age- and sex-specific population in Beijing 

stays as the same as that in 2015.  

The IER model incorporated risk information from multiple PM2.5 sources, 

both from outdoor and indoor sources, such as secondhand smoking and 

heating/cooking, particle exposure from active smoking while GEMM relies solely 

on studies of outdoor PM2.5 pollution. The IER model conducted cohort studies in 

low-polluted Europe and North America. A brief comparison of IER model and 

GEMM can be seen in Figure 5.5. Therefore, applying IER model in our study to 

compare results from the GEMM (GEMM NCD+LRI and 5-COD) can help check 

the range of uncertainty of our study.   

The function of IER model is in equation (2.10). 

 

Figure 5.5 Comparison of IER model and GEMM 

The value of VSL is averaged over a population to estimate the value of 

saving one life (Robinson et al., 2019), which stays the same value to all lives 

within an area, thus, the standard VSL approach neglecting age differences, 

which may underestimate the value of saving children’s lives and overestimate 

the value societies place on saving adult lives (Watts et al., 2021). To solve this 

problem, an age-adjusted VSL is applied considering remaining life expectancy, 

wealth and survival rate by age from Yin et al. (2020); and the value of VSL will 
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change by time but the value of VSL in 2015 is anchored to all scenarios in 

different years to better compare different scenarios.  

For the sensitivity analysis, health co-benefits using additional invariant VSL 

across all age groups in Beijing are evaluated. A VSL of 2,027,866 RMB 

(US$ 325,646) in 2015 for Beijing is used from a number of contingent valuation 

studies for Beijing (Zhang, 2002, Hammitt and Zhou, 2006, Gao et al., 2015, Xie, 

2011a) (Table 5.9). And the future geographic distribution of population can be 

affected by urban planning, like “Jing-Jin-Ji" integrated development policy with 

building Xiongan New Area to house the non-governmental functions of Beijing 

(Kuhn, 2019). Therefore, the sensitivity of population number on health burden is 

modelled with the total population in the central area of Beijing reduced by 50% 

under the Near zero scenario in 2050.  

Table 5.9 Contingent valuation estimates of VSL for Beijing 

Study Fieldwork: city and 
year  

VSL (RMB) 

Mean Median 

Zhang (2002) (Zhang, 2002) Beijing 1999 2,357,953 N/A 

Hammitt and Zhou (2006) 
(Hammitt and Zhou, 2006)  Beijing 1999 1,929,725 358,204 

Guo and Li (2015) (Gao et 
al., 2015) Beijing 2011 N/A 660,204 

Xie (2011) (Xie, 2011a) Beijing 2010 1,795,920 N/A 

Average (in 2015 value)  2,027,866 509203.72 

5.3 Results  

5.3.1 Energy consumption, air pollution emissions and PM2.5 

concentration  

In 2015, total energy consumption of eight fuel types of vehicles was 110 PJ 

(Figure 5.6). Energy consumption for gasoline cars is much higher than other 

vehicles, accounting for 76% of energy consumed, followed by gasoline taxis. 

Under different scenarios, generally less energy amount is consumed compared 
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to BAU during study years; and under Near zero, it consumes the least amount 

of energy annually compared to other scenarios. 

Under the BAU and MEV scenario, the energy consumption of passenger 

vehicles is increasing compared to the other three scenarios. Compared to BAU, 

it decreases by 77%, 28%, 78%, and 80%, in 2050 under the IGT, MEV, 

IGT_MEV and IGT_MEV scenarios, respectively; and energy consumption’s 

difference between BAU and other scenarios gets larger each year. Under all 

scenarios, energy consumption from gasoline cars decreases during the study 

period; for the IGT, IGT_MEV and Near zero scenarios, it decreases from the 

dominating position to the sub dominating position, ranging from 84% in 2020 to 

0% in 2050. Only under the MEV scenario, does the energy consumption of 

gasoline cars dominant (65% in 2050). Starting at 2030, energy consumption of 

ECs becomes more pronounced under the MEV, IGT_MEV and Near zero (when 

the percentage of kilometer travelled by ECs takes up over 20% in the total 

kilometer travelled by cars in the central area of Beijing); for example, from 2030-

2050, percent of energy consumption of ECs rises from 1% to 8% under 

IGT_MEV. But under IGT_MEV and Near zero, in 2050, the percentage of energy 

consumption of ECs is less than the previous year due to increasing share of 

public buses and subway. At the same time the percentage of energy consumed 

by public buses and subway (green transport) is gradually increasing under all 

scenarios. By 2050, the energy consumption of public buses and subway is the 

top consumer for each travel modes under IGT and IGT_MEV. 
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Figure 5.6 Energy consumption of passenger land TMs in Beijing in 2015 and in the future 
under five scenarios 

Figure 5.7a illustrates the total primary PM2.5 emissions from all passenger 

TMs including buses and cars in Beijing. Estimates range from 0.8 kt to 0.9 kt 

(increased by 13%) under BAU; from 0.8 kt to 0.6 kt under IGT (decreased by 

29%); from 0.8 kt to 0.7 kt (decreased by 4%) under MEV; from 0.8 kt to 0.5 kt 

(decreased by 29%) under IGT_MEV and from 0.8 kt to 0.5 kt (decreased by 29%) 

under Near zero during 2020-2050 period. In 2050, ranking of PM2.5 emissions 

under scenarios is BAU>MEV>IGT>IGT_MEV=Near zero. Compared to the BAU 

scenario, the CO2 emissions from buses and cars decrease by 96%, 40%, 97% 

and 100% under IGT, MEV, IGT_MEV and Near zero in 2050, respectively, which 

means in 2050, under Near zero scenario, it achieves zero carbon emissions in 

the urban passenger transport (Figure 5.7b). Under the IGT, IGT_MEV and Near 

zero scenarios, CO2 emissions of cars and buses decreases over time while in a 

BAU scenario, it is increasing over time. Under the MEV scenario, CO2 emissions 

is increasing before 2035, but declines from 2035 onwards.  
 



 126 

(a)                                             

 
(b) 

 

Figure 5.7 Energy consumption of passenger land TMs in Beijing in 2015 and in the future 
under five scenarios 

(a) PM2.5 emissions (b) CO2 emissions 

In 2015, the average population-weighted PM2.5 concentration in the central 

area of Beijing was 79.4 ug/m3 according to GAINS model. Figure 5.8a displays 

that most of the population in the study area is exposed to above the average 

PM2.5 concentration (above the blue dashed line), located in the southeast area 
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of Beijing. Figure 5.8b depicts a downward trend under all scenarios except for 

the BAU scenario. However, none of scenarios meets the China's Ambient Air 

Quality Standard level II (35 ug/m3) (MEE, 2012) if other sectors except for urban 

passenger transport sector keep the same structure as in 2015 as assumed in 

this study. Compared to the BAU scenario, annual PM2.5 concentration under 

each of the four scenarios is lower with Near zero (decreased by 0.45%)> IGT 

(0.446%)>IGT_MEV (0.43%)>MEV (0.009%) from 2020 to 2050. In general, the 

trend of PM2.5 concentration of one scenario is mostly consistent with that of PM2.5 

emissions of this scenario.  
(a) 
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(b) 

 

Figure 5.8 PM2.5 concentration in the central area of Beijing under five scenarios from 2020 to 
2050 

(a) PM2.5 concentration in grid cells in six districts of central Beijing under scenarios from 2020 
to 2050 (the dashed line denotes average PM2.5 concentration in six districts in corresponding 
year, and size of bubble represents size of population in a grid cell) (b) Average population-
weighted PM2.5 concentration in six districts of central Beijing under scenarios from 2020 to 

2050 

5.3.2 Premature deaths attributed to PM2.5 exposure 

Figure 5.9 presents the disease- and sex- specific and total premature 
deaths attributable to PM2.5 exposure resulting from all anthropogenic activities 
in the central area of Beijing. Under all scenarios, the total premature deaths 
increase annually (Figure 5.9a). However, compared to the BAU scenario there 
are less premature deaths under four mitigation scenarios from 2020 to 2050, 
with Near zero recording the relatively lowest number of premature deaths 
annually (for example 72,900: 95% CI: 66,100-79,300 in 2050). The MEV 
scenario has more premature deaths among four mitigation scenarios since 2030.  

Figure 5.9b illustrate the estimated premature mortality of five health 
endpoints/outcomes by sex due to PM2.5 pollution under five scenarios. IHD and 
ANCD represent around 30% (31.5%-34%), 30% (26%-34%) of the total annual 
premature deaths, followed by LRI (20.1%-26.4%), LC (9.3%-11.2%) and Stroke 
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(0.8%-1%). Premature deaths, however caused by LRI (19.3%-30.2%) increased 
fastest among all five specific causes annually, followed by stroke (16.7%-30.6%). 
Males in COPD, LC, LRI, stroke and ANCD show more losses than females, but 
females in IHD (after 2040) loses more lives than males (Figure 5.9b). For 
example, under the Near zero scenario in 2050, males in IHD take up 17.3% of 
the total premature deaths, while males/females in stroke take up 0.5%. 
(a)         
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(b) 

 

Figure 5.9 PM2.5 attributable premature deaths under five future scenarios from 2020 to 2050 

(a) Disease-specific and sex-specific premature deaths (b) Total PM2.5 attributable premature 
deaths under scenarios from 2020 to 2050 and the right bottom figure shows the percent of 
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premature deaths by sex and cause under the Near zero scenario in 2050; f represents female 
and m represents male 

5.3.3 Economic benefits under mitigation scenarios  

Compared to the BAU scenario, the IGT, MEV, IGT_MEV and Near zero 

scenarios are estimated to save 0 (95% CI: 0-13) , 5 (0-32), 7 (0-36), 7(0-36) 

deaths, respectively by 2020; 30 (0-100),26 (0-98), 48 (2-137), 53 (6-150) deaths, 

respectively by 2030; 102 (38-210), 68 (12-161), 130 (64-257), 164 (90-295) 

deaths, respectively by 2040; 292 (215-436), 117 (53-229), 296 (218-441), 301 

(229-450) deaths, respectively by 2050 (Figure 5.10a). Among four mitigation 

scenarios, IGT_MEV and Near zero save the most lives over time and IGT’s 

effect on saving lives gets more pronounced while MEV scenario’s effect on 

saving lives gets less pronounced compared to other three scenarios (Figure 

5.10a).  

The population aged over 50 gains the greatest health benefits (over 84%) 

annually under the four mitigation scenarios (Figure 5.11b and 5.11c). Moreover, 

with time the older aged population, more health benefit gains. For instance, in 

2025, aged 80+ group accounts for 23.1%, 20%, 24% and 24% of the total health 

benefits under IGT, MEV, IGT_MEV and Near zero scenarios, individually while 

in 2050, aged 80+ group accounts for 54%, 59%, 54% and 54%, individually 

(Figure 5.10c). On the other hand, younger groups (below 50-year-old) gradually 

avoid more premature deaths with time (Figure 5.10b and 5.10c).  

Men obtain more health co-benefits than women across the study timeframe 

under each scenario and cumulatively, with men avoiding more deaths than 

women under four scenarios. However, in 80+ group, sometimes woman under 

four mitigation scenarios from 2020 to 2050 would gain more health co-benefits 

due to the effect of demographic structure (more woman than men in this age 

group) (Figure 5.4) outperforming mortality rate (Figure 5.10b and Figure 3.1).  
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The economic benefits measured by sex and age shows the same trend as 

avoided premature deaths. Economic benefits will get larger annually and Near 

zero scenario provides the largest economic benefits compared to the other three. 

People aged over 50+ and men gain more benefits (Figure 5.11a). For instance, 

under the Near zero scenario, men would gain more 4,970 US$ than women. 

Figure 5.11b shows lists two-type benefits under four mitigation scenarios. 

Monetary health co-benefits contribute the most to the total benefits. Although 

the value of CO2 reduction benefits is small under scenarios, it increases annually 

(Figure 5.11); for example, under Near zero scenario, benefits of reducing carbon 

are 13 (95% CI: 2-27), 39 (7-82), 84 (14-175), 136 (23-284), 186 (31-470) and 

255 (43-532) US$ from 2020 to 2050. In 2050, under the Near zero scenario, the 

total value from mitigation is equal to 0.01% (0-0.03%) Beijing’s GDP 2015. Under 

IGT, IGT_MEV and Near zero scenarios, economic benefits are rising annually.  
(a) 
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(b) 
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(c)                               

 
Figure 5.10 Number of avoided premature deaths attributable to PM2.5 measured by sex and age 

under mitigation scenarios compared to BAU scenario from 2020 to 2050 

(a) Total avoided premature deaths under scenarios (b) Detailed avoided premature deaths 
measured by sex and age under scenarios (c) Percentage of avoided premature deaths among 

population from 25-year-old to 80+ under scenarios per year from 2020 to 2050; unit: 
percentage 
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(a) 
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(b) 

 

Figure 5.11 Economic benefits of mitigation scenarios from 2020 to 2050 

(a) Economic benefits measured by sex and age under mitigation scenarios (b) Total benefit 
value under mitigation scenarios (thousand US$) 

5.3.4 Sensitivity analysis result 

In this study, variant VSLs with sex and age specific are applied to get to 

know the economic benefits of four mitigation scenarios from preventing 

premature deaths. Then the invariant VSL is adopted to do sensitivity analysis. It 

shows that compare to the variant VSL approach, results from invariant VSL are 

around 1.8 to 2.8 times larger. For example, under the Near zero scenario, in 

2050, it can generate 98,019.5 (95% CI: 53,405.9-209,064.7) thousand US$ in 

2050 with variant VSL while 37,341.2 (95% CI: 16,891.8-99,557.2) thousand 

US$ with invariant VSL, over 2.6 times (Figure 5.12). 
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Figure 5.12 Comparison of economical health co-benefits by invariant VSL and variant VSL 
approach 

5.3.5 Uncertainty analysis result 

The IER model incorporated risk information from multiple PM2.5 sources, 

both from outdoor and indoor sources, such as secondhand smoking and 

heating/cooking, particle exposure from active smoking while GEMM relies solely 

on studies of outdoor PM2.5 pollution. The IER model conducted cohort studies in 

low-polluted Europe and North America. 

Through modelling premature deaths under scenarios from IER, GEMM 

NCD+LRI and GEMM NCD 5-COD, results are showed in Figure 5.13. Generally 

premature deaths from GEMM NCD+LRI is relatively higher than those from IER 

and GEMM 5-COD because of its enhanced statistical power to characterize the 

shape of the PM2.5 mortality associations and more health endpoints caused by 

PM2.5 pollution exposure are included (Burnett et al., 2018). GEMM NCD+LRI 

results in nearly threefold premature deaths as IER and GEMM 5-COD nearly 

twofold as IER. For instance, in 2050, the Near zero scenario will result in 32,387 

(95% CI: 22,630-40,574), 53,984 (95% CI: 47,088-59,942) and (95% CI: 66,101-
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79,333) premature death modelled by IER, GEMM 5-COD and GEMM NCD+LRI, 

respectively. 

Therefore, health impacts modelling by the GEMM tend to larger than those 

by the IER model. Burnett et al. (2018) pointed out these modelling differences 

between the GEMM and IER model reflect that PM2.5 exposure may be related to 

additional causes of death rather than five causes (>25 years old) considered by 

the GBD and incorporation of additional sources from other, non-outdoor, particle 

sources results in underestimation of disease burden, especially at higher 

concentration, like India and China. And results from GEMM which incorporates 

cohort studies in China is better consistent with the census-based results in China 

(Xue et al., 2019). Moreover, results from Burnett et al. (2018), Yin et al. (2017) 

and Burnett and Cohen (2020) pointed out that the exposure-response function 

is the main contributor to the true uncertainty of results. 

 

Figure 5.13  PM2.5 attributable premature deaths under five future scenarios from 2020 to 2050 
modelling from IER, GEMM NCD+LRI and GEMM NCD 5-COD 
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5.4 Discussion 

Previous transport mitigation studies for China (Huo et al., 2014, Wu et al., 

2017, Wu et al., 2011, Saikawa et al., 2011, Zhang et al., 2017c, Li et al., 2015, 

Ke et al., 2017, Xue et al., 2015) or other countries (Maizlish et al., 2013, 

Woodcock et al., 2009, Farzaneh et al., 2014, Tsoi et al., 2022, Grabow et al., 

2012) have focused on a specific outcomes, primarily estimates of changes in 

pollution or CO2 emissions. This study builds on those studies and provides 

information on multiple outcomes from the overall and sex- and age- difference 

of different urban transport mitigation scenarios in the passenger transport sector 

in Beijing: energy consumption, CO2 emissions and PM2.5 concentration, health 

co-benefits and their related monetary benefits from 2020-2050 compared to a 

BAU scenario. Correspondingly, this study provides the first research 

demonstrating that a combination of green transport and decarbonizing vehicles 

will have major benefits, giving a clear message in terms of policy and the benefits 

of such action. The Near zero scenario achieves the largest health co-benefits 

and economic benefits annually relative to other mitigation scenarios; in 2050, it 

can prevent 301 (95% CI: 229-450) cases of mortality, with US$ 37,300 (95% CI: 

16,900-99,600) thousand benefits from health co-benefits and US$255.4 

thousand (95% CI: 43- 532) benefits from reducing cost of abating CO2. This 

study indicates increasing proportion of green transport, electrifying vehicles, less 

use of motor vehicles and making aggressive goals towards achieving net zero 

carbon emissions by the mid of this century in the transport sector can generate 

enormous benefits compared to the sole mitigation strategy. This finding is 

consistent with scenarios for other cities, such as London and Delhi, which 

showed that combination of active travel and lower-emission motor vehicles 

result in largest benefits (7,500 disability-adjusted life-years (DALY)) in London 

and 13,000 in Delhi for comparable sized cities) (Woodcock et al., 2009).  
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To date several studies have emphasized the importance of increasing EVs 

in the development of sustainable transport (Liang et al., 2019, Zhang et al., 

2017b, Zhang and Fujimori, 2020, Ji et al., 2012, Ji et al., 2014). However, few 

study have estimated the impact of increased EVs and green transport. This 

study indicates that increasing the percentage share of green transport can 

provide more benefits compared to electrification of vehicles. The IGT scenario 

saves 0 (95% CI:0-13) life in 2020 and 292 (95% CI: 215-436) lives in 2050, with 

the share of green transport increasing from 75.4% in 2020 to 99.4% in 2050 

(increased by 31.8%). The MEV scenario saves 5 (95% CI:0-32) lives in 2020 

and 117 lives (95% CI:53-229) in 2050 with the percentage of ECs’ population of 

the total passenger cars rising from 0.7% to 40.5% during 2020-2050 (increased 

by around 57 times). Comparing the IGT scenario with the IGT_MEV scenario, 

the effects of increasing ECs is most visible before 2050, with avoided mortality 

from the swap to ECs decreasing when the share of green transport reaches 

99.4%. Further, comparing the IGT_MEV scenario with the Near zero scenario, 

it finds that by 2050, when the share of green transport has reached 99.4% only 

five additional lives are saved under the Near zero scenario with 100% 

electrification in private passenger cars compared to 40.5% electrification under 

the IGT_MEV scenario.  

The results of the scenario analysis here suggest that when green transport 

already accounts for a large share in resident trips, the electrification of vehicles 

provides only a minor effect on the reduction of pollution and associated health 

burden. This finding is comparable with a scenario study in Beijing which found 

that public transport development should be given priority comparing to new 

energy and clean energy vehicles scenario (Fan et al., 2017). He and Qiu (2016) 

concluded that the largest reduction of pollution emission is by combining 

increased public buses and cycling. Furthermore, several studies have noted a 

shift from private vehicle to active transport is a key intervention for improving 
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public health, physically and psychologically (Maizlish et al., 2017, Woodcock et 

al., 2014, Mizdrak et al., 2019, Woodcock et al., 2013, Rojas-Rueda et al., 2011, 

Rojas-Rueda et al., 2012). However, research by Perez et al. (2015) in Basel, 

Switzerland found that when active transport is already high, it produces modest 

benefits, and the most effective policy remains increasing zero-emission vehicles. 

Nevertheless, the difference in findings is mainly attributed to the difference 

between active transport and green transport as green transport includes active 

transport and public transport so that public transport plays a vital role in reducing 

pollutants and preventing mortality.  

For health outcomes, although studies have found that women are more 

susceptible to air pollution (Sun et al., 2013), generally men cumulatively obtain 

more health co-benefit than women from our four scenarios. This is due to 

demographic structure of Beijing (higher male population) and the relatively 

higher incident rates of each of the five disease categories for men compared to 

women (Figure 5.4 and Figure 3.1), which can be explained by the male-female 

health-survival paradox. Proposed explanations for this paradox include 

biological differences, behavioral differences such as risk-taking and reluctance 

to seek and comply with medical treatment and methodological challenges, such 

as selective non-participation and under-reporting of health problems, and 

delayed seeking of treatment (Oksuzyan et al., 2008). For the age-based analysis, 

individuals aged 50+ and in some years female in aged 80+ in Beijing benefit 

more from transport mitigation owing to demographic aging and vulnerability and 

increased risk of the elder group exposed to air pollution (Li et al., 2018b) in 

Beijing. This finding in line with several studies (WHO, 2010a, Yang et al., 2013, 

Hu et al., 2014, Cao et al., 2011, Sun et al., 2013, Yin et al., 2020) that found that 

due to pre-existing illnesses and aging effect, the elderly population is particularly 

impacted by long-term exposure to air pollution (Sun et al., 2013) so that they 

gain more health co-benefits when making mitigation movements. This study also 
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finds that as well as obtaining health co-benefits via decarbonizing transport 

sector in Beijing, there will be substantial benefits through a reduction in CO2 

emissions. This is in line with a study finding that stringent penetration of electric 

vehicles can reduce the carbon mitigation cost generated by the 2 °C climate 

stabilization target (Zhang and Fujimori, 2020). This finding also implies that 

transport-based mitigation also has a positive impact on the economic system. 

Previous research suggests that the electrification of vehicles improves air 

quality for disadvantaged neighborhoods and thus meets social and equity goals 

through reduce atmospheric pollution loading in vulnerable communities, for 

those located near congested streets and highways (Kragh et al., 2016). However, 

fossil fuel powered plants are normally away from urban areas. This means that 

increased usage of EVs disproportionally benefits city dwellers where the highest 

concentration of EVs are located, while those who exposed to pollution from 

electricity generation predominantly reside in rural areas which are downwind of 

fossil power plants (Kragh et al., 2016). Ji et al. (2015) found that EVs could 

increase EJ challenge in China, with around 77% (41-96%) emission inhalation 

attributable to urban EVs use is distributed to rural communities whose incomes 

are average lower than city residents who use urban EVs. Also, a study suggests 

that electrification of transport without the replacement of fossil-fuel power plants 

leads to increasing CO2 emission (Zhang and Fujimori, 2020). These previous 

studies suggest that a scenario for city transport based primarily on electrification 

does not address the fundamental issue of pollution generation, rather it 

displaces the pollution exposure to other areas, often outside the city. Hence, 

renewable power as a means to decarbonize power generation plays a key role 

in electrifying the transport sector (Zhang and Fujimori, 2020). In China, the 

percentage of renewable generation (including hydropower, nuclear, wind and 

solar power) was 32.1% of the total power generation in 2020 and annual 

increase rate of renewable power was around 10% from 2015-2020 (Table 5.10). 
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This suggests there is a major challenge to achieve 100% renewable power 

generation by 2060 for China given current rates of increase. 

Table 5.10 Technology sources of electricity generation in China, 2015-2020 (TWh) 

Year 
Hydro 
power 

Nuclear Wind Solar Thermal 
power 

Renewable 
generation 

Total 
generation 

Percentage 
of 

renewable 
generation 

2015 11303 1708 1858 388 42842 15256 58149 26.20% 

2016 11841 2133 2371 616 44371 16960 61330 27.70% 

2017 11979 2481 2972 1063 47546 18495 64511 28.70% 

2018 12318 2944 3660 1775 50963 20696 67692 30.60% 

2019 12934 3303 4163 2194 51353 22594 73253 30.80% 

2020 13550 3662 4667 2612 51742 24491 76236 32.10% 

Note: Data is taken from the China Energy Statistical Yearbook(National Bureau of 
Statistics of China, 2011-2021), China Electricity Council (http://cec.org.cn/index.html) 
and Cai et al. (2021b). 

There are uncertainties in our assessments. Through our uncertainty and 

sensitivity analysis, it finds that health assessments by IER model may 

underestimate the PM2.5-related health co-benefits without considering additional 

nonaccidental noncommunicational diseases, which can be around twofold or 

threefold less than results modeling by the GEMM in this study. And the 

monetarized avoided premature deaths of mitigation scenarios could be around 

1.8 to 2.8 times larger if using the invariant VSL. And if the population of different 

segments of population reduced by 50%, under the Near zero scenario, in 2050, 

PM2.5-related premature deaths can reduce by 50%, showing the population 

number is proportionate to results of premature deaths in this integrated 

assessment and the distribution of future population of subpopulations is 

sensitive to PM2.5-related premature death. 

This research has limitations common to many scenario studies: data 

availability, underestimation of comprehensive health impacts, and various 

sources of uncertainty. First, due to a lack of data and difficulties in modeling 
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these additional health outcomes. Wider positive health benefits of increased 

physical activity due to active commuting and reduction of morbidity cases are 

not considered nor the potential negative impacts due to increase exposure to air 

pollution are considered. In general, not considering these health benefits will 

underestimate the entire health co-benefits through active travel measures in our 

green transport scenarios (the IGT and IGT_MEV scenarios). Moreover, 

mitigation in the transport sector will also alleviate traffic congestion, reduce fossil 

fuel dependence, which are also benefits and should be counted in the further 

related study. Second, our health impact assessments conduct health co-benefits 

from PM2.5 exposure but using PM2.5 alone may underestimate the benefits of 

transport mitigation measures given that other sources of air pollution can also 

enact an adverse impact on health. Third, technology improvement and 

innovation in the future doesn’t be taken account of in this research because it is 

hard to quantify them given the complicated transport system, and technology 

and innovation may completely change the transport patten as well as technology 

part is not the research objective of this research. Fourth, assumptions of this 

research are applied to predict the future with limited data and plenty 

uncertainties, so our results should be seen as provisional and can be revised 

with more detailed and accurate data. But tried to make assumptions in this study 

more plausible based on historical data and obtained information. And still can 

improve our assumptions in the future, like using variant mortality rate, variant 

VSL and SCC by time, modelling future population distribution, the potential of 

adopting other motor vehicles with the development of technology, etc. Thus, 

given above limitations, the near future work can lead to addressing these 

limitations. Regardless of these limitations, the findings obtained in this study can 

be used to underpin future sustainable transport for Beijing as well as for other 

megacities (Table 5.11) if they vigorously adopt sustainable transport. The 

integrated method used in this study can be easily applied to similar or broader 
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research for different research area and can be compatible with setting different 

future transport mitigation scenarios. 

Table 5.11 Major passenger TMs in megacities 

City Country  Population 
(10,000)  

 Aera 
(km^2)  Major passenger TMs 

Paris France 216 105.4 
metro, RER(Réseau Express 
Régiona), tram, bus, car, taxi, 

cycling 

London England 890 1,577 underground, bus, tram, car, 
taxi, rail, cycling 

Berlin Germany 363.4 891.9 subway, city rail, tram, bus, 
car, taxi, cycling 

New York United States 842 783.8 subway, ferry, bus, car, taxi, 
cycling 

Shanghai China 2,487.1 6,340.5 subway, tram, bus, car, taxi, 
cycling 

Guangzhou China 1,867.7 7,434.4 
subway, tram, ferry, 

trolleybus, bus, car, taxi, 
cycling 

5.5 Conclusion and policy implication  

Comparing different pollution mitigation measures in the urban land 

passenger sector, this study demonstrates that a combination of green transport 

and increased EVs generate the largest health co-benefits and economic value. 

The study also provides evidence that developing green transport measures 

outperforms the electrification of passenger transport. Increases in green 

transport are progressive and are consistent with environmental justice: they 

improve access as well as health benefits for disadvantaged populations those 

who have sparse travel options (IEI, 2017). Examining the impact of transport-

based mitigation on health across different age and sex groups, this study shows 

in detail who stands to benefit from the decarbonization of Beijing’s transport 

system. This study shows that, in the context of Beijing’s geography and 

demographic makeup, men benefit more across all mitigation strategies. While 
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the elderly, receives the greatest impact from decarbonization in terms of 

avoidance of premature death, younger groups have relatively higher relative risk 

than the elderly when exposed to air pollution. Thus, the health impact of 

decarbonization among women and younger demographics is still important to 

consider. Our research also demonstrates a reduction in CO2 mitigation costs via 

transport electrification, restricted vehicle using, phasing out internal combustion 

engine vehicles and so on. The comprehensive results suggest that stakeholders 

including transport planners, energy experts, policymakers, economists develop 

a joint strategy for transport electrification to reduce CO2 emissions quickly and 

effectively due to the effectiveness of transport electrification policy affected by 

myriad factors (Zhang and Fujimori, 2020).  

From a policy perspective, there are significant benefits to Beijing authorities 

prioritizing green transport development policies as planned in the 14th  FYP 

(Chen, 2018). However, the effectiveness of these green transport strategies 

partly depends on how to let citizen adopt more green transport than motor 

vehicles travel at the demand side. An ‘avoid–shift–improve’ approach  (Creutzig 

et al., 2018, Dalkmann and Brannigan, 2007) is encouraged, a well-established 

framework in developing sustainable transport for Beijing’s transport 

development. For example, avoid in this context means reducing the need to 

travel, which can be achieved by advanced urban planning (‘15-mintue city’ is an 

idea to increase active travel by locating more jobs, shops and retail within active 

travel distance of where people live (Sutcliffe, 2020, Whittle, 2020)), teleworking, 

smart logistics (Creutzig et al., 2018). Shift in this context means mode shift from 

cars to walking, cycling and public transport (Creutzig et al., 2018), which can be 

achieved by cultivating citizen’s travel habits to adopt more green transport, like 

inventing an personal carbon footprint calculator to trace how much CO2 can be 

reduced by taking green transport rather than taking motor vehicles of one travel 

trip, advocating advantages of adopting active travel, such as tackle 
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obesity(Saunders et al., 2013), making active travel a convenient mode like 

providing advanced bike sharing system and on the other hand, a carrot-and stick 

approach is widely implemented in cities throughout the world to increase car 

ownership’s costs, limit car access to city centers, etc., and increase investment 

in improving walking and cycling’s infrastructure (Brand et al., 2021, 

Nieuwenhuijsen and Khreis, 2016, Pucher and Buehler, 2017). Improve in this 

context refers to improving comfort of green transport; for example, increasing 

the safety, acceptability, appeal of (Enhanced streetscape design can make 

active travel pleasant (Gehl, 2001)) green transport (Woodcock et al., 2009). 

Furthermore, the elderly cohorts and women with elevated exposure to air 

pollution requires policy attention. Government authorities and civil society can, 

for example, promote their health awareness and take measures to improve 

public health care services. And our sensitivity analysis suggests that the 

distribution of population has a fundamental effect on health burden: radical 

interventions such as relocating vulnerable groups to less polluted area would 

likely fundamentally reduce aggregate exposure. The results also suggest that 

relying solely on mitigation in passenger transport cannot achieve air quality 

standards within China's Ambient Air Quality Standard level II (35 ug/m3) (MEE, 

2012) even with radical measures. This suggests that a comprehensive mitigation 

across all polluting sectors is urgently required.  



 148 

Chapter 6 Conclusion 

6.1 Summary 

In this thesis, an integrated assessment framework coupling with the energy 

inventory data, Greenhouse Gas and Air pollution Interactions and Synergies 

(GAINS) model, Global Exposure Mortality Model (GEMM) and health economic 

model is applied to assess the economic loss/benefits and health burden/health 

co-benefits of energy consumption/switch of Chinese household consumption 

activities. The household sector is one of largest energy consumers in China (Fan 

et al., 2013) and as such has a profound impact on the production activities, 

energy consumption and GHG emissions (Liu et al., 2011). With increasing living 

standards and wealth across the Chinese population, household energy 

consumption is forecast to continually grow in the short and medium term (Fan et 

al., 2013). Therefore, deploying climate mitigation strategies in the household 

sector is about to take place.  

To conduct this research, at the beginning, understanding the status of 

household consumption in the form of energy usage is important. The household 

energy consumption can be divided into the direct and indirect, so that firstly the 

analysis of the household direct energy consumption is conducted followed by 

the household indirect (embodied) energy consumption. And China is a typical 

dualistic country with substantial disparities across urban and rural areas and 

provinces in terms of resource and energy endowments, economic development, 

population densities, and lifestyles. Therefore, it is necessary to study the 

Chinese household direct and embodied energy consumption at regional and 

provincial levels to better implement climate mitigation measures in a more 

targeted manner. Furthermore, household embodied energy consumption is 

related to household different consumption activities; therefore, eight broad 

consumption activities (food, clothing, housing, household facilities, articles and 

services (abbreviated as facilities), transport and communication services 

(transport), education, cultural and recreation services (education), medicine and 
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medical services (health) and miscellaneous commodities and services (miscell)) 

are identified for rural and urban households in this thesis and further to identify 

what consumption activity should be put the emphasis on mitigation strategies 

under the ongoing urbanization and it finds that household consumption in 

housing and transport and communication services activities is estimated to 

increase by the largest magnitude. Lastly, deploying mitigation strategies in 

household consumption activity in transport is conducted to better know the 

potential health co-benefits and economic benefits when households adopting 

more green transport travel or using more electric vehicles. A case study in 

Beijing is applied to explore mitigation scenarios of household travel pattern 

changes due to sufficient policies in Beijing’s transport sectors and data 

availability.   

Energy consumption of household consumption activities are attached to 

using different fuel types. For household direct energy consumption, solid fuels 

specifically coal and biomass (mainly wood and crop residues) are still important 

sources of energy for heating and cooking, largely in rural areas in China (Archer-

Nicholls et al., 2016, Zhang and Smith, 2007, Yun et al., 2020). Combustion of 

solid fuels by households causes both indoor air pollution (Zhang and Smith, 

2007, Clark et al., 2013) and ambient air pollution at a local or regional scale 

(Chen et al., 2018). Herein, after studying the rural and urban direct energy 

consumption, their induced PM2.5-related premature deaths are studied in this 

thesis. Because primary energy tends to be more transferred into electricity for 

usage in China under the pledge of carbon neutrality by China’s government. 

Hence, a scenario analysis of substituting solid fuels with electricity is applied to 

understand the potential health co-benefits and economic benefits across 

different profiles of groups (age- and sex specific) in rural and urban areas at 

provincial levels in China. The mitigation scenario study in Beijing, China further 

analyzes potential health co-benefits and economic benefits from 2020 to 20250 

under four transport mitigation scenarios across different profiles of populations, 

which provides better implications for implementing mitigation strategies at 

demand side.  
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Major conclusions of this thesis are summarized as below: 

(1) In 2015, the total household direct energy consumption and indirect was 

10,500 PJ and 20,000 PJ, respectively, taking up 10.8% and 20.6% of the total 

energy consumption in China, showing that household embodied energy 

consumption was nearly 2 times than the household direct energy consumption.  

(2) For the direct household energy consumption, urban household energy 

consumption (6,700 PJ) was nearly 1.6 times greater than the rural household 

energy consumption (3,800 PJ). In 2015, 17% of national premature deaths could 

be attributed to outdoor PM2.5 from residential energy sector. Although urban 

households consumed nearly 1.6 times energy than rural households, premature 

deaths attributable to PM2.5 exposure from household energy was 1.1 times 

higher from rural household consumption compared to urban households due to 

rural households using of solid fuel products. 

(3) Analysis at the regional level incorporating differences between urban 

and rural areas and age-sex specific mortality rates by five health outcomes, finds 

that between 37.5% and 37.8% deaths attributable to household energy 

consumption were due to IHD. The population aged over 80-year-old accounts 

for over half the total household energy consumption-PM2.5-related deaths (66.3% 

to 66.5%), with the age category 25 to 29-year-old recording the lowest. 

Premature mortality was higher among the male population compared to the 

female population, ranging from 62.3% to 62.4% of household energy 

consumption PM2.5-related mortalities.  

(4) The scenario analysis finds that if coal and biomass had been replaced 

with electricity in both urban and rural households, 28% (rural) and 6% (urban) 

premature deaths would have been avoided and it estimates these avoided 

premature deaths could bring economic benefits equal to 0.09% (95% CI: 0.08%-

0.1%) GDP for rural areas and 0.006% (0.005%-0.007%) of GDP for urban areas 

of China.  

(5) For the embodied energy consumption, urban household energy 

consumption (15,000 PJ) is approx. 3 times by rural household’s (5,000 PJ); 

corresponding to 19.9 GJ/person and 9 GJ/person, respectively. Embodied 
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energy consumption was highest across the food (24.7% in rural and 22.9% in 

urban), housing (20.2% in rural and 20.9% in urban) and transport (18.6% in rural 

and 19.6% in urban) consumer sectors in both rural and urban households.  

(6) Under the urbanization in China, categorized as aspirational, opulent and 

high energy intensity activities, consumption relating to housing and transport and 

communication services is estimated to increase by the largest magnitude for 

both rural and urban households. The first quintile region of China with the highest 

average income should take up the responsibility of reducing its own 

consumption level and improve its own industrial energy efficiency, especially in 

transport, storage and transport equipment and service sector.  

(7) When adopting climate mitigation strategies in household travel patterns, 

a case study in Beijing, China finds that all the four alternative mitigation 

scenarios (IGT scenario, MEV scenario, IGT_MEV scenario, and Near zero 

scenario) result in reduced PM2.5 and CO2 emissions compared to BAU from 

2020-2050. It demonstrates the effects of combination of taking green transport 

and using electric vehicles can gain sustainable benefits, but green transport 

increase plays a vital role. The Near zero scenario achieves the largest health 

co-benefits and economic benefits annually relative to sole mitigation strategy; in 

2050, it can prevent 301 (95% uncertainty interval: 229-450) cases of mortality, 

with benefits from health co-benefits and benefits of reducing CO2 (equivalent to 

0.01% (0-0.03%) of Beijing’s GDP 2015).  

(8) Men cumulatively obtain more health co-benefit than women under four 

transport mitigation scenarios from 2020-2050. Individuals aged 50+ and in some 

years female in aged 80+ in Beijing benefit more from transport mitigation owing 

to demographic aging and vulnerability and increased risk of the elder group 

exposed to air pollution (Li et al., 2018b) in Beijing. 
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6.2 Research implications, limitations and future research 
prospect  

6.2.1 Research implications 

Climate mitigation strategies tend to focus on supply-side technology, 

underemphasizing the significant potential for mitigation through managing 

consumption practices (Creutzig et al., 2018, Bjørn et al., 2018) or using 

interactions between demand-side and supply systems to leverage mitigation 

action. Hence, health co-benefits and economic benefits of climate mitigation 

measures taking place at the demand-side of household consumption activities 

are studied in this thesis. And it provides new insight of economic benefits and 

avoided health burden across different age and gender groups at the 

national/regional/provinces levels in China. In this thesis, the household energy 

consumption analysis is split into the direct and indirect given complex 

consumption activities of households. And it finds that no matter the direct and 

indirect consumption activities of households, there is plenty of potentials to 

deploy mitigation strategies at households’ direct and indirect consumption 

activities and it could bring substantial economic benefits and health co-benefits 

for both rural and urban populations. Since the indirect energy consumption of 

households in China was more than that of the direct according to the finding of 

this thesis, it is vital to put more efforts to conduct mitigation measures of 

household indirect energy consumption activities relative to households’ daily 

consumption activities, like traveling, clothing, food, etc. Through a combination 

study of income elasticity of demand and energy intensity of rural and urban 

households’ eight broad consumption activities, it also finds that embodied 

energy consumption of housing and transport activities are about to rise at the 

largest magnitude under the urbanization of China in the short and medium term. 

And the case study of travel pattern changes of households in Beijing, first shows 

that more using public transport combining with electric vehicles happening at the 

residents’ side would generate the largest benefits in economics and health and 

public transport outperforms electric vehicles application. Health burden/co-
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benefits across sex and age-specific populations compared to other PM2.5-related 

health burden studies are also studied (Maji et al., 2018, Liu et al., 2021b, Li et 

al., 2018a, Li et al., 2021, Song et al., 2017), it finds that the male and elderly 

group benefit the largest compared to other segments of populations. These 

findings push the climate change study into the social science area, which helps 

to broaden the research perspective to the effect of climate mitigation strategies 

on different segments of populations in the society so that it could provide more 

evidence to discuss about EJ issues. And climate justice or EJ has also been 

discussed in this thesis, that is it finds that increase in green transport can 

improve transport sustainability as well as increasing EJ for those who have 

sparse travel options (IEI, 2017); clean energy transition especially in rural areas 

of China would largely lower the local air pollutions and save more lives relative 

to clean energy transition in urban areas in China so that more clean energy 

transition efforts in rural areas could increase the EJ as well. And the application 

of regional VSL shows that disparity of VSLs among provinces is majorly 

attributable to the disparity of provincial economic development and the inequity 

of household income and it may lead to overlooking a province’s loss with lower 

economic loss but with larger premature deaths. On the other hand, regional 

VSLs to quantify economic benefits of climate mitigation measures provide a 

quantitative value close to market price.  But an enhance VSL method or another 

method to quantify economic value of premature deaths is needed.  

Although this thesis further confirms that climate mitigation measures at 

demand side of households could create a large quantity of benefits (Creutzig et 

al., 2021), it also extends the study about mitigation strategies at different forms 

of energy usage (direct and indirect) and finds that for direct energy usage of 

households, replacing solid fuels (coal and biomass) with cleaner fuels like 

electricity could saliently reduce PM2.5 pollution and avoid premature deaths while 

for mitigation in indirect households’ consumption activities, mitigation strategies 

ought to be more point to point to different consumption activities. And rural-urban 

differences, for example in income elasticity of demand of different consumption 

activities, have the effect on preference on consuming different goods with the 
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change of their income so that it is hard to project what consumption activity 

should be spotted to conduct mitigation measures. As per this research, via 

studying the income elasticity of demand of different consumption activities, it 

projects that housing and transport activities are the two should be implemented 

mitigation measures, not only at the supply side but also at the demand side. In 

this thesis, I uphold the idea that even if applying mitigation measures at the 

demand side, it is not supposed to degrade the life quality of humans. Because 

of this, the “nudge theory” from behavioral economics is  innovatively introduced 

to be more efficiently and covertly guide the household consumption activities, 

For example, it was found that a greater number of consumers chose the 

renewable energy option for electricity when it was offered as the default option 

(Pichert and Katsikopoulos, 2008). 

Lastly, all the health burden/co-benefits results are provided at a resolution 

at a spatial resolution of 0.1°× 0.1°, which performs a higher resolution than 

exited research.  

6.2.2 Research limitations 

There are four prime limitations in this thesis: 

(1) Estimates in this thesis do not account for household energy 

consumption’s effect on indoor air. Indeed research by Yun et al. (2020)  found 

that the residential sector contributed to 71% of the indoor PM2.5 concentrations 

and 67% of PM2.5-induced premature deaths in 2014. As such the analysis of 

health burden caused by Chinese household direct energy consumption is (i) a 

lower bound estimate of total premature deaths and (ii) likely underestimates the 

impact on women as they may well have higher exposure to indoor air pollution 

due to their longer duration indoors in residential settings, as suggested by 

Hashim and Boffetta (2014). 

(2) The health impact assessments conduct health co-benefits from PM2.5 

exposure but using PM2.5 alone may underestimate the benefits of mitigation 

measures given that other sources of air pollution can also enact an adverse 

impact on health.  



 155 

(3) Due to the data availability and limitation of the input-output model, 

products consumed in the same activity category consumed by rural and urban 

households are not distinguished, for example, rural and urban households may 

tend to consume different quality of food products, which maybe embrace 

different energy intensities. 

(4) For the transport scenario modelling, technology improvement and 

innovation in the future are not be taken account of because it is hard to quantify 

them given the complicated transport system, and technology and innovation 

may completely change passengers’ transport patten. 

6.2.3 Future research prospect 

For the future research prospect, the future work can lead to: 

(1) Study the health co-benefits of clean energy transition of household in 

China resulting from reduction of air pollution indoor and outdoor. The indoor 

pollution can be monitored with the help of sensor technologies to efficiently get 

this source data. 

(2) Do the scenario analysis to model the household embodied energy 

consumption change under the urbanization of China.  

(3) Study driving factors of Chinese households’ induced-energy/carbon 

emission change so as to give better suggestions of demand-side mitigation 

measures.  

(4) Consider the health benefits with increased physical activity in the 

transport scenario modelling.  

(5) Expand the health burden/ co-benefits attributable from PM2.5 pollution 

into other sources of air pollutants. And also expand the health burden/co-

benefits from mortality to morbidity. 

(6) Expand the perspective of health burden/co-benefits for different sex and 

age segments of populations into more social dimensions, like for different 

income groups.  
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6.3 Policy implications  

In general, implementing mitigation measures at the demand side would 

generate enormous benefits for the whole society. First, for the household direct 

energy consumption, it is suggested to promote clean energy transition, such as 

subsiding modern stoves, particularly in rural areas of China. Second, for 

household indirect energy consumption, a combination of mitigation measures at 

the supply side and demand-side is suggested, especially for housing and 

transport activities of households. Because it finds that the first quintile region of 

China has the highest average income and embodied energy consumption, it 

should take up the responsibility of reducing its own consumption level and 

improve its own industrial energy efficiency, especially in transport, storage and 

transport equipment and service sector; therefore, mitigation policies in the first 

quintile region of China should be stringent. In this thesis, it does not encourage 

policymakers to adopt the incentive strategies to intentionally change consumers’ 

consuming habits as other research’s policy implications but suggests to nudge 

consumers’ habits unintentionally, like (i) optimize the defaulting options; (ii) 

provide visible information; (iii) provide convenience of using facilities. (iv) game 

design aligning with law of humans’ psychology activities in order to achieve the 

mitigation goal more efficiently and successfully. A case study in Beijing residents’ 

travel pattern change give us the inspiration about that the most beneficial 

mitigation measures lie in the “sharing” like the public transport. The sharing 

economy has been exploded in popularity in recent years globally, showing that 

our human society can transit into a resources-sharing one with saving more  

resources as well as reducing environmental impacts Moreover, this trend can 

contribute to mitigation of demand-side since sharing economy consuming 

largely relies on consumers’ acceptance, but policymakers can support/fund 

more innovations of sharing economy, expanding into more facets of 

consumption activities and help to build better “sharing” public infrastructure. 

Meanwhile, taking account of different social groups’ interests and disadvantages 

into the policy making is necessary to increase the environmental justice.  

Most of China’s current mitigation policies target reducing emissions 



 157 

on the production side by changing the energy mix and optimizing the 

sectoral structure(Wu et al., 2016a). Since China has pledged to achieve 

carbon neutrality before 2060 in 2020(Watkins, 2020), China has been 

putting efforts in developing low carbon, zero carbon and negative carbon 

technologies, like decarbonizing in the manufacturing process, phasing 

out fossil fuel power plants with more renewable fuel power plants such 

as photovoltaics, wind power plants, and promoting the carbon capture, 

utilization and storage (CCUS) technology, etc , but policies at the 

demand-side is less than supply side. Given the household sector took 

account of around 30-40% of the total energy consumption and nearly the 

same percentage of the total carbon emissions of China and with 

increasing living standards and wealth across the Chinese population, 

residential energy consumption is forecast to continually grow in the short 

and medium term (Fan et al., 2013).Therefore, it is inevitable for the 

policymakers to take actions to tackle residential sector’s pronounced 

carbon/energy footprint and this thesis shows that there is still a plenty of 

strategies can be taken to mitigate the residential sector so that China’s 

government can make corresponding measures suggested above to 

reduce carbon/energy footprint of household consumption activities. 

Appendices 

1.1 Self-sufficient rate of eight household consumption 
activities within five income regions 
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Figure A.1 Self-sufficient rate of eight household consumption activities within five 
income regions 

1.2 Beijing Government’s measures to tackle problems 
in transport 

Beijing government has implemented several policies, measures and 
regulations to reduce energy consumption, carbon emissions, air pollution and 
traffic jams in transport sector. It can be categorized into six: (1) public transport. 
Beijing government has provided more public transport infrastructure, including 
more subway line and bus lanes and subsiding the public transport and it aims to 
take pressure off roads and increase the share of public transport as well as 
increasing the total green travel (BTRC, 2012-2020). Due to developing public 
transport, it not only eased the traffic jam but decreased the energy use and GHG 
(greenhouse gas) emission. The CO2 emission in transport sector in Beijing has 
dropped from 15.2% in 2007 to 0.38% in 2010; (2) traffic control measures. 
Beijing’s government has also taken restrictive measures to limit the number of 
cars on the road, like Beijing’s even-odd rule, which stipulates that only cars with 
even- or odd-numbered license plates can be on the road on any given day (it 
alternates) and a lottery system to limit new car registrations and using quota for 
new car registration; (3) fuel quality and emission control on vehicles. Beijing 
regulated the NOX emissions from heavy diesel vehicles, implemented stricter 
standard for gasoline and diesel of vehicles (like DB11/238-2016 and DB11/239-
2016) and eliminated old motor vehicles and diesel freight with high emissions; 
(4) alternative fuel and advanced vehicles. Beijing has put a lot of efforts to 
promote electric vehicles usage. In 2020, population of electric vehicles has 
increased to 0.4 million, increased by around 14 times than 2015 (BTRC, 2012-
2020). And more charging stations for electric cars was built. More renewable 
buses have been replaced the old public buses every year; (5) technology 
application. Beijing has used big data, cloud computing, Internet + and other new 
technologies to analyze transport structure of Beijing and surrounding areas to 
give plans for managing transport of Beijing in order to make it more intelligent, 
efficient and scientific (BTRC, 2012-2020). What’s more, it also promoted energy-
saving technologies for vehicles and made regulations for better use these 
technologies, for example, technical specifications for energy saving in rail transit 
(1T/1486-2017) was published in 2017 (BTRC, 2012-2020); (6) economic 
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incentives. For example, subsiding for a user who buys electric cars. Many have 
proven to be successful but the total growth of vehicles in Beijing annually is 
challenging policymakers and still put a lot of burden on traffic, carbon emissions 
and air pollution. 
 
Reference: 
BTRC 2012-2020. Beijing Transport Annual Report (2012-2020). Beijing Transportation Research Center. 

Bibliography 

AL-MULALI, U., FEREIDOUNI, H. G., LEE, J. Y. M. & SAB, C. N. B. C. 2013. Exploring the relationship 
between urbanization, energy consumption, and CO2 emission in MENA countries. Renewable 
and Sustainable Energy Reviews, 23, 107-112. 

AMANN, M., BERTOK, I., BORKEN-KLEEFELD, J., COFALA, J., HEYES, C., HÖGLUND-
ISAKSSON, L., KLIMONT, Z., NGUYEN, B., POSCH, M., RAFAJ, P., SANDLER, R., SCHÖPP, 
W., WAGNER, F. & WINIWARTER, W. 2011. Cost-effective control of air quality and greenhouse 
gases in Europe: Modeling and policy applications. Environmental Modelling & Software, 26, 
1489-1501. 

AMANN, M., KIESEWETTER, G., SCHOPP, W., KLIMONT, Z., WINIWARTER, W., COFALA, J., 
RAFAJ, P., HOGLUND-ISAKSSON, L., GOMEZ-SABRIANA, A., HEYES, C., PUROHIT, P., 
BORKEN-KLEEFELD, J., WAGNER, F., SANDER, R., FAGERLI, H., NYIRI, A., COZZI, L. & 
PAVARINI, C. 2020. Reducing global air pollution: the scope for further policy interventions. 
Philosophical Transactions of the Royal Society A, 378, 20190331. 

ANDERSSON, H. & TREICH, N. 2011. The Value of a Statistical Life. Handbook in Transport Economics. 
Cheltenham, UK: Edward Elgar. 

ANDRES, R. J., BODEN, T. A., BRÉON, F. M., CIAIS, P., DAVIS, S., ERICKSON, D., GREGG, J. S., 
JACOBSON, A., MARLAND, G., MILLER, J., ODA, T., OLIVIER, J. G. J., RAUPACH, M. R., 
RAYNER, P. & TREANTON, K. 2012. A synthesis of carbon dioxide emissions from fossil-fuel 
combustion. Biogeosciences, 9, 1845-1871. 

ANENBERG, S. C., MILLER, J., MINJARES, R., DU, L., HENZE, D. K., LACEY, F., MALLEY, C. S., 
EMBERSON, L., FRANCO, V., KLIMONT, Z. & HEYES, C. 2017. Impacts and mitigation of 
excess diesel-related NOx emissions in 11 major vehicle markets. Nature, 545, 467-471. 

ARCHER-NICHOLLS, S., CARTER, E., KUMAR, R., XIAO, Q., LIU, Y., FROSTAD, J., 
FOROUZANFAR, M. H., COHEN, A., BRAUER, M., BAUMGARTNER, J. & WIEDINMYER, 
C. 2016. The Regional Impacts of Cooking and Heating Emissions on Ambient Air Quality and 
Disease Burden in China. Environmental science & technology, 50, 9416-23. 

ATKINSON, G., HAMILTON, K., RUTA, G. & VAN DER MENSBRUGGHE, D. 2011. Trade in ‘virtual 
carbon’: Empirical results and implications for policy. Global Environmental Change, 21, 563-
574. 

ATSMON, Y., MAGNI, M., LI, L. & LIAO, W. 2012. Meet the 2020 Chinese Consumer. McKinsey 
Consumer & Shopper Insights [Online]. Available: https://www.mckinsey.com/featured-
insights/asia-pacific/meet-the-chinese-consumer-of-2020. 

AUNAN, K., FANG, J., VENNEMO, H., OYE, K. & SEIP, H. M. 2004. Co-benefits of climate policy—
lessons learned from a study in Shanxi, China. Energy Policy, 32, 567-581. 



 160 

AYRES, R. U. & WALTER, J. 1991. The greenhouse effect: damages, costs and abatement. Environmental 
and Resource Economics, 1, 237-270. 

BAI, Y. & LIU, Y. 2013. An exploration of residents’ low-carbon awareness and behavior in Tianjin, China. 
Energy Policy, 61, 1261-1270. 

BARRETT, J., PETERS, G., WIEDMANN, T., SCOTT, K., LENZEN, M., ROELICH, K. & LE QUÉRÉ, 
C. 2013. Consumption-based GHG emission accounting: a UK case study. Climate Policy, 13, 
451-470. 

BELL, M. L., DAVIS, D. L., CIFUENTES, L. A., KRUPNICK, A. J., MORGENSTERN, R. D. & 
THURSTON, G. D. 2008. Ancillary human health benefits of improved air quality resulting from 
climate change mitigation. Environmental Health, 7, 41. 

BELL, M. L., ZANOBETTI, A. & DOMINICI, F. 2013. Evidence on vulnerability and susceptibility to 
health risks associated with short-term exposure to particulate matter: a systematic review and 
meta-analysis. American journal of epidemiology, 178, 865-76. 

BIN, S. & DOWLATABADI, H. 2005. Consumer lifestyle approach to US energy use and the related CO2 
emissions. Energy Policy, 33, 197-208. 

BJØRN, A., KALBAR, P., NYGAARD, S. E., KABINS, S., JENSEN, C. L., BIRKVED, M., SCHMIDT, 
J. & HAUSCHILD, M. Z. 2018. Pursuing necessary reductions in embedded GHG emissions of 
developed nations: Will efficiency improvements and changes in consumption get us there? Global 
Environmental Change, 52, 314-324. 

BMBS 2016-2020. Beijing Statistical Yearbook (2015-2019). Beijing: China Statistics Press. 
BOLLEN, J., VAN DER ZWAAN, B., BRINK, C. & EERENS, H. 2009. Local air pollution and global 

climate change: A combined cost-benefit analysis. Resource and Energy Economics, 31, 161-181. 
BOWEN, S. & ZWI, A. B. 2005. Pathways to "evidence-informed" policy and practice: a framework for 

action. PLoS medicine, 2, e166. 
BOYD, R., GREEN, F. & STERN, N. 2015. The road to Paris and beyond Policy Paper London, UK: 

Centre for Climate Change Economics and Policy Grantham Research Institute on Climate 
Change and the Environment. 

BRAND, C., GÖTSCHI, T., DONS, E., GERIKE, R., ANAYA-BOIG, E., AVILA-PALENCIA, I., DE 
NAZELLE, A., GASCON, M., GAUPP-BERGHAUSEN, M., IACOROSSI, F., KAHLMEIER, 
S., INT PANIS, L., RACIOPPI, F., ROJAS-RUEDA, D., STANDAERT, A., STIGELL, E., 
SULIKOVA, S., WEGENER, S. & NIEUWENHUIJSEN, M. J. 2021. The climate change 
mitigation impacts of active travel: Evidence from a longitudinal panel study in seven European 
cities. Global Environmental Change, 67. 

BTRC 2012-2020. Beijing Transport Annual Report (2012-2020). Beijing, China: Beijing Transportation 
Research Center. 

BTRC 2016. Beijing Transport Annual Report 2015. Beijing, China: Beijing Transportation Research 
Center. 

BÜCHS, M. & SCHNEPF, S. V. 2013. Who emits most? Associations between socio-economic factors and 
UK households' home energy, transport, indirect and total CO2 emissions. Ecological Economics, 
90, 114-123. 

BURNETT, R., CHEN, H., SZYSZKOWICZ, M., FANN, N., HUBBELL, B., POPE, C. A., 3RD, APTE, 
J. S., BRAUER, M., COHEN, A., WEICHENTHAL, S., COGGINS, J., DI, Q., BRUNEKREEF, 
B., FROSTAD, J., LIM, S. S., KAN, H., WALKER, K. D., THURSTON, G. D., HAYES, R. B., 
LIM, C. C., TURNER, M. C., JERRETT, M., KREWSKI, D., GAPSTUR, S. M., DIVER, W. R., 
OSTRO, B., GOLDBERG, D., CROUSE, D. L., MARTIN, R. V., PETERS, P., PINAULT, L., 
TJEPKEMA, M., VAN DONKELAAR, A., VILLENEUVE, P. J., MILLER, A. B., YIN, P., ZHOU, 



 161 

M., WANG, L., JANSSEN, N. A. H., MARRA, M., ATKINSON, R. W., TSANG, H., QUOC 
THACH, T., CANNON, J. B., ALLEN, R. T., HART, J. E., LADEN, F., CESARONI, G., 
FORASTIERE, F., WEINMAYR, G., JAENSCH, A., NAGEL, G., CONCIN, H. & SPADARO, J. 
V. 2018. Global estimates of mortality associated with long-term exposure to outdoor fine 
particulate matter. Proceedings of the National Academy of Sciences, 115, 9592-9597. 

BURNETT, R. & COHEN, A. 2020. Relative Risk Functions for Estimating Excess Mortality Attributable 
to Outdoor PM2.5 Air Pollution: Evolution and State-of-the-Art. Atmosphere, 11, 589-601. 

BURNETT, R. T., POPE, C. A., 3RD, EZZATI, M., OLIVES, C., LIM, S. S., MEHTA, S., SHIN, H. H., 
SINGH, G., HUBBELL, B., BRAUER, M., ANDERSON, H. R., SMITH, K. R., BALMES, J. R., 
BRUCE, N. G., KAN, H., LADEN, F., PRUSS-USTUN, A., TURNER, M. C., GAPSTUR, S. M., 
DIVER, W. R. & COHEN, A. 2014. An integrated risk function for estimating the global burden 
of disease attributable to ambient fine particulate matter exposure. Environmental Health 
Perspectives, 122, 397-403. 

CAI, W., HUI, J., WANG, C., ZHENG, Y., ZHANG, X., ZHANG, Q. & GONG, P. 2018. The Lancet 
Countdown on PM 2.5 pollution-related health impacts of China's projected carbon dioxide 
mitigation in the electric power generation sector under the Paris Agreement: a modelling study. 
The Lancet Planetary Health, 2, e151-e161. 

CAI, W., ZHANG, C., SUEN, H. P., AI, S., BAI, Y., BAO, J., CHEN, B., CHENG, L., CUI, X., DAI, H., 
DI, Q., DONG, W., DOU, D., FAN, W., FAN, X., GAO, T., GENG, Y., GUAN, D., GUO, Y., HU, 
Y., HUA, J., HUANG, C., HUANG, H., HUANG, J., JIANG, T., JIAO, K., KIESEWETTER, G., 
KLIMONT, Z., LAMPARD, P., LI, C., LI, Q., LI, R., LI, T., LIN, B., LIN, H., LIU, H., LIU, Q., 
LIU, X., LIU, Y., LIU, Z., LIU, Z., LIU, Z., LOU, S., LU, C., LUO, Y., MA, W., MCGUSHIN, A., 
NIU, Y., REN, C., REN, Z., RUAN, Z., SCHÖPP, W., SU, J., TU, Y., WANG, J., WANG, Q., 
WANG, Y., WANG, Y., WATTS, N., XIAO, C., XIE, Y., XIONG, H., XU, M., XU, B., XU, L., 
YANG, J., YANG, L., YU, L., YUE, Y., ZHANG, S., ZHANG, Z., ZHAO, J., ZHAO, L., ZHAO, 
M., ZHAO, Z., ZHOU, J. & GONG, P. 2021a. The 2020 China report of the Lancet Countdown 
on health and climate change. The Lancet Public Health, 6, e64-e81. 

CAI, W., ZHANG, C., ZHANG, S., AI, S., BAI, Y., BAO, J., CHEN, B., CHANG, N., CHEN, H., CHENG, 
L., CUI, X., DAI, H., DANNA, B., DI, Q., DONG, W., DONG, W., DOU, D., FAN, W., FAN, X., 
FANG, X., GAO, Y., GAO, T., GENG, Y., GUAN, D., GUO, Y., HU, Y., HUA, J., HUANG, C., 
HUANG, H., HUANG, J., HAMILTON, I., JIANG, Q., JIANG, X., KE, P., KIESEWETTER, G., 
LAMPARD, P., LI, C., LI, R., LI, S., LIANG, L., LIN, B., LIN, H., LIU, H., LIU, Q., LIU, X., 
LIU, Y., LIU, Z., LIU, Z., LIU, X., LOU, S., LU, C., LUO, Y., LUO, Z., MA, W., MCGUSHIN, 
A., NIU, Y., REN, C., RUAN, Z., SCHÖPP, W., SHAN, Y., SU, J., SUN, T., WANG, Q., WANG, 
C., WEN, S., XIE, Y., XIONG, H., XU, B., XU, M., YAN, Y., YANG, J., YANG, L., YANG, X., 
YU, L., YUE, Y., ZENG, Y., ZHANG, Y., ZHANG, S., ZHANG, Z., ZHANG, J., ZHAO, L., 
ZHAO, Q., ZHAO, Z., ZHAO, J., ZHAO, M., ZHOU, J., ZHU, Z., FU-CHUN, M. C. F. & GONG, 
P. 2021b. The 2021 China report of the Lancet Countdown on health and climate change: seizing 
the window of opportunity. The Lancet Public Health, 6, e932-e947. 

CAO, J., YANG, C., LI, J., CHEN, R., CHEN, B., GU, D. & KAN, H. 2011. Association between long-
term exposure to outdoor air pollution and mortality in China: A cohort study. Journal of 
Hazardous Materials, 186, 1594-1600. 

CHAFE, Z. A., BRAUER, M., KLIMONT, Z., VAN DINGENEN, R., MEHTA, S., RAO, S., RIAHI, K., 
DENTENER, F. & SMITH, K. R. 2014. Household cooking with solid fuels contributes to ambient 
PM2.5 air pollution and the burden of disease. Environmental Health Perspectives, 122, 1314-20. 

CHANG, K. M., HESS, J. J., BALBUS, J. M., BUONOCORE, J. J., CLEVELAND, D. A., GRABOW, M. 



 162 

L., NEFF, R., SAARI, R. K., TESSUM, C. W., WILKINSON, P., WOODWARD, A. & EBI, K. L. 
2017. Ancillary health effects of climate mitigation scenarios as drivers of policy uptake: a review 
of air quality, transportation and diet co-benefits modeling studies. Environmental Research 
Letters, 12. 

CHEN, B. & KAN, H. 2008. Air pollution and population health: a global challenge. Environmental Health 
and Preventive Medicine, 13, 94-101. 

CHEN, H. 2018. During the "13th Five-Year Plan" period, Beijing's renewable and clean energy buses 
accounted for over 90%. China News. 

CHEN, W., LEI, Y., FENG, K., WU, S. & LI, L. 2019. Provincial emission accounting for CO2 mitigation 
in China: Insights from production, consumption and income perspectives. Applied Energy, 255. 

CHEN, Y., GUO, F., WANG, J., CAI, W., WANG, C. & WANG, K. 2020. Provincial and gridded population 
projection for China under shared socioeconomic pathways from 2010 to 2100. Scientific Data, 7, 
83. 

CHEN, Y., SHEN, H., SMITH, K. R., GUAN, D., CHEN, Y., SHEN, G., LIU, J., CHENG, H., ZENG, E. 
Y. & TAO, S. 2018. Estimating household air pollution exposures and health impacts from space 
heating in rural China. Environment International, 119, 117-124. 

CHOWDHURY, S. & DEY, S. 2016. Cause-specific premature death from ambient PM2.5 exposure in 
India: Estimate adjusted for baseline mortality. Environ Int, 91, 283-90. 

CLARK, M. L., PEEL, J. L., BALAKRISHNAN, K., BREYSSE, P. N., CHILLRUD, S. N., NAEHER, L. 
P., RODES, C. E., VETTE, A. F. & BALBUS, J. M. 2013. Health and household air pollution from 
solid fuel use: the need for improved exposure assessment. Environmental Health Perspectives, 
121, 1120-8. 

CLUNE, S., CROSSIN, E. & VERGHESE, K. 2017. Systematic review of greenhouse gas emissions for 
different fresh food categories. Journal of Cleaner Production, 140, 766-783. 

COLE-HUNTER, T., DHINGRA, R., FEDAK, K. M., GOOD, N., L'ORANGE, C., LUCKASEN, G., 
MEHAFFY, J., WALKER, E., WILSON, A., BALMES, J., BROOK, R. D., CLARK, M. L., 
DEVLIN, R. B., VOLCKENS, J. & PEEL, J. L. 2021. Short-term differences in cardiac function 
following controlled exposure to cookstove air pollution: The subclinical tests on volunteers 
exposed to smoke (STOVES) study. Environment International, 146, 106254. 

COSTELLO, A., ABBAS, M., ALLEN, A., BALL, S., BELLAMY, R., FRIEL, S., GROCE, N., JOHNSON, 
A., KETT, M., LEE, M., LEVY, C., MASLIN, M., MCCOY, D., MCGUIRE, B., MONTGOMERY, 
H., NAPIER, D., PAGEL, C., PATEL, J., DE OLIVEIRA, J. A. P., REDCLIFT, N. R., REES, H., 
ROGGER, D., SCOTT, J., STEPHENSON, J., TWIGG, J., WOLFF, J. & PATTERSON, C. 2009. 
Managing the health effects of climate change: lancet and University College London Institute for 
Global Health Commission. The Lancet, 373, 1693-1733. 

CREUTZIG, F., NIAMIR, L., BAI, X., CALLAGHAN, M., CULLEN, J., DÍAZ-JOSÉ, J., FIGUEROA, 
M., GRUBLER, A., LAMB, W. F., LEIP, A., MASANET, E., MATA, É., MATTAUCH, L., MINX, 
J. C., MIRASGEDIS, S., MULUGETTA, Y., NUGROHO, S. B., PATHAK, M., PERKINS, P., 
ROY, J., DE LA RUE DU CAN, S., SAHEB, Y., SOME, S., STEG, L., STEINBERGER, J. & 
ÜRGE-VORSATZ, D. 2021. Demand-side solutions to climate change mitigation consistent with 
high levels of well-being. Nature Climate Change, 12, 36-46. 

CREUTZIG, F., ROY, J., LAMB, W. F., AZEVEDO, I. M. L., BRUINE DE BRUIN, W., DALKMANN, 
H., EDELENBOSCH, O. Y., GEELS, F. W., GRUBLER, A., HEPBURN, C., HERTWICH, E. G., 
KHOSLA, R., MATTAUCH, L., MINX, J. C., RAMAKRISHNAN, A., RAO, N. D., 
STEINBERGER, J. K., TAVONI, M., ÜRGE-VORSATZ, D. & WEBER, E. U. 2018. Towards 
demand-side solutions for mitigating climate change. Nature Climate Change, 8, 260-263. 



 163 

DAAS-AUTO. 2015-2020. Populations of electric cars [Online]. Guangzhou, China: WAYS. Available: 
https://www.daas-auto.com/supermarket_data_De/829.html [Accessed 1 January, 2022 2022]. 

DABELSTEIN, C., SCHÄFER, P., SCHWEDHELM, D., WU, J. & WU, T. 2021. Winning the Chinese 
BEV market: How leading international OEMs compete Chicago, US: McKinsey & Company. 

DAI, H., MASUI, T., MATSUOKA, Y. & FUJIMORI, S. 2012. The impacts of China’s household 
consumption expenditure patterns on energy demand and carbon emissions towards 2050. Energy 
Policy, 50, 736-750. 

DALKMANN, H. & BRANNIGAN, C. 2007. Transport and Climate Change. Module 5e. Sustainable 
Transport: A Sourcebook for Policy-Makers in Developing Cities Eschborn, Germany: Division 
44 Environment and Infrastructure. 

DING, Q., CAI, W., WANG, C. & SANWAL, M. 2017. The relationships between household consumption 
activities and energy consumption in china— An input-output analysis from the lifestyle 
perspective. Applied Energy, 207, 520-532. 

DRUCKMAN, A. & JACKSON, T. 2008. Household energy consumption in the UK: A highly 
geographically and socio-economically disaggregated model. Energy Policy, 36, 3177-3192. 

DRUCKMAN, A. & JACKSON, T. 2009. The carbon footprint of UK households 1990–2004: A socio-
economically disaggregated, quasi-multi-regional input–output model. Ecological Economics, 68, 
2066-2077. 

DRUCKMAN, A. & JACKSON, T. 2010. The bare necessities: How much household carbon do we really 
need? Ecological Economics, 69, 1794-1804. 

DU, W., LI, X., CHEN, Y. & SHEN, G. 2018. Household air pollution and personal exposure to air 
pollutants in rural China - A review. Environmental Pollution, 237, 625-638. 

DUBOIS, G., SOVACOOL, B., AALL, C., NILSSON, M., BARBIER, C., HERRMANN, A., BRUYÈRE, 
S., ANDERSSON, C., SKOLD, B., NADAUD, F., DORNER, F., MOBERG, K. R., CERON, J. 
P., FISCHER, H., AMELUNG, D., BALTRUSZEWICZ, M., FISCHER, J., BENEVISE, F., 
LOUIS, V. R. & SAUERBORN, R. 2019. It starts at home? Climate policies targeting household 
consumption and behavioral decisions are key to low-carbon futures. Energy Research & Social 
Science, 52, 144-158. 

ELZEN, M. D., FEKETE, H., HÖHNE, N., ADMIRAAL, A., FORSELL, N., HOF, A. F., OLIVIER, J. G. 
J., ROELFSEMA, M. & VAN SOEST, H. 2016. Greenhouse gas emissions from current and 
enhanced policies of China until 2030: Can emissions peak before 2030? Energy Policy, 89, 224-
236. 

EZZATI, M., LOPEZ, A. D., RODGERS, A. A. & MURRAY, C. J. 2004. Comparative quantification of 
health risks: global and regional burden of disease attributable to selected major risk factors. . 
World Health Organization. 

FAN, J.-L., LIAO, H., LIANG, Q.-M., TATANO, H., LIU, C.-F. & WEI, Y.-M. 2013. Residential carbon 
emission evolutions in urban–rural divided China: An end-use and behavior analysis. Applied 
Energy, 101, 323-332. 

FAN, J.-L., LIAO, H., TANG, B.-J., PAN, S.-Y., YU, H. & WEI, Y.-M. 2015. The impacts of migrant 
workers consumption on energy use and CO2 emissions in China. Natural Hazards, 81, 725-743. 

FAN, J.-L., WANG, J.-X., LI, F., YU, H. & ZHANG, X. 2017. Energy demand and greenhouse gas 
emissions of urban passenger transport in the Internet era: A case study of Beijing. Journal of 
Cleaner Production, 165, 177-189. 

FARZANEH, R., CHEN, Y., JOHNSON, J., ZIETSMAN, J., GU, C., RAMANI, T., WHITE, L. D., 
KENNEY, M. & ZHANG, Y. 2014. Accounting for electric vehicles in air quality conformity-final 
report. Texa, US: Texa A&M Transportation Institute. 



 164 

FENG, K., DAVIS, S. J., SUN, L., LI, X., GUAN, D., LIU, W., LIU, Z. & HUBACEK, K. 2013. 
Outsourcing CO2 within China. Proceedings of the National Academy of Sciences, 110, 11654-9. 

FENG, Z.-H., ZOU, L.-L. & WEI, Y.-M. 2011. The impact of household consumption on energy use and 
CO2 emissions in China. Energy, 36, 656-670. 

FISHER, B., N. NAKICENOVIC, K., K. ALFSEN, J., MORLOT., J. C., DE LA CHESNAYE, F., -CH. 
HOURCADE, J., JIANG, K., KAINUMA, M., LA ROVERE, E., MATYSEK, A., RANA, A., 
RIAHI, K., RICHELS, R., ROSE, S., VAN VUUREN, D. & WARREN, R. 2007. Issues related to 
mitigation in the long-term context In Climate Change 2007: Mitigation. Cambridge University 
Press, Cambridge: Contribution of Working Group III to the Fourth Assessment Report of the 
Inter-governmental Panel on Climate Change  

FRICK, J., KAISER, F. G. & WILSON, M. 2004. Environmental knowledge and conservation behavior: 
exploring prevalence and structure in a representative sample. Personality and Individual 
Differences, 37, 1597-1613. 

FRIEL, S., DANGOUR, A. D., GARNETT, T., LOCK, K., CHALABI, Z., ROBERTS, I., BUTLER, A., 
BUTLER, C. D., WAAGE, J., MCMICHAEL, A. J. & HAINES, A. 2009. Public health benefits 
of strategies to reduce greenhouse-gas emissions: food and agriculture. The Lancet, 374, 2016-
2025. 

FRIEL, S., MARMOT, M. M., ANTHONY J., KJELLSTROM, T. & VÅGERÖ, D. 2008. Global health 
equity and climate stabilisation: a common agenda. The Lancet, 372, 1677-1683. 

FUSS, S., CANADELL, J. G., PETERS, G. P., TAVONI, M., ANDREW, R. M., CIAIS, P., JACKSON, R. 
B., JONES, C. D., KRAXNER, F., NAKICENOVIC, N., LE QUÉRÉ, C., RAUPACH, M. R., 
SHARIFI, A., SMITH, P. & YAMAGATA, Y. 2014. Betting on negative emissions. Nature Climate 
Change, 4, 850-853. 

GALLAGHER, K. S., ZHANG, F., ORVIS, R., RISSMAN, J. & LIU, Q. 2019. Assessing the Policy gaps 
for achieving China's climate targets in the Paris Agreement. Nature Communications, 10, 1256. 

GAO, J., KOVATS, S., VARDOULAKIS, S., WILKINSON, P., WOODWARD, A., LI, J., GU, S., LIU, X., 
WU, H., WANG, J., SONG, X., ZHAI, Y., ZHAO, J. & LIU, Q. 2018. Public health co-benefits of 
greenhouse gas emissions reduction: A systematic review. Science of the Total Environment, 627, 
388-402. 

GAO, T., LI, G., M., X., WANG, X., LIANG, F., ZENG, Q. & PAN, X. 2015. Health economic loss 
evaluation of ambient PM2.5 pollution based on willingness to pay. Journal of Environment and 
Health, 32, 697-700. 

GBD 2016. Burden of Disease Attributable to Coal Coal Burning and Other Major Sources of Air Pollution 
in China. Special Report 20. Boston, MA: Health Effects Institute  

GEHL, J. 2001. Life between buildings: using public space. Washington, D.C., US: Island Press. 
GOLDSTEIN, B., GOUNARIDIS, D. & NEWELL, J. P. 2020. The carbon footprint of household energy 

use in the United States. Proceedings of the National Academy of Sciences, 117, 19122-19130. 
GOLLEY, J. & MENG, X. 2012. Income inequality and carbon dioxide emissions: The case of Chinese 

urban households. Energy Economics, 34, 1864-1872. 
GRABOW, M. L., SPAK, S. N., HOLLOWAY, T., STONE, B., MEDNICK, A. C. & PATZ, J. A. 2012. Air 

quality and exercise-related health benefits from reduced car travel in the midwestern United 
States. Environmental Health Perspectives, 120, 68-76. 

GROOSMAN, B., MULLER, N. Z. & O’NEILL-TOY, E. 2011. The ancillary benefits from climate policy 
in the United States. Environmental and Resource Economics, 50, 585-603. 

GRUBLER, A., WILSON, C., BENTO, N., BOZA-KISS, B., KREY, V., MCCOLLUM, D. L., RAO, N. 
D., RIAHI, K., ROGELJ, J., DE STERCKE, S., CULLEN, J., FRANK, S., FRICKO, O., GUO, 



 165 

F., GIDDEN, M., HAVLÍK, P., HUPPMANN, D., KIESEWETTER, G., RAFAJ, P., SCHOEPP, 
W. & VALIN, H. 2018. A low energy demand scenario for meeting the 1.5 °C target and 
sustainable development goals without negative emission technologies. Nature Energy, 3, 515-
527. 

GUAN, D., PETERS, G. P., WEBER, C. L. & HUBACEK, K. 2009. Journey to world top emitter: An 
analysis of the driving forces of China's recent CO2 emissions surge. Geophysical Research 
Letters, 36, 1-5. 

HAINES, A., KOVATS, R. S., CAMPBELL-LENDRUM, D. & CORVALAN, C. 2006. Climate change 
and human health: impacts, vulnerability, and mitigation. The Lancet, 367, 2101-2109. 

HAINES, A., MCMICHAEL, A. J., SMITH, K. R., ROBERTS, I., WOODCOCK, J., MARKANDYA, A., 
ARMSTRONG, B. G., CAMPBELL-LENDRUM, D., DANGOUR, A. D., DAVIES, M., BRUCE, 
N., TONNE, C., BARRETT, M. & WILKINSON, P. 2009. Public health benefits of strategies to 
reduce greenhouse-gas emissions: overview and implications for policy makers. The Lancet, 374, 
2104-2114. 

HAMMITT, J. K. & ZHOU, Y. 2006. The Economic Value of Air-Pollution-Related Health Risks in China: 
A Contingent Valuation Study. Environmental & Resource Economics, 33, 399-423. 

HANNEY, S. R., GONZALEZ-BLOCK, M. A., BUXTON, M. J., & KOGAN, M. 2003. The utilisation of 
health research in policy-making: concepts, examples and methods of assessment. Health research 
policy and systems, 1, 1-28. 

HARRIS, A. R., ROGERS, M. M., MILLER, C. J., MCELMURRY, S. P. & WANG, C. 2015. Residential 
emissions reductions through variable timing of electricity consumption. Applied Energy, 158, 
484-489. 

HASHIM, D. & BOFFETTA, P. 2014. Occupational and environmental exposures and cancers in 
developing countries. Annals of Global Health, 80, 393-411. 

HE, C., JIANG, K., CHEN, S., JIANG, W. & LIU, J. 2019. Zero CO2 emissions for an ultra-large city by 
2050: case study for Beijing. Current Opinion in Environmental Sustainability, 36, 141-155. 

HE, J.-K. 2016. Global low-carbon transition and China's response strategies. Advances in Climate Change 
Research, 7, 204-212. 

HE, L.-Y., HOU, L.-Q., LIN, H. & DU, S.-F. 2016. Biofuels or hybrid vehicles? A scenario perspective in 
China. Energy Sources, Part B: Economics, Planning, and Policy, 11, 443-449. 

HE, L.-Y. & QIU, L.-Y. 2016. Transport demand, harmful emissions, environment and health co-benefits 
in China. Energy Policy, 97, 267-275. 

HELGENBERGER, S., JÄNICKE, M. & GÜRTLER, K. 2019. Co-benefits of climate change mitigation. 
Climate Action, 1-13. 

HERTWICH, E. G. & WOOD, R. 2018. The growing importance of scope 3 greenhouse gas emissions 
from industry. Environmental Research Letters, 13. 

HOLLAND, S. P., MANSUR, E. T., MULLER, N. Z. & YATES, A. J. 2019. Distributional Effects of Air 
Pollution from Electric Vehicle Adoption. Journal of the Association of Environmental and 
Resource Economists, 6, S65-S94. 

HU, J., WANG, Y., YING, Q. & ZHANG, H. 2014. Spatial and temporal variability of PM2.5 and PM10 
over the North China Plain and the Yangtze River Delta, China. Atmospheric Environment, 95, 
598-609. 

HUANG, H. 2016. Media use, environmental beliefs, self-efficacy, and pro-environmental behavior. 
Journal of Business Research, 69, 2206-2212. 

HUBACEK, K., GUAN, D., BARRETT, J. & WIEDMANN, T. 2009. Environmental implications of 
urbanization and lifestyle change in China: Ecological and Water Footprints. Journal of Cleaner 



 166 

Production, 17, 1241-1248. 
HUO, H., ZHENG, B., WANG, M., ZHANG, Q. & HE, K.-B. 2014. Vehicular air pollutant emissions in 

China: evaluation of past control policies and future perspectives. Mitigation and Adaptation 
Strategies for Global Change, 20, 719-733. 

IEI. 2017. Income inequality, social inclusion and mobility [Online]. Paris, France: International Transport 
Forum. Available: https://www.itf-oecd.org/sites/default/files/docs/income-inequality-social-
inclusion-mobility.pdf [Accessed]. 

IPCC 2006. Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse 
Gas Inventories Programme. Tokyo, Japan: Institute for Global Environmental Strategies. 

IPCC 2007. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment 
Report of the Intergovernmental Panel on Climate Change Cambridge, UK and New York, US: 
Cambridge University Press. 

IVANOVA, D. & WOOD, R. 2020. The unequal distribution of household carbon footprints in Europe and 
its link to sustainability. Global Sustainability, 3, 1-12. 

JACK, D. W. & KINNEY, P. L. 2010. Health co-benefits of climate mitigation in urban areas. Current 
Opinion in Environmental Sustainability, 2, 172-177. 

JI, S., CHERRY, C. R., HAN, L. D. & JORDAN, D. A. 2014. Electric bike sharing: simulation of user 
demand and system availability. Journal of Cleaner Production, 85, 250-257. 

JI, S., CHERRY, C. R., M, J. B., WU, Y. & MARSHALL, J. D. 2012. Electric vehicles in China: emissions 
and health impacts. Environmental science & technology, 46, 2018-24. 

JI, S., CHERRY, C. R., ZHOU, W., SAWHNEY, R., WU, Y., CAI, S., WANG, S. & MARSHALL, J. D. 
2015. Environmental Justice Aspects of Exposure to PM2.5 Emissions from Electric Vehicle Use 
in China. Environmental science & technology, 49, 13912-20. 

JIANG, T., ZHAO, J., JING, C., CAO, L., WANG, Y., SUN, H., WANG, A., HUANG, J., SU, B. & WANG, 
R. 2017. National and Provincial Population Projected to 2100 Under the Shared Socioeconomic 
Pathways in China. Climate Change Research, 13, 128-137. 

KAHN RIBEIRO, S., KOBAYASHI, S., BEUTHE, M., GASCA, J., GREENE, D., LEE, D. S., 
MUROMACHI, Y., NEWTON, P. J., PLOTKIN, S., SPERLING, D., WIT, R. & ZHOU, P. J. 2007. 
Transport and its infrastructure. In Climate Change 2007: Mitigation. Cambridge, UK and New 
York, US: Contribution of Working Group III to the Fourth Assessment Report of the 
Intergovernmental Panel on Climate Change. 

KAHNEMAN, D., TVERSKY, A. 1979. Prospect theory: an analysis of decision under risk. Econometrica, 
47, 263-291. 

KANTENBACHER, J., HANNA, P., MILLER, G., SCARLES, C. & YANG, J. 2017. Consumer priorities: 
what would people sacrifice in order to fly on holidays? Journal of Sustainable Tourism, 27, 207-
222. 

KAPLAN, R. M., BUSH, J. W. & BERRY, C. C. 1976. Health status: types of validity and the index of 
well-being. Health services research, 11, 478. 

KE, W., ZHANG, S., HE, X., WU, Y. & HAO, J. 2017. Well-to-wheels energy consumption and emissions 
of electric vehicles: Mid-term implications from real-world features and air pollution control 
progress. Applied Energy, 188, 367-377. 

KRAGH, B. C., NELSON, C. & GROUDINE, C. 2016. Environmental Justice: The New Normal for 
Transportation. U.S. Federal Highway Administration Public Roads, 79, 4. 

KRIEGLER, E., LUDERER, G., BAUER, N., BAUMSTARK, L., FUJIMORI, S., POPP, A., ROGELJ, J., 
STREFLER, J. & VAN VUUREN, D. P. 2018. Pathways limiting warming to 1.5 degrees C: a tale 
of turning around in no time? Philos Trans A Math Phys Eng Sci, 376. 



 167 

KROESE, F. M., MARCHIORI, D. R. & DE RIDDER, D. T. 2016. Nudging healthy food choices: a field 
experiment at the train station. J Public Health (Oxf), 38, e133-7. 

KUHN, R. L. 2019. Full Episode - Xiongan New Area: Urban vision; coordinated development. CGTN. 
LARSEN, H. N. & HERTWICH, E. G. 2009. The case for consumption-based accounting of greenhouse 

gas emissions to promote local climate action. Environmental Science & Policy, 12, 791-798. 
LE QUÉRÉ, C., ANDRES, R. J., BODEN, T., CONWAY, T., HOUGHTON, R. A., HOUSE, J. I., 

MARLAND, G., PETERS, G. P., VAN DER WERF, G., AHLSTRÖM, A., ANDREW, R. M., 
BOPP, L., CANADELL, J. G., CIAIS, P., DONEY, S. C., ENRIGHT, C., FRIEDLINGSTEIN, P., 
HUNTINGFORD, C., JAIN, A. K., JOURDAIN, C., KATO, E., KEELING, R. F., KLEIN 
GOLDEWIJK, K., LEVIS, S., LEVY, P., LOMAS, M., POULTER, B., RAUPACH, M. R., 
SCHWINGER, J., SITCH, S., STOCKER, B. D., VIOVY, N., ZAEHLE, S. & ZENG, N. 2013. 
The global carbon budget 1959–2011. Earth System Science Data, 5, 165-185. 

LEE, M. S. W. & AHN, C. S. Y. 2016. Anti-consumption, Materialism, and Consumer Well-being. Journal 
of Consumer Affairs, 50, 18-47. 

LELIEVELD, J., BARLAS, C., GIANNADAKI, D. & POZZER, A. 2013. Model calculated global, 
regional and megacity premature mortality due to air pollution. Atmospheric Chemistry and 
Physics, 13, 7023-7037. 

LELIEVELD, J., EVANS, J. S., FNAIS, M., GIANNADAKI, D. & POZZER, A. 2015. The contribution 
of outdoor air pollution sources to premature mortality on a global scale. Nature, 525, 367-71. 

LENG, X. 2012. Research on the Relationship between Carbon Emissions and the Economic Development 
of Countries Shanghai, China: Fudan University. 

LI, J., LIU, H., LV, Z., ZHAO, R., DENG, F., WANG, C., QIN, A. & YANG, X. 2018a. Estimation of 
PM2.5 mortality burden in China with new exposure estimation and local concentration-response 
function. Environmental Pollution, 243, 1710-1718. 

LI, J., ZHANG, D. & SU, B. 2019a. The Impact of Social Awareness and Lifestyles on Household Carbon 
Emissions in China. Ecological Economics, 160, 145-155. 

LI, N., MA, D. & CHEN, W. 2017a. Quantifying the impacts of decarbonisation in China’s cement sector: 
A perspective from an integrated assessment approach. Applied Energy, 185, 1840-1848. 

LI, Q., JIANG, J., WANG, S., RUMCHEV, K., MEAD-HUNTER, R., MORAWSKA, L. & HAO, J. 2017b. 
Impacts of household coal and biomass combustion on indoor and ambient air quality in China: 
Current status and implication. Science of the Total Environment, 576, 347-361. 

LI, Q., QI, J., JIANG, J., WU, J., DUAN, L., WANG, S. & HAO, J. 2019b. Significant reduction in air 
pollutant emissions from household cooking stoves by replacing raw solid fuels with their 
carbonized products. Science of the Total Environment, 650, 653-660. 

LI, T., ZHANG, Y., WANG, J., XU, D., YIN, Z., CHEN, H., LV, Y., LUO, J., ZENG, Y., LIU, Y., KINNEY, 
P. L. & SHI, X. 2018b. All-cause mortality risk associated with long-term exposure to ambient 
PM2·5 in China: a cohort study. The Lancet Public Health, 3, e470-e477. 

LI, X., ZHANG, Q., ZHANG, Y., ZHENG, B., WANG, K., CHEN, Y., WALLINGTON, T. J., HAN, W., 
SHEN, W., ZHANG, X. & HE, K. 2015. Source contributions of urban PM2.5 in the Beijing–
Tianjin–Hebei region: Changes between 2006 and 2013 and relative impacts of emissions and 
meteorology. Atmospheric Environment, 123, 229-239. 

LI, Y., LIAO, Q., ZHAO, X., TAO, Y., BAI, Y. & PENG, L. 2021. Premature mortality attributable to PM2.5 
pollution in China during 2008-2016: Underlying causes and responses to emission reductions. 
Chemosphere, 263, 127925. 

LIANG, X., ZHANG, S., WU, Y., XING, J., HE, X., ZHANG, K. M., WANG, S. & HAO, J. 2019. Air 
quality and health benefits from fleet electrification in China. Nature Sustainability, 2, 962-971. 



 168 

LIU, F., KLIMONT, Z., ZHANG, Q., COFALA, J., ZHAO, L., HUO, H., NGUYEN, B., SCHÖPP, W., 
SANDER, R., ZHENG, B., HONG, C., HE, K., AMANN, M. & HEYES, C. 2013a. Integrating 
mitigation of air pollutants and greenhouse gases in Chinese cities: development of GAINS-City 
model for Beijing. Journal of Cleaner Production, 58, 25-33. 

LIU, H. & FAN, X. 2017. Value-Added-Based Accounting of CO2 Emissions: A Multi-Regional Input-
Output Approach. Sustainability, 9. 

LIU, H. & LEI, J. 2018. The impacts of urbanization on Chinese households' energy consumption: An 
energy input-output analysis. Journal of Renewable and Sustainable Energy, 10. 

LIU, J., MURSHED, M., CHEN, F., SHAHBAZ, M., KIRIKKALELI, D. & KHAN, Z. 2021a. An 
empirical analysis of the household consumption-induced carbon emissions in China. Sustainable 
Production and Consumption, 26, 943-957. 

LIU, L., WANG, K., WANG, S., ZHANG, R. & TANG, X. 2018. Assessing energy consumption, CO2 and 
pollutant emissions and health benefits from China's transport sector through 2050. Energy Policy, 
116, 382-396. 

LIU, L.-C., WU, G., WANG, J.-N. & WEI, Y.-M. 2011. China’s carbon emissions from urban and rural 
households during 1992–2007. Journal of Cleaner Production, 19, 1754-1762. 

LIU, M., HUANG, Y., JIN, Z., LIU, X., BI, J. & JANTUNEN, M. J. 2017a. Estimating health co-benefits 
of greenhouse gas reduction strategies with a simplified energy balance based model: The Suzhou 
City case. Journal of Cleaner Production, 142, 3332-3342. 

LIU, M., HUANG, Y., JIN, Z., MA, Z., LIU, X., ZHANG, B., LIU, Y., YU, Y., WANG, J., BI, J. & KINNEY, 
P. L. 2017b. The nexus between urbanization and PM2.5 related mortality in China. Environ Pollut, 
227, 15-23. 

LIU, M., SAARI, R. K., ZHOU, G., LI, J., HAN, L. & LIU, X. 2021b. Recent trends in premature mortality 
and health disparities attributable to ambient PM2.5 exposure in China: 2005-2017. Environmental 
Pollution, 279, 116882. 

LIU, X., WANG, X. E., SONG, J., WANG, H. & WANG, S. 2019. Indirect carbon emissions of urban 
households in China: Patterns, determinants and inequality. Journal of Cleaner Production, 241. 

LIU, Z., GUAN, D., CRAWFORD-BROWN, D., ZHANG, Q., HE, K. & LIU, J. 2013b. A low-carbon road 
map for China. Nature, 500, 143-145. 

LIU, Z., GUAN, D., WEI, W., DAVIS, S. J., CIAIS, P., BAI, J., PENG, S., ZHANG, Q., HUBACEK, K., 
MARLAND, G., ANDRES, R. J., CRAWFORD-BROWN, D., LIN, J., ZHAO, H., HONG, C., 
BODEN, T. A., FENG, K., PETERS, G. P., XI, F., LIU, J., LI, Y., ZHAO, Y., ZENG, N. & HE, K. 
2015. Reduced carbon emission estimates from fossil fuel combustion and cement production in 
China. Nature, 524, 335-8. 

LU, C., VENEVSKY, S., SHI, X., WANG, L., WRIGHT, J. S. & WU, C. 2021. Econometrics of the 
environmental Kuznets curve: Testing advancement to carbon intensity-oriented sustainability for 
eight economic zones in China. Journal of Cleaner Production, 283. 

LYONS, S., PENTECOST, A. & TOL, R. S. 2012. Socioeconomic distribution of emissions and resource 
use in Ireland. Journal of environmental management, 112, 186-98. 

MA, Y. 2021. Shared cycling and carbon reduction report released, Lanzhou Meituan bicycle users reduce 
carbon dioxide by 320.6 tons a year Lanzhou Daily. 

MAIZLISH, N., LINESCH, N. J. & WOODCOCK, J. 2017. Health and greenhouse gas mitigation benefits 
of ambitious expansion of cycling, walking, and transit in California. Journal of transport & health, 
6, 490-500. 

MAIZLISH, N., WOODCOCK, J., CO, S., OSTRO, B., FANAI, A. & FAIRLEY, D. 2013. Health 
cobenefits and transportation-related reductions in greenhouse gas emissions in the San Francisco 



 169 

Bay area. American journal of public health, 103, 703-9. 
MAJI, K. J., YE, W. F., ARORA, M. & SHIVA NAGENDRA, S. M. 2018. PM2.5-related health and 

economic loss assessment for 338 Chinese cities. Environment International, 121, 392-403. 
MARKANDYA, A., ARMSTRONG, B. G., HALES, S., CHIABAI, A., CRIQUI, P., MIMA, S., TONNE, 

C. & WILKINSON, P. 2009. Public health benefits of strategies to reduce greenhouse-gas 
emissions: low-carbon electricity generation. The Lancet, 374, 2006-2015. 

MEE 2012. The standard of environmental air quality (GB3095-2012). Beijing, China: Ministry of Ecology 
and Environment of the People’s Republic of China. 

MENG, B., XUE, J., FENG, K., GUAN, D. & FU, X. 2013. China’s inter-regional spillover of carbon 
emissions and domestic supply chains. Energy Policy, 61, 1305-1321. 

MI, Z., ZHENG, J., MENG, J., ZHENG, H., LI, X., COFFMAN, D. M., WOLTJER, J., WANG, S. & 
GUAN, D. 2019. Carbon emissions of cities from a consumption-based perspective. Applied 
Energy, 235, 509-518. 

MI, Z.-F., PAN, S.-Y., YU, H. & WEI, Y.-M. 2015. Potential impacts of industrial structure on energy 
consumption and CO2 emission: a case study of Beijing. Journal of Cleaner Production, 103, 455-
462. 

MILLAR, R. J., FUGLESTVEDT, J. S., FRIEDLINGSTEIN, P., ROGELJ, J., GRUBB, M. J., 
MATTHEWS, H. D., SKEIE, R. B., FORSTER, P. M., FRAME, D. J. & ALLEN, M. R. 2017. 
Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nature Geoscience, 
10, 741-747. 

MITTAL, S., HANAOKA, T., SHUKLA, P. R. & MASUI, T. 2015. Air pollution co-benefits of low carbon 
policies in road transport: a sub-national assessment for India. Environmental Research Letters, 
10. 

MIZDRAK, A., BLAKELY, T., CLEGHORN, C. L. & COBIAC, L. J. 2019. Potential of active transport 
to improve health, reduce healthcare costs, and reduce greenhouse gas emissions: A modelling 
study. PLoS One, 14, e0219316. 

MONAHAN, J. & POWELL, J. C. 2011. A comparison of the energy and carbon implications of new 
systems of energy provision in new build housing in the UK. Energy Policy, 39, 290-298. 

MONDAL, M. A. H., DENICH, M. & VLEK, P. L. G. 2010. The future choice of technologies and co-
benefits of CO2 emission reduction in Bangladesh power sector. Energy, 35, 4902-4909. 

MUNDACA, L., ÜRGE-VORSATZ, D. & WILSON, C. 2018. Demand-side approaches for limiting global 
warming to 1.5 °C. Energy Efficiency, 12, 343-362. 

NATIONAL BUREAU OF STATISTICS OF CHINA 2011-2021. China Energy Statistical Yearbook (2010-
2020). Beijing: China Statistics Press. 

NATIONAL HEALTH COMMISSION 2016. China Health Statistics Yearbook. Beijing: Peking Union 
Medical College Press. 

NATIONAL RESEARCH COUNCIL 2008. Estimating mortality risk reduction and economic benefits 
from controlling ozone air pollution. Washington, D.C., US: National Academy of Sciences. 

NBSC 2013. National Statistical Yearbook 2012. Beijing, China: China Statistics Press. 
NBSC 2016. National Statistical Yearbook 2015. Beijing, China: China Statistics Press. 
NBSC 2016-2020. National Statistical Yearbook 2015-2019. Beijing: China Statistics Press. 
NBSC 2020. China Energy Statistical Yearbook 2019. Beijing, China: China Statistics Press. 
NBSC 2021. National Statistical Yearbook 2020. Beijing, China: China Statistics Press. 
NIAMIR, L., IVANOVA, O., FILATOVA, T., VOINOV, A. & BRESSERS, H. 2020. Demand-side solutions 

for climate mitigation: Bottom-up drivers of household energy behavior change in the Netherlands 
and Spain. Energy Research & Social Science, 62. 



 170 

NIEUWENHUIJSEN, M. J. & KHREIS, H. 2016. Car free cities: Pathway to healthy urban living. 
Environment International, 94, 251-262. 

O’CONNOR, D., ZHAI, F., AUNAN, K., BERNTSEN, T. & VENNEMO, H. 2003. Agricultural, Human 
Health Impacts of Climate Policy in China: A General Equilibrium Analysis with Special 
Reference to Guangdong Paris, France: OECD Development Center. 

OKSUZYAN, A., JUEL, K., VAUPEL, J. W. & CHRISTENSEN, K. 2008. Men: good health and high 
mortality. Sex differences in healthand aging. Aging clinical and experimental research, 20, 91-
102. 

ORIMO, H., ITO, H., SUZUKI, T., ARAKI, A., HOSOI, T. & SAWABE, M. 2006. Reviewing the definition 
of “elderly”. Geriatrics & gerontology international, 6, 149-158. 

OSWALD, Y., OWEN, A. & STEINBERGER, J. K. 2020. Large inequality in international and 
intranational energy footprints between income groups and across consumption categories. Nature 
Energy, 5, 231-239. 

OWENS, S. & DRIFFILL, L. 2008. How to change attitudes and behaviours in the context of energy. 
Energy Policy, 36, 4412-4418. 

PACHAURI, S., MUELLER, A., KEMMLER, A. & SPRENG, D. 2004. On Measuring Energy Poverty in 
Indian Households. World Development, 32, 2083-2104. 

PAN, L., YAO, E. & YANG, Y. 2016. Impact analysis of traffic-related air pollution based on real-time 
traffic and basic meteorological information. Journal of environmental management, 183, 510-
520. 

PAN, L. J., XIE, Y. B. & LI, W. 2013. An Analysis of Emission Reduction of Chief Air Pollutants and 
Greenhouse Gases in Beijing based on the LEAP Model. Procedia Environmental Sciences, 18, 
347-352. 

PARKINSON, J. A., ECCLES, K. E. & GOODMAN, A. 2014. Positive impact by design: The Wales Centre 
for Behaviour Change. The Journal of Positive Psychology, 9, 517-522. 

PATZ, J. A. & THOMSON, M. C. 2018. Climate change and health: Moving from theory to practice. PLoS 
medicine, 15, e1002628. 

PEREZ, L., TRUEB, S., COWIE, H., KEUKEN, M. P., MUDU, P., RAGETTLI, M. S., SARIGIANNIS, 
D. A., TOBOLLIK, M., TUOMISTO, J., VIENNEAU, D., SABEL, C. & KUNZLI, N. 2015. 
Transport-related measures to mitigate climate change in Basel, Switzerland: A health-
effectiveness comparison study. Environment International, 85, 111-9. 

PETERS, G. P. & HERTWICH, E. G. 2007. Post-Kyoto greenhouse gas inventories: production versus 
consumption. Climatic Change, 86, 51-66. 

PETERS, G. P. & HERTWICH, E. G. 2008. CO2 Embodied in International Trade with Implications for 
Global Climate Policy. Environmental science & technology, 42, 1-7. 

PETERS, G. P., MINX, J. C., WEBER, C. L. & EDENHOFER, O. 2011. Growth in emission transfers via 
international trade from 1990 to 2008. Proceedings of the National Academy of Sciences, 108, 
8903-8. 

PETERS, G. P., WEBER, C. L., GUAN, D. & HUBACEK, K. 2007. China's growing CO2 emissions a 
race between increasing consumption and efficiency gains. Environment Science Technology, 41, 
5939-5944. 

PGBM 2017. Beijing City Master Plan (2016-2035). . Beijing, China: The People’s Government of Beijing 
Municipality. 

PGBM. 2017-2020. Beijing Municipality Provisional Regulations on Quantifying the Number of Passenger 
Cars [Online]. Beijing, China: The People’s Government of Beijing Municipality. Available: 
http://www.beijing.gov.cn/zhengce/zhengcefagui/202012/t20201206_2157922.html [Accessed]. 



 171 

PICHERT, D. & KATSIKOPOULOS, K. V. 2008. Green defaults: Information presentation and pro-
environmental behaviour. Journal of Environmental Psychology, 28, 63-73. 

PLASSMANN, K., NORTON, A., ATTARZADEH, N., JENSEN, M. P., BRENTON, P. & EDWARDS-
JONES, G. 2010. Methodological complexities of product carbon footprinting: a sensitivity 
analysis of key variables in a developing country context. Environmental Science & Policy, 13, 
393-404. 

PRESS, M. & ARNOULD, E. J. 2009. Constraints on Sustainable Energy Consumption: Market System 
and Public Policy Challenges and Opportunities. Journal of Public Policy & Marketing, 28, 102-
113. 

PUCHER, J. & BUEHLER, R. 2017. Cycling towards a more sustainable transport future. Transport 
Reviews, 37, 689-694. 

RAFAJ, P., SCHÖPP, W., RUSS, P., HEYES, C. & AMANN, M. 2012. Co-benefits of post-2012 global 
climate mitigation policies. Mitigation and Adaptation Strategies for Global Change, 18, 801-824. 

REMAIS, J. V., HESS, J. J., EBI, K. L., MARKANDYA, A., BALBUS, J. M., WILKINSON, P., HAINES, 
A. & CHALABI, Z. 2014. Estimating the health effects of greenhouse gas mitigation strategies: 
addressing parametric, model, and valuation challenges. Environmental Health Perspectives, 122, 
447-55. 

RICKE, K., DROUET, L., CALDEIRA, K. & TAVONI, M. 2018. Country-level social cost of carbon. 
Nature Climate Change, 8, 895-900. 

RIVE, N. 2010. Climate policy in Western Europe and avoided costs of air pollution control. Economic 
Modelling, 27, 103-115. 

ROBINSON, L. A., HAMMITT, J. K., CECCHINI, M., CHALKIDOU, K., CLAXTON, K., CROPPER, 
M., EOZENOU, P. H.-V., DE FERRANTI, D., DEOLALIKAR, A. B., GUANAIS, F., JAMISON, 
D. T., KWON, S., LAUER, J. A., O’KEEFFE, L., WALKER, D., WHITTINGTON, D., 
WILKINSON, T., WILSON, D. & WONG, B. 2019. Reference case guidelines for benefit-cost 
analysis in global health and development. https://sites.sph.harvard.edu/bcaguidelines/scoping/: 
Bill & Melinda Gates Foundation. 

ROJAS-RUEDA, D., DE NAZELLE, A., TAINIO, M. & NIEUWENHUIJSEN, M. J. 2011. The health 
risks and benefits of cycling in urban environments compared with car use: health impact 
assessment study. BMJ, 343, d4521. 

ROJAS-RUEDA, D., DE NAZELLE, A., TEIXIDO, O. & NIEUWENHUIJSEN, M. J. 2012. Replacing 
car trips by increasing bike and public transport in the greater Barcelona metropolitan area: a 
health impact assessment study. Environment International, 49, 100-9. 

SAIKAWA, E., KUROKAWA, J., TAKIGAWA, M., BORKEN-KLEEFELD, J., MAUZERALL, D. L., 
HOROWITZ, L. W. & OHARA, T. 2011. The impact of China's vehicle emissions on regional air 
quality in 2000 and 2020: a scenario analysis. Atmospheric Chemistry and Physics, 11, 9465-9484. 

SAUNDERS, L. E., GREEN, J. M., PETTICREW, M. P., STEINBACH, R. & ROBERTS, H. 2013. What 
are the health benefits of active travel? A systematic review of trials and cohort studies. PLoS One, 
8, e69912. 

SCHELL, C. J., DYSON, K., FUENTES, T. L., DES ROCHES, S., HARRIS, N. C., MILLER, D. S., 
WOELFLE-ERSKINE, C. A. & LAMBERT, M. R. 2020. The ecological and evolutionary 
consequences of systemic racism in urban environments. Science, 369. 

SCHIPPER, L., BARTLETT, S., HAWK, D. & VINE, E. 1989. Linking life-styles and energy use: a matter 
of time? Annual Review of Energy, 14, 273-320. 

SHAN, Y., GUAN, D., ZHENG, H., OU, J., LI, Y., MENG, J., MI, Z., LIU, Z. & ZHANG, Q. 2018. China 
CO2 Carbon emission accounts 1997-2015. Scientific data, 5, 1-14. 



 172 

SHAN, Y., LIU, Z. & GUAN, D. 2016. CO2 emissions from China’s lime industry. Applied Energy, 166, 
245-252. 

SHAW, C., HALES, S., HOWDEN-CHAPMAN, P. & EDWARDS, R. 2014. Health co-benefits of climate 
change mitigation policies in the transport sector. Nature Climate Change, 4, 427-433. 

SHINDELL, D., FALUVEGI, G., WALSH, M., ANENBERG, S. C., VAN DINGENEN, R., MULLER, N. 
Z., AUSTIN, J., KOCH, D. & MILLY, G. 2011. Climate, health, agricultural and economic impacts 
of tighter vehicle-emission standards. Nature Climate Change, 1, 59-66. 

SHINDELL, D., KUYLENSTIERNA, J. C. I., VIGNATI, E., VAN DINGENEN, R., AMANN, M., 
KLIMONT, Z., ANENBERG, S. C., MULLER, N., JANSSENS-MAENHOUT, G. R., FRANK. , 
SCHWARTZ, J., FALUVEGI, G., POZZOLI, L., KUPIAINEN, K., HÖGLUND-ISAKSSON, L., 
EMBERSON, L., STREETS, D., RAMANATHAN, V., HICKS, K., OANH, N. T. K., MILLY, G., 
WILLIAMS, M., DEMKINE, V. & FOWLER, D. 2012. Simultaneously mitigating near-term 
climate change and improving human health and food security. Science, 335, 183-189. 

SIMONI, M., BALDACCI, S., MAIO, S., CERRAI, S., SARNO, G. & VIEGI, G. 2015. Adverse effects 
of outdoor pollution in the elderly. Journal of thoracic disease, 7, 34-45. 

SKELLY, D. 2017. Consumer spending growth, plus increased investment in technology, the environment 
and health care, are creating new opportunities for investors [Online]. 
https://www.morganstanley.com/ideas/investing-in-china: Morgan Stanley. Available: 
https://www.morganstanley.com/ideas/investing-in-china [Accessed]. 

SKELTON, A., GUAN, D., PETERS, G. P. & CRAWFORD-BROWN, D. 2011. Mapping flows of 
embodied emissions in the global production system. Environmental science & technology, 45, 
10516-23. 

SMITH, K. R. & HAIGLER, E. 2008. Co-benefits of climate mitigation and health protection in energy 
systems: scoping methods. Annual review of public health, 29, 11-25. 

SONG, C., HE, J., WU, L., JIN, T., CHEN, X., LI, R., REN, P., ZHANG, L. & MAO, H. 2017. Health 
burden attributable to ambient PM2.5 in China. Environmental Pollution, 223, 575-586. 

STANAWAY, J. D., AFSHIN, A., GAKIDOU, E., LIM, S. S., ABATE, D., ABATE, K. H., ABBAFATI, C., 
ABBASI, N., ABBASTABAR, H., ABD-ALLAH, F., ABDELA, J., ABDELALIM, A., 
ABDOLLAHPOUR, I., ABDULKADER, R. S., ABEBE, M., ABEBE, Z., ABERA, S. F., ABIL, 
O. Z., ABRAHA, H. N., ABRHAM, A. R., ABU-RADDAD, L. J., ABU-RMEILEH, N. M. E., 
ACCROMBESSI, M. M. K., ACHARYA, D., ACHARYA, P., ADAMU, A. A., ADANE, A. A., 
ADEBAYO, O. M., ADEDOYIN, R. A., ADEKANMBI, V., ADEMI, Z., ADETOKUNBOH, O. 
O., ADIB, M. G., ADMASIE, A., ADSUAR, J. C., AFANVI, K. A., AFARIDEH, M., AGARWAL, 
G., AGGARWAL, A., AGHAYAN, S. A., AGRAWAL, A., AGRAWAL, S., AHMADI, A., 
AHMADI, M., AHMADIEH, H., AHMED, M. B., AICHOUR, A. N., AICHOUR, I., AICHOUR, 
M. T. E., AKBARI, M. E., AKINYEMIJU, T., AKSEER, N., AL-ALY, Z., AL-EYADHY, A., AL-
MEKHLAFI, H. M., ALAHDAB, F., ALAM, K., ALAM, S., ALAM, T., ALASHI, A., ALAVIAN, 
S. M., ALENE, K. A., ALI, K., ALI, S. M., ALIJANZADEH, M., ALIZADEH-NAVAEI, R., 
ALJUNID, S. M., ALKERWI, A. A., ALLA, F., ALSHARIF, U., ALTIRKAWI, K., ALVIS-
GUZMAN, N., AMARE, A. T., AMMAR, W., ANBER, N. H., ANDERSON, J. A., ANDREI, C. 
L., ANDROUDI, S., ANIMUT, M. D., ANJOMSHOA, M., ANSHA, M. G., ANTÓ, J. M., 
ANTONIO, C. A. T., ANWARI, P., APPIAH, L. T., APPIAH, S. C. Y., ARABLOO, J., AREMU, 
O., ÄRNLÖV, J., ARTAMAN, A., ARYAL, K. K., ASAYESH, H., ATARO, Z., AUSLOOS, M., 
AVOKPAHO, E. F. G. A., AWASTHI, A., AYALA QUINTANILLA, B. P., AYER, R., AYUK, T. 
B., AZZOPARDI, P. S., et al. 2018. Global, regional, and national comparative risk assessment of 
84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 



 173 

countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 
2017. The Lancet, 392, 1923-1994. 

STEININGER, K., LININGER, C., DROEGE, S., ROSER, D., TOMLINSON, L. & MEYER, L. 2014. 
Justice and cost effectiveness of consumption-based versus production-based approaches in the 
case of unilateral climate policies. Global Environmental Change, 24, 75-87. 

STERN, N. 2007. The Economics of Climate Change: the Stern Review. Cambridge, UK: Cambridge 
University Press. 

SUN, C., YUAN, X. & XU, M. 2016. The public perceptions and willingness to pay: from the perspective 
of the smog crisis in China. Journal of Cleaner Production, 112, 1635-1644. 

SUN, Z., AN, X., TAO, Y. & HOU, Q. 2013. Assessment of population exposure to PM10 forrespiratory 
disease in Lanzhou (China) and itshealth-related economic costs based on GIS. BMC Public 
Health, 13, 891. 

SUTCLIFFE, M. 2020. Famous for 15 minutes? Smart Transport. London, UK. 
THALER, R. & SUNSTEIN, C. 2008. Nudge: Improving Decisions about Health, Wealth, and Happiness, 

New Haven, US, Yale University Press. 
THØGERSEN, J. 2021. Consumer behavior and climate change: consumers need considerable assistance. 

Current Opinion in Behavioral Sciences, 42, 9-14. 
TSOI, K.-H., LOO, B. P. Y., TAL, G. & SPERLING, D. 2022. Pioneers of electric mobility: Lessons about 

transport decarbonisation from two bay areas. Journal of Cleaner Production, 330. 
U.S. ENVIRONMENTAL PROTECTION AGENCY 2006a. Technical Support Document for the 

Proposed Mobile Source Air Toxics Rule: Ozone Modeling. Research Triangle Park, US: U.S. 
Environmental Protection Agency, Office of Air Quality Planning and Standards  

U.S. ENVIRONMENTAL PROTECTION AGENCY 2006b. Technical Support Document for the 
Proposed PM NAAQS Rule: Response Surface Modeling. Research Triangle Park, US: U.S. 
Environmental Protection Agency, Office of Air Quality Planning and Standards  

UN. 2019. 68% of the world population projected to live in urban areas by 2050 [Online]. 
https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-
prospects.html: United Nations. Available: 
https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-
prospects.html [Accessed]. 

VAUGHAN, A. 2020. China's surprising ambition. New Scientist, 248, 18. 
VENNEMO, H., AUNAN, K., JINGHUA, F., HOLTEDAHL, P., TAO, H. & SEIP, H. M. 2006. Domestic 

Environmental Benefits of China's Energy-Related CDM Potential. Climatic Change, 75, 215-239. 
VERMA, P., KUMARI, T. & RAGHUBANSHI, A. S. 2021. Energy emissions, consumption and impact 

of urban households: A review. Renewable and Sustainable Energy Reviews, 147. 
VISCUSI, W. K., MAGAT, W. A., CARLIN, A. & DREYFUS, M. K. 1994. Environmentally responsible 

energy pricing. The Energy Journal, 15, 23-42. 
VISCUSI, W. K. & MASTERMAN, C. J. 2017. Income Elasticities and Global Values of a Statistical Life. 

Journal of Benefit-Cost Analysis, 8, 226-250. 
VRINGER, K. & BLOK, K. 1995. The direct and indirect energy requirements of households in the 

Netherlands. Energy Policy, 23, 893-910. 
WANG, H., HE, X., LIANG, X., CHOMA, E. F., LIU, Y., SHAN, L., ZHENG, H., ZHANG, S., NIELSEN, 

C. P., WANG, S., WU, Y. & EVANS, J. S. 2020. Health benefits of on-road transportation pollution 
control programs in China. Proc Natl Acad Sci U S A, 117, 25370-25377. 

WANG, H. & MULLAHY, J. 2006. Willingness to pay for reducing fatal risk by improving air quality: a 
contingent valuation study in Chongqing, China. Sci Total Environ, 367, 50-7. 



 174 

WANG, Z., CHEN, F. & FUJIYAMA, T. 2015. Carbon emission from urban passenger transportation in 
Beijing. Transportation Research Part D: Transport and Environment, 41, 217-227. 

WANG, Z. & YANG, Y. 2016. Features and influencing factors of carbon emissions indicators in the 
perspective of residential consumption: Evidence from Beijing, China. Ecological Indicators, 61, 
634-645. 

WATKINS, L. 2020. China Pledges to Become Carbon Neutral by 2060 [Online]. 
https://www.globalelr.com/2020/09/china-pledges-to-become-carbon-neutral-by-2060/: 
Environment, Land & Resources. Available: https://www.globalelr.com/2020/09/china-pledges-
to-become-carbon-neutral-by-2060/ [Accessed]. 

WATTS, E., SIM, S. Y., CONSTENLA, D., SRIUDOMPORN, S., BRENZEL, L. & PATENAUDE, B. 
2021. Economic Benefits of Immunization for 10 Pathogens in 94 Low- and Middle-Income 
Countries From 2011 to 2030 Using Cost-of-Illness and Value-of-Statistical-Life Approaches. 
Value Health, 24, 78-85. 

WB. 2021. Final consumption expenditure (current US$) [Online]. The World Bank: 
https://data.worldbank.org/indicator/NE.CON.TOTL.CD. Available: 
https://data.worldbank.org/indicator/NE.CON.TOTL.CD [Accessed]. 

WEBER, C. & PERRELS, A. 2000. Modelling lifestyle effects on energy demand and related emissions. 
Energy Policy, 28, 549–566. 

WEI, Y.-M., LIAO, H. & FAN, Y. 2007a. An empirical analysis of energy efficiency in China's iron and 
steel sector. Energy, 32, 2262-2270. 

WEI, Y.-M., LIU, L.-C., FAN, Y. & WU, G. 2007b. The impact of lifestyle on energy use and CO2 emission: 
An empirical analysis of China's residents. Energy Policy, 35, 247-257. 

WEST, J. J., SMITH, S. J., SILVA, R. A., NAIK, V., ZHANG, Y., ADELMAN, Z., FRY, M. M., 
ANENBERG, S., HOROWITZ, L. W. & LAMARQUE, J. F. 2013. Co-benefits of Global 
Greenhouse Gas Mitigation for Future Air Quality and Human Health. Nature Climate Change, 3, 
885-889. 

WHITTLE, N. 2020. Welcome to the 15-minute city. Financial Times. 
WHO 2002. The world health report 2002: reducing risks and promoting healthy life. Geneva, Switzerland: 

World Health Organization. 
WHO 2010a. Co-Benefits to Health of Climate Change Mitigation. Transport Sector: Preliminary Findings. 

Initial Review (World Health Organization, 2010). Non-systematic review of health co-benefits of 
transport policies to reduce carbon emissions. Geneva, Switzerland: World Health Organization. 

WHO 2010b. Definition of an older or elderly person. Geneva, Switzerland: World Health Organization. 
WIEDENHOFER, D., GUAN, D., LIU, Z., MENG, J., ZHANG, N. & WEI, Y.-M. 2017. Unequal 

household carbon footprints in China. Nature Climate Change, 7, 75-80. 
WIEDMANN, T. 2009. A review of recent multi-region input–output models used for consumption-based 

emission and resource accounting. Ecological Economics, 69, 211-222. 
WIEDMANN, T. & MINX, J. 2008. A definition of ‘carbon footprint’, New York, US, Nova Publishers. 
WILKINSON, P., SMITH, K. R., DAVIES, M., ADAIR, H., ARMSTRONG, B. G., BARRETT, M., 

BRUCE, N., HAINES, A., HAMILTON, I., ORESZCZYN, T., RIDLEY, I., TONNE, C. & 
CHALABI, Z. 2009. Public health benefits of strategies to reduce greenhouse-gas emissions: 
household energy. The Lancet, 374, 1917-1929. 

WINTON, N. 2021. Electric Cars Are Coming And If You Don’t Like It, Tough. Forbes. 
WOODCOCK, J., EDWARDS, P., TONNE, C., ARMSTRONG, B. G., ASHIRU, O., BANISTER, D., 

BEEVERS, S., CHALABI, Z., CHOWDHURY, Z., COHEN, A., FRANCO, O. H., HAINES, A., 
HICKMAN, R., LINDSAY, G., MITTAL, I., MOHAN, D., TIWARI, G., WOODWARD, A. & 



 175 

ROBERTS, I. 2009. Public health benefits of strategies to reduce greenhouse-gas emissions: urban 
land transport. The Lancet, 374, 1930-1943. 

WOODCOCK, J., GIVONI, M. & MORGAN, A. S. 2013. Health impact modelling of active travel visions 
for England and Wales using an Integrated Transport and Health Impact Modelling Tool (ITHIM). 
PLoS One, 8, e51462. 

WOODCOCK, J., TAINIO, M., CHESHIRE, J., O'BRIEN, O. & GOODMAN, A. 2014. Health effects of 
the London bicycle sharing system: health impact modelling study. BMJ, 348, g425. 

WU, H. 2014. Carbon emission reduction in China's eight comprehensive economic zones: type division 
and policy suggestions. China Economic Times. 

WU, J., ZHU, Q. & LIANG, L. 2016a. CO2 emissions and energy intensity reduction allocation over 
provincial industrial sectors in China. Applied Energy, 166, 282-291. 

WU, X., WU, Y., ZHANG, S., LIU, H., FU, L. & HAO, J. 2016b. Assessment of vehicle emission programs 
in China during 1998-2013: Achievement, challenges and implications. Environmental Pollution, 
214, 556-567. 

WU, Y., WANG, R., ZHOU, Y., LIN, B., FU, L., HE, K. & HAO, J. 2011. On-Road Vehicle Emission 
Control in Beijing: Past, Present, and Future. Environmental Science & Technology, 45, 147-153. 

WU, Y., ZHANG, S., HAO, J., LIU, H., WU, X., HU, J., WALSH, M. P., WALLINGTON, T. J., ZHANG, 
K. M. & STEVANOVIC, S. 2017. On-road vehicle emissions and their control in China: A review 
and outlook. Science of the Total Environment, 574, 332-349. 

XIE, X. 2011a. The value of health: environmental benefits assessment methods and urban air pollution 
control strategies. PhD, Peking University. 

XIE, Y. 2011b. Values and Limitations of Statistical Models. Res Soc Stratif Mobil, 29, 343-349. 
XING, J., WANG, S. X., CHATANI, S., ZHANG, C. Y., WEI, W., HAO, J. M., KLIMONT, Z., COFALA, 

J. & AMANN, M. 2011. Projections of air pollutant emissions and its impacts on regional air 
quality in China in 2020. Atmospheric Chemistry and Physics, 11, 3119-3136. 

XU, B. & LIN, B. 2016. Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector 
autoregression model. Applied Energy, 161, 375-386. 

XU, X. 2017. China's population spatial distribution kilometer grid dataset Beijing, China: Chinese 
Academy of Sciences. 

XUE, T., ZHU, T., ZHENG, Y., LIU, J., LI, X. & ZHANG, Q. 2019. Change in the number of PM2.5-
attributed deaths in China from 2000 to 2010: Comparison between estimations from census-based 
epidemiology and pre-established exposure-response functions. Environmental Pollution, 129, 
430-437. 

XUE, X., REN, Y., CUI, S., LIN, J., HUANG, W. & ZHOU, J. 2015. Integrated analysis of GHGs and 
public health damage mitigation for developing urban road transportation strategies. 
Transportation Research Part D: Transport and Environment, 35, 84-103. 

YANG, G., WANG, Y., ZENG, Y., GAO, G. F., LIANG, X., ZHOU, M., WAN, X., YU, S., JIANG, Y., 
NAGHAVI, M., VOS, T., WANG, H., LOPEZ, A. D. & MURRAY, C. J. L. 2013. Rapid health 
transition in China, 1990–2010: findings from the Global Burden of Disease Study 2010. The 
Lancet, 381, 1987-2015. 

YAO, L., LIU, J. & YUAN, Y. 2017. Growth of carbon footprint of Chinese household consumption during 
the recent two decades and its future trend. Acta Scientiae Circumstantiae, 37, 2403-2408. 

YIN, H., BRAUER, M., ZHANG, J., CAI, W., NAVRUD, S., BURNETT, R., HOWARD, C., DENG, Z., 
KAMMEN, D. M., SCHELLNHUBER, H. J., CHEN, K., KAN, H., CHEN, Z., CHEN, B., 
ZHANG, N., MI, Z., COFFMAN, D., WEI, Y., COHEN, A., GUAN, D., ZHANG, Q., GONG, P. 
& LIU, Z. 2020. Global Economic Cost of Deaths Attributable to Ambient Air Pollution: 



 176 

Disproportionate Burden on the Ageing Population. medRxiv. 
YIN, H., BRAUER, M., ZHANG, J., CAI, W., NAVRUD, S., BURNETT, R., HOWARD, C., DENG, Z., 

KAMMEN, D. M., SCHELLNHUBER, H. J., CHEN, K., KAN, H., CHEN, Z.-M., CHEN, B., 
ZHANG, N., MI, Z., COFFMAN, D. M., COHEN, A. J., GUAN, D., ZHANG, Q., GONG, P. & 
LIU, Z. 2021. Population ageing and deaths attributable to ambient PM2·5 pollution: a global 
analysis of economic cost. The Lancet Planetary Health, 5, e356-e367. 

YIN, P., BRAUER, M., COHEN, A., BURNETT, R. T., LIU, J., LIU, Y., LIANG, R., WANG, W., QI, J. & 
WANG, L. 2017. Long-term fine particulate matter exposure and nonaccidental and cause-specific 
mortality in a large national cohort of Chinese men. Environmental health perspectives, 125, 
117002. 

YU, S., WEI, Y.-M., FAN, J., ZHANG, X. & WANG, K. 2012. Exploring the regional characteristics of 
inter-provincial CO2 emissions in China: An improved fuzzy clustering analysis based on particle 
swarm optimization. Applied Energy, 92, 552-562. 

YUN, X., GUOFENG, S., HUIZHONG, S., MENG, W., CHEN, Y., XU, H., REN, Y., ZHONG, Q., DU, 
W., MA, J., CHENG, H., WANG, X., LIU, J., WANG, X., LI, B., HU, J., WAN, Y. & TAO, S. 
2020. Residential solid fuel emissions contribute significantly to air pollution and associated 
health impacts in China. Science Advances, 6, eaba7621. 

ZHANG, H., CHEN, W. & HUANG, W. 2016. TIMES modelling of transport sector in China and USA: 
Comparisons from a decarbonization perspective. Applied Energy, 162, 1505-1514. 

ZHANG, J. J. & SMITH, K. R. 2007. Household air pollution from coal and biomass fuels in China: 
measurements, health impacts, and interventions. Environmental Health Perspectives, 115, 848-
55. 

ZHANG, Q., JIANG, X., TONG, D., DAVIS, S. J., ZHAO, H., GENG, G., FENG, T., ZHENG, B., LU, Z., 
STREETS, D. G., NI, R., BRAUER, M., VAN DONKELAAR, A., MARTIN, R. V., HUO, H., 
LIU, Z., PAN, D., KAN, H., YAN, Y., LIN, J., HE, K. & GUAN, D. 2017a. Transboundary health 
impacts of transported global air pollution and international trade. Nature, 543, 705-709. 

ZHANG, Q., OU, X., YAN, X. & ZHANG, X. 2017b. Electric vehicle market penetration and impacts on 
energy consumption and CO2 emission in the future: Beijing case. Energies, 10, 228. 

ZHANG, R. & FUJIMORI, S. 2020. The role of transport electrification in global climate change mitigation 
scenarios. Environmental Research Letters, 15. 

ZHANG, S., WU, Y., ZHAO, B., WU, X., SHU, J. & HAO, J. 2017c. City-specific vehicle emission control 
strategies to achieve stringent emission reduction targets in China’s Yangtze River Delta region. 
Journal of Environmental Sciences, 51, 75-87. 

ZHANG, X. 2002. Valuing mortality risk reductions using the contingent valuation method: evidence from 
a survey of Beijing residents in 1999, Monterey, California, Second World Congress of 
Environmental and Resource Economists. 

ZHANG, X., LUO, L. & SKITMORE, M. 2015. Household carbon emission research: an analytical review 
of measurement, influencing factors and mitigation prospects. Journal of Cleaner Production, 103, 
873-883. 

ZHANG, X., OU, X., YANG, X., QI, T., NAM, K.-M., ZHANG, D. & ZHANG, X. 2017d. Socioeconomic 
burden of air pollution in China: Province-level analysis based on energy economic model. Energy 
Economics, 68, 478-489. 

ZHANG, Y.-J., BIAN, X.-J., TAN, W. & SONG, J. 2017e. The indirect energy consumption and CO2 
emission caused by household consumption in China: an analysis based on the input–output 
method. Journal of Cleaner Production, 163, 69-83. 

ZHANG, Y.-J. & DA, Y.-B. 2015. The decomposition of energy-related carbon emission and its decoupling 



 177 

with economic growth in China. Renewable and Sustainable Energy Reviews, 41, 1255-1266. 
ZHAO, B., ZHENG, H., WANG, S., SMITH, K. R., LU, X., AUNAN, K., GU, Y., WANG, Y., DING, D., 

XING, J., FU, X., YANG, X., LIOU, K. N. & HAO, J. 2018. Change in household fuels dominates 
the decrease in PM2.5 exposure and premature mortality in China in 2005-2015. Proceedings of 
the National Academy of Sciences, 115, 12401-12406. 

ZHAO, H., GENG, G., ZHANG, Q., DAVIS, S. J., LI, X., LIU, Y., PENG, L., LI, M., ZHENG, B. & HUO, 
H. 2019. Inequality of household consumption and air pollution-related deaths in China. Nature 
communications, 10, 1-9. 

ZHENG, H., ZHANG, Z., WEI, W., SONG, M., DIETZENBACHER, E., WANG, X., MENG, J., SHAN, 
Y., OU, J. & GUAN, D. 2020. Regional determinants of China’s consumption-based emissions in 
the economic transition. Environmental Research Letters, 15. 

ZHU, Y., LAO, Y., JANG, C., LIN, C. J., XING, J., WANG, S., FU, J. S., DENG, S., XIE, J. & LONG, S. 
2015. Development and case study of a science-based software platform to support policy making 
on air quality. Journal of Environment Sciences (China), 27, 97-107. 

ZHUANG, X. & JIANG, K. 2012. Roadmap analysis for electric car in China. Automotive Energy, 34, 91-
97. 

 

 

 

 

 


