

Aleatoric Uncertainty Modelling
in Regression Problems using Deep Learning

Axel Brando Guillaumes

Aquesta tesi doctoral està subjecta a la llicència Reconeixement- CompartIgual 4.0. Espanya
de Creative Commons.

Esta tesis doctoral está sujeta a la licencia Reconocimiento - CompartirIgual 4.0. España de
Creative Commons.

This doctoral thesis is licensed under the Creative Commons Attribution-ShareAlike 4.0. Spain
License.

DOCTORAL DISSERTATIONDOCTORAL DISSERTATION

ALEATORIC UNCERTAINTY MODELLINGALEATORIC UNCERTAINTY MODELLING

IN REGRESSION PROBLEMS USINGIN REGRESSION PROBLEMS USING

DEEP LEARNINGDEEP LEARNING

AXEL BRANDOAXEL BRANDO

Ph.D. thesis

Aleatoric Uncertainty Modelling in
Regression Problems using Deep

Learning

Axel Brando

Department of Mathematics and Computer Science
Universitat de Barcelona (UB)

This dissertation is submitted for the degree of
Doctor of Philosophy

UB advisor: Jordi Vitrià
BBVA D&A advisor: Jose A. Rodríguez-Serrano

Barcelona, April 2022

i

Abstract

Uncertainty is always around us. Every decision we take has an associ-
ated likelihood of success and decisions made by autonomous systems
are not an exception. Despite the great advances in the field of ar-
tificial intelligence, the inability of these systems to identify a higher
risk scenario a priori could prevent their inclusion as part of solutions
to many real problems. This is why it is essential that these systems
learn how to model and deal with uncertainty. Starting from a proba-
bilistic approach, this thesis proposes to formalize the different types
of uncertainty and, in particular, focus its research on one type of
uncertainty, the aleatoric uncertainty, since it is detected as the main
uncertainty for the financial real-world problem that motivates this
doctorate. Based on such research, the thesis proposes new models
to improve the state of the art in modeling such uncertainty as well
as introduces a new real problem that appears when there is a fixed
predictive system that does not model uncertainty and we want to
model uncertainty a posteriori. without changing the original model.
This problem will be denoted as the modeling of the uncertainty of
a black box system and will motivate the proposal of new models
specialized in maintaining the predictive advantages, such as Quan-
tile Regression (QR), but for the black box problem. Subsequently,
the QR research will motivate the proposal of new models to solve
a QR literature problem known as the crossing quantile phenomena,
which appears when different quantiles are predicted simultaneously
and they do not preserve their correct order with respect to their
quantile value. Finally, all of the above research will be summarized
in visualization and evaluation methods for the predicted uncertainty
to produce uncertainty-tailored methods.

Summary

Nowadays, we live in an intrinsically uncertain world from our per-
spective. We do not know what will happen in the future but, to
infer it, we build the so-called models. These models are abstractions
of the world we live which allow us to conceive how the world works
and that are, essentially, validated from our previous experience and
discarded if their predictions prove to be incorrect in the future. This
common scientific process of inference has several non-deterministic
steps.

First of all, our measuring instruments could be inaccurate. That is,
the information we use a priori to know what will happen may already
contain some irreducible error.

Besides, our past experience in building the model could be biased
(and, therefore, we would incorrectly infer the future, as the models
would be based on unrepresentative data).

On the other hand, our model itself may be an oversimplification of
the reality (which would lead us to unrealistic generalizations).

Furthermore, the overall task of inferring the future may be downright
non-deterministic. This often happens when the information we have
a priori to infer the future is incomplete or partial for the task to be
performed (i.e. it depends on factors we cannot observe at the time
of prediction) and we are, consequently, obliged to consider that what
we want to predict is not a deterministic value.

One way to model all of these uncertainties is through a probabilistic
approach that mathematically formalizes these sources of uncertainty
in order to create specific methods that capture them.

Accordingly, the general aim of this thesis is to define a probabilis-
tic approach that contributes to artificial intelligence-based systems
(specifically, deep learning) becoming robust and reliable systems ca-
pable of being applied to high-risk problems, where having generic
good performance is not enough but also to ensure that critical errors
with high costs are avoided.

In particular, the thesis shows the current divergence in the literature
- when it comes to dividing and naming the different types of uncer-
tainty - by proposing a procedure to follow. In addition, based on
a real problem case arising from the industrial nature of the current
thesis, the importance of investigating the last type of uncertainty
is emphasized, which arises from the lack of a priori information in
order to infer deterministically the future, the so-called aleatoric un-
certainty.

The current thesis delves into different literature models in order to
capture aleatoric uncertainty using deep learning and analyzes their
limitations. In addition, it proposes new state-of-the-art approaches
that allow to solve the limitations exposed during the thesis.

As a result of applying the aleatoric uncertainty modelling in real-
world problems, the uncertainty modelling of a black box systems
problem arises. Generically, a Black box system is a pre-existing pre-
dictive system which originally do not model uncertainty and where
no requirements or assumptions are made about its internals. There-
fore, the goal is to build a new system that wrappers the black box and
models the uncertainty of this original system. In this scenario, not all
previously introduced aleatoric uncertainty modelling approaches can
be considered and this implies that flexible methods such as Quantile
Regression ones need to be modified in order to be applied in this
context.

Subsequently, the Quantile Regression study brings the need to solve
one critical literature problem in the QR literature, the so-called cross-
ing quantile, which motivates the proposal of new additional models

to solve it.

Finally, all of the above research will be summarized in visualiza-
tion and evaluation methods for the predicted uncertainty to produce
uncertainty-tailored methods.

Extracte

Estem rodejats d’incertesa. Cada decisió que prenem té una proba-
bilitat de sortir com un espera i, en funció d’aquesta, molts cops
condicionem les nostres decisions. De la mateixa manera, els sis-
temes autònoms han de saber interpretar aquests escenaris incerts.
Tot i això, actualment, malgrat els grans avenços en el camp de la
intel·ligència artificial, ens trobem en un moment on la incapacitat
d’aquests sistemes per poder identificar a priori un escenari de major
risc impedeix la seva inclusió com a part de solucions que podrien rev-
olucionar la societat tal i com la coneixem. El repte és significatiu i,
per això, és essencial que aquests sistemes aprenguin a modelar i ges-
tionar totes les fonts de la incertesa. Partint d’un enfocament proba-
bilístic, aquesta tesi proposa formalitzar els diferents tipus d’incerteses
i, en particular, centra la seva recerca en un tipus anomenada com in-
certesa aleatòrica, ja que va ser detectada com la principal incertesa
decisiva a tractar en el problema financer original que va motivar el
present doctorat industrial. A partir d’aquesta investigació, la tesi
proposa nous models per millorar l’estat de l’art en la modelització
de la incertesa aleatòrica, així com introdueix un nou problema, a par-
tir d’una necessitat real industrial, que apareix quan hi ha un sistema
predictiu en producció que no modela la incertesa i es vol modelar
la incertesa a posteriori de forma independent. Aquest problema es
denotarà com la modelització de la incertesa d’un sistema de caixa
negra i motivarà la proposta de nous models especialitzats en man-
tenir els avantatges predictius, com ara la Regressió Quantílica (RQ),
adaptant-los al problema de la caixa negra. Posteriorment, la inves-
tigació en RQ motivarà la proposta de nous models per resoldre un
problema fonamental de la literatura en RQ conegut com el fenomen

del creuament de quantils, que apareix quan, a l’hora de predir si-
multàniament diferents quantils, l’ordre entre quantils no es conserva.
Finalment, tota la investigació anterior es resumirà en mètodes de
visualització i avaluació de la incertesa reportada per tal de produir
mètodes que mitjançant aquesta informació extra prenguin decisions
més robustes.

Resum

Vivim en un món intrínsecament incert, des de la nostra perspec-
tiva. Desconeixem què passarà en el futur però, per a inferir-ho, cons-
truïm els anomenats models. Aquests models són abstraccions del
món on vivim que ens permeten concebre el funcionament d’aquest i
que, essencialment, es validen a partir de la nostra experiència prèvia
i es descarten si les seves prediccions es demostren incorrectes en el
futur. Aquest procés habitual d’inferència en la ciència té diversos
passos que no són deterministes.

Primer de tot, els nostres instruments de mesura podrien ser impre-
cisos. És a dir, que la informació que usem a priori per a saber què
passarà ja pot contenir un cert error irreductible.

A part, la nostra experiència passada per a construir el model podria
estar esbiaixada (i, per tant, inferiríem incorrectament el futur ja que
els models estarien basats en dades no representatives).

Per altra banda, el nostre model en si pot ser una simplificació massa
exagerada de la realitat (el qual ens conduiria a generalitzacions no
realistes).

Inclús, la mateixa tasca d’inferir el futur pot ser pròpiament no deter-
minista. Això passa sovint quan la informació que es té a priori per
inferir el futur és incompleta o parcial per a la tasca a realitzar (i.e.
depèn de factors que no podem observar en el moment de predir) i,
per tant, estem obligats a considerar que el que volem predir no és un
valor determinista.

Una forma de modelar totes aquestes incerteses és mitjançant un en-
foc probabilístic que formalitzi matemàticament aquestes fonts de la
incertesa per tal de crear mètodes específics que les capturin.

L’objectiu general d’aquesta tesis es usar un enfoc probabilístic que
contribueixi en que els sistemes basats en intel·ligència artificial (en
concret, en aprenentatge profund) es converteixin en sistemes robus-
tos i fiables capaços de ser aplicats en problemàtiques d’alt risc, on
predir generalment sense errors no és suficient sinó que cal evitar els
errors crítics amb alts costos. En particular, la tesis mostra l’actual
divergència que hi ha a la literatura - a l’hora de dividir i anomenar als
diferents tipus d’incertesa -, proposant procediment a seguir. A més,
a partir d’un cas real provinent de la part industrial de la tesis, es re-
marca la importància d’investigar el darrer tipus d’incertesa provinent
de la falta d’informació a priori per a poder inferir determinísticament
el futur, la anomenada incertesa aleatòrica. Sobre aquesta incertesa,
la tesis aprofundeix sobre els diferents tipus de models actuals per
tal de capturar-la mitjançant xarxes neuronals i analitza les limita-
cions que tenen. A més, proposa noves aproximacions que permeten
solucionar algunes de les dificultats exposades durant la tesis.

Fruit de la modelització de la incertesa aleatòria en problemàtiques
reals sorgeix la modelització de la incertesa de sistemes de caixa negre.
Els sistemes de caixa negre són sistemes predictius ja existents els
quals no modelen la incertesa i on no es realitza cap assumpció sobre
el seu funcionament intern. Per tant, l’objectiu serà construir un nou
sistema que l’envolti i permeti modelar la incertesa d’aquest sistema
original. En aquest escenari, no totes les aproximacions prèviament
introduïdes de modelatge de la incertesa aleatòrica poden ser aplicades
i això implica que mètodes flexibles com la regressió quantílica hagin
de ser modificats per tal de poder ser aplicats en aquest context.

Posteriorment, l’anàlisi en detall de la regressió quantílica portarà a
estudiar i proposar diferents solucions per una problemàtica crítica en
la literatura de regressió quantílica, l’anomenat creuament de quantils.

Finalment, tota la recerca realitzada anteriorment es sintetitzarà en
mètodes de visualització i avaluació de la incertesa predita per fer ús
d’aquesta informació.

Dedicació

Sempre un intenta mirar endavant. No plantejar-se objectius com des-
enllaços sinó com part d’un camí que ha de continuar. Però hi ha certs
moments que és important fer retrospectiva i donar la rellevància que
ha tingut el camí traçat; per aprendre, no oblidar i, sobretot, agrair
als que ens envolten o han envoltat. Aquest agraïment obert té noms i
cognoms i, de ben segur me’n deixaré d’essencials. Tot i això, tothom
qui em coneix sap que no hi ha cap dubte que haig de començar amb
qui m’ho ha donat tot: Gràcies per ajudar-me incondicionalment,
Marisa, per la teva persistència i integritat que sempre has tingut, on
també hi veig reflectit l’avi, sense cap dubte. Al Martin, per ensenyar-
me a prioritzar les coses importants a la vida i a la família, en general,
amb especial menció a la Sesi, per ser la millor padrina, i l’Oriol i
l’Esteve per reafirmar-me que la família s’escull. En aquest trajecte,
no puc oblidar a en Miquel Àngel, per la seva vocació i constància
en donar-me suport durant molts anys. I és que aquests anys han
estat molt intensos... Però res hagués estat igual sense tu, Joan, per
tots els moments compartits i els que vindran, ni sense en Fèlix (per
les bogeries), la Mònica (per sempre ser-hi), en Carles (per saber
mantenir la amistat), la Marta (per ensenyar-me a fluir i créixer), la
Esther (per tot el que estem construint), en Fran (per ser un bon
amic), la Eli (perquè sé que sempre podrem reprendre les converses
on les vam deixar), l’Aram (per ser el millor company), l’Edu (per les
“rises”), la Fra (“Chissà”, jo sí), la Carla (per la il·lusió que em desperta
pensar en el futur), la Itziar (per la intensitat inexorable), la Lorena
(per totes les converses pendents), la Natasha (per sempre connectar,
malgrat la distància), l’Andreu (per la teva noblesa), “la” María (per

tots els moments compartits), l’Andrei (per aguantar-me en moments
baixos), en Guillermo i en Damià (pels moments d’apofènia absoluta),
l’Alejandro (per saber que puc comptar amb tu) i en Noel (per les
llargues converses i mai oblidar-nos dels moments importants), també
a l’Hèctor, Toni i Jonathan (per tots els projectes junts passats i
futurs) i a l’Aleix i en Toni (pels que no arrenquen). També, voldria
destacar els/les companys/es del departament, en especial, en Carlos,
la Mariona i la Paula (per (no) haver donat us a aquelles RPi), en
Pere i en Pablo (per haver-nos conegut recentment) i, també el suport
imprescindible de la Ino. No me n’oblido pas dels (ex-?)companys de
feina, entre tots/es: destacar l’Alberto, en Jordi, en Joan, en Luís, en
José Luís i la Irene, així com en Jesús. Ni tampoc dels actuals, que
també voldria destacar per haver-me ajudat en tot en aquest últim
tram i per tots els que vindran: a en Fran, la Isabel i en Jaume.
Tot això, em porta a mencionar els meus tutors, en Jordi i en Jose,
qui junts m’han ensenyat a “surfejar” grans reptes “en paral·lel” i que
espero que puguem continuar caminant.

A tothom que m’ha ajudat en aquest tram del viatge, gràcies per
formar-hi part. Continuem.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0
International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/4.0/.

xi

Contents

Contents xii

1 INTRODUCTION 1

1.1 Motivation and main objectives 1

1.2 Contribution and thesis outline 2

2 THE RESEARCH CONTEXT AND GOALS 6

2.1 Uncertainty nomenclature disagreement 10

2.2 Relevant Deep Learning Concepts 13

2.2.1 Defining the architecture 14

2.2.2 Defining the loss function 15

2.2.3 Minimizing the loss function for the neural weights 17

2.3 Deep epistemic uncertainty modelling 18

2.3.1 Introduction . 18

2.3.2 Bayesian neural networks using variational inference 19

2.3.3 Monte Carlo dropout . 23

2.3.4 Ensemble of neural networks 24

2.3.5 Additional epistemic alternatives 24

2.3.6 Synthetic comparison of epistemic uncertainty 25

2.4 Real estate price per night forecasting 27

2.5 Time-series prediction of financial expenses 29

xii

CONTENTS

3 ALEATORIC UNCERTAINTY MODELLING USING NEURAL
NETWORKS 33

3.1 Preliminaries and notation . 34

3.2 Learning the parameters of a conditional parametric distribution . 35

3.2.1 Unimodal distribution . 35

3.2.2 Mixture of distributions 40

3.2.3 Uncountable mixture of distributions and the UMAL . . . 45

3.3 Distribution-free estimation with quantile regression 52

3.3.1 Fixed quantile regression 53

3.3.1.1 Single quantile estimation with a neural network 53

3.3.1.2 Multiple quantiles with a neural network 55

3.3.2 Implicit quantile regression 56

3.3.3 The connection with asymmetric Laplace 58

3.3.3.1 Fixed asymmetric Laplace distributions 60

3.3.3.2 Independent asymmetric Laplace distributions . . 62

3.3.3.3 The UMAL as a dependent quantile model 64

3.4 Results and comparison . 65

3.4.1 Data sets and experiment settings 65

3.4.2 Experimental results . 67

3.5 Conclusions . 69

4 BLACK-BOX WRAPPER FOR UNCERTAINTY MODELLING 71

4.1 Related work . 75

4.2 Uncertainty modelling of a black box 76

4.2.1 Probabilistic distribution fitting 78

4.2.2 Distribution estimation of the residuals errors 80

4.2.3 Quantile regression of residuals 80

4.2.4 Results and comparison 81

4.2.4.1 Baselines under evaluation 81

xiii

CONTENTS

4.2.4.2 Data sets and experimental settings 82

4.2.4.3 Experimental results 86

4.3 Intentional black-box uncertainty modelling 97

4.3.1 Heteroscedastic normal distribution 97

4.3.2 Heteroscedastic Laplace distribution 98

4.3.3 The Chebyshev network 98

4.3.3.1 Related works . 102

4.3.3.2 Model definition 103

4.3.3.3 Implicit and explicit CheNet 107

4.3.3.4 Constant of integration selection for CheNet . . . 108

4.3.4 Results and comparison 112

4.4 Conclusions . 118

5 THE CROSSING QUANTILE PHENOMENON 121

5.1 The limitation of standard quantile regression 123

5.2 The partial constrained dense network 124

5.3 Modelling the partial derivative with a neural network 126

5.4 The CheNet as a partial monotonic solution 128

5.4.1 Rate of convergence of the Chebyshev expansion 128

5.4.2 Ensure monotonicity for all quantiles 128

5.5 Results and comparison . 129

5.6 Conclusions . 133

6 UNCERTAINTY VISUALIZATION AND EVALUATION 134

6.1 Describing each source of uncertainty 136

6.1.1 Measurement-error and manifold uncertainty visualization 137

6.1.2 Epistemic uncertainty representation 138

6.1.3 Aleatoric uncertainty visualization 139

6.1.4 Integrated uncertainty representation 142

xiv

CONTENTS

6.2 Qualitative check of the reported uncertainty 143

6.2.1 Error-retention curve for checking score quality 143

6.2.2 Error-retention density plot for score inaccuracies 145

6.2.3 Calibration curve to verify probabilities 146

6.3 Quantitative rating of the reported uncertainty 148

6.3.1 Ordering score index for evaluating sorting quality 148

6.3.2 Quantile regression as a generic quantile metric 149

6.3.3 Calibration area to verify the trust on probabilities 149

6.4 Conclusions . 150

7 Conclusions 152

References 154

List of Figures 171

xv

Chapter 1

INTRODUCTION

1.1 Motivation and main objectives

Autonomous forecasting systems are increasingly being used to fulfil critical tasks,
where the cost of an erroneous decision is significantly greater than the benefit of
obtaining a generally good performance. What happens when the system makes
a significant error in cases like these? The common approach is to associate such
an error to the the “lack of estimation capabilities” of that system, which leads to
an attempt to improve its performance without changing the prediction task, e.g.
without adding the possibility to detect ambiguous cases. However, what if this
imprecision derives from unknown exogenous variables affecting the variables to
be predicted? In this work, we argue that uncertainty modelling must be viewed
as an essential part of any critical forecasting system in order to detect such cases.

Figure 1.1: Illustrative critical tasks where autonomous systems can be used but
need to model the associated uncertainty in each forecasting process.

1

Rather than focusing on the model’s lack of complexity, which avoids fore-
casting scenarios that are inherently misleading, the current work enhances the
prediction task by providing extra information that helps detect doubtful sce-
narios, i.e. where there are several possible valid answers given the same input
variable values. Such scenarios are present in financial problems - the motivation
behind this work - or situations where a variable that influences the response
variable value is, for instance, a human decision based on spurious criteria.

Given this context, the current work will consider Deep Learning (DL) models
as appropriate universal function estimators to address the following two issues:

1. How uncertainty modelling can be performed using such DL models.

2. How the high flexibility of such DL models can be used to enrich the un-
certainty modelling process of even non DL-based predictive systems.

1.2 Contribution and thesis outline

The current work was mainly carried out as part of an industrial PhD, which
consists of a Research, Development and Innovation (R&D&I) project aimed
at enhancing knowledge transfer collaboration between a university or research
centre (in our case, the University of Barcelona) and the industrial sector (in our
case, BBVA Data & Analytics, the BBVA bank’s data science spin-off, which now
forms part of the bank and goes by the name of BBVA AI Factory).

The industrial context for this thesis prompted us to focus on regression
problems where the tackled financial data sets are assumed to have a large size
(millions of data points), the input variables are high dimensional and the out-
put variable is typically a continuous one-dimensional variable to be predicted.
Specifically, one of the main industrial problems tackled in this thesis is fore-
casting customers’ upcoming expenses and incomes given the historical financial
data from their account by identifying such uncertain scenarios and providing
task-tailored methods based on the reported level of confidence.

The constraint of working with large scale data sets has led us to develop
all of the theory explained later in this thesis using one of the state-of-the-art

2

models for these kinds of problems: the deep learning or the neural networks
models. That being said, all of the uncertainty-estimation proposals presented
in this work are intended to be agnostic regarding the kind of model used, and
any parametric model that can be optimized via the derivative with respect to
their parameters can therefore be easily applied with the solutions proposed in
Chapter 3 and Chapter 4.

Aside from its industrial focus, the current research directly outlined sev-
eral contributions in conferences, journals, event talks, workshops, presentations,
white papers, newspaper and blog articles as well as impacting several of the com-
pany’s internal products. Details of some of the public results and presentations
are provided below, in chronological order:

In Chapter 2, we explore the reasons for studying uncertainty modelling, intro-
duce relevant deep learning concepts required for the following sections, present
the state-of-the-art regarding uncertainty types proposed by several competitors,
discuss two of the main kinds of problems we will be tackling and explain why
we have focused on aleatoric uncertainty. Then, in Chapter 3, we focus on how
to model aleatoric uncertainty using deep learning (from a parametric and non-
parametric distribution point of view). Following this, in Chapter 4, we introduce
the black-box uncertainty modelling problem as an improvement to post-hoc un-
certainty modelling. In Chapter 5, we focus on a certain limitation that appears
in Quantile Regression models that predict several quantiles simultaneously - the
crossing quantile phenomenon. Then, in Chapter 6, we highlight the importance
of visualizing and correctly evaluating the forecast uncertainty, and finally, we
recap all of the results presented in this doctoral thesis in Chapter 7.

3

Table 1.1 Timeline

2018/03 • Maths for Industry 4.0, how to develop applied research. Highlight the
importance of creating applied research that serves as a link between the
academic and the industrial efforts. (Brando et al., 2018d).

2018/05 • Presentation at first BCN.ai event. Presentation regarding the state of the
art of uncertainty modelling using Deep Learning techniques for regression
and classification problems. (Brando et al., 2018b).

2018/09 • Paper at the 16th European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD) A comparison was made of several types of uncertainty
modelling in financial problems, showing that aleatoric uncertainty prevails
over other models. (Brando et al., 2018a).

2018/09 • Presentation at Machine Learning Summer Schools (MLSS). Poster
presentation of research done regarding aleatoric uncertainty modelling for
expenses and income forecasting. (De Pablo et al., 2018).

2018/10 • White paper between Google Cloud and BBVA. White paper presenting
collaboration between Google Cloud and BBVA. The developed prediction
engine uses the uncertainty modelling devised previously. (Maestre et al.,
2018; Mejia et al., 2018).

2018/12 • Blog article on the BBVA website. Blog article highlighting why it is
important to model uncertainty in income and expenses forecasting. (Brando
et al., 2018e).

2019/07 • Paper at the ninth Iberian Conference on Pattern Recognition and
Image Analysis (IbPRIA). Extension of black-box uncertainty modelling for
regression models to classification systems. (Mena et al., 2019).

2019/08 • Workshop article for the anomaly detection workshop at the Knowledge
Discovery Data Mining Conference (KDD). Presentation of the internal
use case to detect highly uncertain forecasting scenarios for the expenses and
incomes prediction problem. (Brando et al., 2019a).

2019/10 • Presentation at the BCN.ai event. Presentation of UMAL as an aleatoric
conditional model to approximate heterogeneous distributions. (Brando
et al., 2018c).

4

Table 1.2 Timeline

2019/12 • Paper at the thirty-third Conference on Neural Information Processing
Systems (NeurIPS) UMAL is proposed as a new method to estimate
aleatoric uncertainty in a flexible manner. (Brando et al., 2019b).

2019/12 • “Las redes neuronales tienen derecho a no poner la mano en el fuego”.
Newspaper article in the Retina Section of El País. (Hidalgo, 2018).

2020/06 • Journal article for IEEE Access. Proposal of the black-box uncertainty
problem applied to regression scenarios. (Brando et al., 2020).

2020/08 • Workshop article for the financial workshop at the Knowledge
Discovery Data Mining Conference (KDD). Proposal of a new iterative
model which is also able to propagate the uncertainty modelling it performs.
This is applied to tackle a different internal problem related to customers’
generic balance forecasting. (Muelas et al., 2020).

2021/08 • Poster at the Eastern European Machine Learning (EEML) summer
school. Poster presentation of UMAL as a solution for heterogeneous
modelling. (Brando et al., 2022a).

2021/11 • Paper at the twenty-fifth International Conference on Artificial
Intelligence and Statistics (AISTATS). Tackling the crossing quantile
phenomenon by means of constraining the derivative of the predicted function
with respect to the quantile variable. (Brando et al., 2022a).

2022/04 • (Under revision) Journal article for the Journal of Machine Learning
Research (JMLR). CheNet is proposed as a solution for the Explicit
Modelling of the Black-box Uncertainty problem. (Brando et al., 2022b).

5

Chapter 2

THE RESEARCH CONTEXT
AND GOALS

Nowadays, forecasting systems are commonly used to automatically tackle prob-
lems that previously required human intervention. This clearly involves ethical
aspects (Hevelke and Nida-Rümelin, 2015; Lin, 2016; Maxmen, 2018), especially
when wrong decisions imply significant costs. The range of fields where such
systems are applied includes, for instance, medicine (Deo, 2015; Rajkomar et al.,
2019), industrial processes (Diez-Olivan et al., 2019), self-driving cars (Michel-
more et al., 2018; Stilgoe, 2018; Tunga et al., 2021), AI protein folding (Jumper
et al., 2021; Noé et al., 2020) and autonomous financial decisions (Culkin and
Das, 2017; De Spiegeleer et al., 2018). From an engineering modelling viewpoint,
forecasting systems are models conceived to be the closest as possible to the real
process to be approximated. However, this approximation is not usually perfect.
Thus, there is a need to analyse the reliability of these systems in order to identify
troublesome situations and, in all likelihood, act in a special way. For instance,
requiring expert human supervision for such cases.

Uncertainty is often simply understood in terms of variability with respect
to the prediction. In the present work, we wish to emphasize the importance
of developing a formal methodology to identify sources of uncertainty. This will
prove crucial in designing solutions based on uncertainty-source performance and,
consequently, producing consistent risk-based decision-making.

6

Figure 2.1: Probabilistic sources of uncertainty originated before or while the
predictive system is being used. The novel aspects of this thesis correspond to
the aleatoric uncertainty of the response variable Y given X, highlighted in green.

In supervised learning, the initial scenario involves having a data set,

D = (X, Y) = {(xi, yi)}Ni=1 , xi ∈ XI , yi ∈ YO, (2.1)

where X and Y are spaces of dimensions I and O, respectively. D contains
two different types of data: xi, which correspond to the data points used as input
variables for the predictive system, and yi, which are assumed to depend on xi.
Although the aim of the predictive system will be to imitate this dependence,
in most of the problems, this “simple” goal implies capturing different types of
uncertainties, as Figure 2.1 shows.

As a rule, structural reliability or risk analysis problems use probability the-
ory to quantify uncertainty. Specifically, Bayesian inference is used to disentangle
the different sources of uncertainty, which include intrinsic variability in the mea-
surement, but also ignorance in the learning process itself.

Following the notation introduced above, we will assume that X and Y are
random variables, where the joint distribution of all the presented variables is
p(X, Y). Given that we assumed that Y depends on X, expressing it as condi-
tional probability we obtain p(X, Y) = p(Y | X)p(X), where p(X) corresponds
to a marginal distribution that represents the likelihood of the input data itself1.

1Unless explicitly stated, the new evaluated value, x∗, or the value to be predicted, y∗, are
implicitly considered as an abuse of notation. Specifically, when p(Y | X,M), it means the

7

To calculate the latter, an additional model could be considered, such as a density
estimation model with respect to X. Although this corresponds to a source of
uncertainty that can ultimately affect the system prediction, the goal of this work
is to analyse the uncertainty of the predictive system and not that produced by
a new type of input data. Thus, although we are aware that this uncertainty is
also crucial, this kind of uncertainty, which includes the irreducible noise in X or
the presence of outliers in the input data, will not be considered in the framework
presented here.

On the other hand, the relationship between X and Y is modelled using
the predictive system. Importantly, a mismatch between the best model, usually
defined by some model properties, and the real predictive relationship between X
and Y could produce an extra source of uncertainty. Given that these properties
define the model, we need to consider all the possible combinations of properties
in the properties-space, M, that defines the predictive system, each one denoted
as M . For instance, parametric models are normally defined by a collection
of hyper-parameters and parameters or weights. In such cases, the conditional
distribution can be expressed as

p(Y | X) =

∫
M
p(Y,M | X)dM =

∫
M
p(Y | X,M) · p(M | X)dM (2.2)

where the integral is present due to the number of combinations usually being
uncountable (e.g. if one of the model properties is a real number).

Considering Eq. (2.2), our aim is to estimate the properties, M , that maximize
the overall conditional probability. Following (Der Kiureghian and Ditlevsen,
2009; Kendall and Gal, 2017), we will denote:

p(M | X) as the epistemic source of uncertainty. The term epistemic
comes from the Greek “episteme”, which corresponds to the concept of
knowledge. This uncertainty is reducible, given that the more input data
points we have about the relationship between X and Y , the more the

variable to be predicted is y∗. When X is given - e.g. p(M | X) and p(Y | X,M) - it means
the whole data set D is given except for the only input-dependent p(x∗ | X), included in p(X).

8

model will behave like the original predictive process, if the family of mod-
els defined by M is rich enough.

p(Y | X,M) as the aleatoric source of uncertainty. Similarly to the pre-
vious case, aleatoric comes from the Greek term “alea”, which means dice.
This kind of uncertainty is considered inherently different, because it is as-
sumed to be irreducible due to probabilistic variability. Consequently, we
need to model the conditional probability distribution of Y given X for a
certain M , and this will not decrease even providing new data.

Epistemic and aleatoric uncertainty are commonly defined according to how
assumptions are selected, i.e. answering the questions: can the model be rich
enough to perfectly imitate the approximated real process? Or, is there an in-
evitable lack of information or intrinsic randomness regarding the response vari-
able that forces us to model it as a random variable?

Epistemic uncertainty has traditionally been the main type of uncertainty to
be tackled in the literature due to the common hypothesis that “the system is not
rich enough to approximate the real process”. As a consequence, a huge range of
alternatives, mostly based on Bayesian methods, have been proposed to improve
the modelling of this kind of uncertainty, as we will detail in Section 2.3. However,
in the different analysis we presented publicly as part of this thesis and within the
company (Brando et al., 2018a,e, 2019a), we have seen that there are problems
in which the main source of uncertainty comes from the intrinsic randomness
of the response variable conditioned to the input value. For instance, one of
the problems analysed was the monthly-aggregated incomes/expenses forecast of
bank users described in Section 2.5 and presented in Brando et al. (2018a); Ciprian
et al. (2016). Assuming the source of the main uncertainty to be epistemic would
imply that the reason for incorrectly predicting the next aggregated movement
originates from the use of a model that is not rich enough. However, we know -
and the assumption therefore makes sense - that the input information available to
the model is only partially informed to make this complex forecast, i.e. spurious
behaviours and decisions are made by the bank’s client that are not encoded
considering only the last n-months of movements. This means that we find an

9

intrinsic variability of p(Y | X,M) here that cannot be reduced and, thus, must
be modelled.

In short, we have seen that the impact of modelling aleatoric or both (aleatoric
and epistemic) uncertainties is clearly critical for the kind of problems mentioned
here. This is due to there not being enough available input data to predict the
response variable and obtain a unique family of models, or those that maximize
p(M | X), which individually perform an appropriate point-wise prediction.

2.1 Uncertainty nomenclature disagreement

Understanding the concept of uncertainty is not strictly a data science or machine
learning dilemma. In fact, there is a science known as uncertainty quantification,
which characterizes it as being used by experts in many fields, including physics,
finance, medicine, psychology and metrology; even the ancient Greece philoso-
phers pondered over it. In this characterization, a common question is to define
what constitute the uncertainty sources in a forecasting process.

Taking one of the widely accepted classifications of uncertainty as a starting
point, the initial aim of this section, avoiding the previously introduced uncer-
tainty types,is to present part of the disagreement that exists in the literature
regarding the possible taxonomies of uncertainty. In particular, what we wish to
highlight in this section is that there is no perfect classification, but rather certain
common ideas that help us understand the sources of uncertainty. As in the pre-
vious section, our uncertainty sources will be directly linked to a mathematical
term (a probability), leaving aside the discussion on terminology as an important
topic but not one crucial to the overall proposals presented in this research.

In a forecasting scenario, uncertainty is considered to be the consequence of a
lack of knowledge regarding the possible future. This absence exists because we
do not have enough information to infer the future in a deterministic way, and a
probabilistic approach can therefore be considered: in such a prediction process,
we will use a certain input information (set of data points with their attributes)
to infer the future. Consequently, if we do not have enough information, there
are two different scenarios that define the two most common uncertainty terms:

10

Epistemic uncertainty: This appears when the new input point used
to forecast the future is unknown, meaning it is a new point completely
differing from previous ones. Therefore, this kind of uncertainty can be
resolved when sufficient new sets of points are provided - because the new
anomalous point will stop being so - and, consequently, this uncertainty is
reducible.

Aleatoric uncertainty: This emerges when the attributes that define
the input point are not sufficient to perfectly know what to forecast, i.e.
there exist several valid predictions given the same input attributes. Thus,
considering more new data points will not solve the lack of attributes to
reduce such uncertainty and, therefore, this uncertainty is irreducible.

In fact, the irreducible property is controversial in fields such as physics, since
it can be argued that there are always hidden variables that allow such uncertainty
to be reduced. Ultimately, the aforementioned terminology may make more sense
when we are faced with a problem in which it is not possible to add new covariables
(or attributes) to the input information. This assumption allows us to divide
uncertainty sources into those which can be reduced and those which, crucially,
can only be detected or modelled as ambiguity.

Given the above, aleatoric uncertainty can be related to an unavoidable oc-
clusion, an inherent stochasticity or, equivalently, a scenario that is essentially
partially observable. In the present research, we focus on modelling conditional
aleatoric uncertainty - i.e. given a certain input, the possible variability that
exists in the response variable to be predicted. However, if we define aleatoric
uncertainty as simply the “irreducible uncertainty type” then this does not need
to be conditional, i.e. an unavoidable precision error of measurement in the gath-
ering of input values constitutes aleatoric uncertainty under these terms.

Similarly, the epistemic uncertainty related to our lack of knowledge can be
conditioned to the predictive model or the data themselves as two different vari-
ables: on the one hand, when a certain model is used for the forecasting process,
this implies assuming some restrictions, which avoids obtaining the real prediction
process. As a consequence of this lack of knowledge, several diverse predictive
systems together as an ensemble can provide a more confident forecast than a

11

Figure 2.2: Summary of common uncertainty sources terms linked to their sim-
plified mathematical formulation. Each colour represents one uncertainty type.
Shared zones corresponds to terms that are commonly used for different uncer-
tainty types. Each white box has our proposed notation (matching Figure 2.1).

single one, which will be more prone to overfitting. We therefore need to con-
sider that a certain prediction made using a certain model inherently assumes
the model’s limitations, and that this produces an epistemic kind of uncertainty,
which also includes the procedural variability arising from the training procedure.
On the other hand, if we focus only on the input data information in a supervised
learning task, when the previous data set to train our model differs from the new
data to be tested, this constitutes another source of lack of knowledge, i.e. we
could evaluate the predictive system in an outlier with respect to our previous
knowledge, which produces an unreliable outcome.

The particular features listed above - and especially the fact that different
meanings of uncertainty use the same terminology - exacerbates the debate on
the appropriate use or not of the terms “epistemic” and “aleatoric” for this dis-
entanglement. With the aim of clarifying these meanings, Figure 2.2 provides
a short compilation of equivalent ways of referring to each of these uncertainty
types and, importantly, a link to the mathematical notation previous introduced

12

in Figure 2.1. These terms corresponds to the ones that usually precede the
word “uncertainty”. In particular, the common areas between the different types
of uncertainty shown in the Figure 2.2 correspond to those terms that are used
both to refer to one or another type of uncertainty, which leads to the previously
highlighted confusion and debates. For example, the “aleatoric” uncertainty term
can be used simultaneously for uncertainty our measurement-error and for our
aleatoric uncertainty but the former is a non-conditional probability and the latter
is a conditional one.

2.2 Relevant Deep Learning Concepts

This section is not intended as an introduction to Deep Learning, as in Bishop
(1994a); Chollet (2017); Goodfellow et al. (2016b); LeCun et al. (2015); Murphy
(2012). Rather, the aim is to highlight relevant concepts present in the deep
learning or neural networks1 literature that should be taken into consideration
for this work.

Although deep learning can be used in generic function estimation, in this
work we focus on proposing solutions to supervised learning problems. Following
the notation in Eq. (2.1), given a data set D = (X, Y) = {(xi, yi)}Ni=1 , xi ∈
XI , yi ∈ YO, this will be divided into three different randomly selected splits
denoted as

1. The training set: The subset of data that will be used to optimize the neural
network model.

2. The validation set: The subset of data that will be used to decide when to
stop optimizing the neural network.

3. The test set: The subset of data that will be used to verify the quality of
the performance or accuracy of the neural network.

In this context, a linear model is a transformation ŷi = W ·xi with W ∈ RI×O,
xi ∈ XI and ŷi ∈ YO, where the goal is to find the weight W , which minimizes

1In this text, the term “deep learning” or “neural network” will be used indifferently.

13

a certain distance function (known as the loss function) between the predicted
output and the real response variable value with respect to the training split set.
The neural network is still a parametric function

ϕ : XI → YO

xi 7→ ŷi,
(2.3)

but, instead of a single matrix multiplication, it considers several internal non-
linear transformations from the input, xi, to produce the output variable, ŷi.
Each of these transformations is known as a “layer”, which combines its input
layer values with its weights to produce its internal layer output. Generically, the
neural network combines a mixture of weights and these input values to minimize
a certain distance function (known as the loss function) between the predicted
output and the real response variable value with respect to the training data set.
As we will describe later, this loss function is usually the Mean Square Error
(MSE), i.e. L(X, y) =

∑N
i=1 (yi − ϕ(xi))

2. Typically, the optimization process
is performed using a kind of gradient descent method, calculating the derivative
of the loss function with respect to each weight; this will be analysed in greater
depth in the following sections.

2.2.1 Defining the architecture

How the input values are combined with the weights in a neural network is de-
fined by its architecture: each neural network is defined by different stacked
transformation processes, with each transformation being known as a layer. For
instance, a so-called “dense layer” is a combination of all of the layer inputs,
hi−1, to provide the outputs of the layer hi. This is equivalent to the linear
model but, in addition, a non-linear function σ, known as the activation func-
tion (Goodfellow et al., 2016b), is applied in order to estimate non-linearities,
i.e. hi = σ(W · hi−1). Although the sigmoid function (Han and Moraga, 1995),
hyperbolic tangent (Anastassiou, 2011) or ReLU (Fukushima, 1969; Glorot et al.,
2011a; Hahnloser et al., 2000) functions are the most common activation func-
tions used, there are plenty of alternatives to choose from. Similarly, specific

14

layers, understood as transformation processes, are designed for a certain type
of data: for instance, images are commonly stored as a matrix of pixel values,
where their patterns are combinations of those present in different parts of the
image, and spatial proximity therefore matters. In these cases, layers such as con-
volutional layers (Fukushima, 1988; LeCun et al., 1989), which perform a space
invariant operation - known as convolution - that is applied over the input fea-
tures, providing a translation equivariant response - known as the feature maps -
and learning their corresponding mask (or kernel), are suitable for these types of
problems. Alternatively, when a temporal relationship exists, other layers such as
recurrent layers e.g. the GRU (Cho et al., 2014) or the LSTM layer (Hochreiter
and Schmidhuber, 1997) allow the network to capture useful relationships more
easily because they impose temporal-constraints compared to a standard dense
layer.

All of these design decisions regarding the neural network architecture (such
as the number and type of layers or the number of hidden output dimensions for
each layer) are normally taken prior to the training process (Goodfellow et al.,
2016a), which is why they are considered hyper-parameters. Given that neural
networks are considered universal function approximators (Hornik et al., 1989;
Zhou, 2020), the common goal is to tackle the desired problem with a rich enough
architecture that it can learn a combination of weights to obtain the expected
performance in the test set.

2.2.2 Defining the loss function

Following Goodfellow et al. (2016a); Smithing (1999), the function representing
the cost or error between the model - mainly defined by its parameters or weights,
w - and the evaluated data is called the “loss function”. Specifically, the learning
process takes place when we minimize the expected value of this evaluated func-
tion for all of the evaluated points. From a statistical viewpoint, this optimization
process using the loss function can be understood as a maximization process of
the posterior probability of w, p(w | X, Y), which relates the data and a desired
distribution with respect to the model parameters. Applying the Bayes’ rule,

15

p(w | X, Y) =
p(Y | X,w) · p(w)

p(Y | X)
(2.4)

we can see that to obtain the posterior probability it would be necessary to
calculate the likelihood of w, p(Y | X,w), and the prior probability of w, p(w),
and in some way tackle the so-called evidence, p(Y | X).

The frequentist viewpoint performs different assumptions. Firstly, it consid-
ers the weights of the neural network as deterministic variables. Therefore, the
previous prior distribution is not considered. Secondly, the evidence is also not
considered, given that it is a constant with respect to the weight optimization.
This process is known as Maximum Likelihood Estimation (MLE) and corre-
sponds to

wMLE = argmax
w

p(Y | X,w). (2.5)

Additionally, if only the first assumption is relaxed - i.e. the weights of the
neural network are considered as random variables - this is known as Maximum
A Posteriori (MAP) and corresponds to

wMAP = argmax
w

p(Y | X,w) · p(w, (2.6)

where the additional prior term can be considered as a regularization term.
In fact, if the assumed prior distribution corresponds to a standard normal distri-
bution, this is also known as l2-regularizer (Moore and DeNero, 2011; Wu et al.,
2017) or l1-regularizer in the case of a standard Laplace distribution, as in Schmidt
et al. (2007).

In the MLE or MAP approach, p(Y | X,w) is typically approximated con-
sidering the logarithm of a normal distribution with a constant scale parameter
(as shown in the introduction to Chapter 3). That is to say, the prediction of
the neural network is used as the location parameter, and the neural network
consequently learns the conditional mean,

16

L
(
w; {(xi, yi)}Ni=1

)
=

1

N

N∑
i=1

(yi − ϕ(xi))2 . (2.7)

This method is commonly denoted as Mean Squared Error (MSE), Least
Squares Deviation (LSD) or Mean Squared Deviation (MSD) (Pishro-Nik, 2020;
Vault, 2020). Similarly, we must consider that the logarithm of a Laplace distri-
bution with constant scale parameter approximates the conditional median and
corresponds to the - also well-known - Mean Absolute Error (MAE) or Least
Absolute Deviation (LAD); that is

L
(
w; {(xi, yi)}Ni=1

)
=

1

N

N∑
i=1

|yi − ϕ(xi)|, (2.8)

which provides results that are more robust to outliers and more interpretable
than the commonly used MSE (Chai and Draxler, 2014; Willmott and Matsuura,
2005) (as shown in detail in Chapter 3). However, for the continuous variable
y, the conditional mean or median represents only a very limited statistic. As
Bishop (2006) stated and we demonstrate in this thesis, in many scenarios it is
considered beneficial to obtain a much more complete description of the response
variable’s probability distribution. This gives rise to one of our main reasons for
proposing the more complex frequentist solutions described in Chapter 3.

2.2.3 Minimizing the loss function for the neural weights

Once our neural network architecture and loss function are decided, we need to
find a way to minimize the error function to modify the weights in order to obtain
an expected result. In order to do this, we need to calculate the derivatives of
the loss function with respect to the weights in the neural network. According
to (Bishop, 1994b), one way of solving this problem is to use the standard back-
propagation procedure, provided we obtain suitable expressions for the derivatives
of the error function with respect to the activations of the neural network’s out-
put units. The requirement here is that the loss function must be differentiable
with respect to the outputs of the neural network present in this function. The

17

derivatives act as errors that can be back-propagated through the network to
find the derivatives with respect to the network weights. Much has been written
about this process of optimization, including Bishop (2006); Goodfellow et al.
(2016a); Nielsen (2015). As (Bishop, 1994b) noted, standard optimization algo-
rithms such as conjugate gradients or quasi-Newton methods can then be used
to find a minimum of the loss function, L. Alternatively, if an optimization al-
gorithm such as stochastic gradient descent is used, the weight updates can be
applied after the separate presentation of each pattern. In recent years, many
new gradient descent optimization algorithms have been developed, such as the
Nesterov accelerated gradient, Adagrad, Adadelta, RMSprop and Adam (Ruder,
2016).

Nowadays, this differentiation process is implemented in most relevant deep
learning libraries, which allows native code to be differentiated automatically.
As with the Autograd Library (Dougal Maclaurin and Johnson, 2016) - or its
new version, JAX (Bradbury et al., 2018) - most libraries use reverse-mode dif-
ferentiation (also called reverse accumulation1). By using these libraries, we can
therefore efficiently take gradients of scalar-valued functions with respect to array-
valued arguments, thus simplifying the gradient-based optimization problem and
allowing us to focus on other aspects.

2.3 Deep epistemic uncertainty modelling

2.3.1 Introduction

Once we have established a minimum deep learning notation - and we know
that these neural networks are defined by their architecture, weights and other
hyper-parameters - then we can return to the uncertainty modelling discussion
(introduced in Chapter 2).

Regarding epistemic uncertainty modelling, following the concept proposed in
Section 2.1, different methods can be found in the literature that tackle this igno-

1The process is explained in page 7 of the Ilya Sutskever’s PhD thesis.

18

http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf

Figure 2.3: Synthetic representation of an enclosed solutions space given a certain
family of models M and how different initial models M1,M2,M3 end up obtaining
similar errors compared to the real solution despite being different. Epistemic
uncertainty aims to exploit this variability.

rance regarding the correct model to choose1 (as represented in Figure 2.3). For
instance, the weights of the neural network can be considered as random variables
and Variational Inference (VI) (as shown in in (Blei et al., 2017; Blundell et al.,
2015)) can be applied to learn their parametric distributions, or the Dropout
technique used as a Bayesian inference training process (Gal and Ghahramani,
2016), or even an ensemble of neural networks considered and properly combined
(Lakshminarayanan et al., 2017). In the following sections, we will describe how
these approaches are implemented to highlight the difference between the main
proposals in this work.

2.3.2 Bayesian neural networks using variational inference

In this subsection, we will describe how to create a Bayesian neural network using
VI as the method to optimize their weights. Considering w the parameters of a
standard neural network ϕ, since we do not know which family of distribution our
posterior - p(w | X, Y) - belongs to, VI chooses one that is plausible and tractable

1This phenomenon is related to the concept of “indentifiability” in statistics.

19

Figure 2.4: Graphic representation of how to modify the neurons of a standard
neural network to make it a Bayesian neural network using the reparametrization
trick.

and calls it q. This distribution q has some parameters θ. The variational view
finds the parameters θ of a distribution on the weights q(w; θ), which minimize
the Kullback-Leibler (KL) divergence (Blei et al., 2017) with the true Bayesian
posterior on the weights,

θ∗ = argmin
θ

KL[q(w; θ) ∥ p(w | X, Y)] =

argmin
θ

Eq(w;θ)[log q(w; θ)− log p(w, Y | X)]︸ ︷︷ ︸
−ELBO(θ)

+ log p(Y | X). (2.9)

Due to the evidence log p(Y | X) being fixed with respect to θ, then min-
imizing the KL divergence is equivalent to maximizing the underbraced term,
known as the Evidence Lower BOund (ELBO). Unlike the evidence, the ELBO
is a tractable lower bound that can be optimized over the variational parameters
if we rewrite it as

20

Eq(w;θ)[log q(w; θ)− log p(w, Y | X)] =

−Eq(w;θ)[log p(Y | X,w)]︸ ︷︷ ︸
likelihood part

(data dependent)

+ KL[q(w; θ) ∥ p(w)]︸ ︷︷ ︸
complexity part

(prior dependent)

. (2.10)

Without entering into detail about which particular kind of parametric distri-
bution to take as the likelihood, we can consider that the parameters of this distri-
bution are obtained from the neural network ϕ, i.e. p(Y | X,w) = pdf (yi;ϕ(xi)),
thus Eq. (2.10) can be expressed as

θ∗ = argmin
θ

∫
w

N∑
i=1

q(w; θ) log pdf (yi;ϕ(xi)) dw +

∫
w

q(w; θ) log
q(w; θ)

p(w)
dw.

(2.11)

To approximate the first integral, we can use the Monte Carlo estimate of the
expectation by independently and randomly generating ns samples w1, . . . , wns of
weights from the distribution q(w; θ). In this manner, the best parameters, θ∗,
are those that satisfy

θ∗ ≈ argmin
θ

1

ns

ns∑
s=1

N∑
i=1

[log pdf (yi;ϕs(xi))] + Eq(w;θ)[log q(w; θ) − log p(w)],

(2.12)

where ϕs represents the neural networks, with their corresponding weights ws

for each sample s.

At this point, we need a way to equivalently estimate the expectation of the
last summing part of Eq. (2.12). Usually, a Gaussian distribution for q is imposed
(Blundell et al., 2015), for instance, so that q(w; θ = (µ, σ)) ∼ N(µ, σ2). If we
suppose that p(w) ∼ N(µ0, σ

2
0), where µ0, σ0 are the prior of the Gaussian distri-

21

bution parameters, in an extended way, then we need to optimize the following
loss function

(µ∗, σ∗) ≈ argmin
(µ,σ)

1

ns

ns∑
s=1

[N∑
i=1

[log pdf (yi;ϕs(xi))]

− 1

2
log(2π)− 1

2
log(σ2)− 1

2σ2
(µ−ws)

2

+
1

2
log(2π) +

1

2
log(σ2

0) +
1

2σ2
0

(µ0 −ws)
2

]
. (2.13)

Then, we apply the reparametrization trick (Kingma and Welling, 2014) of
w: since w ∼ N(µ, σ2) is a Gaussian random variable, we can reparameterize
it as a deterministic function with respect to the distribution parameters like
w = µ+ ε ·σ, where ε ∼ N(0, 1) does not depend on the distribution parameters,
i.e. we are expressing the Gaussian distribution in terms of a standard Gaussian
distribution, as shown in Figure 2.4. This is done in order to be able to compute
the derivative of our loss function regarding the parameters (µ, σ). Therefore,
the parameters of the model ϕ to be optimized are (µ, σ), and we perform the
sampling process to generate the weights w during the forward step of the neural
network’s back-propagation training algorithm. In other words, we optimize the
(µ, σ)-parameters of the Normal distribution, which will be used to generate the
weights of our neural network. Hence, the sampling process of that distribution
generates different possible neural networks ϕs to be used for prediction.

Following Section 2.2.2, log pdf (yi;ϕs(xi)) can be substituted by its MLE
or MAP version to avoid explicitly approximating the aleatoric uncertainty and
focus on the epistemic uncertainty, as we did in Brando et al. (2018a). If it is
desirable to combine both uncertainties in a single model, it can be done using
this step. However, given that this section focuses on epistemic uncertainty, we
can consider an MLE with respect to the location parameters, similar to Eq. (2.7).

22

Figure 2.5: Graphic representation of how to obtain an ensemble of models to
calculate their predicted mean and variance using a single model trained with
Dropout.

2.3.3 Monte Carlo dropout

In this subsection we will discuss the Monte Carlo (MC)-dropout technique (pro-
posed in Gal and Ghahramani (2016)). Originally, the standard Dropout tech-
nique (Srivastava et al., 2014) was introduced to avoid overfitting in deep learning
models as a stochastic regularization method. This method consists in randomly
removing certain connections between neurons in training time - as shown in any
of the neural networks in Figure 2.5 - depending on the “dropout ratio” value,
which indicates the probability of removing each connection or not. Following
the training step, all of the connections are considered and the ratio value is used
to adjust the learnt weights, as described in (Baldi and Sadowski, 2013).

Therefore, this previously described dropout procedure is deterministic at
test time. However, several variations of the original dropout have been pro-
posed. One of them is MC-dropout, which simply extends the dropout removing
process in training and test time (Gal and Ghahramani, 2016). Consequently,
the neural network prediction is no longer deterministic, because it depends on
which randomly choose neuron connections are maintained, allowing each differ-
ent prediction to be interpreted as a sample of a Bernoulli variational distribution
and, therefore, to provide a Bayesian interpretation of the predicted values, as
we can see in Figure 2.5, where the expected value and its empirical variance is

23

considered.

2.3.4 Ensemble of neural networks

Figure 2.6: Graphic representation of an ensemble of neural networks and how
to calculate its predicted mean and variance using M different models.

In this subsection, we will highlight how a set of several different neural net-
works trained over the same problem can be used to capture epistemic uncertainty,
following Lakshminarayanan et al. (2016). As introduced in Section 2.1, our def-
inition of epistemic uncertainty corresponds to the bias produced by the use of a
certain model. In these terms, a fairly simple but effective way of estimating this
uncertainty is by considering a set of different models (e.g. an ensemble of several
neural networks with different hyper-parameters, such as different architecture,
optimized in a different way, etc.).

In line with the above, Lakshminarayanan et al. (2016) proposed training
several “different” models and considering each of its predictions as a sample
from a probabilistic distribution as MC-Dropout in the previous Section 2.3.3. A
graphical illustration of the procedure is shown in Figure 2.6, where the concept
of having a sufficiently “different” set of models is crucial to be able to rely on
their variability.

2.3.5 Additional epistemic alternatives

Generally speaking, there are plenty of ways to capture epistemic uncertainty
(Postels et al.; Tagasovska and Lopez-Paz, 2019; van Amersfoort et al., 2020). For

24

Figure 2.7: Simplified version of the alternative way to model epistemic uncer-
tainty based on the architecture of the neural network. Each yi can be considered
a different output of the model.

instance, if it is important to minimize the computational cost of training several
models as in Section 2.3.4, the Depth Uncertainty Network (DUN), presented
in Antoran et al. (2020), can be considered. In this case, epistemic uncertainty
is captured by making diverse predictions in a single neural network, as shown
in Figure 2.7, where each depth level is used to produce a different prediction,
yielding a set of predictions in a single forward pass and avoiding the Mean Field
assumption, as discussed in depth in Foong et al. (2020).

In general terms, there are two key points to pursue in epistemic models: “ex-
pressivity”, to ensure each sample of the approximated probabilistic distribution
p(M | X, Y, x∗) corresponds to an accurate solution, and “diversity” in the set of
predictions, so as to avoid all the samples overfitting into a single forecast when
several correct solutions exist with respect to the model being used.

2.3.6 Synthetic comparison of epistemic uncertainty

The goal of this subsection is to compare the epistemic performance of the
three main baseline methods presented previously, i.e. the Variational Infer-
ence Bayesian neural network (described in Section 2.3.2), the Bayesian Dropout
(described in Section 2.3.3) and the Deep Ensembles (described in Section 2.3.4),
and ultimately to show how epistemic uncertainty can be visualized to avoid

25

(a) Bayesian Neural Network.

(b) Bayesian Dropout method.

(c) Deep Ensemble method.

Figure 2.8: Comparison of several epistemic methods. The colour indicates the
degree of confidence. Three samples are shown for each case.

misleading interpretations.

Visualizing uncertainty poses a crucial problem (that will be discussed in de-
tail in Chapter 6). Moreover, as we saw in Section 2.1, the very concept of
uncertainty is not clear most of the time, and should be divided according to
its source. Specifically, the definition of epistemic uncertainty used in this work,
briefly represented as p(M | X) or p(M | X, Y, x∗) (following Figure 2.1 and
Figure 2.2, respectively), considers combining a set of models to provide an en-
semble of predictions. A mismatch between the predictions of the ensemble will
indicate that there is greater epistemic uncertainty. Importantly, this disagree-
ment does not capture conditional variability (aleatoric uncertainty), due to each

26

of the models in the ensemble being optimized using the same loss (i.e. typi-
cally, all of them are approximating the same conditional statistic but changing
its initial conditions for each case, for instance, by using a different data split to
train, using a diverse weight-initialization for each model, etc.). Consequently,
visualizing epistemic uncertainty as conditional variability (e.g. as confidence in-
tervals around the main prediction) could lead to a misunderstanding regarding
just what is capturing this kind of uncertainty. Given the above, in this sub-
section we propose visualizing epistemic uncertainty as a gradient colour in the
background where the predictions are made. In this case, highly uncertain areas
will be indicated with a pinkish colour and more confidence in a bluish colour, as
shown in Figure 2.8.

Analysing Figure 2.8, we observe that the margins of the data set are in pink
due to there being no data points and, therefore, the predicted samples will tend
to mismatch more often, providing a higher epistemic uncertainty. Similarly, in
the central part, where there are no data points, the different samples tend to
mismatch, which tends to yield a more uncertain prediction than where there
are points. That being said, however, we observe that in this latter case, the
tendency of neural networks to seek as simple a solution as possible results in
non-ideal epistemic variability in this middle zone.

Since epistemic uncertainty is not the main goal of this work, the results of this
synthetic experiment are illustrative and do not constitute a formal comparison
between these methods. Mainly, the goal of showing these plots in Figure 2.8 is
to demonstrate that the disagreement between the models in an ensemble may
be useful in capturing a certain kind of uncertainty and, importantly, that it is
crucial to visualize it in a proper manner to avoid misinterpretations regarding
which information is providing us with this kind of uncertainty.

2.4 Real estate price per night forecasting

Since we will justify the original need in the next section, the current work will
focus on aleatoric uncertainty. In order to quantitatively validate the proposed
models developed during this thesis, we have considered real-world tasks where

27

Figure 2.9: Three synthetic distribution of flat prices are shown on a city map.
Slightly modified screenshots of the video (Brando and Llop, 2019) presented at
NeurIPS 2020 for the article (Brando et al., 2019b).

the behaviour of the variable to be predicted has a heterogeneous distribution.
For the sake of reproducibility1, we have considered the use of an open data set of
AirBnB apartment prices. Specifically, we predict prices for the cities of Barcelona
and Vancouver by using public information downloaded from Cox (2019), select-
ing the last time each apartment appeared within the months available from April
2018 to March 2019. Therefore, the price prediction is based on informative fea-
tures such as neighbourhood, number of beds and other characteristics associated
with the apartments.

The regression problem will be defined as predicting the real price per night
of each apartment in their respective currency, using the following information:
the One Hot Encoding of the categorical attributes (present in the corresponding
Inside Airbnb “listings.csv” files) including the district number, the postcode, in-
formation about the room and property type, as well as the number of bathrooms,
the desired accommodates together with its latitude and longitude normalized ac-
cording to the minimums and maximums of the corresponding city.

Given 36367 and 11497 apartments in BCN and YVC, respectively, we have
considered 80% as a training set, 10% as a validation set and the remaining 10%

1The corresponding source code for obtaining and processing the data set can be found in
Brando et al. (2019c)

28

as a test set. Regarding the trained models, all of them share the same neural
network architecture for their ϕ, composed of 6 dense layers with ReLU activation
in all but the last layer and their output dimensions of 120, 120, 60, 60, 10 and
P , respectively, where P will be the number of required outputs depending on
the task they are optimizing (as will be shown in Chapter 3).

2.5 Time-series prediction of financial expenses

Figure 2.10: Screenshots of BBVA’s mobile app showing expected incomes and
expenses. Global calendar view (left) and expanded view of one of the forecasts
(right).

The industrial nature of the current work requires that the results be applied
to several internal and external problems pertaining to the company. One of
the main problems - publicly addressed in Brando et al. (2018a, 2019b); Mejia
et al. (2018) - is that of forecasting upcoming expenses and incomes in personal
financial records, which will be seen in the mobile app shown in Figure 2.10.

29

Figure 2.11: Clustering of the normalised 24 points time-series by using the π1
transformation. The grey lines are 100 samples and the blue line is the centroid
for each cluster.

The data were anonymized, e.g. customer IDs were removed from the series,
and we do not use individual amounts, but rather aggregated monthly amounts.
In addition, all of the experiments were carried out on the industrial servers where
this research was performed. Technically, the input data consist of 24 consecutive
monthly series of monetary expenses for certain customers in different selected
expense categories. The ultimate goal was to forecast the aggregated value for
the next month (as explained in detail in Brando et al. (2018a)).

To illustrate the nature and variability of the series, Figure 2.11 shows the
values for the raw series grouped by clusters resulting from a k-means algorithm,
where k = 16. Prior to clustering, the series were centred according to their mean
and normalized by their standard deviation, with the result that the emergent
clusters indicate scale-invariant behaviours such as periodicity.

The variability of certain clusters in Figure 2.11 reveals the challenge that

30

this problem can pose due to an expense or income resulting from erratic human
actions, spurious events or depending on factors not captured by the past values
of the series. Therefore, the main goal was to capture present uncertainty in order
to detect such untrustworthy series and, for instance, therefore only communicate
forecasts for those cases for which we are confident.

Table 2.1: Errors (MAE) found in each method at points of the error versus
retention curve corresponding to a Retain=R. Each row corresponds to the com-
bination of a predictor and an uncertainty score (described in the main text).

Predictor + uncertainty R=25% R=41% R=50% R=75% R=99.5% R=100%
mean + var 36.93 54.09 67.54 152.84 417.93 491.68
Zeros + var 36.95 54.21 67.75 154.16 429.29 504.45
Last + var 50.25 75.19 94.53 203.27 474.12 606.58
GAM + var 16.37 23.41 29.66 68.83 191.73 7539.91
GAM + SE 13.19 20.97 27.30 62.62 191.86 7539.91
RF* + prec N/A 76.08 N/A N/A 224.95 232.11
RF* + var 11.69 18.68 25.21 66.90 177.15 232.11
Dense + var 12.3± .24 18.1± .26 23.5± .26 56.3± .28 146.± .48 193.± .49
DenseD + var 14.9± .19 20.8± .13 26.4± .07 61.1± .30 160.± .80 208.± 1.0
DenseD + D 16.1± 1.3 23.2± .91 29.5± .76 64.9± .62 162.± 1.4 208.± 1.0
DenseB + var 16.1± 1.6 23.5± 1.9 30.6± 2.2 79.8± 4.4 198.± 5.2 248.± 5.6
DenseB + B 19.9± 1.1 28.5± 1.2 36.0± 1.7 89.4± 4.6 199.± 4.7 248.± 5.6
DenseHo + var 12.3± .23 18.1± .22 23.5± .22 56.3± .30 145.± .89 193.± .84
DenseHet + var 10.7± .08 16.4± .10 21.7± .11 55.0± .30 150.± .97 199.± .84
DenseHet + bhet 8.24± 1.3 12.9± .90 18.1± .59 45.3± .67 153.± 1.1 199.± .84
LSTM + var 11.6± .13 17.6± .12 23.1± .13 55.7± .43 146.± .81 205.± 1.2
LSTMHo + var 11.9± .37 18.0± .59 23.5± .76 56.6± 2.0 150.± 9.1 210.± 14.
LSTMHet + var 10.5± .03 16.2± .07 21.6± .10 53.9± .17 147.± 1.3 218.± 1.6
LSTMHet + bhet 5.04± .23 10.7± .41 15.2± .24 41.1± .54 149.± 2.9 218.± 1.6

Consequently, in Brando et al. (2018a) we considered a recurrent neural net-
work model (such as the one presented in Section 2.2) and modelled the epistemic
and aleatoric uncertainty to obtain the results presented in Table 2.1. Each of the
values in this table correspond to the MAE between the real values and a certain
prediction of the retained points that have a confidence value below a certain
point, i.e. the K = 25% column will be the MAE value of 25% of the points with
lower predicted uncertainty value. Therefore, the lower the value, the better.

As can be seen in Table 2.1, the aleatoric approaches identify the untrustwor-
thy time-series better by more effectively filtering highly confident predictions,

31

in all cases obtaining the best results below 75%, which are the main case of
interest. Specifically, if we compare the purely aleatoric case (DenseHet+ bhet)
- highlighted in green - with two epistemic solutions (the DenseD + D, which
corresponds to the Monte Carlo Dropout solution presented in Section ?? and
the DenseB + B, which corresponds to the Bayesian neural network described in
Section 2.3.2) - both highlighted in red - using the same hidden architecture for all
of the cases, then we can see that aleatoric uncertainty plays an important
role. Hence the reason for analysing aleatoric uncertainty in the next Chapter 3
and the rest of the work done in the thesis.

32

Chapter 3

ALEATORIC UNCERTAINTY
MODELLING USING NEURAL
NETWORKS

In Chapter 2, we reviewed the different sources of uncertainty and reasons for
modelling aleatoric uncertainty. In this chapter, we propose novel solutions for
aleatoric uncertainty modelling and tackle new problems deriving from this kind
of uncertainty based on the real-world limitations detected when applying these
models. We have already presented several approaches for tackling epistemic
uncertainty in Section 2.3, which is the uncertainty related to modelling the
family of possible models that better fits the data we have, i.e. the p(M | X)

term in Eq. (2.2).

In contrast, the current section presents several alternatives for modelling
aleatoric uncertainty, which is critical in scenarios where the response variable
cannot be predicted in a deterministic way (as discussed in Section 1.2). This
includes scenarios where we do not have enough input information to uniquely
report a prediction, but also when the response variable inherently has a noise
that cannot be reduced (such as the forecasting of monthly aggregated expenses
and incomes of clients in the bank operations presented in Section 2.5, or the real
state price prediction problem presented in Section 2.4).

Following the uncertainty disentanglement presented in Eq. (2.2), aleatoric un-

33

certainty corresponds to modelling conditional probability p(Y | X,M). Specif-
ically, the selected model here is a neural network, which means that, following
Section 2.2, it is a parametric model denoted by M , i.e. its corresponding hyper-
parameters and parameters. Considering aleatoric uncertainty separately implies
fixing the family of models defined by M to a single model that will be used to
maximize this conditional likelihood p(Y | X,M) (i.e. we avoid the integral of
Equation (2.2) to focus on only the aleatoric uncertainty part).

Although aleatoric uncertainty may seem like a rare type of uncertainty, it
is quite the opposite. In fact, as we will see below, this type of uncertainty is
implicitly assumed in most approaches aimed at solving a real regression problem;
it simply appears when we are solving a regression problem rather than as a
functional approximation, but solving it from a probabilistic perspective.

3.1 Preliminaries and notation

Now we have established the reasons for studying aleatoric uncertainty, we will
start to study approaches to modelling it. Before that, however, we should high-
light a simplification in the notation.

Figure 3.1: Graphic representation of the difference between sharing the hidden
layers of the neural network or not.

The assumption of shared hidden representations The following pro-
posed models will predict parameters of parametric distributions or quantiles of

34

the response conditional distribution p(Y | X,M). As we can see from Figure 3.1,
when a single model predicts different parameters or quantiles, there is a deci-
sion to be made regarding whether to share some hidden layers or not, with the
ultimate aim of forecasting them, which implies assuming that a shared internal
representation benefits the approximation of the desired probabilistic function.
Based on our previous internal and public works (Brando et al., 2018a), we con-
clude that this decision is not critical in most of our scenarios, due to neural
networks being capable of learning several parameters simultaneously if enough
parameters are provided. Therefore, without loss of generality, we will simplify
the notation by not indicating whether the hidden representation is shared, unless
it needs to be highlighted, i.e. µw(x) and σv(x) can be the outputs of the first or
the second model presented in Figure 3.1. Furthermore, in terms of optimization,
the same optimizer over w and v can be used to optimize the different models
- with different w and v weights - connected for the loss function or considering
the single model - where w and v are mixed - with its corresponding different
outputs.

3.2 Learning the parameters of a conditional para-

metric distribution

In this section, we use neural networks as good function approximators to learn
the parameters of conditional parametric density functions via the Maximum
Likelihood Estimation (MLE), which was described in Section 2.2.

3.2.1 Unimodal distribution

As stated in Section 2.2, when we are optimizing the Mean Squared Error (MSE),
from a probabilistic viewpoint, we are implicitly optimizing the location param-
eter of a Normal distribution with a fixed scale parameter via the Maximum
Likelihood Estimator (MLE); that is

35

LMSE (y, µ(x);w) = (y − µ(x))2 ⇐=
MLE

N(y | µ(x), σ(x)) = 1√
2πσ(x)2

e
− (y−µ(x))2

2σ(x)2 .

(3.1)

Similarly to (Bishop, 1994b; Kendall and Gal, 2017), we are defining a like-
lihood function over the output of a neural network with a normal distribution,
N(µ(x), σ2), where µ is the neural network function and σ is the scale parameter.

When dealing with location–scale family distributions, the scale parameter can
be considered a constant. In that case, we will denote we are in a homoscedastic
scenario. In contrast, when the scale parameter is a function of x, such as the
location parameter, this will be denoted as a heteroscedastic scenario. The
difference between the two can be seen in Figure 3.2, where the same data set
is approximated using a homoscedastic or heteroscedastic normal distribution.
As we can see, the homoscedastic case finds a constant value of σ, while the
heteroscedastic one, σ(x), has a varied value depending on x.

(a) Homoscedastic approximation. (b) Heteroscedastic estimation.

Figure 3.2: Comparison of an input-dependent and a non-input-dependent un-
certainty estimation.

Importantly, the scale parameter can only take positive real values, i.e. σ ∈ R+.
Consequently, we should force its output to always be positive, and this can be
done by applying a positive function to the scale parameter neural network out-
put. For instance, we can apply a softplus function (Zheng et al., 2015) with
a certain shift, specifically σ(x) = 10−3 + softplus(NN(τ,x) + 10−5), where

36

NN(τ,x) is the corresponding output of the neural network. The reason why
this could be a good decision over other positive functions will be discussed in
greater depth in Section 3.2.2.

In the event of learning a heterogeneous distribution, Figure 3.3 shows how a
neural network learning the location and scale parameter of a normal distribution
approximates all the parts of the synthetic data set proposed in Brando et al.
(2019b).

Figure 3.3: Regression problem with heterogeneous output distributions modelled
with a normal distribution.

Generically, the idea of unimodal conditional modelling is to pose neural net-
work learning as a probabilistic function learning using a conditional parametric
distribution. Thus, there is no restriction on using another distribution function if
it is more convenient for our problem, as in Brando (2017); Brando et al. (2018a)
and we will discuss below.

37

Reminder 1 (The potential role of Laplace vs normal distributions)
Historically, the normal distribution has had a strong presence in the literature.
However, despite the existence of other distributions which are potentially
valuable due to their properties, these do not receive the same attention as the
normal distribution. A special case in this regard, perhaps affected by being
apparently similar to the normal distribution, is that of the Laplace (or double
exponential) distribution (Geraci, 2017). This distribution dervied from the
heterogeneous normal sub-population and was proposed at a similar historical
point as the normal one (the former by Pierre-Simon Laplace in 1774, and
the latter, depending on the source (Wilson, 1923), in 1778). As shown in
Section 2.2.2, the MLE of the normal distribution corresponds to the mean
(with the MSE). Similarly, it is well-known that the MLE over the Laplace
distribution corresponds to the median (with the MAE).

Over the last decade, theoretical developments related to MAE regression have
led to a renewed interest in the Laplace distribution (Geraci, 2017) and its asym-
metric extensions as pseudo-likelihood for Quantile Regression, as we will see in
Section 3.3. At the same time, computational advances based on interior point
algorithms have made MAE estimation a serious competitor of MSE methods.
Moreover, as stated in Section 2.2, another reason for the "comeback" of the
double exponential is its robustness, which makes normal distribution undesir-
able in many research areas, especially where there is a presence of outliers.
For instance, it had a very notable impact on the bank’s expenses and incomes
financial forecasting problem described in Section 2.5 and addressed in Brando
et al. (2018a).

As a consequence of the above, following Reminder 5, there are several sce-
narios where the Laplace distribution may be a better choice than the normal
one. As stated in Section 2.2, the MLE of a Laplace distribution over its location
parameter is the Mean Absolute Error (MAE); that is

38

LMAE (y, µ(x);w) = |y − µ(x)| ⇐=
MLE

LP(y | µ(x), b(x)) = 1

2b(x)
e−

|y−µ(x)|
b(x) ,

(3.2)

where LP corresponds to the Laplace distribution, which, as we have said,
has similar properties to the normal distribution and two (location and scale)
parameters. Specifically, however, the Laplace distribution avoids the square dif-
ference and square scale denominator of the normal distribution, which results in
empirically unstable behaviour in the initial points of the neural network training
time or when the absolute error is sizeable (Brando et al., 2018a).

Figure 3.4: Regression problem with heterogeneous output distributions modelled
with a Laplace distribution.

Figure 3.4 shows how a neural network learning the location and scale param-
eter of a Laplace distribution approximates all the parts of the synthetic data set
sampled from a heterogeneous distribution that was proposed in Brando et al.
(2019b). In contrast with Figure 3.3, here the Laplace distribution is less affected
by the long tail of the asymmetric part.

39

3.2.2 Mixture of distributions

Reminder 2 (Multivariate normal distribution) Given X ∼ N(µ,Σ)

where µ = [µ1, . . . , µn]
T is the mean and Σ is the covariance matrix (a pos-

itive definite matrix of dimensions k × k), then its probability density function
is

pdfx(x1, . . . , xk) =
1√

(2π)k|Σ|
e(−

1
2
(x−µ)TΣ−1(x−µ)) (3.3)

Similar to the previous unimodal cases, the standard approach to find the mean
and variance matrix parameters is the maximum likelihood method, which
requires maximization of the log-likelihood function:

lnL(µ,Σ) =
k∑
i=1

ln f(xi | µ,Σ)

= −1

2
ln(|Σ|)− 1

2
(x− µ)TΣ−1(x− µ)− k

2
ln(2π)

where here x is a vector of real numbers.

In the same way that we previously showed how the parameters of a condi-
tional unimodal distribution can be approximated using a neural network, follow-
ing (Bishop, 1994b), we can replace this unimodal distribution in the conditional
density of the complete target vector with a mixture model (McLachlan G. J,
1988), which has the flexibility to approximate a richer distribution function.
The probability density of the target data is then represented as a linear combi-
nation of kernel functions in the form

p(y|x) =
m∑
i=1

αi(x)pdfi(y|x) (3.4)

where m is the number of components in the mixture and αi(x) are called
mixing coefficients. Specifically, if we consider the kernel functions as Gaussian
distributions, we obtain

pdfi(y|x) =
1

(2π)c/2σi(x)c
exp

{
−∥ y − µi(x) ∥2

2σi(x)2

}
, (3.5)

40

where µi represents the centre of the ith kernel. In this case, we are assuming
that the components of the output vector are statically independent within each
component of the distribution, and the distribution can be described by a common
variance σi(x). As (Bishop, 1994b) stated, to be more generic, the assumption
of independence can be relaxed by introducing a full covariance matrix for each
Gaussian kernel. However, according to (McLachlan G. J, 1988) and (Bishop,
1994b), a Gaussian mixture model with this simplified kernel can approximate
any given density function to arbitrary accuracy, provided the mixing coefficients
and the Gaussian parameters (means and variances) are correctly chosen. Note
that this assumption simplifies the calculation of the inverse of the covariance
matrix Σi since we will have a diagonal matrix with the same variance σi across
all dimensions,

Σi =


σi 0 · · · 0

0 σi 0
...
0 · · · 0 σi

 , (3.6)

which simplifies the | Σi |−1 computation of Eq. (3.3) to the σ−c
i of Eq. (3.5).

As we can see in Figure 3.5, given an input vector x, the Mixture Density
Network (MDN) model provides a general formalism for modelling an arbitrary
conditional density function p(Y | X). This union between the traditional neural
network and the mixture model part is achieved by using the log-likelihood of the
linear combination of kernel functions as a loss function of the neural network.
According to Bishop (1994b), by choosing a mixture model with a sufficient num-
ber of kernel functions, and a neural network with a sufficient number of hidden
units, the MDN can theoretically approximate any conditional density function,
p(Y | X), as closely as desired.

Regarding the number of model outputs, compared to the single distribution
modelling shown in Section 3.2.1, building this MDN increases the number of
output parameters from c to (c + 2) × m parameters, where c remains the di-
mension of the output and m is the number of components of the mixture we are
considering in the MDN.

41

α1 µ1 σ1 · · · αi µi σi · · · αm µm σm

· · · · · ·

· · ·

X

Neural network

Mixture model

Input vector

p(Y | X)

(c+ 2)×m dim.

Figure 3.5: Representation of the Mixture Density Network (MDN) model. The
output of the feed-forward neural network determines the parameters in a mixture
density distribution. This image was extracted from Brando (2017).

Similarly to the unimodal case and following Bishop (1994b), there are some
restrictions that each parameter should satisfy:

1. To ensure that the sum of the mixture components represents a probability,

the mixing coefficients {αi}mi=1 should satisfy that
m∑
i=1

αi = 1. This restric-

tion can be satisfied by computing a Softmax of the corresponding neural
networks outputs as

αi =
e(z

α
i)∑m

j=1 e
(zαj)

, (3.7)

which forces αi to lie in the range (0, 1) and sum to unity.

2. Regarding the scale parameter, σi, which is required to always be positive
(similarly to Eq. 3.1), the classical approach (Bishop, 1994b) is to compute
the exponential of the corresponding network output, zσi , as

42

σi = e(z
σ
i) (3.8)

which, in a Bayesian framework, would correspond to the choice of an un-
informative Bayesian prior, assuming that the corresponding network out-
puts zσi had uniform probability distribution (Bishop, 1994b; Jacobs et al.,
1991; Nowlan and Hinton, 1992). Theoretically, the use of this represen-
tation avoids pathological configurations in which one or more of the vari-
ances goes to zero. However, as we detected in Brando (2017); Brando
et al. (2018a) and happens similarly in other deep learning models (Detlef-
sen et al., 2019; Nazabal et al., 2020), the use of an exponential function as
an activation function for the scale parameters introduces a new issue due
to its high growth in positive values. Nevertheless, the exponential decrease
in negative values is desired, and an “ELU plus 1 function” can therefore be
considered,

g(x) = ELU(α, x) + 1 =

α(ex − 1) + 1 for x < 0

x+ 1 for x ≥ 0
. (3.9)

This function is the piece-wise function equivalent to the Softplus function,

g(x) = log(1 + ex). (3.10)

Both functions preserve the desired behaviour of the exponential function
in the negative values, while it has a linear growth in the positive values to
avoid exploding issues.

3. Finally, regarding the location parameters, {µi}ki=1, the notion of an un-
informative prior would be represented directly by the network outputs,
i.e.

µi,k = zµi,k (3.11)

To sum up, as explained in Reminder 2, it is possible to construct a likelihood

43

function using the conditional density of the complete target vector. Thus, in
order to optimize the MDN, the maximisation of the log-likelihood function or,
equivalently, minimisation of the following negative logarithm of the likelihood
will be considered

logL(y, {ϕi}mi=1;w) = − log (p(Y | X)) = − log

(
m∑
i=0

αi(x)ϕi(x)

)

= − log

(
m∑
i=0

exp
(
log ϕi(x)− log(αi(x))

))
(3.12)

where ϕi(x) is the same as in the Eq. (3.5). As explained in Bishop (1994b),
the term

∑
p(x) has been dropped as it is independent from the parameters of

the mixture model, and therefore independent from the network weights. Thus,
the aim of MDNs is to model the complete conditional probability density of the
output variables. From this density function, any desired statistic involving the
output variables can, in principle, be computed.

However, a wrong choice of hyper-parameter regarding the number of mixture
components can directly skew the conditional density estimation of an MDN. To
demonstrate this, we can analyse Figure 3.6, where different MDNs executed
over the synthetic heterogeneous distribution clearly return a different perfor-
mance depending on the number of components initially chosen. Importantly, we
can see that the kernel function, ϕi(x), can be freely selected as in the unimodal
case (shown in Eq. (3.2)). Extending this, we considered an MDN with normal
and Laplace distributions, as shown in Figure 3.6. Although a mixture with a
sufficient number of components of this type would theoretically be enough to
approximate any kind of conditional distribution, the reality is that, empirically,
when we increase this number, the behaviour of the MDN prediction, and its op-
timization process, become more unstable Brando (2017); Brando et al. (2019b).
This was one of the main reasons for developing the method in the following
section.

44

(a) MDN of 2 Normal distributions. (b) MDN of 2 Laplace distributions.

(c) MDN of 3 Normal distributions. (d) MDN of 3 Laplace distributions.

(e) MDN of 4 Normal distributions. (f) MDN of 4 Laplace distributions.

(g) MDN of 10 Normal distributions. (h) MDN of 10 Laplace distributions.

Figure 3.6: Heterogeneous conditional density estimation using several MDNs.

3.2.3 Uncountable mixture of distributions and the UMAL

The limitations regarding the finite mixture model highlighted in the previous
Section 3.2.2 lead us to consider the following model, presented in Brando et al.
(2019b).

The first objective is to avoid setting the number of components of the mixture
m as a hyper-parameter that needs to be pre-decided. Therefore, one solution is
to consider a mixture distribution marginalizing over a variable ϵ, i.e.

p (y | x,w) =

∫
p(ϵ) · pdf (y | θ(x)) dϵ. (3.13)

45

where θ represents the conditional parameters of the pdf distribution. This
is not new in the literature; for instance, in Titsias and Ruiz (2019), the hierar-
chical proposal using a mixing parameter to model the distribution implicitly is
similar to the previous model in Eq. (3.13). Comparing this equation with the
generic Eq. (3.4) of an MDN, the current mixture model has an uncountable set of
components that are combined to produce the uncountable mixture1 distribution.

Following classical approaches, let us consider the components as normal dis-
tributions, such that,

p (y | x;w) =

∫
p(ϵ) ·N (y | µ(x), σ(x)) dϵ. (3.14)

We can now make two considerations, as we did in the model presented in
Brando et al. (2019b). On the one hand, we assume a uniform distribution for
each component p(ϵ) of the mixture model. Therefore, the weight p(ϵ) is the same
for all the normal distributions, maintaining the restriction to integrate to 1. On
the other hand, in order to make the integral tractable at training time, following
the strategy proposed in implicit learning models using neural networks (Dabney
et al., 2018a; Tagasovska and Lopez-Paz, 2018), we consider that the random
variable ϵ ∼ U(0, 1) and apply the Monte Carlo (MC) integration (Rasmussen,
1996), selecting Nϵ random values of ϵ in each iteration, so that we discretize the
integral. This results in the following expression:

p (y | x;w) ≈ 1

Nϵ

Nϵ∑
t=1

N(y | µϵt(x), σϵt(x)). (3.15)

Therefore, the Uncountable Mixture of Normal distributions (UMN) model
is optimized by minimizing the following negative log-likelihood function with
respect to w,

1The concept of “uncountable mixture” refers to the marginalisation formula that defines
a compound probability distribution (Fred et al., 2017) and avoids the confusion with the
literature Infinite Gaussian Mixture model (Rasmussen et al., 1999).

46

− log p (Y | X,w) ≈ −
n∑
i=1

log

(
Nϵ∑
t=1

exp [logN(yi | µϵt(xi), σϵt(xi))]
)
− log(Nϵ),

(3.16)

where, as is commonly considered in mixture models (Khan et al., 2010), we
have a “logarithm of the sum of exponentials”. This form allows application of the
log-sum-exp trick (Nielsen and Sun, 2016) during optimization to prevent overflow
or underflow when computing the logarithm of the sum of the exponentials. The
result can be seen in Figure 3.7.

Figure 3.7: Regression problem with heterogeneous output distributions modelled
with an Uncountable Mixture of Normals.

Uncountable Mixture of Asymmetric Laplacian distributions (UMAL)
The second improvement with respect to the MDN is to see whether any distri-
bution exists whose shape may be beneficial or which has a characteristic that
can be combined with the marginalization process to enhance the conditional
distribution approximation. Similarly to in previous unimodal distributions (de-
scribed in Section 3.2.1) or in the mixture distribution case (defined in Section
3.2.2), where we searched for an appropriate distribution to use in our model (that
is, a Laplace distribution can be better than a normal one in certain scenarios,
as shown in Reminder 5), here we can consider different types of distributions in
this uncountable mixture. Specifically, one interesting property could be to give a
meaning to the marginalized variable, ϵ. This would mean, for instance, trying to

47

find a distribution where a parameter exists that has a special meaning, belongs
to the real values (or even better, is within a real interval) and can therefore be
marginalized in the required manner. The distribution proposed in (Brando et al.,
2019b) for tackling these requirements was the Asymmetric Laplace distribution,
as we will see below.

Given a location parameter µ ∈ R, a scale parameter b ∈ R+ and an asym-
metry parameter τ ∈ [0, 1], the Asymmetric Laplace distribution is defined as:

ALD (y | µ, b, τ) = τ(1− τ)
b(x)

exp {− (y − µ(x)) · (τ − 1[y < µ(x)]) /b(x)} .
(3.17)

here 1[p] is the indicator function that verifies the condition p.

Figure 3.8: Visualization of several distributional shapes of the Asymmetric
Laplace distribution depending on the τ = µ values matching the horizontal
axis.

Next, we combine all ALDs, as can be seen partially in Figure 3.8, to infer a
response variable distribution as an uncountable mixture.

Let w be the weights of the deep learning model to estimate, ϕ : RF+1 →

48

Figure 3.9: Regression problem with heterogeneous output distributions modelled
with an UMAL, extracted from Brando et al. (2019b).

R× (0,+∞), which predicts the (µτ , bτ) parameters of the different ALDs con-
ditioned to a τ value. We can then consider the following compound model
marginalizing over τ :

p (y | x;w) =

∫
ατ (x) ·ALD (y | µτ (x), bτ (x), τ) dτ. (3.18)

Now, we can make the two prior considerations regarding the uniform distribu-
tion for each component ατ and discretize the integral, applying MC integration
and selecting Nτ random values of τ in each iteration. The expression to be
calculated is:

p (y | x;w) ≈ 1

Nτ

Nτ∑
t=1

ALD(y | µτt(x), bτt(x), τt). (3.19)

Therefore, the Uncountable Mixture of Asymmetric Laplacians (UMAL) model
is optimized by minimizing the following negative log-likelihood function with re-
spect to w,

−log p (Y | X,w) ≈ −
n∑
i=1

log

(
Nτ∑
t=1

exp [logALD(yi | µτt(xi), bτt(xi), τt)]
)
−log(Nτ),

(3.20)

49

Figure 3.10: On the bottom, we
see a representation of the proposed
regression model that captures all
the components τi of the mixture of
ALDs simultaneously. In the mid-
dle, we observe a visualization of
some ALD components predicting
the distribution of the upper plot,
which corresponds to the Multimodal
part of Figure 3.9.

where we can use the log-sum-exp com-
putation (as we did in Section 3.2.2) during
optimization to prevent overflow or under-
flow when computing the logarithm of the
sum of the exponentials. This obtains a
behaviour such as the one presented in Fig-
ure 3.9, where multiple modes and skewed
distributions are estimated without spec-
ifying the number of components or the
desired distributional shape, as shown in
Figure 3.10 extracted from (Brando et al.,
2019b).

Pseudo-code of the UMAL

UMAL can be viewed as a framework for
upgrading any point-wise estimation re-
gression model in deep learning to an out-
put distribution shape forecaster, as show
in Algorithm 2. This implementation can
be performed using any automatic differen-
tiation library such as TensorFlow (Abadi
et al., 2016), PyTorch (Paszke et al., 2017)
or JAX (Bradbury et al., 2018). Addition-
ally, it also performs the Monte Carlo step
within the procedure by means of the Nτ

dimension, which results in more efficient
computation in training time.

Therefore, in order to obtain the condi-
tioned mixture distribution, we should per-
form Algorithm 3.

50

Prerequisites 1 Definitions and functions used for the following Algorithms
▷ x has batch size and number of features as shape, [bs, F].
▷ RESHAPE(tensor, shape): returns tensor with shape shape.
▷ REPEAT(tensor, n): repeats last dimension of tensor n times.
▷ CONCAT(T1, T2): concat T1 and T2 by using their last dimension.
▷ LEN(T1): number of elements in T1.

Algorithm 2 How to build UMAL model using any deep learning architecture
for regression
1: procedure build_umal_graph(input vectors x, deep architecture ϕ, MC

sampling Nτ)
2: x← RESHAPE(REPEAT(x, Nτ), [bs ·Nτ , F]) ▷ Adapt x so it has an associated τ .

3: τ ← U(0, 1) ▷ τ must have [bs · Nτ , 1] shape.

4: i← CONCAT(x, τ) ▷ The i has [bs · Nτ , F + 1] shape.

5: (µ, b)← ϕτ (i) ▷ Applying any deep learning function ϕ.

6: L← Eq. (3.20) ▷ Applying the UMAL Loss function by using the (µ, b, τ) triplet.

7: return L

Algorithm 3 How to generate the final conditioned distribution using the UMAL
model
1: procedure predict(input vectors x, response vectors y, deep architecture
ϕ, selected τs selτ)

2: τ ← RESHAPE(REPEAT(selτ , bs), [bs · LEN(selτ), 1]) ▷ Adapting τ shape.

3: x← RESHAPE(REPEAT(x, selτ), [bs · LEN(selτ), F]) ▷ Adjusting x shape.

4: i← CONCAT(x, τ) ▷ The i has [bs · Nτ , F + 1] shape.

5: (µ, b)← ϕτ (i) ▷ Apply the trained deep learning function ϕ.

6: p (y | x)← 1
Nτ

Nτ∑
t=1

ALD(y | µτt , bτt , τt) ▷ Mixture model of selτ for each y.

7: return p (y | x)

51

3.3 Distribution-free estimation with quantile re-

gression

Reminder 3 (Quantile Regression) In statistics and econometrics, an ex-
tension to classic regression has been proposed: Quantile Regression (QR).
Given τ ∈ (0, 1), the τ -th QR loss function over a linear model is

Lτ

(
w; {(xi, yi)}Ni=1

)
=

1

N

N∑
i=1

(yi − w · xi) · (τ − 1[yi < w · xi]) , (3.21)

where 1[p] is the indicator function that verifies the condition p. A visual
representation of the quantile loss for different values can be seen in Figure 3.11.

(a) QR loss depending on τ . (b) Corresponding conditional quantile τ .

Figure 3.11: Visualization of QR loss shape and the corresponding conditional
approximated quantile using a linear function f(x) = w · x.

Following (Koenker and Hallock, 2001) and Reminder 3, Quantile Regression
may be viewed as a natural extension of the mean approximation that was previ-
ously presented as MSE in Eq. (2.7). Specifically, when τ = 0.5 it corresponds to
the MAE case presented in Eq. (2.8). In contrast to the MSE or MAE approaches,
taking the combined estimation of different conditional quantiles together will
provide a complete view of the distribution shape of the response variable as a
distributional-free approximation i.e. without imposing strong assumptions such
as symmetry or unimodality.

52

This chapter will take a more in-depth look at the methods used to model
aleatoric uncertainty in this thesis by using this discrete approximation of the
conditional distribution, p(Y | X,M), through the conditional quantiles.

3.3.1 Fixed quantile regression

If we extend the quantile regression loss function (shown in Eq. 3.21) to a non-
linear function learning, we can create quantile regression forests (Meinshausen
and Ridgeway, 2006), gradient boosted quantile regression models (Zhang et al.,
2018) or even neural network models (Dabney et al., 2018b) that can be used to
approximate a discrete set of quantiles. In all of these cases, the set of quantile
values to approximate, denoted as {τt}Nτ

t=1, is fixed a priori. Thus, the number of
quantiles to approximate in such a QR scenario constitutes a hyperparameter of
the model definition.

In the following sections, we will continue using neural networks as a good
function estimator to build several models that can serve to meet different goals.

Figure 3.12: Graphic representation of the Single Quantile Network.

3.3.1.1 Single quantile estimation with a neural network

As we have seen, the mean and the median can both be useful statistics when
our goal is to find a central value. However, in fields such as finance, structural

53

engineering or earth sciences, the existence of extreme deviations from the median
is an important matter of study due to the extreme consequences that can result
from this1. Given this context, estimating a point-wise threshold can be one
way of tackling such problems. The objective, therefore, will not be to predict
a central expected value, but rather to search for a distribution point where the
accumulation of probability mass corresponds to the desired value.

The generic formulation of quantile regression with deep learning can be ex-
pressed as follows:

Definition 1 (Conditional quantile regression) Given τ ∈ (0, 1), the τ -th
quantile regression loss function with a NN, ϕ, would be defined as

Lτ

(
w; {(xi, yi)}Ni=1

)
=

1

N

N∑
i=1

(yi − ϕ(xi)) · (τ − 1[yi < ϕ(xi)]) , (3.22)

where 1[p] is still the indicator function that verifies the condition p.

Figure 3.13: Regression problem with heterogeneous output distributions mod-
elling the quantile 0.5, i.e. the median.

In Figure 3.13, we show the result of a non-linear approximation of the syn-
thetic data set over the median, τ = 0.5, using quantile regression.

1The analysis of these rare events is a branch of statistics known as extreme value theory.

54

3.3.1.2 Multiple quantiles with a neural network

Along the same lines, if we are able to predict not only one quantile but several
simultaneously, then we can build confidence intervals over the distribution to
be predicted. These intervals will seek to contain the desired probability mass.
Importantly, the definition of these intervals may or may not be centred on the
median. For example, in certain cases we might be interested in predicting a
centred interval that includes 60% of the prediction points (to ensure an expected
medium value is included or to analyse the width of that confidence interval).
However, if the problem is more similar to the one described in the previous
section - where it is of greater importance to detect extreme values - it may be
of interest to detect the highest 10% of the values to be predicted, which might
involve performing an analysis of the distribution tail, for instance.

Figure 3.14: Graphic representation of the Quantile Network that approximates
N = 4 fixed quantiles.

When several quantiles are to be approximated, this will be done in the fol-
lowing manner: firstly, by considering a multi-output neural network model such
as the one presented in Figure 3.14. Secondly, for each of the outputs, by optimiz-
ing the quantile regression loss function with its desired quantile to be predicted.
This approach will be similar to the simultaneous estimation of several parameters
using the single model presented in Section 3.2, although here each output will
correspond to a different pre-decided quantile. The formal definition is described

55

Figure 3.15: Regression problem with heterogeneous output distributions mod-
elling the quantile 0.01, 0.5 and 0.99.

below.

Given a fixed set of quantiles {τi}Nτ
i=1 ∈ (0, 1), the simultaneous approximation

of this set using an NN with Nτ -outputs, {ϕi}Nτ
i=1, will be done using the following

loss function,

Lτ (x, y;w, {τi}Nτ
i=1) =

Nτ∑
i=1

(y − ϕi(x)) · (τi − 1[y < ϕi(x)]) (3.23)

where 1[p] is the indicator function that verifies the condition p.

Equivalently to the single quantile approximation, the non-linear approxima-
tion of the three quantiles {τi}3i=1 = {0.1, 0.5, 0.99} is shown in Figure 3.15.

To sum up, we see that by using this method we can define distribution-free in-
tervals of confidence using DL functional approximation capabilities, which will be
extremely useful in situations where corner values are problematic (for instance,
in several internal financial problems such as the one presented in Section 2.5).

3.3.2 Implicit quantile regression

The fixed quantile approximation, previously presented in Section 3.3.1, can be
extended to a non-fixed quantile approximation. In other words, a quantile func-
tion approximation can be built, where the desired quantile to predict is an input
value, τ , of that function, as shown in Figure 3.16. Following Brando et al.

56

Figure 3.16: Graphic representation of the Implicit Quantile Network.

(2019b); Dabney et al. (2018a); Tagasovska and Lopez-Paz (2019), if the models
are trained stochastically (such as neural networks using stochastic gradient de-
scent), they can be defined to learn the quantile function implicitly, i.e. where the
quantile to predict is an input parameter, τ . As Dabney et al. (2018a) stated, this
approach allows any conditional distribution to be approximated, given sufficient
model capacity. In such cases, we can extend Eq. (3.21) to learn the full quantile
distribution using the predicted quantiles, as follows:

Definition 2 (Conditional quantile function) A function Φw : [0, 1]×RD →
R with parameters w approximates the quantile function when it minimizes the
conditional quantile regression loss function defined as

L(X, Y) = E

[∫ 1

0

(
Y − Φw(τ,X)

)
·
(
τ − 1[Y < Φw(τ,X)]

)
dτ

]
, (3.24)

where 1[c] denotes the indicator function that verifies the condition c.

Due to the integral, Eq. (3.24) is difficult to compute because the analytical
expression of Φw is not generally known. Following the notation in Brando et al.
(2019b), we can apply a Monte-Carlo strategy to provide a feasible loss function.
This is based on considering a uniform random variable τ ∼ U(0, 1) and for each
evaluation of the loss function in Eq. (3.24), a τ -sample set, {τt}Nτ

t=1, of Nτ points

57

Figure 3.17: Regression problem with heterogeneous output distributions mod-
elling the entire distribution of quantiles implicitly.

is generated in each training iteration, such that

L(X, Y) ≈ E

[
1

Nτ

Nτ∑
t=1

(
Y − Φw(τt, X)

)
·
(
τt − 1[Y < Φw(τt, X)]

)]
. (3.25)

Therefore, the learnt quantile function corresponds to a full discretization of
the conditional probability p (Y | X,M), which we are interested in predicting
based on Eq. 2.2. As we have said, Φw must be a model that can be trained using
Monte-Carlo, and neural network models are therefore appropriate in this case.

3.3.3 The connection with asymmetric Laplace

Until now, the quantile regression approaches described above were designed to
obtain point-wise or discrete forecasts corresponding to any desired set of quan-
tiles. As we have seen, this has the advantage of performing a free-distributional
estimation of the conditional distribution. However, similarly to the MSE in
Eq. (2.7) (or the MAE in Eq.(2.8)) which is related to the normal distribution
(or the Laplace distribution) by means of the MLE over the location parameter,
we can build a distribution where its MLE corresponds to the QR loss function
presented in Eq.(3.21)? The Asymmetric Laplace distribution (shown in Eq. 3.28)
can be formulated to have a direct connection to the QR loss function.

Typically, the Asymmetric Laplace distribution has the following probability
density function expression (Jammalamadaka and Kozubowski, 2004; Kozubowski

58

and Podgórski, 2000),

pdf(x | m,λ, κ) =
(

λ

κ+ 1/κ

)
e−(x−m)λ sκs , (3.26)

where m ∈ R corresponds to the location parameter, λ ∈ R+ the scale param-
eter and κ ∈ R+ the asymmetry parameter. Considering Eq. 3.26 and performing
the following change of variable,

τ =
κ2

κ2 + 1
b =

κ

(κ2 + 1)λ
, (3.27)

then we can arrive at the proposed Asymmetric Laplace distribution (ALD)
formulation used for the Bayesian quantile regression approach stated in Yu and
Moyeed (2001) and presented in Eq. 3.28,

ALD (y | µ, b, τ) = τ(1− τ)
b

e
−(y−µ)·(τ−1[y<µ])

b , (3.28)

where µ ∈ R corresponds to the location parameter, b ∈ R+ the scale param-
eter and τ ∈ R+ the asymmetry parameter. Consequently, the MLE regarding
the location parameter of the Eq. 3.28 produces the original QR loss function as
follows,

Lτ (x, y;w) = (y − µτ (x)) · (τ − 1[y < µτ (x)])

⇐=
MLE

ALD (y | µ, b, τ) = τ(1− τ)
b(x)

e
−(y−µ(x))·(τ−1[y<µ(x])

b(x) . (3.29)

Importantly, similarly to the Normal (or Laplace) distribution compared to
the MSE (or MAE), we can state that the Asymmetric Laplace distribution is a
non-point-wise approach of the quantile regression. Therefore, this allows us to
approximate not only a certain quantile but a corresponding variability around
this. This result led us to develop the following sections.

59

Figure 3.18: Graphic representation of the Fixed ALD Network.

3.3.3.1 Fixed asymmetric Laplace distributions

Similarly to Section 3.2.1, where a unimodal distribution was approximated, or
Section 3.3.1, where a fixed quantile τ is approximated, the relationship detected
between quantile regression and the Asymmetric Laplace distribution can moti-
vate the proposal of a model which approximates the conditional parameters of
this latter probabilistic function using a neural network, as shown in Figure 3.18,
minimizing the log-likelihood as the next loss function,

− log p (Y | X,w) = −
n∑
i=1

logALD(yi | µτ (xi), bτ (xi), τ). (3.30)

The result of estimating the conditional location and scale of an Asymmetric
Laplace distribution with τ = 0.5 can be seen in Figure 3.19. As we can see,
the variance is higher when the predicted median quantile could correspond to a
higher variability of values.

Since we know that each asymmetry parameter, τ , corresponds to a different

60

Figure 3.19: Regression problem with heterogeneous output distributions mod-
elling the Asymmetric Laplace distribution with τ = 0.5.

quantile value, another step forward would be to approximate several Asymmet-
ric Laplace distributions with different pre-selected asymmetry values. This is
similar to Section 3.3.1.2, where several quantiles were predicted simultaneously.
However, in the former case, the loss function is the sum of the log-likelihoods,

− log p (Y | X,w) ≈ −
n∑
i=1

1

Nτ

(
Nτ∑
t=1

logALD(yi | µτt(xi), bτt(xi), τt)
)
, (3.31)

where Nτ is the number of the approximated Asymmetric Laplace distribu-
tions with asymmetry values {τt}Nτ

t=1. Importantly, although at the level of neural
network architecture it may be the same, this model is different than considering
a mixture model (as described in Section 3.2.2). When an MDN is considered,
then each Asymmetric Laplace distribution is a component of the mixture, with
a particular asymmetry value for each one, τt. Therefore, they are combined to
approximate the conditional likelihood p (Y | X,w). In other words, the loss func-
tion considers the logarithm of the likelihoods and implements the log-sum-exp
trick as follows,

61

−log p (Y | X,w) ≈ −
n∑
i=1

log

(
Nϵ∑
t=1

exp [logALD(yi | µτt(xi), bτt(xi), τt)]
)
−log(Nτ).

(3.32)

Based on the "uncountable" term introduced in Section 3.2.3 for the UMAL
model (Brando et al., 2019b), the authors in Klotz et al. (2021) proposed to refer
to this model as the Countable Mixtures of Asymmetric Laplacians (CMAL).

In Figure 3.20, the result of approximating several Asymmetric Laplace dis-
tributions can be shown in the synthetic heterogeneous problem.

Figure 3.20: Regression problem with heterogeneous output distributions mod-
elling the Asymmetric Laplace distributions with τ = {0.01, 0.5, 0.9}.

3.3.3.2 Independent asymmetric Laplace distributions

Following Section 3.3.2, if we consider an IQR model where the entire range of
quantiles is implicitly and independently approximated, then the mode of an
ALD can be directly inferred because it corresponds to the location parameter.
Thus, in inference time there is a perfect solution using a combination of ALD
that estimates the real distribution but in a “Dirac delta manner”.

Using this idea of learning the conditional quantiles implicitly, an alternative
approach would be to minimize the entire negative logarithm of ALDs as a sum
of distributions where each one “independently” captures the variability for each
quantile. Therefore, the model will predict the location and scale parameters

62

Figure 3.21: Graphic representation of a generic implicit mixture of the Asym-
metric Laplace distributions model.

given a τ input value, as shown in Figure 3.21.

This solution is, in fact, an upper bound of the UMAL model presented in
Section 3.2.3. Considering Nτ the number of MC-samples of the random variable
τ ∼ U(0, 1) and applying Jensen’s Inequality to the negative logarithm function
of Eq. (3.20) gives us an expression that corresponds to considering all ALDs as
independent elements,

− log p (Y | X,w) ≤ −
n∑
i=1

(
Nτ∑
t=1

logALD(yi | µτt(xi), bτt(xi), τt)
)
− log(Nτ).

(3.33)

We will refer to this upper bound solution as the Independent ALD model.
Figure 3.22 shows the result of approximating the synthetic heterogeneous distri-
bution.

63

Figure 3.22: Regression problem with heterogeneous output distributions inde-
pendently modelling all of the Asymmetric Laplace distributions with respect to
τ .

3.3.3.3 The UMAL as a dependent quantile model

In Eq. 3.18, the UMAL model was presented as a mixture of Asymmetric Laplace
distributions. After highlighting the link between this distribution and the quan-
tile regression loss function, we can re-visit UMAL as a “dependent” combination
- in contrast to the “independent” combination presented in Section 3.3.3.2 - of
ALDs, in the knowledge that a solution exists where each location parameter will
correspond to the conditional quantile value.

In this case, the UMAL architecture will be the same as that presented in
Figure 3.21, but obtaining the results shown in Figure 3.23 (or in Figure 3.9).

Figure 3.23: Regression problem with heterogeneous output distributions mod-
elled using an Uncountable Mixture of Asymmetric Laplacians.

64

3.4 Results and comparison

3.4.1 Data sets and experiment settings

In this section, we show the performance of the proposed model, as shown in
Brando et al. (2019b). All experiments were implemented in TensorFlow (Abadi
et al., 2015) and Keras (Chollet et al., 2019), running in a workstation with
Titan X (Pascal) GPU and GeForce RTX 2080 GPU. Regarding parameters,
we used a common learning rate of 10−3. In addition, to restrict the value of
the scale parameter, b, to strictly positive values, the respective output had a
softplus function (Zheng et al., 2015) as activation. We will refer to the number
of parameters to be estimated as P . On the other hand, the Monte Carlo sampling
number, Nτ , for Independent QR, ALD and UMAL models will always be fixed
to 100 at training time. Furthermore, all public experiments were trained using
an early stopping training policy with 200 epochs of patience for all compared
methods.

Synthetic regression The synthetic heterogeneous data set presented through-
out Chapter 3 corresponds to the following data set. Given (X, Y) = {(xi, yi)}3800i=1

points where xi ∈ [0, 1] and yi ∈ R, the data are obtained from 4 different
fixed synthetic distributions depending on the X range of values. Specifically, if
xi < 0.21, then the corresponding yi came from a distribution

Beta(α = 0.5, β = 1). (3.34)

Next, if 0.21 < xi < 0.47, then their yi values are obtained from the distribu-
tion

N(µ = 3 · cosxi − 2, σ =| 3 · cosxi − 2 |) (3.35)

which depends on the xi value. Then, when 0.47 < xi < 0.61, their respective
yi values are obtained from an increasing uniform distribution and, finally, all val-
ues above 0.61 are obtained from three different uniform distributions: U(8, 0.5),
U(1, 3) and U(−4.5, 1.5). A total of 50% of the uniformly generated data were

65

considered as test data, 40% for training and 10% for validation.

For all of the compared models, we will use the same neural network archi-
tecture for ϕ. This consists of 4 dense layers with 120, 60, 10 and P output
dimensions, respectively, and all but the last layer with ReLu activation. Re-
garding training time, all models took less than 3 minutes to converge.

Room price forecasting (RPF) This problem and data set were described in
Section 2.4. Specifically, the goal is to estimate the price per night of several flats
using its properties. These data are collected from a publicly available data base
known as the Inside Airbnb platform Cox (2019), where we selected Barcelona
(BCN) and Vancouver (YVC) as the cities to carry out the comparison of the
models in a real situation.

Financial estimation Similarly, this problem was introduced in Section 2.5.
Specifically, the aim here is to anticipate personal expenses and income for each
specific financial category in the upcoming month by only considering the last 24
months of aggregated historical values for that customer as a short-time series
problem. This private data set contains monthly aggregated expense and income
operations for each customer in a certain category as time series of 24 months.
1.8 million time series from a selected year will be used as the training set, 200
thousand as the validation set and 1 million from the following year will be the
test set.

Regarding the neural network architecture for all compared models, after an
internal previous refinement task to select the best architecture, we used a re-
current model that contains 2 concatenated Long Short-Term Memory (LSTM)
layers (Hochreiter and Schmidhuber, 1997) of 128 output neurons each, and then
two dense layers of 128 and P outputs, respectively. It is important to note that
because all compared solutions used for this article are agnostic with respect to
the architecture, the only decision we need to take is how to insert the extra τ in-
formation into the neural network function in the QR, ALD and UMAL models.
In these cases, for simplicity, we add the information τ repeatedly as one more
attribute of each point of the input time series.

66

Table 3.1: Comparison of the Log-Likelihood of the test set over different alter-
natives to model the distribution of the different proposed data sets. The scale
for each data set is indicated in parentheses.

Log-Likelihood comparison
Model Synthetic (102) BCN RPF (103) YVC RPF (102) Financial (106)
Normal distribution −39.88± 13.4 −38.44± 6.55 −70.79± 3.26 −8.56
Laplace distribution −41.30± 0.78 −19.84± 0.93 −82.87± 8.01 −7.88
Independent QR −119.0± 7.68 −32.98± 1.63 −113.54± 10.4 −8.26
2 comp. Normal MDN −43.14± 6.12 −28.59± 3.38 −74.11± 3.26 −6.37
3 comp. Normal MDN −51.79± 21.0 −31.66± 4.85 −74.22± 2.37 −7.25
4 comp. Normal MDN −111.6± 43.27 −28.60± 7.22 −76.85± 5.95 −6.75
10 comp. Normal MDN −184.3± 35.5 −27.72± 2.81 −77.26± 6.12 −10.40
2 comp. Laplace MDN −42.83± 1.54 −19.76± 0.18 −65.52± 0.40 −10.83
3 comp. Laplace MDN −64.13± 36.70 −19.57± 0.30 −78.80± 3.79 −5.84
4 comp. Laplace MDN −52.53± 8.79 −19.89± 0.44 −66.58± 1.10 −5.72
10 comp. Laplace MDN −155.9± 32.9 −21.45± 0.83 −82.51± 9.66 −6.28
Independent ALD −39.03± 0.45 −19.03± 0.81 −64.16± 0.19 −5.66
UMAL model −28.14± 0.44 −18.04± 0.72 −62.68± 0.21 −5.49

3.4.2 Experimental results

Log-Likelihood comparison We compared the log-likelihood adaptation of
all models presented in Table 3.1 for the three type of problems introduced. For
all public data sets, we give their corresponding mean and standard deviation
over the 10 runs of each model we performed. Due to computational resources,
the private data set is the result after one execution per model. Furthermore, we
take into account different numbers of components for the different MDN models.
We observe that the best solutions for MDN are far from the UMAL cases. Thus,
we conclude that the UMAL models achieve the best performance in all of these
heterogeneous problems.

Calibrated estimated likelihoods We performed an additional empirical
study to determine whether the learned likelihood is useful (i.e. if UMAL yields
calibrated outputs). We would highlight here that our system predicts an output
distribution p(y|x,w) (not a confidence value). Specifically, we have computed
the % of actual test data that falls into different thresholds of predicted prob-
ability. Ideally, given a certain threshold θ ∈ [0, 1], the amount of data points
with a predicted probability above or equal to 1 − θ should be similar to θ. We

67

Figure 3.24: Plot with the performance of three different models in terms of cali-
bration. The mean and standard deviation for all folds of the mean absolute error
between the predicted calibration and the perfect ideal calibration is represented
in the table.

Likelihood calibration comparison
Model BCN RPF YVC RPF
Normal distribution .12± .04 .04± .01
Laplace distribution .03± .00 .06± .01
Independent QR .10± .02 .12± .02
2 comp. Normal MDN .05± .02 .12± .05
3 comp. Normal MDN .07± .02 .14± .04
4 comp. Normal MDN .10± .03 .17± .06
10 comp. Normal MDN .19± .04 .19± .06
2 comp. Laplace MDN .05± .01 .09± .01
3 comp. Laplace MDN .08± .02 .11± .02
4 comp. Laplace MDN .13± .05 .12± .03
10 comp. Laplace MDN .24± .03 .18± .05
Independent ALD .06± .01 .02± .01
UMAL model .04± .01 .07± .01

have plotted these measures for different methods (in green, our model) when
considering the BCN RPF dataset on the left side of Figure 3.24. Furthermore,
on the right side of the same Figure, we report the mean absolute error between
the empirical measures and the ideal ones for both rental-price data sets. As we
can see, the conditional distribution predicted by UMAL has low error values.
Therefore, we can state that UMAL produces proper and calibrated conditional
distributions especially suitable for heterogeneous problems1.

Predicted distribution shape analysis From right to left in Figure 3.25, we
show a 50 perplexity with Wasserstein distance t-SNE (Maaten and Hinton, 2008)
projection from 500 linearly spaced discretization of the normalized predicted
distribution to 2 dimensions for each room of the test set in Barcelona. Each
colour of the palette corresponds to a certain DBSCAN (Ester et al., 1996) cluster
obtained with ϵ = 5.8 and 40 minimum samples as DBSCAN parameters. We
show a Hex-bin plot over the map of Barcelona, where the colours correspond to
the mode cluster of all the rooms inside the hexagonal limits. A similar study

1In the Appendix section of Brando et al. (2019b), we have evaluated calibration quality and
negative log-likelihood on the UCI data sets with the same architectures as Hernández-Lobato
and Adams (2015a); Lakshminarayanan et al. (2017).

68

would be useful to extract patterns inside the city, and consequently adapt specific
actions to them.

Figure 3.25: DBSCAN clustering of the t-SNE projection to 2 dimensions of nor-
malized Barcelona predicted distributions. Hexbin plot of most common clusters
for each hexagon over the map.

3.5 Conclusions

This chapter has introduced how to model aleatoric uncertainty (using the defini-
tion proposed in Section 2.1) by means of conditional parametric and distributional-
free approaches.

In the parametric proposed models, it starts from the homoscedastic condi-
tional model, and proposing several heteroscedastic models that includes single
parametric distributions, a finite number of components to define a mixture and,
ultimately, an infinite number of components defining an uncountable mixture.
Particularly, the Uncountable Mixture of Asymmetric Laplacians (UMAL) model
was proposed, a framework that uses deep learning to estimate output distribu-
tion without strong restrictions (Figure 3.9). As shown in Figure 3.10, UMAL
is a model that implicitly learns infinite ALD distributions, which are combined
to form the final mixture distribution. Thus, in contrast with mixture density
networks, UMAL does not need to increase its internal neural network output,
which tends to produce unstable behaviours when it is required as it is discussed
in Section 3.2.3. Furthermore, the Monte Carlo sampling of UMAL could be
considered as a batch size that can be updated even during training time.

On the other hand, the distributional-free proposed models starts from the
single quantile regression models, which allows to perform conditional threshold

69

estimation. Increasing to simultaneously estimation of several quantiles, which
allows to create distributional-free confidence intervals. As it was shown in X, the
probabilistic training of neural networks allows to extend these models to implicit
function estimations, which allows to estimate quantile functions. After that, the
connection between ALD and quantile regression was highlighted to connect the
previously proposed UMAL model from a quantile regression viewpoint to these
distributional-free models.

Finally, we have presented a benchmark comparison in terms of log-likelihood
adaptation in the test set of three different types of problems. The first was
a synthetic experiment with distinct controlled heterogeneous distributions that
contains multimodality and skewed behaviours. Next, we used public data to
create a complex problem for predicting the room price per night in two different
cities as two independent problems. Finally, we compared all the presented mod-
els in a financial forecasting problem anticipating the next monetary aggregated
monthly expense or income of a certain customer given their historical data. We
showed that the UMAL model outperforms the capacity to approximate the out-
put distribution with respect to the other baselines as well as yielding calibrated
outputs.

In introducing UMAL we emphasise the importance of taking the concept of
aleatoric uncertainty to a whole richer level, where we are not restricted to only
studying variability or evaluating confidence intervals to make certain actions but
can carry out shape analysis in order to develop task-tailored methods. Addition-
ally, we saw the connection between UMAL and the distributional-free models
approximated by means of quantile regression.

70

Chapter 4

BLACK-BOX WRAPPER FOR
UNCERTAINTY MODELLING

Until now, we have been designing methods that exclusively estimate uncertainty.
However, can these uncertainty modelling solutions be somehow applied to model
the uncertainty of an already existing non-uncertainty predictive system as a post-
hoc improvement to uncertainty modelling? In such a case, the fewer assumptions
we require regarding the already existing system the better, and it would therefore
be useful to assume as generic an approach as possible. Consequently, we started
by considering this already existing system as a plain mathematical function
where, given an input, it produces an output and there are no other strong
assumptions or requirements, regardless of how this output is provided. In such
cases, we call this already existing predictive system a black box.

Specifically, a black box constitutes a deterministic (point-wise) relationship
between the response Y and the covariate X variables presented in Eq. 2.1. This
relationship usually corresponds to an estimation of a conditional summary statis-
tic of p(Y | X,M) (e.g. a percentile, a moment or any interesting conditional
value), which can then be used as a point-wise predictor. Here, we are going to
combine this point-wise estimation with the rest of the uncertainty modelling for
“recovering” the original conditional probability, p(Y | X,M). Explicitly, the aim
is to determine a new conditional density model, q(Y | X,M) that uses black-box
predictions to improve the prediction or, even, satisfies that the values of its cho-

71

sen conditional summary statistic for q(Y | X,M) correspond to the black-box
values.

There are two main reasons for considering the predictive system as a black
box:

Forecasting systems applied in real-world solutions often require much more
effort than mere code development. For instance, they typically require
that dependencies are fulfilled, documentation written and unit tests devel-
oped, but this must also align with businesses interests. The costs of this
are included in the technical debt debate, a concept introduced in 1992 to
tackle long-term costs incurred when moving quickly in software engineer-
ing (Cunningham, 1992; Sculley et al., 2015). Considering the system as a
black box for uncertainty modelling enables us to give a longer life to the
current implementation, thereby avoiding hard implementation changes
while focusing on the uncertainty modelling part and its subsequent new
applications.

Modelling the uncertainty of a point-wise predictive system, considered as
a black box, forces us to disentangle the estimation of aleatoric uncertainty
from the point-wise prediction so that uncertainty modelling techniques
based on deep learning can be mixed with the original predictive sys-
tem, which does not need to depend on deep learning.

Thus, the black-box uncertainty modelling approach introduces a way of
using deep learning estimation while maintaining the original prediction,
which has potential beneficial aspects for industrial applications. For in-
stance, critical real-world scenarios require that an appropriate regulation is
satisfied (e.g., medical (Ustun and Rudin, 2016) or financial models (Rudin,
2019) may have to accomplish interpretability constraints, which nowadays
can prevent techniques such as deep learning models from being used. Con-
sequently, scenarios where it is necessary to have a “certain kind of” point-
wise predictive system that does not model uncertainty, but, at the same
time, where the cost of an erroneous prediction is high, can be tackled by
providing a hybrid solution that incorporates uncertainty modelling infor-
mation without changing the non-deep learning original system prediction.

72

Thus, black-box uncertainty modelling aims to provide what we denote as
an “uncertainty wrapper”, which avoids replacing the point-wise predictive
system by preserving all the internals of that system (i.e. it can be a para-
metric model, a hand-crafted rule-based system or even a human decision).
Therefore, the M in Eq. 2.2 is mostly formed by a presumed unknown piece
of information, which leads us to focus on the aleatoric p(Y | X,M) part
where M is given.

On the whole, considering the predictive system as a black box allows us to
give the original software a longer lifespan and to model aleatoric uncertainty
while a certain condition between the point-wise predictive system and the un-
certainty modelling wrapper is desired or enforced, depending on the problem
statement. When this condition is enforced, it will henceforth be referred as
the “open” case, in contrast with the “covert” one. A formal description of the
two problem statements presented here may be summarized with the following
definitions:

Definition 3 (Covert Black box) Let X be an independent random variable
in RD and let Y be a response random variable to be regressed. A model repre-
senting a function K : RD → R is said to be a covert black box - or simply a black
box - if it approximates an unknown conditional statistic (i.e. a percentile or a
moment) of p(Y | X,M) and no other strong hypothesis regarding the internals
of that model - or the summary statistic that is approximating - are made.

For instance, a rule-based system that approximates the conditional mean
of p(Y | X,M) can be a covert black-box model if we consider it as a simple
function, K(x), avoiding extra considerations such as it approximating the con-
ditional mean or avoiding any internal information regarding the model for the
next uncertainty modelling process. In this case, the goal will be as follows:

Definition 4 (Uncertainty Modelling of a Black box) Let X and Y be re-
spectively covariate and response variables and let K(x) be a covert black box (in
the sense of Def. 3) over p(Y | X,M). The Uncertainty Modelling of a Black box
(UMB) consists in approximating the conditional density p(Y | X,M) with a new
model q(Y | X,M) using the learnt K(x) as additional information.

73

Importantly, Def. 4 does not link the new conditional density model, q(Y |
X,M), with the previously learnt statistic, K(x), more than as extra informa-
tion to predict the former. Therefore, the uncertainty modelling of a covert black
box considers that we do not have access to the statistic that is approximat-
ing this black box. However, having this extra information could be something
independent that still preserves K(x) being a black box, i.e. it preserves our
non-knowledge requirements regarding the internals of K(x). In fact, if we are
able to infer or know that the statistic is approximating the black box, then we
can use this information in favour of a better approximation or even to ensure
that the new predicted distribution, q(Y | X,M), satisfies that its chosen condi-
tional statistic is still the black box value. This additional objective requirement
introduces the following definition:

Definition 5 (Honest Black box) Let X be an independent random variable
in RD and let Y be a response random variable to be regressed. Assume a fixed
certain desired conditional summary statistic (i.e. a percentile or a moment) of
p(Y | X,M). A model representing a function K : RD → R is said to be an
honest black box if it approximates this summary statistic of p(Y | X,M) and no
other strong hypothesis regarding the internals of that model are made.

Importantly, by using an honest black box, since we know the desired condi-
tional summary statistic is approximating of p(Y | X,M), we can build a goal of
predicting a new conditional density model that preserves the learnt statistic by
K as follows:

Definition 6 (Uncertainty Modelling of an Honest Black Box) Let X and
Y be respectively covariate and response variables and let K be an Honest black
box (in the sense of Def. 5) that approximates a desired statistic of the unknown
conditional distribution p(Y | X,M). The Uncertainty Modelling of an Honest
Black Box (UMHB) consists in determining a new conditional density model,
q(Y | X,M), which approximates p(Y | X,M), such that the desired summary
statistic of q(Y | X,M) corresponds to the black box, K(x).

Note that a model that tackles the UMHB problem is able to disentangle a

74

point-wise desired summary statistic estimation - and associate it with K(x) -
from the aleatoric q(Y | X,M) distribution approximation.

Furthermore, in the UMHB context, the mismatch between the real condi-
tional statistic and the black box, K(x), produces a new source of aleatoric
uncertainty, which differs from the one derived from the data. However, the way
it is estimated still entails using p(Y | X,M). Importantly, as we will see in the
Experimental Section 4.2.4.3, a poorly estimated K(x) will impact the modelling
of p(Y | X,M), given that we always impose the constraint to be satisfied with
respect to q(Y | X,M).

Regarding epistemic uncertainty modelling, the UMB and UMHB problems,
by definition, cannot access the K part of M in Eq. 2.2. Thus, given that K(x)

can be considered fixed throughout the process (because it corresponds to the
black box), the main uncertainty we will tackle will be the aleatoric one.

In this chapter, firstly in Section 4.1, we will provide a literature compilation
and clarify which methods cannot be considered for the uncertainty modelling
of a black box and, then, in Section 4.2 we will tackle a generic UMB scenario.
Following that, a restricted UMHB case will be analysed in Section 4.3. For both
cases, we will have an experimental section with its respective results.

4.1 Related work

Uncertainty estimation of a black-box predictive system in regression problems
was initially tackled in Brando et al. (2020). In contrast, in Brando et al. (2022b)
we propose imposing a constraint between the predicted quantiles and the original
black-box system, consequently adding the “honest” term introduced previously
to the aleatoric uncertainty model. This imposition ensures that the black box is
always the desired statistic with respect to the new predicted distribution.

As stated previously, the UMHB problem involves considering models that
not only approximate the p(Y | X,M) with a q(Y | X,M), but also constrain
q(Y | X,M) in such a way that the desired conditional summary statistic of
that corresponds to K(x). At the same time, this K(x) will correspond to a
previously fixed function that estimates the desired conditional summary statistic

75

of p(Y | X,M). Consequently, not all models that approximate p(Y | X,M),
such as the common QR models (Koenker and Hallock, 2001) or a mixture model
(Bishop, 1994b), can be considered to tackle the present problem. We need models
that in some way disentangle the conditional summary statistic approximation
from the rest of the p(Y | X) modelling.

The following sections are divided among those models that can be applied
to the MBU problem (shown in Section 4.2) and those that only can be applied
to the UMHB one (shown in Section 4.3).

4.2 Uncertainty modelling of a black box

Figure 4.1: Graphic representation - obtained from (Brando et al., 2020) - of how
to upgrade any black-box predictive system with an Uncertainty Score.

The covert statement introduced in the UMB provides an obscure scenario
compatible with the following viewpoint: The black box can be seen as the im-
plementation of a predictive model presenting a function of the form ŷ = K(x).
Here, x represents a set of inputs, and ŷ represents a predicted quantity, which
we will denote prediction. The fundamental assumption is that we do not know
the functional form of K, and all we can do is invoke K(x) and observe the re-
sult ŷ. The goal in this generic Modelling of Black-box Uncertainty is to use the
point-wise information of the black-box predictor as input information for the
uncertainty modelling part.

As highlighted in Brando et al. (2020), for instance, experienced data scientists
probably identify with this situation when using a model method implemented in
an off-the-shelf library (Meng et al., 2016; Pedregosa et al., 2011), API, or cloud

76

service – in many implementations, the function K is called predict().

To further frame our problem, let us discuss in greater detail some consid-
erations related to the inputs, output and assumptions regarding K (following
Figure 4.1).

Inputs to K The inputs x represent the attributes that would be passed to K.
We consider two situations. On the one hand, when we have access to the actual
values of x at the time we invoke K, referred to as preserved input. On the other
hand, we consider a more general situation, noted as distorted input z, where
one may not be able to observe the inputs x directly and instead have access to
some features of them, or to some public contextual variables, and can still see
the result of B(x) to build the Uncertainty Wrapper, ψ, as shown in Figure 4.1.

The case of preserved input happens when we have access to a data set with
the same or equivalent data points as the original data set that was used
to train K.

The case of distorted input happens when we have access to the prediction
of the black-box system K(x) but not to its input x. For example, con-
sider a public API to forecast electricity consumption in some geographic
area. While we can call the API, and obtain its prediction, in this case
we do not have access to the input variables. However, as shown in later
experiments, we see that we can still use the available variables z (e.g. pre-
vious consumption values) to provide a reasonable input context to forecast
uncertainty.

Finally, we should consider two different model configurations. First of all,
when the input of the Uncertainty Wrapper is z, we refer to the model as a First
Order Decision model ψ(z). Otherwise, when the input of the model is z and the
black-box prediction K(x) are both considered input attributes of our uncertainty
estimator, we denote this model Second Order Decision model ψ(z, K(x)).

In the experiments Section 4.2.4.3, we will consider preserved and distorted
input problems and also compare First and Second Order Decision models, as
shown in Figure 4.1.

77

Output of K The output, ŷ, represents the predicted quantity. In this thesis,
we consider regression problems and so ŷ is a scalar. Without loss of generality,
the methods proposed in this thesis apply to vector-valued outputs. Moreover,
extensions to binary classification problems would be possible if we considered ŷ
a classification score.

The black-box K We assume we do not know the functional form of K, which
is the common situation when using an off-the-shelf piece of software. However,
we note that our proposal also applies to situations where K may be known but
changes in K are not allowed or would be expensive. Therefore, our definition of
black box in fact means that K is immutable (either because it is unknown, or
because it is costly or impossible to replace for any of the given reasons).

4.2.1 Probabilistic distribution fitting

As we saw in Section 3.2, certain conditional distributions have the property that
one of its parameters corresponds to its mode. In scenarios where the black box
is trying to estimate this value, these distributions can be useful, since we can
replace the mode parameter value for the black-box value, as we will see later.

Specifically, when considering neural network models, until now we have seen
how to model the target variable distribution as a Normal (Bishop, 2016) or
Laplace distribution (Brando et al., 2018a) and solve a Maximum Likelihood
estimation problem in order to find the optimal network parameters. Both distri-
butions are a sub-case of the parametric family of symmetric distributions known
as Generalized Normal Distribution (GND). Hence, we can cover the previous
approaches by assuming ŷ ∼ GN(B(x), ψ(z), β), where GN is a GND with the
black-box output, B(x), is a location parameter and the neural network wrapper,
ψ(z), is a scale parameter. In this case, the distribution function is:

GN(y | B(x), ψ(z), β) =
β

2ψ(z)Γ(1/β)
exp

(
−|y −B(x)|

ψ(z)

)β
(4.1)

where Γ denotes the Gamma function. Note that β is another parameter to
be optimized and, as highlighted previously, it represents the Laplace distribution

78

when β = 1 and the Normal distribution when β = 2.

Importantly, the scale parameter of the distribution, ψ(z), is a function that
depends on z, the preserved or distorted information available at the input.
Therefore, our goal can be stated as that of finding a functional form of ψ(z)
and the parameter β which maximizes the corresponding log-likelihood:

L (y,B(x), z) = log Γ(1/β)− log β + logψ(z) +

(|y −B(x)|
ψ(z)

)β
(4.2)

As mentioned earlier, the reason to consider ψ(z) as a deep neural network is
clear: we are trying to approximate a function that might be complex and non-
linear, which is why a high-capacity model is advised. We assume that estimating
the possible variability of an output given the input is as challenging as predicting
the expected value. This setting is model-agnostic with respect to the Uncertainty
Wrapper neural network architecture. Given the neural network output, NN(z),
which by default can take positive and negative values, the only requirement
is that ψ(z) needs to be strictly positive, and we therefore apply a Softplus

function to the output of the neural network, i.e. ψ(z) = log [1 + exp (NN(z))],
similarly to that used in Section 3.2.1.

In our particular case, however, a crucial detail is that K(x) is fixed, and
thus, the loss function will not be optimized with respect to it, so the values of
|y −K(x)| are always the same.

Finally, on the one hand, we can interpret the loss function of Eq. (4.2) as
the sum of a regularization term and a reconstruction term. If ψ(z) is smaller

than the scale of these errors, the reconstruction term
(

|y−K(x)|
ψ(z)

)β
penalizes the

loss value. Otherwise, if ψ(z) is too large, then the regularization term logψ(z)

becomes dominant. So we have an equilibrium that yields ψ(z) as the predicted
scale of the errors depending on the input.

On the other hand, the job of β is less evident for some fixed set of errors
|y −K(x)| and Uncertainty Scores, ψ(z). The optimal β is such that the shape
of the distribution fits better, i.e. high values of β correspond to plateau-like
distributions, low values of β to point-shaped ones.

79

4.2.2 Distribution estimation of the residuals errors

Until now, the proposed approaches to model black-box uncertainty assume a
certain conditional distribution of the response variable. However, an alternative
approach would be to directly estimate the residual error between the black box
and the value to be predicted. Implicitly, we can do this because y is an unknown
function of x. Assuming the residuals follow a Generalized Normal Distribution
of unknown variance, the loss function for this case is the negative logarithm of
the likelihood, out of constants and dependence from the variance:

L (y,K(x), z) = log Γ(1/β)− log β + |y −K(x)− ψ(z)|β (4.3)

4.2.3 Quantile regression of residuals

All of the above being said, the previously proposed approach assumes a certain
conditional distribution for the residual errors. Following the distributional-free
idea of Section 3.3, we can estimate the quantiles of the residuals. As introduced
in Reminder 3, a well-known approach to compute confidence intervals and deal
with prediction with uncertainty is quantile regression, in which the target esti-
mate is a certain quantile of the distribution of real values, rather than the mean
(Hao et al., 2007; Koenker and Hallock, 2001). The length of the centred 90%
confidence interval can be used as a proxy of the uncertainty of the estimation.
To do this, we define two functions ϕ+(z), ϕ−(z) as the (19

20
=)95% and (1

20
=)5%

percentiles of the distribution of the residual error, y −K(x), for each function
and use a surrogate hinge loss to them Pereira et al. (2014) in the following way:


L+ (y,B(x), z) = max [19(y −K(x)− ϕ+(z)), ϕ+(z)− y −K(x)]

L− (y,B(x), z) = max [y −K(x)− ϕ−(z), 19(ϕ−(z)− y −K(x))] .

(4.4)

From these, as we did in the shape parameter in Section 3.2.1, we define the
Uncertainty Score as the Softplus of the quantile difference,

80

ψ(z) = log
[
1 + exp(ϕ+(z)− ϕ−(z))

]
. (4.5)

4.2.4 Results and comparison

4.2.4.1 Baselines under evaluation

In order to evaluate our proposals, we compare the previous proposals with two
methods that allow an uncertainty proxy to be obtained given a dataset of triplets
(zn, ŷn, yn). Additionally, we define a simple prediction baseline as a sanity check.

Nearest Neighbour Distance The distance to the n-th nearest neighbour in
the input space Thompson (1956), z, can be seen as a proxy of “normality”, which
is sometimes related to reliability. As a simple baseline, we used the distance
to the 5th neighbour to sort predictions by reliability. The distance to other
neighbours can also be considered. We have abbreviated this method to NN.

Nearest Neighbour Regression As well as using distance, we can also use
the targets of the nearest neighbour to obtain a direct estimation of uncertainty
(Altman, 1992). Specifically, if we call Yneigh = yπ(1), . . . , yπ(K), the targets of the
K first neighbours, we use std(Yneigh) as an estimate of prediction uncertainty.
We denote this method as NN-Reg.

Gaussian Processes Following the product-of-GP-experts model proposed in
Deisenroth and Ng (2015), we built an ensemble ofN Gaussian processes, {GPi}Ni=1,
where each one is trained with a different part of the training set to predict the
difference between the black-box prediction and the real value, i.e. |y − K(x)|.
Thereafter, as each Gaussian process predicts a mean, µi(z), and a variance,
σi(z), one way of defining the uncertainty score could be:

ψ(z) =
1

N

N∑
i=1

µ2
i (z) + σ2

i (z) (4.6)

81

In this way, we avoid the scalability problems typically found in Gaussian
Processes. We refer to this baseline as GP.

Standard deviation of z When forecasting the next value of a time series, the
standard deviation of the previous time series points can be used as the simplest
means of estimating the uncertainty of the next value. While we would expect
this to yield a poor uncertainty proxy, we added it as good experimental practice
to make sure that our proposal yields much better results than simple cases. From
now on, we refer to this as std.

4.2.4.2 Data sets and experimental settings

All the datasets used are of the form [z, y, ŷi], where [z, y] are the real data, z
the available inputs and y the target variable(s), and ŷi are each of the black-box
estimates for y.

Forecasting Bank Customers’ Impending Financial Expenses and In-
comes Following Brando et al. (2018a), our problem is to forecast upcoming
monthly expenses and incomes in a certain aggregated financial category for each
bank client. Each time series contains 24 points and the goal is to predict the next
aggregated month. To build the dataset, we used 2 million randomly-selected time
series for a single-year training set and 1 million more for the test corresponding
to the following year.

Estimating Electrical Power Demand In this problem, we have to forecast
the mean electrical power demand in two hours, given the means for each two-
hour period over the previous 72 hours. Thus, we have time series of 36 points
and the problem is forecasting the next one. The data were prepared from the
sets made publicly available by Red Eléctrica of Spain, which can be found at
REE (2020). The public series are at intervals of 10 minutes, so we averaged every
12 points to obtain the mean value for 2 hours. In this experiment, data were
captured for the period comprising 1-1-2014 to 18-10-2018, so we have 250,000
points, split evenly between train and test.

82

Predicting a Biological Response Challenge We also considered a real-
world dataset from a public Kaggle challenge (Ingelheim, 2012). The data com-
prised 1, 776 numerical descriptors representing the size, shape or elemental con-
stitution of each molecule. The aim here was to predict whether the molecule
was seen to elicit a biological response. Although the challenge is a binary clas-
sification problem, for the purposes of this article, we regard it as a regression
task, where it is necessary to predict a real-valued score (0 or 1). The interest
of this dataset lies in the fact that one of the participants published the code
for her solution (Olivetti, 2012), which we used as a black box. The dataset had
3, 751 points: 500 were used to train the black box, 2, 000 to train the confidence
estimator and 1, 251 were used as a test set.

Black boxes used for evaluation

The aim of using several black boxes was to simulate different situations encoun-
tered in real-world problems, where an interpretation is needed or the function
B(x) cannot be changed for practical reasons. For each dataset, we took exist-
ing real systems as black boxes, and in order to extend the study, in some cases
complemented them with additional simulated black boxes, as follows:

For the Financial dataset, we used the following black boxes:

Mean: The average forecast of the historical input values: ŷ = x̄.

Last : The last observed value in the time series with 24 points: ŷ = x24,
which is known as the “naive method” in the forecasting literature (Hynd-
man and Athanasopoulos, 2014).

In Production: The in-production system that produces forecasts for the
banking app. This system is highly optimized for production purposes, dif-
ficult to replace, and uses a number of different models and software compo-
nents. It outputs a point forecast but not a prediction interval. Therefore,
it complies with many of the black-box assumptions described in this work.

For the Electrical Power Demand dataset, we considered:

83

Company : Red Eléctrica’s own forecasting consumption, computed by the
company itself. These forecasts are available as part of the dataset, but
we ignored how the predictive system is designed. Thus, we could be in a
distorted input case, following the initial part of the current Section 4.2.

RT : A regression tree model with depth 4, available from the sklearn

library.

For the Biological Response dataset, we used a participant’s solution to
the Kaggle challenge, as published in Olivetti (2012), hereafter referred to as
Kaggle.

At this point, it is important to highlight the different kinds of black boxes
used. Firstly, the initial two black boxes (Mean and Last) proposed for the Finan-
cial dataset are a clearly preserved input case, since both the forecasting method
and the uncertainty estimation method work with the expense time series data.
However, the third case (In Production) is a distorted input scenario, since the
in-production forecaster uses more attributes than just the previously predicted
series, which our uncertainty wrapper has no access to. Similarly, the Electrical
Power Demand estimation done by the company probably uses additional infor-
mation that was not available to us (we assume these to be weather conditions,
dummies for special dates, etc.), meaning that Company is also a distorted input
scenario.

Finally, we considered First and Second Order Decision models for all of the
alternatives.

Deep learning specifications

Different architectures were combined with different loss functions. In the two
time series datasets, we used recurrent and dense networks (called LSTM and
dense, respectively), but only the latter in the classification/regression dataset.

In the Financial and the Electrical Power Demand datasets, the dense
network has two hidden dense layers with 50 and 20 units, respectively, while the
recurrent network has a first hidden layer of 50 LSTM units and a second of 20
dense neurons.

84

In the Biological Response dataset, the dense network has two hidden
layers with 3, 000 and 1, 000 units, respectively, due to the high number of input
attributes.

The Second Order dense decision models have the same structure as the First
Order ones, but adding the black-box output as an extra input, whereas the
Second Order recurrent decision models have an extra dense layer to extract
features from the black-box output to 10 units, which feeds the second hidden
layer as well as the output of the LSTM layer.

All the deep learning models were implemented using the automatic differenti-
ation library TensorFlow Abadi et al. (2016) and, specifically, the Keras wrapper
Chollet et al. (2019). Their corresponding parameters were optimized using a
grid search of different parameter combinations for each model. Furthermore,
they were trained in two phases using 500 epochs with early stopping and 10%

of the training set as a validation set. As explained in Section 4.2.4.2, in the first
phase, β is trainable so the model learns the shape of the distribution, whereas
in the second phase, β is constant, so we have more numerical stability to learn
ψ.

Note that when we perform quantile regression, we train two models, one for
the interval’s upper-bound function and another for the lower-bound one.

On the whole, we considered three different loss functions:

het : Heteroscedastic aleatoric estimation loss, Eq. (4.2).

res : Deterministic bias estimation loss, Eq. (4.3).

QR: 90% centered coverage Quantile Regression, Eq. (4.4).

Hyperparameter policy of β

In both frameworks (heteroscedastic and residual), we first optimized the network
with all the trainable parameters, and then froze β when it had converged (i.e. low
variation of that parameter is regarded as convergence), and continued training
the other weights (those used to compute ψ(z)). This provides more numerical
stability, as minor changes in the value of β affect the loss value.

85

4.2.4.3 Experimental results

In this section, we evaluate quantitatively and qualitatively certain properties
of the Uncertainty Wrapper, both for our in-house example, as well as in the
real-world, public datasets.

(a) MAE measure, Eq. (4.7). (b) MAPE measure, Eq. (4.8).

(c) MPE measure, Eq. (4.9). (d) RMSE measure, Eq. (4.10).

(e) RMSPE measure, Eq. (4.11).(f) MSPE measure, Eq. (4.12).

Figure 4.2: Error-retain plot of the In Production black box for our Financial
Forecasting problem using different scoring measures. Sub-figures (a), (e) and (f)
have a zoomed shot of the initial 50% at the bottom.

86

Does the Uncertainty Wrapper predict the confidence? The first ques-
tion we wish to solve is whether the uncertainty wrapper has the ability to filter
those points where our black box makes larger errors. In other words, do the
uncertainty scores rank the predictions by increasing error?

Note that traditional ways of evaluating regression (or forecasting) methods
are real-valued error metrics, such as Mean Absolute Error (MAE) or Root Mean
Squared Error (RMSE). However, these are computed based only on the predic-
tions B(z) and the true values, whereas here we are looking for a way to evaluate
the quality of ψ(z).

The Error versus Retention Curve (ERC) One way to compare the or-
dering quality of different uncertainty score functions, ψk, is by contrasting their
different error-retain curves (Brando et al., 2018a). Figure 4.2 shows the curves
for different methods applied to the financial dataset with respect to the “In Pro-
duction” industrial black box. Each sub-figure corresponds to a different scoring
measure indicated in the corresponding caption. These curve plots, on the y-
axis, have the respective cumulative scoring measure, D, corresponding to the
subset of the predictions such that ψ(z) < κ, where κ is a threshold. The x-axis
shows the fraction of points under the threshold. Following (Fomby, 2008), if
Ψi = [ψk(zi) < κ], the different selected scoring methods are the Mean Absolute
Error (MAE),

ERCMAE (y, z, K(x), κ) =

N∑
i=1

|yi −K(xi)| ·Ψi

N∑
i=1

Ψi

, (4.7)

the Mean Absolute Percentage Error (MAPE),

ERCMAPE (y, z, K(x), κ)) =

N∑
i=1

∣∣∣yi−K(xi)
yi

∣∣∣ ·Ψi

N∑
i=1

Ψi

, (4.8)

the Mean Percentage Error (MPE),

87

ERCMPE (y, z, K(x), κ)) =

N∑
i=1

yi−K(xi)
yi

·Ψi

N∑
i=1

Ψi

, (4.9)

the Root Mean Squared Error (RMSE),

ERCRMSE (y, z, K(x), κ)) =

√√√√√√√
N∑
i=1

(yi −K(xi))
2 ·Ψi

N∑
i=1

Ψi

, (4.10)

the Root Mean Square Percentage Error (RMSPE),

ERCRMSPE (y, z, K(x), κ)) =

√√√√√√√
N∑
i=1

(
yi−K(xi)

yi

)2
·Ψi

N∑
i=1

Ψi

, (4.11)

and the Mean Square Percentage Error (MSPE),

ERCMSPE (y, z, K(x), κ)) =

N∑
i=1

(
yi−K(xi)

yi

)2
·Ψi

N∑
i=1

Ψi

. (4.12)

As we can see in Figure 4.2, for all methods we obtain a trade-off curve showing
that the error decreases as we “accept” only forecasts with decreasing values of the
uncertainty ψ(z). In the experiment presented here, we have successfully added
an uncertainty wrapper on top of an industrial black box, and we can now use it
to filter the forecasts we are unsure about and not display them to the user.

We are in the scenario that metrics posses advantages in interpretability are
preferable due to the predicted value is monetary. Following (Pontius et al.,
2008), we consider better to focus on metrics that uses MAE instead of RMSE
as they are fundamentally easier to understand than the latter. Consequently,
although the standard deviation could seems better, in the initial part, if we

88

only show Figure 4.2.c case, we can observe that in all other cases the proposed
methods based on heteroscedastic networks and quantile regression obtain the
best performances.

Exhaustive Quantitative Evaluation Since it is impractical to visualize all
error versus retain figures for all of the methods, we summarize all of them into a
single metric, which we will denote as ordering score. This value will be computed
for every combination of dataset, method, black box and order (First and Second
order), and evaluated for all possible combinations.

The ordering score quantifies whether the ordering induced by an uncertainty
function ψ(·) is close to the perfect or, otherwise, to a random ordering. Its
computation details are explained below.

First, let us consider the error-reject curve of a perfect ordering. It is clear
that the best possible ordering happens when it is the same as ordering by the
real error, that is ψo(zi) = |K(xi) − yi|. We denote this ideal situation as the
“perfect oracle curve”.

Similarly, the least informed way to sort by uncertainty scores is randomly.
Clearly, this would yield a constant error-retain curve with a value corresponding
to the MAE of the dataset (up to random fluctuations). We can define

δk =

[(
1

N

N∑
i=1

|ψk(zi)− yi|
)
, . . .
Repeat N times

]
(4.13)

as the vector with the value of the whole MAE of ψk.

At this point, where we have defined a lower and upper bound curve, we are
able to define the ordering score of an uncertainty wrapper function, ψk, as

S(ψk) = 100

(
1− A(ψk)− A(ψo)

δk − A(ψo)

)
, (4.14)

where A(v) is the area of the error versus retain curve of the function v. The
ordering scores is one minus the ratio between the difference of area between the
selected uncertainty wrapper and the oracle divided by the difference of the area
of a random ordering criteria and the oracle. Therefore, the closer the ordering

89

Table 4.1: Ordering scores values for each of the methods explained in all Sec-
tion 4.2 and for each of the data sets of Section 4.2.4.2.

Dataset Financial forecasting Electrical Power Demand Biology
Black-box Mean value Last value In Production Company Forecast Regression Tree Kaggle solution

std 87.1 87.0 86.5 4.8 11.1 -
NN 73.4 74.0 84.6 88.0 83.5 89.0 5.8± 0.0 5.8± 0.0 16± 0.0 20.5± 0.0 25.6± 0.0 25.7± 0.0

NN-Reg 82.4 84.4 87.9 88.5 88.2 88.6 11.2± 0.0 10.8± 0.0 15.1± 0.0 14.7± 0.0 35.6± 0.0 35.4± 0.0
GP 60.2 60.2 67.7 79.0 64.5 77.9 7.1± 0.3 7.5± 0.4 25.4± 0.3 82.9± 0.0 21.6± 0.9 21.8± 0.8

Dense-res 80.6 81.4 −4.2 5.1 −2.4 3.0 0.6± 3.5 1.9± 2.2 38.7± 3.0 50.4± 4.2 4.9± 0.0 4.3± 1.6
LSTM-res 79.7 78.5 0.9 4.5 0.0 0.0 1.8± 7.6 5.4± 5.0 42.9± 3.8 85.2± 1.6 - -
Dense-QR 90.1 89.9 91.3 91.1 90.7 90.8 18.6± 1.4 16.9± 1.6 32.1± 2.4 18.2± 4.8 14.8± 4.8 14.1± 5.5
LSTM-QR 89.0 88.7 90.8 91.4 90.3 91.0 12.7± 0.6 17.1± 1.6 32.2± 2.9 14.4± 5.6 - -
Dense-het 92.9 91.0 88.8 88.3 88.4 90.6 20.4± 0.9 20.8± 0.8 50.4± 5.8 83.9± 4.2 51.6± 2.6 52.2± 1.9
LSTM-het 93.3 93.4 89.8 91.2 87.8 86.8 17.0± 4.9 19.3± 3.2 50.4± 4.2 71.3± 7.7 - -

Background color meaning: ■■ First Order Decision version of the model ■■ Second Order Decision version of the model

score is to 100, the closer it is to a perfect sorting. On the other hand, a value
closer to zero (it may even be negative given stochasticity) will mean an almost
random ordering.

In Table 4.1 we show the ordering scores values for all the combinations of
datasets, black-boxes, methods and First/Second order choice explained in Sec-
tions 4.2.1, 4.2.3, 4.2.2, 4.2.4.1 and 4.2.4.2. For all public dataset, the mean and
variance ordering scores values of 10 independent executions are reported.

Returning to the original question about detecting whether the uncertainty
wrapper improves in our confidence, if we look at the Table 4.1, we see that
all values are positive values, with the exception of some cases corresponding
to the LSTM-res. Therefore, taking into account the definition of the ordering
score, we can ensure that by using the wrapper constitutes an improvement in the
performance. Additionally, we can observe that the deep Uncertainty Wrapper
strategies proposed in this article are the ones that get the best results for every
point compared to other baselines.

Furthermore, in the comparison presented in Table 4.1 we can observe that
the ordering score exhibit relevant variations in scale depending on the complex-
ity of the problem. This complexity is related with the presence of distorted
or preserved inputs implying bad performance such as the residual uncertainty
wrappers that obtained close to zero or even negative values.

90

Which is the best uncertainty wrapper?

The results of the Table 4.1 leads us to wonder if there is a method that stands
out from the others systematically. While the 1st ranked method varies over the
columns of the table, we can see that clearly using the Heteroscedastic methods as
wrapper gives us the first or second best position for any problem and black-box.
Thus, we can consider that the Heteroscedastic model is the most stable when it
comes to getting good generic solutions.

Fine-grained analysis of orderings

Table 4.1 and Figure 4.2 give insights on the overall quality of the orderings
induced by uncertainty wrappers.

We would also like to check monotonicity properties of the ordering, i.e. to
what degree does the uncertainty score approximately sort by real-error? In other
words, we want to match the intuition that “easy to predict” inputs should be
assigned low uncertainty scores, while “potentially disastrous prediction” should
be avoided.

To that end, we first group the samples by MAE, |yi −K(x)i| into 10 bins.
These can be interpreted as 10 different degrees of prediction difficulty (from
lowest to highest error). When we vary the uncertainty threshold κ we could
measure the % of points that fall into each of the 10 bins (y-axis), while the x-
axis corresponds to the retain % (induced by κ). We would expect the low-error
bins to capture most % at low retain rates, and conversely, that the high-error
bins dominate at high values of the retain rate. For instance, this could be used
to detect wrong predictions with a high Uncertainty Score and other unwanted
scenarios.

In Figure 4.3, we can show that for all methods displayed, the bins with large
error (the purplish ones) appear at the end. On the other hand, we can observe
that the behaviour of both Heteroscedastic and quantile regression wrappers is
quite smooth even for lower bins (the yellowish ones). Therefore, we can conclude
that considering ordering score values is a proper manner to ordering regarding
different types of errors.

91

Figure 4.3: Percentage of points of each bin of real MAE error of the In Production
black-box of our Financial Forecasting problem sorted by the uncertainty wrapper
described in the title. Each color corresponds to a different real error bin indicated
in the legend.

92

Table 4.2: β final value after the first part of the optimization for each model and
problem.

Dataset Financial forecasting Electrical Power Demand Biology
Black-box Mean value Last value In Production Company Forecast Regression Tree Kaggle solution
Dense-res 0.297 0.299 0.303 0.306 0.304 0.306 2.156± 0.000 2.156± 0.000 2.210± 0.002 2.165± 0.001 0.776± 0.014 0.777± 0.019
LSTM-res 0.298 0.297 0.301 0.304 0.304 0.306 2.155± 0.000 2.155± 0.000 2.210± 0.001 2.168± 0.001 - -
Dense-het 0.629 0.675 0.673 0.673 0.677 0.393 1.170± 0.003 1.171± 0.004 2.655± 0.264 5.706± 0.654 0.689± 0.001 0.687± 0.001
LSTM-het 0.617 0.656 0.189 0.668 0.192 0.201 1.102± 0.009 1.190± 0.030 3.430± 0.414 10.17± 1.951 - -

Background color meaning: ■■ First Order Decision version of the model ■■ Second Order Decision version of the model

Discretization in levels of confidence

Another important point to verify is the correlation between the ordering induced
by each uncertainty wrappers and the ’true ordering’ based on the real error (ora-
cle). In this case, for each uncertainty wrapper we could define certain thresholds
corresponding to the five required quantiles (i.e. values between the quantiles
0 − 20, 20 − 40, 40 − 60, 60 − 80 and 80 − 100) and associate them to the five
classes, respectively. Note that this is equivalent to defining five ’quality classes’
(Higher Error, High Error, Medium Error , Low error and Lower Error) and
computing a sort of confusion matrix between the true classes and the predicted
classes.

In Figure 4.4, we observe the confusion matrix for our In Production problem
where it is indicated in each box the normalized number of predictions that
have coincided between the prediction of the oracle and the chosen uncertainty
wrapper.

As we can see in Figure 4.4, it is easier for all the different presented models
to detect the points with higher confidence than the others (given their more
yellowish colour). However, the number of the percentage of points contained in
such a box on the bottom left is different depending on the model: We can see that
all baseline models, as well as the quantile regression model, have a significantly
lower value than the Heteroscedastic case. This indicates us that, although the
ordering score value in our In Production problem of the Heteroscedastic model
may be slightly lower than the quantile regression model, the Heteroscedastic
model detects in a better way the values that are more reliable. Accordingly, the
Heteroscedastic model is the one that best orders its High, Medium, and Lower

93

Figure 4.4: Normalized confusion matrix of the problem of classification into 5-
levels of confidence for certain models. Each one has its own colour map scale.

94

values as well as those predictions that have a high probability of being erroneous
in the upper right corner. In short, the model with the most central tendency is
the Heteroscedastic one.

Checking the convergence of β

Before finishing, it is important to analyse the convergence of the extra hyperpa-
rameter of the heteroscedastic and estimation of residuals models, β, which we
optimize in a first learning phase and allow us to optimize the type of distribution
to be fitted, as we explained in Sections 4.2.1 and 4.2.4.2. Table 4.2 shows the
final convergence value of the β hyperparameter after the first training phase of
all the methods in the different problems. As we can see, the convergence values
of β for the problems where the experiment could be repeated converges to a sta-
ble value. There is only an exception with the case of the Regression Tree with
the LSTM-het model where, given that the convergence value of β ended in a
high value, the variance also ends up being high. To tackle this situations, a pre-
defined value of β could be considered and directly optimize the other parameters
of the deep learning wrapper.

Distribution of errors review

Finally, we want to visualize the impact on the probability of an erroneous predic-
tion when the uncertainty score value increases by using the more stable black-box
for our Financial forecasting problem: the Second Order version of the Dense-het
model. From the business point of view, this information would be very useful
to take the decision on which value of the uncertainty score we discard the pre-
dictions. We will now show the whole distribution of the errors sorted by the
uncertainty score.

How to build the distribution plot The process to generate the Figure 4.5 is
the following: First of all, we stratify into 30 bins the distribution of the absolute
values of the error by using our In Production black-box for all the test-set, i.e.
|yi −B(xi)|. Then, we assign to each bin a certain color of a defined colormap

95

Figure 4.5: Density plot between the uncertainty score value and their corre-
sponding Average Absolute Error produced by the Our In Production black-box
when it is predicting in the Financial forecasting problem.

(as it can be seen in the right of the Figure 4.5). Afterwards, we order the
absolute values of the errors of our black-box prediction by using their respective
uncertainty score values. Thereafter, in order to reduce the dimensionality and
make the behaviour smoother, we average in groups of 1024 points the previous
sorted errors and their corresponding uncertainty score values. Finally, we draw
vertically the degree of belonging in each of the error bins for each of the sorted
groups.

Analysis of the distribution results Figure 4.5 exhibits the desired be-
haviour of a uncertainty score: the left part of the plot (low values of the uncer-
tainty scores) concentrates the samples with lowest error (yellow-ish); the right
part of the plot (high uncertainty values) contains a majority of samples with
high and very high error (blue-ish).

These trade-off plots can also be used to inspect or debug the failure cases. For
instance, we observe a yellow-ish band (bottom of the plot) with high uncertainty
scores, which corresponds to samples with low error that the uncertainty model
missed. Also, we observe some spikes, which may correspond to specific patterns

96

which do not follow the expected trend. Again, it would valuable to inspect these
cases, but we recall the global error-retain trend of the plot remains as desired.

4.3 Intentional black-box uncertainty modelling

As we saw previously, there are a difference between the distributional fitting
solutions presented until now and the residual error approximation: the former
associates one of the parameters to be the black box, therefore, it has a meaning.
The second one approximates a residual error, therefore, it models the distribution
of the error which avoids directly know what is approximating the black box.

Although seemingly very straight-forward, conditional location-scale family
distributions - like the heteroscedastic Normal or Laplace models presented in
Section 3.2.1 - are directly applicable to the UMHB problem introduced at the
initial part of this Chapter 4. This is because one of the conditional parameters
can be considered as a certain statistic that it may be useful to predict, and the
other gives us information about the confidence. The former can therefore be
fixed as the black box and the latter learnt using the neural network model. In
this section, we will extend the use of these models to tackle the UMHB problem
and propose a new approach which transfers the distributional-free advantages of
QR to the UMHB problem.

4.3.1 Heteroscedastic normal distribution

The deep heteroscedastic Normal model (N) As it was introduced in
Section 3.2.1 and similarly to Bishop (1994b); Brando et al. (2019b); Kendall and
Gal (2017); Lakshminarayanan et al. (2017); Tagasovska and Lopez-Paz (2019),
by using two neural networks, µ(x) and σ(x), it is possible to approximate the
conditional normal distribution,

N(µ(x), σ(x)) =
1√

2πσ(x)2
e
− (y−µ(x))2

2σ(x)2 , (4.15)

such that they maximize the likelihood.

97

In the scenario of UMHB, µ(x) = K(x) is the black-box function, which
corresponds to the conditional mean statistic of the response variable, and we
only need optimize the σ(x) as a neural network model. Once optimized, the
desired quantile τ can be obtained with F (τ,x) = µ(x)+σ(x)

√
2 · erf−1(2τ − 1),

τ ∈ (0, 1), where erf−1 is the inverse error function.

4.3.2 Heteroscedastic Laplace distribution

The deep heteroscedastic Laplace model (LP) Following the Reminder 5,
as a more robust alternative to outlier values, a conditional Laplace distribution
can be considered (Brando et al., 2018a),

LP
(
µ(x), b(x)

)
=

1

2b(x)
e−

|y−µ(x)|
b(x) , (4.16)

where the black-box function µ(x) = K(x) corresponds to the conditional median
of the response variable, and similarly to the previous case, we only need optimize
b(x) as a neural network. In contrast, here F (τ,x) = µ(x)+

(
b log(2τ)

)
·1[τ ≤ 1

2
]−(

b log(2− 2τ)
)
· 1[τ > 1

2
], τ ∈ (0, 1).

4.3.3 The Chebyshev network

In this section we will tackle the uncertainty modelling of an Honest Black Box
(denoted as the UMHB case). Until now, the only way to use the distribution-
free approach based on quantile regression to tackle the covert MBU scenario
was by approximating the residual error. However, this is not compatible with
the UMHB statement, where the black box should be a pre-decided conditional
statistic of the new conditional distribution model q(Y | X,M). To transfer
the distribution-free capabilities of quantile regression to the UMHB problem
we propose the next model, which is based on the idea of modelling the partial
derivative of quantile function with respect to the quantile value and linking the
constant of integration, which can be expresses as a conditional statistic of the
distribution, with the black-box predictor in the desired way.

Generically speaking, most of the techniques described in Chapters 2, 3 and

98

4 thus far either (i) estimate the conditional distribution, p (Y |X,M), – e.g
the conditional normal or Laplace distributions (shown in Section 3.2.1) or quan-
tile function models (based on the Definition 2) – or (ii) provide a point-wise
predictive system to solve the regression problem – e.g. the models optimized
using Eq. 2.7 or Eq. 2.8. None of them simultaneously tackle both estimations as
two different outcomes. In critical real-world problems, however, the two pieces
of information can have different but complementary meanings, that is, either
(i) regarding the confidence of the prediction or (ii) regarding the output to
report.

Let us imagine we have a point-wise predictive system, K : RD → R. This
function could, for instance, be optimized using the mean squared error (shown
in Eq. 2.7) and therefore approximate the conditional mean. Let us also sup-
pose that this point-wise predictive system has some beneficial properties for the
regression problem to be tackled, meaning that we are interested in preserving
this conditional mean predictor. If we assume a considerable risk in the forecast-
ing process, then we may be interested in modelling the prediction confidence of
p (Y |X,M) apart from the conditional mean estimation K(x). One solution
to confidence modelling here could be to independently model p (Y |X,M), ap-
proximated as a known conditional distribution q (Y |X,M). However, the con-
ditional mean of q will not necessarily correspond to K(x), so we are obtaining a
confidence that is not related to the original point-wise predictive system, K(x).
Therefore, instead we need to build a conditional distribution, q (Y |X,M), that
approximates p (Y |X,M) such that its conditional mean corresponds to K(x).
This argument can be extended to any desired statistic, not only the mean, by
considering the quantile function, as we will see hereafter.

Specifically, a quantile function, Φ: [0, 1] × RD → R, which approximates
p (Y |X,M), can be expressed according to any generic conditional statistic,
K : RD → R, of that distribution. Broadly speaking, there exist a certain τ0

or a set of τ0s such that K(x) = Φ(τ0,x) for all x ∈ RD. For instance, the
conditional median approximated in Eq. 2.8 corresponds to the quantile τ0 = 0.5,
or the conditional mean estimated in Eq. 2.7 corresponds to the integral of all the
quantiles, K(x) =

∫ 1

0
Φ(t,x)dt. Therefore, if we consider the partial derivative

99

of the quantile function with respect to the quantile value, i.e. ∂Φ(τ,x)/∂τ =:

ϕw(τ,x), we can conveniently build the constant of integration of ϕw with respect
to τ as the certain statistic of p (Y |X,M) we had initially, named as K(x), i.e.
we can formulate Φ(τ,x) = K(x)+Kw(x)+

∫ τ
0
ϕw(t,x) dt, where K(x)+Kw(x)

is the constant of integration - that does not depend on τ - and, specifically,
K(x) is the desired conditional statistic of p (Y |X,M). Simultaneously, ϕw -
that depends on τ and x - will help Φ to approximate p (Y |X,M) as a quantile
function for all the quantiles τ .

Following this idea, we would like to estimate that derivative in that way
obtaining the main definition that supports the proposed model of this section:

Definition 7 (Partial derivative of the conditional quantile function) Let
Φw : [0, 1] × RD → R be a quantile function, let K : RD → R be a function, and
let ϕw : [0, 1]×RD → R+ and Kw : RD → R be two functions with parameters w.
If we assume that

Φw(τ,x) = K(x) +Kw(x) +

∫ τ

0

ϕw(t,x) dt. (4.17)

then the conditional quantile function can be approximated by minimizing the
following loss function,

L(X, Y) = E

[∫ 1

0

(
Y −

(
K(X) +Kw(X) +

∫ τ

0

ϕw(t,X) dt
))

·
(
τ − 1

[
Y <

(
K(X) +Kw(X) +

∫ τ

0

ϕw(t,X) dt
)])

dτ

]
, (4.18)

where 1[c] denotes the indicator function that verifies the condition c.

Importantly, the assumption in Eq. 4.17 tells us that ϕw is a partial derivate
of the quantile function and the term K + Kw corresponds to the constant of
integration. This term is divided as the sum of two terms (independently from
any quantile); one depends on the parameters w in the optimization and the
other, K, can be parametric or not, to allow it to be an honest black box, i.e. any

100

point-wise predictive system that approximates a desired conditional statistic of
p (Y |X,M).

At first glance, it would seem that the previous formulation of the quantile
function in Eq. 4.18 will only make the computation of Eq. 3.24 more difficult.
However, the disentanglement in the integral will allow us to separately estimate a
certain statistic of p (Y |X,M), using K(x), which will be considered as a global
bias used for the quantile function estimation of p (Y |X,M), mainly using the
integral of ϕw(τ,x). Thus, we are able to simultaneously but separately estimate
(i) a point-wise prediction and (ii) its confidence.

Having this disentanglement property, particularly given the fact that we can
express the constant of integration in terms of a summary statistic, will also
be useful for estimating the confidence of any pre-trained point-wise predictive
system that approximates a certain summary conditional statistic, K(x).

Furthermore, given that we are estimating the partial derivative of the con-
ditional quantile function, ϕw(τ,x), we are able to impose restrictions on that
derivative, and therefore propose a theoretical and empirical solution to the cross-
ing quantile phenomena, which constitutes a limitation in most of the quantile
regression models that predict several quantiles simultaneously. This phenomenon
happens when a method cannot ensure that the quantile function will be mono-
tonic with respect to the quantile value, i.e. given τ1, τ2 ∈ [0, 1] such that τ1 < τ2,
then Φ(τ1,x) < Φ(τ2,x) is not ensured, see, e.g. (Koenker and Hallock, 2001).
However, as this is not the main aim of the present UMHB problem, these results
will be presented in the next Chapter 5 based on the work Brando et al. (2022a).

In Section 4.3.3.1, the mechanism for estimating the derivative of a function
using a neural network is briefly explained and extended to regress the partial
derivative with respect to any desired inputs. Following that, in Section 4.3.3.2,
the main contribution of this chapter and all its variants is presented, and then
compared - theoretically and in terms of performance - with other baselines mod-
els.

101

4.3.3.1 Related works

Reminder 4 (Modelling the derivative of a function with a NN)
Aside from quantile function approximation, which requires a partial mono-
tonic function, building generic monotonic functions poses an important
problem in several areas (Archer and Wang, 1993; Daniels and Velikova, 2010;
Gupta et al., 2016; Sill, 1998; Wang et al., 2020; You et al., 2017). We
will start by describing how a monotonic function can be learnt by means of
approximating the derivative of the final function.
Recently, a deep learning approach to building a monotonic function H : RD →
R, called the Unconstrained Monotonic Neural Network (UMNN), was proposed
in Wehenkel and Louppe (2019). The UMNN estimates the derivative of that
function as

H(z) = H(0) +

∫ z

0

h(t) dt, (4.19)

where the integral in Eq. (4.19) is approximated using the Clenshaw-Curtis
quadrature (Clenshaw and Curtis, 1960).
Furthermore, this derivative can be approximated by means of a neural network
ĥ : RD → R+, whose output is restricted to strictly positive values. Therefore,
when h(z) :− ∂H

∂z
(z) > 0, the H(z) behaves as a monotone function with respect

to z, if ĥ(z) = h(z).
In the following section, we will see that a partial derivative is required to learn
a quantile function such as the one presented in Eq. (3.24).

The main contribution of this Section 4.3 is the Chebyshev Network (CheNet),
which builds a conditional quantile function Φ: [0, 1]× RD → R and constitutes
a solution for the disentanglement between the confidence of the prediction, ϕw,
and a point-wise predictive system, K (as shown in Definition 7), which, jointly
with Kw(x), will define the constant of integration.

Internally, CheNet uses a positive neural network ϕw : [0, 1]× RD → R with
parameters w approximating the derivative of Φ(τ ;x) such that

Φ(τ ;x) = K(x) +Q(τ ;x), Q(τ ;x) = Kw(x) +

∫ τ

0

ϕw(t,x) dt, (4.20)

102

where K(x) will be in charge of modelling a certain conditional statistic of p(Y |
X) and Q(τ ;x) will approximate the rest of the p(Y | X) distribution as a new
q(Y | X), thus verifying that the desired conditional statistic corresponds to
K(x) using the Kw(x) as an offset.

Furthermore, Eq. (4.20) is optimized by the CQR loss function in Eq. (3.25).
As we will see below, CheNet takes advantage of considering the full range of
possible quantiles, i.e. [0, 1], in contrast with the UPMNN, which considers [0, τ].
This is the main reason why CheNet is able to uniformly select a constant of
integration function, K(x), on [0, 1], which corresponds to a certain desired con-
ditional statistic of the distribution produced by the quantile function, q(Y | X).

4.3.3.2 Model definition

x

τ

...

ptd−1

ptd−2

pt1
pt0

...

cd−1

cd−2

c1
c0
β

...

Cd−1

Cd−2

C1

C0

P (τ,x; d)

pointwise predictive
system

non-fixed root
evaluation

DCT Integration

φw

φw

φw

φw

Figure 4.6: Graphic representation of CheNet. For any degree d, {pti}d−1
i=0 consti-

tute the evaluation of the initial Chebyshev polynomial expansion, {ck}d−1
k=0 their

coefficients, {Ck}d−1
k=0 the coefficients of the integrated polynomial, K the constant

of integration (or the black-box function) and P the conditional prediction of the
quantile τ .

CheNet contains a neural network ϕw : [0, 1] × RD → R+ that only produces
positive outputs and models the derivative of the final function with respect to a
given quantile τ . CheNet optimizes the neural network ϕw(τ,x) by calculating the
coefficients of a truncated Chebyshev polynomial expansion p(τ,x; d) of degree d
with respect to τ . Due to the truncation, we consider a finite mesh of quantile
values, called Chebyshev roots, {tk}d−1

k=0 ⊂ [0, 1] which are defined by

tk =
1

2
cos

(
π(k + 1

2
)

d

)
+

1

2
, 0 ≤ k < d. (4.21)

103

Given that these Chebyshev roots only depend on the degree d and not on any
quantile, CheNet exhibits global properties in the entire interval [0, 1] regardless
the desired quantile to predict.

Generically, the truncated Chebyshev expansion consists in expressing a func-
tion as a linear combination of Chebyshev polynomials. These are defined as
mappings Tk : [−1, 1]→ R given by the recurrent formula

T0(t) :− 1,

T1(t) :− t,

Tk+1(t) :− 2tTk(t)− Tk−1(t), k ≥ 1.

(4.22)

In our case, τ is in [0, 1] rather than in [−1, 1] which slightly modifies the defini-
tion,

ϕw(τ,x) ≈ p(τ,x; d) :− 1

2
c0(x) +

d−1∑
k=1

ck(x)Tk(2τ − 1). (4.23)

The quantities cj(x) in Eq. (4.22) are independent of the quantiles1. These quan-
tities are computed by

cj(x) :−
2

d

d−1∑
k=0

ϕw(tk,x) cos

(
jπ(k + 1

2
)

d

)
, 0 ≤ j < d, (4.24)

which is merely a product of the matrix-vector. It admits the computation al-
gorithm known as the Discrete Cosinus Transform of type 2 (DCT-II), which
reduces the matrix-vector multiplication from Θ(d2) to a logarithmic complexity,
Θ(d log d).

The polynomials Tk in Eq. (4.23) do not need to be explicitly computed and,
by construction of the coefficients ck(x) in Eq. (4.24), p(tk,x; d) is “equals to”
ϕw(tk,x) for all Chebyshev roots, {tk}d−1

k=0, as previously defined in Eq. (4.21).
This equality must, in practice, be understood in terms of machine precision of
the numerical representation system, classically ∼ 10−16 in double-precision or
∼ 10−8 in single-precision arithmetic. That exactness is important to ensure
monotonicity, see Brando et al. (2022a). This root evaluation step is denoted as

1In contrast to the UPMNN, as shown in Eq. (4.21).

104

ptk in Figure 4.6.

Once p(t,x; d) has been encoded by its cj(x) coefficients in Eq. (4.24), if we
use these to compute P (τ,x; d), which represents

∫ τ
0
p(t,x; d) dt, then P we will

be an approximation of the integral of the neural network, ϕw. That is,

P (τ,x; d) ≈ Φ(τ,x) = K(x) +Q(τ ;x). (4.25)

Additionally, given that the neural network ϕw(t,x) gives only positive values for
all t ∈ [0, 1], then P (τ,x; d) would be an increasing function with respect to τ as
long as d is large enough.

In the above procedure, the integral of ϕw in Eq. (4.20) is, in general, not
straightforward to compute. However, the neural network ϕw(·,x) is globally
being represented by p(·,x; d) on the quantile interval [0, 1]. Therefore, by using
its Chebyshev coefficients ck(x), we can encode the integral of P to provide its
Chebyshev coefficients Ck(x). In fact, according to Clenshaw (1955), the integral
of p(τ,x; d) gives another Chebyshev expansion, say P (τ,x; d), with coefficients
Ck(x), i.e.,

P (τ,x; d) =
1

2
C0(x) +

d−1∑
k=1

Ck(x)Tk(2τ − 1). (4.26)

To deduce the expressions for Ck(x) in Eq. (4.26), we need to recurrently integrate
the polynomials Tk(t), whose integral are∫

T0(t) dt = T1(t) + constant,∫
T1(t) dt =

T2(t) + T0(t)

4
+ constant,∫

Tk(t) dt =
Tk−1(t)

2(k − 1)
− Tk+1(t)

2(k + 1)
+ constant, k ≥ 2.

(4.27)

By ordering the coefficients of the integral in Eq. (4.23), we deduce that

Ck(x) :−
ck−1(x)− ck+1(x)

4k
, 0 < k < d− 1, Cd−1(x) :− cd−2(x)

4(d− 1)
,

(4.28)
and C0(x) depends on the constant of integration K(x) in Eq. (4.20) and the

105

Figure 4.7: In general terms, CheNet uses a NN - ϕ at the bottom left - to
generate d positive values –the red {tj(x)}d−1

j=0 points–, which will be used as
roots for computing the coefficients of a Chebyshev polynomial, represented in
the top left subfigure. This polynomial will approximate the partial derivative
of the quantile function. To do that, we integrate it obtaining a new Chebyshev
polynomial, the one in the right subfigure. Thus, for each x we have a Chebyshev
polynomial modelling all the quantiles.

other coefficient values in Eq. (4.26). This freedom on the C0(x) value allows
CheNet to impose different conditions to obtain C0(x) for the full interval [0, 1].

As we will soon see in Section 4.3.3.4, this important property will give us
the possibility to select which kind of point-wise predictive system, K, we want
(following Def 7) and this can be exploited as a “constraint selection” for honest
black boxes, which implies that CheNet constitutes a distributional-free solution
for the UMHB problem (following Def 6).

On the whole, CheNet can be summarized as in Figures 4.7 and 4.6 - consid-
ering K as a point-wise predictive system - consisting of the following steps: for
each x value,

1. A set of values, {ptk(x)}d−1
k=0 is obtained via the neural network ϕw at the

corresponding roots, {tk}d−1
k=0.

2. These are transformed to d coefficients, {ck(x)}d−1
k=0 using a fast matrix-

vector multiplication algorithm. This results in a truncated Chebyshev
polynomial, p(τ,x; d).

3. This polynomial is then integrated to obtain another Chebyshev polyno-
mial, P (τ,x; d), whose coefficients are {Ck(x)}d−1

k=0 in Eq. (4.28).

106

Mostly, CheNet contains a Chebyshev polynomial for each x value that approxi-
mates all the conditional quantiles of p(Y | X).

4.3.3.3 Implicit and explicit CheNet

φ β

x τ x

qτ

qτ0(x), . . . , qτd−1
(x)

c0(x), . . . , cd−1(x)

C0(x), . . . , Cd−1(x)
integration

DCT-II

P (τ,x; d)

d
tim

es

(a) Implicit CheNet with ϕw(τ,x) = qτ .

φ β

x

qτ0(x), . . . , qτd−1
(x)

c0(x), . . . , cd−1(x)

C0(x), . . . , Cd−1(x)
integration

DCT-II

P (τ,x; d)

x

· · ·

(b) Explicit CheNet with ϕw(x) =
{qτt}d−1

t=0 .

Figure 4.8: Graphical comparison of the two versions of CheNet.

CheNet admits two different ways of managing the order of the Chebyshev
expansion in its internal neural network ϕw. Both are illustrated in Figure 4.8.
Implicit CheNet consists in evaluating ϕw as many times as the number of roots,
and Explicit CheNet provides d outputs in evaluating ϕw.

Definition 8 (Implicit CheNet) An implicit CheNet optimizes a neural net-
work of the form ϕw : [0, 1]×RD → R+ constructing the Chebyshev polynomial of
an arbitrary order d in Eq. (4.26).

Definition 9 (Explicit CheNet) Let d be a non-negative integer. An explicit
CheNet optimizes a neural network of the form ϕw : RD → Rd

+ constructing the
Chebyshev polynomial of order d in Eq. (4.26).

Both forms of CheNet can produce the same final Chebyshev polynomial
P (τ,x; d) at a given iteration and, importantly, such a polynomial can be evalu-
ated at any desired τ .

107

The two forms are also suitable for different purposes. Put briefly, Implicit
CheNet will allow us to choose the precision required in terms of having all the
quantiles sorted after the training process. For instance, we will be able to address
the crossing quantile phenomenon or, equivalently, ensure an always monotonic
ϕ-function, as described in Brando et al. (2022a).

On the other hand, Explicit CheNet simplifies the neural network’s learn-
ing process by only internally predicting a fixed number of roots regarding the
derivative. This simplification helps to improve the overall performance in terms
of quantile regression accuracy.

The main aim of this Chapter, which is to resolve the UMHB problem, can
be tackled using both versions of CheNet. A more in-depth discussion will be
presented in the following sections, which address selection of the appropriate
constant of integration and the application of CheNet as a solution for the UMHB
problem (see Definition 6).

4.3.3.4 Constant of integration selection for CheNet

In this section, we address how to define CheNet as a derivative of the quantile
function (as shown in Eq. (4.18)), considering any desired statistic (such as a
quantile or the conditional mean of p(Y | X)) using its constant1 of integration.
Following Definition 7, all that is needed to optimize the parameters w in the
CheNet’s Q (shown in Eq. (4.20)) are the corresponding K-evaluation values of
the training set along with the input and response values, i.e. {(xi, K(xi)) , yi}Ni=1.
Therefore, K does not need to be a parametric function and the generic goal
is reduced to approximate the conditioned response distribution to the input,
p(Y | X) by predicting all their conditional quantiles. This avoids asymmetry or
unimodality assumptions with respect to p(Y | X).

It is important to highlight that this constant of integration selection can
be done thanks to the non-quantile dependence of the CheNet’s roots (as it is
shown in Eq. (4.21)), which allows us to use CheNet as a solution for the UMHB
problem.

1The term “constant” refers to the quantile τ input and not to x, as described in Eq. (4.20).

108

The formula used to calculate the constant of integration C0(x) (shown in
Eq. (4.28)) will depend on which statistic we choose for K(x), as shown in the
following propositions.

Proposition 10 (CheNet-q0) Let (P,K) be a CheNet model and q(Y | X) the
distribution that P produces as quantiles. If K is a point-wise predictive system
that is the lowest quantile (τ = 0) of q(Y | X), then the C0 coefficient of the
Chebyshev polynomial P verifies:

C0(x) = 2K(x)− 2
d−1∑
k=1

Ck(x)(−1)k. (4.29)

We will denote this as CheNet-q0.

Proof The learning process of CheNet is subjected to the condition that the
lowest quantile value, i.e. τ = 0, must be the K. That is, P (0,x; d) = K(x). By
taking the value t = −1 in Eq. (4.22), we derive that Tk(−1) = (−1)k. Therefore,
using Eq. (4.26) with τ = 0, we obtain Eq. (4.29).

Proposition 11 (CheNet-q1) Let (P,K) be a CheNet model and q(Y | X) the
distribution that P produces as quantiles. If K is a point-wise predictive system
that is the highest quantile (τ = 1) of q(Y | X), then the C0 coefficient of the
Chebyshev polynomial P verifies:

C0(x) = 2K(x)− 2
d−1∑
k=1

Ck(x). (4.30)

We will denote this as CheNet-q1.

Proof The highest quantile corresponds to τ = 1. Taking into account the
definition of the Chebyshev polynomials, Tk(1) = 1. Therefore, imposing the
condition P (1,x; d) = K(x), we deduce Eq. (4.30).

109

The CheNets of type q0 and q1 from the Propositions 10 and 11 can be applied
to the prediction of extreme weather events, which entail the forecasting system
predicting the maximum or the minimum values of p(Y | X). In these cases, a
pre-trained system that forecasts the maximum or minimum temperature value
could be used as K(x) in Eq. (4.29) or Eq. (4.30), respectively, to determine
the overall quantile distribution of p(Y | X), taking K(x) as a reference point
(i.e. preserving the constraint that the maximum or minimum of the predicted
quantiles corresponds to K(x)).

Proposition 12 (CheNet-Median) Let (P,K) be a CheNet model and q(Y |
X) the distribution that P produces as quantiles. If K is a point-wise predictive
system that is the median (τ = 0.5) of q(Y | X), then the C0 coefficient of the
Chebyshev polynomial P verifies:

C0(x) = 2K(x)− 2
d−1∑
k=1
k even

(−1)k/2Ck(x). (4.31)

We will denote this as CheNet-Med.

Proof The median corresponds to the quantile value of τ = 0.5. Taking
into account the definition of the Chebyshev polynomials, Tk(0) = 0 when k

is odd and Tk(0) = (−1)k/2 when k is even. Therefore, imposing the condition
P (0.5,x; d) = K(x), we deduce Eq. (4.31).

Proposition 13 (CheNet-Mean) Let (P,K) be a CheNet model and q(Y | X)

the distribution that P produces as quantiles. If K is a point-wise predictive
system that is the mean of q(Y | X), then the C0 coefficient of the Chebyshev
polynomial P verifies:

C0(x) = 2K(x)− 2
d−1∑
k=1
k odd

Ck(x)

k2 − 4
. (4.32)

We will denote this as CheNet-Mean.

110

Proof Taking into account the definition of the (continous) mean, the condition
we must impose is ∫ 1

0

τP (τ,x; d) dτ = K(x). (4.33)

Then, taking into account the linearity of the integral and after a change of
coordinates (t = 2τ − 1), the integral is reduced to compute the mean of the
Chebyshev polynomials. That is, ∫ 1

−1

tTk(t) dt. (4.34)

Taking into account the symmetries of the Chebyshev polynomials, we obtain the
equality ∫ 1

−1

tTk(t) dt = (1 + (−1)k+1)

∫ 1

0

tTk(t) dt.

Then if k is even, Eq. (4.34) is zero. If k is now assumed to be an odd integer,
then taking into account the recurrent definition of the Chebyshev polynomials,
2Tk(t) = Tk+1(t) + Tk−1(t) and then Eq. (4.27),∫ 1

−1

tTk(t) dt =
Tk−2(t)

2(k − 2)
− Tk+2(t)

2(k + 2)

∣∣∣∣1
0

=
2

k2 − 4
.

From here, we can recover the expression in Eq. (4.32).

Additionally, K(x) could be approximated by means of another neural net-
work - depending on a new set of weights v - when we are optimizing w and
optimize both at same time. In this latter case, the function learnt by this new
Kv(x) will approximate the choice of conditional summary statistic with respect
to p(Y | X), depending on the previously selected formula.

The pseudo-code implementation of CheNet

The pseudo-code for CheNet (including all of its variations) is shown in Algo-
rithm 7 and can be implemented using any automatic differentiation library. We
provide a TensorFlow (Abadi et al. (2016)) and Keras (Chollet et al. (2019))

111

implementation in a Github repository, which will be made public in the camera-
ready version of this paper.

Algorithm 4 Evaluation of Eq. (4.23) or Eq. (4.26) at τ ∈ [0, 1]

1: procedure eval_cheb(τ , c0(x), . . . , cd−1(x))
2: d1(x)← d2(x)← d3(x)← 0.
3: σ ← 2τ − 1.
4: for k = d− 1, d− 2, . . . , 1 do
5: d3(x)← d1(x).
6: d1(x)← 2σd1(x)− d2(x) + ck(x).
7: d2(x)← d3(x).
8: return σd1(x)− d2(x) + 0.5c0(x).

Algorithm 5 Definitions and functions used for the following algorithms
▷ x has batch size and number of features as shape, i.e. [bs,D].
▷ RS(tensor, shape): reshape tensor to shape.
▷ RP(tensor, n): repeats n times the last dimension of tensor.
▷ CC(T1, T2): concatenate T1 and T2 using their last dimension.

Algorithm 6 Obtaining all CheNet coefficients
1: procedure cheb_cs(x, d, ϕ,K)
2: {tk}d−1

k=0 ← Apply Eq. 4.21
3: {t′k}d−1

k=0 ← RS
(
RP
(
{tk}d−1

k=0, bs
)
, [bs · d, 1]

)
4: x

′ ← RS(RP(x, d), [bs · d,D])
5: i← CC

(
{t′k}d−1

k=0,x
′)

▷ [bs · d,D + 1].
6: o← ϕ(i) ▷ Apply any NN function ϕ : [0, 1]× RD → R+ or
ϕ : RD → (R+)d.

7: {ck(x)}d−1
k=0 ← DCT-II(o, d) ▷ Transformation.

8: {Ck(x)}d−1
k=1 ← Integration step wrt {ck(x)}d−1

k=0 ▷ Eq. (4.28)
9: C0(x)← 2K(x)− 2

∑d−1
k=1Ck(x)(−1)k ▷ Eq. (4.29)

10: return {Ck(x)}d−1
k=0, {ck(x)}d−1

k=0.

4.3.4 Results and comparison

The different data sets and architecture hyper-parameters used to obtain the
following experimental results are described in greater detail in Brando et al.

112

Algorithm 7 How to build the CheNet model by using any deep learning archi-
tecture for regression
1: procedure build_CheNet_graph(x, y, d, ϕ,K,Nτ)
2: ▷ Nτ is the number of non-roots to evaluate.
3: {Ck(x)}d−1

k=0, {ck(x)}d−1
k=0 ← CHEB_CS(x, d, ϕ,K)

4: τ ← U(0, 1) ▷ τ must has [bs ·Nτ , 1] shape.
5: oP ← EVAL_CHEB(τ , C0(x), . . . , Cd−1(x))
6: L← (y − oP) · (τ − 1[y < oP]) ▷ Eq. (3.25) loss.
7: return L

Algorithm 8 How to obtain the CheNet’s prediction for a set of desired quantiles
1: procedure Predict(x, d, ϕ,K, τ)
2: ▷ τ - with [bs ·Nτ , 1] shape - is the desired quantiles to evaluate.
3: {Ck(x)}d−1

k=0, {ck(x)}d−1
k=0 ← CHEB_CS(x, d, ϕ,K)

4: oP ← EVAL_CHEB(τ , C0(x), . . . , Cd−1(x))
5: return oP

(2022b).

Testing generic quantile calibration Table 4.3 shows a comparison of the
quantile forecasting prediction for two given black-box systems - a Random Forest
(RF) (Liaw et al., 2002) and an XGBoost (Chen and Guestrin, 2016) - in four
data sets. The first four columns correspond to each part of the heterogeneous
synthetic distribution proposed in Brando et al. (2019b) and shown in Figure 4.9,
the fifth column is the full Year Prediction MSD UCI dataset (Dua and Graff,
2017), predicting the release year of a song from 90 audio features and, finally, the
last two columns correspond to predicting the room price forecasting of Airbnb
flats (RPF) in Barcelona and Vancouver, extracted from Brando et al. (2019b).
The mean of the QR loss value (shown in Eq. 4.4) is evaluated for ten thousand
randomly selected quantiles for ten executions of each model {mk}10k=1 as

Lmk
(Xtest, Ytest) =

Ntest∑
i=1

Nτ∑
j=1

(
yi − fmk

(τj,xi)
)
·
(
τj − 1[yi < fmk

(τj,xi)]
)

Ntest ·Nτ

, (4.35)

where the Ntest is the number of points in the test set, the Nτ = 10, 000 is the
number of Monte Carlo samplings and the fmk

is any of the models considered in

113

Table 4.3: Mean and standard deviation of the QR loss value, mean ± std, of 10
executions for each Black box -Uncertainty wrapper using all of the test distri-
butions in Figure 4.9 and three data sets (described in Brando et al. (2022b)).
The ranges that overlap with the best range are highlighted in bold.

Asymmetric Symmetric Uniform Multimodal Year-MSD BCN-RPF YVC-RPF
RF -N 42.37± 0.04 23.19± 1.00 66.44± 0.26 151.51± 0.24 57.50± .05 23.47± .14 27.27± .39

RF -LP 42.88± 0.04 22.10± 0.03 67.13± 0.09 153.06± 0.22 57.58± .02 23.07± .17 28.06± .12
RF -(I)CheNet 41.52± 0.35 23.19± 0.70 65.98± 0.20 148.39± 0.16 48.28± .18 23.17± .07 28.16± .14
RF -(E)CheNet 41.23± 0.07 22.39± 0.46 66.23± 0.13 147.45± 0.31 48.25± .00 23.18± .10 28.26± .17
XGBoost -N 42.42± 0.05 23.35± 0.99 66.38± 0.26 149.35± 0.40 51.17± .08 24.52± .26 27.79± .08
XGBoost -LP 42.90± 0.02 23.02± 0.43 67.13± 0.17 150.94± 0.12 51.24± .02 22.63± .11 27.86± .07

XGB. -(I)CheNet 41.95± 0.40 23.69± 0.68 65.89± 0.17 146.20± 0.30 48.54± .08 22.00± .04 27.51± .13

XGB. -(E)CheNet 41.80± 0.33 23.68± 1.20 66.57± 0.21 143.62± 0.19 48.45± .00 22.01± .04 27.49± .07

N 43.63± 2.89 23.70± 6.85 67.45± 1.68 148.78± 2.88 49.00± .24 27.28± 1.25 28.62± 1.61
LP 43.46± 0.15 20.72± 0.47 68.06± 0.82 149.99± 0.64 48.67± .28 23.51± .28 22.32± .06

(I)CheNet 41.72± 0.24 22.94± 1.81 68.55± 6.61 145.93± 3.14 46.76± .25 20.67± .40 21.97± .12
(E)CheNet 42.02± 0.39 22.57± 0.69 66.52± 0.63 141.21± 0.51 46.72± .12 20.98± .71 21.90± .05

Table 4.3. Importantly, the QR loss value not only reports about each system’s
performance but also how generically calibrated its predicted quantiles are, which
does not mean that the number of crossing quantiles is necessarily less, see Brando
et al. (2022a).

Furthermore, in Table 4.3 we observe that CheNet outperforms other methods
in most cases due to it transferring the capacity to capture asymmetries and
multimodalities of QR in p(Y | X) to the UMHB problem, where our uncertainty
modelling needs to be restricted in order to maintain the corresponding statistic
associated with the black box.

What happens when the black box is inaccurate This restriction of con-
serving the black box can be seen qualitatively in the upper part of Figure 4.9,
where it must always be the case, i.e. even if the performance worsens because
the black box, K(x), is not correctly fitted (as described in the initial part of
the current Chapter 4). In this case, K(x) is an inaccurate Random Forest pre-
dicting the mean. Importantly, the CheNet propagates the K(x) noise to the
predicted quantiles (in blue) because the constraint is always forced, therefore,
the predicted quantiles must preserve the noisy conditional mean function (in
green).

114

Figure 4.9: Heterogeneous synthetic distribution proposed by Brando et al.
(2019b). In the upper part of the figure, the learnt quantiles, ϕ, are noisy because
their mean is the black box defined as an inaccurate MSE Random Forest (RF),
K, following Eq. (4.32). In the lower part, ϕ and K are learnt and asymmetries
and multimodalities can be seen more clearly, while still respecting the constraint
in Eq. (4.32).

Modelling heterogeneous distributions On the other hand, the ability of
CheNet to model heterogeneous distributions using QR is better displayed in
the lower part of Figure 4.9. In this case, the black box is a neural network
that is learnt concurrently with the quantiles. Since the black box is better
approximated, the quantiles are better learnt.

XGBoost -N XGBoost -LP XGBoost -(I)CheNet XGBoost -(E)CheNet
Concrete 46.55± 6.7(3.34± 0.4) 54.66± 5.5(4.38± 0.3) 85.58± 4.7(17.7± 21.) 92.77± 2.4(17.6± 2.2)

Power 79.44± 3.5(6.99± 0.4) 88.23± 3.7(9.19± 1.2) 92.93± 2.8(12.0± 1.6) 95.36± 2.1(13.1± 2.0)
Wine 95.78± 1.8(2.66± 0.2) 96.78± 1.8(2.77± 0.2) 95.81± 1.9(3.86± 0.6) 96.25± 2.7(3.60± 0.8)
Yacht 93.22± 5.1(2.42± 0.4) 94.03± 4.6(2.45± 0.4) 99.19± 1.7(8.16± 1.3) 97.58± 3.0(4.50± 1.3)
Naval 99.52± 1.3(0.05± 0.0) 99.68± 1.3(0.08± 0.0) 96.95± 4.2(0.11± 0.0) 99.99± 0.0(0.04± 0.0)

Energy 95.45± 4.4(2.16± 0.5) 95.84± 3.7(2.11± 0.3) 99.48± 0.6(6.17± 1.1) 98.57± 1.7(4.14± 0.8)
Boston 51.86± 10.(3.25± 0.4) 63.73± 6.6(4.19± 0.3) 89.12± 3.7(10.4± 2.0) 96.67± 2.4(20.3± 27.)

Kin8nm 94.77± 1.0(0.67± 0.0) 98.33± 0.7(0.87± 0.0) 95.51± 1.8(1.39± 0.1) 97.77± 0.6(0.78± 0.1)

Table 4.4: Mean and standard deviation, mean ± std, of the 100·PICP (MPIW)
value between the 0.975 and 0.025 quantile of the black box -uncertainty wrapper
for the different test set folds presented in Hernández-Lobato and Adams (2015b).

Testing a standard interval of confidence calibration Table 4.3 shows the
differences in performance between the baselines when using the RF or XGBoost

115

Figure 4.10: Calibration curve of the Normal, Laplace and CheNet models.

in terms of the QR loss function. However, we also want to show additional
experiments that directly measure the calibration of the predicted quantiles and
compare the predicted width of certain desired intervals. Following the UCI data
sets used in Gal and Ghahramani (2016); Hernández-Lobato and Adams (2015b);
Lakshminarayanan et al. (2017); Tagasovska and Lopez-Paz (2019), we performed
two empirical studies to assess this point in a black-box scenario where the black
box is an MSE-XGBoost. Following the proposed hidden layers architecture in
Tagasovska and Lopez-Paz (2019), the Prediction Interval Coverage Probabil-
ity (PICP) and the Mean Prediction Interval Width (MPIW) are reported in
Table 4.4, considering the 0.025 and the 0.975 quantiles. We can state that
generically, CheNet results are well calibrated compared to the other baselines.

Testing the generic calibration of the intervals of confidence For the
sake of completeness, we also computed an additional metric, not only to verify

116

XGBoost -N XGBoost -LP XGBoost -(I)CheNet XGBoost -(E)CheNet
Concrete 14.40± 1.7 14.35± 1.5 5.99± 4.4 4.33± 1.8

Power 6.31± 0.7 6.63± 1.6 4.15± 1.4 2.89± 0.9
Wine 4.40± 1.2 4.34± 1.2 4.58± 1.6 5.23± 1.5
Yacht 8.93± 2.3 6.98± 2.4 14.20± 3.9 8.05± 3.0
Naval 6.61± 2.8 7.21± 2.1 6.90± 2.7 13.58± 3.5

Energy 6.12± 2.1 5.05± 2.0 6.26± 2.2 5.08± 1.9
Boston 15.55± 3.1 15.30± 2.1 4.99± 1.7 6.98± 4.1

Kin8nm 3.55± 0.6 4.79± 0.5 5.25± 0.8 4.40± 0.9
Protein 7.88± 1.9 7.30± 0.3 5.39± 0.8 5.49± 0.3

Table 4.5: Plot with performance in terms of calibration. The table contains the
mean and standard deviation of all the folds using the mean absolute error between
the empirical predicted calibration and the perfect ideal calibration of 980 equidistant
quantiles using Eq. (4.36).

Figure 4.11: Heterogeneous synthetic distribution proposed by Brando et al.
(2019b). In all cases, ϕw and K(x) are learnt, while K(x) corresponds to a
different statistic in each case. In the upper part of the figure, K(x) approxi-
mates the median, following Eq. (4.31). In the central figure, K(x) regresses to
the lower quantile 0, following Eq. (4.29). In the lower part, K corresponds to
the higher quantile 1, following Eq. (4.30).

the calibration of the 0.025 and 0.975 quantiles, but also to obtain a measure of
general calibration considering the entire quantile distribution (Figure 4.10 and

117

Table 4.5). Given Nτ -equidistant set of quantiles to evaluate, τ = [10−2, . . . , 1−
10−2], the % of actual test data that falls into each predicted quantile can be
compared to each real quantile value as

Cal(f ;Xtest, Ytest, τ) =
1

Nτ

Nτ∑
j=1

|τj −
1

Ntest

Ntest∑
i=1

1[yi < f(τj,xi)]|. (4.36)

Comparing different summary statistics as K(x) Finally, three extra fig-
ures showing the disentangled visualization of this calibration metric from each
quantile can be found in Figure 4.11.

Summing up, all of the figures and tables related to calibration in this sec-
tion show that CheNet generally displays a better performance in the black-box
scenario than the other models.

4.4 Conclusions

The original motivation of the Uncertainty Modelling of a Black box (UMB)
came from a real-world need where interpretability requirements forced us to
implement an specific pointwise predictive model as a solution for the currently-
in-use predictive system Brando et al. (2018a). In that case, this predictive
system works generally well and, most importantly, satisfies the different imposed
requirements (mostly related to interpretability needs) to be applied as a solution
for our original sensitive problem. However, the particular risky environment
where it is applied required us - once the model is in production - to model,
additionally, the uncertainty related to its forecast but the replacement of this
system is not advisable due to all the dependencies. Thus, we are in a scenario
where we want to maintain the currently forecasting system without assuming any
strong assumption about its internals (i.e. it will be considered as a black box)
and, simultaneously, we would like to model the uncertainty regarding p(y|x).

In the presented context, distributional-free solutions such as the QR models
presented in previous Section 3.3 are not directly applicable as a solution for

118

all the presented black box uncertainty modelling problems. Yet, QR solutions
can be considered if they are modelling the residual errors as it was proposed in
Section 4.2 as a covert black box solution. Furthermore, alternative solutions,
such as the location-scale family (in particular, the heteroscedastic normal and
Laplace distribution which were previously introduced in Section 3.2.1) have an
especial definition that allow us to disentangle the estimation of a certain point-
wise prediction and its uncertainty estimation. Here, the special relation that
can exist between the uncertainty estimation and the prediction introduces the
concept of an honest black box, which motivates the second goal of this chapter:
the Uncertainty Modelling of an Honest Black box (UMHB).

As the main proposed solution for the UMHB problem, in this chapter we
presented the Chebyshev Network (CheNet), brings two important novelties in
contrast to the previously introduced:

Firstly, it allows us to pre-decide the type of summary statistic constraint that
will be defined using the β(x) (as it is shown in Figures 4.6 and 4.9. Crucially,
the CheNet Chebyshev coefficients are τ -independent (as shown in Eq. (4.21)).
Therefore, the freedom of C0(x) allows us to define different types of constrains
(see Section 4.3.3.4).

Secondly, it ables the possiblity to learn a distributional-free q(y | x) that
approximates p(y | x) because it approximates implicitly all the quantiles distri-
bution as a quantile function (as it is described in Algorithm 8 and also shown
in Figure 4.9).

Introducing CheNet, we propose a generic deep learning wrapper to use any
deep learning regression architecture to estimate the partial derivative of a con-
ditional quantile function which can be used to enriching any previously defined
point-wise predictive system with its aleatoric uncertainty estimation.

Empirical results over several real world data sets and synthetic ones were done
to verify that the imposed restrictions between the point-wise predictive system
and the distribution approximation would not adversely affect the performance of
the model compared with other quantile regression baselines and likelihood-based
models. As we saw in Section 4.2.4.3 and 4.3.4, the proposed models maintain the
performance in terms of likelihood estimation and yields calibrated outputs with

119

respect the baselines as well as is able to tackle the UMB and UMHB problems
with their corresponding models.

To sum up, this work is a further step in the research to improve the reliability
and robustness of current production systems and state-of-the-art models. Future
work could be continued in lines such as capturing other types of uncertainty as
well as extending this method for classification problems.

120

Chapter 5

THE CROSSING QUANTILE
PHENOMENON

The modelization of quantile functions (shown in Eq. (3.24)) constitutes an impor-
tant goal, especially when the distribution to be predicted, p(Y | X), is complex
or when we are interested to impose the minimum assumptions about the shape
of the distribution. Typically, an exponential power distribution (e.g. the Normal
or Laplace distributions) is considered which implies to assume unimodality and
symmetry and lose critical information regarding the shape of the distribution.

By building a quantile function we are able to approximate, in a discrete
manner by means of quantiles, the distribution p(Y | X). Typically quantiles are
used to build confidence intervals. However, when these confidence intervals are
so tight or when we want to recover the distribution shape from the discretization,
we could face with a critical problem as follows.

Since the different predicted quantile values are estimated individually, they
may not be ordered according to their quantile value, τ . For instance, the pre-
dicted quantile 0.1 may not be a value greater than the quantile 0.05. As a
consequence, this leads to an invalid distribution of the response variable, which
is known as the crossing quantile phenomenon (Koenker et al., 2017).

Different solutions have been proposed to overcome this phenomenon. Most
of them are based on adding a penalisation term to regularise the optimization
process and “encourage” the model to reduce the number of crossing quantiles

121

Figure 5.1: Synthetic data set presented in Brando et al. (2022a) showing that CheNet
avoids crossing quantiles (right), unlike IQN (left).

Bondell et al. (2010); Koenker and Hallock (2001); Tagasovska and Lopez-Paz
(2018) introduced in the next Section 5.1. Nevertheless, since the model is not
restricted to being partially monotonic - i.e. be a monotonic function with respect
to τ and not over the other inputs - some quantiles may still cross.

In this Chapter, following the results presented in Brando et al. (2022a), we
propose an extension to the literature models to build a partial monotonic neural
network with respect to the quantile value by constraining the weights, named
as PCDN, and, additionally, we will see how the CheNet (previously introduced
in Section 4.3.3) constitutes a solution for this phenomenon. Importantly, as we
will show in the experimental section, to avoid crossing quantiles do not imply to
obtain a better quantile regression performance (based on Eq. (3.22)): To force
avoiding crossing quantiles can represent an extra constrain that makes the model
difficult to obtain a better approximation.

122

5.1 The limitation of standard quantile regression

Despite the minimisation problem of Eq. (3.23), the flexibility of selecting a single
model that estimates different conditional quantiles given certain inputs x can
lead to a situation where the meaning between the predicted quantiles is lost due
to a crossing. More formally,

Definition 14 Let f : [0, 1] × RD → R be a conditional quantile function that
predicts a certain quantile of a random variable y ∈ R given x ∈ RD. If there are
τ1 < τ2 in [0, 1] such that for some x ∈ RD,

f(τ1,x) > f(τ2,x),

then f has the crossing quantile phenomenon.

In this case, the interpretation of the quantiles produced by f is not valid,
resulting in important modelling problems in downstream tasks or nonvalid re-
sponse distributions (as shown in Koenker et al. (2017)).

To avoid the crossing quantile phenomenon in the conditional quantile func-
tion f , it is required to impose monotonicity with respect to τ , i.e. for all
τ1, τ2 ∈ [0, 1] and x ∈ RD, if τ1 < τ2, then f(τ1,x) < f(τ2,x).

Different approaches can be listed, and subsequently analysed, to handle this
crossing quantile phenomenon:

The deep heteroscedastic Normal distribution (N) Similarly to Sec-
tion 3.2.1, the conditional normal distribution will be considered. Given that this
quantiles are calculated from the parametric conditional distribution as F (τ,x) =
µ(x)+σ(x)

√
2 · erf−1(2τ −1), τ ∈ (0, 1) where τ is the desired quantile and erf−1,

they will not cross. We will denote this approach as N.

The Implicit Quantile Network (IQN) Following Section 3.3.2, we are
going to consider the IQN model. In particular, Tagasovska and Lopez-Paz
(2018) proposes to add a regularization term with respect to the derivative as

123

max
(
−∂ϕ(x,τ)

∂τ

)
to alleviate the crossing quantile phenomena. We will note this

alternative optimization process as IQN-D. On the other hand, we will consider
another regularisation term that penalises quantiles when crossing quantile phe-
nomena appears as max(0., ϕ(τ1;x)− ϕ(τ2;x)) for each τ1 < τ2. We will refer to
this approach as IQN-P.

The Partial Constrained Dense Network (PCDN) The main idea of that
model is to force the selected weights described in the following Section to be only
positive. This combined with only considering ReLU activation function (Glorot
et al., 2011b) produces that a partial monotonic function can be build.

The Unconstrained Partial Monotonic Neural Network (UPMNN) Sim-
ilarly to CheNet, UPMNN has two different functions to optimize: The ϕ and
the K. In that case, K corresponds to the q0 value as a general shift of all the
quantiles. The predicted quantile function does not ensure that always will avoid
crossing quantile phenomenon but will be added to the comparison to analyse
their difference.

The Chebyshev Network (CheNet) CheNet can be defined as a partial
monotonous function considering the implicit and explicit versions introduced in
Section 4.3.3.3. Several alternative selections of C0 described in Section 4.3.3.4
are considered for the following comparisons.

5.2 The partial constrained dense network

The construction of neural networks with a monotonously increasing function of
the inputs is a problem that has been identified in the literature, see, for instance,
Sill (1998). These solutions were designed for completely dense models (i.e. those
where all the neural network layers are fully-connected). These approaches were
based on the following principle: a dense model with positive weights and with
monotonically increasing activation functions gives a monotonously increasing
function with respect to the input. Although, it is a very easy implementation to

124

· · ·
τx

qτ
non-constrained
constrained

Figure 5.2: PCDN scheme.

carry out, it has been found that, at the practical level, the impossibility of having
weights of different signs makes the learning process complicated Wehenkel and
Louppe (2019).

According to the notation in the previous Section 5.1, to solve the crossing
quantile phenomenon it is enough to define a monotonic function f with respect
to the parameter τ (the quantile).

To built the model proposed in this section, we start with an IQN model,
ψ : [0, 1]× RD → R, with only fully-connected layers by default.

Then, we select a desired part of the neurons for each hidden layer to ensure
that ψ is monotonic with respect to τ ; for instance, 50% of the neurons in each
layer. These neurons are highlighted as dashed neurons in Figure 5.2.

Next, we force that these dashed selected neurons only have positive weights,
their activation function are increasing and they are only subsequently connected
to new layer dashed neurons or the last neuron, as shown in Figure 5.2.

Finally, in the first layer, we connect the input τ only to the dashed neurons
of the first hidden layer, as we can see in Figure 5.2. Therefore, the changes in
the τ input only affects the dashed neuron values, which behave as a monotonic
function with respect to the propagated τ value. We refer to this monotonic
version of the IQN as the Partial Constrained Dense Network (PCDN).

125

The PCDN has two important properties: On the one hand, the inputs x are
connected to the output with restricted and non-restricted weights. On the other
hand, the τ value is connected with the output of the model only with restricted
neurons to ensure it is a partial monotonic increasing function with respect to τ .
By applying PCDN we restrict the number of constrained weights and neurons to
only selected part of the neural network. This model could be considered as an
extension of other proposed models in the literature such as Monotone Composite
Quantile Regression Neural Network (MCQRNN) (Cannon, 2018), which predicts
a fixed number of quantiles.

5.3 Modelling the partial derivative with a neural

network

Here we propose the Unconstrained Partial Monotonic Neural Network (UPMNN),
an extension of the UMNN (see Reminder 4) to built a partial monotonic func-
tion. Once this is achieved, the model can be used to tackle the CQR problem
(stated in Eq. (3.24)) considering the crossing quantile phenomenon.

Rather than building a monotonic function with respect to all the inputs - as
in the UMNN - the UPMNN builds a function Φ: [0, 1]×RD → R so that it is only
monotonic with respect to its first input variable τ ∈ [0, 1]. Once this function is
defined, then it can be optimized using the stochastic CQR loss function designed
for quantile functions (introduced in Eq. (3.25)).

Like the UMNN, the UPMNN learns a neural network, ϕ : [0, 1]× RD → R+,
such that it is related to Φ by

Φ(τ ;x) ≈ Φ(0;x) +

∫ τ

0

ϕ(t,x) dt (5.1)

where the term Φ(0;x) corresponds to the conditional quantile function at τ = 0.

The integral in Eq. (5.1) is computed via the Clenshaw-Curtis formula over
the interval [0, τ]. That formula, considering the quantile input, consists in the
following steps:

126

1. First, we fix an even integer d, called degree, and we define the so-called
nodes depending on τ :

t̄dk(τ) :−
τ

2
cos

(
πk

d

)
+
τ

2
, 0 ≤ k ≤ d. (5.2)

These nodes have the property that t̄2dk (τ) = t̄dk/2(τ), which means that half
of them can be reused when the value of d is doubled.

2. Second, we compute the quantities c̄j(τ,x) defined by

c̄j(τ,x) :−
d∑

k=0

ϕ(t̄dk(τ),x) cos

(
jπk

d

)
, 0 ≤ j ≤ d, (5.3)

which is just a matrix-vector multiplication. Here, we can use an algorithm,
known as the Discrete Cosine Transform of type 1 (DCT-I), which performs
the matrix-vector multiplication in Eq. (5.3) with a complexity Θ(d log d)

rather than a standard Θ(d2) procedure. In general, this algorithm produces
the unnormalized coefficients defined in Eq. (5.3). To normalize them with
respect to the degree, we must apply a factor, for instance, 2/d. Thus, let
us redefine the quantities

c̄j(τ,x)←
2

d
c̄j(τ,x).

3. Finally, Φ(τ ;x) in Eq. (5.1) is approximated by P (τ ;x, d) such that

P (0,x; d) = Φ(0;x),

i.e. all the constant of integration in Def. 7 - the sum of K(x) and Kw(x)

- or in the constant of integration in Eq. (5.1) is the conditional quantile
τ = 0. All of the above leads us to the final Clenshaw-Curtis expression
used in the UPMNN,

P (τ,x; d) = τ

(
c̄0(τ,x)

2
−

d/2∑
k=1

c̄2k(τ,x)

4k2 − 1

)
+Φ(0;x). (5.4)

127

Note that Eq. (5.4) has a τ dependency on all the coefficients of c̄k(τ,x), which
comes from the fact that the P depends on τ , because the nodes in Eq. (5.2) also
originally depend on the quantile τ . The resulting contribution - the main model
- will avoid this dependency, which will be crucial to learn ϕw and Kv generically,
as we will see hereafter.

5.4 The CheNet as a partial monotonic solution

5.4.1 Rate of convergence of the Chebyshev expansion

In Chebyshev series theory (Majidian, 2017; Trefethen, 2008), if a function ϕw

is of class C1 in [−1, 1], then its Chebyshev expansion converges absolutely and
uniformly to ϕw in [−1, 1]. In case that ϕw is in Ck([−1, 1]), then its Chebyshev
coefficients cℓ verifies that |cℓ| = o(1/ℓk). Moreover, if ϕw is now analytic, its
Chebyshev expansion will have an exponential rate, i.e. |cℓ| = o(exp(−ρℓ)) for
some ρ > 0 denoting the radius strip in the complex plane whose strip contains all
the Chebyshev coefficients cℓ. Therefore, smoother mappings are going to require
less Cheybshev coefficients. To have a kind of measure about the accuracy of
the approximation p ≈ ϕ, one needs to check the decay rate of the Chebyshev
coefficients cℓ. Most of the times, it will be enough to monitor the last two
coefficients cd−1(x), and cd−2(x) in absolute value.

Due to the discretisation in the root mesh {tk}d−1
k=0, which acts as a linear

transformation, the evaluation of P (tk;x) will have roundoff error (i.e. machine
precision) with respect to the integral of

∫ tk
0
ϕw(t;x) dt and for the other values

not in the mesh, its (absolute) error will be bounded by the aforementioned
convergence rate.

5.4.2 Ensure monotonicity for all quantiles

There is one last detail that it should be analysed to be totally confident that the
function P (τ ;x) = f(τ,x) is monotonic with respect τ . It is required to consider
that p is an approximation of ϕw, i.e. p(τ ;x) ≈ ϕw(τ ;x). Thus, although the

128

ϕw function has been forced to be strictly positive, the approached Chebyshev
polynomial p may not be. According to Section 5.4.1, we are certain that for the
roots values, {tk}d−1

k=0, the Chebyshev estimation has a negligible error. However,
in the middle points between the roots it is important to be careful.

We will divide the solution according to whether the model chosen is implicit
or explicit.

Implicit CheNet (dynamic degree): As the degree is not fixed, once it is
detected that there is a point that does not meet the condition of montonicity we
can augment the degree, d, as much as we want (without retraining the model,
just evaluating P in other points) and we are certain that we will always end
up finding a degree value such that the error will again be negligible, based on
the convergence presented in Section 5.4.1. Consequently, the Implicit CheNet
version can produce always a monotonic function.

Explicit CheNet (static degree): Once the appropriate degree is known,
the model with that value can be considered a monotonic function. However, it
is important to note that although the error will be small, the possibility of P
ceasing of being monotonic exists in all non-root points. In fact, this solution
implies to increase to d the number of outputs and, consequently, the number of
parameters to learn.

5.5 Results and comparison

The following results will be analysed regarding several metrics related to the
number of times each model has a crossing and analysing how the number of
crossings decreases as bigger is the degree of the CheNet. Additionally, the per-
formance of the compared models will be analysed using tables of sections before
but highlighting the differences when the model ensure partial monotonicity or
not.

129

Figure 5.3: Correlation between the number of crossing quantiles and the degree
used in test time for the worst data set in terms of crossings (the protein data
set) using all CheNet-Med models trained with d = 20. Each line is displayed
until it has four consecutive values of 0.

Number of crossing analysis Table 5.1 shows the minimum and maximum
number of crossing quantiles for each model taking into account all the folds. As
expected, the N model does not have crossing quantiles since it is derived from
the normal quantile function. The PCDN never has any crossing quantiles, as
stated in corresponding Section 5.2. Furthermore, none of the CheNet models
have crossing quantiles if a sufficiently high degree is used, which can be decided
in test time when these models are trained in the Implicit version or evaluating
the internals roots in both versions (as shown in Section 4.3.3.3).

130

Table 5.1: Minimum and maximum, [min, max], of the crossing quantile numbers
over all the test folds proposed in Hernández-Lobato and Adams (2015a). “*” de-
notes the number of crossing quantiles for high enough degree during inference
or evaluating the roots.

Housing Concrete Energy Kin8nm Naval Power Protein Wine Yacht
N [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0]

IQN [0,0] [0, 1416] [75, 3007] [0, 834] [1673, 104689] [0, 4058] [57554, 87096] [0,0] [281, 5935]
IQN-P [0,0] [0,0] [11, 2583] [0, 782] [1072, 123594] [0, 2539] [42461, 77603] [0,0] [22, 2852]
IQN-D [0, 55] [0, 1541] [733, 8259] [0, 3959] [6246, 263553] [175, 72813] [68210, 113867] [0, 2131] [931, 7632]
PCDN [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0]

UPMNN [0,0] [0, 1201] [2152, 22760] [0,0] [0, 0] [0, 433] [2090, 11409] [0,0] [150, 2630]
CheNet-q0 [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗

CheNet-q1 [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗

CheNet-Med [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗

CheNet-Mean [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗ [0,0]∗

Table 5.2: Minimum and maximum degree used, [min, max], over all the test folds
proposed in Hernández-Lobato and Adams (2015a) to obtain 0 crossing quantiles
in test time.

Housing Concrete Energy Kin8nm Naval Power Protein Wine Yacht
CheNet-q0 [20, 20] [20, 40] [40, 90] [20, 20] [20, 20] [20, 40] [180, 380] [20, 20] [20, 80]
CheNet-q1 [20, 20] [20, 40] [20, 80] [20, 20] [20, 20] [20, 40] [130, 230] [20, 20] [30, 70]

CheNet-Med [20, 30] [20, 180] [20, 350] [20, 20] [20, 20] [20, 200] [250, 300] [20, 20] [20, 40]
CheNet-Mean [20, 20] [20, 20] [20, 210] [20, 20] [20, 20] [20, 40] [160, 190] [20, 20] [20, 20]

Asymptotic monotonic guarantees of CheNet Figure 5.3 depicts the state-
ment presented in Section 5.4.2 for the worst data set in terms of number of
crossing quantiles according to Table 5.1. For all the UCI data set presented in
Brando et al. (2022a) and Brando et al. (2022b), we computed the minimum and
maximum number of required degree to arrive to 0 crossing quantiles in the each
test fold. That information is reported in Table 5.2. In this analysis the degrees
start from d = 20 with an increment of 10 each time until there is no crossing
quantiles in the test fold. For a qualitative analysis, we refer to the Figure 5.3.
As we can see in Figure 5.3, the higher the degree evaluated in test time for a
certain input data x, the more likely it is to have no crossing quantiles. All the
tested folds reach 0 crossing quantiles.

Additionally, Table 5.2 contains the minimum and maximum degree used to

131

satisfy the 0 number of crossing quantiles during 4 degrees consecutively for each
UCI dataset used in the previous results of Table 5.1.

Table 5.3: Mean and variance, mean ± variance, over all the up to 20 test folds
proposed in Hernández-Lobato and Adams (2015a) of the quantile regression loss,
see Eq. 3.24.

Housing Concrete Energy Kin8nm Naval Power Protein Wine Yacht
N 88.72± 16.62 168.45± 16.39 58.68± 18.99 2.53± 0.11 0.02± 0.00 111.70± 2.66 120.41± 2.43 18.22± 1.31 97.46± 59.04

IQN 84.87± 19.41 138.80± 15.92 12.31± 1.64 2.25± 0.07 0.02± 0.00 109.45± 3.14 105.89± 1.80 18.34± 1.34 14.63± 4.69
IQN-P 85.13± 17.96 150.25± 15.03 13.02± 1.87 2.23± 0.09 0.02± 0.00 113.52± 2.42 109.38± 1.75 18.58± 1.29 16.40± 5.56
IQN-D 112.42± 22.21 205.89± 29.44 46.72± 11.94 3.11± 0.17 0.03± 0.01 154.14± 5.78 153.00± 5.41 25.03± 2.53 20.95± 10.54
PCDN 88.41± 20.25 147.40± 18.10 13.08± 1.66 2.31± 0.09 0.02± 0.00 113.94± 2.99 111.26± 0.75 18.42± 1.29 15.00± 4.88

UPMNN 83.85± 18.02 142.51± 14.90 14.45± 2.30 2.29± 0.07 0.01± 0.00 109.49± 3.52 105.60± 0.91 18.38± 1.41 14.56± 4.18
(I) CheNet-Med 84.79± 18.73 145.27± 14.54 19.20± 4.42 2.28± 0.07 0.02± 0.00 111.38± 3.00 107.33± 1.44 18.32± 1.14 16.74± 5.48

(I) CheNet-Mean 85.23± 17.91 142.03± 16.22 15.74± 3.96 2.30± 0.07 0.02± 0.00 111.72± 2.73 108.20± 1.31 18.40± 1.20 16.89± 5.40
(E)CheNet-Med 83.75± 18.41 142.11± 16.92 16.31± 3.57 2.26± 0.08 0.02± 0.01 111.18± 2.54 107.37± 1.68 18.23± 1.29 15.18± 4.89

(E)CheNet-Mean 84.81± 19.39 142.56± 13.45 14.89± 1.58 2.27± 0.06 0.02± 0.01 111.21± 2.83 107.68± 0.48 18.20± 1.33 16.43± 4.81

(I) CheNet-q0 84.09± 19.01 142.48± 15.76 14.59± 1.81 2.30± 0.06 0.01± 0.00 109.36± 2.73 105.23± 1.55 18.42± 1.24 15.33± 4.70
(I) CheNet-q1 91.67± 20.25 146.62± 20.25 17.76± 2.31 2.28± 0.05 0.02± 0.00 109.15± 2.91 108.07± 1.09 18.70± 1.15 15.73± 4.50
(E)CheNet-q0 83.71± 18.76 138.34± 15.40 13.18± 1.74 2.20± 0.06 0.02± 0.00 108.46± 2.71 104.16± 1.45 18.27± 1.28 13.75± 4.77
(E)CheNet-q1 88.96± 18.27 143.68± 16.54 16.92± 2.60 2.21± 0.06 0.02± 0.00 109.34± 2.77 106.34± 1.20 18.64± 1.55 16.13± 4.61

Comparing Quantile Regression Performance As we saw, not all models
proposed in this work ensure monotonicity. Although ideally this property should
be satisfied for a model that perfectly fits the conditional density distribution
p (y | x) in a discrete manner, the reality is that imposing this property can make
it more difficult the fitting process, resulting in a model with worse performance.
To evaluate this point, we can look at the results are reported in Table 5.3 again,
where the quality of the predicted quantiles is evaluated regardless of crossing
quantiles because we calculate the sum of the quantile regression loss function of
100 random quantiles for each of the models in the test set. We can conclude that
the non-restricted models are not clearly better than the restricted ones proposed
in this work. Thus, avoiding the crossing quantile phenomenon does not imply
a clear loss in terms of performance, regarding the compared models, and it will
be a property to be imposed only when the problem to be solved requires it.

132

5.6 Conclusions

Quantile Regression (QR) is an extensions of the common regression methods to
estimate the conditional density distribution of the response variable, p(y | x), in
a discrete manner (or in a point-wise way) and without assuming any parametric
distribution. The distributional freedom of QR is a desired property but when a
single QR-model tries to approximate several quantiles at once, the order between
the predicted quantiles matters. When these quantiles are not predicted in an
increasing way considering its quantile value, τ , then the predicted distribution
is invalid. This phenomenon is called “crossing quantile”. In this chapter, we
introduced several methods that solves this issue illustrated in Figure 5.1.

Apart from the introduction of the Partial Constrained Dense Network (PCDN),
another main contributions of this chapter is to show how the Chebyshev Net-
work (CheNet) (initially presented in Section 4.3.3) can be applied to solve the
crossing quantile phenomenon. In particular, CheNet is a deep learning model
to approximate the partial derivative of an ending quantile function with respect
to the quantile input. This partial derivative is imposed to be positive, thus,
the ending function will be partially monotonic as desired. In Section 5.4, we
described how to calculate this derivative by using a Chebyshev Polynomial ap-
proximation ensuring the monotonicity of the quantile function up to any desired
precision.

Having computationally guarantees of the monotonicity of these models, our
final goal was to verify if the imposed restrictions would adversely affect the
performance of the model compared with a non-ensured quantile regression model.
As we saw in Section 5.5, the proposed models outperforms or maintains the
performance - in terms of likelihood estimation - and yields non-quantile crossing
forecasts with respect the other compared models.

Overall, the proposed models constitute generic deep learning wrappers for
any neural architecture to build partial monotonic quantile functions avoiding
the crossing quantile phenomenon.

133

Chapter 6

UNCERTAINTY
VISUALIZATION AND
EVALUATION

The generic goal of visualization is to effectively and accurately communicate
data (Bonneau et al., 2014). In recent times, technological advances lead to
increase the data acquisition and their quality, this emphasize the importance of
developing tools and methods to manage large volumes of data and build human-
understandable processes to extract insights from them. All of this, recognizes
and accelerates the research and work on visualization field (Rosling, 2006).

Particularly, one of the more challenging aspects of data visualization is the
representation of uncertainty (Wilke, 2019). When we see data points drawn in
a specific location in a plot, we tend to interpret it as a precise representation of
the true data value. It is difficult to conceive that most of the times there is a
non-deterministic scenario where several sources of uncertainty can affect our vi-
sualization. As we saw in Chapter 2, nearly every data set contains this ambiguity
(or even the model chosen for the visualization can introduce it). Consequently,
the way we choose to represent this uncertainty can produce a major difference
in how decisions are made based on these visualizations or, generically, how our
audience perceive the model forecasting or data.

To highlight the importance of representing uncertainty in regular decisions

134

Figure 6.1: There are two routes. The blue one is shorter in expectation but
when we must arrive before the 25 minutes we should take the green one.

making, we can consider a taxi driver which requires to select a certain route as
described in Duerr et al. (2020). In this context, let us imagine a client asks the
taxi driver that they needs to reach their destination in less than 25 minutes.
To simplify the problem, we consider that there are two possible routes to the
destination as shown in Figure 6.1: One that takes approximately 18 minutes
on average and is shorter and the second that takes 23 minutes on average and
is longer in distance. Based on the information of the distance and the average
minutes of trip, the optimal decision would be the first option. However, as shown
in the Figure 6.1, if we observe the distribution of the travel time we can see that,
in the second option, the probability of arriving before 25 minutes is 98.3% that
is higher than the 86.7% of the first option, which would lead the taxi driver to
take the second route.

In the previous example, we have a typical case where the visualization of the
information is crucial for the decision-making process. Nevertheless, the typical
route predictors only indicate us the average travel time, which prevent us to
know if there exist a considerable variability in the travel time that can change our
decision. In fact, this idea connects with the importance of designing descriptors
that avoids strong assumptions regarding the shown distributions as we did with

135

UMAL in Section 3.2.3, quantile regression in Section 3.3 or CheNet in Section
4.3.3. Therefore, as we highlighted in these previous sections, a central variability
descriptor as uncertainty information might not even be enough if we are tackling
a multi-modal or heterogeneous scenarios and, thus, we should consider to provide
richer descriptors as we will see in this chapter.

In fact, most of these procedures to select which can be a better visualization
would be linked with an evaluation metric, for instance, for the model selec-
tion. Eventually, measuring metrics should also consider the uncertainty to avoid
misleading predilections (e.g. choose models with highest accuracy without con-
sidering the quality of its failures). In the following sections, we are going to enter
into the details in some of them.

6.1 Describing each source of uncertainty

In Chapter 2, we introduced a procedure to split the uncertainty sources depend-
ing on the associated probability it has, which are obtained using the chain rule.
Nowadays, this distinction presented in Eq. 2.2 is no commonly accepted and
produces an open-debate regarding the nomenclature or proper names of these
uncertainty types as we discussed in Section 2.1. Although the main goal of this
work is to tackle aleatoric uncertainty, in order to clearify the differences with
other kinds o uncertainty, in this sections, we will consider an expanded version
of Eq. 2.2 to delve into the importance of having different representations for each
part of this equation that corresponds to an specific type of uncertainty source.
The equation will be

p(x∗, y∗, X, Y) ≈ p(X)p(x∗ | X)

∫
M
p(M | X, Y, x∗)·p(y∗ | X, Y,M, x∗)dM, (6.1)

where x∗ is the new evaluated point with their corresponding new label to
be predicted y∗, p(X) corresponds to the measurement-error, p(x∗ | X) is the
manifold uncertainty, p(M | X, Y, x∗) is the epistemic uncertainty and p(y∗ |
X, Y,M, x∗) is the aleatoric uncertainty, which was described in Figure 2.1. Fol-

136

Figure 6.2: The Manifold uncertainty is captured by modelling p(X). This value
is shown in the background in blue.

lowing we will propose several ways to visualize them.

6.1.1 Measurement-error and manifold uncertainty visual-

ization

When we were modelling p(X), according to Chapter 2 notation, this includes
the measurement-error, here denoted also as p(X), and the manifold uncertainty,
p(x∗ | X), which they have different meanings. Importantly, this combined uncer-
tainty do not consider the variable to be predicted, Y , nor the model to perform
such prediction, characterized by M . Therefore, we should be careful when we
represent this uncertainty in a standard regression plot (e.g. most of the plots
presented in Chapters 3, 4 and 5), where the horizontal axis is some input vari-
able and the vertical axis is the predicted values, due to p(X) not depend on Y .
Consequently, one way to represent this uncertainty can be using the background
colour as represented in Figure 6.2. In that case, each horizontal value has a
different background colour where purpler zones correspond to high confidence
X values while zones with lower X confidence will be bluish.

Analysing Figure 6.2 we can see that zones where there are less data points
have a whitish colour (e.g. between 0.2 and 0.4 or between 0.8 and 1) that can
also be produced by a measurement-error, which corresponds to an irreducible
variability of the input variable. Furthermore, we should highlight that the p(X)

137

Figure 6.3: Each NN component of the ensemble is approximating the conditional
median. The discrepancy on those components encodes the epistemic uncertainty.
In blue, the normalized standard deviation is shown in the background.

value is independent of the conditional variability p(Y | X), as we can observe,
for instance, between the 0.4 and the 0.6 points.

6.1.2 Epistemic uncertainty representation

Epistemic uncertainty, p(M | X), which corresponds to the uncertainty related to
selecting a certain family of models M (see Figure 2.2) is a similar scenario than
the Manifold uncertainty: The new response random variable y∗ is not involved in
this uncertainty. However, here the prediction of each model characterized by M
is usually approximating some statistic of Y given X. This last detail produces
several ways of visualizing this uncertainty depending on what is approximating
each model but we should be careful to distinguish between the epistemic and
aleatoric approximation part. To do it, here we will consider only point-wise
approximator models, e.g. a model that is predicting the conditional median.

At the end, considering a certain family M of such models is to consider
an ensemble with a finite - or not - number of components or models. Their
discrepancy refers to the epistemic uncertainty we are capturing. Therefore, one
way to visualize its discrepancy is to plot each prediction separately, as it is shown
in Figure 6.3.

Comparing Figure 6.3 with Figure 6.2, we can see clearly the difference be-

138

Figure 6.4: Conditional normal distribution where their parameters are approx-
imated using a NN, as Section 3.2.1 shows. Aleatoric uncertainty is captured as
central deviation from the mean.

tween capturing the Manifold or Epistemic uncertainty: For instance, in the
horizontal interval from 0.2 to 0.4, the behaviour of both uncertainties are com-
pletely different. This is because the density of p(X) is small in such interval but,
differently, the approximated conditional medians of the ensemble are producing
a similar forecast given the previous and posterior shape of the data is clearly
defined (and the consequence behaviour that use to perform NN models). This
fact could tend to change when X is high dimensional but, if the ensemble is
naively approximated, we do not have any guarantee that the discrepancy will be
always higher in zones where p(X) is lower using such NN models.

Importantly, similarly to the Manifold case of Section 6.1.1, it is worth to
highlight that high conditional variability zones between the response variable
and the input one, such as in the horizontal interval from 0.4 to 0.6, does not
imply to having an epistemic discrepancy if the approximated statistic is clearly
defined. Therefore, we should need to model aleatoric uncertainty to detect this
extra new source of uncertainty.

6.1.3 Aleatoric uncertainty visualization

The main source of uncertainty analysed in this work is the aleatoric uncertainty.
Following Section 2.1 and Chapter 3, this kind of uncertainty is focused on mod-

139

Figure 6.5: Free distributional quantiles approximated using quantile regression
with a NN, as Section 3.3 shows. Aleatoric uncertainty is captured as discrete
distributional cumulative points.

elling the variability of the response variable, Y , given a fixed X and M , denoted
as p(y∗ | x∗, X, Y,M) in Figure 2.2 and shown in Eq. 6.1.

Unlike previous uncertainty types, visualizing aleatoric uncertainty has a di-
rect impact on the response variable to be modelled, therefore, this uncertainty
can be represented without the vertical bars used in Figure 6.2 and 6.3 because
now it depends on the vertical axis values. Additionally, this uncertainty is ir-
reducible, therefore, our goal will be to show the distributional shape to design
shape-tailored techniques. This is why it is important to avoid strong assump-
tions regarding to the conditional distribution, such as symmetry or unimodality,
if we do not have clear evidences that they cannot harm the forecasting proce-
dure, as we analysed in Chapter 3, but even here for improving the visualization
tasks.

When standard symmetric and unimodal approaches are considered, the result
can be shown in Figure 6.4. As it is shown, non symmetrical areas (i.e. before the
horizontal 0.3 points and after the 0.7 one) are not captured, thus, not reported
using this approach. As we discussed in Section 3.2.1 and Section 3.3, richer de-
scriptors than central tendency with variance can provide us decisive information.
In this line, approximating the quantiles by means of quantile regression, as it
is shown in Figure 6.5, allows to consider some upper/lower- bound quantiles as
well as central ones to summarize the shape of the distribution in a point-wise

140

Figure 6.6: Conditional distribution approximated using UMAL, as Section 3.2.3
introduces. Aleatoric uncertainty is captured as the approximated likelihood.

way. However, quantiles constitutes a discrete approximation of the conditional
distribution and, in some applications such as the described in Section 3.2.3, the
estimation of the likelihood could be beneficial not only to take certain decisions
but also to be combined with the previous uncertainty types as we will see in
the next section. To provide a richer estimation of the likelihood, in Figure 6.6
we can see a UMAL forecast of the previously presented data set, where blueish
areas are the ones that has higher likelihood.

On the whole, considering Figures 6.4, 6.5 and 6.6 we can observe that lower
likelihood points are those where the conditional variability is higher. Therefore,
between [0., 0.2], [0.4, 0.6] and [0.8, 1]. This behaviour contrast with the presented
in previous Section 6.1.1 and 6.1.2 as we will discuss in the next section when an
integrated approach will be designed.

Importantly, isolated aletoric uncertainty fixes a certain model parametrized
by M . This can be seen as one of the components of the ensemble in the previ-
ous epistemic Section 6.1.2 and, based on this idea, we can build an integration
procedure to visualize all the presented uncertainty sources as follows.

141

Figure 6.7: Discrete Integrated uncertainty visualization based on Sections 6.1.1,
6.1.2 and 6.1.3. Aleatoric uncertainty is captured using quantiles, epistemic one
considers their mean and standard deviation and Manifold one as density bars.

6.1.4 Integrated uncertainty representation

Proposing an integrated procedure to represent all the uncertainty types is useful
to synthesize all this complex information in a single plot. Based on the previously
introduced visualization types, we can represent the presented Measurement-
error, Manifold, Epistemic and Aleatoric uncertainty in a discrete way as it is
shown in Figure 6.7. Particularly, the aleatoric uncertainty is represented as
quantiles in that case. Consequently, we have a set of quantiles for each model
M considered in the ensemble. Assuming they are independent samples, we can
compute their mean and variance for each conditional quantile and represent
them as error bars as shown in Figure 6.7.

Moreover, if all the uncertainties are expressed as probabilities, this inte-
grated visualization can be combined in an unique probability using the Eq. 6.1,
introduced in Chapter 2 and in Figure 2.2, which can provide us a continuous
visualization technique that combines all the uncertainty sources by representing
p(X, Y), shown in Figure 6.8. This representation displays the confidence in all
the uncertainty sources using the p(X, Y) estimated information, which includes
modelization of the residual variability, outlier detection, model uncertainty and
conditional irreducible uncertainty.

142

Figure 6.8: Continuous Integrated uncertainty visualization based on Sec-
tions 6.1.1, 6.1.2 and 6.1.3. All uncertainties are considered as probabilities.

6.2 Qualitative check of the reported uncertainty

Once we have techniques to report each kind of uncertainty as it was described in
Section 6.1, now we require a process to ensure the decisions we can make, using
that information, are reliable. This process is connected with the characterization
of the predicted uncertainty quality. In other words, we need to be able to judge
how confident we can be in scenarios forecast as doubtful or safe. Additionally,
another key factor in evaluating the reported uncertainty is to detect which of
a set of predictive systems are producing a better forecast of the uncertainty to,
for instance, propose improvements of the evaluated models.

Next, we will describe different graphical evaluation methods used and devel-
oped during the present thesis and in Brando et al. (2022b, 2018a, 2019b, 2020)
for characterize the main source of uncertainty of this work, the aleatoric one.

6.2.1 Error-retention curve for checking score quality

The goal of the thesis is mainly regression problems to forecast a single dimen-
sional output. In this context, following the same scheme to build the uncertainty
modelling of a “black box” presented in Section 4.1, our forecasting system has
two different outputs: a prediction of the desired value - denoted as ŷ - and an
associated uncertainty measure - obtained from a function denoted as ψ - that

143

Figure 6.9: An example of an Error versus Retention Curve (ERC).

can be used for the confidence-based decision making process or even to order
from less to high safe predictions. Helpfully, the order is uniquely defined in such
single dimensional output space, which implies we can use a one dimensional con-
fidence measure (denoted as the “uncertainty score” in Section 4.2) to sort from
more to less confident points and see if the empirical actual error satisfies this
order.

The Error versus Retention Curve (ERC), firstly introduced in Section 4.2.4.3,
has the goal of showing how properly sorted are the predictions if we consider
the predicted uncertainty score versus a perfect sorting process (denoted as the
“oracle uncertainty score”) that is computed a posteriori using the real error as
follows,

ERCd
(
{y}Ni=1, {ŷ}Ni=1, κ

)
=

N∑
i=1

d(yi, ŷi) · 1[ψ(xi) < κ]

N∑
i=1

1[ψ(xi) < κ]

(6.2)

where {y}Ni=1 and {ŷ}Ni=1 are the N real and predicted values respectively, the
1[p] is the indicator function that verifies the condition p, the κ is the uncertainty
score value selected as threshold and the d is any desired error metric to be
evaluated. Consequently, depending on the selected error metric this affects the

144

Figure 6.10: Density plot between the uncertainty score value and their corre-
sponding Average Absolute Error produced by the Our In Production black-box
when it is predicting in the Financial forecasting problem.

shape of this curve. In Figure 6.9, we can see how this plot is obtained considering
a MAE. An extension of this plot was shown in Figure 4.2 of Section 4.2.4.3.

6.2.2 Error-retention density plot for score inaccuracies

The goal of the Error versus Retention Density (ERD) plot is to show an overview
of how errors are distributed when each predicted uncertainty score is considered.
Differently than ERC, each horizontal point of the ERD plot do not corresponds
only to a summary statistic (e.g. conditional mean) of all the errors with a
certain uncertainty score value but the ERD visualizes the degree of belonging
in each error value based on a common legend of colours. This legend is defined
considering all the absolute error values of the predictive model versus the real
value to be predicted of a test set. For instance, in Figure 6.10 we can see
that lower uncertainty score values (the first horizontal values) have small part of
higher errors (blueish color) but this is increased as more higher is the uncertainty
score value.

Similarly to ERC, the ERD plot changes depending on the selected error

145

metric (e.g alternately to the MAE, it can be considered the MSE, MAPE, MPE,
RMSPE as it was introduced in Section 4.2.4.3).

6.2.3 Calibration curve to verify probabilities

Reminder 5 (The concept of calibration) Nowadays, humans rely on
computer produced scores to make important decisions in our lives. Whether
a medical operation should be performed, the score for the granting or not a
credit or even the score of predicting rainy days, these numbers play an im-
portant role in how we make decisions. However, what if these scores are not
actually accurate? Do the model’s predictions provides us the probability of rain
or a good forecast to maximize the evaluated loss in the optimization process?
This is where calibration comes in.
Calibration is the process of adjusting probability scores so that they more accu-
rately reflect its probabilistic reality. For example, consider a weather forecaster
that reports a score of 0.7 out of 1 points to rain tomorrow. This might seem
like a good score, but without calibration it is impossible to know how good it
actually is because it do not has an interpretable meaning. With calibration,
however, we can transform this score into probabilities and use them more ef-
fectively in decision making. In this case, the probability that we should have
taken an umbrella would be 70%, while the probability that it would not be nec-
essary would be 30%.

In the present work, we are considering a single dimensional response variable.
Consequently, conditional quantiles that are defined in such space correspond to
a real value or threshold that divides the response variable distribution into two
parts with a certain probability below and above. This probability is directly
the goal of a calibrated quantile. Thus, a properly estimated distribution would
have their quantiles calibrated, which ensures the proper interpretation of the
forescasted probability.

In this context, a calibration curve will be the representation of how well
probabilities are forecasted compare to the empirically measured probabilities
over a new set of data, which is not used for training or validation steps following

146

Figure 6.11: An example of a set of calibration curves.

Section 2.2 notation.

In Figure 6.11, we can see the curve that is computed as follows,

Definition 15 (Calibration curve) Given a certain quantile θ ∈ [0, 1] and a
set of data (X, Y) = {(xi, yi)}Ni=1 that corresponds to samples of a certain distri-
bution p(X, Y) (following notation introduced in Chapter 2), now, we can be in
two situations:

Our predictive model forecasts a conditional probability (e.g. by predicting
the conditional parameters of a certain parametric distribution). First, we
compute the θ quantile of the predicted conditional probability. Secondly,
we evaluate if the real value to be predicted is above or bellow the computed
quantile. Finally, we repeat this process for all the test set points and con-
sider the tan-per-cent of times the real value is equal or below the computed
quantile as the vertical value that defines the calibration curve for the θ

point.

Our predictive model forecasts a conditional θ-quantile: For all the points

147

inside the test set, compute the number of times the predicted quantile is
above of the real value to be predicted and directly use this value as the
vertical value that defines the calibration curve for the θ point.

The closest the computed calibration curve is to the real “ideal correlation”
curve, the more similar to the empirical probability results is the forecast.

Once the calibration performance is obtained - and its deficiencies are detected
- a re-calibration step can be carried out by using techniques such as temperature
scaling Platt et al. (1999), which was shown by Guo et al. (2017) to lead to well-
calibrated predictions on i.i.d. test sets. Importantly, this post-hoc calibration
process can fail under even a mild shift in the data distribution (Ovadia et al.,
2019), which is a widely prevalent situation in real-world applications and this
encourage the research on the corresponding source of uncertainty (as discussed
in Section 2.1).

6.3 Quantitative rating of the reported uncertainty

Differently than graphical evaluations that are important to quickly infer the
prediction correctness, numerical evaluations are also important because they al-
low for more precise information regarding the model performance. This level
of precision is often necessary in business contexts (Brando et al., 2018a) where
small differences in certain points can have big impacts on profits and losses. Fur-
thermore, by focusing in certain values, the comparison between several models
performance can be simplified as we can see in Table 2.1.

Following we will present several numerical methods used and designed during
the previous works (Brando et al., 2022b, 2018a, 2019b, 2020) for the numerical
evaluation of the predicted uncertainty.

6.3.1 Ordering score index for evaluating sorting quality

Once we have defined the ERC, which qualitatively evaluates the sorting quality
using the predicted uncertainty score, the goal of the ordering score index is to
quantitatively summarize the difference between the area under the perfect oracle

148

curve of the ERC, here denoted as ψo, versus the evaluated system, denoted as
ψk, as follows

S(ψk) = 100

(
1− A(ψk)− A(ψo)

δk − A(ψo)

)
, (6.3)

where δk =

[(
1
N

∑N
i=1 |ψk(zi)− yi|

)
, . . .
Repeat N times

]
is a vector with N times

the same value, which is the generic mean absolute value of all the evaluated
points. This vector corresponds to a theoretically random sorting process perfor-
mance. On the other hand, A(v) denotes the area of the ERC of the function v.
On the whole, as it was introduced in Section 4.2.4.3, the ordering score index
is near 100 when it is close to the perfect order and take lower values as more
different it is, arriving to zero or even negative values due to reasons related to
stochastic noise.

6.3.2 Quantile regression as a generic quantile metric

Importantly, the quantile regression formula,

L(X, Y) = E

[∫ 1

0

(
Y − Φw(τ,X)

)
·
(
τ − 1[Y < Φw(τ,X)]

)
dτ

]
, (6.4)

can be used as a generic evaluation metric to see how all the quantiles are
properly distributed, unlike the likelihood evaluation as we saw in Section 3.3.
However, we should take care that this metric do not considers if the predicted
quantiles cross or not but only if they, individually, are close to the real quantile,
as discussed in Chapter 5 introducing the crossing quantile phenomenon.

6.3.3 Calibration area to verify the trust on probabilities

Finally, the calibration curve can have an analogous comparison from the pre-
dicted calibration curve and the perfectly calibrated curve shown in Figure 6.12.
As we show in that figure, the area between these two curves can be used as a sum-

149

Figure 6.12: The calibration area corresponds to the area value of the reddish
highlighted zone which is bounded by the ideal calibration curve and the produced
by the evaluated model.

mary of how well calibrated are the forecasted quantiles, generically. Importantly,
this calibration curve can be obtained for any probabilistic model (including para-
metric or distributional-free models).

6.4 Conclusions

This chapter has highlighted the importance of properly representing and mea-
suring the uncertainty in any forecasting scenario using the uncertainty modelling
techniques proposed in the present thesis.

Reporting accurately the uncertainty is strictly connected to the visualization
field, as one of the more challenging open-problems, and its specially crucial
for any further decision making decision process to provide trustable forecasting
systems.

As it was described in Section 6.1, the source of the uncertainty characterize

150

the procedure to visualize and measure itself. In this section, a disentanglement
between all the presented uncertainty sources - introduced in Chapter 2 - were
proposed by linking several literature methods regarding for the presented uncer-
tainty types with the presented in the current thesis.

At the same time, the proposed approach launches the possibility to com-
bine different uncertainty sources modelling techniques to provide an integrated
procedure to visualize and measure the uncertainty from all their sources. The
proposed approach conceives two ways to model uncertainty: from a discrete
viewpoint or from a continuous one.

Additionally, the present chapter remarks the importance of qualitative met-
rics, as a manner to visually show the performance of the model and obtain a
range of possibilities to overstretch and detect critical modelling failures of the
uncertainty such as the proper calibration of the reported probabilities. Further-
more, these metrics were enriched with quantitative metrics, which are in charge
of summarize the previous visualizations by providing uncertainty quality indices.
Importantly, these indices constitute a suitable characteristic to determine which
models are more reliable in terms of uncertainty modelling.

151

Chapter 7

Conclusions

Increasingly, more and more human decisions are based on the outputs of fore-
casting systems reaching the point where certain decisions are fully made by
autonomous machines. Crucially, many of these decisions are based on their best
guess at what will happen and the associated risks are implicitly neglected. How-
ever, by only considering the expected value of an event, the autonomous system
may be overlooking important factors that can affect the outcome, which can be
critical in certain scenarios. This is the initial motivation of the presented thesis.

In particular, the present thesis has had several parts: First of all, in Chap-
ter 2, it has been motivated why it is important to model not only the predictions
in a forecasting problem but also to take into account the uncertainty sources. As
it is shown there, this is especially critical in real-world problems, where the cost
of making a mistake can be considerable higher than obtaining a generic good
performance. This motivation to solve real-world problems is completely aligned
with the industrial nature of the current thesis, as described in Section 2.

Once the modelling of the uncertainty has been motivated, a formal procedure
has been defined in Section 2.1 to mathematically identify the different sources of
uncertainty involved in a prediction problem and expose the current nomenclature
disagreement that exists in the literature to refer to uncertainty types. One of
the more widely tackled uncertainty type is the known as epistemic uncertainty,
which is discussed and contextualized in Section 2.3. In contrast, the commonly
known as aleatoric uncertainty, - which refers to the variability of options given

152

the same input, - has been identified as the main need in the real problems of
this industrial collaboration (Brando et al., 2018a) and, therefore, from then on it
became the main objective of study of the current thesis: provide reliable aleatoric
uncertainty models.

Along these motivational line, in Chapter 3, different techniques have been
introduced from the literature in order to be able to model the aleatoric uncer-
tainty, as well as presenting new techniques to improve the aleatoric uncertainty
modelling Brando et al. (2019a,b); Muelas et al. (2020).

Subsequently, the aleatoric uncertainty modelling helps us to identify the need
of developing uncertainty modelling techniques for black box systems presented
in Chapter 4. Here the concept of black box systems is introduced as point-wise
predictive systems which do not models uncertainty and we do not have access
to its internals but can be evaluated as mathematical functions. In this way, the
objective of modeling the uncertainty of a black box system is introduced as a
solution for one industrial problem we had (Brando et al., 2020), which prompts
the development of new models to tackle it (Brando et al., 2022b) using quantile
regression methods.

The free-distributional property of quantile regression introduces a well-known
literature problem that appears when different quantiles are estimated simultane-
ously and they can cross. This phenomenon was the main problem that motivates
the Chapter 5, providing new techniques to prevent this phenomenon (Brando
et al., 2022a).

Finally, in Chapter 6, a proposal to integrally visualize all the uncertainty
sources is presented. Furthermore, different metrics to evaluate the uncertainty
modelling quality of the models were presented. All these results come as a
conclusions summary of the research developed during these years.

I · H

153

References

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. URL https://www.tensorflow.org/. Software available from
tensorflow.org. 65

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16),
pages 265–283, 2016. 50, 85, 111

Naomi S Altman. An introduction to kernel and nearest-neighbor nonparametric
regression. The American Statistician, 46(3):175–185, 1992. 81

George A Anastassiou. Multivariate hyperbolic tangent neural network approx-
imation. Computers & Mathematics with Applications, 61(4):809–821, 2011.
14

Javier Antoran, James Allingham, and José Miguel Hernández-Lobato. Depth

154

https://www.tensorflow.org/

REFERENCES

uncertainty in neural networks. Advances in Neural Information Processing
Systems, 33:10620–10634, 2020. 25

Norman P Archer and Shouhong Wang. Application of the back propagation
neural network algorithm with monotonicity constraints for two-group classifi-
cation problems. Decision Sciences, 24(1):60–75, 1993. 102

Pierre Baldi and Peter J Sadowski. Understanding dropout. Advances in neural
information processing systems, 26:2814–2822, 2013. 23

Chris Bishop. Pattern Recognition and Machine Learning, chapter 3: Linear
Models for Regression. Springer, 2016. 78

Christopher M Bishop. Mixture density networks. Technical Report NCRG/4288,
1994a. 13

Christopher M Bishop. Mixture density networks. 1994b. 17, 18, 36, 40, 41, 42,
43, 44, 76, 97

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.
17, 18

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A
review for statisticians. Journal of the American statistical Association, 112
(518):859–877, 2017. 19, 20

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.
Weight uncertainty in neural networks. ICML, 2015. 19, 21

Howard D Bondell, Brian J Reich, and Huixia Wang. Noncrossing quantile re-
gression curve estimation. Biometrika, 97(4):825–838, 2010. 122

Georges-Pierre Bonneau, Hans-Christian Hege, Chris R Johnson, Manuel M
Oliveira, Kristin Potter, Penny Rheingans, and Thomas Schultz. Overview
and state-of-the-art of uncertainty visualization. In Scientific Visualization,
pages 3–27. Springer, 2014. 134

155

REFERENCES

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas,
Skye Wanderman-Milne, and Qiao Zhang. JAX: composable transformations
of Python+NumPy programs, 2018. URL http://github.com/google/jax.
18, 50

A. Brando, J. Gimeno, Jose A. Rodríguez-Serrano, and J. Vitrià. Deep non-
crossing quantiles through the partial derivative. AISTATS, 2022a. Proceedings
of the 25th International Conference on Artificial Intelligence and Statistics. 5,
101, 104, 108, 114, 122, 131, 153, 176

A. Brando, J. Gimeno, Jose A. Rodríguez-Serrano, and J. Vitrià. The cheby-
shev network: Modelling aleatoric uncertainty through the quantile regression
derivative. arXiv, 2022b. Work under evaluation. 5, 75, 112, 114, 131, 143,
148, 153

Axel Brando. Mixture density networks for distribution and uncer-
tainty estimation, 2017. URL https://github.com/axelbrando/

Mixture-Density-Networks-for-distribution-and-uncertainty-estimation.
GitHub repository with a collection of Jupyter notebooks intended to solve a
lot of problems related to MDN. 37, 42, 43, 44, 173

Axel Brando and Joan Llop. Summary video of the modelling heteroge-
neous distributions with an uncountable mixture of asymmetric laplacians
article, 2019. URL https://vimeo.com/369179175. Vimeo’s video in
https://vimeo.com/369179175. 28, 172

Axel Brando, Jose A Rodríguez-Serrano, Mauricio Ciprian, Roberto Maestre,
and Jordi Vitrià. Uncertainty modelling in deep networks: Forecasting short
and noisy series. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 325–340. Springer, 2018a. 4, 9, 22,
29, 30, 31, 35, 37, 38, 39, 43, 78, 82, 87, 98, 118, 143, 148, 153

Axel Brando, Jose A Rodríguez-Serrano, and Jordi Vitria. How to model all
uncertainty sources using deep learning. https://w.tame.events/e/3177403,
2018b. Accessed: 2022-4-27. 4

156

http://github.com/google/jax
https://github.com/axelbrando/Mixture-Density-Networks-for-distribution-and-uncertainty-estimation
https://github.com/axelbrando/Mixture-Density-Networks-for-distribution-and-uncertainty-estimation
https://vimeo.com/369179175
https://vimeo.com/369179175
https://w.tame.events/e/3177403

REFERENCES

Axel Brando, Jose A Rodríguez-Serrano, and Jordi Vitria. How to model aleatoric
uncertainty using umal. https://w.tame.events/e/89635027, 2018c. Ac-
cessed: 2022-4-27. 4

Axel Brando, Jose A Rodríguez-Serrano, and Jordi Vitria. Large-scale machine
learning for financial recommender systems. https://bgsmath.cat/event/

maths-industry-4-0/, 2018d. Accessed: 2022-4-27. 4

Axel Brando, Jose A Rodríguez-Serrano, and Jordi Vitria. Bbva’s expenses fore-
casting using deep learning. https://shorturl.at/asLQ6, 2018e. Accessed:
2022-4-27. 4, 9

Axel Brando, Jose A Rodríguez-Serrano, and Jordi Vitrià. Detecting unusual
expense categories for financial advice apps. In KDD, pages Anchorage, USA.
Workshop on Anomaly Detection in Finance, 2019a. 4, 9, 153

Axel Brando, Jose A Rodríguez-Serrano, Jordi Vitria, and Alberto Rubio. Mod-
elling heterogeneous distributions with an uncountable mixture of asymmet-
ric laplacians. Neural Information Processing Systems (NeurIPS), Vancouver,
Canada, 2019b. 5, 28, 29, 37, 39, 44, 45, 46, 48, 49, 50, 56, 57, 62, 65, 68, 97,
113, 115, 117, 143, 148, 153, 172, 173, 175, 176

Axel Brando, Jose A Rodríguez-Serrano, Jordi Vitria, and Alberto Rubio.
Github’s umal repository. Website [Internet].[cited 26 May 2020]. Available:
https://github.com/BBVA/UMAL, 2019c. 28

Axel Brando, Damia Torres, Jose A Rodriguez-Serrano, and Jordi Vitria. Building
uncertainty models on top of black-box predictive apis. IEEE Access, 8:121344–
121356, 2020. 5, 75, 76, 143, 148, 153, 174

Alex J Cannon. Non-crossing nonlinear regression quantiles by monotone com-
posite quantile regression neural network, with application to rainfall extremes.
Stochastic environmental research and risk assessment, 32(11):3207–3225, 2018.
126

157

https://w.tame.events/e/89635027
https://bgsmath.cat/event/maths-industry-4-0/
https://bgsmath.cat/event/maths-industry-4-0/
https://shorturl.at/asLQ6

REFERENCES

Tianfeng Chai and Roland R Draxler. Root mean square error (rmse) or mean
absolute error (mae)?–arguments against avoiding rmse in the literature. Geo-
scientific model development, 7(3):1247–1250, 2014. 17

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, pages 785–794, 2016. 113

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014. 15

Francois Chollet. Deep learning with Python. Simon and Schuster, 2017. 13

François Chollet et al. Keras (2015), 2019. 65, 85, 111

Mauricio Ciprian, Leonardo Baldassini, Luis Peinado, Teresa Correas, Roberto
Maestre, Jose A Rodríguez-Serrano, Oriol Pujol, and Jordi Vitria. Evaluating
uncertainty scores for deep regression networks in financial short time series
forecasting. Workshop on Machine Learning for Spatiotemporal Forecasting,
2016. NIPS. 9

C. W. Clenshaw. A note on the summation of Chebyshev series. Math. Tables
Aids Comput., 9:118–120, 1955. ISSN 0891-6837. 105

C. W. Clenshaw and A. R. Curtis. A method for numerical integration on an
automatic computer. Numer. Math., 2:197–205, 1960. ISSN 0029-599X. doi:
10.1007/BF01386223. URL https://doi.org/10.1007/BF01386223. 102

Murray Cox. Inside airbnb: adding data to the debate. Inside Airbnb [Inter-
net].[cited 16 May 2019]. Available: http://insideairbnb.com, 2019. 28, 66

Robert Culkin and Sanjiv R Das. Machine learning in finance: the case of deep
learning for option pricing. Journal of Investment Management, 15(4):92–100,
2017. 6

158

https://doi.org/10.1007/BF01386223

REFERENCES

Ward Cunningham. The wycash portfolio management system. ACM SIGPLAN
OOPS Messenger, 4(2):29–30, 1992. 72

Will Dabney, Georg Ostrovski, David Silver, and Remi Munos. Implicit quantile
networks for distributional reinforcement learning. In International Conference
on Machine Learning, pages 1104–1113, 2018a. 46, 57

Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. Distribu-
tional reinforcement learning with quantile regression. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018b. 53

Hennie Daniels and Marina Velikova. Monotone and partially monotone neural
networks. IEEE Transactions on Neural Networks, 21(6):906–917, 2010. 102

Cesar De Pablo, Axel Brando, Jose A Rodríguez-Serrano, and Jordi Vitria. Poster
about uncertainty modelling in deep networks: Forecasting short and noisy
series. MLSS Madrid 2018, 2018. Accessed: 2022-4-27. 4

Jan De Spiegeleer, Dilip B Madan, Sofie Reyners, and Wim Schoutens. Machine
learning for quantitative finance: fast derivative pricing, hedging and fitting.
Quantitative Finance, 18(10):1635–1643, 2018. 6

Marc Deisenroth and Jun Wei Ng. Distributed gaussian processes. In Interna-
tional Conference on Machine Learning, pages 1481–1490, 2015. 81

Rahul C Deo. Machine learning in medicine. Circulation, 132(20):1920–1930,
2015. 6

Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter?
Structural Safety, 31(2):105–112, 2009. 8

Nicki S Detlefsen, Martin Jørgensen, and Søren Hauberg. Reliable training and
estimation of variance networks. In Proceedings of the 33rd International Con-
ference on Neural Information Processing Systems, pages 6326–6336, 2019. 43

Alberto Diez-Olivan, Javier Del Ser, Diego Galar, and Basilio Sierra. Data fusion
and machine learning for industrial prognosis: Trends and perspectives towards
industry 4.0. Information Fusion, 50:92–111, 2019. 6

159

REFERENCES

David Duvenaud Dougal Maclaurin and Matt Johnson. Autograd: Efficiently
computes derivatives of numpy code. https://github.com/HIPS/autograd,
2016. Accessed: 2022-4-27. 18

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL
http://archive.ics.uci.edu/ml. 113

Oliver Duerr, Beate Sick, and Elvis Murina. Probabilistic Deep Learning: With
Python, Keras and TensorFlow Probability. Manning Publications, 2020. 135

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Kdd, volume 96, pages 226–231, 1996. 68

Tom Fomby. Scoring measures for prediction problems. Department of Eco-
nomics, Southern Methodist University, Dallas, TX, 2008. 87

Andrew YK Foong, David R Burt, Yingzhen Li, and Richard E Turner. On the
expressiveness of approximate inference in bayesian neural networks. Advances
in Neural Information Processing Systems, 2020. 25

Ana Fred, Maria De Marsico, and Gabriella Sanniti di Baja. Pattern Recogni-
tion Applications and Methods: 5th International Conference, ICPRAM 2016,
Rome, Italy, February 24-26, 2016, Revised Selected Papers, volume 10163.
Springer, 2017. 46

Kunihiko Fukushima. Visual feature extraction by a multilayered network of
analog threshold elements. IEEE Transactions on Systems Science and Cyber-
netics, 5(4):322–333, 1969. 14

Kunihiko Fukushima. Neocognitron: A hierarchical neural network capable of
visual pattern recognition. Neural networks, 1(2):119–130, 1988. 15

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Rep-
resenting model uncertainty in deep learning. In ICML, pages 1050–1059, 2016.
19, 23, 116

160

https://github.com/HIPS/autograd
http://archive.ics.uci.edu/ml

REFERENCES

Marco Geraci. Mixed-effects models using the normal and the laplace distri-
butions: A 2 × 2 convolution scheme for applied research. arXiv preprint
arXiv:1712.07216, 2017. 38

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Rectifier and softplus acti-
vation functions. the second one is a smooth version of the first. IEEE Trans-
actions on Systems Science and Cybernetics, 2011a. 14

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier net-
works. In Proceedings of the 14th International Conference on Artificial Intelli-
gence and Statistics. JMLR W&CP Volume, volume 15, pages 315–323, 2011b.
124

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016a. http://www.deeplearningbook.org. 15, 18

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016b. 13, 14

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of
modern neural networks. In International Conference on Machine Learning,
pages 1321–1330. PMLR, 2017. 148

Maya Gupta, Andrew Cotter, Jan Pfeifer, Konstantin Voevodski, Kevin Canini,
Alexander Mangylov, Wojciech Moczydlowski, and Alexander Van Esbroeck.
Monotonic calibrated interpolated look-up tables. The Journal of Machine
Learning Research, 17(1):3790–3836, 2016. 102

Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald, Rodney J Dou-
glas, and H Sebastian Seung. Digital selection and analogue amplification
coexist in a cortex-inspired silicon circuit. volume 405, pages 947–951. Nature
Publishing Group, 2000. 14

Jun Han and Claudio Moraga. The influence of the sigmoid function parame-
ters on the speed of backpropagation learning. In International workshop on
artificial neural networks, pages 195–201. Springer, 1995. 14

161

http://www.deeplearningbook.org

REFERENCES

Lingxin Hao, Daniel Q Naiman, and Daniel Q Naiman. Quantile regression.
Number 149. Sage, 2007. 80

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation
for scalable learning of bayesian neural networks. In ICML, pages 1861–1869,
2015a. 68, 131, 132

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation
for scalable learning of bayesian neural networks. In International Conference
on Machine Learning, pages 1861–1869, 2015b. 115, 116

Alexander Hevelke and Julian Nida-Rümelin. Responsibility for crashes of au-
tonomous vehicles: an ethical analysis. Science and engineering ethics, 21(3):
619–630, 2015. 6

Montse Hidalgo. Article in the retina section of the newspaper el
país. https://elpais.com/retina/2019/12/20/innovacion/1576838697_

328758.html, 2018. Accessed: 2022-4-27. 5

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997. 15, 66

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366, 1989. 15

Rob J Hyndman and George Athanasopoulos. Forecasting: principles and prac-
tice. OTexts, 2014. Section 2.3. 83

Boehringer Ingelheim. Kaggle Challgenge: Predicting a biological response, 2012.
URL https://www.kaggle.com/c/bioresponse/rules. 83

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton.
Adaptive mixtures of local experts. Neural computation, 3(1):79–87, 1991. 43

Sreenivasa Rao Jammalamadaka and Tomasz J Kozubowski. New families of
wrapped distributions for modeling skew circular data. Communications in
Statistics-Theory and Methods, 33(9):2059–2074, 2004. 58

162

https://elpais.com/retina/2019/12/20/innovacion/1576838697_328758.html
https://elpais.com/retina/2019/12/20/innovacion/1576838697_328758.html
https://www.kaggle.com/c/bioresponse/rules

REFERENCES

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek,
Anna Potapenko, et al. Highly accurate protein structure prediction with al-
phafold. Nature, 596(7873):583–589, 2021. 6

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep
learning for computer vision? In Advances in neural information processing
systems, pages 5574–5584, 2017. 8, 36, 97

Mohammad E Khan, Guillaume Bouchard, Kevin P Murphy, and Benjamin M
Marlin. Variational bounds for mixed-data factor analysis. In Advances in
Neural Information Processing Systems, pages 1108–1116, 2010. 47

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. Interna-
tional Conference on Learning Representations (ICLR), 2014. 22

Daniel Klotz, Frederik Kratzert, Martin Gauch, Alden Keefe Sampson, Johannes
Brandstetter, Günter Klambauer, Sepp Hochreiter, and Grey Nearing. Uncer-
tainty estimation with deep learning for rainfall–runoff modelling. Hydrology
and Earth System Sciences Discussions, pages 1–32, 2021. 62

Roger Koenker and Kevin F Hallock. Quantile regression. Journal of economic
perspectives, 15(4):143–156, 2001. 52, 76, 80, 101, 122

Roger Koenker, Victor Chernozhukov, Xuming He, and Limin Peng. Handbook
of Quantile Regression. CRC press, 2017. 121, 123

Tomasz J Kozubowski and Krzysztof Podgórski. A multivariate and asymmetric
generalization of laplace distribution. Computational Statistics, 15(4):531–540,
2000. 58

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and
scalable predictive uncertainty estimation using deep ensembles. arXiv preprint
arXiv:1612.01474, 2016. 24

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and
scalable predictive uncertainty estimation using deep ensembles. In Advances

163

REFERENCES

in Neural Information Processing Systems, pages 6402–6413, 2017. 19, 68, 97,
116

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied
to handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.
15

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521
(7553):436–444, 2015. 13

Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest.
R news, 2(3):18–22, 2002. 113

Patrick Lin. Why ethics matters for autonomous cars. In Autonomous driving,
pages 69–85. Springer, Berlin, Heidelberg, 2016. 6

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(Nov):2579–2605, 2008. 68

Roberto Maestre, Rodríguez-Serrano, Jordi Nin, Axel Brando, Irene Unceta,
Alberto Hernandez, Jose Carmona, Lorenzo Caggioni, and Stefan Hosein.
Whitepaper google cloud and bbva. https://www.bbvadata.com/white_

papers/advanced_ai.pdf, 2018. Accessed: 2022-4-27. 4

H. Majidian. On the decay rate of Chebyshev coefficients. Appl. Numer. Math.,
113:44–53, 2017. ISSN 0168-9274. doi: 10.1016/j.apnum.2016.11.004. URL
https://doi.org/10.1016/j.apnum.2016.11.004. 128

Amy Maxmen. Self-driving car dilemmas reveal that moral choices are not uni-
versal. Nature, 562(7728):469–469, 2018. 6

K. E. Basford McLachlan G. J. Mixture models: Inference and applications to
clustering. 1988. 40, 41

Nicolai Meinshausen and Greg Ridgeway. Quantile regression forests. Journal of
Machine Learning Research, 7(6), 2006. 53

164

https://www.bbvadata.com/white_papers/advanced_ai.pdf
https://www.bbvadata.com/white_papers/advanced_ai.pdf
https://doi.org/10.1016/j.apnum.2016.11.004

REFERENCES

Jairo Mejia, Roberto Maestre, Rodríguez-Serrano, Jordi Nin, Axel Brando, Irene
Unceta, Alberto Hernandez, Jose Carmona, Lorenzo Caggioni, and Stefan
Hosein. Delivering advanced artificial intelligence in the banking industry.
https://shorturl.at/vzBXY, 2018. Accessed: 2022-4-27. 4, 29

José Mena, Axel Brando, Oriol Pujol, and Jordi Vitrià. Uncertainty estimation
for black-box classification models: a use case for sentiment analysis. In Iberian
Conference on Pattern Recognition and Image Analysis, pages 29–40. Springer,
2019. 4

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al.
Mllib: Machine learning in apache spark. The Journal of Machine Learning
Research, 17(1):1235–1241, 2016. 76

Rhiannon Michelmore, Marta Kwiatkowska, and Yarin Gal. Evaluating uncer-
tainty quantification in end-to-end autonomous driving control. arXiv preprint
arXiv:1811.06817, 2018. 6

Robert Moore and John DeNero. L1 and l2 regularization for multiclass hinge loss
models. In Symposium on machine learning in speech and language processing,
2011. 16

David Muelas, Luis Peinado, Axel Brando, and Rodríguez-Serrano. Detection of
balance anomalies with quantile regression: the power of non-symmetry. In
KDD, pages Anchorage, USA. Workshop on Anomaly Detection in Finance,
2020. 5, 153

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.
13

Alfredo Nazabal, Pablo M Olmos, Zoubin Ghahramani, and Isabel Valera. Han-
dling incomplete heterogeneous data using vaes. Pattern Recognition, 107:
107501, 2020. 43

165

https://shorturl.at/vzBXY

REFERENCES

Frank Nielsen and Ke Sun. Guaranteed bounds on the kullback–leibler diver-
gence of univariate mixtures. IEEE Signal Processing Letters, 23(11):1543–
1546, 2016. 47

Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press,
2015. URL http://neuralnetworksanddeeplearning.com. 18

Frank Noé, Gianni De Fabritiis, and Cecilia Clementi. Machine learning for
protein folding and dynamics. Current opinion in structural biology, 60:77–84,
2020. 6

Steven J Nowlan and Geoffrey E Hinton. Simplifying neural networks by soft
weight-sharing. Neural computation, 4(4):473–493, 1992. 43

Emanuele Olivetti. kaggle_pbr. https://github.com/emanuele/kaggle_pbr,
2012. 83, 84

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian
Nowozin, Joshua Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can
you trust your model’s uncertainty? evaluating predictive uncertainty under
dataset shift. Advances in neural information processing systems, 32, 2019. 148

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. 2017. 50

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Jour-
nal of machine learning research, 12(Oct):2825–2830, 2011. 76

Francisco C Pereira, Constantinos Antoniou, Joan Aguilar Fargas, and Moshe
Ben-Akiva. A metamodel for estimating error bounds in real-time traffic pre-
diction systems. IEEE Transactions on Intelligent Transportation Systems, 15
(3):1310–1322, 2014. 80

Hossein Pishro-Nik. Mean squared error (mse). Website [Internet].[cited 19 Sep
2020]. Available: https: // shorturl. at/ tFGY4 , 2020. 17

166

http://neuralnetworksanddeeplearning.com
https://github.com/emanuele/kaggle_pbr
https://shorturl.at/tFGY4

REFERENCES

John Platt et al. Probabilistic outputs for support vector machines and compar-
isons to regularized likelihood methods. Advances in large margin classifiers,
10(3):61–74, 1999. 148

Robert Gilmore Pontius, Olufunmilayo Thontteh, and Hao Chen. Components
of information for multiple resolution comparison between maps that share a
real variable. Environmental and Ecological Statistics, 15(2):111–142, 2008. 88

Janis Postels, Francesco Ferroni, Huseyin Coskun, Nassir Navab, and Federico
Tombari. Sampling-free epistemic uncertainty estimation using approximated
variance propagation. In 2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 2931–2940. IEEE. 24

Alvin Rajkomar, Jeffrey Dean, and Isaac Kohane. Machine learning in medicine.
New England Journal of Medicine, 380(14):1347–1358, 2019. 6

Carl Edward Rasmussen. A practical monte carlo implementation of bayesian
learning. In Advances in Neural Information Processing Systems, pages 598–
604, 1996. 46

Carl Edward Rasmussen et al. The infinite gaussian mixture model. In NIPS,
volume 12, pages 554–560. Citeseer, 1999. 46

REE. Real-time demand and generation. Jun. 11, 2020. [Online]., 2020. Available:
https://demanda.ree.es/visiona/peninsula/demanda/total. 82

H Rosling. Ted talk: The best stats you’ve ever seen, 2006. 134

Sebastian Ruder. An overview of gradient descent optimization algorithms.
http://sebastianruder.com/optimizing-gradient-descent/, 2016. Ac-
cessed: 2022-4-27. 18

Cynthia Rudin. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence, 1
(5):206–215, 2019. 72

167

https://demanda.ree.es/visiona/peninsula/demanda/total
http://sebastianruder.com/optimizing-gradient-descent/

REFERENCES

Mark Schmidt, Glenn Fung, and Rmer Rosales. Fast optimization methods for
l1 regularization: A comparative study and two new approaches. In European
Conference on Machine Learning, pages 286–297. Springer, 2007. 16

David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-
mar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan
Dennison. Hidden technical debt in machine learning systems. In Advances in
neural information processing systems, pages 2503–2511, 2015. 72

Joseph Sill. Monotonic networks. In Proceedings of the 1997 conference on Ad-
vances in neural information processing systems 10, pages 661–667, 1998. 102,
124

Neural Smithing. Supervised learning in feedforward artificial neural networks,
1999. 15

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.
23

Jack Stilgoe. Machine learning, social learning and the governance of self-driving
cars. Social studies of science, 48(1):25–56, 2018. 6

Natasa Tagasovska and David Lopez-Paz. Frequentist uncertainty estimates for
deep learning. Bayesian Deep Learning workshop NeurIPS, 2018. 46, 122, 123

Natasa Tagasovska and David Lopez-Paz. Single-model uncertainties for deep
learning. In Advances in Neural Information Processing Systems, pages 6417–
6428, 2019. 24, 57, 97, 116

HR Thompson. Distribution of distance to nth neighbour in a population of
randomly distributed individuals. Ecology, 37(2):391–394, 1956. 81

M. K. Titsias and F. J. R. Ruiz. Unbiased implicit variational inference. In
Artificial Intelligence and Statistics, 2019. 46

168

REFERENCES

L. N. Trefethen. Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev.,
50(1):67–87, 2008. ISSN 0036-1445. doi: 10.1137/060659831. URL https:

//doi.org/10.1137/060659831. 128

Harinandan Tunga, Rounak Saha, and Samarjit Kar. A method of fully au-
tonomous driving in self-driving cars based on machine learning and deep learn-
ing. Intelligent Multi-modal Data Processing, pages 131–156, 2021. 6

Berk Ustun and Cynthia Rudin. Supersparse linear integer models for optimized
medical scoring systems. Machine Learning, 102(3):349–391, 2016. 72

Joost van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Simple
and scalable epistemic uncertainty estimation using a single deep deterministic
neural network. 2020. 24

Math Vault. List of probability and statistics symbols. Website [In-
ternet].[cited 26 May 2020]. Available: https://mathvault.ca/hub/higher-
math/math-symbols/probability-statistics-symbols/, 2020. 17

Yaoshu Wang, Chuan Xiao, Jianbin Qin, Xin Cao, Yifang Sun, Wei Wang, and
Makoto Onizuka. Monotonic cardinality estimation of similarity selection: A
deep learning approach. In Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 1197–1212, 2020. 102

A. Wehenkel and G. Louppe. Unconstrained monotonic neural networks. In
Advances in Neural Information Processing Systems, 2019. 102, 125

Claus O Wilke. Fundamentals of data visualization: a primer on making infor-
mative and compelling figures. O’Reilly Media, 2019. 134

Cort J Willmott and Kenji Matsuura. Advantages of the mean absolute error
(mae) over the root mean square error (rmse) in assessing average model per-
formance. Climate research, 30(1):79–82, 2005. 17

Edwin Bidwell Wilson. First and second laws of error. Journal of the American
Statistical Association, 18(143):841–851, 1923. 38

169

https://doi.org/10.1137/060659831
https://doi.org/10.1137/060659831

REFERENCES

Bingzhe Wu, Zhichao Liu, Zhihang Yuan, Guangyu Sun, and Charles Wu. Reduc-
ing overfitting in deep convolutional neural networks using redundancy regular-
izer. In International Conference on Artificial Neural Networks, pages 49–55.
Springer, 2017. 16

Seungil You, David Ding, Kevin Canini, Jan Pfeifer, and Maya R Gupta. Deep
lattice networks and partial monotonic functions. In Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems, pages 2985–
2993, 2017. 102

Keming Yu and Rana A Moyeed. Bayesian quantile regression. Statistics &
Probability Letters, 54(4):437–447, 2001. 59

Wenjie Zhang, Hao Quan, and Dipti Srinivasan. Parallel and reliable probabilis-
tic load forecasting via quantile regression forest and quantile determination.
Energy, 160:810–819, 2018. 53

Hao Zheng, Zhanlei Yang, Wenju Liu, Jizhong Liang, and Yanpeng Li. Improv-
ing deep neural networks using softplus units. In 2015 International Joint
Conference on Neural Networks (IJCNN), pages 1–4. IEEE, 2015. 36, 65

Ding-Xuan Zhou. Universality of deep convolutional neural networks. Applied
and computational harmonic analysis, 48(2):787–794, 2020. 15

170

List of Figures

1.1 Illustrative critical tasks where autonomous systems can be used
but need to model the associated uncertainty in each forecasting
process. 1

2.1 Probabilistic sources of uncertainty originated before or while the
predictive system is being used. The novel aspects of this thesis
correspond to the aleatoric uncertainty of the response variable Y
given X, highlighted in green. 7

2.2 Summary of common uncertainty sources terms linked to their sim-
plified mathematical formulation. Each colour represents one un-
certainty type. Shared zones corresponds to terms that are com-
monly used for different uncertainty types. Each white box has
our proposed notation (matching Figure 2.1). 12

2.3 Synthetic representation of an enclosed solutions space given a cer-
tain family of models M and how different initial modelsM1,M2,M3

end up obtaining similar errors compared to the real solution de-
spite being different. Epistemic uncertainty aims to exploit this
variability. 19

2.4 Graphic representation of how to modify the neurons of a standard
neural network to make it a Bayesian neural network using the
reparametrization trick. 20

171

LIST OF FIGURES

2.5 Graphic representation of how to obtain an ensemble of models to
calculate their predicted mean and variance using a single model
trained with Dropout. 23

2.6 Graphic representation of an ensemble of neural networks and how
to calculate its predicted mean and variance using M different
models. 24

2.7 Simplified version of the alternative way to model epistemic un-
certainty based on the architecture of the neural network. Each yi
can be considered a different output of the model. 25

2.8 Comparison of several epistemic methods. The colour indicates
the degree of confidence. Three samples are shown for each case. . 26

2.9 Three synthetic distribution of flat prices are shown on a city map.
Slightly modified screenshots of the video (Brando and Llop, 2019)
presented at NeurIPS 2020 for the article (Brando et al., 2019b). . 28

2.10 Screenshots of BBVA’s mobile app showing expected incomes and
expenses. Global calendar view (left) and expanded view of one of
the forecasts (right). 29

2.11 Clustering of the normalised 24 points time-series by using the π1
transformation. The grey lines are 100 samples and the blue line
is the centroid for each cluster. 30

3.1 Graphic representation of the difference between sharing the hid-
den layers of the neural network or not. 34

3.2 Comparison of an input-dependent and a non-input-dependent un-
certainty estimation. 36

3.3 Regression problem with heterogeneous output distributions mod-
elled with a normal distribution. 37

3.4 Regression problem with heterogeneous output distributions mod-
elled with a Laplace distribution. 39

172

LIST OF FIGURES

3.5 Representation of the Mixture Density Network (MDN) model.
The output of the feed-forward neural network determines the pa-
rameters in a mixture density distribution. This image was ex-
tracted from Brando (2017). 42

3.6 Heterogeneous conditional density estimation using several MDNs. 45

3.7 Regression problem with heterogeneous output distributions mod-
elled with an Uncountable Mixture of Normals. 47

3.8 Visualization of several distributional shapes of the Asymmetric
Laplace distribution depending on the τ = µ values matching the
horizontal axis. 48

3.9 Regression problem with heterogeneous output distributions mod-
elled with an UMAL, extracted from Brando et al. (2019b). 49

3.10 On the bottom, we see a representation of the proposed regression
model that captures all the components τi of the mixture of ALDs
simultaneously. In the middle, we observe a visualization of some
ALD components predicting the distribution of the upper plot,
which corresponds to the Multimodal part of Figure 3.9. 50

3.11 Visualization of QR loss shape and the corresponding conditional
approximated quantile using a linear function f(x) = w · x. 52

3.12 Graphic representation of the Single Quantile Network. 53

3.13 Regression problem with heterogeneous output distributions mod-
elling the quantile 0.5, i.e. the median. 54

3.14 Graphic representation of the Quantile Network that approximates
N = 4 fixed quantiles. 55

3.15 Regression problem with heterogeneous output distributions mod-
elling the quantile 0.01, 0.5 and 0.99. 56

3.16 Graphic representation of the Implicit Quantile Network. 57

3.17 Regression problem with heterogeneous output distributions mod-
elling the entire distribution of quantiles implicitly. 58

3.18 Graphic representation of the Fixed ALD Network. 60

173

LIST OF FIGURES

3.19 Regression problem with heterogeneous output distributions mod-
elling the Asymmetric Laplace distribution with τ = 0.5. 61

3.20 Regression problem with heterogeneous output distributions mod-
elling the Asymmetric Laplace distributions with τ = {0.01, 0.5, 0.9}. 62

3.21 Graphic representation of a generic implicit mixture of the Asym-
metric Laplace distributions model. 63

3.22 Regression problem with heterogeneous output distributions inde-
pendently modelling all of the Asymmetric Laplace distributions
with respect to τ . 64

3.23 Regression problem with heterogeneous output distributions mod-
elled using an Uncountable Mixture of Asymmetric Laplacians. . . 64

3.24 Plot with the performance of three different models in terms of
calibration. The mean and standard deviation for all folds of the
mean absolute error between the predicted calibration and the per-
fect ideal calibration is represented in the table. 68

3.25 DBSCAN clustering of the t-SNE projection to 2 dimensions of
normalized Barcelona predicted distributions. Hexbin plot of most
common clusters for each hexagon over the map. 69

4.1 Graphic representation - obtained from (Brando et al., 2020) - of
how to upgrade any black-box predictive system with an Uncer-
tainty Score. 76

4.2 Error-retain plot of the In Production black box for our Financial
Forecasting problem using different scoring measures. Sub-figures
(a), (e) and (f) have a zoomed shot of the initial 50% at the bottom. 86

4.3 Percentage of points of each bin of real MAE error of the In Produc-
tion black-box of our Financial Forecasting problem sorted by the
uncertainty wrapper described in the title. Each color corresponds
to a different real error bin indicated in the legend. 92

4.4 Normalized confusion matrix of the problem of classification into
5-levels of confidence for certain models. Each one has its own
colour map scale. 94

174

LIST OF FIGURES

4.5 Density plot between the uncertainty score value and their corre-
sponding Average Absolute Error produced by the Our In Produc-
tion black-box when it is predicting in the Financial forecasting
problem. 96

4.6 Graphic representation of CheNet. For any degree d, {pti}d−1
i=0 con-

stitute the evaluation of the initial Chebyshev polynomial expan-
sion, {ck}d−1

k=0 their coefficients, {Ck}d−1
k=0 the coefficients of the inte-

grated polynomial, K the constant of integration (or the black-box
function) and P the conditional prediction of the quantile τ 103

4.7 In general terms, CheNet uses a NN - ϕ at the bottom left - to
generate d positive values –the red {tj(x)}d−1

j=0 points–, which
will be used as roots for computing the coefficients of a Chebyshev
polynomial, represented in the top left subfigure. This polynomial
will approximate the partial derivative of the quantile function. To
do that, we integrate it obtaining a new Chebyshev polynomial, the
one in the right subfigure. Thus, for each x we have a Chebyshev
polynomial modelling all the quantiles. 106

4.8 Graphical comparison of the two versions of CheNet. 107

4.9 Heterogeneous synthetic distribution proposed by Brando et al.
(2019b). In the upper part of the figure, the learnt quantiles, ϕ, are
noisy because their mean is the black box defined as an inaccurate
MSE Random Forest (RF), K, following Eq. (4.32). In the lower
part, ϕ and K are learnt and asymmetries and multimodalities
can be seen more clearly, while still respecting the constraint in
Eq. (4.32). 115

4.10 Calibration curve of the Normal, Laplace and CheNet models. . . 116

175

LIST OF FIGURES

4.11 Heterogeneous synthetic distribution proposed by Brando et al.
(2019b). In all cases, ϕw and K(x) are learnt, while K(x) corre-
sponds to a different statistic in each case. In the upper part of
the figure, K(x) approximates the median, following Eq. (4.31). In
the central figure, K(x) regresses to the lower quantile 0, following
Eq. (4.29). In the lower part, K corresponds to the higher quantile
1, following Eq. (4.30). 117

5.1 Synthetic data set presented in Brando et al. (2022a) showing that Ch-

eNet avoids crossing quantiles (right), unlike IQN (left). 122

5.2 PCDN scheme. 125

5.3 Correlation between the number of crossing quantiles and the de-
gree used in test time for the worst data set in terms of crossings
(the protein data set) using all CheNet-Med models trained with
d = 20. Each line is displayed until it has four consecutive values
of 0. 130

6.1 There are two routes. The blue one is shorter in expectation but
when we must arrive before the 25 minutes we should take the
green one. 135

6.2 The Manifold uncertainty is captured by modelling p(X). This
value is shown in the background in blue. 137

6.3 Each NN component of the ensemble is approximating the condi-
tional median. The discrepancy on those components encodes the
epistemic uncertainty. In blue, the normalized standard deviation
is shown in the background. 138

6.4 Conditional normal distribution where their parameters are ap-
proximated using a NN, as Section 3.2.1 shows. Aleatoric uncer-
tainty is captured as central deviation from the mean. 139

6.5 Free distributional quantiles approximated using quantile regres-
sion with a NN, as Section 3.3 shows. Aleatoric uncertainty is
captured as discrete distributional cumulative points. 140

176

LIST OF FIGURES

6.6 Conditional distribution approximated using UMAL, as Section 3.2.3
introduces. Aleatoric uncertainty is captured as the approximated
likelihood. 141

6.7 Discrete Integrated uncertainty visualization based on Sections 6.1.1,
6.1.2 and 6.1.3. Aleatoric uncertainty is captured using quantiles,
epistemic one considers their mean and standard deviation and
Manifold one as density bars. 142

6.8 Continuous Integrated uncertainty visualization based on Sections 6.1.1,
6.1.2 and 6.1.3. All uncertainties are considered as probabilities. 143

6.9 An example of an Error versus Retention Curve (ERC). 144

6.10 Density plot between the uncertainty score value and their corre-
sponding Average Absolute Error produced by the Our In Produc-
tion black-box when it is predicting in the Financial forecasting
problem. 145

6.11 An example of a set of calibration curves. 147

6.12 The calibration area corresponds to the area value of the reddish
highlighted zone which is bounded by the ideal calibration curve
and the produced by the evaluated model. 150

177

	ABG_COVER
	BrandoAxel_PhDThesis
	Contents
	1 INTRODUCTION
	1.1 Motivation and main objectives
	1.2 Contribution and thesis outline

	2 THE RESEARCH CONTEXT AND GOALS
	2.1 Uncertainty nomenclature disagreement
	2.2 Relevant Deep Learning Concepts
	2.2.1 Defining the architecture
	2.2.2 Defining the loss function
	2.2.3 Minimizing the loss function for the neural weights

	2.3 Deep epistemic uncertainty modelling
	2.3.1 Introduction
	2.3.2 Bayesian neural networks using variational inference
	2.3.3 Monte Carlo dropout
	2.3.4 Ensemble of neural networks
	2.3.5 Additional epistemic alternatives
	2.3.6 Synthetic comparison of epistemic uncertainty

	2.4 Real estate price per night forecasting
	2.5 Time-series prediction of financial expenses

	3 ALEATORIC UNCERTAINTY MODELLING USING NEURAL NETWORKS
	3.1 Preliminaries and notation
	3.2 Learning the parameters of a conditional parametric distribution
	3.2.1 Unimodal distribution
	3.2.2 Mixture of distributions
	3.2.3 Uncountable mixture of distributions and the UMAL

	3.3 Distribution-free estimation with quantile regression
	3.3.1 Fixed quantile regression
	3.3.1.1 Single quantile estimation with a neural network
	3.3.1.2 Multiple quantiles with a neural network

	3.3.2 Implicit quantile regression
	3.3.3 The connection with asymmetric Laplace
	3.3.3.1 Fixed asymmetric Laplace distributions
	3.3.3.2 Independent asymmetric Laplace distributions
	3.3.3.3 The UMAL as a dependent quantile model

	3.4 Results and comparison
	3.4.1 Data sets and experiment settings
	3.4.2 Experimental results

	3.5 Conclusions

	4 BLACK-BOX WRAPPER FOR UNCERTAINTY MODELLING
	4.1 Related work
	4.2 Uncertainty modelling of a black box
	4.2.1 Probabilistic distribution fitting
	4.2.2 Distribution estimation of the residuals errors
	4.2.3 Quantile regression of residuals
	4.2.4 Results and comparison
	4.2.4.1 Baselines under evaluation
	4.2.4.2 Data sets and experimental settings
	4.2.4.3 Experimental results

	4.3 Intentional black-box uncertainty modelling
	4.3.1 Heteroscedastic normal distribution
	4.3.2 Heteroscedastic Laplace distribution
	4.3.3 The Chebyshev network
	4.3.3.1 Related works
	4.3.3.2 Model definition
	4.3.3.3 Implicit and explicit CheNet
	4.3.3.4 Constant of integration selection for CheNet

	4.3.4 Results and comparison

	4.4 Conclusions

	5 THE CROSSING QUANTILE PHENOMENON
	5.1 The limitation of standard quantile regression
	5.2 The partial constrained dense network
	5.3 Modelling the partial derivative with a neural network
	5.4 The CheNet as a partial monotonic solution
	5.4.1 Rate of convergence of the Chebyshev expansion
	5.4.2 Ensure monotonicity for all quantiles

	5.5 Results and comparison
	5.6 Conclusions

	6 UNCERTAINTY VISUALIZATION AND EVALUATION
	6.1 Describing each source of uncertainty
	6.1.1 Measurement-error and manifold uncertainty visualization
	6.1.2 Epistemic uncertainty representation
	6.1.3 Aleatoric uncertainty visualization
	6.1.4 Integrated uncertainty representation

	6.2 Qualitative check of the reported uncertainty
	6.2.1 Error-retention curve for checking score quality
	6.2.2 Error-retention density plot for score inaccuracies
	6.2.3 Calibration curve to verify probabilities

	6.3 Quantitative rating of the reported uncertainty
	6.3.1 Ordering score index for evaluating sorting quality
	6.3.2 Quantile regression as a generic quantile metric
	6.3.3 Calibration area to verify the trust on probabilities

	6.4 Conclusions

	7 Conclusions
	References
	List of Figures

