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Abstract 

FH, the most common monogenic dyslipidaemia, is characterised by increased circulating 

LDL-C levels leading to premature cardiovascular disease when undiagnosed or untreated. 

Current guidelines support genetic testing in patients fulfilling clinical diagnostic criteria and 

cascade screening of their family members. However, about half of clinical FH patients do not 

present pathogenic variants in the known disease genes (LDLR, APOB, PCSK9), and these most 

likely suffer from polygenic hypercholesterolaemia, which translates into a relatively low yield 

of genetic screening programs. This project aimed to identify new biomarkers able to improve 

the distinction between monogenic and polygenic profiles.  

Using a machine-learning approach in a paediatric dataset, tested for disease causative genes 

and investigated with an extended lipid profile, we developed new models that classify FH 

patients with higher specificity than currently used methods. The best performing models 

incorporated parameters absent from the common FH clinical criteria, which rely only on TC 

and LDL-C. A hierarchical clustering analysis of the same dataset showed that the study 

population can be clearly divided in three groups of dyslipidaemic individuals, showing the 

complexity of the dyslipidaemic biological context and the need of an integrative and 

multidisciplinary approach for biomarker selection. Both clustering and modelling analysis 

have revealed that the extended lipid profile contains important biomarkers.  

The exploration of lipid metabolic pathways associated with the identified biomarkers allowed 

us to identify a set of related genes. Using additional information from public databases, 

including gene expression data, associated GWAS and GO terms, we defined a universe of 

lipid-related genes and molecular interactions relevant for the dyslipidaemic context and future 

genetic studies. All this information was used to establish a new lipid knowledge base available 

online.  

The obtained results can be applied to improve the yield of genetic screening programs and 

decrease the associated costs, and also provide novel contributions to our understanding of 

dyslipidaemias.        

 

Keywords: familial hypercholesterolaemia, biomarkers, extended lipid profile, machine-

learning based methods, lipid knowledge base. 
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Resumo 

A hipercolesterolemia familiar (FH) é a dislipidemia monogénica mais comum, com uma 

prevalência de 1/250 em heterozigotia e 1/300 000 em homozigotia, e resulta da presença de 

variantes patogénicas nos genes LDLR, APOB e PCSK9. Apesar de ser relativamente comum 

em relação a outras doenças de causa monogénica, permanece subdiagnosticada e a maioria das 

pessoas afetadas não se encontram medicadas. Esta doença caracteriza-se principalmente pelos 

níveis elevados de colesterol total e LDL-C no sangue, promovendo a acumulação de colesterol 

no interior dos vasos sanguíneos, formação de placas de ateroma e desenvolvimento de 

aterosclerose. Sendo uma doença silenciosa, os sintomas só costumam surgir na ocorrência de 

um evento cardiovascular agudo (por exemplo, enfarte do miocárdio ou acidente vascular 

cerebral). Atualmente, é recomendado o estudo genético em indivíduos com critérios clínicos 

para FH, bem como o rastreio em cascata para os familiares. No entanto, metade dos indivíduos 

com hipercolesterolemia grave não apresenta uma variante patogénica nos genes associados à 

FH; nestes casos suspeita-se que estes indivíduos sofram de uma forma poligénica de 

hipercolesterolemia com possível modulação por fatores ambientais, como por exemplo um 

estilo de vida pouco saudável. Deste modo, os programas de rastreio genético revelam pouca 

eficiência, ao mesmo tempo que os critérios clínicos responsáveis pela seleção de indivíduos 

para estudo genético são altamente sensíveis mas pouco específicos.  

Este projeto teve como principal objetivo a identificação de novos biomarcadores capazes de 

distinguir os doentes com dislipidemia monogénica dos doentes com dislipidemia poligénica, 

contribuindo para uma melhor seleção de indivíduos para estudo genético, bem como para uma 

visão mais integrada do metabolismo lipídico e das relações entre os vários intervenientes 

(nomeadamente, genes, proteínas e metabólitos). Esta integração do conhecimento lipídico 

permitiu a identificação de um grupo restrito de genes candidatos, os quais poderão ser 

utilizados em futuros estudos moleculares direcionados à dislipidemia. Para além disso, esta 

análise integrativa contribuiu para a construção de uma nova base de conhecimentos lipídicos, 

específica para o metabolismo dos lípidos e dislipidemia, disponível online para a comunidade 

científica.   

Com a aplicação de uma abordagem metodológica baseada em machine learning num dataset 

pediátrico, constituído por um perfil lipídico alargado e com os indivíduos estudados para os 

genes associados à FH, foram desenvolvidos novos modelos capazes de classificar os 

indivíduos com FH com uma especificidade consideravelmente superior em comparação com 

os métodos tradicionais. Os modelos com melhor performance, considerando um ranking com 
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o “top 10” dos modelos, incorporam parâmetros lipídicos ausentes dos critérios clínicos para 

FH atualmente utilizados, os quais apenas consideram os valores de colesterol total e LDL-C. 

Adicionalmente, modelos utilizando os mesmos parâmetros lipídicos que os critérios clínicos 

tradicionais (colesterol total e LDL-C) revelaram uma maior especificidade, mantendo uma boa 

sensibilidade, na classificação de uma amostra de 50 indivíduos do PFHS-ped, face ao uso de 

cut-offs rígidos desses mesmos parâmetros. Estes resultados demonstram o elevado potencial 

de técnicas de machine learning para desenvolvimento de modelos de classificação que 

permitam melhorar a seleção de indivíduos para estudo genético, e consequentemente, 

contribuir para um diagnóstico precoce.  

Uma análise de clustering hierárquico aplicada sobre o mesmo dataset revelou que a população 

em estudo pode ser dividida em três grupos distintos de doentes dislipidémicos, em vez das 

duas classes comumente utilizadas com base nos resultados dos estudos genéticos (FH+, 

presença de critérios clínicos e variante patogénica num dos três genes associados à doença; ou 

FH-, quando há presença de critérios clínicos mas não há identificação de uma variante 

associada). O terceiro grupo de indivíduos corresponde a um perfil misto que compreende 

algumas características de um perfil FH+ e outras mais próximas de um perfil FH-. 

Adicionalmente, esta análise permitiu identificar diferentes padrões lipídicos entre os 

indivíduos, nomeadamente a associação entre um perfil FH+ e níveis mais elevados de 

parâmetros lipídicos envolvidos no metabolismo das LDL/apoB, enquanto um perfil FH- foi 

associado com níveis mais elevados de parâmetros envolvidos no metabolismo dos 

triglicéridos. Uma maior contribuição poligénica foi também encontrada em indivíduos FH-, 

tendo em conta um score de risco poligénico associado aos níveis de LDL-C e baseado num 

painel de seis SNPs. Estes resultados mostram a complexidade do contexto biológico da 

dislipidemia, e a necessidade de uma abordagem integrativa e multidisciplinar para a seleção 

de novos biomarcadores.  

À semelhança dos modelos desenvolvidos para classificação dos indivíduos, a análise de 

clustering revelou que o perfil lipídico alargado contém biomarcadores importantes. Desta 

forma, a disponibilidade de um leque mais diversificado de parâmetros lipídicos pode ser uma 

mais-valia na procura de novos biomarcadores. Resumidamente, os parâmetros relacionados 

com o metabolismo dos triglicéridos e das LDL/apoB mostraram contribuir para uma melhor 

distinção entre indivíduos, de acordo com a análise de modelling e clustering. Os modelos com 

melhor performance, considerando o “top 10”, são maioritariamente compostos por um grupo 

de parâmetros que inclui os triglicéridos, LDL-C, apoB, apoA-I, apoC-III e LDL1. Os primeiros 

quatro destes parâmetros estão também presentes nos primeiros cinco lugares do ranking dos 
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parâmetros com contribuição estatisticamente significativa para a distribuição dos indivíduos 

em três grupos, na análise de clustering hierárquico, onde também se encontra o VLDL. Ambas 

as análises baseadas em métodos de machine learning mostraram que o metabolismo das 

lipoproteínas é uma das principais vias metabólicas envolvidas na dislipidemia.  

Posteriormente, a exploração de vias metabólicas lipídicas associadas aos biomarcadores 

identificados durante as análises anteriores permitiu identificar um conjunto de genes de 

interesse na área da dislipidemia. O primeiro passo foi a realização de uma pesquisa direcionada 

na plataforma Wikipathways, onde os biomarcadores identificados posteriormente foram 

utilizados como palavras-chave. Adicionalmente, outros termos foram considerados como 

palavras-chave, incluindo “metabolismo lipídico”, “hipercolesterolemia” e “aterosclerose”, 

com base na revisão da literatura. Esta pesquisa resultou na seleção de 14 vias metabólicas de 

interesse, e todos os genes envolvidos nestas vias foram utilizados para estabelecer uma lista 

de 466 genes alvo.  

Utilizando informação adicional recolhida de bases de dados públicas, incluindo dados de 

expressão génica, traços de fenótipo/doença (a partir de resultados de estudos de associação 

ampla do genoma) e termos de ontologia genética, foi definida uma nova base de conhecimento 

lipídico constituída pelo universo de 466 genes alvo relacionados com o metabolismo dos 

lípidos e dislipidemia, e interações moleculares relevantes para o contexto biológico da 

dislipidemia e futuros estudos moleculares. Considerando o perfil fenotípico e funcional dos 

genes alvo, foi estabelecido um grupo mais restrito de 41 genes denominado de “genes 

candidatos”, os quais são definidos pela associação com pelo menos um dos nove traços 

fenotípicos previamente selecionados como de interesse (doseamento de lipoproteínas, 

colesterol total, LDL-C, HDL-C, e VLDL-C, para além de outros traços fenotípicos como 

hipertrigliceridemia, aterosclerose, doença cardiovascular, e doença arterial coronária) e 

associação com termos de ontologia genética relacionados com lípidos. O grupo de genes 

candidatos inclui os três genes relacionados à FH (LDLR, APOB, PCSK9), entre outros genes 

maioritariamente associados ao metabolismo das lipoproteínas e dos triglicéridos, e representa 

um painel de interesse para futuros estudos moleculares. Esta nova base de conhecimento 

lipídico foi disponibilizada online através do desenvolvimento de uma app (MylipidgenesKB), 

que permite o acesso e interação com os vários níveis de informação associados aos genes de 

interesse e o download de ficheiros, apresentando-se como um recurso útil para a comunidade 

científica.  
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Os resultados obtidos neste trabalho podem ser aplicados para melhorar os programas de 

rastreio genético e diminuir os custos correspondentes, bem como para um maior conhecimento 

do contexto biológico das dislipidemias.   

 

Palavras-chave: hipercolesterolemia familiar, biomarcadores, perfil lipídico estendido, 

métodos baseados em machine learning, base de dados de conhecimento lipídico.  
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1. Lipids and lipoproteins metabolism  

Lipids are organic substances that comprise a heterogeneous group of compounds related to 

fatty acids (FA) and that include fats, oils, waxes, and other related substances. They are 

relatively insoluble in water and considerably soluble in organic solvents like ether, chloroform, 

or benzene, which make them hydrophobic [1]. Some lipids are amphipathic, being composed 

by a polar/hydrophilic “head” group (e.g., hydroxyl group) and a non-polar/hydrophobic 

hydrocarbon chain [1], [2]. Lipids play several biological functions, such as being important 

constituents of diet (high energy value), fat reserves (energy storage), structural elements 

(especially in cell membranes), players in hormone synthesis, vitamin carriers (e.g. fat-soluble 

vitamins as A, D or E), signalling molecules, and emulsifying agents [1]–[3].   

The lipids of metabolic significance in mammals include triglycerides (TG), phospholipids and 

steroids (including cholesterol), together with products of their metabolism such as long-chain 

FA, glycerol, and ketone bodies [1], [2]. Three important tissues in the lipid metabolic network 

are the liver, blood, and adipose tissue. Both liver and adipose tissue are the main sites of 

metabolic activity, while blood functions as a transport system. In addition, other tissues, such 

as cardiac and skeletal muscle, are important users of FA and ketone bodies [1]. Specific liver 

functions in lipid metabolism comprise the following (Figure 1.1): 

1. oxidation of FA to supply energy for other body functions; 

2. synthesis of large quantities of cholesterol, phospholipids, and most lipoproteins; 

3. synthesis of fat from proteins and carbohydrates; 

4. conversion of FA into ketone bodies during fasting; 

5. all processes related to cholesterol metabolism (synthesis and release into the blood, 

secretion of plasma cholesterol into bile, and its conversion into bile salts) [3], [4]. 
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Figure 1.1. An overview of the main lipid metabolic processes and the connection to carbohydrate and amino acids metabolism. 

Created with BioRender.com. 

 

1.1. Emulsification and lipolysis 

TG are the most abundant lipids in diet, followed by small quantities of phospholipids, 

cholesterol, and cholesteryl esters. The first step in lipids digestion is the physical breakdown 

of fat globules into very small sizes, allowing the action of water-soluble digestive enzymes – 

a process called emulsification, which begins in the stomach through peristaltic movements. 

Then, most emulsification occurs in the duodenum under the activity of bile, a liver secretion 

that does not contain any digestive enzymes, but instead is rich in bile salts and lecithin (a 

phospholipid) [4]. When present in high concentration in watery fluids, bile salts form micelles 

– small spherical and cylindrical globules composed of 20 to 40 molecules of bile salt. The 

hydrophobic sterol nucleus of bile salts dissolve in the surface layer of fat globules, forming a 

small fat globule in the middle of the resulting micelle, with polar groups of bile salts projecting 

outward to cover the micelle surface. Since these polar groups are negatively charged, the entire 

micelle globule is able to dissolve in the digestive fluids and remain in stable solution until fat 

can be absorbed into the blood [4] (Figure 1.2).  

Each time the diameter of fat globules decreases because of small intestine agitation, the total 

surface area of the fat increases as much as 1000-fold. This enables the activity of lipase 

enzymes that are water-soluble and can only attack fat globules on their surfaces. The most 

important enzyme for TG digestion is pancreatic lipase, present in high quantities in pancreatic 
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juice, which is responsible for splitting TG into free FA and 2-monoglycerides (Figure 1.2). 

Cholesteryl esters and phospholipids are hydrolysed, releasing FA, by enzyme cholesteryl ester 

hydrolase and phospholipase A2, respectively. The entire process of fat digestion and splitting 

in smaller and simpler products is known as lipolysis [4].  

 
Figure 1.2. Fat digestion and absorption (by diffusion) in intestinal epithelium, with bile salts as important players in both 

processes. The magnification in the upper side identifies the polar and non-polar surfaces of bile salts. Created with 

BioRender.com.     

 

Micelles are also involved in fat absorption, playing a role in the transport of lipolysis products 

to the brush borders of intestinal epithelial cells (microvilli), where those products are absorbed 

by diffusion in the blood. Bile salts are then released back into the chyme to be used over and 

over again [4].  

 

1.2. Esterification and entry of lipids in circulation 

Once inside the epithelial cell, FA and 2-monoglycerides are taken up by the smooth 

endoplasmic reticulum (SER), where they are mainly used to form new TG (a process called 

esterification) under the activity of enzymes acyl-CoA monoacylglycerol acyltransferase 

(MGAT) and acyl-CoA diacylglycerol acyltransferase (DGAT). These resynthesized TG are 

subsequently packaged and secreted in the form of lipoproteins (i.e., chylomicrons) for 

transport proposes [3]–[5]. The packaging process is mainly mediated by microsomal 

triglyceride transport protein (MTTP) and apolipoprotein B-48 (apoB-48), with apolipoprotein 

A-I (apoA-I) also taking part in the process. Following lipidation by MTTP, apoB-48 is 

lipidated by apolipoprotein A-IV (apoA-IV) [5], [6]. After being secreted, chylomicrons flow 
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upward through lymph ducts and enter into the circulating blood, where apoA-I and apoA-IV 

are exchanged for apolipoprotein C-II (apoC-II) and apolipoprotein E (apoE) from high-density 

lipoprotein (HDL) [3]–[5]. Lipoproteins are essential entities in fat transportation and highly 

important for cholesterol cell supply and excess cholesterol removal, as explained forward in 

this chapter.  

In parallel, small quantities of short and medium-chain FA are absorbed directly into the portal 

vein, since they are more water-soluble in comparison to long-chain FA [3], [4].  

 

1.3. β-oxidation 

For energetic purposes, FA produced during lipolysis are split by β-oxidation into C2-acetyl 

radicals, leading to the formation of acetyl coenzyme A (acetyl-CoA). The acetyl-CoA can enter 

into the citric acid cycle (also called TCA cycle) and be oxidised, which releases high amounts 

of energy that in turn can be used for cellular functions. β-oxidation can take place in all body 

cells, but it is particularly fast in hepatocytes. The liver itself cannot use all the acetyl-CoA that 

is formed and so it is converted in acetoacetic acid, a highly soluble acid that passes from 

hepatocytes into the extracellular fluid and is then transported throughout the body to be 

absorbed by other tissues, where it is reconverted into acetyl-CoA [4].  

 

1.4. Cholesterologenesis 

Like other biosynthetic pathways, reaction sequences related to the biosynthesis of lipids are 

endergonic and reductive. They use ATP as a source of metabolic energy and a reduced electron 

carrier, usually NADPH, as a reductant [1]. Cholesterologenesis comprises four main stages 

(Figure 1.3):  

1. condensation of three acetate units to form a C-6 intermediate (mevalonate); 

2. conversion of mevalonate to activated isoprene units; 

3. polymerization of six C-5 isoprene units to form the branched-chain C-30 squalene; 

4. cyclization of squalene to form the four rings of steroid nucleus, with further reactions 

(oxidation, removal or migration of methyl groups) to produce cholesterol [2], [7]. 



 

7 

 

 
Figure 1.3. Main steps of cholesterologenesis. HMG-CoA reductase is a drug target for statins, commonly used in the treatment 

of hypercholesterolaemia. The inhibition of this enzyme by statins results in the inhibition of cholesterologenesis and, in turn, 

in lower cholesterol levels. HMG-CoA: β-hydroxy-β-methylglutaryl-CoA; IPP: isopentenyl pyrophosphate; DMPP: 

dimethylallyl pyrophosphate. Created with BioRender.com. 

 

As shown in Figure 1.3, the reduction of β-hydroxy-β-methylglutaryl-CoA (HMG-CoA) to 

mevalonate is catalysed by the enzyme HMG-CoA reductase, an integral membrane protein 

that is the major point of cholesterologenesis regulation [2].  

 

1.5. Lipoproteins: transport of lipids through the body 

Cholesterol and cholesteryl esters, like TG and phospholipids, are essentially insoluble in water, 

yet they must be moved to the tissues in which they will be stored or consumed. Thus, body 

lipids are carried in the blood plasma as lipoproteins, macromolecular complexes of specific 

carrier proteins (apolipoproteins) with several combinations of phospholipids, cholesterol, 

cholesteryl esters and TG (Figure 1.4). The lipoprotein shell is amphipathic because its outer 

surface is hydrophilic (apolipoproteins), making lipoproteins water-soluble, and its inner 

surface (cholesterol-containing phospholipid monolayer) is hydrophobic. Adjacent to this inner 

surface there is a core of neutral lipids containing mostly cholesteryl esters, TG, or both. In 

addition, small amounts of other hydrophobic compounds (e.g., vitamin E, carotene) are carried 

in the lipoprotein core [2], [7].  
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Figure 1.4. Structure of a lipoprotein (in this case, LDL), showing the phospholipid monolayer as well as the shell and the 

neutral core. ApoB-100 is the main apolipoprotein present in LDL. Created with BioRender.com. 

 

1.5.1. Classes of lipoproteins 

Lipoproteins fall into five major classes: HDL, low-density lipoprotein (LDL), intermediate 

density lipoprotein (IDL), very low-density lipoprotein (VLDL), and chylomicrons. The lower 

the protein/lipid ratio, the lower the density, which means that chylomicrons are the least dense 

and contain the highest proportion of lipids. VLDLs and chylomicrons carry mainly TG in their 

cores, whereas the cores of LDLs and HDLs consist mostly of cholesteryl esters. IDLs contain 

substantial amounts of both TG and cholesterol. Each class of lipoproteins has distinctive 

apolipoprotein and lipid compositions, besides of different density and size (Table 1.1) [2], [6]–

[8].  

 

Table 1.1. Major classes of plasma lipoproteins and its main properties, including density, size, main lipids composition, 

protein/lipid ratio and the apolipoproteins mainly present [7]–[11]. 

Lipoprotein 
Density 

(g/mL) 

Size 

(nm) 

Main lipids  

(% weight) 

Protein/lipid 

ratio 
Main apolipoproteins 

Chylomicron <0.930 75-1200 TG (80-90) 1/100 
B-48*, C-II, C-III, E,  

A-I, A-II, A-IV 

VLDL 0.930-1.006 30-80 TG (40-60) 9/100 B-100*, E*, C-II, C-III 

IDL 1.006-1.019 23-35 
TG (20-50) and 

cholesterol (20-40) 
19/100 B-100*, E, C-II, C-III 

LDL 1.019-1.063 18-25 Cholesterol (50-60) 25/100 B-100* 

HDL 1.063-1.210 5-12 
Cholesterol (15-25) and 

phospholipids (23-30) 
90/100 

A-I*, A-II, C-I,  

C-II, C-III, E 

Lp(a) 1.055-1.085 25-30 Cholesterol (20-30) 30/100 (a)*, B-100* 

TG: triglycerides; VLDL: very-low density lipoprotein; IDL: intermediate density lipoprotein; LDL: low density lipoprotein; 

HDL: high density lipoprotein; Lp(a): lipoprotein(a) 

*Most abundant apolipoprotein(s) in the particle 

 

As shown in Table 1.1, another class of lipoproteins is considered, the lipoprotein(a) – Lp(a), 

which consists of a LDL particle whose apolipoprotein B-100 (apoB-100) is covalently attached 
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by a disulphide thioester bond to an apo(a) molecule. The apo(a) is a glycoprotein homologous 

to plasminogen that is highly polymorphic in size due to the number of kringle IV type 2 

(KIV2)-encoding sequences [8], [11], [12]. Kringles are triple-loop structural motifs usually 

found in several proteases involved in blood coagulation and fibrinolysis. Apo(a) size is 

inversely correlated with Lp(a) density and plasma concentration, which means that individuals 

with smaller apo(a) isoforms have an increased apo(a) secretion [11], [13]. In fact, small apo(a) 

isoforms were shown to be associated with a two-fold increased risk for cardiovascular disease 

(CVD), in comparison to larger isoforms, and higher plasmatic Lp(a) levels are related to a 

higher cardiovascular risk [11], [12]. The atherogenic potential of Lp(a), which translates in the 

ability to contribute to the accumulation of fat within blood vessels, is justified by its 

interference with the fibrinolytic system, affinity to phospholipase A2, interaction with 

extracellular matrix glycoproteins, and binding to macrophage scavenger receptors [12].  

While most lipoproteins are produced by a single type of cells (chylomicrons in enterocytes and 

VLDL in hepatocytes) or result from the catabolism of other lipoproteins (IDL, LDL and Lp(a) 

from VLDL catabolism), HDL is derived from both intestinal and hepatic tissues [6], [14], [15]. 

Hepatic HDL, in a nascent form, appears as a disk-shaped structure, while intestinal HDL is 

more spherical and varies in its protein composition. Both HDLs start to be relatively small and 

cholesterol poor, so that they are classified as HDL3 (density of 1.125 to 1.210 g/mL). After 

interaction with lecithin cholesterol acyl transferase (LCAT) and lipoprotein lipase (LPL), 

cholesteryl ester content is increased and the HDL particle becomes less dense and larger, being 

classified as HDL2 (density of 1.063 to 1.125 g/mL) [8], [14]. LDL particles can also be divided 

in different fractions according to size, density, and lipid composition [16], as explained 

forward in this chapter.  

 

1.5.2. Apolipoproteins 

Apolipoproteins (Table 1.2) contribute to the structural organisation of lipoproteins and 

determine their interactions with enzymes, extracellular lipid-transfer proteins, and cell-surface 

receptors [7]. The nomenclature for apolipoproteins is alphabetical. ApoA-I is the major 

apolipoprotein of HDL, which in turn is known as apoA-I-containing lipoprotein. Conversely, 

apoB-100 is present on VLDL and its remnants – LDL, IDL and Lp(a) lipoproteins. ApoB-48, 

a truncated protein codified by the apoB-100 gene resulting from a post-translational 

modification, is present in chylomicrons and its remnants. Therefore, chylomicrons, VLDL, 

IDL, LDL and Lp(a) are all apoB-containing lipoproteins [5], [8].     
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Table 1.2. Main characteristics of the major plasma apolipoproteins, including molecular weight, lipoproteins where they are 

present, main known metabolic functions and source [2], [8], [10], [13], [17], [18]. 

Apolipoproteins 
Molecular 

weight (Da) 
Lipoproteins Metabolic function Source 

ApoA-I 28.016 

HDL, 

chylomicrons 

Removes cell cholesterol via 

ABC1 onto nascent HDL; 

cofactor LCAT; facilitates 

uptake of CE from HDL, 

LDL and VLDL by SRB1 

Liver, intestine 

ApoA-II 17.414 

Involved in cell cholesterol 

efflux; suggested of 

hindering reverse cholesterol 

transport by inhibition of 

LCAT and CTEP  

Liver 

ApoA-IV 46.465 

Activates LCAT; involved in 

chylomicron assembly and 

secretion 

Intestine 

ApoA-V 39 
HDL, VLDL, 

chylomicrons 

Stimulates proteoglycan-

bound LPL 
Liver (mainly) 

ApoB-48 264 chylomicrons 

Assembly and secretion of 

chylomicrons from the small 

intestine 

Intestine 

ApoB-100 540 VLDL, IDL, LDL 

Assembly and secretion of 

VLDL from liver; binding 

ligand of LDL to LDLR 
Liver 

ApoC-I 6630 

Chylomicrons, 

VLDL, IDL, HDL 

Activates LCAT; inhibits 

CETP and SRB1 

ApoC-II 8900 Cofactor LPL 

ApoC-III 8800 

Inhibits LPL and binding of 

IDL to LDLR; increases 

VLDL secretion 

Liver (mainly), 

intestine 

ApoE 34.145 
Chylomicrons, 

VLDL, IDL, HDL 

Ligand for uptake of 

chylomicron remnants and 

IDL by LRP and LDLR 

Liver (mainly) 

Apo(a) 250-800 Lp(a) 

Unknown  

(possibly involved in wound 

healing and coagulation) 

Liver 

ABC1: ATP-binding cassette 1; CE: cholesteryl esters; LCAT: lecithin cholesterol acyl transferase; SRB1: scavenger receptor 

B-1; VLDL: very-low density lipoprotein; IDL: intermediate density lipoprotein; LDL: low-density lipoprotein; HDL: high 

density lipoprotein; LPL: lipoprotein lipase; CETP: cholesteryl ester transfer protein; LDLR: low-density lipoprotein receptor; 

LRP: low-density lipoprotein-like receptor protein; Lp(a): lipoprotein(a) 

 

1.5.3. Metabolic pathways of plasma lipoproteins 

Plasma lipoprotein metabolism comprises the following interrelated major pathways: 

exogenous (intestinal), endogenous (hepatic), intracellular LDL receptor pathway and reverse 

cholesterol transport [5], [8]. Chylomicrons, VLDL, and their remnants, constitute the major 

carriers of TG, while LDL and HDL transport most of the cholesteryl esters [5].  

Only VLDL and chylomicrons are fully formed within cells by assembly in the endoplasmic 

reticulum, which requires the activity of MTTP. The assembled particles move through 

secretory pathways to the cell surface and are released by exocytosis. Thus, both VLDL and 

chylomicrons require specialised vesicles to traffic from endoplasmic reticulum through the 
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Golgi apparatus prior to being secreted [7], [15]. Conversely, other lipoproteins are generated 

extracellularly in the bloodstream and on cell surfaces by remodelling of secreted VLDL. There 

are four main modifications leading to this remodelling process as follows: 

1. hydrolysis of TG and phospholipids by lipases and esterification of cholesterol by 

acetyl-CoA acetyltransferase (ACAT); 

2. transfer of cholesteryl esters, TG and phospholipids between lipoproteins by specific 

lipid-transfer proteins; 

3. uptake by some particles of cholesterol and phospholipids exported from cells; 

4. association and dissociation of apolipoproteins from the surface of lipoproteins [7]. 

 

1.5.3.1. Exogenous pathway 

Once chylomicrons enter in the systemic circulation, apoA-I and apoA-IV are exchanged for 

apoC-II and apoE from HDL. Then, TG within chylomicrons are hydrolysed by LPL, an 

enzyme that is bound to the surface of endothelial cells, and its cofactor apoC-II, producing free 

fatty acids (FFA) that are taken up by adipose tissue and muscle (Figure 1.5). Those FFA are 

then re-esterified into TG for storage purposes in adipocytes and used as energy supply by 

muscular cells. The chylomicrons remnants, enriched in cholesteryl esters and apoE, are quickly 

sequestrated by endothelial heparan sulphate proteoglycans (HSPG), within the perisinusoidal 

space that surrounds hepatocytes. This is followed by receptor-mediated endocytosis of 

remnants (Figure 1.5), through the binding of apoE to low-density lipoprotein-like receptor 

protein (LRP), also called chylomicron remnant receptor. HSPG also participate in this uptake 

step. As an alternative, apoE can be recognized and bind to a low-density lipoprotein receptor 

(LDLR) [5], [6], [8], [19].  

After playing their role in digestion, bile acids are reabsorbed through the ileal bile acid 

transporter (IBAT) and recycled in the liver (Figure 1.5). Free cholesterol is synthesised in liver 

by HMG-CoA reductase and then it can be:  

1. excreted into bile, unchanged, via ATP binding cassette subfamily G member 5 and 8 

(ABCG5 and ABCG8, respectively) for excretion through stool;  

2. converted to bile acids by cholesterol 7α-hydroxylase (7αH); 

3. esterified by ACAT into cholesteryl esters;  

4. used for lipoprotein synthesis [5], [13].   

The lipase maturation factor 1 (LMF1), the glycosylphosphatidylinositol-anchored high density 

lipoprotein binding protein 1 (GPIHBP1), angiopoietin like 3 (ANGPTL3) and angiopoietin 
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like 4 (ANGPTL4) are involved in LPL mediated hydrolysis of TG, so that the right amount of 

FA is delivered to the right tissue at the right time [15]. LMF1 is essential to the formation of 

catalytically active LPL from newly synthesised polypeptides, while GPIHBP1 is involved in 

transporting LPL from basolateral to apical surface of endothelial cells, thus operating as 

platform for LPL-mediated hydrolysis of TG from chylomicron. The high affinity binding of 

LPL to GPIHBP1 implies that GPIHBP1 can tear LPL from HSPG. Levels of GPIHBP1 hepatic 

expression are low, which likely contributes to poor hepatic clearance of chylomicrons until 

TG hydrolysis transforms them into remnant lipoproteins. HSPG have already been implicated 

as receptors for lipoprotein remnants, indeed several lipid binding proteins, such as LPL, 

hepatic lipase (HL) and apoE, can bind to HSPG and facilitate hepatic remnant clearance [13], 

[19].  

 

1.5.3.2. Endogenous pathway 

Most TG in fasting state are carried by VLDL, whose synthesis is critically dependent on the 

amount of apoB-100, TG and cholesteryl esters in the liver. FFA are usually activated followed 

by oxidation and incorporation into TG or cholesteryl esters, and apoB-100 is constitutively 

produced in liver – its synthesis is regulated by proteolysis and not through the expression of 

apolipoprotein B (APOB) gene. As apoB-100 interacts with cholesteryl esters, it assumes a new 

conformation leading to decreased degradation and increased production of apoB; MTTP 

incorporates TG into this complex. Next, phospholipids, apoE, apoC-I, apoC-II, and 

apolipoprotein C-III (apoC-III) are added to mature VLDL, whose secretion requires apoB-100. 

Then, VLDL carry TG to adipose tissue and muscle, where TG are hydrolysed by LPL and 

apoC-II producing FFA, larger VLDL remnants, and after that smaller IDL remnants. IDLs are 

relatively enriched in cholesteryl esters and depleted in TG, they are either taken up by 

interaction of apoE with LDLR in liver or hydrolysed by HL, thus becoming LDL, which is the 

final product of VLDL catabolism (Figure 1.5). In addition, VLDLs attend as acceptors of 

cholesterol transferred from HDL, by mediation of cholesteryl ester transfer protein (CETP), 

accounting in part for the inverse relation between high-density lipoprotein cholesterol (HDL-

C) and VLDL content in TG [5], [6], [8].  

LDL is the major carrier of cholesterol in humans, supplying tissues with high sterol demand. 

Additionally, LDL is also the lipoprotein most clearly implicated in atherogenesis, as explained 

later in this chapter. Conversely, HDL is believed to protect tissues from the excess of 

cholesterol, having a major role in reverse cholesterol transport [5], [6]. 
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Figure 1.5. Exogenous and endogenous pathways of lipoprotein metabolism. BA: bile acids; FC: free cholesterol; FFA: free 

fatty acids; TG: triglycerides; LPL: lipoprotein lipase; HL: hepatic lipase. Created with BioRender.com. 

 

LDL receptor has a higher affinity for apoE-containing lipoproteins, such as chylomicrons and 

VLDL remnants, than for apoB-containing lipoproteins (i.e., LDL), which might explain why 

LDL particles stay in circulation for more time (i.e., some days, compared to a couple of 

minutes or hours in other lipoproteins), thus contributing to their atherogenic potential [20]. 

Thus, the more VLDL remnants are removed from circulation, the less they will be converted 

into LDL [20], [21].  

Whereas LDL receptor appears to function solely in lipoprotein metabolism, LRP has several 

known ligands and it may function as a multifunctional scavenger receptor, with a major 

function in the removal of proteinase and proteinase inhibitor complexes. It has been suggested 

that LRP binds not only to chylomicron remnants but also to lipases. For example, 

apolipoprotein A-V (apoA-V) might influence lipid homeostasis by enhancing receptor-

mediated endocytosis of chylomicrons, given its association with LRP and other members of 

the LDL receptor family [13]. 

 

1.5.3.3. Intracellular LDL receptor pathway   

After its synthesis, glycosylation, and transport to the cell surface, LDLR is directed to clathrin-

coated pits where apoB of LDL particles binds with high affinity to LDLR. The receptor-ligand 

complexes, inside coated vesicles, are internalised by endocytosis and transported to endosomes 

by low-density lipoprotein receptor modular adaptor protein 1 (LDLRAP1), an important player 
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in LDL binding and internalisation (Figure 1.6). For degradation purposes, LDL is displaced 

from LDLR in the acidic environment of endosomes, allowing release of LDL into endosomes 

and recycling of LDLR on the cell surface. LDL is then degraded in lysosomes, where apoB 

undergoes proteolysis and cholesteryl esters are hydrolysed producing free cholesterol and 

FFA. Free cholesterol decreases the activity of HMG-CoA reductase and LDLR, by inhibition 

of the sterol regulatory element binding protein (SREBP) pathway. In alternative, LDLR 

interacts and complexes with a protease called proprotein convertase subtilisin-like kexin type 

9 (PCSK9), which is secreted by the liver. This LDLR-PCSK9 complex is internalised via 

clathrin-mediated endocytosis and then routed to lysosomes for degradation (Figure 1.6) [5], 

[10].  

 

Figure 1.6. Intracellular LDLR pathway showing the binding and internalisation of APOB-LDLR complexes. The influence of 

LDLRAP1 and PCSK9 in the process is also represented. Created with BioRender.com. 

 

Two thirds of the LDL particles are usually removed through LDLR, whereas the remaining is 

uptake by scavenger cell receptors of extrahepatic tissues [22]. Scavenger receptors of 

macrophages are responsible for recognition of LDL that was modified, mainly oxidised by 

free radicals, which represents the primary lesion of atherosclerosis, as explained below [5], 

[6].    

 

1.5.3.4. Reverse cholesterol transport  

ApoA-I is secreted as lipid-free protein from intestine and liver, it interacts with ATP binding 

cassette subfamily A member 1 (ABCA1) on basolateral membranes of enterocytes, 

hepatocytes, and macrophages, then attaining free cholesterol and phospholipids to form a 
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stable nascent HDL particle (Figure 1.7). Transition of disc-shaped nascent HDL to spherical 

mature HDL requires esterification of cholesterol by LCAT and its cofactor apoA-I, 

contributing to the formation of HDL hydrophobic core that is composed of cholesteryl esters. 

The subsequent addition of cholesterol to HDL occurs in macrophages and other peripheral 

cells through ATP binding cassette subfamily G member 1 (ABCG1) and scavenger receptor 

B-1 (SRB1) – molecules that prefer larger HDL as acceptors. In other hand, cholesteryl esters 

are transferred from HDL core to TG-rich lipoproteins in exchange of TG, a reaction catalysed 

by CETP (Figure 1.7). When depleted of cholesteryl esters, TG-enriched HDL is hydrolysed 

by HL with production of a smaller HDL particle that appears to be more avidly removed in 

kidneys. In addition, the phospholipid transfer protein (PLTP), structurally similar to CETP, 

catalyses the transfer of unsaturated FA present on phospholipids of apoB-containing 

lipoproteins to HDL [5], [8]. 

Cholesteryl esters within spherical HDL are transported back to liver by two mechanisms 

(Figure 1.7): transfer by CETP from HDL to apoB-containing lipoproteins, which are taken up 

through LDLR or LRP; direct delivery to liver through SRB1 with help from its adapter protein, 

the PDZ-domain-containing protein (PDZK1). Free cholesterol is excreted directly into bile or 

converted into bile acids by 7αH. Both processes result in delivery of sterol from peripheral 

tissues through plasma into hepatocytes, promoting the excretion of sterols into the stool [5], 

[8].  

 

Figure 1.7. Reverse cholesterol transport and its connections to the remainder lipoprotein metabolism pathways. BA: bile acids; 

FC: free cholesterol; FFA: free fatty acids; CE: cholesteryl esters; TG: triglycerides; CETP: cholesteryl ester transfer protein; 

LPL: lipoprotein lipase; HL: hepatic lipase; PL: phospholipids. Created with BioRender.com. 
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Reverse cholesterol transport explains in part the protective effect of HDL and apoA-I against 

atherosclerosis and cardiovascular disease. Indeed, factors inhibiting this process, such as 

dysfunctional HDL, appear to promote atherosclerosis. In addition to its central role in reverse 

cholesterol transport, HDL may be cardioprotective through its antioxidant, anti-inflammatory 

and antithrombotic effects. For example, HDL inhibits LDL oxidation by metal ions, which 

may be due to the influence of several molecules on HDL, including apoA-I, platelet activating 

factor acetylhydrolase and paraoxonase. Accumulation of large HDL2, which appears to be the 

most cardioprotective of HDL subclasses, is favoured by oestrogens that negatively regulate 

HL. Conversely, progesterone and androgens, which positively regulate HL, lead to increased 

production of small HDL3 [5], [8]. Together with CETP, HL is believed to reduce the core of 

large HDL2 particles and play a role in reconversion of HDL2 to HDL3 [14]. 

 

1.6. Cholesterol homeostasis  

The cholesterol balance results from the interplay between cholesterol synthesis, absorption and 

excretion through bile and stool. When cholesterol excretion rises or its absorption diminish, 

cholesterologenesis is higher, whereas a higher content of cholesterol in tissues leads to 

inhibition of its endogenous synthesis. Indeed, as intracellular cholesterol decreases, LDLR 

activity increases and vice versa [23], [24]. This regulated feedback mechanism begins with the 

SREBP cleavage activating protein (SCAP), which is both a sensor of sterols and a chaperon 

of SREBP. When hepatocytes are deprived of cholesterol, SCAP transports SREBP from 

endoplasmic reticulum to Golgi apparatus, where site-1 and site-2 proteases release the NH2-

terminal of SREBP from membrane to nucleus. There, it binds to a sterol response element 

(SRE) on promoter of LDLR and HMG-CoA reductase genes, thus increasing their 

transcription, which allows LDLR increase and subsequently low-density lipoprotein 

cholesterol (LDL-C) decrease. On the other hand, SREBP cannot reach the nucleus when 

hepatic cholesterol is increased, which decreases transcription of LDLR and HMG-CoA 

reductase genes, consequently decreasing LDLR and increasing LDL-C [5], [25]. In addition, 

when free cholesterol is released within lysosomes, there is an increment in production of 

cholesteryl esters by ACAT [24]. 

Lysosomal acid lipase (LAL), a 46 kDa glycoprotein encoded by LAL gene (also known as 

LIPA), is responsible for hydrolysis of lipoprotein cholesteryl esters and TG. Hydrolysis of 

cholesteryl esters generates free cholesterol, which after leaving the lysosome can be re-

esterified in endoplasmic reticulum to form cytosolic lipid droplets. If excess free cholesterol 
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is retained in the lysosome, it can inhibit both lysosomal and LAL activities, which contributes 

further to progression of atherosclerosis [26].  

 

2. Dyslipidaemia 

The term dyslipidaemia corresponds to the presence of increased or decreased levels of 

lipoproteins in circulation [13]. Dyslipidaemia is one of the major cardiovascular risk factors 

especially when it is associated with increased levels of serum LDL-C and/or reduced levels of 

HDL-C [6], [27]. When serum LDL exceeds a threshold concentration, LDL particles traverse 

the endothelial wall and can become trapped in the arterial intimae, where they may undergo 

oxidation or other biochemical modification. These modified LDL particles can be taken up by 

macrophages, thus stimulating atherogenesis (Figure 1.8), which is the pathological process 

that leads to atherosclerosis – a disease of large and intermediate-sized arteries in which fatty 

lesions (i.e., atheromatous plaques) develop on arterial lumen [4], [6]. As a silent condition, 

dyslipidaemia does not usually produce clinical manifestations until an atherosclerotic vascular 

event occurs (e.g., myocardial infarction, stroke, or peripheral vascular occlusion) [6]. 

 

2.1. The development of atherosclerosis and the atherogenic role of LDL  

The atherosclerotic process begins with the appearance of an initial vascular lesion that 

increases the expression of adhesion molecules on endothelial cells, while decreasing the ability 

of these cells to release nitric oxide and other substances that help to prevent adhesion of 

macromolecules, platelets, and monocytes to the endothelium. Once this initial damage occurs, 

circulating monocytes and LDL begin to accumulate at the site of injury [4]. As mentioned 

before, excess LDL that become trapped in arterial intimae may undergo biochemical 

modifications (e.g., oxidation or glycation). Monocytes also enter in the arterial intimae and 

differentiate in macrophages. In its turn, the modified LDL binds to macrophage scavenger 

receptors (Figure 1.8), like scavenger receptor A-1 (SRA1) and cluster of differentiation 36 

(CD36) and is taken up by macrophages through a low-affinity and LDLR-independent 

mechanism, which is not subject to the feedback inhibition of LDLR synthesis by LDL-derived 

cholesterol. This gives macrophages a foam-like appearance, so that they are called foam cells, 

which aggregate and form a visible fatty streak on the blood vessel [4]–[6]. Then, foam cells 

trigger inflammation and growth of both the intimal layer and atherosclerotic plaque, while 

increasing susceptibility for the development of more lesions. With time fatty streaks grow 

larger and coalesce, the surrounding fibrous and smooth muscle tissues proliferate to form even 
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larger plaques. In the last instance, this can lead to occlusion or rupture of the arterial vessel 

(Figure 1.8) [4].  

 

Figure 1.8. Development of an atherosclerotic plaque with production of foam cells (yellow shade) and the progression of 

atherosclerotic lesions, showing the different degrees of severity until the occurrence of an acute event (blue shade). Created 

with BioRender.com.   

 

LDL is considered the most atherogenic lipoprotein, as well as the one with the greatest 

cholesterol proportion. LDL plasma population is composed of heterogeneous subfractions that 

are different in size, density, charge, and protein/lipid content. These LDL subfractions are 

generated during delipidation of VLDL to IDL and LDL particles. There are several techniques 

that allow the partition and identification of the different LDL subfractions, including nuclear 

magnetic resonance, high-performance liquid chromatography, ultracentrifugation, dynamic 

light scattering and gel gradient electrophoresis (GGE) [28], [29]. In GGE, a semi-quantitative 

method that detects predominance of smaller particles among LDL subclasses, two distinct 

electrophoresis-based phenotypes with peak LDL particle diameters >25.5 nm and ≤25.5 nm 

are usually determined, corresponding to phenotype A and B respectively [28]. Lipoprint™ is 

an example of semiautomated ready-to-use system for GGE, either specific to LDL or HDL 

particle profiling [30]. In this system, phenotype A is characterised by predominance of large 

buoyant LDL (lbLDL) and phenotype B is characterised by predominance of small dense LDL 

(sdLDL) [28], [29]. It has been established that sdLDL is the most atherogenic LDL subfraction, 

being already recognized as a cardiovascular risk factor. Indeed, subjects with phenotype B 
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have an increased risk of myocardial infarction and often exhibit atherogenic lipid profiles, such 

as high TG and low HDL-C levels [28].  

Gender and menopausal status have significant impact on small dense low-density lipoprotein 

cholesterol (sdLDL-C) and sdLDL-apoB concentrations. Furthermore, the protein/lipid 

composition of LDL is strongly influenced by changes in TG concentration [29]. It has been 

proposed that the relative amounts of VLDL and LDL secreted into plasma reflect the body 

status of TG and cholesterol pools that need to be mobilised during metabolism [31]. The 

atherogenic potential of sdLDL can be explained by the following metabolic features: 

1. small size that allows an easier infiltration on arterial wall;  

2. high affinity with proteoglycans in arterial wall, allowing sdLDL to stay longer in the 

subendothelial space; 

3. lower affinity with LDL receptors rather than larger LDL, which means a prolonged 

half-life in plasma, suggesting an impaired clearance from circulation;  

4. lack of vitamin E that makes it highly susceptible to oxidation [28], [32]. 

In general, sdLDL levels increase in hypertriglyceridaemia, familial combined 

hyperlipidaemia, metabolic syndrome, and coronary artery disease. Nonetheless, it has been 

shown that atorvastatin can decrease sdLDL-C to an equivalent level of control individuals [28], 

[32].  

 

2.2. Classification of dyslipidaemias  

In addition to nutritional and secondary causes (e.g., obesity, diabetes mellitus or 

hypothyroidism), dyslipidaemia can occur as a consequence of specific genetic contexts [33]. 

In that case we are in the presence of a primary dyslipidaemia, which can be caused by a single 

gene variant (monogenic dyslipidaemia) or result from the cumulative effect of several 

polygenic and environmental factors (polygenic dyslipidaemia) [34]–[36]. 

The most important lipid disorders affecting cardiovascular risk are those that increase LDL or 

reduce HDL levels. Patients with monogenic dyslipidaemia are usually the most severely 

affected individuals. However, the majority of hyperlipidaemic patients do not have a 

monogenic defect, rather they are most likely to have a polygenic disease with a variable 

contribution from environmental factors (e.g., excessive saturated fat intake for high LDL 

levels, obesity or smoking for lower HDL levels) [6], [37]. Thus, it is important to distinguish 

between monogenic and polygenic dyslipidaemia, since monogenic patients are exposed to high 

cholesterol levels from birth and therefore have an increased risk of premature cardiovascular 
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disease. In these cases, prompt and accurate diagnosis is essential for cardiovascular disease 

prevention as it allows earlier and/or more aggressive therapeutic measures, which have been 

shown to be effective in reduction of cardiovascular morbidity and mortality in both adults and 

children [38]. 

At the moment, there is no well-defined and consensual classification system for 

dyslipidaemias. In 1965, Fredrickson and Lees grouped the hyperlipoproteinemias into five 

different types, each corresponding to a specific lipoprotein profile, independently of being 

primary or secondary hyperlipidaemias [39]. This classification system was formally adopted 

by WHO in 1970 [40] and during decades had an invaluable role for disease definition [9]. 

However, this classification is outdated for the following reasons: 1) only hyperlipidaemias are 

included; 2) absence of any condition primarily characterised by HDL-C deviations; 3) it is 

based solely on phenotype that is known not to be genetically specific, since it can reflect in a 

similar way monogenic, polygenic, or even secondary dyslipidaemias [9], [33]. Therefore, the 

present work uses a specific classification system based on the current knowledge regarding 

dyslipidaemias, as described in the following sections.  

 

2.2.1. Primary monogenic dyslipidaemias  

Based on the current literature, primary dyslipidaemias can be divided in five main groups: 

hypertriglyceridaemias, hypercholesterolaemias, mixed hyperlipidaemias, primary alterations 

of HDL, and hypolipidaemias associated with deficiency in apoB-containing lipoproteins [5], 

[8], [9]. Table 1.3 summarises the main monogenic dyslipidaemias following this classification 

and provides information regarding heritability pattern, associated genes and phenotype. Giving 

the scope of this thesis, the present text will focus on Familial Hypercholesterolaemia, as 

explained next.     
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Table 1.3. Characterization of the main monogenic dyslipidaemias according to heritability pattern, affected genes and 

phenotypic traits [5], [8], [33], [41]–[43]. 

Condition Heritability 
Related 

genes 
Phenotypic traits 

H
y

p
er

tr
ig

ly
ce

ri
d

ae
m

ia
s 

Familial  

chylomicronaemia 

Autosomal 

recessive 

LPL 

APOC2 

GPIHBPI 

APOA5 

LMF1 

Extremely high levels of TG and TC, 

pancreatitis, xanthomas, lipaemia 

retinalis, hepatosplenomegaly 

H
y

p
er

ch
o

le
st

er
o

le
m

ia
s 

Familial 

hypercholesterolaemia 

Autosomal co-

dominant 

LDLR 

APOB 

PCSK9 

High levels of LDL-C, presence of 

tendinous xanthomas and premature 

coronary disease 

Autosomal recessive 

hypercholesterolaemia 

Autosomal 

recessive 
LDLRAP1 

Very high levels of TC, xanthomas, 

premature CVD 

Sitosterolaemia 

(or phytosterolaemia) 

Autosomal 

recessive 

ABCG5 

ABCG8 

Extremely high levels of dietary 

vegetal sterols, tendinous xanthomas, 

premature CVD, haemolytic anaemia 

and macrothrombocytopenia 

Deficiency of 7αH 
Autosomal  

co-dominant 
CYP7A1 

High levels of TC and sometimes of 

TG, biliary lithiasis 

M
ix

ed
 

h
y

p
er

li
p

id
ae

m
ia

s 

Familial 

dysbetalipoproteinaemia  

Autosomal 

recessive 

(incomplete/low 

penetrance) 

APOE 

(ε2/2) 

High levels of VLDL remnants, IDL 

and chylomicrons, occurrence of an 

abnormal lipoprotein (β-VLDL), 

xanthomas, corneal arcus and 

xanthelasma 

Familial deficiency of 

hepatic lipase 

Autosomal 

recessive 
LIPC 

High levels of TC and TG, 

xanthomas, and corneal arcus 

A
lt

er
at

io
n

s 
o

f 
H

D
L

 

Familial 

hypoalphalipoproteinemia 

Autosomal 

dominant 
APOA1 

Low HDL-C levels  

(<5th percentile, age and sex specific) 

Familial deficiency of 

LCAT 

Autosomal 

recessive 
LCAT 

High levels of TC and free 

cholesterol, low HDL-C levels, 

visual perturbations, haemolytic 

anaemia, and severe nephropathy 

Tangier disease 
Autosomal 

recessive 
ABCA1 

Extremely low HDL-C levels (<10 

mg/dl), premature coronary disease 

and haematological alterations 

Hypolipodaemias 

Autosomal 

dominant/ 

recessive 

APOB 

PCSK9 

ANGPTL3 

MTTP 

SAR1B 

Marked reduction of LDL-C and TC 

levels 

 

2.2.1.1.Familial Hypercholesterolaemia 

Familial Hypercholesterolaemia (FH), an autosomal co-dominant disorder (i.e., both variant 

alleles from each affected parent contribute to the phenotype), is the most common monogenic 

dyslipidaemia, with an estimated prevalence of 1/250 for heterozygotes worldwide [33], [44]. 
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The prevalence of homozygous FH is approximately 1/300 000. Still, heterozygous FH can be 

more frequent (up to 1%) in certain founder populations, owing to a high prevalence of 

embedded pathogenic variants [33]. This condition usually results from loss-of-function genetic 

variants in the LDLR gene and, less commonly, in the APOB gene. Gain-of-function variants in 

PCSK9 gene also produce the same phenotype, although it is a rare cause of FH. Based on the 

inheritance pattern of co-dominance, FH patients can be considered as simple homozygotes, 

when the same variant is present in both alleles of the same gene; compound heterozygotes, 

with different variants in each allele of the same gene; or double heterozygotes, rare cases of 

individuals presenting variants in two different genes. In any of these scenarios, the offspring 

will be obligately heterozygote, assuming that the other parent has not FH [33], [45].  

This disorder is clinically characterised by high LDL-C levels since birth and consequent 

accumulation of cholesterol in peripheral tissues (occurrence of tendinous xanthomas and 

corneal arcus) and arteries, which triggers the premature development of atherosclerosis and 

increases the risk for coronary heart disease. In comparison to the normal population, FH 

patients have a 100-fold increased risk to develop premature cardiovascular disorders (i.e., at 

20-39 years old). FH is still widely under-diagnosed and undertreated, including in Portugal, 

where no prior clinical or genetic studies have been performed until the beginning of the 

Portuguese FH study (PFHS) in 1999 [46], [47]. An early diagnosis of FH is essential to 

improve the prognosis by administering appropriate therapeutic measures, genetic counselling, 

and access to specialised medical services [35], [47].  

 

2.2.1.1.1. Molecular studies in the hallmark FH genes 

The PFHS has been performing a systematic characterisation of FH cases in Portugal and 

includes extended lipid analysis profiles for a large number of index patients, as well as 

molecular studies involving the known FH-related genes [48], [49]. These molecular studies 

are performed in five phases as follows:  

1) study of the promoter, splicing and coding regions of the LDLR gene and screening for 

the most common APOB variants (fragments of exons 26 and 29);  

2) study of large rearrangements by Multiplex Ligation-dependent Probe Amplification 

(MLPA) technique for LDLR;  

3) study of the promoter, splicing and coding regions of the PCSK9 gene;  

4) study of promotor, all exons, and flanking regions of APOB;  

5) functional in vitro studies, only in certain cases as explained forward [50], [51].  
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Phases 3 and 4 are performed only if no putative variants are found in the first two phases. In 

phase 3, the study of the whole PCSK9 gene is performed for severely affected patients [51]. 

All reported variants are annotated according to the Human Genome Variation Society. The 

variants are considered “novel” when they are not present in the University College London 

LDLR FH database or in the Human Gene Mutation Database at the time of the molecular 

studies [50], [51].     

LDLR variants can be grouped in two categories: receptor-negative or null variants that result 

in either no protein synthesis or synthesis of a completely non-functional protein, and receptor-

defective (or simply defective) variants that result in synthesis of an ineffective protein [10], 

[33]. Accordingly, null variants keep up to 2% of the molecular activity from wild type allele, 

while defective variants contribute for the maintenance of 2-80% of the molecular activity [52]. 

LDLR null variants comprise large-scale copy number variations (usually partial gene 

deletions), nonsense variants in the coding region, and splicing variants that are typically non-

coding variants and occur at intron-exon boundaries. These variants are usually found in 

individuals with the highest LDL-C mean values. Conversely, defective variants are associated 

with lower LDL-C mean levels and they include missense variants, which correspond to the 

alteration of a single amino acid residue, and small insertions or deletions (indels) within or 

near the coding sequence, some of which might shift the reading frame (frameshift variants) 

[10], [33]. Although LDLR variants affect the protein in variable ways and conduct to different 

degrees of disease severity, all kinds of LDLR variants lead to impaired uptake of circulating 

LDL-C and consequent rise of its serum levels [53]. 

Attributing FH causality to APOB and PCSK9 variants is more complicated in comparison to 

variants found in LDLR gene, since these two genes are very polymorphic and in vitro 

functional studies are more difficult to perform. Frameshift, missense, nonsense, and splicing 

variants were already found in the APOB gene [33]. Still, APOB variants do not have a 

penetrance of 100% and the resultant phenotype is usually milder in comparison to that 

produced by LDLR variants [50]. Most common APOB variants are present in exons 26 and 29, 

which correspond to the coding region of the receptor-binding domain of apoB protein that is 

essential for LDLR-apoB binding and, consequently, for circulating LDL-C uptake. In the case 

of PCSK9, most of the reported variants are missense variants, although frameshift variants 

have already been found [33], [54]. As PCSK9 protein is responsible for LDLR degradation in 

liver cells, gain-of-function variants result in increased PCSK9 activity that leads to an 

increased intracellular LDLR degradation, allowing LDL-C to accumulate in circulation [53]. 
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The assessment of the functional effect of identified genetic variants is one of the main 

challenges in FH molecular diagnosis. A study of 2015 reported that about 30% of detected 

variants in the PFHS cohort had an uncertain pathogenic effect [49]. According to the American 

College of Medical Genetics and Genomics (ACMG) guidelines, variants are classified as 

pathogenic, likely pathogenic, variant of unknown significance, likely benign, and benign. If a 

variant has been described in more than 5% of the studied population - i.e., minor allele 

frequency (MAF) >5%, in the 1000 Genomes database or the Exome Sequencing Project 

database, it is considered a common variant or a polymorphism and thus a neutral variant [51]. 

In a study from 2018, reporting the result of functional studies of APOB variants from 

individuals of PFHS, a MAF >1% was considered to define a common variant [50]. For variants 

without functional studies, several software tools are applied for in silico analysis, namely 

prediction of amino acid substitutions and splicing defects. In PFHS, functional studies are only 

pursued for missense variants, in-frame deletions/insertions, and splicing variants when no 

functional assays have been performed yet and external funding is available [51]. 

All functional studies performed in the context of PFHS comprise in vitro assays and the 

process is mostly similar for all studied genes, although with some specificities for APOB and 

PCSK9 [50], [51], [55]. Given the fact that the majority of FH-causative variants are identified 

in the LDLR gene, functional studies are here briefly explained for LDLR variants. The main 

purpose of analysing these variants is to measure their ability to interfere with protein 

expression, binding and internalisation. The in vitro assays use cell lines transfected with the 

LDLR variant to be studied, which are kept in cell culture for 48h to achieve the maximal LDLR 

expression. Western blot analysis evaluates the LDLR expression. The quantification of protein 

expression is performed using flow cytometry, which determines the expression of the receptor 

at the cell surface while comparing the fluorescence produced by the variant in study with the 

fluorescent signal from wild type LDLR expressing cells (controls). The same technique of flow 

cytometry, namely fluorescence-activated cell sorting (FACS), is used to quantify LDLR 

activity, with determination of LDLR-LDL binding and LDL uptake. The LDL particles used 

in this step are isolated from serum samples of healthy individuals. Confocal laser scanning 

microscopy is used to analyse LDLR expression and intracellular colocalization. In addition, 

the kinetics of LDLR variants are evaluated by measuring the protein expression at different 

incubation times in the presence of LDL particles, as well as by performing studies of LDLR-

LDL binding at different pH values [49], [56]. Although the cut-off value for determining 

whether an LDLR variant is considered a functional mutant has not been established yet, several 

studies have been considered that a value of in vitro LDLR activity in the affected allele below 
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70-80% of wild type can classify a variant as pathogenic. This value corresponds to 85-90% of 

total LDLR activity in both gene alleles, assuming that the non-affected allele can produce 50% 

of the active protein. The establishment of functionality cut-offs contributes for a proper 

classification of gene variants, which is an important step in the direction of a personalised 

treatment for FH. This requires more functional studies and an integrated analysis of clinical, 

molecular and functional data, allowing an accurate FH diagnosis [49]. A detailed analysis of 

worldwide submitted FH-related variants in ClinVar, an NCBI-funded resource, is provided by 

Iacocca et al. on behalf of the ClinGen FH Variant Curation Expert Panel [57]. This is essential 

to achieve a standardised and reliable variant classification, allowing an improvement of FH 

diagnosis.   

 

2.2.1.1.2. Clinical criteria 

Two clinical scoring systems are in general use for FH diagnosis, the Simon Broome (SB) 

criteria and the Dutch Lipid Clinic Network criteria [33], [58]. Other proposed systems include 

the one used by the American Heart Association, and the Canadian simplified FH definition. 

Although the concordance between the different algorithms is inconsistent, most of them score 

and assign weights to the following features: 

- lipid values, particularly total cholesterol and/or LDL-C; 

- presence of physical stigmata considered pathognomonic for FH, such as tendon 

xanthomas, xanthelasmas, or arcus cornealis; 

- personal or family history of premature cardiovascular disease; 

- pathogenic or likely pathogenic DNA variants in FH-related genes [33]. 

Physical stigmata were observed in more than half of FH patients in the 1970’s, but nowadays 

they are reported only in 5-20% of well-characterised FH cohorts, which might be due to an 

earlier diagnosis and treatment - with prompt adoption of a healthy lifestyle and drug therapy, 

mostly based on statins [33].  

Since the work developed during this thesis involved the application of SB criteria, the same 

are presented in detail in Table 1.4.  
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Table 1.4. Simon Broome clinical criteria applied for FH diagnosis [33], [59], [60]. 

Confirmed/Definite FH  

Biochemical Profile 

- age < 16 years: TC ≥ 260 mg/dL or LDL-C ≥ 155 mg/dL 

- age ≥ 16 years: TC ≥ 290 mg/dL or LDL-C ≥ 190 mg/dL  

AND 

Physical stigmata 

- tendinous xanthomas at index case or relatives (parents, sons, grandparents, siblings, uncles) 

OR 

Genetics 

- evidence of a pathogenic or likely pathogenic variant in LDLR, APOB or PCSK9 genes  

Probable FH 

Biochemical Profile 

- age < 16 years: TC ≥ 260 mg/dL or LDL-C ≥ 155 mg/dL 

- age ≥ 16 years: TC ≥ 290 mg/dL or LDL-C ≥ 190 mg/dL  

AND 

Family history 

- myocardial infarction: before 50 years in grandparents and uncles, or before 60 years in 

parents, siblings, or sons 

OR  

- LDL-C ≥ 290 mg/dL in parents, siblings, sons, grandparents, or uncles 

 

Current guidelines support genetic testing of the hallmark FH genes (i.e., LDLR, APOB, 

PCSK9) for individuals that comply with clinical diagnostic criteria (biochemical profile and 

family history of cardiovascular disease) [61]. When genetic evidence of FH is found, genetic 

testing should be extended to patient relatives, following the system of familiar cascade 

screening to identify new cases of FH [62].  

 

2.2.1.1.3. Drug treatment  

The first step of FH treatment is the adoption of a healthy lifestyle, including a diet with reduced 

fat intake, physical exercise, and avoiding harmful habits like smoking. Still, this is usually not 

enough to manage cholesterol levels and pharmacotherapy is the norm [10], [63]. Statins, which 

are HMG-CoA reductase inhibitors, are the most commonly used drug to reduce cholesterol 

blood levels, being considered first-line drug treatment for FH management, including for 

children. When statins are not enough to achieve cholesterol goals, they are often used in 

combination with ezetimibe, the only available cholesterol absorption inhibitor, which blocks 

the intestinal Niemann-Pick C1-like protein 1 (NPC1L1) that mediates cholesterol uptake by 

enterocytes [10], [54], [63]. Ezetimibe results in a selective lowering of cholesterol absorption 

without the impairment on absorption of other nutrients [64]. Several studies have shown that 

adding ezetimibe to any dose of a statin leads to a 20% additional reduction in LDL-C [10]. 
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Additionally, other lipid-lowering drugs are available for dyslipidaemic patients, as seen in 

Table 1.5.  

Table 1.5. Lipid-lowering drugs currently available for the treatment of FH [10], [54]. 

Drug class Mode of action 

Statins Inhibition of HMG-CoA reductase 

Ezetimibe Cholesterol absorption inhibitor 

Bile acid sequestrants/Resins 
Sequestrate micelles promoting their excretion before being 

captured by enterocytes 

Niacin 
Reduce FFA mobilisation from adipose tissue to the liver, 

impairing lipoproteins synthesis 

Human monoclonal PCSK9 antibodies 
Inhibition of LDLR-PCSK9 binding with promotion of LDLR 

recycling and LDL clearance 

Lomitapide 
MTTP inhibitor reducing the assembly and synthesis of 

lipoproteins both in enterocytes and hepatocytes 

Mipomersen 
Antisense oligonucleotide binding apoB mRNA with reduction 

of VLDL and LDL generation 

 

Statins can be classified according to source (natural or synthetic), hydrophilicity (hydrophilic 

or hydrophobic) and lipid-lowering power. Hydrophilic statins are almost or completely 

independent of the CYP450 system, being excreted mostly unchanged and less subject to 

pharmacokinetic interactions. In addition, these statins are more liver-specific by using active 

transporters to be taken up by hepatocytes, compared with hydrophobic statins that can 

passively diffuse through cell membranes [54]. This translates in a lower risk of side effects, 

although high efficacy and safety has been demonstrated for all statins in both adults and 

children [54], [65]. Still, statin-associated muscle pain or weakness may occur, especially after 

a long-term high-dose treatment. In this case, water-soluble statins are preferred (e.g., 

pravastatin or rosuvastatin). Regarding the lipid-lowering power, the most potent statins are 

rosuvastatin, atorvastatin and simvastatin [54].  

For severe cases of FH, like homozygous FH patients, lipoprotein apheresis, a extracorporeal 

procedure similar to dialysis that selectively remove LDL particles from blood, can be applied 

in combination with a drug treatment plan [10], [63].   

 

2.2.2. Polygenic dyslipidaemia  

Functional polymorphisms in the hallmark FH genes (LDLR, APOB, PCSK9), or in other genes 

involved in lipid metabolism (e.g., APOE and SREBP), have been associated with minor 

functional changes in the encoded proteins which, although responsible for a slight increase in 

cholesterol levels, do not cause disease by itself. Still, the presence of these polymorphisms in 

multiple genes can have a cumulative effect, increasing the overall pathogenic outcome, thus 

leading to a polygenic form of dyslipidaemia [10], [33]. Conversely, some LDL-C lowering 



28 

 

variants and polymorphisms have already been identified in the three known FH-related genes 

and in ANGPTL3 (loss-of-function variants). This may contribute to reducing the pathogenic 

outcome that results from LDL-raising single nucleotide polymorphisms (SNPs) or attenuate 

the effects of FH-causative variants in monogenic patients [33], [66]. 

A study by Talmud et al. proposed a weighted LDL-C genetic risk score that comprises 12 

common LDL-C associated SNPs from genome-wide association studies (GWAS) - see below 

(section 3.3.1), which constitute LDL-C rising alleles and were identified through the Global 

Lipids Genetics Consortium. This kind of genetic scores can be useful to identify a potential 

polygenic contribution in individuals that fulfil FH clinical criteria but fail to present a 

pathogenic gene variant in any of the FH-associated genes, thus allowing the assessment of 

cardiovascular risk in these patients. Accordingly, polygenic individuals have a significantly 

higher mean LDL-C score than the general population [36]. Although inheritance of polygenic 

dyslipidaemia is not well-defined as FH, which follows an autosomal co-dominant Mendelian 

inheritance pattern, the screening of family members is recommended since the LDL-C raising 

alleles cluster in families [33]. 

Several studies have been shown that although polygenic risk scores may be useful as markers 

of hypercholesterolaemia severity and help predicting CVD risk, they do not seem to be a 

reliable tool for discrimination between monogenic and polygenic individuals [66]–[68]. A 

polygenic score might be used to detect the genetic cause of hypercholesterolaemia, after failing 

the detection of a large-effect variant in any of the FH hallmark genes, both in adults and 

children [67], [69]. 

 

2.2.3. Other genetic and non-genetic contributions to dyslipidaemia  

The presence of a pathogenic or likely pathogenic variant in any of the FH-associated genes 

may explain the high LDL-C levels only in a part of the suspected FH individuals [33]. Other 

genetic causes could be beyond the hypercholesterolemia in patients that fail to confirm a 

diagnosis of FH in molecular studies, including the identification of pathogenic variants 

associated with FH phenocopies (e.g., variants in ABCG5/ABCG8, APOE or LIPA genes), 

autosomal recessive hypercholesterolaemia (LDLRAP1 variants), or a polygenic effect (as 

explained previously). Genetically-driven high levels of Lp(a) can also raise LDL-C levels and 

increase the risk of CVD, which can explain 5-20% of suspected FH cases [10], [33]. Indeed, 

the European atherosclerosis society (EAS) recommends the measurement of Lp(a) 

concentration in FH patients, since a substantial proportion of these individuals have a lifelong 
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elevation of Lp(a), which is considered higher when it raises above 50 mg/dL [70]. High LDL-

C levels can also be caused by non-Mendelian mechanisms like environmentally induced 

epigenetic effects [33]. In fact, non-genetic factors are known to constantly modulate the final 

phenotypic expression, including effects of diet and lifestyle [10], [33]. Therefore, the possible 

combination of multiple genetic and non-genetic factors might explain the heterogeneity 

registered among individuals with suspected FH, even in patients with confirmed diagnosis and 

presenting the same FH-causative variant [10], [33], [45]. 

In the past two decades, a tendency to develop an increasingly unhealthy cardiovascular risk 

profile has been reported in individuals of age 18-50 years, especially regarding an increased 

prevalence of overweight/obesity. The incidence of CVD in young adults has mostly been 

steady or slightly increasing, in contrast to the generally decreasing trends observed in older 

individuals. This may be explained by the presence of multiple CVD risk factors associated 

with an unhealthy lifestyle (e.g., physical inactivity, poor diet, smoking, or obesity) and 

consequent conditions like diabetes, hypertension, or dyslipidaemia. These observations 

suggest a future increase in the cardiovascular burden as the younger individuals age [71].   

 

3. Biomarker discovery in the context of dyslipidaemia 

3.1. New biomarkers are needed to improve the selection for genetic screening   

As mentioned before, given the silent nature and prevalence of FH, current guidelines support 

the testing of LDLR, APOB and PCSK9 genes in patients that comply with clinical diagnostic 

criteria, and cascade screening of their family members [61]. However, most hyperlipidaemic 

subjects do not have a monogenic defect [33], [72]. Rather, their disease is most likely 

established through a polygenic genetic background, with a variable environmental contribution 

modulating the phenotypic expression [33], [72]. Although the lipid profile of polygenic 

subjects is usually less severe than that of FH subjects regarding total cholesterol (TC) and 

LDL-C levels, the differences are often subtle enough to prevent an accurate distinction 

between the two [54]. As a consequence, the yield of FH genetic screening programs is 

relatively low, assuming significant costs for patients and/or national health systems. 

The analysis of data from children is particularly important, since it is well known that the 

correct identification and stratification of individuals at major cardiovascular risk during 

childhood allows an early implementation of a healthy lifestyle, and lipid lowering therapy 

when needed, thus reducing the cardiovascular burden in general population [35], [63]. 
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Furthermore, children are not regularly submitted to blood tests for lipid profiling and their 

normal values may differ substantially from those of adults [60].  

Previous work using PFHS data revealed that approximately 60% of the children that complied 

with SB criteria were negative for pathogenic or likely pathogenic variants in the hallmark 

genes, most likely corresponding to cases of polygenic/environmental hypercholesterolaemia 

[35]. These individuals will be referred to as FH-negative (FH-) along the text, while those that 

both fulfil SB criteria and present pathogenic or likely pathogenic variants in one of the FH-

related genes will be referred to as FH-positive (FH+).  

In the same study, FH+ subjects showed higher concentration of atherogenic particles (LDL-

C) and lower concentration of anti-atherogenic particles (HDL-C), contrary to FH- individuals 

that presented higher levels of TG, apoC-II, apoC-III, apoE, as well as higher frequency of 

overweight/obesity [35]. This suggests that the integrated analysis of multiple biomarkers can 

be used to create a model that can effectively discriminate between these two populations, 

improving the selection of patients for genetic screening. Furthermore, a better understanding 

of the lipid profiles of FH+ and FH- patients may shed light on the molecular and genetic basis 

of polygenic hypercholesterolaemia, eventually leading to the identification of novel 

biomarkers and/or therapeutic targets [35], [63].    

Adding to this, the standard methods of lipoprotein measurement fail to identify many 

lipoprotein abnormalities that contribute to cardiovascular disease risk. Advanced lipoprotein 

tests offer insight into subtle, yet relevant, aspects of lipoprotein metabolism and atherosclerosis 

that help to explain the eventual failure of LDL-C lowering strategies to stem atherosclerosis 

development. It has been suggested that apolipoprotein measurements could replace, or at least 

complement, the standard tests (measurement of total cholesterol, LDL-C, HDL-C and TG), 

since they are more accurate and reproducible, besides reflecting better the risk of coronary 

heart disease [12], [14]. Indeed, the measurement of apoB and apoA-I is already used as 

complementary to standard markers in the current guidelines for management of dyslipidaemia 

from the EAS [62]. Identification of novel biomarkers could thus contribute to the improvement 

of FH diagnosis and management by enhancing the selection of individuals for genetic testing 

and help with the assessment of CVD risk stratification. 

 

3.2. Traditional approach for biomarkers in dyslipidaemia: establishment of cut-offs  

One of the first steps for finding biomarkers is the analysis of data from a dyslipidaemic cohort 

comprising a group of clinical, biochemical, or molecular parameters, and compare the mean 
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or frequency value (if it is a continuous or categorical variable, respectively) of each parameter 

between FH+ and FH- individuals. Following a pair-wise approach, for each parameter 

statistical tests are performed to evaluate if the difference of means in the FH+ and FH- 

populations is statistically significant. Afterwards, considering as potential biomarkers the 

parameters with a significant difference between FH+ and FH- individuals, cut-offs are 

determined from receiver operating characteristic (ROC) curves that plots all the measurements 

of a given parameter regarding sensitivity and specificity. The value that maximises the sum of 

sensitivity and specificity, with sensitivity higher than specificity while both values are above 

50%, is selected as the optimal cut-off point for each biomarker [35]. 

This approach corresponds to the search for a correlation between an individual parameter and 

the independent variable/outcome (subject’s FH classification), which fails to represent the 

complex network of interactions between parameters that can occur under the biological context 

of dyslipidaemia. Although it is possible to perform additional analysis to measure the 

correlation between parameters, a traditional statistical approach like this does not allow us to 

get an integrative overview of the data and capture complex connections among parameters, as 

well as between them and the independent variable. This is a principal limitation of this kind of 

approach, which may explain the low specificity of some clinical criteria based on strict cut-

offs, in comparison to a multiparameter approach (e.g., machine learning-based modelling) 

[35], [72].  

 

3.3. Alternative methodologies in the search of biomarkers and integrative knowledge 

New approaches are needed to achieve a better distinction between monogenic and polygenic 

dyslipidaemia patients, preferentially based on methods that support a more accurate and less 

time-consuming diagnosis, with an acceptable cost/benefit ratio. Application of integrative data 

analysis tools, such as machine learning-based modelling and clustering analysis, is expected 

to assist in the identification of sub-groups of individuals characterised by specific biological 

parameters, thus supporting the identification of a set of parameters that can best differentiate 

patients – potential biomarkers [73], [74]. Likewise, it is important to integrate this knowledge 

into the current understanding of lipid metabolism pathways and of the main genes involved, 

creating a solid base for identifying which genes/pathways can be affected (and how) in the 

context of polygenic dyslipidaemias. Therefore, the application of an integrative approach is 

essential for a competent analysis of such a complex biological question [75]. 
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3.3.1. Advances in genetic profiling: GWAS and polygenic risk scores 

Between 1990 and 2015, Sanger sequencing of polymerase chain reaction-amplified coding 

regions of LDLR and specific regions of APOB, and more recently of the PCSK9 gene, was the 

most commonly used method for genetic diagnosis and detection of new variants associated to 

FH [76]. Despite being time consuming and expensive on a per-nucleotide basis, Sanger 

sequencing is still commonly used by diagnostic laboratories. Recently, next generation 

sequencing (NGS) techniques are starting to supersede Sanger sequencing using a variety of 

approaches that support massively parallel sequencing [77]. In contrast to Sanger sequencing, 

NGS can be easily applied to achieve whole-genome sequencing or whole-exome sequencing, 

generating data regarding the entire genome or only the coding DNA sequence respectively. 

Alternatively, NGS can be used within a targeted sequencing panel, designed to acquire 

information on a selected group of genetic regions known to be relevant to the disease of interest 

at a lower cost [78]. 

As mentioned before, monogenic dyslipidaemia, namely FH, increases the risk of developing 

premature cardiovascular disease. Still, most hyperlipidaemic patients do not present any 

pathogenic variant at the known FH genes. Instead, they are likely to suffer from a polygenic 

form of dyslipidaemia with a variable contribution from environmental factors (e.g., diet and 

lifestyle) [6], [35], [36]. Indeed, several GWAS have demonstrated that common DNA variants 

account for the majority of heritable risk for complex diseases like CVD [79].  

The recent advances in whole-genome sequencing offer new tools for genetic testing and 

disease diagnosis, given the ability to capture the complete spectrum of genetic variation, both 

the rare single large-effect variants found in monogenic patients and the common variants of 

small effect, whose cumulative impact translates in polygenic dyslipidaemia. Polygenic scores 

quantify the genetic susceptibility conferred by the cumulative effect of multiple common 

variants into a single normally distributed risk factor [79]. 

In recent years, the analysis of several cohorts by GWAS has been carried out aiming to identify 

new variants and potential genes of interest associated with lipid traits. Such studies contribute 

to improving the diagnosis of dyslipidaemias and the cardiovascular risk stratification, as well 

as to a better integrated knowledge of lipid and lipoprotein metabolism in healthy and 

unbalanced states [80]–[82]. Furthermore, they may also contribute to the discovery of new 

drug targets and the assessment of the best treatment for each patient, opening doors for 

personalised medicine [83]. 
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A study by Buscot et al. assessed the association between GWAS derived polygenic risk scores 

and LDL-C, HDL-C and TG trajectories from childhood to adulthood. Although the influence 

of genetic factors on age-specific lipoprotein values and developmental trajectories is complex, 

the developed and tested polygenic risk scores were shown to be highly predictive of LDL-C, 

HDL-C and TG levels at all the ages analysed [84].  

In a work developed by Tabassum et al., GWAS was carried out on lipidomic profiles of 2181 

individuals using about 9.3 million genetic markers, which was followed by a phenotypic-wide 

association study (PheWAS) that included 25 CVD-related phenotypes in more than half 

million of individuals. This study found that, similar to the common lipid traits (e.g., TC, LDL-

C, HDL-C), there is a polygenic contribution to the abundance of lipid species (e.g., cholesteryl 

esters, TG, sphingomyelins), which may play a considerable role on the endogenous regulation 

of lipid metabolism. CVD risk was also associated with the lipidomic profile. The application 

of a GWAS approach on these lipid species was found to be useful in the identification of 

additional variants that could not be captured by traditional lipid and lipoprotein measurements 

[85]. 

Recently, Khera et al. developed and validated a polygenic score for early-onset myocardial 

infarction (EOMI) comprising a genome-wide set of 6.6 million common DNA variants (allele 

frequency above or equal to 1%), which has demonstrated a substantially better predictive 

capacity than a previous score restricted to 50 variants. Accordingly, a higher polygenic score 

was found among patients with EOMI in comparison with control subjects. Although 

monogenic and polygenic dyslipidaemia have a similar associated risk of EOMI, a high 

polygenic score is 10-fold more prevalent among EOMI afflicted individuals [79]. A polygenic 

score for coronary artery disease involving a similar number of common variants was developed 

in a previous study [81].  

In comparison to the traditional risk assessment, these scores had the advantage that they can 

be assessed from the time of birth, well before the discriminative capacity emerges for risk 

factors like hypertension. In addition, making individuals with high polygenic scores aware of 

their inherited susceptibility may facilitate intensive prevention efforts [79], [81]. 

Notwithstanding the potential of polygenic scores for unrevealing the genetic causes of 

dyslipidaemia in patients without a monogenic cause, or for an improved disease prognosis and 

CVD risk stratification, there are still some outstanding issues to solve, such as the following: 

designation of a threshold to consider when the score is increased, proper integration of this 

score with other clinical and lifestyle factors, optimization of polygenic scores in individuals of 

non-European ancestry [79]. Moreover, there is still a considerable number of individuals with 
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hypercholesterolaemia that had neither a monogenic or polygenic explanation for their lipid 

levels, which suggests the contribution of unknown genetic or gene-environment causes [80]. 

At comparable levels of LDL-C, both monogenic FH and polygenic hypercholesterolaemia 

appeared to be associated with a considerable increased risk of CVD compared with 

hypercholesterolaemia with no identified genetic cause [80]. Nonetheless, the complex 

interplay between several genetic and environmental risks that lead to onset and progress of the 

condition are still poorly understood [84]. 

In the near future, it is expected that the potential clinical utility of polygenic risk scores will 

lead to a more generalised use of genome-wide analyses, also supported by the expected 

decrease in cost of NGS methods [86]. Recent studies have shown that the scores developed 

using a genome-wide approach are the most successful at assessing polygenic risk in complex 

diseases [79], [81].   

 

3.3.2. Machine learning-based methods 

Machine learning (ML) involves the development of statistical models and algorithms that can 

progressively learn from data and achieve desired performance on a specific task, especially 

when it is not possible to manually develop a set of rules based on all the intrinsic characteristics 

of the data. Within ML we can find both supervised and unsupervised learning methods, as 

present in the following subsections (3.3.2.1 and 3.3.2.2). Comparatively to traditional 

statistical methods, ML has better performance at finding patterns within complex datasets like, 

for example, clinical data. Thus, the application of ML based-methods can contribute to the 

identification of reliable disease biomarkers and improve patient stratification systems (e.g., 

disease classification, evaluation of cardiovascular risk or disease prognosis) [74]. Still, ML 

also has limitations, mainly being prone to bias and lack of interpretability from model 

classifiers, which means that it is not usually easy to understand how the model arrived at a 

given classification. This implies a difficulty in extracting relevant knowledge from the results 

of a model classification, especially concerning relationships between parameters contained in 

data or learned by the model [74], [87]. Regarding bias, this may occur when the distribution 

of the training data (i.e., part of a dataset used for training a ML-based model) does not reflect 

the characteristics of the real data that had served as source for modelling, which is known as 

the sample bias. Conversely, human bias might be present during the gathering and labelling of 

data used to train ML algorithms [74]. 
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3.3.2.1. Supervised learning 

Supervised learning requires a labelled training dataset, which means an a priori knowledge 

regarding the independent or target variable. Among supervised learning, regression or 

classification methods can be applied when the independent variable is continuous or 

categorical, respectively. Common supervised learning algorithms include linear regression, 

logistic regression, decision tree, support vector machines and artificial neural networks [74]. 

ML-based modelling relies on the computational capability of learning all the complex and non-

linear interactions between variables, in a non-humanly achievable way, while keeping to a 

minimum the error between predicted and observed outcomes and thus improving prediction 

power [73].  

A supervised ML approach may be prone to specific limitations including overfitting, highly 

correlated variables, unbalanced data (e.g., disproportional numbers of individuals between 

different classes in a dataset), or too small datasets that do not comprise a representative sample 

of the target population [73]. Overfitting happens when a model shows a high accuracy during 

training but then is not able to make robust predictions when applied to an independent dataset 

(unseen data). This problem is usually caused by the presence of noise (i.e., irrelevant 

information or randomness), which might be linked to a high number of variables present in the 

dataset versus the total number of observations [88], [89]. To detect overfitting, the dataset 

should be divided into a training and a testing set, so after training the model we can apply it to 

the testing set and evaluate how well the trained model will perform with new data. There are 

some options to avoid overfitting, including the use of cross-validation during training, 

increasing training dataset size, or applying methods for parameter selection that reduce the 

number of dependent variables. One of the methods for parameter selection is the exclusion of 

one element of a pair of highly correlated parameters, after measuring correlation of all possible 

pairs of parameters present in the dataset. Models comprising highly correlated parameters do 

not present additional information, while in turn these parameters may represent noise and 

interfere with model performance [89]. 

 

3.3.2.2. Unsupervised learning 

Unsupervised learning aims to identify patterns within an unlabelled input dataset, requiring 

for example the application of methods based in dimensionality reduction (e.g., principal 

components analysis, PCA) or clustering analysis for identification of different groups/clusters 

of subjects among the dataset [74]. There are several clustering methods that can be categorised 
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according to the nature of data, criteria of the similarity measure, dimensionality, and scalability 

issues. Then, clustering methods can be mainly classified as hierarchical and non-

hierarchical/partitional methods. Hierarchical clustering organises data into a hierarchical 

structure based on appropriate (dis)similarity or distance measures between every pair of 

subjects in the dataset. Several metrics can be used including Euclidean/Manhattan distances 

and correlation-based distances. In turn, there are two types of hierarchical clustering: 

agglomerative (or AGNES, from agglomerative nesting), when clustering groups data by means 

of a sequence of partitions starting with each unit (subject) forming a separate cluster and then 

merging similar clusters into larger clusters; divisive (or DIANA, from divisive analysis), when 

data clustering starts with one cluster comprising all units (subjects) and then splits it into 

consecutively smaller clusters. For partitional clustering, we should start by finding the optimal 

k (i.e., number of clusters) using any of several available methods, including the average 

silhouette, wss method (within cluster sums of squares), gap statistics, or simply apply the 

NbClust function in R (NbClust package) that combines different methods at once. Then, the 

clustering algorithm directly divides data units by the number of clusters previously determined, 

according to the distance metrics previously mentioned and following a non-hierarchical 

structure. As an example of partitional clustering, K-means is the most commonly used 

clustering method, where each cluster is represented by its centre (i.e. centroid) that corresponds 

to the mean of points (subjects) assigned to the cluster [90]–[92].  

 

3.4. Understanding the biological context beyond dyslipidaemia: improving the lipid 

knowledge base 

3.4.1. The concept of knowledge databases  

Acquired data needs to be transformed into information, which in turn needs to be stored in an 

ordered way in (public) databases named knowledge databases (KDs) – or simply, knowledge 

bases. Thus, KDs present processed data extracted from experiments and/or computational 

assays [93]. They can be specific for different types of entities (e.g., genes, proteins, 

metabolites, or diseases), like Entrez Gene and UniProt, or even variations of the same topic 

(e.g., DNA sequence transcripts or SNPs), like dbSNP. Other types of KDs are not focused on 

individual terms but instead target physical interactions, such as REACTOME and KEGG, 

which consist of a collection of biological pathways/maps. Currently, KDs present some 

challenges, including interconnection between KDs to allow a better integrative view, public 
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access, updatability (able to include new data types), and definition of information storage 

standards [93].  

The process of annotation, which comprises the assignment of properties to a given biological 

entity or the establishment of relations between those entities, is an essential step in the creation 

and updating of KDs. Annotation is based on evidence that can be classified as experimental, 

when inferred from direct assays, physical or genetic interactions, mutant phenotype, or gene 

expression patterns; or computational analysis evidence, when based on sequence or structural 

similarity, genomic context, or other analytical processes involving reviewed computational 

work [93]. Another important contributor for KDs is data integration, provided by network and 

visualisation tools (e.g., Cytoscape). This is one of the biggest challenges for present KDs, since 

the amount of produced data has been rising in recent years, mostly due to the development and 

application of high-throughput analysis systems, and it is generally considered in the scientific 

community that a single data type is not enough to offer a complete vision of any biological 

system [93]. 

 

3.4.2. The lack of data integration in lipid metabolism  

Although most pathways of lipid metabolism are well known, a greater understanding is still 

required [75]. Lipids comprise up to a third of metabolomic database entries, but most of the 

online databases include a mix of curated and computationally generated lipids (e.g., LIPID 

MAPS, LipidHome, Human Metabolome Database), with the latter ones comprising only in 

silico “theoretical” lipids that may not exist in mammalian or biological systems (Table 1.6) 

[94]. 

 

Table 1.6. Examples of available databases regarding lipid species and its main structural and biological properties. A brief 

description with the main contents of these databases and their links are also shown [95], [96]. 

Database Description 

LipidHome 

Database of theoretical lipids optimised for high throughput mass spectrometry 

lipidomics, which comprises an introduction of chemistry and biochemistry of 

individual lipid classes. 

http://www.lipidhome.co.uk/ 

LIPID MAPS 

(abbreviation of LIPID 

MAPS® Lipidomics 

Gateway) 

Aiming to identify and quantitate, using a systems biology approach and mass 

spectrometry, all lipid species in mammalian cells, as well as quantitate the changes 

in the species in response to perturbation. It is associated with the LipidHome 

website. 

http://www.lipidmaps.org/ 

Lipid Bank 

Contains diverse information regarding lipids, including molecular structures, 

nomenclature, spectral data (e.g., mass spectrometry, ultraviolet, infrared, nuclear 

magnetic resonance), and selected literature. 

http://lipidbank.jp/ 

http://www.lipidhome.co.uk/
http://www.lipidmaps.org/
http://lipidbank.jp/
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On the other hand, there are some metabolic databases containing tissue-specific information, 

namely regarding liver and cardiovascular processes at both physiological and pathological 

states. This could be useful for those interested in the research field of dyslipidaemia. However, 

these databases are not focused on lipid metabolism (e.g., the platform CardioVINEdb for 

cardiovascular diseases) [97]. According to Lamaziere et al., the lack of integrated knowledge 

is the main current gap in the “lipidome scientific knowledge base”. We need to understand 

how the metabolic pathways interact with each other and support as a whole integrated system 

the physiological mechanisms of an individual. And how changes in the regulation of these 

pathways can lead to the development of metabolic diseases – as perturbed states. For this, an 

integration of different levels of biological knowledge (e.g., transcriptome and genome) is 

necessary [75].  

In the context of this thesis, the identification of new biomarkers able to distinguish different 

dyslipidaemic populations through the application of alternative approaches like, for example, 

ML-based models and clustering analysis, may shed further light in the metabolic pathways 

beyond different dyslipidaemic profiles. The exploration of genetic data related to these 

metabolic pathways can allow to identify additional biomarkers and genes of interest for a better 

discrimination between patients, thus potentially contributing for the improvement of diagnosis 

and treatment of dyslipidaemia. In addition, the creation of a publicly available knowledge base, 

for storage and visualisation of processed information, may contribute to the improvement of 

lipid knowledge integration.    

 

4. Thesis aims 

The main purpose of this work was to improve the distinction between monogenic and 

polygenic dyslipidaemia through the exploration of novel approaches in biomarker discovery, 

while contributing to the knowledge base of dyslipidaemia and lipid metabolism. Accordingly, 

four main aims were specifically defined for this doctoral thesis, as follows: 

1) development of classification models, under a supervised ML approach, able to identify 

FH individuals with a higher specificity in comparison with the current clinical criteria, 

and thus improving the selection of individuals to genetic screening; 

2) conduct a hierarchical clustering analysis, following an unsupervised ML approach, in 

order to look for potential biochemical patterns among dyslipidaemic individuals with 

and without FH genetic diagnosis;  
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3) considering the biochemical parameters that comprise the classification models trained 

in objective 1 and the parameters that most contribute to distinction between individuals 

in objective 2, identify potential biomarkers and relate them with lipid metabolism 

pathways in order to define a set of target genes; 

4) integrate and explore gene expression patterns, molecular interactions, phenotypic and 

functional data associated with target genes at a new detailed knowledge base for 

dyslipidaemias and lipid metabolism, which should be accessible to science community. 

For the first two objectives, a paediatric dataset comprised by FH+ and FH- patients was used, 

which is fully described in the next chapter. For the other objectives, several public databases 

were used to collect metabolic, genomic, transcriptomic, and functional information to establish 

a new knowledge base around target genes. 
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1. Introductory note 

This thesis comprises the results of work developed within three main topics, as follows: 

training of classification models following a supervised ML approach to improve the distinction 

between FH+ and FH- individuals; the application of a hierarchical clustering analysis 

following an unsupervised ML approach to identify biological patterns among individuals; and 

finally, the creation of a new knowledge base for lipid metabolism and dyslipidaemia, based on 

a list of target genes that was compiled taking into account the results obtained in the previous 

topics. For the first two work topics, classification models and hierarchical clustering analysis, 

a sample of 211 individuals was selected from the PFHS, which was called PFHS-ped. For the 

final integrative analysis, data available in public databases was used as explained forward in 

this chapter.  

 

1.1.  The PFHS-ped dataset: patient selection, biochemical and clinical data 

The work dataset – PFHS-ped – comprises a subset of 211 children (from 2 to 17 years old) 

from PFHS [51] that were not undergoing statin treatment at the time of referral and for which 

body mass index (BMI) and a basic set of lipid parameters were available (Annex 1). PFHS 

was approved by the National Institute of Health Ethic Committee and National Data Protection 

Commission. The study protocol conforms with the ethical guidelines of the 1964 Declaration 

of Helsinki and its later amendments. Written informed consent was obtained from parents or 

legal tutors. For this study, all data were fully anonymised before analysis. 

The clinical criteria to be referred to the PFHS is the SB criteria. Between 2006 and 2011, 

patients with LDL-C or TC levels below the cut-offs established by SB criteria were admitted 

to the PFHS as long as TC was above the 95th percentile for age and sex of the Portuguese 

population and a family history of hypercholesterolaemia was present, aiming at a better 

definition of the clinical criteria for FH in Portugal [48], [51]. For the purposes of this study, 

we decided to include these individuals in the PFHS-ped dataset to increase the number of 

available cases. Thus, 68% of the 211 individuals in PFHS-ped fulfil the SB clinical criteria for 

FH [60], while the rest present TC above the 95th percentile for their age and sex and a family 

history of hypercholesterolaemia [48]. All individuals were subjected to molecular study, 

resulting in the classification of 88 individuals as FH+ and 123 as FH-, defined respectively by 

presence or absence of known FH causal variants in LDLR, APOB or PCSK9 genes [48]. 

Individuals presenting variants of unknown significance according to ACMG guidelines [52] 

were excluded from this study.   
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The PFHS-ped includes BMI, age, and an extended characterization of lipid profiles, including 

quantification of sdLDL, apolipoproteins (apo) A-I, A-II, B, C-II, C-III and E, and a “Lipoprint” 

profile measuring different subfractions of LDL-C (Table 2.1). The blood lipid profile was 

divided in three different levels: “Basic”, “Advanced” and “Lipoprint”, for commonly 

determined, specialized and Lipoprint test lipid parameters, respectively (Table 2.1). 

Biochemical characterization of “Basic” and “Advanced” lipid profiles was performed as 

described before [35]. Briefly, fasting blood samples were collected from individuals and TC, 

direct LDL-C, HDL-C, TG, apoA-I, apoB, and Lp(a) were determined for all individuals in a 

Cobas Integra 400 plus system (Roche) by enzymatic colorimetric and immunoturbidimetric 

methods. Serum levels of apoA-II, apoC-II, apoC-III, apoE, and sdLDL (sLDL-EX “SEIKEN” 

kit) were measured by direct quantification in a RX Daytona analyser (Randox Laboratories). 

The “Lipoprint” profile was obtained using the “Lipoprint LDL subfractions test” 

(Quantimetrix) [98]. This is a semiquantitative method that separates by polyacrylamide gel 

electrophoresis the different lipoprotein fractions as VLDL, IDL, LDL 1-7 subfractions (LDL 

subfractions 3-7 considered the sdLDL) and HDL [28], [30], [98]. For the purpose of this study, 

ratios that relate some lipid parameters were calculated and included as additional variables. 

These ratios allowed us to explore previous observations suggesting a differential contribution 

of TG and LDL metabolism, as well as pro-atherogenic/anti-atherogenic factors, to FH+ and 

FH- dyslipidaemic states (Table 2.1).  
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Table 2.1. Description of the biochemical parameters and ratios in each lipid profile – “Basic”, “Advanced” and “Lipoprint”. 

N/A: not applicable 

Profile Parameters Units Description 

Basic B
io

ch
em

ic
al

 

TC 

mg/dl 

total cholesterol 

LDL-C low-density lipoprotein cholesterol 

HDL-C high-density lipoprotein cholesterol 

TG triglycerides 

Lp(a) Lipoprotein (a) 

ApoB Apolipoprotein B 

ApoA-I Apolipoprotein A-I 

R
at

io
s ApoB/ApoA-I 

N/A 

pro-atherogenic vs anti-atherogenic ratio 

TG/ApoB TG metabolism vs LDL metabolism ratio 

TC/HDL-C pro-atherogenic vs anti-atherogenic ratio 

Advanced B
io

ch
em

ic
al

 ApoA-II 

mg/dl 

Apolipoprotein A-II 

ApoC-II Apolipoprotein C-II 

ApoC-III Apolipoprotein C-III 

ApoE Apolipoprotein E 

sdLDL.Day Small dense LDL 

R
at

io
s ApoC-II/ApoC-III 

N/A 
anti-atherogenic vs pro-atherogenic ratio 

sdLDL/LDL-C most atherogenic LDL in total LDL-C  

Lipoprint B
io

ch
em

ic
al

 

VLDL 

mg/dl 

Very low-density lipoprotein 

MIDA IDL fraction A 

MIDB IDL fraction B 

MIDC IDL fraction C 

LDL1 Buoyant (large) LDL fraction 1 

LDL2 Buoyant (large) LDL fraction 2 

HDL.Lipo High-density lipoprotein 

sdLDL.Lipo Small dense LDL (fractions 3 to 7) 

IDL Intermediate-density lipoprotein 

R
at

io
s VLDL/IDL 

N/A 
TG metabolism vs LDL metabolism ratio 

VLDL/LDL-C TG metabolism vs LDL metabolism ratio 

 

1.2.  Categorical variables associated with the PFHS-ped dataset 

BMI, age, and the biochemical parameters present in Table 2.1. are all quantitative variables 

that describe PFHS-ped and were considered for both modelling and clustering analysis. PFHS-

ped also contains a set of categorical variables that were only used as supplementary variables 

in the clustering analysis (see section 3). These variables are the following: “Class”, 

classification based on FH genotype (FH+ or FH-); “Gender” (female or male); “Activity 

class”, according to the percentage of molecular activity that is kept by the affected gene allele; 

“Gene”, the affected gene in FH+ individuals (LDLR, APOB, PCSK9); “SB criteria”, 

concerning the fulfilment of TC and/or LDL-C cut-offs from Simon Broome clinical criteria 

(yes or no); “Lipoprint profile”, according to low or high concentration of sdLDL in serum 
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measured by Lipoprint assay (profile A or B, respectively); and “LDL-C score”, a polygenic 

risk score associated with LDL-C levels and based on a panel of six SNPs, as performed by 

Mariano et al. [69]. The categories of “LDL-C score”, “Activity class” and a new variable 

(called “BMI class”) were established for the purpose of this study. The variable “LDL-C score” 

comprises four categories that correspond, from a high to a low polygenic contribution, to the 

following: ≥0.9, 0.9-0.7, 0.7-0.5, <0.5. Regarding “Activity class”, variants were divided in the 

following categories: null variants, presenting less than 2% of activity compared to wild type 

allele; defective variants with different degrees of molecular activity corresponding to three 

categories (2-20%, 20-40%, 40-65%); null_pred, variants predicted to be null according to in 

silico analysis; def_pred, variants predicted to be defective according to in silico analysis. 

Concerning the new variable, “BMI class” comprises the classification of BMI according to 

gender and age, following the percentiles for children and adolescents from the World Health 

Organization (WHO) [99], [100]. Accordingly, “BMI class” includes the following categories: 

severe thinness, thinness, normal, overweight, obesity. 

 

2. Training of classification models that improve distinction between 

FH+ and FH- individuals 

All the analysis was developed using R software (version 3.4.3) [101]. The caret package for 

ML [102] was used to train classification models based on logistic regression, and a resampling 

scheme of three times cross validation was applied to estimate model accuracy. Accordingly, 

data was randomly divided in two sets of 60% and 40% of the subjects defining the training 

and the testing sets, respectively. The training set was used for model generation and the testing 

set was used for posterior validation. The Bayesian generalised linear model (bayesglm) was 

applied on the training set using the train function of caret package [103]. To avoid overfitting 

the number of parameters considered for model training was reduced using three different 

methods available in caret : 1) exclusion of one element of a pair of highly correlated parameters 

(cut-off = 0.8; “cor models”); 2) ranking of parameters by importance based on a ROC analysis 

of each parameter with only the top 3 variables selected for model training (“Imp models”); 3) 

recursive feature elimination (RFE) of parameters (“RFE models”); when more than five 

parameters were selected by RFE, models were trained both with the top 5 and with all 

parameters. Additional “RFE models” were generated after removal of highly correlated 

parameters. To identify highly correlated parameters, cor function was applied using Kendal’s 

tau method for mixed and tied data [104]. Following model training, their predictive 

performance was assessed on the testing set. The predict function of caret was used along with 
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confusionMatrix to acquire the main statistics regarding model performance, which were 

organised in a table using broom package [105]. The pROC package [106] was used to measure 

the area under the ROC curve (AUC) regarding individuals classification.  

Model ranking criteria were defined as follows: 1) sorting by AUC (highest to lowest) reflects 

a better performance regarding the relation between specificity and sensitivity; 2) k values 

above 0.4 correspond to a moderate agreement between observed and predicted classes [107]; 

3) reduced number of parameters (≤5) for model simplicity; and 4) highest sensitivity (≥0.7) 

cut-off values. Criteria were applied in that order to generate a ranked list of the best models, 

11 in total. The Akaike information criterion (AIC) was used to eliminate one model to restrict 

the final list to a “top 10”. 

 

3. Identification of different dyslipidaemic profiles among individuals 

by a hierarchical clustering analysis 

All data analysis was performed using R software (R version 3.4.3) [101]. For the hierarchical 

clustering of principal components (HCPC) analysis, we used PCA and HCPC functions of the 

package FactomineR (version 1.41) [108].  

The PCA function performs PCA with the possibility of adding supplementary individuals and 

variables, both quantitative and categorical. This supplementary data does not contribute to 

PCA itself but can be useful for results interpretation [109]. In the current data analysis, “Class” 

was used as a discriminant factor while observing the distribution of individuals classified as 

FH+ or FH- across the clusters. For the “All” subset, since it was the subset that showed the 

most well-defined cluster partition (see results), other categorical variables besides “Class” 

were included as supplementary data to test their association with clusters, such as “BMI class”, 

“Activity class”, “Gender”, “Gene”, “SB criteria”, “Lipoprint profile”, and “LDL-C score”.   

The HCPC function performs an agglomerative hierarchical clustering on the results of PCA, 

by using the PCA coordinates of individuals to measure the distance between them. For this, 

HCPC uses Ward's minimum variance method that aggregates clusters when it translates in a 

minimum of within-variance growth, thus contributing for homogenous clusters [110]. In this 

study, the hierarchical clustering was performed using the first five dimensions of PCA (default 

option), which explain most of the data variance. The obtained hierarchical tree, also known as 

dendrogram, was cut at the suggested level, corresponding to a partition in three clusters. HCPC 

output also includes a description of the clusters by individuals, variables, and dimensions; 

assignment of a cluster for each patient; other graphic visualisations besides the dendrogram, 

such as cluster maps [111]. The functions fviz_dend and fviz_cluster of the package factoextra 
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were applied to improve the visualisation and interpretation of dendrograms and cluster maps 

[112]. Both functions allow an enhanced ggplot2-based visualisation of the plots [113].  

For the characterization of clusters by quantitative variables, the correlation ratio was directly 

measured by the HCPC algorithm between each variable and the cluster partition (i.e., cluster 

assignment of individuals, called “cluster variable” by HCPC), which was followed by a 

student’s t-test that determined the variables whose correlation ratio was significantly different 

from zero, and thus had a significant contribution for cluster partition. In addition, HCPC 

measured the average of a variable in the cluster (named as “mean in category”) and in the 

whole subset (named as “overall mean”), including the associated standard deviations. Then, 

the HCPC algorithm applied a student’s t-test to enquire, for each variable, if the difference 

between the mean in category and the overall mean was statistically significant under the 

confidence level of 95%. A positive or negative value of the test statistics indicates if the mean 

in category is greater or lower than the overall mean, respectively. Regarding categorical 

variables, a chi-squared test was performed to assess the association between each variable and 

the cluster partition. Then, for each variable category, a statistical test was performed to check 

if the proportion of individuals within the category that belong to a given cluster was 

significantly different from the proportion of individuals assigned to the same cluster that 

belong to this category. This allowed us to assess which categories were underrepresented or 

overrepresented in each cluster. For a description of clusters by individuals, the distance 

between each individual coordinate and the gravity centre of the assigned cluster was measured 

to assess the paragons, which means the individuals that most characterise each cluster because 

they are the closest to the cluster centre. In addition, measuring the distance between each 

individual coordinate and the gravity centre of other clusters allowed the assessment of the most 

specific individuals of each cluster, which correspond to the farthest individuals to the centre 

of the other clusters. For cluster characterization by dimensions an identical analysis to that 

carried out for quantitative variables was performed, considering each PCA dimension a 

quantitative variable composed by individual coordinates. The methodology behind HCPC 

analysis is explained in more detail by Husson et al. [110] and Lê et al. [108].   

For prediction of class probabilities of individuals from the “All” subset, the best trained model 

of the top10 models (Imp_B model) was applied in that subset. The basic function predict was 

used with the argument “type” set for probabilities. Then, each of the 78 individuals was 

assigned to a predicted class (FH+ or FH-) and to the probability of belonging to each of the 

two classes. The sum of both probability values was equal to 1. In addition, the difference 

between probabilities (called ∆prob) was measured for each individual, using absolute values 
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of probability. Categories were established for ∆prob taking into account that the lower the 

value, the more ambiguous is the classification of individuals. 

For all the figures showing dendrograms, dplyr [114] and ggplot2 [115] packages were used to 

assign a different colour to each variable category and plot the variables aligned with 

individuals by their order of appearance in the dendrogram.  

 

4. Creation of a new lipid knowledge base directed to dyslipidaemia 

4.1. Building the “MylipidgenesKB” knowledge base 

For this section of integrative data analysis publicly available databases were used, firstly to 

establish a list of genes associated to dyslipidaemia and lipid metabolism, and secondly to add 

valuable information regarding each of these target genes. The collected information included 

gene expression data, associated GWAS traits, and functional characterization given by gene 

ontology (GO) terms. For the establishment of the target gene list, a set of keywords - based on 

literature review and previous results of both modelling and clustering analysis, was used to 

search and select a list of metabolic pathways of interest on Wikipathways [116]. All the genes 

in each of the selected pathways were joined in a single list of target genes. The gene IDs were 

standardised in order to have all the genes from this list with the same ID system (Ensembl). 

For this, the DAVID online resource “Gene ID Conversion Tool” was used [117], [118], which 

also allowed to add and/or check the full name and symbol of each gene. In addition, pathway 

assignment was saved for these genes, with each of them being associated to one or more of the 

previously selected metabolic pathways. 

Expression data was taken from Genotype-Tissue Expression (GTEx) database [119], namely 

GTEx v7 dataset that comprises median transcript per million (TPM) measures of RNA-seq 

expression data of 56202 genes for 51 tissues and two modified cellular lines, which are 

commonly used in scientific research. This dataset involved 11688 RNA-seq samples from 714 

individuals. For the purposes of this study, the two cellular lines – Epstein-Barr virus 

transformed cells and transformed fibroblasts, both produced in vitro – were not considered as 

tissues for the estimation of median gene expression in the human transcriptome. This 

transcriptome estimation, called in the text ahead simply as “Transcriptome”, was acquired by 

dividing the mean for the sum of expression values of each gene across 51 tissues. For tissues 

of interest, namely liver and small intestine, cut-offs and respective expression categories were 

determined as follows: set 0.1 TPM as the minimum value of gene expression below which a 

gene is considered to be in the null expression category, apply a logarithmic transformation 
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(base 10) of data and check its distribution by plotting a histogram, establish cut-offs and 

categories taking into account data distribution as well as median and mean values.  

For the collection of GWAS information, a set of keywords associated with lipid metabolism 

and dyslipidaemia (Table 2.2) was selected based on the literature review. These keywords 

were searched on the NHGRI-EBI GWAS catalog [120] to find out if those were considered as 

phenotypic traits within any GWAS study, which was followed by a search for the genes 

associated with each trait/keyword. For this, the functions get_traits and get_associations of 

the R package gwasrapidd [121] were used, respectively. Afterwards, the list of genes 

associated with each of the nine identified GWAS traits was compared with the list of target 

genes, thus allowing to find the traits associated with each target gene.  

 

Table 2.2. Keywords used in the trait search on the NHGRI-EBI GWAS catalog considering metabolites, pathways, and 

conditions of interest. 

Keyword Class 

Hypercholesterolaemia(s)/hypercholesterolemia(s) Disease 

Familial hypercholesterol(a)emia Disease 

Lipid disorder(s)/disease(s) metabolism Disease/pathway 

Lipoprotein disorder(s)/disease(s) Disease 

High cholesterol/cholesterol (measurement) Metabolite 

HDL(-C)/LDL(-C) measurement/metabolism Metabolite/pathway 

Triglycerides measurement/metabolism Metabolite/pathway 

(Premature) cardiovascular disease(s)/disorder(s)/risk Disease 

Atherosclerosis Disease 

Lipoprotein measurement Metabolite 

Coronary artery disease Disease 

Hypertriglycerid(a)emia Disease 

 

To show the representation of each GWAS trait among target genes, a bar plot was drawn 

considering the number of target genes associated with each trait, using the plotly package 

[122]. The sum of the number of genes represented in the plot is not equal to the total number 

of target genes, since not all target genes presented associations with at least one of the nine 

identified traits, and there were target genes associated with more than one trait. 

The whole set of GO terms associated to target genes were collected for GO domains 

“molecular function” (MF) and “biological process” (BP), using getBM function of package 

biomaRt [123], [124] to remotely access Ensembl database for Homo sapiens dataset. The 

number of target genes associated with each GO term was measured to help in the selection of 

the most representative terms. Two sets of GO terms, lipid-specific and others, were manually 

selected within each GO domain from the full lists of GO terms obtained with biomaRt. The 
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selection of lipid-specific GO terms was based on previous knowledge regarding lipid 

metabolism and dyslipidaemia, thus aiming to select the most representative GO terms of target 

genes considering the biological context of this thesis. From the list of the remainder GO terms, 

not considered to be lipid-specific, the most representative GO terms were selected based on 

the number of associated target genes and the hierarchical relations between terms, acquiring a 

list of terms that was called “Other GO terms”. Both lists of terms (lipid-specific and other GO 

terms) comprised “parent” and “child” terms, and thus the terms were grouped according to 

their hierarchical relations in the GO graph, where “parent” terms refer to the nodes closer to 

the graph’s root and “child” terms refer to those closer to the leaf nodes. 

Considering the new knowledge base, this is organised in three sections (Figure 2.1). Firstly, 

one main table comprising all target genes and associated information (i.e., metabolic pathways, 

gene expression data, associated GWAS traits and GO terms), with signalization of those that 

are core genes. The second section is composed by a set of auxiliary files of gene associated 

information, including the lists of lipid-related GO terms and other GO terms organised by their 

hierarchical relations for each GO domain, and the list of target genes with the number of 

GWAS traits by gene. The third section comprises the gene interaction networks that were built 

(see section 4.2) taking into account the genes associated to the selected GWAS traits, and the 

core genes. These networks have associated tables with nodes and edges attributes that allow 

reconstructing each network. The entire knowledge base occupies a total size of 3,22 MB. 

 

Figure 2.1. Organisation of the new knowledge base in three sections and the files that composed each section, including their 

size and associated data. 
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4.2. Development of a shiny app to host the new lipid knowledge base 

The “MylipidgenesKB” website was built in R (version 4.0.3) [125] using shiny package [126], 

with the definition of a ui (i.e., user interface) and a server that are set up together by the 

shinyApp function. The website follows a dashboard structure, which comprises a header, 

sidebar, and body. The header contains the title and logo of the website, the sidebar presents a 

menu that allows the user to select among the different sections of information, the body 

comprises the main contents of the website. For this, functions dashboardSidebar and 

dashboardBody from shinydashboard package [127] were applied. The functions 

dashboardPagePlus and dashboardHeaderPlus of the shinydashboardPlus package [128] 

allowed the option to partially collapse the sidebar menu showing only the respective icons. 

From package shinyWidgets [129], function searchInput and multiInput were used for the 

search bar of the homepage and for the gene selector field of the “tissue expression” section, 

respectively. In addition, the selectInput function of shiny package [126] was used for the tissue 

selector field in this last section. For the output table of homepage, gene list and GO terms 

tables, package DT [130] was used with datatable, dataTableOutput and renderDataTable 

functions. Regarding GO terms tables, the extension “Buttons” was used as argument of 

datatable function (offering buttons “copy”, “csv”, “print”), and “dom” argument was set as 

“Bft” (i.e., buttons, filtering input, table). For output table of homepage and gene list table, the 

“dom” argument was set as “t” (i.e., only the table) and “lftp” (i.e., length changing input 

control, filtering input, table, pagination control), respectively. For “gene list” and selected data 

in “tissue expression” sections, downloadButton and downloadHandler functions of shiny 

package [126] were used to set a download button for the respective data (in .csv format). To 

achieve the interactive heatmap for gene expression patterns, functions plotlyOutput and 

renderPlotly from plotly package [122] were used taking into account the input data for tissues 

and genes. For text of “About” and “GWAS traits” sections, the function includeHTML of shiny 

package [126] was used to include .txt files containing the text formatted in HTML language.  

Regarding the “GWAS traits” section, each gene interactions network was created in Cytoscape 

(version 3.8.2) [131], using the GeneMANIA app (version 3.5.2) [132] for local search of 

interactions among the previously identified GWAS genes (i.e., target genes with associated 

GWAS traits). In this GeneMANIA search, four types of interactions were selected to establish 

the networks, including co-expression, pathway, physical and genetic interactions. This process 

was split in two different sessions of Cytoscape as follows: in session “by trait”, a network was 

established for each of the nine previously identified traits; in session “by trait number”, a 
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network was created for genes sharing the same number of associated traits (e.g., two traits 

network only comprises GWAS genes with two associated traits), and an additional network 

was established to include all GWAS genes independently of the number of associated traits. 

Then, each network session was exported from Cytoscape as a full web application (interactive 

Cytoscape.js webpage) in a .zip file, containing a HTML page with a network interactive viewer 

that allows users to select a network and a layout. This HTML page was included as an iframe 

object in a new HTML page, prepared in a R HTML file, together with network legends and 

links for download of edges and nodes tables. This new HTML page was included in the shiny 

app using includedHTML function from shiny package [126]. To split these two groups of 

networks in two different subsections within the “GWAS traits” section, the function tabBox 

from shiny package [126] was applied with two panels. The same approach, from Cytoscape to 

shiny app, was used to establish the core genes network. The designation “core” was only used 

in the shiny app “MylipidgenesKB” for candidate genes. 

 

  



54 

 

 



 

 

 

 

 

 

 

 

Chapter 3 
Results 

  



56 

 

  



 

57 

 

1. Training of classification models that improve distinction between 

FH+ and FH- individuals 

The results of this section are published in the following article: Correia, M., Kagenaar, E., van Schalkwijk, D.B. 

et al. Machine learning modelling of blood lipid biomarkers in familial hypercholesterolaemia versus 

polygenic/environmental dyslipidaemia. Sci Rep 11, 3801 (2021). https://doi.org/10.1038/s41598-021-83392-w  

 

In this work we used a ML approach to explore the paediatric subset of the PFHS 2018 dataset 

update (PFHS-ped) to develop novel models that can integrate data from multiple biomarkers 

and achieve a reliable discrimination between individuals. Our systematic exploration of 

available lipid parameters resulted in the development of several models that can robustly 

classify subjects into FH+ or FH− classes. Some of the models have parameters not routinely 

used in clinical practice but that are commercially available. Notwithstanding, models 

comprising only the standard lipid parameters used in the clinic also achieved a relatively good 

performance. Our results provide an approach for improving the yield of genetic screening 

programs while showing distinct biochemical backgrounds in monogenic and polygenic 

hypercholesterolaemia. 

 

1.1. Definition of PFHS-ped data subsets for exploratory modelling of extended lipid 

profiles 

Given that the available information on lipid parameters varied between individuals and 

considering the three lipid profiles defined for this study - “Basic”, “Advanced”, and 

“Lipoprint”, we began by establishing distinct data subsets regarding all the possible 

combinations of these profiles (Figure 3.1). A detailed description of the seven data subsets is 

available in the Annex 2.  

 

Figure 3.1. Data subsets used for model training. Figure shows how PFHS-ped was divided into smaller subsets, identified by 

a colour-coded size (number of individuals) and name, according to the available biochemical parameters for each individual. 
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As depicted in Figure 3.1, the number of individuals across subsets varies between 78 and 211. 

Although relatively small, these numbers have been previously used in conjugation with ML 

approaches to derive valuable insights into complex biological problems [133]–[136]. We 

therefore set out to systematically search for the best model to discriminate between FH+ and 

FH- individuals using these different combinations of lipid parameters. The different number 

of individuals between subsets creates a challenge regarding results comparison. Thus, the 

models generated for each subset were further tested using a minimal dataset composed of 78 

subjects, as explained below. 

 

1.2. Systematic training of models to distinguish FH+ and FH- subjects using extended 

lipid profiles 

We began by training models using all available parameters in each subset. These “pilot 

models” provided a rough overview of the behaviour of the different parameters in our data 

subsets but presented a very low performance as assessed by their sensitivity and specificity 

values (Annex 3). This suggested an overfitting problem, likely linked to the high number of 

variables present in the dataset versus the total number of observations. To overcome this issue, 

we applied three different commonly used methods to reduce the number of parameters 

considered for model training (see methods). This systematic approach resulted in a total of 35 

models belonging to one of three categories: “cor models”, “Imp models”, and “RFE models” 

(Figure 3.2).  

 

 

Figure 3.2. Modelling workflow using three methods to avoid overfitting, producing three groups of models: “cor models”, 

“RFE models”, and “Imp models”. This approach was applied individually for each subset.  
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Interestingly, a trend towards the selection of parameters from the “Advanced” and “Lipoprint” 

profiles as the most relevant for distinguishing FH+ from FH- subjects (Annex 3) was observed. 

Considering the relatively small size of the corresponding data subsets, we decided to 

investigate whether it could be influencing the perceived contribution of “Advanced” and 

“Lipoprint” parameters in our models.  

For this purpose, we repeated our analysis (Figure 3.2) using the biochemical parameters 

available for each data subset restricting the number of individuals to 78. This number 

corresponds to the smaller sized subset used in this study (the “All” subset), which comprises 

the subjects that present measures for all biochemical parameters. Two different approaches 

were followed: train all the models with the same 78 subjects from the “All” subset; or use a 

random selection of 78 subjects from the corresponding data subset. This analysis confirmed 

that parameters from the “Advanced” and “Lipoprint” profiles contribute to a better 

discrimination between FH+ and FH- status independently of the training set (Annex 3). 

Through careful inspection of all models regarding variable importance and correlation, we 

noticed that a group of four parameters (LDL1, apoC-III, TC/HDL-C and sdLDL.Day) 

consistently appeared as highly relevant for the discrimination between FH+ and FH- 

individuals. However, none of the trained models used this small group of parameters as the 

only predictors. Such models could be relevant for clinical purposes given their comparative 

simplicity. Therefore, we decided to train two additional models including only these selected 

parameters (Sel1 and Sel2, Table 3.1). Given that BMI and age are likely to influence the lipid 

profile of subjects [35], [137], we further conjugated these parameters with them (models Sel3 

and Sel4, Table 3.1). Given the fact that these “selected models” comprise parameters from 

different lipid profiles, they were trained on the “All” subset. 

 

Table 3.1. Identification of the manually selected parameters that comprise each of the four “selected models”. N: number of 

individuals; Np: number of parameters. 

Model N Np Parameters 

Sel1 78 3 LDL1 + ApoC-III + TC/HDL-C 

Sel2 78 4 LDL1 + ApoC-III + TC/HDL-C + sdLDL.Day 

Sel3 78 5 LDL1 + ApoC-III + TC/HDL-C + BMI + Age 

Sel4 78 6 LDL1 + ApoC-III + TC/HDL-C + sdLDL.Day + BMI + Age 

 

Altogether, a total of 67 models were generated during this analysis (Annex 3). Given that the 

presence of models with highly correlated parameters does not contribute substantially to new 

insights into the biological background of dyslipidaemia, we identified all models containing 
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any pair of parameters whose correlation was equal to or higher than |0.6|. For this purpose, we 

generated a correlation plot for all parameters used during modelling analysis (Figure 3.3).  

 

Figure 3.3. Correlation plot for the dataset parameters. Negative and positive correlations are presented in red and blue, with 

darker colours corresponding to higher absolute values, according to the scale. 

 

A total of 14 pairs of highly correlated parameters were identified, 12 of which belong to the 

“Basic” profile. These pairs were found in 32 out of 67 trained models and were thus discarded 

from further analysis.  

 

1.3. Extended lipid profiles contribute to distinguish FH+ and FH- subjects 

Following model training, testing datasets were used to assess model performance and 

corresponding descriptive statistics were determined. We established a set of ranking criteria to 

apply to the 35 final models, with cut-off values defined considering the properties and 
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observed range for each statistic (see methods). We used this approach to retain only the top 10 

models (Table 3.2).  

 

Table 3.2. Top ranking models and performance. N: number of individuals; Np: number of parameters; Acc: accuracy; k: 

Cohen’s kappa coefficient; Sens: sensitivity; Spec: specificity; TP: number of true positives; FN: number of false negatives; 

FP: number of false positives; TN: number of true negatives; AUC: area under the ROC curve.  

Model Subset N Np Parameters Acc k Sens Spec TP FN FP TN AUC 

Imp_B Basic 211 3 

LDL-C + 

ApoB/ApoA-I + 

TG/ApoB 

0.84 0.67 0.91 0.86 32 3 7 42 0.92 

RFEct_BL 
Basic & 

Lipoprint 
95 4 

TG/ApoB + 

TC/HDL-C + TC + 

LDL1 

0.84 0.64 0.83 0.92 10 2 2 23 0.91 

Sel3 All 78 5 

LDL1 + ApoC-III + 

TC/HDL-C +  

BMI + Age 

0.77 0.49 0.82 0.90 9 2 2 18 0.89 

RFEct_A All 78 5 

LDL1 + TC + 

ApoA-II + MIDC + 

TC/HDL-C 

0.77 0.46 0.82 0.80 9 2 4 16 0.88 

RFE78ct_BL 
Basic & 

Lipoprint 
78 5 

TC + TC/HDL-C + 

MIDB + MIDC + 

LDL1 

0.74 0.41 0.82 0.85 9 2 3 17 0.88 

RFE78t_B Basic 78 2 
LDL-C + 

ApoB/ApoA-I 
0.81 0.59 0.82 0.85 9 2 3 17 0.87 

Sel1 All 78 3 
LDL1 + ApoC-III + 

TC/HDL-C 
0.77 0.47 0.82 0.90 9 2 2 18 0.87 

Imp_AdL 
Advanced 

& Lipoprint 
78 3 

ApoA-II +  

ApoC-III + LDL1 
0.77 0.47 0.73 0.75 8 3 5 15 0.76 

RFE78t_Ad Advanced 78 5 

ApoA-II + ApoC-II 

+ ApoC-III + 

sdLDL.Day + BMI 

0.77 0.49 0.91 0.60 10 1 8 12 0.75 

RFE78ct_Ad Advanced 78 5 

Age + ApoA-II + 

ApoC-II + ApoC-III 

+ sdLDL.Day 

0.85 0.66 0.73 0.65 8 3 7 13 0.75 

 

The two best ranked models were the Imp_B and RFEct_BL models, trained with the “Basic” 

and the “Basic & Lipoprint” subsets, respectively. Among the top 10, these models presented 

the highest AUC values combined with the best k metrics (Table 3.2), revealing a substantial 

agreement between observed and predicted classification of subjects [107]. These models 

further display the best association between sensitivity and specificity, with Imp_B performing 

better for sensitivity and RFEct_BL for specificity. Of note, eight of the top 10 models were 

trained using at least one parameter of the “Advanced” and/or “Lipoprint” profiles. The 

Lipoprint measurement for LDL1 is present in six of these models. The other models 
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(RFE78t_Ad and RFE78ct_Ad) include sdLDL.Day, apoA-II, apoC-II and apoC-III values 

from the “Advanced” profile. The models that were trained using only parameters from the 

“Basic” profile include the apoB/apoA-I ratio in addition to LDL-C (Imp_B and RFE78t_B). 

The Imp_B model further includes the TG/apoB ratio. Of note, out of the 32 models removed 

due to the presence of highly correlated variables, only 5 were above the top 10 cut-off criteria 

and contained the same variables selected in top 10 models, supporting our choice to discard 

them (not shown).  

In summary, the comparative analysis of model performance revealed that the integration of 

lipid parameters from different profiles following a ML-based approach can support a robust 

discrimination between FH+ and FH- subjects (Table 3.2). Moreover, our results suggest that 

biochemical parameters not commonly used in clinical practice, but available commercially, 

may provide important information towards this distinction, namely contributing to a higher 

specificity.  

 

1.4. Modelling of TC and LDL-C levels improves identification of FH+ individuals in 

comparison to clinical cut-offs 

The biochemical parameters and cut-offs of the SB criteria are widely used to identify candidate 

FH individuals and refer them for therapy and genetic testing [35]. Of note, only about 60% of 

the PFHS-ped individuals that fulfilled these criteria were actually FH+, whereas three FH+ 

individuals were found among the 67 that had TC or LDL-C values below these cut-offs.  

Given that the SB criteria are based on two simple biochemical parameters, we decided to train 

two models exclusively using TC and LDL-C and assess their ability to correctly distinguish 

between FH+ and FH- individuals (“SB models”, Table 3.3).  

 

Table 3.3. Performance of models trained with SB criteria parameters. Column names as defined in Table 3.2 legend. 

Model Subset N Np Parameters Acc k Sens Spec TP FN FP TN AUC 

SB_B Basic 211 2 TC + LDL-C 0.80 0.57 0.77 0.82 27 8 9 40 0.89 

SB_BL 
Basic & 

Lipoprint 
95 2 TC + LDL-C 0.81 0.56 0.67 0.84 8 4 4 21 0.84 

 

These models were trained using all the PFHS-ped subjects or just the “Basic & Lipoprint” 

subset used to train the second best ranked model (Table 3.2). The resulting SB models had a 

weaker performance when compared to top 10 models trained on the same subsets (cf. Table 

3.2 and Table 3.3). To explore the differences between SB models and the two best ranked 
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models, we used them to classify 50 individuals randomly selected from the “Basic & 

Lipoprint” subset (Table 3.4).  

 

Table 3.4. Comparison of classification performance between the best two ranked models, “SB models” and SB criteria for the 

same universe of 50 individuals (randomly selected from “Basic & Lipoprint” subset). PPV: positive predictive value; NPV: 

negative predictive value. 

 Specificity Sensitivity PPV NPV 

Models 

Imp_B 0.89 0.93 0.78 0.97 

RFEct_BL 0.97 0.87 0.93 0.94 

SB_BL 0.83 0.73 0.65 0.88 

SB_B 0.86 0.80 0.71 0.91 

SB criteria 0.49 1 0.45 1 

 

Specificity, sensitivity, and the positive and negative predictive values (PPV and NPV, 

respectively) were calculated for the predictions made by these models, as well as for the 

FH+/FH- classification according to SB criteria cut-offs (Table 3.4). As expected, SB criteria 

have a very high sensitivity and NPV. However, they are extremely unspecific, with a high 

likelihood of selection of FH- patients for genetic testing. SB models can considerably improve 

on this, although they present a lower sensitivity in comparison to SB cut-offs. However, in 

contrast with SB cut-offs, these models present a very good balance between sensitivity and 

specificity (Table 3.4). The two top-ranked models trained with the extended lipid profile can 

achieve very good PPVs while keeping acceptable values for sensitivity and NPV. 

These results emphasise how modelling approaches can improve patient classification 

compared to the use of strict cut-off values. The reduced performance of SB models in 

comparison to top 10 models supports our suggestion that extended lipid parameters contain 

relevant biological information for an improved classification of FH+ and FH- individuals.  

 

1.5. Implementing the best-ranking models in a clinical setting 

Our top 10 models can be easily used in clinical practice to prioritise patients for genetic testing. 

Clinicians can access the different models and select the one that better suits their practice, in 

the following link: https://github.com/GamaPintoLab/FH-Models-.git. Models can be grouped 

into three different categories, depending on the availability of parameters required to run them. 

A first set of models, including the best ranked model, require biochemical parameters that can 

be provided by most clinical laboratories. Other models include additional values for apoA-II, 

https://github.com/GamaPintoLab/FH-Models-.git
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apoC-II, apoC-III, sdLDL.Day, which are only available in more specialised clinical 

laboratories, while the final set of models relies on “Lipoprint” parameters LDL1, MIDC or 

MIDB, a method that is currently for research use only. We provide an Excel file for simple 

implementation of the two best ranked models (Table 3.2) and the SB_B model, which classifies 

patients as FH+ or FH- upon introduction of the required parameter values. In addition, all top 

10 models can be downloaded and applied to a new dataset using R software.  

 

1.6. Biochemical parameters identified through machine learning provide novel 

insights into the biology of hypercholesterolaemia 

Given the high efficiency of the trained models in discriminating FH+ and FH- individuals, we 

next addressed if the parameters selected in the best two models (Table 3.2) could provide novel 

insights into metabolic differences between these groups. Figure 3.4 shows the mean and 

distribution of these parameters and Figure 3.5 summarises their connection to lipoprotein 

metabolism.  

 
Figure 3.4. Box and whiskers plots with distribution of individual values for the parameters used by the two top ranking models 

according to patient classification as FH+ (red) or FH- (blue). a) total cholesterol (TC); b) LDL-cholesterol (LDL-C); c) ratio 

between triglycerides and apolipoprotein B (TG/ApoB); d) ratio between total cholesterol and HDL-cholesterol (TC/HDL-C); 

e) ratio between apolipoprotein B and apolipoprotein A-I (ApoB/ApoA-I); f) buoyant (large) LDL fraction 1 (LDL1). All 

individuals with measured TC, LDL-C, and LDL1 were used for the plots a), b) and f), respectively. For ratios, all individuals 

with measurements for both parameters were used.   
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Figure 3.5. Main pathways involved in lipoprotein metabolism. Inferred differences between FH+ and FH- individuals are 

indicated by arrows. Created with BioRender.com. 

 

We find that TC and LDL-C tend to have higher values for FH+ compared to FH- subjects 

(Figure 3.4a and 3.4b). This is expected because FH+ subjects present single-gene variants that 

disrupt the clearance of LDL particles by the liver [138], leading to the build-up of LDL-C in 

circulation, and thus of TC. However, given the high variability of these parameters and their 

largely overlapping distribution, they are not enough to properly discriminate FH+ cases.  

We further find that the TG/apoB ratio is lower for FH+ compared to FH- subjects (Figure 

3.4c). In this regard, it is interesting to consider that hypercholesterolaemia in FH- subjects is 

likely to have environmental influence, such as cholesterol and TG-rich diets [111]. Thus, given 

both the lower clearance of LDL-associated apoB in FH+ patients and higher blood TG levels 

in FH- subjects (Annex 2), this ratio provides additional discriminating power. Of note, LDL-

C and apoB levels are highly correlated, as expected (Figure 3.3). 

The TC/HDL-C and apoB/apoA-I ratios are higher in FH+ compared to FH- subjects (Figure 

3.4d and 3.4e). Higher TG availability in FH- subjects should lead to a production of more and 
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“bigger” VLDL particles [139], which results in their increased lipolysis through LPL (Figure 

3.5). The released cholesterol is transported back to the liver as HDL, raising HDL-C and apoA-

I concentrations in FH- individuals. This mechanism is plausible because LPL gain-of-function 

and loss-of-function polymorphisms lead to higher and lower HDL-C, respectively [140]. As 

TC and apoB levels follow an opposite trend, being increased in FH+ individuals (see 

discussion above), these ratios again afford higher discrimination than the individual 

parameters. 

We consistently find a higher LDL1 concentration for FH+ versus FH- subjects (Figure 3.4f). 

This is in accordance with the findings of Teng et al. [141]. Explaining the observed high LDL1 

requires distinguishing between lipolysis through LPL and HL. A previous study on 

mechanistic modelling of the lipoprotein life cycle [21] suggests that lipolysis outside the liver 

by LPL mostly affects larger apoB-containing lipoproteins such as VLDL. On the other hand, 

HL mostly targets smaller IDL through LDL particles in the hepatic perisinusoidal space 

(Figure 3.5). Given the impaired binding of apoB-containing particles to LDLR on the liver, 

FH+ subjects can be expected to have a lower HL lipolysis and liver clearance than FH- 

subjects. This reduced HL lipolysis explains the accumulation of LDL1 particles [142]. 

Therefore, even though other LDL subfractions will increase due to a longer circulation time, 

accumulation of the larger LDL1 particles is especially marked. This is in agreement with the 

average levels of different LDL subfractions presented by FH+ and FH- subjects (Annex 2).   

In conclusion, the biochemical parameters identified in this study that best discriminate between 

FH+ and FH- individuals are biologically plausible and provide insights into the predominant 

lipid pathways affected in each case. 
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2. Identification of different dyslipidaemic profiles among individuals 

by a hierarchical clustering analysis 

2.1. Identification of a third class of individuals by clustering analysis  

To unravel the biochemical patterns among FH+ and FH- individuals, while searching for 

potential biomarkers that may improve patients distinction, a hierarchical clustering of principal 

components (HCPC) analysis was carried out separately on each subset of the PFHS-ped. These 

data subsets were previously established for model training (see section 1 of this chapter), 

taking into account that the measures of some lipid parameters were not available for all the 

211 individuals that comprise the PFHS-ped dataset. Given the fact that clustering is an 

unsupervised approach, the classification of individuals as FH+/FH- (variable “Class”) was 

only considered for interpretation of clustering results and thus did not contribute to the 

establishment of clusters by HCPC. 

Results showed that in all subsets individuals were distributed in three distinct clusters (Figure 

3.6), in stark contrast to the traditional assignment of patients into two classes based on their 

genetic profile (FH+ and FH-). This suggests the existence of a third group of individuals 

characterised by a distinct lipidic pattern, based on a diverse set of biochemical parameters.  

 

Figure 3.6. Characterization of clusters regarding the number of individuals according to their class, for each of the seven 

subsets. Red and blue bars correspond to FH+ and FH- populations, respectively. The number of individuals for each class is 

present in white. Each subset presents the total number of individuals within brackets. B & A: “Basic & Advanced”; B & L: 

“Basic & Lipoprint”; A & L: “Advanced & Lipoprint”.  

 

In order to obtain insights into the nature of these three groups, we began to look at the 

distribution of FH+ and FH- individuals among clusters. As shown in Figure 3.6, in every subset 

it was possible to identify a pattern in the distribution of individuals according to their class. 

There was always a cluster mainly constituted by FH+ patients and another cluster mostly 

composed by FH- individuals. In addition, a “mixed” population was present in a third cluster, 

including a considerable number of both FH+ and FH- individuals. In spite of the smaller 



68 

 

number of individuals in comparison to the other subsets, the “All” subset presented the most 

defined distribution of individuals among the three clusters, regarding FH+/FH- classification 

(Figure 3.6). After the “All” subset, the best distribution pattern was found in the subsets “Basic 

& Advanced”, “Basic & Lipoprint” and “Advanced & Lipoprint”. This suggests that a 

combination of parameters from different lipid profiles contributes to a better distinction 

between individuals, which is in agreement with the results obtained using a supervised ML 

approach considering a population with two classes (see section 1). Therefore, clustering 

analysis was focused on the “All” subset (called from this point as “work population”), whose 

distribution of individuals by clusters is shown in detail in Figure 3.7.  
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Figure 3.7. Dendrogram of the “All” subset showing the best distribution of individuals by the three clusters. Blue, yellow and 

red coloured clusters correspond to predominant FH-, mixed, and predominant FH+ populations, respectively. In the right 

panel, red and blue circles identify FH+ and FH- individuals, respectively.  

 

As mentioned before (see methods), the HCPC analysis allowed us to acquire a detailed 

description of clusters regarding the contribution of both quantitative and categorical variables, 

individuals, and dimensions. This information is important for an accurate characterization of 
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clusters and to explain the distribution of individuals within each cluster, as well as to identify 

potential lipid profile patterns.  

 

2.1.1. Cluster description by quantitative variables identifies metabolic pathways of 

interest for differentiation of FH+ and FH- classes 

To understand which parameters contributed to the cluster partition, the statistical analysis 

carried out by HCPC (see methods) was carefully explored. This analysis took into account all 

the quantitative variables used by the clustering algorithm, which comprise all the biochemical 

parameters from PFHS-ped, BMI and age. Accordingly, the results included a ranked list of the 

statistically significant parameters for the distribution of individuals among three clusters 

(Table 3.5). The parameters were ranked according to the correlation ratio between each 

parameter and cluster partition, which means that parameters with the highest correlation are at 

the top of this list. TG/ApoB was the parameter that mostly contributed to the cluster partition, 

followed by VLDL, LDL-C, apoB/apoA-I and TC/HDL-C. Conversely, MIDA, HDL-C, Lp(a), 

VLDL/IDL and sdLDL/LDL-C were the five parameters with the smallest significant 

contribution to the clustering. From a total of 30 quantitative variables, only five were not 

considered as statistically significant for the establishment of clusters (i.e., the correlation ratio 

was not significantly different from zero), including apoC-II/apoC-III, apoE, LDL2, and 

Lipoprint measurements of HDL and sdLDL.  
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Table 3.5. Ranked list of the statistically significant parameters for the distribution of individuals by three clusters, under the 

confidence level of 95%. The parameters were ranked from the highest to the lowest significant contribution to cluster partition, 

according to the correlation ratio (η2) between each parameter and cluster division. 

Rank Variables η2 p-value 

1 TG/ApoB 0.56 3.07E-14 

2 VLDL 0.55 9.93E-13 

3 LDL-C 0.53 2.58E-12 

4 ApoB/ApoA-I 0.51 7.49E-12 

5 TC/HDL-C 0.45 2.21E-11 

6 IDL 0.43 1.61E-10 

7 VLDL/LDL-C 0.43 1.32E-09 

8 ApoC-III 0.43 1.45E-09 

9 MIDB 0.42 2.71E-08 

10 TC 0.41 3.62E-08 

11 ApoB 0.39 8.06E-08 

12 LDL1 0.35 1.95E-07 

13 TG 0.34 4.31E-07 

14 MIDC 0.26 1.77E-06 

15 BMI 0.24 7.53E-06 

16 ApoA-I 0.23 1.46E-05 

17 ApoA-II 0.23 6.33E-05 

18 sdLDL.Day 0.21 7.49E-05 

19 ApoC-II 0.18 3.08E-04 

20 Age 0.18 6.93E-04 

21 MIDA 0.17 1.03E-03 

22 HDL-C 0.17 1.91E-03 

23 Lp(a) 0.14 4.06E-03 

24 VLDL/IDL 0.13 9.73E-03 

25 sdLDL/LDL-C 0.09 1.53E-02 

 

Once again, the importance of combining parameters from different lipid profiles to identify 

consistent lipid patterns among individuals is shown by the presence of “Basic”, “Advanced” 

and “Lipoprint” parameters (Table 3.5). Another important aspect is the presence of several 

ratios as significant contributors to cluster partition, which highlights the relationships between 

different parameters in the context of lipid metabolism.  

For a better characterization of each cluster and to look for potential biochemical patterns, we 

explored the result of student’s t-test that compared the mean of each quantitative variable in 

the total work population of 78 individuals (i.e., “overall mean”) with the mean of the same 

variable in each cluster (i.e., “mean in category”). Accordingly, Figure 3.8 shows the list of 

parameters whose “mean in category” was significantly different from the “overall mean”. 

These are the parameters that best characterise each cluster.  



72 

 

 

Figure 3.8. Parameters that best characterise each cluster, according to the difference between the “mean in category” of a 

given parameter and its “overall mean”. Among the significant parameters, those that present higher/lower mean values in the 

cluster in comparison to the overall mean are represented in separate boxes within the cluster. The confidence level of 95% 

was considered for this analysis. 

 

The cluster with a predominant FH- population is mainly characterised by higher values of 

parameters related to TG metabolism and lower values of parameters related to LDL and apoB 

metabolism. The inverse association was found in the cluster with FH+ as the predominant 

population. Regarding the mixed population, both TG and LDL/apoB related parameters have 

lower mean values than in the work population. Further details of each parameter distribution 

and mean trend among clusters are present in Annex 4.  

 

2.1.2. Cluster description by categorical variables identifies molecular, biochemical, 

and anthropomorphic patterns among individuals 

Concerning the characterization of clustering results by a set of categorical variables associated 

with PFHS-ped (Annex 5) and described in methods, the HPCP algorithm used a chi-squared 

test to measure the association between each categorical variable and cluster partition. Table 

3.6 presents the variables that significantly explain the distribution of individuals by three 

clusters. These variables did not contribute to cluster partition, instead they were included in 

HCPC analysis as supplementary variables and thus only used for interpretation purposes.   
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Table 3.6. Categorical variables that present a statistically significant association with cluster partition results, under the 

confidence level of 95%.   

Variables p-value 

Class 7.83E-10 

Gene 3.52E-08 

Activity class 1.53E-06 

SB criteria 3.54E-03 

BMI class 1.75E-02 

  

As previously shown by Figure 3.7, the classification of individuals as FH+/FH- is closely 

associated with their distribution among clusters (Table 3.6). The affected gene in FH+ patients 

(LDLR, APOB, PCSK9) is also associated with clustering results, as well as the percentage of 

molecular activity that is kept by the affected allele (variable “Activity class”). These results 

show the relevance of genotype to patients differentiation. In addition, Table 3.6. presents that 

the fulfilment of SB criteria and the BMI class are also significantly associated with cluster 

distribution, which suggest the presence of different degrees of disease severity among 

individuals and the potential contribution of environmental factors (e.g., rich fat diet) for the 

establishment of cluster patterns, respectively. 

For a more detailed description of each cluster, the association between each of them and 

categorical variables was statistically tested by the HCPC algorithm (see methods). Figure 3.9 

presents the categories of different variables that provide a statistically significant association 

(positive or negative) with each cluster. Of note, none of the categorical variables presented a 

significant association with the mixed population cluster.  
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Figure 3.9. Variables categories that present a statistically significant association, positive or negative, with each of the clusters. 

Mixed population is not represented since no significant association was found between this cluster and categorical variables. 

The confidence level of 95% was considered for this analysis. The categories “Null_pred” and “Def_pred” of activity class are 

related to the results of in silico predictions for allele activity, corresponding to predicted null and defective variants, 

respectively.  

 

As previously shown in this section, there is a clear pattern in the distribution of individuals 

among clusters according to their classification as FH+ or FH-, which is present by Table 3.6 

and Figure 3.9 where variable “Class” has a statistically significant association with FH+ and 

predominant FH- clusters. The variable “SB criteria”, regarding the fulfilment of TC and LDL-

C cut-offs from SB clinical criteria, also showed a significant association with clusters. 

Accordingly, the predominant FH+ cluster was associated with higher levels of TC and LDL-

C, compared to the predominant FH- cluster that appeared to present a milder biochemical 

profile. Giving the fact that LDLR is the most affected gene in FH [54], it is not surprising the 

presence of a positive association between the predominant FH+ cluster and an affected LDLR 

gene, as well as the negative association of LDLR with the predominant FH- cluster. In addition, 

the predominant FH+ cluster seemed to be characterised by an activity of 2-20% in the affected 

allele, besides being associated with null (less than 2% of molecular activity) and defective (2 

- 80% of molecular activity) in silico predicted variants - i.e., “Null_pred” and “Def_pred”, 

respectively. This suggests that the predominant FH+ cluster is associated with a more severe 

genotype, with the significant presence of variants keeping a molecular activity not higher than 
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20% in comparison to wild type. Regarding other variables like gender and BMI class, the 

predominant FH- cluster appeared to be characterized by the presence of obese girls, in contrast 

to the negative association with overweight boys. Still, this association of individual 

distribution among clusters with gender should be considered with caution, as explained 

forward (see discussion). 

In pursuit of a clear visualisation of clusters characterization by categorical variables, the 

distribution of these variables was compared with the distribution of individuals among clusters, 

as shown in Figure 3.10.  

 

Figure 3.10. Distribution of categorical variables within the classification dendrogram. White circles on “Activity class” and 

“Gene” correspond to FH- individuals, while on “LDL-C score” they represent the individuals whose score was not performed. 

(Continued in the next page)  
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Figure 3.10. (Continued from previous page) Distributive pattern of the categorical variables according to position of 

individuals within the dendrogram. White circles on “Activity class” and “Gene” correspond to FH- individuals, while on 

“LDL-C score” they represent the individuals whose score was not performed.  
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Apart from the already recognized pattern of variable “Class”, some less specific patterns could 

be identified with a careful observation of Figure 3.10 considering the distribution of other 

categorical variables. Still, a clear distinction among individuals was not achieved in the mixed 

cluster.  

The most severe genetic variants corresponding to lower percentages of molecular activity, 

comparatively to the wild type allele, seems to agglomerate in the predominant FH+ cluster and 

in the first individuals of the mixed cluster. This can indicate a decreasing ruler of disease 

severity once we move in direction of the predominant FH- population. Still, there are some 

individuals on the right branch of the mixed cluster (i.e., PED263, PED256, PED245, PED157, 

PED143) that present extremely low levels of activity in the affected allele. Considering that 

more severe variants translate in higher levels of TC and LDL-C, other lipid parameters that 

were not possible to identify may be responsible for setting these FH+ individuals closer to a 

FH- profile, which could explain their assignment to the mixed cluster. Conversely, PED120 is 

the only FH+ belonging to the predominant FH- cluster, which is due to the presence of a 

pathogenic variant of mild effect (c.1216C>T, p.Arg406Trp) and that translates in a milder 

phenotype in comparison to all the other FH+ individuals [49]. 

Predominant FH+ cluster is totally composed of individuals that fulfil TC and LDL-C cut-offs 

from SB criteria, which emphasises the idea that this cluster presents the most severe profiles. 

Accordingly, the number of individuals fulfilling these cut-offs decreases as we move forward 

through the mixed cluster and, even more, within the predominant FH- cluster. This means that 

subjects from predominant FH+ cluster present higher levels of TC and LDL-C in relation to 

the other clusters. In contrast, the LDL-C score appears to be higher once we move through the 

mixed cluster and, especially, within the predominant FH- cluster. This means that this last 

cluster presents a higher number of individuals having a stronger polygenic contribution for 

their biochemical profiles, namely LDL-C levels [36].  

Regarding gender, there is a higher number of females once we move in the direction of the 

predominant FH- cluster. The same trend is also observed for the category “obese” of the 

variable “BMI class”, which suggests that within the PFHS-ped dataset a FH- profile is easier 

to find among girls suffering from obesity. This finding was also observed while testing the 

statistical association between clusters and each of the categorical variables (Figure 3.9). Still, 

gender did not show a significant association with the cluster partition (Table 3.6) and the 

predominant FH- cluster was the only cluster that presented an unbalanced number of 

individuals from one gender in relation to the other.  
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As mentioned before, the distribution pattern of “Gene” variable is in agreement with the 

classification of individuals as FH+ or FH- and, since LDLR variants are identified in a big 

majority of FH cases, this explains the considerable presence of LDLR variants in the 

predominant FH+ cluster and, in less extent, within the mixed cluster. In addition, there are four 

APOB variants among these two clusters, three of them in the mixed cluster. APOB variants are 

known to produce milder phenotypes in comparison with LDLR variants [54]. This highlights 

the differences in disease severity between clusters.        

In relation to “Lipoprint profile”, the predominant FH+ cluster seems to present less individuals 

of profile B in relation to the other clusters. As explained before (see methods), the Lipoprint 

profile is obtained by measuring the concentration of sdLDL particles in serum, which 

correspond to the most atherogenic fraction of LDL. Then, a profile B is related to a higher 

cardiovascular risk, since a higher concentration of these particles are present, in comparison 

to a subject with a profile A [16], [143]. This suggests a valuable insight regarding the potential 

influence of an affected HL activity and consequent change in proportions of LDL subfractions 

on disease severity, as explained forward in Chapter 4.  

  

2.1.3. Cluster description by individuals emphasises the presence of different 

dyslipidaemic profiles besides the categorization as FH+ and FH- 

In addition to the statistical analysis that tested the variable contribution for clusters, the HCPC 

algorithm has allowed us to assess which individuals best describe and/or are more specific of 

each cluster, by measuring the distance between each individual and the gravity centre of each 

cluster. Table 3.7 presents the paragons, which are the individuals considered to best 

characterise each of the clusters, since they are the closest individuals to the cluster centre.  

 

Table 3.7. Individuals with the shortest distance to the centre of the cluster they belong. 

Predominant FH- cluster Mixed cluster Predominant FH+ cluster 

Patient Distance Patient Distance Patient Distance 

PED131 0.83 PED159 0.85 PED192 2.11 

PED187 1.03 PED140 1.16 PED132 2.27 

PED239 1.93 PED237 1.77 PED188 2.56 

PED242 2.12 PED138 2.01 PED171 2.62 

PED162 2.31 PED217 2.02 PED193 2.64 

 

As shown in Table 3.7, PED131, PED159 and PED192 are the individuals that best characterise 

predominant FH- cluster, mixed cluster and predominant FH+ cluster, respectively, since they 

are the ones with the shortest distance to each of the cluster's centres. From these three subjects, 



 

79 

 

only PED192 is FH+ and PED131 is the one presenting the higher BMI and polygenic score. 

This is in agreement with previous results in this chapter that suggested a more severe 

dyslipidaemic profile for patients of predominant FH+ cluster, while a higher polygenic 

contribution and BMI might be associated with the predominant FH- cluster. Further, the 

individuals that best represent the predominant FH+ cluster are mostly carriers of more severe 

FH-associated gene variants, with a normal BMI and a moderate polygenic contribution. On 

the opposite, predominant FH- cluster are best described by FH- individuals that in average 

present a high polygenic score and a higher BMI than normally expected, with some of them 

also presenting milder TC and LDL-C levels in comparison to individuals from other clusters. 

The mixed cluster appears to represent a mixed phenotype with characteristics of both FH+ and 

FH- profiles, for the following reasons: there is only one FH+ among the list of representative 

individuals, whose pathogenic variant in APOB gene is considered milder than the LDLR 

variants associated to the predominant FH+ cluster [54]; the pattern of polygenic contribution 

seems to be similar to those of predominant FH+ cluster, whilst the polygenic scores of PED188 

and PED193 were not performed; the BMI pattern is worse in comparison to the predominant 

FH+ cluster but milder than the one found in the predominant FH- cluster; TC and LDL-C 

levels are higher than those of the predominant FH- cluster. Still, the low number of individuals 

involved in this analysis (five individuals as best representatives of each cluster) should be 

taken into consideration for further discussion around the mixed population. 

On the other hand, Table 3.8 presents the individuals that are more distant to the centre of other 

clusters and that can be considered the most specific individuals of their own cluster.  

 

Table 3.8. Individuals with the longest distance to the centre of other clusters, according to the cluster they belong. 

Predominant FH- cluster Mixed cluster Predominant FH+ cluster 

Patient Distance Patient Distance Patient Distance 

PED247 11.59 PED130 6.89 PED249 9.41 

PED186 10.43 PED203 6.59 PED97 7.52 

PED266 9.60 PED243 6.30 PED183 7.11 

PED227 8.08 PED143 5.73 PED197 6.85 

PED128 6.91 PED257 5.66 PED192 6.78 

 

As shown in Table 3.8, PED247, PED130 and PED249 are the most specific individuals of 

predominant FH- cluster, mixed cluster, and predominant FH+ cluster, respectively, since they 

present the longest distances to the centre of the other clusters. PED249 presents a normal BMI 

and high levels of TC and LDL-C, besides carrying a null variant in the LDLR gene, which is 

in agreement with the pattern already associated with the predominant FH+ cluster. Indeed, the 
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most specific individuals of this cluster have mostly high values for TC and LDL-C and present 

in average a moderate to high polygenic contribution and a normal BMI, besides of three of 

them being carriers of more severe gene variants. In other hand, the most specific individuals 

of the predominant FH- cluster mostly present TC and LDL-C levels that fulfil the cut-offs from 

SB criteria, and a pro-atherogenic profile regarding the concentration of sdLDL measured by 

Lipoprint assay. In addition, two of these individuals were considered obese. In relation to the 

mixed cluster, the most specific individuals mostly present TC and LDL-C levels above SB cut-

offs, besides of a normal BMI and a moderate polygenic contribution. PED143 is the only FH+ 

individual of the mixed cluster, with a gene variant associated with 2-20% of molecular activity 

in the affected allele, which is accompanied by a very high polygenic score. Still in the same 

cluster, PED257 is the only patient with a high BMI and a pro-atherogenic Lipoprint profile. 

As mentioned before, we should be careful while taking conclusions from these results, 

considering the low number of individuals involved.  

PED192 belongs simultaneously to the lists of Table 3.7 and Table 3.8 regarding the 

predominant FH+ cluster, which means that this individual is not only among those who best 

characterise this cluster but also one of the most specific of its members. This patient presents 

high levels of LDL-C and TC, a high ratio apoB/apoA-I, besides carrying a pathogenic variant 

associated with 2-20% of molecular activity in the affected allele. This pattern is aligned with 

previous findings mentioned in this section, regarding the predominant FH+ cluster. 

 

2.1.4. Cluster characterization by dimensions highlights the presence of different 

metabolic patterns among individuals 

To acquire a more detailed cluster description, besides the characterization by variables and 

individuals, the clustering algorithm assessed the PCA dimensions that best explain distribution 

of individuals among clusters. For this the HCPC algorithm has tested the association between 

individual coordinates within each cluster and the different dimensions (also known as principal 

components or axes in the context of PCA results), which translates in the identification of the 

dimensions that best describe each cluster. Table 3.9 shows the dimensions where individuals 

present the statistically significant stronger or weaker coordinates, for each of the three clusters. 
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Table 3.9. Dimensions that present statistically significant associations with individual coordinates within each cluster, under 

the confidence level of 95%. 

Predominant FH- cluster 

Dimensions p-value Association 

PC2 5.22E-08 stronger 

PC4 0.005896 stronger 

PC1 0.000114 weaker 

Mixed cluster 

Dimensions p-value Association 

PC3 0.0394 weaker 

PC4 2.17E-05 weaker 

PC2 1.79E-06 weaker 

Predominant FH+ cluster 

Dimensions p-value Association 

PC1 7.11E-12 stronger 

 

As depicted in Table 3.9, individuals from the predominant FH- cluster have a stronger 

association with PC2 and PC4 in comparison to other clusters, while this association is weaker 

for PC1. Conversely, individuals from the predominant FH+ cluster present a stronger 

association with PC1. Concerning the mixed cluster, these individuals have a weaker 

association with PC3, PC4 and PC2 in relation to individuals of other clusters.   

Looking through the PCA results, it is possible to access which variables most contribute to 

each dimension. Crossing this information with the dimensions that are significantly associated 

with each cluster (Table 3.9) allowed to consolidate the description of clusters. Giving the fact 

that only the first five dimensions were used for the HCPC analysis (see methods), and from 

these only four presented a significant correlation between at least one of the three clusters 

(Table 3.9), the variable contribution by dimension was analysed only for PC1, PC2, PC3 and 

PC4 (Figure 3.11).   
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Figure 3.11. Variables that most contribute for each of the dimensions that previously have shown to be significantly correlated 

to clusters. PC1 and PC2 together contribute to explain 43.7% of variance in the dataset, while PC3 and PC4 together explain 

22.8% of data variance.  
 

The variables that contribute most for PC1 were mainly linked to LDL/apoB metabolism, while 

PC2 were mostly associated with variables related to TG metabolism and ratios that establish 

interactions between TG and LDL/apoB pathways. This emphasises the relation that was 

already established between the predominant FH+ cluster (showing a stronger association to 

PC1) and LDL/apoB metabolism. Conversely, the predominant FH- cluster, presenting a 

weaker association to PC1 and a stronger association to PC2, was previously associated with 

TG metabolism. This cluster also presented a strong correlation with PC4, whose main 

contribution came from variables associated to the different LDL fractions, besides other 

parameters like BMI, TG/apoB and HDL-C. In contrast, PC4 presented a weaker association 

with the mixed cluster, which was also reported for PC2 and PC3 that were both related to 

parameters involved in TG metabolism and LDL pathway/reverse cholesterol transport, 

respectively. This translates to lower values of these parameters for individuals from the mixed 

cluster in comparison to individuals from other clusters. 

Given the fact that PC1 and PC2 explain more than 40% of data variance, which make them 

the most informative dimensions, the distribution of individuals within each cluster was plotted 

for PC1 and PC2 dimensions (Figure 3.12).  
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Figure 3.12. Cluster map showing the distribution of individuals within each cluster for PC1 (also known as Dim1) and PC2 

(also known as Dim2), which correspond to the dimensions that best explain data variance. FH+ individuals are identified with 

a “C” before their ID. Predominant FH- cluster in blue, mixed cluster in yellow, and predominant FH+ cluster in red.  
 

Figure 3.12 clearly shows the strong correlation of the predominant FH+ cluster with PC1, since 

the coordinates of individuals are all positive for this dimension. Conversely, most of the 

individual coordinates within the predominant FH- cluster are positives for PC2 and negatives 

for PC1. Regarding the mixed cluster, a considerable part of these individuals presents negative 

coordinates for both PC1 and PC2 dimensions.  

 

2.2. Predicted class assignment using Imp_B model suggests the presence of borderline 

individuals 

As explained before, contrary to the predominant FH+ and predominant FH- clusters, the mixed 

cluster could not be clearly characterised since it was not possible to identify specific 

biochemical or clinical patterns. Then, for a better characterization of this cluster, a previously 

trained model (Imp_B, see Table 3.2) was applied to the 78 individuals of the work population, 

letting to predict classification with the associated probability of each individual belonging to 

FH+ and FH- class. This allowed the identification of individuals whose classification can be 

potentially dubious, especially because of milder or severer biochemical profiles for FH+ and 

FH- subjects, respectively, which might be close to the borderline between these two classes. 

After acquiring the probabilities associated with the predicted classifications, the difference 

between the probability of being FH+ and the probability of being FH- (named as ∆prob) was 
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measured for each individual. For a better visualisation and results interpretation, the set of 

values of ∆prob were grouped into four categories: very ambiguous (∆prob <0.25), ambiguous 

(0.25 ≥ ∆prob < 0.5), reasonable (0.5 ≥ ∆prob < 0.75), clear (∆prob ≥ 0.75). Accordingly, a 

high Δprob corresponds to a clear classification, while a low Δprob is associated with an 

ambiguous classification. Figure 3.13 shows the distribution of ∆prob among individuals within 

clusters. The predicted class assignment, associated probabilities, ∆prob and correspondent 

categories are available for all individuals of the work population in Annex 6. 
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Figure 3.13. Distribution of ∆prob across the 78 individuals of the work population, ordered according to cluster position. The 

value of ∆prob is the difference between the probability of being classified as FH+ and the probability of being classified as 

FH- according to the predictions obtained using the Imp_B model. Both predicted and observed classifications are also shown 

in the figure. The colour label corresponding to the different categories of ∆prob and classification (FH+/FH-) are present in 

the upper left corner.  

 

As seen in Figure 3.13, most individuals considered to have an ambiguous classification, 

according to the predictions acquired with the “Imp_B” model, are present in the mixed cluster. 

This is in agreement with the hypothesis of this cluster representing individuals with a mixed 
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phenotype, as previously mentioned in this chapter. Then, since the mixed cluster is composed 

of both FH+ and FH- subjects, the FH+ individuals of this cluster seem to present a biochemical 

profile milder than individuals of the predominant FH+ cluster, while the FH- subjects appear 

to have a more severe profile than individuals of the predominant FH- cluster. We should take 

into account that dyslipidaemia is a complex disease and that the final phenotype presented by 

an affected individual results from the interaction of different genetic and environmental 

factors, including both monogenic and polygenic contributions in the hallmark FH genes and/or 

in other lipid-related genes, epigenetic factors, diet and lifestyle (e.g., physical activity or 

smoking habits) [10], [45]. 

The clustering analysis performed on the PFHS-ped dataset allowed the identification of 

different metabolic profiles between FH+ and FH- individuals, including the association of each 

class with LDL/apoB and TG metabolism, respectively, as already suggested by modelling 

analysis. In addition, the application of this explorative approach resulted in the classification 

of individuals into three groups, with two of them being clearly characterised by a FH+ and 

FH- profile, respectively, while a third group was shown to comprise individuals with mixed 

phenotype representing the biological complexity of dyslipidaemia. The characterization of 

each of these groups of individuals allowed the identification of potential biomarkers that may 

be useful to future genetic studies and/or new classification models involving larger datasets. 
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3. Creation of a new lipid knowledge base directed to dyslipidaemia 

3.1. Defining a list of target genes and collecting different levels of gene information  

For a better understanding of the dyslipidaemia biological context, a list of genes of interest 

was established and associated information (i.e., gene expression data, associated GWAS traits 

and GO terms) was collected from public databases. The integration of all this information into 

a new knowledge base may allow us to look for potential expression, phenotype and/or 

functional patterns among these genes, promoting the identification of new biomarkers and a 

better discrimination between dyslipidaemic individuals. Therefore, within a perspective of 

integrative analysis, a set of genes/proteins, metabolites and metabolic pathways were selected 

as keywords (Table 3.10) to search for target metabolic pathways in the Wikipathways 

platform. Some of these keywords represent potential biomarkers for the distinction of different 

dyslipidaemic patients, considering the previous results achieved by ML-based methods. 

Briefly, the parameters related to TG and LDL/apoB metabolism were shown to contribute for 

a better distinction between individuals, according to both modelling and clustering analysis. 

The best ranking models were mostly composed of a set of biochemical parameters that 

included TG, LDL-C, apoB, apoA-I, apoC-III and LDL1. The first four of these parameters 

were also present in the top five of statistically significant contributors for cluster partition, 

which also included VLDL. The results have also shown that lipoprotein metabolism is one of 

the major pathways involved in the dyslipidaemia biological context. In addition, other terms 

were considered as keywords, including lipid metabolism, hypercholesterolaemia and 

atherosclerosis (Table 3.10), based on the literature review.  

 

Table 3.10. Biological entities used as keywords in Wikipathways search tool, which allowed to identify a set of metabolic 

pathways of interest. In addition to genes, metabolites and pathways selected from previous results, other keywords were 

included considering the literature review.  

Keyword Class Keyword Class 

Lipid metabolism Pathway VLDLR Gene 

Lipoprotein metabolism Pathway APOB Gene 

Triglycerides Metabolite LDL1 Metabolite 

LDLR Gene IDL Metabolite 

APOA1 Gene Hypercholesterolaemia Disease 

APOC3 Gene Atherosclerosis Disease  

 

Afterwards, 14 metabolic pathways were selected (Table 3.11) and their genes were compiled 

in a single list of 466 genes – called target genes. 
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Table 3.11. Metabolic pathways that were selected after searching in Wikipathways for previously identified biological entities 

of interest. The number of genes out of the 466 that belong to each of the pathways is presented, with some genes being 

associated to more than one pathway.  

Wikipathways ID Metabolic Pathways Genes 

WP3926 ApoE and miR-146 in inflammation and atherosclerosis 9  

WP3601 Composition of lipid particles 9  

WP2764 Lipid digestion, mobilization and transport 70  

WP4051 Lipid particle organization 6  

WP4129 Plasma lipoprotein assembly, remodeling and clearance 70 

WP1885 Platelet homeostasis 81  

WP2878 PPAR alpha 25  

WP3942 PPAR signaling 68  

WP2797 Regulation of lipid metabolism by PPAR alpha 121  

WP2011 SREBF and miR-33 in cholesterol and lipid homeostasis 17 

WP1982 SREBP signaling  70  

WP430 Statin pathway 31 

WP4131 Triglycerides metabolism 37 

WP1533 Vitamin B12 metabolism 54 

miR: micro-RNA; PPAR: peroxisome proliferator-activated receptor (family); SREBF: sterol regulatory element-binding 

transcription factor (family); SREBP: sterol regulatory element-binding protein (family) 

 

Of note, the pathway “Lipid digestion, mobilization and transport” (Table 3.11) was divided in 

five different pathways according to the most recent version of Reactome database [144], as 

follows: intestinal lipid absorption (R-HSA-8963678); digestion of dietary lipid (R-HSA-

192456); triglyceride catabolism (R-HSA-163560); lipid particle organization (R-HSA-

8964572); plasma lipoprotein assembly, remodeling, and clearance (R-HSA-174824). 

Regarding gene expression data, for categorization of target genes according to their expression 

levels, cut-offs were established (see methods) for the tissues of interest, liver and small 

intestine given their main role in lipid metabolism, and for transcriptome (Table 3.12). The gene 

expression values for the transcriptome comprise median values by gene and tissue obtained 

using a GTEx dataset of 56202 genes and 51 tissues (see methods), representing an estimation 

of the median expression of each gene in the whole human organism.  
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Table 3.12. Gene expression categories according to the established cut-offs and the number of genes out of the 466 belonging 

to each category in tissues of interest and transcriptome. TPM: transcript per million   

Gene expression Number of genes 

Categories Cut-offs (TPM) Liver Small Intestine Transcriptome 

Null <0.1 42 31 6 

Low 0.1 – 1 51 48 25 

Moderate 1 – 10 136 110 111 

Moderate-to-high 10 – 100 184 250 279 

High 100 – 1000 37 27 43 

Top (very high) ≥1000 16 0 2 

 

Considering the number of genes by expression category, Table 3.12 shows that the majority 

of target genes belong to moderate and moderate-to-high categories, including several genes 

already known to be related to dyslipidaemia such as LDLR, PCSK9 or LIPA. The coding genes 

of apolipoproteins, important players in lipid metabolism and dyslipidaemia, are associated 

with expression levels that mostly vary between moderate-to-high, high, and top levels, at least 

for one of the tissues of interest. In comparison with transcriptome, there is a considerable 

number of genes whose expression level is lower in liver and small intestine. Still, the 

expression pattern of the majority of genes is more similar between small intestine and 

transcriptome, rather than between liver and transcriptome. Comparing the two tissues of 

interest, there is a considerable number of genes with a lower expression in the liver than in the 

small intestine. The complete list of gene expression categories, in tissues of interest and 

transcriptome, for all target genes can be found in Annex 7. 

Considering that the last report of the NHGRI-EBI GWAS Catalog refers to the presence of 

5687 GWAS studies that comprises 71673 gene variant - trait associations [120], the gathering 

of GWAS information for target list took into account a set of keywords related with lipid 

metabolism and dyslipidaemia to search for GWAS traits of interest (see methods). 

Accordingly, these keywords translated into nine traits, including lipoprotein measurement, 

HDL-C, LDL-C, TC, VLDL-C, hypertriglyceridemia, coronary artery disease, cardiovascular 

disease, and atherosclerosis. All the nine traits were represented in the target gene list, while 96 

out of the 466 target genes were associated with at least one of these traits. Figure 3.14 shows 

the number of target genes associated with each trait, taking into account that some genes were 

associated with multiple traits (maximum reported of six associated traits per gene). The full 

list of traits associated with each of the 96 genes is present in Annex 7. 
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Figure 3.14. GWAS traits associated with target genes, including the number of genes related to each of the traits. 

 

Considering the metabolic pathways selected for the establishment of target genes list (Table 

3.11), it was not surprising that the GWAS traits more frequent among target genes were HDL-

C, LDL-C and TC, whose central role in cholesterol and lipoprotein metabolism is already 

known [9], [24]. Accordingly, each of these traits were associated with at least 40 out of the 

466 target genes. These GWAS traits correspond to common measured lipid parameters in 

clinical practice, with TC and LDL-C being part of several clinical criteria for FH (including 

the SB criteria). Other traits with considerable representation in the universe of target genes 

were coronary artery disease, which represents one of the consequences of an unbalanced lipid 

metabolism, and lipoprotein measurement, which stands for a more general term comprising 

other lipoproteins besides HDL, LDL or VLDL. The least represented GWAS traits among 

target genes were hypertriglyceridemia (i.e., high levels of TG), VLDL-C, cardiovascular 

disease, and atherosclerosis. Considering that one of the previously selected pathways was 

“Triglycerides metabolism” (Table 3.11) and that this pathway was identified as a potential 

contributor for an improved distinction between dyslipidaemic individuals (section 1 and 2 of 

this chapter), a higher number of target genes was expected to be associated with 

hypertriglyceridemia. Still, we should take into account that the number of GWAS studies is 

limited for some traits, which retrains the number of gene associations found until the moment. 

In addition, for traits like cardiovascular disease and atherosclerosis, the low representativity 

among target genes may be explained for the fact that these are considerably complex diseases 

and much more genes are involved besides the ones within target list.  
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In relation to functional information, a list of GO terms associated with target genes was 

collected for the GO domains “biological process” (BP) and “molecular function” (MF), 

resulting in a total of 10183 and 3909 GO terms, respectively. A manual selection considering 

the scope of this study and GO hierarchical relations between terms allowed to restring these 

lists to smaller sets of terms, yet representative of target genes (see methods). For both MF and 

BP domains, a group of lipid-specific GO terms was selected, comprising five (Table 3.13) and 

11 (Table 3.14) parent terms, respectively. An additional selection for “Other GO terms”, not 

lipid-specific, resulted in a set of six parent terms for each GO domain (Table 3.15 and Table 

3.16). According to the GO hierarchical graph, the designation “parent” terms refers to the 

nodes closer to the graph’s root, while “child” terms are those closer to the leaf nodes. In this 

study, child terms were grouped under the correspondent parent term, considering the universe 

of selected GO terms. 

 

Table 3.13. List of lipid-specific parent GO terms in MF functional domain and the associated target genes. Ngc: number of 

genes associated with child terms of each parent term. 

ID GO term name Genes Ngc 

GO:0016298 lipase activity 
PNLIP, LPL, MGLL, LIPC, PNLIPRP2, LIPH, 

LIPE, LIPA, PNLIPRP3, LIPI, LIPG 
23 

GO:0008289 lipid binding 

FABP9, FABP7, FABP6, FABP12, APOA1, FABP2, 

SCP2, APOE, AP2A2, PPARA, INSIG1, GPIHBP1, 

INSIG2, PLTP, APOA4, HDLBP, SCAP, CETP, 

FABP1, FABP5, CD36, PLIN1, APOA5, LIPF, 

PLA2G4A, MTTP, PDIA2, ALB, DBI, APOC3, 

APOC2, AP2M1, PPARD, FABP3, FABP4, APOA2 

40 

GO:0005319 lipid transporter activity 
APOA2, NPC1, MTTP, ABCA1, NPC1L1, APOA1, 

APOC4, APOA4, APOF, APOE, APOB 
23 

GO:0071813 lipoprotein particle binding LPL, GPIHBP1, APOE, CD36, APOA1 12 

GO:0070325 lipoprotein particle receptor binding APOA5, LRP1 13 

 

Table 3.14. List of lipid-specific parent GO terms in BP functional domain and the associated target genes. Ngc: number of 

genes associated with child terms of each parent term. (Continued in the next page) 

ID GO term name Genes Ngc 

GO:0006637 acyl-CoA metabolic process ACSL6, DBI, GPAM 13 

GO:0044241 lipid digestion PNLIP, CEL, CLPS, PNLIPRP2 12 

GO:0055088 lipid homeostasis 

PNPLA5, NR1H4, ACOX1, PNPLA4, NR1H2, CETP, 

ABCB4, NR1H3, PPARG, ABHD5, ACOX3, ACOX2, 

ANGPTL3, ACACA, APOE, APOA4 

55 

GO:0010876 lipid localization PPARA, SREBF1, CPT1A 85 



92 

 

ID GO term name Genes Ngc 

GO:0006629 lipid metabolic process 

CPT2, ACAA1, PRKAG1, CETP, PNPLA5, LSS, FASN, 

HMGCS1, LPA, LPL, ANGPTL4, LIPC, SCAP, SREBF1, 

CEL, ACSL6, PNLIP, SLC27A6, PLTP, MOGAT3, 

SLC27A5, PAFAH2, NR1H3, APOE, NPC1L1, PCK1, LIPK, 

HSPG2, LIPH, HMGCS2, SLC27A1, ABHD5, VLDLR, 

LPIN3, FABP6, HMGCR, GPAT2, LIPF, APOA1, CYP7A1, 

CYP4A11, PPARA, MBTPS1, PCSK9, FDFT1, PPARG, 

ACOX1, ACSL4, MTTP, CYP51A1, LRP1, ACACA, MVD, 

APOF, PLA2G4A, PRKAA1, FDPS, SLC27A2, CUBN, 

LCAT, APOBR, NR1H4, PLIN1, PNLIPRP3, LDLR, 

PNLIPRP2, LIPJ, LRP2, ACADL, ABCA1, SLC27A4, 

PRKAB2, ACSBG2, FABP5, INSIG1, PRKAG3, APOC1, 

SCD, ACSL1, LIPA, ABCB4, NPC1, CPT1A, ACADM, 

APOB, IDI1, CIDEA, ACSL5, ACOX2, MOGAT1, CPT1B, 

PRKAG2, LDLRAP1, PRKAA2, SOAT2, INSIG2, LPIN1, 

PRKAB1, SULT2A1, ACSL3, LIPI, MGLL, ACLY, SREBF2, 

ACSBG1, MOGAT2, NCEH1, PTPN11, LIPE, GPAM, LIPM, 

CPT1C, CYP1A1, APOC3, EHHADH, LRP8, LIPN, FADS2, 

CD36, APOC2, HDLBP, LIPG, CLPS, ANGPTL3, 

PNLIPRP1, APOC4, PPARD, CYP27A1, PNPLA4, LPIN2, 

ANGPTL8, SOAT1, DGAT2, NR1H2, MBTPS2, ACOX3 

210 

GO:0042157 lipoprotein metabolic process 

APOA1, APOE, APOA4, OLR1, APOC1, APOA5, APOA2, 

ABCA1, PPARA, MTTP, LRP1, NPC1L1, APOB, LDLR, 

APOC3, PCSK9 

9 

GO:0010742 
macrophage derived foam 

cell differentiation 
SOAT2, PPARG, SOAT1 14 

GO:0051004 
regulation of lipoprotein 

lipase activity 

GPIHBP1, LMF1, ANGPTL3, PCSK6, ANGPTL8, LPL, 

FURIN, LIPC, PCSK5 
13 

GO:0065005 
protein-lipid complex 

assembly 
APOA4 22 

GO:0097006 
regulation of plasma 

lipoprotein particle levels 
APOE, DGAT2 52 

GO:0033993 response to lipid 
SREBF1, INSIG2, SREBF2, CD36, ABCG1, PCK2, PCK1, 

PPARG, PPARD, PPARA 
56 

 

For each parent GO term of Table 3.13 and Table 3.14 there is a set of child GO terms, which 

are individually associated to several target genes, and that can be found in Annex 8. 
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Table 3.15. List of the other parent GO terms in BP functional domain, with the associated target genes. Ngc: number of genes 

associated with child terms of each parent term. 

ID GO term name Genes Ngc 

GO:0007596 blood coagulation 
HBB, P2RX4, P2RX2, PLAT, P2RX3, P2RX1, P2RX6, 

FGB, FGA, P2RX5, FGG, PLG 
32 

GO:0006811 ion transport 

P2RX3, KCNMB2, P2RX1, ITPR1, ITPR2, P2RX2, 

ATP2B2, ATP2A1, TCN2, TRPC7, P2RX5, KCNMB3, 

TRPC6, ATP2A3, P2RX6, ORAI1, ATP2B4, TRPC3, 

ITPR3, ATP2B1, P2RX4, TCN1, SLC8A2, KCNMA1, 

SLC8A3, KCNMB4, ATP2B3, SLC8A1 

27 

GO:0044267 
cellular protein metabolic 

process 
FGG, SAA1, MMP1, PLG, FGA 63 

GO:0006351 
transcription, DNA-

templated 
MYC, MED20, MTF1, TEAD4 114 

GO:0001666 response to hypoxia 
ITPR2, SOD3, P2RX3, ITPR1, MTHFR, KCNMA1, PLAT, 

ARNT, P2RX2, SLC8A1 
21 

GO:0007165 signal transduction 

TRAF4, P2RX6, ATF6, GNG3, ITPR2, GNB4, SRI, P2RX4, 

P2RX1, PPP2R5D, GNG2, PRKG2, GNG13, PRKG1, 

GNB2, GNGT2, GNAS, AMFR, P2RX5, ITPR1, PPP2R5C, 

GNG4, GNG11, PPP2R5E, P2RX3, GUCY1A2, CLOCK, 

PPP2R5A, GNG8, GNG10, GNGT1, GNG5, GNB1, GNB5, 

GSK3A, GNG7, PPP2R5B 

57 

 

Table 3.16. List of the other parent GO terms in MF functional domain, with the associated target genes. Ngc: number of genes 

associated with child terms of each parent term. (Continued in the next page) 

ID GO term name Genes Ngc 

GO:0003677 DNA binding 

TEAD1, ESRRA, ATF6, MED6, CLOCK, TEAD3, MYC, AHR, 

NRF1, TEAD4, TEAD2, THRAP3, ARNTL, SPI1, RXRB, 

CREB3L3, RXRG, MTF1, ARNT 

43 

GO:0003700 
DNA-binding transcription 

factor activity 

AHR, ARNTL, ESRRA, MYC, CLOCK, TEAD1, TEAD4, SPI1, 

ARNT, RXRB, TEAD2, ATF6, CREB3L3, NRF1, MTF1, 

TEAD3, RXRG 

41 

GO:0046872 metal ion binding 

SLC8A1, SEC24B, SLC8A2, ATP2A3, PPP1CB, GPD2, MMP1, 

MTF1, TRAF4, SEC24D, CALM1, MCEE, PPP1CC, RXRB, 

RNF139, FGG, ATP2B1, ATP2B3, ATP2B2, PPP1CA, CALM3, 

GNAS, MTR, ESRRA, FGA, SIRT6, AMFR, CBS, ATP2B4, 

HBA1, SEC23B, MAT1A, SEC23A, CALM2, RXRG, SEC24C, 

TCN2, HBB, KCNMA1, SOD1, PPP2CA, SLC8A3, PPP2CB, 

SRI, ATP2A1, SAR1B, SOD3 

56 

GO:0000166 nucleotide binding 

P2RX2, SAR1A, GUCY1A2, PIK3CA, P2RX3, PDPK1, INSR, 

PRKG1, CDK1, GNAS, ATP2A3, SAR1B, ATP2B4, PRKG2, 

GSK3A, ATP2B3, ACSS1, THRAP3, ATP2B1, P2RX5, MMAB, 

ILK, MAT1A, FGR, CDK8, ATP2A1, ATP2B2, P2RX4 

70 
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ID GO term name Genes Ngc 

GO:0005515 protein binding 

CIDEC, A2M, MAT1A, ITPR3, SAA4, ARNTL, CCND1, MDH1, 

ATF6, TRPC6, SOD1, MED7, GNB2, MED8, SIRT6, IFNG, 

MYC, FAM120B, ILK, GNAS, MED11, PLAT, MED12, YAP1, 

PLG, GNG4, INSR, PRKG1, SEC24C, SEC24D, MED14, 

MED16, FGA, ITPR1, RXRB, FGB, MED18, NRF1, MED19, 

GNG13, AHR, FGG, ARNT, FGR, MED23, MED22, MED26, 

ATP2B2, GNG8, P2RX1, CLOCK, RBP4, SRI, MED30, 

KCNMA1, MTR, MED31, PPP2R1B, MED4, TRPC3, MED6, 

PPP1CC, ATP2B1, PIK3CA, MED9, ATP2A1, SAA2, RNF139, 

GSK3A, SOD3, MMAB, CCNC, TEAD3, MED17, GUCY1A2, 

WWTR1, GNB1, SEC23B, CREB3L3, GNG3, PPP2R5D, HBB, 

PPP2R5E, PPP2CA, GNB4, SPI1, GNB5, ACSS1, AMFR, 

ATP2B3, GNG10, PPP2R1A, SDC1, GNG11, PPP1CB, LMF2, 

SHMT2, ESRRA, GNG2, PPP2R5C, RXRG, GNG5, ORAI2, 

GNG7, CALM3, MED27, CALM1, GNGT1, MED29, SAR1B, 

MCEE, ATP2B4, PDPK1, TEAD4, KCNMB4, KLK15, MTRR, 

TCN2, TEAD1, MTF1, HBA1, SEC13, TEAD2, PPP2CB, CDK1, 

PPP2R5A, AQP7, MED20, CALM2, TRAF4, MED10, NCOA3, 

SLC8A1, SEC23A, PPP2R5B, CTH, P2RX4, SEC31B, ORAI1, 

MED15, THRAP3, SAR1A, CBS, MED21, PPP1CA, SEC24B, 

CDK8, MED28, SEC31A, PTPN6, TRPC7 

150 

GO:0016740 transferase activity 

SHMT2, NCOA3, RNF139, PRKG2, SIRT6, CDK8, INSR, ILK, 

PRKG1, AMFR, FGR, MMAB, PDPK1, CDK1, MAT1A, 

GSK3A, PIK3CA, MTR, CLOCK 

50 

 

For each parent GO term of Table 3.15 and Table 3.16 there is a set of child terms, which are 

individually associated to several target genes, and that can be found in Annex 9. 

 

3.2. Identification of candidate genes for future genetic studies 

For identification of the target genes with the best potential to be useful in future GWAS and 

other molecular studies of interest for dyslipidaemias, we considered the phenotypic and 

functional information collected for each gene. Accordingly, a total of 41 genes associated with 

at least one of the nine selected GWAS traits and showing relation with lipid-specific GO terms 

of both GO domains were identified as candidate genes (Table 3.17). These genes might be 

particularly important for a better understanding of the polygenic contribution to dyslipidaemia 

and help unrevealing differences in phenotype, mainly in biochemical profile, between patients 

with a similar diagnosis.  
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Table 3.17. Candidate genes with Ensembl ID, official gene symbol and full name. 

ID Gene Full name 

ENSG00000165029 ABCA1 ATP binding cassette subfamily A member 1 

ENSG00000005471 ABCB4 ATP binding cassette subfamily B member 4 

ENSG00000160179 ABCG1 ATP binding cassette subfamily G member 1 

ENSG00000138075 ABCG5 ATP binding cassette subfamily G member 5 

ENSG00000143921 ABCG8 ATP binding cassette subfamily G member 8 

ENSG00000163631 ALB albumin 

ENSG00000118137 APOA1 apolipoprotein A1 

ENSG00000110244 APOA4 apolipoprotein A4 

ENSG00000110243 APOA5 apolipoprotein A5 

ENSG00000084674 APOB apolipoprotein B 

ENSG00000130208 APOC1 apolipoprotein C1 

ENSG00000234906 APOC2 apolipoprotein C2 

ENSG00000110245 APOC3 apolipoprotein C3 

ENSG00000267467 APOC4 apolipoprotein C4 

ENSG00000130203 APOE apolipoprotein E 

ENSG00000135218 CD36 CD36 molecule 

ENSG00000087237 CETP cholesteryl ester transfer protein 

ENSG00000277494 GPIHBP1 glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1 

ENSG00000115677 HDLBP high density lipoprotein binding protein 

ENSG00000125629 INSIG2 insulin induced gene 2 

ENSG00000130164 LDLR low density lipoprotein receptor 

ENSG00000157978 LDLRAP1 low density lipoprotein receptor adaptor protein 1 

ENSG00000107798 LIPA lipase A, lysosomal acid type 

ENSG00000166035 LIPC lipase C, hepatic type 

ENSG00000182333 LIPF lipase F, gastric type 

ENSG00000101670 LIPG lipase G, endothelial type 

ENSG00000175445 LPL lipoprotein lipase 

ENSG00000123384 LRP1 LDL receptor related protein 1 

ENSG00000138823 MTTP microsomal triglyceride transfer protein 

ENSG00000144959 NCEH1 neutral cholesteryl ester hydrolase 1 

ENSG00000141458 NPC1 NPC intracellular cholesterol transporter 1 

ENSG00000015520 NPC1L1 NPC1 like intracellular cholesterol transporter 1 

ENSG00000025434 NR1H3 nuclear receptor subfamily 1 group H member 3 

ENSG00000169174 PCSK9 proprotein convertase subtilisin/kexin type 9 

ENSG00000166819 PLIN1 perilipin 1 

ENSG00000100979 PLTP phospholipid transfer protein 

ENSG00000266200 PNLIPRP2 pancreatic lipase related protein 2 gene/pseudogene 

ENSG00000186951 PPARA peroxisome proliferator activated receptor alpha 

ENSG00000069667 RORA RAR related orphan receptor A 

ENSG00000073060 SCARB1 scavenger receptor class B member 1 

ENSG00000147852 VLDLR very low density lipoprotein receptor 
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Among candidate genes (Table 3.17), there are some well-known players in lipid metabolism 

and dyslipidaemia, including the FH-related genes (LDLR, APOB, PCSK9) [9], and those 

associated to FH phenocopies (monogenic dyslipidaemias with a similar phenotype to FH but 

resulting from variants in other lipid-related genes) such as LDLRAP1, LIPA, ABCG5 and 

ABCG8 genes [33]. Other genes not commonly associated with dyslipidaemia and present in 

this list (Table 3.17) are, for example, HDLBP, PLIN1, RORA, or INSIG2. Still, most of the 

candidate genes are related to lipoproteins receptors and ligands, apolipoproteins, and lipases.   

 

3.3. Development of a shiny app for hosting the new lipid knowledge base 

Considering the potential utility for the scientific community of the new lipid knowledge base, 

this was hosted by a new freely available website that was developed using the R shiny 

application (see methods). This shiny app will allow the user to visualise and interact with the 

data present in the knowledge base, and it can be found using the following link: 

https://shiny.campus.ciencias.ulisboa.pt/rnasysbio/MylipidgenesKB/. The main aim of this 

knowledge base is to offer access to a universe of target genes involved in central pathways of 

lipid and lipoprotein metabolism, and that may contribute to unravel the biological context of 

dyslipidaemia and improve the integration of lipid knowledge. This new website allows the 

user to directly access other public available databases that contained additional information 

regarding any of these genes, including pathways databases (Wikipathways and Reactome), 

GeneCards for diverse information, HUGO gene nomenclature committee (HGNC) database 

for checking multiple ID systems, and PubMed for allowing to find the most important literature 

and recently published articles. Considering the interaction offered by this shiny app, the user 

can visualise gene expression profiles among target genes (maximum of 20 genes at the same 

time for comparison); download lipid specific lists of GO terms for BP and MF domains but 

also other non-lipid associated GO terms that are representative of target genes, with GO terms 

grouped according to their gene ontology hierarchical relations and accessible links for 

QuickGO database; visualise gene interactions among networks of target genes that can be 

selected according to associated GWAS traits. In addition, there is the possibility to search for 

any gene in the homepage (Figure 3.15) to check the information available for that gene in the 

knowledge base. The following examples help to understand the utility of this knowledge base 

as an online resource for the scientific community. 

https://shiny.campus.ciencias.ulisboa.pt/rnasysbio/MylipidgenesKB/
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Figure 3.15. Homepage of MylipidgenesKB showing a search toolbar for genes and a lateral menu (left panel). 

 

3.3.1. Example A: Retrieve metabolic, transcriptomic, phenotypic, and functional 

information for LIPA gene  

In this example, the aim is to get an overview of the gene LIPA regarding metabolic pathways 

where it is involved, gene expression level in lipid-related tissues, associated GWAS traits and 

GO terms, considering the biological context of the knowledge base. Thus, the user will be able 

to look for potential gene expression, phenotypic/disease, and functional patterns, while 

comparing LIPA with other lipid-related genes. For this, the first step is to search for LIPA in 

the homepage and get a quick summary of the available information for this gene. As shown in 

Figure 3.16, LIPA has a moderate-to-high expression in both tissues of interest and 

transcriptome, it presents associations to selected GWAS traits and to lipid-specific GO terms 

of both GO domains, which makes LIPA a core gene. The designation “core” was only used in 

the shiny app “MylipidgenesKB” as an alternative name for candidate genes. 

 

Figure 3.16. Search output for LIPA in MylipidgenesKB homepage showing a summary table with the available information 

in this knowledge base. 

 

By opening the link available in the column “Core gene” (Figure 3.16), the user may access a 

gene interactions network of all core genes, including LIPA. This network also comprises other 

target genes (not core) and genes absent from target list (connected genes) that have associations 

with any of the core genes. As shown in Figure 3.17, the user can manually select any gene in 

the network, for example LIPA, and access a table showing additional information regarding 
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the selected gene (table panel “node”). When more than one gene is selected (Figure 3.18), this 

table also shows information regarding the interactions among selected genes (table panel 

“edge”). The information present in both table panels can be downloaded, considering selected 

genes and interactions. 

 

Figure 3.17. Core genes network with manually selected genes in yellow, including LIPA, and selected gene interactions in 

red. For selected genes, additional information is shown in the table panel “node” in the lower side of the figure. Score is higher 

as the number of interactions with core genes increases, which corresponds to a higher node size. The network is not fully 

shown in this figure. Unselected genes are present in different colours as follows: core genes (orange), target genes (green), 

connected genes (purple).  

 

Considering Figure 3.17, two out of the four selected genes are core genes, LIPA and INSIG2, 

which present a higher score than LRPAP1 (target gene) and OLR1 (connected gene). This 

means that the two core genes have a higher number of interactions in this network in 

comparison to the other selected genes. 
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Figure 3.18. Core genes network showing table panel “edge” in the lower side of the figure. In the table, “data_type” 

corresponds to the nature of gene interaction (i.e., co-expression, physical interactions, pathway, genetic interactions), and 

“networks” presents published networks that GeneMANIA uses for establishing the gene interactions of the core network. The 

value of “normalized_max_weight” represents the strength of each interaction, with a higher weight corresponding to a stronger 

interaction between genes and a higher edge width. Selected genes in yellow, including LIPA, and selected gene interactions 

in red. The network is not fully shown in this figure. Unselected genes are present in different colours as follows: core genes 

(orange), target genes (green), connected genes (purple). 

 

As present in Figure 3.18, all the selected gene interactions were based on co-expression 

profiles and the strongest of the three is between OLR1 and LIPA, followed by OLR1 – INSIG2 

and LRPAP1 – LIPA interactions. 

Then, by searching for “LIPA” in the target gene list, the user can access gene full name, 

associated metabolic pathways (with link to Wikipathways or Reactome), and external links for 

other databases that may offer additional information (Figure 3.19). The full target genes list 

can be downloaded as a .csv file. 
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Figure 3.19. Target genes list filtered by searching “LIPA” in the whole table. The correspondent row to the LIPA gene is in 

green contour.   

 

MylipidgenesKB allows the user to compare gene expression profiles of a maximum of 20 

genes at the same time, for tissues of interest and transcriptome. In this example, LIPA 

expression is compared with two genes previously considered in the analysis of the core genes 

network – OLR1 and INSIG2 (Figure 3.20), which are also part of the target gene list.  

 

Figure 3.20. Comparison of gene expression pattern of LIPA and two interacting genes in the core network – OLR1 and INSIG2. 

In the left panel, the user can select the tissue (among liver, small intestine, and transcriptome) and genes from the target list. 

The selected data can be downloaded as a .csv file. In the right panel, a heatmap shows the pattern of gene expression across 

the selected tissues and genes, where different colours correspond to different expression categories. The icons present above 

the heatmap correspond to the following from left to right: download plot as .png file, zoom, pan, zoom in, zoom out, autoscale, 

reset axes, toggle spike lines, show closest data on hover (selected), compare data on hover, and produced with plotly.  
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As shown in Figure 3.20, LIPA and INSIG2 have a similar gene expression pattern in tissues of 

interest, and this is also similar to transcriptome estimated expression. Conversely, OLR1 

presents an expression level in tissues of interest lower than in transcriptome, and even lower 

in comparison to LIPA and INSIG2 levels.  

In the “GWAS” section, the user can start by checking the network for all trait frequencies in 

the subsection “by trait number”, to find how many and which GWAS traits are associated with 

LIPA (Figure 3.21).  

 

Figure 3.21. Gene interactions network comprising genes with associated GWAS traits (GWAS genes) and other interacting 

genes (target and connected genes), and having LIPA manually selected (yellow). GWAS genes are coloured according to the 

number of associated traits as follows: 1 trait (light blue), 2 traits (dark blue), 3 traits (light green), 4 traits (dark green), 5 traits 

(light red), 6 traits (dark red). Target and connected genes are shown in brown and grey, respectively. In this figure, the selected 

network comprises all GWAS genes independently of the number of associated traits. The table panel “node” presents 

additional information for LIPA (downside of figure). 

 

According to Figure 3.21, LIPA is associated with one GWAS trait – coronary artery disease. 

Next, the user can check the network of “1 trait GWAS genes” to observe the connections 

between LIPA and other genes with only one associated trait, looking which trait is associated 

to these genes and comparing score values (table panel “node”) and strength of gene interactions 

(table panel “edge”). In addition, at the subsection “by trait”, the user can look at the network 
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of all genes associated with coronary artery disease that includes LIPA, and check interactions 

between genes that are associated with the same trait. 

Considering functional information, LIPA can be searched within parent GO terms tables for 

both GO domains available in MylipidgenesKB – BP (Figure 3.22) and MF (Figure 3.23). LIPA 

is only present in lipid-specific tables and no “other GO terms” are available for this gene.  

 

Figure 3.22. Lipid-specific GO terms associated with LIPA for BP domain. Adding a comma after “LIPA” in the search field 

avoids a mismatch between “LIPA” and “lipase”. GO id opens a link for QuickGO database, GO term name opens a separate 

window with a table of child terms. Search output table can be copied, downloaded as a .csv file or printed. The column “Child 

terms genes” corresponds to the number of genes associated with all child terms of each parent term. 

 

 

Figure 3.23. Lipid-specific GO terms associated with LIPA for MF domain. Adding a comma after “LIPA” in the search field 

avoids a mismatch between “LIPA” and “lipase”. GO id opens a link for QuickGO database, GO term name opens a separate 

window with a table of child terms. Search output table can be copied, downloaded as a .csv file or printed. The column “Child 

terms genes” corresponds to the number of genes associated with all child terms of each parent term. 
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For each GO domain, there is a parent GO term associated with LIPA, namely “lipid metabolic 

process” (BP) and “lipase activity” (MF).  

 

3.3.2. Example B: Retrieve target genes related to a lipid parameter  

In this example, the user aims to identify the target genes related to TG metabolism and explore 

potential patterns of gene expression, associated GO terms and phenotypic/disease traits of 

these genes. TG are a commonly measured lipid parameter with a central role in lipid 

metabolism and dyslipidaemia biological background. Given the fact that the search field in the 

homepage only accepts gene symbols, the user should start by searching “triglyceride” in the 

gene list table and check which target genes are related to triglycerides metabolism (Figure 

3.24). 

 

Figure 3.24. Target genes list filtered by searching “triglyceride” in the whole table. The pointed line shows that only some of 

the rows are represented.   

 

Considering the target genes found to be involved in triglycerides metabolism, the user can 

search these genes at homepage to get a quick summary of the available information and 

compare gene expression patterns in the “tissue expression” section. In addition, following what 

was done for example A, TG related genes can be found in the network comprising all GWAS 

genes (Figure 3.21). In the other subsection (“by trait”), the user can select the GWAS network 

of hypertriglyceridaemia (Figure 3.25), which is composed of genes associated with high levels 

of TG and their interacting genes.  
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Figure 3.25. Gene interactions network for hypertriglyceridaemia. In the network menu (upper left corner), users can choose 

among the networks related to each GWAS trait. Layout menu (upper left corner) offers different options for network 

visualisation. GWAS genes are present in red, target genes in green, and connected genes in blue. 

 

In all tables of the section “Gene Ontology”, the user can search for “triglyceride” or TG related 

genes previously identified in the target gene list. In some cases, no search results are found in 

parent GO terms tables, but it does not mean that there are no child GO terms associated with 

TG levels or TG related genes. Each parent term has a link in the term name that opens a new 

window with a table that includes all child terms selected for that parent term. As the tables of 

parent terms, the tables with child terms allow users to search all their content and download, 

print and/or copy the terms that result from that search, and also present links in the “GO id” 

column for QuickGO database. 

The new lipid knowledge base developed in this project is the result of an integrative analysis 

of diverse publicly available data, including gene expression, associated phenotypic/disease 

traits and functional terms, based on the exploration of lipid metabolic pathways that were 

selected considering previous knowledge and the results of machine-learning analysis applied 

on a known dyslipidaemic dataset. The definition of a universe of lipid-related genes, taking 
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into account the selected metabolic pathways, allowed the establishment of molecular 

interactions relevant for the dyslipidaemic context and future genetic studies. Therefore, this 

knowledge base may be useful to identify additional biomarkers and genes of interest, for a 

better discrimination between dyslipidaemic patients, while contributing to the improvement of 

lipid knowledge integration.  
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Chapter 4 
Discussion and final remarks 
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1. Training of classification models that improve distinction between 

FH+ and FH- individuals  

Given the high risk for severe CVD at an early age and the benefits of early therapeutic 

intervention, the identification of children carrying monogenic FH variants is of extreme 

importance. Biochemical identification of dyslipidaemic subjects in clinical practice usually 

relies on the analysis of serum levels for total cholesterol, HDL-C, TG, LDL-C and eventually 

apoA-I and apoB [51], [62]. Although these biochemical markers allow for a relatively sensitive 

screening of individuals at risk for CVD, including FH candidates, their specificity in 

distinguishing monogenic individuals is very low [145]. In addition, recent studies show that 

many children do not comply with multiple parameters of clinical diagnostic criteria, including 

the presence of family history of hypercholesterolaemia/CVD or LDL-C levels above the 

defined cut-offs [51], [61]. Screening for genetic variants was therefore recommended as 

standard of care for patients with definite or probable FH by an international Expert Consensus 

Panel [61]. However, the diagnostic yield of these screening programs is low [146], ranging 

between 20% to 80% [147], as a high number of suspected patients suffer from a polygenic 

condition [61]. Thus, the development of robust approaches that can contribute to increase this 

yield is critical to support a widespread use of FH genetic testing, with a considerable reduction 

of the resulting burden on health systems. 

In this thesis, ML-based methods were applied to perform a thorough analysis of the extended 

lipid profiles of the PFHS-ped dataset. This approach was adopted taking into account the 

hypothesis that using an extended lipid profile would confer an additional layer of information, 

supporting a more accurate identification of FH+ subjects, leading to the identification of novel 

clinically relevant biomarkers. Multiple “training” sets comprising different combinations of 

biochemical parameters were used to train classification models to distinguish FH+ and FH- 

individuals, followed by an assessment of performance on independent “testing” sets. For 

comparison purposes, similar models using only TC and LDL-C were trained. Predictions of 

FH+ and FH- status for the same group of patients were performed using the two best models, 

SB models and standard SB criteria cut-offs (Table 3.4). Results show that modelling can 

considerably improve the specific identification of FH+ individuals and the PPV, with a limited 

impact on the high sensitivity afforded by SB cut-off criteria. Furthermore, the inclusion of 

extended lipid parameters contributes to an improved patient identification.  

The best ranking model Imp_B uses apoB/apoA-I and TG/apoB ratios, in addition to LDL-C 

levels, to generate predictions with the highest sensitivity values. Of note, LDL-C levels used 

in this study were directly determined and thus their accuracy is not affected by TG levels. The 
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current guidelines for dyslipidaemia already recommend the determination of LDL-C, TG and 

apoB in all dyslipidaemic individuals [62]. Like the TC/HDL-C, the apoB/apoA-I ratio has been 

linked to cardiovascular risk [148]. Indeed, a previous study identified the apoB/apoA-I ratio 

as a potential biomarker for FH [35]. The TG/apoB ratio was selected both in the first and 

second ranked models, the later delivering the highest specificity and PPV. This model further 

includes two “Basic” biochemical parameters (TC and TC/HDL-C) and LDL1 from Lipoprint 

analysis (see methods). Of note, LDL1 is the most commonly selected biochemical parameter 

across all top 10 models, suggesting it holds relevant information for the specific identification 

of FH+ individuals.  

All the selected parameters make sense in the frame of the current understanding of lipid 

metabolism and the biology behind hypercholesterolaemia, while providing new insights and 

hypotheses into underlying metabolic differences in FH+ and FH- dyslipidaemic cases. Thus, 

whereas the altered blood lipid parameters of FH+ individuals can be explained by the well-

established impairment of LDL internalisation in the liver, our results suggest that 

dyslipidaemia in FH- individuals predominantly involves an imbalance of TG-related 

pathways. This can either be due to environmental causes like a high dietary TG intake, or to a 

polygenic background affecting a distinct group of genes. Although the polygenic basis of 

hypercholesterolaemia in FH- individuals has been widely suggested [35], [62], [67], [149], 

most studies focus on the involvement of the same pathways affected in FH+ individuals [36], 

[68], [150]. Our results further suggest that altered HL-dependent lipolysis of IDL and LDL 

particles is a relevant phenomenon in FH, leading to a change in the relative proportions of the 

different LDL subfractions, which in turn may have an impact on disease severity. Indeed, 

several studies have associated altered HL activity or expression, namely in association to 

genetic polymorphisms, to more severe FH phenotypes [151], [152]. 

Overall, the obtained results suggest that modelling, together with the inclusion of novel lipid 

parameters, can support an improved classification of FH+ and FH- individuals, with a 

significant impact on the yield of genetic screening programs and corresponding costs. The top 

models can already be used by clinicians to obtain more precise estimates of the likelihood that 

their patients are FH+ in comparison to SB criteria. The PPVs and NPVs described in Table 3.4 

should be taken into consideration when interpreting results. All the required information for 

their application is provided in GitHub (see link in results). The availability of larger patient 

datasets will be crucial to identify which of the new, non-standard parameters used by the 

trained models will be worth incorporating into clinical practice, as well as for investigating if 

the proposed metabolic differences are observed in other populations. 
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2. Identification of different dyslipidaemic profiles among individuals 

by a hierarchical clustering analysis 

Similar to the results obtained with the training of classification models through the application 

of a ML-based approach, the performed clustering analysis revealed the considerable potential 

of novel methodologies, namely associated to data science, towards the identification of new 

biomarkers for clinical purposes. Indeed, the applied clustering approach was able to identify 

different lipid profiles among individuals beyond what was provided by the FH+/FH- 

classification. For every subset, clustering analysis revealed the presence of a third group of 

patients, with each of the three clusters presenting a distinct pattern regarding the prevalence of 

FH+ and FH- individuals. Then, it was possible to verify that in every subset, in addition to a 

cluster mainly constituted by FH+ patients and another cluster mostly composed by FH- 

individuals, there was a third cluster with a considerable number of both FH+ and FH- 

individuals, corresponding to a mixed population. Still, the differences among clusters were 

better defined in the “All” subset, thus emphasising the importance of using an extended lipid 

profile to improve the distinction between individuals. 

Concerning cluster description through the analysis of the quantitative variables that most 

contribute for each cluster profile and for the cluster partition in three distinct groups, this 

allowed the identification of pathways of interest in the context of lipid metabolism. Hence, 

evidence suggests an important role of LDL/apoB pathway and TG metabolism as main 

contributors for the lipid profiles of the predominant FH+ and the predominant FH- clusters, 

respectively. The association of these pathways to each group of individuals (FH+ and FH-) 

was already established in a previous study analysing PFHS dataset [35]. The potential 

contribution of perturbed TG metabolism to the dyslipidaemic profile of FH- individuals was 

previously discussed in the section of modelling analysis on chapter 3 and 4. Of note, the 

considerable presence of parameters associated to LDL subfractions (result of the VLDL – IDL 

– LDL delipidation cascade) among the variables that best described the predominant FH+ 

cluster, which highlights once again the importance of an extended lipid profile to acquire a 

better distinction of individuals.   

The description of clusters by categorical variables gave us additional information, allowing 

the identification of molecular, biochemical, and anthropomorphic patterns among clusters, 

including suggestions for a better understanding of the distribution of individuals within the 

mixed cluster, where no clear pattern was detected so far. Accordingly, the pattern identified in 

the predominant FH- cluster was associated with a significant presence of girls suffering from 

obesity with lower TC and LDL-C levels, in comparison to FH+ patients, with no fulfilment of 
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the cut-offs from SB criteria. In contrast, individuals of the predominant FH+ cluster presented 

higher levels of TC and LDL-C, with fulfilment of SB cut-offs, and LDLR pathogenic variants 

showing up to 20% of molecular activity in the affected allele. The polygenic LDL-C score was 

higher once we moved in the direction of the predominant FH- cluster. These evidences suggest 

a considerable contribution of polygenic and lifestyle factors for the development of 

dyslipidaemia in FH- individuals, as hypothesised by other studies [35], [36], [67]. The use of 

BMI class as supplementary variable emphasises the information given by BMI, which was one 

of the quantitative variables that presented a significant contribution to cluster partition. Given 

the fact that BMI class was based on WHO percentiles dependent of age and sex, it takes into 

consideration the different phases of development during childhood and adolescence. 

Regarding gender, we should take into account that despite its association with the predominant 

FH- cluster, this variable did not present a significant association with the cluster partition. 

Future studies using a bigger sample than PFHS-ped and enrolling also normolipidaemic 

individuals, aiming for a better representation of the general population, would be essential to 

validate gender as a discriminant factor of lipid levels. In relation to the mixed cluster, these 

individuals appeared to constitute a mixed phenotype, since their profile is milder than those 

from the predominant FH+ cluster but more severe than those from the predominant FH- 

cluster. Indeed, taking the dendrogram as reference, the degree of dyslipidaemia severity 

(mainly regarding levels of TC and LDL-C and results of the molecular study) appeared to be 

gradually increased from right to left, while the polygenic contribution appeared to be gradually 

increased from left to right. 

Although Lipoprint assay allow us to acquire useful information regarding LDL subfractions, 

we should remember that it is a semiquantitative method and that the obtained measurements 

may not be as accurate as those achieved using quantitative methods (e.g., photometric test used 

for measuring parameters of “Advanced” profile) [16]. Indeed, FH+ patients present higher 

sdLDL concentrations when using a “daytona” assay (RX daytona+® analyser), in comparison 

to FH- individuals, which is expected regarding the role of sdLDL as pro-atherogenic particles 

within the context of FH. Conversely, Lipoprint results regarding the predominance of profile 

A among FH+ population and profile B within the predominant FH- cluster can be explained 

by an altered HL activity in FH+ patients (as already mentioned in this chapter) that results in 

higher prevalence of LDL1/LDL2 subfractions, and/or higher influence of lifestyle (e.g., TG-

rich diets) and polygenic factors in FH- individuals [142], [149], [152], [153]. Of note, although 

FH- subjects present lower TC and LDL-C levels in comparison to FH+ patients, they are not 

normolipidaemic and usually tend to present borderline values of TC and LDL-C when they 
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fail to fulfil the cut-offs of SB criteria. This can be explained by a likely presence of a polygenic 

form of dyslipidaemia, resulting from the cumulative burden of several SNPs able to raise LDL-

C levels [36], [67].  

Further, the identification of the most specific and representative individuals of each cluster 

helped to reveal different dyslipidaemic profiles beyond the FH+/FH- classification. The 

predominant FH+ cluster was mainly characterised by FH+ individuals with TC and LDL-C 

levels above the SB cut-offs, LDLR pathogenic variants associated to a degree of molecular 

activity less or equal to 20% in the affected allele, moderate polygenic score and normal BMI. 

In contrast, the predominant FH- cluster was mainly characterised by FH- individuals with TC 

and LDL-C levels above the SB cut-offs, high polygenic score and obesity. Regarding the 

mixed cluster, the pattern found suggests a mixed phenotype with characteristics of both FH+ 

and FH- profiles. Despite the low number of individuals involved in this analysis (i.e., five 

individuals that best characterise each cluster), these findings are in agreement with the results 

previously discussed in this section.  

The characterization of clusters regarding the contribution of each dimension used for HCPC 

analysis highlighted the influence of different lipid patterns in individual distribution. PC1 and 

PC2, considered the most informative components, were associated with the previous findings 

regarding the connection of LDL/apoB pathway and TG metabolism with predominant FH+ 

and FH- clusters, respectively. Although with a smaller level of contribution, PC4 revealed a 

strong association with the predominant FH- cluster, while their main contributors were 

parameters related to LDL subfractions and others like BMI and TG/apoB. The association 

between this cluster and delipidation cascade might be explained by the predominance of a 

Lipoprint profile B in FH- individuals, as formerly discussed in this section. In addition, the 

association of these individuals with parameters as BMI and TG/apoB emphasises the potential 

impact of a perturbed TG metabolism and lifestyle in development of their dyslipidaemia. 

Concerning the mixed cluster, there was a negative association with PC2, PC3 and PC4, as well 

as the occurrence of lower values comparatively to other clusters of the parameters that most 

contribute to this cluster. These findings might be explained by the presence of some FH+ 

individuals that decrease the levels of parameters associated to TG and reverse cholesterol 

pathways, while the simultaneous presence of a considerable number of FH- individuals 

decreases the levels of parameters involved in LDL/apoB pathway.  

The application of the Imp_B model in the “All” subset allowed us to acquire the probability 

of each individual belonging to FH+ and FH- class. The consequent identification of borderline 

individuals, with higher prevalence among the mixed cluster, support the hypothesis that this 
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cluster represents a mixed phenotype of dyslipidaemia. Accordingly, the mixed cluster presents 

a milder lipid profile in comparison to the individuals of the predominant FH+ individuals, but 

a more severe lipid profile in relation to individuals of the predominant FH- cluster. Further, 

evidence may suggest that the FH+ individuals of the mixed cluster have a milder profile than 

the FH+ individuals at their left side of the dendrogram, while the FH- individuals of the mixed 

individuals present a more severe profile rather than FH- subjects present at their right.  

In summary, the hierarchical clustering analysis allowed the identification of biochemical, 

molecular, and anthropomorphic patterns among individuals, beyond their classification as FH+ 

and FH-, which contributed to the identification of potential biomarkers and pathways of 

interest within lipid metabolism. In this way, these findings might help at improving the 

distinction between individuals and contribute to the understanding of dyslipidaemic 

mechanisms beyond the lipid profile of FH- individuals.  

 

3. Creation of a new lipid knowledge base directed to dyslipidaemia 

Considering the literature review and the potential biomarkers previously identified during 

modelling and clustering analysis, an oriented search for metabolic pathways of interest allowed 

to establish a target list of genes. Accordingly, this search resulted in the selection of 14 

metabolic pathways whose genes were compiled in a single list – known as target genes. Some 

of the previously identified biomarkers are well known players in lipid metabolism, and most 

specifically in FH, including TC and LDL-C [10]. Other biomarkers that revealed to have an 

important contribution to distinguish FH+ and FH- individuals were TG, TG/apoB, 

apoB/apoA1, TC/HDL-C, HDL-C, IDL, VLDL-C and LDL-C subfractions (mainly LDL1). 

This recognizes the important role of VLDL-IDL-LDL delipidation cascade and the different 

pathways involved in lipoprotein metabolism to understand the biological context under 

dyslipidaemic states. Also, TG metabolism was revealed to be vital for a better distinction 

between dyslipidaemias. Indeed, high TG levels are mostly linked to FH- individuals and fat-

rich diets, being a frequent trace of polygenic dyslipidaemia profiles [35], [67], [149]. The 

relevance of these biomarkers was highlighted by their association to some of the biological 

patterns identified on target genes, considering the additional layers of information collected 

for the target list and that was integrated in a new lipid knowledge base – MylipidgenesKB. 

This additional information included associated metabolic pathways, gene expression profiles 

for tissues of interest, associated GWAS traits and GO terms (for BP and MF domains). 

Considering the nine selected GWAS traits associated to target genes, some of them correspond 
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to the previously identified biomarkers including TC, LDL-C, VLDL-C, HDL-C, TG (through 

“hypertriglyceridaemia”, which means high TG levels), and IDL. Regarding the lipid-specific 

GO terms associated with target genes, some of them are related to biomarkers like lipoprotein 

species (VLDL, LDL, HDL), TC (through “cholesterol” single designation), and TG.  

In addition, a detailed analysis of the associated information collected for target genes allowed 

to identify a special group among these genes, known as candidate genes, which presented 

association with at least one of the selected GWAS traits and to lipid-specific GO terms of both 

BP and MF domains. These candidate genes might shed further light in the distinction between 

FH+ and FH- individuals, given the fact that they are potential new targets for molecular 

studies, including future GWAS. The majority of candidate genes are well-known players in 

lipid metabolism and/or dyslipidaemia, including the coding genes for apolipoproteins, lipases, 

and proteins associated with lipid receptors and transport [9].  

The new lipid knowledge base provides easy access to a specific list of genes known to be 

involved in several lipid metabolic pathways and/or with a potentially important role in 

dyslipidaemia metabolic context, as well as it promotes an integrative analysis of distinct layers 

of information by presenting gene expression data and metabolic, phenotypic, and functional 

information in a single place. Thus, MylipidgenesKB contributes to the improvement of the 

lipid metabolism knowledge base and represents a useful resource for the scientific community. 

 

4. Final remarks 

The application of machine-learning methods, in opposition to a traditional approach based on 

pairwise statistical tests, contributes for an improved selection of biomarkers and thus for a 

better distinction among dyslipidaemic individuals. This is well represented by the higher 

performance of SB models in comparison to the established SB cut-offs, using the same 

biochemical parameters (TC and LDL-C) in the same universe of individuals. Another 

important contribution for the identification of potential FH biomarkers was the use of an 

extended lipid profile, combining biochemical parameters commonly used for the clinical 

diagnosis of FH with other parameters not routinely prescribed by physicians and mostly 

reserved to research centres. Together, the alternative approach of data analysis and the 

extended lipid profile made possible two of the three major contributions of this project. The 

first corresponds to the set of 10 models able to classify FH individuals with higher specificity 

than currently used clinical criteria while conserving good sensitivity values. The second major 

contribution was achieved by the hierarchical clustering analysis that revealed a third group of 
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patients, composed of both FH+ and FH- individuals, yet representing a complex biological 

background that did not allow a clear characterization of these individuals. Afterwards, the 

results achieved by modelling and clustering analysis allowed the identification of a group of 

potential biomarkers, which contributed to establish a list of target genes, which represented 

the initial step to build the MylipidgenesKB – a lipid knowledge base comprising curated 

information collected from several public databases and that represent the third major 

contribution of this project. 

In conclusion, the work developed in this project can potentially contribute to a better selection 

of individuals submitted to FH genetic testing, which is essential to improve the diagnostic 

yield. Additionally, MylipidgenesKB represents a useful starting resource for anyone interested 

in exploring the lipid metabolic pathways and looking for expression, phenotypic and functional 

patterns among target genes, in the context of lipid metabolism and dyslipidaemia. 
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Annex 1| PFHS-ped dataset  

The full PFHS-ped dataset composed by 211 individuals and presenting all the biochemical parameters 

that correspond to the extended lipid profile (including ratios), gender, age, BMI, class (FH+/FH-), and 

the affected gene in FH+ individuals. This file can be accessed in the following repository: 

https://github.com/GamaPintoLab/MartaCorreia-PhD-thesis.git.  

  

https://github.com/GamaPintoLab/MartaCorreia-PhD-thesis.git
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Annex 2| Mean of biochemical parameters by subset and individuals class 

Table A2.1. Mean value of each biochemical parameter by subset, for FH+ individuals. Grey cells correspond to 

the absence of that parameter in the given subset. sdLDL.Day and sdLDL.Lipo were measured by different 

techniques, using RX daytona+® analyser and Lipoprint® assay, respectively. 

                 Subsets 

 

Parameters 

All Basic Advanced Lipoprint 
Basic & 

Advanced 

Basic & 

Lipoprint 

Advanced & 

Lipoprint 

TC 271.32 274.87   270.37 274.47  

LDL-C 203.25 205.66   202.32 205.50  

HDL-C 49.96 51.72   50.42 50.66  

TG 72.86 74.73   71.11 74.09  

Lp(a) 45.21 40.32   43.01 41.94  

ApoB 129.61 129.24   130.63 130.19  

ApoA-I 133.18 135.35   133.47 135.09  

ApoB/ApoA-I 1.01 0.99   1.02 1.00  

TG/ApoB 0.57 0.59   0.56 0.58  

TC/HDL-C 5.74 5.68   5.69 5.75  

ApoA-II 27.54  26.55  26.55  27.54 

ApoC-II 3.10  2.94  2.94  3.10 

ApoC-III 6.95  6.66  6.66  6.95 

ApoE 3.81  3.69  3.69  3.81 

sdLDL.Day 41.47  38.44  38.44  41.47 

ApoC-II/ApoC-III 0.43  0.43  0.43  0.43 

sdLDL/LDL-C 0.20  0.19  0.19  0.20 

VLDL 34.39   34.47  34.47 34.39 

MIDA 26.46   27.88  27.88 26.46 

MIDB 19.71   20.16  20.16 19.71 

MIDC 29.18   28.91  28.91 29.18 

LDL1 65.07   66.59  66.59 65.07 

LDL2 31.96   32.00  32.00 31.96 

HDL.Lipo 53.14   53.69  53.69 53.14 

sdLDL.Lipo 5.43   5.63  5.63 5.43 

IDL 75.36   76.94  76.94 75.36 

VLDL/IDL 0.47   0.46  0.46 0.47 

VLDL/LDL-C 0.17   0.17  0.17 0.17 
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Table A2.2. Mean value of each biochemical parameter by subset, for FH- individuals. Grey cells correspond to 

the absence of that parameter in the given subset. sdLDL.Day and sdLDL.Lipo were measured by different 

techniques, using RX daytona+® analyser and Lipoprint® assay, respectively. 

                Subsets 

 

Parameters 

All Basic Advanced Lipoprint 
Basic & 

Advanced 

Basic & 

Lipoprint 

Advanced & 

Lipoprint 

TC 230.46 228.49   232.36 232.02  

LDL-C 152.96 150.87   155.19 154.86  

HDL-C 60.56 60.11   60.36 59.73  

TG 96.66 93.64   92.78 97.94  

Lp(a) 45.74 54.89   48.93 49.84  

ApoB 96.96 99.33   99.27 98.63  

ApoA-I 164.08 156.69   161.93 162.25  

ApoB/ApoA-I 0.61 0.65   0.64 0.63  

TG/ApoB 1.00 0.95   0.94 0.98  

TC/HDL-C 4.02 3.99   4.06 4.08  

ApoA-II 31.37  30.44  30.44  31.37 

ApoC-II 4.52  4.34  4.34  4.52 

ApoC-III 9.09  8.82  8.82  9.09 

ApoE 3.45  3.37  3.37  3.45 

sdLDL.Day 30.97  30.52  30.52  30.97 

ApoC-II/ApoC-III 0.51  0.50  0.50  0.51 

sdLDL/LDL-C 0.20  0.19  0.19  0.20 

VLDL 29.80   30.86  30.86 29.80 

MIDA 22.52   23.62  23.62 22.52 

MIDB 16.36   17.38  17.38 16.36 

MIDC 21.28   21.97  21.97 21.28 

LDL1 48.04   47.63  47.63 48.04 

LDL2 26.16   24.86  24.86 26.16 

HDL.Lipo 57.60   56.94  56.94 57.60 

sdLDL.Lipo 7.46   7.67  7.67 7.46 

IDL 60.16   62.97  62.97 60.16 

VLDL/IDL 0.51   0.51  0.51 0.51 

VLDL/LDL-C 0.20   0.20  0.20 0.20 
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Annex 3| Full list of the 67 trained classification models 

All the trained models, including pilot models, and their performance in the distinction of FH+/FH- 

individuals. The column titles with green colour fill highlight the statistics used for model ranking. 

Model names comprise a combination of method and subset designations following the code above: 

filtering for highly correlated parameters (c of “cor”), selecting only the top parameters of those selected 

by RFE method (t of “top”), naming the subset used for training the model (A of “All”, B of “Basic”, 

Ad of “Advanced”, L of “Lipoprint”, BAd of “Basic & Advanced”, BL of “Basic & Lipoprint”, AdL of 

“Advanced & Lipoprint”). N: number of individuals; Np: number of parameters; Acc: accuracy; k: 

Cohen’s kappa coefficient; Sens: sensitivity; Spec: specificity; TP: number of true positives; FN: 

number of false negatives; FP: number of false positives; TN: number of true negatives; AUC: area 

under the ROC curve.  

This file can be accessed in the following repository: https://github.com/GamaPintoLab/MartaCorreia-

PhD-thesis.git.  

  

https://github.com/GamaPintoLab/MartaCorreia-PhD-thesis.git
https://github.com/GamaPintoLab/MartaCorreia-PhD-thesis.git
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Annex 4| Distribution of the parameters whose difference in the mean was statistically 

significant at least for one cluster in comparison to the overall mean in the “All” subset   

Figure A4. Distribution of parameters by clusters, with an asterisk showing the clusters whose mean was 

significantly different from the overall mean, under a confidence level of 95%. Parameters were grouped according 

to the mean trend among clusters, as present in the panel label. Clusters are identified according to the cluster 

label. 
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Annex 5| Categorical variables associated with the PFHS-ped dataset  

The full set of categorical variables available for the “All” subset, which is composed by 78 out of the 

total 211 individuals from the PFHS-ped dataset. These variables were used as supplementary variables 

in HCPC analysis and include class (FH+/FH-), gender, SB criteria (yes/no for the fulfilment of TC and 

LDL-C cut-offs from Simon Broome criteria), BMI class, Lipoprotein profile, activity class (according 

to the percentage of molecular activity that remains in the affected allele), gene (affected gene), and 

LDL-C score (according to the LDL-C polygenic risk score). This file can be accessed in the following 

repository: https://github.com/GamaPintoLab/MartaCorreia-PhD-thesis.git.  

 

Annex 6| Class probabilities predicted by Imp_B model 

The probability of being classified as FH+ and FH- according to the predictions of Imp_B model, for 

all the individuals of “All” subset that comprise the work population for cluster characterization. 

Individuals are listed by the order of appearance in the dendrogram, which means from the predominant 

FH+ cluster to the predominant FH- cluster. Class and cluster assignments are also present. prob_FH+: 

probability of being FH+, prob_FH-: probability of being FH-, Δprob: the difference between prob_FH+ 

and prob_FH-, Δprob_cat: categories of Δprob regarding the ambiguity of classification (clear, 

reasonable, ambiguous, very ambiguous), Class_pred: predicted classification by Imp_B model, 

Class_obs: observed classification according to the results of molecular studies. 

This file can be accessed in the following repository: https://github.com/GamaPintoLab/MartaCorreia-

PhD-thesis.git.  

 

Annex 7| List of target genes and associated information 

The full list of the 466 target genes with Ensembl ID, gene symbol and full name according to the HGNC 

database. Gene associated information comprises metabolic pathways, expression profiles for tissues of 

interest and transcriptome, GWAS traits, and presence or absence of associated lipid-specific GO terms. 

Exp: (gene) expression, SI: small intestine, Trans: transcriptome, NF: not found (association to any of 

the selected traits), CAD: coronary artery disease, HTG: hypertriglyceridaemia, CVD: cardiovascular 

disease, BP: biological process, MF: molecular function.  

This file can be accessed in the following repository: https://github.com/GamaPintoLab/MartaCorreia-

PhD-thesis.git.  

 

 

 

https://github.com/GamaPintoLab/MartaCorreia-PhD-thesis.git
https://github.com/GamaPintoLab/MartaCorreia-PhD-thesis.git
https://github.com/GamaPintoLab/MartaCorreia-PhD-thesis.git
https://github.com/GamaPintoLab/MartaCorreia-PhD-thesis.git
https://github.com/GamaPintoLab/MartaCorreia-PhD-thesis.git
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Annex 8| Full list of lipid-specific GO terms  

Lipid-specific GO terms that were selected as the most representative of target genes, for both GO 

domains (BP and MF). The terms are grouped according to their hierarchical relations as parent and 

child terms. Ng: number of associated target genes. This file can be accessed in the following repository: 

https://github.com/GamaPintoLab/MartaCorreia-PhD-thesis.git.  

 

Annex 9| Full list of other GO terms  

Other GO terms selected as representative of target genes and that are not related to lipid metabolism. 

There is a list for each GO domain (BP and MF) and the terms are grouped according to their hierarchical 

relations as parent and child terms. Ng: number of associated target genes. This file can be accessed in 

the following repository: https://github.com/GamaPintoLab/MartaCorreia-PhD-thesis.git.  

 

https://github.com/GamaPintoLab/MartaCorreia-PhD-thesis.git
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