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LENGKUNG DAN PERMUKAAN SPLIN-B KUBIK BERPARAMETER

EKSPONEN

ABSTRAK

Penggunaan fungsi interpolasi splin-B kepada lengkung dan permukaan telah

dibangunkan untuk pelbagai kegunaan. Salah satu sebab ialah kerana tahap keselanjar-

an dan kelicinan yang lebih tinggi. Splin-B am adalah sejenis lengkung penghampiran

dan bentuknya ditentukan oleh titik kawalan. Untuk menginterpolasi titik data, pelba-

gai kaedah telah dilakukan oleh penyelidik terdahulu yang mengkaji pemparameteran

Splin-B. Dalam tesis ini, kami membangunkan kaedah baru untuk menginterpolasi

lengkung Splin-B kubik dengan menggunakan terbitan pertama dan kedua pada titik

akhir dan hanya terbitan pertama di titik dalaman. Kaedah yang dicadangkan ini me-

rupakan lanjutan teknik interpolasi Splin-B yang menggunakan terbitan sembarangan

di titik akhir. Dalam menghasilkan kaedah interpolasi lengkung Splin-B, suatu algo-

ritma untuk menginterpolasi titik data telah dibangunkan. Algoritma tersebut mengira

nilai-nilai simpulan untuk kaedah pemparameteran. Nilai-nilai simpulan ini digunakan

untuk membina matriks fungsi asas Splin-B dan terbitan fungsi asas tersebut. Kemu-

dian, kami menyelesaikannya bagi mandapatkan titik kawalan dengan menggunakan

kaedah penguraian LU, supaya lengkung akan melalui titik data yang diberikan. Pe-

milihan teknik pemparameteran yang betul adalah penting dalam proses pembinaan

semula lengkung dan permukaan. Kaedah pemparameteran yang digunakan dalam ka-

jian ini adalah kaedah pemparameteran eksponen dengan α = 0.8. Kelebihan utama

kaedah interpolasi lengkung Splin-B ialah kita boleh menjana pelbagai bentuk leng-

kung dengan menetapkan arah yang berbeza pada semua titik data. Kemudian, kami

mengaplikasikan kaedah yang dicadangkan ini dalam pembinaan semula lengkung pa-

xii



da peta jalan raya daripada titik data dan arah pemanduan yang diberikan dan juga un-

tuk perancangan laluan bagi kenderaan berautonomi yang diberi lokasi permulaan dan

lokasi matlamat. Tesis ini juga melihat isu pembinaan semula permukaan yang berlaku

dalam pelbagai aplikasi. Jadi kami mengembangkan kaedah interpolasi untuk membi-

na permukaan daripada garis kontur menggunakan permukaan tergaris Splin-B. Kami

mengimplimentasikan permukaan tergaris Splin-B untuk membina semula model ti-

ga dimensi muka bumi berdasarkan titik data yang diperolehi daripada garis kontur

dua dimensi. Pertama, lengkung interpolasi ruangan dijana dari garis kontur dengan

menggunakan lengkung Splin-B yang telah diparameterkan. Kemudian, permukaan

dibina dengan menggunakan permukaan tergaris Splin-B. Dalam proses pembinaan

semula, beberapa isu seperti lubang kunci dan percabangan mungkin timbul. Oleh itu,

kami mencadangkan satu kaedah yang mengendalikan objek yang bercabang dengan

membina tampalan dwilinear. Kami juga menyelesaikan masalah lubang kunci dengan

mengekalkan keadaan vektor simpulan yang sama pada permukaan Splin-B. Keputus-

an juga telah ditunjukkan bagi model dengan percabangan dan tanpa percabangan dan

dibandingkan dengan kaedah sedia ada.
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EXPONENTIAL PARAMETERIZED CUBIC B-SPLINE CURVES AND

SURFACES

ABSTRACT

The use of B-spline interpolation function for curves and surfaces has been de-

veloped for many reasons. One reason is the higher degree of continuity and smooth-

ness. A general B-Spline is a polynomial curve and its shape is determined by the

control points. To interpolate data points, various works have been done by previous

researchers who studies B-Spline parameterization. In this thesis, we develop a new

way for interpolating cubic B-Spline curve by taking the first and the second derivative

at endpoints and only the first derivative at inner points. The proposed method is the

extension in the B-spline interpolation technique of using arbitrary derivatives at end

points. In developing B-spline curve interpolation method, an algorithm is presented

for interpolating data points. The algorithm computes knot values for parameteriza-

tion methods. These knot values are used in constructing a matrix of B-Spline basis

function and derivative of the basis function. Then, we solve it for control points by

using the LU decomposition method, such that the curve will pass through the given

data points. Selection of proper parametrization technique is critical for curve and

surface reconstruction process. The parametrization method used in this study is an

exponential parameterization method with α = 0.8. The main advantage of develop-

ing B-spline curve interpolation method is that we can generate different shapes of

curves by setting different direction at all data points. As an application, we applied

the proposed method in curve reconstruction on a road map from given data points

and driving directions, and also for path planning in autonomous vehicle with given

starting and goal position. The thesis also look into the issue of surface reconstruction

xiv



that occurs in a broad variety of applications. So we extend the interpolation method

to construct surfaces from contour line using B-spline ruled surfaces. We implement

B-spline ruled surfaces to reconstruct three-dimensional terrain models based on the

data points obtained from two-dimensional contour lines. Firstly, spatial interpolated

curves are generated from contour lines by using parameterized B-spline curve. Then

surfaces are constructed by using B-spline ruled surface. In the reconstruction pro-

cess, some issues such as keyholes and branching may arises. Therefore, we propose

a method which handles the branching object by constructing a bilinear patch. We

also solve keyholes issues by retaining the same knot vector condition on B-spline

ruled surface. Results are also demonstrated for models with branching and without

branching and compared to the existing method.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Throughout the most recent two decades the area of computer graphics has truly

developed with achievement in all directions; the advent of devoted 3D hardware, com-

puter generated liveliness and faster PCs, to name a few important occurrence. Using

computer graphics enables real life modelling to be demonstrated in a computer model.

A computer model makes the work a lot simpler, more efficient and progressively suc-

cessful. The computer model is visualized at the start as a wire-frame model and then

manipulated and rendered at the end. What’s more, computer model animation can be

introduced to bring computer model close to the original model. There are numerous

applications being assisted by computer graphics in engineering, scientific visualiza-

tion, image processing, design and entertainment (Foley et al., 1994).

One of the research development areas focuses on displaying smooth curves

and surfaces that are appropriate for modelling interesting landscape, faces and other

topologies. Here emerge the use of parametric curve such as Bezier, and specifically

the B-spline curves. B-spline curves are comprised of an arbitrary number of control

points and data points, that provide a rule of approximating and interpolating for the as-

sessed curves. The approximation and interpolation can be modified to suit its need in

various distinct ways; weighted control points, knot vector, different parameterization

methods, varying the curve degree and so on.
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In realistic 3D models such as virtual reality and computer-aided design (CAD)

require the advanced computer graphics methods, which involves geometric modelling

of curves and surfaces, differential geometry and many more. The reverse engineer-

ing process is an emerging CAD application in the manufacturing industry that uses

B-spline interpolated and approximated surface patch. The interpolation and approx-

imation is achieved by constructing parameter values using the information of given

control points or data points.

One may inquire as to why parametric representation of curves and surfaces

have a versatile representation. A couple of valid justification for this: automatic reso-

lution, flexible design, easy to modify dimension in parametric programmed etc. The

point of interest are various and will be thoroughly investigated.

1.2 Literature Review

B-spline method on curves and surfaces were initially proposed in 1940s but

were only seriously developed in the 1970s by some researchers, especially Richard

Riesenfeld (1973) as an improvement over Bezier curve to overcome some disadvan-

tages such as continuity, global control and degree dependency on the number of con-

trol points. Riesenfeld (1973) resulted an attempt to create splines that contained local

support. Since B-spline has local control property, it is possible to alter the shape of

a specific curve section without influencing the whole curve. In other words, a local

curve segment is built by a distinct set of variables that differ in other segments which

practically means that if a Pi control point is replaced with a new P
′
i control point, then

new B-spline curve varies only by a few neighbouring points from the orignal curve.

2



This provide more control over the shape of B-spline curves (Rogers, 2000). Note that

it does not means that the curve stay unchanged except its neighbourhood if a point Pi

is moved to a new position P
′
i .

B-spline is a piecewise polynomial approach of curve fitting and is a linear

combination of B-spline basis functions which are also piecewise polynomials with

specific smoothness conditions. It has been commonly used owing to its maximum

smoothness such as C1 or C2 that a piecewise method can have. Due to its property

of smoothness and localness, B-Spline curve is a well known method in Computer

Aided Geometric Design(CAGD) and other related fields. A recursive formula of B-

spline basis function of any order was founded by De Boor (1972). B-spline was also

extended to non-uniform rational B-spline (NURBS) at first by Versprille and James

(1975) and later by Tiller (1983) and Piegl and Tiller (1987). It can interpolate and

approximate infinite number of data points based on the parameterization (Hollig and

Horner, 2013; Prautzsch et al., 2013; Salomon, 2007).

In many CAGD applications, parameterization on data points is one of the

fundamental step and the choice of parameter values is very important for parame-

terization (Bartels et al., 1995; Farin, 2014). Previous researchers have used various

parameterization methods such as uniform (De Boor, 2001), centripetal, exponential

(Lee, 1989), chord-length (Lü, 2009), and the modified form of these methods such as

universal (Lim, 1999), hybrid (Shamsuddin and Ahmed, 2004), Foley-Nielson (Foley

and Nielson, 1989) and based on exponential proposed by Haron et al. (2012). Every

proposed parameterization method may produce different curve and has its own char-

acteristics when interpolating data points. Several basic concepts related to geometric
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modeling are summarized by Piegl and Tiller (2012), Cohen et al. (2001) and Bar-

tels et al. (1995). Interpolation on data points by B-spline parameterization is better

compared to Bezier spline especially for large number of data points, because degree

of B-spline curve did not depends on the number of data point but the Bezier curve

have the contrary characteristic (Andersson and Kvernes, 2003). Recently, path gen-

erating and smoothing guidance algorithm for autonomous vehicle have been studied

in literature (Cheng, 2011; Katrakazas et al., 2015; Labakhua et al., 2008; Ma et al.,

2012; Villagra et al., 2012; Yang and Sukkarieh, 2010). Most of the methods based on

trigonometric spline interpolation, cubic spline interpolation, Bezier curve approxima-

tion and combination of circle, straight lines and clothoids (Dyllong and Visioli, 2003;

Funke and Gerdes, 2016; Pérez et al., 2013).

The complexity of many geometric operations greatly depends on the method

of representation. Some information related to most commonly method of represent-

ing implicit surfaces (Akenine-Moller et al., 2018; De Araujo et al., 2015; Guo et al.,

2010; Ilic and Fua, 2005) and parametric B-spline and NURBS (Bhattarai et al., 2017;

Cashman et al., 2009; Hu et al., 2001; Lim and Haron, 2014; Zhang, 2018) also take

into account. The parametric form is more natural for designing and representing

shape in the computer as compared to implicit (Brigger et al., 2000). The construction

of surface using parameterized B-spline and radial basis function from scattered data

points is discussed by Jie et al. (2016). However, different techniques on surface recon-

struction from 2D contour have been addressed in the past but some complexities are

common like continuity, planarity, rapid changing, multifurcation, and keyholes (Mey-

ers et al., 1992). Keyholes actually cause a problem with triangulation process which

is due to the irregulation placement of point on contour line (Sunderland et al., 015c)
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and surface continuity can be achieved by applying contour interpolation method such

as performing Hermite interpolation along the gradient paths (Hormann et al., 2003).

For branching object, fast reconstruction method (Shin and Jung, 2004) is im-

plemented to generate original geometry by connecting the vertices with edges be-

tween two consecutive slices. Straight skeleton method is used to create faces on key

contour by linking the key contour lines in GIS map for generating 3D terrain (Salva-

tore and Guitton, 2004; Sugihara and Murase, 2017; Zhu et al., 2003). Tensor product

of B-spline interpolation can also be used as a modern acquisition technique for recon-

struction of surfaces (Vaitkus and Várady, 2018). As a parametric function B-spline

possess considerable geometric significance for constructing a ruled surface, such con-

structions are fundamental to many CAD systems (Jha, 2008; Lin et al., 2004). One

basic problem in the study of the parametric curve is to approximate a curve with lower

degree curve segment(Amirfakhrian, 2016). However, some geometric features such

as singular point cannot be preserved.

1.3 Objectives

The aim of the thesis is to study and explain the concept, use and implementa-

tion of B-spline curves and surfaces thoroughly. This is mainly achieved primarily by

the study, but is also practically assisted by the advanced software by showing some

results. This study discusses the two main approaches.

The first objective is to develop B-spline interpolation method with direction

at all points by developing knot vector generated algorithm. The developing method

is also an extension of interpolation with arbitrary end derivative method by Piegl and
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Tiller (2000a) and interpolation on directional constrains on few data points method

by Piegl et al. (2008). The proposed method produce different shapes of curves, that is

useful for curve reconstruction on a road path defined by coordinates and its direction.

It can also be useful in application such as path planning as the direction is defined by

data points.

For the second objective, we reconstruct smooth surface by using parametrized

B-spline curve interpolation to recreate contour lines and then by using B-spline ruled

surface, we construct surfaces on each contour. The issues related to branching object

is also discussed, and the results are also demonstrated.

1.4 Structure of Thesis

The present study seeks to improve curve interpolation and surface reconstruc-

tion technique by developing proposed method based on exponential parameterized

B-spline. The study starts with background of B-spline curve and B-spline curve inter-

polation and an exhaustive explanation of B-spline curve interpolation with different

parameterization method in Chapter 2. In Chapter 3 the development of proposed

method on the base of knot vector generated algorithm and its application on road map

interpolation are discussed. The comparison of proposed results with Bezier and gen-

eral B-spline curve are also discussed. In Chapter 4 detailed reconstruction process

of surfaces with B-spline ruled surfaces for simple and branching models are demon-

strated, and the comparison with few previous method is also given by showing some

results. Finally, conclusion and future works is presented in Chapter 5.
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CHAPTER 2

B-SPLINE CURVE INTERPOLATION

In this chapter, we will present background study related to B-spline curve in-

terpolation. Let us first define the B-spline curve. B-Spline is an approximating curve

in general and its shape is determined by the control points but it also has paramet-

ric nature. To interpolate data points, various works have been done by the previ-

ous researchers in parameterization of B-Spline interpolation. However, our research

demonstrates that knot vector choice is no less essential than parameterization. Note

that the knot vector plays a significant part in the following definitions. There are sev-

eral distinct techniques for defining B-splines but recursion method is used for defining

B splines in this study.

2.1 Definitions

2.1.1 B-spline Basis

The B-spline basis function of degree d (order d+1), defined by the knot vector

T = {T0 = ...= Td,Td+1, ...Tn,Tn+1 = ...= Tn+d+1} , with associated normalized B-

splines basis Ni,d of degree d (order d +1) are defined recursively as follows:

Ni,0(t) =


1 if t ∈ [Ti,Ti+1)

0 otherwise

Ni,d(t) =
t−Ti

Ti+d− ti
Ni,d−1(t)+

Ti+d+1− t
Ti+d+1−Ti+1

Ni+1,d−1(t) (2.1)
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for i = 0, ..,n and d ≥ 1.

In Figure 2.1, some examples of B-spline basis of different orders are shown.

Based on B-splines basis, one could generate a B-spline curve as shown in Figure 2.2.

2.1.2 B-spline curve

The B-spline curve of degree d (order d + 1) with given control points Pi ∈

Rm,m = 2,3, 0 6 i 6 n, parameter values t0, t1, ..., tn and knot vector T, then a B-spline

curve of degree d is defined by

B(t) =
n

∑
i=0

Pi Ni,d(t) (2.2)

where Ni,d(t) is a normalized B-Spline Basis function with degree d.

2.1.3 B-spline curve interpolation

If the list of data points Qi ∈Rm,m = 2,3. i∈ [0,n] are given, then the B-Spline

curve interpolation of degree d is to find

• The knot vector T = (T0 = ...= Td, ...,Tn,Tn+1 = ...= Tn+d+1)

• The parametric values ti, for each Qi, i ∈ [0,n] and

• The control points Pi such that the resulting B-Spline curve

B(t) =
n

∑
i=0

Ni,p(t)Pi (2.3)

has the property B(ti) = Qi, i ∈ [0,n].
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(a) Order 1

(b) Order 2

(c) Order 3

(d) Order 4

Figure 2.1: Normalized B-spline Basis
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Figure 2.2: B-spline curve and its control points

2.2 Computation of B-spline curve interpolation

The computation of B-Spline curve interpolation is indicated as follows. A

B-Spline curve of degree d defined in Equation (2.2) with control points Pi and nor-

malized B-Spline Basis function Ni,d(t) define over the knots T and a set of data points

Qi, i = 0, ...,n, (2.4)

is given. Then the curve B(t) is needed to pass through these points i.e. the curve

assumes these points at certain parameter values ti, such that

B(ti) =
n

∑
i=0

Ni,d(ti)Pi i = 0, ...,n. (2.5)

For curve interpolation, the parameter values t0, t1, ..., tn, knot vector T and the control

points P0,P1, ...,Pn must be computed.

The best curve fitting depends on the parameter values and the parameter values

are obtained by different parameterization methods. First, we write the general formula

10



for finding the parameter values by (Lee, 1989)

t0 = 0

tn = 1

tk =
1
L

k

∑
i=1

(|Qi−Qi−1|)α

(2.6)

where

L =
n

∑
i=1

(|Qi−Qi−1|)α

For different values of α , this general formula represents the different parameterization

method such that

• if α = 0, it is called uniform parameterization,

• if α = 0.5, it is called centripetal parameterization,

• if α = 1, it is called chord length parameterization.

After the parameters are computed, the next step is to find the knot vector. Knot values

are found by using knot averaging method suggested by De Boor (2001)

Tj+d =
1
d

j+d−1

∑
i= j

ti j = 1, · · ··,n−d (2.7)

and the end knots are set to 0 and 1 respectively,

T0 = · · ·= Td = 0 , Tn+1 = · · ·= Tn+d+1 = 1

Once we have made the parameterization, the following equation is solved to find the
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control points

P0 N0,d(ti)+P1 N1,d(ti)+ · · · · ·+Pn Nn,d(ti) = Qi i ∈ [0,n]. (2.8)

In matrix form, the equation becomes

AP=Q, (2.9)

where

A =



N0,d(t0) N1,d(t0) · · · Nn,d(t0)

N0,d(t1) N1,d(t1) · · · Nn,d(t1)

...
... . . . ...

N0,d(tn) N1,d(tn) · · · Nn,d(tn)


P = (P0,P1, ...,Pn)

T and Q = (Q0,Q1, ...,Qn)
T

By solving the system of equations, we obtain the control points. Then by

substituting these control points we can produce a curve that exactly passes through

each of the data point. The quality of interpolating the curve depends on the selection

of parametric values ti for the given points Qi.

2.3 Selection of parameterization method

The quality of an interpolating curve B(t) is strongly dependent on selecting

parametric values for specified information points. There are different parameteriza-

tion methods, but for comparison purposes, we are taking into account the three main

methods such as uniform, centripetal and chord length. The further detail related to ad-

12



vantages and disadvantages of these method is discussed in Haron et al. (2012). In our

study all work is done by exponential parameterization method. Because this method

is the generalization of all other three methods with characterization of freely select-

ing the curve and give good result with better curvature profile as discussed in Section

2.3.1.

2.3.1 Results and discussion

We select three sets of data points for experimental work as shown in Table

2.1. Data Set 1 and 2 are taken from the previous study (Piegl and Tiller, 2000b;

Yuksel et al., 2011), while Data Set 3 is a generated point data set and these three sets

of data points has different features. For example, In Data Set 1 there is no collinear

points and no two consecutive points so this is one type of simple data set. The Data

Set 2 has two successive and wide distance between two data points while the Data Set

3 is a combination of the characteristics of two prior data sets.

The results of 4 parameterization methods and their curvature profile over Data

Set 1, Data Set 2 and Data Set 3 are shown in Figure 2.3, 2.4 and 2.5 respectively.

The interpolated curves are getting by using Equation (2.8), while curvature profile’s

are getting by using curvature formula given in Equation 2.10. If a curve is defined in

a parameteric form over the parameter t by the equations x = x(t),y = y(t), then the

curvature of a parametrically defined curve is expressed by the formula

κ(t) =
x′(t)y′′(t)− y′(t)x′′(t)
[(x′(t))2 +(y′(t))2]3/2 (2.10)

where primes refer to derivatives with respect to t.
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In Figure 2.3, uniform parameterization method has an inflection point at near

the top of the curve and all other methods has the same results. But in curvature profile,

our observation based on Table 2.2 is that the exponential method has better curvature

profile as compared to uniform, centripetal and chord length parameterization methods.

Table 2.1: Data points used for comparison of different parameterization methods

Data Set 1
i x y
1 0.58072 2.08688
2 3.50755 2.05734
3 5.36585 3.24051
4 7.64228 6.74273
5 9.40767 7.79716
6 11.1963 7.94949
7 13.9837 6.73456
8 15.0859 4.83752
9 16.7247 2.71041
10 19.2799 2.03701

Data Set 2
1 1.83761 1.33271
2 0.72649 2.65040
3 4.82906 7.40482
4 5.12821 7.15185
5 8.41880 1.62069
6 8.84615 2.08095
7 9.44444 6.46124

Data Set 3
1 32 14
2 34 10
3 36 9
4 38 12
5 38.2 11.7
6 42 14
7 44 12
8 46 13
9 48 7
10 50 6
11 52 10
12 54 10
13 56 10
14 58 10
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(a) Uniform
(b) Curvature profile for (a)

(c) Centripetal
(d) Curvature profile for (c)

(e) Chord length
(f) Curvature profile for (e)

(g) Exponential
(h) Curvature profile for (g)

Figure 2.3: Curve interpolation of Data Set 1 with different parameterization methods
and their curvature profiles
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(a) Uniform
(b) Curvature profile for (a)

(c) Centripetal
(d) Curvature profile for (c)

(e) Chord length (f) Curvature profile for (e)

(g) Exponential
(h) Curvature profile for (g)

Figure 2.4: Curve interpolation of Data Set 2 with different parameterization methods
and their curvature profiles
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(a) Uniform
(b) Curvature profile for (a)

(c) Centripetal
(d) Curvature profile for (c)

(e) Chord length
(f) Curvature profile for (e)

(g) Exponential
(h) Curvature profile for (g)

Figure 2.5: Curve interpolation of Data Set 3 with different parameterization methods
and their curvature profiles
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Table 2.2: Maximum and minimum curvature values for 3 sets of data points

Methods
Data set 1 Data set 2 Data set 3

Maximum
curvature

Minimum
curvature

Maximum
curvature

Minimum
curvature

Maximum
curvature

Minimum
curvature

Uniform 0.3011 -0.4768 2.9879 -0.0660 3.89513 -0.9941

Centripetal 0.2741 -0.4531 2.67163 -4.033 1.9724 -11.6952

Chord
length

0.2560 -0.4262 0.8829 -0.4652 2.26896 -1.91046

Exponential 0.2466 -0.4371 1.5657 -1.5045 1.4948 -1.5353

In Figure 2.4, uniform parameterization method produce small loop with high

curvature profile and the chord length method has bulky result as compared to cen-

tripetal and exponential parameterization methods. In comparison to the curvature

profile based on Table 2.2 over the Data Set 2, exponential method show better Maxi-

mum and Minimum curvature values as compared to centripetal and uniform, but chord

length method show much better curvature values as compared to exponential.

Similarly in Figure 2.5, the chord length method showed a twisty result at the

beginning of the curve and the centripetal method has few bulky result on the curve.

But in comparison to the curvature profile, exponential method have better Maximum

and Minimum curvature values as compared to other which is clearly seen through the

Table 2.2.

Our main focus in comparison the curve interpolation of all parameterization

methods is at curvature profile along with the good curve that do not have any loop,

twist and bulk. So we can easily seen that with three different sets of data points, the

exponential curves shown good result along with better curvature profile as compared

to other parameterization methods as shown in Table 2.2. So, base on these experi-
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mental results, we will use exponential parameterization method with α = 0.8 for this

study.

2.4 Summary

B-spline is one of the most frequently used curve and surface method in CAGD.

This is due to its property of locality and smoothness. It also have simple manipula-

tion for parametric representation which is preferred in literature. parameterization is

quite important in B-spline curve interpolation because it greatly affects the quality of

curves. In this chapter, we have discussed four parameterization methods for curve in-

terpolation and constructed various interpolated cubic B-spline curves along with their

curvature profile. After discussing all curves with geometric aspect and comparison

through their curvature profiles, we select exponential parameterization method with

(α = 0.8) for further implementation of B-spline in proposed method. In B-spline

interpolation, parameter values are much important along with the knot vector for gen-

erating curves with efficient computation of interpolation. The next chapter will extend

the existing study and focus on the interpolation of data points with directional con-

strains at all points and some application on road map interpolation, path planning are

also discussed in detail.
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CHAPTER 3

B-SPLINE CURVE INTERPOLATION BY PROPOSED METHOD

There has been a lot of discussion on parameterization for interpolation (Ep-

stein, 1976; Foley and Nielson, 1989; Lee, 1989) and every author claims that his

method is the one to be used in the design practice. Practical experience shown that

parameterization depends on the data and that none of the method is quite acceptable

when used in isolation from the unknown, e.g knots. Since parameter are also required

to reflect the flow of points, and the interpolation technique must be generalized with

no derivatives. The parameters are selected according to the parameterization methods

described in Section 2.3. This means that the existence of directional limitation should

not affect the flow of points considerably.

3.1 B-Spline curve interpolation with arbitrary end and inner points derivative

For a smoother B-Spline curve (Piegl and Tiller, 2000a) used derivative up to

d − 1 at end points. If end derivative is not given, one can estimate the derivative

proposed by Piegl and Tiller (2000a). In some applications such as path planning, we

may have the information of direction with respect to the data points Qi. Therefore,

we propose a method of taking the derivative at all data points and cubic B-Spline

curve (degree d = 3) is used for this study. Recall Equation (2.2), the jth derivative of

Equation (2.2) is given as

B( j) (t) =
n

∑
i=0

N( j)
i,d (t)Pi (3.1)
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where

N( j)
i,d (t) = d(

N( j−1)
i,d−1 (t)

ti+d− ti
−

N( j−1)
i+1,d−1(t)

ti+d+1− ti+1
).

As discussed in Section 2.2, we must compute the parameters, knots and control points

for the curve interpolation. The parameter values are computed in the same way as in

the case of general B-spline curve interpolation using Equation (2.6). So, our next step

is to find the values of knot vector. Algorithm 1 is constructed for finding the knot

values in the knot vector

T = {T0 = ...= Td,Td+1,Td+2, ...,Tn−1,Tn,Tn+1 =, ...,= Tn+d+1} (3.2)

Algorithm 1: Algorithm for finding knot vector
Input: Qi: Data points
ti: Parameters , i = 0, ...,n
n: number of data points
d = 3: Degree of curve
Output: Ti, i = 0, ...,2n+d +4
Initialisation
k = 2n+3
for i = 0 to d

Ti = ti
TK+i+1 = tn

end
Do

for i = 1 to n
T2i+2 = (ti−1 + ti)/2

for i = 1 to n−1
T2i+3 = (ti−1 + ti + ti+1)/3

end
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However, we need one more knot value which we can find by taking average of

any two consecutive knot values from Td+1 to Tk−1 and the placement of this Tnew knot

value is selected arbitrarily. For example, if we want Tnew in between Tk−2 and Tk−1.

then, we will take the average of Tk−2,Tk−1 as Tnew = (Tk−2 +Tk−1)/2. After finding

this new value, we merge it in Equation (3.2) to become

T = {T0 = ...= Td,Td+1, ...,Tk−2,Tnew,Tk−1,Tk,Tk+1 =, ...,= Tk+d+1} (3.3)

So Equation (3.3) is the final knot vector. The last step is to find the control points.

The system of equation can be setup in many ways, but for numerical stability, we

compute the system of equation in (3.4) where D1
0 and D2

0 represent the first and second

derivative values at parameter t0, D1
1 represent the first derivative value at parameter t1

and so on. Similarly, D1
n and D2

n represent the first and second derivative values at

parameter tn. A relation between B-splines of consecutive degrees in a stable and

efficient fashion is discussed in Cox (1972).

By solving the system of equations in (3.4), we find the values of control points.

For solving this system, we also need all derivative values. As the shape of curve de-

pends on derivative values along with parameter values, changing the values of deriva-

tive yield different shapes of curves. So, the user can choose different choices of

derivative values according to his needs (Piegl and Tiller, 2012).
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

N0,d(t0) N1,d(t0) · · · Nm,d(t0)

N(1)
0,d (t0) N(1)

1,d (t0) · · · N(1)
m,d(t0)

N(2)
0,d (t0) N(2)

1,d (t0) · · · N(2)
m,d(t0)

N0,d(t1) N1,d(t1) · · · Nm,d(t1)

N(1)
0,d (t1) N(1)

1,d (t1) · · · N(1)
m,d(t1)

...
... . . . ...

N0,d(tn−2) N1,d(tn−2) · · · Nm,d(tn−2)

N(1)
0,d (tn−2) N(1)

1,d (tn−2) · · · N(1)
m,d(tn−2)

N(1)
0,d (tn−1) N(1)

1,d (tn−1) · · · N(1)
m,d(tn−1)

N0,d(tn−1) N1,d(tn−1) · · · Nm,d(tn−1)

N(2)
0,d (tn) N(2)

1,d (tn) · · · N(2)
m,d(tn)

N(1)
0,d (tn) N(1)

1,d (tn) · · · N(1)
m,d(tn)

N0,d(tn) N1,d(tn) · · · Nm,d(tn)





P0

P1

...

Pm−1

Pm



=



Q0

D1
0

D2
0

Q1

D1
1

...

Qn−2

D1
n−2

D1
n−1

Qn−1

D2
n

D1
n

Qn



(3.4)

3.2 Experimental results and discussion

In this section, we present data points, results and analysis with previous re-

search related to B-Spline curve interpolation. We are using three sets of data points as

shown in Table 3.1. Data Set 1 and Data Set 3 are generated data sets. These two data

sets are simple. Data set 2 is taken from (Haron et al., 2012) which is a type of linear

data set. There are 5 data points in Data Set 1 and 3, 8 data point for Data Set 2.

Parameters and knot distribution of three set of data points are presented in

Figure 3.1, 3.4 and 3.7. The red circle represent the knots and the blue circle represent
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the parameters. The parameter values are obtained with exponential parameterization

method by using Equation (2.6) and the knots in Figure 3.1(a), 3.4(a) and 3.7(a) are ob-

tained by knot averaging method suggested by De Boor (2001) while in Figure 3.1(b),

3.4(b) and 3.7(b) are obtained by using Algorithm 1.

Table 3.1: Data points used for generating results by the proposed method

Data set 1

i x y

1 1.4 2.8

2 3.8 5.4

3 6.2 6.1

4 7.2 4.2

5 11.0 3.3

Data set 2

1 0 9

2 0 5

3 0 3

4 0 1

5 1 0

6 3 0

7 5 0

8 9 0

Data set 3

1 1 2

2 2 1

3 3 3

4 4 1

5 5 2

In many figures we are using the word general method, which means that the

result obtained by Exponential B-spline parameterization method at α = 0.8. In pre-

vious study, the researcher used the method of knot insertion but in this case in Figure
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