
Why and How  
to Extract Conditional 
Statements From 
Natural Language 
Requirements

Inaugural-Dissertation zur Erlangung des Doktorgrades 
der Mathematisch-Naturwissenschaftlichen Fakultät 
der Universität zu Köln

vorgelegt von Jannik Fischbach aus Marburg

Köln, 2022



Berichterstatter (Gutachter):

1. Prof. Dr. Andreas Vogelsang, Universität zu Köln

2. Prof. Dr. Michael Felderer, Universität Innsbruck

3. Prof. Dr. Walid Maalej, Universität Hamburg

Tag der mündlichen Prüfung: 14.09.2022



Abstract

Functional requirements often describe system behavior by relating events to each other,
e.g. “If the system detects an error (e1), an error message shall be shown (e2)”. Such
conditionals consist of two parts: the antecedent (see e1) and the consequent (e2), which
convey strong, semantic information about the intended behavior of a system. Automat-
ically extracting conditionals from texts enables several analytical disciplines and is al-
ready used for information retrieval and question answering. We found that automated
conditional extraction can also provide added value to Requirements Engineering (RE)
by facilitating the automatic derivation of acceptance tests from requirements. However,
the potential of extracting conditionals has not yet been leveraged for RE. We are con-
vinced that this has two principal reasons:
1 The extent, form, and complexity of conditional statements in RE artifacts is not

well understood. We do not know how conditionals are formulated and logically
interpreted by RE practitioners. This hinders the development of suitable approaches
for extracting conditionals from RE artifacts.

2 Existing methods fail to extract conditionals from Unrestricted Natural Language
(NL) in fine-grained form. That is, they do not consider the combinatorics between
antecedents and consequents. They also do not allow to split them into more fine-
granular text fragments (e.g., variable and condition), rendering the extracted condi-
tionals unsuitable for RE downstream tasks such as test case derivation.

This thesis contributes to both areas. In Part I, we present empirical results on the
prevalence and logical interpretation of conditionals in RE artifacts. We found that
conditionals in requirements mainly occur in explicit, marked form and may include
up to three antecedents and two consequents. Hence, the extraction approach needs to
understand conjunctions, disjunctions, and negations to fully capture the relation between
antecedents and consequents. We also found that conditionals are a source of ambiguity
and there is not just one way to interpret them formally. This affects any automated
analysis that builds upon formalized requirements (e.g., inconsistency checking) and may
also influence guidelines for writing requirements.

Part II presents our tool-supported approach CiRA capable of detecting conditionals
in NL requirements and extracting them in fine-grained form. For the detection, CiRA
uses syntactically enriched BERT embeddings combined with a softmax classifier and
outperforms existing methods (macro-F1: 82 %). Our experiments show that a sigmoid
classifier built on RoBERTa embeddings is best suited to extract conditionals in fine-
grained form (macro-F1: 86 %). CiRA is available at http://www.cira.bth.se/demo/.

In Part III, we highlight how the extraction of conditionals from requirements can
help to create acceptance tests automatically. First, we motivate this use case in an
empirical study and demonstrate that the lack of adequate acceptance tests is one of
the major problems in agile testing. Second, we show how extracted conditionals can be
mapped to a Cause-Effect-Graph from which test cases can be derived automatically. We
demonstrate the feasibility of our approach in a case study with three industry partners.
In our study, out of 578 manually created test cases, 71.8 % can be generated automatically.
Furthermore, our approach discovered 80 relevant test cases that were missed in manual
test case design. At the end of this thesis, the reader will have an understanding of
(1) the notion of conditionals in RE artifacts, (2) how to extract them in fine-grained
form, and (3) the added value that the extraction of conditionals can provide to RE.
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Chapter 1

Introduction

This thesis focuses on conditionals in requirements artifacts and highlights why and
how Requirements Engineering (RE) can benefit from the automated extraction of
conditionals. In this chapter, we introduce conditional statements (short: conditionals)
as the central topic of this thesis (see Section 1.1). We motivate why RE researchers
and practitioners should deal with automated conditional extraction by outlining two
use cases (see Section 1.2). In Section 1.3, we discuss the problems of implementing
automated conditional extraction for these two use cases and formulate the problem
statement of this thesis. Section 1.4 summarizes the major contributions of this thesis.
Finally, we give an overview of the structure of the thesis in Section 1.5.

1.1 Subject of Interest: Conditionals in Natural Language

Conditional statements (e.g., “If A and B, then C”) are an integral part of everyday dis-
course because they allow us to express conditions and their consequences. A conditional
statement is a grammatical structure consisting of two parts: an adverbial clause, often
referred to as the antecedent, and a main clause, also known as the consequent [14]. The
semantics of conditional statements has been intensively discussed in the last decades and
has received notable attention in studies of various disciplines, e.g., in psychology [15],
linguistics [16, 17, 18], and philosophy [19]. These studies demonstrate that conditionals
are a complex linguistic pattern that can occur in a variety of forms (e.g., explicit/implicit
conditionals, marked/unmarked conditionals). For example, the Conditional 1.1 (see be-
low) is marked since the cue phrases “if ” and “then” indicate the dependence between
the antecedent and the consequent. The same relation can also be expressed as an un-
marked conditional: “A and B occur. C evaluates to true.” This conditional is semanti-
cally identical to its marked form, but it spans across two sentences and does not con-
tain a cue phrase that signals the relationship of the antecedent and consequent. Both
the Conditional 1.1 and Conditional 1.2 are explicit. Specifically, they contain information
about the antecedent as well as the consequent. The Conditional 1.3 (see below) is implicit,
because the consequent that C evaluates to true is not explicitly stated. Rather, the in-
teraction of the antecedent and consequent is encoded in the predicate (i.e., “leads to”
implies that A and B are the trigger for C to occur).

If A and B occur
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

antecedent

, then C evaluates to true
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

consequent

. (Cond. 1.1: marked and explicit)

A and B occur
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

antecedent

. C evaluates to true
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

consequent

. (Cond. 1.2: unmarked and explicit)

The occurrence of A and B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

antecedent

leads to C®
consequent

. (Cond. 1.3: marked and implicit)
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Conditionals do not only occur in different forms but can also be associated with dif-
ferent semantic meanings. The views on the notion of conditionals differ greatly among
researchers, and no consensus has emerged so far. However, all researchers unanimously
agree that, in general, the antecedent describes the circumstances under which the con-
sequent occurs. Hence, the Conditional 1.4 (see below) specifies that the detection of an
error (event1) is the condition for showing an error message (event2). In other words, if
event1 evaluates to true, then event2 is also set to true.

If the system detects an error
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

antecedent

, an error message is shown
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

consequent

. (Cond. 1.4: marked and explicit)

Conditional statements thus contain logical knowledge about the dependency between cer-
tain events. Automatically extracting this embedded knowledge enables several analytical
disciplines and is already used for Question Answering [20], Event Prediction [21, 22, 23],
Emergency Management [24], Medical Text Mining [25, 26, 27], and Information Re-
trieval [28]. For example, Doan et al. [29] extracts conditionals from Twitter messages
to identify factors causing stress, insomnia, and headache. Radinsky et al. [30] propose
an approach capable of identifying conditionals in news articles to predict future events
that can be caused by certain events.

As a result of the rich body of research on conditional extraction, it has become evident
that conditional extraction can provide added value in many use cases. Interestingly, the
potential of extracting conditionals from texts has not yet been leveraged for RE although
conditionals are prevalent in requirements artifacts. In fact, we found that conditionals
are often used in both traditional and agile requirements such as acceptance criteria to
capture the intended behavior of a system [1, 4]. This thesis addresses this research gap
and sheds light on why and especially how the extraction of conditionals can support RE.

1.2 Motivating Use Cases in the Context of Automated RE

RE represents a central step in the software engineering process and deals with the
elicitation, analysis, documentation, validation, and management of requirements [31]. A
requirement can be understood as “(1) a need perceived by a stakeholder, (2) a capability
or property that a system shall have, or (3) a documented representation of a need,
capability, or property” [32]. We refer with a requirements artifact or RE artifact to
the documented representation of a requirement. Several studies [33, 34] found that
poor execution of RE activities increases the risk of building a system that ultimately
does not meet the demands of the stakeholders. Driven by this observation, multiple
methods [35, 36, 37, 38, 39] have been developed to support RE practitioners during
their activities. In fact, we have witnessed an increasing trend in the RE community to
build tools for the (semi-)automation of RE tasks in recent years [40]. The demand for
greater automation in RE stems primarily from the following two reasons:

Increasing Amount of Requirements Practitioners struggle to manually examine large
collections of requirements in the development of modern systems. For example, practi-
tioners fail to maintain traceability of requirements in their software repositories, espe-
cially in the case of large-scale agile system development [41]. Similar to Neto et al. [42],
we found that practitioners face the challenge of creating the right acceptance tests for
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their requirements and aligning them in case of changes [3]. Wagner et al. [43] reveal that
project teams struggle to keep track of all requirements and their relationships, causing
inconsistencies between requirements. Additionally, research has shown that practitioners
encounter problems in controlling the quality of their RE artifacts, frequently resulting in
project failures [44]. Hence, we need approaches that can process large volumes of require-
ments automatically in order to support practitioners in performing RE specific tasks.

Diverse Sources of Requirements A key objective of RE is the identification of de-
sired system properties from the perspective of stakeholders. Traditionally, techniques
such as interviews, brainstorming, and focus groups are used to gather requirements by
interacting directly with relevant stakeholders [45, 46]. However, recent studies [47, 48]
reveal that valuable information for software development teams exists in a variety of
distributed sources that can not be accessed using conventional elicitation techniques.
For example, user comments in social media and app stores can contain requirements-
related information such as feature requests and problem reports [49]. The number of re-
views grows rapidly every day making a manual analysis of user comments cumbersome
(popular apps like Facebook receive around 4,000 reviews daily [50]). Therefore, we re-
quire approaches to automatically extract RE-related information from diverse sources
and convey it to requirements engineers in an understandable and manageable form.

The focus of this thesis lies in the automatic extraction of conditionals embedded in re-
quirements artifacts and is thus also related to the context of increasing automation in
RE. Specifically, we argue that the automated extraction of conditionals can help to au-
tomate two RE tasks for which sufficient methods and tools are not yet available: “accep-
tance test creation” and “dependency detection between requirements”. In the following,
we describe both use cases in detail.

Use Case 1: Automatic Acceptance Test Creation

The test case design is a very laborious activity that easily accounts for 40–70 % of the
total effort in the testing process [51, 52]. This stems from the following challenges.

Challenge 1 Determining the right set of test cases that fully covers a requirement is a
difficult task, especially for complex requirements. Our industrial survey on challenges
in agile testing confirms the findings of other studies [42, 53, 54] that acceptance tests
are often not systematically created, resulting in incomplete or excessive test cases (see
Chapter 9). In the case of missing test cases, system defects are not (or only partially)
detected. In contrast, excessive test cases lead to unnecessary testing efforts and increased
test maintenance costs. Consequently, practitioners need to strike a balance between full
test coverage and the number of required test cases.

Challenge 2 Currently, creating acceptance tests is a predominantly manual task due
to insufficient tool support [55]. Existing approaches allow the derivation of test cases
from semi-formal requirements [56, 57, 58] (e.g., expressed in Controlled Natural Lan-
guage (CNL)) or formal requirements [59, 60] (e.g., expressed in Linear Temporal Logic
(LTL)) but are not suitable to process informal requirements. However, studies [61, 62]
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have shown that requirements are usually expressed in Unrestricted Natural Language
(NL). To derive test cases from NL requirements, the specified system behavior and the
combinatorics behind the requirement need to be understood. Specifically, we need to
understand the embedded conditional statement to determine the correct combination
of test cases that cover all positive and negative scenarios. This can be illustrated by the
following Conditional 1.5 :

If the customer is older than 23 years
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

antecedent1

and
²
∧

shows a valid driving license
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

antecedent2

,

the system does not charge an increased fee
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

consequent1

.
(Cond. 1.5)

The conditional contains two antecedents “customer is older than 23 years” and “[cus-
tomer] shows a valid driving license” and one consequent “the system does not charge
an increased fee”. The antecedents are connected by a conjunction indicating that the
consequent depends on the occurrence of both antecedents. Currently, practitioners have
to extract the conditional manually and determine the combinations of antecedents and
consequents that need to be covered by test cases. This is not only cumbersome but also
becomes increasingly error-prone with growing requirements complexity as the number
of potential test cases increases by 2n, where n is the number of antecedents. Therefore,
test cases may be missed during manual creation or testing effort may be spent on irrel-
evant test cases.

We argue that automated conditional extraction combined with existing automatic
test case derivation contributes to the alignment of RE and testing. Specifically, we show
how extracted conditionals can be mapped to a Cause-Effect-Graph (CEG), from which
test cases can be derived automatically (see Chapter 10). This leads to time savings as
the expected system behavior is interpreted automatically, and to a better test coverage
as the required test cases are determined by heuristics. Hence, we argue that automated
conditional extraction represents an essential contribution towards a fully automated
test case generation from NL requirements.

Figure 1.1 demonstrates the use case by means of an excerpt from the requirements
specification of the open-source tool Specmate [63]. Specmate is a tool for model-based
testing. To facilitate illustration, we have slightly altered the excerpt from its original
form. It is apparent that the requirements specification contains a series of requirements
(REQ) that describe the desired system behavior by conditionals. To automatically create
suitable acceptance tests for these requirements, we must first extract their embedded
conditional statements. Figure 1.1 exemplifies the extracted conditionals from REQ
1.2, REQ 2.2 and REQ 2.3. Subsequently, we create Cause-Effect-Graphs that reflect
the relationship between the extracted antecedents and consequents and use existing
methods [64] to derive a test suite from the CEG. To transfer the conditionals into a
CEG, the conditionals have to be extracted in fine-grained form. In other words, we need
to decompose antecedents and consequents into variables and conditions, respectively,
and consider their combinatorics. The fine-grained extraction of conditionals is therefore
necessary to bridge the gap between requirements and test cases (see green highlighting
in Figure 1.1).
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Figure 1.1: Use Cases of Conditional Extraction for Requirements Engineering. Left: Automatic
Acceptance Test Creation ( g Use Case 1 ). Right: Automatic Dependency Detection
Between Requirements ( g Use Case 2 ).
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Use Case 2: Automatic Dependency Detection Between Requirements

As modern systems are becoming increasingly sophisticated, both the complexity of
requirements and their quantity increase. Additionally, as requirements are primarily
expressed by NL, it is difficult to keep an overview of all requirements and their rela-
tions [40]. Undetected redundancies and inconsistencies in the requirements may lead to
faults in the system design [65]. Furthermore, knowledge about requirements relations is
essential to understand the impact of a proposed software change on the overall system
functionality [66]. To better understand the relations between requirements, different de-
pendency models have been proposed describing relations on different abstraction levels.
An integrated view is provided by Dahlstedt and Persson [67].

We argue that an automatic conditional extraction from requirements can help to
compare the semantics by analyzing the different embedded conditional statements.
As a result, relations between requirements can be identified automatically. We are
convinced that conditional extraction contributes to the detection of four out of the
seven dependency types described by Dahlstedt and Persson [67]:

1) Contradictory Requirements Two conditional statements c1 and c2 contradict each
other, i.e. the content of two requirements conflict with each other. Such conflicts may
lead to inconsistencies in the system design. Identifying these conflicts automatically
by conditional extraction enables engineers to detect requirements that need to be re-
discussed with the stakeholders to clarify the desired behavior. For example, the two
conditionals below contradict each other, since c1 allows the creation of nodes only by
admins, while c2 states that any user shall be able to create nodes.

c1 ∶ Only users with admin rights are allowed to create nodes.
c2 ∶ If a user selects this option, he/she can create a node

in the editor.

contradicts

2) Requirements That Require Others If the consequent of a conditional c1 appears as
an antecedent in another conditional c2, the fulfillment of c2 depends on c1. In other words,
the requirement that includes c2 requires the requirement containing c1. Indicating this
kind of relation helps engineers to maintain requirements traceability. If c1 is changed,
the engineer is aware of which other requirements are affected. For example, c2 below
depends on c1 because the button must be active first before the user can interact with
it to save the process model.

c1 ∶ Once the process model is correct, the button becomes active.
c2 ∶ If the button is active and clicked by the user, the process

mode is saved by the system.

required by

3) Redundant Requirements The conditional statements are congruent, i.e. the two
requirements describe the same system behavior and are therefore redundant. Engineers
may remove one of the requirements to keep the requirements suite minimal. In the
following example, c1 and c2 are equivalent, since they semantically describe the same
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expected system behavior regardless of their different syntax (position of antecedent and
consequent is reversed).

c1 ∶ In case of a missing end node, the editor shows an error message.
c2 ∶ An error message is displayed by the editor if an end node is not

included in the process model.

equal to

4) Requirements Refinement A conditional c1 that specifies a subset of the solution of
another conditional c2 indicates that c1 refines c2. In other words, the system behavior
described in one requirement is defined more precisely in another. In the following
example, c2 is refined by c1, which specifies that the existence of an outgoing connection
from the end node is sufficient for the model to be incorrect. Therefore, the condition
that an end node must be properly named is no longer required for a valid model.

c1 ∶ If an end node has an outgoing connection, the model is incorrect.
c2 ∶ If an end node is unnamed and has an outgoing connection,

the model is incorrect.

refines

Figure 1.1 illustrates the idea behind the use case and shows how conditional extraction
can help to identify dependencies in a requirements specification. Similar to g Use Case 1 ,
the first step is to identify and extract the conditionals contained in the requirements
specification. Subsequently, we need to compare the semantics of the conditionals to
detect potential dependencies. In the case of REQ 2.2. and REQ 2.3, we observe that the
consequent of REQ 2.2. is adopted as an antecedent in REQ 2.3. Consequently, REQ 2.2
is required by REQ 2.3. Mapping these identified dependencies, for example in the form
of a dependency matrix, proves useful to business analysts for maintaining an overview
of all requirements.

Scope of This Thesis

This thesis constitutes the first work in the RE community that studies the potential of
extracting conditionals from requirements. It is intended to stimulate further engagement
of researchers and practitioners in the field of conditionals in RE artifacts. In essence, the
dissertation presents fundamental research on the notion of conditionals in requirements
as well as methods for their fine-grained extraction. We are convinced that our results
can serve as foundation for automatic acceptance test creation ( g Use Case 1 ) and for the
detection of dependencies between requirements ( g Use Case 2 ). In this thesis, however,
we only present empirical evidence that automatic conditional extraction can contribute
to the automatic generation of acceptance tests (see Part III). Hence, the scope of
this thesis is limited to g Use Case 1 (see left part of Figure 1.1). We encourage fellow
researchers to apply our developed approaches also for the detection of dependencies
between requirements or other use cases.

1.3 Problem Statement

We see two principal reasons why the potential of conditional extraction has not yet
been exploited for RE:

7
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Table 1.1: Existing Techniques for Conditional Extraction From Natural Language. A Detailed
Overview of State of the Art in Automated Conditional Extraction Can Be Found in
Section 3.2.

State of the Art (Excerpt) Example: If

antecedent1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
input A
variable

is true
condition

and
∧

antecedent2³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
input B
variable

is false
condition

,

consequent1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
the system

variable
shall show an error message

condition
. #

W
or

d Chang and Choi [68], antecedent1 = true, consequent1 =message c1

Rink et al. [69], Khoo et al. [26] antecedent2 = false, consequent1 =message c2

Ph
ra
se Dasgupta et al. [70], antecedent1 = input A is true, consequent1 = the system shall show an error message c3

Li et al. [71], Girju [20] antecedent2 = input B is false, consequent1 = the system shall show an error message c4

Fu
ll Our Scope

antecedent1 = input A is true ∧ antecedent2 = input B is false,
c5

consequent1 = the system shall show an error message

Problem 1: Missing Understanding of the Notion of Conditionals in
Requirements Artifacts

The extent, form, and complexity of conditional statements in requirements artifacts is
not well understood. We lack empirical evidence on conditionals in traditional RE ar-
tifacts (e.g., requirements documents) and agile RE artifacts (e.g., acceptance criteria).
Further, we do not know how authors of requirements formulate conditionals and in
which complexity the conditionals usually occur: do they tend to specify only the depen-
dency of a single antecedent and consequent, or do conditionals in RE artifacts include
multiple interdependent events? We also do not know whether conditionals in RE arti-
facts typically occur in marked or unmarked form. This lack of knowledge hinders the de-
velopment of approaches capable of extracting conditionals from requirements artifacts.

Even more importantly, we do not know how conditional statements are logically
interpreted by RE practitioners. For example, we still lack insight into whether RE
practitioners perceive antecedents only as sufficient or also necessary for the consequents.
However, reliable knowledge about the logical interpretations of conditionals by RE
practitioners is vital since conditionals need always be associated with a formal meaning
to automatically process them. Otherwise, we choose a formalization that does not reflect
how practitioners interpret conditional sentences, rendering downstream activities error-
prone. That is, we would likely derive incomplete test cases or interpret dependencies
between the requirements incorrectly.

Problem 2: Missing Tool-Supported Approach for Fine-Grained Extraction of
Conditionals

The use cases described in Section 1.2 require conditionals to be extracted in fine-grained
form. Specifically, we need to consider the combinatorics between antecedents and con-
sequents and split them into more fine-granular text fragments (e.g., variable and condi-
tion), making the extracted conditionals suitable for automatic test case derivation and
dependency detection. However, existing approaches are not able to extract conditional
clauses from NL requirements in fine-grained form, which is illustrated by Table 1.1. Some
approaches [68, 69, 72] extract antecedents and consequents only on word level (see ex-
tracted conditionals c1 and c2). Consequently, valuable information about the conditional
statement is lost (e.g., the conditions of “input A”, “input B” and “the system” are ignored).
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Recent approaches [70, 71] address this problem and identify conditionals on phrase level.
Nevertheless, they only extract antecedent-consequent pairs, whereby the combinatorics
between the antecedents and consequents gets lost during the extraction (see c3 and c4).

We need to extract the entire embedded conditional statement to make it usable
for test case derivation and dependency detection between requirements (see c5). Thus,
we require a new conditional extraction approach to implement our described use cases.
This approach should be accompanied by adequate tool support to be easily integrated
into testing processes in practice.

Building on the two outlined problems, we formulate the following problem statement
and address it within the scope of this thesis.

 Problem Statement:

We need (1) a better understanding of the notion of conditionals in requirements
artifacts and (2) a comprehensive method and tool support to extract conditionals
in fine-grained form.

1.4 Contributions

This dissertation addresses both problems and makes six contributions. According to the
taxonomy introduced by Stol and Fitzgerald [73], we present both knowledge-seeking as
well as solution-seeking studies. Our knowledge-seeking studies are devoted to the research
question of why conditionals should be extracted from RE artifacts. In the context
of our solution-seeking studies, we investigate the research question of how to extract
conditionals from RE artifacts automatically. Hence, the outcome of our knowledge-
seeking research are mainly empirical findings, while our solution-seeking research aims
at the development of artifacts such as algorithms and tools. In the following, we describe
our contributions and indicate whether they belong to the knowledge-seeking (ü) or
solution-seeking (3) part of the thesis.

Contribution 1: Empirical Study on Prevalence, Form, and Complexity of
Conditionals in RE Artifacts (ü)

Published at:

REFSQ [4]
18 pages
Best Full Paper 3

REJ [7]
38 pages
Full Paper

We report on an exploratory case study where we analyze the prevalence, form, and
complexity of conditionals in requirements based on 14,983 sentences emerging from
53 requirement documents. These documents originate from 18 different domains and
were written between 2004 and 2019, making our analysis not restricted to a single year
or domain, but rather allows for a comprehensive and generalizable view on conditionals
in requirements. Our case study corroborates, among other things, that:

∎ Conditional statements are a major linguistic element of requirement artifacts as
they occur in about 28 % of the analyzed sentences. Therefore, conditionals matter
in RE, which motivates the necessity of an effective and reliable approach for the
automatic extraction of conditional statements.
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∎ The majority of conditionals occur in marked form and contain one or more cue
phrases to indicate the dependence between certain events. Only around 15 % of
the investigated sentences were categorized as unmarked.

∎ The complexity of conditionals is confined since they usually consist of a single
antecedent and consequent relationship in all observed, eligible domains. Two to
three antecedents and two consequents were predominantly prevalent in the case
of complex conditional statements. More than three antecedents were rare.

Contribution 2: Empirical Study on the Logical Interpretation of Conditionals
by RE Practitioners (ü)

Published at:

PROFES [5]
16 pages

Full Paper

We report on a descriptive survey with 104 RE practitioners in which we ask how they
interpret 12 different conditional clauses. We map their interpretations to logical formulas
written in Propositional (Temporal) Logic to provide empirical evidence for whether a
common formal interpretation of conditionals in requirements exists. Key insights include
but are not limited to:

∎ Conditionals in requirements are ambiguous. Practitioners disagreed on whether
an antecedent is only sufficient or also necessary for a consequent.

∎ We observed a statistically significant relationship between the interpretation and
certain context factors of practitioners (e.g., experience in RE, the way how a
practitioner interacts with requirements, and the presence of domain knowledge).
Interestingly, domain knowledge does not promote a consistent interpretation of
conditionals.

∎ The choice of certain cue phrases has an impact on the degree of ambiguity (e.g.,
“while” was less ambiguous than “if ” or “when” w.r.t. temporal relationship between
antecedent and consequent).

Contribution 3: CiRA - An Approach for the Automatic Extraction of
Conditionals From RE Artifacts (3)

Published at:

ICST [1]
11 pages

Full Paper

REFSQ [4]
18 pages

Best Full Paper

AIRE [6]
10 pages

Full Paper

Under Review at:

JSS [10]
17 pages

Full Paper

We present our tool-supported approach named CiRA (Conditionals in Requirements Ar-
tifacts), which consists of two steps: It first detects whether an NL requirement contains
a conditional. Second, CiRA extracts the conditional in fine-grained form. We implement
different methods for both steps and compare them with each other. Specifically, we in-
vestigate the performance of rule-based approaches, Machine Learning (ML) approaches
(e.g., Random Forest, Support Vector Machines), and Transfer Learning (TL) approaches
(e.g., BERT) in detecting conditionals. For the fine-grained extraction of conditionals,
we implement three approaches and compare their performance with each other: De-
pendency Parsing, Recursive Neural Tensor Network (RNTN), and TL approaches (e.g.,
RoBERTa, DistilBERT). Our experiments show that:

∎ According to our evaluation on a real-world data set of 8,430 sentences, syntactically
enriched BERT embeddings combined with a softmax classifier outperform other
methods in detecting conditional statements (macro-F1 score: 82 %). However, the
application of TL does not result in a large performance boost over conventional
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ML methods (gain of only 4 % in macro-F1 compared to the best ML method).
The rule-based approach is not able to distinguish between sentences that contain
conditionals (F1 score: 66 %) and sentences that do not (F1 score: 64 %).

∎ The Dependency Parsing-based approach fails to extract conditionals in the case
of grammatical errors in a NL sentence. Our RNTN-based approach performs
better in handling grammatical errors, yet struggles to understand the semantics
of Out-Of-Vocabulary (OOV) words posing a threat to its applicability in practice.
Contrary, we found that a sigmoid classifier built on RoBERTa embeddings is more
robust and best suited to extract conditionals in fine-grained form. It achieves a
macro-F1 score of 86 % when evaluated on a real-world data set of 1,946 sentences.

Contribution 4: Empirical Study on Challenges in the Quality Control of Agile
Test Artifacts (ü)

Published at:

ESEM [3]
10 pages
Best Industry Paper 3

In Section 1.2, we claim that practitioners still have to manually derive acceptance tests
from requirements due to missing tool support and that they struggle to identify the
minimal set of required test cases. We present an industrial survey with 18 practitioners
from 12 companies operating in seven different domains that provides supporting evidence
for this claim. In our survey, we analyze how agile test artifacts are designed in practice
and which properties make them useful for quality assurance. We draw the following
main conclusions:

∎ We identified nine challenges that practitioners face when using the test artifacts
acceptance criterion, acceptance test, feature, test documentation, test data, and
unit tests. Interestingly, we observed mostly challenges regarding language and
traceability, which are well-known to occur in non-agile projects.

∎ One of the most frequently stated problems concerned the lack of adequate accep-
tance tests. We found that acceptance tests are often not systematically created,
resulting in incomplete or excessive test cases.

∎ We present an Activity-Based Artifact Quality Model (ABAQM) of 16 quality
factors for agile test artifacts, serving as a foundation for systematic quality control
in practice.

Contribution 5: Empirical Study on Utilizing CiRA for Automatic Acceptance
Test Creation (ü)

Under Review at:

JSS [10]
17 pages
Full Paper

We report on a case study with three industry partners and demonstrate how CiRA can
help to create acceptance tests automatically ( g Use Case 1 ). To this end, we utilize CiRA

to extract conditionals in fine-grained form and map them to a CEG, from which the
minimal set of required test cases can be derived automatically. We empirically evalu-
ate our approach on real-world data provided by Allianz Deutschland AG (insurance),
Ericsson (telecommunication), and Leopold Kostal GmbH & Co. KG (automotive).

∎ Across all case companies, our approach automatically created 71.8 % of the 578
manually created test cases. Our approach was further able to identify 136 test
cases that were missed in manual test design. In fact, 58.8 % of these exclusively
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automatically generated test cases are indeed relevant and should be included in
the acceptance test. We conclude that our approach is able to automatically create
a significant amount of relevant (known and new) test cases.

∎ In our setting, we observed four main reasons of deviations in test cases: incom-
plete requirements, incorrect combinatorics, infeasible test cases, and errors of our
approach. We found that incomplete requirements are the main reason for test
cases that could not be created automatically.

Contribution 6: Replication Packages and Online Demos (ü and 3)

Open Science ensures reliable research and increases the efficiency within the research
community by providing greater access to scientific inputs and outputs. We join this
initiative and make our code, annotated data sets, and trained models publicly available.
We encourage fellow researchers and practitioners to use our research artifacts for their
studies. We publish the following artifacts bundled with this thesis:

∎ A gold standard corpus of 212,186 extracted sentences from 463 publicly available
requirement documents. We encourage fellow researchers to use the gold standard
corpus for their RE-relevant Natural Language Processing (NLP) tasks. The corpus
can be found at https://figshare.com/s/725309c06b9dc82aa4a1.

∎ A data set of 14,983 requirements sentences annotated regarding the prevalence,
form, and complexity of conditional statements. This data set is the main research
output of the first empirical study included in this thesis (see Chapter 4). We
use this corpus to train our detection approaches (see Chapter 6). The annotated
data set as well as the code of our detection approaches can be found at https:

//github.com/fischJan/CiRA.

∎ A data set containing (1) the survey protocol and (2) the survey responses of our
study on how practitioners interpret conditional requirements (see Chapter 5). The
replication package can be found at https://doi.org/10.5281/zenodo.5070235.

∎ The Conditional Treebank, which is the first corpus of fully labeled binary parse
trees representing the composition of 1,571 requirements that contain conditionals.
We use this corpus to train our extraction approach based on an RNTN (see Sec-
tion 7.2). Our code for the implementation of the RNTN and the corpus are avail-
able at https://github.com/springto/Fine-Grained-Causality-Extraction-

From-NL-Requirements.

∎ A data set of 1,946 requirements containing conditional statements annotated in a
fine-grained manner. We use this data set to train our extraction approach based
on TL models (see Section 7.3). Our code, the training corpus, and all trained TL
models can be found at https://doi.org/10.5281/zenodo.5550387

To enable interested researchers and practitioners to easily interact with our extraction
approach, we implemented an online demo. CiRA is available at http://www.cira.bth.
se/demo/.
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1.5 Outline and Instructions for Readers

1.5 Outline and Instructions for Readers

Structure of This Thesis Figure 1.2 illustrates the structure of this thesis, its main
contributions, and created research artifacts. In the present chapter, we motivated why
researchers and practitioners should deal with conditional extraction by outlining two
use cases. The need for the realization of these use cases is empirically grounded by our
industrial survey on challenges in the quality control of agile artifacts (see Chapter 9)
and other related studies [42, 53, 54]. Further, we discussed the problems of implementing
conditional extraction for these two use cases and formulated the problem statement of
our thesis. In Chapter 2, we present the fundamentals that are needed to comprehend
the content of this thesis. In particular, we define the used terminology of this thesis
and provide an overview of relevant NLP methods that we utilize to extract conditionals
in fine-grained form. In Chapter 3, we discuss the current state of the art structured
along with the contributions of this thesis considering empirical work on the notion of
conditionals in NL, approaches for automated conditional extraction as well as approaches
for automated test case derivation. To systematically address our problem statement, we
organize the remainder of the thesis into three parts:

In Part I, we address the first problem, namely “the missing understanding of conditionals
in RE artifacts”. To this end, we present empirical results on both the prevalence,
form and complexity as well as on the logical interpretation of conditionals in re-
quirements artifacts (see Chapter 4 and Chapter 5). Our findings serve as foun-
dation for the development of an approach for automated conditional extraction
from RE artifacts.

In Part II, we introduce and compare different methods for the detection and extraction
of conditionals from NL requirements considering the results of Part I. Our inves-
tigated methods for the detection of conditionals are discussed in Chapter 6. We
present our implemented conditional extraction approaches in Chapter 7. We com-
bine the best performing methods for both steps and present CiRA as a solution
for the second problem (“the fine-grained conditional extraction”) in Chapter 8.

In Part III, we provide empirical evidence demonstrating that the lack of adequate accep-
tance tests is one of the major problems in agile testing (see Chapter 9). We ad-
dress this problem by applying CiRA in an industrial case study and showing how
conditional extraction can contribute to the automatic generation of acceptance
tests (see Chapter 10). We thus empirically prove that conditional extraction can
indeed facilitate the realization of g Use Case 1 (“acceptance test creation”) as de-
scribed in Section 1.2.

Chapter 11 summarizes this thesis by describing its contributions, limitations and direc-
tions for future work.

Instructions for Readers Readers of this thesis may be interested only in certain parts
of our work and therefore do not necessarily want to read the thesis from cover to
cover. Rather, they want to focus on the chapters that are most relevant to them. This
reading style is reasonable since readers may originate from different disciplines and
possess varying levels of background knowledge. However, we stress that the contents of
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Figure 1.2: Overview of the Structure of the Thesis and Its Main Contributions.
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the chapters are strongly interwoven. This requires readers to first understand certain
chapters before they can follow the others. To highlight the connection between the
individual parts and chapters, we included preambles to chapters and parts helping the
reader to understand the following aspects:

Common Thread Describes how the chapter or part fits into the common thread of the
thesis. This ensures that the reader is always aware of the link of a certain chapter or
part to its predecessors. For example, the implementation of conditional extraction
approaches in Part II is driven by the results of Part I.

Contribution Summarizes the key findings of a chapter and highlights how it contributes
towards addressing our problem statement. In essence, we formulate an abstract
of each chapter.

Preliminaries Points out to theoretical basics that are necessary for the understanding
of a certain part. For example, to understand Part II the reader needs to possess
a solid understanding of specific Natural Language Processing methods that are
described in Section 2.3.

Related Publications Indicates on which publications a specific chapter is based.

We encourage readers to consider the information provided in the preambles as a guide to
the thesis. It should be noted that not every preamble includes all of these four aspects. For
example, the “related publications” information is provided at the chapter level rather than
the part level to clearly map the body of this thesis to our corresponding publications.

Conventions We rely on American English and use the singular they, including the re-
lated forms them, their, and themselves, as the gender-neutral singular pronoun through-
out this dissertation. To highlight important text fragments such as summaries or key-
takeaways, we use boxes of the following style:

 A Title:

Some content.

We use “italic font in quotes” to denote direct citations of authors or to highlight certain
expressions. Text in italic font refers to a proper name or is used to emphasize a notable
word. We use green-ish font to indicate references to parts, chapters, sections, figures,
tables, and a full description of certain acronyms. This enables the reader, for example,
to look up the meaning of a particular acronym at any point in the thesis. We use
framed expressions to accentuate key concepts that are repeatedly mentioned throughout
the work such as the names of use cases and annotation labels.

In case we use company names, such as Allianz Deutschland AG, Ericsson, or Google,
as well as product names, such as Github, Jira, or spacy, it is understood that these
names are registered trademarks.
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Chapter 2

Fundamentals

This chapter introduces the theoretical background of this thesis. In Section 2.1, we
define the term conditional statement as the central subject of investigation. Section 2.2
introduces the foundations of RE and explains how automated conditional extraction
integrates into the end-to-end software development process. To extract conditionals
from NL requirements, we use a variety of different NLP methods. Section 2.3 describes
these methods to the extent necessary in the context of this thesis. To facilitate the
realization of g Use Case 1 , we combine our conditional extraction approach with Cause-
Effect-Graphing which can be used to derive acceptance tests automatically. Section 2.4
presents the idea behind Cause-Effect-Graphing by means of a running example. This
chapter is partly based on previous publications [1, 4, 5, 6].

2.1 Terminology: What Is a Conditional?

This section introduces the term conditional and discusses several forms in which con-
ditionals can occur (see Section 2.1.1). We also describe that conditionals can be inter-
preted in different ways and provide an overview of formal languages that can be used
to formalize these interpretations (see Section 2.1.2).

2.1.1 Notion of Conditionals

A conditional statement (short: conditional) represents a grammatical structure that
consists of two parts: an adverbial clause, often referred to as the conditional clause,
antecedent, or protasis, and a main clause, also known as the consequent or apodosis [14].
The semantics of conditionals in NL has been extensively studied by a number of different
disciplines, such as psychology [15], linguistics [16, 17, 18], and philosophy [19]. The views
on the notion of conditionals differ greatly among the studies, and no consensus has
emerged so far. However, the authors agree that, in general, the antecedent describes the
conditions under which the consequent evaluates to true. Hence, a conditional specifies
that the consequent is dependent on the occurrence of the antecedent (i.e., a conditional
defines a contingency relation). In the following example, the window only moves down
as long as the button is pressed.

While the button is in movement down position
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

antecedent

, the window moves down
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

consequent

. (Cond. 2.1)

Both the antecedent and consequent can be understood as an event, which is commonly
defined as “any situation (including a process or state) that happens or occurs either
instantaneously (punctual) or during a period of time (durative)” [74]. In the case of
conditional 2.1 (see above), the antecedent and consequent are of durative nature. The
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type of dependency between an antecedent (e1) and consequent (e2) can take one of
three different forms [75]: a causing, enabling, or preventing relationship.

∎ e1 causes e2: If e1 occurs, e2 also occurs. This can be illustrated by the following
conditional c1: “After the user enters a wrong password, a warning window shall be
shown.” In this case, the wrong input is the trigger to display the warning window.

∎ e1 enables e2: If e1 does not occur, e2 does not occur either (i.e., e2 is not enabled).
Let us assume c2: “As long as you are a student, you are allowed to use the sport
facilities of the university.” Only the student status enables to do sports on campus.

∎ e1 prevents e2: If e1 occurs, e2 does not occur. This can be illustrated by c3: “Data
redundancy is required to prevent a single failure from causing the loss of collected
data.” There will be no data loss due to data redundancy.

Forms of Conditionals The form in which conditionals can be expressed has three
further characteristics [76]: marked and unmarked conditionals, explicit and implicit
conditionals, and ambiguous and non-ambiguous regarding its cue phrases, a linguistic
concept commonly used when dealing with conditionals in NL [77, 68]. A cue phrase is
defined as “a word, a phrase, or a word pattern, which connects one event to the other
with some relation” [68] and represents therefore a lexical indicator for the dependence
of antecedent and consequent.

∎ Marked and unmarked: A conditional is marked if a certain cue phrase indicates
the dependence between antecedent and consequent. The conditional “If the user
presses the button, a window appears” is marked by the cue phrase “if ”, while “The
user has no admin rights. He cannot open the folder” is unmarked.

∎ Explicit and implicit: An explicit conditional contains information about both
the antecedent and consequent. The conditional “In case of an error, the system
prints an error message to the console” is explicit since it contains both the an-
tecedent (error) and consequent (error message). “A parent process kills a child pro-
cess” is implicit because the consequent that the child process is terminated is not
explicitly stated. Rather, the interaction of antecedent and consequent is encoded
in the predicate (i.e., “kills” implies that the child process is stopped by the par-
ent process). The presence of implicit conditionals is therefore dependent on the
use of specific verbs [78]. Garvey and Caramazza [79] provide an overview of verbs
that, in their words, “stem from a class exhibiting implicit causality”. Implicitly
conditionals are particularly hard to process and might be a potential source of
ambiguity in requirements due to their obscuring nature.

∎ Ambiguous and non-ambiguous cue phrases: Due to the specificity of most
cue phrases in marked conditionals, it seems feasible to deduce the classification
of a sentence as containing a conditional based on the occurrence of certain cue
phrases. However, certain cue phrases (e.g., “since”) indicate conditionals, but
also occur in other contexts (e.g., denoting time durations). Such cue phrases are
called ambiguous, while cue phrases (e.g., “because”) that predominantly indicate
conditionals are called non-ambiguous.
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Complexity of Conditionals Our previous explanations refer to the simplest case where
the conditional consists of a single antecedent and consequent. With increasing system
complexity, however, the expected system behavior is described by multiple antecedents
and consequents that are connected to each other. They are linked either by conjunctions
(e1∧. . . ) or disjunctions (e1∨. . . ) or a combination of both which increases the complexity
of the conditional statement. Furthermore, conditionals can not only be contained in a
single sentence, but also span over multiple sentences, which is a significant challenge for
conditional extraction. Additionally, the complexity increases when several conditional
statements are linked together, i.e. if the consequent of a conditional c1 represents an
antecedent in another relation c2. We define such conditionals, where c2 is dependent on
c1, as event chains.

Conditionals vs. Causation In everyday language, conditionals like “If A, then B” are
often conceived as causal relations. Specifically, antecedents are usually understood as
causes (see “A”) and consequents as effects (“B”). Hence, the terms conditionals and causa-
tion are often used interchangeably, although they represent completely different concepts.
A conditional is a linguistic pattern that describes a dependence between an antecedent
and a consequent. In other words, the antecedent and consequent are associated [80].
Causation is more specific and represents a distinctive form of an association. To turn
an association into a causal relationship, three constraints must be satisfied [81, 82]:

∎ Constraint 1: The causing event (cause) must be both sufficient and necessary
for the caused event (effect) [83]. Consequently, the connection between cause and
effect is counterfactual: If the cause did not occur, then the effect could not have
occurred either [84].

∎ Constraint 2: The effect occurs either simultaneously with or after the cause [85].

∎ Constraint 3: The cause must occur independently (i.e., there is no confounder
that influences the cause and effect and incorrectly implies causation) [86].

One sees immediately that a conditional describes any relationship between an antecedent
and a consequent, while causation is a specific type of relationship for which a number
of constraints must be met. Hence, we can conclude that a conditional does not imply
causation: conditionals can arise in presence (i.e., “A” causes “B”) or absence (i.e., “A”
and “B” have a common cause) of a causal relationship [87]. It is therefore misleading
to always interpret antecedents as causes and consequents as effects when analyzing the
meaning of a conditional. We explicitly do not deal with causation in the context of this
thesis, but rather more fundamentally with conditionals in RE artifacts.

However, we argue that causation is often the main focus when formulating condi-
tionals in RE artifacts [2]. As a requirements author, I want to formulate the system
behavior precisely by defining an antecedent as both the sufficient and necessary reason
for the occurrence of a consequent (see Constraint 1 ). In other words, if “A” occurs, “B”
should also occur and if “A” does not evaluate to true, then “B” should also not occur. In
practice, it is common to formulate several requirements that describe the same conse-
quent (e.g., “When C occurs, then B”). In this context, we assume that each requirement
describes a separate case in which the consequent should occur and link their antecedents
with disjunctions (i.e., A ∨C⇔ B).
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□ (F ⟹ G)

□ (F ⟹ ◯G)

□ (F ⟹ ◊G)

LTL Formula Intended System Behavior (Example)

s5σ s0 s4s3s2s1
G¬G

F¬F

s5σ s0 s4s3s2s1
G¬G

F¬F

s5σ s0 s4s3s2s1
G¬G

F¬F ¬F ¬FF F

GG ¬G¬G

¬F¬F¬F ¬F

G ¬G¬G¬G

F ¬F ¬F¬F

G¬G¬G¬G

Figure 2.1: Overview of LTL Operators.

2.1.2 Logical Interpretation of Conditionals

As indicated in Section 2.1.1, there are many ways to express conditional statements
in NL. Hence, the syntax can vary greatly among conditionals. Multiple studies [88,
89, 90] demonstrate that conditionals can also be associated with different semantic
meanings, which makes them a source of ambiguity. In this thesis, we investigate the
logical interpretations of conditionals by RE practitioners with respect to two dimensions:
Necessity and Temporality. This section demarcates both dimensions and introduces
suitable formal languages that can be used to formalize the interpretations appropriately.
We use the following conditional as a running example: “If the system detects an error
(e1), an error message shall be shown (e2)”.

Necessity The relationship between an antecedent and consequent can be interpreted
logically in two different ways. First, by means of an implication as e1 ⇒ e2, in which e1 is
a sufficient condition for e2. Interpreting the running example as an implication requires
the system to display an error message if e1 is true. However, it is not specified what the
system should do if e1 is false. The implication allows both the occurrence of e2 and its
absence if e1 is false. In contrast, the relationship of antecedent and consequent can also be
understood as a logical equivalence, where e1 is both a sufficient and necessary condition
for e2 (i.e., e1⇔ e2). Interpreting the running example as an equivalence requires the
system to display an error message if and only if it detects an error. Consequently, if e1
is false, then e2 should also be false. The interpretation of conditionals as an implication
or equivalence significantly influences further development activities. For example, a test
designer who interprets conditionals rather as implication than equivalence might only
add positive test cases to a test suite. This may lead to a misalignment of tests and
requirements in case the business analyst actually intended to express an equivalence.

Temporality The temporal relation between an antecedent and consequent can be
interpreted in three different ways: (1) the consequent occurs simultaneous with the
antecedent, (2) the consequent occurs immediately after the antecedent, and (3) the
consequent occurs at some indefinite point after the antecedent. Propositional Logic (PL)
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does not consider temporal ordering of events and is therefore not expressive enough
to model temporal relationships. In contrast, we require temporal logic (e.g., LTL),
which considers temporal ordering by defining the behavior σ of a system as an infinite
sequence of states ⟨s0, . . . ⟩, where sn is a state of the system at “time” n [91]. Accordingly,
requirements are understood as constraints on σ. The desired system behavior is defined
as an LTL formula F , where next to the usual PL operators also temporal operators like
◻ (always), ◊ (eventually), and # (next state) are used. Since we will use these temporal
operators in the course of the thesis, we will present them here in more detail.

To understand the LTL formulas, we assign a semantic meaning ⟦F ⟧ to each syntactic
object F . Formally, ⟦F ⟧ is a boolean-valued function on σ. According to Lamport [91],
σ⟦F ⟧ denotes the boolean value that formula F assigns to behavior σ, and that σ satisfies
F if and only if σ⟦F ⟧ equals true (i.e., the system satisfies requirement F ). We define
⟦◻F ⟧, ⟦◊F ⟧ and ⟦#F ⟧ in terms of ⟦F ⟧ (see equations below). The expression ⟨s0, . . . ⟩⟦F ⟧
asserts that F is true at “time” 0 of the behavior, while ⟨sn, . . . ⟩⟦F ⟧ asserts that F is
true at “time” n.

∀n ∈ N ∶ ⟨sn, . . . ⟩⟦◻F ⟧⇒ ∀m ∈ N,m ≥ n, ⟨sm, . . . ⟩⟦F ⟧ (2.1)

∀n ∈ N ∶ ⟨sn, . . . ⟩⟦◊F ⟧⇒ ∃m ∈ N,m ≥ n, ⟨sm, . . . ⟩⟦F ⟧ (2.2)

∀n ∈ N ∶ ⟨sn, . . . ⟩⟦#F ⟧⇒ ⟨sn+1, . . . ⟩⟦F ⟧ (2.3)

Equation 2.1 asserts that F is true in all states of behavior σ. More specifically, ◻F asserts
that F is always true (now and forever). The temporal operator ◊ can be interpreted as
“it is not the case that F is always false” (i.e., ¬ ◻ ¬F ) [91]. According to Equation 2.2,
a behavior σ satisfies ◊F if and only if F is true at some state of σ. In other words,
◊F asserts that F is eventually true (now or sometime in the future). According to
Equation 2.3, #F asserts that F is true at the next state of behavior σ. In contrast
to ◊F , #F requires that this state is not an arbitrary state of behavior σ, but rather
the direct successor of state n. In conclusion, LTL can be used to incorporate temporal
ordering into an implication (F ⇒ G) in three ways:

∎ G occurs simultaneous with F :
◻(F ⇒ G), which can be interpreted as “any time F is true, G is also true”.

∎ G occurs immediately after F :
◻(F ⇒ #G), which can be interpreted as “G occurs after F terminated”.

∎ G occurs at some indefinite point after F :
◻(F ⇒ ◊G), which can be interpreted as “any time F is true, G is also true or at
a later state”.

We illustrate the intended system behavior expressed by these formulas in Figure 2.1.

Formalization Matrix To distinguish the logical interpretations and their formalization,
we constructed a formalization matrix (see Figure 2.2). It defines a conditional statement
of F and G along the two dimensions (Necessity and Temporality), each divided on a
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Necessity

Temporality

Temporal Ordering Relevant
Temporal Ordering  

Not Relevant
G is caused  

during F is true
G will be caused 
in the next state

G will be 
caused eventually

F is  
only sufficient

F is 
 also necessary

III.

I.

IV. V.

II.

VI.

□ (F ⟹ G) □ (F ⟹ ◯G) □ (F ⟹ ◊G) F ⟹ G

F ⟺ G◊G ⟹ (¬G𝒰F )□ (F ⟺ G) □ (F ⟺ ◯G)

Figure 2.2: Formalization Matrix Defining a Conditional of F and G Along the Two Dimensions
Necessity and Temporality.

nominal scale. Specifically, the dimension Necessity has two levels: F is only sufficient
or also necessary for G. The dimension Temporality has four levels: during, next state,
eventually, and temporal ordering is not relevant. Each 2-tuple of characteristics can
be mapped to an entry in the formalization matrix. For example, the LTL formula
◻(F ⇒ #G) formalizes a conditional statement, in which F is only sufficient and G
occurs in the next state.

To define F as both sufficient and necessary for G, we replace the implication
by an equivalence and rephrase the LTL formula as follows: ◻(F ⇔ #G). However,
the equivalence operator is not adequate in cases where G will be caused eventually.
Specifically, the formula ◻(F ⇔ ◊G) would define that as soon as F evaluates to false,
G is locked permanently. We argue that this formula does not represent the behavior
we want to express, since there may also be scenarios in which F is initially false, but
turns true at a later state and leads to the occurrence of G. Therefore, we want to
specify that as soon as G occurs, F must have occurred concurrently or at a previous
state (i.e., F is a necessary condition for an occurrence of G). To this end, we build on
the precedence relation introduced by Dwyer et al. [92]: ◊G⇒ (¬G U (F ∧ ¬G)). The
core element of the precedence relation is the until U operator. Literally, the precedence
relation can be interpreted as “If G occurs eventually, then G has been false until the
state in which F occurs without G occurring concurrently.” Hence, in its original form,
the precedence relation defines F as a necessary pre-condition of G. Since the eventually
operator allows that G and F occur simultaneously, we adapt the precedence relation as
follows: ◊G⇒ (¬G U F ).

2.2 Role of Conditional Extraction in Requirements Engineering

In this section, we introduce the foundations of RE and describe its role in Software En-
gineering (SE). Further, we explain in which RE activities conditionals are involved and
how automated conditional extraction integrates into the end-to-end software develop-
ment process. Hence, the aim of this section is to familiarize the reader with the domain
context of this thesis.

Requirements Engineering Is a Branch of Software Engineering According to the
IEEE collection of standards, SE can be understood as “the application of a systematic,
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disciplined, quantifiable approach to the development, operation, and maintenance of soft-
ware, i.e. the application of engineering to software [...]” [93]. This definition emphasizes
that SE represents an engineering approach that aims to develop software by performing
well-defined and ordered activities [94, 95]. These activities and their interdependencies
are described in a Software Development Life Cycle (SDLC). Over the last decades, a
series of SDLC models have been developed, each proposing a different way of develop-
ing software (e.g., Waterfall Model, Iterative Model, Spiral Model, V-shaped Model, and
Agile Model). A central task described by all SDLC models is the identification of the
purpose for which the software is intended [96]. More concretely, we need to identify
relevant stakeholders and understand their needs to build software that meets their re-
quirements. RE aims at discovering the purpose of software and is, therefore, part of all
mentioned SDLC models.

Requirements Engineering Activities The RE process consists of five core activities:
elicitation, analysis, documentation, validation, and management of requirements [32,
31, 97]. In the following, we outline these activities and explain how conditionals are
embedded in the RE process.

Elicitation This activity involves the search, collection, and consolidation of requirements
from available sources. Potential sources for requirements are stakeholders who will
use the software under development, as well as existing documents and prototypes.
The result of the elicitation step is a list of requirements reflecting the perception of
the desired functionalities gained by the requirements engineer. The requirements
may therefore contain defects if the understanding of the requirements engineer is
not in line with the understanding of the stakeholders.

Analysis During this step, the elicited requirements are reviewed jointly with the stake-
holders to ensure that the collected requirements correspond to the actual needs
of the stakeholders. Furthermore, conflicts between the requirements are identi-
fied and resolved. The deliverable of this step is thus a set of consolidated, non-
contradictory requirements.

Documentation In this step, the set of consistent requirements is documented in the form
of RE artifacts. For this purpose, different types of RE artifacts like use cases, user
stories, goal models, or traditional software specifications can be used.

Validation This step checks whether the created RE artifacts comply with certain quality
standards (e.g., ISO 29148 [98]) and verifies whether the three activities described
above have been executed properly. The validation activity constitutes therefore a
cross-cutting operation.

Management Requirements management deals with maintaining RE artifacts across
their life cycle, organizing RE activities, and observing the system context to
discover changes that require assistance from RE. Similar to the validation step,
requirements management represents a cross-cutting activity.

Our studies reveal that conditionals are a widely used linguistic pattern to express in-
tended system behavior (see Chapter 4). Accordingly, conditionals are inherent to re-
quirements elicitation, since conditionals are intuitive means for stakeholders to describe
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expected inputs and desired system behavior (e.g., “If input X, the system shall . . . ”). Ul-
timately, conditionals are also included in the documented RE artifacts. In fact, we found
that conditionals are prevalent in both traditional RE artifacts [4] as well as agile require-
ments such as acceptance criteria [1]. This thesis focuses on the automated conditional
extraction from RE artifacts and thus builds on the output of the documentation activity.

Conditional Extraction in the Software Development Process As described in Sec-
tion 1.2, automated conditional extraction from requirements contributes to the automa-
tion of two use cases, namely “acceptance test creation” ( g Use Case 1 ) and “dependency
detection between requirements” ( g Use Case 2 ). These use cases fit into different parts
of the software development process. g Use Case 1 deals with acceptance testing which
aims to determine whether a system fulfills end-user requirements. More specifically,
acceptance testing can be understood as “formal testing with respect to user needs, re-
quirements, and business processes conducted to determine whether a system satisfies the
acceptance criteria and to enable the user, customers, or other authorized entity to de-
termine whether to accept the system” [99]. We extract conditionals from documented
requirements and create corresponding acceptance tests automatically. Hence, we sup-
port test designers, requirements engineers, and domain experts, who collaborate on cre-
ating acceptance tests [100, 101]. Acceptance tests are usually written in NL and are
mostly executed manually [102, 103]. Each acceptance test contains a finite set of test
cases that specify certain test inputs (input parameters) and expected results (output
parameters) [104]. Each input and output parameter is defined by a variable and a con-
dition that the parameter can take [105]. For example, the parameter the system detects
an error can be decomposed into “variable: the system” and “condition: detects an
error”. All test cases that constitute a single acceptance test are summarized in a test
case specification. Each row represents a test case. The variables of the input and out-
put parameters are listed in the columns. The conditions of the parameters that shall
be inspected as part of a certain test case are contained in the respective cells. Contrary
to g Use Case 1 , which bridges the gap between RE and acceptance testing, g Use Case 2
is part of the RE process. That is, automated conditional extraction helps requirements
engineers to detect dependencies between the requirements (e.g., conflicts and redundan-
cies) and thus supports both the analysis and validation activity in the RE process.

2.3 Relevant Natural Language Processing Methods

Since NL is still the dominant notation style for requirements, our extraction approach
must be able to understand natural language. Therefore, we use several NLP methods
to implement our approach in the course of this thesis. NLP is a research discipline that
bridges linguistics and ML and deals with the automatic processing of unstructured, nat-
ural language data [106]. This section provides knowledge about relevant NLP methods
to an extent that enables readers to follow our approaches described in Part II.

2.3.1 Dependency Parsing

There are two main approaches suitable for describing the structure of a sentence [107].
The sentence is either separated into individual constituents (Constituency Parsing) or
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its lexical units (words) are connected to each other forming the whole structure of the
sentence (Dependency Parsing). These word-to-word links are defined as dependencies
that specify the relationship between the words. Compared to Constituency Parsing, De-
pendency Parsing has a number of advantages and therefore constitutes the foundation
for the modern, computer-based interpretation of language. It is robust against flexible
word order languages [108] and its dependencies serve as a good basis for the subsequent
semantic analysis of the sentence [107]. In Section 7.1, we utilize the potential of Depen-
dency Parsing and analyze the dependencies between the words to detect antecedents
and consequents in an NL sentence. The idea of Dependency Parsing was first introduced
by Tesnière [109]: If two words are related, one word is defined as head and the other as
dependent, which are connected by a directed link representing their syntactic relation-
ship (Dependency Relation). This relationship can be expressed as a dependency triple
d(vi, vj) consisting of three parts [110]. vi and vj are two words connected by the relation
d, where vi is the head and vj is the dependent. The sum of all dependency triples can be
represented as a directed rooted tree. For each word, a node is created and each relation
is represented by an arc in the tree, as in the dependency parse tree shown in Figure 2.3.

If the system detects an error , a warning window shall be shown .

mark

nsubjdet

obj

det

advcl

aux:pass

aux

punct

nsubj:pass
punct

compound

det

root

Figure 2.3: Exemplary Dependency Parse Tree.

Here the token “shown” represents both the root of the dependency tree and the
predicate of the independent clause “a warning window shall be shown”. The relation
advcl(shown, detects) indicates that “shown” is modified by the dependent clause “If the
system detects an error”. More specifically, the adverbial clause specifies when the action
of the independent clause shall take place. In this case, “shown” is the head and “detects”
is the dependent. Modern dependency parsers are capable of identifying a multitude of
different relationship types between words. A rich overview of these relationships can be
found in the Universal Dependencies project [111]. In Table 2.1, we give an insight into
dependency types that are mainly relevant for our conditional extraction approach.

Transition-Basedvs. Graph-BasedDependencyParsing In general, dependency parsers
are implemented by either transition-based or graph-based approaches [112]. Transition-
based Dependency Parsing involves four main components: (1) a stack on which the
parse is built, (2) a buffer consisting of all remaining tokens to be parsed, (3) a parser
that walks through a sentence from left to right and shifts tokens from the buffer into
the stack, and (4) an oracle that examines the two top elements of the stack and pre-
dicts one of the following transitions [107, 113]:

∎ Transition 1: Create a dependency relation where the word at the top of the stack
is the head and the second word is the dependent. Further, remove the second
word from the stack.
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Table 2.1: Overview of Universal Dependency Relations Relevant for Automated Conditional Ex-
traction, Taken Verbatim From https://universaldependencies.org/.

N
om

in
al
s

A nominal subject (nsubj) is a nominal which is the syntactic subject and the proto-
nsubj

agent of a clause.
The system detects an error .

nsubj

The nmod relation is used for nominal dependents of another noun or noun phrase
nmod

and functionally corresponds to an attribute, or genitive complement.
The password of the user .

nmod

The object of a verb is the second most core argument of a verb after the subject.

Typically, it is the noun phrase that denotes the entity acted upon or which under-obj

goes a change of state or motion (the proto-patient).

The user enters a password .
obj

Cl
au

se
s

An adverbial clause modifier is a clause which modifies a verb or other predicate as

a modifier not as a core complement. This includes temporal clauses, consequences,advcl

conditional clauses, purpose clauses, etc.
If the input is wrong , the function is disabled .

advcl

A clausal complement of a verb or adjective is a dependent clause which is a core
ccomp

argument. That is, it functions like an object of the verb, or adjective. In the case that the password is wrong .

ccomp

Co
or

di
na

tio
n
&

M
od

ifi
er

s

A conjunct is the relation between two elements connected by a coordinating con-
conj

junction, such as and, or, etc.
The username and the password are incorrect .

conj

cc A cc is the relation between a conjunct and a preceding coordinating conjunction. The username and the password are incorrect .
cc

mark A marker is the word marking a clause as subordinate to another clause. If the input is wrong , the function is disabled .
mark

An adjectival modifier of a noun (or pronoun) is any adjectival phrase that serves
amod

to modify the noun (or pronoun).
If the entered password is wrong , the login fails .

amod

∎ Transition 2: Create a dependency relation where the second word of the stack
is the head and the top word is the dependent. Further, remove the top word from
the stack.

∎ Transition 3: Shift the current word in the buffer into the stack.

The parser terminates when the buffer is empty and the stack contains only a single
word (arc-standard transition system). To enable the oracle to predict which of the three
transitions should be executed, it is trained on gold standard dependency treebanks (e.g.,
Penn Treebank [114]). A dependency treebank is a corpus of NL sentences annotated
with the corresponding dependency trees. The dependency treebanks are either a result
of manual annotation or are created by converting existing constituent-based treebanks
into dependency trees [112].

Graph-based Dependency Parsing does not process a sentence word by word to
build a corresponding parse tree. Rather, it considers all possible trees for a given
sentence and aims to identify the tree that maximizes some score. The search space of
all potential dependency trees is defined as a fully-connected, weighted, directed graph
of a given sentence [112]. Its vertices are the words of the sentence and the directed
edges represent all possible dependency relations. Graph-based dependency parsers use
methods [115, 116] from graph theory to find the highest scoring tree in the search
space (i.e., the maximum spanning tree). In this context, graph-based methods rely -
similarly to transition-based methods - on an oracle that parameterizes the search space
by weighting the edges of the fully-connected graph. To predict the weights of the edges
resp. the probability of a certain dependency relation, the oracle is developed using
traditional supervised machine learning techniques (e.g., Decision Trees, Support-Vector
Machines, Neural Networks) and trained on annotated dependency treebanks.

Studies [117, 118] show that both approaches have their individual advantages and
disadvantages. For example, transition-based methods allow highly efficient parsing due
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Figure 2.4: Bottom-Up Approach of an RNTN for the Prediction of a Binary Parse Tree, Based
on [128].

to linear time complexity, but struggle when the heads are very far from the dependents.
Graph-based methods are more accurate in parsing long sentences, but show slower
inference time. Nevertheless, both approaches have proven to be suitable for building
powerful dependency parsers [119, 120, 121]. For example, the MaltParser [122] and
the spaCy dependency parser [123] are based on transition-based methods. Graph-based
models are used by the MSTParser [124], TurboParser [125], and Deep Biaffine [126].
In this thesis, we use the spaCy NLP library v3.0 [123] to build dependency trees since
it achieves state of the art results when evaluated on the Penn Treebank [127].

2.3.2 Recursive Neural Tensor Networks

An RNTN is a special type of Neural Network and has been invented by Socher et al. [128].
It is based on the idea that NL can be understood as a recursive structure. For example,
the syntax of a sentence is recursively structured, with noun phrases containing relative
phrases, which in turn contain further noun phrases, and so on. An RNTN is capable
of recovering this recursive structure and helps to better understand the composition
of a sentence. We argue that a conditional also represents a recursive structure as it
consists of antecedents and consequents, which in case of conjunctions and disjunctions
consists of further antecedents and consequents, and so on [2]. Building on this idea, we
train an RNTN for conditional extraction (see Section 7.2). In this section, we explain
its characteristics with respect to forward and backward propagation.

Let us define a sentence as a sequence of words (wi, ...,wn), each represented by a
corresponding d-dimensional vector vi. The concept of an RNTN is to identify related
vectors and merge them into pre-defined segments. We train the RNTN, for example, to
demarcate vectors that describe antecedents or consequents from vectors that are not
relevant for automatic test case derivation. To illustrate the composition of a sentence,
an RNTN builds up a binary tree of segments in a bottom-up fashion (see Figure 2.4).

Forward Pass At the beginning of each recursion, the RNTN determines a set of all
adjacent vector pairs A = {[vi, vj]∣vi and vj are adjacent}. For each adjacent pair, the
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RNTN computes: a parent representation p(i,j) and its label probabilities l. The parent
representation is calculated by merging vi and vj according to the following equation:

p(i,j) = f
⎛
⎝
[vi
vj
]
T

V [1∶d] [vi
vj
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Enhancement in RNTN

+ W [vi
vj
]

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
Vanilla RNN

⎞
⎠

(2.4)

An RNTN stores its trainable parameters in a weight matrix W ∈ Rd×2d and a tensor
V ∈ R2d×2d×d. In vanilla Recursive Neural Networks (RNN) [128], pi is computed only
using W . The concatenated vi and vj are simply multiplied with W and then given into
an activation function f . This has the drawback that the input vectors only implicitly
interact through the nonlinearity activation function. Consequently, the meanings of
the words do not actually relate to each other and the influence of a child node on a
parent node can not be adequately captured. However, this is especially important for the
extraction of conditionals. For example, the model should learn that “if ” usually indicates
an antecedent segment, while “then” denotes a consequent segment. To overcome this
issue, Socher et al. [129] introduced a three-dimensional tensor V into the model. Firstly,
V allows more interactions between the vectors through the more direct multiplicative
relation. Secondly, V adds another fixed number of parameters to the model, which allows
the RNTN to gather even more information about the composition of a sentence. Each
slice of the tensor is capturing a specific type of composition making the RNTN capable
of understanding the structure of a sentence [129]. Each p(i,j) is then given to a softmax
classifier to compute its label probabilities l. In other words, the RNTN calculates the
probability for p(i,j) representing a certain segment. For classification into three segments
(e.g., antecedent, consequent, not relevant), we compute the softmax score as follows:

l = softmax(Cp(i,j)) (2.5)

C ∈ R3×d is the classification matrix. After computing the probabilities for all adjacent
pairs, the RNTN selects the pair which received the highest softmax score and updates
A by removing vi and vj and adding p(i,j) (see Figure 2.4). This process is repeated until
all adjacent pairs are merged and only one vector is left in A. This vector represents the
whole sentence and corresponds to the root of the constructed tree-structure.

BackwardPass We want to maximize the probability that the RNTN correctly predicts
the antecedents and consequents in a sentence. For this purpose, we minimize the cross-
entropy error between the predicted and target labels at each node. The backpropagation
of an RNTN is slightly more complex than in conventional neural models because the er-
rors have to be routed through the tree structure (starting from the root). Backgropaga-
tion through structure [130] is characterized by the following three properties: Firstly, the
full derivative for V and W is the sum of the derivatives at each of the nodes. Secondly,
the derivatives are split at each node and are sent down both branches of the tree to the
next level below. Thirdly, for each node, the error message is the sum of the error prop-
agated from the parent and the error from the node itself. For a detailed description of
backpropagation through structure, please refer to the paper by Goller and Küchler [130].
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Figure 2.5: Difference Between Static (Left) and Contextualized Word Embeddings (Right).

2.3.3 Transfer Learning

Driven by the recent advances of Deep Learning (DL), more and more researchers are
using DL models for NLP tasks. In this context, the Bidirectional Encoder Represen-
tations from Transformers (BERT) language model [131] is prominent and has already
been used for Question Answering [132], Named Entity Recognition [133], and Text Sum-
marization [134]. BERT is pre-trained on large corpora and can therefore easily be fine-
tuned for any downstream task without the need for much training data. Specifically,
BERT acquired a deep language understanding through pre-training on the BookCor-
pus (800M words) and a version of the English Wikipedia (2,500M words), making it
easier for BERT to learn the requirements of a downstream language understanding
task [112, 131]. The concept of combining pre-training and fine-tuning is also known as
Transfer Learning (TL): “the method of acquiring knowledge from one task or domain,
and then applying it (transferring it) to solve a new task” [112]. TL models are there-
fore particularly valuable for use cases for which only little training data is available, or
where the effort required to create new training data is unreasonably high.

In recent years, TL models became increasingly popular in the BERT community
and demonstrated strong performance, e.g., in the classification of requirements [38], and
mining feature requests and bug reports from tweets and app store reviews [12]. In this
thesis, we investigate the performance of TL models in the detection (see Chapter 6)
and fine-grained extraction (see Section 7.3) of conditionals from NL requirements. This
section covers the foundations of modern TL models by introducing contextual word
embeddings, the transformer architecture, and presenting examples of TL models such as
BERT, RoBERTa [135], and DistilBERT [136] that we employ in the course of this work.

Input Representation To process NL with computational models, it must first be trans-
posed into a vector representation [137]. Learning suitable representations of NL data has
been an active area of research for decades [138, 139, 140]. The idea of using a vector space
to represent the connotation of words originates from Osgood et al. [141]. A mapping of
a word to its corresponding vector is also called word embedding (i.e., a word is encoded
in the vector space). The goal of word embeddings is to reflect the meaning of a word by
its distribution in language use. Specifically, “words that occur in similar contexts tend to
have similar meanings” [112] and should therefore be mapped to similar locations in vector
space. Hence, embeddings aim to characterize words by the words that occur with them.

Based on the idea that the similar distribution of words is associated with simi-
lar meaning (also known as distributional hypothesis [142]), a number of approaches
for the derivation of word embeddings have been developed. For example, the Term
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Frequency–Inverse Document Frequency (TF-IDF) approach uses simple co-occurrence
statistics and builds word embeddings by counting nearby words. The dimension of the
vectors corresponds therefore to the size of the used vocabulary. As a consequence, the
word embeddings tend to be very long and contain mostly zeros, since many words never
appear in the context of others [112]. This type of word embedding is often described as
sparse vectors. To address the issue that the size of embeddings increases with growing
vocabulary, multiple approaches (e.g., Word2Vec [139], Global Vectors for Word Repre-
sentation (GloVe) [140], FastText [143]) for creating dense word embeddings have been
developed. Instead of containing a series of zeros, dense vectors have a fixed dimension
and contain real-valued numbers that can be positive or negative. Word2Vec uses a clas-
sifier to predict the probability of two words being neighbors and utilizes the weights of
the trained classier as the word embeddings. The resulting embeddings are static, mean-
ing that the model creates one fixed vector for each word in the vocabulary [112]. Static
embeddings suffer from an obvious weakness: a word is always represented by the same
vector, regardless of the context in which the word occurs (see Figure 2.5). This limits
their ability to cover the meaning of words since words naturally have different meanings
depending on their context (e.g., “I enjoy playing pool” vs. “Let us relax in the pool”).
Approaches like BERT, Embeddings from Language Model (ELMo) and Generative Pre-
trained Transformer 2 (GPT-2) [144] solve this shortcoming and explicitly take the con-
text of a word into account when creating embeddings. In essence, modern language
models predict the probability that a certain sequence of words occurs and utilize the
calculated hidden states as word embeddings. Hence, the contextualized embedding of
a word depends on all other words in a sentence [112]. This allows to generate different
word embeddings for the word “pool” in the example above (see Figure 2.5).

In the following, we focus on BERT and its successor models RoBERTa [135] and
DistilBERT [136], as we use them for the fine-grained extraction of conditionals. To
enable BERT to create contextualized word embeddings, the input sequence must first
be converted into a suitable format. For this purpose, the sequence is split into individual
components using the WordPiece tokenizer (see Figure 2.6). WordPiece is a subword-
based tokenization algorithm and aims at covering an infinite vocabulary with a finite set
of known words [145, 146]. Specifically, WordPiece addresses the drawbacks of word-based
tokenization approaches that struggle to process OOV words. To this end, frequently used
words are not split into subwords, while rare words are decomposed into lexical units that
are known to the model. Thus, even OOV words can be processed by the model, since
their respective subwords may contain enough semantic information enabling the model
to infer the semantic meaning of the OOV word. For example, let us apply the WordPiece
tokenizer to the name of the architecture on which BERT is based: “Transformer”. The
word is considered a rare word and split into “Transform” and “##er”, where “##”
indicates that the token belongs to the previous one. Although the word is unknown to
the model, the model can still understand its semantics as it contains a frequently used
word: the verb “transform”. As described in Section 7.3, we leverage the ability of the
WordPiece tokenizer to process OOV words in order to increase the robustness of our
conditional extraction approach.

When using the WordPiece tokenizer it must be considered that BERT requires input
sequences with a fixed length (maximum 512 tokens) [131]. Therefore, for sentences that
are shorter than this fixed length, Padding (PAD) tokens need to be inserted to adjust
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all sentences to the same length. Other tokens, such as the Classification (CLS) token
and the Separator (SEP) token, are also inserted in order to provide further information
of the sentence to the model. CLS is the first token in the sequence and represents the
whole sentence (i.e., it is the pooled output of all tokens of a sentence). SEP marks the
end of the sentence. After adding these synthetic tokens to the tokenized sequence, each
token is fed into BERT to generate a corresponding embedding (see Figure 2.6).

Transformer Architecture BERT is a transformer-based architecture. In its vanilla
form, a transformer architecture consists of two parts: an encoder that converts an
input (e.g., German text) into a vector representation, and a decoder that transforms
the created vector into an output (e.g, English text). This separation reflects that the
transformer architecture was originally designed for machine translation [147]. BERT
is an encoder-only model and focuses on the derivation of contextual embeddings (see
Figure 2.6). Specifically, it maps an input sequence x1 . . . xn to a contextualized encoded
sequence y1 . . . yn:

fBERT ∶ x1 . . . xn ↦ y1 . . . yn (2.6)

BERT consists of a stack of multiple encoders and is available in two versions: the
BERTBase model has 12 encoder layers stacked on top of each other, whereas the
BERTLarge model includes 24 encoder layers. Each encoder consists of (1) a multi-head
self-attention mechanism, and (2) a simple, position-wise fully connected feed-forward
network [147]. The distinctive feature of BERT compared to other language models is
its bidirectionality. Specifically, it considers both the left and right context of a word
when creating a corresponding embedding [131]. Previous transformer models like GPT-
2 process an input sequence only in a left-to-right fashion. Hence, the hidden states are
computed independently of the others as the model only considers tokens seen earlier in
the context (i.e., the embeddings only contain information of the right context). This
issue is especially problematic when utilizing embeddings to solve complex NLP problems
like the fine-grained extraction of conditionals. Sophisticated linguistic labels can only
be assigned correctly if both the left and right context of the tokens are considered. For
example, let us apply the BERTBase model to the following requirement: “If the system
detects an error, it shows a warning message.” To understand that the token “it” in
the exemplary requirement is part of a consequent but not of an antecedent, we need to
consider that “it” is not located in the if-clause (the left context) as well as that the token
“accordingly” at the end of the clause refers to the presence of a consequent (the right
context). The use of the self-attention mechanism enables BERT to understand such
long-range dependencies between tokens and thus to overcome the vanishing gradient
problem of sequential models. To this end, BERT applies the self-attention mechanism
over the entire input sequence and contextualizes each token using information from the
entire input (highlighted in Figure 2.6 for x1 and x13). The final embeddings have a
size of 768 dimensions (BERTBase) or 1024 (BERTLarge). The dense layer within the
encoder is used to further enrich the output of the attention mechanism and to pass it
to the next encoder.

Related BERT Models: RoBERTa and DistilBERT After the release of BERT, scientists
conducted a series of replication studies to identify means to further increase the perfor-
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Figure 2.6: Overview of BERT Architecture.

mance of BERT. Liu et al. [135] found that longer pre-training with a higher batch size on
an even larger data set can further improve the performance of BERT. Specifically, they
train BERT on five English-language corpora of varying sizes and domains, totaling over
160 GB of uncompressed text. In addition, they discovered that the next sentence pre-
diction objective during pre-training does not lead to a performance gain and therefore
suggest to train BERT only by masked language modeling. Based on these adjustments,
they introduce RoBERTa as a tuned version of BERT, which shows better prediction
performance on various benchmarks but negatively affects training and inference time.

The pre-training of modern language models is computationally expensive. For this
reason, Sanh et al. [136] investigated how to reduce the size of the BERT model while
retaining its language understanding capabilities. They propose DistilBERT which rep-
resents the distilled version of BERT that allows for faster training. It retains 97 % of
BERT performance and yields comparable performance on downstream tasks.

2.4 Cause-Effect-Graphing

Cause-Effect-Graphing aids in selecting the minimal number of required test cases by
illustrating the desired system behavior in the form of input and output combinations [148,
149]. It belongs to the group of black-box testing methods since it only considers the
external behavior of a system. A Cause-Effect-Graph (CEG) models inputs as causes and
outputs as effects. A cause can be interpreted as a condition or a class of conditions that
lead to a certain action of the system. Effects represent any output conditions produced
by the system. A CEG can be considered as a combinatorial logic network, which
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describes the interaction of causes and effects by Boolean logic [64]. Both causes and
effects are represented as nodes and associated by four different relationships: conjunction
∧, disjunction ∨, negation ¬ and identity ⇔. The nodes in a CEG can either take the
value 1 (“present” state) or 0 (“absent” state). Accordingly, the four relationships between
causes (cn) and effects (en) are defined as follows [148]:

∎ c1⇔ e1: The identity relation states that if c1 is 1, e1 is also 1; else e1 is 0. Hence,
c1 is both a sufficient and a necessary condition for the occurrence of e1.

∎ ¬ c1 ⇔ e1: The negation relation states that if c1 is 1, e1 is 0; else e1 is 1.

∎ c1 ∨ c2 ⇔ e1: The disjunction relation states if c1 or c2 is 1, e1 is 1; else e1 is 0.

∎ c1 ∧ c2 ⇔ e1: The conjunction relation states that if both c1 and c2 are 1, e1 is 1;
else e1 is 0.

To demonstrate the core idea behind Cause-Effect-Graphing, we use the following re-
quirement as a running example: “If the customer is traveling with a parent, or the cus-
tomer is older than 23 years and the customer shows a valid driving license, the system
does not charge an increased fee.” We model the requirement as G = (E,C) shown in
Figure 2.7a with effect set E and cause set C. In the example, ∣C ∣ = 3 including c1, c2,
and c3 while ∣E∣ = 1 with e1. Please note that the intermediate node is required to model
the combination of conjunction and disjunction.

Basic Path Sensitization Technique To derive test cases from our constructed CEG,
the Basic Path Sensitization Technique (BPST) is applied [64]. BPST derives test cases
from a CEG in four steps. Specifically, it converts a CEG into a decision table, where
each column of the decision table corresponds to a test case:

∎ Step 1: Select any effect in the CEG.

∎ Step 2: Scan the CEG for combinations of causes that do or do not lead to the
occurrence of the selected effect.

∎ Step 3: Create one column in the decision table for each of the identified combi-
nations of causes as well as the resulting states of the other effects.

∎ Step 4: Check whether entries in the decision table occur twice and remove them
if necessary.

The determination of cause combinations mentioned in the second step is performed by
traversing the CEG back from the effects to the causes according to specific decision rules,
which were originally introduced by Myers [148] and then fine-tuned by Liggesmeyer [150]
and Nursimulu and Probert [64]. We describe these rules in detail below, as Cause-Effect-
Graphing is an integral part of our approach to automatic acceptance test generation (see
Chapter 10). Please note that a CEG, unlike its name implies, does not model a causal
relation according to the definition presented in Section 2.1.1. Its purpose is rather to
express the dependency between different inputs and outputs, which lends itself to the
modeling of conditionals. The reason for naming the nodes as causes and effects was
presumably to distinguish more clearly between input and output variables.
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the customer
is older than 23 years

c1

the customer
shows a valid driving license

c2 intermediate node

i1

the customer
is travelling with a parent

c3

the system
does not charge an increased fee

e1∧

∨

(a) Cause-Effect-Graph. AntecedentsAre Represented as CauseNodes (Highlighted in Green). Consequents
Are Illustrated by Effect Nodes (Highlighted in Orange).

Test Cases

TC 1 TC 2 TC 3 TC 4 TC 5

Input

c1 1 1 0 1 0
c2 1 0 1 0 1
c3 0 1 1 0 0
i1 1 0 0 0 0

Output e1 1 1 1 0 0

(b) Minimal Test Suite Automatically Created by BPST

Figure 2.7: Application of Cause-Effect-Graphing for the Automatic Derivation of Test Cases
From the Requirement: “If the customer is travelling with a parent, or the customer is
older than 23 years and the customer shows a valid driving license, the system does
not charge an increased fee.”

∎ Rule 1: In case of disjunctions with the result 1 (i.e., the effect occurs), we only
build input combinations, where one input has the value 1 and all other inputs
have the value 0.

∎ Rule 2: In case of disjunctions with the result 0 (i.e., the effect does not occur),
we set all inputs to 0.

∎ Rule 3: In case of conjunctions with the result 0 (i.e., the effect does not occur),
we only form input combinations where one input has the value 0 and all other
inputs have the value 1.

∎ Rule 4: In case of conjunctions with the result 1, we set all inputs to 1.

These rules achieve the maximum probability of finding failures while avoiding the
complexity of generating 2n test cases, where n is the number of causes [150]. Thus, Cause-
Effect-Graphing enables balancing between sufficient test coverage and the lowest possible
number of test cases. This can be illustrated by applying the described rules to our
constructed CEG shown in Figure 2.7a. We select e1 as our entry point (see step 1). First,
we search for all cause combinations where e1 occurs. e1 is caused by a disjunction of c3
and i1. According to rule 1, we insert into the decision table only the input combinations
where one input has the value 1 and all other inputs have the value 0. Hence, we have to
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consider the two cases i1 = 1 and c3 = 0 as well as i1 = 0 and c3 = 1. We do not need to
handle the case i1 = 1 and c3 = 1 because of rule 1. i1 is the result of a conjunction of c1
and c2. According to rule 4, we set c1 and c2 to 1 and thus include our first test case (TC
1) in the decision table. Since the CEG contains only one effect (e1) we do not have to
respect the resulting states of other effects in step 3. For the case i1 = 0 and c3 = 1 we have
to apply rule 3, namely we only form input combinations where one input has the value 0
and all other inputs have the value 1. Therefore we have to consider the cases c1 = 1 and
c2 = 0 as well as c1 = 0 and c2 = 1. This results in TC 2 and TC 3 in our decision table.

After the creation of the positive test cases, we also have to determine the negative
test cases (i.e., the cause combinations under which e1 does not occur). According to
rule 2 we set i1 and e1 to 0. Since i1 is caused by a conjunction of c1 and c2, we have to
follow rule 3 for the case i1 = 0. This results in the two cases c1 = 1 and c2 = 0 as well as
c1 = 0 and c2 = 1 and consequently in TC 4 and TC 5 in our decision table. Since none
of the entries in the decision table occur twice, we do not need to remove any entries
and have completed the entire BPST process. Figure 2.7b contains our created test suite
for G. To check the functionality presented in the CEG comprehensively, only five test
cases are needed instead of the maximum number of 23 test cases.
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Chapter 3

State of the Art

This chapter summarizes existing work in the research area of extracting conditionals
from NL requirements artifacts for automatic acceptance test creation. More specifically,
it reviews studies on the notion and logical interpretation of conditionals, presents existing
approaches for the automated extraction of conditionals from NL, and describes existing
methods for automated test case derivation from requirements. Each section outlines ex-
isting work, identifies open issues, and points to the chapters in this thesis that contribute
to their resolution. The structure of this chapter reflects the organization of this thesis:

Section 3.1 outlines work on the prevalence of conditionals in the SE domain and
conducted experiments related to conditional reasoning. The presented work provides
evidence that conditionals are present in a variety of development artifacts (e.g., test cases
and code). However, existing studies do not provide an overview of the extent, form, and
complexity of conditionals in NL requirements, hindering the development of approaches
capable of extracting conditionals from RE artifacts. We address this research gap in
Chapter 4. Further, our literature review reveals a number of studies that show that
people often deviate from the prescriptions of logic when interpreting conditionals. The
contributions of our thesis presented in Chapter 5 support this evidence and additionally
indicate that there is a statistically significant relation between the interpretation of
conditionals and certain context factors of RE practitioners (e.g., experience in RE).

Section 3.2 outlines work on approaches for the automated extraction of conditionals
from NL. We show that existing approaches are not capable of extracting conditionals
in fine-grained form, rendering them unsuitable for our use case. Specifically, existing
approaches only extract conditional pairs or detect conditionals on the phrase level while
not considering the combinatorics between antecedents and consequents. We address this
research gap in Chapter 6, Chapter 7, and Chapter 8 and present our tool-supported
approach CiRA capable of detecting conditionals in NL requirements and extracting them
in fine-grained form. A live demo of CiRA can be accessed at www.cira.bth.se/demo/.

Section 3.3 outlines work on approaches for the automated extraction of test cases from
requirements. We show that most of the existing approaches allow the derivation of test
cases from semi-formal or formal requirements, but are not suitable to process informal
requirements. Some approaches address this research gap and focus on deriving test cases
from informal requirements. Nevertheless, they have major drawbacks preventing their
use in practice. For example, they do not ensure that only the minimal number of required
test cases is created. In Chapter 10, we present an approach capable of deriving acceptance
tests from conditional statements in NL requirements automatically. Our approach
leverages CiRA to extract conditionals in fine-grained form and then maps the extracted
conditionals into a CEG, from which we derive the minimal number of required test cases.
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3.1 The Notion of Conditionals Statements

How do people formulate and understand conditionals? Linguists, mathematicians, and
philosophers have been debating this question in their work for decades. There is still
no consensus on how conditionals should be interpreted logically. Bryne and Johnson-
Laird [151] therefore speak of sentences with “if ” being a puzzle that has not yet been
solved. In this section, we review existing work on the prevalence of conditionals (see
Section 3.1.1) and logical interpretation of conditionals by humans (see Section 3.1.2).

3.1.1 Prevalence of Conditionals

Conditionals serve as an intuitive means of expressing actions and their consequences.
Hence, conditionals occur frequently in everyday conversations and written texts. In this
section, we report on work that deals with the occurrence and usage of conditionals in the
SE domain. The contribution of Chapter 4 builds upon and expands this state of the art.

Conditionals in Requirements Stakeholders utilize conditional statements to formulate
their expectations of a system. Specifically, they describe certain conditions that may oc-
cur and the corresponding system behavior that they expect. To precisely express condi-
tionals in requirements, Mavin et al. [152] developed the Easy Approach to Requirements
Syntax (EARS) patterns that represent a semi-formal notation style of requirements. In
other words, they dictate a certain structure that must be respected by the authors of
requirements while allowing them to fill the structure in any way. Mavin et al. [152] pro-
pose the following two patterns for the definition of conditionals in requirements:

∎ Event-driven requirements: WHEN <optional preconditions> <trigger> the
<system name> shall <system response>.

∎ Unwanted behaviors: IF <optional preconditions> <trigger>, THEN the <sys-
tem name> shall <system response>.

In the case of event-driven requirements, the system response is required when and
only when the stated event is detected at the boundary of the system. The semantics
of the unwanted behavior is defined similarly: the system is required to achieve the
stated system response if and only if the preconditions and trigger are true. Hence,
Mavin et al. [152] define conditionals in requirements as equivalences. This makes the
requirements clear and testable because both positive and negative scenarios are defined.
Studies [153, 154] demonstrate that the EARS patterns have been adopted by many
organizations worldwide as they help authors to control the ambiguity, complexity, and
vagueness of requirements.

Conditionals in Test Cases Conditional statements are often used to define manual
test cases [155]. In this context, they serve as a means of specifying a condition to be
checked by a tester and an action to be executed by the tester should the condition
occur. Hauptmann et al. [156] show that conditional clauses can lead to ambiguities
when executing test cases and therefore render the results of test runs nondeterministic.
This poses a major problem for the entire test process as test results become neither
interpretable nor comparable. This quality defect (also known as branches in test flow)

38



3.1 The Notion of Conditionals Statements

can be illustrated using the following conditional: “If the selected customer is older than
18 years, set the discount option to false”. According to Hauptmann [155], this test case
description is problematic because it only instructs the tester on what to do if the selected
customer is older than 18 years. The negative case - that the selected customer is younger
than 18 years - is not explicitly defined (e.g., by an else-statement). Consequently, the
tester is forced to decide independently how to interpret the negative case. In other
words, the test procedure is not predefined.

As shown in Section 3.1.2, the negative case of a conditional can be interpreted in
various ways, which in turn may cause testers to execute the same test case differently.
Hence, test cases should be free of branching logic to ensure a deterministically executable
test suite [156]. Rather, conditionals shall be split into individual test steps: (1) verify that
the customer is older than 18 years and (2) set the discount option to false. Additionally,
the negative case shall be checked in a separate test case: (1) verify that the customer is
18 years old or younger and (2) set the discount option to true.

Conditionals in Program Coding Conditionals do not only occur in NL, but also con-
stitute a basic control structure in programming languages. Specifically, conditionals al-
low programmers to dictate the behavior of a computer when certain conditions are met.
In this context, conditionals can be expressed in arbitrary complexity. In the simplest
form, conditionals are specified using the if...then...else syntax. The cue phrase if

introduces the conditional statement and specifies the condition that needs to be tested.
The if clause contains any code that will be executed if and only if the condition is
true. The else clause defines code that will be executed if and only if the condition is
false. Hence, conditionals in code are defined as logical equivalences. The complexity of
if...then...else constructs can be extended by additional operators like else...if,
switch, do...while loops, and by nestings.

Conditionals are an elementary part of any software. Early studies have shown that
conditionals are used extensively in program code. For example, Elshoff [157] found in a
study of 120 PLI/I programs that conditionals comprise 17.8 % of all used statements.
Similar results were obtained in the studies by Knuth [158] and Saal [159] when analyz-
ing FORTRAN and APL programs. Conditionals also play a crucial role in the develop-
ment of modern systems and are supported by state of the art programming languages
such as Python, JavaScript, Swift, Scala, and Go. Recent studies [160, 161] demonstrate
that if statements are deemed important by development teams since they enable the
definition of rules according to which software should operate. Due to constantly evolv-
ing requirements, conditionals are often changed during development projects [162, 163]
and belong to the most frequently modified control structures in code reviews [164].

 Summary and Relation to Our Thesis:

Existing studies prove that conditionals are present in a variety of artifacts used
during the software development cycle: e.g., requirements, test cases, and code. So
far, it is known that conditionals have played an important role in the development
of legacy systems and still do when implementing modern systems.

However, we know little about the extent, form, and complexity of conditionals
in NL requirements artifacts. Certainly, studies show that EARS patterns are used

39



3.1 The Notion of Conditionals Statements

by some companies to formulate conditionals but it is not reasonable to prepare
our conditional extraction approach for processing requirements in EARS notation
since NL is still the dominant notation style in practice [61, 62]. Thus, we need
to understand how conditionals are expressed by authors in NL requirements and
implement our approach accordingly. In this thesis, we address this research gap
and investigate the prevalence of conditionals in NL requirements artifacts (see
Chapter 4). We highlight that conditionals matter in both traditional requirements
documents as well as agile RE artifacts such as acceptance criteria. Further, we
demonstrate that most conditionals in RE artifacts are explicit and occur in
marked form. We also show that they may include up to three antecedents and
two consequents. As a result, we expand the state of the art by a comprehensive
insight into the notion of conditionals in NL requirements artifacts.

3.1.2 Logical Interpretation of Conditionals

The semantics of conditionals has been debated in research for decades and there is still
no consensus on how conditionals should be interpreted. In this context, philosophers,
linguists, and mathematicians have developed a series of theories about the logical in-
terpretation of conditionals, leading to the emergence of a dedicated field of research:
conditional reasoning. An overview of all published theories is beyond the scope of this
thesis. However, we give an insight into the main ideas and conducted experiments re-
lated to conditional reasoning. The contribution of Chapter 5 builds upon and expands
this state of the art.

Conditional Reasoning According to Thompson [165], conditional reasoning “entails
drawing inferences about situations in which the occurrence of one event is conditional
or contingent upon the occurrence of another event”. In a conditional reasoning tasks,
subjects are usually asked to indicate the validity of four inferences derived from a given
conditional. Let us assume the following conditional: “If the car is out of gas (event p),
then it stalls (event q)”. The Modus Ponens (MP) inference entails concluding q, given p.
In other words, “the car is out of gas”; therefore “the car stalls”. The Modus Tollens (MT)
inference entails concluding ¬p, given ¬q (i.e., “the car has not stalled”; therefore, “the car
did not run out of gas”). The Denying the Antecedent (DA) inference entails concluding
from ¬p to ¬q. In other words, “if the car does not run out of gas, it will not stall”. The
Affirming the Consequent (AC) inference entails concluding from q to p (i.e., “the car has
stalled”; therefore, “the car has run out of gas”). In logic, both MP and MT are defined
as valid forms of inference, while the DA and AC inferences are considered to be logical
fallacies and are thus defined as invalid [166]. More specifically, mathematicians specify
the correct semantics of sentences in the form “if p then q” as a conditional truth function.
This means that the truth of “if p then q” can always be determined by inspecting the
truth values of “p” and “q” [167]. The material conditional p→ q is defined to be true as
long as there is no case in which the antecedent is true and the consequent is false.

However, multiple studies [88, 89, 90] reveal that people frequently deviate from this
as ideally defined interpretation and, from a logical perspective, draw invalid inferences.
In other words, their interpretation does not conform to the prescriptions of logic.
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Wason’s Selection Task Already in 1966, Wason was able to show that people commit
logical errors in the interpretation of conditionals [168]. He conducted an experiment
and presented the subjects with four cards. Each card showed a colored, geometric figure.
Specifically, a red triangle (RT), a blue triangle (BT), a blue circle (BC), and a red circle
(RC). The subjects were told that each card has a triangle on one side and a circle on
the other side. Each figure was colored either red or blue. The subjects were given the
conditional: “Every card which has a red triangle on one side has a blue circle on the
other side” and were asked to select those cards which need to be turned over in order
to determine whether the conditional is true or false.

Interestingly, most of the subjects selected either the RT card or both the RT and
BC cards. Only a few chose the correct answer: the RT and RC cards. Only if a card
shows both the red triangle and the red circle, the conditional is false. The experiment
has been replicated by other researchers [169] and all studies yield the same result: most
subjects draw the AC inference from the conditional. They interpret the sentence as a
bi-conditional, implying that “if a card shows a blue circle, then it has a red triangle on
the other side”. Accordingly, they select the BC card beside the RT card to verify the
conditional. In conclusion, the subjects interpreted the conditional as an equivalence
(i.e., p⇔ q) rather than as an implication (i.e., p⇒ q). Studies [170, 171, 172] show that
there is a variety of factors that can cause these illogicalities in the interpretation by
people. We report on some of these factors in the following paragraphs.

Logical Interpretation Depends onAvailable Knowledge of the Conditional Relationship
Digdon [173] and Pollard [174] reveal that conditional reasoning is influenced by available
knowledge of the conditional relationship. They show that the logical interpretation of
conditionals depends on the perceived necessity and sufficiency of the relationship. In
the case of necessary relationships, the consequent event occurs only when the antecedent
event occurs (e.g., “if the computer is connected to the power supply, then it is ready to
boot up”). In the case of sufficient relationships, the consequent always occurs when the
antecedent occurs (e.g., “if the car runs out of gas, then it stalls”). Several studies [90, 175,
176] found that people are more likely to draw the AC and DA inferences in necessary
relationships as opposed to sufficient relationships. We explain this tendency below,
building on the examples and the discussion by Thompson [165].

Necessary Relationship:
a) If the computer is connected to the power supply, then it is ready to boot up.

AC: The computer is ready to boot up. Is it plugged in? (yes)
DA: The computer is not plugged in. Is it ready to boot up? (no)

Sufficient Relationship:
b) If the car runs out of gas, then it stalls.

AC: The car has stalled. Did it run out of gas? (maybe)
DA: The car has not run out of gas. Did it stall? (maybe)

We know that a computer can only start up if it is connected to the power supply. Thus,
we are aware that conditional a) denotes a necessary relationship. When a computer is
ready to boot up, we intuitively conclude that it is also connected to the power supply and
therefore draw the AC inference from conditional a). Similarly, we reject the claim that
the computer can be started if it is not connected to the power supply (DA inference).
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We know that a car can stall due to a variety of reasons (e.g., engine failure, flat tires).
Consequently, we are aware that besides the antecedent “the car runs out of gas”, there
are other, alternative antecedents that can provoke the consequent “the car stalls”. Hence,
we know that conditional b) represents a sufficient relationship and do not commit the
AC and DA fallacies (see answers above). Markovits [177] demonstrates that subjects
who are aware of alternative antecedents are in fact much less likely to draw AC and
DA inferences than people who do not know the alternative. Further, Byrne [178] and
Rumain et al. [179] show that the likelihood of subjects committing logical errors can
be reduced by explicitly naming alternative antecedents.

Logical Interpretation Depends on Mood of Subjects and Emotionality of Contents
Studies indicate that the mood of subjects affects conditional reasoning. For example,
Oaksford et al. [180] performed the Wason’s Selection task with different groups and
induced positive and negative moods in the groups. Subsequently, they compared the
groups’ selections with a mood-neutral control group. They found that the subjects in
both positive and negative moods were less likely to draw the correct logic inferences
compared to the control group. A similar observation has been made by Melton [181].

An experiment conducted by Blanchette & Richards [182] reveals that the emotion-
ality of contents also influences conditional reasoning. The subjects were more likely to
commit logical fallacies when reasoning about emotional content (e.g., “If someone is
in a tragic situation, then she cries”) rather than when reasoning about neutral content
(e.g., “If someone is an actor, then he is an extrovert”). This finding confirms the results
of an early study by Lefford [183]. Evidently, the studies mentioned are subject to a se-
ries of threats to validity (e.g., inaccuracies during mood manipulation), which are also
explicitly mentioned by the authors [184]. However, the results of the experiments pro-
vide a first indication that mood and emotional content may influence conditional rea-
soning in a certain way.

Logical Interpretation Depends on Preferences The scientific debate about conditional
reasoning has long been based on the assumption that goals and preferences do not
impact the process of drawing logical inferences from conditionals [185]. However, studies
proved that this presumption is wrong and demonstrated that preferences do have an
influence on conditional reasoning. This can be illustrated by the following examples.

c) If Alice is invited to the party, she’ll buy a new dress.
MP: Alice is invited to the party. Will she buy a new dress? (yes)

From a logical viewpoint, Alice will certainly buy a new dress (MP inference). Evans et
al. [186] presented subjects with conditional c) and asked them whether they would draw
the MP inference. The subjects almost unanimously agreed and thus did not deviate
from the prescriptions of logic (see answer above). In a follow-up experiment, conditional
d) (see below) was added.

c) If Alice is invited to the party, she’ll buy a new dress.
d) If Alice buys a new dress, she can’t pay the rent next week.

MP: Alice is invited to the party. Will she buy a new dress? (no)
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In this scenario, the participants denied that Alice intends to buy a new dress. The
subjects assumed that Alice wants to pay her rent and does not want to take any
action that would prevent her from doing so. Hence, the subjects did not draw the
MP inference and deviated from the rules of logic because they expected Alice to act
rationally and not decide against her preferences. The fact that preferences and goals
matter in the interpretation of conditionals has been demonstrated by a number of
further experiments [187, 188].

 Summary and Relation to Our Thesis:

The wealth of published studies underlines that the semantics of conditionals in
NL is widely discussed in the scientific community. At present, it is common sense
that human reasoning and strict logical rules often do not coincide and that the
logical interpretation of conditionals is influenced by a variety of factors.

In this thesis, we investigate how practitioners logically interpret conditionals
embedded in requirements (see Chapter 5). Similar to the aforementioned studies,
our results indicate that RE practitioners often deviate from the prescriptions of
logic. In fact, nearly half of our respondents drew AC inferences when interpret-
ing conditionals in requirements artifacts. We also found that RE practitioners
disagree about the temporal occurrence of antecedent and consequent when differ-
ent cue phrases (e.g., “when, if, after”) are used to express a conditional. Hence,
a generic formalization of conditionals in RE artifacts will inevitably fail at least
some practitioner’s interpretation. This confirms the findings by Edgington [189]
that a logical model is often not suitable to capture the interpretations of humans.

Our study also shows that there is a statistically significant relation between
the interpretation of conditionals and certain context factors of RE practitioners.
For example, the experience in RE as well as the way how a practitioner usually
interacts with requirements (e.g., writing requirements vs. reading and implement-
ing requirements) affects conditional reasoning. This thesis thus extends the liter-
ature with further factors that impact the logical interpretation of conditionals.
Interestingly, we found that domain knowledge does not promote a consistent in-
terpretation of conditionals in RE artifacts. Even in the case of close familiarity
with a domain, some of our respondents interpreted conditionals in different ways.

3.2 Automated Extraction of Conditionals from Natural Language

Several approaches for automated conditional extraction have been developed. According
to Yang et al. [190], these approaches can be grouped into three categories: knowledge-
based, statistical Machine Learning (ML)-based, and Deep Learning (DL)-based ap-
proaches. The extraction of conditionals from NL consists of two steps. First, it must
be detected whether an NL sentence contains a conditional. Second, the conditional (if
present) has to be extracted. In this section, we give an overview of both approaches
to conditional detection (step 1) as well as conditional extraction (step 2). To this end,
we build on the systematic literature mapping studies conducted by Asghar et al. [191]
and Yang et al. [190] who present a comprehensive insight into the state of the art in
automated conditional extraction. As described in Section 1.2, we need to extract condi-
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Figure 3.1: State of the Art in Automated Conditional Extraction.

tionals in fine-grained form to transfer them into a CEG. Hence, we describe not only
the functionality of the existing methods for conditional extraction, but also the granu-
larity (e.g., word level, phrase level) in which they extract the conditionals. Figure 3.1
illustrates the state of the art in automated conditional extraction from NL.

3.2.1 Knowledge-Based Approaches

Knowledge-based approaches detect and extract conditionals by applying linguistic pat-
terns such as “[antecedent] and because of this, [consequent]”. Hence, their performance
relies on hand-coded patterns, which require extensive manual work.

In early work, Grishman [192] proposes the PROtotype TExt Understanding System
(PROTEUS) that can be used to identify conditionals in equipment failure messages.
PROTEUS performs four steps: syntactic analysis, clause semantics, noun phrase seman-
tics, and discourse analysis. Garcia [193] presents COATIS, a tool capable of identify-
ing conditional statements in a single NL sentence written in French. He designs lexico-
syntactic patterns based on 23 verbs that usually indicate conditionals like “provoke”,
“disturb”, “result”, and “lead to”. Other early approaches are rooted in the medical domain,
where relationships between symptoms and diseases are commonly expressed in natu-
ral language sentences utilizing conditionals: Khoo et al. [26] extract conditionals from
a medical database using graphical patterns. The roles and attributes of a conditional
are structured in a three-layer template, which constitutes the framework for manually
elicited patterns. Wu et al. [194] show how to mine depressive symptoms from consulta-
tion records by using a rule-based system for conditional detection.

In the field of economics, conditional detection has been applied to improve the rea-
soning about market-related relationships. Early approaches include Chan et al. [195]
utilizing a hierarchy of manually generated semantic, sentence, consequence, and reason
templates. Other approaches as proposed by Inui et al. [196], which too extract condi-
tionals from newspapers, base their conditional detection algorithm on the occurrence
of certain cue phrases (e.g., “if ”, “when”).
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As indicated by Figure 3.1, all knowledge-based approaches extract conditionals
only on word-to-word level. From sentences such as “A wrong user input results in a
restart of the system”, they extract the antecedents and consequents only as single-word
representations (antecedent1: “input” and consequent1: “restart”) resulting in the loss
of essential information. For the creation of test cases, antecedents and consequents
need to be described as a combination of variable (antecedent_variable1: “user input”)
and condition (antecedent_condition1: “wrong”). Hence, we need to extract the entire
embedded conditional statement (see Section 1.2).

3.2.2 Statistical Machine Learning-Based Approaches

Knowledge-based methods rely heavily on hand-crafted features and patterns, making
them domain-dependent and reducing their generalizability. Additionally, the manual
development of features and patterns is laborious and requires domain expertise. There-
fore, research on conditional extraction shifted towards the usage of statistical ML tech-
niques that can be trained to classify conditionals by using annotated data. Specifically,
researchers employed third-party NLP tools (e.g., Spacy [123], Stanford CoreNLP [197])
to automatically generate a set of features for a given a data set, and then use ML algo-
rithms (e.g., Support Vector Machine, Logistic Regression) to perform the classification
task [190]. Hence, ML-based approaches require careful feature engineering as their per-
formance depends on the manual selection of textual features.

Girju [20] proposes an approach using lexico-syntactic patterns within one sentence
or two adjacent sentences. The patterns consist of two Noun Phrases (NP) connected
with a causative verb in the following structure:

< NP1, verb,NP2 > (3.1)

The patterns are built by traversing WordNet concepts for noun phrases that are con-
nected by a cause-to-relationship, which is explicitly annotated in the WordNet corpus.
Subsequently, from a large NL corpus, all verbs connecting these causally related noun
phrases are extracted as causation verbs. Based on this information and further semantic
features from WordNet, the lexico-syntactic patterns are created. Girju uses C4.5 deci-
sion tree learning [198] to build a system capable of detecting conditionals based on the
developed patterns. Chang and Choi [68] expand on this concept by taking into account
conceptual pair probability and cue phrase probability as additional indicators for the
classification of a conditional statement. Specifically, they apply a Naive Bayes classifier
to predict the probability of a conditional given a certain cue phrase (e.g., causative verb).

Blanco et al. [76] also focus on identifying explicit conditionals expressed by the
pattern < V erbPhrase, relator,Cause > where the relator is ∈ {because, since, after, as}.
They apply a C4.5 decision tree binary classifier to determine sentences that match this
pattern. Sun et al. [199] propose a different approach to extract conditionals from engine
query logs. They use geometric features of events and then use the Granger Causality
Test to re-rank them. Bethard and Martin [200] train different machine learning models
using features derived from WordNet and the Google N-gram corpus. Their approaches
achieve an F1 score of 52.4 % in the extraction of conditionals and outperform other
baseline systems. However, the obtained performance is still insufficient from a practical
point of view and prevents the approaches from being used in the field.
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More recent approaches like the one proposed by Rink et al. [69] use a Support Vector
Machines classifier trained on contextual features. Lin et al. [201] train a classifier on the
Penn Discourse Treebank using the context, word pair information, internal constituent,
and dependency parsers as features. Doan et al. [29] utilize POS tags and dependency
parse trees to identify conditionals based on a manually generated set of patterns from a
large data set of tweets. Bui et al. [25] apply a Logistic Regression to detect conditionals in
medical literature related to HIV. Sorgente et al. [202] combine a rule-based system with
a ML model. They create a set of logical rules based on word dependencies and use these
patterns to extract potential antecedent-consequent pairs. Finally, they use a Bayesian
approach to discard incorrect pairs that have been produced by ambiguous patterns.

Figure 3.1 shows that many of the ML-based conditional extraction approaches
manage to extract antecedents and consequents at phrase level. From sentences such
as “If A is true and B is false, then C shall occur”, they extract the antecedents and
consequents as follows: antecedent1: “A is true”, antecedent2: “B is false”, consequent1:
“C shall occur”. Consequently, the extracted text fragments are more fine-granular than the
single word representations identified by the knowledge-based approaches. However, the
combinatorics between the antecedents and consequents is still lost during the extraction,
rendering these approaches unsuitable for our use case.

3.2.3 Deep Learning-Based Approaches

In recent years, DL-based methods achieved state of the art results in many NLP
tasks, including Text Classification [203], Constituency Parsing [204], Coreference Reso-
lution [205], Information Extraction [206] and Named Entity Recognition [207]. Driven
by the continuous advancements of DL models and their ability to automatically extract
useful features from raw text, research on conditional extraction shifted towards the us-
age of DL-based approaches in the last years.

Xu et al. [208] present SDP-LSTM, a neural network to classify the relation of two
entities in a sentence (e.g., Cause-Effect, Product-Producer). They apply the Shortest
Dependency Path (SDP) between two entities along with Long Short Term Memory
(LSTM) units to detect the relationship between two entities. Ponti and Korhonen [209]
use a Feedforward Neural Network to extract conditionals from NL. They train and
evaluate their network on the Penn Discourse Treebank in English [210] and the CSTNews
corpus in Brazilian Portuguese [211]. By using a set of different features, including lexical
features and position features, they achieve an F1 score of 54.5 % (Discourse Treebank)
and 55.6 % (CSTNews data set). Kruengkrai et al. [212] explore how to combine Multi-
Column Convolutional Neural Networks with background knowledge to improve the
recognition of antecedents and consequents. To this end, they analyze descriptions in
web texts that are somehow related to a potential antecedent/consequent candidate
and train a network to judge whether the candidate is part of a conditional. Zhang et
al. [213] show to improve the performance of Graph Convolutional Networks tailored for
conditional extraction using dependency trees. Dasgupta et al. [70] use a bidirectional
LSTM architecture for conditional extraction. They utilize word embeddings as features
and train the network to build a causal graph illustrating the relationship of antecedents
and consequents. Li et al. [71] builds on this work by adding Flair embeddings [214] and
the self-attention mechanism to the network. Their main idea behind the usage of pre-
trained embeddings is to alleviate the problem of training data insufficiency. Similarly,
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Kyriakakis et al. [215] use Transfer Learning to detect conditionals in NL. However, we
see a major problem with this paper. They train and evaluate their approaches on strongly
unbalanced data sets with conditionals to non-conditionals ratios of 1:2 and 1:3 and only
report the macro-Recall and macro-Precision values but not the metrics per class. Thus,
it is not clear whether the classifier has a bias toward the majority class or not.

The proposed DL-based approaches show improved performance in extracting condi-
tionals compared to the previously mentioned knowledge-based and ML-based methods.
In fact, the approach proposed by Li et al. achieves an F-score of 84.4 % when evaluated
on the SemEval-2010 task 8 data set [216]. However, all described approaches are not
capable of extracting conditionals in fine-grained form (see Figure 3.1).

 Summary and Relation to Our Thesis:

There are a number of methods for the extraction of conditionals: rule-based
systems, ML-based systems, and DL-based systems – all of which are not suitable
for our use case for the following reasons:

1 They are not capable of extracting conditionals in fine-grained form, which
can be illustrated by the following example: “If A is true and B is false,
then C shall occur”. Most of the mentioned approaches (see Figure 3.1) ex-
tract antecedents and consequents only on word level (i.e., antecedent1: “A”,
antecedent2: “B”, consequent1: “C”). Consequently, valuable information
about the conditional is lost (e.g., the conditions of “A”, “B” and “C” are
ignored). Others manage to extract antecedents and consequents at phrase
level (i.e., antecedent1: “A is true”, antecedent2: “B is false”, consequent1:
“C shall occur”). However, these extracted text fragments are not fine-grained
enough for our use cases. In order to derive test cases, antecedents and
consequents must be further decomposed into variable and condition (i.e.,
antecedent_variable1: “A”, antecedent_condition1: “is true”). In addition,
we need to understand the combinatorics between the antecedents and con-
sequents and extract the relation accordingly: the exemplary requirements
states that “A” and “B” are supposed to occur together before “C” shall occur.

2 The existing DL and DL-based approaches have been trained on corpora
not originating from software engineering (e.g., BBC news [217]) and are
therefore difficult to utilize for RE purposes. Since RE documents often
exhibit a specific vocabulary, we require an approach that is trained on RE
data [218].

3 Neither the code nor any demos are publicly available for the existing meth-
ods. Hence, they can not be used without extensive re-implementation efforts.

We address this research gap and present our tool-supported approach CiRA, ca-
pable of detecting conditional statements in NL requirements (see Chapter 6) and
of extracting them in fine-grained form (see Chapter 7). A live demo of CiRA can
be accessed at www.cira.bth.se/demo/. Chapter 8 demonstrates the use of CiRA
by means of an example and provides a description of its user interface.
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3.3 Automated Extraction of Test Cases From Requirements

The automated extraction of test cases from requirements is an active field of research.
In recent years, a number of NLP-based approaches have been introduced to assist
test designers in deriving test cases. In this section, we provide an overview of these
approaches and relate them to the contributions of this thesis. We build on systematic
literature mapping studies conducted by Garousi et al. [55] and Ahsan et al. [219] that
provide comprehensive insight into the state of the art in NLP-assisted software testing.
The type of requirements from which the test cases are derived varies strongly. There is
a rich body of work on automatically deriving test cases from formal (see Section 3.3.1)
and semi-formal requirements (see Section 3.3.2). However, only a few approaches allow
to automatically create test cases from informal requirements (see Section 3.3.3). The
contribution of Chapter 10 builds upon and expands this state of the art.

3.3.1 Automatic Test Case Derivation From Formal Requirements

Definition: Formal Requirements Formal notations of requirements follow a precise
syntax and semantics. Instead of expressing the expected system behavior using natural
language, requirements engineers must follow a given formal specification language. The
application of pre-defined languages shall aid in describing the system behavior in a
precise, consistent, and unambiguous manner [220]. Examples of formal specification
languages represent Z [221], B [222], Petri nets [223], and the Vienna Development
Method (VDM) [224], which are based on mathematical notations.

Overview of Automated Test Case DerivationMethods Automatic test case generation
methods have been proposed for different kinds of formal specification styles [225, 59].
Our description does not provide complete coverage of these methods. We do only include
a sampling of the most relevant work in this section.

Sharma and Biswas [226] show how test cases can be automatically derived from cour-
teous logic representations of requirements. Specifically, they transform a requirement
like “If persons are library members, then they can borrow a book” into a corresponding
formula written in courteous logic: if library member(?X) and book(?Y) then bor-

row(?X, ?Y), and generate functional test cases automatically. Liu und Nakajima [59]
present the Vibration-Method for automatic generation of test cases from model-based
formal specifications. In this context, requirements are defined as functional scenarios
that specify a relation between input and output. These scenarios are formalized by us-
ing the Structured Object-Oriented Formal Language (SOFL) [227], which can be illus-
trated by the following example. Let us assume we want to specify an operation called
“Purchase Ticket From Card” (short: PTFC) that will be implemented in a ticket sales
system for public transport. We allow infants to ride for free and offer students a 50 %
discount on the regular fare. This operation can be defined in SOFL as follows [59]:

process PTFC(status: string, fare: nat0) actualFare: int
ext wr card: Card
pre fare ≤ card.buffer
post case status of
“Normal” → actualFare = fare and card = modify(card,buffer → card.buffer - actualFare);
“Infant” → actualFare = 0 and card = card;
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“Student” → actualFare = fare * 0.5 and card = modify(card,buffer → card.buffer - actualFare);
default → actualFare = -1 and card = card;

We define Card as a composite type that contains fields such as a buffer indicating the
current amount of available money. The operator ext wr specifies the card as a writable
external variable [228]. Initially, the fare and the buffer are compared. In case there is not
enough money available on the card to pay the fare, the default case will be executed (see
last post condition). No ticket can be purchased (indicated by actualFare = -1) and the
card remains unchanged. Otherwise, the system shall check the status (“Normal”, “Infant”,
or “Student”) of the customer and adapt the fare accordingly. Liu und Nakajima [59]
present different approaches to convert such functional scenarios into suitable test cases
automatically. In essence, they propose to apply scenario-path coverage meaning that
a suitable test set is expected to contain both test cases that satisfy the pre and post
conditions of all scenarios and test cases that check the negative paths by violating pre
and post conditions.

Lee and Yannakakis [229] illustrate that there are a number of approaches concerned
with test case generation from requirements modeled as finite state machines and their
extended forms such as abstract state machines and state charts. A prominent example
can be found in the work by Chow [230]. All developed approaches consider a system
under test as a labeled transition system. It consists of states and labeled transitions
between the states. The transition label defines the action resp. the behavior of the system
(e.g., inputs and outputs). Tretmans and Brinksma [231] introduce the tool TorX that can
be used to derive tests from formal, transition system-based specifications. It supports
formal languages such as Lotos [232] and Promela [233]. Other widely used methods
for deriving test cases from specifications given in the form of a finite state machine
include the partial W method [234] and the Unique Input Output method [235]. Helke
et al. [236] and Burton [237] explain how test cases can be generated from requirements
written in Z. Satpathy et al. [238] discuss automatic testing of systems implemented in
accordance with a formal model in B.

3.3.2 Automatic Test Case Derivation From Semi-Formal Requirements

Definition: Semi-Formal Requirements In the case of semi-formal requirements, the
“elements of a system and their relationships are declared formally, but the statements
describing their properties are specified informally” [220]. Examples of semi-formal no-
tations are graphical representations such as use case diagrams and CNL. As the name
indicates, a CNL builds on Natural Language but it is more restrictive concerning vocab-
ulary, syntax, and/or semantics in order to reduce ambiguity and to enable automatic
processing of the specification [239]. A prominent example of a CNL in Requirements En-
gineering are the EARS patterns [152]. The EARS patterns dictate a certain structure
when defining requirements (e.g., “WHILE <in a specific state> the <system name>
shall <system response>”), but allow the requirements engineer to populate the struc-
ture using natural language.

Overview of Automated Test Case Derivation Methods Carvalho et al. [240] show
how to automatically generate test cases from requirements written in SysReq-CNL.
They propose an approach called NAT2TESTSCR capable of (1) detecting whether a
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requirement is expressed in SysReq-CNL, (2) creating Software Cost Reduction (SCR)
specifications from syntactically valid requirements, and (3) generating test cases from
the created SCR specifications. The test cases are created by using the T-VEC tool [241].

De Figueiredo et al. [242] describe how test cases can be automatically derived
from requirements expressed as use cases. For this purpose, a formal behavioral model
in CSP notation [243] is automatically derived from the use cases. Subsequently, they
utilize a test case extraction tool [244] to generate test cases from the CSP model
automatically. There are several other works dealing with the generation of test cases
from use cases. For example, Barros et al. [58] present a CNL specifically designed to
model use cases (called ucsNL) and utilize the tool TaRGeT [245] to derive test cases
from use case scenarios written in ucsNL. Badri et al. [246] combine use case descriptions
with collaboration diagrams and apply the Collaboration Diagrams Description Language
(CDDL) to describe the semantic content of a collaboration diagram in textual form.
The CDDL specifications are used for the subsequent test sequences generation process.
Nebut et al. [247] associate use cases with contracts and parameters, i.e. they define the
inputs to the use cases as well as pre and postconditions. Finally, test cases are generated
automatically by instantiating the use case parameters. Araújo et al. [248] present an
approach capable of deriving test cases from use cases expressed by a specific type of
CNL: namely CARNAUbA. A large number of papers on the derivation of test cases
from restricted use case models originate from the Interdisciplinary Centre for Security,
Reliability, and Trust headed by Lionel Briand. Wang et al. [56, 249, 250] and Zhang
et al. [251] describe how to automatically generate executable system test cases from a
more structured and analyzable form of use case specifications, i.e., Restricted Use Case
Modeling (RUCM).

Yue et al. [252] present the Restricted Test Case Modeling (RTCM) language and
a test case generation tool (called aToucan4Test) that is capable of creating test cases
from RTCM specifications automatically. In this context, RTCM can be understood as a
specific type of CNL composed of an easy-to-use template, a set of restriction rules, and
keywords targeted to the description of test case specifications. Sarmiento et al. [253]
propose the Scenarios & Lexicons tool capable of automatically transforming semi-formal
descriptions of requirements into UML activity diagrams. In this context, requirements
are described by a scenario language and are structured with respect to a set of pre-
defined entities (e.g., context, episodes). Test cases are derived from the created activity
diagrams by using graph search strategies. In further work, Sarmiento et al. [254] explain
how semi-formal requirements can be translated into Petri-Net models, which can be
used as input for test scenario generation.

In response to the desire for increasing test automation, Behavior Driven Develop-
ment (BDD) emerged in recent years [255]. BDD involves a more formalized approach to
requirements, which are documented according to a specific description language (e.g.,
Gherkin). Gherkin suggests writing requirements in a “Given-When-Then” format to
make them more precise and easier to translate into tests [256]. BDD advises to first trans-
form the requirements into tests and then to successively develop each unit of the soft-
ware until the tests pass. For this purpose, tools like Cucumber offer suitable support by
automatically generating code fragments from Gherkin requirements [257]. They create
a corresponding method skeleton for each “Given-When-Then” clause and thereby ensure
optimal traceability between requirements and tests. Rane [258] deals with the transfor-
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mation of user stories into test cases. Specifically, he focuses on the user story template
“As a [user role] I want [functionality] in order to [provide business value]” and outlines
how NLP can be used to transform user stories into activity diagrams. He applies the
Depth First Search algorithm [259] to derive test cases from the created activity diagram.

3.3.3 Automatic Test Case Derivation From Informal Requirements

Definition: Informal Requirements Informal requirements are described in a narrative
form by using Unrestricted Natural Language. Consequently, they can also be specified
by individuals who are not experts in requirements definition since no formal rules need
to be observed. However, the usage of NL is often subject to vague expressions, which
can lead to divergent interpretations and, eventually, to errors in the implementation of
informal requirements.

Overview of Automated Test Case Derivation Methods The need to automatically de-
rive test cases from informal requirements has been described in early work by Sneed [105].
He presents a tool called Text Analyzer capable of extracting test cases from functional
specifications. These specifications need to be enriched by the user with certain keywords
(e.g., the term “ACT” is used to indicate system actors) in order to enable the tool to
recognize specific requirement elements embedded in the prose text.

Masuda et al. [260] apply a set of pre-defined syntactic rules to extract conditions
and actions from NL requirements. Specifically, they apply different NLP techniques
(e.g., Constituency Parsing) to requirements and analyze the output regarding specific
rules. Subsequently, they apply decision table testing to generate test cases based on the
identified actions and conditions.

Dwarakanath and Sengupta [261] present Litmus, a tool that applies a syntactic parser
called Link Grammar in order to analyze the structure of a NL requirement and create test
cases accordingly. Goffi et al. [262] demonstrate how to create test cases for exceptional be-
haviors from Javadoc comments. First, they extract all Javadoc comments that are related
to exceptional behaviors. Second, they translate Javadoc conditions into Java Boolean ex-
pressions (e.g., “the comparator is locked” is transformed to target.isLocked()==true).
Finally, they generate test oracles in the form of assertions and embed them in test cases.

Santiago Júnior and Vijaykumar [263] present SOLIMVA capable of translating NL
requirements into state charts used for the eventual test case generation. Verma and
Beg [264] as well as Kulkarni and Joglekar [52] describe a similar approach for translating
informal requirements into knowledge representation graphs. They use a boundary value
analysis for the automatic generation of test cases from the created knowledge graphs.

Ansari et al. [265] propose an NLP system capable of extracting test cases from
conjunctive statements containing “if ” and “then” keywords. However, the description of
the system contained in their paper is very rudimentary, making it difficult to understand
the inner workings of the NLP pipeline.

Boddu et al. [266] present a requirements analysis tool called REquirements to Test-
ing in a NAtural way (RETNA). First, RETNA classifies NL requirements according to
their type and complexity. Second, the requirements are translated to an intermediate
predicate-argument structure [267] and later to a discourse representation structure [268].
Based on user interaction, the translated requirements are refined and ultimately trans-
formed into a state machine, from which test cases are derived automatically.
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 Summary and Relation to Our Thesis:

NLP-assisted software testing is an active field of research. There are a number
of approaches that support practitioners in deriving test cases from formal, semi-
formal, and informal requirements. In this thesis, we focus on automatic accep-
tance test creation from informal requirements - the most common notation style
of requirements in practice. The approaches presented in Section 3.3.1 and Sec-
tion 3.3.2 require the compliance of a rigid formalism and are therefore not suit-
able for the implementation of our use case. Similarly, the approaches presented
for deriving test cases from informal requirements are also not suited due to the
following drawbacks:

1 Most importantly, the presented approaches do not ensure that only the
minimal number of required test cases is created. However, this is crucial
because practitioners need assistance in striking a balance between full test
coverage and the number of required test cases (see Section 1.2).

2 They show poor performance when evaluated on unseen real-world data.
Specifically, they are not robust against grammatical errors and fail to process
words that are not yet part of their training vocabulary.

3 Partly, they require manual work such as the creation of a dictionary [263]
defining the application domain in which the approach will be used or they
rely on user interaction for requirements refinement [266].

4 Some authors present both their approach and a corresponding tool in their
paper, but do not make it publicly available. Hence, the approaches are not
immediately usable for practitioners.

We address this research gap and present an approach capable of deriving accep-
tance tests from conditional statements in NL requirements automatically. We
use CiRA to extract conditionals in fine-grained form and then translate them into
a CEG. The usage of a CEG enables us to automate the combinatorial design
of test cases and ensure that they are minimal. Our case study proves that our
approach is able to automatically create a significant amount of relevant (known
and new) test cases (see Chapter 10). In our setting, our approach automatically
created 71.8 % of the 578 manually created test cases. Additionally, it identified
80 relevant test cases that were missed in manual test design.
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Part I

Understanding Conditionals in
Requirements Artifacts

Common Thread As outlined in Section 1.3, we lack knowledge on the notion of condi-
tional statements in requirements artifacts. Specifically, we do not know how prevalent
conditionals are in RE artifacts, as well as in which form and complexity they occur.
This hinders the development of approaches for their extraction since we do not under-
stand which capabilities a suitable extraction approach needs to possess. For example,
does the approach need to be able to handle conjunctive and disjunctive events or do
conditionals in RE artifacts only contain single antecedent-consequent relationships? In
addition, we still lack knowledge on how conditionals are interpreted in practice, and
how they should be formalized accordingly. For example, do practitioners perceive an
antecedent as only sufficient or also necessary for a consequent? This knowledge is in-
dispensable to build a suitable approach for conditional extraction since conditionals
must be associated with formal semantics to automatically process them and utilize their
embedded logical knowledge. In this part of the thesis, we provide an answer to these
questions. We present two studies that help the reader build an understanding of condi-
tionals in RE artifacts. In the first study (see Chapter 4), we analyze the extent, form,
and complexity of conditionals in requirements rooted in 14,983 sentences and emerg-
ing from 53 requirement documents. In the second study (see Chapter 5), we study how
104 RE practitioners interpret 12 different conditional clauses in requirements. At the
end of each study, we discuss the implications of our results for the development of an
approach for automated conditional extraction from RE artifacts.

Preliminaries To understand this part, it is first necessary to comprehend the theoret-
ical foundations described in Section 2.1. The reader must understand the concept of
conditional statements and be aware of the different forms in which conditionals can
occur. In addition, the distinction between the different logical levels of interpretation
(Necessity and Temporality) is elementary to follow the second study.
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Chapter 4

Empirical Study on Prevalence, Form,
and Complexity of Conditionals

in Requirements Artifacts

Common Thread We conduct an exploratory case study to address the first problem
of this thesis, namely “the missing understanding of the notion of conditionals in RE
artifacts” (see Section 1.3). Specifically, we investigate 14,983 sentences from 53 require-
ments documents originating from 18 different domains and shed light on the prevalence,
form, and complexity of conditionals in requirements. We involve six annotators and an-
notate the sentences in our data set with respect to nine categories (e.g., explicit / im-
plicit conditionals, marked / unmarked conditionals). We verify the reliability of our an-
notations by calculating Gwet’s AC1 measure. Across all categories, we achieve a mean
value of above 0.8, which indicates a nearly perfect agreement.

Contribution Our study demonstrates that conditional statements matter in RE arti-
facts. About 28 % of the analyzed sentences specify a dependency between an antecedent
and a consequent. We found that the majority (56 %) of conditional sentences contained
in requirement documents express an enable relationship between certain events. Fur-
ther, our study shows that most conditionals in RE artifacts are explicit and occur in
marked form. Single antecedents and consequents occur significantly more often than
multiple antecedents and consequents. However, we also found that conditionals in RE
artifacts may include up to three antecedents and two consequents. Hence, for the con-
ditional extraction approaches to be applicable in practice, they must be capable of un-
derstanding conjunctions, disjunctions and negations in the sentences to fully capture
the relationships between antecedents and consequents.

Related Publications This chapter is taken, directly or with minor modifications, from
previous publications [1, 4, 7].
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4.1 Research Objective

4.1 Research Objective

Reliable knowledge about the distribution of conditionals is a necessary precondition
to develop efficient approaches for the automated extraction of conditional statements.
However, empirical evidence on conditionals in requirements artifacts is presently still
weak. We address this research gap and analyze the prevalence, form, and complexity of
conditional statements in requirements artifacts. Based on the terminology introduced
in Section 2.1, we investigate the following research questions (RQ):

∎ RQ 1: To which degree do conditionals occur in requirement documents?

∎ RQ 2: How often do the relations cause, enable and prevent occur?

∎ RQ 3: In which form do conditional statements occur in requirement documents?

– RQ 3a: How often do marked and unmarked conditionals occur?

– RQ 3b: How often do explicit and implicit conditionals occur?

– RQ 3c: Which cue phrases are used? Are they mainly ambiguous or non-
ambiguous?

∎ RQ 4: At which complexity do conditionals statements occur in requirement
documents?

– RQ 4a: How often do multiple antecedents occur?

– RQ 4b: How often do multiple consequents occur?

– RQ 4c: How often do two sentence conditionals occur?

– RQ 4d: How often do event chains occur?

∎ RQ 5: Is the distribution of labels in all categories domain-independent?

To answer our research questions, we perform a case study according to the guidelines
of Runeson and Höst [269]. Based on the classification of Robson [270], our case study
is exploratory as we seek for new insights into conditionals in requirement documents.

4.2 Study Design

In this section, we characterize our study objects and describe how we conducted the
case study to answer our research questions. Specifically, we outline the process of
annotating the study objects and specify the applied procedures to ensure the validity
of our annotations.

Study Objects To obtain evidence on the extent to which conditional statements are
used in requirements artifacts in practice, we had to generate a large and representative
collection of artifacts. We considered data sets as eligible for our case study based on
three criteria: 1) the data set shall contain requirements artifacts that are/were used in
practice, 2) the data set shall not be domain-specific, but rather contain artifacts from
different domains, and 3) the documents shall originate from a time frame of at least 10
years. Following these criteria ensures that our analysis is not restricted to a single year
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Table 4.1: Overview of Collected Requirement Documents.

Website Search Terms # Docs

google.com requirements document (pdf) OR 124requirements specification (pdf)

ntrs.nasa.gov requirements document 11

sci.esa.int requirements document 7

www.eurocontrol.int requirements 50

www.everyspec.com requirements OR system requirements 178

www.etsi.org/standards most recent 93

or domain, but rather allows for a comprehensive and generalizable view on conditionals
in requirements. The PUblic REquirements data set (PURE) [218] is a first contribution
in this direction, however, it is not suitable for our purposes as it is not clear from which
domains and years the contained requirements documents originate. Hence, we initiated
the creation of a new large gold standard corpus of requirements [2]. The corpus is not only
intended to be used for our study purposes but should also serve as the basis for further
studies in the RE community. For example, we welcome fellow researchers to use the data
set as a benchmark for different RE relevant NLP tasks such as requirements classification.

We collected publicly available requirements specifications by means of a web search.
We queried Google and libraries as Everyspec to retrieve documents from different do-
mains. Table 4.1 summarizes the searched websites and the applied search terms. We
only considered documents that are in PDF format, have at least 10 pages, are written in
English, and do contain requirements. To verify the latter, we conducted a brief manual
review of each document. Our search led to the identification of 463 requirement docu-
ments. The shortest document has 10 pages, while the longest contains 2822 pages. On
average, a document has 88 pages. In order to make the data included in the documents
usable for further analysis, we have to extract complete sentences. Simply extracting the
lines and analyzing incomplete sentences is not reasonable as essential phrases of the
sentences are neglected. Additionally, we need to clean up the data, i.e. we need to re-
move lines that are only used for structure purposes (e.g. headings) and do not contain
RE relevant content. To this end, we performed the following steps:

1 Extract raw text lines from the PDF file using the pdfminer Python library.

2 Preprocess the resulting lines by removing leading and trailing white spaces and
compressing a group of consecutive white spaces to one.

3 Filter out lines that contain clearly no content. A line is filtered if at least one of
the following criteria is satisfied:

a) The line starts with “Figure” or “Table”.
b) The line starts with a page character or “Chapter”.
c) The line contains less than 50 characters and does not end with “.”, “?” or “!”.
d) The line contains a group of at least 4 consecutive “.” characters (deletion of

entries in table of content).

4 Delete enumeration marks like “a)”.
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5 Build paragraphs by splitting the text at empty lines and combining consecutive
lines.

6 Split the paragraphs into sentences.

7 Manually improve the sentence splitting by combining two consecutive sentences
if the first sentence ends with “e.g.” or “i.e.”.

8 Remove the prefix “Note” if it is not followed by “that”.

After preprocessing, our data set contains 212,186 complete sentences.1 To the best of
our knowledge, this data set is currently the most extensive collection of requirements
available to the research community. We randomly selected 53 documents from the data
set for our analysis of the prevalence of conditionals in RE artifacts. Hence, our study
focuses on 14,983 sentences from 18 different domains (see Figure 4.1).

Model the Phenomenon In order to answer our research questions, we need to annotate
the sentences in our data set with respect to certain categories (e.g. explicit or implicit
conditionals). According to Pustejovsky and Stubbs [271], the first step in each annotation
process is to “model the phenomenon” that needs to be annotated. Specifically, it should
be defined as a model M that consists of a vocabulary T, the relations R between the
terms as well as the interpretations I of terms. RQ 1 can be understood as a binary
annotation problem, which can be modeled as:

∎ T: {sentence, # Conditional Present , # Conditional Not Present }

∎ R: {sentence ::= # Conditional Present ∣ # Conditional Not Present }

∎ I: { # Conditional Present = A sentence contains a conditional statement if it specifies
a relation between at least two events e1 and e2, where e1 leads to the occurrence
of e2; # Conditional Not Present = A sentence does not contain a conditional if it
describes a state that is independent on any events}

Modeling an annotation problem has two advantages: It contributes to a clear defini-
tion of the research problem and can be used as a guide for the annotators to explain
the meaning of the labels. We have modeled each RQ and discussed it with the anno-
tators. In addition to interpretation I, we have also provided an example for each la-
bel to avoid misunderstandings. After modeling all RQs, the following eight categories
emerged, according to which we annotated our data set: # Conditional Present , # Explicit ,
# Marked , # Single Sentence , # Single Antecedent , # Single Consequent , # Event Chain , and
# Relationship . We refer to all categories except # Conditional Present as dependent cate-
gories, as they are dependent on the # Conditional Present label. To answer RQ 6, we per-
form a stratified analysis for each of the aforementioned categories using the domains as
strata. Due to the imbalance of the data set with respect to the domains the requirements
sentences originate from, we formulate the following null hypothesis for each category X:
“sentences from different domains have the same distribution of values in category X”.

1 Available at https://figshare.com/s/725309c06b9dc82aa4a1. Due to the terms of use of some sources,
we can only share the URLs of the collected documents. We attached a script to download the data
set automatically.
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Annotation Environment We developed our own annotation platform tailored to our
research questions.2 Contrary to other annotation platforms [272] which only show single
sentences to the annotators, we also show the predecessor and successor of each sentence.
This is required to determine whether the conditional extends over one sentence or across
multiple ones (see RQ 5c). For the binary annotation problems (see RQ 1, RQ 4a, RQ 4b,
RQ 5a - d), we provide two labels for each category. Cue phrases present in the sentence
can either be selected by the annotator from a list of already labeled cue phrases or new
cue phrases can be added using a text input field (see RQ 4c). Since RQ 2 and RQ 3 are
ternary annotation problems, the platform provides three labels for these categories.

Annotation Guideline To ensure a common understanding both of conditionals in
general and of the respective categories, we conducted a workshop with all annotators
prior to the labeling process. The results of the workshop were recorded in the form of an
annotation guideline.3 All annotators were instructed to comply with all of the annotation
rules. One important, initially counter-intuitive instruction was to not entirely depend
on the occurrence of cue phrases, as this approach is prone to introducing too many
False Positives. Rather than focusing on lexical or syntactic attributes, the annotation
process has to be initiated by fully reading the sentence and comprehending it on a
semantic level. The impact of this becomes evident when considering some examples:
requirements like “If the gaseous nitrogen supply is connected to the ECS duct system,
ECS shall include the capability of monitoring the oxygen content in the ducting” are
easy to classify since the conditional is indicated by the cue phrase “if ” and due to the
explicit phrasing of both the antecedent and the consequent. Requirements containing
a relative clause like “Any items or issues which will limit the options available to the
platform developers should be described” are more difficult to correctly classify due to the
lack of cue phrases. The semantically equivalent paraphrase “If an item or issue will limit
the options available to the platform developers, the item or issue should be described”
reveals the conditional statement contained by the requirement.

Annotation Validity To verify the reliability of our annotations, we calculated the inter-
annotator agreement. We assigned 3,000 sentences to each annotator, of which 2,500
are unique and 500 overlapping. Based on the overlapping sentences, we calculated the
Cohen’s Kappa [273] measure to evaluate how well the annotators can make the same
annotation decision for a given category. We chose Cohen’s Kappa since it is widely used
for assessing inter-rater reliability [274]. However, a number of statistical problems are
known to exist with this measure [275]. In case of a high imbalance of ratings, Cohen’s
Kappa is low and indicates poor inter-rater reliability even if there is a high agreement
between the raters (Kappa paradox [276]). Thus, Cohen’s Kappa is not meaningful in
such scenarios. Consequently, studies [277] suggest that Cohen’s Kappa should always be
reported together with the percentage of agreement and other paradox resistant measures
(e.g. Gwet’s AC1 measure [278]) in order to make a valid statement about the inter-rater
reliability. We involved six annotators in the creation of the corpus and assessed the inter-
rater reliability on the basis of 3,000 overlapping sentences, which represents about 20 %

2 The platform can be accessed at clabel.diptsrv003.bth.se.
3 The annotation guideline can be found in our replication package: https://doi.org/10.5281/zenodo.
5596668.
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Table 4.2: Inter-Annotator Agreement Statistics per Category. The Category # Relationship Was
Jointly Labeled and Therefore Does Not Require a Reliability Assessment.

Conditional
Present Explicit Marked Single

Sentence
Single

Antecedent
Single

Consequent
Event
Chain avg.

0 1 0 1 0 1 0 1 0 1 0 1 0 1

Confusion 0 2034 193 24 25 1 22 12 8 41 77 63 72 450 27

Matrix 1 274 499 39 411 12 464 17 462 43 338 46 318 13 9

Agreement 84.4 % 87.2 % 93.1 % 95.0 % 76.0 % 76.4 % 92.0 % 86.3 %

Cohen’s Kappa 0.579 0.358 0.023 0.464 0.261 0.362 0.27 0.331

Gwet’s AC1 0.753 0.84 0.926 0.945 0.645 0.625 0.91 0.806

of the total data set. We calculated all measures (see Table 4.2) using the cloud-based
version of AgreeStat [279]. Cohen’s Kappa and Gwet’s AC1 can both be interpreted using
the taxonomy developed by Landis and Koch [280]: values ≤ 0 as indicating no agreement
and 0.01–0.20 as none to slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as
substantial, and 0.81–1.00 as almost perfect agreement.

Table 4.2 demonstrates that the inter-rater agreement of our annotation process is
reliable. Across all categories, an average percentage of agreement of 86 % was achieved.
Except for the categories # Single Antecedent and # Single Consequent , all categories show
a percentage of agreement of at least 84 %. We hypothesize that the slightly lower value
of 76 % for these two categories is caused by the fact that in some cases the annotators
interpret the antecedents and consequents with different granularity (e.g., annotators
might break some antecedents and consequents down into several sub antecedents and
consequents, while some do not). Hence, the annotations differ slightly. The Kappa
paradox is particularly evident for the categories # Marked and # Event Chain . Despite a
high agreement of over 90 %, Cohen’s Kappa yields a very low value, which “paradoxically”
suggests almost no or only fair agreement. A more meaningful assessment is provided by
Gwet’s AC1 as it did not fail in the case of prevalence and remains close to the percentage
of agreement. Across all categories, the mean value is above 0.8, which indicates a nearly
perfect agreement. Therefore, we assess our labeled data set as reliable and suitable for
further analysis.

Data Analysis RQ 1-5 are answered by providing descriptive statistics of the distribu-
tion of labels for each category. For RQ 6, inferential statistics are applied. Since the
hypotheses formulated for each category aim to investigate the independence between
the association of a requirement to a specific domain and the distribution in the respec-
tive category, a statistical hypothesis test for independence can be used. As both the
independent variable (the domain) and the dependent variable (the respective category)
are categorical, the Chi-squared test will be used. The category # Conditional Present is
tested with respect to the full annotated data set. All dependent categories are tested
on the samples that contain conditionals since only sentences including conditionals are
annotated in the other categories. For all tests, only domains with at least 100 sentences
were selected as eligible strata to confine the hypothesis tests to sufficiently represented
domains. This threshold was introduced to RQ 6 to avoid the noise of underrepresented
domains. Since the data set was aggregated in RQ 1-5, this change is only necessary for
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Figure 4.2: Percentage of Sentences Labeled as # Explicit Within Domains Containing at Least
100 Conditionals.

RQ 6. Using the subset of domains as strata implies the degree of freedom of the Chi-
squared tests exceeding 2, hence the risk of the multiple comparison problem, i.e., the
likelihood for a Type I error in rejecting null hypotheses, arises [281]. For example, when
evaluating the null-hypothesis of independence for the dichotomous category # Explicit ,
considering the nine eligible domains with more than 100 sentences including condition-
als yields a degree of freedom of 8, as it is calculated as follows [282] (considering that
the number of rows is 2 for dichotomous variables):

dof = (number of rows − 1) ∗ (number of columns − 1) = (2 − 1) ∗ (9 − 1) = 8 (4.1)

The p-value of the Chi-squared test of this hypothesis is 0.000036, far below the signifi-
cance level α = 0.05, even though the relative number of values in the category # Explicit
among the eligible domains suggests an equal distribution and therefore independence
of the domain, as seen in Figure 4.2. Hence, instead of reporting the in this case not
meaningful p-value of the Chi-square hypothesis test we perform a Bonferroni correc-
tion [281] on the significance level and perform the Chi-squared test in each category for
each domain against the sum of all samples outside of the domain, as applied in simi-
lar scenarios [283]. Applying the Bonferroni correction to the significance level based on
the following formula [281] yields a significance level that counteracts the large degree of
freedom m and reduces the likelihood of Type I errors when refuting null hypotheses:

pc =
α

m
= 0.5

8
= 0.00625 (4.2)

The previously calculated p-value for the Chi-square test of independence considering
all domains still suggests to reject the null hypothesis. Hence, a post-hoc test similar
to [283], where each domain is compared to the sum of all other domains, is applied to
reveal, that only the null-hypothesis for the domain sustainability can be refuted with a
p-value of 0.0001 < 0.00625, which aligns with Figure 4.2. This procedure is applied to
all hypotheses of RQ 6.
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Figure 4.3: Annotation Results per Category. The Y Axis of the Bar Plot for the Category
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4.3 Study Results

Figure 4.3 presents the analysis results for each labeled category. When interpreting
the values, it is important to note that we analyze entire requirement documents in our
study. Consequently, our data set contains records with different contents, which do not
necessarily represent all functional requirements. For example, requirement documents
also contain non-functional requirements, phrases for content structuring, purpose state-
ments, etc. Hence, the results of our analysis do not only refer to functional requirements
but in general to the content of requirement documents.

Answer to RQ1 Figure 4.3 highlights that conditional statements occur in requirement
documents. About 28 % of the analyzed sentences contain a conditional. It can therefore
be concluded that conditionals are a major linguistic element of requirement documents
since almost one-third of all sentences describe a dependence between an antecedent and
consequent.

 Side Note: On the Prevalence of Conditionals in Agile RE Artifacts

In a previous study [1], we analyzed 961 user stories describing the functionality of
two Business Information Systems (BIS) being in production at Allianz Deutsch-
land. Specifically, we studied the contained acceptance criteria and examine for
recurring patterns in describing system behavior. This allowed us to detect differ-
ent patterns in the formulation of acceptance criteria. Our analysis revealed that
the system behavior is described recurrently using three different patterns:

1 State Description: This pattern describes an expected state of the system
associated with the fulfillment of the user story. Example: “A list of existing
insurance policies for the selected user profile is shown in the overview.”

2 Antecedent-Consequent-Relationship: This pattern describes the expected
system behavior (consequent) in relation to certain system inputs (an-
tecedents). The acceptance criterion thus defines the functionality on the oc-
currence of certain antecedents and vice versa. Example: “Discount applies
only to drivers who are at least 23 years old and show a no-claims class of 4,
or do not book a comfort package.”

3 Process Flows: Similar to the previous pattern, the third pattern defines
functionality based on specific events. However, not only their occurrence but
also their chronological order plays a major role. Example: “After selecting
a contract type, the data is transmitted to the server, and a new query is
issued to the user asking whether further persons should be included in the
contract. Then a toggle appears on whether the contract documents should
be sent by email or post.”

We found that the second pattern is the major category (BIS 1: 46 % and BIS 2:
52 %). In about 31 % of user stories describing BIS 1, the first pattern is used,
while the third pattern is used least (23 %). Regarding BIS 2, the first pattern
is applied in 35 % and the third pattern in 13 % of all user stories. Hence, our
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study demonstrates that conditionals are also prevalent in agile RE artifacts. This
finding complements the results of the study described in the present chapter and
contributes to a holistic view of the occurrence of conditionals in RE artifacts.

Answer to RQ2 The majority (56 %) of conditionals contained in requirement docu-
ments express an enable relationship between certain events. Only about 10 % of the
conditionals indicate a prevent relationship. Cause relationships are found in about 34 %
of the annotated data.

Answer to RQ3a Figure 4.3 shows that the majority of conditionals contain one or more
cue phrases to indicate the relationship between certain events. Unmarked conditionals
occur only in about 15 % of the analyzed sentences.

Answer to RQ3b Most conditionals are explicit, i.e. they contain information about both
the antecedent and the consequent. Only about 10 % of conditionals in the investigated
requirements documents are implicit.

Answer to RQ3c All cue phrases used to indicate conditionals statements in the inves-
tigated requirements artifacts are listed in Table 4.3. The left side of the table shows the
cue phrases ordered by word group. On the right side, all verbs used to express condition-
als are listed. The verbs are further ordered according to whether they express a cause,
enable, or prevent relationship. To assess the ambiguity of a cue phrase x, we formulate
a binary classification task: consider all sentences as the sample space. The conditionals
of that sample space represent the relevant elements. The precision of cue phrase x as
a selection criterion for conditionals is the conditional probability, that a sentence from
the sample space contains a conditional given that it contains cue phrase x, and hence
reflects the ambiguity of the cue phrase:

Pr(sentence contains conditional ∣ sentence contains x) =
Pr(sentence contains conditional ∩ sentence contains x)

Pr(sentence contains x)
(4.3)

A high precision value indicates a non-ambiguous cue phrase, i.e., the occurrence of the
cue phrase in a sentence is a strong indicator for the sentence containing a conditional,
while low values indicate strongly ambiguous cue phrases. Table 4.3 demonstrates that a
number of different cue phrases are used to express conditionals in requirement documents.
Not surprisingly, cue phrases like “if ”, “because” and “therefore” show precision values of
more than 90 %. However, there is a variety of cue phrases that indicate conditionals in
some sentences but also occur in other contexts. This is especially evident in the case of
pronouns. Relative sentences can indicate conditionals, but not in every case, which is
reflected by the low precision value of for example “which”. A similar pattern emerges
with regard to the used verbs. Only a few verbs (e.g., “leads to, degrade”, and “enhance”)
show a high precision value. Consequently, the majority of used pronouns and verbs do
not necessarily indicate a conditional if they are present in a sentence.
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Figure 4.4: Distribution of Conditional Statements Among Domains.

Answer to RQ 4a Figure 4.3 illustrates that a conditional in requirement documents
often includes only a single antecedent. Multiple antecedents occur in only 19.1 % of
analyzed conditionals. The exact number of antecedents was not documented during the
annotation process. However, the participating annotators reported consistently that
in the case of complex conditional statements, two to three antecedents were usually
included. More than three antecedents were rare.

Answer to RQ4b Interestingly, the distribution of consequents is similar to that of
antecedents. Likewise, single consequents occur significantly more often than multiple
consequents. According to the annotators, the number of consequents in case of complex
conditionals is limited to two consequents. Three or more consequents occur rarely.

Answer to RQ4c Most conditionals can be found in single sentences. Relations where
antecedent and consequent are distributed over several sentences occur only in about 7 %
of the analyzed data. The annotators reported that most often the cue phrase “therefore”
was used to express two-sentence conditionals.

Answer to RQ4d Figure 4.3 shows that event chains are rarely used in requirement
documents. Most conditionals contain isolated relations between antecedent and conse-
quent and only a few event chains.

Answer to RQ 5 Figure 4.4 visualizes the distribution of conditionals among all domains
which are represented with more than 100 sentences. As the percentage of conditionals
ranges from 17.8 % up to 44.4 %, we can assume that conditional statements are indeed a
phenomenon occurring in all eligible domains. The Chi-squared test reported in Table 4.4
suggests rejecting the null hypothesis for domain-independence for 10 out of 14 eligible do-
mains considering the Bonferroni-corrected significance level. We can conclude that condi-
tionals are a phenomenon observable independent of the domain from which requirements
originate, but the extent to which conditionals occur differs with statistical significance.
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Table 4.3: Overview of Cue Phrases Used to Indicate Conditionals in Requirement Documents.
Bold Precision Values Highlight Non-Ambiguous Phrases That Mostly Indicated Con-
ditionals: Pr(Conditional is present ∣ X is present in sentence) ≥ 0.8.

Type Phrase Conditional
Present

Conditional
Not Present Precision Type Phrase Conditional

Present
Conditional
Not Present Precision

conjunctions if 387 41 0.90 Cause force(s/ed) 21 18 0.54
as 607 1313 0.32 cause(s/ed) 32 10 0.76
because 78 7 0.92 lead(s) to 5 0 1.00
but 100 204 0.33 reduce(s/ed) 48 28 0.63
in order to 141 33 0.81 minimize(s/ed) 28 11 0.72
so (that) 88 86 0.51 affect(s/ed) 13 19 0.41
unless 23 4 0.85 maximize(s/ed) 11 5 0.69
while 71 90 0.44 eliminate(s/ed) 8 11 0.42
once 48 15 0.76 result(s/ed) in 50 43 0.54
except 9 5 0.64 increase(s/ed) 49 34 0.59
as long as 12 1 0.92 decrease(s/ed) 5 8 0.38

adverbs therefore 61 6 0.91 impact(s) 37 68 0.35
when 331 64 0.84 degrade(s/ed) 11 2 0.85
whenever 10 0 1.00 introduce(s/ed) 11 12 0.48
hence 21 9 0.70 enforce(s/ed) 2 1 0.67
where 213 150 0.59 trigger(s/ed) 11 7 0.61
then 111 70 0.61 imply 7 14 0.33
since 65 32 0.67 attain(s/ed) 3 13 0.18
consequently 2 6 0.25 create(s/ed) 39 88 0.30
wherever 5 2 0.71 impose(s/ed) 7 13 0.35
rather 16 30 0.35 perform(s/ed) 26 60 0.30
to this/that end 12 0 1.00 Enable depend(s) on 28 21 0.57
thus 66 17 0.80 require(s/ed) 316 262 0.55
for this reason 7 3 0.70 allow(s/ed) 187 130 0.59
due to 91 26 0.78 need(s/ed) 98 162 0.38
thereby 4 2 0.67 necessitate(s/ed) 7 2 0.78
as a result 11 4 0.73 facilitate(s/ed) 29 28 0.51
for this purpose 1 2 0.33 enhance(s/ed) 16 4 0.80

pronouns which 277 608 0.31 ensure(s/ed) 145 66 0.69
who 28 52 0.35 achieve(s/ed) 30 24 0.56
that 732 1178 0.38 support(s/ed) 128 301 0.30
whose 16 11 0.59 enable(s/ed) 75 36 0.68

adjectives only 127 126 0.50 permit(s/ed) 10 13 0.43
prior to 26 20 0.57 rely on 3 5 0.38
imperative 1 3 0.25 measure(s/ed) 99 247 0.28
necessary (to) 36 19 0.65 provide(s/ed) 75 125 0.37
given 73 140 0.34 get 13 23 0.36
following 53 175 0.23 meet 42 34 0.55

preposition for 1209 2753 0.31 Prevent hinder(s/ed) 1 1 0.50
during 327 137 0.70 prevent(s/ed) 38 17 0.69
after 133 57 0.70 avoid(s/ed) 14 23 0.38
by 506 1171 0.30 mitigate(s/ed) 3 8 0.27
with 680 1554 0.30
in the course of 2 1 0.67
through 114 204 0.36
as part of 19 51 0.27
in this case 18 3 0.86
before 54 27 0.67
until 33 11 0.75
upon 25 48 0.34
in case of 30 7 0.81
in both cases 1 0 1.00
in the event of 15 2 0.88
in response to 6 7 0.46
in the absence of 8 1 0.89
within 150 315 0.32
as far as 4 5 0.44
according to 21 54 0.28
around 25 41 0.37
from 370 990 0.27
based on 56 175 0.24
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Table 4.4: Bonferroni-Corrected Chi-Squared Tests of Independence From the Domain. Cells
PrefixedWith * Indicate a Category,Where the Distribution of the Given Domain Differs
Significantly From the Sample.

Domain Conditional
Present Explicit Marked Single

Antecedent
Single

Consequent
Event
Chain

Single
Sentence Relationship

pc 3.8E-03 6.3E-03 6.3E-03 6.3E-03 6.3E-03 6.3E-03 6.3E-03 3.1E-03

Aerospace *8.0E-05 1.5E-01 8.2E-03 9.8E-02 6.4E-03 7.2E-02 6.3E-01 3.1E-02
Agriculture *7.0E-04 (domain contained less than 100 conditionals)
Astronomy *4.1E-08 6.2E-02 1.0E-02 8.9E-01 2.7E-01 1.1E-01 2.4E-01 3.0E-01
Automotive 2.9E-01 (domain contained less than 100 conditionals)
Banking *1.9E-04 1.3E-01 5.3E-01 9.0E-02 2.8E-02 5.3E-01 2.6E-01 4.4E-01
Data Analytics *1.4E-05 3.4E-02 1.3E-02 2.3E-02 *3.7E-03 1.3E-01 3.9E-01 5.9E-01
Digital Library 9.3E-01 (domain contained less than 100 conditionals)
Digital Society 4.4E-03 (domain contained less than 100 conditionals)
Health *9.4E-04 1.4E-02 5.7E-01 7.9E-02 6.8E-01 6.3E-01 7.7E-01 1.8E-01
Infrastructure *2.1E-06 5.0E-01 3.2E-01 4.1E-01 1.6E-01 5.0E-01 6.8E-01 *6.7E-05
Physics *2.1E-04 (domain contained less than 100 conditionals)
Smart City *8.4E-07 5.9E-02 *2.0E-05 1.3E-02 3.5E-01 3.2E-01 *2.3E-03 3.9E-01
Sustainability *1.4E-14 *1.2E-04 *2.3E-04 8.7E-01 5.4E-01 1.4E-02 *5.7E-03 1.9E-01
Telecomm 5.7E-01 2.2E-01 7.3E-01 5.2E-01 3.1E-01 1.8E-02 3.5E-02 7.1E-01

For all dependent categories, the domains Aerospace, Astronomy, Banking, Data An-
alytics, Health, Infrastructure, Smart City, Sustainability, and Telecomm are eligible for
consideration as they contain more than 100 sentences that include a conditional. On
the right side of Table 4.4 each cell contains the p-value for a Chi-squared test compar-
ing the distribution of the given domain to the rest of the sample. Where the p-value
for a given domain and category is lower than the Bonferroni-corrected significance level
(denoted for each category as pc), the cell is prefixed with an asterisk. The Chi-squared
test of independence does not suggest to reject the null hypothesis for the categories
# Single Antecedent and # Event Chain , but the distribution of 2 out of the eligible 9 do-
mains in the category # Marked and # Single Sentence are significantly different. We can
conclude that the distribution of values in all categories is domain-independent to a cer-
tain degree: while the complexity of conditionals is mostly domain-independent, the dis-
tribution of marked conditionals and conditionals contained in single sentences differs
significantly for an about a fourth of the eligible domains.

A stratified analysis for RQ 4c is reported in Table 4.5a and shows considerable
differences in the usage of cue phrases in the domains, but also a degree of overlap:
the cue phrase “if ” is among the five most frequent cue phrases in all domains, closely
followed by the cue phrases “when” and “where”. The stratified frequencies align with the
overall distribution reported in Table 4.3 lead to the assumption that the distribution of
cue phrases is mostly domain independent. When looking at the most precise cue phrases
per domain in Table 4.5b and the least precise cue phrases per domain in Table 4.5c, the
cue phrases also reflect the findings from the overall distribution: precise cue phrases like
“if ”, “when”, and “because” as well as infrequent, but precise causative verbs are equally
represented in the domains just as imprecise cue phrases like “for” or “by”. We conclude
that despite slight domain-specific variations, the results for RQ 3c are also domain-
independent.4

4 More extensive tables reporting on the frequency and Precision of cue phrases in eligible domains are
included in our replication package: https://doi.org/10.5281/zenodo.5596668.
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Table 4.5: Distribution and Precision of Cue Phrases in Eligible Domains.

(a) Relative Frequency of Cue Phrases Within One Domain.

Domain most frequent 2nd most frequent 3rd most frequent 4th most frequent 5th most frequent

Aerospace during (8.5%) when (8.4%) if (7.5%) in order to (3.7%) after (3.0%)
Astronomy for (10.2%) during (9.1%) allow (9.1%) in (5.7%) to (5.7%)
Banking if (11.2%) to ensure (8.8%) once (7.2%) allow (5.6%) through (4.8%)
Data Analytics if (10.7%) when (9.4%) where (7.9%) for (5.2%) during (4.2%)
Health when (11.5%) if (11.5%) during (10.5%) for (4.6%) after (3.8%)
Infrastructure where (16.5%) if (15.1%) to ensure (5.6%) for (5.3%) then (4.9%)
Smart City in order to (10.7%) when (7.4%) if (7.1%) therefore (4.9%) that (4.4%)
Sustainability therefore (8.6%) in order to (7.0%) if (5.9%) for (5.4%) where (4.3%)
Telecomm if (8.7%) during (8.0%) in order to (6.0%) when (5.3%) in case of (4.7%)

(b) Most Precise Cue Phrases of Each Eligible Domain.

Domain most precise 2nd most precise 3rd most precise 4th most precise

Aerospace imposes (100.0%) as far as (100.0%) result from (100.0%) in this case (100.0%)
Agriculture since (100.0%) whose (100.0%) before (100.0%) when (100.0%)
Astronomy during (100.0%) in the event of (100.0%) so that (100.0%) attain (100.0%)
Automotive when (100.0%) in order to (100.0%) therefore (100.0%) whose (100.0%)
Banking in order to (100.0%) reduce (100.0%) will be required (100.0%) since (100.0%)
Data Analytics as long as (100.0%) increases (100.0%) unless (100.0%) so that (100.0%)
Digital Library only for (100.0%) cause (100.0%) because (100.0%) unless (100.0%)
Digital Society in order to (100.0%) if (100.0%) due to (100.0%) allows (100.0%)
Health allows (100.0%) so that (100.0%) in the event of (100.0%) as a result (100.0%)
Infrastructure lead to (100.0%) prevent (100.0%) whose (100.0%) until (100.0%)
Physics is needed (100.0%) after (100.0%) therefore (100.0%) when (100.0%)
Smart City result in (100.0%) to measure (100.0%) increase (100.0%) thereby (100.0%)
Sustainability will require (100.0%) enables (100.0%) ensures (100.0%) because (100.0%)
Telecomm allows (100.0%) enables (100.0%) during (100.0%) lead to (100.0%)

(c) Least Precise Cue Phrases of Each Eligible Domain.

Domain least precise 2nd least precise 3rd least precise 4th least precise

Aerospace according to (14.3%) to get (20.0%) to mitigate (20.0%) based on (24.1%)
Agriculture on (26.1%) that (27.1%) at (28.2%) allows (33.3%)
Astronomy from (30.0%) by (31.0%) within (40.0%) where (50.0%)
Automotive which (10.0%) for (20.0%) on (24.2%) that (31.8%)
Banking which (21.4%) to provide (25.0%) create (28.6%) by (28.8%)
Data Analytics to meet (16.7%) imply (20.0%) following (20.4%) but (20.5%)
Digital Library allow (11.1%) for (27.6%) that (30.3%) with (31.8%)
Digital Society for (45.8%) for this reason (50.0%) where (62.5%) allow (100.0%)
Health in this (16.7%) around (20.0%) based on (22.2%) through (25.0%)
Infrastructure following (18.2%) to provide (25.0%) on (41.3%) in (42.8%)
Physics while (33.3%) from (34.8%) in this (42.9%) for (43.6%)
Smart City within (11.1%) to perform (15.4%) who (15.4%) where (15.8%)
Sustainability within (3.8%) with (13.7%) to provide (14.3%) while (14.3%)
Telecomm to provide (16.7%) which (19.4%) so that (20.0%) given (20.0%)
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4.4 Threats to Validity

Internal Validity A threat to the internal validity is the annotation process itself as any
annotation task is subjective to a certain degree. This is especially relevant for more am-
biguous categories like # Explicit , as implicit conditionals are difficult to determine. Two
mitigation strategies were performed to minimize the bias of the annotators: First, we con-
ducted a workshop prior to the annotation process to ensure a common understanding of
conditionals. Second, we assessed the inter-rater agreement by using multiple metrics (Co-
hen’s Kappa, Agreement Score, and Gwet’s AC1). However, it has to be noted that all cat-
egories except # Conditional Present are dependent on a sentence’s classification regarding
that category, which may imply a confounding factor for the inter-rater agreement on the
other categories. This manifests in the calculation of the inter-rater agreement, where all
categories except # Conditional Present are calculated based on the 499 identified condition-
als. We argue, however, that the other categories are irrelevant for sentences that do not
contain a conditional as they only refer to the conditional statement contained by a sen-
tence. Hence, this confounding factor is deemed minimal. Apart from that, the inter-rater
agreement is not domain-specific, which implies that it is not possible to identify whether
certain domains caused more disagreement among the raters. We deem the general inter-
rater agreement reported in Table 4.2 sufficient but recommend considering this aspect for
replications and future studies intensifying the domain-dependent aspect of conditionals.

Furthermore, restricting the manual detection of conditional statements to a span
of a maximum of two sentences poses also a threat to internal validity, as the potential
existence of conditionals that are spread across more than two sentences can neither
be confirmed nor denied based on our investigation. We see this threat to be minimal
as the relationship between one-sentence conditionals and two-sentence conditionals
allows for the assumption, that the further elements of a conditional are spread apart,
the more unlikely the existence of such a conditional is. Extrapolating from the low
number of sentences categorized as two-sentence conditionals gives us reason to assume
that disregarding conditionals spread across three sentences or more is negligible for this
initial case study.

External Validity To achieve reasonable generalizability, we selected requirements doc-
uments from different domains and years. As Figure 4.1 shows, our data set covers a
variety of domains, but the distribution of the sentences is imbalanced. The domains
Aerospace, Data Analytics, and Smart City account for a large share in the data set
(9,724 sentences), while the other 15 domains are rather underrepresented. We mitigate
this threat to validity by including a domain-specific investigation reported in the scope
of RQ 6, which confirms that the occurrence of conditionals is to a large degree domain-
independent. Future studies should however expand to more documents emerging from
underrepresented domains to allow a more general reflection upon different aspects of
conditionals in requirements documents.

4.5 Concluding Discussion

Based on the results of our case study, we draw the following conclusions: Conditionals
are prevalent in requirements artifacts and therefore matter in requirements engineering,
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which motivates the necessity of an effective and reliable approach for the automatic
extraction of conditionals in requirements. The complexity of conditional statements is
confined since they usually consist of a single antecedent and consequent relationship in all
observed, eligible domains. However, for an approach that aims to extract conditionals to
be applicable in practice, it needs to comprehend also more complex relations containing
at least two to three and at best an arbitrary number of antecedents and consequents.
Understanding conjunctions, disjunctions, and negations is consequently imperative to
fully capture the relationships between antecedents and consequents and ensure the
applicability of a detection and extraction approach.

Two-sentence conditionals and event chains occur only rarely. Thus, both aspects can
initially be neglected in the development of the approaches and preserve coverage of more
than 92 % of the analyzed sentences. The dominance of explicit over implicit conditionals
in the observed sentences simplifies the detection and extraction of conditionals. The
information about both antecedent and consequent is embedded directly in the sentences
so that an approach requires little or no implicit knowledge. The analysis of the precision
values reveals that most of the used cue phrases are ambiguous. Consequently, automatic
extraction methods require a deep understanding of language as the presence of certain
cue phrases is insufficient as an indicator for conditionals. Instead, a combination of the
syntax and semantics of the sentence has to be considered to reliably detect conditional
statements.
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Chapter 5

Empirical Study on Logical Interpretation of
Conditionals in Requirements Artifacts

Common Thread Similar to the previous chapter, this chapter also addresses the first
problem that is tackled in this thesis: “the missing understanding of the notion of condi-
tionals in RE artifacts” (see Section 1.3). To this end, we conduct a survey with 104 RE
practitioners to understand how specific conditionals are interpreted by readers who work
with requirements. Specifically, we ask how they interpret 12 different conditional clauses
and map their interpretations to logical formulas written in Propositional (Temporal)
Logic. This allows us to discover which formalization most closely resembles the interpre-
tation of practitioners and thus should be used as a basis for our conditional extraction
approach. Moreover, we study different factors (e.g., domain context of the requirement)
that might influence the logical interpretation of conditional clauses in requirements.

Contribution The conditionals in our tested requirements were interpreted ambiguously.
We found that practitioners disagree on whether an antecedent is only sufficient or also
necessary for the consequent. We observed a statistically significant relationship between
the interpretation and certain context factors of practitioners (e.g., experience in RE,
the way how a practitioner interacts with requirements, and the presence of domain
knowledge). Interestingly, domain knowledge does not promote a consistent interpretation
of conditionals. We found that the choice of certain cue phrases has an impact on the
degree of ambiguity (e.g., “while” was less ambiguous than “if ” or “when” w.r.t. temporal
relationship). In summary, our study reveals that conditionals in requirements are a
source of ambiguity and there is not just one way to interpret them formally. Hence, we
require two variants of conditional extraction to ensure that the automatically derived
test cases correspond to the different logical interpretations: The first variant interprets
conditionals as implications and generates only the positive test cases. The second variant
interprets the conditionals as equivalences and generates both the positive and negative
test cases. The users of our automated conditional extractor should then decide for
themselves which test cases conform to their logical interpretations.

Related Publications This chapter is taken, directly or with minor modifications, from
a previous publication [5].
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5.1 Research Objective

The interpretation of the semantics of conditionals affects all activities carried out on
the basis of documented requirements such as manual reviews, implementation, or test
case generations. Even more, a correct interpretation is absolutely essential for all au-
tomatic analyses of requirements that consider the semantics of sentences; for instance,
automatic quality analysis like smell detection [35], test case derivation [1, 284], and de-
pendency detection [2]. In consequence, conditionals should always be associated with a
formal meaning to automatically process them. However, determining a suitable formal
interpretation is challenging because conditional statements in NL tend to be ambigu-
ous. This can be illustrated by the following conditional: “If the system detects an error
(e1), an error message shall be shown (e2)”.

Literally, the conditional may be interpreted as a logical implication (e1 ⇒ e2), in
which e1 is a sufficient precondition for e2. However, it is equally reasonable to assume
that the error message shall not be shown if the error has not been detected (i.e., e1 is a
sufficient and also necessary condition for e2). Furthermore, it is reasonable to assume
that e1 must occur before e2. Both assumptions are not covered by an implication as
it neglects temporal ordering. In contrast, the assumptions need to be expressed by
temporal logic (e.g., LTL [91]). Existing guidelines for expressing requirements have
different ways of interpreting conditionals; for instance, Mavin et al. [152] propose to
interpret conditionals as a logical equivalence (e1⇔ e2) to avoid ambiguity. We argue
that the “correct” way of interpretation should not just be defined by the authors of a
method, but rather from the view of practitioners. This requires an understanding of how
these interpret such conditionals. Otherwise, we choose a formalization that does not
reflect how practitioners interpret conditionals, rendering downstream activities error-
prone. That is, we would likely derive incomplete test cases or interpret dependencies
between the requirements incorrectly.

We aim to understand and (logically) formalize the interpretation of conditionals
in requirements by RE practitioners in software development projects. To this end, we
conducted a survey following the guidelines by Ciolkowski et al. [285]. The expected
outcome of our survey is a better understanding of how practitioners logically interpret
conditional clauses in requirements. Further, we aim to determine which of the elements
in our formalization matrix (introduced in Section 2.1) match their logical interpretations
(see Figure 5.1). We derived three research questions (RQ) from our survey goal.

∎ RQ 1: How do practitioners logically interpret conditional clauses in requirements?

∎ RQ 2: Which factors influence the logical interpretation of conditional clauses in
requirements?

∎ RQ 3: Which (if any) cue phrases promote (un)ambiguous interpretation?

RQ 1 investigates how conditionals are interpreted by practitioners and how their inter-
pretations should be formalized accordingly. RQ 2 studies whether the logical interpre-
tation of practitioners depends on certain factors. We focus on: 1) the role of the partici-
pant (e.g., writing requirements vs. reading and implementing requirements) and 2) the
domain context of the requirement (i.e., does the requirement describe system behav-
ior from a domain that is familiar to the participant or does the requirement originate
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5.2 Survey Design

Table 5.1: Overview of Study Objects. Cue Phrases Are Highlighted in Bold.

DS
1

After unlocking a door with the inside door handle, the Automatic Door opens until it
[S1]

reaches maximum opening position, or it detects an obstacle.

[S2] Closing is done in a fast manner if no passenger is inside the car.

The door handle is extended when a car key is detected in proximity of the car and a hand
[S3]

is near the position of the door handle.

[S4] While the button is in manual movement down position, the window is moved down.

DS
2

When a conflict is detected and an alert is issued, additional resolution information is
[S5]

needed. (retrieved from REQ-DOC-22)

The Manual-Electric-Mode-Controller, while engaged, provides rudimentary transformation
[S6]

of the AFD control inputs. (REQ-DOC-26)

[S7] Level 1.5 data are disseminated to users after being rectified to 0° longitude. (REQ-DOC-27)

If the sampling operation was not successful, the spacecraft can undertake 2 more
[S8]

attempts. (REQ-DOC-30)

DS
3

[S9] After event 1, event 2 or event 3 occur.

[S10] Event 1 occurs if event 2 is present.

[S11] Event 1 occurs when event 2 is present.

[S12] While event 1 is present, event 2 occurs.

from an unknown domain?). RQ 3 aims at the formulation of conditionals: Conditional
clauses can be expressed by using different cue phrases (e.g., “if ”, “when”). We hypothe-
size that cue phrases impact the logical interpretation of practitioners. With RQ 3, we
want to identify cue phrases for which the interpretations are almost consistent, and cue
phrases that are ambiguous. This insight enables us to derive best practices on writing
conditionals in requirements specifications.

5.2 Survey Design

Target Population and Sampling The selection of survey participants was driven by
a purposeful sampling strategy [286] along with the following criteria: a) they elicit,
maintain, implement, or verify requirements, and b) they work in industry and not ex-
clusively in academia. Each author prepared a list of potential participants using their
personal or second-degree contacts (convenience sampling [287]). From this list, the re-
search team jointly selected suitable participants based on their adequacy for the study.
To increase the sample size further, we asked each participant for other relevant con-
tacts after the survey (snowball sampling). Our survey was started by 168 participants
of which 104 completed the survey. All figures in this chapter refer to the 104 partici-
pants that completed the survey. The majority of participants were non-native English
speakers (94.2 %). We received responses mainly from practitioners working in Germany
(94.2 %). The remaining 5.8 % of survey completions originate from Croatia, Austria,
Japan, Switzerland, the United States, and China. The experience of the participants in
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Survey

Design

Necessity

Temporality

Temporal Ordering Relevant
Temporal Ordering  

Not Relevant
G is caused  

during F is true
G will be caused 
in the next state

G will be 
caused eventually

F is  
only sufficient

F is 
 also necessary

REQ: While the button is in manual movement down position, the window is moved down.

1. The button is not in manual movement down position. What happens consequently? 

a) The window is moved down. 

b) The window is not moved down. 

c) Not defined in the statement. 

2. When is the window is moved down? 

a) Simultaneous with the button being in manual movement down position. 

b) Immediately after the button is in manual movement down position. 

c) At some indefinite point after the button is in manual movement down position.  

d) Temporal ordering is irrelevant in the statement. 

Formalization Matrix Questionnaire
covers dimension

Key:

III.

I.

IV. V.

II.

VI.

✗

✗

□ (F ⟹ G) □ (F ⟹ ◯G) □ (F ⟹ ◊G) F ⟹ G

F ⟺ G

logical interpretation by survey participant formula matches logical interpretation✗

□ (F ⟺ G) □ (F ⟺ ◯G) ◊G ⟹ (¬G𝒰F )

Figure 5.1: Mapping Between Questionnaire (Right) and Formalization Matrix (Left).
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5.2 Survey Design

RE and RE-related fields is equally distributed: 18.2 % have less than 1-year experience,
26 % between 1 and 3 years, 25 % between 4 and 10 years, and 30.8 % more than 10 years.
The participants work for companies operating in 22 different domains. The majority
of our participants are employed in the automotive (21 %) and insurance/reinsurance
(10.1 %) industry. Over the past three years, our participants have worked in 18 different
roles. Most frequently, they had roles as developers, project managers, requirements engi-
neers/business analysts, or testers. 77.9 % of the survey participants elicit requirements
as part of their job. 59.6 % verify whether requirements are met by a system. 46.2 %
read requirements and implement them. 45.2 % maintain the quality of requirements.

Study Objects To conduct the survey and answer the RQs, we used three data sets
(DS), each from a different domain (see Table 5.1). DS 1 contains conditionals from a
requirements document describing the behavior of an automatic door in the automotive
domain. We argue that all participants have an understanding of how an automatic
car door is expected to work so that all participants should have the required domain
knowledge. DS 2 contains conditionals from Aerospace systems. We hypothesize that
no or only a few participants have deeper knowledge in this domain, making DS 2 well
suited for an analysis of the impact of domain knowledge on logical interpretations. DS 3
contains abstract conditionals (e.g., “If event A and event B, then event C”). Thus, they
are free from any domain-induced interpretation bias. To address RQ 3, we focused on four
cue phrases in the conditionals: “if ”, “while”, “after”, and “when”. To avoid researcher bias,
we created the data sets by extracting conditionals randomly from existing requirement
documents used in practice. The conditionals in DS 1 are taken from a requirements
document written by Mercedes-Benz Passenger Car Development.1 The conditionals
contained in DS 2 originate from three requirements documents published by NASA and
one by ESA.2 The conditionals in DS 3 are syntactically identical to the conditionals
in DS 1, except that we replace the names of the events with abstract names. DS 1–3
contain four conditionals each, resulting in a total of 12 study objects (see Table 5.1).
Each cue phrase occurs exactly once in each DS.

Questionnaire Design We chose an online questionnaire as our data collection instru-
ment to gather quantitative data on our research questions. For the design, we followed
the guidelines of Dillman et al. [289] to reduce common mistakes when setting up a
questionnaire. Since our research goal is of descriptive nature, most questions are closed-
ended. We designed three types of questions (Q) addressing the two dimensions and pre-
pared a distinct set of responses (R), among which the participants can choose. Each of
these responses can be mapped to a characteristic in the formalization matrix and thus
allows us to determine which characteristic the practitioners interpret as being reflected
by a conditional (see Figure 5.1). We build the questionnaire for each study object (e.g.,
“If F then G”) according to a pre-defined template (see Figure 5.2). The template is
structured as follows: The first question (Q 1) investigates the dimension of Necessity :
if event G cannot occur without event F , then F is not only sufficient, but also neces-

1 Thanks to Frank Houdek for sharing the document at NLP4RE’19 [288]: https://nlp4re.github.io/
2019/uploads/demo-spec-automatic-door.pdf

2 We retrieved these documents from our gold standard corpus of requirements presented in Chapter 4.
We are referring to the documents: REQ-DOC-22, REQ-DOC-26, REQ-DOC-27, and REQ-DOC-30.
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5.3 Survey Implementation and Execution

Q1: F does not occur. What happens consequently?

• R1.1: G occurs nevertheless. (sanity check)

• R1.2: G does not occur. (→ II)

• R1.3: Not defined in the statement. (→ I)

Q2: When does G occur?

• R2.1: Simultaneously with F . (→ III)

• R2.2: Immediately after F . (→ IV)

• R2.3: At some indefinite point after F . (→ V)

• R2.3: Temporal ordering is irrelevant in the statement. (→ VI)

Figure 5.2: Questionnaire Template. TheNoteAfter EachAnswerOption (e.g.,→ IV) Indicates the
Matching Characteristic in the Formalization Matrix (see Figure 5.1). If a Participant
Selects R1.2, for Example, She Implicitly Interprets F as necessary for G. The Notes
Were Not Included in the Questionnaire.

sary for G. We add “nevertheless” as a third response option (see R1.1 in Figure 5.2) to
perform a sanity check on the answers of the respondents. We argue that interpreting
that the consequent should occur although the antecedent does not occur indicates that
the sentence has not been read carefully. The second question (Q 2) covers the temporal
ordering of the events. In this context, we explicitly ask for the three temporal relations
eventually, always and next state described in Section 2.1. Should a participant perceive
temporal ordering as irrelevant for the interpretation of a certain conditional, we can con-
clude that PL is sufficient for its formalization. We ask Q 1–2 for each of the 12 study
objects, resulting in a total of 24 questions. To get an overview of the background of our
respondents, we also integrated five demographic questions. In total, our final question-
naire consists of 29 questions and can be also found in our replication package.3

5.3 Survey Implementation and Execution

We prepared an invitation letter to ask potential participants if they would like to join
our survey. We incorporated all of our 29 questions into the survey tool Unipark [290].
To avoid bias in the survey data, we allow Unipark to randomize the order of the non-
demographic questions. We opened the survey on Feb 01, 2021 and closed it after 15 days.
We approached all eligible contacts from our prepared list either by e-mail or via Linkedin
direct message. We also distributed the questionnaire via a mailing list in the RE focus
group of the German Informatics Society (GI). As the traffic on our survey website
decreased during the first week, we contacted all candidates again on Feb 08 in 2021.

5.4 Survey Analysis

To answer the proposed research questions (see Section 5.1), we analyzed the gathered
quantitative data as follows.

3 Our replication package contains (1) our final questionnaire, (2) the survey protocol, and (3) the
survey responses. It can be found at https://doi.org/10.5281/zenodo.5070235.
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5.4 Survey Analysis

Analysis for RQ 1 We use heatmaps to visualize how the respondents logically interpret
the individual study objects (see Figure 5.3). Each cell in the heatmaps corresponds to
a single 2-tuple. Based on the heatmaps, we analyze the logical interpretations of the
participants and decide which formalization should be chosen for each study subject
according to the most frequent 2-tuple.

Analysis for RQ 2 We focus on three factors (fn) and investigate their impact on the
logical interpretations of practitioners: (1) the experience in RE (f1: Experience), (2)
how the practitioners interact with requirements (elicit, maintain, verify,. . . ) in their
job (f2: Interaction), and (3) the domain context of the conditional (f3: Domain). To
answer RQ 2, we examine the impact of f1–f3 on the dimensions described in Section 2.1.
In our survey, we collected the dimensions for each sentence individually, resulting in
12 categorical variables per dimension (e.g., necs1, necs2, . . .necs12). To get an insight
across all sentences, we aggregated all 12 categorical variables per dimension to one
variable (resulting in Necessity, and Temporality). This allows us to analyze, for example,
whether the experience of the respondents has an impact on understanding an antecedent
only as sufficient for a consequent or as both sufficient and necessary. In other words,
does the perception of Necessity depend on Experience?

As shown in Table 5.2, all five variables (3x factors and 2x dimensions) are categorical
with a maximum of four levels. The majority is nominally scaled, while Experience follows
an ordinal scale. The variable Domain was not gathered directly from the responses,
but implicitly from our selection of the data sets. We thus add Domain as a variable
to our data set, using a categorical scale with three levels: domain knowledge is present
(in the case of DS 1), domain knowledge is not present (DS 2), and domain knowledge
is not necessary (DS 3). By introducing this new variable, we are able to investigate
the relationship between domain knowledge and logical interpretations. We use the chi-
squared test of independence (χ2) to analyze the relationship between all variables. We
run the test by using SPSS and test the following hypotheses (Hn):

Algorithm 1: Hypothesis testing
for fn ∈ {Experience, Interaction, Domain} do

for v ∈ {Necessity, Temporality} do
H0: The interpretation of v is independent of fn.
H1: The interpretation of v depends on fn.

end for
end for

We set the p-value at 0.05 as the threshold to reject the null hypothesis. To test our
hypotheses, we need to calculate the contingency tables for each combination of fn
and dimension. The total number of survey answers per dimension is 1,248 (104 survey
completions * 12 annotated sentences). Since we allow the respondents to specify multiple
ways to interact with requirements (e.g., to both elicit and implement requirements), our
survey data contains a multiple dichotomy set for Interaction. In other words, we created
a separate variable for each of the selectable interaction ways (four in total for verify,
maintain, elicit and implement). Each variable has two possible values (0 or 1), which
indicate whether or not the response was selected by the participant. Therefore, we define
a multiple response set in SPSS to create the contingency table for Interaction. The χ2
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5.4 Survey Analysis

Table 5.2: Overview of Analyzed Variables.

Name Levels Type Scale

Experience

• less than 1 year
• 1–3 years
• 4–10 years
• more than 10 years

categorical
(single select) ordinal

Interaction

• elicit
• maintain
• verify
• implement

categorical
(multiple select) nominal

Domain
• domain knowledge present
• domain knowledge not present
• domain knowledge not necessary

categorical
(single select) nominal

Necessity
• nevertheless
• only sufficient
• also necessary

categorical
(single select) nominal

Temporality

• during
• next state
• eventually
• temporal ordering not relevant

categorical
(single select) nominal

test allows us to determine if there is enough evidence to conclude an association between
two categorical variables. However, it does not indicate the strength of the relationship. To
measure the association between our variables, we use Cramer’s Phi ϕ [291] in the case of
two nominally scaled variables and Freeman’s theta Θ [292] in case of one ordinally scaled
and one nominally scaled variable. We calculate ϕ by using SPSS and Θ by using the R
implementation “freemanTheta”. We interpret Θ according to the taxonomy of Vargha
and Delaney [293]. For the interpretation of ϕ, we use the taxonomy of Cohen [291].

Analysis for RQ 3 A conventional way to measure ambiguity is by calculating the inter-
rater agreement (e.g., Fleiss Kappa [294]). However, inter-rater agreement measures
must be used carefully, as they have a number of well-known shortcomings [276]. For
example, the magnitude of the agreement values is not meaningful if there is a large gap
between the number of annotated units and the number of involved raters. In our case,
we examine only three units per cue phrase (i.e., “if ” is only included in S2, S8, and
S10), each of which was annotated by 104 raters. This discrepancy between the number
of units and raters leads to a very small magnitude of the agreement values and distorts
the impression of agreement. For example, if we calculate Fleiss Kappa regarding the
dimension Temporality of sentences that contain the cue phrase “while”, we obtain a value
of 0.053. According to the taxonomy Landis and Koch [280], this would imply only a
slight agreement between the raters. However, there is a substantial agreement among the
raters that “while” indicates a simultaneous relationship. This can be demonstrated by
the distribution of survey answers across the different Temporality levels (see Figure 5.4).

Thus, instead of reporting less meaningful inter-rater agreement measures, we provide
histograms visualizing the distribution of ratings on the three investigated dimensions.
We create the histograms for each set of study objects containing the same cue phrase.
This allows us to analyze which cue phrase produced the highest/lowest agreement for
a certain dimension.
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5.5 Survey Results

5.5 Survey Results

We report on the results of our study structured by our research questions (RQ 1 - 3).

RQ 1: How Do Practitioners Logically Interpret Conditional Clauses in
Requirements?

In order to answer RQ 1, we first look at the total number of answers for each dimen-
sion across all data sets. Secondly, we analyze the distribution of ratings based on our
constructed heatmaps (see Figure 5.3).

Necessity Our participants did not have a clear tendency whether an antecedent is
only sufficient or also necessary for the consequent. Among the total of 1,248 answers,
2.1 % correspond to the level “nevertheless”, 46.9 % to “also necessary”, and 51 % for
“only sufficient”. That means that more than half of the respondents stated that the
conditional does not cover how the system is expected to work if the antecedent does
not occur (i.e, the negative case is not specified).

Temporality We found that time plays a major role in the interpretation of condition-
als in requirements. Among the 1,248 answers, only 13 % were “temporal ordering is ir-
relevant” for the interpretation. This indicates that conditionals in requirements require
temporal logics for a suitable formalization. For some study objects, the exact temporal
relationship between antecedent and consequent was ambiguous. For S3, 34 participants
selected “during”, 43 “next state”, and 19 “eventually”. Similarly, we observed divergent
temporal interpretations for S2, S5, S7, S10, S11, and S12. In contrast, the respondents
widely agreed on the temporal relationship of S1 (67 survey answers for “next state”), S4
(84 survey answers for “during”), S6 (73 survey answers for “during”), S8 (67 survey an-
swers for “eventually”) and S9 (83 survey answers for “eventually”). Across all study ob-
jects, 29.8 % of survey answers were given for the level “during”, 20.1 % for “next state”
and 37.1 % for “eventually”.

Agreement Our heatmaps illustrate that there are only a few study objects for which
more than half of the respondents agreed on a 2-tuple (see Figure 5.3). This trend is
evident across all data sets. The presence or absence of domain knowledge does not seem
to have an impact on a consistent interpretation. The greatest agreement was achieved in
the case of S1 (48 survey answers for ⟨necessary, next state⟩), S6 (49 survey answers for
⟨necessary, during⟩), S8 (53 survey answers for ⟨sufficient, eventually⟩) and S9 (56 survey
answers for ⟨sufficient, eventually⟩). However, for the majority of study objects, there
was no clear agreement on a specific 2-tuple. For S5, two 2-tuples were selected equally
often, and for S10, the two most frequent 2-tuples differed by only two survey answers.

Generally Valid Formalization? Mapping the most frequent 2-tuples in the heatmaps to
our constructed formalization matrix reveals that all study objects can not be formalized
in the same way. The most frequent 2-tuples for each study object yield the following
six patterns:

∎ Pattern 1: ⟨necessary, next state⟩: S1, S3
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Figure 5.3: Heatmaps Visualizing the Interpretations of the Participants per Study Object [Sn].

∎ Pattern 2: ⟨necessary, irrelevant⟩: S2

∎ Pattern 3: ⟨necessary, during⟩: S6, S10, S11

∎ Pattern 4: ⟨necessary, eventually⟩: (S5)

∎ Pattern 5: ⟨sufficient, eventually⟩: (S5), S7, S8, S9

∎ Pattern 6: ⟨sufficient, during⟩: S4, S12

One sees immediately that it is not possible to derive a formalization for conditionals in
general. Especially the temporal interpretations differed between the conditionals and
the used cue phrases (see Figure 5.4). However, it can be concluded that, except for S2,
the interpretations of all study objects can be represented by LTL.

RQ 2: Which Factors Influence the Logical Interpretation of Conditional
Clauses in Requirements?

This section reports the results of our chi-square tests (see Table 5.3). In our contingency
tables, no more than 20 % of the expected counts are < 5. Hence, we satisfy the assumption

82



5.5 Survey Results

Table 5.3: Results of Chi-Square Test of Independence. Statistically Significant Relationships
Between Factors and Interpretation Are Marked in Bold.

Test Statistics Measures

Tested Relationship χ2 df p-value ϕ Θ

Experience and Necessity 2.384 6 0.881 - -

Experience and Temporality 31.523 9 0.001 - 0.089

Interaction and Necessity 11.005 8 2.201 - -

Interaction and Temporality 36.991 12 < 0.001 0.510 -

Domain and Necessity 22.310 4 < 0.001 0.134 -

Domain and Temporality 138.128 6 < 0.001 0.333 -

of enough observations per category for the chi-square test [295]. In the following, we
explain the relationships where the chi-square test indicated a dependency between the
logical interpretation and a factor.

The Logical Interpretation Regarding Temporality Depends on RE Experience In the
group with less than 1 year of experience, there is a tendency to perceive the temporal re-
lationship between the events as “during” (36.4 %). In the group of participants with 4–10
years of experience, most of the respondents rated the temporal relationship as “eventu-
ally” (41.3 %). The χ2 test reveals that the distribution of ratings differs between the expe-
rience levels. The calculated Θ value indicates that the strength of the relationship is low.

The Logical Interpretation Regarding Temporality Is Dependent on How a Practitioner
Interacts With Requirements Our contingency table reveals that the distribution of
ratings differs between the interaction levels. Practitioners who implement requirements
fluctuate mainly between “during” and “eventually”, while they rarely selected the other
two Temporality levels. A different pattern emerges for practitioners who maintain and
verify requirements. Across all study objects, they choose the levels “during”, “next state”
and “eventually” equally often. A χ2 test indicates a dependency between both variables.
The calculated ϕ value indicates that the strength of the relationship is high.

The Logical Interpretation Regarding Necessity Is Dependent on Domain Knowledge
The disagreement about whether an antecedent is only sufficient or also necessary holds
regardless of domain knowledge. However, the trend differs between the data sets with
respect to the Necessity levels. In the case of DS 1 (domain knowledge assumed), more
answers were given for “also necessary” (54.3 %) than for “only sufficient” (45 %). In
contrast, more ratings were given for “only sufficient” in the case of DS 2 (53.1 %) and
DS 3 (55 %). The slight difference in the distribution of the ratings regarding Necessity
is supported by the χ2 test. However, the strength of the relationships is low.

The Logical Interpretation Regarding Temporality Is Dependent on Domain Knowledge
Our contingency table shows that the distribution of ratings regarding Temporality differs
between the data sets. In the case of DS 1, ratings were mainly given for “during” (32.9 %)
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Figure 5.4: Distribution of Survey Answers on the Different Variable Levels for Each Set of Study
Objects With the Same Cue Phrase (e.g., S2, S8 and S10 Include “If”).

and “next state” (31.3 %). In the case of the unknown domain (DS 2), ratings were mainly
assigned to “eventually” (46.2 %), while only 20.7 % were given to “next state” and 22.4 %
to “during”. In DS 3, where no domain knowledge is necessary for the understanding of
the conditionals, most ratings were given to “during” (34.1 %) and “eventually” (47.1 %).
A χ2 test shows that there is a statistically significant dependency between both variables.
According to the calculated ϕ value, the strength of the relationship is medium.

RQ 3: Which (If Any) Cue Phrases Promote (Un)Ambiguous Interpretation?

The histograms in Figure 5.4 show that the logical interpretation regarding Temporality
depends on the cue phrase used to express a conditional. For study objects containing
“while” (S4, S6 and S12), the respondents largely agreed that the consequent occurs si-
multaneously with the antecedent. In contrast, almost no respondent associated simulta-
neous events in the study objects with the cue phrase “after”. Instead, the respondents
vacillated between the temporal levels “next state” and “eventually”. The largest disagree-
ment, though, was found in the interpretations of the conditionals “if ” or “when”. Es-
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pecially in the case of “when”, there was no clear agreement across S3, S5 and S11 on
whether antecedent and consequent are in a “during”, “next state” or “eventually” tem-
poral relationship. Regarding Necessity, we observe that the practitioners, irrespective
of the used cue phrase, disagree whether the antecedent is only sufficient or also neces-
sary for the consequent. We found one outlier in our histograms (S8), where an 80 %
agreement for the level “sufficient” could be achieved. For the remaining study objects,
however, there is a balanced number of survey answers for both levels.

5.6 Threats to Validity

Internal Validity The respondents may have misunderstood the questions resulting in
poor quality or invalid answers. To minimize this threat, we followed the guidelines by
Dillmann [289] in the creation of the questionnaire. In addition, we conducted a pilot
phase to validate the questionnaire internally through discussions in the research team
and externally through pilot survey runs. Selection bias is another threat. Although we
have started with personal contacts to find participants, the sampling process has been
extended by indirect contacts. As a result, selection bias has been reduced. Another
possible threat is the selection of dimensions by which we formalize conditionals. The
two dimensions, Temporality and Necessity, have been selected after extensive literature
research and discussion among the authors. However, the completeness of dimensions
can neither be proven nor rebutted. One threat that we were unable to control was
the distribution of native speakers. Although one could argue that non-native speakers
reading and writing English requirements are the standard case for most projects, and
therefore, their interpretation is meaningful nevertheless, future research should validate
the findings also with a dedicated group of native speakers.

Another threat arises from our assumption that each participant has the necessary
domain knowledge in the case of DS 1 but lacks it in the case of DS 2. To mitigate this
threat, we analyzed the feedback received during our pilot study. In the case of DS 1,
almost no questions were raised, whereas in the case of DS 2, many pilot users lacked
knowledge about the described system behavior. This indicates that the respondents
may have the necessary domain knowledge to interpret the conditionals described in
DS 1. Furthermore, the conditionals in DS 1 are derived from the data set used in the
tool competition at the NLP4RE workshop, which is claimed to be interpretable without
specific domain knowledge.

External Validity As in every survey, the limited sample size and sampling strategy
do not provide the statistical basis to generalize the results of the study. However, we
tried to involve RE practitioners working in different roles at companies from different
domains to obtain a comprehensive picture of how conditionals are logically interpreted.
We argue that our survey sample of 104 RE practitioners, who work in 22 different
domains and of which a third have more than 10 years of experience in RE is sufficient
for a first insight into the logical interpretation of conditionals.

Construct Validity The questionnaire might not sufficiently cover our research ques-
tions limiting the availability of data that provides suitable answers to the research ques-
tions. To minimize this threat, we constructed a formalization matrix and designed our
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questionnaire according to the dimensions of the matrix to establish a distinct mapping
between interpretation and suitable formalization.

5.7 Concluding Discussion

As outlined in Chapter 4, conditionals are common to specify desired system behavior in
RE artifacts. In this chapter, we show that conditionals are interpreted ambiguously by
RE practitioners. In particular, there is disagreement (1) about whether an antecedent is
only sufficient or also necessary for a consequent, and (2) about the temporal occurrence
of antecedent and consequent when different cue phrases (such as “when” or “if ”) are
used. Thus, a generic formalization of conditionals will inevitably fail at least some
practitioner’s interpretation. We see two immediate implications in practice:

Implications for Automatic Methods Especially (if not limited) for automated test
case generation, it is vital to understand which behavior is desired if the antecedent
does not occur. The evidence presented in this paper refutes the prevailing assumption
(cf. [152, 2]) that antecedents can always be treated as necessary conditions. Hence, we
propose that future methods should display the automatically generated positive and
negative test cases to practitioners and explicitly verify: “Is the negative case of your
conditional also valid?”. This will foster the discussion within project teams about the
expected system behavior and enables to resolve misunderstandings at an early stage.
We consider this finding when developing our approach for the automatic generation of
acceptance tests and integrated it into the User Interface of our tool (see Section 8.2).

Implications for Requirements Authors It should be incorporated into RE writing
guidelines that it does matter which cue phrase is used for the formulation of a conditional.
“While” is interpreted consistently, but “if ” and “when” cause misunderstandings about the
temporal interpretation of antecedent and consequent. This poses a problem especially in
the implementation of requirements and eventually leads to discrepancies between actual
and expected system behavior. Project teams should therefore agree early on how they
want to interpret the different cue phrases to avoid ambiguities. Additionally, our findings
provide empirical evidence for the claim by Berry et al. [296] and Rosadini et al. [297]
that requirements authors should always specify the negative case (e.g., by using an else-
statement) to prevent confusion about the necessity of antecedents.
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Part II

Extracting Conditionals From
Requirements Artifacts

Common Thread As outlined in Section 1.3, we require an approach capable of extract-
ing conditionals in fine-grained form to make them useful for test case derivation and
dependency detection between requirements. However, existing approaches are not suit-
able for this purpose. In this part of the thesis, we address this problem and present our
tool-supported approach named CiRA (Conditionals in Requirements Artifacts). CiRA
solves conditional extraction as a two-step problem: It first detects whether requirements
contain conditional statements. Second, if they contain conditionals, it interprets and
extracts them in fine-grained form. We implement different methods for both steps and
compare them with each other in experiments. For the detection part, we compare the
performance of rule based approaches, ML-based approaches (e.g., Random Forest, Sup-
port Vector Machines), and TL-based approaches (e.g., BERT). We report on the re-
sults of our experiments in Chapter 6. For the extraction part, we implement three ap-
proaches and compare their performance with each other: Dependency Parsing, RNTN,
and TL-based approaches (e.g., RoBERTa, DistilBERT). The results of our comparison
can be found in Chapter 7. Based on the results of our experiments, we select the best
approach for both steps and incorporate them into the CiRA pipeline. Chapter 8 con-
denses the functionality of CiRA and introduces a tool that allows fellow researchers and
practitioners to easily interact with CiRA.

Preliminaries To understand this part, the reader needs to possess a solid understanding
of NLP methods. Chapter 6 requires knowledge of the core idea behind Transfer Learning
(see Section 2.3.3). To understand the extraction part, the difference between Dependency
Parsing and Constituency Parsing needs to be understood (see Section 2.3.1). Further,
one needs to comprehend the forward and backward propagation of an RNTN to follow
our RNTN-based conditional extraction approach (see Section 2.3.2).
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Chapter 6

Automatic Detection of Conditionals
in Requirements Artifacts

Common Thread This chapter focuses on the first step in the CiRA pipeline: the de-
tection of conditionals in NL requirements. For this purpose, we implement and com-
pare different NLP methods such as rule-based approaches, ML-based approaches (e.g.,
Random Forest, Support Vector Machines), and TL-based approaches (e.g., BERT). We
select the method with the best performance as our final conditional classifier and incor-
porate it into the CiRA pipeline.

Contribution We train and evaluate our methods on a real-world data set of 8,430 sen-
tences retrieved from requirements documents. The data set is balanced (i.e., the distri-
bution of sentences containing conditionals (4,215) and sentences without conditionals
(4,215) is equal). Our study demonstrates that the rule-based approach is not able to
distinguish between sentences that contain conditionals (F1 score: 66 %) and sentences
that do not (F1 score: 64 %). In contrast, we found that syntactically enriched BERT
embeddings combined with a softmax classifier outperform other methods in detecting
conditional statements (macro-F1 score: 82 %). However, the application of TL does not
result in a large performance boost over conventional ML methods (gain of only 4 % in
macro-F1 compared to the best ML method).

Related Publications This chapter is taken, directly or with minor modifications, from
previous publications [4, 7].

89



6.1 Principal Idea

6.1 Principal Idea

We understand the detection of conditionals in RE artifacts as a binary classification
problem: we are given a certain RE artifact X and are required to produce a nominal
label y ∈ Y = {# Conditional Present , # Conditional Not Present }. Specifically, we need to
implement a classifier capable of demarcating RE artifacts that do contain a conditional
from RE artifacts that do not. Since requirements are still mostly expressed in Natural
Language [61, 62], our conditional classifier needs to be able to interpret NL. Thus, we
employ different NLP methods to implement our classifier. We train our methods on the
data set of 14,983 requirements which we annotated in our first empirical study on the
prevalence of conditionals in RE artifacts (see Chapter 4).

6.2 Implementation

This section presents the implementation of our conditional classifier. Specifically, we
describe three methods that we use to detect conditional statements in NL sentences: a
rule-based, ML-based, and TL-based approach.

Rule-Based Approach Our baseline approach is built on the idea that the presence of
certain cue phrases can be used to infer the occurrence of a conditional. We thus follow
up on the results of our study on the prevalence of conditionals (see Chapter 4) and use
simple regex expressions to implement our baseline approach for conditional detection.
We iterate through all sentences in the test set and check if one of the phrases listed in
Table 4.3 is included. For the positive case, the sentence is classified as # Conditional Present
and vice versa.

Machine Learning-Based Approach As a second approach, we investigate the use of
supervised ML models that learn to predict conditionals based on the labeled data set.
Specifically, we employ established binary classification algorithms: Naive Bayes (NB),
Support Vector Machines (SVM), Random Forest (RF), Decision Tree (DT), Logistic
Regression (LR), Ada Boost (AB) and K-Nearest Neighbor (KNN). To determine the
best hyperparameters for each binary classifier, we apply Grid Search, which fits the
model on every possible combination of hyperparameters and selects the most performant.
We use two different methods as word embeddings: Bag-of-Words (BoW) and TF-IDF.
In Table 6.1 we report the classification results of each algorithm as well as the best
combination of hyperparameters.

Transfer Learning-Based Approach We make use of the fine-tuning mechanism of
BERT and investigate to which extent it can be used for conditional detection in require-
ment sentences. First, we tokenize each sentence by using the WordPiece Tokenizer. As
described in Section 2.3.3, BERT requires input sequences with a fixed length (maximum
512 tokens). Therefore, for sentences that are shorter than this fixed length, PAD tokens
are inserted to adjust all sentences to the same length. Other tokens, such as the CLS
token, are also inserted in order to provide further information about the sentence to
the model. CLS is the first token in the sequence and represents the whole sentence (i.e.,
it is the pooled output of all tokens of a sentence). For our classification task, we mainly
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6.2 Implementation

use the CLS token because it stores the information of the whole sentence. We feed the
pooled information into a single-layer feedforward neural network that uses a softmax
layer, which calculates the probability that a sentence contains a conditional or not:

ŷ = softmax(Wv0 + b) (6.1)

ŷ are the predicted class probabilities for the sentence, W is the weighted matrix, v0
represents the first token in the sentence (i.e., the CLS token), and b is the bias. We
select the class (c) with the highest probability as the final classification result:

c = argmax(ŷ) (6.2)

We tune BERT in three different ways and investigate their performance:

BERTBase In the base variant, the sentences are tokenized as described above and put into
the classifier. To choose a suitable fixed length for our input sequences, we analyzed
the lengths of the sentences in our data set. Even with a fixed length of 128 tokens,
we cover more than 97 % of the sentences. Sentences containing more tokens are
shortened accordingly. Since this is only a small amount, only a little information is
lost. Thus, we chose a fixed length of 128 tokens instead of the maximum possible
512 tokens to keep the computational requirements of BERT to a minimum.

BERTPOS Studies have shown that the performance of NLP models can be improved
by providing explicit prior knowledge of syntactic information to the model [298].
Therefore, we enrich the input sequence with syntactic information and feed it
into BERT. More specifically, we add the corresponding POS tag to each token by
using the spaCy NLP library [123]. One way to encode the input sequence with the
corresponding POS tags is to concatenate each token embedding with a hot encoded
vector representing the POS tag. Since the BERT token embeddings are high
dimensional, the impact of a single added feature (i.e., the POS tag) would be low.
Contrary, we hypothesize that the syntactic information has a higher impact if we
annotate the input sentences directly with the POS tags and then put the annotated
sentences into BERT. This way of creating linguistically enriched input sequences
has already proven to be promising during the development of the word embeddings
published by Nordic Language Processing Laboratory (NLPL) [299]. Figure 6.1
shows how we incorporated the POS tags into the input sequence. By extending the
input sequence, the fixed length for the BERT model has to be adapted accordingly.
After further analysis, a length of 384 tokens proved to be reasonable.

BERTDEP Similar to the previous fine-tuning approach, we follow the idea of enriching
the input sequence with linguistic features. Instead of using the POS tags, we
use the Dependency (DEP) tags (see Figure 6.1) of each token. Thus, we provide
knowledge about the grammatical structure of the sentence to the classifier. We
hypothesize that this knowledge has a positive effect on the model performance, as
a conditional statement is a specific grammatical structure (e.g., it often contains
an adverbial clause) and the classifier can learn conditional specific patterns in the
grammatical structure of the training instances. The fixed token length was also
increased to 384 tokens.
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BERTBase: If the process fails, an error message is shown.

BERTPOS: If_SCONJ the_DET process_NOUN fails_VERB ,_PUNCT an_DET error_NOUN message_NOUN is_AUX

shown_VERB ._PUNCT

BERTDEP: If_mark the_det process_nsubj fails_advcl ,_punct an_det error_compound message_nsubjpass is_-

auxpass shown_ROOT ._punct

Figure 6.1: Input Sequences Used for Our Different BERT Fine Tuning Models. DEP Tags Are
Marked Orange and POS Tags Are Marked Blue.

6.3 Evaluation

This section reports on the results of our experiments, in which we compare the perfor-
mance of the individual methods.

Evaluation Procedure Our labeled data set is imbalanced as only 28.1 % are positive
samples. In other words, only 4,215 out of the 14,983 labeled sentences contain a condi-
tional statement. To avoid the class imbalance problem, we apply Random Under Sam-
pling (see Figure 6.2). We randomly select sentences from the majority class and exclude
them from the data set until a balanced distribution is achieved. Our final data set con-
sists of 8,430 sentences with an equal distribution of sentences containing conditionals
(4,215) and sentences without conditionals (4,215). We follow the idea of Cross Validation
and divide the data set into a training, validation, and test set. The training set is used
for fitting the algorithm while the validation set is used to tune its parameters. The test
set is utilized for the evaluation of the algorithm based on real-world unseen data. We
opt for a 10-fold Cross Validation as a number of studies have shown that a model that
has been trained this way demonstrates low bias and variance [300]. We use standard
metrics, for evaluating our approaches: Accuracy, Precision, Recall, and F1 score [300].

When interpreting evaluation metrics, it is important to consider which misclassifica-
tion (False Negative or False Positive) matters most resp. causes the highest costs. Since
conditional detection is supposed to be the first step toward automatic conditional ex-
traction, we favor Recall over Precision. A high Recall corresponds to a greater degree
of automation of conditional extraction because it is easier for users to discard False
Positives than to manually detect False Negatives. Consequently, we seek high Recall to
minimize the risk of missed conditionals and acceptable Precision to ensure that users
are not overwhelmed by False Positives.

Experimental Results Table 6.1 demonstrates the inability of the baseline approach
to distinguish between sentences that do contain conditionals (F1 score: 66 %) and
sentences that do not (F1 score: 64 %). This coincides with our observation from the
first empirical study (see Chapter 4) that searching for cue phrases is not suitable for
conditional detection. In comparison, most ML-based approaches (except KNN and DT)
show a better performance. The best performance in this category is achieved by RF
with an Accuracy of 78 % (gain of 13 % compared to baseline approach). The overall
best classification results are achieved by our DL-based approaches. All three variants
were trained with the hyperparameters recommended by Devlin et al. [131]. Even the
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Figure 6.2: Implementation and Evaluation Procedure of Our Binary Classifier.

vanilla BERTBase model shows a great performance in both classes (F1 score ≥ 80 %
for # Conditional Present and # Conditional Not Present ). Interestingly, enriching the input
sequences with syntactic information did not result in a significant performance boost.
BERTPOS even has a slightly worse Accuracy value of 78 % (difference of 2 % compared
to BERTBase). An improvement of the performance can be observed in the case of
BERTDEP, which has the best F1 score for both classes among all the other approaches
and also achieves the highest Accuracy value of 82 %. Compared to the rule-based and
ML-based approaches, BERTDEP yields an average gain of 11.06 % in macro-Recall and
11.43 % in macro-Precision. Interesting is a comparison with BERTBase. BERTDEP
shows better values across all metrics, but the difference is only marginal. This indicates
that BERTBase already has a deep language understanding due to its pre-training
and therefore can be tuned well for conditional detection without much further input.
However, over all five runs, the use of the DEP tags shows a small but not negligible
performance gain - especially regarding our main decision criterion: the Recall value
(85 % for # Conditional Present and 79 % for # Conditional Not Present ). Therefore, we choose
BERTDEP as our final approach for the detection of conditionals in RE artifacts, and
include it into the CiRA pipeline.

 Summary of Evaluation:

Our evaluation demonstrates that rule-based approaches are not capable of reliably
detecting conditionals in natural language due to the ambiguity of cue phrases
such as “if ” and “when”. Contrary, we found that syntactically enriched BERT
embeddings combined with a softmax classifier achieve a macro-F1 score of 82 %
on real-world data and outperform related approaches with an average gain of
11.06 % in macro-Recall and 11.43 % in macro-Precision.
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Table 6.1: Recall, Precision, F1 Scores (per Class) and Accuracy. We Report the Averaged Scores
Over Five Repetitions and Highlight in Bold the Best Results for Each Metric.

# Conditional Present

(Support: 435)

# Conditional Not Present

(Support: 408)

Best hyperparameters Recall Precision F1 Recall Precision F1 Accuracy

Ru
le
-b

as
ed

- 0.65 0.66 0.66 0.65 0.63 0.64 0.65

M
L
ba

se
d

NB
alpha: 1, fit_prior: True,

embed: BoW
0.71 0.7 0.71 0.68 0.69 0.69 0.7

SVM
C: 50, gamma: 0.001,

kernel: rbf, embed: BoW
0.68 0.8 0.73 0.82 0.71 0.76 0.75

RF
criterion: entropy, max_features: auto,

n_estimators: 500, embed: BoW
0.72 0.82 0.77 0.84 0.74 0.79 0.78

DT
criterion: gini, max_features: auto,

splitter: random, embed: TF-IDF
0.65 0.68 0.66 0.67 0.65 0.66 0.66

LR
C: 1, solver: liblinear,

embed: TF-IDF
0.71 0.78 0.74 0.79 0.72 0.75 0.75

AB
algorithm: SAMME.R, n_estimators: 200,

embed: BoW
0.67 0.78 0.72 0.8 0.7 0.75 0.74

KNN
algorithm: ball_tree, n_neighbors: 20,

weights: distance, embed: TF-IDF
0.61 0.68 0.64 0.7 0.63 0.66 0.65

TL
ba

se
d BERTBase batch_size: 16, learning_rate:

2e-05, weight_decay: 0.01,
optimizer: AdamW

0.83 0.80 0.82 0.78 0.82 0.80 0.81

BERTPOS 0.82 0.76 0.79 0.71 0.83 0.77 0.78

BERTDEP 0.85 0.81 0.83 0.79 0.84 0.81 0.82
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Chapter 7

Automatic Extraction of Conditionals
From Requirements Artifacts

Common Thread This chapter focuses on the second step in the CiRA pipeline: the fine-
grained extraction of conditionals from NL sentences. To this end, we introduce three
approaches for conditional extraction and evaluate their performance on real-world data.
In Section 7.1, we show how Dependency Parsing can be utilized to extract conditionals
from NL. Our second approach builds on the idea that conditionals represent recursive
structures, and uses a Recursive Neural Tensor Network to extract them in fine-grained
form (see Section 7.2). In Section 7.3, we highlight how the extraction of conditionals
can be solved by using multi-class and multi-label classifiers. We select the approach
with the best performance as our final conditional extractor and incorporate it into the
CiRA pipeline.

Contribution Our Dependency Parsing-based approach works mostly in the case of
grammatically correct sentences. However, the lack of robustness against grammatical
errors as well as the reliance on the performance of the dependency parser and the qual-
ity of the predefined patterns prevent its practical use. Our RNTN-based extraction
approach performs better in handling grammatical errors but struggles to process Out-
Of-Vocabulary words. Specifically, the RNTN is unsure to which segments the unknown
tokens should be assigned (e.g., does the token belong to an antecedent or consequent?)
and fails to understand the semantics of the sentence. Contrary, we found that a sigmoid
classifier built on RoBERTa embeddings is more robust and best suited to extract con-
ditionals in fine-grained form. It achieves a macro-F1 score of 86 % when evaluated on a
real-world data set of 1,946 sentences.

Related Publications This chapter is taken, directly or with minor modifications, from
previous publications [1, 6, 8, 10].
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If the system detects an error , it shows a warning window .

det nsubj

punct

mark

obj

det

advcl

nsubj
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obj

compound

det

root

(a) Dependency Tree Representing REQ 1.

The system shows a warning window if it detects an error .

det nsubj

punct

advcl

obj

detnsubj

mark

obj

det

compound

root

(b) Dependency Tree Representing REQ 2.

Figure 7.1: Independence of Dependency Parsers From Word Order in NL.

7.1 Extracting Conditionals by Dependency Parsing

This section introduces our first approach for extracting conditional statements from NL.
In Section 7.1.1, we describe the principal idea behind our approach. Section 7.1.2 presents
a new formal language designed to define specific antecedent-consequent-patterns that are
used as the basis for subsequent extraction. Finally, Section 7.1.3 presents a case study
demonstrating the feasibility of our approach in cooperation with two industry partners:
Leopold Kostal GmbH & Co. KG (automotive) and Allianz Deutschland AG (insurance).

7.1.1 Principal Idea

In the past, rule-based approaches were primarily used for the extraction of information.
Such approaches are usually easy to implement (e.g., by using regular expressions) and
are therefore a first quick solution to extract specific content from texts. Rule-based
systems, however, can quickly become difficult to maintain, since a series of different rules
needs to be defined to handle complex scenarios. They depend on the word order causing
their application to be inflexible. This can be demonstrated by two simple requirements.
REQ 1 states that “If the system detects an error, it shows a warning window” and
REQ 2 describes the system behavior as follows: “The system shows a warning window
if it detects an error”. Both requirements specify the same system behavior and are
therefore semantically identical. However, they possess a different word order, so that
two different syntax rules are required for the extraction of the antecedent (“detection of
an error”) and consequent (“showing a warning window”). This causes unnecessary extra
work and results in an inflexible overall solution.

The core idea behind our approach lies in the use of a dependency parser. Irrespective
of the word order, the parser describes the content of a sentence by analyzing the
relationships between its words. These relationships can be depicted as a tree representing
the overall structure of the sentence. In this way, considered requirements share the
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7.1 Extracting Conditionals by Dependency Parsing

same dependency tree although they have a different syntax (see Figure 7.1). The
dependency parser identified that the token “shows” is the root node of the dependency
tree for REQ 1 (see Figure 7.1a) as well as REQ 2 (see Figure 7.1b). In both cases,
the relationship of antecedent and consequent is marked by the advcl(shows, detects)
relation. Except for the position of the marker “if ”, both dependency trees are identical.
Interpreting and fragmenting this tree into antecedents and consequents would thus cover
two different formulation styles of the same system functionality. We build on the fact
that a dependency tree consists of a set of subtrees, which represent different parts of
the parsed sentence. We aim to identify those subtrees that comprise the individual
antecedents and consequents. For this purpose, we traverse the tree and identify individual
subtrees by pattern matching. By traversing any kind of dependency tree and applying a
defined set of patterns on its nodes, our approach allows us to flexibly detect and extract
antecedent-consequent-relationships within NL sentences regardless of their syntax. We
hypothesize that the dependency tree matching requires substantially fewer patterns
compared to formulating the patterns specifically on the syntax.

7.1.2 Implementation

This section specifies in detail how our approach works. We first design a formal lan-
guage for defining patterns that are used by our approach to search a dependency tree
for antecedents and consequents (see Section 7.1.2.1). We describe the application of
these patterns using a running example to illustrate the operation of our approach (see
Section 7.1.2.2).

7.1.2.1 A New Formal Language for Dependency Pattern Matching

A dependency tree D is a directed rooted tree with words as nodes and labeled relations
as edges. D can be represented as a tuple (V,R) where:

∎ V is a finite set of nodes. Each node v ∈ V represents one token (word or punctua-
tion) of a sentence.

∎ R is a finite set of edges between two nodes. Each edge r ∈ R represents a Depen-
dency Relation Ð→ between two words with a dependency label d. A Dependency
Relation can be expressed as a triple d(vi, vj).

At each node vi ∈ V , we can define a separate subtree Di where vi is the root of Di. We
define Di(Vi,Ri) as a subtree of D(V,R) if Vi = {vj ∈ V ∣ vi Ð→∗ vj}, where Ð→∗ denotes
a subordinate relation. Accordingly, the subtree contains only those nodes that depend
on root vi. Based on these mathematical definitions, we created a formal language that
allows specifying subtrees and their properties as patterns. A pattern pi complies with
the following grammar, where ⊧ signifies produces, ∣ is an or operator, <name> are
production names.

⟨pattern⟩ ⊧ ([⟨e1⟩] ∣ ⟨e2⟩) - ⟨e3⟩⇒ (⟨pattern⟩ ∣ [⟨e1⟩] ∣ ⟨e2⟩) (7.1)
⟨e1⟩ ⊧ name (7.2)
⟨e2⟩ ⊧ POS tag: word (7.3)
⟨e3⟩ ⊧ dependency relation (7.4)
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7.1 Extracting Conditionals by Dependency Parsing

Accordingly, a pattern pi = {ei, ..., en} can be constructed by combining three different
elements ei. Each pattern may be applied to any node vi ∈ V . The element e1 can be
used to specify the desired name of a subtree Di with root vi (see Equation 7.2). In
order to check vi for a specific word and its corresponding POS tag, e2 can be used (see
Equation 7.3). By e3 a certain label of a Dependency Relation can be defined with vi
as the head (see Equation 7.4). The terminal ⇒ indicates a move from vi to the next
subordinate node vj . Formally, this node is the dependent in the triple d(vi, vj) defined
by e3. The expression preceded by ⇒ either specifies the beginning of a new pattern, a
new subtree Dj or can be used to check the POS tag of vj and its corresponding value.
Let us assume the following example, which is applied on the root of D(V,R):

[SubtreeA]

name

- advcl

dependency relation

⇒ [SubtreeB]

name

shows

the system a warning window . detects

if it an error

nsu
bj

do
bj

punct

advcl
m

ar
k

ns
ub

j dobj

SubtreeA

SubtreeB

The pattern is read from left to right and specifies the two subtrees “SubtreeA” and
“SubtreeB”. To match the pattern, the Dependency Relation advcl(vi, vj)must exist. Since
it exists in the present example, “SubtreeA” will be created as Dshows with root vshows

and “SubtreeB” as Ddetects with root vdetects. Finally, to extract the two subtrees from D
and separate them from each other, advcl(vshows, vdetects) is deleted. By means of such a
pattern you can describe which parts should belong to a subtree and which not. Hence,
this pattern can be expressed as follows: “SubtreeA” should contain all subordinate nodes
and edges of vi, only the part beneath the Dependency Relation advcl should belong
to “SubtreeB”. In some cases, a group of patterns must be applied to define a complex
subtree (see subtree “PartA” in pattern group 7 in Table 7.1). For this purpose, we define
Pi as a pattern group, which consists of multiple rows, each row being a separate pattern.
A pattern group can be expressed as Pi = {pi, ..., pn,⊥}, where ⊥ denotes the end of the
pattern as a terminal symbol (i.e., end of the last row). The sum of all pattern groups is
expressed as P = {Pi, ..., Pn}.

7.1.2.2 Pattern Matching of the Dependency Tree

Utilizing the introduced language, we created a set of patterns in both English and
German that cover different antecedent-consequent-relationships. In total, we created 38
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Table 7.1: Excerpt of Developed Pattern Groups.

# Pattern Group

1 [Consequent] - advcl⇒ [Antecedent] - mark⇒ IN:’if’
[Consequent] - advmod⇒ RB: ’then’

2 [Consequent] - advcl⇒ [Antecedent] - mark⇒ IN:’if ∣ because ∣ although’

3
[Antecedent] - ccomp⇒ [Consequent]
[Antecedent] - advmod⇒WRB:’when’
[Antecedent] - advmod⇒ RB: ’then’

4 [Antecedent] - amod⇒ JJ:’due’ - prep⇒ TO:’to’ - pobj⇒ [Consequent]

6 VBN:’provided’ - ccomp⇒ [Antecedent] - dobj⇒ [Consequent]
[Antecedent] - complm⇒ IN:’that’

7
[PartA] - preconj⇒ CC:’neither’
[PartA] - cc⇒ CC: ’nor’
[PartA] - conj⇒ [PartB]

8
[PartA] - cc⇒ CC:’and’
[PartA] - conj⇒ [PartB]
[PartA] - preconj⇒ DT:’both’

9 [PartA] - cc⇒ CC:’or’
[PartA] - conj⇒ [PartB]

10 [Condition] - nsubj⇒ [Variable]

English and 43 German patterns. Table 7.1 depicts an excerpt from the set of formulated
patterns. For all other patterns please refer to our Github repository.1 We apply the
amount of patterns on the dependency tree to extract the respective antecedents and
consequents. For this purpose, we implemented an algorithm that traverses a dependency
tree starting from its root and applies the patterns to the individual nodes of the tree.
Its exact operation is described in Algorithm 2. For better comprehensibility of the
algorithm we will apply it to the given requirement:

“If the customer is traveling with a parent, or the customer is older than 23
years and the customer shows a valid driving license, the system does not
charge an increased fee.”

As a first step, the requirement is converted into a dependency tree (see Figure 7.2).
Subsequently, we traverse the created dependency tree in order to extract the antecedents
and consequents.

7.1.2.3 Procedure of the Algorithm

The algorithm begins at the root of the dependency tree and starts matching the defined
patterns. If a pattern matches, the algorithm splits the dependency tree into the subtrees
specified by the pattern. Subsequently, the algorithm applies all patterns again to the
newly created subtrees with the aim of successively decomposing them into smaller

1 Available as Open Source at https://github.com/qualicen/specmate. The class
PatternbasedCEGGenerator is recommended as a starting point to comprehend the approach pre-
sented in this section (see bundle specmate-model-generation).
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Figure 7.2: Dependency Tree Representing the Requirement “If the customer is traveling with a
parent, or the customer is older than 23 years and the customer shows a valid driving
license, the system does not charge an increased fee.”

subtrees. This recursive process is performed until all subtrees are broken down into
conditions and variables. If no pattern matches in any of the subtrees, the algorithm
terminates. While traversing the dependency tree, the algorithm creates a Subtree Syntax
Tree (SST) to reflect the relationship between the subtrees. This tree contains the names
of the respective subtrees, their root nodes as well as a list of their child nodes. To visualize
the relations (conjunction, disjunction, etc.) between the subtrees, the algorithm uses
labeled edges indicating the type of connection. Therefore, every edge in the SST gets a
type ∈ {and,nor, xor, or}. The depth of the tree corresponds to the number of algorithm
recursions. In the following we illustrate the algorithm by extracting antecedents and
consequents from the dependency tree shown in Figure 7.2. After each recursion, we
give an insight into the successive construction of the SST. It should be noted that the
number of required recursions depends on the complexity of the dependency tree.

1. Recursion In the present example, the root node vcharge contains all information
about the consequent, while all nodes located below the dependency edge advcl specify
the antecedents (i.e., all child nodes of vtravelling). This scenario is covered by Pattern 2 .
According to the pattern, the algorithm checks whether the current node is in an advcl
dependency relation to one of its child nodes. As this dependency relation exists in the
present example, the algorithm deletes the dependency relation advcl(vcharge, vtravelling)
and splits the tree into two subtrees - Dcharge and Dtravelling. The first is named “Con-
sequent”, while the second subtree is called “Antecedent”. As a result, the first iteration
returns Vcharge = {vthe, vsystem, vdoes, vnot, vcharge, van, vincreased, vfee}. All other nodes
v ∈ V are contained in Vtravelling except vif , since the algorithm also deletes the depen-
dency relation mark(vtravelling, vif) according to Pattern 2 . Nodes containing only punc-
tuation (e.g. v.) do not provide useful information for the consequent or antecedent and
are therefore neglected by the algorithm.
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Output of 1. Recursion

Antecedent
vtravelling

Consequent
vcharge

D

2. Recursion During the second iteration of the algorithm, each rule is applied to the
roots of the two subtrees “Antecedent” and “Consequent”. vcharge matches Pattern 10 , while
vtravelling matches Pattern 9 . Pattern 10 splits the subtree “Consequent” into two further
subtrees “Condition” and “Variable” - Dcharge and Dsystem. After applying the pattern on
vcharge, Vsystem includes vthe and vsystem specifying the variable of the consequent, whereas
Vcharge = {vdoes, vnot, vcharge, van, vincreased, vfee} defining the condition of the consequent.
The first part of Pattern 9 is matched by cc(vtravelling, vor) followed by the fact that the
word “or” has been classified with POS tag CC. The second part leads to a splitting
of Dtravelling into the two subtrees “PartA” as Dtravelling with vtravelling as root and
“PartB” as Dolder with volder as root. As a result, the second iteration returns Vtravelling =
{vthe, vcustomer, vis, vtravelling, vwith, va, vparent}. Volder contains all child nodes of volder.

Output of 2. Recursion

Antecedent
vtravelling

PartA
vtravelling

PartB
volder

Consequent
vcharge

Variable
vsystem

Condition
vcharge

or

or

D

3. Recursion In the third iteration, no pattern matches the subtrees Dcharge and
Dsystem because these already exist in the form of condition resp. variable and there-
fore do not have to be split further. In contrast, vtravelling matches Pattern 10 , while
volder matches Pattern 8 as one of the conjunction patterns. Dtravelling is thus divided
into the two subtrees Dcustomer and Dtravelling with Vcustomer = {vthe, vcustomer} and
Vtravelling = {vis, vtravelling, vwith, va, vparent}. Dolder contains two antecedents connected
by a conjunction. This conjunction is resolved by Pattern 8 by dividing Dolder into “PartA”
as Dolder with volder as root and “PartB” as Dshows with vshows as root.

Output of 3. Recursion

Antecedent
vtravelling

PartA
vtravelling

Variable
vcustomer

Condition
vtravelling

PartB
volder

PartA
volder

PartB
vshows

Consequent
vcharge

Variable
vsystem

Condition
vcharge

or or

an
d and

D
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4. Recursion In the fourth iteration, the pattern matching is only successful for the
subtrees Dolder and Dshows. Both subtrees contain no further connections to other an-
tecedents and are therefore divided into the subtrees “Condition” and “Variable” accord-
ing to Pattern 10 . In summary, our approach has thus identified three antecedents and
one consequent by traversing the dependency parse tree. The combinatorics of the ex-
tracted antecedents and the consequent is illustrated by the SST below and constitutes
the final output of our method.

Final Output of the Algorithm

Antecedent
vtravelling

PartA
vtravelling

Variable
vcustomer

Condition
vtravelling

PartB
volder

PartA
volder

Variable
vcustomer

Condition
volder
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Variable
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Condition
vshows

Consequent
vcharge

Variable
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Condition
vcharge

or or

an
d and

D

7.1.3 Evaluation

In cooperation with Leopold Kostal GmbH & Co. KG (automotive) and Allianz Deutsch-
land AG (insurance), we conduct a case study to evaluate whether our Dependency Pars-
ing-based approach is capable of extracting conditionals from real-world data. For our
study, we follow the guidelines by Runeson and Höst [269] for conducting case study re-
search. In the following, we report on our research questions, investigated study objects,
and study results.

7.1.3.1 Research Questions

For the evaluation, we are interested in the following research questions (RQ):

∎ RQ 1: Can our automated approach based on Dependency Parsing extract condi-
tionals from Natural Language in fine-grained form?

∎ RQ 2: What are the reasons for incorrectly extracted conditionals or even com-
pletely missed conditionals?

7.1.3.2 Study Objects

Allianz Deutschland AG provided us with 72 user stories. All of these user stories contain
acceptance criteria that are expressed using conditional statements and are therefore
suited for assessing our approach. The examined user stories contain 259 acceptance
criteria and are written in English. Leopold Kostal GmbH & Co. KG provided us with a
functional specification including 255 requirements. Out of these 255 requirements, we
consider 79 requirements for our case study since they describe a functional behavior by
conditional statements. All investigated requirements are written in English.
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Algorithm 2: Recursive Pattern Matching Algorithm for Fine-Grained Condi-
tional Extraction From an Arbitrary Dependency Tree D

input :D(V,R)
output :List of matched Pi and Dsub

1 /* start with Dsub = {D} since the whole tree is the first subtree */

2 for Di ∈Dsub do
3 vi = root of Di /* apply all patterns on the current node vi */

4 for Pi ∈ P do
5 for pi ∈ Pi do
6 /* successful match of Pi */

7 if pi =⊥ then
8 add ∀Dname ∈Dsub.pattern to Dsub

9 /* build the RST */

10 connect Di to ∀Dname ∈Dsub.pattern

11 empty Dsub.pattern

12 /* move to next subtree and apply all rules again */

13 return Pi and go to step 1

14 else
15 for ei ∈ pi do
16 if ei = [name] then
17 /* Pi specifies a subtree by multiple sub patterns */

18 if Dname ∈Dsub.pattern then
19 set vi = root of Dname

20 else
21 create Dname
22 set root of Dname = vi
23 /* each matching Pi gets its own list of subtrees */

24 add Dname to Dsub.pattern

25 else if ei = dependency⇒ then
26 check dependency(vi, vj) ∈ {vi → vj ∈ Ri}
27 if true then
28 delete dependency(vi, vj)
29 /* move to dependent */

30 set vi = vj
31 /* check the next element of pi */

32 continue

33 else
34 /* non-matching Pi */

35 empty Dsub.pattern and go to step 3

36 else if ei = POS Tag: value then
37 check vi matches POS Tag: value
38 if true then
39 continue

40 else
41 /* non-matching Pi */

42 empty Dsub.pattern and go to step 3

103



7.1 Extracting Conditionals by Dependency Parsing

7.1.3.3 Study Results

We report on the results of our study structured by our research questions. Figure 7.3
provides an overview of the performance of our approach when applied to our study
objects. The vertical bars in the Sankey diagram correspond to certain categories (e.g.,
“correctly extracted conditionals”). The thickness of links between the bars encodes the
count of study objects belonging to a category.

Results for RQ 1 Applying our approach to the 259 acceptance criteria provided by
Allianz results in a set of 152 automatically extracted conditionals (see Figure 7.3a).
Hence, our approach failed to process 107 acceptance criteria and extract their included
conditionals (41.3 %). When analyzing the automatically extracted conditionals, we
found that only 61 conditionals are correct (i.e., our approach identified all antecedents
and consequents as well as their corresponding variables and conditions, and considered
conjunctions and disjunctions). However, the majority (91) of the extracted conditionals
were not entirely correct. In case of 54 conditionals, the antecedents and consequents were
detected properly, but the variables and conditions were assigned incorrectly. In other
words, the approach assigned some tokens to the wrong subtrees at the lower levels. In
the case of 15 of the partially correct conditionals, certain antecedents were overlooked.
Similarly, consequents were missed during the extraction of 22 of the conditionals. In
these cases, the approach failed to interpret conjunctions / disjunctions and ignored the
combinatorics of multiple antecedents or consequents.

Our approach shows a similar performance when applied to the data provided by
Kostal (see Figure 7.3b). Out of the 79 requirements, our approach extracts 48 condi-
tionals. It thus fails in the processing of 11 requirements and is unable to extract their
contained conditionals (39.2 %). We observed that 12 of the extracted conditionals were
correct. The majority (36) of the extracted conditionals, however, were only partially
correct processed by our approach. In case of 23 conditionals, the variables and condi-
tions of the antecedents and consequents were assigned incorrectly. We notice that an-
tecedents were missed during the extraction of 11 conditionals. In the case of two of the
partially correct conditionals, certain consequents were overlooked.

The similar performance of our approach on both data sets is visually underlined
by the Sankey diagrams (see Figure 7.3). The thickness of the links highlights that the
proportions of study objects in the investigated categories are similar for both cases.
For example, the proportion of missed conditionals is almost identical: 41.3 % in case of
Allianz data and 39.2 % in case of Kostal data. Furthermore, in both cases most of the
extracted conditionals were only partially correct: 60 % (Allianz ) and 75 % (Kostal).

Results for RQ 2 The main reason for the high number of missed conditionals lies in
the lack of robustness of our approach to grammatical errors in a sentence. In case of,
e.g. spelling mistakes and missing punctuation marks, the sentences can not be parsed
correctly, whereby a wrong dependency tree is created causing our algorithm to fail.
This poses a threat to the applicability of our approach in practice since requirements
often suffer from poor quality. We also encountered problems with handling complex
variable names, since they were not included in the vocabulary on which the dependency
parser was trained. In some cases, the input sentence was grammatically correct, but
the parser produced a wrong dependency tree from which our approach derived a wrong
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Incorrect Variable / Condition: 54

Processed Acceptance Criteria: 259

Missed Conditionals: 107

Extracted Conditionals: 152

Correct Conditionals: 61

Partially Correct Conditionals: 91

Error in Antecedent(s) Detection: 15

Error in Consequent(s) Detection: 22

(a) Extracted Conditionals From Allianz Data.

Incorrect Variable / Condition: 23

Processed Requirements: 79

Missed Conditionals: 31

Extracted Conditionals: 48

Correct Conditionals: 12

Partially Correct Conditionals: 36

Error in Antecedent(s) Detection: 11

Error in Consequent(s) Detection: 2

(b) Extracted Conditionals From Kostal Data.

Figure 7.3: Evaluation Results of Our Conditional Extraction Approach Based on Dependency
Parsing.

conditional. This emphasizes again the dependence of our approach on the output of the
used dependency parser: as soon as an error occurs during the creation of the dependency
tree, our approach fails. Additionally, our approach is dependent on the manually defined
antecedent-consequent-patterns. In the case study, our approach was not able to properly
process all generated (correct) dependency trees because specific rules were missing in
our pattern set. The extraction capability of our approach is thus strongly influenced by
the quality and completeness of the predefined patterns.

 Summary of Evaluation:

In conclusion, the presented approach is not suitable for a fully automated condi-
tional extraction from NL. Across all 338 study objects, it could not extract 138
conditionals (error rate of 40.82 %). In total, however, the approach was able to
extract 73 conditionals completely correct and 127 conditionals partially correct.
Our study proves that the idea of using Dependency Parsing for conditional ex-
traction is generally reasonable and indeed works in the case of grammatically
correct sentences. However, the lack of robustness against grammatical errors as
well as the reliance on the performance of the dependency parser and the quality
of the manually crafted patterns prevent the practical use of our approach.
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7.2 Extracting Conditionals by Recursive Neural TensorNetworks

This section introduces our second approach for extracting conditional statements from
Natural Language. In Section 7.2.1, we describe the principal idea behind using an
RNTN for conditional extraction and explain the key differences compared to our first
approach. Further, we detail the creation of an appropriate corpus of binary trees suitable
for training our approach (see Section 7.2.2). Section 7.2.3 outlines the functionality
and implementation of our conditional approach based on an RNTN. We evaluate our
approach in Section 7.2.4.

7.2.1 Principal Idea

An RNTN is based on the idea that Natural Language can be understood as a recursive
structure [128]. For example, the syntax of a sentence is recursively structured, with
noun phrases containing relative phases, which in turn contain further noun phrases, and
so on. An RNTN is capable of recovering this recursive structure and helps to better
understand the composition of a sentence. We argue that a conditional statement also
represents a recursive structure as it consists of antecedents and consequents, which in
case of conjunctions and disjunctions consists of further antecedents and consequents,
and so on [2]. This results in a tree-like structure of antecedent and consequent nodes
forming the full sentence. By recovering this tree-like structure, we do not lose the
combinatorics between the antecedents and consequents which allows us to entirely
extract the conditional. Furthermore, it allows us to split single sentence fragments into
increasingly smaller parts (e.g., antecedents can be split into variables and conditions,
which in turn can be decomposed into further more granular text fragments). In this
way, we enable a fine-grained conditional extraction. Utilizing an RNTN for conditional
extraction has several advantages compared to our Dependency Parsing-based approach:

∎ Increased robustness against grammatical errors: Our Dependency Parsing-
based approach generally fails and does not produce any output in case of gram-
matical errors (i.e., it does not even extract parts of the conditional but aborts
completely). Our RNTN-based approach is much more robust against grammat-
ical errors and does not depend on a pre-processing step like Dependency Pars-
ing. Rather, the RNTN creates the tree structure in a bottom-up fashion and de-
cides from adjacent to adjacent pair which segments semantically belong together
and should be merged accordingly. Grammatical errors (e.g., wrong punctuation,
spelling mistakes) thus only affect individual segments in the sentence and do not
negatively influence the entire sentence comprehension of the RNTN. Naturally,
the generated tree-structure may contain isolated errors, but the RNTN-based ap-
proach does not fail and produces an (albeit only partially correct) output.

∎ No dependence on predefined patterns: Unlike our Dependency Parsing-
based approach, the RNTN does not rely on handcrafted patterns but acquires
its language understanding during the training process. The extraction capability
is therefore not dependent on the quality and completeness of a given rule set. It
should be stressed, however, that the RNTN-based approach also involves manual
work, since a training corpus must first be manually annotated in order to allow
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supervised learning. Thus, the performance of the RNTN depends on the quality
of the annotated data.

7.2.2 Training Corpus Creation

To the best of our knowledge, we are the first to utilize an RNTN for RE purposes.
Accordingly, there is no labeled corpus of requirements available in the RE community
that could be used to train an RNTN. This section describes how we created a suitable
training corpus.

7.2.2.1 Data Collection

Since we train the RNTN to extract conditional statements, we need requirements that
include conditionals. Hence, we searched for conditionals in our gold standard corpus of
212,186 requirements presented in Chapter 4. Since manual analysis of all sentences is
not practicable, we searched for specific cue phrases that usually indicate conditionals [4].
We focused on the cue phrases: “if ”, “when”, “in order to”, “due to”, “because”, “since”
and “in (the) case of”. We randomly searched the data set for sentences containing these
cue phrases and discussed in the research group whether a sentence (1) represents a
functional requirement and (2) includes a conditional. We continued the search until we
reached a reasonable number of sentences for the training of the RNTN. As a result, the
filtered data set consists of 1,571 requirements that include a conditional statement.

7.2.2.2 Annotation Labels

We need to indicate specific segments in the requirements so that the RNTN can learn to
identify the structure of a conditional. Since we aim to extract conditionals in fine-grained
form, we annotated the 1,571 sentences with 27 different segments. To minimize the
annotation effort, we analyzed which segments actually need to be annotated manually
and which segments can be labeled automatically. We found that 12 of the 27 segments
can be assigned automatically. For example, # Word and # Punct segments can be rule-
based annotated, since they only occur at the lowest level of the tree.

∎ Manually assigned labels:

1. # Variable This label indicates noun phrases in a sentence.
2. # Condition This label indicates the verb phrases that belong to a variable.
3. # Negation This label indicates negations (e.g., negated conditions).
4. # Statement This label indicates combinations of variable and condition seg-

ments.
5. # Not Relevant (NR) This label indicates segments that are not part of a condi-

tional statement.
6. # Key C This label highlights certain cue phrases that indicate conditionals.
7. # Antecedent This label indicates an antecedent segment.
8. # Consequent This label indicates a consequent segment.
9. # Conditional Statement This label captures all segments that belong to the

conditional statement.
10. # And This label is used to annotate conjunctions.
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11. # Or This label is used to annotate disjunctions.
12. # Root Sentence This label always represents the root node of a sentence.
13. # Key NR This label highlights certain cue phrases that indicate not-relevant

segments in a sentence.
14. # Insertion This label is used to annotate any kinds of insertions in a sentence

(e.g., bracket expressions that are not essential for the interpretation of a
sentence but provide additional information).

15. # Sentence This label is used to connect, e.g., not-relevant segments and seg-
ments that belong to a conditional of a sentence. Contrary to the # Root Sentence
segment, it does not contain the ending punctuation mark of the sentence.

∎ Automatically assigned labels:

1-9. # Separated... {Antecedent | Statement | And | Conditional Statement | Nega-
tion | Not-relevant | Or | Consequent | Variable}: This label is used to high-
light self-contained text fragments that are syntactically separated from other
fragments. The label is needed, for example, when a # Statement segment
will be merged with a comma token. The comma turns the segment into a
# Separated Statement .

10. # Word This label is distributed at the bottom level of the tree and assigned
to the individual words of a sentence.

11. # Punct This label is used to indicate punctuation marks.
12. # Symbol This label is used to mark special symbols.

7.2.2.3 Annotation Procedure

As described in Section 2.3.2, an RNTN builds the tree-structure in a bottom-up fashion.
In order to reflect the composition of a sentence, it tries to identify tokens that belong
contextually together and merges them into a segment. When adding new tokens to a
segment, it decides what information is added by the new token and whether the label
of the segment needs to be adjusted or not. We considered this approach during the
annotation process and wrote an annotation guideline specifying five steps according to
which the sentences should be labeled. We involved four annotators and conducted a
workshop where we discussed several examples. Since the quality of the annotations is
fundamental for the performance of our final model, we describe the applied annotation
procedure in detail. We use the following requirement as our sentence to be annotated
(see Figure 7.4): “If A is true and B is false, then C shall occur.”

Step 1: Identify Words, PunctuationMarks, and Special Symbols. The first annotation
level is trivial. Each individual word is assigned the label # Word , while the punctuation
marks are annotated with # Punct . The sentence does not contain any special symbols.

Step 2: Identify Variables andConditions. Also, Examine forNegations. On the second
level, we distinguish between variables and conditions. In the present case, “A”, “B”
and “C” can be marked as a # Variable segment, while the verb phrases are labeled as
# Condition segments. None of the conditions is negated.
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Figure 7.4: Correct Binary Parse of the Requirement: “If A is true and B is false, then C shall
occur.” Segments Are Highlighted in Bold. Tokens Are Indicated by Frames. Upper
Figure: Parse Tree After Applying Left-Branching. Lower Figure: Parse Tree After
Applying Right-Branching. Green Highlighting Demonstrates the Difference Between
Both Branching Methods.
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Step 3: Identify Statements and Understand Combinatorics. Most challenging is the
annotation of the third level, which can be illustrated by the adjacent pair [A, is true].
According to the second annotation level, “A” represents a # Variable segment, while “is
true” is part of a # Condition segment. Combined, the two segments form the expression
“A is true”. As readers of the sentence, we know due to the preceding “if ” phrase that
this expression represents a cause and should be annotated with a corresponding label.
However, since the RNTN builds the tree in a bottom-up fashion, it is unable to take the
cue phrase into account when merging [A, is true]. The content of both segments does not
allow any conclusion about the presence of an antecedent. In fact, both segments could also
be part of an # Consequent segment or even part of a # Not-relevant segment. However, the
combination of a noun phrase and verb phrase allows us to infer a # Statement segment.
Similarly, the adjacent pair [B, is false] can be also annotated as a # Statement . To cover
the combinatorics between both statements, they must be connected by a conjunction.
However, this is not directly possible, because both segments are not adjacent and are
interrupted by an “and” token. This results in two options: We can either merge “and”
with the left neighbor (left branching, see Figure 7.4a) or with the right neighbor (right
branching, see Figure 7.4b). In our paper, we experimented with both branching methods
and implemented them in our exporter (see lines 24 - 38 in Algorithm 3). In the case of
our exemplary requirement, we assume that right branching is used. Consequently, we
label the expression “and B is false” as an # And segment, because the added “and” token
turns the statement into a conjunctive statement (see cyan highlighting in Figure 7.4b).

Step 4: Identify Antecedents and Consequents. The RNTN can only recognize that
the conjunctive statement represents an antecedent by merging the adjacent pair
[If,A is true and B is false]. The cue phrase “if ” provides valuable information to the
model, which consequently changes the label of the segment from # Statement to
# Antecedent . The same applies if you combine [then,C shall occur]. The cue phrase

“then” indicates that this segment represents an # Consequent .

Step 5: ConnectAntecedent-Consequent-Pairs. In the last step, the related antecedent
and consequent pairs are joined into a # Conditional Statement segment. The exemplary
requirement contains only a single antecedent-consequent relation. In some cases, how-
ever, a sentence may contain several conditionals, so that several # Conditional Statement
segments must be annotated (see [S4] in Table 7.2).

7.2.2.4 Annotation Tool and Tree Exporter

An RNTN requires a strongly structured training input. More specifically, it needs to be
trained on binary trees. This renders the annotation of individual segments laborious
and error-prone. To support the annotators, we used the web-based brat2 annotation
platform [301]. Instead of requiring the annotators to assign separate segment labels for
each adjacent token pair, we allow the annotation of segments that span multiple tokens
(see Table 7.2). Consequently, the manual annotations do not need to follow a binary

2 Since brat was not originally designed for annotating multiple layers, we slightly modified the platform.
We share the customized code in our Github repository: https://github.com/springto/Fine-Grained-
Causality-Extraction-From-NL-Requirements.
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Table 7.2: Examples of Manual Annotations and Their Corresponding Binary Structured Output. Segment Names Are Represented by Numbers in
the Binary Annotations (g.g., a # Word Segment Is Indicated by 23). The Exact Mapping of Segment Name to Corresponding Number Is
Available in Our Github Repository.

# Manual Annotations in brat Binary Structured Annotations Generated by Our Exporter

[S1]

(1 (13 (10 (9 (23 The) (23 Gateway)) (8 (8 (8 (8 (8 (8 (8 (8 (23
shall) (23 provide)) (23 a)) (23 minimum)) (23 of)) (23 32kW))
(23 for)) (23 Gateway)) (23 use))) (11 (6 when) (10 (9 SEP) (8
(23 is) (23 inactive)))))(3 .))

[S2]

(1 (20 (20 (17 (23 For) (23 example))(3 ,)) (13 (14 (11 (6 when)
(4 (4 (9 E=16) (23 and)) (9 I=5)))(3 ,)) (12 (6 then) (10 (9 (9 (9 (9
(9 (9 (23 the) (23 length)) (23 occupied)) (23 by)) (23 the)) (23
check)) (23 symbols)) (8 (8 (8 (23 is) (23 always)) (23 1280))
(23 bits))))))(3 .))

[S3]

(1 (13 (10 (9 (9 (23 The) (23 witness)) (23 plate)) (16 (16 (23
shall) (23 not)) (8 (23 be) (23 used)))) (11 (6 when) (10 (9 it) (4
(4 (8 (23 is) (23 stored))(3 ,)) (4 (4 (8 unused)(3 ,)) (8 (8 (8 (8
(23 for) (23 more)) (23 than)) (23 two)) (23 months)))))))(3 .))

[S4]

(1 (20 (20 (17 (17 (17 (17 (23 For) (23 plated)) (23 through)) (23
holes)) (23 only))(2 :)) (13 (14 (11 (6 When) (10 (9 (23 the) (23
repair)) (8 (23 is) (23 completed))))(3 ,)) (10 (9 (9 (23 a) (23
clinched)) (23 lead-through)) (8 (8 (8 (8 (8 (8 (8 (8 (23 is) (23
to)) (23 be)) (23 inserted)) (23 in)) (23 the)) (23 plated)) (23
through)) (23 hole)))))(3 .))
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structure, allowing the annotation process to be more efficient. In order to subsequently
convert the annotations into a format usable for training the RNTN, we implement a
post-processing step. Specifically, we rebuild the binary structure for each annotated
sentence. To this end, we implement an exporter, which transforms the annotations into
a binary structured output. This can be illustrated by [S2] in Table 7.2. The four tokens
“is always 1290 bits” are marked as a single # Condition segment. However, an RNTN
would expect three condition labels in this case, i.e. for the adjacent pairs [is,always],
[is always,1290] and [is always 1290,bits] if we apply left-branching. Our exporter sets
these labels automatically and marks segments with brackets. The segment labels are
represented by numbers to minimize the length of the binary annotations. Thus, the
exporter creates the following binary annotation for the expression is always 1290 bits:

(8 (8 (8 (23 is) (23 always)) (23 1280))(23 bits))

# Condition segments are tagged as 8, while # Word segments are marked as 23. The
exact functionality of our exporter3 is defined by Algorithm 3.

7.2.2.5 Annotation Validity

In order to verify the reliability of the manual annotations, we calculated the inter-
annotator agreement. For this purpose, we distributed the 1,571 conditionals among the
four annotators, ensuring that 314 sentences are labeled by two annotators (overlapping
quote of ≈20 %). Similar to other studies [302] that also utilize brat to annotate text
segments, we calculate the pair-wise averaged F1 score [303] based on the overlapping
sentences. Specifically, we treat one rater as the subject and the other rater’s answers
as if they were a gold standard. This allows us to calculate the Precision and Recall
values for their annotations. We then determine the F1 score as the harmonic mean of
Recall and Precision and take the average of F1 scores among all pairs of raters in order
to quantify the agreement of our raters: The higher the average F1 score, the more the
raters agree with each other.

For most of our manually assigned labels, we obtained an inter-annotator agreement
of at least 0.83. The lowest agreement was achieved for # Condition and # And segments
(0.73). The annotators did not always agree on how granular some expressions should be
labeled (e.g., are there multiple conditions specified that need to be labeled as separate
segments or can they be interpreted as one single segment?). The highest agreement
was measured for the assignment of # Statement segments (0.89). Based on the achieved
inter-annotator agreement values, we assess our labeled data set as reliable and suitable
for the implementation of our conditional extraction approach.

7.2.2.6 Data Analysis

Our final binary tree structured data set contains a total of 73,221 segments. Fig-
ure 7.5 provides an overview of the distribution of the segments across the individual
labels. The distribution of segments is strongly unbalanced, since some segments (e.g.,
# Conditional Statement ) only occur on the upper levels of binary trees. Most of the seg-
ments represent # Words , # Conditions and # Variables , because these labels are already

3 We share the code of the exporter in our Github repository: https://github.com/springto/Fine-
Grained-Causality-Extraction-From-NL-Requirements
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Figure 7.5: Overview of the Segment Distribution in Our Training, Validation, and Testing Data
Sets.

assigned at the lower levels of the tree when multiple smaller text fragments are merged.
A # Root Sentence segment, on the other hand, occurs only once in a sentence. Hence, we
find only 1,570 segments with this label in our data set. As shown in Figure 7.5, there
are significantly more # Antecedent segments than # Consequent segments. One would
expect that each conditional contains at least one consequent. Consequently, the number
of consequent segments should be at least equal to the number of conditional statements.
In the formulation of conditional statements, however, consequents are rarely explicitly
introduced by cue phrases (e.g., “then”). In general, antecedents are introduced by cue
phrases while the consequents are implicitly expressed by the semantics of the sentence.
This often results in the combination of several # Antecedent segments and # Statement
segments, which implicitly express the consequent (see S1, S3, and S4 in Table 7.2). Our
first experiments have shown that it is important to distinguish between the explicit
and implicit form of consequents during the annotation process, because otherwise the
RNTN gets confused while learning the tree structures in bottom-up fashion. Thus, we
annotate # Statement segments only as # Consequent segments if explicitly indicated by
a cue phrase (see Step 4 in Section 7.2.2.3).

7.2.3 Implementation

This section presents the training and evaluation of the RNTN based on the Conditional
Treebank. To determine the optimal configuration of the RNTN, we perform the following
steps: First, we tune its hyperparameters. Second, we run two experiments and investigate
whether we can improve the performance of the RNTN by using e.g. word vectors enriched
with syntactic information.
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Algorithm 3: Brat Annotation Export Algorithm

Data: Brat annotation file
Result: Binary tree structured sentence

1 initialize dataframes;
2 while annotations not empty do
3 foreach sentence do
4 convert annotations to dataframe containing begin and end positions of labels;
5 append additional WORDCOUNT column to the data frame capturing the number

of individual words in a label;
6 create label containing final clause;
7 add label to dataframe;
8 if label spanning from beginning of sentence to predecessor of final clause exists then
9 continue;

10 else
11 create label spanning from beginning to predecessor of final clause;
12 add label to dataframe;

13 foreach word in sentence do
14 if word has single label then
15 add label to dataframe;
16 else
17 create label WORD spanning from begin to end of word;
18 add label to dataframe;

19 foreach label in dataframe do
20 if label has more than two childs then
21 if label contains separator then
22 perform separator merge;
23 else
24 if leftBranching then
25 for child = 1 to childsOfLabel do
26 if child+1 == childsOfLabel then
27 break;
28 else
29 create label from child to child+1;
30 add label to dataframe;

31 if rightBranching then
32 for child = childsOfLabel to 1 do
33 if child-1 == childsOfLabel then
34 break;
35 else
36 create label from child to child-1;
37 add label to dataframe;
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7.2.3.1 Evaluation Procedure

We follow the idea of Cross Validation and divide the data set (1,571 sentences) in a
training (1,290), validation (140) and test (141) set. Each segment is equally represented
across all three data sets which helps to avoid bias in the prediction (see Figure 7.5).
For example, in all three data sets, # Condition segments represent about 20 % of all
included segments. The training set is used to fit the algorithm while the validation
set is used to tune its parameters. The test set is utilized for the evaluation of the
algorithm based on real-world unseen data. We opt for a 10-fold Cross Validation as
several studies have shown that a model that has been trained this way demonstrates
low bias and variance [300]. We use standard metrics, for evaluating our approaches:
Accuracy, Precision, Recall, and F1 score. During the training process, we check the
validation accuracy periodically in order to keep the model’s checkpoint with the best
validation performance.

7.2.3.2 Hyperparameter Tuning

We train the RNTN for 90 epochs seeking the optimal hyperparameter configuration.
Specifically, we use AdaGrad as optimizer and set the learning rates (lr) to 0.1, 0.01,
0.001, and 0.0001. In addition, we try different mini batch (mb) sizes: 16, 24, 32, and 64.
We set epsilon to 1e-08. As described in Section 2.3.2, each word needs to be represented
as a d-dimensional vector. We try different dimension (wvecDim) sizes: 30, 50, and 60.
Similarly to Socher et al. [129], we initialize all word vectors by randomly sampling each
value from a uniform distribution: U(-r, r), where r = 0.0001. Consequently, the word
vectors are random at the beginning of the training process. However, we consider the
word vectors as parameters that are trained jointly with the other parameters of the
RNTN. We achieve the best performance with the following configuration: lr = 0.001, mb
= 24 and wvecDim = 60. The model yields a training accuracy of 0.931 and a validation
accuracy of 0.913 in epoch 87.

7.2.3.3 Setup of the Experiments

To further improve the performance of the RNTN, we conducted two experiments based
on the identified optimal hyperparameter configuration.

POS Tagging Experiment Studies have shown that the performance of NLP models
can be improved by providing explicit prior knowledge of syntactic information to the
model [298, 4]. In this experiment, we investigate whether syntactic information also has
a positive impact on the performance of the RNTN. We study two scenarios: First, the
word vectors are randomly initialized and used as trainable parameters (as described in
Section 7.2.3.2). Second, the word vectors are not randomly initialized but rather pre-
trained and enriched with POS tags. Specifically, we add the corresponding POS tag
to each token and create two vector representations: one for the actual token and one
for the associated POS tag. We use the nltk library [304] to assign the POS tags to the
respective tokens and fastText [143] to generate the pre-trained vectors.

As found during the hyperparameter tuning, the RNTN performs well with a vector
dimension of 60. We stick to this dimension size and simply concatenate the pre-trained
vector and the POS tag vector to a single representation. To investigate the impact
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of the added syntactic information on the model performance, we concatenate the two
vectors in three different ways. In the first variant, both vectors are equally weighted. The
concatenated vector thus contains 30 dimensions representing the POS tag part and 30
dimensions for the pre-trained part (see Equation 7.5). In the second variant, we weight
the syntactic information slightly more, so that the majority of the dimensions constitute
the POS tag part (see Equation 7.6). Specifically, 75 % of the dimensions represent the
POS tag part. In the third variant, the concatenated vector consists only of the POS tag
part, i.e. the RNTN predicts only on the basis of POS tags and does not consider the
actual token (see Equation 7.7). To measure the performance of the RNTN, we compare
the test accuracy values achieved by using the different word vectors (see Figure 7.6a).
The equations below illustrate the structure of the three word vector types. The POS
tag part is highlighted in light green, while the pre-trained part is marked in dark green.
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Branching Experiment In this experiment, we study whether the branching method
used to generate the binary tree-structured data influences the performance of the RNTN.
Specifically, we create two data sets with our tree exporter: one data set in which the
adjacent pairs are merged by left branching and one data set in which we apply right
branching. We also build a third data set that combines the left and right branching
data in order to further increase the number of training instances. We divide each of the
three data sets into a training, validation, and test set and train the RNTN on these
sets. To measure the performance of the RNTN, we compare the respective test accuracy
values (see Figure 7.6b). We build on the findings of the POS tagging experiment and
use the word vectors with a weighting of 50:50, as this results in the best performance
of the model.

7.2.3.4 Results of the Experiments

Figure 7.6 reports the results of our experiments. In this section, we interpret the results
and select the best-performing model as our final conditional extractor.

POS Tagging Experiment Irrespective of the selected word vectors, the RNTN achieves
a promising result of at least 84 % test accuracy over all n-grams lengths (see Figure 7.6a).
We achieve the best performance by using word vectors with the POS tag and pre-trained
parts weighted equally. A comparison of the performance between the three different
POS tag weights shows that the higher the proportion of POS tags in the word vector,
the lower the test accuracy. In fact, the model achieves a test accuracy of 91.2 % with the
50:50 weighting, 86.2 % with the 75:25 weighting, and the lowest value of 84.1 % with the
100:0 weighting. We hypothesize that only POS tags are not sufficient to comprehend
a conditional since they only reflect the syntax of a sentence, but not its semantics.
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Therefore, the model performs better if it considers both the POS tag and the actual
token during prediction.

Interestingly, even if the word vectors are randomly initialized and treated as trainable
parameters, the RNTN shows a very good test accuracy of 90.4 %. The tuned word
vectors outperform the word vectors with a 75:25 weighting by 4.2 % and the word
vectors with a 100:0 POS tag weighting by 6.3 %. For segments with a short length of
up to 5-grams, the trainable vectors even outperform the 50:50 weighted vectors. With
increasing n-gram length, however, the RNTN shows better performance when using the
syntactically enriched vectors. Over all test instances, the difference between the two
test accuracy values is small (only 0.8 %). Consequently, only a marginal performance
gain could be achieved by adding syntactic information to the word vectors.

Branching Experiment Figure 7.6b shows the performance of the RNTN depending on
the selected branching method. Similar to the previous experiment, the RNTN performs
well on all three test sets and achieves at least 85 % test accuracy. Interestingly, the RNTN
achieves a better test accuracy when applying left branching rather than right branching
(difference of 6.2 %). Combining the left and right branched data sets, the RNTN achieves
a test accuracy of 88 %. Hence, our experiment demonstrates that the RNTN is better
at building the binary parse tree using left-branching than right-branching.

 Summary of Experiments:

We found that enriching word vectors with POS tags does not necessarily lead
to a significant performance gain. If POS tags account for more than half of the
dimensions of the vector, the RNTN performs worse compared to when the vectors
are randomly initialized and trained jointly with the model. The RNTN seems to
learn left branching better than right branching.

7.2.4 Evaluation

The test accuracy values achieved in our experiments already indicate that the RNTN
is able to parse conditional statements. However, we are not only interested in the
overall test accuracy, but also in the performance with respect to the individual segments.
Table 7.3 presents the Recall, Precision and F1 scores per segment.

Potentials We observe that the RNTN predicts a number of segments reliably. It
achieves a F1 score of at least 90 % for the segments # Root Sentence , # Punct , # Variable ,
# Statement , # Antecedent , # Conditional Statement , # Separated Antecedent , # Insertion ,
# Negation and # Word . Across all segments, our approach yields a F1 score of 74 %. Not
surprisingly, the RNTN is able to predict segments like # Root Sentence , # Punct and
# Word almost perfectly, since these segments always occur on the same level of the tree:
the # Root Sentence segment corresponds to the root of the tree and can thus be found
on top, while the segments # Punct and # Word do always occur at the bottom of the
tree. In addition, # Punct and # Word segments always represent 1-grams. Contrary, the
RNTN shows a poor performance for the segments # Key NR , # Not-relevant , # Sentence
and # Separated Conditional Statement . We hypothesize that the poor performance stems
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Figure 7.6: Accuracy Curves for Fine-Grained Conditional Extraction at Each N-Gram Lengths.
Both Plots Show the Cumulative Accuracy of All ≤ n-grams. Upper Figure: Impact
of Tuned Word Vectors and Syntactically Enriched Word Vectors on Performance.
Lower Figure: Impact of Branching Methods on Performance.
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Table 7.3: Results of the Evaluation on the Conditional Treebank. The Segments
# Separated Negation , # Separated Not-relevant , # Separated Or , # Separated Consequent , and
# Separated Variable are Not Included in the Test Set and Are Therefore Not Part of the
Evaluation. F1 Scores of at Least 0.9 Are Marked in Bold.

Performance Measures

Label Type Recall Precision F1 - Score

Root Sentence 1.0 1.0 1.0

Symbol 0.2 0.58 0.39

Punct 1.0 0.93 0.97

And 0.82 0.65 0.74

Or 0.79 0.94 0.87

Key-C 0.86 0.87 0.87

Key-NR 0.0 0.0 0.0

Condition 0.82 0.78 0.8

Variable 0.88 0.91 0.9

Statement 0.93 0.9 0.92

Antecedent 0.95 0.95 0.95

Consequent 0.83 0.83 0.83

Conditional Statement 0.93 0.94 0.94

Separated Antecedent 0.98 0.96 0.97

Insertion 0.88 0.95 0.92

Negation 0.94 0.92 0.93

Not-relevant 0.0 0.0 0.0

Separated Statement 0.42 1.0 0.71

Separated And 1.0 0.66 0.83

Sentence 0.21 0.6 0.41

Separated Conditional Statement 0.5 0.33 0.42

Separated Negation - - -

Word 0.99 0.93 0.96

Separated Not-relevant - - -

Separated Or - - -

Separated Consequent - - -

Separated Variable - - -

Mean 0.72 0.76 0.74
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from the fact that these segments are highly under-represented in the training and vali-
dation set (see Figure 7.5), rendering them difficult for the RNTN to learn. The RNTN
seems to detect well which tokens in a NL sentence represent an antecedent. However, it
shows a weaker performance in predicting consequents (12 % difference in both Recall
and Precision). We hypothesize that this results from the significant under-representation
of the explicit form of consequents in contrast to its implicit form (see Figure 7.5). The
strong performance with respect to the # Conditional Statement segment (F1 score of 94 %)
shows that the RNTN acquired the concept of conditionals being a combination of sin-
gle/multiple # Antecedent and # Consequent segments. Interestingly, the RNTN achieves
a better F1 score for the prediction of # Or segments than for # And segments. Predict-
ing # And segments seems to be a more difficult task than the prediction of # Or seg-
ments, because the latter usually contain an “or” token, while # And segments often con-
tain several # Condition segments which are concatenated without an “and” token (see
[S3] in Table 7.2). In these cases, the conjunction is implicitly contained in the semantics
of the sentence and not by an explicit “and” token, making the prediction challenging.

Limitations When analyzing the test predictions, we found that the RNTN sometimes
fails to distinguish between # Variable and # Condition segments, i.e. it assigns tokens that
actually belong to a # Variable segment to a # Condition segment and vice versa. Across
all test predictions, we observed that the RNTN has a slight bias towards # Condition
segments and tends to construct large separate # Condition segments. This leads to a
significant number of False Positives (Precision value of only 78 %) and can even result
in a complete false parse tree as indicated by Figure 7.7a.

In this example, the RNTN detects only the outer antecedent (“a page is created”) and
ignores that the sentence contains a second antecedent : “only users with admin rights are
allowed to view the notification settings.” Rather, the RNTN constructs a large distinct
# Condition segment and merges it with the # Variable segment [the user]. As a result,
the binary tree is assembled incorrectly, because the inner conditional is not recognized.
This example illustrates one of the major limitations of the RNTN. Due to the bottom-
up construction of the tree, prediction errors on the lower layers strongly affect the upper
layers. Initial experiments revealed that this constitutes a problem especially when we
apply the RNTN to words that are not yet part of its training’s vocabulary. In such
cases, the RNTN is unsure already on the lower layers to which segments the unknown
tokens should be assigned and struggles to understand the semantics of the sentence.
These errors are propagated to the upper layers meaning that the RNTN builds the
binary parse tree based on wrong segments.

 Summary of Evaluation:

The RNTN predicts most of the segments with high Precision and Recall. It
shows a better performance in detecting antecedents than explicit consequents.
We see potential for optimization in the detection of conjunctions as well as in
the splitting of antecedents and consequents into variable and condition. A threat
to the practicability of our approach is that early prediction errors have a major
negative impact on the composition of the upper layers.
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Figure 7.7: Overview of Binary Parse Trees Representing the Sentence: “When a page is created,
the user in the role of course admin should be able to toggle whether notifications are
turned on.” Upper Figure: Prediction of Our Trained RNTN. Lower Figure: Semantically
Correct Binary Parse Tree.

121



7.3 Extracting Conditionals by Sequence Labeling

7.3 Extracting Conditionals by Sequence Labeling

This section introduces our third approach for extracting conditional statements from
natural language. In Section 7.3.1, we describe the principal idea behind using multi-
class and multi-label models for conditional extraction, and explain the key differences
compared to our first and second approach. Further, we detail the creation of an appro-
priate corpus suitable for training our approach (see Section 7.3.2). Section 7.3.3 outlines
the functionality and implementation of our conditional approach based on multi-class
and multi-label models. We evaluate our approach in Section 7.3.4.

7.3.1 Principal Idea

We define the extraction of conditionals as a sequence labeling problem, in which we are
given a certain NL sentence X in the form of a sequence of n tokens X = {xi}ni=1 and we
are required to produce a sequence Y of corresponding token labels. Specifically, we aim to
demarcate tokens that are part of a conditional from tokens that should be excluded from
further processing. In our case, we are interested in twelve token labels. Since conditionals
in requirements usually consist of up to three antecedents and consequents (see Chapter 4),
we create individual labels for each antecedent and consequent to clearly separate them.

1. # Antecedent 1

2. # Antecedent 2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Antecedent Labels

3. # Antecedent 3

4. # Consequent 1

5. # Consequent 2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Consequent Labels

6. # Consequent 3

7. # Not Relevant : Marks parts of a sentence that are not part of the conditional.

8. # And : Marks a conjunctive link between two adjacent antecedents or consequents.

9. # Or : Marks a disjunctive link between two adjacent antecedents or consequents.

10. # Variable : Marks the variable of an antecedent or consequent.

11. # Condition : Marks the condition of an antecedent or consequent.

12. # Negation : Marks negated antecedents or consequents.

We use these token labels to generate two annotation layers (see Figure 10.1). The top
layer represents the composition of the sentence by specifying the antecedents, consequents,
and their combinatorics based on the labels 1 - 9. At the lower layer, we use the labels
10 - 12 to annotate the antecedents and consequents more fine-grained. Consequently,
we assign at least one label and at most two labels to a token. Our sequence labeling
problem can be solved in two ways: One way is to consider the creation of both annotation
layers as two separate multi-class classification tasks. Accordingly, we train two models,
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where the first model is responsible for recognizing antecedents and consequents, while
the second model splits the antecedents and consequents into variables and conditions.
In this case, the first model produces the top layer and the second model creates the
lower layer. Alternatively, we treat our annotation task as a multi-label classification
problem. Consequently, we train only one model, which considers all labels during the
prediction and assigns multiple labels to a token. We conduct experiments with both
multi-label and multi-class classifiers and select the best approach for the fine-grained
conditional extraction. Utilizing multi-label and multi-class classifiers based on language
models such as BERT, RoBERTa, and DistilBERT for conditional extraction has several
advantages compared to our approaches presented in Section 7.1 and Section 7.2:

∎ Increased Robustness Against Unknown Words: Modern language models
such as BERT decompose each sentence using subword tokenization algorithms
(see Section 2.3.3). Specifically, common words are not split into smaller subwords,
while rare words are decomposed into meaningful subword units that are known
to the model. Consequently, models such as BERT are able to process Out-Of-
Vocabulary words as they can always create tokens for a given sequence, independent
of whether they have seen each word before.

∎ Decreased Propagation of Early Prediction Errors: Our Dependency Pars-
ing-based approach and RNTN-based approach aim at parsing conditionals by pre-
dicting their composition as a tree-structure. As our evaluation shows, the predic-
tion of a tree structure suffers from the limitation that prediction errors on the
lower layers negatively affect the prediction of the higher levels. Our sequence la-
beling approach predicts at the token level and does not consider previously made
predictions when assigning labels to a token. Instead, we leverage the benefit of
BERT’s self attention mechanism and assign labels based on the token embeddings
that have been contextualized with information from the entire input sequence.
Thus, early prediction errors do not affect the overall performance of our approach.

7.3.2 Training Corpus Creation

To train our third conditional extraction approach, we require an annotated data set
in which the combinatorics of antecedents and consequents as well as their variables
and conditions are labeled. We can not reuse the corpus that we have already used for
training our RNTN-based approach, because it contains annotated binary trees that are
not suitable to train a sequence labeling method (see Section 7.2). Other existing data
sets [305] are also not suitable for our use case: The SemEval-2007 [306] and SemEval-
2010 [216] data sets contain only single word causal pairs. In the data set presented
by Dasgupta et al. [70], antecedents and consequents are only coarsely annotated (i.e.,
connectives, variables, and conditions are not labeled). Due to the unavailability of
adequate data, we create our own training corpus. To this end, we build on the data set
that we have already used for training our detection algorithm. We randomly select a
subset of the requirements that contain conditionals (1,946) and annotate them using
our twelve predefined labels.

Annotation Process We involve four annotators with previous experience in the inter-
pretation of conditionals and conduct a workshop where we discuss several examples.
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Table 7.4: Overview of the Class Distribution (Sentence and Token Level) in Our Training, Validation and Testing Data Sets. Annotation Validity per
Class Is Reported as Pair-Wise Averaged F1 Score.

Complete Dataset Training Set Validation Set Testing Set

Label Type Sent. WordPiece
Tokens

BPE
Tokens Sent. WordPiece

Tokens
BPE
Tokens Sent. WordPiece

Tokens
BPE
Tokens Sent. WordPiece

Tokens
BPE
Tokens

Annotation
Validity

Antecedent 1 1946 18743 18317 1556 14862 14499 194 1878 1848 196 2003 1970 87 %
Antecedent 2 661 5158 5190 523 4036 4072 68 540 534 70 582 584 71 %
Antecedent 3 137 1109 1102 105 856 853 18 123 117 14 130 132 71 %
Consequent 1 1946 22814 22115 1556 18370 17832 194 2210 2125 196 2234 2158 90 %
Consequent 2 614 5384 5426 483 4169 4200 65 573 578 66 642 648 81 %
Consequent 3 138 1129 1142 113 952 958 13 80 82 12 97 102 78 %
Not Relevant 664 6667 6371 537 5407 5175 60 631 595 67 629 601 74 %
And 744 2799 2807 590 2215 2221 80 297 298 74 287 288 93 %

Top
Layer

Or 230 826 826 182 667 667 26 87 87 22 72 72 91 %

Variable 1946 26076 25753 1556 20896 20599 194 2543 2509 196 2637 2645 87 %
Condition 1946 34927 34974 1556 27653 27738 194 3513 3498 196 3761 3738 81 %Lower

Layer Negation 363 1458 1513 287 1154 1199 34 133 139 42 171 175 90 %
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To ensure consistent annotations, we create an annotation guideline, in which we define
each label along with a set of sample annotations. We use the web-based brat annota-
tion platform [301] for labeling each sentence.

Annotation Validity To verify the reliability of the annotations, we calculate the inter-
annotator agreement. We distribute the 1,946 sentences containing conditionals among
four annotators, ensuring that 390 sentences are labeled by two annotators (overlapping
quote of ≈20 %). Similar to other studies [302] that also utilize brat to annotate sentences,
we calculate the pair-wise averaged F1 score [303] based on the overlapping sentences.
Specifically, we treat one rater as the subject and the other rater’s answers as if they were
a gold standard. This allows us to calculate Precision and Recall for their annotations.
We then determine the F1 score as the harmonic mean of Recall and Precision. We
calculate the F1 score pairwise between all raters. Subsequently, we take the average of
F1 scores among all pairs of raters to quantify the agreement of our raters: The higher
the average F1 score, the more the raters agree with each other.

For most of our labels, we obtain an inter-annotator agreement of at least 81 % (see
Table 7.4). The lowest agreement is achieved for # Antecedent 2 and # Antecedent 3 (F1

score of 71 %). The annotators do not always agree on how granular some expressions
should be labeled (e.g., does a text fragment represent another antecedent, or is it still
part of the previous antecedent?). The highest agreement is measured for the assignment
of # And labels (F1 score of 93 %). Averaged across all labels, we achieve an F1 score of
83 %. Based on the achieved inter-annotator agreement values, we assess our labeled data
set as reliable and suitable for the implementation of our conditional extraction approach.

Data Analysis Table 7.4 shows that the majority of our sentences contain only a single
antecedent and consequent. About one third of the sentences contain more complex
conditionals comprising two antecedents or two consequents. Only a few sentences contain
three antecedents or three consequents. We found that antecedents and consequents are
more often connected by a conjunction than by a disjunction. Negated antecedents and
consequents occur in about 18 % of the sentences. At the token level, expressions labeled
as # Consequent 1 are often longer than # Antecedent 1 expressions. We observe a similar
trend at the lower layer. # Conditions are usually longer than the # Variables of the
antecedents and consequents. Across all classes, our data set is strongly unbalanced with
four minority classes: # Antecedent 3 , # Consequent 3 , # Or , and # Negations .

7.3.3 Implementation

We implement and compare the performance of nine different models for multi-class and
multi-label classification. Table 7.5 provides an overview of their architectures consisting
of three different layers: embedding layer, Bidirectional LSTM (BiLSTM) layer, and
inference layer.

Layer 1: Embedding Layer Similar to the detection of conditionals, we also use contex-
tual word embeddings for their extraction (see Chapter 6). However, we do not only per-
form experiments with BERT but also investigate the influence of RoBERTa [135] and
DistilBERT [136] embeddings on the performance of our models. To extract the condi-
tionals in fine-grained form, we need to predict on the token level. Hence, in contrast to
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Table 7.5: Overview of Architecture and Evaluation Results of All Trained Models. Best macro-
F1 Score Is Marked in Bold. Tuned Hyperparameters Are Reported in Terms of Batch
Size (bs), Learning Rate (lr), Dropout (d), and Size of Hidden State.

Architecture

/ model # Embedding BiLSTM Inference Macro-F1 Optimal Hyperparameters

/ model I BERT ✘ Softmax 76 %
top layer model:
bs= 32, lr = 7.49e-05, d = 0.27
lower layer model:
bs = 64, lr = 6.24e-05, d = 0.18

/ model II RoBERTa ✘ Softmax 75 %
top layer model:
bs = 32, lr = 6.24e-05, d = 0.33
lower layer model:
bs = 32, lr = 4.28e-05, d = 0.21

2x
M
ul
ti-

cl
as

s
M
od

el
s

/ model III DistilBERT ✘ Softmax 78 %
top layer model:
bs = 32, lr = 8.80e-05, d = 0.32
lower layer model:
bs = 64, lr = 9.76e-05, d = 0.36

/ model IV BERT ✘ Sigmoid 85 % bs = 64, lr = 8.79e-05, d = 0.26
/ model V RoBERTa ✘ Sigmoid 86 % bs = 32, lr = 6.13e-05, d = 0.13
/ model VI DistilBERT ✘ Sigmoid 82 % bs = 32, lr = 4.47e-05, d = 0.14

/ model VII BERT ✓ Sigmoid 83 % bs = 32, lr = 6.27e-05,
lstm_hidden = 128, d= 0.31

/ model VIII RoBERTa ✓ Sigmoid 84 % bs = 32, lr = 4.34e-05,
lstm_hidden = 128, d = 0.01

1x
M
ul
ti-

la
be

lM
od

el

/ model IX DistilBERT ✓ Sigmoid 72 % bs = 32, lr = 9.437e-05,
lstm_hidden = 128, d = 0.50

the detection algorithm where we consider only the CLS token during classification, we
pass each token to the classifier, which assigns a label to each token. We consider both
actual tokens of a sentence and synthetically added tokens (PAD, SEP, and CLS), be-
cause initial experiments demonstrated that the exclusion of synthetic tokens results in
significant performance degradation (loss of ≈5% in macro-F1).

The number of tokens per class differs depending on the applied tokenizer (see
Table 7.4). BERT and DistilBERT use WordPiece as a subword tokenization algorithm,
while RoBERTa employs Byte-Pair Encoding (BPE). Nevertheless, both tokenizers differ
only slightly, so that we set the same maximum length of tokens per sentence for all
models. By analyzing the annotated conditionals, a maximum length of 80 tokens proved
to be reasonable.

Layer 2: Bidirectional-LSTM Layer For / models VII - IX , we feed the word vectors into a
BiLSTM to obtain a hidden state for each word. Bidirectional Long Short-Term Memory
models have demonstrated to be well suited for sequence labeling problems, because
they consider both the past and future contexts of the words. To enable the hidden
states to capture both historical and future context information, we train two LSTMs
on the input sequence. The forward LSTM processes the sentence from v1 to vn, while a
backward LSTM processes from vn to v1. Consequently, we obtain two hidden states at
each time step t.

Ð→
h is computed based on the previous hidden state

Ð→
h t−1 and the input

at the current step vt, while
←Ð
h is computed based on the future hidden state

←Ð
h t+1 and
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the input at the current step vt. We obtain the final hidden state by concatenating the
forward and backward context representations:

hi =
Ð→
hi ⊕

←Ð
hi (7.8)

Layer 3: Inference Layer For / models I - III , we put the word vectors into a single-layer
feedforward neural network that outputs the final predicted tag sequence for the input
sentence. We use a softmax layer, which calculates the class probabilities for each token:

ŷ = softmax(Wvi + b) (7.9)

We define ŷ as the predicted label probabilities for the i-th token, W as the weighted
matrix, and b as the bias. We select the class with the highest probability as the final
classification result. Since we train two different models for the annotation of the top
and lower layer, we apply two different softmax functions. The model predicting the top
layer considers nine labels (see Equation 7.10) while the lower layer is annotated with
only three labels (see Equation 7.11):

softmax(xi) =
exp(xi)

∑9
j=1 exp(xj)

(7.10) softmax(xi) =
exp(xi)

∑3
j=1 exp(xj)

(7.11)

In case of the / models IV - VI , we use a sigmoid layer to perform multi-label classification:

ŷ = sigmoid(Wvi + b) (7.12)

We select the classes with a probability ≥ 0.5 as the final classification result. In case of
the / models VII - IX , we consider the hidden states as the feature vectors. Consequently,
we define the sigmoid layer as:

ŷ = sigmoid(Whi + b) (7.13)

7.3.4 Evaluation

This section reports on the results of our experiments, in which we compare the perfor-
mance of the individual models.

7.3.4.1 Evaluation Procedure

We divide the data set (1,946 sentences) into a training (1,556), validation (194), and
test (196) set. Each class is equally represented across all three data sets, which helps to
avoid bias in the prediction (see Table 7.4). We use Precision, Recall, and F1 score for
evaluating our models. Since our data set is strongly unbalanced, we need to interpret
the metrics carefully. In particular, it is important to distinguish between macro and
micro averages of the metrics. Macro-averaging involves the computation of the metrics
per class and then averaging them. Hence, each class is treated equally. Micro-averaging
combines the contributions of all classes to calculate the mean. Thus, it takes label
imbalance into account and favors majority classes. In our use case, all classes are equally
important. Predicating a minority class like # Or is as crucial as predicting a majority
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Table 7.6: Performance of / model V per Individual Label. Macro-F1 Scores of at Least 90 % Are
Marked in Bold.

Label Type Precision Recall Macro F1

Antecedent 1 92 % 89 % 91 %

Antecedent 2 83 % 72 % 77 %

Antecedent 3 76 % 88 % 82 %

Consequent 1 90 % 89 % 90 %

Consequent 2 83 % 85 % 84 %

Consequent 3 57 % 76 % 65 %

Not Relevant 91 % 92 % 91 %

And 94 % 96 % 95 %

Top

Layer

Or 85 % 92 % 88 %

Variable 87 % 92 % 89 %

Condition 93 % 89 % 91 %
Lower

Layer
Negation 79 % 90 % 84 %

class like # Antecedent 1 , because it has a major impact on capturing the combinatorics
in a sentence. Therefore, we choose the macro-F1 score as our main evaluation criterion.

7.3.4.2 Hyperparameter Tuning

The performance of DL models depends heavily on the network architecture as well as
the hyperparameters used. Therefore, we compare the performance of our models using
different hyperparameter configurations. To determine the optimal hyperparameters, we
use the Tree-structured Parzen Estimator algorithm [307]. During the training process,
we check the validation macro-F1 score periodically to keep the model’s checkpoint with
the best validation performance. We train our models for 50 epochs on the training data
with a patience of 5 epochs. Table 7.5 shows the best hyperparameters for each model.

7.3.4.3 Results

We first compare the overall performance of our trained models across all classes. In
addition, we study the impact of the different word embeddings and the BiLSTM layer
on the model performance. Finally, we investigate the performance of our best model to
predict the individual labels.

Overall Comparison The achieved macro-F1 scores demonstrate that all investigated
models are able to extract conditional statements in fine-grained form (see Table 7.5).
However, we observe significant performance gaps between the multi-class and multi-label
models. On average, the multi-class models obtain a macro-F1 score of 76.34 % while
the multi-label models yield an average macro-F1 score of 82 %. Consequently, the multi-
label models seem to be more suitable for our use case. / Model V demonstrates the best
performance with a macro-F1 score of 86 %, which represents a performance gain of 8%
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compared to the best multi-class / model III . We do not witness a major performance
difference among most of the multi-label models. In fact, / model IV shows a very similar
behavior as / model V and achieves a macro-F1 score of 85 %. / Model IX , however,
represents an outlier and produces the poorest macro-F1 score of all trained models.

Impact of Embeddings Our experiments reveal that the choice of embeddings has an
impact on the prediction performance. The best performance of the multi-class models
is achieved by using the DistilBERT embeddings (see Table 7.5). In contrast, the multi-
label models show the best performance when building on RoBERTa, regardless of the
usage of a BiLSTM. Interestingly, the selection of embeddings has the greatest impact
on the models that use a BiLSTM for feature extraction. For example, a comparison of
the performance of / model VIII and / model IX reveals a performance gap of 12 % in
macro-F1. In the case of the other models, the performance differences are considerably
smaller: the performance of / model II and / model III differ by only 3 % in macro-F1,
while / model V and / model VI deviate by only 4 % in macro-F1.

Impact of BiLSTM Layer In our setting, adding the BiLSTM layer did not lead to any
performance improvement. In fact, the multi-label models demonstrate better perfor-
mance without the BiLSTM. We hypothesize that our amount of training instances is
not adequate to sufficiently train the complex BiLSTM architecture and take advantage
of its benefits.

Label Prediction Table 7.6 indicates that / model V is capable of processing both con-
ditional statements consisting of only one cause as well as conditionals with multiple an-
tecedents. Our model predicts # Antecedent 1 with very high Precision and Recall result-
ing in a macro-F1 score of 91 %. For the prediction of # Antecedent 2 and # Antecedent 3 ,
our model also performs well by achieving macro-F1 scores of 77 % and 82 %, respectively.
Conditionals that contain only one consequent or two consequents can also be processed
well by our model. However, our experiments show that the model lacks certainty in the
prediction of # Consequent 3 (macro-F1 score of only 65 %). We assume that this stems
from its under-representation in our training set. The highest macro-F1 score is achieved
by / model V for the prediction of # And . Likewise, our model performs well in recogniz-
ing tokens representing disjunctions (macro-F1 score of 88 %). This indicates that our
model is able to understand and extract the combinatorics of antecedents and consequents.
In addition, the model performs very well in detecting tokens that are not relevant for test
case generation. Our experiments prove that our model performs well in predicting both
the top and lower layers. The obtained macro-F1 scores for # Variable and # Condition
show that our model is able to decompose antecedents and consequents into more granular
fragments. In addition, / model V reliably identifies negations within the conditionals.

 Summary of Evaluation:

Our experiments reveal that / model V is best suited to extract conditionals in fine
grained form. Specifically, the combination of RoBERTa embeddings (embedding
layer) and a sigmoid classifier (inference layer) achieved the best performance. We
therefore use / model V for the second step in the CiRA pipeline.
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Chapter 8

Conclusions and CiRA Overview

Common Thread Our experiments presented in Chapter 6 and Chapter 7 demonstrate
that the detection of conditionals in NL requirements and their extraction is a challenging
task. In this chapter, we summarize the main findings of our experiments and present
CiRA as a solution to the second problem addressed in this thesis, namely “the fine-
grained extraction of conditionals from RE artifacts” (see Section 1.3).

Contribution CiRA solves conditional extraction as a two-step problem: It first detects
whether requirements contain conditional statements. Second, if they contain conditionals,
it interprets and extracts them in fine-grained form. CiRA builds on the findings of our
experiments and employs the models found to be the most performant for each of the two
steps. Hence, it uses syntactically enriched BERT embeddings combined with a softmax
classifier for the detection of conditionals, and a sigmoid classifier built on RoBERTa
embeddings to extract them in fine-grained form. This chapter condenses the functionality
of CiRA and introduces a tool that allows fellow researchers and practitioners to easily
interact with CiRA. CiRA is publicly available at www.cira.bth.se/demo/.

Related Publications This chapter is taken, directly or with minor modifications, from
a previous publication [10].
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8.1 The CiRA Pipeline

As shown in Figure 8.1, CiRA consists of two steps: It first detects whether an NL re-
quirement contains a conditional. Second, it extracts the conditional in fine-grained form.
Specifically, CiRA considers the combinatorics between antecedents and consequents and
splits them into more granular text fragments (e.g., variable and condition), making the
extracted conditionals suitable for automatic test case derivation. We have implemented
and compared different methods for both steps and incorporated the best performing
methods into the pipeline of CiRA. We describe the functionality of CiRA by means of
the following requirement: “If A is valid and B is false, then C is true.”

Step 1: Detection of Conditionals As shown in Section 6.3, enriching input sequences
with dependency tags leads to a better performance of our conditional detection approach.
We therefore, in the first step, use spaCy to assign dependency tags to the individual
tokens in the sentence. This allows our conditional classifier to take into account not
only the content of the tokens themselves, but also the grammatical structure of the
sentence when categorizing a sentence into the two classes # Conditional Present and
# Conditional Not Present . In case of our exemplary requirement, the token “If ” is assigned
the dependency tag mark, indicating that “If ” introduces a clause subordinate to another
clause. After allocating appropriate dependency tags to each token in the sentence, the
sentence is decomposed using the WordPiece tokenizer and enriched with additional
synthetic tokens such as the CLS token. Finally, we feed each token into the BERT model
to generate word embeddings. Since we perform conditional detection at sentence level,
we only pass the CLS token into the softmax classifier, which computes the probability
of whether the input sequence contains a conditional or not. The classifier calculates a
confidence of 91 % that our exemplary requirement contains a conditional. With only 9 %
confidence, our classifier assumes that the input sequence does not contain a conditional.
Our approach selects the category with the highest confidence and classifies our example
correctly as # Conditional Present . The detected conditional is passed to the next step of
the pipeline.

Step 2: Fine-grained Extraction of Conditionals In the second step, we utilize the BPE
tokenizer to convert the detected conditional statement into a form that can be processed
by RoBERTa. After decomposing the input sequence into individual tokens, we pass each
token into the RoBERTa model to create word embeddings. Since we perform conditional
extraction at token level, we feed the embeddings of all tokens into our sigmoid classifier.
Our classifier calculates the probability for each class whether a given token should
be assigned to that class or not. Since we differentiate between twelve different classes
(see Section 7.3.1), the sigmoid classifier calculates twelve probabilities accordingly. We
select the classes with a probability ≥ 0.5 as the final classification result. In case of our
exemplary requirement, the “If” token is classified as # Not Relevant with a confidence
of 99.6 %. The token “A” is assigned to two classes: On the bottom annotation layer,
“A” is correctly marked as a # Variable . On the top annotation layer, “A” is identified as
belonging to # Antecedent 1 . The synthetically added tokens by the BPE tokenizer like
“<s>” and “<pad>” are correctly identified as # Not Relevant . We follow the classifications
of our sigmoid classifier and assign the corresponding labels to each token of the input
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sequence. The output of the CiRA pipeline thus represents a list of top layer and bottom
layer labels, allowing us to annotate the conditional in fine-grained form.

8.2 Tool Support

To facilitate an easy interaction with CiRA, we implemented a corresponding tool support.
We invite fellow researchers and interested practitioners to employ CiRA at www.cira.bth.
se/demo/. Our tool does not only allow the use of CiRA for the fine-grained extraction of
conditionals from NL sentences, but also enables the automatic derivation of acceptance
tests based on the extracted conditionals. Specifically, our tool realizes g Use Case 1 by
combining CiRA with Cause-Effect-Graphing to create acceptance tests automatically. A
detailed description of how we derive acceptance tests from the extracted conditionals
is given in Chapter 10. In this section, we only present the corresponding tool support.

Technical Setup and User Interface Our website is built as a restful node.js server uti-
lizing the Express framework. The backend’s main purpose is to execute a Python script,
which serves as a wrapper around our conditional classifier and conditional extraction
algorithm. As illustrated by Figure 8.2, our tool-supported approach consists of four
components: 1) Detection of Conditionals, 2) Extraction of Conditionals, 3) Creation of
Cause-Effect-Graph, and 4) Creation of Acceptance Test. We outline all four components
below and use the following requirement as our running example: “If the temperature
change is requested, then the determine heating/cooling mode process is activated and
makes a heating/cooling request.”

Detection of Conditionals The UI provides a text input field, in which an arbitrary NL
sentence can be entered (see Figure 8.2a). Upon pressing the “classify”-button,
the sentence is sent to the backend where it is processed by the aforementioned,
wrapped conditional classifier. On return of the REST call, the classification and
confidence of the model are rendered in the UI. The user may confirm or correct
the classifiers choice. The entered sentence and the optional user confirmation
or correction is then stored in the backend in order to (1) display the five most
recently entered sentences, (2) provide preliminary insight into the performance of
the classifier on unseen sentences, and (3) preserve sentences for future training of
the classifier. At this point, we support batch learning and plan to implement an
online learning algorithm in future research to leverage the collected data directly
for enhancing our conditional classifier. Our exemplary requirement is classified
as # Conditional Present with a confidence of 98.72 %. After confirming this correct
classification, the user is forwarded to the second step.

Extraction of Conditionals In the second step, our pre-trained binary-file conditional ex-
tractor is loaded and used to annotate the entered sentence according to our fine-
grained labeling scheme (see Figure 8.2b). The predicted labels per token are ren-
dered in the UI. We provide an explanation of each label at the bottom of the UI
to inform users about the meaning of the labels. For example, the expression “the
temperature change is requested” is labeled as # Antecedent 1 . On the lower annota-
tion layer, “the temperature” is labeled as # Variable and “is requested” is labeled
as # Condition . Further, our extractor has correctly detected that # Consequent 1
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Figure 8.1: Overview of the CiRA Pipeline Consisting of Two Steps: (1) Detection of Conditionals,
and (2) Fine-Grained Extraction of Conditionals.
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and # Consequent 2 are connected by a conjunction. In total, CiRA assigned nine
labels to the entered sentence.

Creation of Cause-Effect-Graph In the third step, we create a CEG based on the annotated
conditional (see Figure 8.2c). Specifically, we represent antecedents as cause nodes
and consequents as effect nodes and relate them to each other using edges. The
creation of the CEG is not a trivial, potentially error-prone task. To enable the
user to correct potential errors manually or to modify the CEG for other reasons,
we integrated a model editor into the tool. This allows users to add new nodes
by means of simple drag and drop, or to adjust existing nodes and their edges.
Elements can be removed from the CEG by pressing the DEL key. The auto-layout
function supports the user in arranging the nodes to ensure clarity of the CEG.

In the simplest case, antecedents and consequents encompass both a variable and
condition in the lower annotation layer. We then fill the created cause and effect
nodes with the corresponding information (see nodes representing # Antecedent 1
and # Consequent 1 in Figure 8.2c). If either of the two labels is missing, we need to
extract the information from the nearest referent to correct incomplete nodes. In the
given example, the variable of # Consequent 2 is not included in the entered sentence.
Hence, we enrich its corresponding effect node with the variable of # Consequent 1
(see orange highlighting in Figure 8.2c).

Creation of Acceptance Test In the last step, we automatically derive the minimum num-
ber of test cases required to fully check the entered requirement from the created
CEG (see Figure 8.2d). For this purpose, we consider the findings of our study on
the logical interpretation of conditionals by RE practitioners. The user can choose
whether s/he perceives antecedents to be both sufficient and necessary conditions
for consequents or not (see checkbox below the test case specification). Depending
on the selection, we filter the derived test cases and display the acceptance test
that corresponds to the user’s interpretation. In the given example, we perceive
the antecedent as a necessary condition for both consequents. Accordingly, our ap-
proach derived two test cases from the created CEG.
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(a) Step 1: Detection of Conditionals.

Figure 8.2: Overview of the User Interface Provided by CiRA.
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(b) Step 2: Fine-Grained Extraction of Conditionals.

Figure 8.2: Overview of the User Interface Provided by CiRA (cont.).
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(c) Step 3: Creation of Cause-Effect-Graph.

Figure 8.2: Overview of the User Interface Provided by CiRA (cont.).
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(d) Step 4: Creation of Acceptance Test.

Figure 8.2: Overview of the User Interface Provided by CiRA (cont.).
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Part III

Leveraging Conditional Extraction for
Automatic Acceptance Test Creation

Common Thread This part highlights how automatic conditional extraction can help
to create acceptance tests. Specifically, we validate our claim from Section 1.2 that
CiRA can facilitate the implementation of g Use Case 1 . We first motivate the use case
by an industrial survey on challenges in agile testing (see Chapter 9). One of the most
frequently cited challenges involved the creation of appropriate acceptance tests, which
empirically substantiates the need for a method for automatic acceptance test creation.
We address this challenge in Chapter 10 and present an approach capable of deriving
acceptance tests from conditional statements automatically. Our approach leverages CiRA
to extract conditionals in fine-grained form and then maps the extracted conditionals
into a Cause-Effect-Graph that allows for the automated derivation of test cases. We
evaluate the approach in a case study with three industry partners: Allianz Deutschland
AG (insurance), Ericsson (telecommunication), and Leopold Kostal GmbH & Co. KG
(automotive).

Preliminaries To understand this part, the functionality of CiRA needs to be thoroughly
understood. Readers should therefore first read Part II, particularly Chapter 8. For the
derivation of test cases from the extracted conditionals we build on an already existing
model based testing technique: Cause-Effect-Graphs. To follow our approach presented
in Chapter 10, readers should thus be familiar with the basics of Cause-Effect-Graphing
(see Section 2.4).
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Chapter 9

Agile Test Artifacts:
Quality Factors and Challenges

Common Thread In Section 1.2, we claimed that we need a method that automatically
derives the minimal set of required test cases automatically from NL requirements. In
this chapter, we present an industrial survey with 18 practitioners from 12 companies
operating in seven different domains that provides supporting evidence for this claim.
In our survey, we analyze how agile test artifacts are designed in practice and which
properties make them useful for quality assurance. Following the idea of Activity-Based
Artifact Quality Models [308], we postulate that the quality of a test artifact depends on
the stakeholder using it and the activities for which it is used. Accordingly, we explore
properties (so-called “quality factors”) of test artifacts that have a positive or negative
impact on the activities of the stakeholders. To understand why a certain property is
considered good or bad by the practitioners, we first study current challenges in using
test artifacts. Consequently, we distill a list of concrete factors describing what agile test
artifacts should look like.

Contribution Our analysis reveals nine challenges and 16 factors describing the quality
of six test artifacts from the perspective of agile testers. Interestingly, we observed
many challenges regarding language and traceability, which are well-known to occur in
non-agile projects. One of the most frequently stated problems concerned the lack of
adequate acceptance tests. We found that acceptance tests are often not systematically
created, resulting in incomplete or excessive test cases. In the case of missing test cases,
system defects are not (or only partially) detected. In contrast, excessive test cases
lead to unnecessary testing efforts and increased test maintenance costs. Consequently,
practitioners need to strike a balance between full test coverage and number of required
test cases. We also found that the creation of acceptance tests is a predominantly
manual task due to insufficient tool support. These results emphasize the need for
a tool-supported approach capable of deriving the minimal set of required test cases
automatically from NL requirements.

Related Publications This chapter is taken, directly or with minor modifications, from
a previous publication [3].
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9.1 Research Objective

9.1 Research Objective

Background The Agile Software Development (ASD) principle “working software over
comprehensive documentation” promotes that documentation should be kept to what is
necessary or useful [309]. Hence, common ASD frameworks, such as Scrum [310], mention
only few artifacts (epics, user story, etc.) that should be created, used, and maintained for
documentation purposes. Instead, face-to-face communication should be encouraged in
order to convey information. Nevertheless, agile practitioners have increasingly changed
their attitude towards documentation [311] and are producing a variety of artifacts that
are not inherent to ASD [312, 313, 314]. According to Wagenaar et al. [315], practitioners
need additional artifacts for four reasons: i) they provide team governance, ii) they are
useful for internal communication, iii) they are needed by external parties, and iv) they
are useful for quality assurance. For the latter reason, a range of additional artifacts (e.g.,
acceptance tests) are commonly created to perform comprehensive software testing.

Research Goal Currently, we understand which test artifacts agile teams introduce (or
should introduce) on their own initiative [312] and why they are needed [315]. However,
empirical research on how agile test artifacts are designed in practice and, more specif-
ically, which properties make them useful for quality assurance remains sparse. Exist-
ing normative standards such as the ISTQB Acceptance Testing Syllabus [316] or ISO
29119:2013 [317] occasionally mention some properties that test artifacts should possess.
However, there are issues with these normative standards. Firstly, the list of properties
is not complete—most of the properties are defined for the artifacts introduced by the
ASD frameworks but not for the additionally-required artifacts introduced by the team.
Secondly, normative standards describe quality through abstract properties—e.g., accep-
tance criteria should be both “precise and concise” [316]. The standard does not provide
any further description of what is meant by these vague properties. Thirdly, the empiri-
cal basis and reasoning for these criteria remains unclear. This implies that the criteria
are difficult, if not impossible to falsify.

We argue that for a combination of all of these reasons, we observe in practice that
agile teams fail to satisfy these normative criteria, and struggle in maintaining their
documentation artefacts [318]. In contrast to these existing ways to define quality criteria,
we argue that quality of test artifacts should be defined from a quality-in-use perspective.
Following the idea of Activity-Based Artifact Quality Models [308], we postulate that
the quality of a test artifact depends on the stakeholder using it and the activities for
which it is used. Accordingly, we explore properties (so-called “quality factors”) of
test artifacts that have a positive or negative impact on the activities of the
stakeholders. To understand why a certain quality factor is considered good or bad by
the practitioners, we first study current challenges in using test artifacts. Consequently,
we extend the normative qualities with a list of concrete factors describing what agile
test artifacts should look like. In order to identify and understand the quality factors of
agile test artifacts, we chose (qualitative) survey as our research method. For our study,
we followed the guidelines by Ciolkowski et al. [285] for conducting empirical studies
based on surveys. Following the Goal-Question-Metric [319] technique, we define the
goal of our survey as follows:

∎ Object: Test artifacts
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9.2 Survey Design

∎ Purpose: Identify, understand, and define

∎ Focus: Quality factors

∎ Viewpoint: Agile practitioners

∎ Context: Agile Software Development Projects

The expected outcome of our survey is a better understanding of quality factors of test
artifacts. In our activity-based quality understanding, these are properties that positively
or negatively affect the stakeholders and their follow-up activities. These quality factors
should provide guidance for practitioners on how test artifacts should be designed. It
should further establish the foundation for a systematic quality control of test artifacts.
Based on the classification of Robson [270], our research goal is exploratory as we are
seeking for new insights into the quality of agile test artifacts.

Research Questions Based on the idea that artifact quality is determined by the
context in which it is used, we derived five research questions (RQ) from our survey goal.
Each RQ addresses a specific component of the ABAQM meta model (see Figure 9.1).

∎ RQ 1: Which stakeholders are involved in agile testing?

∎ RQ 2: Which activities are performed by the stakeholders?

∎ RQ 3: Which artifacts are used by the stakeholders in the context of these activi-
ties?

∎ RQ 4: Which quality factors positively influence the execution of these activities?

∎ RQ 5: Which quality factors negatively influence the execution of these activities?

9.2 Survey Design

Theoretical Foundation Activity-based Artifact Quality Models (ABAQM) are based on
the idea that it is not sufficient to speak of good and bad quality in general since the quality
of an artifact depends on the context in which it is used [308]. More specifically, quality is
determined by the stakeholders and the activities that they conduct with the artifact. The
quality of an artifact is considered good if its properties allow stakeholders to effectively
and efficiently carry out their activities. In this chapter, we create an ABAQM for all test
artifacts involved in ASD, which enables us to understand their quality in the agile context.
We use the following concepts to describe an ABAQM (see a meta model in Figure 9.1):

Artifact Following the quality-in-use paradigm, an artifact is a collection of coherent
documented information which assists a stakeholder in reaching the project goals.
Examples of artifacts are use case documents and test data. Artifacts that share
similar properties can be combined into a generalized super-class. For example,
unit tests, integration tests, and system tests address different test levels but can be
bundled into a super-class Test. In addition, artifacts can contain other artifacts,
such as a user story which contains multiple acceptance criteria.
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Stakeholder

Activity

Quality Factor

Sub-Artifact

Super-Artifact

creates
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RQ 3

RQ 3

RQ 1
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Figure 9.1: ABAQM Meta Model and Mapped RQs, Based On [35].

Stakeholder A stakeholder is interested in an artifact and uses it during a certain activity.
An example of a stakeholder is a test designer, who uses user stories to derive
acceptance tests.

Activity An activity is an invested effort which involves one or more of the mentioned
artifacts. An activity can be divided into sub-activities. For example, acceptance
test design can be decomposed into acceptance test creation and acceptance test
updating. During an activity, stakeholders do not only use artifacts but also create
new ones. Hence, artifacts can be both input and output of activities.

Quality Factor A quality factor is a property that is or is not present in an artifact.
Femmer and Vogelsang stress that this property “must be objectively assessable
through a measure to be used for quality control” [308]. For example, a test should
only contain the minimum number of required test cases to avoid excessive testing.
This quality factor minimal can be evaluated objectively.

Impact An impact is a relation between a quality factor and an activity. The relation can
be either positive (i.e., the presence of the quality factor supports the stakeholder
in the execution of an activity) or negative (i.e., the quality factor hinders the
stakeholder). The aforementioned quality factor minimal, for example, has a positive
impact on the activity testing.

Population and Survey Sample The selection of the survey participants was driven by a
purposeful sampling strategy [320]. Specifically, we defined criteria that the participants
need to meet to be suitable for our survey, a) they work for a company that develops
software following a defined agile software paradigm (e.g., Scrum, SAFe), b) they have
been involved in the testing process for at least one year, and c) they create, use and/or
maintain at least one test artifact. Each researcher involved in the survey prepared a list
of potential interview partners using their industrial contacts (convenience sampling).
From this list, the research team jointly selected suitable partners based on their adequacy
for the study. To further increase the sample size, we asked each interviewee for relevant
contacts after the interview (snowball sampling). We stopped conducting more interviews
after we reached saturation. More precisely, once we could no longer identify new quality
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9.2 Survey Design

Table 9.1: List of Participants.

Company No. Role Size Domain

C1 P1 Product Owner 150k Insurance
P2 Test Designer

C2 P3 Test Designer 1k Retail
P4 Test Lead

C3 P5 Test Lead 20 Software

C4 P6 Agile Team Lead 50 E-Mobility

C5
P7 Partner

500 IT ConsultingP8 Software Developer

P15 Software Developer

C6 P9 Product Owner 10 PropTech

C7 P10 Agile Coach 50 IT Consulting

C8 P11 Agile Team Lead 1k Software

C9 P12 Software Developer 2k Software

C10 P13 Software Architect 200 Software

C11 P14 Software Architect 200 Software
P16 Software Architect

C12 P17 Business Analyst 40k Reinsurance
P18 Business Analyst

factors. Table 9.1 presents an overview of the participants, their roles, and information
about their companies. In total, 18 practitioners from 12 different companies operating
in seven different domains participated in our survey. We did not restrict our population
with regard to company size or application domain. Rather, we involved practitioners
from companies of different domains and sizes to obtain a holistic understanding of test
artifact quality.

Data Collection We chose interviews over other data collection instruments for two
reasons. First, ambiguities in the questions can be resolved directly ensuring that all
questions are understood correctly and that they are not skipped. Second, the interviewer
can observe the behavior of the participants and ask them to elaborate their responses
(e.g., to better understand the reasoning of the participant or to go deeper into details).
This is particularly important to understand why the participant considers the quality
of a certain test artifact good or bad.

Questionnaire Design Prior to conducting the interviews, we developed an interview
guideline to gather the data for answering our RQs. We designed the interview questions
to systematically identify the elements of the ABAQM to shed light on the quality of
test artifacts. For this purpose, we followed the guidelines of Dillman et al. [289] to re-
duce common mistakes when setting up a questionnaire (e.g., avoiding double-barreled
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9.2 Survey Design

Table 9.2: Questionnaire Structure.

in
tr
o

How many employees work at your company?

In which domain does the company operate?

Since when does your project follow the agile software paradigm?

Which framework (Crystal, Scrum etc.) do you follow?
co

re

What is your role in the testing process?

Which activities do you perform?

What is the purpose of your activities?

Which artifacts do you create as part of your work?

Which artifacts do you use as part of your work?

Which artifacts do you maintain as part of your work?

What do you need the artifacts for?

Do problems or challenges arise during your activities?

pr
ob

in
g What exactly about the artifact bothers you?

How should the artifact be designed instead?

How is the quality of the test artifacts currently checked?

questions). Since our research goal and RQ are of exploratory nature, most questions are
open-ended. Our questionnaire consists of 15 questions, including 13 open-ended ques-
tions and two closed questions (see Table 9.2). In each interview, we asked introductory
questions to gather information about the participant’s background (e.g., company, ex-
perience in ASD), followed by questions about the activities of the participants and the
artifacts they use in the context of these activities. To avoid misinterpretations, we gave
a short briefing of the concepts central to this study at the beginning of each interview.

The greatest challenge in compiling the questionnaire was to develop questions for
determining the quality factors. For this purpose, we discussed two different questioning
strategies. First, ask the participant directly which quality factor are important for
the artifact to be useful (e.g., “which properties should the artifact possess from your
perspective?”). In this case, the participant is explicitly asked to state the quality factors.
Second, initially ask the participants which problems occur during their activities and the
usage of their artifacts. Subsequently, use probing questions to ask what exactly bothers
the stakeholder about the artifact and how the artifact should have been designed instead.
Using this “problem-oriented questioning approach”, we first determined the problems
related to artefact usage and then derived the respective quality factors from these
problems.

Pilot To decide which questioning strategy is best suited for the creation of a ABAQM,
we designed a questionnaire for both strategies and evaluated them in a pilot (see
step 1 in Figure 9.2). We conducted the pilot phase iteratively; it consisted of two
parts, the internal pilot and the real case pilot. In the internal pilot, the questions were
continuously refined by the research team with regard to suitability, understandability,
and correctness. The real case pilot involved two interviews with participants from
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Figure 9.2: Overview of the Method Followed in Our Industrial Survey: (1) Preparing and Validat-
ing the Instrument, (2) Conducting Interviews, (3) Qualitative Content Analysis, (4)
Review Process, and (5) Creating the Activity-Based Artifact Quality Model.

the targeted population, and revealed that the “problem oriented” approach is more
suitable for collecting the quality factors. Practitioners struggle to abstract and define
independently which property of an artefact leads to good or bad quality. It proved more
effective to gather the quality factors together by first discussing current challenges and
then successively deriving the quality factors of the artifacts. Hence, the probing questions
are an integral part of our questionnaire as they encourage the participants to expand a
particular anecdote and to define precisely what they like or dislike about the artifact.

Survey Implementation and Execution During this step, we compiled all the material
needed to conduct the survey. We prepared an invitation letter to ask potential partic-
ipants for an interview. In addition, we provided our questionnaire to the participants
in advance to allow them to get a first impression of the content of the interview and
prepare accordingly. All interviews were conducted by the first author. The duration of
the interviews had an average of 41 minutes with a minimum of 31 and a maximum of
67 minutes. They took place from March to May 2020. All interviews were conducted
remotely via GoToMeeting and Google Hangouts as face-to-face interviews were infeasi-
ble due to COVID-19. We interviewed all participants individually to prevent that their
statements were influenced by others. The participants were informed, before starting
the interview, that the data will be treated anonymously. Additionally, all interviews
were conducted in the native language of the participant—German, with the exception
of one in English. The audio of all interviews was recorded with the permission of the
participants for subsequent analysis (see step 2 in Figure 9.2). Due to confidentiality
agreements with the respective individuals, the recordings cannot be published.

Survey Analysis and Packaging Since most of our interview questions are open-ended,
we decided to use qualitative content analysis in order to analyze the interview data
(see step 3 in Figure 9.2). Following the guidelines of Mayring [321], we conducted
a content analysis inductively as our research goal is explorative and we needed to
derive the quality factors of the test artifacts from the interview data. The first author
analyzed the interview recordings and performed two steps for each interview. First,
for each artefact discussed in the interview, the mentioned problems were determined.
Second, we derived factors from theses problems that influence the quality of the artifacts
positively or negatively. In particular, we studied the answers to the probing questions,
which give a precise insight into which quality factors are considered good or bad. To
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validate our results, we performed an internal review process (see step 4 in Figure 9.2).
We involved three students and provided them with the interview recordings as well as
the hypotheses and derived quality factors. They performed the same steps as the first
author and compared the results in order to agree on the information to be extracted.
In case of deviations, the respective passages in the interview were analyzed together
until reaching a consensus. After the validation process, we used frequency analysis to
find out which problem was mentioned more often. This provides a first indication of
where systematic quality control may be most needed. We report our results in two ways.
Firstly, in the form of a research paper to share our findings regarding quality control
of agile test artifacts in the research community. Secondly, as an executive summary to
share the results with the interviewed practitioners.

9.3 Survey Results

This section presents the results of our survey structured according to the research ques-
tions. Based on our activity-based quality understanding, we describe for each test arti-
fact (see RQ 3) the stakeholders using it (see RQ 1) and the context of the activities
(see RQ 2). As described in the previous section, we applied a “problem oriented” ques-
tioning approach to determine the quality factors. We report the identified challenges
arising when the stakeholders use each artefact during their activities. From these chal-
lenges, we derived the factors that positively (see RQ 4) or negatively (see RQ 5) in-
fluence the quality of the artifacts. A positive impact of a quality factor is indicated by
⊕, while a negative impact is indicated by ⊖. The artifacts that were discussed by our
participants were acceptance criterion, acceptance test, feature, test documentation, test
data, unit test and, finally, all test artifacts for factors independent of the concrete arti-
fact. Our final ABAQM (see Figure 9.3) includes 16 quality factors. Most of the qual-
ity factors support the stakeholders in carrying out their activities (13 out of 16 quality
factors). However, three quality factors hinder the stakeholders in performing certain ac-
tivities. We argue that future agile test artifacts need to be designed according to these
quality factors in order to make them useful for the stakeholders.

Artifact 1: Acceptance Criterion

Acceptance Criteria (ACC) are conditions that a system must meet in order to fulfill
a user story and be ultimately accepted by the user. ACC are used by test designers
during acceptance test creation. This activity involves two steps. Firstly, the test designer
analyzes all ACC assigned to a particular user story to understand the expected system
behaviour. Secondly, the test designer derives test cases for each ACC and merges them
into an acceptance test, which is later used in the quality assurance process to check the
compliance of the system with the user story. All test designers interviewed stated that
both steps are performed manually. We found two major challenges with the usage of ACC
during acceptance test creation. From these challenges, we derived six quality factors.

Challenge 1: Acceptance Criteria Are Ambiguously Formulated. The interviewed par-
ticipants complained about the poor linguistic quality of the ACC. In many cases, it is
not clear “what exactly the system is supposed to do, which makes it difficult to derive
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test cases” (P3). Hence, test designers need to contact the business analyst who defined
the criterion and clarify its meaning before they can start with the actual test case cre-
ation. This leads to delays in the test design process. According to P2 and P3, it would
be helpful if the formulation of an ACC is checked prior to the test process to ensure
that only testable ACC are submitted to the test designer. For this purpose, the test de-
signer should be involved in the formulation of the ACC. However, this would require
additional resources which are very limited in practice as stressed by P2 and P17:

“We lack the time to discuss every acceptance criterion with each other. We are dependent
on the formulation skills of our business analysts.” (P2)

“The quality of acceptance criteria varies from project to project. Some analysts specify them
precisely, while some do not. However, checking the formulations manually is not possible
due to tight time constraints.” (P17)

Hence, a quality assurance check of acceptance criteria should be performed automatically
to be suitable for practical use. In this context, the ACC should be reviewed with respect
to the following quality factors:

QF 1: Coreferences ⊖ A user story usually contains multiple ACC specifying the expected
system behavior. In practice, these ACC often contain coreferences (i.e., expressions
that refer to the same entities). As the number of ACC increases, it becomes difficult
to resolve these coreferences correctly, which hinders the test design. Hence, ACC
should not contain coreferences to ensure testability.

QF 2: Vague Phrases ⊖ The interviews show that ACC are usually defined using Unre-
stricted Natural Language. The use of NL is intuitive for business analysts, but
bears the risk of vagueness and ambiguity. As already stated by Berry and Kam-
sties, this can lead to “diverging expectations and inadequate or undesirably diverg-
ing implementations” [322]. We found that vague phrases often occur in ACC and
hinder the acceptance test design.

“You often see criteria like “the system should be able to upload the data quickly.” What
exactly is meant by quickly? You do not know then what to test.” (P11)

“A typical example you often see: “if possible, the system should do xy.” It is unclear
what possible means.” (P2)

We refrain from listing all vague phrases in the ABAQM since a number of stud-
ies (e.g. [323, 35]) have already dealt with this quality factor in requirements. In-
stead, we want to explicitly point out that this quality issue is also relevant for ACC.

QF 3: References to Emails, Calls, and Documents ⊖ Instead of fully documenting the de-
sired system functionality, expressions like “as discussed by phone” are often found
within the ACC. This leads to a series of problems. First, the ACC can only be un-
derstood by the stakeholders involved in the call and cannot be converted into test
cases by another test designer. Therefore, the testability of the ACC is limited due
to the undocumented, implicit knowledge. Second, information about the system
functionality is lost with changes in the project team and it is no longer known which
functionality the created test case was initially supposed to test. As a result, there
is no traceability between the created test case and the ACC. In C1, ACC also often
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contain references to other acceptance criteria or documents (e.g., “as described in
document x”). Due to the high change dynamics in agile projects, these references
become quickly outdated, which results in gaps in the requirement specification.

Challenge 2: Lack of an Overview of Dependencies Between Acceptance Criteria Ac-
ceptance test design involves not only the creation of acceptance tests for new system
functionalities but also the adaptation of existing acceptance tests to changing customer
requirements. The latter is essential in order to keep requirements and tests aligned. For
this purpose, test designers need to understand the relationship between already imple-
mented user stories and new user stories and adapt the test suite accordingly. If the
new user story introduces a new functionality, a new acceptance test must be created
and added to the test suite. If the user story changes an already implemented function-
ality, the existing acceptance tests must be adapted. However, it is increasingly difficult
to identify these relationships due to the high number of user stories. The interviews
showed that for every requested change in the software a new user story is created, rather
than the existing user story changed. This observation coincides with the results of the
study by Hotomski et al. [318]. Consequently, the number of user stories and ACC is
growing steadily, making it more and more difficult to keep track of them:

“If someone adds a new user story to the backlog that changes or overwrites another user story,
we don’t notice it. So we don’t know which tests we need to adjust.” (P2)

Instead, separate acceptance tests are created for each user story, resulting in a test
suite constantly increasing in scope and complexity. When the test suite is executed and
some tests fail, “we don’t know if these tests reveal a real bug in the system or if they are
checking old functionality and should have been updated ” (P2). This leads to additional
effort and therefore high testing costs. A similar situation is found in company C2:

“We do not know whether some acceptance criteria overlap or even contradict each other.
Hence, it sometimes happens that we create contradictory test cases.” (P3).

QF 4: Conflict-Free ⊕ A test designer can only maintain a consistent test suite if the un-
derlying ACC are not contradictory. Consequently, practitioners require a method
that automatically compares ACC with each other and reveals inconsistencies. This
will have a positive impact on both acceptance test creation and updating as it in-
dicates which user stories the test designer needs to check, as stressed by P2:

“As a test designer I have to understand where and how the functionality is supposed to
change and how I need to adapt my tests. If you could somehow automatically display
overlaps between acceptance criteria, that would help me a lot.” (P2).

In the case of major changes introduced by the new user story, the existing accep-
tance test should be archived and a new acceptance test created. Otherwise, the
existing acceptance test should be adapted. This helps to avoid False Negatives
(i.e., invalid failing tests) during test execution. According to P2, P10, and P11,
the old user story should be eventually assigned the status “old” and linked to the
new user story. This is essential to enable version control of the test assets as de-
scribed in Section 9.3.
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QF 5: Unique ⊕ In order to prevent the creation of unnecessary tests, it is essential that
ACC do not describe redundant functionalities. If two ACC describe the same
functionality, the business analyst needs to be informed and both ACC need to be
merged.

QF 6: Link to Related Acceptance Criteria ⊕ Acceptance tests sometimes cover more than
one ACC, sometimes of more than one user story. Therefore, knowing the relations
between ACC enables to minimize the overall testing effort since related function-
alities can be tested simultaneously.

“We often noticed afterwards that test cases could have been bundled together, e.g.
for acceptance criteria that describe the same UI view.” (P17)

“We’ve been trying to optimize our test suite for some time now. But we fail frequently
to create combined test cases for related requirements, because we do not know which
acceptance criteria belong together.” (P4)

In order to create such joint tests, the test designer needs to understand the rela-
tionships between the ACC and consider them during test case creation. Accord-
ingly, the quality of ACC is considered good if they are linked to related ACC. An
example are two ACC that handle the same input parameters as ACC 1: “If input
A then function B” and ACC 2: “If input A and input B then function C.” Both
ACC can be checked with a joint acceptance test.

Artifact 2: Acceptance Test

Acceptance tests are instruments used to verify the conformity between user expectations
and actual system behavior (acceptance testing). Each acceptance test contains a set
of test cases. In practice, there are two ways of acceptance testing. Internal acceptance
testing (alpha testing), which is performed by members of the organization that developed
the software, and external acceptance testing (beta testing), which is performed by the
customer. As we were not able to talk to customers during the study, we examine the
quality of acceptance tests from the perspective of an internal product owner in the
context of alpha testing. Product owners utilize acceptance tests to verify whether the
developed system complies with the requirements and can be delivered to the customer.
Our interviews reveal two challenges with the usage of acceptance tests during acceptance
testing. We derived three quality factors from the identified challenges.

Challenge 3: Acceptance Tests Contain Too Many or Too Few Test Cases We found
that acceptance tests are often not systematically created resulting in incomplete or
excessive test cases.

“We do not follow any particular procedure in the preparation of acceptance tests. Every test
designer does this based on his experience. Of course, such a manual process is prone to errors,
because you can overlook some cases. In fact, I have also been in the situation where I forgot
test cases.” (P3)

In the case of missing test cases, system defects are not (or only partially) detected.
As a result, faulty software is ultimately delivered to the customer, leading to errors in
production and lower customer satisfaction. According to an internal analysis conducted
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by company C1, 83 % of the system defects at company C1 could have been detected
by more complete test cases. A similar observation was made in company C4:

“We often experience that our live system does not completely fulfill all user stories. This could
have been avoided by the right acceptance tests” (P6).

Instead of systematically determining which test cases are required to cover an ACC, they
are usually created based on past experience of the test designer. This makes the test case
derivation error-prone and increases the risk of missing test cases, as test designers “tend
to only test the positive cases and not the negative ones” (P1, P9). A major challenge is
the complexity of the ACC:

“We often have to implement highly complex business rules that include a range of parameters.
It’s hard to decide which combinations of parameters should be tested ” (P1).

This increases the risk of missing test cases. However, not only test cases are missing,
but also superfluous test cases might be created leading to an increase in the testing
effort. According to P1, many test designers are lacking the required qualification and,
more importantly, the time for a systematic test case derivation. Consequently, there is
a great demand for an automated test case derivation from ACC to maintain the high
development speed.

QF 7: Positive and Negative Scenarios ⊕ Acceptance tests are only suitable for detecting
system defects if they are complete (i.e., covering all positive and negative test
cases).

QF 8: Minimal ⊕ Achieving QF 7 is crucial to the quality of an acceptance test, however,
it is also necessary to strike a balance between full test coverage and the number
required of test cases. More specifically, an acceptance test should contain only the
minimum number of test cases needed to fully cover the ACC in order to minimize
the required testing effort.

Challenge 4: Lack of Automation of Acceptance Tests The interviews revealed that
the degree of test automation is still insufficient in practice. At the lower levels of the
test pyramid, such as unit tests and integration tests, the execution has mostly been
automated. However, acceptance tests are usually performed manually resulting in large
testing efforts.

“Our acceptance tests are always carried out manually. Therefore, the testing process takes a
rather long time and we are highly dependent on how the product owner performs the test.” (P18)

This represents a major challenge, especially as the development project proceeds and
the system’s functionality increases:

“Before each new release, we have to run acceptance tests that check already implemented user
stories to avoid regression. The number of tests quickly increases during a project and then you
ask yourself who is going to execute these tests? We have to run the new acceptance tests
as well.” (P7)
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The reason for the low automation of acceptance tests stems not from limited tool support,
but rather from the fact that many companies still neglect to use them: We found that
some smaller companies like C6 have already automated the majority of their acceptance
tests. The problem of insufficient automation occurs mainly in large companies like C1
and C2. According to P9, P1 and P6, this might be due to the culture of these companies,
who allegedly refuse to implement new automation tools initially and therefore introduce
them with a considerable delay.

QF 9: Automated ⊕ In order to cope with the high development speed, acceptance testing
needs to be automated, e.g. through tools such as Selenium, Cypris, and Robot
Framework.

Artifact 3: Feature

A feature is a specific piece of functionality that is desired by the customer. In case
of new or changed features in the current iteration, the test lead must verify that no
regression on already implemented features is introduced (regression testing). With a
growing system, the scope of regression testing also increases, so that running an entire
regression test suite is time consuming:

“In our project, some manual regression tests take four days.” (P4)

A similar picture emerges with automated regression tests performed by continuous
integration tools:

“We run our automated tests via Travis. The Travis build for our entire application takes
an entire day.” (P5)

Such long test suite runs pose a major problem, especially considering the short sprint
cycles that are often only two weeks. Selecting the right regression tests is therefore
essential in order to minimize the testing effort. Specifically, the test lead needs to run
the regression test for the changed feature and for all dependent features to identify
potential regressions (regression test selection). For this purpose, knowledge about feature
dependencies is required. We found one major challenge related to the usage of features
during regression test selection. From this challenge, we derived two quality factors.

Challenge 5: Lack of an Overview of Dependencies Between Features In practice,
there is no overview of the relationships between features. As a result, there is a negative
impact on the regression test selection as it is not transparent which regression test runs
are necessary. Consequently, practitioners need to test on a risk-based basis:

“I execute the regression tests of all those features which I know from experience to be related
to the changed feature.” (P5)

This is prone to errors resulting in a growing desire of the test leads for a “functional
structure” in their project, which indicates the relationship between the features. This
allows to understand which features might be impacted by a change of a certain feature
and need to be tested.
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QF 10: Link to Dependent Feature ⊕ According to P4 and P5, there are too many features
in the projects to manually track the dependencies between them. Furthermore,
existing tools such as Jira do not provide the option of illustrating relationships
between features via links. Hence, there is a need for a method that automatically
reveals dependent features in order to establish the “functional structure”.

QF 11: Link to Regression Test ⊕ For the selection of regression tests, the test lead requires
a clear traceability between features and corresponding regression tests. Hence,
each feature must have a link to a corresponding regression test.

Artifact 4: Test Documentation

In addition to regression test selection, the test lead is also responsible for test reporting
and estimation planning. As part of test reporting, the test lead has to provide an
overview of successful and failed tests after each iteration to track the progress of the
development team. For this purpose, a comprehensive test documentation is required.
The test documentation contains information about the testing team’s progress, achieved
results, and overall testing strategy. We found one major challenge related to the usage
of test documentation during both test reporting and estimation planning. From this
challenge we derived two quality factors.

Challenge 6: Test Results and Effort Are Not Properly Documented The interviews
revealed that there is a common problem that test results are not properly documented
at all test levels. Especially on the intermediate test levels such as integration testing
there is a lack of an overview of the results. Therefore the reporting is mainly done on
unit and acceptance level.

“I experienced a number of projects that do not separate between the test levels and consider
every technical test as a unit test and simply document all results at unit level.” (P10)

Thus, it is difficult to identify the bugs at the correct test levels and change the software
accordingly.

QF 12: Contains Passed/Failed Rates at Each Test Level ⊕ Each test type needs to be linked
to its respective test result. Specifically, the test documentation needs to contain
the corresponding test result for each unit test, integration test, system test, and
acceptance test to provide a comprehensive overview of all testing levels at any
time during the life cycle of the software.

In addition, we found that not only the test results, but also the test effort is not properly
documented, which leads to issues in estimation planning. This activity aims at planning
the resources needed to perform the testing in the next iteration:

“It is very difficult to estimate the required number of testers when I join a new project as there
is no documentation of the required test efforts from previous iterations.” (P4)

Thus, there is no indication how much working days were needed by the testers involved
in the project to validate former user stories, as stressed by P4 and P13:
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“We need some key performance indicators especially for agile testing that are tracked and
documented during the test execution. Based on these, I can plan future test activities.” (P4)

“For example, it would be great to know how many story points were implemented and tested
in past sprints.” (P13)

QF 13: Contains Testing Effort per Story Point ⊕ A test lead needs an overview of the num-
ber of user stories implemented in past sprints, their story points and the required
test effort. Specifically, it is necessary to document how many working days the
testers needed per story point to get an overview of their testing capabilities and
estimate future testing efforts accordingly.

Artifact 5: Test Data

In addition to suitable test cases, test data is also needed to systematically test the
behavior of the system. test data is therefore required at all test levels. Our interviews
indicated that there are two main approaches to decide which stakeholder is responsible
for which testing level. In small companies, the software engineer is usually conducting
end-to-end tests, i.e. he is responsible for all test levels:

“We do not have dedicated tester roles. Our software engineers perform the entire process
from unit testing to system testing.” (P9, P6)

In large companies, the test levels are allocated to different roles:

“Unit tests are written and executed by our software engineers, but we have different testers
who perform integration tests or other test types.” (P18)

However, the interviews showed that all roles have an interest in high quality test data.
We found one challenge related to the usage of test data and derived one quality factor.

Challenge 7: Lack of Test Data to Properly Test the Software In practice, the genera-
tion of test data is a great challenge, so that “we often do not have enough test data or
the quality of our test data is poor” (P1). In this context, poor quality denotes the devia-
tions from real production data. The participants complained that their test data often
does not cover all possible boundary cases that might occur in production, so that the
system is not tested under all potential conditions. We found this issue in large compa-
nies like C1 as well as in small companies like C6. This is mainly caused by the fact that
test data is not systematically derived from production data, but rather that testers use
random test values as test data.

“I often see the problem in projects that poor test data is used. Poor means that the developer
enters arbitrary values in his unit test, but omits constellations that might occur in practice.
Obviously, this leads to errors.” (P7)

Hence, the testing of all possible boundary values depends on the experience of the testers.

QF 14: Boundary Values ⊕ To ensure that all potential exceptional conditions are covered
during testing, the test data must contain the same boundary cases as the produc-
tion data.
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“We need a method that learns to generate appropriate test data from production
data.” (P1)

In this context, it is crucial to keep the test data anonymized, especially when
dealing with sensitive data.

Artifact 6: Unit Tests

Unit tests are usually implemented and used by software engineers to test individual
units of the source code or sets of modules. We found one challenge related to the usage
of unit tests and derived one quality factor.

Challenge 8: Inadequate Code Coverage of Unit Tests The interviews demonstrated
that there are not only problems with functional testing (i.e., poor acceptance testing)
but also problems with testing at lower test levels:

“There are always bugs in production that could have been detected at lower levels.” (P1)

The core problem mentioned by the participants is that unit tests are not created following
a certain pattern. Rather, it depends on the developer and the reviewer which unit tests
are created. This leads to a strongly fluctuating quality of the unit tests. Similar to the
automation of acceptance tests, we found differences between small and large companies.
The smaller companies were able to give us an overview of the code coverage of their
unit tests, while larger companies were not aware of the quality of their unit tests.

QF 15: Code Coverage ⊕ To control the quality of unit tests, code coverage metrics should
be applied as they allow to determine how much of the developed code is tested.
The participants mentioned arbitrary thresholds (e.g., 80 %) which they considered
useful.

“This does not mean that no errors can occur. But it provides a good first overview of
the quality of my unit tests.” (P7)

All Test Artifacts

In the following, we present a challenge that applies to all test artifacts equally. Hence,
the quality factor derived from this challenge is relevant for all presented test artifacts.

Challenge 9: Missing Version Control of All Test Assets Configuration management
is an integral activity to monitor and control the status of software during its life cycle.
Version control of source code and automated tests is already anchored in today’s business
practice and is supported by control systems such as Git, allowing to track code changes
over time. However, version control of all agile test artifacts is only partially implemented:

“We often don’t know what the software is capable of doing or has done at a certain point in
time and what exactly we have tested.” (P1)

This poses a problem especially in regulatory environments. For example, companies
in the insurance industry need to document the functionality of the different software
versions and prove which tests have been performed to verify that functionality. Hence,
practitioners “need the historic information of all test assets.” (P1, P2).
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Figure 9.4: Frequency Analysis of Mentioned Challenges.

QF 16: Documented Status ⊕ All test artifacts need to be maintained with an appropriate
status. This can be illustrated by a user story and its corresponding acceptance
test. After the creation of a user story, its status is set to “New”. It will be set
to “Committed” by the developer once its implementation has started. After the
implementation, the user story ’s status is set to “Resolved” and is finally set to
“Done” by the product owner if the acceptance test was successful. To monitor the
status of the software during its life cycle, it is indispensable that artifacts are
archived and not discarded. For example, if a new user story overwrites another one,
the old user story including the acceptance tests’ status should be set to “Old” and
the old user story should reference the new user story. This allows to review the
tested functionality and test results for any given build at any given point in time.

9.4 Discussion

In this section, we discuss our findings and put them in context of related work.

Finding 1: Identified Challenges Are Partly Similar to Known Problems From
Non-Agile Projects

Poor formulation of requirements and lack of traceability between artifacts are well-known
problems from traditional projects [324]. Interestingly, we have also identified these two
problems in our survey. The lack of traceability was observed especially for the artifacts
ACC and feature. According to our frequency analysis, the lack of traceability between
ACC was mentioned by eight of the 18 respondents, whereas the missing traceability
between features was mentioned by only four respondents (see Figure 9.4). The challenge
of inadequate formulated acceptance criteria was mentioned by more than 80 % of the
respondents and therefore has the highest frequency in our sample. Our results indicate
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that already known problems from traditional software projects could not be solved by
the shift to ASD. Regardless of the development paradigm applied, practitioners seem
to face the same quality issues in some of their used test artifacts.

 Implications for Practice and Academia:

If teams switch to an agile paradigm, common requirements and test engineering
problems still need explicit attention and won’t go away by themselves. Academia
will continue evaluating whether solutions applied in traditional software engineer-
ing, also work in ASD.

Finding 2: Quality Model Contains Only Currently Relevant Quality Factors

There already are a number of studies on quality factors of artefacts used in traditional
projects. For example, it exists a large body of work on quality dimensions of data [325,
326, 327]. An integrated view is provided by Catarci and Scannapieco [328], who define
the quality of data by the criteria accuracy, completeness, consistency, and timeliness.
We were surprised that the interviewed practitioners mentioned only a few of the already
known quality factors and instead emphasized specific factors. For example, in the context
of test data, the practitioners only mentioned boundary values that the test data must
cover. Completeness of test data, i.e. “the degree to which a given data collection includes
data describing the corresponding set of real-world objects” [328], seems to be a critical
problem in agile testing. The other quality factors were not discussed. We assume that
the practitioners have less pressing problems in maintaining these factors and therefore
do not mention them explicitly. Our problem-oriented question approach focuses on
current and critical problems. As a result, our quality model contains only those quality
factors that are difficult to achieve by the practitioners. This can be seen as a strength,
but also as a weakness, since it will produce an incomplete model, yet provide a quality
model of what is most relevant. Since project pressure is such a dominant topic in our
interviews, we would argue that this makes the model more useful for practitioners.

 Implications for Practice and Academia:

If practitioners do not have enough time for full-blown Quality Assurance (QA)
of test artifacts, we suggest to start with the quality factors mentioned by fellow
practitioners. Academia however, needs to validate the quality model in particular
regarding relative relevance of the quality factors.

Finding 3: Most Identified Quality Factors Cannot Be Controlled Manually

Multiple studies have shown that the high change dynamics and development speed in
agile projects requires an increasing automation of the test process. For example, one
of our previous studies [1] stresses the need for an automatic test case derivation from
acceptance criteria. Our survey indicates that quality control of test artifacts should also
be automated as far as possible. We identified a number of quality factors which should
be controlled since they have a significant impact on testing activities. However, they
cannot be managed manually due to time constraints. The interviewed practitioners are
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aware of many of the identified quality factors, but cannot meet them without automated
tool support. The need for tool support primarily concerns all quality factors related to
traceability such as QF 4, 5, 6, and 10.

 Implications for Practice and Academia:

Academia and practice need to collaborate on creating effective and efficient tool
support for automatic quality control of test artifacts.

Finding 4: The Quality of Test Artifacts Influences the Quality of Other
Artifacts Indirectly

Based on the quality-in-use paradigm, we reported which quality factors of a test artifact
have a positive or negative impact on certain activities. Our interviews revealed, however,
that the presence or absence of the identified quality factors not only affects the activity
itself but also its output and thus another test artifact which is used in subsequent
activities. This can be illustrated by the two artifacts ACC and acceptance test. We
identified seven quality factors of a ACC, which have an impact on acceptance test design.
The output of this activity are acceptance tests (see Figure 9.3). Consequently, the
quality of acceptance tests is indirectly impacted by the quality of ACC as they influence
the activity in which acceptance tests are created. This reflects the common claim that
quality defects in early artifacts (e.g., requirements-like artifacts) have consequences
across multiple layers of indirection.

 Implications for Practice and Academia:

Practitioners should carefully analyze which artifacts are at the beginning of the
processes and focus their limited QA resources on these artifacts, in particular on
ACC. Academia should try to understand this in more depth and further qualify
and quantify the impact.

9.5 Threats to Validity

As in every empirical study, our survey is also subject to potential validity threats. This
section discusses these threats, and describes how we mitigated them. We classify the
threats into internal, construct, external, and conclusion validity [287].

Internal Validity The interviewees may have misunderstood the questions resulting in
poor quality or invalid answers. To minimize this threat, we followed the guidelines
by Ciolkowski [285] in the creation of the questionnaire. In addition, we conducted a
pilot phase to validate the questionnaire internally through discussions in the research
team and externally through pilot interviews. Another threat is that the interviewed
practitioners may not have the necessary knowledge to provide suitable input to our
study. We minimized this threat by selecting practitioners based on previously defined
criteria to ensure sufficient experience. As in every interview-based survey, practitioners’
statements may be incorrect due to fear, pride or other subjective biases, despite us
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stressing the anonymity of the study. As such, our resulting quality model reflects the
subjective views on quality and needs to be validated with experiments. The selection
bias is another threat to internal validity. Although we have started with personal
contacts to find participants, the sampling process has been extended by indirect contacts
(snowball sampling). As a result, the selection bias threat has been reduced. Our study
is also subject to a potential researcher bias, because all interviews and the data analysis
were conducted only by the first author. To minimize this threat, all interviews were
audio recorded to document the results of the interviews and to provide a basis for
further analysis. In addition, the hypotheses and quality factors derived by the first
author were validated by an internal review process in order to mitigate confirmation
bias. Furthermore, we assured credibility by sending the identified quality factors to the
participants for validation (member checking).

Construct Validity The questionnaire might not sufficiently cover our research questions
limiting the availability of data that provides suitable answers to the research questions.
To minimize this threat, we performed two mitigation actions. First, we designed the
questionnaire to successively identify the individual elements of the ABAQM. In addition,
we mapped the questions of the questionnaire to the research questions and discussed in
the research group if the questions are adequate or if further questions are required to
answer the RQ in a targeted way.

Reliability As in every interview-based survey, the limited sample size and the sam-
pling strategy do not provide the statistical basis to generalize the results of the study
beyond the studied companies and stakeholders. However, we tried to interview practi-
tioners in different roles from different domains and companies of different sizes to ob-
tain a comprehensive picture of the quality of the test artifacts. Nevertheless, the results
of our frequency analysis are not statistically representative and do not allow a general
conclusion about challenges in using test artifacts. In order to achieve reasonable gener-
alizabilty, future studies should investigate our derived hypotheses in the context of a
broader survey and assess their relevance, e.g. by using a Likert scale.

9.6 Summary

Quality of test artifacts matters. In this chapter, we conducted an industrial survey
to create an Activity-Based Artifact Quality Model to define what this means from a
stakeholder’s viewpoint. Specifically, we explored quality factors of test artifacts that
have a positive or negative impact on the activities of agile testers. Our quality model
contains 16 quality factors for six test artifacts that are reportedly relevant to at least
five stakeholders in the process. We encourage agile testers to use our quality model as
the foundation for systematic quality control in practice.

One of the most frequently stated problems concerned the lack of adequate acceptance
tests (see Figure 9.4). We found that acceptance tests are often not systematically
created, resulting in incomplete or excessive test cases. In the case of missing test cases,
system defects are not (or only partially) detected. In contrast, excessive test cases
lead to unnecessary testing efforts and increased test maintenance costs. Consequently,
practitioners need to strike a balance between full test coverage and number of required
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test cases. We also found that the creation of acceptance tests is a predominantly
manual task due to insufficient tool support. These results emphasize the need for
a tool-supported approach capable of deriving the minimal set of required test cases
automatically from NL requirements.

Focus of This Thesis In this thesis, we focus on the problem of creating suitable ac-
ceptance tests and demonstrate how conditional extraction can be used to address this
problem. Specifically, we deal with the two quality factors positive and negative sce-
narios (QF 7) and minimal (QF 8) by proposing an approach capable of automati-
cally generating acceptance tests in accordance with these two quality factors (see Chap-
ter 10). The focus of this thesis is highlighted in Figure 9.3.
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Chapter 10

Empirical Study on Utilizing CiRA for
Automatic Acceptance Test Creation

Common Thread In the previous Chapter 9, we provided empirical evidence that
practitioners fail to create adequate acceptance tests. In this chapter, we demonstrate
how the automatic extraction of conditionals can contribute to solving this problem.
Specifically, we use CiRA to extract conditionals in fine-grained form and then map
them into a Cause-Effect-Graph from which we automatically derive test cases. We
empirically evaluate our approach on real-world data provided by Allianz Deutschland
AG (insurance), Ericsson (telecommunication), and Leopold Kostal GmbH & Co. KG
(automotive).

Contribution Across all case companies, our approach automatically created 71.8 %
of the 578 manually created test cases. Our approach was further able to identify 136
test cases that were missed in manual test design. In fact, 58.8 % of these exclusively
automatically generated test cases are indeed relevant and should be included in the
acceptance test. Our study proves that our approach is able to automatically create
a significant amount of relevant (known and new) test cases. However, the study also
shows that our approach does not achieve full automation of acceptance test generation.
This is mainly due to the fact that incompleteness of requirements is still a major issue
in practice making domain knowledge often necessary to create all relevant test cases.
Hence, our approach should be used as a complement to the conventional manual test
case derivation process.

Related Publications This chapter is taken, directly or with minor modifications, from
a previous publication [10].
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Figure 10.1: Overview of Our Approach Consisting of Three Steps: (1) Detection of Conditionals,
(2) Fine-Grained Extraction of Conditionals, and (3) CEG Creation. Processed REQ:
“If A is valid and B is false, then C is true.”

10.1 Combining CiRA With Cause-Effect-Graphing

This section highlights our idea of using conditional extraction for automated accep-
tance test creation. First, we describe why and how we combine our CiRA pipeline with
Cause-Effect-Graphing to generate test cases automatically (see Section 10.1.1 and Sec-
tion 10.1.2). Second, we demonstrate our approach by means of a running example (see
Section 10.1.3).

10.1.1 Principal Idea

We follow the idea of Model-Based-Testing and introduce an intermediate layer between
requirements and corresponding acceptance tests. Specifically, our approach consists of
three steps: First, we use CiRA to extract conditionals from the requirements. Second, we
transfer them into a test model from which we then can derive test cases automatically.
We choose Cause-Effect-Graphs as suitable test models for the following reasons:

1. Since we focus on conditional statements, we need to determine the right combi-
nation of test cases that cover the relationship between the extracted antecedents
and consequents. Cause-Effect-Graphs are ideally suited for this purpose because
they can be interpreted as a combinatorial logic network, which describes the in-
teraction of antecedents and consequents by Boolean logic. Specifically, it consists
of nodes for each antecedent and consequent and uses arcs with Boolean operators
(conjunction ∧, disjunction ∨, negation ¬) to illustrate the relationship between
the nodes (see Section 2.4).

2. To derive test cases from a Cause-Effect-Graphs, we apply the Basic Path Sensi-
tization Technique. The graph is traversed back from the consequents to the an-
tecedents and test cases are created according to specific decision rules (see Sec-
tion 2.4). These rules achieve the maximum probability of finding failures while
avoiding the complexity of generating 2n test cases, where n is the number of an-
tecedents. Hence, Cause-Effect-Graphing allows us to support practitioners in bal-
ancing between sufficient test coverage and the lowest possible number of test cases.

10.1.2 Creation of Cause-Effect-Graph

As shown in Figure 10.1, we produce a CEG based on the extracted antecedents and
consequents by CiRA. Creating a CEG is not a trivial task, especially for complex con-
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ditional statements consisting of multiple antecedents and consequents. We handle the
following cases:

Case 1: Single Antecedent - Single Consequent In the simplest case, we create two
nodes and draw an edge from the antecedent node to the consequent node.

Case 2: Multiple Conjunctive Antecedents - Single Consequent In this case, all an-
tecedents must occur jointly for the effect to occur. Thus, we connect all antecedent nodes
with the consequent node using the connective ∧.

Case 3: Multiple Disjunctive Antecedents - Single Consequent In this case, the oc-
currence of one of the antecedents is sufficient for the consequent to occur. Thus, we link
all antecedent nodes with the consequent node using the logical connective ∨.

Case 4: Combination of Conjunctive and Disjunctive Antecedents - Single Consequent
Conditionals are usually not parenthesized, which causes a certain degree of ambiguity
when combining conjunctions and disjunctions. To convert such conditionals uniformly
into a CEG, we follow the precedence rules of Propositional Logic. Hence, we evaluate
conjunctions with higher precedence than disjunctions. To this end, we create an inter-
mediate node for each set of conjunctive antecedents and connect the antecedents with
the intermediate node using the logical connective ∧. Subsequently, we connect the dis-
junctive antecedent(s) and the intermediate node(s) with the consequent using the logi-
cal connective ∨. If no connective can be found between two adjacent antecedents, the
closest subsequent connective is used. For example, in an enumeration like “Owners, ten-
ants, and managers” only the connection between “tenants” and “managers” is explicit,
whereas “owners” and “tenants” are also implicitly connected by a conjunction.

Case 5: Multiple Conjunctive Consequents We create a node for each consequent and
connect them to the antecedents according to the rules described above. We do not allow
effects to be connected with a disjunction as this would denote an indeterministic system
behavior.

Case 6: Correction of Incomplete nodes In the simplest case, a antecedent or conse-
quent encompasses both a variable and condition in the lower annotation level. We then
fill the created nodes with the corresponding information. If either of the two labels is
missing, the information is extracted from the nearest referent instead.

10.1.3 Motivating Example

We demonstrate the functionality of our pipeline by means of a running example. Specif-
ically, we explain how we automatically derives the minimum number of required test
cases for the requirements specification shown in Figure 10.2. The specification contains
an excerpt of requirements that describe the functionality of The Energy Management
System (THEMAS). THEMAS is intended to be used by people that maintain the heat-
ing and cooling systems in a building. We retrieved the requirements from the PURE
data set [218] that contains 79 publicly available NL requirements documents collected
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• REQ A: If the temperature change is requested, then the determine heating/cooling
mode process is activated and makes a heating/cooling request.

• REQ B: If the current temperature value is strictly less than the lower value of the valid
temperature range or if the received temperature value is strictly greater than the upper
value of the valid temperature range, then the THEMAS system shall identify the current
temperature value as an invalid temperature and shall output an invalid temperature
status.

• REQ C: The THEMAS system shall maintain the ON/OFF status of each heating and
cooling unit.

• REQ D: Temperatures that do not exceed these limits shall be output for subsequent
processing.

• REQ E: If this condition is true, then this module shall output a request to turn on the
heating unit in case LO = T LT.

• REQ F: The heating/cooling unit shall have no real time delay when these statuses are
sent to the THEMAS system.

• REQ G: Each thermostat shall have a unique identifier by which that thermostat is
identified in the THEMAS system.

• REQ H: When an event occurs, the THEMAS system shall identify the event type and
format an appropriate event message.

Figure 10.2: Requirements Specification of THEMAS, Based on [218].

from the Web. We encourage the readers of this chapter to use our online demo to pro-
cess the running example on their own, allowing them to follow each individual step of
our test case generation pipeline.

Step 1: Detection of Conditionals When applying CiRA to the requirements specifica-
tion shown in Figure 10.2, CiRA performs the first step of its pipeline: it tries to identify
which requirements in the specification contain a conditional. For this purpose, REQ A -
H are tokenized in the embedding layer and enriched with dependency tags as described
in the previous section. Finally, the CLS token of each REQ is passed to the inference
layer, where a softmax layer computes the probability of the REQ being a conditional
or not. In the present example, CiRA classifies REQ A, REQ B, REQ D, REQ E, REQ
F, and REQ H as # Conditional Present and correctly discovers that REQ C and REQ G
do not contain a conditional statement. Hence, REQ C and REQ G are excluded from
the further test generation process. The remaining requirements are forwarded to the
next step, namely the extraction of conditionals.

Step 2: Extraction of Conditionals In the second step, CiRA extracts the conditional
statements from the requirements that were classified as # Conditional Present in the
first step. For this purpose, REQ A, REQ B, REQ D, REQ E, REQ F, and REQ H
are decomposed into individual tokens using the BPE tokenizer and then converted
into RoBERTa embeddings. Subsequently, each token embedding is fed into a sigmoid
classifier, which calculates the probability for each of our twelve labels ( # Antecedent 1 ,
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# Antecedent 2 , . . . # Condition ) that the token should be associated with that class. We
select the classes with a probability ≥ 0.5 as the final classification result. Figure 10.3
shows the extracted conditionals by CiRA from the THEMAS requirements.

The running example demonstrates that CiRA is able to extract conditionals in fine
grained form - independent of whether the requirements contain simple conditionals
consisting of a single antecedent and consequent (see REQ D and REQ F) or complex
conditionals with multiple antecedents and consequents (see REQ B). Further, CiRA is
able to detect antecedents and consequents in different positions in a sentence, which can
be illustrated by REQ E. In this case, CiRA extracts the conditional statement correctly
even though # Antecedent 1 and # Antecedent 2 do not immediately follow each other but
instead are separated by # Consequent 1 .

Step 3: Creation of Cause Effect Graph In the third step, we interpret the conditional
statements extracted from REQ A, REQ B, REQ D, REQ E, REQ F, and REQ H, and
create a corresponding CEG. Subsequently, we apply the BPST (cf. [148] and [64]) to
derive the minimum number of required test cases from each CEG. Figure 10.3 presents
an overview of the Cause-Effect-Graphs created by our approach and the respective
automatically generated test specifications for each conditional included in the THEMAS
requirements specification (see Figure 10.2).

The CEG generated for REQ A corresponds to Case 5 described in Section 10.1.2.
Specifically, one antecedent is the trigger for two conjunctive causes: “the heating/cool-
ing process is activated” and “[the heating/cooling process] makes a heating/cooling re-
quest”. We can observe from the extracted conditional for REQ A that the variable of
# Consequent 2 is not explicitly defined in the requirement (see Figure 10.3a). We must
therefore automatically complete the node of # Consequent 2 by adopting the variable
from # Consequent 1 (see Case 6). REQ B specifies complex system behavior and con-
tains two antecedents and two consequents. When creating a corresponding CEG, we need
to consider both Case 2 and Case 5. Thus, we link all antecedent nodes with both conse-
quent nodes using the logical connective ∨ (see Figure 10.3b). Similar to REQ A, we need
to automatically complete the variable of # Consequent 2 since it is not explicitly defined
in REQ B (see Case 6). REQ D contains a negated antecedent that is responsible for the
occurrence of a single consequent. In other words, not exceeding the limit is required for a
temperature to be eligible for further processing. Therefore, we are dealing with Case 1
and have to negate the edge between antecedent and consequent. Once again, the variable
of an consequent node is not described in the requirement. In contrast to REQ A and REQ
B we do not complement the node of # Consequent 1 with the variable of a neighboring
consequent but rather adopt the variable of # Antecedent 1 (see Figure 10.3c). The CEG
generated for REQ E corresponds to Case 2. Hence, we connect both antecedent nodes
with the single consequent using the connective ∧ (see Figure 10.3d). REQ F includes a
negated consequent that is triggered by a single antecedent. We thus create the CEG based
on the rules described in Case 1 and negate the edge between antecedent and consequent
(see Figure 10.3e). REQ H contains one antecedent and two conjunctive consequents. We
create a corresponding CEG by applying the rules described in Case 5. We complement
the node of # Consequent 2 by adopting the variable of # Consequent 1 (see Figure 10.3f).

Our approach automatically created a total of 14 test cases for all conditionals included
in our running example. The created acceptance tests for REQ D and REQ F are
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trivial and contain only two parameters that have to be checked (see Figure 10.3c and
Figure 10.3e). The other acceptance tests are of higher complexity as they contain more
input and output parameters: To fully test REQ A, REQ E and REQ H, two test cases
including three parameters each have to be checked. The acceptance test created for
REQ B involves three test cases with four parameters.

10.2 Research Objective

We aim to investigate whether our approach is suitable for the automatic generation of
acceptance tests in practice. Specifically, we study the following research questions (RQ):

∎ RQ 1: Can our automated approach create the same test cases as the manual
approach?

∎ RQ 2: What are the reasons for deviating test cases?

RQ 1 and RQ 2 inspect the impact of our approach: does it achieve the status quo or even
lead to an improvement of the manual test case derivation? To this end, we conduct a case
study with three industry partners in an exploratory fashion and compare automatically
created test cases with existing, manually created test cases. For our study, we follow
the guidelines by Runeson and Höst [269] for conducting case study research.

10.3 Study Design

Case Sampling and Study Objects We apply purposive case sampling augmented with
convenience sampling [329]. Specifically, we approached some of our industry contacts
inquiring whether they are interested in exploring the potential of CiRA. We were provided
with data from three companies operating in different domains: Allianz Deutschland
AG (insurance), Ericsson (telecommunication), and Leopold Kostal GmbH & Co. KG
(automotive). Since the data is subject to non-disclosure agreements, we are unable to
share the provided requirements and test cases.

Allianz Data We analyze 219 ACC describing the functionality of a business information
system used for vehicle insurance. 127 of these ACC contain conditionals and are
therefore suitable for assessing CiRA. The remaining ACC specify the expected
functionality based on process flows (16 criteria) or in a static way (76 criteria).
We analyze the acceptance tests that were manually created for each of the ACC
including conditionals. In total, 309 test cases were designed, which corresponds
to about 2.43 test cases per acceptance test.

Ericsson Data We analyze 109 requirements derived from five Business Use Cases
(BUCs), which are feature-level units of development at Ericsson. The BUCs origi-
nate from different functional topics. 49 of these 109 requirements contain condi-
tionals while the remaining requirements are expressed in a static way. In total, 65
test cases were manually generated for the 49 requirements containing condition-
als, which corresponds to about 1.33 test cases per acceptance test.
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(a) Extracted Conditional From REQ A, Corresponding CEG, and Derived Acceptance Test.

Figure 10.3: Overview of the Conditionals Extracted by CiRA in Fine-Grained Form, the Generated
Cause-Effect-Graphs, and the Derived Acceptance Tests per Requirement Defined
in the THEMAS Specification.
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(b) Extracted Conditional From REQ B, Corresponding CEG, and Derived Acceptance Test.

Figure 10.3: Overview of Automatically Generated Acceptance Tests (cont.)
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(c) Extracted Conditional From REQ D, Corresponding CEG, and Derived Acceptance Test.

(d) Extracted Conditional From REQ E, Corresponding CEG, and Derived Acceptance Test.

Figure 10.3: Overview of Automatically Generated Acceptance Tests (cont.)
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(e) Extracted Conditional From REQ F, Corresponding CEG, and Derived Acceptance Test.

(f) Extracted Conditional From REQ H, Corresponding CEG, and Derived Acceptance Test.

Figure 10.3: Overview of Automatically Generated Acceptance Tests (cont.)

174



10.3 Study Design

Kostal Data We analyze a requirements specification describing a plug interlock function,
which prevents a charging plug from being disconnected during an active charging
process of an electric car. The specification includes 135 functional requirements.
79 of these functional requirements contain conditionals while 56 requirements
describe the functional behavior in a static way: “The signal signalName shall be set
to InitValue”. In our case study, we focus only on the acceptance tests that were
manually created for the 79 requirements that contain conditionals. In total, 204 test
cases were designed, which corresponds to about 2.58 test cases per acceptance test.

Approach for RQ 1 We want to study whether our approach can achieve the status
quo or even lead to an improvement of the manual test case derivation. To this end,
we pass all study objects through our pipeline and compare the automatically created
acceptance tests with the manually created acceptance tests. We assess two acceptance
tests to be equal if they contain the same test cases. Two test cases are equivalent
if they consist of the same input and output parameters with semantically identical
variables and conditions. However, we allow syntactical differences between the test
cases (e.g., different spelling of parameters), since they still test the same functionality.
By comparing the test cases created by our approach with the manually created test
cases, we found that it is sometimes not possible to establish a one-to-one relationship.
Partly, test designers aggregate related parameters, so that a manual test case may cover
multiple automated test cases (one-to-many relationship). Therefore, two acceptance
tests may also be equivalent even if the number of test cases differs. If we observe
discrepancies between a manual acceptance test and automatic acceptance test, we involve
test designers from our case companies and examine the set differences: 1) test cases
created exclusively by the manual approach (MA), and 2) test cases generated exclusively
by our automated approach (AA). In both cases, we ask the test designers whether a
certain test case is required to fully check the functionality described by the requirement
to assess its relevance (rel). Consequently, we investigate five different categories of test
cases:

∎ Identical : A test case that has been created manually as well as automatically
by our approach.

∎ AA ∧ rel : A test case that has been missed in manual test design and should
be included in the acceptance test.

∎ AA ∧ ¬rel : A superfluous test case that is correctly not included in the manually
created acceptance test.

∎ MA ∧ rel : A test case that has been missed by our approach and should be
included in the acceptance test.

∎ MA ∧ ¬rel : A superfluous test case that is correctly not included in the auto-
matically created acceptance test.

Approach for RQ 2 To answer the second RQ, we document errors of our approach
and interview test designers of our case companies. To avoid interviewer bias, we do
not involve the test designers who created the respective acceptance tests. Instead, we
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Figure 10.4: Case Study Results. Comparison of Manually and Automatically Created Test
Cases.

interview their colleagues who are also familiar with the functionalities described in the
requirements. To determine the reasons for deviating acceptance tests, we examine the
manually and automatically created test case as well as the corresponding requirements
jointly with the test designers. We involve two test designers at Allianz, two test designers
at Kostal, and one test designer at Ericsson.

10.4 Study Results

In this section, we report on our study results structured by our research questions.

RQ 1: Can CiRA Create the Same Test Cases as the Manual Approach?

Findings at Allianz CiRA detected 90.55 % of the conditionals in the acceptance crite-
ria. Consequently, no test cases were created for the missed 12 criteria containing condi-
tionals. For the correctly classified criteria, our approach generated 314 test cases. This
corresponds to about 2.73 test cases per acceptance test. We were able to draw a one-
to-one relationship between 224 manually and automatically created test cases. Addi-
tionally, we observed a one-to-many relationship between eleven manually created test
cases and 32 automatically created test cases. Thus, 76.05 % of the manually created
test cases could be automatically generated. However, 74 test cases were not created by
our approach, of which 27 test cases are related to criteria that were incorrectly iden-
tified as # Conditional Not Present . According to the test designers, the remaining 47 MA
test cases can be classified as follows: 42 are necessary to fully test the system function-
ality while five test cases are superfluous. A comparison of the automatically created
test cases with the manually created test cases highlights that 58 test cases have not yet
been considered in the manual test design. According to the test designer, these 58 AA
test cases can be clustered as follows: 47 are indeed relevant while eleven should not be
included in the acceptance test.

Findings at Ericsson CiRA correctly classified 79.6 % of the conditionals in require-
ments but failed to do so for ten requirements. 91 test cases were automatically gener-
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ated based on these identified requirements, which corresponds to about 2.33 test cases
per acceptance test. 28 manual test cases were automatically created by our approach
in a one-to-one, 13 more in a one-to-many relationship, resulting in an automatic gen-
eration of 41 of 65 test cases (63.1 %). However, 24 test cases were not created by our
approach, of which seven test cases are related to criteria that were incorrectly identi-
fied as # Conditional Not Present . According to the test designer, the remaining 17 MA test
cases are all necessary to fully test the system’s functionality. A comparison of the auto-
matically created test cases with the manually created test cases highlights that 47 test
cases have not yet been considered in the manual test design. According to the test de-
signer, these 47 AA test cases can be clustered as follows: ten are indeed relevant while
37 should not be included in the acceptance test.

Findings at Kostal CiRA correctly classified 72 requirements as # Conditional Present .
However, it failed to identify the remaining seven requirements that also contain condi-
tionals. Hence, no test cases were ultimately created for these requirements. In the case
of the correctly classified requirements, CiRA produced 194 test cases. This corresponds
to about 2.69 test cases per acceptance test. We found a one-to-one relationship between
122 manually and automatically created test cases. In addition, we were able to draw a
one-to-many relationship between 17 manual test cases and 41 automatically created test
cases. Thus, 68.14 % of the manually created test cases could be created automatically.
Nevertheless, 65 manually created test cases are not included in the set of automated
test cases. 16 of these exclusively manually created test cases refer to the conditionals in
requirements that CiRA missed. In the case of the other 49 test cases, we ask test design-
ers at Kostal about their relevance. In fact, 81.63 % of the exclusively manually created
test cases are deemed relevant. According to the test designers, nine test cases are super-
fluous and can be removed from the test set. Examining the automatically created test
cases, we observe that 31 test cases have not been considered in the manual creation
so far. Interestingly, the test designers confirmed that 74.19 % of these test cases were
indeed missed in the manual process. However, eight exclusively automatically created
test cases are not relevant and thus correctly not included in the manual set.

 Answer to RQ 1:

Across all case companies, our approach automatically created 71.8 % of the 578
manually created test cases. Our approach was further able to identify 136 test
cases that were missed in manual test design. In fact, 58.8 % of these exclusively
automatically generated test cases are indeed relevant and should be included
in the acceptance test. We conclude that our approach is able to automatically
create a significant amount of relevant (known and new) test cases.

RQ 2: What Are the Reasons for Deviating Test Cases?

Incomplete Requirements We found that the main reason for test cases that could not
be created automatically lies in the poor information available in the requirements. The
interviewed test designers confirmed that domain knowledge is often required to determine
all relevant test cases. In the case of Kostal, 19 out of 79 requirements were incomplete.
We found that our approach could not generate 37 MA ∧ rel test cases due to lack of
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information in these requirements. At Allianz, 16 out of 127 conditionals in acceptance
criteria lack information. Our analysis shows that our approach could not generate 31
MA ∧ rel test cases due to incomplete acceptance criteria. At Ericsson, 17 MA ∧ rel
test cases could not be generated due to underspecified or missing requirements.

Incorrect Combinatorics We noticed that some of the exclusively manually created
test cases are superfluous - they can be merged or are already covered by other test
cases. The interviews revealed that in these cases the combinatorics of the input and
output parameters were interpreted incorrectly. According to the test designers, this
stems mainly from the fact that test cases are often not created systematically, but rather
based on past experience. Unsystematic test design may not only result in superfluous
test cases but can also lead to necessary test cases being ignored. We observed that
test designers tend to create positive cases and neglect negative cases. At Kostal, 21 of
the 23 AA ∧ rel test cases were actually negative cases. Only two positive cases were
overlooked in the manual process. At Allianz, 36 of the 47 AA ∧ rel test cases were
actually negative cases. 11 positive cases were missed by the test designers. In the case
of Ericsson, all ten AA ∧ rel test cases were overlooked negative test cases.

Infeasible Test Cases Our analysis shows that some of the exclusively automatically
created test cases can not occur in practice. According to the test designers, this problem
arises mainly for negative test cases where certain scenarios are tested that can only
occur theoretically. For example, some parameters can not take the value false at the
same time, even if this case should be checked from a combinatorial point of view. In
the case of Kostal, we found that three of the eight AA ∧ ¬rel test cases can not be
checked in practice. At Allianz, five of the eleven AA ∧ ¬rel test cases can only occur
theoretically. At Ericsson, 28 of 37 AA ∧ ¬rel test cases fell into this category.

Errors in Our Pipeline Our approach produced not only errors in the detection of the
conditionals, but also failed in some cases to extract and translate them into the CEG.
At Kostal, our approach failed to generate 3 MA ∧ rel test cases and instead created
five AA ∧ ¬rel test cases, because the generated CEG reflected a wrong conditional
statement. In the case of Allianz, we failed to create eleven MA ∧ rel test cases and
instead generated six AA ∧ ¬rel test cases. In the case of Ericsson, our approach
produced nine AA ∧ ¬rel test cases due to incorrect interpretation of the conditional.
We found that these errors occurred mainly when the conditionals contained three or
more consequents. This confirms the findings from our experiment that CiRA struggles
in reliably identifying more than two consequents (see Table 7.6).

 Answer to RQ 2:

In our setting, we observed four reasons for deviating test cases: incomplete re-
quirements, incorrect combinatorics, infeasible test cases, and errors in our pipeline.
We found that incomplete requirements are the main reason for test cases that
could not be created automatically by our approach.
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10.5 Discussion

Our case study demonstrates that our approach is able to support practitioners in
deriving relevant test cases from conditionals. Across all industry partners, our approach
automatically generates more than 70 % of the manually created test cases. However,
our approach does not achieve full automation of acceptance test creation, mainly due
to incomplete requirements. Our approach is heavily dependent on the information
contained in the requirements and consequently unable to create test cases for which
additional domain knowledge is required. Thus, our case study confirms the findings of
Mendez et al. [44] that incompleteness is still a major problem in practice and hinders
the automatic processing of requirements.

 1. Key Take-away:

In fact, our approach can help to generate acceptance tests automatically. However,
our approach does not substitute a test designer since domain knowledge is often
necessary to identify all required test cases.

According to the test designers, the main benefit of our approach is its ability to create
test cases automatically based on heuristics. Hence, it is independent of human bias and
able to identify test cases that may be missed in the manual process. We argue that
our approach should always be used as a supplement to the existing manual process
to highlight all test cases that should be tested from a combinatorial point of view,
in particular negative test cases that were proportionally more often overlooked than
positive test cases. The automatically generated set of test cases may then be manually
extended by test cases that require domain knowledge. At Ericsson, we observed that a
large amount of automatically generated test cases were irrelevant since they can only
occur theoretically. Hence, when utilizing our approach as a supplement to manual test
design, test designers need to filter the automatically generated test cases. However, we
argue that it is easier to discard infeasible test cases than to manually identify undetected
relevant test cases.

 2. Key Take-away:

Our approach is particularly useful for automatically identifying negative test
cases, which are often overlooked in the manual creation process. However, not all
test cases created by our approach are necessarily relevant, requiring subsequent
manual review of the automatically created test specifications.

Since CiRA decomposes each sentence using subword tokenization and labels each token
individually, it is much more robust against grammar errors and is also able to process
OOV words. Nevertheless, studies [330] reveal that language models such as BERT show
significant performance degradation with increasing amounts of noisy data. As a result,
we hypothesize that the robustness of CiRA against grammatical mistakes is limited to a
few errors in a sentence. We therefore propose to combine CiRA with requirements smell
checkers [331] in the future to automatically verify the linguistic quality of requirements
before passing them into the CiRA pipeline.
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 3. Key Take-away:

Fully automated acceptance test generation is difficult to achieve because require-
ments often suffer from poor quality. RE teams should therefore first check the
quality of the requirements before processing them with CiRA.

CiRA is limited to single sentence conditionals and is not able to extract conditional
statements that span multiple sentences. However, two-sentence conditionals may arise
in practice (e.g., indicated by “therefore”, “hence”), requiring us to extend CiRA in future
work (see Section 11.2). According to the test designers, a further challenge in the
extraction of conditionals relates to the handling of event chains (i.e., linked requirements,
in which the consequent of a conditional represents a antecedent in another conditional).
In such cases, it is no longer sufficient to create a single CEG. Rather, we must create
several Cause-Effect-Graphs and connect them to each other. Currently, CiRA only allows
the creation of acceptance tests for requirements that contain conditionals. For full
automation of test case design, however, we also require approaches capable of processing
static requirements and process flows.

 4. Key Take-away:

So far, the feasibility of CiRA is limited to conditionals that span a single sentence.
As a consequence, we still need to develop methods for the automatic generation
of test cases from static requirements and process flows.

Our case study focuses on a quantitative comparison between manually and automati-
cally created test cases. However, several other metrics are available to benchmark test
cases [332]. For example, structural criteria like test understandability investigate whether
a test is easy to understand in terms of its internal and external descriptions. We plan to
extend our study to obtain further insights into the quality of the test cases generated
by CiRA.

10.6 Threats to Validity

Internal Validity We acknowledge a possible threat to internal validity due to selection
bias of suitable requirements artifacts. In all cases, the artifact selection was driven by
the availability of data. Hence, requirements and test cases were not actively sampled
to improve the performance of our approach.

Construct Validity The comparison between the manually and automatically created
test cases might be subject to researcher bias. To mitigate this risk, the first and second
authors individually mapped the test cases. Subsequently, the mapping was cross-checked
and discussed within the research group. A further threat to internal validity is the
potential bias of the interviewed test designers. To keep this risk as low as possible, we
interviewed each test designer independently and compared the reasons for the deviating
test cases.
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External Validity To achieve reasonable generalizability, we selected requirements and
test cases from different domains. However, the limited sample size does not provide the
statistical basis to generalize the results of our study beyond the studied case companies.
Nevertheless, we hypothesize that our approach may also be valuable for other companies
considering that conditionals are widely used in requirements. Validation of this claim
requires further empirical investigation.

10.7 Summary

As shown in Chapter 9, the creation of acceptance tests is laborious and still requires
manual work due to missing tool support. In this chapter, we demonstrate how automated
conditional extraction from requirements can be used to automatically generate the
acceptance tests. Specifically, we translate the extracted conditionals by CiRA into a
CEG, from which we derive the minimal number of required test cases. We evaluate our
approach by conducting a case study with three companies. Our study demonstrates
that our approach is able to automatically create 71.8 % of the 578 manually created test
cases. Additionally, our approach identified 80 relevant test cases that were missed in
manual test design. The findings of our study prove that automated conditional extraction
can indeed contribute to the implementation of g Use Case 1 as described in Chapter 1.
However, we do not achieve full automation of acceptance test generation mainly due to
(1) incomplete requirements and (2) errors of our approach in interpreting conditionals
that contain three or more consequents. Hence, we suggest to use our approach as a
supplement to the existing manual creation process to make test designers aware of all
test cases that should be tested from a combinatorial point of view. We hypothesize that
this will help to significantly reduce the risk of missed negative test cases.
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Chapter 11

Conclusions, Limitations, and Outlook

This chapter concludes the dissertation and describes possible directions for further
research. Section 11.1 explains how we addressed the problem statement of this thesis and
summarizes our main contributions. In Section 11.2, we discuss limitations of our work.
In particular, we identify missing features of CiRA and indicate ways to implement them
in future studies. We also highlight additional use cases to which automated conditional
extraction may contribute.

11.1 Conclusions

This thesis is based on the problem statement “we need (1) a better understanding of
the notion of conditionals in requirements artifacts and (2) a comprehensive method and
tool support to extract conditionals in fine-grained form” (see Section 1.3). We claimed
that this thesis addresses both problems. In the following, we conclude that this claim is
supported by the knowledge-seeking and solution-seeking contributions provided in this
thesis. We map our contributions to the two main questions included in the title of this
thesis and explain why and how to extract conditionals from RE artifacts.

11.1.1 Why to Extract Conditionals From RE Artifacts?

Conditionals Are Prevalent in RE Artifacts Conditional statements (e.g., “If A and B
occur, then C evaluates to false”) represent an intuitive means to express conditions
and their consequences. In Part I, we presented two empirical studies that prove that
conditionals also occur in RE artifacts. Our analysis of 14,983 sentences emerging from
53 requirement documents revealed that conditionals are included in about 28 % of the
investigated sentences. Further, we studied 961 user stories describing the functionality
of two BIS being in production at Allianz Deutschland AG (insurance) and showed that
conditionals are as well prevalent in agile RE artifacts such as acceptance criteria. In fact,
we found that conditionals are used in about 49 % of the investigated user stories. Hence,
conditionals matter in Requirements Engineering, which motivates the necessity of an
effective and reliable approach for the automated extraction of conditional statements
from requirements.

Conditionals Contain Logical Knowledge About the Expected SystemBehavior Condi-
tionals in RE artifacts specify a system from three perspectives: (1) the inputs to be pro-
cessed by the system, (2) the expected system behavior once these inputs occur, and (3)
the outputs that the system shall produce. Specifically, conditional statements describe
the expected system behavior in terms of the interaction of certain antecedents and conse-
quents. Automatically extracting this embedded logical knowledge can help to automate
two RE tasks for which sufficient methods and tools are not yet available: “acceptance test
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creation” ( g Use Case 1 ) and “dependency detection between requirements” ( g Use Case 2 )
(see Section 1.2). We analyzed the form and complexity of conditionals in RE artifacts
and defined requirements for a suitable conditional extraction approach. The majority of
conditionals in requirements occur in marked form and contain one or more cue phrases
(e.g., “if ”, “then”) to indicate the dependency between certain events. The complexity of
conditionals is confined since they usually consist of a single antecedent and consequent
relationship. However, for an extraction approach to be applicable in practice, it needs to
comprehend also more complex relations containing at least two to three and at best an
arbitrary number of antecedents and consequents. Understanding conjunctions, disjunc-
tions, and negations is consequently imperative to fully capture the relationships between
antecedents and consequents. We also found that antecedents and consequents need to be
further decomposed into variable and condition to be suitable for our described use cases.
Considering the combinatorics of antecedents and consequents and splitting them into
variables and conditions is termed as fine-grained conditional extraction in our work.

Automated Conditional Extraction Facilitates Automated Acceptance Test Creation
In Part III, we empirically proved that automated conditional extraction can indeed
facilitate the realization of g Use Case 1 . We utilized CiRA to extract conditionals from
requirements in fine-grained form and map them to a CEG, from which the minimal set of
required test cases can be derived automatically. We demonstrated the feasibility of our
approach on real-world data provided by Allianz Deutschland AG (insurance), Ericsson
(telecommunication), and Leopold Kostal GmbH & Co. KG (automotive). Specifically, we
compared our approach to the manual test case design. We showed that our approach is
able to automatically generate 71.8 % of the 578 manually created test cases. In addition,
our approach identified 80 relevant test cases that were missed in manual test case design.
However, we also found that our approach does not substitute a test designer since
domain knowledge is often necessary to identify all required test cases. Moreover, our
study showed that a fully automated acceptance test generation is difficult to achieve as
result of poor quality of the requirements. RE teams should therefore conduct a quality
check of the requirements before processing them with our approach.

Conditionals Are a Source of Ambiguity When automatically extracting conditionals,
it is crucial to acknowledge that conditionals are interpreted ambiguously by RE practi-
tioners. We conducted a survey with 104 RE practitioners to understand how they logi-
cally interpret 12 different conditional clauses and found that practitioners disagree on
whether an antecedent is only sufficient or also necessary for the consequent. There is a
disagreement about the temporal occurrence of antecedent and consequent when differ-
ent cue phrases are used. Driven by this observation, we integrated two variants of condi-
tional extraction into our acceptance test creation approach (see Section 8.2). The first
variant interprets conditionals as logical implications, while the second variant interprets
them as equivalences and creates both positives and negative test cases. Users of our ap-
proach are then able to decide for themselves which variant corresponds to their logical
interpretation. The explicit offering of both variants to the user fosters the discussion
among project teams about the expected system behavior, by which misunderstandings
can be resolved at an early stage.
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 Conclusion:

Authors of requirements often use conditionals to specify the desired system be-
havior. Therefore, conditionals contain rich semantic information about potential
system inputs and expected system outputs. Automatically extracting condition-
als bears a high potential for Requirements Engineering as it contributes to an in-
creased automation of specific RE tasks. Our study with three industry partners
proved that automated conditional extraction can indeed help to automatically
extract acceptance tests. Further, besides assisting in automating RE tasks, au-
tomatic conditional extraction helps to identify and reduce misunderstandings in
project teams. Since conditionals are interpreted differently by RE practitioners,
teams must decide whether they consider antecedents to be only sufficient or also
necessary for the consequent. We argue that automatically extracting conditionals
from requirements and explicitly displaying corresponding positive and negative
test cases to users can help to foster the discussion among practitioners.

11.1.2 How to Extract Conditionals From RE Artifacts?

Automated Conditional Extraction Is a Two-Step Problem Automated conditional ex-
traction entails two distinct challenges: first, one needs to determine whether a require-
ment contains conditional statements. Only sentences containing conditionals are eligi-
ble for extraction, so sentences containing no conditional statements can be discarded.
Second – if they contain conditionals – these conditionals need to be properly under-
stood and extracted. In Part II, we introduced and compared different methods for the
detection and extraction of conditionals from NL requirements.

Rule-Based Approaches Are Not Suitable for Automated Conditional Detection In
Chapter 6, we compared the performance of rule-based, ML-based, and TL-based ap-
proaches in detecting conditionals in NL. We trained the approaches on 14,983 manually
annotated sentences and found that rule-based systems that classify conditionals relying
on the presence of certain cue phrases are not able distinguish between sentences that
contain conditionals and sentences that do not. The best performance was achieved by
syntactically enriched BERT embeddings combined with a softmax classifier (macro-F1

score of 82 %). What needs to be acknowledged, however, is that the application of TL
does not result in a large performance boost over conventional ML methods. In fact, our
trained Random Forest classifier achieved a macro-F1 score of 78 %. In summary, our
evaluation showed that the detection of conditionals should not be limited to certain cue
phrases. Rather, it requires consideration of the semantics of the whole sentence. BERT
is well suited for this purpose and shows a slightly better performance than shallow ML
models, which can be attributed to its ability to exploit the attention mechanism and
its deep language understanding.

Automated Conditional Extraction Requires Deep Language Understanding In Chap-
ter 7, we presented three approaches for the fine-grained extraction of conditionals from
NL requirements. Our first approach is based on Dependency Parsing and uses recursive
dependency matching to extract antecedents and consequents from a dependency tree.
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Our second approach builds on the idea that conditionals represent recursive structures
and uses a Recursive Neural Tensor Network to extract them in fine-grained form. Our
third approach defines conditional extraction as a sequence labeling problem and uses
different multi-class and multi-label classifiers to identify antecedents and consequents.
We evaluated our approaches on different gold standard data sets (e.g., Conditional Tree-
bank [6]) containing real-world requirements annotated in fine-grained form. Our evalu-
ation demonstrates that the Dependency Parsing-based approach often fails to extract
conditionals in case of grammatical errors in a NL sentence. Our RNTN-based approach
shows a better performance in handling grammatical errors, while facing challenges in un-
derstanding the semantics of words that were not part of its training vocabulary. These
problems render the approaches inapplicable in practice since (1) requirements regularly
suffer from poor quality and (2) it is not possible to create a training corpus that includes
a “full” vocabulary of all different domains. Our third approach addresses these issues and
is more robust against grammatical errors and unknown words due to the usage of sub-
word tokenization. In addition, it shows a significantly better performance in the detec-
tion of antecedents and consequents owing to the use of TL methods that have been pre-
trained on large data sets. In fact, we found that a sigmoid classifier built on RoBERTa
embeddings is best suited to extract conditionals in fine-grained form. It achieved a
macro-F1 score of 86 % when evaluated on a data set of 1,946 annotated conditionals.

CiRA - A Tool for the Automatic Extraction of Conditionals From RE Artifacts Based
on the results of our experiments, we integrated the best model for conditional detection
and the best model for conditional extraction into an end-to-end pipeline, called CiRA.
We encourage fellow researchers and practitioners to use CiRA to extract conditionals
from NL sentences in fine-grained form and utilize them for their individual use cases.
So far, CiRA offers support for the automatic generation of acceptance tests based on the
extracted conditionals and is publicly available at http://www.cira.bth.se/demo/. A
detailed description of the functionality of CiRA can be found in Chapter 8.

 Conclusion:

Automated extraction of conditionals is not a trivial task. Shallow rule-based sys-
tems are not suitable for extracting conditionals as they can be expressed in many
different forms that are difficult to cover with patterns. Our studies proved that
ML-based and TL-based approaches are better suited for determining condition-
als in NL sentences and extracting them in fine-gained form. However, simply
using ML and TL does not automatically lead to a solution of an NLP problem.
Rather, the choice of an adequate ML and TL model is dependent on the context
and the complexity of the problem that needs to be solved. This is particularly
evident in our comparison of ML and TL models for the detection of condition-
als. We did not observe a great deviation in performance between the best ML
model and our best TL model in solving this binary classification problem. The
benefits of Transfer Learning were most noticeable when dealing with the consid-
erably more complex problem of conditional extraction. Owing to pre-training on
large corpora, the TL models acquired a strong language understanding and are
therefore capable of reliably extracting conditionals in fine-grained form.
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Figure 11.1: Automated Extraction of Two-Sentence Conditionals.

11.2 Limitations & Outlook

This section discusses possible improvements of the presented work and illustrates direc-
tions for further research. To this end, we stimulate future work by means of motivating
examples and suggest a way how our ideas could be implemented.

AutomatedExtraction of Two-SentenceConditionals CiRA is limited to single-sentence
conditionals and is not able to extract conditional statements that span multiple sentences
(i.e., “A and B occur. Thus, C evaluates to false”). Our study presented in Chapter 4
revealed that two-sentence conditionals may arise in practice (e.g., indicated by cue
phrases such as “therefore”, “hence”), requiring us to enhance CiRA in future work.

Motivating Example So far, CiRA is not capable of processing sentences like “The user has
admin rights. Therefore, he/she is allowed to access folders that include confidential
information”. Specifically, our approach can only detect antecedents and consequents
contained in the same sentence. In the given example, the antecedent is contained
in the first sentence and the consequent in the consecutive sentence. Consequently,
we need to extract them as illustrated in Figure 11.1.

Implementation Proposal We hypothesize that our existing approach for the extraction
of conditionals can be extended to two-sentence conditionals with seemingly little
effort. In a first step, our created training corpus must be augmented with anno-
tated two-sentence conditionals. The annotation scheme presented in Section 7.3.2
can be reused for this purpose, since we also want to annotate the two-sentence
conditionals in fine-grained form. The annotation process may be more complex
than the labeling of single-sentence conditionals, since the tag sequence is most
likely longer and the antecedents and consequents are located in different sentences.
It is crucial that we augment the training corpus with two-sentence conditionals
that are expressed by different cue phrases. Otherwise, the extractor will operate
with a bias towards certain cue phrases and will not be able to handle two-sentence
conditionals in different forms. In a second step, we need to re-train our approach
on the expanded training corpus. In this context, the annotated two-sentence con-
ditionals need to be analyzed in order to adjust the maximum length of tokens per
sentence for the TL models. So far, we set the maximum length to 80 tokens (see
Section 7.3.3). This setting will most likely need to be updated with respect to the
newly added training instances.

Isolated vs. Joint CEG Modeling In Chapter 10, we demonstrated how CiRA can be
combined with Cause-Effect-Graphing to create acceptance tests automatically. So far,
our approach only allows the creation of acceptance tests for a single requirement. Test
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designers need to consider the relationships between requirements when creating a test
suite in order to determine, for example, whether related requirements can be covered by
joint test cases. The necessity of considering requirements as a coherent set, rather than
in isolation, becomes particularly apparent when an existing test suite has to be adapted
to evolving requirements. Let us assume new requirements have been implemented and
need to be tested. In case requirements are considered separately, individual tests are
created for each new requirement leading to a strong linear correlation between the
number of requirements and tests [318]. This raises a number of problems: First, the
number of test cases increases strictly with the addition of new requirements, which
causes an increasing testing effort. Second, redundancies emerge within the test suite, as
it is not checked whether existing test cases can already cover parts of new requirements
or only need to be adapted. As a result, it cannot be guaranteed that the test suite is
minimal. We argue that our presented approach contributes to the adaptation of test
cases to changing requirements if we change the way the CEG is created. Our core idea
is to examine the relationships between requirements during the test creation process
and build joint CEG models. In the following, we illustrate our vision by an example and
compare it with our current test generation process, which treats requirements separately.

Motivating Example Figure 11.2 describes three potential changes in a set of user stories:
adding new acceptance criteria to existing user stories (see ACC 1.2), changing
existing acceptance criteria in existing user stories (see ACC 2.2), and adding
completely new user stories (see US 3). Initially, US 1 contains one acceptance
criterion defining system behavior on the basis of two antecedents and consequents.
Translating ACC 1.1 into a single CEG (see I.) and deriving test cases from
it results in three test cases. As the project proceeds, the acceptance criterion
ACC 1.2 is added to US 1. Considering both acceptance criteria in isolation and
creating another individual CEG (see II.), two more test cases are added to the test
suite. When analyzing both acceptance criteria, it is striking that they describe the
same consequents c1 and c2 and are thus related to each other. Such dependencies
can exist not only within a single user story, but also across multiple user stories
as shown in US 2. ACC 2.2 is modified by inserting a new antecedent a5 that
incorporates the opposite of consequent c1 which is also described in ACC 1.1 and
ACC 1.2. A similar picture emerges for US 3 which has been newly created. It
contains references between its own acceptance criteria and to acceptance criteria
from other user stories. Creating individual Cause-Effect-Graphs (see I.-V.) for
each acceptance criteria and deriving test cases from them yields ∣T1∣ = 13. The test
suite is therefore constantly growing due to the isolated consideration of acceptance
criteria.

We argue that respecting dependencies between acceptance criteria when deriving
test cases ensures to keep the test suite minimal while the requirements coverage
remains the same. Therefore, rather than creating individual Cause-Effect-Graphs
and converting them into test cases, we propose to create a joint CEG for related
acceptance criteria. We hypothesize that this will allow to merge interrelated test
cases and thus to optimize the test suite. The joint CEG for all related acceptance
criteria of all user stories is shown in VI. Applying BPST to this CEG yields ∣T2∣ = 5.
This decrease of required test cases stems from the fact that several test cases from
T1 are merged because their antecedents and consequents overlap, e.g., t1, t4, t7,
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t9, and t13 from T1 are covered by t1 in T2. Furthermore, not all consequents have
to be checked because they are also indirectly covered, e.g., c1 and c4 are covered
by c5. Nonetheless, if the test case t1 from T2 fails due to a mismatch of a final
consequent like c5, the explicit antecedent (e.g., a mismatch of c1 from t1 in T1) is
still traceable by adding the columns of the remaining consequents to T2.

Consequently, T1 and T2 cover the same functionality, however, the CEG transfor-
mations lead to a significant minimization of the test cases without compromising
the fault detection capability.

Implementation Proposal In order to realize our outlined vision, a number of challenges
need to be overcome. We need to integrate antonym detection into the CiRA pipeline,
which can be illustrated by the following example. Two acceptance criteria are re-
lated to each other if they refer to the same entities (see ACC 1.1 and ACC 3.2).
Both deal with a certain state of the entity “process model”. While ACC 1.1 de-
fines the state of the “process model” as a consequent which is set to “faulty” respec-
tively “incorrect” when a1 and a2 occur, the negation of this state is used as an an-
tecedent in ACC 3.2. For human reading comprehension, it is obvious that “correct”
represents an antonym of “faulty”. Antonym detection, however, still represents a
challenge in NLP [333]. Nevertheless, it is essential for the automated detection of
related acceptance criteria and to ultimately build a joint CEG. In addition, we
need to detect and interpret co-references. In linguistics, the use of co-references is
very common to describe entities and their behavior. Co-references are expressions
that refer to the same entity. An example is ACC 2.1 and ACC 2.2, where “this
option” refers to the “option” introduced in ACC 2.1. Further examples are the use
of pronouns such as “it” to reference entities of similar gender. Co-reference reso-
lution is essential for the recognition of the dependencies between the acceptance
criteria and must therefore be integrated into the CiRA pipeline. In recent years,
antonym detection and co-reference resolution have attracted increasing research
attention. To date, the state of the art method for co-reference resolution is the
approach developed by Lee et al. [334], while Ono et al. [335] has developed the
most performant method for antonym detection. Both methods achieved impres-
sive performance gains compared to previous approaches and provide a good basis
for a prototypical implementation of our instrument.

Furthermore, future research needs to study how related Cause-Effect-Graphs can
be merged to realize our vision of joint Cause-Effect-Graphs. Specifically, we need
a method that identifies interrelated Cause-Effect-Graphs from a set of arbitrary
Cause-Effect-Graphs and transforms them using model-to-model-transformations.
In doing so, it is crucial that the combinatorics of antecedents and consequents de-
fined by the acceptance criteria are respected, as the test cases will otherwise check
for incorrect system functionality. We hypothesize that Cause-Effect-Graphs that
describe the same combination of entity and property (see I. and II. in Figure 11.2)
or the same entities but with a negated property (see I. and III.) can be combined.

User Feedback Analysis by Using Automated Conditional Extraction Project teams
must constantly adapt their software to the needs of their stakeholders in order to ensure
user acceptance. In this context, the analysis of user feedback plays a major role in
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enabling project teams to get an overview of features that are well received, features
that are still missing, and bugs that need to be addressed. There are already a number
of approaches that automatically analyze user feedback in tweets and app stores reviews.
So far, the focus has only been on classifying user feedback (e.g., does the review contain
a bug report or a fixed request). We argue that automatic conditional extraction can help
to analyze online feedback in a more fine-grained way. Future studies should therefore
use our approach to extract antecedents and consequents from user feedback.

Motivating Example In the case of bug reports, automated conditional extraction allows
to understand under which conditions certain bugs occur: “when I press button X,
the screen of the smartphone freezes and I can no longer use the app.” Development
teams can thus understand where to start when they want to fix the bug. Of course,
using conditional extraction does not replace clean debugging to identify all possible
conditions that are triggering the bug. However, the extraction of conditionals
offers a first clue. In the case of feature requests, conditional extraction can be
used to determine in which scenarios users expect new features or how existing
features need to be adapted to hitherto neglected conditions.

Implementation Proposal Our existing approach to automated extraction of conditionals
does not need to be adapted for this new use case. Rather, we propose to conduct a
preliminary analysis of the potential of conditional extraction for user feedback anal-
ysis. For this purpose, future work should apply CiRA to the data and annotations
of Maalej et al. [336] and Stanik et al. [337] containing about 6k English app reviews
and about 25k English and Italian tweets categorized as Problem Report, Feature
Request, or irrelevant. In a next step, we plan to present the extracted antecedents
and consequents to developers and discuss about their expectations of a suitable con-
ditional extraction for feedback analysis. In particular, we want to understand the
added value that automated conditional extraction can provide to their use cases.
Further, we want to determine which graphical representation is adequate to present
the extracted conditionals to the practitioners in an easily understandable form.
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