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Abstract

In science and engineering, many problems exhibit multiscale properties, making the
development of efficient algorithms to compute accurate solutions often challenging.
An example of a multiscale problem is given by the deformation of dual-phase steel, a
high-strength steel that contains hard inclusions of martensite in a soft matrix material
of ferrite.

We consider finite element discretizations of linear, second-order, elliptic partial differ-
ential equations with highly heterogeneous coefficient functions. The associated linear
systems of equations for fine meshes are large and ill conditioned; in particular, the condi-
tion number depends on the heterogeneity of the coefficient function. For the solution of
the systems, we employ the conjugate gradient method and additive overlapping Schwarz
domain decomposition preconditioners. To obtain a scalable method, it is generally
required to solve a coarse problem in each iteration to quickly transport information
across the domain.

In most cases, standard coarse spaces only perform satisfactorily for problems with
small variations in the coefficient function. Our goal is to construct coarse spaces such
that the condition number of the preconditioned system depends only on a user-prescribed
tolerance and on a constant that is independent of the coefficient function and of the fine
and coarse mesh resolution. We denote a coarse space that satisfies these properties as
adaptive and robust.

To achieve robustness, we construct energy-minimizing coarse spaces that take the
variations of the coefficient function into account. First, we partition the domain
decomposition interface into small components. Adaptivity is then achieved via coarse
functions that are based on solving local generalized eigenvalue problems on the interface
components. A user-prescribed tolerance is used to select the most effective eigenfunctions,
which are subsequently extended energy-minimally to the interior of the subdomains to
construct coarse functions.

With a growing number of subdomains, the coarse problem increases in size as well. It

is thus important to keep its size as small as possible. To this end, we present techniques



for reducing the dimension of coarse spaces. The first technique—the incorporation of
an energy-minimizing extension into the generalized eigenvalue problems—is inherent to
all adaptive coarse spaces presented in this thesis. Second, we propose specific interface
partitions with a reduced number of interface components that help to incorporate more
information about the heterogeneity of the problem into the coarse functions. Third, we
enforce additional Dirichlet boundary conditions in the energy-minimizing extensions of
the generalized eigenvalue problems to further reduce the coarse space dimension. Each
technique increases the complexity to describe and implement the algorithm. Therefore,
the optimal combination of techniques depends not only on the specific heterogeneous
problem but also on practical restrictions.

We complement the dimension-reduction techniques by presenting modifications that
can reduce the computational cost and facilitate a parallel implementation. For all
adaptive coarse spaces and variants, we prove condition number bounds that only depend
on a user-prescribed tolerance and on a constant that is independent of the typical mesh
parameters and of the coefficient function. We provide supporting numerical results for

diffusion and linear elasticity problems.
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Kurzfassung

In der Wissenschaft und den Ingenieurwissenschaften gibt es vielfdltige Multiskalenprob-
leme, was die Entwicklung effizienter Algorithmen zur Bestimmung préziser Losungen
erschwert. Ein Beispiel dafiir ist durch die Verformung von Dualphasenstahl gegeben,
einem hochfesten Stahl, welcher harte Martensiteinschliisse in einer weichen, ferritischen
Matrix enthalt.

Wir untersuchen in dieser Arbeit Finite-Elemente-Diskretisierungen von linearen,
elliptischen partiellen Differentialgleichungen zweiter Ordnung mit stark heterogenen
Koeflizientenfunktionen. Die zugehorigen linearen Gleichungssysteme von feinen Gittern
sind grof§ und schlecht konditioniert; insbesondere héngt die Konditionszahl von der
Heterogenitat der Koeffizientenfunktion ab. Zur Loésung der linearen Gleichungssys-
teme verwenden wir das konjugierte Gradientenverfahren und additive iiberlappende
Schwarz-Gebietszerlegungsverfahren als Vorkonditionierer. Um eine skalierbare Methode
zu erhalten, ist es im Allgemeinen notwendig, in jedem Schritt der Iteration ein Grobgit-
terproblem zu l6sen, welches fiir den schnellen Informationstransport {iber das Gebiet
hinweg sorgt.

In der Regel sind Standard-Grobgitterrdume nur fiir Probleme mit geringer Variation
in der Koeffizientenfunktion gut geeignet. Unser Ziel ist die Konstruktion von Grobgit-
terrdumen, sodass die Konditionszahl des vorkonditionierten Systems nur von einer
benutzerdefinierten Toleranz abhéngt sowie von einer Konstanten, welche unabhéngig
von der Koeffizientenfunktion und von der Auflésung des feinen und groben Gitters ist.
Wir nennen einen Grobgitterraum, der diese Bedingungen erfiillt, adaptiv und robust.

Um Robustheit zu erreichen, konstruieren wir energieminimierende Grobgitterrdume,
welche die Variation der Koeffizientenfunktion beriicksichtigen. Zunéchst partitionieren
wir das Interface der Gebietszerlegung in kleine Komponenten. Adaptivitiat beziiglich der
Koeffizientenfunktion wird {iber Grobgitterfunktionen erreicht, welche auf der Losung
lokaler verallgemeinerter Eigenwertprobleme auf den Interfacekomponenten basieren.
Eine benutzerdefinierte Toleranz dient zur Auswahl der niitzlichsten Eigenfunktionen,

welche anschlielend energieminimierend in das Innere der Teilgebiete zur Konstruktion
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von Grobgitterfunktionen fortgesetzt werden.

Mit einer wachsenden Anzahl an Teilgebieten wéchst auch die Dimension des Grobgit-
terproblems, weshalb es wichtig ist, diese Dimension moglichst klein zu halten. Zu diesem
Zweck stellen wir in dieser Arbeit Techniken zur Reduktion der Dimension von adaptiven
Grobgitterrdumen vor. Der erste Ansatz — die Integrierung einer energieminimierenden
Fortsetzung in das verallgemeinerte Eigenwertproblem — liegt allen adaptiven Grobgitter-
rdumen zugrunde, die in der vorliegenden Arbeit vorgestellt werden. Als Zweites schlagen
wir die Nutzung spezieller Interfacepartitionierungen mit einer reduzierten Anzahl an
Interfacekomponenten vor, welche es erméglichen, mehr Informationen iiber die Hetero-
genitédt des Problems in die Grobgitterfunktionen zu integrieren. Zuletzt zeigen wir die
Moéglichkeit auf, zusétzliche Dirichletrandbedingungen bei der Berechnung energiemi-
nimierender Fortsetzungen der verallgemeinerten Eigenwertprobleme zu erzwingen, um
eine weitere Reduktion der Grobgitterraumdimension zu erreichen. Jeder Ansatz ist mit
einer wachsenden Komplexitit der Beschreibung und Implementierung des Algorithmus
verbunden. Die Auswahl einer optimalen Kombination der verschiedenen Ansétze ist
daher nicht nur vom spezifischen heterogenen Problem abhéngig, sondern auch von
praktischen Einschrénkungen.

Wir komplementieren die Ansétze zur Dimensionsreduktion mit einigen Varianten,
welche unter anderem den Rechenaufwand verringern oder eine parallele Implementierung
erleichtern. Wir beweisen fiir alle adaptiven Grobgitterriume und deren Varianten
Schranken fiir die Konditionszahl des vorkonditionierten Systems. Die Schranken hén-
gen lediglich von einer benutzerdefinierten Toleranz ab sowie von einer Konstanten,
welche unabhéngig von den typischen Gitterparametern und der Koeffizientenfunktion
ist. Schlussendlich zeigen wir zu einigen Modellproblemen der Diffusion und linearen

Elastizitdt numerische Ergebnisse.
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Notation and Coarse Space Acronyms

Basic Notation

Q/h
d
d
h(€2)

zh

FE

00 /00N
ViQ)
()
Vitaa,, ()
hr

7|

N

{Q}Y,
{3,
{4,

considered domain Q C R / finite element nodes of O

space dimension of €2

scalar diffusion problem: d= 1; linear elasticity problem: d=d
triangulation: triangles/rectangles/tetrahedra/cuboids

finite element node

coeflicient function; Young’s modulus in the case of linear elasticity
subset of 0 associated with a Dirichlet/Neumann condition
finite element space on € (piecewise linear, bilinear, or trilinear)
pointwise interpolation operator of V()

space of functions in V"(Q) that vanish on 9Qp

finite element diameter: hy = diam(7)

|T| :== measure(T) := [, 1dz

number of subdomains

nonoverlapping subdomains

overlapping subdomains of the overlapping Schwarz method
overlapping subdomains; overlap of one layer of finite elements;

used during the proof of a condition number bound
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Norms and Seminorms

Let u € (Hl(Q))dA.

A:B
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[ull e ()
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|| g1 ()

A:B:= tr(ATB) = tr(ABT) = 2‘2:1 Z;lzl AijBij, A, Be€ RdAXd
[Allz2) = lA: All2), A: Re — Rdxd

H“”IEP(Q) = follu@)||dz, 1<p<oo

ull oo (@) = inf{s > 0: flu(z)|i~= < s ae.}

i) = IVulfey, (Vu),,; = gg;j , Vu € RIxd

||U”§{1(Q) = |“’%{1(Q) + HUH%Q(Q)

|ulq = \/a(u,u), o symmetric, positive semidefinite bilinear form
lullg == +/B(u,u), B: symmetric, positive definite bilinear form
[ulopy = \/aB (u,u); see (6.30)
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Interface and its Decomposition
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Nee,p
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Sw

set of indices of subdomains €2, such that w N Qg # 0

domain decomposition interface; see (1.11)
finite element nodes of T'; T = { 2" € Q\ 0Qp : |n(z")] > 1}

wire basket; W = {z" € T : |n(2")| > 3}

partition of the domain decomposition interface

interface/coarse component (set of finite element nodes), £ € P

Py)={eP:ENQ; A0} see (6.34)
nodal equivalence class; see section 5.1
subcomponents/NECs of a £ € P; see (5.2) and (5.3)
NECs of the interface

Neep = Ugep Ne; see (5.4)
set of coarse nodes/edges/faces; see section 5.3
set of (coarse) interface stars; see section 5.4
set of (coarse) wire basket stars; see section 5.5
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space of functions that map from w C R? to ]Rd; see (6.5)
union of the closure of subdomains adjacent to & € P; see (6.4)
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N, = max . q|{i€{l,....,N}:a" € Q; Hi see section 1.3
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NEWle = ma <ien Secp(o, 12cs see (6.36)
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tole tolerance for the selection of eigenvectors/eigenfunctions
tolp tolp = mingep tole
Meu spectral projection;
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Acronyms of Methods

Nonadaptive Methods

CG
OSL1
GDSW
RGDSW

conjugate gradient method without a preconditioner

one-level additive overlapping Schwarz method; see section 1.3
generalized Dryja—Smith—Widlund; see section 1.4
reduced-dimension GDSW; see section 4.1

Adaptive Coarse Spaces

AGDSW

RAGDSW

R-WB-AGDSW

OS-ACMS

R-WB-0S-ACMS

SHEM

EMR~-VB

EMR-WB

GenEO

adaptive GDSW; see chapter 3
interface partition: coarse nodes, edges, faces (section 5.3)
reduced-dimension AGDSW; see chapter 4
interface partition: interface stars (section 5.4)

reduced-dimension AGDSW; see chapter 4
interface partition: wire basket stars (section 5.5), coarse faces
ACMS-type coarse space; see section 7.2
approximate component mode synthesis (ACMS)

interface partition: coarse nodes, edges, faces

MsFEM-type functions associated with coarse nodes
reduced-dimension OS-ACMS; see section 7.3
interface partition: wire basket stars (section 5.5), coarse faces
spectral harmonically enriched multiscale coarse space; see [GLR15]
interface partition (2D): coarse nodes, edges

vertex-based coarse space; see [EMR19]
interface partition: coarse nodes, edges, faces

wire basket coarse space; see [EMR19]
interface partition: wire basket, coarse faces

generalized eigenproblems in the overlaps; see [SDH+14a]
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Coarse Space Variants

The following table lists modifiers used to describe variants. We abbreviate generalized

eigenvalue problem with GEVP, left-hand side with LHS, and right-hand side with RHS.

modifier example

comment

S RAGDSW-S

sections 3.3.3 and 7.2.6

sum of local Schur complements on LHS of GEVP

()  AGDSW-S(3)

section 3.3.2

slab of [ layers of finite elements on LHS of GEVP

K OS-ACMS-K

chapter 3 and section 4.2
stiffness matrix on RHS of GEVP

M AGDSW-M

section 3.3.4
mass matrix on RHS of GEVP

AGDSW-£(M)

0()
AGDSW—{(K)

sections 3.3.1 and 3.3.4

lumped mass or stiffness matrix on RHS of GEVP

Owing to historical reasons, the adaptive GDSW-type coarse spaces use a stiffness matrix

on the right-hand side of the generalized eigenvalue problem if not indicated otherwise. For

example, AGDSW refers to AGDSW-K and RAGDSW-S to RAGDSW-S-K. Similarly,

ACMS-type coarse spaces use a mass matrix on the right-hand side if not indicated

otherwise.



1. Introduction

In science and engineering, many problems exhibit multiscale properties for which it is
often challenging to compute accurate solutions efficiently. Examples of this are given by
the deformation of dual-phase steels—high-strength steels that contain hard inclusions of
martensite in a soft matrix material of ferrite [TDY+15]—or by plate tectonics—where
the convection of tectonic plates is subjected to large variations in the viscosity at plate
boundaries [SGB+10]—or by pneumatic tires, which are composites of a fiber-reinforced
rubber that is further reinforced with a steel cord for improved durability and stability

[Nak19].

Partial differential equations are ubiquitous in science and engineering and can be
used to model a great number of processes. The problems dealt with in this work are
linear, second order, and elliptic, for example, the diffusion equation or the equations
of linear elasticity. In general, these types of equations cannot be solved analytically
(cf. [Eval0]), and we resort to the finite element method for the computation of an

approximate solution [Cia02; BS08; LB13].

Often, problems stemming from real-world applications require a mesh to be highly
resolved, which results in large and sparse linear systems. An alternative to direct solvers
for large and sparse systems are iterative solvers, such as Krylov subspace methods
with suitable preconditioners; see, e.g., [Saa03]. The problems considered in this work
give rise to symmetric, positive definite system matrices, which allows us to use the
preconditioned conjugate gradient method as an iterative solver; cf. [Saa03, sect. 6.7]. A
highly resolved finite element mesh results in ill-conditioned system matrices and, thus,

the conjugate gradient method is likely to converge slowly. A remedy is, for example,



1. Introduction

provided by standard domain decomposition and multigrid methods; see, e.g., [Hac85;
TOS00; TWO05; XZ17]. For this work, we focus on using additive overlapping Schwarz
domain decomposition methods; cf. [SBG96; TWO05] and section 1.3 of this thesis.

A key concept is numerical scalability: for a fixed size but an increasing number of
subdomains, the number of iterations required for convergence should stay asymptotically
constant. Numerical scalability is required to obtain parallel scalability, that is, not
only the number of iterations should stay asymptotically constant but also the time to
solution. To achieve this, the number of processing units has to scale with the number of

subdomains.

Domain decomposition methods, such as the overlapping Schwarz method, generally
require the solution of a coarse problem (also called the second level) to obtain scalability;
see, e.g., [SBG96; TWO05]. With an increasing number of subdomains, the dimension of
the associated coarse space increases as well, which in turn increases the time to solve
the coarse problem. It is thus of interest to keep the size of the coarse problem as small

as possible.

We consider finite element discretizations of problems with highly heterogeneous
coefficient functions, which generally lead to large and ill-conditioned linear systems. The
condition number of a system does not only depend on the resolution of the discretization
but also on the heterogeneity of the underlying problem. In this work, we present

algorithms that can be used to efficiently solve a class of highly heterogeneous problems.

A variety of approaches tailored to specific problems exist that fundamentally differ
from the ones presented in this work. For example, large drops in a continuous coefficient
function, originating from the discretization with a finite element mesh, may be resolved
by an adaptive mesh refinement; see, e.g., [SGB+10]. For the simulation of dual-
phase steel, homogenization methods can be used; see, e.g., [BO83; HW97; HWC99;
KBBO01; EE03; BBO04; EEL+07; EH09; HL10; Sch14; EF18; KLU+20; Ura20]. For
heterogeneous elliptic problems, standard domain decomposition methods are efficient
solvers if subdomain boundaries are aligned with the boundaries of patches on which the

coefficient function is constant; cf. [DSW96; SBG96; TW05; GLS07; DKW08a; DKWO08b].



The aforementioned examples make substantial assumptions that are generally not
satisfied in practice. Contrary, the algorithms discussed in this work require only minor
assumptions on the coefficient function. This versatility, however, comes at an additional
computational cost in the setup phase and also—because of a larger coarse space—during
the iteration.

In this thesis, we present coarse spaces that take the underlying heterogeneities into
account to obtain a preconditioned system whose condition number can be controlled by
the user; these types of coarse spaces are denoted adaptive and robust. Specifically, we

will prove condition number bounds of the type
1
M'K)<C (1 ) ,
@( ) - + tol

where K is the stiffness matrix, M ! the preconditioner, tol a user-prescribed tolerance,
and C a constant that is independent of the contrast of the coefficient function and of
the typical mesh parameters H (coarse mesh resolution) and h (fine mesh resolution).
Furthermore, we will present approaches to reduce the coarse space dimension, the setup
cost of a coarse space, and approaches that improve parallel performance.

A substantial number of works have addressed the construction of adaptive coarse
spaces for the overlapping Schwarz method. Thereof, many rely on solutions of local
generalized eigenvalues problems [GE10b; GE10a; SVZ11; EGLW12; DNSS12; SDH+14a;
GLR15; GL17; HKKR18b; HKKR18a; EMR19; HKKR19; HKK+22]. While the core
concept is the same for all these coarse spaces, the approaches differ in important aspects,
such as the class of admissible partial differential equations, the resulting coarse space
dimension, the computational efficiency—which includes parallelizability and the cost
for the setup and solution of the local generalized eigenvalue problems—and also the
complexity of a parallel implementation.

Nonoverlapping domain decomposition methods are another branch of successful
methods for which extensive work has been invested to construct adaptive coarse spaces;
see, e.g., [BKKO1; MS07; MSS12; SR13; PD13; KKR16; KRR16; CW16; Zam16; PD17;
KCW17; BPS+17; Kith18; KKR18b; MR18; HKLW20; YDS21].

Nonadaptive coarse spaces that do not incorporate the heterogeneity of the underlying
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problem may result in slow convergence. A natural choice for coarse basis functions,
which are based on the solution of local problems, are multiscale finite element (MsFEM)
functions [HW97; HWC99; EH09]; see, for example, [AH02; GLS07; GS07; Bucl3; BIA13;
BIA14; GLR15; GL17; BIA18; HKKR18b; EMR19; HL20b]. However, a coarse space
based only on MsFEM functions is not robust for arbitrary coefficient functions. To
achieve robustness, we must enrich the coarse space with additional functions whose

number is a priori unknown and depends on the coefficient function.

Many coarse spaces for heterogeneous problems—for both nonoverlapping and over-
lapping domain decomposition methods—utilize local generalized eigenvalue problems
to adaptively construct coarse functions. In [GE10b; GE10a], Galvis and Efendiev
define generalized eigenvalue problems on unions of subdomains that have a subdomain
vertex in common, which requires the solution of large eigenvalue problems. To remove
coarse functions associated with isolated inclusions of large coefficients in the interior of
subdomains, the authors propose a heuristic approach. In [EGLW12], the work of Galvis
and Efendiev was generalized to abstract, symmetric positive definite operators; see also

[SVZ11].

In [DNSS12; NXDS11; NXD10], Dolean et al. introduce the Dirichlet-to-Neumann
coarse space for diffusion problems. It uses smaller generalized eigenvalue problems than
in [GE10b; GE10a]; specifically, the domain decomposition interface of each subdomain
is associated with a generalized eigenvalue problem. To prove robustness, the authors
restrict the class of admissible coefficient functions by assuming a quasi-monotonicity
condition on the overlap of the overlapping domain decomposition. However, as the

authors mention, this restriction does not appear to be required in practice.

In [SDH+14a; SDH+11], Spillane et al. present the GenEO (generalized eigenproblems
in the overlaps) coarse space that defines generalized eigenvalue problems on the overlap
of the overlapping domain decomposition; see also [DJN15; BDR+20; JRZ21]. The
robustness of the coarse space is proven for arbitrary variations of the coefficient function.
In contrast to the Dirichlet-to-Neumann coarse space, however, the eigenvalue problems

are larger. Furthermore, and similarly to the Dirichlet-to-Neumann coarse space, finite

10



element nodes can be associated with multiple eigenvalue problems (cf. table 8.9), which

can result in larger-than-necessary coarse space dimensions.

For the spectral, harmonically enriched, multiscale (SHEM) coarse space [GLR15;
GL17], Gander, Loneland, and Rahman define generalized eigenvalue problems on a
partition of the interface. As a result, each finite element node of the interface is
associated with only one eigenvalue problem. The authors consider two-dimensional
diffusion problems and partition the interface into subdomain vertices and edges, where
the vertices are associated with MsFEM-type functions. On subdomain edges, generalized
eigenvalue problems—which are much smaller than those of the Dirichlet-to-Neumann
or GenEO coarse spaces—are used to construct coarse functions. A three-dimensional
analogue of SHEM was presented by Eikeland, Marcinkowski, and Rahman in [EMR19],
where additional eigenvalue problems on subdomain faces are solved. Let us remark
that using large eigenvalue problems—as used by the Dirichlet-to-Neumann and GenEO

coarse spaces—can also be advantageous, as it may reduce the coarse space dimension.

An approach similar to SHEM—that is based on an interface partition into subdomain
vertices and edges (in two dimensions), and which was inspired by the ACMS (approxi-
mate component mode synthesis) discretization method [HL10]—was first presented in
[HKKR18b] and later used in [HKKR18a; HKKR19; HKK+22; HKKR] as well. In this
approach, energy-minimizing extensions are incorporated into the generalized eigenvalue

problems to reduce the coarse space dimension.

Based on the insight that the use of larger eigenvalue problems can lead to a reduction
in the coarse space dimension, the coarse space AGDSW (adaptive generalized Dryja—
Smith—-Widlund) from [HKKR19] was modified in [HKK+22] to allow for more general
partitions of the interface. All adaptive coarse spaces presented in this work make use
of local Neumann stiffness matrices and are, thus, denoted as nonalgebraic; algebraic

methods rely only on the fully assembled stiffness matrix.

Let us remark that we do not attempt to give an in-depth comparison of different
adaptive coarse spaces, neither of the coarse spaces constructed in this work nor of the ones

developed by other authors. Many aspects that are relevant for a thorough comparison

11
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have not been scrutinized and are out of the scope of this thesis. Nevertheless, we include
results for a selection of coarse spaces from other authors, namely the coarse spaces
GenEO [SDH+14a; SDH+14b], SHEM [GLR15], and the wire basket (here denoted by
EMR-WB) and vertex-based (here denoted by EMR-VB) coarse spaces from [EMR19].

QOutline: 1In the following sections of this chapter, we first give a motivational example
that justifies the development of adaptive coarse spaces. Subsequently, we introduce
the additive overlapping Schwarz method and the (nonadaptive) classical coarse space
GDSW (generalized Dryja—Smith-Widlund). To gain an understanding of some important
characteristics of coefficient functions and their influence on the convergence speed, we
examine numerical results for a selection of coefficient functions in two dimensions.

In chapter 2, we introduce four model problems that will be repeatedly used throughout
this work to examine, compare, and confirm the robustness of the constructed coarse
spaces.

In chapter 3, a matrix formulation for the construction of the AGDSW coarse space
and of four variants is presented. Furthermore, a sample MATLAB code is given for a
simple two-dimensional diffusion problem. The chapter is concluded by showing numerical
results for three-dimensional diffusion problems.

In chapter 4, a modification of the AGDSW coarse space that allows the use of general
types of interface decompositions is given in a matrix formulation; two examples of
interface decompositions are defined, resulting in the coarse spaces denoted as RAGDSW
and R-WB-AGDSW. We conclude the chapter by giving remarks for an implementation
and by providing numerical results.

In the previous chapters, we have relied on a simplified description and understanding
of interface decompositions. However, for unstructured domain decompositions, interface
decompositions can be highly complex. In chapter 5, we give a technical definition of
several types of interface decompositions. We conclude the chapter by showing various

statistics for the interface decompositions of the problems in chapter 2.

In chapter 6, we state variational formulations associated with the matrix formulations

12



in chapters 3 and 4, and we prove a condition number bound of the type

1
re(M™'K) < C (1 + tol) ,
where K is the stiffness matrix, M ! the preconditioner for the AGDSW or RAGDSW
coarse space, tol a user-prescribed tolerance, and C a constant that is independent of the
contrast of the coefficient function and of the typical mesh parameters H and h. The
chapter is concluded by giving practical considerations related to the condition number:
We examine the constants of the condition number bound for various coarse spaces
and the domain decompositions of chapter 2. Furthermore, we show how the condition

number depends on the fine mesh resolution and on the size of interface components.

In chapter 7, the two coarse spaces OS-ACMS and R-WB-OS-ACMS are introduced,
which enforce additional Dirichlet boundary conditions in the generalized eigenvalue
problems to achieve a reduction in the coarse space dimension. Numerical results are
provided for three-dimensional diffusion problems. Furthermore, we prove a condition
number bound for OS—ACMS; the proof for R-WB-OS-ACMS is analogous and provided
in appendix A.3. Subsequently, a generalization that encompasses all adaptive coarse

spaces in this thesis is given.

In chapter 8, we show numerical results for linear elasticity problems and the meshes,
domain decompositions, and coefficient functions defined in chapter 2. Let us note that all
numerical results in this thesis are based on a serial implementation using MATLAB 2019a.
For comparison, we include some results for the coarse space GenEO from [SDH+14a]

and discuss some major differences between GenEO and our coarse spaces in section 8.3.

In chapter 9, we discuss several ideas for reducing the computational cost, which
includes the heuristic construction of coarse functions. We conclude this thesis with a

summary and ideas for future work in chapter 10.

We remark that, for the convenience of the reader, a notation chapter, which contains
an overview of the coarse spaces in this thesis including their acronyms, can be found

before the introduction.

13



1. Introduction

Figure 1.1.: (Left) Coefficient function with hard inclusions of £ = 10000 (in red)
embedded in a soft material of £ =1 (in blue), displayed on the deformed
domain for a linear elasticity problem. (Right) Surface visualization of the

left figure.

1.1. Motivation

We consider a linear elasticity problem on the unit cube with the body clamped on the
left, the body force f = (1.5, 0, 0), and no traction on the remaining boundary. Young’s
modulus is given by the function in fig. 1.1 (left) and Poisson’s ratio v by 0.4. The domain
is discretized with 203 trilinear finite elements and subdivided into 4% subdomains. The

corresponding solution is displayed in fig. 1.1.

We employ different algorithms, which will be discussed in this work, to precondition
the conjugate gradient method. During the iteration, a condition number estimate can
be obtained with the Lanczos method [Saa03, sect. 6.7.3]. We begin by only using the
first level of the additive overlapping Schwarz preconditioner (cf. section 1.3), which
is generally a nonscalable domain decomposition method: for an increasing number of
subdomains, the number of iterations generally increases as well. An overlap of one layer

of finite elements is used.

Even though the model problem is very small, the algorithm requires 3504 iterations

14



1.2. Preliminaries

to reduce the relative, unpreconditioned residual by a factor of 108; the condition number
estimate for the preconditioned operator is given by 1854 519.1.

Next, we add a second level, i.e., a coarse level to the one-level preconditioner. Here,
we use the nonadaptive but scalable GDSW (cf. section 1.4) coarse space. We obtain a
condition number estimate of 12 163.9 and require 803 iterations to satisfy the convergence
criterion. Although this is already a significant improvement over the first level of the
preconditioner, it shows the requirement for adaptive coarse spaces.

As we will learn in chapter 3, the GDSW coarse space is in fact the corner stone
of the adaptive GDSW method. For this reason, its capabilities in preconditioning
heterogeneous problems are fairly good, given that it is a nonadaptive coarse space; see
also [DKWO08b, table 5.3; Heil6, chapt. 5].

Finally, we use the AGDSW-S coarse space (cf. section 3.3.3) for the coarse level. The
tolerance for the selection of eigenfunctions is set to 0.05. We obtain a condition number
estimate of 117.0 and require only 104 iterations to meet the convergence criterion. Let
us note that the dimensions of the GDSW and AGDSW-S coarse spaces are almost the
same with 1485 for the former and 1515 for the latter.

The considered problem is still very small and, as a result, fairly easy to solve. We will
introduce much larger and harder problems in chapter 2 for which all tested nonadaptive

coarse spaces require more than 2 000 iterations to converge.

1.2. Preliminaries

Let Q@ ¢ R%, d = 2,3, be a bounded domain with a Lipschitz boundary, which is
decomposed into two disjoint subsets 9€2p and 9€)y, which are associated with a Dirichlet

and a Neumann boundary condition, respectively:
OQpUIN =00, IQp NIy = 0.

To guarantee the existence of unique solutions to the variational problems given below,

we assume that 9Qp has a positive surface measure. Let a coefficient function E € C*(Q)
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1. Introduction

be given that satisfies

0 < Epin < E(CC) < Enax.

In the following, we consider two elliptic partial differential equations. First, we consider

the scalar stationary diffusion problem: Let f € C%(Q). Then find u € C*(Q) such that

—div (E(z)Vu(z)) = f(z) Yz eQ,

u(z) =0 Vz € 08p, (1.1)
ou
—(x) = Q
an () =0 Vo € 00y,

where n(z) is the outer unit normal of 0.

Second, we consider the displacement u € (C2 (ﬁ))d of an elastic, compressible body,
deformed by a body force f € (CO(Q))d, constrained by a displacement and traction
boundary condition. The governing equations of isotropic, linearized elasticity with the

respective boundary conditions read

—div (o(u(z))) = f(z) VzeqQ,
u(z) =0 Vx € 00p, (1.2)
o(u(z)) -n(z) =0 Vo € 00y,

where the linear approximation of the stress tensor is given by Hooke’s law as ([Bra07,

eq. (1.29)], [Cia88, p. 286])
o(u) =2pe(u) + Atr(e(u))I;
the symmetric, linearized strain tensor (u) is defined as
e(u) =2 (Vu + (Vu)T) :

The functions 0 < \(z), u(z) € C1(Q2) are called Lamé parameters.

For the weak formulation of (1.1), we relax the regularity requirements and assume

E, f € L*(Q). We obtain: find u € H&aQD(Q) ={we H Q) : w|spn, =0} such that

aq(u,v) = L(v) Wove H&,aﬂD(Q)» (1.3)
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1.2. Preliminaries

where
ag(u,v) = / E(z) Vu(x) - Vu(z)dz, L(v):= / f(x)v(x)de. (1.4)
Q Q
By the lemma of Lax—Milgram (cf. [Cia02, theorem 1.1.3], lemma A.1), there exists a
unique solution.
For the weak formulation of (1.2), we assume E € L?(Q) and f € (LQ(Q))d. We define

the bilinear form and linear functional

ag(u,v) = /QZu(x)(e(u(fL‘)) :e(v(:n))) d:c—|—/QA(w)(div(u(x))div(v(:n))) dz, (1.5)
L) = | f@)-v(a)da,

and obtain the weak formulation (cf. [Cia88, theorem 6.3-1]): find u € (Hg 5q, (Q))d such
that
d
ag(u,v) = L(v) Vv € (H&{,QD(Q)) . (1.6)

The well-posedness can once again be proven by verifying the assumptions of the lemma
of Lax—Milgram; see, e.g., [Cia88, theorem 6.3-5]. Instead of A\(x) and u(x), we will use
the Poisson ratio 0 < v < 3 and the Young modulus E(z). The following relations hold
(cf. [Cia88, p. 128], [Bra07, eq. (1.31)]):

E(x)v
1+v)(1-2v)

E(x)

Az) = 2(1+ 1)

px) =

We assume that v is positive and significantly smaller than 1/2 to model a compressible,
elastic body.

For the remainder of this thesis, let d be the dimension of the codomain of the
solution u; that is, d = d for linear elasticity and d =1 for the scalar diffusion problem.
The assumptions on €2 are changed for the discrete problem: We assume that Q is—in
two dimensions—the closure of the union of disjoint triangles or rectangles and—in
three dimensions—of disjoint tetrahedra or cuboids. Furthermore, we assume that (2
is a bounded domain, i.e., a bounded, open, and connected set. The triangulation is
denoted by 75,(€2); the same notation is used for other sets that are unions of finite
elements, e.g., 7,(£2;) for the triangulation of a subdomain ;. We set hp := diam(7T)

and h := minge,, (o) hr. We assume that 7,,(€2) is shape-regular; i.e., the diameter of an
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1. Introduction

element over the largest inscribed ball is bounded from above by a constant (for hy — 0);
cf. [TWO05, definition B.2; QV08, definition 3.4.1]. For the sake of simplicity, we assume
that A < 1, which can be achieved by using a suitable coordinate system.

Above, we have assumed that a zero Dirichlet condition is prescribed on 9Q2p C 92 and
that 9Q2p has a positive surface measure. For the discretized problem, we further assume
that there are enough finite element nodes on 9€1p such that the discretized problem has
a unique solution. In the case of two-dimensional linear elasticity, for example, if only a
single node lies on 0{2p, the null space is given by the span of the rotation mode around
the node.

Let V*(Q) c (H 1(9))‘2 denote the conforming finite element space with continuous,
piecewise linear, bilinear, or trilinear vector-valued functions. The space that satisfies
the zero Dirichlet boundary condition at the finite element nodes of 9{2p is denoted by
Vitoa, ()

In this work, we consider a highly heterogeneous coefficient function E. For the discrete
problem, we relax the assumptions on E and, for simplicity, assume that it is piecewise
constant and—as mentioned above—positive.

Let the discretization of aq(+, ) be given by the stiffness matrix K and the discretization
of L(+) by the load vector b. For the following, we assume that the zero Dirichlet boundary
condition has been incorporated into K by setting those rows and columns of K to unit

vectors that correspond to a Dirichlet boundary node. The resulting linear system
Ku=1%

with the symmetric, positive definite stiffness matrix K is solved using the conjugate

gradient method, preconditioned with a two-level additive overlapping Schwarz method.

Remark 1.1. We did not assume 2 to have a Lipschitz boundary in the discrete case.
As the bilinear forms defined by (1.4) and (1.5) are symmetric and positive semidefinite
on the corresponding finite element space VM(Q), they define a seminorm on V().
Furthermore, the null space is known to consist of constant functions for (1.3) and of

(linearized) rigid body modes for (1.6); cf. [TW05, sect. 8.1]. As we enforce sufficient
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1.3. The Two-Level Additive Overlapping Schwarz Preconditioner

Dirichlet boundary conditions, only the zero function is in the null space of the bilinear
forms on VO%QD(Q). Thus, the stiffness matrices corresponding to the discretizations of

the bilinear forms on VO}faQD(Q) are invertible.

1.3. The Two-Level Additive Overlapping Schwarz

Preconditioner

Overlapping Schwarz methods are ubiquitous and often used to accelerate the convergence
of a Krylov subspace method; see, e.g., [SBG96; TWO05; GLS07; DW09; WC14; SHC15;
BDF+15; KC16; HKR16a; Heil6; FQD17; LCYC19; HHK20; HL20b; Hoc20; HKRR20b;
HPR22]. We give a description mostly following [TWO05, sect. 2.2]; see also [SBG96]. Let
us note, however, that the description in [TWO05] is not restricted to additive overlapping
Schwarz preconditioners.

Let the domain 2 be decomposed into N nonoverlapping subdomains €2; that satisfy
the same conditions as §2; that is, ); is the union of elements 7' € 7,(Q2) and a connected
subset of Q. Let H = max;—; N H;, where H; := diam(€2;) denotes the subdomain
diameter.

We construct a set of overlapping subdomains {Q/}¥, from {Q;}}¥, by extending each
subdomain €; by k layers of finite elements; cf. fig. 1.2 (left). With each overlapping
subdomain (2, we associate a finite element space V; C Vh(Q;) of functions whose support

is a subset of

V; = span ({ ¢ylo; + 1 < j < dim (Vian,, (2)) A supp(p;) € 2 }),
where ¢; are the nodal basis functions of VO%QD(Q). Furthermore, we associate a
restriction operator R; with 2, which restricts the degrees of freedom of VO%QD (Q) to V;,
and a prolongation operator R}, which extends the degrees of freedom of V; to ‘/()}}aQD (Q)
by zero:
Ri: Viipa, () = Vie BI: Vi > Viiga, ().
In a matrix formulation, each row of R; is associated with a degree of freedom of Vb}faQD ()

and is set to the corresponding unit vector if the degree of freedom is part of V;. Then
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Figure 1.2.:

Triangular finite element mesh with 10 subdomains. The domain decomposi-
tion interface I' is represented by thick black lines. (Left) An overlapping
subdomain € with an overlap of two layers of finite elements is highlighted
in blue. (Right) Visualization for the number of overlapping subdomains a
finite element node belongs to. The numbers range from one (blue) to five

(green); it is N. = 5 (cf. theorem 6.1).

R;; is the transpose of R;. On V;, we define the bilinear form

a; (ui,vi) = aq (RZTUZ', R;TF’UZ‘) Yu;,v; € V;; (1.7)

this definition of @;(, ) is denoted as using exact local solvers. The corresponding matrix

formulation is given by

K!:V; -V, K =RKRI i=1,... N.

The one-level additive overlapping Schwarz preconditioner is then defined as

N
Mogr, =Y R K[ 'R;. (1.8)

i=1

Remark 1.2. Let us note that—because of the Dirichlet boundary condition on 0¥, —

the degrees of freedom associated with K| lie in the interior of Q. This technical

detail is relevant to distinguish the overlap used in the theory and the one used in an
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1.3. The Two-Level Additive Overlapping Schwarz Preconditioner

5=1h 6=2h 6=3h 6=4h & =>5h | nodesin Q;

mean 1361.8 2066.4 2913.9 3915.9 5081.8 1361.8
max 1419 2434 3680 5165 6999 1419

Table 1.1.: Sizes of local overlapping subdomain matrices K/ for the diffusion equation,
the mesh and domain decomposition (1) in section 2.1, and different sizes of

overlap; cf. tables 2.2 and 3.5. Overlap of k layers of finite elements (6 = kh).

implementation. This is relevant to estimate the cost of solving a linear system with K :
especially in three dimensions, the size of K| can grow quickly if the size of the overlap is

increased; cf. table 1.1.

A second, coarse level is generally required to obtain a scalable method; see, e.g.,
definition 1.3 in [TWO05] and the follow-up discussion, [SBG96, sect. 2.1], and [SBG96,
sect. 1.4]. However, there are exceptions to this rule; for example, if each subdomain
touches the Dirichlet boundary, we can obtain a scalable method without a coarse level.
An example is given in table 1.2; see also [CG17; CG18] and [HPR22, sect. 6.2].

In the following, we add a coarse level to the one-level preconditioner. The key
ingredient is a coarse space

Vo C VE]},LBQD(Q)
that, unlike V;, is defined globally, i.e., on ). We associate a linear interpolation operator
Rg = Vo = Voo, ()

with Vp; in a matrix formulation, each column of R{ is given by a coarse basis function in
Vo C VO%QD (), which is defined on the fine mesh 75,(€2). Similarly to before, we define

the exact coarse solver
7 = aq(R{uo, Rjvo) ¥ Vo;
ao(uoﬂ)o) = aQ( 0 U0, ovo) Up, Vo € Vo;

the associated coarse matrix

Ko = RyKRY
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N 2 4 8 16 32 64 128 256 512 1024

OSL1 4 6 7 8 7 7 7 7 7 7
(Pp)

GDSW 5 7 10 10 9 9 9 9 9 9

OSL1 4 8 16 28 48 88 164 316 617 1214
(Pn)

GDSW 4 8 13 13 13 13 13 13 12 12

Table 1.2.: Number of iterations required by the one-level additive overlapping Schwarz
preconditioner (OSL1) and the GDSW method (section 1.4) for the two-
dimensional diffusion problems (Pp) and (Py) and different numbers of
subdomains N: right-hand side of (1.1) is given by f = 1; the domain is Q =
[0,1] x [0,1/N]; © is decomposed lengthwise into N square subdomains, each
containing 64 bilinear finite elements; overlap of three layers of finite elements;
(Pp) enforces a zero Dirichlet condition on 9€2; (Py) enforces a zero Dirichlet
condition on {0} x [0,1/N] and a zero Neumann condition on the remaining
boundary. Convergence criterion: reduction of the unpreconditioned, relative

residual by 1078.

is the same matrix one would obtain if the stiffness matrix were assembled using the
coarse basis functions. The two-level additive overlapping Schwarz preconditioner is

defined as

Mgy = Ri Ky ' Ro+ Mggp, - (1.9)

The specific choice of the coarse space is fundamental in obtaining a robust and scalable
method and is one of the main goals of this work. Generally, the condition number of
MalelK depends on the contrast of the coefficient function—see section 1.5—however,
in some cases, the condition can in fact be independent of a large coeflicient contrast;
see section 1.5.4.

In each iteration of the preconditioned conjugate gradient method, using Maélm defined
in (1.8), we need to solve a local problem. By adding a coarse level in (1.9), an additional

coarse problem must be solved. Thus—and this is another goal of this work—it is of
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interest to use a coarse space that has a small dimension.

Using Lagrangian coarse basis functions on a shape-regular coarse grid, the bound

H
1 < E(z) ( ) .
r2(Mog, K) < Ci:r%% <$§;1€13d T0) 1+~ (1.10)

holds for the diffusion equation (cf. [GLS07]), where w; == Ug, q, 492, and 0 is the
width of the overlap. The bound suggests that the condition number improves with a
larger overlap. Indeed, for a small overlap, this is usually the case. However, for a large
overlap, we can often observe an increase in the condition number; see section 3.4.2. An
explanation may be the fact that the constant Ne—which is the maximum number of
overlapping subdomains {Qg}f\;l that any finite element node 2" € Q can belong to;
see fig. 1.2 (right)—influences the condition number bound and increases with §; see

theorem 6.1.

Remark 1.3. The prolongation RlT of the additive overlapping Schwarz preconditioner
can hinder its performance; cf. [EG03]. The restricted additive Schwarz method may be
used for an improved convergence; cf. [CS99; TW05; SBGI6]. However, the preconditioned
operator is not symmetric anymore with respect to the a-inner product. As a result, we
cannot use the conjugate gradient method but need to resort to, for example, GMRES
[Saa03]. Moreover, our convergence analyses in chapter 6 and sections 7.4 and 7.5 are
based on the symmetry of the preconditioned operator and are, thus, not valid for the

restricted additive Schwarz method.

1.4. The Generalized Dryja—Smith—Widlund Coarse Space

In this section, we give a description of the generalized Dryja—Smith—Widlund (GDSW)
coarse space from [DKWO08b; DKW08a; DW09] for the two-level overlapping Schwarz
method. It can be regarded as an extension of prior work by Dryja, Smith, and Widlund
in [DSW94]. The first results were published in a conference paper [DKWO08c| for the
17th International Conference on Domain Decomposition Methods in 2006.

We consider a diffusion problem or compressible linear elasticity, where the coefficients

are constant on the subdomains. In [DKWO08b], the authors prove the condition number
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bound

F(MGhewk) < C (14 %) (1 +log (%))2
for the general case of a two-dimensional domain decomposition by John domains and
a shape-regular triangulation. The constant C is independent of H, h, and coefficient

jumps between subdomains. Here, H/h is defined as

H/h = ma diam(Q;)
o i:rlﬁ._.},(N miDTeq—h(Qi) dlam(T) .

Similarly, H/d is defined with respect to the size of the overlap §. In the case of
subdomains with Lipschitz boundaries, we can neglect one of the log-factors. A similar
result for such general domain decompositions in a three-dimensional setting is—as of
yet—not available.

Let us note that for coefficient functions with jumps along as well as across the
subdomain boundaries, as encountered in this work, the constant C' generally depends
on the coefficient contrast; see, e.g., section 3.4 and chapter 8.

In the following, we construct coarse basis functions that define the columns of the
matrix RE. To be consistent with the literature, we use the notation ® := R}. The
GDSW preconditioner is then given by

N
Mgpew = ®(@"K®) 1" + Y RIK/'R;.
=1

1.4.1. Energy-Minimizing Coarse Spaces
The coarse spaces constructed in this work are spanned by energy-minimizing functions;
see (1.12) and cf. [TWO05; VSGO09, sect. 4.4]. More specifically, the coarse functions

are energy-minimizing extensions of functions defined on the domain decomposition

interface I', where

L= (09 noQy) \ 9Qp. (1.11)
i#]
Let ® and K be partitioned by the interface nodes T'" := { " : 2" € T'} and the remaining
ones R:
(D _ @R ’ K _ KRR KRFh
q)rh KFhR Kl"hl"h
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We note that the set R includes finite element nodes that lie on the Neumann bound-

ary 0f)n. The energy-minimizing extension of ®r» to R is then defined by

P ~ Kb K prn
o= "|=Hdpm, Hp=| BETET (1.12)
®Fh Il"h

where Ipn denotes the identity matrix on I'”. As the degrees of freedom on the Neumann
boundary are part of R, the extension satisfies a zero Neumann boundary condition
on 0Ny. Furthermore, by definition of K, the extension is zero on 0{2p. Let us note
that Kgrp is a block-diagonal matrix composed of the submatrices K 1(,;3% corresponding to
the subdomains. We have

Kph

Kgrr = , Krng = (K(l)

(N)
'R K ) ’

"R
Kpp
As aresult, the application of Hr can be implemented efficiently by concurrent applications
of (Kip) "KW,
In this work, we refer to sets of finite element nodes by the superscript h and to a single
finite element node by x*. As for Hy, we may drop the superscript h if no ambiguity is

introduced.

1.4.2. GDSW Coarse Functions

Let K%V be the stiffness matrix obtained by assembling aq(-, ) with a Neumann condition
on 0. By “the null space of the problem,” we refer to the null space of K~ (which
corresponds to that of £(+) in the case of linear elasticity). In the case of the diffusion
problem, the null space is given by constant functions. In the case of linear elasticity, it
is given by rigid body modes; cf. remark 1.4. If the coarse space is able to represent the
null space, we can obtain a scalable method ([SBG96; TWO05]). Note that, we are not
required to fulfill this property in each subdomain; this property has to be satisfied only
in subdomains that do not touch the Dirichlet boundary 9Qp.

By definition of the energy-minimizing extension, it is sufficient if the restriction of

the null space to the interface is represented. The energy-minimizing extension then
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Figure 1.3.: (Left) Visualization of two cubic subdomains that share a face (disks), four
edges (triangles), and four vertices (squares). (Right) Visualization of a
rotation of a body around the edge on the left. The edge acts as a hinge and
is fixed in place: if the dashed line corresponds to (0,0, x3), then r¢ is the

zero vector; cf. remark 1.4.

gives a representation of the null space on subdomains that do not touch the Dirichlet
boundary 90€2p. However, for large problems, it is not sufficient to use only a small
number of coarse functions, in which case scalability is lost; cf. section 6.4.3. Therefore,
we decompose the interface into small and disjoint components. The specific type of
decomposition is one of the key ingredients for the construction of coarse spaces in this
work. Let P be a partition of I' into disjoint interface components, such that
r'=J¢
£ep

Note that—here and for the rest of this work—¢ denotes an interface component (disjoint
from others) that is given by a set of finite element nodes.

The original GDSW method decomposes the interface into subdomain vertices V,

edges &, and (in three dimensions) faces F:

= (U)o (Ue)u(U)

These interface components are degrees of freedoms of I'* that are connected and common

to the same set of subdomains ([DKWO08a, p. 249]).
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POOOC

IOOOOOOC

Figure 1.4.: (Compare with [HKK+22, fig. 1]) (Left) Decomposition of the interface
into 3 vertices (marked with squares) and 7 edges (marked with disks). The
Dirichlet boundary 90€2p is given by the left side of the domain, 0Qy by
the remaining boundary. (Center/Right) GDSW basis functions of the
diffusion problem with £ = 1. (Center) GDSW vertex function associated
with the blue vertex in the left image. (Right) GDSW edge function

associated with the highlighted red edge in the left image.

In the case of a structured domain decomposition (and for simple unstructured domain
decompositions), we can rely on the intuitive understanding of subdomain vertices, edges,
and faces; see fig. 1.3 (left). However, for highly unstructured domain decompositions as
obtained by, for example, the graph partitioner METIS [KK98]|, a more rigorous definition
is required. Nevertheless, we will postpone this topic until chapter 5 and only note that,
for the general case, subdomain vertices, edges, and faces are denoted coarse nodes, edges,

and faces, respectively.

Given an interface partition, we restrict the null space to the interface components,
extend the trace functions by zero to the remaining interface, and then energy-minimally
to the interior. In fig. 1.4, a simple, yet unstructured, domain decomposition of a
two-dimensional homogeneous diffusion problem is given. Furthermore, a GDSW vertex
function and a GDSW edge function are shown. The Dirichlet boundary 0€p is given
by the left side of the domain. The effect of the Neumann boundary can be observed in

the displayed edge function.
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By definition of the GDSW coarse functions, the support of each function is given
by the union of subdomains adjacent to the subdomain vertex, edge, or face. As a
result—since the stiffness matrix is sparse—the sparsity structure of the coarse matrix
T K® depends on the domain decomposition.

Let us note that there is no theoretical restriction to using different interface components,
apart from the above-mentioned requirement that components should not span large
parts of the domain. In a parallel implementation, however, the cost for communication
needs to be taken into account. In section 4.1, another type of interface partition will be
presented.

The GDSW coarse space has been successfully used in a variety of applications,
for example, compressible and almost incompressible linear elasticity [DW09; DW10],
incompressible fluid flow [HHK19], fluid-structure interaction [HKR16a; HKR16b], and
land-ice simulations [HPR22]. A parallell implementation in the FROSch package (Fast
and Robust Overlapping Schwarz) of the Trilinos project [HKRR20a; HKR16a; HKR17;
HBH-+05] is available. In [HKRR19; HKRR20b; HRR22], the authors have extended the
method to a three-level method to be able to solve very large problems for which the
coarse problem cannot feasibly be solved using standard solvers.

Finally, let us note that the GDSW coarse space also works well for some problems with
heterogeneous coefficient functions; see section 1.5.1. This observation will be motivated

in chapter 3.

Remark 1.4. For linear elasticity, the null space is given by the rigid body modes;
cf. [TW05, sect. 8 and A.6.2]. In three dimensions, these are three translations and
three linearized rotations. Similarly, in two dimension, there are two translations and

one linearized rotation. In three dimensions, a basis for the translations is given by the

canonical unit vectors of R3. The complete set of basis functions r1,...,r¢ is given by
1 0 0 0 T3 2
0 9 1 9 O 9 SE3 9 0 9 _xl bl
0 0 1 —x9 —X1 0

on each finite element node. For the linearized rotations in two dimension, we set x3 = 0,
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1.5. Characteristics of Coefficient Functions in Two Dimensions

remove the third coordinate, and obtain the rigid-body-mode basis vectors

1 0 xT9
r1 3 T2 ) r3
0 1 —X1

Note that in practice, linearized rotations are usually modified by moving the origin of

0

the rotation close to the considered component. Specifically, x; — x? replaces x;, where x;
could be, for example, given by the geometric center of the component nodes.

The number of basis functions depends on the interface component that the null space
is restricted to. In the case of a single node, we have all the translations but the linearized
rotations are all linearly dependent of the translations. Thus, the null space restricted
to the node is given by only the translations. In the case of a straight edge in three

dimensions, we have three translations but only two linearized rotations, as rotating the

edge around itself like a drill yields no change; cf. fig. 1.3 (right).

1.5. Characteristics of Coefficient Functions in Two Dimensions

Before we give a description and analysis of our coarse spaces in the following chapters,
we analyze some simple heterogeneous problems to gain a better understanding of the
influence of certain characteristics of coefficient functions and of coarse functions that are
required to obtain a robust preconditioner. An adaptive coarse space from section 7.2
will serve as a demonstration. However, let us note that the analysis is valid for all our
adaptive coarse spaces. Examples showing the differences between the coarse spaces will
be given later.

For the numerical results of this section, we consider two-dimensional scalar diffusion
problems on the unit square, subdivided into square subdomains and discretized with
bilinear finite elements. The right-hand side of (1.3) is given by f = 1. On the domain
boundary, we impose a zero Dirichlet condition.

The discretized symmetric, positive definite linear system is solved using the conjugate
gradient method, preconditioned with no preconditioner (K'), with the first level of the

additive overlapping Schwarz preconditioner (MalelK ), or with a two-level additive
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1. Introduction

Figure 1.5.: Coefficient functions in two dimensions with a large coefficient of E = 10° in
red and a small coefficient of E = 1 in blue on the unit square with 2 x 2
square subdomains. The interface is indicated by a thick black line, the fine
mesh by thin black lines. Each subdomain is discretized with 6 x 6 bilinear

finite elements.

overlapping Schwarz preconditioner for which the coarse space is constructed using a
selection of the coarse functions from the OS-ACMS coarse space (here denoted M ~1K);
cf. section 7.2. For the first level, an overlap of one layer of finite elements is used, except
in section 1.5.4.

A tolerance of 10~® is chosen for the reduction of the relative, unpreconditioned residual.
Unlike in subsequent chapters, the condition number is computed directly and is not

estimated by the Lanczos process.

1.5.1. Eigenvalues Associated with Patches of Large Coefficients

The first example is given by the unit square, discretized with 12 x 12 bilinear finite
elements. The unit square is divided into 2 x 2 square subdomains. The coefficient function
consists of two channels of large coefficients that each intersect a horizontal subdomain
edge; see fig. 1.5 (left). The preconditioner M ! is constructed using two coarse functions
of the OS—ACMS coarse space, one function for each horizontal subdomain edge.

In fig. 1.6, the eigenvalues of the mentioned operators are displayed. To reduce
the complexity of fig. 1.6, eigenvalues associated with the Dirichlet boundary (which

are equal to one or two) are not displayed. The spectral condition number is given
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—1 _
K Mogr, K MK
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107

L 1.944-10% (max)

10°
10*
10°
10%
10!
10°

B 100 - 00
4.000:10° (max) 4.710-10” (max) l

119 5.842-107* (min)

1.495-10"" (min)

4.936:107° (min)

Figure 1.6.: With respect to the 121 interior nodes of the domain: eigenvalues of the stiff-
ness matrix K, the matrix M(;SILIK ,and M 'K, where M~ is constructed
using two OS—-ACMS edge functions. Results correspond to the coefficient
function in fig. 1.5 (left). K has 22 eigenvalues larger than and 99 smaller
than 105, MalelK has 2 eigenvalues smaller than and 119 larger than 1075,

M~1K has no “bad” eigenvalues.

by the maximum over the minimum eigenvalue. Thus, according to fig. 1.6, K and
M6§L1K are ill conditioned, whereas M 'K is well conditioned. The condition number
k2(K) = 1.3-107 is in line with the bound

< C . Emax

) < 52 B

~C 108, (1.13)

where C' is independent of h and F; cf. remark 1.5.

Of the 121 eigenvalues of K, 22 are larger than 10°, while the remaining ones are
between 0.1 and 10; cf. [VSM99] and [GE10a, appendix A]. Employing the first level of
the addivitive overlapping Schwarz preconditioner, the number of extreme eigenvalues
is reduced to two; specifically M(;SILIK has two eigenvalues smaller than 107°, while

the remaining ones are between 0.1 and 10. The two “bad” eigenvalues of M{)SILIK
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correspond to the two channels of large coefficients intersecting the interface. If there
are four channels intersecting the interface as in fig. 1.5 (center), we obtain four bad
eigenvalues. If the patches of large coefficients are connected as in fig. 1.5 (right), they
act as a single component and we obtain two bad eigenvalues; cf. [GE10b].

The number of bad eigenvalues determines the number of required coarse functions
to construct a robust preconditioner. Therefore, for the coefficient functions in fig. 1.5,
we require two (left), four (center), and two (right) coarse functions. We note that, to
obtain a scalable method, we need to enrich the coarse space with additional functions;
cf. sections 1.4 and 6.4.3.

The GDSW coarse space from section 1.4 uses a single coarse function for each edge.
According to our analysis above, this should not suffice to obtain a robust preconditioner
for the coefficient function in fig. 1.5 (center). Indeed, we obtain a condition number of
336 413.3. Contrary, for the coefficient functions in fig. 1.5 (left /right), only a single coarse
function per edge is required. For these problems, GDSW is an excellent preconditioner,
and we obtain condition numbers of 8.8 (left) and 16.3 (right). This observation will be

motivated in chapter 3.

Remark 1.5. Let Kyom denote the stiffness matriz of (1.3) for E = 1. Then, by
theorem B.32 in [TW05], we have ka(Khom) < % for some constant C' that is independent
of h. Noting that

UTKU = agq (U,U) > Eminyvﬁql(g) = EminUTKhomU’

vl Ko = aq (U’U) < Emax|v|§{1(ﬂ) = EmavaKhom'Ua

and

Amin(K) = min v Ko, Amax(K) = max v K,

lvlle=1 flvll2=1

for the minimum and maximum eigenvalue of K, the bound of the condition number

of K in (1.13) is obtained by

)\max (K) Emax )\max (Khom) Emax
K)= < = Khom) < .
/{/2( ) Amin (K) o Emin Amin(‘K’hom) Emin H2( h ) Emin h2
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1.5. Characteristics of Coefficient Functions in Two Dimensions

Figure 1.7.: Coefficient functions in two dimensions with a large coefficient of E = 10° in
red and a small coefficient of E = 1 in blue on the unit square with 3 x 3
(left), 2 x 2 (center) and 8 x 8 (right) square subdomains. The interface
is indicated by a thick black line, the fine mesh by thin black lines. Each

subdomain is discretized with 6 x 6 bilinear finite elements.

1.5.2. Issues of Scalability

In fig. 1.7 (left), a coefficient function is displayed with 6 channels of large coefficients
that each intersect the interface twice. The question is whether this doubles the required
amount of coarse functions. The answer is twofold: Disregarding weak scalability, we
require 6 coarse functions, one for each channel. This corresponds to the number of
bad eigenvalues of M(;SILIK . However, if we increase the number of subdomains, the
condition number deteriorates.

As evidence, we consider the coefficient function in fig. 1.8 (left). The corresponding
OS-ACMS coarse function (right) was computed by using the entire interface as the
only interface component. We obtain a preconditioned problem with a condition number
of 20.7. However, if we increase the number of subdomains to 16 x 16 and, along with
it, the length of the large-coefficient channel as in fig. 1.7 (right), the condition number
increases to 544.8, which indicates a loss of scalabilty. By further enriching the coarse
space with OS—ACMS vertex functions—which are able to represent the null space—the
coarse space dimension increases to 226, but we recover scalability with a condition
number of 22.4.

Apart from the scalability issue, it is not feasible to construct our adaptive coarse
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Figure 1.8.: (Left) Coefficient function in two dimensions with a large coefficient of
E =105 in red and a small coefficient of E = 1 in blue on the unit square
with 3 x 3 square subdomains. The interface is indicated by a thick black
line, the fine mesh by thin black lines. Each subdomain is discretized with
6 x 6 bilinear finite elements. (Right) OS-ACMS coarse function if the

entire interface is used as the only interface component.

spaces using large interface components: For the construction, we require the solution of
generalized eigenvalue problems, which are as large as the degrees of freedom associated
with an interface component. Furthermore, using large components results in a denser
coarse matrix. Therefore, in two dimensions, we solve a problem for each subdomain
edge or an interface component of comparable size. In fig. 1.9 (left, center), the two
relevant OS—ACMS edge functions that we obtain with standard OS—ACMS are shown.
As we can see from the sum of the two edge functions (right), it is similar to the function
in fig. 1.8 (right) but its support is restricted to the corresponding subdomains. The
characteristics of the cofficient function are evident in the computed coarse functions.

This observation was used to construct a coarse space heuristically; see section 9.2.

Using smaller interface components comes at the cost of a larger coarse space dimension:
for the coefficient function in fig. 1.7 (left), if our adaptive coarse space is based on

subdomain edges, we obtain 12 instead of 6 coarse functions (disregarding scalability).
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1.5. Characteristics of Coefficient Functions in Two Dimensions

Figure 1.9.: Corresponds to fig. 1.8. (Left) OS-ACMS edge function of the horizontal
bottom-left coarse edge. (Center) OS-ACMS edge function of the horizontal
top-left coarse edge. (Right) Sum of the two OS-ACMS edge functions.

1.5.3. Patches of Large Coefficients Touching the Dirichlet Boundary

We examine another property of coefficient functions, which was taken into account for
the construction of the coefficient functions in chapter 2: a patch of large coefficients
touching the Dirichlet boundary can reduce the number of bad eigenvalues. For the
coefficient function in fig. 1.7 (center), the largest eigenvalue of the operator MglelK
is 4 and the smallest one is 0.155. Thus, despite a patch of large coefficients intersecting
the interface, using the first level of the additive overlapping Schwarz preconditioner, we
obtain a well-conditioned problem (condition number 25.8). This may be explained by
the fact that the solution on the patch is essentially known a priori: it is approximately

Zero.

However, if we increase the number of subdomains, information requires more steps
to be passed from the Dirichlet boundary to the interior. For the coefficient function in
fig. 1.7 (right), we obtain a condition number of 550.3 for M(;SlLlK. On the other hand,
the number of subdomains is substantial, and we know from section 1.3 that the first
level of the overlapping Schwarz preconditioner generally does not scale. The results do
not improve, however, by using the scalable, nonadaptive coarse space GDSW. For the
problem in fig. 1.7 (right), using GDSW, we obtain a condition number of 679.9. Thus,

the deterioration of the condition number must be attributed to the heterogeneity of the
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Figure 1.10.: Coefficient functions in two dimensions with a large coefficient of E = 10°
in red and a small coefficient of £ = 1 in blue on the unit square with 2 x 2
square subdomains. The interface is indicated by a thick black line, the fine
mesh by thin black lines. Each subdomain is discretized with 6 x 6 (left)

and 7 x 7 (right) bilinear finite elements, respectively.

problem: by considering a homogeneous coefficient function in fig. 1.7 (right), we obtain
a condition number of 141.5 for OSL1 and 9.8 for GDSW.

We conclude that, for our test cases, it is important to decouple patches of large
coefficients from the Dirichlet boundary to obtain harder problems, particularly for small
problem sizes. However, if the patches of large coefficients span large sections of the
domain, scalable nonadaptive coarse spaces are generally not sufficient to obtain robust

and scalable preconditioners.

1.5.4. The Influence of the Overlap on Heterogeneous Problems

The size of the overlap has no influence on the construction of the coarse spaces in this
work. However, it does have an influence on the performance of the preconditioners for
heterogeneous problems. For the following examples, we recall that using an overlap of
k layers of finite elements, local overlapping stiffness matrices contain only finite element
nodes that extend by k£ — 1 layers; cf. remark 1.2.

As a first example, we consider the coefficient function in fig. 1.10 (left). The patches
of large coefficients are completely embedded in the subdomains; we obtain a condition

number of 8.6 for OSL1 using an overlap of one layer of finite elements. For the
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construction of OSL1, we need to invert local overlapping problems that contain exactly
the nodes of the corresponding subdomains. It turns out that, if a patch of large
coefficients is embedded in an area that is covered by the local overlapping stiffness
matrix, we do not require additional coarse functions.

Using this knowledge, we can infer the size of the overlap that is required for OSL1
to be robust for the coefficient function in fig. 1.10 (right). The leftmost patch of large
coefficients is always embedded in the overlapping problem of the bottom-left subdomain;
for an overlap of one layer of finite elements (in which case the size of K| equals the
number of nodes of the nonoverlapping subdomain), three bad eigenvalues remain, one
for each of the remaining patches of large coefficients.

The second patch from the left requires the local problem to extend by two layers
of finite elements. The third patch is embedded in the overlapping problem of the
bottom-left subdomain, using three layers of finite elements, but it is also embedded in
the problem of the top-left problem with only two layers of finite elements. Similarly, the
minimum number of layers of finite elements for the patch on the right is four. Using an
overlap of four layers of finite elements, we have removed all bad eigenvalues and obtain

a condition number of 6.5.
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2. Coefficient Functions, Meshes, and

Domain Decompositions

For comparison and to corroborate the robustness of the discussed coarse spaces, and to
further complement the theoretical convergence analysis, we will show numerical results
in this work for (1.1) and (1.2), using the following four model problems. Later on—and
similarly to chapter 1—we define additional types of problems that are suitable to explain
certain mechanics of a coarse space.

The following problems differ in the mesh used, the domain decomposition, and
coefficient function F; see [HKKR19; HKK+22], where these identical problems have
been used before. An overview of some properties of the model problems in sections 2.1
to 2.4 can be found in table 2.1.

To obtain problems that are numerically difficult to solve and to assess the robustness
of the coarse spaces, we rely solely on unstructured domain decompositions, as these are
a source of randomness in terms of the coefficient distribution on the interface. For this
work, METIS [KK98] was used to obtain unstructured domain decompositions.

We have moreover made sure that—except for model problem (4) in section 2.4—
patches of large coefficients do not touch the Dirichlet boundary: a problem is usually
easier to solve if a patch of large coefficients touches the Dirichlet boundary of the global
domain, as this reduces the number of bad eigenvalues; cf. section 1.5.3. The problem
in section 2.4 uses a set of 100 randomly generated coefficient distributions. It was
constructed to verify the robustness of our coarse spaces and, thus, we have not subjected
the coefficient distributions to any restrictions.

We have chosen the overlap as two layers of finite elements for all problems. Note that,
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(1) (2) (3) (4)
boundary conditions D N & D D D
coefficient values {1,106} {1,10%,10°}  {1,10%}  {1,10°}

finite element type =~ ————  tetrahedron, P

mesh type struct. unstruct. unstruct. unstruct.

number of finite element nodes 132651 56 053 588 958 452 522

domain decomposition type =~ —————— unstruct. (METIS)
number of subdomains 125 50 100 512
nodes per subdomain (avg.) 1361.8 1313.0 6656.4 1174.3
overlap (layers of finite elements) —— 2

nodes per local overl. problem (avg.) 2066.0 1877.4 8918.7 1968.8

Table 2.1.: Overview of some properties of model problems (1)—(4). Boundary conditions:
zero Dirichlet (abbrev. with D), zero Neumann (abbrev. with N), or a
combination of the two on different parts of the domain boundary. See
remark 1.2 for the definition of the number of nodes of local overlapping

problems.

for the solution of the local overlapping problems, this amounts to extracting submatrices
from the fully assembled stiffness matrix with an overlap of only one layer of finite
elements with respect to the corresponding nodal graph; cf. remark 1.2. On average,
the number of nodes of the local overlapping problems is approximately 2000 for the
problems of sections 2.1, 2.2, and 2.4 and almost 9 000 for the problem of section 2.3. In
the case of a three-dimensional linear elasticity problem, this results in submatrices three

times as large.

Numerical results in section 3.4.2 will show only a moderate improvement in the number
of iterations for a growing size of the overlap; see also [HKK+22, table 2]. Furthermore,
section 3.4.2 indicates that the sizes of local problems grow quickly with an increase

in the size of the overlap; see also table 2.2. For example, for the mesh and domain
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2.1. Problem (1): Beams of Large Coefficients

0=1h 6=2h ¢6=3h d=4h d=D>5h 0 =06h

mean 1361.8 2066.0 29139 39159 5081.8 6416.6

1
L) max 1419 2434 3680 5165 6999 9164

mean 1313.0 18774 26345 3589.5 4746.7 6108.6

(2)
max 1403 2098 3369 4965  T155 9612

mean 6656.4 8918.7 11843.2 15237.7 19092.1 23458.5

3
) max 6963 9817 14 086 19131 24974 31634

mean 11743 1968.8 3013.0 43385 5977.2 7958.0

4
“ max 1247 2256 3643 5466 7749 10546

Table 2.2.: Average and maximum number of nodes per local overlapping problem (cf. sec-
tion 1.3) for an increasing size of the overlap (in layers of finite elements);
cf. table 1.1. (1)—(4) corresponds to the respective model problem in sec-

tions 2.1 to 2.4.

decomposition (1) from section 2.1, increasing the size of the overlap from one to six
layers of finite elements results in an increase in the average number of nodes of the local
overlapping problems from 1361.8 to 6416.6. Owing to the complexity of a direct solver,
memory constraints, and the moderate improvement for more generous overlaps, we have
opted to always use a small overlap of two layers of finite elements.

In fig. 2.1, the average size of subdomains and local overlapping problems is visualized
along with the maximum and minimum. From this, we learn that the maximum and
minimum deviate little from the average, which is a favorable property for aspects of

parallelization.

2.1. Problem (1): Beams of Large Coefficients

The first model problem is given by an unstructured triangulation (with tetrahedra)

of the unit cube and 100 beams of large coefficients (E = 10%), which are embedded
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®n @ O (4) ®n @ 3 @
104 \

104
103 103
102 102

10! 10!

10° 10°

Figure 2.1.: (Left) Average number of nodes per subdomain. (Right) Average number
of nodes per local overlapping problem (cf. section 1.3). (1)—(4) correspond
to sections 2.1 to 2.4. The minimum and maximum numbers (marked by the

tips of red triangles) deviate only minimally from the mean.

in a medium with £ = 1; see fig. 2.2. A zero Dirichlet boundary condition is used
on the boundary of the domain. An overview of some properties is given in table 2.1,
column (1).

Theoretically—ignoring weak scalability—100 coarse functions are required to remedy
the negative influence of the large coefficient contrast, one coarse function per beam.
However, as each beam intersects the interface multiple times, the coarse spaces con-
structed in this work will have a much larger dimension. Furthermore, we may need

additional coarse functions to obtain a scalable method.

2.2. Problem (2): Layers of Large Coefficients

The second model problem is an unstructured triangulation with tetrahedra of a complexly
shaped domain, four layers of discrete coefficients (£ = 1 and E = 10°), and a small
inclusion of a very large coefficient E = 10%; see fig. 2.3 (top left and right). A zero
Dirichlet boundary condition is used on only a small part of the boundary of the

domain. On the remainder, a zero Neumann boundary condition is prescribed; see fig. 2.3
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2.3. Problem (3): Foamlike Structure of Large Coefficients

Figure 2.2.: (Left) Coefficient function E of problem (1) with 100 beams of large
coefficients (E = 10° in red) traversing a medium of E = 1 (blue). (Right)
Cross section of the coefficient function that also shows the fine mesh and

subdomain boundaries.

(bottom left). An overview of some properties is given in table 2.1 in column (2).
As there is only a small number of connected patches of large coefficients, we can expect

the coarse space dimension to be not much larger than for a homogeneous problem.

2.3. Problem (3): Foamlike Structure of Large Coefficients

The third model problem is an unstructured triangulation with tetrahedra of the unit
cube and 27 foamlike structures of large coefficients (E = 10°) embedded in a medium
with E = 1; see fig. 2.4. The 27 foamlike structures are connected components. If a single
and large connected structure were used, the problem would be much easier to solve. In
such a case, we would obtain a robust method by using a nonadaptive GDSW-type coarse
space. In fig. 2.4, the connected components of the large coefficients are visualized.

A zero Dirichlet boundary condition is prescribed on the boundary of the domain. An

overview of some properties is given in table 2.1 in column (3).
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Figure 2.3.: (Top left) Coefficient function E of problem (2) with multiple layers: F =1
in blue, £ = 10° in light red, E = 10 in dark red. (Right) Visualization of
the separated coefficient components. (Bottom left) Visualization of the
boundary conditions: zero Dirichlet condition on the light blue part and a

zero Neumann boundary condition on the remaining part (orange).

2.4. Problem (4): Randomly Distributed Inclusions of Large

Coefficients

The fourth model problem is an unstructured triangulation with tetrahedra of the unit
cube and randomly distributed inclusions of large coefficients (E = 10%) embedded in a
medium with F = 1; see fig. 2.5 for a sample. For the numerical results, 100 samples of
such coefficient functions are used to obtain averaged results. On average, on 11.08%
of finite elements T € 7(f2), we have E(T) = 10°. This model problem allows us to
check the validity of the implementation and the robustness of the methods. A zero
Dirichlet boundary condition is used on the boundary of the domain. An overview of

some properties is given in table 2.1 in column (4).
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Figure 2.4.: (Top left) Coefficient function E of problem (3) with foamlike structures
of large coefficients (E = 10° in red) inside a medium of E = 1 (blue).
The coefficient function consists of 27 connected components of large coeffi-
cients. (Top right) Cross sections of the coefficient function. (Bottom left)
Connected components of large coefficients shown with different colors. (Bot-

tom right) Exploded view of the bottom-left visualization.
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Figure 2.5.: (Left) Sample coefficient function E of problem (4) with randomly dis-

46

tributed inclusions of large coefficients (E = 10° in red) inside a medium of

E =1. (Right) Cross section (one layer of finite elements) of the coefficient

function (E =1 in blue).



3. The Adaptive GDSW Coarse Space

In sections 1.1 and 1.5, examples of coefficient functions were given, for which the additive
overlapping Schwarz method with the GDSW coarse space is not robust. This motivates
the development of coarse spaces that are adaptive with respect to the coefficient function.

In the following, we give a description of the standard adaptive GDSW coarse space
and some variants in a matrix formulation. Later on, in section 6.1, the variational
analogue is defined and used for the proof of a condition number bound.

The following chapter is based on [HKKR19; HKK+22]. We note that some minor
details regarding the coarse space construction were changed for this work. Further-
more, we note that the adaptive GDSW coarse space in [HKKR18a] was improved in
[HKKR19]; thus, their construction details differ as well. We refer to all three coarse spaces
([HKKR18a; HKKR19; HKK+22]) as adaptive GDSW-type. The one in [HKK+22] is a
reduced-dimension adaptive GDSW coarse space (see chapter 4). The one in [HKKR19]
is denoted (standard) adaptive GDSW and is the topic of this chapter; see also [HKL22],

where AGDSW is used in the context of nonlinear domain decomposition methods.

3.1. Coarse Space Construction

Similarly to many other adaptive coarse spaces for the overlapping Schwarz method, such
as [GE10b; EGLW12; DNSS12; SDH+14a; GLR15; HKKR18b; EMR19], the adaptive

GDSW method solves generalized eigenvalue problems of the form

Q
SeeTig = Mg Ked' T (3.1)
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3. The Adaptive GDSW Coarse Space

Figure 3.1.: Union of subdomains §)¢ adjacent to £ in blue, where £ (in red) is a subdomain

edge (left) and a subdomain face (right), respectively.

on interface components to construct coarse interface functions. Eigenvectors of (3.1)
associated with small eigenvalues are selected and extended to the interior of the subdo-
mains to construct coarse basis functions. The matrix S¢¢ is a Schur complement, and
the matrix K, ?g can essentially be extracted from the fully assembled stiffness matrix K;
details are given in the following.

The interface partition P of the standard adaptive GDSW method is given by the
GDSW interface partition, that is, by subdomain vertices, edges, and (in three dimensions)
faces. We will give a coarse space description for the three-dimensional case; the two-
dimensional case is handled analogously with F = (). Note that the following description
remains valid for interface partitions of unstructured domain decompositions, as given in
section 5.3.

Let £ € P be a subdomain edge or face. By ()¢ we denote the union of subdomains

adjacent to &:

Q£ = ﬁé‘ \ 895, §£ = U ﬁi;
ie{1,..,N}
8Q; NEAD
cf. fig. 3.1. Note that £ is a discrete set of finite element nodes and that for, e.g.,
subdomain edges as in fig. 1.3 (left), the boundary nodes of the edge are not part of &.
Let K% be the stiffness matrix that is obtained by assembling aqe (-, -) with a Dirichlet

boundary condition on 0€2¢ N dQp. We remark that a Dirichlet condition is not enforced
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if the construction is carried out according to [HKKR19; HKK+22]. Therein, a Neumann
condition is used on the entire boundary of €)¢; see also remark 3.1. K £ can be obtained
easily if subdomain stiffness matrices are available. We partition K by the degrees

of freedom associated with { and those with ¢ \ &; the latter set is denoted by R. We

obtain
Q¢ Q¢
K% — Kpp Kge
Q¢ Q |’
Kep K

which also defines the matrix K. 59; on the right-hand side of (3.1). The Schur complement
Sge from (3.1) is defined as

Q Q Q:\1 .0
See = K¢ — Kepg (KR%) Kpé, (3:2)

where (Kgﬁ%)Jr is a pseudoinverse of Kg%. The Schur complement originates from the
application of an ag,-inner product and an energy-minimzing extension; details will be
given in section 6.1.

In the case of a diffusion problem, Kg% is invertible, since it is positive definite. In the
case of linear elasticity, however, K;lf% may only be positive semidefinite; see remark 6.5
for details and section 4.4 for remarks on an implementation.

If ﬁg does not touch the Dirichlet boundary 0€2p, Sg¢e and K Q% are singular; the
null space is given by the constant functions or rigid body modes restricted to § or (),
respectively. In the case of linear elasticity, these matrices can also be singular if ﬁg
touches 0Q2p, in which case linearized rotation modes are part of the null space.

Let the eigenvalues of (3.1) be sorted in nondescending order,
0< A< A < < A,

where m denotes the number of unknowns associated with £&. We select all eigenvectors
Ty¢ from (3.1) that correspond to eigenvalues smaller than or equal to a user-prescribed
threshold tolg > 0,

Asg < tolg.

The remaining coarse space construction is identical to the GDSW coarse space con-

struction: we extend the selected eigenvectors by zero to the interface nodes I'*—let the
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3. The Adaptive GDSW Coarse Space

extension be denoted by T, . pr—and then energy-minimally to the interior to define the

coarse functions

Use = Hr7y ¢ pn,

where Hp was defined in (1.12). The columns of the matrix ® of the Schwarz precon-
ditioner are now given by the selected v, ¢ and by the GDSW vertex functions. Let

Vapsw,v denote the space of GDSW vertex functions. Then we have

VAGDSW = span ( U{v*ye D Ase < tole } U U {ve Ay <tolyp } U VGDSW,V).
ec feF

Remark 3.1. If we assume that for the assembly of K% a Neumann boundary condition
is always used on 0S¢ (as in [HKKR19; HKK+22]), the Schur complement Sge is always
singular, and its null space is given by the restriction of the null space of K% to €.
Since tole > 0, the null space is always selected for the construction of the coarse space.
As a result, if tole = 0 for all subdomain edges and faces, the AGDSW and GDSW
coarse spaces are identical. In contrast, we enforce a zero Dirichlet boundary condition
on OQe N OSp for the construction of AGDSW in this work. Therefore, we obtain the
GDSW coarse functions only if 0Q¢ N OQp = 0.

Let tolp = tolg = tolr > 0 be the smallest tolerance used for the selection of
eigenvectors of subdomain edges and faces. In chapter 6, we will prove the condition

number bound

_ 1
ko (Mygpswk) < C (1 + tolp> ; (3.3)

where C'is independent of H, h, and the contrast of the coefficient function; cf. theorem 6.1.
In theorem 6.1, the constant C' is expressed explicitly in terms of constants related to
the domain decomposition and interface partition. The bound is also valid for the
variants of AGDSW that will be introduced in section 3.3; however, it may then contain
a dependence on a constant that stems from the application of an inverse inequality.
Note that, in [HKK+22, theorem 11.5], slightly different constants were obtained.

Similarly, for a diffusion problem, the constants in [HKKR19, corollary 6.6] differ.
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3.2. Sample Code for AGDSW and a Simple Model Problem

Figure 3.2.: (Top left) Mesh with 2202 triangles, two subdomains, a coefficient function
of E =105 (inred) and E = 1 (in blue). Subdomain edge marked with a thick
black line. Dirichlet boundary in purple and Neumann boundary in green.
(Top right) Finite element solution to the corresponding diffusion problem
using P; basis functions. (Bottom) AGDSW coarse functions corresponding
to the eigenvalues 1.4-107% (bottom left) and 2.2:107% (bottom right).

The next largest eigenvalue is 0.37.

3.2. Sample Code for AGDSW and a Simple Model Problem

In the following, we show a complete but simplified MATLAB code for an implementation
of AGDSW and a scalar diffusion problem. Specifically, we consider the unit square
divided into two subdomains, a zero Neumann condition on the right side of the domain
and a zero Dirichlet condition on the remaining boundary. The coefficient function is
given by two channels of large coefficients intersecting the subdomain edge; see fig. 3.2
for more details, the finite element solution, and the two constructed coarse functions.

The overlap is chosen to extend by one layer of finite elements.
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3. The Adaptive GDSW Coarse Space

We begin by defining the only user input: the tolerance for the selection of eigenvectors.

tol = 0.01; % tolerance for the selection of eigenvectors

A triangulation of the unit square is generated and decomposed into the subdomains

[0,0.5] x [0,1] and [0.5, 1] x [0, 1].

[x1,x2] = meshgrid(linspace(0,1,21)); x1 = x1(:); x2 = x2(:);

tri = delaunay(xl,x2); x = [x1,x2];

tri_sd{1} = find(all(x1(tri) < 0.5+eps,2)); % Extract triangles
tri_sd{2} = find(all(x1(tri) > 0.5-eps,2)); % of subdomains 1&2.
The coefficient function is given by two patches of large coefficients: E = 10° on

(0.2,0.8) x (0.2,0.3) and (0.2,0.8) x (0.7,0.8), and E = 1 elsewhere.

E = ones(size(tri,1),1);
E(all(x1(tri) > 0.19,2) & all(x1l(tri) < 0.81,2) &
( (all(x2(tri) > 0.19,2) & all(x2(tri) < 0.31,2)) |
(all(x2(tri) > 0.69,2) & all(x2(tri) < 0.81,2)) )) = 1le6;

Next, we assemble the nonoverlapping local stiffness matrices (with a Neumann boundary)
using P; basis functions, set up the global stiffness matrix, and incorporate the zero

Dirichlet boundary condition on all boundary nodes except for {1} x (0,1).

Ki cell(2,1); % subdomain stiffness matrices
b = zeros(size(x,1),1); % global load vector
for i = 1:2
gradTref = [-1,-1; 1,0; 0,1]; % <- gradient of Pl basisfn on
Ki{i} = zeros(size(x,1)); % reference triangle Tref
for j = 1:size(tri_sd{il},1)
T = tri(tri_sd{i}(j),:); % triangle
B_T = [x(T(2),:)'-x(T(1),:)' , x(T(3),:)'-x(T(1),:)"'];
a = abs(det(B_T));
gradT = gradTref / B_T; % gradient of P1 basis on T
Ki{i}(T,T) = Ki{i}(T,T) + E(tri_sd{i}(j))*a/2x(gradT*gradT"');
b(T) = b(T) + ax[1;1;1]1/3%0.5; % rhs: f = 1
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3.2. Sample Code for AGDSW and a Simple Model Problem

end
end
K = Ki{1} + Ki{2}; 7’ global stiffness matrix
D = not((x1 > 0) & (x2 > 0) & (x2 < 1)); % Dirichlet bnd nodes

K(D,:) = 0; K(:,D) = 0; K(D,D) = eye(nnz(D)); b(D) = 0; % bnd cond

By setting up restriction matrices, we can define the first level of the overlapping Schwarz
preconditioner. As an overlap of one layer of finite elements is used, the relevant nodes

are given by the subdomain nodes.

nodesOv_i{1} find(x(:,1) <= 0.5+eps); % nodes in overlapping

nodesOv_i{2} find(x(:,1) >= 0.5-eps); % subdomains
KOv = cell(2,1); % overlapping subdomain matrices
R = cell(2,1); % restriction matrices

for i = 1:2

n nodes0Ov_i{i}; 1ln = length(n);

KOov{i} = K(n,n);

R{i} = sparse((1:1n)',n,ones(ln,1),1ln,size(x,1));
end

0SL1 = @(x) R{1}'*«(KOv{1}\(R{1}*x)) + R{2}'*(KOv{2}\(R{2}*x));

The interface partition is given by a single component, the subdomain edge {0.5} x (0, 1).
Next, we compute the Schur complement with respect to the subdomain edge and its

adjacent subdomains.

gamma = (abs(x(:,1)-0.5) < eps) & not(D); 7 interface

edge = gamma;  edge (here: identical to the interface)

K12 = K; % K12 = K {Omega_edge}. In general: K12 != K.

K12_RR = K12 (not (edge) ,not (edge)) ;

K12_eR = K12 (edge ,not (edge)) ;

K12_ee = K12 (edge,edge);

S_ee = K12_ee - K12_eR*(K12_RR\(K12_eR')); 7% Schur complement

We then set up and solve a generalized eigenvalue problem and extract eigenvectors cor-
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3. The Adaptive GDSW Coarse Space

responding to an eigenvalue smaller than the user-prescribed tolerance. The eigenvectors
are extended energy-minimally to the interior to obtain coarse functions. The coarse

matrix is assembled, and the second level of the preconditioner is set up.

[V,W] = eig(S_ee,K12_ece); % solve generalized eigenvalue problem

V = V(:,abs(diag(W))<tol); 7 select eigenvectors

K_RR = K(not (gamma) ,not (gamma)) ;
K_RG = K(not (gamma) ,gamma) ;
phi = zeros(size(x,1),size(V,2)); 7 coarse basis functions

phi (edge ,:) = V;

phi(not (gamma) ,:) = -K_RR\(K_RG*phi(gamma,:)); J energy-min ext
KO = phi'*(K*phi); % coarse matrix
0SL2 = @(x) 0SL1(x) + phi*(KO\(phi'*x)); % AGDSW precond

Finally, we solve the preconditioned problem, show a plot of the solution, and compute

condition numbers for several operators.

u = pcg(K,b,1e-6,1000,0SL2) ;

trisurf (tri,x(:,1),x(:,2),u); hold on
scatter3(x(edge,1) ,x(edge ,2) ,u(edge),'ro','filled'); hold off
fprintf ('Coarse space dimension: %d\n',size(KO0,1))

fprintf ('cond (K) = %g\n',cond(K))

fprintf ('cond (0SL1(K))

%g\n',cond (0SL1(K)))
%g\n',cond (0SL2(K)))

fprintf ('cond (0SL2 (K))

We obtain x(K) = 1.7-10%, k(Mgg; ;K) = 8.0-105, and #(Mgpswk) = 33.0. A plot of
the solution and the two constructed AGDSW coarse functions are shown in fig. 3.2.
3.3. Variants of AGDSW

3.3.1. Lumped Stiffness Matrix

Generalized eigenvalue problem (3.1) can be transformed into a standard eigenvalue

problem if the diagonal of K?; is used on the right-hand side. The modification is
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3.3. Variants of AGDSW

Figure 3.3.: Slab (in blue) surrounding a subdomain edge (left) and a subdomain face

(right), each in red. Analogue of fig. 3.1.

closely related to a decoupling technique that we need to employ in section 4.2; see also
sections 3.3.4 and 6.1.4, and [HKKR18b, sect. 4.3], where the same technique is employed
by lumping a scaled mass matrix.

Let K ?édiag denote the diagonal part of K g?, which is identical to the diagonal of the
submatrix K¢ of K. Then, we can replace Kgﬂg on the right-hand side of (3.1) with

K ?;diag. Since K ?g is positive definite, we obtain the standard eigenvalue problem

(Kg;,diag) _1/2555 (Kgédiag) _1/2f*,§ = A eTug

,1/2
The coarse functions are then constructed from the eigenvectors 7, ¢ = (K ?édiag) Ty of

the associated generalized eigenvalue problem. In some rare situations, the lumped variant
can increase the coarse space dimension; cf. section 6.1.1. We indicate that the modifica-

tion is used by appending ¢(K) to the method’s name, for example, AGDSW—/(K).

3.3.2. Slabs around Interface Components

In order to reduce the computational cost, we can restrict the domain €2¢ of the Schur
complement to a slab Qé of [ layers of finite elements around the interface component;

see fig. 3.3. This approach is denoted economic in [DW16; KRR16; HKKR19].

The only thing that changes for the construction of the coarse space is that

0l QL QL
— 3 &
St = Ko — Ko (K,

et K

1 1
Qg + Q5
R¢
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3. The Adaptive GDSW Coarse Space

replaces the Schur complement Sg¢, where ng is the union of [ layers of finite elements of
71, (Q2¢) surrounding . The matrix K % is defined analogously to K% as the assembly of
agl (+,-) with a Dirichlet boundary condition on ang NoQp.

We obtain the generalized eigenvalue problem
QL QL
5&57—*75 = )‘*,éKgggT*{-

The rest of the coarse space construction remains the same. We indicate the use of this
variant by appending (1) to the method’s name, for example, AGDSW(3).

If the corresponding Neumann matrices or element stiffess matrices are available, this
variant can reduce the cost of computing the Schur complement. However, a small slab
can hinder the detection of patches of large coefficients that are connected and, thus, the
coarse space dimension may increase.

We show two examples to demonstrate the effect of the slab size. For more results using
the slab variant, we refer to sections 3.4, 4.5, 7.2.7, 7.3.1, appendix B.1, and [HKKR18b;
HKKR19].

For comparison, we show results for the coarse space SHEM from [GLR15; GL17].
Similarly to all of our coarse spaces, SHEM solves generalized eigenvalue problems on
subdomain edges. However, the left-hand side of an eigenvalue problem is not based on a
Schur complement but a stiffness matrix corresponding to a one-dimensional diffusion
problem along the respective subdomain edge. A scaled mass matrix is used on the
right-hand side of the eigenvalue problem.

We consider a two-dimensional diffusion problem with f =1 for the right-hand side
of (1.1) and a mesh and cofficient function that are given by fig. 3.4 (left). On 012, we
prescribe a zero Dirichlet boundary condition. The overlap is given by one layer of finite
elements. For the selection of eigenvectors, a tolerance of 0.05 is chosen for all coarse
spaces. Let us remark beforehand that the number of iterations and condition numbers
are below 12 for all methods.

For the SHEM coarse space, we obtain a dimension of 4, which is identical to the slab
variant of AGDSW with [ = 1. If we increase [ to 2, 3, and 4, we obtain coarse space

dimensions of 3, 2, and 1. The latter is identical to the standard AGDSW coarse space.
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3.3. Variants of AGDSW

Figure 3.4.: (Left) Two subdomains and a coefficient function (E = 10° in red; E = 1
in blue). (Right) Connected structure of large coefficients (F = 105 in
red; E =1 elsewhere) given by square plates of decreasing size (bottom to
top), connected by pillars. The structure is centered around the common
subdomain edge of the four cubic subdomains of the domain. Each sub-
domain contains 112 trilinear finite elements. The coefficient function and

visualization are an adaptation of [HKKR19, fig. 7].

Clearly, the coarse space dimension of the slab variant correlates with the structure of the
coefficient function that is inside the domain ng More details based on the variational
description of the method will be given in section 6.1.2.

For the second example, we consider a three-dimensional diffusion problem with a
zero Dirichlet boundary condition on 9€2. As before, f = 1 for the right-hand side of
(1.1), and an overlap of one layers of finite elements is used. The coefficient function and
further details are given in fig. 3.4 (right) and the corresponding figure caption.

We test the AGDSW coarse space and its slab variant for different sizes [ of the slab.
To simplify the analysis, we use the full slab for subdomain faces; i.e., QL = Qg for § € F.
The tolerance for the selection of eigenvectors is set to 0.01. We obtain a coarse space
dimension of 5 for AGDSW. For the slab variant and [ = 1,2, 4,6, 8, we obtain 9, 8, 7, 6,
and 5. Similarly to the two-dimensional case, the coarse space dimension correlates with
the number of connected patches of large coefficients that are inside Qé

We conclude that using the slab variant can reduce the cost to set up a Schur comple-

ment, but choosing a small slab can significantly increase the coarse space dimension.
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3. The Adaptive GDSW Coarse Space

Figure 3.5.: Visualization of Q. \ e (red disks) and e (black disks) for a subdomain edge

in two dimensions.

3.3.3. Sum of Local Schur Complements

In the following, we describe a technique that significantly reduces the computational cost
for the setup of the Schur complement in (3.2). The variant is particularly well suited
for a parallel setting and also facilitates an implementation considerably; cf. [HKKR19,
sect. 7.2; HKK+22, sect. 12]. We remark that the resulting coarse space dimension can
be slightly larger than for the standard AGDSW method. However, the numerical results
suggest that this increase is fairly small.

Let us consider a subdomain edge e in a two-dimensional setting. By definition (3.2),
the Schur complement is defined with respect to the nodes of the open edge; that is,
the boundary nodes of the edge are part of Q. \ e. This introduces a weak coupling of
the Schur complement between the two subdomains adjacent to the edge; see fig. 3.5.
Similarly, in three dimensions, the Schur complement of a subdomain face is only weakly
coupled via the boundary nodes. This motivates the replacement of the Schur complement
with the sum of Schur complements associated with the individual subdomains. In three
dimensions, in the case of subdomain edges, the problem is coupled via subdomain faces.
As a result, we can expect the coupling between subdomains to be stronger. However,
the numerical results in sections 3.4, 4.5, 7.2.7, 7.3.1, chapter 8, and appendix B show
only a moderate increase in the coarse space dimension.

Let ¢ be a subdomain edge or face. By n(£) we denote the index set of subdomains
adjacent to £&. Then we have

%= U %%
ken()
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3.3. Variants of AGDSW

We define Schur complements on ¢ N Qy, with respect to Q: Let K be the stiffness
matrix assembled with agq, (-, -) using a Dirichlet condition on 09 NOS2p and a Neumann
condition on the remaining boundary of €. We partition K*** by the degrees of freedom
of £ Ny, and the remaining ones, R, such that

Q Q
Kpp Kge

QO QO
Kep K

K% =

The local Schur complements are then defined as
ko 0 Q% (1o% \ T 0
Ste = Kt — KO (Kkh) Kpe,  k€n(e).

As before, in the case of a diffusion problem, Kg}“% is positive definite, and (Kgﬁ)Jr can
be replaced by an inverse. For linear elasticity, K %}3 may only be positive semidefinite;
see remark 6.5 for details and section 4.4 for remarks on an implementation.

To compute the sum of the local Schur complements, we need to map the degrees of
freedom of £ N to &. To this end, let RZQk be the required operator. We now define
the “sum of local Schur complements”

See = > RiaSteRen, (34)

ken(§)
as the replacement of the Schur complement Sge. The modified generalized eigenvalue
problem is given by
SggT*f = )\*7§K§2§§T*7§,

where the matrix on the right-hand side is identical to the one in (3.1). This variant can
also be applied to the coarse spaces in chapters 4 and 7 and, additionally, in combination
with all of the other variants. We will indicate its usage by a trailing S, e.g., AGDSW-S.

The S-variant yields the same condition number bound as in (3.3). For further details
and insights, we refer to section 6.1.3, in which a variational description is given.

To demonstrate the effect of the S-variant, we analyze two numerical examples that
give different results for AGDSW and AGDSW-S. We consider diffusion problems on
a cuboid domain, composed of four cubic subdomains; see fig. 3.6. A zero Dirichlet

condition is prescribed on 0f2, and the right-hand side of (1.1) is given by f = 1.
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3. The Adaptive GDSW Coarse Space

Figure 3.6.: Coefficient functions with £ = 10° (red) and E = 1 elsewhere on a domain
decomposed into four cubic subdomains. Subdomain faces (labeled A to D)

and a subdomain edge are shown.

The structure of large coefficients of the first coefficient function we consider—see
fig. 3.6 (left)—is given by two plates that are connected via a corridor. We focus on
the edge eigenvalue problem first. Without the corridor, we would obtain two small
eigenvalues and, thus, two coarse functions (given a sufficiently large tolerance for the
selection of eigenvectors). However, the corridor connects the two plates and—since the
entire structure is inside 2¢—we only obtain a single small eigenvalue if AGDSW is used.
On the other hand, if AGDSW-S is used as a coarse space, the subdomains are decoupled
at the interface, except for the subdomain edge. Thus, we can think of the corridor being
cut in half at the subdomain faces. In that case, there is no connection between the two

plates anymore. As a result, using AGDSW-S, we obtain two coarse functions.

Let us now focus on the subdomain faces, labeled A to D. As the corridor intersects D,
this is the only face whose associated Schur complement holds information about the
complete corridor (the corridor is inside the union of subdomains adjacent to D). There-
fore, we obtain two coarse functions for each A, B, and C, and only one coarse function
for D, using AGDSW. In the case of AGDSW-S, the situation is identical for all faces
as the decoupling only takes place on the boundary nodes of the face, which does not

influence the present case. To sum up, we obtain a coarse space dimension of 8, using
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Figure 3.7.: (Left/Right) Two visualizations of a coefficient function with £ = 10° (red)
and E =1 elsewhere, on a domain decomposed into four cubic subdomains.
The subdomain edge is shown as a pole. (Left) Subdomain faces are

additionally displayed.

AGDSW, and a dimension of 9, using AGDSW-S.

The second coefficient function we consider—see fig. 3.6 (right)—consists of three
plates connected via corridors. However, the type of connection is different, and AGDSW
and AGDSW-S both detect the presence of only a single connected structure. As before,
we consider the edge first. This time, by decoupling the subdomains, the connection
between the plates is not lost. The subdomain adjacent to A and D connects the bottom
two plates, and the subdomain adjacent to C' and D the top two plates. The connection
between all three plates is then detected via the subdomain edge. Thus, for this case,

AGDSW and AGDSW-S both obtain only one small eigenvalue.

Let us move on to the subdomain faces, for which the situation is once again identical
for both coarse spaces. Face A cannot identify the connection between the top and the
bottom two plates. Thus, we obtain two coarse functions. Face B cannot identify any
connection; we obtain three coarse functions. Face C can detect the connection between
the top two plates; we obtain two coarse functions. Face D is aware of all connections;

we obtain one coarse function.
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3. The Adaptive GDSW Coarse Space

We consider a final case to point out that not only the number of connected patches
of large coefficients is relevant; see fig. 3.7 for the coefficient function. For the sake
of completeness, we remark that—if only eigenvectors are selected that correspond to
small eigenvalues—AGDSW constructs a coarse space of dimension 20 and AGDSW-S
of dimension 25. However, we would like to focus on the strength of the connectivity of
the patch of large coefficients. The entire structure of plates is connected via a “staircase”
on the right. Thus, we can expect that only a single coarse function suffices to remove
the small eigenvalues. Indeed, if we apply the GDSW approach from section 1.4 but use
the entire interface as the only coarse component, we obtain a coarse space dimension
of 1 and a condition number of 1267.8. Of course, this leaves room for improvement.
Even for this local structure of large connected coefficients, we seem to require more than
one coarse function. The difficulty stems from the fact that the connectivity is fairly
weak. It is easy to imagine even weaker connected structures, where each connection is
only supported by a single finite element node.

To obtain a condition number below 100, the AGDSW and AGDSW-S coarse spaces
require 30 coarse functions (using a tolerance of 0.06 and 0.03, respectively). We
conclude that, even though AGDSW-S weakens the detection of connected patches of
large coefficients, the knowledge of this connection may sometimes be of little benefit to
AGDSW. Furthermore, for complex problems, it may not be sufficient to use only coarse
functions that correspond to small eigenvalues (in the order of 1076 for the examples

above).

3.3.4. Scaled Mass Matrix

Another variant is defined by using a scaled mass matrix on the right-hand side of
generalized eigenvalue problem (3.1). To the best of our knowledge, this does not improve
the performance of the preconditioner, as is supported by numerical results in sections 3.4,
7.2.7, 7.3.1, and appendix B. However, we include its description as a variety of other
coarse spaces (including the one in chapter 7) use a mass term on the right side of the

eigenvalue problem; cf. [DNSS12; GLR15; HKKR18b; EMR19; HKKR].
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3.4. Numerical Results for Diffusion Problems

We define the symmetric, positive definite bilinear form

E(T)
Wy

b (u,v) == Z

/ u(z) -v(z)de, w,ve VHQ),
Tery () Q

where hp may be, for example, the finite element diameter hp or the radius of the largest
insphere of T'; cf. [HKKR19, remark 7.4]. For the sake of convenience, and since the
triangulation is shape-regular, we use the finite element diameter hp for the theoretical
analysis in chapter 6 but the radius of the largest insphere for numerical results.

From the assembly of b (u,v), we obtain the mass matrix M. Let £ be an edge e € £
or a face f € F, and let M be partitioned by the degrees of freedom corresponding to &
and the remaining ones, R,

Mgpr Mpge
Mer  Mege

M =

The matrix on the right-hand side of (3.1) is now replaced by M¢. Let us note that this
variant can be applied to all our coarse spaces, and it can also be combined with any
other variant. We indicate the use of this variant by a trailing M, e.g., AGDSW-M. For
details regarding the theory; see section 6.1.4.

As for the original method in section 3.3.1, we can modify the right-hand side by
lumping the scaled mass matrix (see also section 6.1.4, [HKKRI18b, sect. 4.3], and
section 6.1.1): Let M¢¢ giag denote the diagonal part of Mee. Then we can use Meg diag
on the right-hand side of (3.1). We indicate that this modification is used by appending
¢(M) to the method’s name, for example, AGDSW-/(M).

3.4. Numerical Results for Diffusion Problems

In the following, we show numerical results and compare different variants of the standard
adaptive GDSW coarse space. We include results for the vertex-based coarse space
EMR-VB and the wire basket coarse space EMR-WB from [EMR19]. Furthermore, we

show results for the GDSW coarse space, the one-level additive overlapping Schwarz
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3. The Adaptive GDSW Coarse Space

preconditioner OSL1 without a coarse space, and for the plain conjugate gradient method
without any preconditioner, denoted by CG. Note that in the notation chapter, an
overview of coarse space acronyms is given.

For the results of this section, we have used the coarse spaces introduced above for
more general, unstructured domain decompositions. As mentioned before, the coarse
space construction is identical for the unstructured case, but the definition of interface
partitions then differs; see chapter 5. The scaling factor sz of the mass matrix variant is
set to the radius of the largest insphere of T' € 73, (£2).

We consider three-dimensional diffusion problems for the meshes and coefficient func-
tions (2) and (3) in sections 2.2 and 2.3, respectively; results for the other two model
problems are given in tables B.1 and B.9. For the right-hand side of (1.1), we use f = 1.
For all methods, an overlap of two layers of finite elements is chosen.

We use the conjugate gradient method with the convergence criterion

[EalE

T <1078,
17 l,2

where (%) is the kth unpreconditioned residual. Let us note that the residual is updated
recursively. The initial vector is set to the zero vector and the maximum number of
iterations to 2000. A condition number estimate is obtained after the last iteration, using
the Lanczos method; cf. [Saa03, sect. 6.7.3].

To compare the coarse spaces, we show results for the condition number x = ko( M 1K),
the number of iterations, the coarse space dimension dim V{—broken down into the
contributions of individual types of interface components V, £, F—and the dimension
of the coarse space relative to the size of the stiffness matrix K. For the selection of
eigenvectors, we always use the same tolerance for each interface component.

For the first considered model problem from section 2.2, the results in table 3.1 show
that the condition numbers of all nonadaptive methods exceed 10%. The condition
number of OSL1 scales with the maximum contrast of the coefficient function (108 for
problems (1) and (3), 10° for problem (2)); see also table B.1. Nevertheless, the number

of iterations of OSL1 and GDSW are comparatively small. This can be explained by the
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Table 3.1.:

3.4. Numerical Results for Diffusion Problems

method tol it. K dimVy (V, £, F) dmh
CG —  >2000 7.0-10° — —
OSL1 — 389 4.4-10° — —
GDSW — 125 3.8106 441 ( 70,199, 172) 0.79%
EMR VB  10°¢ 66 1.5-10* 652 (185, 4,463) 1.16%
EMR-VB  10* 49 186 746 (185, 4,557) 1.33%
EMR-WB 1076 54 1210 960 (97,862, 1) 1.71%
EMR-WB  10~* 41 149 964 (97,862, 5) 1.72%
AGDSW 10-° 129 4.2:10° 483 (70, 200, 213) 0.86%
AGDSW  0.001 49 201 500 ( 70, 215, 215) 0.89%
AGDSW 0.1 49 201 500 ( 70, 215, 215) 0.89%
AGDSW-S 1077 128 4.2:10° 483 ( 70, 200, 213) 0.86%
AGDSW-S  0.001 49 201 500 ( 70, 215, 215) 0.89%
AGDSW-S 0.1 49 201 500 ( 70, 215, 215) 0.89%
AGDSW-M 107° 153 3.9-10° 485 (70, 201, 214) 0.87%
AGDSW-M  0.001 49 201 500 ( 70, 215, 215) 0.89%
AGDSW-M 0.1 41 132 743 ( 70, 215, 458) 1.33%

(Model problem (2)) Results for the coefficient function in fig. 2.3, the
diffusion problem, different methods, and tolerances for the selection of eigen-
vectors: iteration count, condition number, resulting coarse space dimension,
and coarse space dimension over the size of the stiffness matrix. The number
of coarse functions associated with subdomain vertices, edges, and faces is

given in parentheses.

fact that the problem is fairly small and contains only a small number of disconnected

patches of large coefficients. Furthermore, as we will see in chapter 8, the number of

iterations will increase considerably if a linear-elastic problem is modeled.

All adaptive coarse spaces attain small condition numbers and numbers of iterations.

For each coarse space, we show multiple tolerances for the selection of eigenvectors. For
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3. The Adaptive GDSW Coarse Space

method tol it. kK dimVy (V, €, F ) dnl
CG —  >2000 5.1-108 — —
OSL1 — 743 6.5-10° — —
GDSW — 565 1.3-105 1593 (328, 750, 515) 0.27%
EMR VB  10°¢ 547 3.6-10% 2723 (394, 446, 1883) 0.46%
EMR-VB  10~* 59 271 3252 (394, 447,2411) 0.55%
EMR-WB 106 314 1.1.10* 5941 (378,5527, 36) 1.01%
EMR-WB  10~* 46 19.1 6195 (378, 5527, 290) 1.05%
AGDSW 1074 549 5.810% 1781 (328, 652, 801) 0.30%
AGDSW  0.001 59 30.1 1814 (328, 678, 808) 0.31%
AGDSW 0.1 51 221 1907 (328, 678, 901) 0.32%
AGDSW-S 104 431 4.9-10* 1789 (328, 658, 803) 0.30%
AGDSW-S  0.001 59 297 1815 (328, 679, 808) 0.31%
AGDSW-S 0.1 51 221 1913 (328, 680, 905) 0.32%
AGDSW-M 10~* 168 2.3-10* 1807 (328, 672, 807) 0.31%
AGDSW-M  0.001 59 302 1814 (328, 678, 808) 0.31%
AGDSW-M 0.1 40 12.0 3890 (328, 684,2878) 0.66%

Table 3.2.: (Model problem (3)) Results for the coefficient function in fig. 2.4, the
diffusion problem, different methods and tolerances for the selection of eigen-
vectors: iteration count, condition number, resulting coarse space dimension,
and coarse space dimension over the size of the stiffness matrix. The number

of coarse functions associated with subdomain vertices, edges, and faces is

given in parentheses.

simple problems, the spectrum of a generalized eigenvalue problem contains a large gap,
such that changes of the tolerance may result in only minor differences in the coarse
space dimension. For example, table 3.1 shows that AGDSW-M has a coarse space
dimension of 500 for a tolerance of 0.001 and an only slightly smaller dimension of 485

for a tolerance of 107°. And, yet, these 15 coarse functions make the difference as we
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3.4. Numerical Results for Diffusion Problems

obtain a condition number of 386 207.9 without them. If, on the other hand, a tolerance
of 0.1 is used, the coarse space dimension increases by almost 50% to 743, yet resulting

in only a minor improvement of both the condition number and the number of iterations.

Table 3.1 further shows that the considered variants lead to similar results. However,
the spectrum may be shifted in a way that the same tolerance for the selection of
eigenvectors can lead to different coarse space dimensions. The results are especially

promising for the S-variant as it is suited much better for a parallel implementation.

Before comparing the results with the coarse spaces EMR-VB and EMR-WB, let
us note that, generally, a direct comparison of coarse spaces is difficult. A thorough
comparison requires not only an efficient, parallel implementation of the coarse spaces
considered, but it also depends on the type of problem at hand. Other aspects, such
as the complexity of an implementation, can play an important role as well. Hence, a
thorough comparison is out of the scope of this work, and we only highlight certain

aspects of the coarse spaces.

As we can see from the results in table 3.1, we achieve a significant reduction in the
coarse space dimension compared to EMR-VB and EMR-WB. Note that the number of
vertex functions of EMR~VB differs from the ones of the other coarse spaces. In [EMR19],
the authors have assumed that there exist vertices at the boundaries of subdomain edges.
However, here, a Neumann boundary condition is prescribed on most of 92 for the
considered model problem. As a result, many subdomain edges have no or only one
incident vertex; as a remedy, we have set dummy vertices. In [HKKR19, table 4], we
have given results without this modification, in which case an eigenvalue problem similar
to that of AGDSW(1) is obtained for subdomain edges without any incident vertices.
For EMR-WB, we note that each node on the wire basket is associated with a coarse
function; we have attributed the coarse functions of the wire basket to V and & in

tables 3.1 and 3.2.

The second considered model problem from section 2.3 supports our previous findings.
The problem is larger and has a more complex coefficient function, which is reflected by

the larger number of iterations required using the nonadaptive preconditioners. As before,
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3. The Adaptive GDSW Coarse Space

the differences between AGDSW and AGDSW-S are negligible. If we use a tolerance
of 0.1 for AGDSW-M, the coarse space dimension is much larger than for AGDSW and
AGDSW-S because of a pronounced shift of the spectrum. We conclude that a slightly
smaller tolerance should be used for AGDSW-M to prevent excessively large coarse
spaces.

In tables B.1 and B.9, results are given for model problems (1) and (4), respectively. In
[HKKRI19, table 4], results for GDSW and AGDSW-S(3) are given for model problem (4)
as well. Note, however, that these results are not directly comparable as, here, we use a

slightly different interface partition and definition of AGDSW-S.

3.4.1. Slab Variant and Lumped Matrices

Table 3.3 shows results for the slab variant, problems (2) and (3), AGDSW, and
AGDSW-S§; results for problem (1) are given in table B.5. For problem (2) of section 2.2,
the differences between the variants are negligible. However, for problem (3) of section 2.3,
the coarse space dimension increases by 24.0% for AGDSW and AGDSW-S if a slab
extending only one layer of finite elements is used. If the slab extends by three layers of
finite elements, the coarse space dimension increases by 4.8% for AGDSW and by 4.9%
for AGDSW-S.

Finally, we examine the lumped versions of AGDSW, AGDSW-S, and AGDSW-M in
table 3.4. Results for problem (1) are given in table B.7. In section 6.1.1, the effect of
lumping will be analyzed from a theoretical point of view. This will show that there
exist only rare cases for which the coarse space dimension can increase. However, the
spectrum may be shifted, which can make direct comparisons difficult. Nevertheless, we
expect the differences to be small, which is supported by the results in table 3.4: only

the condition number estimate differs minimally in two instances.

3.4.2. Influence of the Size of the Overlap

In chapter 6, we will derive a condition number bound that—unlike the classical estimate

(cf. (1.10))—does not include a dependence on the size of the overlap. The results in
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E  method tol it. k dimVy (V, £, F ) dnh
AGDSW 0.001 49 20.1 500 ( 70,215, 215) 0.89%
AGDSW(3)  0.001 49 20.1 502 ( 70,217, 215) 0.90%

@) AGDSW(1)  0.001 49 20.0 507 ( 70,217, 220) 0.90%
AGDSW-S  0.001 49 20.1 500 ( 70,215, 215) 0.89%
AGDSW-S(3) 0.001 49 20.1 502 ( 70,217, 215) 0.90%
AGDSW-S(1) 0.001 49 20.0 507 ( 70,217, 220) 0.90%
AGDSW 0.001 59 30.1 1814 (328,678, 808) 0.31%
AGDSW(3)  0.001 58 29.7 1927 (328,775, 824) 0.33%

3) AGDSW(1)  0.001 57 27.8 2280 (328,926, 1026) 0.39%

3
AGDSW-S  0.001 59 29.7 1815 (328,679, 808) 0.31%
AGDSW-S(3) 0.001 58 29.7 1929 (328, 777, 824) 0.33%
AGDSW-S(1) 0.001 57 27.8 2280 (328,926, 1026) 0.39%

Table 3.3.: Results for the coefficient functions (2) and (3) in figs. 2.3 and 2.4, the

diffusion problem, different methods, and a tolerance of 0.001 for the selection

of eigenvectors: iteration count, condition number, resulting coarse space

dimension, and coarse space dimension over the size of the stiffness matrix. If

the slab variant is used, the slab width in layers of finite elements is appended in

parentheses to the method’s name. The number of coarse functions associated

with subdomain vertices, edges, and faces is given in parentheses.

table 3.5 show an initial decrease of the number of iterations; see also [HKK+22, table 2.

However, for larger overlaps, the number of iterations can increase; see also [CG18]. For

this, we note that the condition number bound (theorem 6.1) depends on N¢, which is

the maximum number of overlapping subdomains a finite element node can belong to.

As the results suggest that—despite the findings in section 1.5.4—the advantage of

using a large overlap is at best moderate, and since the sizes of the local overlapping

problems grow quickly (see also tables 1.1 and 2.2), we use a moderately sized overlap of

two layers of finite elements for all problems defined in chapter 2.
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3. The Adaptive GDSW Coarse Space

Table 3.4.: Results for the coefficient functions (2) and (3) in figs. 2.3 and 2.4, the

70

E  method tol it. k dimVp (V, £, F) dmh
AGDSW 0.001 49 20.1 500 ( 70, 215, 215) 0.89%
AGDSW-((K)  0.001 49 20.1 500 ( 70, 215, 215) 0.89%

(2) AGDSW-S 0.001 49 20.1 500 ( 70, 215, 215) 0.89%
AGDSW-S—¢(K) 0.001 49 20.1 500 ( 70, 215, 215) 0.89%
AGDSW-M 0.001 49 20.1 500 ( 70, 215, 215) 0.89%
AGDSW-¢(M)  0.001 49 20.1 500 ( 70, 215, 215) 0.89%
AGDSW 0.001 59 30.1 1814 (328, 678, 808) 0.31%
AGDSW((K)  0.001 59 30.2 1814 (328,678, 808) 0.31%

(3) AGDSW-S 0.001 59 29.7 1815 (328, 679, 808) 0.31%
AGDSW-S/(K) 0.001 59 30.2 1815 (328, 679, 808) 0.31%
AGDSW-M 0.001 59 30.2 1814 (328, 678, 808) 0.31%
AGDSW-4(M)  0.001 59 30.2 1814 (328,678, 808) 0.31%

diffusion problem, different methods, and a tolerance of 0.001 for the selection
of eigenvectors: iteration count, condition number, resulting coarse space
dimension, and coarse space dimension over the size of the stiffness matrix. If
a lumped matrix is used, ¢(K) or ¢(M) is appended to the method’s name.

The number of coarse functions associated with subdomain vertices, edges,

and faces is given in parentheses.



3.4. Numerical Results for Diffusion Problems

E  method  tol §=1h 6=2h 6=3h 6=4h &=D5h
it. 59 49 50 51 54

AGDSW 001 K 27.7 20.1 20.9 22.5 25.4

(2) AGDSW 105 it. 180 158 133 151 131
K 4.9-10° 4.2.10°  4.3-10°  4.4-10°  4.7-10°

‘ / mean 1313.0 1877.4 26345 3589.5  4746.7

size of Ky max 1403 2098 3369 4965 7155

it. 77 59 52 45 45

AGDSW 001 K 56.6  30.1 21.8 15.8 14.1

(3) AGDSW 10~ it. 639 517 497 430 434
K 5.7.10* 5.810* 6.8.10* 6.9-10* 7.4-10%

mean 6656.4 8918.7 11843.2 15237.7 19092.1

size of K]
max 6963 9817 14 086 19131 24974

Table 3.5.: Results for the coefficient functions (2) and (3) in figs. 2.3 and 2.4, the
diffusion problem, AGDSW, two tolerances for the selection of eigenvectors,
and different sizes of the overlap 6 = kh, where k is the number of layers of
finite elements: number of iterations and condition numbers. Average and
maximum number of degrees of freedom of the local overlapping stiffness

matrices K are given for reference.
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4. Reduced-Dimension Adaptive GDSW

Coarse Spaces

In the following, we introduce a new type of an adaptive GDSW coarse space. Our goal
is to reduce the dimension of the adaptive GDSW coarse space, as in each iteration of
the preconditioned Krylov subspace method, a coarse problem needs to be solved. If the
dimension of the coarse space grows too large, we either need to reduce its dimension or
use parallel solvers that can deal with heterogeneous problems for the coarse solve, e.g., a
three-level method where the coarse spaces of the second and third level are constructed
adaptively.

The following approach that can reduce the coarse space dimension was initially used
in [DW12; DW14; DW17] (see also [DW10] for earlier, related work) and is based on
a different partition of the interface. Further works that were inspired by or are based
on this approach are, e.g., [HKRW18; HHK20; HKRR20b; Hoc20; HHK21; HKK+22;
HPR22; HKRR21; HRR22].

In section 4.1, we define a new type of interface decomposition that can be used to
construct a GDSW-type coarse space. Subsequently, in section 4.2, a generalization of
the adaptive GDSW coarse space for almost arbitrary interface partitions is presented.
The generalization of AGDSW based on the new partition in section 4.1 is denoted by
RAGDSW. The description of the coarse space construction uses matrix formulations
and closely follows [HKK+22]; the corresponding variational formulations will be given
in chapter 6.

The coarse spaces of this chapter essentially yield the same condition number bound

as AGDSW in the previous chapter: Let tolp be the smallest tolerance used for the
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Figure 4.1.: (Compare with [HKK+22, fig. 1]) Analogue of fig. 1.4. (Left) Decomposition
of T into 3 subdomain vertices and 7 edges. The Dirichlet boundary 0Qp is
given by the left side of the domain, 925 by the remaining boundary. Vertices
are marked with colored squares, edge nodes with gray disks. (Center)
RGDSW interface decomposition obtained from the decomposition on the
left. (Right) RGDSW function of diffusion problem with E = 1, associated

with the interface component at the top (green, center image).

selection of eigenvectors. In chapter 6, we will prove the condition number bound

_ 1
k2 (Mpagpswk) < C (1 + @) ;

where C' is independent of H, h, and the contrast of the coefficient function; cf. theo-

rem 6.1.

4.1. Reduced-Dimension GDSW

For a two-dimensional problem, in fig. 4.1 (left), the GDSW interface partition into
subdomain vertices and edges is shown. We combine vertices with parts of the adjacent
edges to construct a new type of interface partition that results in fewer coarse functions;
cf. fig. 4.1 (center). For the example in fig. 4.1, this approach leads to a reduction in
the number of interface components from 10 for GDSW to 3 for the new decomposition.

In three dimensions, we combine vertices with parts of the adjacent edges and faces;
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4.2. Adaptive GDSW for a Large Class of Interface Partitions

cf. fig. 4.2. To the new type of interface components, we refer as interface stars. An
algorithm for the construction of interface stars, in the case of unstructured as well as
structured meshes, is given in section 5.4.

Based on the new interface decomposition, we can define the RGDSW coarse space
completely analogously to that of GDSW-—see section 1.4—that is, we extend the
restriction of the null space by zero from the interface components to the entire interface
and then energy-minimally to the interior of the subdomains. An example of an RGDSW
coarse function for a homogeneous diffusion problem is given in fig. 4.1 (right); see also
fig. 1.4, where the same domain decomposition was used for GDSW.

As the coarse space dimension of GDSW and RGDSW is given by the number of
interface components multiplied by the null space dimension of KV (cf. section 1.4.2),
we can obtain a significant reduction in the coarse space dimension, using RGDSW. Let
us remark that the precise definition differs from the coarse space in [DW17], but it can
be regarded as a variant of the coarse spaces of that paper.

We note that we cannot choose arbitrarily large interface components as this would
result in a nonscalable method; see section 6.4.3. Furthermore, components spanning
many subdomains are not desirable in a parallel setting as this can significantly increase
the communication cost. Therefore, we seek to minimize the number of subdomains
adjacent to an interface component &: Let e € £, f € F, and v € V be a vertex that is
incident to e and f. Then 2. and Q; are a subset of ,. Thus, by combining vertices
with parts of incident edges and faces, the number of subdomains adjacent to £ is not

increased.

4.2. Adaptive GDSW for a Large Class of Interface Partitions

Our intention is to use the AGDSW generalized eigenvalue problem (3.1) for the new type
of interface decomposition introduced in the previous section. On the one hand, this will
reduce the number of coarse functions associated with zero eigenvalues (which correspond

to RGDSW coarse functions). On the other hand, for larger interface components, it is
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4. Reduced-Dimension Adaptive GDSW Coarse Spaces

Figure 4.2.: (Left) Visualization of the interface of a domain decomposition. Finite
element faces in gray, subdomain edges in yellow, and two subdomain vertices
in red and blue. (Right) Resulting interface stars associated with the
subdomain vertices. Finite element faces whose nodes coarse components

share are colored in dark gray. See also fig. 5.2.

more likely that connected patches of large coefficients can be detected; cf. section 1.5.1.
To obtain a robust coarse space, a modification of the matrix on the right-hand side of
(3.1) is required; the reason will be explained in section 6.1.1.

Let us consider the domain decomposition and RGDSW interface partition in fig. 4.3
(left). We decompose each component & into subcomponents &; based on subdomain

vertices, edges, and (in three dimensions) faces such that
(&}, ={€Nc:c€VUEUF A cnéE#£DY, (4.1)

where ng¢ is the number of subcomponents of §; cf. fig. 4.3 (right). In a two-dimensional
setting, we use F := () in (4.1). For the example in fig. 4.3, each component ¢ is
decomposed into five subcomponents §;, where four of them correspond to subdomain
edges, and one corresponds to a subdomain vertex. The general idea is the same for
unstructured domain decompositions; cf. (5.2).

To define the matrix on the right-hand side of the generalized eigenvalue problem, we
use the matrix K ;5 from (3.1) and decouple it with respect to the subcomponents &;.

Let K ?55 be partitioned by the subcomponents such that

Kg = (ngj)”jzl .
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4.2. Adaptive GDSW for a Large Class of Interface Partitions

Figure 4.3.: (Left) RGDSW interface partition consisting of four components (coarse
interface stars); cf. [HKK+22, fig. 1]. Dirichlet boundary condition on the
left; Neumann condition on the remaining part of the boundary. (Right)
Decomposition of the components in the left image into subcomponents;

cf. [HKK+22, fig. 2].

Then, we define its replacement for (3.1) by removing all off-diagonal blocks:

,f(,& = blockdiag(ngi).

=1,...,n¢

The new generalized eigenvalue problem reads (the Schur complement S¢e from (3.2)

remains unaltered)

SeeTug = A KeeTug (4.2)

The decoupling of K ?g is essential to obtain a robust preconditioner: without the block-
structure of the matrix, it is possible to construct a case (mesh, domain decomposition,
and coefficient function) for which the algorithm fails to obtain a small condition number;
see section 6.1.1 for details.

The remainder of the coarse space construction is identical to that in chapter 3:
Let the eigenvalues \,¢ be sorted in nondescending order and the eigenvectors 7 ¢
accordingly. We select eigenvectors corresponding to an eigenvalue smaller than or equal

to a user-prescribed tolerance tol¢, extend the selected eigenvectors by zero to I'" and
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then energy-minimally to the interior of the subdomains. The resulting coarse functions—
denoted by v, ¢—define the columns of the matrix ® of the Schwarz preconditioner. The
RAGDSW coarse space is given by
VRAGDSW = span ( U {Vse : Mg < tole })
£ep

All variants of adaptive GDSW in sections 3.3.2 to 3.3.4 can be used without modifica-
tion to construct an RAGDSW coarse space. This includes the variant in section 3.3.4,
for which the mass matrix on the right-hand side of the eigenvalue problem does not have

to be decoupled with respect to the subcomponents ; of the interface components &.

Remark 4.1. Analogously to remark 3.1, if a Neumann boundary condition is always
used on OS¢ for the assembly of K%% —as is the case in [HKKR19; HKK+22]—the Schur
complement is always singular, and its null space is given by the restriction of the null
space of K% to &. Since tolg > 0, the null space is always selected for the construction
of the coarse space. As a result, if tole = 0 for all interface components { € P, the
RAGDSW and RGDSW coarse spaces are identical. For the construction of RAGDSW
in this work, however, we enforce a zero Dirichlet boundary condition on 9 N OS1p.

Therefore, we obtain the RGDSW coarse functions only if 0 N OAp = 0.

4.3. An Interface Partition Based on the Wire Basket and

Subdomain Faces

RGDSW interface components can be considerably larger than the subdomain faces of
GDSW; cf. section 5.7.3. The cost for the setup and solution of the associated generalized
eigenvalue problems scales cubically with the size. As a result, the solution may become
computationally too expensive in some situations, demanding a domain decomposition
with smaller subdomains to obtain smaller interface components or, alternatively, a
different interface decomposition. The construction of the RAGDSW coarse space is
valid for other types of interface decompositions. Here, we give another example, which

can serve as a compromise between AGDSW and RAGDSW.
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Figure 4.4.: Four wire basket stars (in yellow) and a subdomain face (in gray). Subdomain
vertices are marked with blue spheres; finite element edges on the wire basket

that belong to multiple stars are colored in dark gray.

For the new type of interface decomposition, we keep the face problems for f € F but
replace the problems on subdomain edges and vertices with problems on so-called wire
basket stars (the wire basket is the union of subdomain vertices and edges). We use the
same process to partition the wire basket as we have used for RAGDSW to partition the
interface: subdomain vertices are combined with parts of adjacent edges; cf. fig. 4.4. For
the construction in the case of unstructured domain decompositions, see section 5.5. By
R-WB-AGDSW we denote the resulting adaptive coarse space and by R-WB-GDSW
the nonadaptive coarse space. We note that, in two dimensions, the resulting interface

decomposition is identical to that of RGDSW.

4.4. Remarks on the Implementation

The classical GDSW coarse space from section 1.4 only requires the fully assembled
stiffness matrix K. In contrast, the adaptive coarse spaces of this work—including all
variants—require local (Neumann) stiffness matrices that cannot be extracted from K. If
the local stiffness matrices are available, however, the corresponding Schur complements
can be assembled easily; a sample code was given in section 3.2. Using the S-variant

from section 3.3.3, the setup is further simplified since the Schur complements can be
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4. Reduced-Dimension Adaptive GDSW Coarse Spaces

computed by a parallel sum of Schur complements associated with individual subdomains.

The matrix on the right-hand side of the generalized eigenvalue problem can essentially
be extracted from the fully assembled stiffness matrix (disregarding the decoupling with
respect to the subcomponents), with the only exception being the variant that uses a
scaled mass matrix (cf. section 3.3.4).

Let us remark—and mention in advance before the introduction of an ACMS-based
coarse space in chapter 7—that the adaptive GDSW-type coarse spaces are easier to
implement with respect to arbitrary types of interface decompositions: In the next
chapter, interface partitions for unstructured domain decompositions will be defined.
These can be highly complex and demanding to construct since many special cases and
their interdependencies have to be accounted for in an implementation. For example,
coarse edges (subdomain edges in a structured setting) can have coarse nodes (subdomain
vertices in a structured setting) at either end but they may also have no incident coarse
nodes at all; coarse edges can consist of multiple disconnected components, and each
component can even have more than two boundary nodes; cf. fig. 7.4.

The GDSW partition defined in chapter 5 ensures that some favorable properties are
satisfied, which can influence the performance and coarse space dimension positively.
However, our experience has shown that these restrictions—such as requiring the connec-
tivity of interface components—are not necessary to obtain a robust preconditioner. In
contrast, it is more challenging to implement the coarse spaces of chapter 7.

As we have mentioned in chapter 3, the matrix Kg% (or Kg% in the case of the slab
variant, or K g}} in the case of the S-variant) can be singular for a linear elasticity problem.
If £ is given by a straight edge or a vertex, in three dimensions, one or three linearized
rotation modes are in the null space. In case the S-variant is used, the likelihood of
encountering a singular matrix is even larger than for the original method, since &€ N Qy,
k € n(&), generally consists of fewer finite element nodes than . However, as we will learn
in remark 6.5, the Schur complement always exists and is uniquely defined. Specifically,

A

let K = K%, K= K% K = KQlﬁ, or K = K%. Then the linear system

KrrU = Kpe (4.3)
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always has at least one solution. Furthermore, all solutions lead to the same Schur
complement.

The matrix Kpgp is always symmetric and positive semidefinite, which leads to the
following possibilities to compute a solution to (4.3): Let us first mention the method we
opted to use to obtain the numerical results in this work. By adding a small regularization
term € R, where R is symmetric and positive definite, we obtain a symmetric positive
definite matrix:

Kpp < Kpp + €R.

For the results of this work, we have chosen the diagonal of K pr multiplied by e = 1071%:
Kpp + Krp + EKRR,diag-

A disadvantage of this method is the lower accuracy of the solution. Tests have shown
that a fairly high accuracy is required, such that € must be chosen very small.

In the following, we mention a few more possibilites. Theoretically, we could compute a
full pseudoinverse (e.g., a Moore—Penrose inverse) of KRrpg. Although completely algebraic,
this is very expensive in terms of memory requirements and processor time.

For a more efficient and still algebraic method, we can exploit that the eigenvalues
of Kpp are nonnegative. Thus, we may consider using a rank-revealing factorization to
compute a solution; cf. [Pan00].

We describe two more approaches, which rely on geometric information. The first
approach uses a projection to remove the null space, in which case we require geometric
information to construct linearized rotations. If direct solvers are used on the transformed
linear systems, care must be taken to avoid dense matrices.

The second approach eliminates a subset of the degrees of freedom of Kgpr and,
thereby, effectively enforces an additional Dirichlet condition. At best, no additional
computational cost is introduced.

As an example, let us consider three-dimensional linear elasticity and the case of a
body that is clamped on a straight pole as in fig. 1.3 (right). The body can rotate

around the pole without deforming, and we can prevent it from rotating by fixing an
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hold =z | hold =z v
o———

S 7 ~_1

hold z, v, 2

Figure 4.5.: Solid body (in red) clamped on an interface component (thick black line),
which is a straight edge; cf. fig. 1.3. Three scenarios for enforcing a displace-
ment at a spot are marked with a blue disk. (Left) Hold in x-direction:
body cannot rotate around the edge anymore. (Center) Hold in z-direction:
body can still rotate around the edge. (Right) Hold all degrees of freedom
of the marked node: body can still rotate around the edge.

additional point in place. The only requirement is that the additional point must not
lie on the same straight line as the pole. In terms of an implementation, introducing a
Dirichlet condition at a single degree of freedom (that prevents the rotation) suffices.
However, the degree of freedom must be selected carefully, which can be accomplished
using geometric information. See fig. 4.5 for three examples, where only one selection
leads to an invertible problem. In theory, we can use as many additional degrees of
freedom as we like. This, however, comes at the cost of an additional, singular Schur

complement system that needs to be solved, for example, using a full pseudoinverse.
We assume that, as in (4.3), the linear system

Kgrrr =1y

has a solution. Let D C R be a set of degrees of freedom such that K & B is invertible,
where R denotes the remaining degrees of freedom of R. Note that D must have at least

as many elements as the dimension of the null space of Krp. We partition K RR, Y, and x
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by R and D and eliminate R to obtain the Schur complement system

R Brp| [Tr)] _ YR
o 3 o A s A1 ~ )
0 Sp.b Th (5] D,RKRRyR
where
P S S i
DD =HDD DR g pIMR.D-

In case D was chosen properly, the null space dimension of S 5.p 1s identical to that
of Kpp. Since D should be very small, we can use a full pseudoinverse to solve the
system above. In case a minimal set D was chosen, this implies that S 5 p = 0 and also

Yp — KD,RKE}RyR = 0 since the system must have a solution. In that case, solving the

transformed system is no more expensive than solving the initial system with Krpg.

4.5. Numerical Results for Diffusion Problems

In tables 4.1 and 4.2, numerical results for model problems (2) and (3) from sections 2.2
and 2.3 are shown to examine the reduction in the coarse space dimension that is achieved
by using the interface decomposition from section 4.1 or section 4.3. Results for the other
two model problems are given in tables B.2 and B.9.

As in section 3.4, we consider three-dimensional diffusion problems with f = 1 for
the right-hand side of (1.1). The convergence criterion is chosen as the reduction of the
relative, unpreconditioned residual by 10~8; the initial vector is set to the zero vector,
and the iteration is stopped if it does not converge within 2 000 iterations. The condition
number estimate is obtained using the Lanczos method; cf. [Saa03, sect. 6.7.3].

The results for the nonadaptive preconditioners show that using RGDSW, we can
achieve a significant reduction in the coarse space dimension—from 441 to 76 for prob-
lem (2) and from 1593 to 339 for problem (3)—without significantly influencing the
number of iterations and condition number.

By using the interface partition of wire basket stars and subdomain faces instead of
subdomain vertices, edges, and faces, the coarse space dimension is reduced by 38.4% for

problem (2) and by 34.7% for problem (3), using R-WB-AGDSW instead of AGDSW;
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method tol it. kK dimVy (V, £, F, §) dnh
GDSW — 125 3.810% 441 (70,199,172, —) 0.79%
RGDSW — 133 3.9-10° % (—, —, —, 76) 0.14%
AGDSW 1075 129 4.2.10° 483 ( 70,200, 213, — ) 0.86%
AGDSW 0.001 49  20.1 500 ( 70, 215, 215, — ) 0.89%
AGDSW 0.1 49  20.1 500 ( 70, 215, 215, —) 0.89%
AGDSW-S 1075 128 4.2.10° 483 ( 70, 200, 213, —) 0.86%
AGDSW-S 0.001 49  20.1 500 ( 70, 215, 215, —) 0.89%
AGDSW-S 0.1 49  20.1 500 ( 70, 215, 215, — ) 0.89%
R-WB-AGDSW 1075 138 4.3-10° 299 (—, —, 213, 86) 0.53%
R-WB-AGDSW  0.001 53 215 308 (—, —,215, 93) 0.55%
R-WB-AGDSW 01 53 215 308 (—, —,215, 93) 0.55%
R-WB-AGDSW-S 1075 136 3.1-10° 301 (—, —, 213, 88) 0.54%
R-WB-AGDSW-S 0.001 53 215 308 (—, —, 215, 93) 0.55%
R-WB-AGDSW-S 01 53 215 308 (—, —,215, 93) 0.55%
RAGDSW 1075 78 7.810% 109 (—, —, —,109) 0.19%
RAGDSW 0.001 56  24.2 112 (—, —, —, 112) 0.20%
RAGDSW 0.1 56 242 113 (—, —, —,113) 0.20%
RAGDSW-S 1075 77 7.810% 109 (—, —, —,109) 0.19%
RAGDSW-S 0.001 56 24.2 12 (—, —, —,112) 0.20%
RAGDSW-S 0.1 56 236 18 (—, —, —,118) 0.21%

Table 4.1.: (Model problem (2)) Results for the coefficient function in fig. 2.3, the
diffusion problem, different methods and tolerances for the selection of eigen-
vectors: iteration count, condition number, resulting coarse space dimension,
and coarse space dimension over the size of the stiffness matrix. The number
of coarse functions associated with subdomain vertices, edges, faces, wire

basket and interface stars is given in parentheses. S refers to Syy/Sr.
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method tol it. kK dimVy (V, £, F, §) dnh
GDSW — 565 1.3-10° 1593 (328, 750, 515, — ) 0.27%
RGDSW — 536 1.1-105 339 (—, —, —,339) 0.06%
AGDSW 107% 549 5.810* 1781 (328,652,801, —) 0.30%
AGDSW 0.001 59  30.1 1814 (328,678,808, —) 0.31%
AGDSW 0.1 51 221 1907 (328,678,901, —) 0.32%
AGDSW-S 107% 431 4.910* 1789 (328, 658, 803, — ) 0.30%
AGDSW-S 0.001 59  29.7 1815 (328,679,808, —) 0.31%
AGDSW-S 0.1 51 221 1913 (328, 680, 905, —) 0.32%
R-WB-AGDSW  10~% 581 4.0-10* 1175 (—, —, 801, 374) 0.20%
R-WB-AGDSW  0.001 57 302 1200 (—, —,808,392) 0.20%
R-WB-AGDSW 01 52 235 1293 (—, —,901,392) 0.22%
R-WB-AGDSW-S 10~* 348 4.1-10* 1185 (—, —, 803, 382) 0.20%
R-WB-AGDSW-S 0.001 58  30.0 1201 (—, —, 808, 393) 0.20%
R-WB-AGDSW-S 0.1 52 235 1300 (—, —,905,395) 0.22%
RAGDSW 1074 674 4.4.10* 627 (—, —, —,627) 0.11%
RAGDSW 0.001 59 337 660 (—, —, —,660) 0.11%
RAGDSW 01 53 244 792 (—, —, —,792) 0.13%
RAGDSW-S 1074 499 2.7.10* 641 (—, —, —,641) 0.11%
RAGDSW-S 0.0001 59 337 663 (—, —, —,663) 0.11%
RAGDSW-S 01 50 217 899 (—, —, —,899) 0.15%

Table 4.2.: (Model problem (3)) Results for the coefficient function in fig. 2.4, the
diffusion problem, different methods and tolerances for the selection of eigen-
vectors: iteration count, condition number, resulting coarse space dimension,
and coarse space dimension over the size of the stiffness matrix. The number
of coarse functions associated with subdomain vertices, edges, faces, wire

basket and interface stars is given in parentheses. S refers to Syy/Sr.
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a tolerance of 0.001 was selected in both cases. By using RAGDSW, we achieve an
even larger reduction of 77.6% for problem (2) and 64.1% for problem (3) compared
to AGDSW. In all cases, the obtained condition number and number of iterations are
similar to that of AGDSW. As in section 3.4, the coarse space dimensions are minimal
in the following sense: if a tolerance smaller than 0.001 is used to significantly decrease
the coarse space dimension, the condition number and number of iterations increase
considerably.

Furthermore, as in section 3.4, the S-variant achieves comparable results. In practice,
a tolerance between 0.001 and 0.1 would be selected, where 0.1 leads to coarse spaces
that are unnecessarily large. However, we will observe later for linear elasticity problems
and, especially, for model problem (4) that even using a tolerance of 0.01 can lead to
much larger condition numbers.

In table 4.3, results for the slab variant are given; see table B.5 for results of problem (1).
Using only one layer of finite elements for the slab, we obtain an increase in the coarse
space dimension of 14.3% for problem (2) and 71.2% for problem (3) and RAGDSW. If a
slab of three layers of finite elements is used, the results are almost identical. Comparing
the results to the ones of AGDSW in table 4.3, the increase in the coarse space dimension
is much more pronounced for RAGDSW. This is expected as larger interface components
are more likely to detect connected patches of large coefficients, which is hindered by
using a small slab. The differences between RAGDSW and RAGDSW-S are negligible.

We conclude that using a small slab may reduce the computational cost, but it may
also significantly affect the coarse space dimension. Whether using the slab variant can
reduce the computational cost depends on the matrices available during assembly and on
the problem type: for simple problems—as problem (2)—using a minimal slab may be
sufficient.

In table 4.4, results for lumping the stiffness matrix are given. There seems to be no
difference in performance between the original and the lumped versions; see also table B.7

for results of problem (1).
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E  method tol it. k dimVj dig:)y(’

RAGDSW 0.001 56 24.2 112 0.20%
RAGDSW(3)  0.001 56 24.1 113 0.20%
RAGDSW(1)  0.001 56 24.1 128 0.23%

(2)
RAGDSW-S  0.001 56 242 112 0.20%

RAGDSW-S(3) 0.001 56 24.1 113 0.20%
RAGDSW-S(1) 0.001 56 24.1 128 0.23%

RAGDSW 0.001 59 33.7 660 0.11%
RAGDSW(3) 0.001 59 33.7 671 0.11%

(3) RAGDSW(1) 0.001 58 29.5 1130 0.19%
3

RAGDSW-S 0.001 59 33.7 663 0.11%
RAGDSW-S(3) 0.001 59 33.7 676 0.11%
RAGDSW-S(1) 0.001 58 29.5 1130 0.19%

Table 4.3.: Results for the coefficient functions (2) and (3) in figs. 2.3 and 2.4, the
diffusion problem, different methods, and a tolerance of 0.001 for the selection
of eigenvectors: iteration count, condition number, resulting coarse space
dimension, and coarse space dimension over the size of the stiffness matrix. If
the slab variant is used, the slab width in layers of finite elements is appended

in parentheses to the method’s name.
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FE  method tol it. &k dimVj %

RAGDSW 0.001 56 242 112 0.20%
RAGDSW—/(K)  0.001 56 242 112 0.20%

(2) RAGDSW-S 0.001 56 242 112 0.20%
RAGDSW-S¢(K) 0.001 56 24.2 112 0.20%

RAGDSW-M 0.001 56 242 112 0.20%
RAGDSW-/(M)  0.001 56 242 112 0.20%

RAGDSW 0.001 59 33.7 660 0.11%
RAGDSW—((K) 0.001 59 33.7 660 0.11%

(3) RAGDSW-S 0.001 59 33.7 663 0.11%
RAGDSW-S—¢(K) 0.001 59 33.7 663 0.11%

RAGDSW-M 0.001 59 33.7 660 0.11%
RAGDSW—¢(M) 0.001 59 33.7 660 0.11%

Table 4.4.: Results for the coefficient functions (2) and (3) in figs. 2.3 and 2.4, the
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diffusion problem, different methods, and a tolerance of 0.001 for the selection
of eigenvectors: iteration count, condition number, resulting coarse space
dimension, and coarse space dimension over the size of the stiffness matrix. If

a lumped matrix is used, £(K) or £(M) is appended to the method’s name.



5. Interface Partitions

Parts of this section are based on and are similar to [HKK+22, sect. 8].

In the following section, we decompose the interface I' into sets P of components ¢ that

satisfy

IM"=1J¢& AN &né=0 VEeP 4L

&ep
The main focus of this section is the construction of interface partitions for unstructured
domain decompositions as required for the meshes in chapter 2. Owing to the complexity
of such decompositions—which can be obtained, for example, with a graph partitioner,
such as METIS [KK98]—we cannot rely anymore on an intuitive understanding of
subdomain vertices, edges, and faces as for structured decompositions, and we require a

more robust approach.

5.1. Nodal Equivalence Classes

We construct a partition of the interface by using a generalization of subdomain vertices,
edges, and faces. Specifically, we define equivalence classes for finite element nodes based
on the set of adjacent subdomains. For example, in two dimensions, the finite element
nodes shared by exactly two subdomains define a nodal equivalence class (NEC), which
we denote coarse edge (except for some special cases; see further below). We also refer
to, e.g., [KW06; KR06; DW17], where nodal equivalence classes have been used for this
purpose before. Let us note, however, that the precise definitions therein differ from the

ones used here.
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5. Interface Partitions

The number of adjacent subdomains of an interface component is an important factor
in the construction of interface partitions. The cost for communication in a parallel
setting and the cost to compute energy-minimizing extensions during the construction of
coarse functions increases with the number of nodes in adjacent subdomains. Therefore,
we aim to minimize the number of adjacent subdomains. To this end, we will use the set

of adjacent subdomains to classify interface components.

Definition 5.1 (Adjacency of Interface Nodes). Let 2}, x5 € T be two finite element
nodes on the interface. We say that x and z% are adjacent if a finite element edge or

face z C T exists with o, 2} € Z.

We define the neighborhood or adjacency of a finite element node 2" €  as the set of

indices of subdomains that contain z":

n(z") = {ie{1,2,...,N}: 2" e O; }.

By
n(w)={ic{l,2,...,N}:Jal cwst. 2" € Q;} = U n(z") (5.1)

zhew
we extend the definition to sets of finite element nodes w C Q™.

Definition 5.2 (Nodal Equivalence Class (NEC)). Let v C I'* be a set of interface nodes.

We define nodal equivalence classes by the relation

o ~ay = n(a)) = n(h),

where z, 28 € v. By N'(2") we denote the NEC of a node x € ~y; that is, we have
" € N(z") and n(z") = n(y") for all y* € N (z).

If n(zh) < n(2}), then N(z) is said to be an ancestor of A'(x%), which itself is a
descendant of A(z%). If a NEC does not have an ancestor, we call it a root.

In case the entire interface is decomposed into NECs, we call a root a coarse node
if it consists of a single node. In three dimensions, NECs with exactly two adjacent

subdomains are called coarse faces, and the remaining ones we denote by coarse edges.

In two dimensions, every NEC that is not a coarse node is called a coarse edge.
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In the case of cuboid subdomains, a coarse node is a subdomain vertex. In general,
a root can contain more than a single node (cf. fig. 5.3). For example, the interface
components of a beam decomposed lengthwise into cuboid subdomains are given by

subdomain faces, which are roots; cf. [DW17, fig. 3].

5.2. Connected Components of Nodal Equivalence Classes

Based on definition 5.1 of adjacent interface nodes, we define connected components of

NECs.

Definition 5.3 (Connected Components on the Interface). Let v C T be a set of nodes
on the interface. A path on v is an ordered set (a:g, ol xf € v, of adjacent nodes.
We call v a connected component on the interface if there exists a path between any two

h .h
nodes x(, T, € 7.

It is generally beneficial to use connected interface components as this facilitates the
detection of connected patches of large coefficients, which can reduce the coarse space
dimension. If a NEC consists of multiple connected components, we divide it into its
connected components; see example 5.1. We call an interface component a twin if there
exists another interface component that belongs to the same NEC.

Let Ngonrn be the set of connected components of NECs of the interface. The

corresponding set of roots is defined as

Reon ={€ € NCon,l"h : Eg € NCon,Fh s.t. n(§) € ’I’L(g) b

Example 5.1 (Connected Components). In fig. 5.1, an interface partition with four
NECs and multiple twins is shown. One NEC is given by two nodes marked with red
squares. The two marked nodes are not connected, such that they are treated as individual
components, specifically, as coarse nodes. Another NEC, which is marked with green

circles, consists of two connected components (coarse edges).
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Figure 5.1.: Square domain with the subdomains A, B, and C. Two coarse nodes are
marked with red, filled squares, with the adjacent subdomains (A, B, C'). The
coarse edges are marked with blue triangles (adjacent subdomains (A4, C)),
magenta square frames (adjacent subdomains (B,C)), and green circles

(adjacent subdomains (A, B)); cf. [HKK+22, fig. 2.

5.3. GDSW: Coarse Nodes, Edges, and Faces

To define GDSW interface components, we first decompose the interface into nodal
equivalence classes. These are further decomposed into connected components. The
resulting interface partition contains coarse nodes V, coarse edges &£, and (in three
dimensions) coarse faces F. Thus, in three dimensions, the GDSW interface partition is

defined by VU E U F = Ngop rr, where

F o= {E 6'/\/Con,Fh : ’n(€)| = 2}7
Vi={{€Rcon:[n(§) =3 A [§|=1},
£ = NCon,Fh\(fUV)'

In two dimensions, we have V U & = N, rn, where

V:i={{€Rcon:[n§) =3 A [¢]=1},
£ = NCon,Fh \V

In case there is an interface component with a small number of nodes—for example, a
coarse edge that consists of only two nodes—it may be more efficient to circumvent the

setup and solution of a generalized eigenvalue problem and instead treat the two nodes as
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coarse nodes; see, for example, fig. 5.2 (top left), in which the leftmost and bottommost
edge nodes would be treated as coarse nodes, additionally to the ones highlighted with
colors. Note that for unstructured domain decompositions, interface components that
consist of only a single finite element node can occur fairly often; see section 5.7.2.

Following the construction of AGDSW in [HKKR19; HKK+22], all generalized eigen-
value problems have zero eigenvalues. If interface components that consist of only a
single node are treated as coarse nodes, the constructed coarse functions are identical to
the ones associated with zero eigenvalues. In this work, however, we include the Dirichlet
boundary 09Q2p into the generalized eigenvalue problems (cf. section 3.1) and usually
obtain positive eigenvalues for interface components that have adjacent subdomains
that touch 9Qp. As a result, by reclassifying single node coarse edges, the coarse space
dimension can increase. For the coarse space that will be introduced in chapter 7, the
differences would be even more substantial since zero eigenvalues associated with local
generalized eigenvalue problems are even rarer.

In case single node interface components are reclassified as coarse nodes, the modified

interface partition is given by Ncon’r‘h =VUEUF , where

]:—Z: {§ ENCon,Fh : ‘n(f)’ =2 A ‘§| > 2}7
fj = {5 6-/\/'Con,l"h : |€| = 1}’
é = NCon,Fh\(]:—Uf})‘

5.4. RGDSW: Interface Stars

The size (number of nodes) of an interface component is an important property for
adaptive coarse spaces: a large component can benefit the detection of connected patches
of large coefficients and, thus, reduce the coarse space dimension; cf. section 1.5.1. On
the other hand, the cost for the setup and solution of a generalized eigenvalue problem
increases with a component’s size. In the following, we accept an increase in components’
sizes compared to GDSW. Furthermore, we will obtain interface components that are

more similar in size, which can increase parallel efficiency.
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Although GDSW vertex functions are relatively cheap to construct, they unnecessarily
inflate the coarse space dimension of AGDSW since their construction does not take the
coefficient function into account (they are nonadaptive coarse functions). Similarly—in
three dimensions—even if to a lesser degree, AGDSW edge problems are fairly expensive
if measured by their contribution. Note that not only the size of a component is relevant
but also its shape. A thin and long component (such as a coarse edge) will generally do
worse than a compact one that is equally spread out in all directions.

As mentioned in section 4.1, minimizing the number of adjacent subdomains is desirable
to improve parallel efficiency. The roots of an interface partition have the largest number
of adjacent subdomains compared to their descendants. Thus, with respect to the roots,
we cannot reduce the number of adjacent subdomains by using a different interface
partition. In the following, we combine roots and some parts of their descendants to
construct a partition without unnecessarily inflating the number of adjacent subdomains.
We cannot, however, join a root with all its descendants as the components would then
overlap. Instead, we use an iterative process to distribute the descendants’ nodes between
their roots.

We will describe an algorithm to generate an interface partition St of disjoint, connected
components. Note that the algorithm slightly differs from the one in [HKK+22]. As a
preprocessing step, we modify Rgon: if a descendant of a root in Rgon does not have an
ancestor in its adjacency, it is reclassified as a root; we call the reclassified component
an island and denote the resulting set of roots by Rcon,aqj- By this, we improve the
construction of RGDSW interface components to be more similar in size; see examples 5.2
and 5.3.

Each interface component § € Sr is associated and initialized with a root in Rcon,adj-
We then select the smallest component and enlarge it by one layer of adjacent interface

nodes (as per definition 5.1), where each node must satisfy the following conditions:

¢ a new node must not have been assigned to another £ € Sp;

« anode’s NEC must be a descendant of the component’s root; i.e., n(z") C n(&).
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Figure 5.2.: (Right) Sample interface partitions for RGDSW in two and three dimensions;
cf. [HKK+22, fig. 3] and fig. 4.2 for the structured case. (Top left) Interface
nodes (gray disks) and coarse nodes (colored markers). Dirichlet bound-
ary condition on the left; Neumann condition on the remaining boundary.
(Top right) Corresponding RGDSW interface components. (Bottom left)
Finite element faces in gray, wire basket edges in yellow, and two roots
(coarse nodes) in red and blue. (Bottom right) Corresponding interface

stars; shared finite element faces in dark gray.

We repeat this process until all interface nodes have been assigned to a £ € Sp. The
resulting interface components in Sr are denoted (coarse) interface stars. Samples for
interface stars in two and three dimensions are given in fig. 5.2. In section 5.7.3, we

compare the size distribution of different interface components.

We note that there is no limitation for the coarse space RAGDSW of chapter 4 to use

other types of interface decompositions; see, for example, section 5.5 for another type of
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)
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Figure 5.3.: (Left) Domain with the subdomains A to F. Coarse node marked with a red
square (adjacent subdomains (A, B, C, F')). Two coarse edges marked in blue
(solid line in the front) and magenta (solid line in the back) with the adjacent
subdomains (A, B,C). (Right) Additional markings for three coarse edges:
in green (solid line on the right; adjacent subdomains (B, C, E)), in yellow
(solid line on the left; adjacent subdomains (A, C, D)), and one in orange
(dashed line on the left; adjacent subdomains (A, C, D, F)). The orange and
green coarse edge are roots. A dotted black path that leads from the red
coarse node to the magenta coarse edge shows a connection via the coarse

face (C, B), a descendant of the coarse node.

decomposition. However, as mentioned before, the type of interface decomposition can

significantly influence various characteristics of the method.

Example 5.2 (Disconnected Descendant (Island)). We consider the case in fig. 5.3 (left).
Therein, we have a domain partitioned into six subdomains, labeled A to F'. A coarse
node (i.e., root) highlighted with a red square is the ancestor of the coarse edges marked
in blue and magenta. The two coarse edges are part of the same NEC, but as they are
connected components—nby definition of section 5.2—we treat them as separate coarse
edges.

Furthermore, we reclassify the magenta coarse edge as a root: Let N be the NEC' of
the coarse node. There does not exist a path on the interface via finite element edges such

that all path nodes belong to a NEC that is a descendant of N'. In the example at hand,
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5.5. R-WB-GDSW: Wire Basket Stars and Coarse Faces

a path must either touch the subdomain D or E—both of them are not adjacent to the
coarse node.

As a result, the magenta coarse edge would never be discovered in the process of
constructing interface stars. We could, of course, construct new interface stars from
“missing” interface nodes in a post processing step. But, in the considered example, it is

beneficial to do this in a preprocessing step to obtain components of similar size.

Example 5.3 (Poorly Connected Descendant (Island)). We consider the case in fig. 5.3
(right). The only difference is that subdomain E has shrunk. Contrary to example 5.2,
this has opened up a path from the coarse node via descendants to the magenta coarse
edge (a sample path is sketched in the figure).

Nevertheless, the interface star associated with the red coarse node would either not
reach the magenta coarse edge (as the root/coarse edge in green would likely block its

path) or it would have an unfavorable, slim shape.

5.5. R-WB-GDSW: Wire Basket Stars and Coarse Faces

The construction of the interface partition for R-WB-GDSW is similar to that of RGDSW.
The interface components of GDSW that give the least benefit but exist plentiful are
coarse nodes. For RGDSW, we have solved this by using an agglomeration of interface
nodes that are close to the respective coarse node. However, this can result in significantly
larger components, which increases the computational effort for the setup and solution of
generalized eigenvalue problems. As a compromise, we construct an interface partition
that uses coarse faces and combines a coarse node with parts of the adjacent edges;
cf. fig. 4.4 for an example in the structured case. By doing this, we can ensure that
(in general) the largest components are not larger than those of AGDSW. We call the
new type of interface component (coarse) wire basket stars, and the corresponding set is
denoted by Syy. In two dimensions, we define Sy :== Sr.

The construction process in three dimensions is identical to that of interface stars,

except that the wire basket is used instead of the entire interface.
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5.6. Subcomponents of Interface Components

As for the structured description of RAGDSW in chapter 4, we further decompose each
interface component ¢ € P into subcomponents based on nodal equivalence classes;
cf. fig. 4.3. Let Ny denote the set of NECs of I'”. Then the set of subcomponents of &

is defined as

Ne={{NciceNpw A ENc#D}, £e€P. (5.2)

We define
ng = [Nl (5.3)
as the number of subcomponents—or NECs—of §. Let &;, i =1,...,n¢, be the subcom-

ponents of £ such that
N’ﬁ = {52}?21’

and .
£= Ljfz'y &Nng =00 +#j),
and let -
Neep = | Me (5.4)
¢ep

be the set of all subcomponents.

5.7. Interface Partitions of the Model Problems

In the following, for model problems (1)—(4) in chapter 2, we analyze some properties of
the GDSW, R-WB-GDSW, and RGDSW interface partitions.

After deriving a condition number bound in chapter 6, in section 6.4.1, we will analyze
the dependence of the condition number bound in theorem 6.1 on the different interface

partitions and model problems.

5.7.1. Size of the Neighborhood

The setup of generalized eigenvalue problem (4.2) can be expensive, especially for

interface components with many or large adjacent subdomains, as this influences the

98



5.7. Interface Partitions of the Model Problems

total single nodes twins

v & F £ F v £ F
(1) 419 927 634 130 [14.0%] 20 [3.2%] 6 [1.4%] 16 [1.7%] 2 [0.3%]
(2) 70 199 172 27 [13.6%]  0[0.0%] 0[0.0% 0[0.0%] 0 [0.0%]
(3) 328 750 515 53 [ 7.1%] 8 [1.6%] 12 [3.7%] 22 [2.9%] 12 [2.3%]
(4) 2256 4688 3036 697 [14.9%] 101 [3.3%] 16 [0.7%] 56 [1.2%] 8 [0.3%]

Table 5.1.: GDSW interface partition: total number of components in V, £, F, fraction
that consists of only a single node, and fraction that is obtained after splitting
an interface component because of multiple connected components (twins).

(1)—(4) correspond to sections 2.1 to 2.4.

cost to compute energy-minimizing extensions. For the S-variant of section 3.3.3, the
number and size of subdomains adjacent to an interface component is a crucial factor
that determines its computational efficiency. For the original method, a crucial factor is
the size of the union of subdomains adjacent to an interface component. We have seen
before in fig. 2.1 that the subdomain size is fairly consistent and deviates only minimally
from the average. The number of nodes in the union of subdomains that are adjacent
to an interface component does only deviate moderately from the average as well. The
largest deviations are encountered for wire basket stars with a minimum of 73.2% and a
maximum of 144.2% with respect to the average; the numbers are almost identical for

interface stars. Details are given in table A.1 for all types of interface components.

5.7.2. Single Node and Disconnected Interface Components

In tables 5.1 to 5.3, the number of interface components that consist of only a single
node is given for the GDSW, R-WB-GDSW, and RGDSW interface partitions.

For GDSW—except for model problem (3)—approximately 14% of coarse edges consist
of only a single node. The ratio is reduced to between 0.0% and 3.3% for coarse faces.

Table 5.1 further shows that the number of interface components that have been split
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5. Interface Partitions

total single nodes twins
Sw F Sw F Sw F
(1) 435 634 0[0.0%] 20[3.2%] 6 [1.4%] 2[0.3%]
(2) 76 172 0[0.0%] 0[0.0%] 0[0.0% 0 [0.0%]
(3) 339 515 0[0.0%] 8 [1.6%] 13 [3.8%] 12 [2.3%]
(4) 2326 3036 8[0.3%] 101 [3.3%] 16 [0.7%] 8 [0.3%]

Table 5.2.: R-WB-GDSW interface partition: total number of components in Sy, F,
fraction that consists of only a single node, and fraction that is obtained after
splitting an interface component because of multiple connected components

(twins). (1)—(4) correspond to sections 2.1 to 2.4.

into their connected components (twins) is small but not insignificant. For example,
between 0.0% and 3.7% of coarse nodes in V are actually coarse edges or faces that have
been split apart. The number of twins is similar for coarse nodes, wire basket stars, and
interface stars.

With respect to single node interface components, the numbers in table 5.2 are more
favorable for wire basket stars: at most 0.3% of wire basket stars consist of only a single
node. For the considered model problems, there do not exist any interface stars that
consist of only a single node; cf. table 5.3.

In table 5.3, the numbers of roots that consist of a single node are shown and,
additionally, the number of islands. Except for model problem (2), the number of roots
that are not coarse nodes is between 2.2% and 2.9%. The number of islands is small and

varies between 0.0% and 1.4%.

5.7.3. Distribution and Size of Interface Components

In fig. 5.4, the distribution of interface components is displayed for each model problem
and the interface partitions GDSW, R-WB-GDSW, and RGDSW. The number of
interface components for RGDSW is consistently below 25% of that of GDSW, and
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5.7. Interface Partitions of the Model Problems

interface stars Sp roots Rcon,Adj

total single nodes twins single nodes  islands

(1) 435 01[0.0%] 6 [1.4%] 425 [97.7%] 6 [1.4%]
(2) 76 0[0.0%] 0[0.0%] 70 [92.1%] 0 [0.0%]
(3) 339 0[0.0%] 13 [3.8%] 329 [97.1%] 1 [0.3%]
(4) 2325 00.0%] 16 [0.7%] 2275 [97.8%] 19 [0.8%]

Table 5.3.: RGDSW interface partition: total number of components in Sr, fraction that
consists of only a single node, and fraction that is obtained after splitting
a root because of multiple connected components (twins). Fraction of roots
that consist of a single node and fraction that is not a root but has only
descendants in its adjacency (island). The total number of roots is identical
to the total number of interface stars; the number of twin roots is identical to

the number of twin interface stars. (1)—(4) correspond to sections 2.1 to 2.4.

R-WB-GDSW is below 60% of that of GDSW. Thus, we can expect a significant
reduction in the coarse space dimension. However, this comes at an increase in the size
of interface components. For R-WB-GDSW, this is not an issue as wire basket stars are
much smaller than coarse faces; see fig. 5.5. For RGDSW, on the other hand, interface
stars can be significantly larger than coarse faces. The average interface star is between
60.0% to 73.3% larger than the average coarse face, except for the problem of section 2.2,
for which there is an increase of 155.2%. The largest interface star is between 32.4% and
49.3% larger than the largest coarse face, except for the problem of section 2.4, for which
there is an increase of 114.2%. For a better parallel performance, it would be beneficial
to further optimize the generation process of coarse interface stars to construct interface
components that are even more similar in size. However, the histograms for the interface
stars show already a significant improvement in the deviation compared to the ones for
coarse faces. From this, we conclude that the process used here to generate interface

stars is beneficial for parallelization.
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Figure 5.4.: Distribution of interface components for the GDSW, R-WB-GDSW, and
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RGDSW interface partitions. (1)—(4) correspond to sections 2.1 to 2.4. For
each model problem (1)—(4), the fractions are given with respect to the

number of GDSW interface components.
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Figure 5.5.: Histograms of the number of nodes per interface component. (1)—(4) cor-
respond to sections 2.1 to 2.4. The widths of the blue bars indicate the
proportion of interface components that consist of the respective amount
of nodes. The width of bars is not comparable between different model
problems. The minimum, average, and maximum are marked in red. The

range of one standard deviation from the average is marked in yellow.
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6. Theory of Adaptive GDSW-Type Coarse

Spaces

In this chapter, we derive a condition number bound for adaptive GDSW-type coarse
spaces; the description is in large parts based on [HKK+22; HKKR19; HKKR18b] (in
that order).

As both the preconditioner Mo_slm and K are symmetric and positive definite, the
spectral condition number of the preconditioned operator P,q := MaleQK is given by

Amax (Pad)

K = H(Pad) = HQ(Pa ) - )\min<Pad) ’

where Apax(Pad) and Apin(Paq) are the maximum and minimum eigenvalues of P,g:

P,qv, P,
)\max(Pa ) = sup M, )‘min(Pa ) = inf M
VeV o, (N0} 99 (v,0) VeV, (N0} ag(v,v)
‘We have the bound
aq (Paav,v) < w(Ne + Lag(v,v) Yo € Vg, (Q), (6.1)

for the largest eigenvalue; cf. [TWO05, lemma 3.11]. Since we use exact local solvers
(see eq. (2.4) and the local stability assumption 2.4 in [TWO05]), we have w = 1. The
constant N, is the maximum number of overlapping subdomains {Q;}N , any finite
element node 2" € Q can belong to; see [TW05, lemma 3.11], the follow-up discussion,
and the proof of theorem 4.1 in [DW94]. By lemma 2.5 in [TW05], we have the bound

1
aq (Pagv,v) > @ag(v,v) Yo € Vo}f(gQD(Q), (6.2)
0
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6. Theory of Adaptive GDSW-Type Coarse Spaces

for the smallest eigenvalue. From (6.1) and (6.2), we obtain the condition number bound
K(Pag) < C3(Np+1). (6.3)

The constant CZ stems from the following assumption; finding a lower bound for it will

be the goal of this chapter.

Assumption 6.1 (Stable Decomposition). (/TW05, assumption 2.2]) By definition in
section 1.8, Vo C VO}faQD(Q) denotes the coarse space, and V;, 1 < i < N, are local spaces.
We assume that there exists a constant Co > 0 such that for every u € Vb}fOQD (Q) there
exists a decomposition
N
u:ZRiTui, u; € Vi, 0<i <N,
i=0

that satisfies

Z &Z (Ui, uz) < Cgaﬂ (u7 U),
=0

where a;(-,-) was defined in (1.7).

6.1. Variational Description of Adaptive GDSW-Type Coarse

Spaces

This section follows [HKK+22, sect. 9]. Note however—as was mentioned during the
construction of the coarse spaces—that we have slighty changed the definition of the
coarse spaces to respect the global Dirichlet boundary condition for the setup of the
Schur complement of the generalized eigenvalue problem. This and other minor changes
are reflected in the following section and the subsequent proof of a condition number
bound.

We will state the variational analogue of the matrix formulations for AGDSW and
RAGDSW of chapters 3 and 4. The RAGDSW coarse space can be regarded as a
generalization of the AGDSW coarse space as it can be used for arbitrary interface
decompositions P. As a result, the following description is valid for both types of coarse

spaces.
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6.1. Variational Description of Adaptive GDSW-Type Coarse Spaces

By definition of (5.1), n(§) is the index set that contains all subdomains adjacent to
an interface component £ € P. The closure of the union of subdomains adjacent to ¢ is
given by

ien(§)

For the construction of coarse functions and during the proof of the condition number
bound, we often rely on, and make use of, extension operators. Computing these
extensions only requires nodal values as an input. As a result, it is not necessary to use
a finite element space for the domain of the extension operator. Instead, we will use
functions that map each finite element node to a vector in R, Here, d depends on the
problem at hand: for a scalar diffusion problem, it is d = 1; for three-dimensional linear
elasticity, it is d = 3. For an arbitrary set w C Q" := {2/ : 2" € Q} of finite element

nodes, we define the function space
XMw) ={v:w— ]R‘j} (6.5)

of functions mapping from w C R? to Re. The space X"(w) may also be identified with
a suitable definition of a finite element space V" (w); cf. [HKK+22, sect. 9]. Note that
the space contains restrictions of functions that are not finite element functions; see, for
example, the proof of lemma 6.5, where this property is used.

The left-hand side of the generalized eigenvalue problems in (3.1) and (4.2) is given by
the Schur complement Sge. As we will see below, the Schur complement is closely related
to an energy-minimizing extension from £ to Q¢ (cf. [TWO5, sect. 4.4; SBG96, sect. 4.6;
Cia02, remark 2.1.1; Cial3, theorem 6.1-1]) in the way that the corresponding S¢¢-inner
product of a function is—with respect to the bilinear form agq, (+,-)—the energy of the
energy-minimizing extension of said function.

Let Qg C Q satisfy the same properties as €2; that is, Q¢ is the union of finite elements
T € 1,(£2) and a connected subset of 2. In the case of RAGDSW, we use Qg = ), for
the S-variants, we use g = €y, for some k € {1,..., N}, and for the slab variant, we
use Qg = Qé Note that the slab variant may be combined with the S-variant, such that
Qg = QL.
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6. Theory of Adaptive GDSW-Type Coarse Spaces

We define the finite element space Voff& o, () of functions on g that vanish on &

and on the respective part of the global Dirichlet boundary 0Qp:
Vi oap (Q0) = {w € VMQg) : w(z") =0 Vzh € £U (99D ﬂﬁQ)}.

An energy-minimizing extension of a function 7¢ € X"(¢) is defined as a solution

Vg € Vh(QQ) to

agq (ve, w) =0 Vw € Ve oap, (20),
ve(z") = e(a™)  Val € €N Qg, (6.6)
ve(z") = 0 va' € 0Qp N Qo.

We denote the corresponding operator by He.q, (-) such that

ve = Hesqq (7¢)-

The domain of He,q,(+) can be extended to any finite element function by using the
function’s restriction to £ before the application of H¢.q, (+). A solution ve satisfies
aQ, (ve, ve) = min aq, (w,w); 6.7
o) = min ooy (w.u) ©.7)
wlg—T¢=0
wlaﬁDmﬁQ:
see lemma A.2.

Let us note that in some cases the bilinear form CLQQ(', -) is not positive definite on
V()},Lg,aﬂD(QQ)' Thus, Hesqq(+) is possibly not uniquely defined; cf. remark 6.5.

We point out that—contrary to [HKKR19; HKK+22]—here, we enforce a zero Dirichlet
boundary condition on 9Qp in (6.6). For problems where large parts of 92 have a
Neumann condition—as, for example, model problem (2) in section 2.2—this change
has a negligible effect. However, for other types of problems where on large parts of the

domain boundary a Dirichlet condition is enforced, a significant reduction in the coarse

space dimension can be observed.

Remark 6.1 (Neumann Boundary Condition). In (6.6), we do not impose a Dirichlet
condition on the boundary of Q, except for the part that intersects OQp. As a result, a

Neumann boundary condition is enforced, which is essential for our type of eigenvalue
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O

® node of ¢ O node of Q¢ \ ¢

Figure 6.1.: (Compare with [HKK+22, fig. 4].) Dirichlet boundary 0Qp in blue (on the
left of the domain); § in red; Neumann boundary of H¢,q, (-) in green. (Left)
Two-dimensional schematic of the energy-minimizing extension ’H&Qg(-)
defined by (6.6). (Right) Sample extension for the diffusion equation with

a homogeneous coefficient function. Nodes of I'" \ (£ U 0€2) in white.

problem to construct a robust preconditioner. For the proof of the condition number bound,
we will use an inequality based on spectral estimates; see lemma 6.2. For its proof, we
make use of the energy-minimizing property in (6.7). If we used a zero Dirichlet boundary
condition on 0L2q, it would introduce a forced slope to zero and, thus, a larger energy.
In that case, we would not be able to prove lemma 6.2; counterexamples of coefficient
functions that show the necessity of the Neumann boundary are given by connected patches
of large coefficients that intersect multiple interface components as in fig. 1.7 (left) and

fig. 1.8 (left); cf. the discussion for fig. 6.2 below.

Example 6.1. Figure 6.1 (left) shows the schematic of an energy-minimizing extension
from an interface star to its four neighboring subdomains. Two of the subdomains
touch the Dirichlet boundary 0Qp (in blue), which introduces a forced slope to zero,
increasing the energy of an extension. For the two-dimensional Laplace equation, a

sample energy-minimizing extension (i.e., a discrete harmonic extension) is shown in

fig. 6.1 (right).
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6. Theory of Adaptive GDSW-Type Coarse Spaces

Using the definition of the energy-minimizing extension, we can now define a symmetric,
positive semidefinite bilinear form that is associated with the left-hand side of generalized

eigenvalue problem (4.2):
af (u,v) = ag, (Hesq, (1), Hesa (V) Vu,v € XM(E). (6.8)

On the right-hand side of the AGDSW generalized eigenvalue problem (3.1), a submatrix
of the fully assembled stiffness matrix K corresponding to the degrees of freedom of a
coarse edge or face is used. For RAGDSW, in (4.2), the submatrix corresponding to an
interface star is used and further decoupled; cf. section 4.2. Extracting the submatrix
is equivalent to assembling a stiffness matrix on the respective patch of finite elements
adjacent to £ and enforcing a zero Dirichlet condition on the boundary of the patch.
Thus, in a variational setting, we define an operator z¢(-) that extends by zero from & to
Vh(Q):

ze: X&) — Vh(Q)
v(zh) vzl € ¢, (6.9)
v 2e(v) = o
0 Vol € O\ €.
The domain of z¢(-) can be extended to any finite element function by using the function’s
restriction to & before the application of z¢(-). For AGDSW, the bilinear form of the

right-hand side of (3.1) is given by the symmetric, positive definite bilinear form
agg(z§(u) , ze(v)) Yu,ve Xh(é).

For RAGDSW, we need to decouple the bilinear form with respect to the NECs &; of
& € P; see section 5.6 for details regarding the subcomponents &;. As in section 4.2, let
the set of all NECs of a £ be given by {61}?; We define the symmetric, positive definite

bilinear form .
,BgK(u,v) = iﬁg(u,v) Yu,v € X"(¢), (6.10)
where -
BE () = ang, (26, (u) 26,(v)) Vv € X&),
As before, the domain of Bg(-, -) can be extended to V(Q) x V() by using a function’s

restriction to &; before the application of Bg ().
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Remark 6.2. Note that the sets in V, £, and F of the GDSW interface partition are
NECs and, thus, we have ﬁEK (u,v) = aq, (2¢(u), 2¢(v)) if € is associated with a coarse

node, edge, or face.

Remark 6.3. If the lumped variant of section 3.3.1 is used—that is, the diagonal of the
matriz K?g is used on the right-hand side of (4.2)—the corresponding bilinear form is
given by

BE (u,v) = > ag{xh}(z{mh}(u), 2eny (V) Yu,v € X", (6.11)

zheg
where {x"}, x € €, can be regarded as a subcomponent of £ that contains only a single
finite element node. For simplicity, we will always work with the subsets & of & in the

following. However, the proof is carried out identically if {&}.5, is replaced by {xh}zheg.

The variational formulation of the RAGDSW generalized eigenvalue problem in (4.2)
is given by: find 7, ¢ € X"(€) such that

af (Teg, 0) = Mg BE(Tue, 0) VO € XM(¢). (6.12)

As a? (+,-) is symmetric, positive semidefinite, and ﬁgK (+,-) symmetric, positive definite,
there exist eigenpairs {(74 ¢, Ak.¢) }; such that ,6’51((77975, Tj¢) = Ok ;, where 0y ; is the
Kronecker delta, and where m = dim (X"(¢)) denotes the number of unknowns of ¢;
see lemma A.3.

As before, let the eigenvalues of (6.12) be sorted in nondescending order,
0< Ae < A < < Ape

We select all eigenfunctions 7, ¢ from (6.12) that correspond to eigenvalues smaller than
or equal to a user-prescribed threshold tols > 0 (to obtain a condition number bound

that is finite, the tolerance must be positive),
)\*75 S tolg,

and extend them by zero to the interface,

Teerh = 2e(Tug)pn-
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6. Theory of Adaptive GDSW-Type Coarse Spaces

The coarse basis functions associated with £ are then given by the energy-minimizing
extensions
Vs = Hrnsq(Tuern) € Viaa, (),
where Hpn,q(+) is defined by using ¢ = T* and Qg = Q in (6.6). As we have remarked in
section 1.4.1, the extension Hypn,q(-) can be computed to each subdomain individually
and, thus, in parallel. We note that, contrary to the local energy-minimizing extensions,
Hrnoq(-) is always uniquely defined as a solution vanishes on 0€2¢ N (Th U oQ%), which is
sufficient to remove any rigid body modes from the problem in the case of linear elasticity.
For an interface partition P, an adaptive GDSW-type coarse space is defined as
Vp = @ span{ v, ¢ : A ¢ < tolg }. (6.13)
el
Remark 6.4 (GDSW Vertex Functions and Zero Eigenvalues). The left-hand side of
(6.12) is singular in case Q¢ does not intersect 0p (and in some special cases if rotation
modes are in the null space). The null space is given by the constant functions in the case
of the scalar diffusion equation and by rigid body modes in the case of linear elasticity.
Hence, the null space dimension equals one for the scalar diffusion problem and, in the
case of three-dimensional linear elasticity, three if £ is a vertex, five if £ is a straight edge,
and siz in all other cases.
For a vertex v € V, the problem has one (in the case of scalar diffusion) and three (in
the case of three-dimensional linear elasticity) degrees of freedom. Thus, coarse functions

associated with the zero eigenvalues are given by GDSW vertex functions.

Remark 6.5 (Nonuniqueness of Some Local Energy-Minimizing Extensions). In some
cases, an energy-minimaizing extension may only be uniquely defined up to some null
space element. For the considered model problems, this can only occur for linear elasticity
problems and in case the finite element nodes of & and OQp N Q¢ are given by a single
node or nodes that lie on a straight edge; see also figs. 1.3 and 4.5. For linear elasticity,
null space elements are given by translations and linearized rotations; see remark 1.4. Let
us assume that the adjacent subdomains of & do not touch 0Qp. If £ is a vertex, ve a

solution to (6.6), and r a linearized rotation around the vertex, then the sum ve + 1 is a
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solution to (6.6) as well. Equally, a solution to an energy-minimizing extension from a
straight edge is only uniquely defined up to the linearized rotation mode around the edge.
Thus, in the above cases, the null space of /H@QQ(') is given by one or three linearized
rotations.

However, all energy-minimizing solutions ve have the same minimal energy aq, (ve, ve)
(see below). As a result, the nonuniqueness of energy-minimizing solutions does not have
an influence on the left-hand side of (6.12), and it follows that the Schur complement
(3.2) is uniquely defined. Therefore, the particular choice of an operator /H@QQ(-) does
not change the generalized eigenvalue problem or its solution. We note that this holds true
for the Schur complement (3.4) of the S-variant in section 3.3.3 as well; see section 6.1.3
for its variational formulation.

Let ve = Hesa, (Te) be a solution to (6.6). For linear elasticity, a rigid body mode r is
then given by a solution to (6.6) given that r|¢ = 0. Thus, all solutions to (6.6) are given
by ve +r. Since r € ‘/()},lf,BQD (Qq), 7 can act as a test function for He.qn(0), 0 € X"(¢).

Thus, we have aq, (7, Hesa,(0)) = 0 and obtain the equality
aQQ(Ug +r, 'H@QQ (9) ) = aQQ(’Ug , 7‘[549@(9) ) Vo € Xh(f)

As a consequence, any operator Hesa, () defined by (6.6) yields the same generalized
eigenvalue problem (6.12). In section 4.4, we have given options for finding a solution

to (6.6) in case it is not uniquely defined.

In section 1.5, we have presented various cases to gain an understanding of some key
characteristics of coefficient functions. For example, we have seen that the number of
channels (of large coefficients) intersecting a coarse edge correlates one-to-one with the
required number of coarse functions. We can now give an intuitive explanation for the
choice of the left- and right-hand sides of the generalized eigenvalue problems without
having to refer to the proof of the condition number bound. For this, we note that by

definition of the energy-minimizing extension—and in case £ is a NEC—we have

a?(Tg,Tg) < ﬁgK(Tg,Tg) Ve € Xh(g), (6.14)
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or its matrix equivalent
TgS§§T§ STgTK&Tg VTg GXh(f).

From this follows that all eigenvalues of (6.12) are smaller than or equal to one; this
holds true as well for the S-variant and the slab variant but not the variant using a
mass matrix (cf. sections 6.1.2 to 6.1.4), nor does it hold for the variants using a lumped
stiffness or mass matrix (cf. remarks 6.3 and 6.6). For general interface components &
and if BgK is defined by (6.10), an upper bound for the largest eigenvalue is instead given
by n¢ (the number of subcomponents of §).

Consider a channel of a large coefficient that intersects a coarse edge e € £ as in
fig. 6.2. Furthermore, let a function 7. on the coarse edge be given that is constant on
the patch of the large coefficient. Then its energy-minimizing extension H..q, (7¢) has a
small energy. On the other hand, its extension-by-zero z.(7.) has a large energy as it
quickly descends to zero on a patch of large coefficients. As a result, if the function were
an eigenfunction, its eigenvalue would be small. As we will see in section 9.2, we can
use heuristically constructed functions similar to 7. for a coarse space without having to
solve an eigenvalue problem.

We remark that the reasoning above also motivates why we have to decouple the
right-hand side of the RAGDSW eigenvalue problem; see section 6.1.1.

We consider the coefficient function in fig. 6.2 (left). If a zero Dirichlet condition were
prescribed on 0€g in (6.6), the energy of both the energy-minimizing extension and the
extension-by-zero would be large; cf. fig. 6.2. As a result, we would not obtain small
eigenvalues and, thus, could not detect useful eigenfunctions; cf. remark 6.1. Further
examples of coefficient functions similar to that in fig. 6.2 that have structures intersecting
not only the corresponding £ but also other interface components are given in fig. 1.7
(left) and fig. 1.8 (left).

Similarly, the inclusion of the Dirichlet boundary condition on 9€2p introduces a forced
slope to zero toward dQ2p. Thus, patches of large coefficients that touch the Dirichlet
boundary do not lead to small eigenvalues if {2¢ touches 9Q2p. This corresponds to our

findings in section 1.5.3.
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107° 10710 107 10° 10%

Figure 6.2.: (Left) Cofficient function (E = 10° in red, E = 1 in blue) for a diffusion
problem on a mesh with two coarse edges (thick, black lines). A zero Dirichlet
boundary condition is prescribed at the top of the domain. (Center left
to center right) Extensions from the bottom coarse edge (to the bottom
two subdomains) of a function 7. that is equal to one on the nodes of e
that are associated with a large coefficient and zero elsewhere. Colors (log-
scaled) indicate the energy ar(v,v) of an extension on each finite element
T. (Center left) Extension-by-zero z.(7.); we have aq, ( ze(7e) , ze(7e) ) =
4-10%. (Center right) Energy-minimizing extension H..q, (7); we have
ag. (Hesa.(e) , Heso (Te) ) = 6.4. (Right) Energy-minimizing extension if
a zero Dirichlet condition were prescribed on 9€Q; we have aq, (v,v) = 2.10°

for the extension v.

6.1.1. Why a Decoupling is Required for RAGDSW

The decoupling of K, ?; is essential to obtain a robust preconditioner, which is also
reflected by the proof of lemma 6.5. Therein, the function ¥ is constant on &; and,
thus, can be moved outside of the corresponding seminorm in (6.40) without obtaining a
contrast dependent estimate. Note that W cannot be chosen to be constant on &; cf. the

definition of the partition of unity in the proof of lemma 6.6.

In fact, without the decoupling, we can construct a mesh and coefficient function for

which the algorithm fails to obtain a small condition number. We consider four two-

115



6. Theory of Adaptive GDSW-Type Coarse Spaces

Figure 6.3.: Four domain decompositions (interface marked with a thick, black line) and

coefficient functions (E = 10% in red, E = 1 in blue). Zero Dirichlet boundary

condition on Of).

dimensional diffusion problems in fig. 6.3. For all problems, we use only a single interface
component. Let a constant function on the interface be given. Then its extension-by-zero
is constant on all elements of large coefficients in fig. 6.3. Thus, the energy of the
extension is small—it is zero on the elements with large coefficients, since the gradient of
the constant function is zero—as is the energy of the energy-minimizing extension. As a
consequence, the eigenvalue problem is blind to all coefficient functions in fig. 6.3. By
decoupling the right-hand side of the generalized eigenvalue problem with respect to the

NECs, we can obtain a large energy on the right-hand side for some of the problems.

For the coefficient function in fig. 6.3 (left), the smallest eigenvalue is given by 0.442. A
coarse function would (generally) not be constructed, in which case we obtain a condition
number of 384 620.1 if an overlap of one layer of finite elements is used. If we increase
the size of the overlap to two layers, the entire structure of large coefficients is taken care
of by the first level of the overlapping Schwarz preconditioner (cf. section 1.5.4), and we

obtain a condition number of 4.3.

The situation is more favorable in fig. 6.3 (center left and center right) as all nodes that
are associated with large coefficients are taken care of by the first level of the Schwarz

preconditioner using an overlap of only one layer of finite elements. This is in accordance
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with the decoupling of the right-hand side that only separates components into their

respective NECs (coarse edges and faces need not be decoupled).

In fig. 6.3 (left), the first level of the Schwarz preconditioner was sufficient to obtain
a small condition number if an overlap of two layers of finite elements was used. This
raises the question whether this is always the case. However, we can always construct
an example that requires an arbitrarily large overlap. An example, for which an overlap
of three layers of finite elements is required, is given in fig. 6.3 (right). The condition
numbers for an overlap of one, two, and three layers of finite elements are 302679.9,

69123.1, and 2.2.

If we lump the stiffness matrix (cf. remark 6.3)—which amounts to a decoupling
with respect to every finite element node of the interface component—for the coefficient
functions in fig. 6.3 (center left and center right), we obtain a large energy on the
right-hand side and, thus, will unneccessarily construct coarse functions. The situation is

similar if a mass matrix or a lumped mass matrix is used.

6.1.2. Variant Using Slabs around Interface Components

One of the key properties of our coarse spaces is the use of the energy-minimizing
extension defined by (6.6). The incorporation of the energy-minimizing extension into
the generalized eigenvalue problem is not necessary to construct a robust preconditioner;
for example, in [GLR15; EMR19], the authors define the left-hand side of a generalized
eigenvalue problem associated with a coarse edge based on a diffusion problem along the
respective coarse edge. We can achieve a similar effect for our coarse spaces by using a
minimal slab of one layer of finite elements. However, as we have seen in sections 3.3.2,
3.4.1, and 4.5, increasing the size of the slab can significantly reduce the coarse space
dimension, as this allows the eigenvalue problem to detect connected patches of large

coefficients.

Let Qé denote the slab of [ layers of finite elements around &; cf. fig. 6.4. The generalized
eigenvalue problem for the slab variant is then given by (6.12) if we substitute the left-hand
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Figure 6.4.: Slab of two layers of finite elements around a coarse edge (left) and a coarse

star (right).

side with a?’l(-, -), where

a?’l (u,v) = aﬂé(%&ﬂé (u), Hg»Ql& (v)) Vu,v e X"(E). (6.15)

We then have for u € Xh(ﬁ)

aéﬂl (u, u) < OLQZ5 ( 'Hg_,gg (u) s ’H@Q& (u) )

< agg(ng_,QE (u), Hesn, (w)) = Oé? (u,u). (6.16)

We will later require this property to work with ag( (+,+) rather than a?’l(-, ).

6.1.3. Variant Using a Sum of Local Schur Complements

Let £ € P. Then we define the sum of local energy-minimizing extensions of a function
0 X&) as
Hf-)ﬂk (6) in Qk: ke TL(&),
Mo, (0) = (6.17)
0 in Q\ Q¢
cf. fig. 6.5. We note that ’H?_)Qg(t?) is discontinuous in general. The designation of (6.17)

as a sum is more easily motivated by (6.18) and the matrix formulation in (3.4).

Accordingly, the left-hand side of (6.12) is replaced by

a?(u,v) = Z aq, (Hesa, (u) , Hesa, (v)), (6.18)
ken(g)
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® node of ¢ O node of Q¢ \ ¢

Figure 6.5.: (Compare with [HKK+22, fig. 5].) Analogue of fig. 6.1 for RAGDSW-S.
Dirichlet boundary 0€2p in blue (on the left of the domain); £ in red,;
Neumann boundary of Hg_mg(') in green. (Left) Schematic of the sum
of energy-minimizing extensions Hf_,ﬂg(-). Gray boxes indicate interface
nodes that have been torn apart for visualization purposes. (Right) Sample

extension for the diffusion equation with a homogeneous coefficient function.

where u,v € X"(¢). The bilinear form af (+,-) satisfies

af (u,u) < > aq, (Hesa (1), Heso (u)) = of (v,0)  Vu e Vh(Q). (6.19)
ken(§)

As for the slab variant, we will later require this property to work with a? (+,-) rather
than a? (+,+). By combining the S-variant and the slab variant, we obtain

ken(€

By (6.16), we then have for u € V()

S, Kl K
g (u,u) = > GQQ(H@Q@ (u), 7“5»%(“)) <o (u,u) < ag (u,u). (6.21)
ken(§)
In section 3.3.3, we analyzed the S-variant for a few coefficient functions to demonstrate
that using the S-variant can result in a larger coarse space dimension. An increase in the

coarse space dimension is explained by the decoupling of the energy-minimizing extension
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6. Theory of Adaptive GDSW-Type Coarse Spaces

Figure 6.6.: (Left) 2 x 3 subdomains, surrounded by a Dirichlet boundary condition, and
two coarse stars, one highlighted with green disks (£). Coefficient function
E =1 in blue and E = 10° in red. (Right) Schematic for RAGDSW-S of
the problem on the left with respect to the highlighted interface component.

The corresponding energy-minimizing extension is torn apart at (I'\ ) N Q.

and a?(-, -), respectively; cf. figs. 6.5 and 6.6. In fig. 6.6, the effect of decoupling the
energy-minimizing extension is visualized: On the left, the coefficient function consists
of one connected patch of large coefficients. On the right—as a consequence of the
decoupling—it consists of two connected components, which results in the construction

of one additional coarse function.

6.1.4. Variant Using a Scaled Mass Matrix

Let an interface component & € P be given. We replace the right-hand side of generalized

eigenvalue problem (6.12) with the scaled L2-inner product

B (u,v) = b, (ze(u), 2(v)), u,ve X", (6.22)

where
E(T)
W%

ba. (u,v) = u(z) - v(z)dz, u,ve VHQ).
)= B | ut@)-v@) (@

As before, we extend the domain of Bé‘/f (-,) to VR(Q) x VP(Q). As remarked in sec-
tion 3.3.4, we use hp = hy for the theoretical analysis of our coarse spaces but choose
hr as the radius of the largest insphere of T" to obtain numerical results—we recall that

71, () is shape-regular.
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For the theory in sections 6.2 and 6.3 to be applicable to the mass matrix variant,
we need to bound Bg((u, u) from above by C’ﬁé\/f (u,u) for any u € X"(¢) and some
constant C.

First, we show the bound for AGDSW, for which the right-hand side of generalized
eigenvalue problem (6.12) is given by BgK (u,v) = aq, (2¢(u), 2z¢(u)). Then, by an inverse
inequality (cf. [TWO05, lemma B.27; BS08, lemma 4.5.3]), and since F is constant on
each element T' € 7,(12), we have

age (ze(u), ze(u)) = > E(T)|Z§(U)|§{1(T)
Ter, ()

E(T
<Cur Y Pl
TET}L(Qg) T

= inv,lﬁé\/l (uv U) Vu € Xh(g)a

where the constant Cj,y,1 is independent of the diameter of the finite elements and the
coefficient function FE.

For the reduced-dimension coarse spaces, the right-hand side of generalized eigenvalue
problem (6.12) is given by ﬁéK (u,v) = 308, aq,, (2 (u), 2¢,(v) ). Note that it is not
necessary to decouple the mass term as was explained in section 6.1.1. Let u € X"(¢ ).

Then

ng ne
> aq, (2 (1), 2z, (1)) < Cinva Y. ba, (2e,(u) , 2z, (u))
i=1 =1
E(T) &
“Oni Y Sl 629)
TGT}L(Qgi) T =1

S |z (w2 () can be bounded by an L term multiplied with the measure |T'| of
the element T'. Then, we can use the fact that
e
H 3 (e )] gy = 1)l (6.24)
in the scalar case; cf. fig. 6.7. Using an inverse inequality (cf. [BS08, lemma 4.5.3]) and

|T| < hé, we obtain

‘Z?Z&(u)‘

3
> e W32y < Cinv2
=1

2
— (. 2
poiny = Cmallze@lay. (625)
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Figure 6.7.: Example of (6.24) in one dimension. (Left) Square of the sum of extensions
from subcomponents (dotted line) and sum of extensions from subcomponents
(solid line). (Right) Sum of the square of extensions from subcomponents

(dotted line) and extensions from subcomponents (solid lines).

For details and the vector case, see lemma A.4 and corollaries A.1 and A.2. In the
following, we assume that Ciuy 2 is the maximum constant of all T' € 73,(£2), which is

independent of hy. Combining (6.23) and (6.25) gives

ng
5? (u’ u) = Z aQ,, ( &3 (u) ) R (u)) < Cinvbév[ (u, u)’ (6'26)
i=1
where C'inv = inv,lcinv,Z-

Remark 6.6. If a lumped mass matriz is used as in section 3.3.4, the bilinear form is
given by
Bl (u,v) = > bﬂ{zh}(Z{xh}(U), 2y (V) Vu,v € XM (6.27)

zheg

see remark 6.3 for the case of a lumped stiffness matriz. We have
ﬁg{(uau) S;(Enml(jrﬂ£4<u7u) Yu € )(h(€%

where Cr denotes the mazimum number of vertices of a finite element; cf. (6.39). Note,

however, that C. can be removed by using

BE (u,v) =Y ag ., (Zny (), 2geny(v))

zheg

122



6.2. Local Spectral Projections

during the proof of a condition number bound; cf. remark 6.5. To simplify the notation,

we henceforth identify & with x € €, in case the lumped variant is used.

6.2. Local Spectral Projections

The following lemma is central to the proof of all condition number bounds of the coarse
spaces in chapters 3, 4, and 7, in addition to the ones in [GE10b; EGLW12; DNSS12;
SDH+14a; GLR15; EMR19]; see [SDH+14a, lemma 2.11] and also [EGLW12, eq. (2.8);
DNSS12; theorem 3.1; GLR15, lemma 2.2; HKKR18b, lemma 4.1; EMR19, lemma 3;
HKKRI19, lemma 5.3; HKK+22, lemma 10.1]; see also [BHMV99] for related work. It
allows us to bound—independent of the coefficient contrast—a large-energy term [, -)
by a small-energy term «(-,-); see (6.29) and cf. (6.14). Of course, this involves a penalty,
namely the factor tol ™!, where tol should be chosen as small as possible to obtain a small

coarse space dimension.

Lemma 6.1 (Spectral Projection Estimate). Let (-, -) be a symmetric, positive semidef-

inite bilinear form and [(-,-) a symmetric, positive definite bilinear form on the finite-

dimensional vector space X . Furthermore, let tol > 0 be a tolerance for the selection of

etgenfunctions. We consider the generalized eigenvalue problem: find v € X such that
a(v,w) =A(v,w) Yw e X.

Then there exist eigenpairs {(Uk,)\k)}iizni(x), Ar > 0, such that the eigenvectors are a

B-orthonormal basis of X :

alvg, w) =XNB(vg, w) YweX, 1<k<dim(X),

Bk, vi) = Oy, 1 <kl <dim(X),
where 0y, is the Kronecker delta. Let w € X. We define the spectral projection

Iy == Z B(u, vg)vg
A <tol

and the semi-norm and norm

Ul = O‘(uvu)’ ||u||52: ﬁ(u’u)
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The operator I1 is orthogonal with respect to the bilinear form «f(-,-):
Juls, = [Tul}, + [u — Tuf3.

It follows that

Tufy < ful, o —Tuff < Julf. (6.28)

Furthermore, we have the spectral estimate
Ju — Tul| < 2 |u— Tuf?. (6.29)

Proof. ([SDH+14a, lemma 2.11]) Since a(-,-) is symmetric, positive semidefinite and
B(-,-) is symmetric, positive definite, a S-orthogonal basis of eigenvectors {vk}zizni(x)
of X exists (lemma A.3). Since §(:,-) is symmetric and positive definite, || - ||3 is a norm.

Therefore, we can assume vy, to be normed, such that ||vg||g = 1. We can thus assume

B( vk, v) = 8k, and we have for u € X
MMu) = > Y Blu,v)B(v, vp)vk= Y, Bu, v )vp = Hu;
A <tol \;<tol Ak <tol

that is, II is a projection. We now prove the a-orthogonality property of II. For any

u € X, there exist ¢ € R such that u = Zzﬁ(x) cvE. We have

dim(X

)
u= > Blu,vy)u,
k=1

since
dim(X)
Cr = Z clﬁ(vl,vk):,ﬁ(u,vk), 1§k§d1m(X)
=1
Using

alvg, v) = B(vk, v) =0, k#L,
we obtain the a-orthogonality property of II:
) 2 2
w2 =] 3 Blu v )u| +] 3 Bu, v )u|

A <tol A >tol

= |Hu|i + |u— Hu|g{
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Finally, we show the spectral estimate. From (v, v;) = 0y follows that

||u—HuH% = H Z Bu, vk)ka;

A >tol

= > > Blu,v)B(u, v)B(vk, v)

A >tol A\ >tol

= Z B(u, vk)2.

A >tol
Using

okl = Aellokll3 = Ak,

we then have

2
> B u)’= X puu)? e < LS s u)

A >tol A >tol A >tol

In a similar way to before, we can now use a( vy, v;) = 0 for k # [ and obtain

1 2 1
tol > Blu, vg) |’Uk?|?y:ﬁ S0 Blu, ve)B(u, v)a(ve, )
A >tol A >tol A\j>tol
1 2
= ol > 5(%%)%’&
A >tol
ik ulZ.

O]

For each ¢ € P, let symmetric bilinear forms B¢ (-, ) and ag(-,-) on X"*(&) x X"(¢&) be
given such that f¢(,-) is positive definite and (-, -) is positive semidefinite. In the case
of standard RAGDSW, we use 3¢ = ﬁg and ag = a?. For the S-variant, we replace ¢
with a¢ = a? . For the mass variant, we replace 3¢ with 3¢ = ﬁé\/[ . Similarly, the slab

variant uses either ag¢ = a?’l or ag == a?’l. We define the corresponding norm

[vllge = /Be(v,v) Vo€ XM(Q"),
and seminorm

[V|ae =1/ ae(v,v) Vo€ Xhah),
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and extend their domains to V"(Q) by restricting v € V*(Q) to Q". Furthermore, let
[vlo(B) = /aB(v,v) Yve VhQ), (6.30)

for any union B C Q of finite elements T' € 75, ().

As a consequence of the energy-minimality property of the operator 7—[5995(-), we have
K 2 2 h
ag (v,0) = [Heso, (Vo) < [Vlay Vv € V).

By (6.16), we have a?’l (v,v) < a?(v,v); by (6.19), we have af(v,v) < a?(v,v); and
v

by (6.21), we have oz?’l (v,v) S_a? (v,v). As result, we obtain
ag(v,0) < [vf3 g, Yo e VM) (6.31)
We define the projection
I : Vh(Q) — span ({ Vgt Ape < tole }) - VJ}BQD(Q),

w Z Be(w, Vke )Uke,

/\k,ggtolg

(6.32)

where vy, ¢ are the coarse functions and A ¢ the corresponding eigenvalues from (6.12).
The next lemma (cf. [HKKR19, lemma 5.4] and [HKK+22, lemma 10.2]) follows directly
from lemma 6.1 and can be regarded as a Poincaré-type inequality in case S¢(-,-) is given

by a scaled L2-inner product.

Lemma 6.2. ([HKK+22, lemma 10.2]) For ¢ € P and u € V*(Q), it holds that

lu = Meul|3, < Jul2 -

tolg ken(e)

Proof. We have

28) 1 9 (6§1) 1
> EM%

(6.29) 1 6
2 2 .
lu —eul[z, < = ol |ulaioe):

= @
the proof is completed by noting that |u]3(95) = D ken(e) \u|§(9k). We remark that the

exploitation of (6.29) and (6.31) are two fundamental steps toward the proof of a condition

number bound. O
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6.3. Condition Number Bound

6.3. Condition Number Bound

In the introduction of this chapter, we found that the constant Cy has to be determined
to fulfill assumption 6.1 of a stable decomposition. We then obtain the condition number

bound

R(Mody,K) < CR(Ne + 1),

In the following, we derive the bound
: 2
N C
Cg < 4+511+ CinVCTi + Cinvcri’
tolp tolp

tolp := mintol
P Eep ¢

where

is the smallest tolerance for the selection of eigenfunctions, and C is the maximum

number of vertices of any element T' € 75,(2);

3 if T € 1,(Q) are triangles,

4 if T' € 7,(Q2) are rectangles,

C - (6.33)
4 if T € 7,(Q) are tetrahedra,

8 if T € 7,(Q) are cuboids.

Furthermore, N¢ is the maximum number of interface components & € P of any subdo-
main,

N = max |P(Q)|, PQ)={EecP:enQ#0}, (6.34)

and C is a measure for the P-connectivity of the domain decomposition: two subdomains
i, 7 are connected if they touch the same interface component £ € P, from which follows

that 4,5 € n(§);

N
C=C({Qu}y,P) = max > [{€ePrijen©)} = max > [n(©) (6.35)
a2 &

1<i<N
T eP()
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To obtain better bounds (see below) for the standard adaptive GDSW coarse space, we

define variants of N¢ and C that incorporate tole:

1
N&Pl = max Y —, (6.36)
1<1§N£ P tole
[n(&)]
= 2 Tl (657
T T EEP(Q) ¢
The inequalities
NEtole < Lg7
~ tolp
Ctolg < C ’
~ tolp

hold and become equalities if tol¢ = tolp is satisfied for all £ € P.

If we use the standard adaptive GDSW coarse space, the coarse functions associated
with coarse nodes are obtained by using toly = oo for the selection of eigenfunctions—all
vertex eigenfunctions are then selected. It is not necessary to set up and solve the
respective generalized eigenvalue problems as the solutions to the vertex eigenproblems
are known a priori (restrictions of the null space to v € V). Since toly = oo, the constants
N&tole and C'e can be significantly smaller than N¢/tolp and C/tolp; cf. section 6.4.1.

We define the projection

p: VH(Q) = Vp C Vilan, (),

w — Z Mew,
£ep

onto the coarse space V{y := Vp that is obtained by using the respective RAGDSW method;
see (6.13) for the definition of Vp and (6.32) for that of Il¢. Let u € Vo’faQD(Q); we define
its coarse component ug that is required for the stable decomposition in assumption 6.1
as

ug = Ilpu.

The following proof of a condition number bound uses the (standard) right-hand side

g
BSK(, ) = ZGQQ(Z@(') ) Z&('))
=1
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of the generalized eigenvalue problem for many parts of the proof. To integrate the mass

variant, we will make use of the bound
/Bgl( (u,u) < Cinvbév[(uv U)

from (6.26). We can use the same bound if the lumped mass matrix is used; cf. remark 6.6.
If the variant with a lumped stiffness matrix is used, nothing else needs to be taken into

account; cf. remark 6.3. In the following, we use
BE (u,u) < Cinvbe (u,u)  Vu € V(Q), (6.38)

where Cj,v = 1 holds for all variants other than the mass variant.

The following lemma extends the result of lemma 6.2 from the local projection Ilzu
to IIpu. For the construction of coarse functions, we have—in a first step—extended
eigenfunctions by zero from £ to the interface. In chapter 7, we will introduce methods
that use other types of extensions. However, the extension-by-zero simplifies the following

proof considerably.
Lemma 6.3. (Compare with [HKKR19, lemma 6.2; HKK+22, lemma 11.1].) We have
Cinv

Ju— UOHZ»K < Z |u’2(Qk)7
3 t0l§ ken(€)

for £ € P and u € V(Q).

Proof. We exploit the fact that all coarse functions associated with interface components
other than £ are zero on &; we obtain

g g

[[u— U0||%§K = Z |2¢, (u — HPU)|2(Q§Z.) = Z |2¢, (u — H&“)E(Qgi) = [lu— Hf“HZ{K-
=1 =1

Using (6.38) and lemma 6.2, it follows that

C
2 ] . 2 inv
lu — Hf“”ﬁg < Cinvllu HE“HBg < tole

> lulZo,-

ken(€)
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To construct a stable decomposition (cf. assumption 6.1), we need to find bounds for
the energy of local components u; and the coarse component ug. The following lemma
gives a bound for the coarse component, and the subsequent lemma gives a bound that

can later be used to derive a bound for the local components.

Lemma 6.4. (Compare with [HKKR19, lemma 6.3; HKK+22, lemma 11.2].) It holds
that

uola@) < lulo) + [Cr D llu— uol %k
¢ep ¢

Proof. We will first exploit that coarse functions are energy minimizing on each subdo-
main §2; and, subsequently, we will make use of the spectral properties of eigenfunctions.

As ug is energy minimizing on each subdomain €; with respect to |- |,(q,), we have
ug = Hra,g(ug) (cf. [GLR15, lemma 4.1]), and the energy can be bounded from above

by using w itself or an extension-by-zero:
[uolae) < [Hrrso(Wla@) + [Hrrso(u — wo)la)
< fulae@) + lzrn (u — uo)la()-

Next, we split the extension-by-zero with respect to the subcomponents of all £ € P.

2

oo (u—w)iey =| Xz (w—w)|
{iENec,P a( )
2
- Z ‘ Z z§i(u—u0)‘ ()
Tern(Q) &€Nee,p “

Here, Ne.p is the set of all subcomponents of P (see (5.4)); we have & N¢&; = () for
i # j and UEiGNec,p & =T, In each finite element T, there can be at most C, NECs
& and, thus, at most C; different functions z¢; that are nonzero in T'. Hence, using the
Cauchy—Schwarz inequality, we have

2
XY wwew < 3 O Y e wlie  (639)

TET}L(Q) giENec,P TGT}L(Q) £i€Nec,7’

=C; Z |2¢, (u — Uo)\Z(Qgi)
gieNec,P

=Cr Y llu—uollZx-
€eP ¢

130



6.3. Condition Number Bound

Thus,

uola) < |ula) + [Cr D llu— uol %k
¢eP ¢

O]

Corollary 6.1. (Compare with [HKKR19, lemma 6.3; HKK+22, lemma 11.2].) It holds

that
|UO‘G(Q) < (1 + 4/ CinVCTNE,tol§> |u|a(Q)'

Proof. By lemmas 6.4 and 6.3, we have

uolag) < [l + [Cr Y llu—uolx
ceP ¢

1
< Julg(a) + J CinCr ) tole > ’“'3(ﬂk)‘
EeP ken(§)

By definition of N&%% in (6.36), we have

1 2 ,tol 2
Z ﬁ Z ‘u|a(Qk) < Nf 5’u‘a(ﬂ)‘
geP " ken(e)

|u0\a(9) < <1 + 4/ CjnVCTNg’tOZf) ‘u|a(Q)

Thus,

O]

In lemma 6.6, we will construct a stable decomposition. Therein, an energy bound
for the product of u — ug with a partition of unity function 6; is derived, where 6; is
associated with ;. The partition of unity is—unlike in the classical theory (cf., e.g.,
[TWO05, lemma 3.4])—mnot defined with respect to the set of overlapping subdomains
{Q}N that is used for the first level of the Schwarz preconditioner. For technical
reasons, we restrict the support of a partition of unity function ; to an overlapping
subdomain €; C 2, that is obtained by extending €2; by one layer of finite elements.

Let us comment on the technical reasons for the restriction of 8; to Qi instead of (2.
We will be able to represent 6; on the overlap Q; \ ©;, using the extension-by-zero zpu(6;).

We require the extension-by-zero to make use of the generalized eigenvalue problems
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6. Theory of Adaptive GDSW-Type Coarse Spaces

with lemma 6.2. Using the extension-by-zero to represent ; would not be possible if
the partition of unity were defined on a larger overlap. A different type of eigenvalue
problem may be required to obtain a condition number bound that depends on the size
of the overlap.

As a consequence, the condition number bound in theorem 6.1 does not reflect that
the convergence can benefit from a larger overlap. However, as we have seen in table 3.5,
the numerical results suggest that the influence of the overlap is only minor for the
considered heterogeneous problems. Let us emphasize that all methods in this work are
not restricted to the use of a minimal overlap for the first level of the preconditioner.

The following lemma provides estimates for the energy of the product of a cutoff
function—such as 6; on Q; \ Q;—and u — ug. The lemma covers two cases: an estimate

that is carried out locally on €; \ ©; and one that is carried out globally on €.

Lemma 6.5 (Partition of Unity Estimate). (Compare with [HKK+22, lemma 11.3;
HKKR19, lemma 6.4].) Letl € {0,1,...,N} and

0\ if 1 >0,

Q if 1 =0.
Furthermore, we set Qy := Q. Let U: B — R be a scalar-valued finite element function
such that V|, is constant on & € Neqp, & C B; that is, there exists a constant C; such
that (") = C; for all 2" € &. Moreover, we assume that 0 < ¥ < 1 and ¥(z") =0 for
2" ¢ ThN Q. Then

|Ih<\11 . (u—uo))|z(3) < C, Z ﬁgK(u —ug, u—up),
§EP ()

where I"(-) is the pointwise interpolation operator of the finite element space V().
Proof. We define the set Nee p (%) = {& € Neep : & C O } of subcomponents (NECs
of £ € P) that are part of ;. By definition, we have P(€2y) = P and Nee. p () = Nee p.
Since W(z") is only nonzero on the part of the interface that coincides with €;, and since
z¢,(+) acts as an identity operator on &, it follows that

2
M=) = Y (W (= w))
EiENec,’P(Ql)

2

a(B)'
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6.3. Condition Number Bound

In any finite element T € 75,(£2), there can be at most as many NECs & on which the
corresponding extension-by-zero z, (-) is nonzero as T' has vertices—thus, at most C-.

Consequently, using the Cauchy—Schwarz inequality, we have

2

> oaew)| = 3] Y (V- w)

&i€Nee,p(S2) Tery(B) & ENee,p(S2)

TETh (B) gz eNﬁc,P (Ql)

2
<G Y (P (u- “0))|a(§z§.)'
EiE€N e () '

As W is constant on each & € M. p(€)), and since 0 < ¥ < 1, we have

2 2
> (T =)l = X (Ple) (v —w)lie,)  (6:40)
gieNec,'P(Ql) SieNec,'P(Ql)
<D (e —w)lia,,) (6.41)
EieNec 'P(Ql)
< > Z |26, (u = wo)la(ay,)
5679(91)’ 1
Z ,BgK(u — ug,u — up).
§EP()

We remark that in (6.40), the decoupling (with respect to the subcomponents & € N, p)
of the right-hand side of the RAGDSW generalized eigenvalue problem was exploited.
Without the decoupling, the equality

|26 (¥ - (u = w0))| 4 ) = Yles - 26 (u = w0)lagr,)

would not hold in general. Notably, there does not exist an upper bound for the left-hand

side that is independent of the coefficient contrast; cf. section 6.1.1. O

Corollary 6.2. (Compare with [HKK+22, lemma 11.3; HKKR19, lemma 6.4].) Let the

assumptions of lemma 6.5 be satisfied. Then

[P - (1~ u0)) |35y < CinnCr Z o Z [ulze,)-

cep Ql) olg ken(e
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6. Theory of Adaptive GDSW-Type Coarse Spaces

If 1 =0, such that B = 2, we obtain
[TM(W - (u = o)) |20y < CinyCr N eful?

If the assumptions of lemma 6.5 are satisfied for all 1 <1 < N, ¥;: B; — R, with
B, =, \ €, we obtain

N

; ‘Ih(\:[/l . (u — uo))‘i(ﬁl\gl) S CjnVCTCtOli‘UE(Q),

where C'°% is a tolerance-weighted measure for the P-connectivity of the domain decom-

position; see (6.37) for its definition.
Proof. Using lemmas 6.5 and 6.3, we have

(MW (w—wo))2py <Cr Y BE(u—uo, u—ug)
§EP ()

< CinvC7 Z 1. Z ‘ |2Q,C

£eP () ol ken(e
For B = (), it follows that
|Ih( (U—UO))|a(Q) < CinwCr Z . Z |u|2 ) < CinwC thol§|u|2
¢eP "€ ken(e)
For B, = \ ©; and ¥;, we obtain

nvcri Z — Z lu |29k

1=1 geP(Ql) ol ken(€)

9

Zuh U—UO))E(QZ\Q” <

We now prove the existence of a stable decomposition.

Lemma 6.6 (Stable Decomposition). (Compare with [HKK+22, lemma 11.4; HKKR19,
theorem 6.5; HKKR18b, lemma 6.4].) For each u € VO%QD(Q), there exists a decomposi-

tion u = f\io RlTu,-, u; € Vi, 0 <i < N, such that

N
> luilzoy < Ciluliq)

=0
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6.3. Condition Number Bound

where

2
Cg =4+5 (1 T % CinVCTNg’tOIé) + CinVC'TCtOlg

C

N¢
< 4 5 CanC CanC
=4t ( to lp) + to l7>

where C is a measure for the P-connectivity of the domain decomposition; see (6.35) for

its definition.

Proof. As introduced above, {Q;}YY, denotes an overlapping decomposition, where Q; is
obtained by extending £2; by one layer of finite elements. Let u € VO7 a0, (€2). Then we

define the local components u; € V;, 1 <i < N, as

u; = Ih(ei (u— UO))|Q;,

where {0;}Y, is a partition of unity of scalar-valued finite element functions. The

functions 0; are defined by their nodal values

1 e h 0.
ity = | T T
0 if 2" € Q \ ﬁi,
where 2" is a finite element node, and |n(z")| is the number of subdomains for which

" € Q; holds. Note that we have u; € V;, since QZ- C Q. We obtain

il = luill g,y = 11" (0w = uo) 2

= 160 — w0)) P gy 1 O —0)) By (6.42)

As 0; satisfies the assumptions of corollary 6.2, we obtain for the first term of (6.42)
Zuh (u — ug))|? 2 onay < CinC:C Pl w2 - (6.43)
Using the Cauchy—Schwarz inequality, it follows for the second term of (6.42) that

1103 (u — u0)) |3,y < 21IM((1 — 6:)(u — u0))|3q,) + 2lu — uol3q, (6.44)
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6. Theory of Adaptive GDSW-Type Coarse Spaces

By summing over all subdomains, we obtain a bound for the last term of (6.44), using

corollary 6.1:

N

> 20u = uol3q,) = 2lu — uol3q)
=1

2
<2 (|U|a(9) + !U0|a(9))
2
<2 (2 + \/omchNétols) 02 . (6.45)

To bound the first term on the right-hand side of (6.44), we define a cutoff function
0: Q — [0,1] with respect to the interface I'*. The function € is a scalar-valued finite

element function and defined by

As 0 satisfies the assumptions of corollary 6.2, it follows that
N
Z; 201" (6(w — u0)) |2, = 2" (0(u — u0))|2iq) < 2CiyCr NS ul? o). (6.46)
1=

Let D := Ci,y O, NStk Using corollary 6.1, (6.43), (6.45), and (6.46), we then obtain

N N
> lualaoy = luolay + 2 il
i=0 =1

2
< (+ VD) + G 42 (24 VD) +2D ) luf

= Cilul2q

where

C2 =4+ 5(1 4+ VD)% + Ciny C.Ck.

By using N&k < N¢/io1, and C'% < Cliolp, it follows that

2
N¢ C
Cg < 4+511+ C’invchi + C’invcyTi-
tolp tolp
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6.4. Practical Aspects of the Condition Number Bound

With a slight change in the proof of lemmas 6.5 and 6.6, we can improve the constant C
for some interface partitions; see (6.47) in section 6.4.3. However, for the interface
partitions constructed in chapter 5, the new constant will be identical to C.

From (6.3) and lemma 6.6, we obtain a bound for the condition number of My iGDSWK .

Let us note that slightly different constants are given in [HKK+22, theorem 11.5].

Theorem 6.1. The condition number of the RAGDSW two-level Schwarz operator is
bounded by

< (k) < (445 (10N 4 et ) (3, +1)

2
N¢ C o
< . - f R
< 4+5(1+,/cmvc%lp) + CinCrp | (Re+1)

where N, is the mazimum number of overlapping subdomains {€2, f\il any finite element
node " € Q can belong to. All constants are independent of H, h, and the contrast of

the coefficient function E.

6.4. Practical Aspects of the Condition Number Bound

In the following, for the model problems in chapter 2 and the coarse spaces AGDSW,
R-WB-AGDSW, and RAGDSW, we state the constants encountered in the condition
number bound in theorem 6.1. Furthermore, we investigate how the eigenvalues of the
local generalized eigenvalue problems depend on the fine mesh resolution h. Finally, we
show the effect of interface components that span large sections of €2 on the condition

number.

6.4.1. Constants of the Condition Number Bound

The constants relevant for the condition number bound in theorem 6.1 for the problems
of sections 2.1 to 2.4 are given in table 6.1. The bounds are based on the tolerance

for the selection of eigenfunctions tolp = 0.05. As we use the standard variants of the
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6. Theory of Adaptive GDSW-Type Coarse Spaces

AGDSW R-WB-AGDSW RAGDSW

C- NC N&tole CtOlé Kbound N¢ C KRbound N¢ C Kbound

(1) 4 8 1200 3340 3.4:10° 51 170 3.1-10° 34 136 2.3-10°
(2) 4 8 620 1660 1.810° 22 68 1.3-.10° 12 48 8.1-10*
(3) 4 8 1340 3660 3.810° 53 176 3.2.10° 34 138 2.3.10°
(4) 4 10 1440 4000 5.0-10° 55 183 4.1-10° 36 145 2.9-10°

Table 6.1.: Constants and condition number bounds Kpoung from theorem 6.1 for
AGDSW, R-WB-AGDSW, RAGDSW, and problems (1)—(4) from sec-
tions 2.1 to 2.4; Kpound ‘= (4 +5 (1 + \/Wf + C’TCt"l£> (NC + 1).
For R-WB-AGDSW and RAGDSW, we have N&%% = N¢/io1, and Cte =
Cltolp; tolp = 0.05.

coarse spaces, we have Ci,, = 1. The constants N Stole and Ctols are identical to N 5/tolp
and C/tolp, respectively, in the case of R-WB-AGDSW and RAGDSW; only AGDSW
benefits from using N&*°% and Ctk.

From table 6.1, we learn that N&tk and C'% are of considerable magnitude, which
results in large condition number bounds. Although, theoretically, it is unknown whether
in certain situations we may indeed encounter large condition numbers, the numerical
results of this work suggest otherwise—that the magnitude of the bounds are an artifact
of the proof. Let us note that this is similar for, e.g., adaptive FETI-DP; see, e.g., [Kiih18,
theorem 5.7] and the follow-up discussion.

Let us recapitulate the definition of the constants and focus on the bound for the

reduced variants (using tole = tolp):

2
NG C N
M'K)< |4 1 S — | (N.+1).
K ( ) < +5( ﬂ/CtOlP) +Crp (Ne+1)

(- is the number of vertices of the finite element used; since we use tetrahedra, we have
Cr=4.

N¢ is the maximum number of overlapping subdomains any finite element point can
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6.4. Practical Aspects of the Condition Number Bound

belong to; we have N = 10 for problem (4) and N¢ = 8 for problems (1)-(3). We
note that NC is equal to 8 for a cube that is partitioned into smaller cubes, in case a
sufficiently small overlap is used.

N¢ is the maximum number of interface components of any subdomain. It is equal
to 94, 42, 101, and 106 for AGDSW and the respective problems (1)—(4). As expected,
N¢ is significantly smaller for the reduced variants; cf. table 6.1. Histograms for the
distribution of the number of interface components per subdomain are shown in fig. A.1.
More detailed statistics for each type of interface component are given in fig. A.2.

Finally, the constant C enters the condition number bound. Let C;; be the number of
interface components that touch both €2; and €2;. Note that C;; is the number of interface

components of €; and, thus, N¢ = max;—1,.. N Ci. By definition of C in (6.35), we have

N
C = max Cii.
i—l,‘..,szl *J

It follows that

N¢ < < N¢ )
<C< rgeagln(é)l

In section 6.4.3, we will show that C can be replaced by another constant that is smaller
for some interface decompositions. Specifically, it is smaller if interface components exist
that span across many subdomains. Regardless, it is usually desirable to minimize C:
interface components that span across many subdomains increase the communication
cost in a parallel setting and can also increase the computational effort for the setup and

solution of the respective generalized eigenvalue problem.

6.4.2. Dependence of the Eigenvalues on the Fine Mesh Resolution

The condition numbers of domain decomposition methods often depend on H/r—unlike
the bound in theorem 6.1. There, the influence of #/h is hidden by the eigenvalue problem:
many eigenvalues decrease with an increase in H/h.

In fig. 6.8, we consider an example of the Poisson equation on the unit square with a
zero Dirichlet boundary condition on the left of the domain and a zero Neumann condition

on the remaining boundary. The domain is discretized with bilinear finite elements and
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Figure 6.8.: (Top left) Sample mesh with 4 subdomains and 322 elements. (Top right)
Histograms of the eigenvalues of the RAGDSW generalized eigenvalue prob-
lems for different fine mesh resolutions. Minima and maxima are marked
with red bars. The width of bars indicates the number of eigenvalues in the
corresponding range; it is scaled with the cube root to improve the visibility
of small bars; it is not comparable between different columns. Condition num-
bers (bottom left) and numbers of iterations (bottom center) for OSL1
and RAGDSW. Coarse space dimension (bottom right) for RAGDSW.

subdivided into 2 x 2 subdomains. To analyze the effect of the fine mesh resolution h, we
vary 1/n, where we use the length of a side of a square finite element for h (contrary to
its definition in section 1.2 based on the diameter). For the preconditioning, we employ
OSL1 with an overlap of one layer of finite elements and, based thereon, RAGDSW with
a single interface component. For the selection of eigenfunctions, the tolerance 0.01 is

used.

In fig. 6.8 (top right), eigenvalues of the generalized eigenvalue problem are shown for

140



6.4. Practical Aspects of the Condition Number Bound
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Figure 6.9.: Condition numbers (left) and numbers of iterations (right) for different

types of interface partitions and the GDSW coarse space.

different mesh resolutions; we see that the spectrum is spread out with an increase in
the mesh resolution. As a result, the coarse space dimension increases from zero to four

(bottom right), and we obtain a robust preconditioner (bottom left and bottom center).

6.4.3. Interface Components Spanning Many Subdomains
Nonadaptive Coarse Space: GDSW

Coarse functions that span large sections of the domain can have a negative impact on
the weak scalability of the algorithm. As an example, we consider the Poisson equation
on the unit square with a zero Dirichlet boundary condition on the left of the domain
and a zero Neumann condition on the remaining boundary. The domain is discretized
with bilinear finite elements and subdivided into 64% subdomains, each with 16 elements.

To define a partition of the interface, we decompose the domain into NV, x N, rectangles
and assign all nodes that lie inside a rectangle to an interface component. We choose
several partitions such that the number of interface components N,-N, = 64 is constant.
Note that a larger coarse space can outperform a competing one even if the individual
coarse functions are of lesser quality, because of the better approximation that may be
achieved by sheer quantity. As a result, we keep the number of interface components
constant.

Furthermore, we make a comparison with the extreme case in which the entire interface
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6. Theory of Adaptive GDSW-Type Coarse Spaces

is used as the only interface component. The interface components of the partition
1 x 64 are as wide as one subdomain in the y-direction and span the entire domain in
the z-direction; the ones of the partition 8 x 8 span 8 subdomains in both coordinate
directions. The other partitions used are 2 x 32, 4 x 16, and—as mentioned above—1 x 1.

In fig. 6.9, we analyze the performance of the GDSW coarse space with regard to
the different interface decompositions. An overlap of one layer of finite elements is
used. The results show that the smaller the diameter of the interface components is,
the better the algorithm performs. Furthermore, if only a single interface component
is used, the condition number is similar to the 1 x 64 case. The number of iterations is
significantly lower even though we use only a single interface component instead of 64.
We conclude that the diameter of an interface component plays a crucial role for a
nonadaptive GDSW-type coarse space, and that we lose scalability by using components
that are too large. We remark that the results—for interface components spanning many
subdomains—show a dependence of the condition number on Hr/h, where Hp is the

largest diameter of an interface component.

Adaptive Coarse Space: RAGDSW

The constant C in the condition number bound in theorem 6.1 is equal to the number of
subdomains if only a single interface component is used. For GDSW, we have seen above
that the size of the interface component influences the scalability of the algorithm. Thus,
supported by the dependence of the condition number bound on C, the question arises
whether this holds true for the adaptive variants as well.

Unlike the bound suggests, numerical results do not show this dependence. We consider
Poisson’s equation on a thin, elongated rectangle, a zero Dirichlet boundary condition
on the left of the domain, and a zero Neumann condition on the remaining boundary.
The domain is discretized with bilinear finite elements and subdivided lengthwise into
N =2k k€ {3,4,...,9}, subdomains, each with 16 elements; cf. fig. 6.10 (top left).

The RAGDSW coarse space is used for preconditioning, with a tolerance of 0.05 for

the selection of eigenfunctions and an overlap of one layer of finite elements. Figure 6.10
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Figure 6.10.: (Top left) Sample mesh with N = 8 subdomains and 16 elements per
subdomain. (Top right) Histograms of the eigenvalues of the RAGDSW
generalized eigenvalue problem for different numbers of subdomains: The
entire interface is used as the only interface component. Minima and maxima
are marked in red. The width of bars indicates the number of eigenvalues in
the corresponding range; it is not comparable between different columns; it
is scaled with the cube root to make narrow bars wider. Condition numbers
(bottom left) and numbers of iterations (bottom center) for OSL1 and
RAGDSW. (Bottom right) Dimension of the RAGDSW coarse space.

(top right) shows that the eigenvalues of the (single) RAGDSW generalized eigenvalue
problem decrease in magnitude with an increasing number of subdomains. On the
bottom right, the growth of the coarse space dimension is shown. From the bottom-left
and -center graphs, we conclude that RAGDSW is scalable for this type of interface

“decomposition.”
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In fact, we can prove that interface components spanning many subdomains do not
negatively influence the condition number bound. From (6.43) and corollary 6.2 follows

Z!Ih 61— u0)) |2 g0 < CinnCr Z > g > lulia,) < CineCoC*'eJul3 g
I=1eeP(y) '8 ken(€)

Corollary 6.2 followed from lemma 6.5. Therein, we can change the lines of proof beneath

(6.41). Let U; satisfy the assumptions in lemma 6.5 for [ = 1,..., N. We obtain

N
Z ‘Ih(‘l’l (u— ))| (\Q) Z Z |2, (u — U0)|§(Q§i)
=1

=1 516/\/'55 P(Ql)

=Cr > In(E)] - lze (u — wo) g, )

giENecP

=Cr Z Z [n (&) - |z¢, (u )|2(Q£Z_)
fepi=1

<C-) (Z._f{lax In(&)]) BE (u = wo,u — uo).  (6.47)
gep T

Then, we continue as before and obtain with ¥; = 0; that

N
3= )y < O 5 (s, ie) 5 b

ken(£)

S Cfinvc"rctoh’c |u’(21(Q) )

where

A max;— ni(Gi
Clole = max > - ltol”f | (&)’. (6.48)
== geP(@) ¢

For the interface partitions constructed in chapter 5, the multiplicity |n(£)| of £ is equal

to max;=1__n, [7(&)]- Thus, in this case, we have

Otole — max Z [n(&)l — ctole
ISZSNgeP(Ql) tole

The constant Ct% is smaller than C'% for components spanning many subdomains. For
example, if the entire interface is used as the only interface component é&—and using
tolg = 1 for simplicity—we have N¢ = 1, C?¢ = C = N, and Ctole — maxe, ey [1(&)],
where Npn is the set of NECs of the interface (as per sections 5.1 and 5.6). For
problems (1)—(3), we have a maximum of five subdomains adjacent to any finite element

node; that is, maxgen, [n(&;)| = 5; for problem (4), we have maxgen,, [n(&)| = 6.
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This chapter is partly based on [HKKR18b] and [HKKR].

For AGDSW and RAGDSW, we have incorporated energy-minimizing extensions into
the generalized eigenvalue problem to obtain a small coarse space dimension; cf. sec-
tions 3.3.2, 3.4.1, and 4.5. Subsequently, we have replaced the GDSW with the RGDSW
interface partition to obtain a further reduction in the coarse space dimension. In the
following, we use the same interface partitions that have already been introduced but
change another aspect of the generalized eigenvalue problems. Specifically, we enforce
additional zero Dirichlet conditions during the construction of the energy-minimizing

extensions He,q, (+).

This approach was inspired by the multiscale discretization method ACMS (approxi-
mate component mode synthesis) [HL10; HK14; HHKR15; Heil6; HKKR18b; HKKR].
Therein, special basis functions that correspond to our coarse functions are constructed
in order to reduce the dimension of the finite element space. The construction process of
the special basis functions is identical to that of our coarse basis functions. However, the
goal of the ACMS method is to obtain a finite element solution that approximates the
exact solution to the variational problem, using fewer degrees of freedom. Our goal, on
the other hand, is to build a robust preconditioner. To this end, we need to modify the
ACMS space; see [HKKR18b], where this was done for the first time for two-dimensional
diffusion problems. In [HKKR], the approach is generalized to three dimensions and linear
elasticity problems. Since a few modifications are required, we have added the prefix OS

(overlapping Schwarz) to ACMS and named the resulting coarse space OS-ACMS.
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7. ACMS-Type Coarse Spaces

7.1. The Discretization Method ACMS

In structural dynamics, it is common to perform modal analyses on individual compo-
nents of, for example, an aircraft, and then synthesize the local solutions to obtain an
approximate global solution. This idea of component mode synthesis (cf. [Hur60; Hur65;
CB68; HL10]) can be used to define special finite element functions that approximate
a solution more accurately than standard finite element functions, using a comparable
number of degrees of freedom.

To construct special basis functions for a two-dimensional diffusion problem—based
on the idea of component mode synthesis—in [HL10], the authors first define the CMS
(component mode synthesis) special finite element method. For the setup, we solve a
generalized eigenvalue problem on each subdomain and one on the entire interface I'. The
solution of an eigenvalue problem on the entire interface is computationally expensive and
difficult to parallelize. The authors, thus, propose to approximate the CMS method by
replacing the interface problem with edge problems and by using special vertex functions;
the resulting method is named ACMS.

The edge eigenvalue problems are given by: find 7. € X"(e) such that

aq, ( HF’MQ@ (ZG(T*,S)) ) ,HFh»Qe (26(6)) ) = )‘*,eﬁémH(T*,e ’ 0) (7'1)

for all § € X"(e), where BMH (1., 0) = (Hrr,qg, (2e(Tie)) , Hpnsg, (2¢(0)) )LQ(QE). We
note two differences between M- and the bilinear form 3, which we have used before
(see (6.22)): the new bilinear form B2 does not use the coefficient function and mesh
parameters for scaling, but it contains an energy-minimizing extension.

For the vertices, ACMS uses the following type of MSFEM functions (multiscale finite
element method [HW97; HWC99; EH09]): For each edge that is incident to a vertex, a
solution to the underlying diffusion problem on the edge is computed using the boundary
values 1 (at the selected vertex) and 0. The edge values are then extended by zero to
the remaining interface and, subsequently, energy-minimally to the interior. Examples
are given by the function in fig. 7.1 (top: center right) and by the function in fig. 7.2
(rightmost).
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7.2. The OS-ACMS Coarse Space

Figure 7.1.: Coefficient function and coarse functions for a two-dimensional diffusion

problem on Q = [0,1]? with a zero Dirichlet boundary condition on 9.
(Top left) Coefficient function with E = 10° in red and F = 1 in blue on a
2 x 2 domain; (top: center left, center right) sum of AGDSW vertex and
edge functions and edge values of the sum on a coarse edge. (Top right)
AGDSW vertex function. (Bottom) AGDSW edge functions corresponding

to the smallest eigenvalue on each coarse edge.

7.2. The OS-ACMS Coarse Space

Before we give the technical definition of the OS-ACMS coarse space, let us consider
two-dimensional diffusion problems to motivate the necessary changes to the ACMS

space to obtain a robust preconditioner.

We consider the problem in fig. 7.1 (top left) with an inclusion of a large coefficient, cen-
tered at the coarse node. The respective AGDSW edge functions (bottom) corresponding
to the smallest eigenvalues are shown in addition to the AGDSW vertex function (top:
rightmost). In section 1.5, we have motivated that only one coarse function is required
for the coefficient function in fig. 7.1 to obtain a robust method. If we compute the

sum of all AGDSW coarse functions—see fig. 7.1 (top: center left)—we obtain a coarse
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function that, by itself, is sufficient to achieve robustness. In fact, this coarse function is
the MsFEM-type function used by the ACMS space. By prescribing a value of 1 at the
coarse node, 0 at the other end of an edge, and solving the underlying diffusion problem
on the edge, we obtain the edge function in fig. 7.1 (top: center right). Repeating this for
all edges and extending the computed interface values energy-minimally to the interior,
we obtain the displayed MSFEM function (top: center left).

Our goal is to change the AGDSW generalized edge eigenvalue problems to exclude
coarse edge functions as shown in fig. 7.1 (bottom), in case these functions are associated
with a patch of large coefficients that touches the coarse node. This is achieved by pre-
scribing a zero Dirichlet condition at the boundary nodes of the edge for the computation
of the energy-minimizing extension in (6.6). In that case, a slope to zero on a patch
of large coefficients is forced, resulting in a large energy and, thus, a relatively large
eigenvalue; cf. remark 6.1. The left-hand side of the new generalized edge eigenvalue

problem is given by

aQe(HEAQe (26(7—)) ; Hesq, (26(9)) ), T.0€ Xh(€)7

where € is the union of the edge e and its boundary nodes. Note that, for the example in
fig. 7.1, the boundary nodes Oe of e consist only of one coarse node. This is sufficient
as, by definition of the energy-minimizing extension in (6.6), a zero Dirichlet condition
is already prescribed on 9Q2p—this differs from the definition in [HKKRI18b], where
a zero Neumann condition is prescribed on 9Q2p. Furthermore, we do not prescribe a
zero Dirichlet condition at a boundary node of an edge if the node lies on the Neumann
boundary 0Qy .

An MsFEM-type function, which will replace the AGDSW vertex function, is now
required to deal with patches of large coefficients that touch a coarse node. For simple
problems as in fig. 7.1, it is sufficient to use the MsFEM-type functions of the ACMS
space. The same type of MsFEM function is also used for the adaptive coarse spaces in
[GLR15; GL17] and, based on the same idea, in [EMR19].

However, for our coarse space, we require a different type of MsFEM function: We

consider a model problem with a comb-like coefficient function in fig. 7.2. The sum

148



7.2. The OS-ACMS Coarse Space

fl———"

N
N

Figure 7.2.: Coefficient function and coarse function for a two-dimensional diffusion
problem on 2 = [0,1]2, with a zero Dirichlet boundary condition on 9.
(Left) Coefficient function with E = 10° in red and E = 1 in blue on a
2 x 2 domain; (center left) sum of AGDSW vertex and edge functions and
(center right) edge values of the sum on the coarse edge that is on the right
side of the domain. (Right) Edge values (for the coarse edge on the right)
of the MsFEM function of the ACMS space.

of the AGDSW coarse functions—using one coarse function per edge as in fig. 7.1—is
displayed in the center left. The new type of edge eigenvalue problem, however, will not
have small eigenvalues and, thus, coarse edge functions will not be constructed (given
a sufficiently large tolerance). For the coarse edge on the right side of the domain, the
MSFEM function of the ACMS space is shown in fig. 7.2 (rightmost). If these edge values
were extended energy-minimally to the interior, the resulting coarse function would look
very different from the one displayed in the center left; moreover its energy would be
large, and the resulting coarse space would not be robust.

We need to define edge problems such that we obtain the edge function displayed in
the center right of fig. 7.2. This can be achieved as follows: given the Dirichlet conditions
in the associated coarse nodes, among all possible edge functions, find the edge function
whose energy-minimizing extension has the smallest energy on €2.. In other words: Let
Xh(e) ¢ X"(€) be the space that satisfies the Dirichlet conditions in the boundary nodes
of e. Then, find 7 € X%(€) such that

s . 2
(Hesa, (T)|a(ﬂe) = eegi’gn(é) |Hesa, (9)}(1@6).
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7. ACMS-Type Coarse Spaces

This MSFEM-type function was introduced in [HKKR18b] and later used in [HL20b;
HL20a; HKL22] as well.

Using the slab variant demands an adjustment of the analysis carried out above. If
the slab is sufficiently small, a coarse edge function may be constructed despite the new
type of eigenvalue problem. For example, if the slab were given by three layers of finite
elements surrounding the right coarse edge of the problem in fig. 7.2, we would not detect
that the three channels of large coefficients are connected; two coarse edge functions
associated with small eigenvalues would be constructed. In that case, the edge values of a
suitable MsFEM-type function would be given by fig. 7.2 (rightmost), which displays the
(standard) MsFEM function that is used by the ACMS space. Since the detection of the
connected component of large coefficients is rooted in the use of an energy-minimizing
extension in the generalized eigenvalue problem, and since the coarse spaces in [GLR15;
GL17; EMR19] do not make use of energy-minimizing extensions in such a way, this

explains why they can use the standard MsFEM-type functions of the ACMS space.

To construct MsFEM-type functions that are consistent with our coarse edge functions,
we must use the same type of energy-minimizing extension as used for the construction

of coarse edge functions, for example, Hz o (+) in the case of the slab variant.

For coarse faces, we use the same type of eigenvalue problem as for coarse edges. The
boundary nodes of coarse faces are given by adjacent coarse nodes as well as adjacent

coarse edges.

For the extension of edge eigenfunctions in three dimensions to construct coarse edge
functions, we encounter the same difficulty as we have encountered in two dimensions
for the computation of edge values of MsFEM functions: we require an extension from
the boundary nodes of an adjacent coarse face to the coarse face itself. Fortunately, the
extension is computed analogously to the two-dimensional case: We extend the edge
values by zero to the boundary of an adjacent coarse face. Using the extended values
as Dirichlet boundary conditions, we compute a face function whose energy-minimizing
extension has the smallest energy among all possible face functions. The resulting function

is then extended by zero to the entire interface and energy-minimally to the interior.
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face eigenfunction @ i,@i,@
edge eigenfunction @-ﬁﬂi,@i@
MsFEM-type function @—Z>ﬂ>—z>i_[>_z>@i,@

Figure 7.3.: Schematics of the cascaded extensions used to construct MsFEM-type, coarse
edge and face functions. v refers to a coarse node, e to a coarse edge, and f to
a coarse face. z is an extension-by-zero and ‘H an energy-minimizing extension.
A highlighted node indicates that multiple components are affected; for

example, we extend edge functions to all adjacent faces.

The three-dimensional MsFEM function is constructed by computing the edge values
identically to the two-dimensional case and by then extending the values energy-minimally
to the faces as above for edge eigenfunctions. The remainder is carried out as in the
two-dimensional case. These cascaded extensions are visualized with schematics in fig. 7.3.

The above concept to enforce additional Dirichlet conditions during the computation
of the energy-minimizing extension that is associated with the generalized eigenvalue
problem will be generalized in section 7.5. In fact, the formulation will even encompass
adaptive GDSW-type coarse spaces.

A final modification is required to obtain a robust preconditioner. The right-hand
side of the ACMS edge eigenvalue problem in (7.1) contains a specific energy-minimizing
extension, such that the right-hand side can assume small values for suitable functions
for which it should take on large values. As a result, we will replace it with one of the
right-hand sides introduced for AGDSW and RAGDSW. Historically, we use a right-hand
side for OS-ACMS that is based on the scaled L2-inner product; see section 6.1.4.

7.2.1. Technical Preliminaries

The OS-ACMS coarse space uses the same interface decomposition as GDSW and

AGDSW, that is, a decomposition into coarse nodes V, coarse edges £, and coarse
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faces F (in three dimensions). In the following, we give a description for the three-
dimensional setting. The two-dimensional case is handled analogously: Edge functions
in two dimensions are constructed like face functions in three dimensions. In three
dimensions, vertex functions are defined via a cascade of extensions from vertices to edges
to faces to the interior. In two dimensions, the extension to faces is simply removed, such
that we obtain an extension from vertices to edges to the interior.

Generalized eigenvalue problems are used on coarse edges and faces to construct coarse
functions. Moreover, we require the use of MsFEM-type functions, which are associated
with coarse nodes. In the following, we first define generalized eigenvalue problems on
coarse edges and faces. Then, we extend the eigenfunctions, using a new type of extension
operator as introduced above.

For an interface component & € P, by € we denote the union of ¢ and its “boundary

nodes” 0¢:
E=EUOE.

The notion of boundary nodes is—for the most part—intuitive for a structured domain
decomposition. It always holds that 9¢ C I'"; that is, nodes on the Dirichlet boundary
O p are never part of £&. For an edge e € £, we define de as the set of coarse nodes
incident to e. For a face f € F, we define Of as the set of adjacent coarse nodes and the
nodes of adjacent coarse edges. For vertices v € V, we set Ov = ().

We emphasize that the definition of £ above is only valid for the coarse space OS-ACMS
of this section. For the generalization of OS—ACMS in section 7.5, the definition depends
on the type of boundary conditions used for the energy-minimizing extension. In general,
O¢ is given by all nodes of T N ﬁg that a zero Dirichlet condition is prescribed in; in the
case of OS—ACMS, these are coarse nodes adjacent to a coarse edge, or coarse nodes and

edges adjacent to a coarse face.

7.2.2. Generalized Eigenvalue Problems

Let £ € P. The following generalized eigenvalue problem is valid for coarse edges e € £,

coarse faces f € F, but also for coarse nodes v € V. Similar to AGDSW, however, we do
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7.2. The OS-ACMS Coarse Space

not actually have to solve an eigenvalue problem to construct vertex functions.

Find 7. ¢ € X"(¢) such that
T (Tug, 0) = M (e, 0) VO € XM, (7.2)
where 55\/[ (-,-) is the bilinear form from (6.22), using a scaled L2-inner product, and

a?(T*@ ,0) = a?(q(njg) , ze(0)), oz? (u,v) = aQé(H@Qs (u), Heq, (v)). (7.3)

Note that ¢ does not include nodes on the Dirichlet boundary 9€2p, but by definition
of (6.6), Heg 495(') prescribes a zero Dirichlet condition at all z* € 9Qp.

In case £ = £, which can occur in unstructured domain decompositions or at the
Neumann boundary 02y, eigenvalue problem (7.2) is identical to that of AGDSW-M.
Let us note that using the mass variant for OS-ACMS has historical reasons. There is
no limitation to using any of the other variants defined for AGDSW.

Let the eigenfunctions and corresponding eigenvalues of (7.2) be given by 71 ¢, Ar¢,
where 1 < k < dim(X"(¢)). We select eigenfunctions that belong to eigenvalues smaller
than or equal to a user-prescribed tolerance tole.

Compared to an adaptive GDSW-type generalized eigenvalue problem, additional zero
Dirichlet conditions on 9¢ are prescribed. As a result, the left-hand side of (7.2) is
invertible except for some rare cases, e.g.: if 9 = () and if all subdomains adjacent to &
do not touch 0Q2p, or—in the case of three-dimensional linear elasticity—if £ is a straight
edge with only one incident coarse node and no adjacent subdomains that touch 0Qp. In
the latter case, we obtain two zero eigenvalues (note that the linearized rotation around

the edge is not in the null space).

7.2.3. Extensions of Face and Edge Eigenfunctions

Unlike for adaptive GDSW-type coarse spaces, the extension of eigenfunctions differs
based on the type of boundary conditions used in the energy-minimizing extension. For
faces f € F, we have enforced zero Dirichlet conditions on all interface nodes adjacent

to f. In that case, we can use the same extension as for adaptive GDSW-type coarse
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spaces; that is, we extend an eigenfunction 7, y by zero to I'" and then energy-minimally

to €: the coarse function associated with 7,  is, thus, defined as

Vs f = Hrnoq (2 (e f)).

Contrary, for an edge e € £, we had to enforce zero Dirichlet conditions on adjacent
coarse nodes and not on all interface nodes adjacent to e, that is, not on adjacent coarse
faces, as two adjacent interface components cannot both enforce Dirichlet conditions on
each other; see section 7.5. As a result, we need to use an energy-minimizing extension
to define values on the adjacent faces. Note that, if an edge does not have any adjacent
faces, we obtain an adaptive GDSW-type eigenvalue problem, and the extension of an
eigenfunction is carried out as for AGDSW.

By B,(f) we denote the parents of f: these are interface components on which we
prescribe a zero Dirichlet condition in the energy-minimizing extension in generalized
eigenvalue problem (7.2). As a result, the set of parents of f is given by all interface
components that need to compute an energy-minimizing extension to f. For OS—ACMS,
B, (f) is given by the set of coarse nodes and edges that are adjacent to f. By Bc(e) we
denote the set of children of an edge e, that is, the adjacent coarse faces.

We define an extension from e to f as

Tvesf = Mooy (2e(Tee)) )7- (7.4)
Let
Teesf  onf € Be(e),
ThesTh =  Txe on e,
0 elsewhere on I'".

The coarse function associated with 7 . is then defined as

Us,e = ,HFh»Q (T*,e»Fh ) :

Lemma 7.1. Let £ € P, 75¢ € X"(9€), and

Tz = Mo, (Tog) ‘E.
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Then it holds that

Hoes0 (Tae)late) = M0, (Te)la(a) = |TE’0%(‘

Proof. Let any 6 be given such that 6 = Hge.q, (0)—we recall that the energy-minimizing

extension may not be uniquely defined; cf. remark 6.5. If

Hocsae Olatag < Heup, Ol

then
10lae) < Hzuq, (0)laee);

which contradicts the energy-minimality of Hz 495(')' Equally, let w := Hg AQg(H). If

|/HE*Q§ (9) |“(Q§) < |/H65995 (0) |a(Q§) )

then
|w|a(95) < |H8§4Qg (w) ’a(Qg) )

which contradicts the energy-minimality of Hae.q, (-)- O

From lemma 7.1 follows that 7¢ is a function whose extension Hg 0 (TE) has the
smallest energy | - |40 () among all possible functions that are equal to 75¢ on 9¢. The
corresponding variational formulation is given by: find 7z € X h(€) with Telog = Toe such

that
af (75, 2(0)) = ag, (Hg,q, (), Heo, (2(0))) =0 VO € Xh(g). (7.5)

ax)

7.2.4. MsFEM-Type Vertex Function

Let v € V be a coarse node. Similarly to AGDSW, coarse functions associated with v
can be obtained by suitable extensions of solutions to the generalized eigenvalue problem
in (7.2). Since we have ¥ = v, no additional Dirichlet conditions are enforced for the
energy-minimizing extension. Following the discussion in the introduction of section 7.2,
we have to compute an energy-minimizing extension from v to all children B.(v), where

B.(v) denotes the set of adjacent coarse edges and faces.
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As for AGDSW, let 7, be a function of the restriction of the problem’s null space to v.
In the case of three-dimensional linear elasticity, these are the translation modes and are
given by, for example, the three unit vectors of R3. Similarly to the extension of the edge
eigenfunctions in the last section, we extend 7, to all adjacent edges energy-minimally.

Let e be an edge that is adjacent to v. Then the extension from v to € is defined as

Ty, e = /Hae»Qe (Zl/ (T*,I/)) (76)

e
Let f be a face adjacent to v. First, we extend all edge functions and 7., by zero to the
boundary of f:

Th e oneeENB(v)NBy(f),

T v-0f = \ Tew on v,

)

0 elsewhere on Jf.

The extension to f is defined similarly to the extension of the edge eigenfunctions:

T*,y»? = Haf%Qf (T*,yﬁaf)‘?' (77)

As before, let

T* 7I/*)?

on f € FNB.(v),

Ti e one € &NDB(v),
Ty,usTh =

Tav on v,

0 elsewhere on T'".

We can now define the coarse function associated with 7, as

Vs = Hrnsg (T*,ZHF’L)'

The OS-ACMS coarse space is defined as

VoS- ACMS = span ({U;W VeV, k= 1,...,CZ}U{U*7§Z§€5U]:, st §tol§}).

7.2.5. Matrix Formulation

Let & be an edge e € € or a face f € F. As in chapter 3, let K% be the stiffness matrix

that is obtained by assembling ag, (+,-) with a Dirichlet boundary condition on 92 NOS2p.
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We partition K% by the degrees of freedom associated with 9¢ and those with Q¢ \ 0¢;
the latter set is denoted by R. We obtain

% Q¢

K% _ Krr  Kroe
o\ kS, K
O¢R 0¢,0¢

The energy-minimizing extension of 75¢ from 0¢ to R is given by a solution to

Q Q
Kpotr = —KRfagTag. (7.8)

We further partition K 2% by the degrees of freedom associated with ¢ and the remainder R.

We obtain
Qe Q¢ B Qe
Kan Kpe| [7r Kpe |
K% R R R
¢R TNEE ¢ €,0¢

As we are only interested in a solution on £ to (7.8), it is given by a solution 7¢ to

Seete = —Se o6 o, (7.9)
where ?55 and ?57,35 are submatrices of

o _ [ Se Sea |

€ | = —
Soee Soeoe

which is defined as

F A 2 U R RN SR o0
See = Koo KER(KRR) K.

+ _
As before, (Kg%) is a pseudoinverse of Kg%. We note that S¢¢ differs from the Schur

complement in (3.2), which is used for AGDSW.

The matrix formulation of generalized eigenvalue problem (7.2) is given by
SeeTug = AgMeeTu, (7.10)

where the mass matrix M, corresponding to Béw (+,+) was defined in section 3.3.4. Let

the eigenvalues of (7.10) be sorted in nondescending order,

0< Ae < A << A,
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where m denotes the number of unknowns of . We select all eigenvectors 7, ¢ from
(7.10) that correspond to eigenvalues smaller than or equal to a user-prescribed threshold
tole > 0:

)\*75 S tolg.

If £ is a coarse face, then the remainder is identical to AGDSW: we extend the selected
eigenvectors by zero to the interface nodes I'"—let the extensions be denoted by Ty e Th—

and then energy-minimally to the interior to define the coarse functions

Uy f = Hr7y g rn,

where Hr was defined in (1.12).

If £ is a coarse edge, we need to extend the edge values to the faces. As we have set up
Sﬁ for a face eigenvalue problem, we can reuse it. Using (7.9), we obtain T.F from 7, 57,
where 7, g is the extension-by-zero from 7, . to 0f. We repeat this for all faces adjacent
to e. The face and edge values are then extended by zero to I'*—let the extension be

denoted by 7, .,rn—and, as before, energy-minimally to €2:
Us,e = HFT*@AF;L.

For the MsFEM-type functions, we use the canonical basis vectors of RY for Teuw- Let e
be an edge adjacent to v. We extend 7., by zero to Je and then energy-minimally to e
by using (7.9). We repeat this for all edges adjacent to v. Note that, we can reuse Seg,
which we have set up for the respective edge eigenvalue problem.

Then as above, using the edge values, we compute the extensions to the faces by using
the already available Sﬁ. We extend the values by zero to the entire interface—let the

function be denoted by 7, ,,pr—and then energy-minimally to the interior:
Vs = HpT, ,ph.

The columns of the matrix ® of the Schwarz preconditioner are now given by the

constructed vectors Vs £+
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Figure 7.4.: (Left) Decomposition of a square into three subdomains with one coarse
node (black square) and three coarse edges. (Right) Schematic of a coarse
edge (gray nodes) with two junctions (marked with black circles) and only

two incident coarse nodes (black squares) instead of the maximum of four.

Remark 7.1. Let e € £ be a coarse edge. There are multiple cases we need to account
for in an implementation. The edge may have only one instead of two incident coarse
nodes; cf. fig. 7.4 (left). It may also have none at all; this can occur if both ends touch
the Neumann boundary 02y, but it can also occur in the interior of Q. Owing to the
complexity of unstructured domain decompositions, there can even exist cases for which a
coarse edge has more than two incident coarse nodes: the edge contains a junction. It may
also have junctions without incident coarse nodes; cf. fig. 7.4 (right). The description
of the OS-ACMS coarse space is valid for all these cases. Depending on the specific

implementation, however, we need to be aware of such special cases.

7.2.6. Variants of the OS—ACMS Coarse Space

We can use the same variants for OS-ACMS as for AGDSW. We can replace the
right-hand side of generalized eigenvalue problem (7.2) with the bilinear form ﬁg( ()
from (6.10), which is based on a stiffness matrix. We can also use the lumped mass
matrix of (6.27) or the lumped stiffness matrix of (6.11).

For the energy-minimizing extension operators—except for Hpn,q(+), which is used in
the final step to construct a coarse function from interface values—we can replace the

extension H@Qs(') with a slab variant H@Qé (+) as in section 6.1.2, by the S-variant, or a
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combination of the two. Accordingly, the left-hand side of (7.2) can be replaced by

ag (1, 0) = ag ' (z(re) , %(6)), (7.11)
ag (7, 0) = aZ(2(re), %(0)), (7.12)
ag' (1, 0) = o (7)., 2(0)), (7.13)

where

0! (24(7e) 26(6)) = aqy (He.y (7)) Mgy (6(9))):

af (z(re), 2(0)) = Y ag,(Heq, (2(7)) , Heg, (2(6))),
ken(e)

o (26(70), %(0) = 3 gy (He.oy (5(70)) He.gy ((6)) ).
ken(€)

To obtain a robust algorithm, it is imperative that the same extension operators are used
in the generalized eigenvalue problem and for the extensions in (7.4), (7.6), and (7.7). For
the S-variant, the correct replacement of the extension operator is not given by 7—[5@95 (+)
from (6.17) as its restriction to £ is not well defined. Instead, as for (7.5), the extension

from O€ to & is defined by: find reX h(€) with TE|3£ = Tp¢ such that

af (¢, z¢(0)) = ;‘ | ag, (e, (76) s Heso, (26(0))) =0 VO € X (6).  (7.14)
ken(€

Remark 7.2. For AGDSW, the extension operator HfAQf('), f € F, is used for face
etgenproblems. During the application of "Hfﬁgf(-), the information transfer between the
subdomains adjacent to f can only occur via the boundary nodes of f. For OS-ACMS,
we use the extension H%Qf(')' Since we now include the boundary nodes of f in the
extension, the connection between the two subdomains adjacent to f is removed entirely.
Consequently, using the S-variant for OS-ACMS face problems, we obtain the same

generalized eigenvalue problems as with the original method.

The following lemma states an energy-minimality property, which we rely on for the

proof of a condition number bound.
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Lemma 7.2. Depending on the variant used, let ag(-, -) be a?(-, ), a?’l(‘, ), ag(-, -), or

a?l( 2). Similarly to (6.16), (6.19), and (6.21), we then have for u € X"(€)
|ulag < Julqs,
€
where
U] g = ag(u, w)
Proof. We have
K.l
’U‘igﬂ = O‘g (u,u) = ’H@Qé(u)ﬁ(gé) < ‘Hgﬁgé (u) i(ng) < ’H@Q,s(u)‘g(ﬂs)y
’U‘Zé = = Z ’H@Qk Qk) < Z ‘KHE»Q{(U)’?;(QIC) = ’H@Qg(u)‘g(ﬂs)a
€ ken(¢ ken(€)
’U‘ig,z - Z ’H&Ql Z |H§»Q§ ’2 @) = ’%5995( )‘Z(ng
€ ken(€ kEn(E)
and, by definition, |u|,, = |”H&Q€( MNa(e)- O

The following lemma is the analogue of lemma 7.1 for the S-variant.

Lemma 7.3. Let 7¢ be a solution to (7.14). Then we have

I7elas < Hogs0c (Te)lae)-

Proof. For all § € X" () satisfying 0]ge = Tg‘ag, we have

7elos = ag (e 7e) = D Mg (72 < 2 Meo, 0o, (7.15)
€ ken(€) ken@

since 7¢ is energy-minimal. Let 6 := Hagggg( 7z). Then, 6 fulfills (7.15), and we have

Z "Hgaﬁk Z |H£»ﬂk G(Qk)
ken(€) ken(§)
ken(€)

= [Hoes0. (0)[aay)

= [Hoe0 (70) 200
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7. ACMS-Type Coarse Spaces

where we have used lemma 7.1 in the second to last step. Note that we did not use e
directly but defined a suitable function # since we cannot assume that Te = Hoes0, (7’5)’E

holds. O

The statement and proof are analogous if the slab variant or a combination with the
S-variant are used. Thus, if Tgisa solution to one of the energy-minimizing extensions

from 0¢ to &, we have

|7g|ag < |513§»Qg(7§)|a(§2§)a (7.16)
where a=(-.-) i Q{K .. Q{K’l .. OS ..-). 0 Q{SJ ..
r E(,)IS 5(5)7 5(7)’ 5(5)71' 5(7)

As before, we do not introduce a new acronym for the slab variant but indicate its
usage by appending the slab size in parentheses. The original OS-ACMS coarse space
with a mass matrix on the right-hand side is denoted by OS-ACMS or OS-ACMS-M.
If the mass matrix is replaced by a stiffness matrix, we denote the resulting coarse
space by OS—ACMS-K. Similarly, if the S-variant is used, the acronyms are given by
OS-ACMS-S, OS-ACMS-S-M, and OS-ACMS-S-K.

Matrix Formulation

The matrix formulation of the slab variant is straightforward since we only need to
replace )¢ with Ql& In the following, we give the matrix formulation of the S-variant.
The slab variant combined with the S-variant is then given if Q, k € n(§), is replaced
by Qfg

As in section 3.3.3, let K% be the stiffness matrix that is obtained by assembling
aq, (+,-) with a Dirichlet boundary condition on 992} N dp. Similarly to section 7.2.5,
we partition K% by the degrees of freedom associated with 9¢ N Qy, € N Qy, and Qy \ &;

the latter set is denoted by R. We define the local Schur complement
<k o o\ e
See = Kgp — Kt (Kps) Kgt, ken(o),
k

+
Q . . Q,
where (K P R) is a pseudoinverse of K RE
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7.2. The OS-ACMS Coarse Space

Let RZQk denote the prolongation operator that maps the degrees of freedom of £ N Q)
to & (cf. section 3.3.3). The assembly of ozg(', 1) is given by

oS T Gk
Sez= Y Rio,SecReo,.
ken(€)

We partition ggg by £ and 9¢:

L

S _ | S Secoc
€7 | 59 =5

Soce Soeoe

The generalized eigenvalue problem then reads
7S .
SeeTg = Mg MeeTue.

We note that ?fé differs from the Schur complement in (3.4), which is used for AGDSW-S.

We further need to replace the operators that extend energy-minimally from the
vertices to the edges and those that extend from the edges to the faces. Let é be a coarse
node v € V or a coarse edge e € £, and let T € Xh(g). If é is a coarse node, then let
& € € be an adjacent edge. If é is a coarse edge, then let £ € F be an adjacent face.
Let 75¢ be the extension-by-zero of 7 to 0&. As we have previously set up Sgg for the

corresponding edge or face problem, the extension 7¢ from 7y, is given by a solution to
=5 =5
SeeTe = —S¢ o¢To;

cf. (7.9).

7.2.7. Numerical Results for Diffusion Problems

In tables 7.1 and 7.2, numerical results for problems (2) and (3) from sections 2.2 and 2.3
are shown to examine the OS—-ACMS coarse space and to compare it with AGDSW and
RAGDSW. Results for the other two problems are given in tables B.3, B.10, and B.12.
The scaling factor h of the mass matrix variant is set to the radius of the largest insphere

of T € 7,(2).
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7. ACMS-Type Coarse Spaces

method tol it. Kk dimVy (V, £, F, ) dmh
AGDSW 107° 129 4.2.10° 483 ( 70,200, 213, — ) 0.86%
AGDSW 0.001 49  20.1 500 ( 70, 215, 215, —) 0.89%
AGDSW 0.1 49  20.1 500 ( 70, 215, 215, —) 0.89%
RAGDSW 1075 78 7.810% 109 (—, —, —,109) 0.19%
RAGDSW 0.001 56  24.2 112 (—, —, —, 112) 0.20%
RAGDSW 0.1 56 242 113 (—, —, —, 113) 0.20%
0S-ACMSM  107° 113 2.1.10° 110 (70, 39, 1, —) 0.20%
OS-ACMS-M  0.001 45  16.3 115 (70, 44, 1, —) 0.21%
0S-ACMS-M 0.1 36 9.9 448 (70,103,275, —) 0.80%
0S-ACMS-K 1075 122 3.0-10° 109 (70, 38, 1, —) 0.19%
OS-ACMS-K  0.001 44 163 115 (70, 44, 1, —) 0.21%
0S-ACMS-K 0.1 39 125 164 (70, 60, 34, —) 0.29%
OS-ACMS-S-M 1075 113 2.1.10° 110 (70, 39, 1, —) 0.20%
OS-ACMS-SM 0.001 43  16.3 115 (70, 44, 1, —) 0.21%
OS-ACMS-SM 0.1 36 9.8 453 (70,108,275, —) 0.81%
OS-ACMS-S-K 1075 122 3.0-10° 109 (70, 38, 1, —) 0.19%
OS-ACMS-S-K 0.001 43  16.3 115 (70, 44, 1, —) 0.21%
OS-ACMS S K 01 39 125 165 (70, 61, 34, —) 0.29%

Table 7.1.: (Model problem (2)) Results for the coefficient function in fig. 2.3, the
diffusion problem, different methods and tolerances for the selection of eigen-
vectors: iteration count, condition number, resulting coarse space dimension,
and coarse space dimension over the size of the stiffness matrix. The number

of coarse functions associated with subdomain vertices, edges, faces, and

interface stars is given in parentheses.

As in section 3.4, we consider three-dimensional diffusion problems with f = 1 for
the right-hand side of (1.1). The convergence criterion is chosen as the reduction of the

relative, unpreconditioned residual by 10~8; the initial vector is set to the zero vector,
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7.2. The OS-ACMS Coarse Space

method tol it. & dimVp (V, £, F ,S) dmbh
AGDSW 1074 549 5.8.10* 1781 (328,652, 801, —) 0.30%
AGDSW 0.001 59  30.1 1814 (328,678, 808, —) 0.31%
AGDSW 0.1 51 221 1907 (328,678, 901, —) 0.32%
RAGDSW 1071 674 4.4.10° 627 (—, —, — ,627) 0.11%
RAGDSW 0.001 59 337 660 (—, —, — ,660) 0.11%
RAGDSW 01 53 244 792 (—, —, — ,792) 0.13%

OS-ACMS-M 1074 147 1.810% 626 (328,278, 20, —) 0.11%
OS-ACMS-M  0.001 57 297 633 (328,285, 20, —) 0.11%
0S-ACMS-M 01 37 114 3138 (328,527,2283, —) 0.53%

0S-ACMS-K 1074 222 2.0-10* 613 (328,271, 14, —) 0.10%
OS-ACMS-K  0.001 57 296 633 (328,285, 20, —) 0.11%
0S-ACMS K 01 48 207 993 (328,383, 282, —) 0.17%

OS-ACMS-S-M 104 110 1.8-10% 630 (328,282, 20, —) 0.11%
OS-ACMS-S-M 0.001 58 29.6 634 (328,286, 20, —) 0.11%
OS-ACMS-S-M 0.1 37 11.4 3155 (328, 544, 2283, —) 0.54%

OS-ACMS-S-K 10~* 201 2.0-10* 615 (328,273, 14, —) 0.10%
OS-ACMS-S-K 0.001 58  29.6 634 (328,286, 20, —) 0.11%
OS-ACMS-S-K 0.1 48  20.6 1009 (328,399, 282, —) 0.17%

Table 7.2.: (Model problem (3)) Results for the coefficient function in fig. 2.4, the
diffusion problem, different methods and tolerances for the selection of eigen-
vectors: iteration count, condition number, resulting coarse space dimension,
and coarse space dimension over the size of the stiffness matrix. The number
of coarse functions associated with subdomain vertices, edges, faces, and

interface stars is given in parentheses.
and the iteration is stopped if it does not converge within 2 000 iterations. The condition
number estimate is obtained using the Lanczos method; cf. [Saa03, sect. 6.7.3].

Tables 7.1 and 7.2 both show that the OS-ACMS coarse spaces achieve similar results
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method tol it. k dimVp (V, £,F) dml
0S-ACMS-K 0.001 57 29.6 633 (328, 285,20) 0.11%
OS-ACMS-K(3)  0.001 54 29.3 639 (328, 291,20) 0.11%
OS-ACMS-K(1)  0.001 49 21.4 853 (328, 455, 70) 0.14%
OS-ACMS-S-K  0.001 58 29.6 634 (328,286,20) 0.11%
OS-ACMS-S-K(3) 0.001 54 29.5 641 (328,293,20) 0.11%
OS-ACMS-S-K(1) 0.001 49 21.4 853 (328, 455, 70) 0.14%

Table 7.3.: (Model problem (3)) Results for the coefficient function in fig. 2.4, the
diffusion problem, different methods, and a tolerance of 0.001 for the selection
of eigenvectors: iteration count, condition number, resulting coarse space
dimension, and coarse space dimension over the size of the stiffness matrix. If
the slab variant is used, the slab width in layers of finite elements is appended in

parentheses to the method’s name. The number of coarse functions associated

with subdomain vertices, edges, and faces is given in parentheses.

to RAGDSW despite the use of the GDSW interface partition. This is promising as it

indicates that we can decrease the coarse space dimension considerably by enforcing

additional Dirichlet conditions in the energy-minimizing extensions.

The differences between the variants are negligible for the relevant tolerance of 0.001.

As a result, in practice, we would choose OS—ACMS—S-K for its superior parallelizability,

and since a mass matrix does not have to be assembled.

As for AGDSW and RAGDSW, in table 7.3, an increase in the coarse space dimension
is observed in case a minimal slab of only one layer of finite elements is used. However,
as was motivated in section 4.5, the increase is less substantial than for RAGDSW, since

OS-ACMS uses smaller eigenvalue problems. Results for model problems (1) and (2)

are given in tables B.6 and B.8.
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7.3. Reduced-Dimension OS-ACMS

7.3. Reduced-Dimension OS-ACMS

Similarly to the R-WB-AGDSW coarse space, we can replace the edge and vertex
functions of OS—ACMS with wire basket functions. To this end, we keep the face problems
of OS-ACMS and use the wire basket eigenvalue problems of the R-WB-AGDSW
coarse space. As a result, unlike for the edge problems of OS-ACMS, we do not
enforce a zero Dirichlet boundary condition on the boundary of a wire basket star. We
denote the resulting coarse space by R-WB-OS-ACMS. Note that, in two dimensions,
R-WB-OS-ACMS is identical to R-WB-AGDSW.

The extension of face functions is carried out identically to OS—ACMS. However, for
the extension of the wire basket functions, we need to proceed as for the edge functions
of OS-ACMS. For a star s € Syy, we set 0s = (), such that 5 = s. Furthermore,
we define Jf as the set of all interface nodes that are adjacent to f. For f € F, let
B,(f) C Syy denote the parents of f; that is, the set of wire basket stars that are adjacent
to f. By B.(s) we denote the children of s € Syy; that is, the set of faces that are adjacent
to s. Let 7. s € X"(s) be an eigenfunction obtained by the corresponding generalized

eigenvalue problem. We define an extension from s to f, f € B.(s), as

-

7—*’39? = ,Hafaﬂf (’ZS(T*,S))

cf. (7.4). Let
TeoF on f € Bc(s),
Ta,s-Th = \ T s on s,
0 elsewhere on T'?.

We can now define the coarse function associated with 7, 5 as

Vx5 = IHFh»Q (T*,s»Fh)‘

We denote the new coarse space by R-WB-0OS-ACMS or R-WB-OS-ACMS-M. The
same variants as for OS—ACMS can be used for R-WB-OS-ACMS.

Remark 7.3. If we remove the face problems and replace the wire basket problems
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7. ACMS-Type Coarse Spaces

with problems on interface stars, we obtain the RAGDSW coarse space. However, the
0S-ACMS framework allows for more general types of coarse spaces that are based on

the interface partition P = Sr; see section 7.5.

7.3.1. Numerical Results for Diffusion Problems

In tables 7.4 and 7.5, numerical results for problems (2) and (3) from sections 2.2
and 2.3 are shown to examine the R—-WB-OS—-ACMS coarse space and to compare it with
OS-ACMS and RAGDSW. Results for the other two problems are given in tables B.4,
B.11, and B.12. The scaling factor hp of the mass matrix variant is set to the radius of
the largest insphere of T' € 71,(Q).

As in section 3.4, we consider three-dimensional diffusion problems with f = 1 for
the right-hand side of (1.1). The convergence criterion is chosen as the reduction of the
relative, unpreconditioned residual by 10~8; the initial vector is set to the zero vector,
and the iteration is stopped if it does not converge within 2 000 iterations. The condition
number estimate is obtained using the Lanczos method; cf. [Saa03, sect. 6.7.3].

In table 7.4, we can observe a reduction of the coarse space dimension of slightly below
20% for a tolerance of 0.001, using R-WB-0OS-ACMS instead of OS-ACMS. The results
in table 7.5 show a more pronounced reduction of 35%. This confirms our expectation that
replacing the vertex and edge functions by functions obtained from eigenvalue problems
on wire basket stars should reduce the coarse space dimension. As in sections 3.4, 4.5,
and 7.2.7, using the mass variant does not give an advantage. Furthermore, the differences
to the S-variants are negligible.

As R-WB-AGDSW and R-WB-OS-ACMS use the same interface partition, the
comparison of their results highlights the relevance of the inclusion of additional Dirichlet
conditions in the energy-minimizing extensions used in the generalized eigenvalue problems.
With respect to R-WB-AGDSW, we obtain a reduction in the coarse space dimension
of almost 70% for problem (2) and of 65% for problem (3).

In table 7.6, results for the slab variant are shown, confirming our previous results in

sections 3.4, 4.5, and 7.2.7. In table 7.7, we observe almost no differences in the results for
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7.3. Reduced-Dimension OS-ACMS

method tol it. kK dimVy (V, €, F, §) dnh
R-WB-AGDSW 0.001 53 21.5 308 (—, —, 215, 93) 0.55%
RAGDSW 1075 78 7.8-10° 109 (—, —, —,109) 0.19%
RAGDSW 0.001 56 24.2 12 (—, —, —, 112) 0.20%
RAGDSW 0.1 56 24.2 13 (—, —, —, 113) 0.20%
OS-ACMS-K 1075 122 3.0-10° 109 (70, 38, 1, —) 0.19%
0OS-ACMS-K 0.001 44 16.3 115 (70, 44, 1, —) 0.21%
0S-ACMS-K 0.1 39 12.5 164 (70, 60, 34, —) 0.29%
R-WB-0OS-ACMS-M 107° 114 2.4-10° 91 (—, —, 1, 90) 0.16%
R-WB-OS-ACMS-M  0.001 49 15.7 94 (—, —, 1, 93) 0.17%
R-WB-0S-ACMS-M 0.1 42 13.2 368 (—, —, 275, 93) 0.66%
R-WB-0S-ACMS-K 107° 128 6.4-10° 87 (—, —, 1, 86) 0.16%
R-WB-0S-ACMS-K 0.001 49 15.7 94 (—, —, 1, 93) 0.17%
R-WB-0S-ACMS-K 0.1 47 15.5 127 (—, —, 34, 93) 0.23%
R-WB-OS-ACMS-S-M 10~° 104 2.3-10° 92 (—, —, 1, 91) 0.16%
R-WB-OS-ACMS-S-M 0.001 49 15.7 94 (—, —, 1, 93) 0.17%
R-WB-OS-ACMS-S-M 0.1 40 12.7 372 (—, —, 275, 97) 0.66%
R-WB-OS-ACMS-S-K 107° 127 4.2:10° 89 (—, —, 1, 88) 0.16%
R-WB-OS-ACMS-S-K 0.001 49 15.7 94 (—, —, 1, 93) 0.17%
R-WB-0S-ACMS-S-K 0.1 47 15.5 127 (—, —, 34, 93) 0.23%

Table 7.4.: (Model problem (2)) Results for the coefficient function in fig. 2.3, the

diffusion problem, different methods and tolerances for the selection of eigen-

vectors: iteration count, condition number, resulting coarse space dimension,

and coarse space dimension over the size of the stiffness matrix. The number

of coarse functions associated with subdomain vertices, edges, faces, wire

basket and interface stars is given in parentheses. S refers to Syy/Sr.

the combination of the lumped and S-variant of R-WB-OS-ACMS. This combination of

variants is appealing to be used in practice because of its simplicity and parallel efficiency.
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Table 7.5.: (Model problem (3)) Results for the coefficient function in fig. 2.4, the

We remark, however, that for other types of problems, a shift of the spectrum may be

method tol it.  k dimVp (V, £, F, ) dnh
R-WB-AGDSW 0.001 57 302 1200 (—, —, 808,392) 0.20%
RAGDSW 1074 674 4.4:10* 627 (—, —, — ,627) 0.11%
RAGDSW 0.00L 59 337 660 (—, —, — ,660) 0.11%
RAGDSW 01 53 244 792 (—, —, — ,792) 0.13%
0S-ACMS-K 107% 222 2.010* 613 (328,271, 14, —) 0.10%
0S-ACMS-K 0.001 57  29.6 633 (328,285, 20, —) 0.11%
0S-ACMS-K 0.1 48 207 993 (328,383, 282, —) 0.17%
R-WB-OS-ACMS-M  10~* 178 1.610° 405 (—, —, 20,385) 0.07%
R-WB-OS-ACMS-M  0.001 55 258 412 (—, —, 20,392) 0.07%
R-WB-0S-ACMS-M 01 38 120 2694 (—, —,2283,411) 0.46%
R-WB-OS-ACMS-K  107* 521 3.610* 388 (—, —, 14,374) 0.07%
R-WB-OS-ACMS-K  0.001 55 257 412 (—, —, 20,392) 0.07%
R-WB-0S-ACMS-K 0.1 48 20.4 674 (—, —, 282,392) 0.11%
R-WB-OS-ACMS-S-M 10~* 119 1.610*° 409 (—, —, 20,389) 0.07%
R-WB-OS-ACMS-S-M 0.001 55 258 413 (—, —, 20,393) 0.07%
R-WB-OS-ACMS-S-M 0.1 36 103 2752 (—, —, 2283, 469) 0.47%
R-WB-OS-ACMS-S-K 10™* 370 3.1-10* 396 (—, —, 14,382) 0.07%
R-WB-OS-ACMS-S-K 0.001 55  25.7 413 (—, —, 20,393) 0.07%
R-WB-OS-ACMS-S-K 0.1 49 204 677 (—, —, 282,395) 0.11%

diffusion problem, different methods and tolerances for the selection of eigen-
vectors: iteration count, condition number, resulting coarse space dimension,
and coarse space dimension over the size of the stiffness matrix. The number

of coarse functions associated with subdomain vertices, edges, faces, wire

basket and interface stars is given in parentheses. S refers to Syy/Sr.

observed if lumped variants are used; cf. tables B.12, B.13, B.15, and B.17.
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method tol it. k dimVy (F,Sy) dmle

R-WB-0S-ACMS-K 0.001 55 25.7 412 (20, 392) 0.07%
R-WB-0OS-ACMS-K(3)  0.001 51 253 424 (20,404) 0.07%
R-WB-OS-ACMS-K(1)  0.001 47 19.5 767 (70,697) 0.13%

R WB-OS-ACMS-S-K  0.001 55 257 413 (20, 393) 0.07%
R-WB-0S-ACMS-S-K(3) 0.001 51 244 425 (20, 405) 0.07%
R-WB-OS-ACMS-S-K(1) 0.001 47 19.5 767 (70,697) 0.13%

Table 7.6.: (Model problem (3)) Results for the coefficient function in fig. 2.4, the
diffusion problem, different methods, and a tolerance of 0.001 for the selection
of eigenvectors: iteration count, condition number, resulting coarse space
dimension, and coarse space dimension over the size of the stiffness matrix. If
the slab variant is used, the slab width in layers of finite elements is appended in
parentheses to the method’s name. The number of coarse functions associated

with subdomain faces and wire basket stars is given in parentheses.

7.4. Condition Number Bound for OS-ACMS

In the following, we prove a condition number bound for OS-ACMS. Although we will
restrict ourselves to three dimensions, the two-dimensional case is proved analogously;
along with a condition number bound for the three-dimensional case, a bound for the
two-dimensional case will be stated in theorem 7.1. The following proof will serve as a
blueprint for a much more general type of proof in section 7.5 that encompasses fairly

general types of coarse spaces, even GDSW-type coarse spaces.

For each £ € P, let the symmetric, bilinear forms Be(-,-) and @(,-) on X"(€) x X"(¢)
be given, where f¢(-, ) is positive definite, and @¢(-, -) is positive semidefinite. In the case
of standard OS-ACMS, we set (3¢ = Bé\/l and o = agf . For the S-variant, we replace
e with ag == af . If a stiffness matrix is used on the right-hand side of the generalized
eigenvalue problem, we replace 3¢ with 3¢ == 551( . Similarly, the slab variant uses either

e = af’l or o = a?l. Accordingly, oF is given by of, a?, a?’l, or a?’l. For the

171



7. ACMS-Type Coarse Spaces

E  method tol it. K dimVy (F,Sy) dmi
@ R-WB-0OS-ACMS-S-K  0.001 55 27.1 769 (197, 572) 0.58%
1

R-WB-0S-ACMS-S—¢(K) 0.001 54 27.1 769 (197, 572) 0.58%
@) R-WB-OS-ACMS-S-K  0.001 49 15.7 94 (1, 93) 0.17%
2

R-WB-0S-ACMS-S/(K) 0.001 49 15.7 94 ( 1, 93) 0.17%
) R-WB-0OS-ACMS-S-K  0.001 55 25.7 413 ( 20,393) 0.07%
3

R-WB-0S-ACMS-S/(K) 0.001 55 25.7 413 ( 20,393) 0.07%

Table 7.7.: Results for the coefficient functions (1)—(3) in figs. 2.2 to 2.4, the diffusion

lumped variants, we refer to remarks 6.3 and 6.6.

As in lemma 6.1, we define the seminorms

problem, different methods, and a tolerance of 0.001 for the selection of eigen-

vectors: iteration count, condition number, resulting coarse space dimension,

and coarse space dimension over the size of the stiffness matrix. If a lumped

matrix is used, ¢(K) or £(M) is appended to the method’s name. The number

of coarse functions associated with subdomain faces and wire basket stars is

given in parentheses.

[t = ag(u,u),  |olg, = \/a(v,0),

and the norm

[ullge = y/Be(u, u),

By lemma 7.2, we have

3

ue X").

ue X"(€), ve X",

]u\ig = ag(u,u) < ol (u,u) = \u\ig = \’H@Q{ (u)|Z(Q§) Yu € V().

For q C €, we define the seminorm

‘U|a,q49g = |/Hq»f2g (U)‘a(Qg)

for which follows that
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Yu € V(Q),

|u|a,q»Q€ < |u|a(Q§)'

(7.17)

(7.18)

(7.19)



7.4. Condition Number Bound for OS—-ACMS

As per lemma 6.1, we choose the eigenfunctions such that

Be( ke, vie) = Ok,

where 0y is the Kronecker delta, and vy ¢ are the coarse functions. Let u € Vh(Q). We

define the spectral projections

yu = Z I u, Myu = Z Bl/(ua Uk, )Uk,ua

vey Ak, <toly

ng = Z Heu7 Heu = Z Be(u 9 Uk,e )Uk,e;
ec€ Ak,e<tole

Mru = Zﬂfu, Hpu = Z Br(w, v, s )k, f-
feF Ak, p<toly

The tolerances tol, > 0 and tol; > 0 are user-prescribed. Since all MsSFEM-type vertex
functions are included in the OS—ACMS coarse space, we set tol, = co.

We now define the coarse component
ug = Ilyu + Heuwy + I rug,
where
ay = u — Iyu, e = uy — euy.
The definition reflects the cascaded energy-minimizing extensions; cf. fig. 7.3. For the
remainder u — ug, we obtain
u—ug = u — IHyu — eguy — I rug
=Ty — Heuy — M rug

=ug — llrug.

We can reuse much of the proof of the RAGDSW condition number bound but need

to replace lemmas 6.2 and 6.3.

Lemma 7.4 (Vertex Contribution). Let v € V. Then we have
Ju ol =0

foru € V(Q).
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We will henceforth refer to this property as the exact interpolation of u in the vertices,

since it follows from lemma 7.4 that u(v) = ug(v).

Proof. We show that u — ug is zero in v. Then, by definition of || - || gi » the proposition
follows.

By assumption, we have b,(v;,, v;,) = d;;. There exist constants ¢; such that
u(v) = Z;i:l ¢jvju(v). Since Ilgu and IIru are zero at the vertices and Ilyu is zero at

v # v €V, we have ugl|, = I, ul,. We obtain

d d
ka’u u y Vkv :ka,u(l/)zcjbu(vj,uavku kau k—u( )
k=1 j=1
Thus, we have u(r) — up(r) = 0. O

Lemma 7.5 (Edge Contribution). Let e € £. Then we have

HIV ‘ |

lu = wollFs = Ize(T@e) 50, < a(e)

foru e V(Q).

Proof. The following proof is also valid for the special case € = e, in which e does not
have any adjacent coarse nodes. In that case, however, the proof could be simplified
significantly, and the bound could be improved.

Unlike for the adaptive GDSW-type coarse spaces, we cannot exploit the fact anymore
that all coarse functions associated with interface components other than e are zero on e.
In a first step, however, we can use that the face functions are zero on edges, and that

edge functions of other edges are zero on € as well.

= [y — Tty .

174



7.4. Condition Number Bound for OS—-ACMS

Using (6.38) and lemma 6.1, it follows that

@y — ey |3k < Cinvlla@y — Ty |3,

< C’inv
~ tol,
< C'inv
— tol,
C’inv
tol,
Cinv

= 2 (u— Thyu)

WV - Heﬂv%e

vz,
|2e (Ty)[2

2

Qg’

Since IIy interpolates u exactly in the vertices (cf. lemma 7.4), we obtain

Cinv
tol,

2 _ C(inv
Y tol,
< C'inv
~ tol,

|2¢e(u — IIyu) Ju — Tyul3_

([l + IMyulag)?.
From (7.17) and (7.19) follows that
U]y < |ulazs0. < [ula@e)-

By definition of the vertex functions, the edge values are energy minimizing. Thus, it

follows from (7.16) (cf. lemma 7.1) that

‘HVu’ozg < ‘HVu|a,3e»Qe-

Since IIy interpolates u exactly in the vertices (cf. lemma 7.4), we have

Thyula,0e50. = [tla0e50. < Ula(.)-

In total, we have
4Cinv

Ju=oll3 < S ule,

O]

For a bound on the contribution of face problems, we need to invest more work because

of the cascaded extension from vertices to edges to faces of the MsFEM-type functions.
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7. ACMS-Type Coarse Spaces

Lemma 7.6 (Face Contribution). Let f € F. Then we have

8C} 4Cin C.

2 mv 2 invr 2

HU—UOHgJIfS tol, (|U’a(9f)+ egOEB:(f)tOle U\a(ge)>
e P

for u € VM(Q), where €N By (f) is the set of edges that are adjacent to f.
p

Proof. The following proof is also valid if f does not have adjacent coarse nodes or edges.
In that case, however, the proof could be simplified significantly and the bound improved.
In a first step, we can use the fact that face functions of faces other than f are zero

on f.

llu— U0||ZJ{< = |z (@e — TLFTe) 3 o)

= |2s (e — Wjue) 3,

= e~ Tpwel 2.
Using (6.38) and lemma 6.1, it follows that

e — T te |5 < Cinvlliie — T3,
Cinv

toly
< C’inv
~ tol f

< —lug — g2,

aelz,

_ Vinv — N2
= ol s @l

We have

Zf(ﬂg) = Z?(ﬂg) — Z@f(ﬂg) = ug — Z@f(ﬂg) on f.

Since e = uy — ey = u — Iyu — Ilguy is zero in the vertices, we infer

zp(e) =Ue — »,  z(Ug) onf,

e€ENBL(f)

where £ N By (f) are all coarse edges adjacent to f. We obtain

ecENBy (f) 7

25 (@) oy < [tiglas + | D2 ze(me)| (7.20)
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7.4. Condition Number Bound for OS—-ACMS

For the first term on the right-hand side of (7.20), we have
|Ug|a7 =|u —Iyu — Mg(u — 1'[1;u)|a7
< |u|a? + yu + g (u — Hyu)|a?
< lulagay) + Myu + e (v — Myu)la,
where in the last step we have used (7.17) and (7.19). Let
w = yu + g (u — yu).
Using (7.16) (cf. lemma 7.1), it follows that
[wlar < [wlaof-0
and
(Wla0ps0; < |ulaorsap + U —wlaorsa,
< |ulaqy) + [Tela,00;-

Since g = 0 in the vertices, it follows that

a,0f>Qr — ‘ Z ZC(HS)

e

<‘ S ze(ue)

e€ENBy(f) @012 e€ENBy(f) a(§y)
As before, we can use (7.17) and (7.19) to obtain
Sow@)| <| > w@)| L <| D (@)
e€ENBy(f) T ecEnBy(f) a2 cemBL () a($y)
P P 1%

for the right term on the right-hand side of (7.20). Similarly to the line of proof
in lemma 6.4 and by using a Cauchy—Schwarz inequality, it follows that

= X | X @

e€ENBy(f) o) peio £) e€€NBy(f)

<G ) Yoo lzelus) 2

Ter, (Qf) ecENBp )

=Cr Z ‘Ze(ﬂg)’?z(ﬂf)
ecENBy (f)

<Cr Y ze(me) i,
ccENBy(f)

2

a(T)
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7. ACMS-Type Coarse Spaces

Using lemma 7.5, we then obtain for (7.20)

2
2 @e)I2, < | 2Mulay +2| D zelm)
! e€ENBy(f) a($)
< 8lul3q,) +8C; 523 y |2 (e) 2
ecENBp
4Cfinv
< 8lulgq, +8Cr sz: gy tole [uléo
ec p

In total, we have

Cinv

]C. 4Ciny Cr
- 2 inv inv 2
lu = wollfx < I, |27 (@) oz < ol (‘ ot 2 o Uao )

e€ENB,(f)

O]

We will formulate analogues of corollaries 6.1 and 6.2 for OS-ACMS. For brevity, we

will not give a bound that depends on the individual tolerances tol. and toly but that

uses tolg = mingcg tol, and toly = mingeFtoly. Similarly to (6.34), let
N¢ = 121%}1(\7|5(Qi)|’ Ey)={ec&:enQ; #0},

NT = max |F(Q)], F(Q)={fecF: fnQ+#0},

1<i<N

(7.21)

(7.22)

be the maximum number of coarse edges and faces of a subdomain, respectively. Fur-

thermore, we define

where £ N B, (f) is the set of coarse edges adjacent to a coarse face f € F.

Corollary 7.1. (Analogue of corollary 6.1) It holds that

Ne 2Nf 8C’invC’T]\[af%e
< (1 4Ci C a(Q)>
|u0‘a(9) - ( +\/ (tolg + tol r + tol rtolg )) [ul )

see (6.33) and (6.38) for the definitions of Cr and Ciyy.
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7.4. Condition Number Bound for OS—-ACMS

Proof. Using lemmas 7.4 to 7.6, we have

Cr ¥l ol = Cr(( X llu = wolle + 35 u = ol + 3 s = wol 3

£epP vey el feF
4C1nV
< CT ( Z ‘ |a(Qe
e€€ le
8CIHV 4CIHVC
Z tOl <‘ ’2 (Qy) + Z tOl ’ ‘2 ))
ferx ecENBy(f
< 4CiCr 2
(5 35 e
2 4C(invch
> (|u|3(9 T > |u¢21(95)>>
tolr (% ! tolg cc€nBy(f)
Ne¢ 2N/ 8Ci,,C,No/e
S 4CinvCT( > | |2
tolge tol r tol rtolg

By lemma 6.4, we then obtain

Ne 2Nf 8C’inVC’T]\[afﬁe
< (1 4CinC a(Q)-

O]

For the following corollary, we need to expand the definitions of N¢, N/ and N9/¢
n (7.21) to (7.23), by including the number of subdomains adjacent to an edge or face

as scaling factors. Let

ey .
N&* = max Z In(e)l, (7.24)
== ees ()
2. _ f
SRR MCUIEEN SR
JEF(S24) JEF (%)
and
Bf»eE _
NP max n(f)] Y 1E0By(f) (7.26)
FEF(%)
_ _ Jf-e
=2 max > IENBL(f)| = 2N,
FEF (%)

We formulate an analogue of corollary 6.2 for OS-ACMS.
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Corollary 7.2. (Analogue of corollary 6.2) Let the assumptions of lemma 6.5 be satisfied.

Then
4CinVC7'
I (0= wo)) By < 2 S Julya,
eGS(Ql)
8Cinvcﬂr 4CjnVCT
+ > (i + > luba).
tol r FeF@) ! tolg ccENBy(f)

Forl =0, such that B =, we obtain

N¢  2NT  8C;,,C, N\
’u\a(ﬂ)-

"W - (u = up)) % gy < 4CiyCr
[P (u uO))‘a(Q)_ (tolg tolr tolrtolg

If the assumptions of lemma 6.5 are satisfied for all 1 <1 < N, ¥;: B; — R, with

By =\ , we obtain

N&® AN 16Cy,C N>\
|ulai)-

N
Ih - - 2 & < 4CinwCr
lz:;| (U - (u UO))|a(Ql\Ql) < A C < tolge tol tol rtolg

Proof. Using lemmas 6.5 and 7.4 to 7.6, we have

(MW - (w =)oy < Cr D BE(u—uo, u—up)

§EP()
4C'inv
<C, > tol ’U\Z(Qe)
eES(Ql) €
8C’inv 4CinVCT
+Cr > (|U3(Qf)+ > o \U|Z(Qe))
reF@y) O ec€NBy (f) €
4CiHVCT
< > ’u\i(ﬂe)
tOlg 668(91)
8Cinvch— 4Cinv07—
+ > <|U3(Q)+ > |u’¢21(95)>'
ol FEF(Y) ! tole ec€NBy(f)

For B = ), it follows that

Ne  oNS 80y, C,N9fe
" (u— 2 < 40O mv T 2
[T (P - (u — o))l < (tolg tols tolrtols lula)

For the sum over [ =1,..., N, using (7.24) to (7.26), we obtain

Ne,E 2Nf,2 8CinVCTN8f»e,Z |u’2
tolg tol tol rtolg a(Q)

N
; ‘Ih(\lll . (u — UO))E(Q\Q[) < 4CinVCT (

N®¥ ANT  16C;,C, N9/ 2
tolge tol tol rtolg a(€)

= 4Cinv CT (
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7.4. Condition Number Bound for OS—-ACMS

Lemma 7.7 (Stable Decomposition). (Compare with [HKK+22, lemma 11.4; HKKR19,
theorem 6.5; HKKR18b, lemma 6.4] and lemma 6.6.) For each u € VO’}aQD (), there
exists a decomposition u = Y. o R u;, u; € Vi, 0 <i < N, such that

N

> luiliqy < Coluliq),
=0

where

C2:=4+5(1++vD1)*+ Dy,

and

(7.27)

Ne®  ANT  16C;,,CrNOfe
DO = 4C’invc(”r
tolg tol r tol rtole

(7.28)

Ne  oN/ SCinVCTNaf”f:)

Dy :=4C;v O
! (tolg tolr tol rtole

Proof. In the proof of lemma 6.6, we replace (6.43) by using corollary 7.2:

N
SO (B~ w0)) ) < Dolulic,

i=1

We then replace (6.45) by using corollary 7.1:

N
> 20u = uol3,) = 2lu — uol3q)
=1

<2 <|UIam) + |“0|“<Q>>2

<2(24 VD) |ula).

Finally, we replace (6.46) by using corollary 7.2:
N
D 210w — uo))|2g,) = 211" (0(u — uo))|2 gy < 2D1ul’ -
i=1
Analogously to the proof of lemma 6.6, and by using corollary 7.1, we obtain
N N
; il = luola) + 2 uil? )
2
< ((1 +v/D1)? + Do +2 (24 vDi) + 2D1) Jul? @)

= C§|u‘2(9)7
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7. ACMS-Type Coarse Spaces

where

C2 =4+5(01++/D1)? + Dy.
(]

From (6.3) and lemma 7.7, we obtain a bound for the condition number of Maslf acms K

analogously to theorem 6.1.

Theorem 7.1. The condition number of the OS-ACMS two-level Schwarz operator in

three dimensions is bounded by
i (Mod acnsK) < (44 5(1+ vDi)? + Do) (Ne +1),,

where Dy and Dy are defined in (7.27) and (7.28), and where N, is the mazimum number
of overlapping subdomains {2}, any finite element node z" € Q can belong to. All
constants are independent of H, h, and the contrast of the coefficient function E.

In two dimensions, we have

i (Mo acusK ) < (4 +5(1+ \/@)2 + 2D§2)) (Ne+1)

< (14+12D0) (K. +1),

where
o 4CiHVCTN6

(2) .
D"
1 tolg

A condition number bound for R-WB-OS-ACMS is given in theorem A.1. The proof

is essentially identical; see appendix A.3.

7.5. Generalization of OS-ACMS and RAGDSW

Let P be an interface partition. We will generalize the concept of enforcing additional
Dirichlet conditions in the energy-minimizing extension that is incorporated into the
generalized eigenvalue problem. For the description, we restrict ourselves to the standard
OS—-ACMS generalized eigenvalue problem in section 7.2.2; the description for variants is

analogous.
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7.5. Generalization of OS-ACMS and RAGDSW

Figure 7.5.: (Left) Two adjacent interface components £, ¢ € P, where £ has a Dirichlet

Ll 1 1AAAAMA

vyyyyy ! T T

condition on ¢ on the top part of the common boundary, and ¢ has a Dirichlet
condition on & on the bottom part of the common boundary. The direction
of an energy-minimizing extension is indicated by arrows; cf. fig. 7.6. The
extension is not well defined and the case inadmissible. (Center) Coefficient
function E on ¢ and ¢; E = 10° (red); E = 1 (blue). (Right) Corresponding

graph G that contains an edge from & to ¢ and from ¢ to &.

In the following, we say that £ € P has a Dirichlet condition on ¢ € P if the energy-
minimizing extension in the generalized eigenvalue problem associated with £ enforces
a zero Dirichlet condition on ¢ N Q¢. In that case, an eigenfunction of ¢ must be
extended energy-minimally to £ to construct a coarse function. In the case of OS—ACMS,
coarse faces have a Dirichlet condition on adjacent coarse nodes and edges. Thus, edge
eigenfunctions and vertex functions must be extended energy-minimally to adjacent
coarse faces.

Two remarks are necessary: First, we may relax the above condition and only prescribe
a Dirichlet condition on a subset of ¢ N Q. Second, if ¢ has Dirichlet condition on ¢,
o must not have a Dirichlet condition on £&. An example for which the corresponding
coarse space would fail to be robust, is given in fig. 7.5. Therein, on the top part of the
common boundary of £ and ¢, the component £ has a Dirichlet condition on . Thus,
the associated eigenvalue problem cannot detect the patch of large coefficients; cf. fig. 6.2.
As a result, the eigenvalue problem associated with ¢ must detect it. However, as ¢
has a Dirichlet condition on £ on the bottom part of the common boundary, it, too,
cannot detect the patch of large coefficients. In the following, we assume that Dirichlet

conditions are always prescribed on the entirety of ¢ N ﬁg.
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Figure 7.6.: Schematics of interface partitions (top row) and associated graphs G (bottom
row). (Left) OS-ACMS interface partition with coarse nodes vy, va, coarse
edges e1, ..., es5, and coarse faces fi, fo. (Center) R-WB-OS-ACMS inter-
face partition with interface stars si, ..., s4, and the coarse face f. (Right)
Interface partition with the components &, ¢ = 1,...,9. The direction of
energy-minimizing extensions is indicated by arrows: &; has a Dirichlet con-

dition on &1, ¢ =1,...,8, where & = &s.

The Dirichlet conditions prescribed on interface components induce a directed graph
G(P,Dp),

where Dp contains a directed edge (¢, &) from ¢ to £ if £ has a Dirichlet condition on ¢.
An edge of the graph indicates that parts of ¢ lie in ¢ and that an energy-minimizing
extension from ¢ to & is required. To obtain a robust preconditioner, we make the

following assumption.

Assumption 7.1. G(P, Dp) is a directed, acyclic graph; that is, there does not exist a

directed cycle.
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7.5. Generalization of OS—-ACMS and RAGDSW

Examples of graphs that do not fulfill this assumption are given in fig. 7.5 (right) and
fig. 7.6 (right). The graph corresponding to an adaptive GDSW-type coarse space is
given by G(P, Dp) where Dp = (). For OS-ACMS and R-WB-0OS-ACMS, schematics
of G are given in fig. 7.6 (left and center).

Based on G, we can define the boundary of an interface component & € P:

E=¢U0E, 0 ={oNQc:0eP A (¢,§) €Dp}. (7.29)

Thus, by definition, the boundary of £ contains the finite element nodes of ¢ € P that
¢ has a Dirichlet condition on and that lie inside . The generalized eigenvalue problem
associated with ¢ is now given by the one in section 7.2.2.

For the second part of the coarse space construction, we need to define energy-
minimizing extensions of eigenfunctions; an extension from one interface component to
another is defined analogously to the one in section 7.2.3. Let us consider G for the
OS-ACMS interface partition in fig. 7.6 (left). Although 1, extends to fi, we cannot
immediately compute the extension since v; also extends to e; and e3, which in turn
both extend to f1. Thus, we first have to compute an extension from 11 to e; and from 1
to es. Given the values on 11, e1, and e, we extend by zero to the remaining boundary
nodes of f; and then energy-minimally to fi.

Let £ € P. Asinsection 7.2.3, let B.(£) (children) denote the set of interface components
that have a Dirichlet condition on &, and let B,(§) (parents) denote the set of interface

components on which £ has a Dirichlet condition:

Be(§) ={peP:(§p)€Dp} (7.30)
By(§) ={peP:(p,§) €Dp}. (7.31)
‘We have
o= J ¢nQe. (7.32)
©EBR(E)

By Ba(§) (ancestors) we denote the set of interface components from which energy-
minimizing extensions to £ need to be computed. Note that ancestors need not be in

the same domain )¢ as £, in which case cascaded extensions involving other components
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Algorithm 1 Cascaded Energy-Minimizing Extension of Eigenfunctions
1: Let £ € P, v|e € Xh(¢). > Goal: define v € X"(Q").

2: label(§) = finished.
3: for all p € P that satisfy ¢ ¢ Bp(¢) do

4: v|p = 0.

5: label(y) = finished.

6: repeat

7: for all ¢ € Bp(&) that satisfy “label() is finished for all ¢ € B,(¢)” do
8: Energy-minimally extend from dy to ¢: v, == Ha,sq, (U|a‘p)‘@.

9: label(p) := finished.

10: until all components are labeled as finished.

11: Energy-minimally extend v|pn to Q: v <= Hpnq(v|pn).

have to be computed; cf. fig. 7.6 (right). By Bp(§) (descendants) we denote the set
of interface components to which (directly or indirectly) energy-minimizing extensions

from £ need to be computed.

0 if By(€) = 0,

Bal6) = (7.33)
Uges, ) ({e} U Ba(v)) else.
0 it Bu(£) =0,

Bo(&) = ) (7.34)

Upes.(e) ({¥} UBp(p)) else.

Note that, since G is acyclic, these recursive definitions are well defined. An example for
which the recursive definition would fail is given by the graph in fig. 7.6 (right); the graph
is inadmissable by assumption 7.1: As the graph contains a cycle, the set of ancestors or
descendants of, e.g., & is not well defined.

In algorithm 1, a procedure for the cascades of energy-minimizing extensions of

eigenfunctions is given, which concludes the construction of the new coarse space.

Remark 7.4. Let Q be given by the unit cube, partitioned into smaller cubes. To construct

a coarse space, we select the RGDSW interface partition and an admissible G(P, Dp) for
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7.5. Generalization of OS—-ACMS and RAGDSW

which Dp # 0. Let an interface star € € P be given, and let Z denote the set of interface
stars adjacent to &. Let us assume that € € Z have a Dirichlet condition on &. Then, we
need to compute energy-minimizing extensions from & to € € Z to Qé. As a result, the
coarse function associated with £ extends by two layers of subdomains surrounding the
verter that € is associated with. The construction of such coarse functions that span large
areas negatively influences parallelizability. Furthermore, numerical scalability is affected
negatively as well; cf. theorem 7.2 and section 6.4.3.

To that effect, the OS-ACMS and R-WB-0OS-ACMS coarse spaces are optimal as they
only involve extensions to the subdomains directly adjacent to the respective interface

components.

In the following, we prove a condition number bound for the constructed coarse space.
Let u € V*(Q) and tole > 0 for £ € P. We define the spectral projections
Hew = Z Be(w, vge )vpe.
Ak7§§t015
The coarse component is defined as

up = Z H(PG(ua SD)’
peP

where

Glu,p) =u— > TzG(u,@).
PEBA ()
The recursion halts after a finite number of steps as the graph G is acyclic by assumption.

Similarly to OS-ACMS, we can reuse much of the proof of the RAGDSW condi-
tion number bound. We replace lemmas 6.2 and 6.3 with the following lemma; the

corresponding lemmas in the case of OS-ACMS are lemmas 7.4 to 7.6.

Lemma 7.8. Let £ € P and u € V'(Q). Then we have

= w4 < g(u,),

where
e e luly o if By(€) =0,
gl\u, =
80 (|u2 g, +Cr X glu, ) else.
tOl&( a(S2) peBa6) )
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Proof. By definition, we have

||U*u0||§§<= > Iz (u = w3 )-
£i€/\f§

As there are only contributions on £ of coarse functions that are associated with B (§)—
and of ¢ itself—we have

ze, (U —up) = 2, (u — E;DH%OG(U’ cp))
e

o 3 ms nc)
pEBA(E)

= 2, (Gl €) ~ TG, €)).

‘We obtain

2

> lre(w—uo)2) = D |z (Glu,€) —TeG(u.9))|

EiEN: &EN: a($2;)
= G () ~ TG, &) e
Using (6.38) and lemma 6.1, it follows that
G, €) ~ MeGlu, )2 < |G, )12 (7.35)
’ ST SlBE = tolg e ’

If ¢ does not have any parents (i.e., By(¢) = 0 = Ba(€)), we have £ = £ and obtain
with (7.17) and (7.19) that

|G (u, ), = lulg, = lula, < [ulay)- (7.36)
Thus, we have
Cin
= ol < o ol

Let us now assume that B,(&) is not empty. We use the equality

2(0(u.€)) = 2(C(u.€)) — 206 (1)) on €.
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Then we have

|G (u, ) |oz§ |Z£( U 5))|a7
< |5 (G )], + |z (G, )]

=G (1, &)l + [20¢ (G (u 5))| (7.37)

For the first term in (7.37), we obtain

G,y = [u— > M,Glup)

©EBA(E) “€
<fulag +| D TMeGlu,g)
wEBA () ‘e
< |u|a(Q§)+’ > ,G(u 90)’ :
wEBA () ‘e

where we have used (7.17) and (7.19) in the last step.
As a consequence of the energy-minimality of the contributions > B NG II,G(u, ¢)

on &, using (7.16), we have

‘ Z I'LPG(u,go)’Cy S‘ Z G (u, p)

©EBA(£) € peBA(E)

0,065Q¢

Then

’ Z HGugp)‘

wEBA(E)

< ulq 060 T ‘u - Z II G(u ®)
pEBA(E)

< |u|a(Q€) + |G(u)£)|a,8§»§257

,06-Q¢ a,0§->8¢

where we have used (7.19) in the last step. For w € X"(Q"), using (7.32), we have

w = Z Zp(w) = Z Zo(w) on O&.
PEBp(E) PEBA(€)
Thus, using (7.19), we obtain

G )lasene =| Y 2 (Gw9)

wEBA(E)

<| X #(0wo)

pEBA(E)

a,06-Q¢ a(Q) '
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Similarly, for the second term of (7.37), we have

20e(C ), =] X 2(Cwo)| <[ X z(@we)

PEBA(€) NG ()
Thus, for (7.37), we obtain

GO, < Sluln,) +8) D 2(Gu,)
pEBA(E)

In the case of OS-ACMS, if £ is a coarse edge, the right term on the right-hand side of

2
. 7.38
a(f2) ( )

(7.38) would be zero because of the exact interpolation of the vertex functions in the
vertices. As a result, we would obtain the more favorable bound |G(u,e)[2 < 4|ulg(ﬂe).
We will later apply our theory to OS-—ACMS and obtain bounds for the constants Dy
and D; that are slightly larger than the ones in (7.27) and (7.28), respectively.

Let ¢ € Bo(§). Then only coarse functions associated with ancestors of ¢ and ¢ itself
have contributions on . Therefore, on ¢, the equality

G(u,&) =u— Z HzG(u, p)
PEBA(E)

= U — Z H@G(U, @) - H@G(U, (10)
PEBA(¥)

= G(uv 90) - HAOG(U> 50)

holds, where we have also used that Ba(¢)U{¢} C Ba(&). Let wy, == G(u, @) =11 G(u, ¢).
Similarly to the line of proof in lemma 6.4, and by using a Cauchy—Schwarz inequality,

we obtain

‘ Z Z¢(G(u,§))’z(ﬂ)=‘ Z z¢(w¢)

PEBA(€) ¢ PEBA(€)

= Z ‘ Z Z z%’(w@)‘

Ter(Qe) peBa(e) piEN,

<C; Z Z Z ‘Z%(ww)‘i(:r)

Ter () pEBA(E) i€N,

<G Y Y @l

PEBA(E) pi€N,

=C; Z HG(U, SD) - H@G(uv @)H%g
pEBA(E)

2

a(T)
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7.5. Generalization of OS—-ACMS and RAGDSW

For (7.35), with (7.38), it follows that

C111’1V

G, ) ~ TeGlu,€) e < 5 (8| 2o +8C D [1G(,9) — TeGlu,0) |3k )

PEBA(E)

Thus, we obtain with (7.36) that

lu — UOIIZg =[G (u, &) — HgG(uyﬁ)llzg < g(u, ),

where

lnv

tOlg | |a(Q£ lf BP(&) = ®7

8C‘inv
tol§ (’u‘g(ﬁs) + CT (pEBZA(g) g(u, SO)) else.

g(u> ) =

O]

To derive an explicit condition number bound, we will eliminate the recursion in the
definition of g(u,&). We define a path to describe the recursion, which stems from the
cascaded energy-minimizing extensions. A path must begin with £ and end with an

ancestor ¢ € Ba(£):

p:(§:p17p2>---7p|p\—17p\p|:¢)?

where |p| is the length of the path (number of elements); a path can have any length
(it must be finite, however, since G is acyclic). p = (£) is an admissible path as well.
Furthermore, p;+1 must be an ancestor of p;; that is, p;+1 € Ba(p;). We note that p;1
does not have to be a parent of p;. By path(§) we denote the set of all admissible paths
for £ € P. The set of paths that begin at any interface component and end at £ is given
by

path(P,&) = ) |J {p}

»€P pepath(yp)
Plp| =€

We can now eliminate the recursion from g(u, &) and obtain

|p|
_ _ 1
gu, &) = > (8 Lg, )OI ClPI=1 (H ol )U|Z(Q¢)’ (7.39)
j=1""P;j

pEpath()
P=P|p|
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7. ACMS-Type Coarse Spaces

where

1 if Ba(yp) =0,
9o =
8 else.

We define the related constant
NY = max Y > (8|p|_1gg)0-|p| clpl=1 (ﬁ 1) (7.40)
1SN P (@) pepath(P.g) el )
where P(Q;) = {£€P:£NQ; #0}. The constant N9 is a weighted measure for the

G-connectivity of P. In simple terms, G-connectivity can be interpreted as: across how

many interface components do cascaded energy-minimizing extensions stretch?

Corollary 7.3. (Analogue of corollary 7.1) It holds that

uola(o) < <1 + 4/ CTN9> |u]a(e)

Proof. Using lemma 7.8 and (7.39), we have
C: Z l|lu — UOH,gK <C; Zg u,§) < C Ng]u\2
£epr £epP

We motivate the second inequality but, for simplicity, ignore the weights encountered in
NY9. The question is: how many times does |u’¢21(ﬂi) appear in > ¢cp g(u,§)? In order for
\u|3(9i) to appear, it must be part of \u|§(95), where £ is an interface component adjacent
to ;. Thus, we sum over all £ € P(€;). The new question is: how many times is £
encountered? It is encountered as many times as there are paths from any ¢ € P that
end at . Therefore, we sum over all ¢ € path(P,§).

Using lemma 6.4, we obtain

[uola) < (1 + v/ CTNQ) |ula(e)

We extend the definition of N9 to include the factor n¥ := maxg,en, [n(p:)|:

Ip|
Gy ._ @ (glpl—1 Ipl ~lp|—1 1
N9 = max > > (@ tg )l Cl (]H ) . (7.41)

£€P(2;) pepath(P.€) g tolpj
p=p1
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7.5. Generalization of OS—-ACMS and RAGDSW

Remark 7.5. In comparison with the proof in chapter 6, N9 is the analogue of Ciny N0k
(cf. (6.36)) and N9 that of CinCl9% (cf. (6.48)). In fact, if we use an adaptive GDSW-
type coarse space, we have Ba(§) = Bp(§) = 0. As a result, the only admissible path for
& € P is given by p = (§), and we obtain

Similarly, we have

Corollary 7.4. (Analogue of corollary 7.2) Let the assumptions of lemma 6.5 be satisfied.
Then

(0 - (u—uo))2p <Cr > g(u,8).
£EP(Sy)

Forl =0, such that B = (2, we obtain
|10 - (w = uo)) 0y < Dilulyq-

If the assumptions of lemma 6.5 are satisfied for all 1 <1 < N, ¥;: B; — R, with
B, =, \ Q;, we obtain

N
SO (= u0) 2 g < C Z(max [n(&:)])g(u, €) < Dolul%q)
=1 cp

£7,€ £

The constants Dy and D1 are defined as

Dy = C;N9=, (7.42)

Dy = C,NY. (7.43)
Proof. Using lemmas 6.5 and 7.8, we have

‘Ih( U—UO))‘ (B) <C Z 5{ UQ,U—UO)SCT Z g(uaf)
£EP () £EP ()
For B = (), it follows that

(MW - (u = o))y < CrNJul? g
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7. ACMS-Type Coarse Spaces

cf. the proof of corollary 7.3.
For the sum over [ = 1,..., N, we note (6.47) in section 6.4.3 and obtain, using (7.39)
and (7.41),

N
DI (= )i < cfgze; (s (&) )g(e,€) < CoNTZfuliqy.

O]

The proof of the existence of a stable decomposition is identical to that of lemma 7.7
for OS-ACMS if we substitute the constants Dy and D; with (7.42) and (7.43). Thus,

similarly to theorem 7.1, we obtain the following condition number bound.

Theorem 7.2. The condition number of an ACMS-type two-level Schwarz operator is

bounded by
i (Mibusk) < (4450 + VD1)? + Do) (Ne+1),
where Dy and Dy are defined in (7.42) and (7.43), and where N, is the mazimum number

of overlapping subdomains {Q;}f\il any finite element node z" € Q can belong to. All

constants are independent of H, h, and the contrast of the coefficient function E.

In the following, we apply theorem 7.2 to GDSW-type coarse spaces and the coarse
spaces R-WB-0OS-ACMS and OS-ACMS.

GDSW-type Coarse Space: According to remark 7.5, the equalities N9 = Cj,, N&0k
and N9* = C;,,Ck are satisfied in the case of a GDSW-type coarse space. Therefore,

we obtain

Dy = C,N9® = (4, C,C"k,

Dy = C:NY = Cipy O, N&1ke.

We have recovered the condition number bound in theorem 6.1, taking the improvement

in (6.48) into account.
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7.5. Generalization of OS—-ACMS and RAGDSW

R-WB-0S-ACMS Coarse Space: Let tols,, = minges,, tols, and let N® be the maxi-

mum number of wire basket stars of a subdomain:

NSZ:1I<HZa%)§V‘Sw( )’, Sw( )_{SESW SQQ 750)}

Furthermore, we define

Naf»s .
max > |FNB(s)l,
s€SW(Q)

where F N B.(s) = Bc(s) is the set of faces adjacent to an s € Syy. Let

N5 = :
max Y, [n(s)]
sESW(£24)

By definition (7.41), we have

|p|
— -1 Ipl ~|p|—1 1
NO¥ = 1LEN > >, nf (87 ge) i O (31;11 t ) ;

€eP () pepath(P.€) ol
p=p1

where n¥ = mMaXe,eN, [n(pi)], and

1 if Ba(€) =0,
ge =
8 else.
Since coarse faces do not have descendants, we have path(P, f) = {(f)} for f € Syy.
Since the ancestors of coarse faces are given by adjacent wire basket stars, the paths in
path(P, s) are given by (s) and (f;, s), where f; € B.(s). A face f € F has two adjacent
subdomains; thus, nf = 2. Furthermore, we can use fact that n® < |n(s)| for s € Syy. By

F(€;) we denote the coarse faces of 2; and by Sy (£2;) wire basket stars that touch ;.

We obtain
C; 16C2,C.

NQ,E < max Z 16 inv + Z (|n( ) 1nv Z inv ))
1<i<N (feF(Qi) toly e tolg B tolftol
16Cin N/ Cipy N5 166’12nVC NOf=s

tolr tols,, tolrtols,,
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7. ACMS-Type Coarse Spaces

Similarly, we have for N9 in (7.40)

Ip|
g9 lp|—1 [Pl ~lp|-1 1
NY=max > >, (879G CY (j[[1 tolpj)

£eP(Qy) pEpath(P,€)
- 8Ciw NI CuwN®  8C2 C, N s

mv

tol r tols,, tolrtols,,

Therefore, we obtain for Dy and Dy in (7.42) and (7.43)

1 Nf Ns,E 1 - Naf»s
Do = C;N9” < CinyC; ( . O :

tol r tols,, tolrtols,,

Nf N* inv TNafﬁS
Dl = CTNg < CiIlVC’T (8 8CinvC ) )

tolr ~ tols,, tolrtols,,

which is identical to the result in theorem A.1; see (A.6) and (A.7).

OS-ACMS Coarse Space: The derivation of Dy and D; is similar to the one for
R-WB-OS-ACMS. We treat coarse edges similarly to wire basket stars but note that ¢°
is usually equal to 8 for e € £ (unlike g° =1 for s € Syy), except if the coarse edge does
not have any incident coarse nodes. The inequality g¢ < 8 always holds. Furthermore,

we note that tol, = oo for v € V. By £(€;) we denote the coarse edges of ; and obtain

16C; 8- 16C2,C-
g,z < nv 1nv inv
N=T < 121%}5\7 ( Z + Z <8|n + Z tolctol >)

P R le " 1o
ANS  oaNeX  390,,C.NIIe
tol r tolg tol rtolg

é 4C’inv (

and

oNS  aNe 160, C, N e
Ng S 4C’inv < -

tolr tolg tol rtolg
The constants Dy = C;N9* and D; = C,NY are then slightly larger than their
counterparts in (7.27) and (7.28). The reason was given during the proof of lemma 7.8,

below (7.38).
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8. Numerical Results for Linear Elasticity

In the following, we show numerical results for various coarse spaces, the equations of
linear elasticity, and model problems (1)—(4) from sections 2.1 to 2.4. Additional results
are given in appendix B; see also the references below. We include results for the GenEO
coarse space from [SDH+14al; see also section 8.3 for a brief comparison of some major
differences between the GenEO coarse space and our coarse spaces. We note that an
overview of coarse space acronyms is given in the notation chapter.

The Poisson ratio is chosen as v = 0.4 and the body force as f = (1,1, 1). For
all methods, an overlap of two layers of finite elements is chosen. The regularization
term for linear elasticity problems to compute an energy-minimizing extension is set to
10*15Kdiag, where Kgiag is the diagonal of the right-hand side used for the generalized
eigenvalue problem; cf. section 4.4. The scaling factor hr of the mass matrix variant is
set to the radius of the largest insphere of T' € 7, ().

We use the preconditioned conjugate gradient method with the convergence criterion

[EaalE

-8
o <

where 7(®) is the kth unpreconditioned residual. The initial vector is set to the zero
vector and the maximum number of iterations to 2000. A condition number estimate is
obtained after the last iteration, using the Lanczos method; cf. [Saa03, sect. 6.7.3]. We
further note that the residual is updated recursively.

To compare the coarse spaces, we show results for the condition number x = ko(M 1K),
the number of iterations, the coarse space dimension dim Vjy, and the dimension of the

coarse space relative to the size of the stiffness matrix K. For all model problems but (4),

197



8. Numerical Results for Linear Elasticity

we furthermore show the number of coarse functions associated with coarse nodes (V),
edges (£), faces (F), and wire basket (Syy) and interface stars (Sr), where the latter two
are abbreviated by S; that is,

S refers to Syy or Sr.

For the selection of eigenvectors, we always use the same tolerance for each interface
component. For the 100 randomly generated coefficient functions from section 2.4, we
state averages and maxima.

In all tables and for each method, we have marked the first row for which the number
of iterations is below 100; for the randomly generated coefficient functions, the respective

maximum must be smaller than 100.

8.1. GDSW-Type Coarse Spaces

In table 8.1, results for problem (1) of section 2.1 are shown. GDSW and RGDSW
both do not converge within 2000 iterations. Considering that the problem size is still
fairly small with 132651 finite element nodes and 125 subdomains, this clearly shows
the need for adaptive coarse spaces. All adaptive coarse spaces achieve small numbers of
iterations and condition numbers. For this problem, we especially note that the coarse
space dimensions of the adaptive coares spaces are at most only slightly larger than that
of GDSW, which shows that not many additional coarse functions are required to achieve
fast convergence. This is supported by the fact that R—-WB-AGDSW requires only a
slightly smaller number of coarse functions than AGDSW, which differs from the results
in section 4.5 for problems (2) and (3), where a much more substantial decrease of the
coarse space dimension was achieved using R-WB-AGDSW and RAGDSW.

The results in tables 8.2 and 8.3 for the model problems in sections 2.2 and 2.3
are, qualitatively, very similar to those in section 4.5; however, we do note that, using
R-WB-AGDSW and RAGDSW, the reduction in the coarse space dimension is slightly
diminished. Here, for model problem (2), we obtain a decrease of 29.8% comparing the

highlighted rows of AGDSW and R-WB-AGDSW, and 74.6% for RAGDSW. For the

198



8.1. GDSW-Type Coarse Spaces

method tol it. Kk dimVy (V, £, F, §) dnh
GDSW — >2000 3.1-10° 9996 (1257,5008,3731, — ) 2.51%
RGDSW —  >2000 3.6-10° 2610 ( — , — , — ,2610) 0.66%
AGDSW 0.005 113 277.3 11316 (1257,3271,6788, — ) 2.84%
AGDSW 0.01 78 479 11345 (1257,3289,6799, — ) 2.85%
AGDSW 0.1 67 342 11859 (1257,3448, 7154, — ) 2.98%
AGDSW-S 0.005 94  126.7 11321 (1257,3276,6788, — ) 2.84%
AGDSW-S 0.01 78 483 11352 (1257,3296, 6799, — ) 2.85%
AGDSW-$ 0.1 65 323 12097 (1257,3630, 7210, — ) 3.04%
R-WB-AGDSW  0.005 113 262.8 9569 ( — , — ,6788,2781) 2.40%
R-WB-AGDSW 0.01 80 532 958 ( — , — ,6799,2787) 2.41%
R-WB-AGDSW 0.1 67 318 9993 ( — , — ,7154,2839) 2.51%
R-WB-AGDSW-S 0.005 94 1231 9584 ( — , — ,6788,2796) 2.41%
R-WB-AGDSW-S  0.01 83 533 9602 ( — , — ,6799,2803) 2.41%
R-WB-AGDSW-S 0.1 65 305 10222 ( — , — ,7210,3012) 2.57%
RAGDSW 0.005 136 2989 7028 (— , — , — ,7028) 1.77%
RAGDSW 0.01 81 625 7036 (—, —, — ,7036) 1.77%
RAGDSW 0.1 61 247 7516 ( — , — , — ,7516) 1.89%
RAGDSW-S 0.005 93 2076 7055 (— , — , — ,7055) L.77%
RAGDSW-S 0.01 77 453 7059 (— , — , — ,7059) 1.77%
RAGDSW-S 0.1 59 236 7718 (— , — , — ,7718) 1.94%

Table 8.1.: (Model problem (1)) Results for the coefficient function in fig. 2.2, the
equations of linear elasticity, different methods and tolerances for the selection
of eigenvectors: iteration count, condition number, resulting coarse space
dimension, and coarse space dimension over the size of the stiffness matrix.
The number of coarse functions associated with subdomain vertices, edges,

faces, wire basket and interface stars is given in parentheses.
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8. Numerical Results for Linear Elasticity

method tol it. kK dimVy (V, €, F,§) dmh
GDSW — 1424 15107 2319 (210,1081,1028, —) 1.38%
RGDSW — 1606 1.4-107 456 (—, — , — ,456) 0.27%
AGDSW 0.001 320 4790.3 2578 (210,1099, 1269, —) 1.53%
AGDSW 0.005 88  208.7 2599 (210,1113,1276, —) 1.55%
AGDSW 0.1 65  31.8 2702 (210, 1116, 1376, —) 1.61%
AGDSW-S 0.001 321 4757.6 2579 (210,1100, 1269, —) 1.53%
AGDSW-S 0.005 88 2065 2599 (210,1113,1276, —) 1.55%
AGDSW-S 0.1 56  19.0 2715 (210,1121,1384, —) 1.61%
R-WB-AGDSW  0.001 222 15026 1813 (—, — ,1269,544) 1.08%
R WB-AGDSW  0.005 87 1885 1825 (—, — ,1276,549) 1.09%
R-WB-AGDSW 01 60 232 1925 (—, — ,1376,549) 1.14%
R-WB-AGDSW-S 0.001 188 1119.2 1815 (—, — , 1269, 546) 1.08%
R-WB-AGDSW-S 0.005 88 187.1 1825 (—, — , 1276, 549) 1.09%
R-WB-AGDSW-S 0.1 59 21.3 1941 (—, — ,1384,557) 1.15%
RAGDSW 0.001 126 5177 658 (—, — , — ,658) 0.39%
RAGDSW 0.005 8 520 661 (—, — , — ,661) 0.39%
RAGDSW 01 65 247 849 (—, — , — ,849) 0.50%
RAGDSW-S 0.001 107 1718 661 (—, — , — ,661) 0.39%
RAGDSW-S 0.005 8 520 662 (—, — , — ,662) 0.39%
RAGDSW-S 01 59 227 959 (—, — , — ,959) 0.57%

Table 8.2.: (Model problem (2)) Results for the coefficient function in fig. 2.3, the
equations of linear elasticity, different methods and tolerances for the selection
of eigenvectors: iteration count, condition number, resulting coarse space
dimension, and coarse space dimension over the size of the stiffness matrix.
The number of coarse functions associated with subdomain vertices, edges,

faces, wire basket and interface stars is given in parentheses.
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8.1. GDSW-Type Coarse Spaces

diffusion problem, the numbers were 38.4% and 77.6%, respectively.

The reduction in the coarse space dimension in table 8.2 can mostly be attributed
to that of RGDSW with respect to GDSW: the dimensions of AGDSW and RAGDSW
are fairly close to those of GDSW and RGDSW, from which follows that only a small
number of additional, adaptively computed coarse functions are required to obtain a

robust preconditioner.

At last, we consider model problem (4) from section 2.4. In [HKK+22, table 6], results
for GDSW and RGDSW are given: both methods never converge within 2 000 iterations.
Note that, the RGDSW interface partition used in this work differs from the one in
[HKK+22]; thus, we would obtain slightly different results. The results for the adaptive
coarse spaces in table 8.4 indicate that this problem type is much more difficult. Larger

tolerances are required to always stay below 100 iterations.

For problems (1) and (4), the coarse space dimensions are significantly larger than
for the other two problems. For the highlighted rows of RAGDSW, the coarse space
dimension over the dimension of the finite element space is 1.77% for problem (1), 2.4%

for problem (4), and 0.39% and 0.23% for problems (2) and (3).

Let us note that the density of the coefficient functions of problem (4)—that is, the
ratio of the number of elements with a large coefficient to the total number of elements—is
11.08% and was chosen to obtain a difficult problem. If the density were much larger,
many connected structures of large coefficients would result in a smaller coarse space
dimension. Similarly, if the density were much smaller, the coarse space dimension would

decrease as well.

Similarly to problem (1), for problem (4), using a reduced-dimension coarse space, we
do not obtain a decrease of the coarse space dimension that is as large as for the other
two problems. This supports the claim that the inclusions of large coefficients do not

form many large connected structures.

By comparing the results for the diffusion problems in section 4.5, we observe a more
pronounced difference between the original and the S-variant. However, the differences

are still small. A direct comparison is difficult as the spectrum is different for both
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8. Numerical Results for Linear Elasticity

variants. Most of the time, the larger coarse space dimension of the S-variant results in a
lower number of iterations.
Results for a variety of coarse spaces using lumped matrices are given in tables B.13,

B.15, and B.17. Results for AGDSW-M are given in tables B.14, B.16, and B.18.
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8.1. GDSW-Type Coarse Spaces

method tol it. K dmVy (V, &, F, §) %
GDSW — 1856 1.1-106 8311 (984, 4267, 3060, — ) 0.47%
RGDSW 1634 8910° 2034 (-, — , — ,2034) 0.12%
AGDSW 0.01 268 448.5 9130 (984, 3436,4710, — ) 0.52%
AGDSW 0.05 82 43.3 9942 (984, 3612, 5346, — ) 0.56%
AGDSW 0.1 57 265 11372 (984, 3641, 6747, — ) 0.64%
AGDSW-S 0.01 255 432.2 9184 (984, 3486, 4714, — ) 0.52%
AGDSW-S 0.05 72 34.5 10034 (984, 3650, 5400, — ) 0.57%
AGDSW-S 0.1 52 18.3 11601 (984, 3731,6886, — ) 0.66%
R-WB-AGDSW 0.01 203 360.8 6847 (—, — ,4710,2137) 0.39%
R WB AGDSW  0.03 112 1081 7125 (—, — ,4950,2175) 0.40%
R-WB-AGDSW 0.05 77 46.0 7540 (—, — ,5346,2194) 0.43%
R-WB-AGDSW 0.1 54 20.8 8970 (—, — ,6747,2223) 0.51%
R-WB-AGDSW-S 0.01 176 300.2 6877 (—, — ,4714,2163) 0.39%
R-WB-AGDSW-S 0.03 92 81.1 7185 (—, — ,4969,2216) 0.41%
R-WB-AGDSW-S 0.05 73 39.9 7648 (—, — ,5400,2248) 0.43%
R WB AGDSW S 0.1 52 182 9331 (—, — ,6886,2445) 0.53%
RAGDSW 0.01 160 183.7 3745 (—, — , — ,3745) 0.21%
RAGDSW 0.03 96 60.6 4031 (—, — , — ,4031) 0.23%
RAGDSW 0.1 55 239 6430 (—, — , — ,6430) 0.36%
RAGDSW-S 0.01 135 1388 3854 (-, — , — ,3854) 0.22%
RAGDSW-S 0.03 93 561 4429 (—, — , — ,4429) 0.25%
RAGDSW-S 0.1 51 16.9 7470 (—, — , — ,7470) 0.42%

Table 8.3.: (Model problem (3)) Results for the coefficient function in fig. 2.4, the
equations of linear elasticity, different methods and tolerances for the selection
of eigenvectors: iteration count, condition number, resulting coarse space
dimension, and coarse space dimension over the size of the stiffness matrix.
The number of coarse functions associated with subdomain vertices, edges,

faces, wire basket and interface stars is given in parentheses.
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8. Numerical Results for Linear Elasticity

method tol it. K dim Vj dig(‘);/‘)

AGDSW 0.01 244.5 (278) 532.0 (1094.8) 49156.4 (50199) 3.6% (3.7%)
AGDSW 0.03 148.0 (165) 183.7 ( 312.7) 51094.1 (52278) 3.8% (3.9%)
AGDSW 0.05 117.3 (132) 114.3 ( 262.5) 52582.4 (53754) 3.9% (4.0%)
AGDSW 0.1 86.9(96) 59.0( 84.3) 55879.1 (57178) 4.1% (4.2%)
AGDSW-S 0.01 222.3 (258) 452.8 ( 860.5) 50163.3 (51421) 3.7% (3.8%)
AGDSW-S 0.03 134.4 (150) 161.4 ( 310.6) 52329.3 (53676) 3.9% (4.0%)
AGDSW-S 0.05 106.3 (121) 94.5 ( 163.6) 54151.8 (55526) 4.0% (4.1%)
AGDSW-S 0.1 781 (87) 47.7( 84.5) 58471.6 (59950) 4.3% (4.4%)

R-WB-AGDSW  0.01 244.1 (274) ( ) 37670.6 (33600) 2.8% (2.8%)
R-WB-AGDSW  0.03 147.4 (168) ( ) 39601.3 (40577) 2.9% (3.0%)
R-WB-AGDSW  0.05 117.2 (131) 111.1 ( 195.1) 41071.7 (42057) 3.0% (3.1%)
R-WB-AGDSW 0.1 90.1 ( 99) ( ) 44348.1 (45477) 3.3% (3.3%)

R-WB-AGDSW-S 0.01 216.7 (246) ( ) 39011.0 (40069) 2.9% (3.0%)
R-WB-AGDSW-S 0.03 131.9 (145) ( ) 41172.6 (42298) 3.0% (3.1%)
R-WB-AGDSW-S 0.05 105.9 (120) 89.3 ( 155.5) 42986.2 (44169) 3.2% (3.3%)

(85) ( ) ( ) (3.6%)

R-WB-AGDSW-S 0.1 78.8 ( 85) 47.9( 78.4) 47451.3 (48793) 3.5% (3.6%
RAGDSW 0.01 217.8 (247) 422.8 (1015.2) 25605.4 (26304) 1.9% (1.9%)
RAGDSW 0.03 135.9 (153) 150.5 ( 299.7) 27551.8 (28219) 2.0% (2.1%)
RAGDSW 0.05 111.9 (127) 97.0 ( 139.7) 29055.2 (29766) 2.1% (2.2%)
RAGDSW 0.1 85.0( 96) 54.3( 82.1) 32546.7 (33253) 2.4% (2.4%)
RAGDSW-S 0.01 196.2 (231) 359.5 ( 808.1) 27455.6 (28099) 2.0% (2.1%)
RAGDSW-S 0.03 122.0 (145) 128.8 ( 288.4) 29642.5 (30293) 2.2% (2.2%)
RAGDSW-S 0.05 99.9 (121) 79.9 ( 134.2) 31492.0 (32177) 2.3% (2.4%)
RAGDSW-S 0.1 751 ( 84) 42.7( 74.7) 36193.4 (36852) 2.7% (2.7%)

Table 8.4.: (Model problem (4)) Average results (maximum in parentheses) for 100
randomly generated coefficient functions (cf. section 2.4), the equations of
linear elasticity, different methods and tolerances for the selection of eigen-
vectors: iteration count, condition number, resulting coarse space dimension,

and coarse space dimension over the size of the stiffness matrix.
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8.2. ACMS-Type Coarse Spaces

In this section, we examine the coarse spaces OS-ACMS-K, R-WB-0OS-ACMS-K, and
their S-variants, and focus on the coarse space reduction. For comparison, we have
included results of RAGDSW and GenEO. Results for the variants of OS-ACMS and
R-WB-OS-ACMS using a mass matrix can be found in tables B.14, B.16, and B.18
to B.20. Results for a variety of coarse spaces using lumped matrices are given in

tables B.13, B.15, and B.17.

Using the R-WB-OS-ACMS coarse space, we can achieve a further reduction in the
coarse space dimension with respect to RAGDSW; see tables 8.5 to 8.8. For problem (1),
we obtain a reduction of 36.7% if tol = 0.05 is used for RAGDSW and tol = 0.01
for R-WB-OS-ACMS (in which case the numbers of iterations are identical, and the
condition numbers are similar). For problems (2)—(4), we compare the highlighted
rows and obtain reductions of 11.0% (while also converging faster), 16.6%, and 23.9%,
respectively. For OS—-ACMS, the results vary depending on the problem considered.
Apart from the coarse space dimension, the results are similar to those of GDSW-type

coarse spaces in the previous section.

We have included results for the GenEO coarse space in tables 8.5 to 8.7. In all cases,
the coarse space dimensions of R—-WB-0OS-ACMS are smaller than that of GenEO if
convergence is to be achieved in less than or close to 100 iterations. Let us reiterate our
previous remark, however, that a comparison by sole means of the coarse space dimension

does not allow us to draw conclusions about the general performance.

The results of this chapter indicate that choosing an optimal tolerance for the selection
of eigenvectors that is equally suitable for all model problems appears to be difficult,
especially if it is chosen to be identical for all types of interface components. It may be
possible to choose the tolerance automatically, for example, based on the ratio of the
diameter of €2¢ to the finite element diameter, which would essentially incorporate the

well known dependence of the condition number on H/h.
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method tol  it. Kk dimVy (V, £, F, §) dnh
RAGDSW 0.001 438 25132 6920 ( — , — , — ,6920) 1.74%
RAGDSW 001 8 625 7036 (—, —, — ,7036) 1.77%
RAGDSW 005 67 346 7156 (— , — , — ,7156) 1.80%
0S-ACMS-K 0.001 581 5986.8 5220 (1257,2427,1536, — ) 1.31%
0S-ACMS-K 0.005 91 12834 5389 (1257,2503,1629, — ) 1.35%
0S-ACMS-K 0.0 64 341 5504 (1257,2505, 1742, — ) 1.38%
0OS-ACMS-K 0.05 54 20.3 6123 (1257,2516, 2350, — ) 1.54%
0S-ACMS-S-K 0.001 424 24555 5258 (1257, 2465,1536, — ) 1.32%
0OS-ACMS-S K 0.005 65 341 5393 (1257,2507,1629, — ) 1.36%
0S-ACMS-S-K 0.05 54 199 6142 (1257,2535,2350, — ) 1.54%
R-WB-OS-ACMS-K  0.001 621 4753.0 4247 ( — , — ,1536,2711) 1.07%
R-WB-OS-ACMS-K  0.005 94 1177.1 4410 ( — , — ,1629,2781) 1.11%
R-WB-0S-ACMS K 0.01 67 325 4529 ( — , — ,1742,2787) 1.14%
R-WB-0S-ACMS K 0.05 61 255 5153 ( — , — ,2350,2803) 1.29%
R-WB-OS-ACMS-S-K 0.001 467 51974 4292 ( — , — ,1536,2756) 1.08%
R-WB-OS-ACMS-S-K 0.005 69 327 4425 ( — , — ,1629,2796) 1.11%
R-WB-OS-ACMS-S-K 005 59 237 5235 ( — , — ,2350,2885) 1.32%
GenEO 0.01 176 260.7 6819 — 1.71%
GenEO 0.1 122 1201 7386 — 1.86%
GenEO 02 96 764 8280 — 2.08%
GenEO 0.3 75 458 9205 — 2.31%

Table 8.5.: (Model problem (1)) Results for the coefficient function in fig. 2.2, the
equations of linear elasticity, different methods and tolerances for the selection
of eigenvectors: iteration count, condition number, resulting coarse space
dimension, and coarse space dimension over the size of the stiffness matrix.
The number of coarse functions associated with subdomain vertices, edges,

faces, wire basket and interface stars is given in parentheses.
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method tol it. kK dimVy (V, €, F, §) dmh
RAGDSW 0.001 126 5177 658 (—, —, —,658) 0.39%
RAGDSW 0.005 8 520 661 (—, —, —,661) 0.39%
RAGDSW 0.05 79  37.8 673 (—, —, —,673) 0.40%
0S-ACMS-K 0.001 299 4523.6 815 (210,581, 24, —) 0.48%
0S-ACMS-K 0.005 77 100.3 850 (210, 601, 39, —) 0.51%
0S-ACMS-K 0.05 61  26.8 989 (210, 607, 172, — ) 0.59%
0S-ACMS-S-K 0.001 275 4597.7 818 (210,584, 24, —) 0.49%
0S-ACMS-S-K 0.005 61  26.8 851 (210, 602, 39, —) 0.51%
0S-ACMS-S-K 0.05 61  26.8 994 (210, 612, 172, —) 0.59%
R-WB-OS-ACMS-K  0.001 181 4319.9 568 (—, —, 24,544) 0.34%
R-WB-OS-ACMS-K  0.005 62 267 588 (—, —, 39,549) 0.35%
R-WB-0S-ACMS-K 0.05 61  26.7 721 (—, —, 172, 549) 0.43%
R-WB-0OS-ACMS-S-K 0.001 127 2211.0 570 (—, —, 24,546) 0.34%
R-WB-OS-ACMS-S-K 0.005 61 267 588 (—, —, 39,549) 0.35%
R-WB-OS-ACMS-S K 0.05 61 267 721 (—, —,172,549) 0.43%
GenEO 0.01 194 2435 471 — 0.28%
GenEO 0.1 122 80.5 622 — 0.37%
GenEO 02 86  40.3 931 — 0.55%

Table 8.6.: (Model problem (2)) Results for the coefficient function in fig. 2.3, the

equations of linear elasticity, different methods and tolerances for the selection

of eigenvectors: iteration count, condition number, resulting coarse space

dimension, and coarse space dimension over the size of the stiffness matrix.

The number of coarse functions associated with subdomain vertices, edges,

faces, wire basket and interface stars is given in parentheses.

8.3. Practical Aspects of the GenEO Coarse Space

As we have mentioned before, a thorough comparison of coarse spaces is out of the scope

of this work. Nevertheless, we will mention some differences between the GenEO coarse
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Table 8.7.: (Model problem (3)) Results for the coefficient function in fig. 2.4, the

space [SDH+14a] and ours, which can further the understanding of the numerical results

method tol it. k dimVy (V, &, F, §) dnh
RAGDSW 0.01 160 183.7 3745 (—, — , — ,3745) 0.21%
RAGDSW 0.03 96 606 4031 (—, — , — ,4031) 0.23%
RAGDSW 01 55 239 6430 (—, — , — ,6430) 0.36%
0S-ACMS-K 0.01 282 570.6 3850 (984,2321, 545, — ) 0.22%
0S-ACMS-K 0.03 113 117.4 4626 (984, 2456,1186, — ) 0.26%
0S-ACMS-K 0.05 73 357 5335 (984,2525,1826, — ) 0.30%
0S-ACMS-S-K 0.01 250 445.1 3899 (984,2370, 545, — ) 0.22%
0S-ACMS-S-K 0.03 93 71.1 4660 (984,2490,1186, — ) 0.26%
0OS-ACMS-S-K 0.05 68 322 5405 (984,2594,1827, — ) 0.31%
R-WB-OS-ACMS-K  0.01 182 317.0 2682 (—, — , 545,2137) 0.15%
R-WB-OS-ACMS-K  0.03 93 669 3361 (—, — ,1186,2175) 0.19%
R-WB-OS-ACMS-K  0.05 71 392 4020 (—, — ,1826,2194) 0.23%
R-WB-OS-ACMS-S-K 0.01 163 351.2 2708 (—, — , 545,2163) 0.15%
R-WB-OS-ACMS-S-K 0.03 75 386 3402 (—, — ,1186,2216) 0.19%
R-WB-OS-ACMS-S-K 0.05 64 321 4075 (—, — ,1827,2248) 0.23%
GenEO 107% 184 428.6 2570 — 0.15%
GenEO 0.03 101 101.4 3576 — 0.20%
GenEO 0.05 86 649 4219 — 0.24%
GenEO 0.1 69 41.2 5672 — 0.32%

equations of linear elasticity, different methods and tolerances for the selection
of eigenvectors: iteration count, condition number, resulting coarse space
dimension, and coarse space dimension over the size of the stiffness matrix.

The number of coarse functions associated with subdomain vertices, edges,

faces, wire basket and interface stars is given in parentheses.

of the previous section.
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R-WB-0S-ACMS-K 0.1 7938

51.6 85.5) 24770.4 (25361) 1.8% (1.9%

method tol it. K dim Vj di(‘;(‘) }/0
RAGDSW 0.01 217.8 (247) 422.8 (1015.2) 25605.4 (26304) 1.9% (1.9%)
RAGDSW 0.03 135.9 (153) 150.5 ( 299.7) 27551.8 (28219) 2.0% (2.1%)
RAGDSW 0.05 111.9 (127) 97.0 ( 139.7) 29055.2 (29766) 2.1% (2.2%)
RAGDSW 0.1 85.0( 96) 54.3( 82.1) 32546.7 (33253) 2.4% (2.4%)
OS-ACMS-K 0.01 227.3 (283) 625.9 (2224.3) 21569.9 (22093) 1.6% (1.6%)
OS-ACMS-K 0.03 133.7 (155) 173.0 ( 356.3) 23678.2 (24165) 1.7% (1.8%)
0S-ACMS-K 0.05 104.5 (121) 97.3 ( 296.4) 25407.8 (25936) 1.9% (1.9%)
0S-ACMS-K 0.1 76.0( 88) 484 ( 82.3) 29311.4(29925) 2.2% (2.2%)
OS-ACMS-S-K 0.01 195.8 (235) 506.2 (1795.2) 22287.0 (22806) 1.6% (1.7%)
OS-ACMS-S-K 0.03 118.8 (139) 146.1 ( 368.5) 24460.2 (24977) 1.8% (1.8%)
OS-ACMS-S-K 0.05 93.0 (111)  79.1 ( 144.9) 26298.2 (26856) 1.9% (2.0%)
0S-ACMS-S-K 0.1 683 (81) 39.6( 83.0) 30615.3 (31256) 2.3% (2.3%)
R-WB-OS-ACMS-K  0.01 235.4 (283) 694.4 (2652.2) 17298.0 (17767) 1.3% (1.3%)
R-WB-0OS-ACMS-K  0.03 138.8 (159) 177.8 ( 335.7) 19419.7 (19905) 1.4% (1.5%)
R-WB-0S-ACMS-K  0.05 108.5 (123) 102.2 ( 200.8) 21096.5 (21591) 1.6% (1.6%)
(91) ( ) ( ) (1.9%)

R-WB-0S
R-WB-0S
R-WB-0S

R-WB-0OS-ACMS-S-K 0.1 694

Table 8.8.:

~ACMS-S-K 0.01 193.0 (235) 509.2 (3801.9) 18233.9 (18726) 1.3% (1.4%)
~ACMS-S-K 0.03 117.7 (139) 139.6 ( 328.6) 20511.3 (21057) 1.5% (1.6%)
~ACMS-S-K 0.05 93.5 (108) 79.0 ( 197.6) 22440.6 (23007) 1.7% (1.7%)

(81) 409 ( 73.5) 26993.8 (27625) 2.0% (2.0%)

(Model problem (4)) Average results (maximum in parentheses) for 100
randomly generated coefficient functions (cf. section 2.4), the equations of
linear elasticity, different methods and tolerances for the selection of eigen-
vectors: iteration count, condition number, resulting coarse space dimension,

and coarse space dimension over the size of the stiffness matrix.

With each subdomain, the GenEO coarse space associates a single generalized eigenvalue

problem, which is advantageous for parallelization. The eigenvalue problems are defined

on the subdomain overlap and, as a result, are significantly larger than those associated
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problem Sr F Sw E VY  GenEO
# evp 76 172 76 199 70 50

(2)  mean dof(evp) 3347  131.2  37.9 134 3 21775
max dof(evp) 645 432 84.0 39.0 3 3078

sum(dof(evp)) 25437 22560 2877 2667 210 108873

# evp 339 515 339 750 328 100

(3) mean dof(evp) 576.2 344.9 52.3 22.3 3 8697.1
max dof(evp) 1566 1140 156 78.0 3 12111
sum(dof(evp)) 195339 177624 17715 16731 984 869712

Table 8.9.: Number of eigenvalue problems, mean and maximum number of degrees of
freedom per eigenvalue problem, and sum of degrees of freedom per eigenvalue
problem for problems (2) and (3): interface stars, coarse faces, wire basket
stars, coarse edges, coarse nodes, GenEQO eigenvalue problem. The sum of

degrees of freedom of Sr equals 3n, where n is the number of interface nodes.

with, for example, interface stars. In table 8.9, for linear elasticity and problems (2)
and (3), the mean and maximum number of degrees of freedom associated with interface
components and those for the GenEO eigenvalue problems are given. Especially for
problem (3), the differences are substantial: the mean number of degrees of freedom of
an interface star is 15 times smaller; the maximum is smaller by factor of 7.7. Because of
the cubic complexity of direct eigensolvers, we can expect the computational cost to be
significantly larger. As a result, smaller subdomains have to be used, which can increase
the coarse space dimension. However, iterative eigensolvers, such as LOBPCG [Kny01;
DSYG18], may be able to support the use of larger eigenvalue problems. In that case,

suitable preconditioners are usually required to obtain fast convergence; cf. [Soul0].

On the other hand, using eigenvalue problems on large and geometrically compact
domains can facilitate the detection of connected patches of large coefficients and, as a

result, reduce the coarse space dimension.
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Table 8.9 additionally shows that the sum of degrees of freedom of eigenvalue problems
equals the number of degrees of freedem of I'* for GDSW- and ACMS-type coarse spaces.
For the GenEO coarse space, the sum is four to five times as large. As a result, we can
expect it to construct coarse functions that are not necessary for robustness. Indeed,
consider a channel of a large coefficient intersecting a coarse edge as in fig. 1.5 (left).
Then both subdomains adjacent to the coarse edge will construct a coarse function,

although only one function is required.
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Computational Cost

Adaptive coarse spaces that rely on the solution of local generalized eigenvalue problems
can be considered as a last resort if all standard approaches fail to obtain a solution in a
reasonable time frame. In particular, robust two-level methods using adaptive coarse
spaces are a parallelizable alternative to direct solvers. A major drawback of the presented
adaptive coarse spaces is the substantial cost for the setup and solution of the local
generalized eigenvalue problems. Therefore, it is of interest to reduce the computational
cost of the coarse space setup to make an application more feasible in practice.

The eigenvalue problems themselves are of moderate size, and preliminary results
suggest that the cost can mostly be attributed to the setup of the associated Schur
complements. Note that it is sufficient to solve standard eigenvalue problems if the
variants using lumped matrices are used (cf. sections 3.3.1 and 3.3.4); however, this does

not avoid the setup of Schur complements.

9.1. Avoiding the Setup of Schur Complements

Although the eigenvalue problems are of moderate size, in theory, an iterative eigensolver
can be employed to avoid the setup of a Schur complement. In [HKKR18b], LOBPCG
[Kny01; DSYG18] was used to solve the generalized eigenvalue problems; see also [Soul0;
KKR16]. However, it appears that a good preconditioner for the left-hand side is
required; cf. [Soul0]. For example, in [HKKR18b], a cholesky decomposition of the Schur

complement was used.
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Many realistic, heterogeneous problems exhibit a fairly simple structure of the coefficient
function. For a significant amount of generalized eigenvalue problems, only the null
space functions are then selected; for example, using AGDSW with a tolerance of 1073
for problem (2) in section 2.2, only 18 of 199 coarse edges and 43 of 172 coarse faces
are associated with more than one coarse function in the case of a diffusion problem.
Thus, if the null space functions are available, it is not necessary to set up and compute
solutions to many eigenvalue problems. Moreover, each subdomain is usually associated
with a considerable amount of eigenvalue problems (see fig. A.1), which is a hindrance
for parallel efficiency. Therefore, if the setup and solution of a large amount of eigenvalue
problems can be avoided, the overall computational cost of the adaptive coarse space
may be reduced considerably. Two simple approaches have been mentioned previously
for adaptive FETI-DP and BDDC: the FETI-DP residual after one step [KRR15] or
jumps in the coefficient function [KKR17; KKR18a] were used to decide which eigenvalue
problems can be omitted. In [KKR20], heuristic analyses of the diagonal entries of the
stiffness matrix avoid the solution of redundant generalized eigenvalue problems in a

parallel implementation of adaptive FETI-DP; cf. section 9.2 and [Knel6; Heil6).

In [HKLW21b; HKLW2Ic|, the authors use deep neural networks to predict with great
accuracy whether an eigenvalue problem has to be solved; see also [HKLW19; HKLW21a].
For example, they consider a steel microsection as the coefficient function, and they can
reduce the number of eigenvalue problems required by AGDSW to be solved from 112
to 27, while obtaining essentially identical results with respect to the number of iterations
and the condition number. To achieve this, the authors formulate a classification problem
and carefully craft a training dataset that, although small, contains the difficult features
that coefficient functions exhibit. The coefficient function is then sampled on a slab

surrounding a coarse edge to determine whether an eigenvalue problem should be solved.

In the following section, we consider an approach to heuristically construct coarse
functions and avoid the setup and solution of generalized eigenvalue problems. We restrict
ourselves to diffusion problems. Related, albeit requiring preliminary fixing a coarse

space dimension, is the nonadaptive coarse space NSHEM from [GLR15].
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Figure 9.1.: (Left) Coefficient function with a coefficient of £ = 10% in red and E = 1 in
blue. Finite element nodes of the coarse edge and incident coarse nodes are
marked. (Center) Constructed edge functions using the heuristic approach
from [Knel6; Heil6; HKKR18b]. (Right) Constructed edge functions using

an improved variant of the heuristic approach.

9.2. Heuristic Coarse Space Construction for Diffusion Problems

In [Knel6; Heil6; HKKR18b]—for two-dimensional diffusion problems on structured grids
and domain decompositions—the authors presented an approach for the heuristic construc-
tion of coarse functions. By the observation of eigenfunctions of edge eigenproblems—cf.
figs. 1.8, 1.9, 3.2, 7.1, and 7.2—the similarities between the coefficient functions and
eigenfunctions corresponding to small eigenvalues become evident. In [Knel6; Heil6;
HKKR18b], edge eigenfunctions are approximated heuristically by partitioning the coeffi-
cient function on the edge with respect to small and large coefficients (given a tolerance).
For each individual part, a coarse function is constructed by setting the edge function
to 1 on the section associated with a large coefficient and to 0 elsewhere; see fig. 9.1
(left and center) and [HKKR18b, fig. 4.2]. Note that, if a patch of large coefficients
touches a coarse node or the Dirichlet boundary 0€2p, a coarse edge function will not be
constructed; cf. section 7.2. Instead, MsFEM-type functions from the ACMS space are
associated with coarse nodes. In [HKLW20], a similar approach was used to construct
a nonadaptive FETI-DP and BDDC coarse space that approximates the most relevant
eigenvector of each generalized eigenvalue problem; see also [KLW22].

To reduce the coarse space dimension, this approach can be improved by first considering

connected components of patches of large coefficients on €2.. For the same reason, we
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Figure 9.2.: Corresponding to fig. 9.1 (left): submatrix of the fully assembled stiffness
matrix K corresponding to the coarse edge including its boundary nodes
(left) and Schur complement corresponding to € and €. (right). Absolute

values are displayed; absolute values below 1 are set to 1.

have included the energy-minimizing extension in the setup of the generalized eigenvalue
problems of our standard adaptive coarse spaces. The constructed edge functions
corresponding to the coefficient function in fig. 9.1 (left) are shown in the same figure
on the right. We note that this also requires the new type of MsFEM function from
section 7.2 to be used.

For the heuristic approach, we have assumed access to the coefficient function. If a
structured mesh and domain decomposition are used, we can easily use the entries of the
stiffness matrix instead; cf. fig. 9.2 (left). If ¢; and ¢; are the bilinear basis functions of
two adjacent nodes on the coarse edge, then aq(¢;, ¢; ) indicates whether the coefficient
function has a large value between ¢; and ¢;. For unstructured meshes and domain
decompositions, the situation is more complex. Furthermore, elements are of different
size and shape, such that ao(;, ;) can vary significantly.

One of the main goals of this work was to present algorithms that lead to small coarse
space dimensions. Using the original heuristic approach described above is similar to
using AGDSW with a slab of only one layer of finite elements around the coarse edge. We
have seen in section 3.4.1 that this can result in a significant increase in the coarse space

dimension. Therefore, we would like to use the (improved) heuristic variant of AGDSW
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for larger slabs. If the coefficient function is not available for the construction of edge
functions, in order to detect connected patches of large coefficients, we can construct
edge functions by partitioning the Schur complement associated with e; cf. fig. 9.2 (right).
However, as we expect the setup of the Schur complement to be the dominating cost of the
generalized eigenvalue problems, using a heuristic approach to reduce the computational
cost seems futile if we rely on the setup of the Schur complement.

We now give a heuristic approach that neither requires the setup of Schur complements
nor access to local Neumann stiffness matrices. We restrict ourselves to the description
of heuristic adaptive GDSW-type coarse spaces of the S-variant. Note, however, that the
idea is similar for standard adaptive GDSW-type and ACMS-type coarse spaces. In the
latter case, the construction is more involved as we not only need to construct interface
functions but also suitable heuristic, cascaded energy-minimizing extensions.

Let £ € P, k € n(€), and let K% = (f(gk)w be a local stiffness matrix associated
with one of the subdomains adjacent to &. Specifically, K** is the submatrix of the fully
assembled stiffness matrix K corresponding to the finite element nodes of Q. We define

1 if K| > tolg,
Pi=(Py)ij, Py=

0 else,

where tol¢ is the heuristic analogue of the tolerance for the selection of eigenfunctions.
Let E¢ be the set of nodes of £ that belong to a finite element 7" with a large coefficient
(in the case of GDSW-type coarse spaces, we had defined 9¢ = (), such that £ = &). We
can gather this information by extracting the respective diagonal entries of the fully
assembled stiffness matrix K. For each node in E¢, we define a vector v; to be the unit
vector that is equal to 1 at the selected node and zero on all other nodes of Q. By
iterating

Vi < P’Ui

[ times (or until no change in the pattern is observed), the single nonzero value will
spread to other finite element nodes that are connected via large coefficients and that

are at most at a distance of [ layers of finite elements. We call [ the heuristic slab width.
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After the last iteration, we set all nonzero values to 1. After [ steps, additional nodes on &
may be nonzero, in which case we have detected a connected patch of large coefficients
that touches or intersects & multiple times. We repeat the process of detecting connected
components for all subdomains adjacent to & and then merge all detected components.
Note that this essentially approximates the S-variant of an adaptive GDSW-type coarse

space, since connections are only detected inside subdomains or via &.

To obtain a scalable method, we need to make sure that the null space of the underlying
problem—that is, the constant functions—can be represented by the coarse space. Since
we have constructed binary vectors, this can be determined by computing the sum of
all constructed vectors associated with £. In case the answer is negative, we can simply
replace any of the vectors with the vector corresponding to a constant, nonzero function
or—in case there are no coarse functions associated with £ at all-—we add the constant
function. The remainder is identical to the construction of our standard adaptive GDSW-
type coarse spaces: we extend the functions on & by zero to I' and then energy-minimally

to the interior of the subdomains.

A difficulty is presented by the requirement to select a tolerance tol¢ since the entries
of the stiffness matrix depend on the size and shape of the elements. In general, tols must
be adapted to each element, depending on its shape and size. The finite elements of the
meshes in chapter 2 are sufficiently similar and, furthermore, we use a large coefficient
contrast of 10°, which results in a clear separation of the entries of the stiffness matrix.

Choosing a tolerance for these problems is, therefore, not difficult.

In table 9.1, numerical results for problems (1)—(3), RAGDSW-S, and its heuris-
tic variant are given. We observe almost identical coarse space dimensions between
RAGDSW-S and its heuristic variant if a large slab of 100 is used. Note that [ = 100 for
the slab can be regarded as using the maximum slab; the algorithm can terminate well

before reaching 100 iterations if no change is observed.

Furthermore, the results show that the heuristic variant can require considerably more
iterations to converge; the largest increase of 59% is obtained for problem (1). This

should be expected as the constructed interface functions only approximate eigenfunctions.
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E  method tol it. &k dimVj di(ri’(’)g/o
RAGDSW-S 0.01 59 32.0 1289 0.97%
RAGDSW-S[H(100)] 100 94 65.7 1288 0.97%

(1) RAGDSW-S[H(10)] 100 94 657 1288 0.97%
RAGDSW-S[H(3 100 95 66.1 1323 1.00%
RAGDSW-S[H(1 100 93 68.6 2246 1.69%
RAGDSW-S 0.01 56 24.2 112 0.20%
RAGDSW-S[H(100)] 1000 61 29.5 112 0.20%

(2) RAGDSW-S[H(10 1000 61 29.5 113 0.20%
RAGDSW-S[H(3 1000 61 29.7 123 0.22%
RAGDSW-S[H(1 1000 64 28.7 133 0.24%
RAGDSW-S 0.01 59 33.7 663 0.11%
RAGDSW-S[H(100)] 100 75 41.5 661 0.11%

(3) RAGDSW-S[H(10)] 100 75 41.6 678 0.12%
RAGDSW-S[H(3)] 100 74 39.3 977 0.17%
RAGDSW-S[H(1)] 100 73 375 1399 0.24%

Table 9.1.: Results for the coefficient functions (1)—(3) in figs. 2.2 to 2.4, the diffusion
problem, different methods, and a tolerance of 0.01 for the selection of eigen-
vectors: iteration count, condition number, resulting coarse space dimension,
and coarse space dimension over the size of the stiffness matrix. If the modified
heuristic variant is used, the slab width in layers of finite elements is appended

as [H()] to the method’s name.

Further improvements may be achieved by constructing smoother interface functions.
The results for problem (4) in table 9.2 corroborate this disadvantage. Nonetheless, the
results are promising considering the rough approximation of eigenfunctions and the fact
that we have addressed two of the major drawbacks of adaptive coarse spaces (Schur
complements need not be set up, and local Neumann stiffness matrices are not required).

Let us remark, however, that no theoretical evidence of the robustness of the heuristic
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9. Approaches for Reducing the Computational Cost

method tol it. K dim Vj dig‘;‘)fvo
RAGDSW-S 0.01 155.3 (173) 237.4 (606.8) 4402.1 (4556) 1.0% (1.0%)
RAGDSW-S 0.1 76.7(8) 50.1( 85.8) 5616.4 (5779) 1.2% (1.3%)

RAGDSW-S[H(10)] 100 153.6 (176) 226.5 (381.6) 5185.6 (5388) 1.1% (1.2%)

Table 9.2.: (Model problem (4)) Average results (maximum in parentheses) for 100
randomly generated coefficient functions (cf. section 2.4), the diffusion problem,
different methods and tolerances for the selection of eigenvectors: iteration
count, condition number, resulting coarse space dimension, and coarse space
dimension over the size of the stiffness matrix. The modified heuristic variant

RAGDSW-S[H(10)] uses a slab of 10 layers of finite elements.

coarse space is available.

In the following, we discuss further issues to consider. Unlike the generalized eigenvalue
problems of this work, the heuristically constructed coarse space does not take into
account that certain coarse functions can be discarded if a subdomain adjacent to the
respected interface component touches the Dirichlet boundary 9Qp; cf. section 1.5.3. If
the global Neumann stiffness matrix is available, this can be easily incorporated into the
construction process: if, during the construction, the vector v; is nonzero at a Dirichlet
boundary node, it is marked for deletion. We can furthermore skip the construction of
the null space function if no interface functions have been constructed and if a subdomain
adjacent to £ touches 0€Q2p.

Let us recall the numerical example in fig. 3.7, for which we observed that using at
most one coarse function per connected patch of large coefficients may not be sufficient
to obtain a robust preconditioner. In contrast to an eigenvalue problem, the heuristic
approach is blind to such problems. Equally, if the fine mesh resolution is increased—
unlike for our adaptive coarse spaces (cf. section 6.4.2)—the nonadaptive coarse space

will not be enriched, and the condition number will depend on H/h.
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We have presented different coarse spaces and variants and have provided supporting
numerical evidence in addition to proofs of condition number bounds. At the core of all
presented adaptive coarse spaces are solutions of local generalized eigenvalue problems.
The eigenvalue problems are defined on the components of a partition of the domain
decomposition interface. In contrast to the GenEO and Dirichlet-to-Neumann coarse
spaces, each degree of freedom on the interface is associated with only exactly one
eigenvalue problem, which reduces the computational cost and can reduce the coarse

space dimension; see also table 8.9.

The coarse spaces have been classified as either GDSW-type or ACMS-type, where
the latter is a generalization of the former. The key difference is that ACMS-type coarse
spaces may enforce additional Dirichlet conditions in the energy-minimizing extensions
that are incorporated into the generalized eigenvalue problems; GDSW-type coarse spaces

enforce a Dirichlet condition only on the respective interface component.

We have leveraged three concepts to achieve a small coarse space dimension. First,
we have incorporated the energy-minimizing extension into the generalized eigenvalue
problem, enabling the algorithm to detect connected patches of large coefficients. Second,
we have changed the interface partition for RAGDSW to use larger components, which
can further facilitate the detection of connected patches of large coefficients. Third,
for the ACMS-type coarse spaces, we have enforced additional Dirichlet conditions, a
technique that can remove bad eigenmodes if a patch of large coefficients intersects more
than one interface component. Numerical results have confirmed that all three concepts

can reduce the coarse space dimension significantly.
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The coarse spaces each have their advantages and disadvantages. The standard adaptive
GDSW coarse space is comparatively easy to implement but, generally, has the largest
coarse space dimension among the coarse spaces discussed. The reduced-dimension
AGDSW coarse space can significantly decrease the coarse space dimension but is more
difficult to implement. Furthermore, the computational cost for solving local generalized
eigenvalue problems is increased. Both coarse spaces—and in fact all adaptive GDSW-
type coarse spaces—have in common that they are robust to special cases of interface
decompositions; cf. section 4.4 and remark 7.1. In contrast, one must be particularly
careful when implementing the OS—ACMS coarse space to cover all special cases. On
the other hand, OS—ACMS uses the same interface partition as AGDSW and, thus, its
local generalized eigenvalue problems are equal in size. Yet, we can achieve much smaller
coarse space dimensions than with AGDSW. R-WB-OS-ACMS can further reduce
the coarse space dimension with respect to OS-ACMS. However, its implementation
is more demanding than that of AGDSW and, arguably, than that of RAGDSW as
well: it requires the computation of energy-minimizing extensions from wire basket
stars to coarse faces. We conclude that the choice of a particular coarse space relies on
practical considerations, the complexity of the domain decomposition, and the considered

coefficient functions.

All numerical results in this work were obtained using a serial MATLAB implementation.
For this reason, we have not given a comprehensive comparison with other coarse spaces
and limited ourselves to the analysis of a few aspects. A comparison based on efficient

parallel implementations that contrast different aspects has to be considered in the future.

We have seen in section 5.7.3 that the interface stars defined in section 5.4 deviate less
in size from the mean than components of other types of interface partitions. Nevertheless,
there is room for improvement. Additional aspects that are relevant for the construction of
interface components are the minimization of the number of energy-minimizing extensions
per subdomain, an efficient construction in a parallel environment, and geometrically
compact interface components (to reduce the coarse space dimension). Let us note that

the setup of the Schur complement essentially involves the computation of many energy-
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minimizing extensions. This computational effort could be reduced with an iterative
eigensolver; cf. section 9.1. Extensive tests of different interface partitions need to be
carried out to gain a more thorough understanding of how different interface components
affect the coarse space dimension and parallel efficiency. Furthermore, the synergy of
different interface components and the enforcement of additional Dirichlet conditions in

the ACMS framework (cf. section 7.5) could be examined.

Numerical results have shown that coarse functions are redundant if the associated
patch of large coefficients is embedded in an overlapping subdomain; cf. section 1.5.4. A
heuristic or machine learning—based approach—as in chapter 9—or a new or additional

type of eigenvalue problem may be required to exclude these redundant coarse functions.

In case all techniques to reduce the coarse space dimension fail to obtain a sufficiently
small coarse space dimension, and if iterative solvers are required at the coarse level, we
can resort to adaptive multilevel methods; cf., e.g., [SSM13; Will4; Wil13; KC16; ZT17;
KLRW19; HKRR20b; JRZ21; AGJT21; BSSS22; AJ22]. As the coarse problem can be ill

conditioned, we may face the same challenges as for the original problem.

All presented (nonheuristic) adaptive coarse spaces have two major drawbacks: they
require subdomain Neumann stiffness matrices, which cannot be extracted from the fully
assembled stiffness matrix K, and the setup cost is substantial, making their application
only feasible for challenging problems. In section 9.2, we have heuristically constructed
an approximation of a standard adaptive coarse space that alleviates these disadvantages
to some extent but brings about its own challenges; moreover, the construction has only

been formulated for a diffusion problem with a scalar coefficient function.

Recently, there has been work toward adaptive coarse spaces that are constructed
algebraically [AG19; Spi21; GS21], that is, by only using the fully assembled stiffness
matrix K. However, the additional cost for gaining independence of local Neumann
matrices is significant. Therefore, the new methods are not a replacement for adaptive
coarse spaces that are constructed nonalgebraically as long as the required matrices are
available. See [HS22] for work that is more closely related to the one in this thesis. Let

us also remark that, if subdomains are based on an algebraic partition of indices rather
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10. Conclusion and Future Work

than a geometric partition of the domain, the connectivity of patches of large coefficients
may not be exploited anymore, possibly resulting in larger coarse space dimensions.
Nevertheless, approaches that do not require local Neumann matrices are a welcome
addition and enrich practitioners’ choices.

For the proof of condition number bounds in this work, we have relied on an overlapping
domain decomposition with minimal overlap of one layer of finite elements. This decom-
position is only used during the proof and does not place any restrictions on the size of the
overlap used in practice nor does it invalidate the theory for larger overlaps. A new type
of eigenvalue problem may be required to remedy this shortcoming. Additionally, and
possibly related—in the way that a new type of eigenvalue problem may be required—is
the support for higher-order polynomial basis functions.

Furthermore, we have presented numerical results exclusively for diffusion and com-
pressible, linear elasticity problems with scalar coefficient functions. Although additional
types of symmetric, positive definite problems are covered by our theoretical analysis (as
long as mass variants are not selected), new challenges can emerge as in the case of linear
elasticity, where pseudoinverses have to be used; to obtain numerical results and avoid the
computation of pseudoinverses, we were able to use a simple regularization that proved to
be robust for the problems considered. Future work may involve broadening the class of
considered problems, including, for example, indefinite problems; see, for example, [NT21;
BDG+22; BDJT21] for recent work based on the GenEO and Dirichlet-to-Neumann
coarse spaces.

Finally, the numerical results in this thesis have shown that choosing a suitable
tolerance for the selection of eigenfunctions is not straightforward. An a priori choice
that is identical for all types of eigenvalue problems can lead to slow convergence or a
coarse space dimension that is too large. We mention the work [HKK20], in which the
authors analyze the local spectra of a few coarse spaces (including AGDSW, SHEM, and
OS-ACMS) for a selection of model problems.
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A. Theory

A.1. Technical Tools

Lemma A.1 (Lemma of Lax—Milgram for a Defective Problem). Let a(-,-) be a symmetric
bilinear form on a Hilbert space W with the induced norm || - ||w. We assume that a
Hilbert space Wo C W and a splitting Wo = W kernel © Wo r of Hilbert spaces Wy xernel

and Wy r exist such that:

1. a(-,-) is Wy g-elliptic; i.e., there exists a constant o > 0, which is independent of
u € Wo r, such that

a(u,u) > allullf,  VYue Wo.R-
2. Wo kernel 1S the null space of a(-,-); i.e., for all v € W xernel, we have

a(v,w) =0 Ywe W.

Furthermore, we assume that a(-,-) is continuous; i.e., there exists a constant C, which

is independent of u,v € W, such that
a(u,v)| < Cllullw [vlw Va0 € W.

Forup € W, the solution to the following problem is given by t+z € Wy, where 4 € Wy g

is uniquely defined and z € Wy xerne1: find u € Wy such that
a(u,v) = —a(up,v) YveW. (A1)

Proof. Since a(-,-) is a Wy gr-elliptic, continuous bilinear form, by the lemma of Lax—

Milgram ([Cia02, theorem 1.1.3]), there exists a unique solution to the variational problem:
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find 4 € Wy g such that
a(t,v) = —a(up,v) Yve Wyp.
Since—for all v € Wy kerne—we have a(v,w) = a(w,v) = 0 for all w € W, we obtain
a(t,v) = —a(up,v) YveW,.
For z € Wy kernel, it follows that
a(ti+z,v)=—a(up,v) YveW,
where @ + z € Wy. ]

Lemma A.2 (Energy-Minimality of Functions). (See also [TW05, lemma 4.9], [Cia02,
remark 2.1.1], and [Cial3, theorem 6.1-1].) Under the assumptions of lemma A.1, we
have

a(a, ) = gg{% a(w,w),
w—up €Wy

where w = U4 —up € Wy is a solution to (A.1) that is unique up to an element of Wo kernel-

Proof. Let u € Wy be a solution to (A.1) such that
a(u,v) = —a(up,v) YveW,.
With @ :=u+up € W, we have
a(i,v) =0 Vv e W.
Let w € W such that w — up € Wy. Then
a(t,w—1a)=a(a, (w—up)—u)=0,

since (w — up) —u € Wy. Therefore, since a(-, -) is symmetric and positive semidefinite,

we obtain
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Lemma A.3. Let a(-,-) be a symmetric, positive semidefinite bilinear form and (-, -)
a symmetric, positive definite bilinear form on the finite-dimensional vector space X

over R. We consider the generalized eigenvalue problem: find v € X such that

alv,w) = A(v,w) Ywe X.

Then there exist eigenpairs {(vg, )\k)}zizni(x) such that the eigenvectors are a [3-orthonormal

basis of X.

Proof. Let n:= dim(X). As X is finite-dimensional, we can associate «(-,-) and S3(-,)

with matrices A and B and obtain the equivalent problem: find v € R” such that
wlAv = M By Yw € R™.

Since the equation holds for all w € R™, we obtain the problem: find v € R™ and A € R
such that
Av = ABw.

Since f(+, ) is positive definite and symmetric, we can formulate the equivalent problem
Ab =\,

where A := B~"2AB~"? and © := B"?v. Since A is symmetric, positive semidefinite and
B~/ symmetric, positive definite, A is symmetric and positive semidefinite. In case A is
even positive definite, A is positive definite as well.

Thus, all eigenvalues A are positive if A is positive definite, and they are nonnegative
if A is positive semidefinite. Furthermore, there exists an orthonormal basis {ﬁk}zi:n;(x)

of eigenvectors. Let v == B~2§,. Then we have
vf Bvj = oL B~*BB~"*%; = 8,

where 0y, ; is the Kronecker delta. ]

Lemma A.4. Let T € 7,(R2), that is, a triangle, a tetrahedron, a rectangle, or a cuboid,

and let n be the number of vertices of the element. By p;, i = 1,...,n, we denote the
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corresponding (scalar) linear, bilinear, or trilinear nodal basis functions. Let ¢; € R,

i=1,...,n, be arbitrary coefficients. Then

n 2
U1 = H Z ’(‘01 Lo (T) H(;c’%> HLOO(T) = b2

Proof. We assume that |c1| = max;—1,._|c;|. It follows that vq > c? and va > 2. In the

following, we first show that v; < c% and then vy < c%. First, we have to show that

We have

Z‘P?Sl:(ZSOz) (Z%)-i-(z:%soj) onT.

i=1 i=1 i#j
This is equivalent to

0 < Z PiPj onT.
i#]
Since P; and Q; nodal basis functions are nonnegative, the inequality is satisfied. We

have proved that

n n

2 2 2 2 2
E Ci P; SE cip; <cp onT.
i=1

=1

To show vs < 2, we note that

n 9 n 9 n )
(Zci%) < (Z |Ci|80i) < (Z !Cﬂg@i) =c¢ onT.
i=1 i=1 i=1

Corollary A.1. Let T € 1,(Q2), that is, a triangle, a tetrahedron, a rectangle, or a cuboid,
and let n be the number of vertices of the element. We partition the set of vertices into

m disjoint subsets, each containing k; (i =1,...,m) vertices. As before, we associate the

228



A.1. Technical Tools

corresponding (scalar) linear, bilinear, or trilinear nodal basis functions v;;, i =1,...,m,

l=1,...,k;, with the vertices. Let c;; € R be arbitrary coefficients. Then we define

k;
@i = Z Ci 1Pl
=1

It follows that

m

o =N () ey =22

=1

w3

Proof. As the proof is essentially identical to that of lemma A.4, we only show a sketch.

We assume that cq; is the largest coefficient in magnitude. Then we have
m m k; 9 k; k;
~2 2 2 2
Z i < iy Z (Z %,l) =cip | 1- Z (Z @i,l) (Z @j,l) <cip onT.
i = i£j  l=1 =1
To show vy < cil, we note that

2 2
m  k; m k;
(Z Ci,l%’,l) < 01 1 (Z ©il ) = 01 1 on T.

i=11=1 i=1[=1

~

Corollary A.2. Let T € 74(Q2), and let n be the number of the vertices of T. Let

v € VA(T), i = k, k < n, where V(T ) c (HYT))’, d € Nsg, and v =
(vil), e ,vé)) i=1,...,k. We assume that the v fulﬁll

HZ D e H(Zv?)HLm Vi=Tind (2.2)

Then there exists a constant Ciyy, which is independent of hr and v, such that

Z 12207y < Cinv

Zv

Proof. Using (A.2), an inverse inequality to bound the L> norm by the L' norm (cf. [BSO08,
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lemma 4.5.3]), and |T| < diam(T)% = h., we obtain

d
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A.2. Interface Partition

(1)
(2)
(3)
(4)

(1)
(2)
(3)
(4)

nodes in adj. subd. (&) nodes in adj. subd. (F)
min. max. std. min. max. std.
ave. avg. avg. avg. ave. avg. avg. avg.

3903.1 93.1% 133.0% 4.5%  2658.7 94.0% 105.2% 1.9%
3763.1 93.1% 131.8% 5.0% 2558.6 93.5% 105.9% 3.0%
19449.4 954% 133.0% 4.5% 13102.5 95.4% 104.5% 1.7%
33594 94.2% 133.9% 4.4%  2290.6 93.7% 106.0% 1.8%

nodes in adj. subd. (Sr) nodes in adj. subd. (Syy)
min. max. std. min. max. std.
avg. avg. avg. avg. avg. avg. avg. avg.

5085.2 73.8% 127.1% 4.5% 50852 73.8% 127.1% 4.5%
48955 74.0% 122.3% 6.5% 48955 T74.0% 122.3% 6.5%
25585.1 96.6% 125.3% 3.7% 25585.1 96.6% 125.3% 3.7%
4391.5 73.2% 144.1% 4.9% 4391.0 732% 144.2% 4.9%

nodes in adj. subd. (V)

min. max. std.
avg. avg. avg.

(1) 50958 95.1% 126.8% 4.0%
(2) 49388 94.3% 121.2% 4.9%
(3) 255917 96.6% 125.2% 3.7%
(4) 43950 94.7% 144.0% 4.8%

avg.

Table A.1.: Number of nodes in the union of subdomains adjacent to interface components

(coarse edges, faces, interface stars, wire basket stars, vertices): average and
minimum/maximum/standard deviation over the average. (1)—(4) corre-

spond to sections 2.1 to 2.4.
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Figure A.1.: Histograms of the number of interface components per subdomain for GDSW,
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R-WB-GDSW, and RGDSW. (1)—(4) correspond to sections 2.1 to 2.4.
The widths of the blue bars indicate the proportion of subdomains that
contain the respective amount of interface components. The width of bars is
not comparable between different model problems. The minimum, average,
and maximum are marked in red. The range of one standard deviation from

the average is marked in yellow.
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Figure A.2.: Histograms of the number of interface components per subdomain. (1)—(4)

correspond to sections 2.1 to 2.4. The widths of the blue bars indicate the

proportion of subdomains that contain the respective amount of interface

components. The width of bars is not comparable between different model

problems. The minimum, average, and maximum are marked in red. The

range of one standard deviation from the average is marked in yellow.
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A.3. Condition Number Bound for R-WB-0S-ACMS

Let u € V(Q). We define the spectral projections

HSWU = Z IMsu, Meu = Z ﬁe(ua Vk.e )Uhe?

sESw )\k,egt()le
H]:u = Zﬂfu, Hfu = Z ﬁf(u, ka)Uk’f,
feFr Ag, <toly

where the tolerances tols > 0 and toly > 0 are user-prescribed. We define the coarse
component as
ug = Ils,, u + 1l rus,,, us,, =u—Ilg,u.
For the remainder u — ug, we obtain
U—Uuy=uU— HSWU - H}'USW = Uus,, — H]:USW.

Lemma A.5 (Wire Basket Contribution). Let s € Syy. Then we have

g— C.
lu—wollie = 3 Jzs (@) i) < 7o~ luli.)
Sie-/\/s s

for u € VI(Q).
Proof. As we use adaptive GDSW-type generalized eigenvalue problems for wire basket
stars, there are no contributions of other coarse functions on s. Consequently, we have

lu = o3k = ZA:[ |2, (@s,y — 75, 2, )
S;ENs

= Z |251‘(ﬂ5v\;)|3(95i)

SiENs

= > lzs(u— HSW“)‘%(QSZ.)
SieNs

= Z |25, (u — Hsu)ﬁ(ﬂsi)
SiENs

Using (6.38) and lemma 6.2, it follows that

C.
lu = Tl < Chnyllu —Tsul3, < 25

2
S ol ula(a)-
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Lemma A.6 (Face Contribution). Let f € F. Then we have

8Can CIHVC
HU_UOHﬁK = to l (‘ ’a(Qf Z ‘ |a(Qs)
s€eSwNBp(f)

for u € VR(Q), where Syy N B,(f) is the set of wire basket stars that are adjacent to f.

Proof. The following proof is also valid if f does not have adjacent wire basket stars. In

that case, however, the proof could be simplified significantly and the bound improved.

In a first step, we can use the fact that face functions of faces other than f are zero

on f.

lu—wollfec = |21 (@sy = Trtis)laga)
_ — 2
= |27 (Us,y, = ls,y )o@,
_ — 2
= |[us,, — Hfust,gf-

Using (6.38) and lemma 6.1, it follows that

Hﬂsw - HfHSWH%ij < CiHVHHSW - HfﬂSwH%f
Cinv

_ _ 2
< ﬁwsw - Hfusw‘af
Can
< tol | Us,y, |2
Can

— 2

We have

z2p(Usy) = 27(Usy) — zar(Us,y) = Us,, — zof(Us,,) on f.

Using the contributions of wire basket problems, we obtain

2f (ﬂsw) =USyy — Z Zs (ﬂsw) on ?7
s€SWNBy(f)
where Syy N By (f) are all wire basket stars adjacent to f. We obtain

2p@swlay < [iswloy +] Y z(@sy)|
SE€ESWNBL(f) 7
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For the first term on the right-hand side of (A.3), we have

’ﬂSW|a7 = |u — ngu]a?
S |u|06? + ’]‘_‘[SWU‘Q?
S ‘u’a(ﬂf) + ’HSWU/‘CY77

where we have used (7.17) and (7.19) in the last step. Using (7.16) (cf. lemma 7.1), we

have
sy ulag < sy, ula,of-0;-

Then

sy ulaops0, < |ulaofsa + lu— s, ulaor0;

< |ulay) + [Tspla,op0;-

‘We have

< ‘ > z(us,,)

Iﬂswla,afmf:‘ > zl(usy,) i, =
GOI01 sespwnBy(f)

s€ESWNBy(f) a(§2y)

As before, we can use (7.17) and (7.19) to obtain

Y ams)| <] X s

seSWNBL(f) 7 s€SwNBp(f)

<‘ > z(us,,)

@l s B ()

a(S2y)

for the right term on the right-hand side of (A.3). Similar to the proofs of lemmas 6.4
and 7.6, we have
2
Y w0 XY sy,
sESWNBL(f) a(Sy seESWNBL(f) 8;€Ns

Using lemma A.5, we then obtain for (A.3)

2
s€SwnBy(f) oS ))

< 8|U|§(Qf) +8C, Y > s (ﬂsw)ﬁ(gsi)
SESWﬂBp(f) $; €N

C.

2 inv 2

< 8luly(,) +8Cx . zmjg . ul20,)-
sESW P

’zf(ﬂsw)’?x? < (2’u‘a(ﬂf) + 2‘ Z ZS(HSW)
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A.3. Condition Number Bound for R—-WB-0OS-ACMS

In total, we have

C.
= o3 <

— 8C’inv CYinvcv'r
< Gl |Zf(usw)|i? < (|U3(Qf) + > |u|¢21(95)) :

toly SeSnBy(f) tols

Let tols,, = minges,,, tols, and

N° = max [Sw(Q)], Sw() ={seSy:sNQ #0},

1<i<N

be the maximum number of wire basket stars of a subdomain. Furthermore, we define

Of->s .__
N = max Z |F N Be(s)l,
s€ESW ()

where F N B.(s) is the set of coarse faces adjacent to an s € Syy.

Corollary A.3. (Analogue of corollary 7.1) It holds that

Ns 8NT  8CinwCrNOf=s
<11 invLr a(9)s
‘uola(ﬂ) - ( T \/C ¢ (tolgw + tOl]: + tOl]:tOZSW )) |u’ )

see (6.33) and (6.38) for the definitions of Cr and Cipy.

Proof. Using lemmas A.5 and A.6, we have

Cr 3 llu =l = C- ( > = uole + 3 u- uo\|z;<>

Eep SESWw feEF

C’inv 2
<C: ( > fol. ula0,)

seESwy

8Cinv ) CinVCT 2
+) tol (’u|a(Qf)+ > ol |U\a(ns)>)

feF seSWNBL(f)

1 2
< Cinw Cr (tOl Z ’u‘a(ﬂs)

Sw SESW

8
tol r

CinVCT
Z (\Uﬁ(gf) + Z |u’(21(95)>>

fer tolsy, s ()
N SN/ 80mvcyz\fé‘f98)M2
tols,,  tolr tolrtols,, a()”

S Cinv CT (
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A. Theory

By lemma 6.4, we then obtain

ooy < [ 1+ 1/ CineC ( Ne | 8NT ScinVCTNafﬁs) Jul
U invLr Ula(Q)-
Ola(©2) = tolsw tol r tOl]—‘tOlSW @

O]

For the following proof, we include the number of adjacent subdomains of a wire basket
star as a scaling factor in the definition of N*®:

N®%® = max Z In(s)]. (A.4)

IsisN SESW ()
This constant will deteriorate if a wire basket star spans many subdomains. Similarly
to the discussion in section 6.4.3, we could derive an improved constant that depends
on maxj—i, . n, |n(s;)| instead of |n(s)|. For the sake of simplicity, and since we have
maxi—1,.n, [n(si)| = [n(s)| for the wire basket stars constructed in section 5.5, we will
not incorporate the improvement into the proof.

We expand the definition of N%/* to include |n(f)| as a scaling factor:

NOPP*¥ = max >0 D |n(f)] (A.5)
T s€SwW() fEFNB:(s)

=2 max Z |F N Be(s)] = 2N97>3,

We formulate an analogue of corollary 7.2 for R-WB-OS-ACMS.

Corollary A.4. Let the assumptions of lemma 6.5 be satisfied. Then

C1invCY7'
[T - (u— o)) |2 < > lulia.

© tolsy §ian
8Cinvc7— CinvCT
— > (’“\3<Qf>+ ol > Wﬁms))
T reF) W 5eSwNBy(f)

If 1 =0, that is, B = §, we obtain
[T - (u = uo))|20y < Dilully-

If the assumptions of lemma 6.5 are satisfied for all 1 <1 < N, ¥;: B; — R, with
B, =, \ ©, we obtain

N
Z |Ih(\1'l (u— UO))‘E(QZ\QL) < D0|u|<21(9)'
=1

238



A.3. Condition Number Bound for R—-WB-0OS-ACMS

The constants Do and D1 are defined as

NS,E 1 Nf 16Ciny TNaf»s
DO = Cinvc'r 6 6Cn ¢ s (A6)
tols,, tol r tol rtols,,
NS Nf - TNBf»s
Dy = CinVCT( 8 8Cin ¢ ) (A.7)
tols,,  tolr tolrtols,,
Proof. Using lemmas 6.5, A.5, and A.6, we have
1MW (= wo))2py < Cr Y B (u—uo, u—ug)
£€P($n)
Cinv 2
<Cr > rol ula,)
seSw(Qy) ¢
8Cjnv 2 CinVCT 2
w0 3 (et > S hul,)
feF () s€ESWNBp(f)
Cil’lVCT 2
< tOlS Z ’U"a(ﬂs)

W seSw ()

8Cinvc7' 2 CjnVCT 9
foly > <|U a@n) + i > |Ua(szs)>-

fG]'—(Ql) w SESWﬂBp(f)

For [ = 0, that is, B = (), we obtain

Ns 8N/  8CpC, N~s
[T - (u—u0))[2 () < CinvC:r ( ) Jul?q)-

tols,,  tolr tolrtols,,

For the sum over [ = 1,..., N, we obtain using (7.25), (A.4), and (A.5)

N 5,2 5 A 0f»8,2
N SN 8CinwCr N
Ih v, . . 2 < Cip O invlr 2
lz_;| ( l (U’ uo))|a(Ql\Ql) — <t0l3W + tOl]-‘ tOl]—'tOZSW > |U|a(Q)
NS,E 1 Nf 16C; TNaf»s
= CinCr 6 6y C |U’¢21(Q)-
tols,, tol r tolrtols,,

O]

Using the constants (A.6) and (A.7), the proof of the existence of a stable decomposition
is identical to that of lemma 7.7. Thus, as in theorem 7.1, we obtain the following condition

number bound.

Theorem A.1l. The condition number of the R—-WB-0S8-ACMS two-level Schwarz

operator (in three dimensions) is bounded by

K (MPQEWBfoszCMSKj = (4 +5(1+VDi)? + Do) (Nc + 1) :
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A. Theory

where Dy and Dy are defined in (A.6) and (A.7), and where N, is the mazimum number
of overlapping subdomains {2, Z-]\Ll any finite element node x € Q0 can belong to. All
constants are independent of H, h, and the contrast of the coefficient function E.

In two dimensions, R—-WB-0OS-ACMS is identical to R-WB-AGDSW.
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B. Numerical Results

B.1. Diffusion Problems
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B. Numerical Results

method tol it. K dimVy (V, & , F) diér;g/o
CG —  >2000 2.2-10% — -
OSL1 — 1421 1.4-10° — _
GDSW — 1059 4.7-105 1980 (419, 927, 634) 1.49%

EMR-VB 106 1132 8.1.10* 2612 (475, 325,1812) 1.97%
EMR-VB  10~* 60  26.3 3243 (475, 344,2424) 2.44%

EMR-WB 1076 438 1.6:10* 4862 (539, 4181, 142) 3.67%
EMR-WB 10~4 50 26.4 5189 (539, 4181, 469) 3.91%

AGDSW 1075 1093 3.4-10° 1935 (419, 476, 1040) 1.46%
AGDSW  0.001 57 253 2375 (419, 698,1258) 1.79%
AGDSW 0.1 53 205 2395 (419, 703,1273) 1.81%

AGDSW-S  10° 1039 24.10° 2021 (419, 550, 1052) 1.52%
AGDSW-S  0.001 57 253 2375 (419, 698, 1258) 1.79%
AGDSW-S 0.1 53 202 2414 (419, 718,1277) 1.82%

AGDSW-M 1075 1446 1.7-10° 2174 (419, 591, 1164) 1.64%
AGDSW-M 0.001 o7 25.3 2375 (419, 698, 1258) 1.79%
AGDSW-M 0.1 49 18.6 2696 (419, 725,1552) 2.03%

Table B.1.: (Model problem (1)) Results for the coefficient function in fig. 2.2, the
diffusion problem, different methods and tolerances for the selection of eigen-
vectors: iteration count, condition number, resulting coarse space dimension,
and coarse space dimension over the size of the stiffness matrix. The number
of coarse functions associated with subdomain vertices, edges, and faces is

given in parentheses.
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B.1. Diffusion Problems

method tol it. K dimVy (V, €, F,S§) dnh
GDSW — 1059 4.7-10° 1980 (419,927, 634, —) 1.49%
RGDSW — 983 4.7-10° 435 (—, —, — ,435) 0.33%
AGDSW 107° 1093 3.4-10° 1935 (419, 476, 1040, — ) 1.46%
AGDSW 0.001 57 25.3 2375 (419, 698, 1258, —) 1.79%
AGDSW 0.1 53 20.5 2395 (419, 703,1273, —) 1.81%
AGDSW-S 107> 1039 2.4-10° 2021 (419, 550, 1052, —) 1.52%
AGDSW-S 0.001 57 25.3 2375 (419, 698, 1258, —) 1.79%
AGDSW-S 0.1 53 20.2 2414 (419, 718, 1277, —) 1.82%
R-WB-AGDSW 107° 1020 2.9-10° 1396 (—, —, 1040, 356) 1.05%
R-WB-AGDSW  0.001 56 26.3 1830 (—, —,1258,572) 1.38%
R-WB-AGDSW 0.1 55 21.6 1849 (—, —,1273,576) 1.39%
R-WB-AGDSW-S 1075 947 2.1-10° 1479 (—, —, 1052, 427) 1.11%
R-WB-AGDSW-S 0.001 56 26.3 1830 (—, —,1258,572) 1.38%
R-WB-AGDSW-S 0.1 54 21.7 1856 (—, —, 1277, 579) 1.40%
RAGDSW 107° 911 2.1-10° 926 (—, —, — ,926) 0.710%
RAGDSW 0.001 59 320 1287 (—, —, — 1287) 0.97%
RAGDSW 0.1 56 320 1316 (—, —, — 1316) 0.99%
RAGDSW-S 107° 1102 1.7-10° 1037 (—, —, — 1037) 0.78%
RAGDSW-S 0.001 59 320 1289 (—, —, — 1289) 0.97%
RAGDSW-S 0.1 57 320 1320 (—, —, — 1320) 1.00%

Table B.2.: (Model problem (1)) Results for the coefficient function in fig. 2.2, the
diffusion problem, different methods and tolerances for the selection of eigen-
vectors: iteration count, condition number, resulting coarse space dimension,
and coarse space dimension over the size of the stiffness matrix. The number
of coarse functions associated with subdomain vertices, edges, faces, wire

basket and interface stars is given in parentheses. S refers to Syy/Sr.
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B. Numerical Results

method tol it. Kk dimVp (V, €, F, S ) dmbh
AGDSW 107° 1093 3.4-10° 1935 (419, 476, 1040, — ) 1.46%
AGDSW 0.0001 57 253 2375 (419, 698,1258, — ) 1.79%
AGDSW 0.1 53 205 2395 (419,703,1273, — ) 1.81%
RAGDSW 1075 911 2.1-10° 926 (—, —, — , 926) 0.70%
RAGDSW 0.001 59 320 1287 (—, —, — ,1287) 0.97%
RAGDSW 01 5 320 1316 (—, —, — ,1316) 0.99%
OS-ACMS-M 1075 1045 9.6-10% 909 (419, 301, 189, — ) 0.69%
OS-ACMS-M  0.001 54 278 968 (419, 352, 197, — ) 0.73%
0S-ACMS-M 0.1 41 125 1597 (419,443, 735, — ) 1.20%

OS-ACMS-K  10~° 1835 1.2:10° 798 (419,204, 175, — ) 0.60%

OS-ACMS-K 0.001 54 27.8 968 (419, 352, 197, — ) 0.73%
OS-ACMS-K 0.1 47 19.2 1093 (419, 368, 306, — ) 0.82%
OS-ACMS-S-M  107° 599 6.0-10% 935 (419, 327, 189, — ) 0.70%

OS-ACMS-S-M 0.001 54 27.8 968 (419, 352, 197, — ) 0.73%
OS-ACMS-S-M 0.1 41 12.2 1609 (419, 455, 735, — ) 1.21%

OS-ACMS-S-K 1075 1366 1.0-10° 864 (419,270, 175, — ) 0.65%
OS-ACMS-S-K 0.001 54  27.8 968 (419,352, 197, — ) 0.73%
OS-ACMS-SK 01 44 164 1095 (419,370, 306, — ) 0.83%

Table B.3.: (Model problem (1)) Results for the coefficient function in fig. 2.2, the
diffusion problem, different methods and tolerances for the selection of eigen-
vectors: iteration count, condition number, resulting coarse space dimension,
and coarse space dimension over the size of the stiffness matrix. The number
of coarse functions associated with subdomain vertices, edges, faces, and

interface stars is given in parentheses.
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B.1. Diffusion Problems

method tol  it. Kk dimVy (V, €, F, §) dnbh
R-WB-AGDSW 0.001 56 26.3 1830 (—, —, 1258, 572) 1.38%
RAGDSW 107 911 2.1-10° 926 (—, —, — , 926) 0.70%
RAGDSW 0.001 59 320 1287 (—, —, — ,1287) 0.97%
RAGDSW 0.1 56 320 1316 (—, —, — ,1316) 0.99%
0OS-ACMS-K 107° 1835 1.2:10° 798 (419,204, 175, — ) 0.60%
0OS-ACMS-K 0.001 54 27.8 968 (419, 352, 197, — ) 0.73%
0OS-ACMS-K 0.1 47 19.2 1093 (419, 368, 306, — ) 0.82%
R-WB-0S-ACMS-M 107° 1316 1.8.10° 623 (—, —, 189, 434) 0.47%
R-WB-0OS-ACMS-M  0.001 54 27.2 769 (—, —, 197, 572) 0.58%
R-WB-0S-ACMS-M 0.1 44 143 1316 (—, —, 735, 581) 0.99%
R-WB-0S-ACMS-K 107% 1280 3.1-10° 531 (—, —, 175, 356) 0.40%
R-WB-0S-ACMS-K 0.001 54 27.2 769 (—, —, 197, 572) 0.58%
R-WB-0S-ACMS-K 0.1 46 15.1 882 (—, —, 306, 576) 0.66%
R-WB-OS-ACMS-S-M 107 1104 1.2-10% 691 (—, —, 189, 502) 0.52%
R-WB-0OS-ACMS-S-M 0.001 54 27.1 769 (—, —, 197, 572) 0.58%
R-WB-OS-ACMS-SM 0.1 44 132 1338 (—, —, 735 603) 1.01%
R-WB-OS-ACMS-S-K 107° 1513 2.1-10° 602 (—, —, 175, 427) 0.45%
R-WB-0S-ACMS-S-K 0.001 55 27.1 769 (—, —, 197, 572) 0.58%
R-WB-0S-ACMS-S-K 0.1 46 15.1 885 (—, —, 306, 579) 0.67%

Table B.4.: (Model problem (1)) Results for the coefficient function in fig. 2.2, the
diffusion problem, different methods and tolerances for the selection of eigen-
vectors: iteration count, condition number, resulting coarse space dimension,
and coarse space dimension over the size of the stiffness matrix. The number
of coarse functions associated with subdomain vertices, edges, faces, wire

basket and interface stars is given in parentheses. S refers to Syy/Sr.
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B. Numerical Results

Table B.5.: (Model problem (1)) Results for the coefficient function in fig. 2.2, the

246

method tol it. wk dimVy (V, £, F, Sr) dig;f‘./o
AGDSW 0.001 57 25.3 2375 (419, 698, 1258, — ) 1.79%
AGDSW(3) 0.001 56 27.0 2647 (419,936, 1292, — ) 2.00%
AGDSW(1) 0.001 57 26.8 2670 (419, 945, 1306, — ) 2.01%
AGDSW-S 0.001 57 25.3 2375 (419, 698, 1258, — ) 1.79%
AGDSW-S(3)  0.001 57 27.1 2647 (419, 936,1292, — ) 2.00%
AGDSW-S(1) 0.001 57 26.8 2670 (419, 945, 1306, — ) 2.01%
RAGDSW 0.001 59 32.0 1287 (—, —, — ,1287) 0.97%
RAGDSW(3)  0.001 59 31.9 1288 (—, —, — ,1288) 0.97%
RAGDSW(1) 0.001 59 314 1339 (—, —, — ,1339) 1.01%
RAGDSW-S 0.001 59 32.0 1289 (—, —, — ,1289) 0.97%
RACDSW S(3) 0.001 59 31.9 1200 (—, —, — ,1290) 0.97%
RAGDSW-S(1) 0.001 59 314 1340 (—, —, — ,1340) 1.01%

diffusion problem, different methods, and a tolerance of 0.001 for the selection
of eigenvectors: iteration count, condition number, resulting coarse space
dimension, and coarse space dimension over the size of the stiffness matrix.
If the slab variant is used, the slab width in layers of finite elements is
appended in parentheses to the method’s name.

functions associated with subdomain vertices, edges, faces, and interface stars

is given in parentheses.

The number of coarse



B.1. Diffusion Problems

method tol it. k dimVy (V, £, F,Sw) di;‘)yo
OS-ACMS-K 0.001 54 27.8 968 (419, 352, 197, —) 0.73%
OS-ACMS-K(3) 0.001 54 29.0 978 (419, 362, 197, — ) 0.74%
OS-ACMS-K(1) 0.001 54 29.6 088 (419, 365, 204, —) 0.74%
OS-ACMS-S-K 0.001 54 27.8 968 (419, 352, 197, —) 0.73%
0S-ACMS-S-K(3) 0.001 54 28.9 978 (419, 362, 197, —) 0.74%
0S-ACMS-S-K(1) 0.001 54 20.6 988 (419, 365, 204, —) 0.74%
R-WB-0OS-ACMS-K 0.001 54 27.2 769 (—, —, 197, 572) 0.58%
R WB OS ACMS K(3)  0.001 54 272 801 (—, —, 197, 604) 0.60%
R-WB-0OS-ACMS-K(1) 0.001 54 28.1 817 (—, —, 204, 613) 0.62%
R-WB-OS-ACMS S K 0001 55 271 769 (—, —, 197, 572) 0.58%
R-WB-0S-ACMS-S-K(3) 0.001 54 27.2 801 (—, —, 197, 604) 0.60%
R-WB-0OS-ACMS-S-K(1) 0.001 54 28.1 817 (—, —, 204, 613) 0.62%

Table B.6.: (Model problem (1)) Results for the coefficient function in fig. 2.2, the

diffusion problem, different methods, and a tolerance of 0.001 for the selection

of eigenvectors: iteration count, condition number, resulting coarse space

dimension, and coarse space dimension over the size of the stiffness matrix.

If the slab variant is used, the slab width in layers of finite elements is

appended in parentheses to the method’s name.

The number of coarse

functions associated with subdomain vertices, edges, faces, and wire basket

stars is given in parentheses.
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B. Numerical Results

method tol it. wk dimVy (V, £, F, Sr) dig;;/“
AGDSW 0.001 57 25.3 2375 (419, 698,1258, — ) 1.79%
AGDSW—{(K) 0.001 57 25.3 2375 (419, 698, 1258, — ) 1.79%
AGDSW-S 0.001 57 25.3 2375 (419,698, 1258, — ) 1.79%

AGDSW-S—(K) 0.001 57 253 2375 (419, 698, 1258, — ) 1.79%

AGDSW-M 0.001 57 25.3 2375 (419,698, 1258, — ) 1.79%
AGDSW-£(M) 0.001 57 25.3 2375 (419,698, 1258, — ) 1.79%
RAGDSW 0.001 59 320 1287 (—, —, — ,1287) 0.97%
RAGDSW-¢(K)  0.001 59 32.0 1287 (—, —, — ,1287) 0.97%
RAGDSW-S 0.001 59 32.0 1289 (—, —, — ,1289) 0.97%
RAGDSW-S—¢(K) 0.001 59 32.0 1289 (—, —, — ,1289) 0.97%
RAGDSW-M 0.001 59 32.0 1287 (—, —, — ,1287) 0.97%
RAGDSW-¢(M)  0.001 59 32.0 1287 (—, —, — ,1287) 0.97%

Table B.7.: (Model problem (1)) Results for the coefficient function in fig. 2.2, the

248

diffusion problem, different methods, and a tolerance of 0.001 for the selection
of eigenvectors: iteration count, condition number, resulting coarse space
dimension, and coarse space dimension over the size of the stiffness matrix.
If a lumped matrix is used, ¢(K) or ¢(M) is appended to the method’s name.
The number of coarse functions associated with subdomain vertices, edges,

faces, and interface stars is given in parentheses.



B.1. Diffusion Problems

method tol it. k dimVy (V, £,F Sy) dmie
0S-ACMS-K 0.001 44 16.3 115 (70, 44,1, —) 0.21%
0S-ACMS-K(3) 0.001 45 16.3 115 (70, 44,1, —) 0.21%
0S-ACMS-K(1) 0.001 44 16.4 116 (70, 45,1, —) 0.21%
0S-ACMS-S-K 0.001 43 16.3 115 (70, 44,1, —) 0.21%
0S-ACMS-S-K(3) 0.001 45 16.3 115 (70, 44,1, —) 0.21%
0S-ACMS-S-K(1) 0.001 45 16.4 116 (70, 45,1, —) 0.21%
R-WB-0S-ACMS-K 0.001 49 15.7 94 (—,—, 1, 93) 0.17%
R-WB-OS-ACMS-K(3)  0.001 49 15.7 94 (—,—, 1, 93) 0.17%
R-WB-OS-ACMS-K(1)  0.001 49 15.8 95 (—, —, 1, 94) 0.17%
R-WB-OS-ACMS-S-K  0.001 49 15.7 94 (—, —, 1, 93) 0.17%
R-WB-0S-ACMS-S-K(3) 0.001 49 15.7 94 (—,—, 1, 93) 0.17%
R-WB-0S-ACMS-S-K(1) 0.001 49 15.8 95 (—, —, 1, 94) 0.17%

Table B.8.: (Model problem (2)) Results for the coefficient function in fig. 2.3, the
diffusion problem, different methods, and a tolerance of 0.001 for the selection
of eigenvectors: iteration count, condition number, resulting coarse space
dimension, and coarse space dimension over the size of the stiffness matrix.
If the slab variant is used, the slab width in layers of finite elements is
appended in parentheses to the method’s name. The number of coarse
functions associated with subdomain vertices, edges, faces, and wire basket

stars is given in parentheses.
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B. Numerical Results

method tol it. K dim Vj dig(‘) 2/0

AGDSW 0.01 192.1 (226) 388.6 (992.8) 9601.3 ( 9891) 2.1% (2.2%)
AGDSW 0.03 148.1 (171) 206.4 (444.2) 9942.3 (10193) 2.2% (2.3%)
AGDSW 0.1 92.2 (103) 75.0 (123.0) 10788.2 (11 009) 2.4% (2.4%)
AGDSW-S 0.01 174.8 (206) 323.9 (890.3) 9853.0 (10 125) 2.2% (2.2%)
AGDSW-S 0.03 132.1 (149) 165.1 (350.0) 10195.7 (10430) 2.3% (2.3%)
AGDSW-S 0.1 828 (93) 603 ( 98.5) 11113.0(11338) 2.5% (2.5%)
AGDSW-M 0.01 160.7 (194) 263.6 (500.6) 10007.0 (10240) 2.2% (2.3%)
AGDSW-M 0.03 115.7 (136) 122.9 (267.6) 10728.1 (10 928) 2.4% (2.4%)
AGDSW-M 0.1 68.1( 74) 394 ( 57.3) 13580.5 (13787) 3.0% (3.0%)
R-WB-AGDSW  0.01 195.1 (227) 377.1 (842.8) 6262.1 ( 6505) 1.4% (1.4%)
R-WB-AGDSW 0.03 145.9 (165) 197.1 (443.9) 6617.7 ( 6825) 1.5% (1.5%)
R-WB-AGDSW 0.1 89.8 (100) 66.0 (112.1) 7445.6 ( 7621) 1.6% (1.7%)
R-WB-AGDSW-S 0.01 174.0 (208) 295.9 (755.2) 6548.3 ( 6769) 1.4% (1.5%)
R-WB-AGDSW-S 0.03 128.1 (148) 150.9 (281.5) 6894.3 ( 7094) 1.5% (1.6%)
R-WB-AGDSW-S 0.1 81.6 ( 90) 55.2( 89.9) 7798.7( 7966) 1.7% (1.8%)
RAGDSW 0.01 177.8 (199) 302.6 (845.8) 4040.3 ( 4221) 0.9% (0.9%)
RAGDSW 0.03 131.8 (147) 154.5 (258.1) 4366.6 ( 4526) 1.0% (1.0%)
RAGDSW 0.1 839 (95 594 (956) 5195.3( 5338) 1.1% (1.2%)
RAGDSW-S 0.01 155.3 (173) 237.4 (606.8) 4402.1 ( 4556) 1.0% (1.0%)
RAGDSW-S 0.03 118.0 (137) 125.6 (234.9) 4714.1 ( 4859) 1.0% (1.1%)
RAGDSW-S 0.1 76.7(86) 50.1( 85.8) 5616.4( 5779) 1.2% (1.3%)

Table B.9.: (Model problem (4)) Average results (maximum in parentheses) for 100 ran-
domly generated coefficient functions (cf. section 2.4), the diffusion problem,
different methods and tolerances for the selection of eigenvectors: iteration
count, condition number, resulting coarse space dimension, and coarse space

dimension over the size of the stiffness matrix.
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B.1. Diffusion Problems

method tol it. K dim Vj dig(ln}/"

OS-ACMS-M 0.01 122.3 (143) 165.7 (346.0) 3895.6 (3996) 0.9% (0.9%)
OS-ACMS-M 0.03 91.0 (106) 83.2 (143.5) 4706.5 (4842) 1.0% (1.1%)
OS-ACMS-M  0.05 77.2( 96) 58.3 (106.8) 5476.7 (5610) 1.2% (1.2%)
OS-ACMS-M 0.1 588 ( 68) 31.1( 59.0) 7856.1 (7967) 1.7% (1.8%)
OS-ACMS-S-M 0.01 108.9 (130) 134.5 (331.2) 4029.9 (4124) 0.9% (0.9%)
OS-ACMS-S-M 0.03 81.4 (101) 68.6 (156.8) 4857.6 (5012) 1.1% (1.1%)
OS-ACMS-S-M 0.05 69.5( 83) 49.0 (156.6) 5639.6 (5761) 1.2% (1.3%)
OS-ACMS-S-M 0.1 542 ( 61) 27.3( 50.7) 8089.3 (8205) 1.8% (1.8%)
OS-ACMS-K 0.01 144.5 (170) 245.4 (592.9) 3619.7 (3715) 0.8% (0.8%)
OS-ACMS-K 0.03 118.6 (142) 152.6 (335.1) 3771.6 (3877) 0.8% (0.9%)
OS-ACMS-K 0.05 102.5 (126) 108.5 (251.6) 3974.3 (4092) 0.9% (0.9%)
OS-ACMS-K 0.1 79.3( 93) 62.6 (139.2) 4544.1 (4644) 1.0% (1.0%)
OS-ACMS-S-K 0.01 128.8 (162) 195.4 (587.5) 3747.4 (3846) 0.8% (0.8%)
0S-ACMS-S-K 0.03 104.6 (127) 116.9 (244.1) 3910.5 (4023) 0.9% (0.9%)
OS-ACMS-S-K 0.05 91.6 (113) 87.2 (242.7) 4121.4 (4245) 0.9% (0.9%)
0S-ACMS-S-K 0.1 71.0( 83) 515 (129.0) 4708.3 (4825) 1.0% (1.1%)

Table B.10.: (Model problem (4)) Average results (maximum in parentheses) for
100 randomly generated coefficient functions (cf. section 2.4), the diffusion
problem, different methods and tolerances for the selection of eigenvectors:
iteration count, condition number, resulting coarse space dimension, and

coarse space dimension over the size of the stiffness matrix.
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B. Numerical Results

method tol it. K dim Vj dig;fvo

R-WB-0OS-ACMS-M  0.01 144.8 (167) 221.2 (431.1) 2831.2 (2920) 0.6% (0.6%)
R-WB-0S-ACMS-M  0.03 101.9 (117) 103.6 (211.7) 3578.4 (3672) 0.8% (0.8%)
R-WB-0OS-ACMS-M  0.05 82.8 ( 93) 66.3 (156.5) 4229.9 (4332) 0.9% (1.0%)
R-WB-0S-ACMS-M 0.1 62.1( 70) 35.0( 60.4) 6286.0 (6399) 1.4% (1.4%)
R-WB-0S-ACMS-S-M 0.01 121.7 (141) 164.7 (468.1) 3035.6 (3116) 0.7% (0.7%)
R-WB-0S-ACMS-S-M 0.03  86.8 (104) 78.5 (156.8) 3805.9 (3897) 0.8% (0.9%)
R-WB-0OS-ACMS-S-M 0.05 71.3 ( 83) 50.1 (156.5) 4495.0 (4603) 1.0% (1.0%)
R-WB-0OS-ACMS-S-M 0.1 553 ( 62) 27.9( 51.1) 6771.4 (6875) 1.5% (1.5%)
R-WB-0S-ACMS-K 0.01 178.3 (204) 341.6 (765.3) 2525.7 (2632) 0.6% (0.6%)
R-WB-0S-ACMS-K 0.03 133.3 (154) 181.8 (347.3) 2720.9 (2804) 0.6% (0.6%)
R-WB-0S-ACMS-K 0.05 110.5 (126) 124.4 (232.4) 2906.2 (2993) 0.6% (0.7%)
R-WB-0S-ACMS-K 0.1 824 (96) 64.2(170.8) 3357.6 (3438) 0.7% (0.8%)
R-WB-0S-ACMS-S-K 0.01 150.6 (183) 248.3 (594.7) 2739.7 (2841) 0.6% (0.6%)
R-WB-0S-ACMS-S-K 0.03 110.9 (135) 129.2 (256.3) 2923.0 (3013) 0.6% (0.7%)
R-WB-0S-ACMS-S-K 0.05 94.9 (113) 95.3 (243.2) 3116.8 (3202) 0.7% (0.7%)
R-WB-0OS-ACMS-S-K 0.1 71.5( 83) 49.9 (128.9) 3615.3 (3684) 0.8% (0.8%)

Table B.11.: (Model problem (4)) Average results (maximum in parentheses) for
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100 randomly generated coefficient functions (cf. section 2.4), the diffusion
problem, different methods and tolerances for the selection of eigenvectors:
iteration count, condition number, resulting coarse space dimension, and

coarse space dimension over the size of the stiffness matrix.



B.1. Diffusion Problems

method tol it. K dim Vj dig{’)y"

RAGDSW 0.01 177.8 (199) 302.6 (845.8) 4040.3 (4221) 0.9% (0.9%)
RAGDSW 0.03 131.8 (147) 154.5 (258.1) 4366.6 (4526) 1.0% (1.0%)
RAGDSW 0.1 83.9(95) 59.4(956) 5195.3 (5338) 1.1% (1.2%)
0OS-ACMS-K 0.01 144.5 (170) 245.4 (592.9) 3619.7 (3715) 0.8% (0.8%)
0OS-ACMS-K 0.03 118.6 (142) 152.6 (335.1) 3771.6 (3877) 0.8% (0.9%)
OS-ACMS-K 0.1 79.3(93) 62.6(139.2) 4544.1 (4644) 1.0% (1.0%)
0S-ACMS-S-K 0.01 128.8 (162) 195.4 (587.5) 3747.4 (3846) 0.8% (0.8%)
0S-ACMS-S-K 0.03 104.6 (127) 116.9 (244.1) 3910.5 (4023) 0.9% (0.9%)
0OS-ACMS-S-K 0.1 71.0( 83) 51.5(129.0) 4708.3 (4825) 1.0% (1.1%)
R-WB-0S-ACMS-K 0.01 178.3 (204) 341.6 (765.3) 2525.7 (2632) 0.6% (0.6%)
R-WB-0S-ACMS-K 0.03 133.3 (154) 181.8 (347.3) 2720.9 (2804) 0.6% (0.6%)
R-WB-0S-ACMS-K 0.1 824 (96) 64.2(170.8) 3357.6 (3438) 0.7% (0.8%)
R-WB-0S-ACMS-S-K 0.01 150.6 (183) 248.3 (594.7) 2739.7 (2841) 0.6% (0.6%)
R-WB-0S-ACMS-S-K 0.03 110.9 (135) 129.2 (256.3) 2923.0 (3013) 0.6% (0.7%)
R-WB-0S-ACMS-S-K 0.1 71.5( 83) 49.9 (128.9) 3615.3 (3684) 0.8% (0.8%)
R-WB-0S-ACMS-S—(K) 0.01 145.7 (178) 229.5 (592.2) 2792.4 (2894) 0.6% (0.6%)
R-WB-0S-ACMS-S—(K) 0.03 105.5 (123) 115.0 (213.8) 3127.9 (3211) 0.7% (0.7%)
R-WB-0S-ACMS-S—¢(K) 0.1 683 ( 80) 45.2 (128.4) 4248.6 (4349) 0.9% (1.0%)

Table B.12.: (Model problem (4)) Average results (maximum in parentheses) for
100 randomly generated coefficient functions (cf. section 2.4), the diffusion
problem, different methods and tolerances for the selection of eigenvectors:
iteration count, condition number, resulting coarse space dimension, and
coarse space dimension over the size of the stiffness matrix. If a lumped

stiffness matrix is used, ¢(K) is appended to the method’s name.
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B. Numerical Results

B.2. Linear Elasticity Problems

method tol  it. K dimVy ( F, § ) dmih
RAGDSW 0.005 136 2989 7028 ( — ,7028) 1.77%
RAGDSW 0.05 67 346 7156 ( — ,7156) 1.80%
RAGDSW £(K) 0.005 155 300.4 7026 ( — ,7026) 1.77%
RAGDSW-/(K) 0.03 77 634 7093 ( — ,7093) 1.78%
RAGDSW—((K) 0.05 64 286 7221 ( — ,7221) 1.81%
RAGDSW-M 0.001 380 1265.2 6965 ( — ,6965) 1.75%
RAGDSW-M 0.01 77 65.1 7067 ( — ,7067) 1.78%
RAGDSW-¢(M) 0.001 322 925.0 6979 ( — ,6979) 1.75%
RAGDSW—¢(M) 0.01 81 65.2 7047 ( — ,7047) 1.77%
RAGDSW-S 0.005 93 2076 7055 ( — ,7055) 1.77%
RAGDSW-S 0.05 68 344 7219 ( — ,7219) 1.81%
RAGDSW-S ((K) 0.005 102 303.8 7054 ( — ,7054) L1.77%
RAGDSW-S—¢(K) 0.03 71 41.6 7135 ( — ,7135) 1.79%
R-WB-0S-ACMS-S-K 0.001 467 5197.4 4292 (1536, 2756) 1.08%
R-WB-0S-ACMS-S-K 0.01 67 32.5 4545 (1742,2803) 1.14%
R-WB-OS-ACMS-S—(K) 0.001 485 5044.8 4303 (1548,2755) 1.08%
R-WB-0S-ACMS-S—¢(K) 0.005 69 33.6 4464 (1668,2796) 1.12%
R-WB-0OS-ACMS-S—¢(K) 0.01 66 30.8 4622 (1820,2802) 1.16%

Table B.13.: (Model problem (1)) Results for the coefficient function in fig. 2.2,
the equations of linear elasticity, different methods and tolerances for the
selection of eigenvectors: iteration count, condition number, resulting coarse
space dimension, and coarse space dimension over the size of the stiffness
matrix. If a lumped matrix is used, ¢(K) or ¢(M) is appended to the
method’s name. The number of coarse functions associated with subdomain

faces and wire basket and interface stars is given in parentheses.
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B.2. Linear Elasticity Problems

method tol it. K dmVy (V , £, F , §) dig;;/‘)
AGDSW-M 0.005 112 2755 11344 (1257,3285, 6802, — ) 2.85%
AGDSW-M 0.01 81 47.7 11401 (1257,3307, 6837, — ) 2.86%
AGDSW-M 0.1 58 24.2 15895 (1257,3636,11002, — ) 3.99%
OS-ACMS-M 0.001 460 5356.4 5314 (1257,2458, 1599, — ) 1.34%
OS-ACMS-M 0.005 83 1260.7 5642 (1257,2503, 1832, — ) 1.42%
OS-ACMS-M 0.01 58 26.0 5945 (1257,2507, 2181, — ) 1.49%
OS-ACMS-M 0.05 53 20.3 7628 (1257,2606, 3765, — ) 1.92%
OS-ACMS-S-M 0.001 332 2418.6 5339 (1257,2483, 1599, — ) 1.34%
OS-ACMS-S-M 0.006 59 26.2 5646 (1257,2507, 1882, — ) 1.42%
OS-ACMS-S-M 0.01 58 26.0 5950 (1257,2512, 2181, — ) 1.50%
OS-ACMS-S-M 0.05 52 19.9 7702 (1257,2680, 3765, — ) 1.94%

R -WB-OS-ACMS-M  0.001 520 4060.8 4330 ( — , — , 1599,2731) 1.09%

R-WB-OS-ACMS-M  0.005 90 1157.0 4666 ( — , — , 1882,2784) 1.17%

R-WB-0S-ACMS-M 001 62 261 4970 ( — , — , 2181,2789) 1.25%
( )

R-WB-0S-ACMS-M 005 59 219 6602 (— , — , 3765, 2837) 1.66%
R-WB-OS-ACMS-S-M 0.001 320 2796.0 4369 ( — , — , 1599,2770) 1.10%
R-WB-OS-ACMS-S-M 0.005 66  30.6 4684 ( — , — , 1882,2802) 1.18%
R-WB-OS-ACMS-SM 001 64 259 4996 ( — , — , 2181,2815) 1.26%
R-WB-OS-ACMS-S-M 0.05 56  20.7 6776 ( — , — , 3765,3011) 1.70%

Table B.14.: (Model problem (1)) Results for the coefficient function in fig. 2.2,
the equations of linear elasticity, different methods and tolerances for the
selection of eigenvectors: iteration count, condition number, resulting coarse
space dimension, and coarse space dimension over the size of the stiffness
matrix. The number of coarse functions associated with subdomain vertices,

edges, faces, wire basket and interface stars is given in parentheses.
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B. Numerical Results

method tol it. K dimVy (F, §) dmb
RAGDSW 0.006 89 52.0 661 (—, 661) 0.39%
RAGDSW 0.05 79 37.8 673 (—,673) 0.40%
RAGDSW—((K) 0.005 89 52.0 661 (—, 661) 0.39%
RAGDSW-((K) 0.03 83 418 668 (—,668) 0.40%
RAGDSW-M 0.001 132 518.2 658 (—, 658) 0.39%
RAGDSW-M 0.01 86 41.8 665 (—, 665) 0.40%
RAGDSW—¢(M) 0.001 114 322.5 659 (—, 659) 0.39%
RAGDSW-¢(M) 0.01 82 418 662 (—,662) 0.39%
RAGDSW-S 0.006 85 52.0 662 (—, 662) 0.39%
RAGDSW-S 0.05 76 36.9 704 (—,704) 0.42%
RAGDSW-S—((K) 0.005 85 52.0 662 (—, 662) 0.39%
RAGDSW-S—((K) 0.03 82 41.8 690 (—, 690) 0.41%

R-WB-0S-ACMS-S-K  0.001 127 2211.0 570 (24, 546) 0.34%
R-WB-0S-ACMS-S-K 001 62 267 611 (62, 549) 0.36%
R-WB-0S-ACMS-S¢(K) 0.001 124 2321.6 575 (29, 546) 0.34%
R-WB-0OS-ACMS-S¢(K) 0.01 61 267 625 (76,549) 0.37%

Table B.15.: (Model problem (2)) Results for the coefficient function in fig. 2.3,
the equations of linear elasticity, different methods and tolerances for the
selection of eigenvectors: iteration count, condition number, resulting coarse
space dimension, and coarse space dimension over the size of the stiffness
matrix. If a lumped matrix is used, ¢(K) or ¢(M) is appended to the
method’s name. The number of coarse functions associated with subdomain

faces and wire basket and interface stars is given in parentheses.
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B.2. Linear Elasticity Problems

method tol it. K dimVy (V, €&, F, S) dig:)fvo
AGDSW-M 0.001 310 4328.7 2581 (210, 1101, 1270, —) 1.53%
AGDSW-M 0.005 87 208.4 2600 (210,1114,1276, —) 1.55%
AGDSW M 0.05 59 280 3151 (210, 1118, 1823, —) 1.87%
OS-ACMS-M 0.001 178 12154 850 (210, 590, 50, —) 0.51%
OS-ACMS-M 0.005 62 26.8 901 (210, 603, 88, —) 0.54%
OS-ACMS-M 0.05 46 13.9 1782 (210, 668, 904, —) 1.06%
OS-ACMS-S-M 0.001 184 1140.3 852 (210, 592, 50, —) 0.51%
OS-ACMS-S-M 0.005 61 26.8 901 (210, 603, 88, —) 0.54%
OS-ACMS-S-M 0.05 46 13.9 1806 (210, 692, 904, —) 1.07%
R-WB-OS-ACMS-M 0.001 107 1383.4 597 (—, — , 50,547) 0.36%
R WB OS-ACMS M  0.005 61 267 637 (—, — , 88 549) 0.38%
R WB OS-ACMS M 0.05 49 158 1453 (—, — , 904,549) 0.86%
R-WB-OS-ACMS-S-M 0.001 110 2293.1 597 (—, — , 50,547) 0.36%
R-WB-OS-ACMS-S-M 0.005 61 26.7 637 (—, — , 88,549) 0.38%
R-WB-OS-ACMS-S-M 0.05 48 154 1469 (—, — , 904, 565) 0.87%

Table B.16.: (Model problem (2)) Results for the coefficient function in fig. 2.3,
the equations of linear elasticity, different methods and tolerances for the
selection of eigenvectors: iteration count, condition number, resulting coarse
space dimension, and coarse space dimension over the size of the stiffness
matrix. The number of coarse functions associated with subdomain vertices,

edges, faces, wire basket and interface stars is given in parentheses.

257



B. Numerical Results

method tol  it. K dimVy ( F, § ) dmih
RAGDSW 0.005 243 4336 3680 ( — ,3680) 0.21%
RAGDSW 0.05 84 52.6 4574 ( — ,4574) 0.26%
RAGDSW—((K) 0.005 220 428.8 3709 ( — ,3709) 0.21%
RAGDSW—((K) 0.03 96 60.9 4566 ( — ,4566) 0.26%
RAGDSW-M 0.005 169 216.2 3855 ( — ,3855) 0.22%
RAGDSW-M 0.03 82 442 7285 ( — ,7285) 0.41%
RAGDSW—¢(M) 0.005 166 214.3 3778 ( — ,3778) 0.21%
RAGDSW—¢(M) 0.03 73 355 5789 ( — ,5789) 0.33%
RAGDSW-S 0.01 135 138.8 3854 ( — ,3854) 0.22%
RAGDSW-S 0.05 70 409 5203 ( — ,5203) 0.29%
RAGDSW-S—(K) 0.01 129 1156 3960 ( — ,3960) 0.22%
RAGDSW-S—((K) 0.03 87 519 5094 ( — ,5094) 0.29%
R-WB-0S-ACMS-S-K 0.005 301 2386.0 2502 ( 370,2132) 0.14%
R-WB-0OS-ACMS-S-K 0.01 163 351.2 2708 ( 545,2163) 0.15%
R-WB-0OS-ACMS-S-K 0.03 75 38.6 3402 (1186,2216) 0.19%
R-WB-0S-ACMS-S-K 0.05 64 32.1 4075 (1827,2248) 0.23%
R-WB-0S-ACMS-S-K 0.1 48 15.7 5832 (3387,2445) 0.33%
R-WB-0S-ACMS-S¢(K) 0.005 283 1569.5 2646 ( 513, 2133) 0.15%
R-WB-0OS-ACMS-S—¢(K) 0.01 146 231.9 2986 ( 820,2166) 0.17%
R-WB-OS-ACMS-S—¢(K) 0.03 78 39.2 4295 (2076, 2219) 0.24%
R-WB-0OS-ACMS S¢(K) 005 57 219 5454 (3192, 2262) 0.31%

Table B.17.: (Model problem (3)) Results for the coefficient function in fig. 2.4,
the equations of linear elasticity, different methods and tolerances for the
selection of eigenvectors: iteration count, condition number, resulting coarse
space dimension, and coarse space dimension over the size of the stiffness
matrix. If a lumped matrix is used, ¢(K) or ¢(M) is appended to the
method’s name. The number of coarse functions associated with subdomain

faces and wire basket and interface stars is given in parentheses.
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B.2. Linear Elasticity Problems

method tol it. k dimVy (V, &€, F , S) dig:)fvo
AGDSW-M 0.01 214 289.3 9842 (984, 3509, 5349, — ) 0.56%
AGDSW-M 0.03 95 58.8 12512 (984,3613, 7915, — ) 0.71%
AGDSW-M 0.05 70 32.8 15276 (984, 3658,10634, — ) 0.86%
OS-ACMS-M 0.01 177 239.9 5311 (984, 2407, 1920, — ) 0.30%
OS-ACMS-M 0.03 79 40.9 8497 (984, 2646, 4867, — ) 0.48%
0S ACMS M 0.05 62 26.1 11479 (984, 2802, 7693, — ) 0.65%
OS-ACMS-S-M 0.01 172 259.0 5348 (984, 2444, 1920, — ) 0.30%
OS-ACMS-S-M 0.03 72 423 8582 (984, 2731, 4867, — ) 0.49%
0S-ACMS-S M 0.05 51 240 11631 (984,2954, 7693, — ) 0.66%
R-WB-OS-ACMS-M 0.01 123 123.1 4079 (—, — , 1920,2159) 0.23%
R WB OS-ACMS M 003 71 387 7068 (—, — , 4867,2201) 0.40%
R WB OS-ACMS M 0.05 54 231 9964 (—, — , 7693,2271) 0.56%
R-WB-OS-ACMS-SM 001 110 93.2 4114 (—, — , 1920,2194) 0.23%
R-WB-OS-ACMS-S-M 0.03 62 34.8 7180 (—, — , 4867,2313) 0.41%
R-WB-OS-ACMS-S-M 0.05 50 19.8 10260 (—, — , 7693,2567) 0.58%

Table B.18.: (Model problem (3)) Results for the coefficient function in fig. 2.4,
the equations of linear elasticity, different methods and tolerances for the
selection of eigenvectors: iteration count, condition number, resulting coarse
space dimension, and coarse space dimension over the size of the stiffness
matrix. The number of coarse functions associated with subdomain vertices,

edges, faces, wire basket and interface stars is given in parentheses.
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B. Numerical Results

method tol it. K dim Vj dig(ln}/"

0S-ACMS-K 0.01 227.3 (283) 625.9 (2224.3) 21569.9 (22093) 1.6% (1.6%)
OS-ACMS-K 0.03 133.7 (155) 173.0 ( 356.3) 23678.2 (24165) 1.7% (1.8%)
OS-ACMS-K  0.05 1045 (121) 97.3 ( 296.4) 25407.8 (25936) 1.9% (1.9%)
OS-ACMS-K 0.1 76.0 ( 88) 484 ( 82.3) 29311.4 (29925) 2.2% (2.2%)

OS-ACMS-S-K  0.01 195.8 (235) 506.2 (1795.2) 22287.0 (22806) 1.6% (1.7%)
OS-ACMS-S-K  0.03 118.8 (139) 146.1 ( 368.5) 24460.2 (24977) 1.8% (1.8%)
OS-ACMS-S-K  0.05 93.0 (111) 79.1 ( 144.9) 26298.2 (26856) 1.9% (2.0%)
OS-ACMS-S-K 0.1 683 (81) 39.6( 83.0) 30615.3 (31256) 2.3% (2.3%)

OS-ACMS-M  0.005 226.6 (290) 745.4 (2450.3) 22656.6 (23138) 1.7% (1.7%)
OS-ACMS-M  0.01 159.4 (198) 283.2 (1218.9) 24467.5 (25034) 1.8% (1.8%)
OS-ACMS-M  0.03 95.5 (108) 81.6 ( 163.1) 29946.5 (30580) 2.2% (2.3%)

(190) ( ) ( ) (2.6%)

OS-ACMS-M  0.05 77.8( 90) 529 ( 95.0) 35074.1 (35711) 2.6% (2.6%
OS-ACMS-S-M 0.005 189.1 (237) 463.5 (1876.5) 23377.2 (23863) 1.7% (1.8%)
OS-ACMS-S-M  0.01 135.9 (166) 214.3 ( 954.1) 25211.0 (25816) 1.9% (1.9%)
OS-ACMS-S-M  0.03 84.3 ( 98) 63.6 ( 114.7) 30916.3 (31565) 2.3% (2.3%)
OS-ACMS-S-M  0.05 69.2 ( 83) 44.0( 79.0) 36421.1 (37083) 2.7% (2.7%)

Table B.19.: (Model problem (4)) Average results (maximum in parentheses) for 100
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randomly generated coefficient functions (cf. section 2.4), the equations
of linear elasticity, different methods and tolerances for the selection of
eigenvectors: iteration count, condition number, resulting coarse space

dimension, and coarse space dimension over the size of the stiffness matrix.



B.2. Linear Elasticity Problems

method tol it. K dim Vj dig(‘) E/"

R-WB-0S-ACMS-K  0.01 235.4 (283) 694.4 (2652.2) 17298.0 (17767) 1.3% (1.3%)
R-WB-0S-ACMS-K 0.03 138.8 (159) 177.8 ( 335.7) 19419.7 (19905) 1.4% (1.5%)
R-WB-OS-ACMS-K  0.05 108.5 (123) 102.2 ( 200.8) 21096.5 (21591) 1.6% (1.6%)
R-WB-0S-ACMS-K 0.1 79.8(91) 51.6( 85.5) 247704 (25361) 1.8% (1.9%)

R-WB-0S-ACMS S-K  0.01 193.0 (235) 509.2 (3801.9) 18233.9 (18726) 1.3% (1.4%)
R-WB-OS-ACMS-S-K  0.03 117.7 (139) 139.6 ( 328.6) 20511.3 (21057) 1.5% (1.6%)
R-WB-OS-ACMS-S-K  0.05 93.5 (108) 79.0 ( 197.6) 22440.6 (23007) 1.7% (1.7%)
R-WB-OS-ACMS-S-K 0.1 69.4(81) 40.9( 73.5) 269938 (27625) 2.0% (2.0%)

R-WB-OS-ACMS M  0.005 235.2 (290) 822.2 (5815.7) 18375.2 (18864) 1.4% (1.4%)
R-WB-OS-ACMS-M  0.01 163.6 (208) 293.3 (2185.2) 20187.5 (20705) 1.5% (1.5%)
R-WB-OS-ACMS-M  0.03 99.2 (116) 87.4 ( 171.0) 25486.9 (26110) 1.9% (1.9%)
R-WB-OS-ACMS-M  0.05 80.6( 90) 55.6( 96.5) 30341.0 (30943) 2.2% (2.3%)

R-WB-OS-ACMS-S-M 0.005 189.0 (249) 466.2 (3556.4) 19315.2 (19836
R-WB-OS-ACMS-S-M  0.01 137.9 (164) 208.6 (1002.0) 21194.2 (21816
R-WB-OS-ACMS-S-M  0.03 85.4 (104) 66.5 ( 169.1) 27044.5 (27694
R-WB-OS-ACMS-S-M  0.05 69.5( 81) 408 ( 77.1) 32658.5 (33274

) 1.4% (1.5%)
) 1.6% (1.6%)
) 2.0% (2.0%)
) 2.4% (2.5%)
Table B.20.: (Model problem (4)) Average results (maximum in parentheses) for 100

randomly generated coefficient functions (cf. section 2.4), the equations

of linear elasticity, different methods and tolerances for the selection of

eigenvectors: iteration count, condition number, resulting coarse space

dimension, and coarse space dimension over the size of the stiffness matrix.
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