
SciPost Physics Submission

Lattice simulations of the QCD chiral transition at real µB

Attila Pásztor*1, Szabolcs Borsányi2, Zoltán Fodor1,2,3,4,5, M. Giordano1, S. D. Katz1,6, D.
Nógrádi1 and C. H. Wong2

1 ELTE Eötvös Loránd University, Institute for Theoretical Physics, Pázmány Péter sétány 1/A,
H-1117, Budapest, Hungary

2 Department of Physics, Wuppertal University, Gaussstr. 20, D-42119, Wuppertal, Germany
3 Pennsylvania State University, Department of Physics, State College, Pennsylvania 16801, USA

4 Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany
5 Physics Department, UCSD, San Diego, CA 92093, USA

6 MTA-ELTE Theoretical Physics Research Group, Pázmány Péter sétány 1/A, H-1117 Budapest,
Hungary

* apasztor@bodri.elte.hu

January 5, 2022

XXXIII International (ONLINE) Workshop on High Energy Physics
“Hard Problems of Hadron Physics: Non-Perturbative QCD & Related Quests”

November 8-12, 2021
doi:10.21468/SciPostPhysProc.?

Abstract

Most lattice studies of hot and dense QCD matter rely on extrapolation from zero or imagi-
nary chemical potentials. The ill-posedness of numerical analytic continuation puts severe
limitations on the reliability of such methods. We studied the QCD chiral transition at fi-
nite real baryon density with the more direct sign reweighting approach. We simulate up
to a baryochemical potential-temperature ratio of µB/T = 2.7, covering the RHIC Beam En-
ergy Scan range, and penetrating the region where methods based on analytic continuation
are unpredictive. This opens up a new window to study QCD matter at finite µB from first
principles. This conference contribution is based on Ref. [1].
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1 Introduction

1.1 QCD at finite µB and the need for more direct methods

One of the major unsolved problems in high energy physics is the calculation of the phase dia-
gram of strongly interacting matter in the temperature (T) - baryochemical potential (µB) plane.
Many aspects of QCD thermodynamics at µB = 0 have been clarified by first principle lattice QCD
calculations, such as the crossover nature of the transition and the value of the transition temper-
ature [2–4].

It is conjectured that at higher baryochemical potential the QCD crossover gets stronger and
above a certain point turns into a first order phase transition. The endpoint of the line of first
order transitions is called the critical endpoint. Establishing the existence and the location of this
conjectured critical endpoint is one of the main goals of the phenomenology of heavy ion collisions
and of QCD thermodynamics.

First principle lattice calculations at finiteµB are, however, hampered by the notorious complex-
action problem: the path integral weights become complex numbers, and importance sampling
breaks down. A number of methods have been introduced over the years to side-step this problem.
In particular, most state-of-the-art calculations involve analytic continuation using either i) data
on Taylor coefficients of different observables at µB = 0 or ii) data at purely imaginary chemical
potentials µ2

B ≤ 0, where the sign problem is absent. An example of an important result coming
from these approaches is the calculation of the curvature of the crossover line Tc(µB) near zero
chemical potential [5–7]. Another important result is the calculation of the Taylor coefficients of
the pressure in a series expansion in the chemical potential up to fourth order [8,9], which have
been calculated on the lattice up to high enough temperatures to match results from resummed
perturbation theory [10,11].

The extension of these results to higher orders in the Taylor expansion and to higher chemical
potentials, however, faces immense challenges: For the Taylor method, the signal-to-noise ratio in-
creases significantly with increasing order of the Taylor expansions. Similarly, in the determination
of the same high-order coefficients with the imaginary chemical potential method, one runs into
the ill-posedness of high-order numerical differentiation. Even if the high-order coefficients were
available, extrapolation by a Taylor polynomial ansatz is limited by the radius of convergence of
such an expansion. While there were attempts to locate the leading singularity of the pressure with
several different methods [12–15], these calculations have so far not reached the continuum limit.
Even if one knows the leading singularity determining the radius of convergence, it is not obvious
how to go beyond it. Several resummation schemes have been experimented with, including Padé
resummation in Refs. [15–17], a joint expansion in temperature and chemical potential along lines
of constant physics in Ref. [18], and a truncated reweighting scheme in Ref. [14]. While these
methods are interesting, at the moment they provide no clear way of going beyond the crossover
region of the conjectured phase diagram. Moreover, these type of reweighting schemes have so
far been used mostly to calculate observables that are not very sensitive to criticality - such as
the pressure and the transition line Tc(µB). Extrapolations of observables that are sensitive to
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criticality, such as the width of the transition, are even less under control [7].
To shed light on the ultimate fate of the QCD crossover at finite µB, it is therefore of great im-

portance to come up with more direct methods, that can provide results directly at a finite chemical
potential, and are free of additional systematic effects, such as the aforementioned analytic con-
tinuation problem of the Taylor and imaginary chemical potential methods, or the convergence
issues of complex Langevin [19–21].

1.2 Reweighting and the overlap problem

Given a theory with fields U , reweighting is a general strategy to calculate expectation values in
a target theory - with path integral weights wt and partition function Zt =

∫

DUwt(U) - by per-
forming simulations in a different (simulated) theory - with path integral weights ws and partition
function Zs =

∫

DUws(U). The ratio of the partition functions and expectation value in the target
theory are then given by

Zt

Zs
=


wt

ws

·

s
and 〈O〉t =

¬

wt
ws
O
¶

s
¬

wt
ws

¶

s

(1)

respectively, where 〈. . . 〉t,s denotes taking expectation value with respect to the weights wt and
ws, respectively. In the present conference contribution, we will consider examples where the
target theory is QCD at finite baryochemical potential discretized on the lattice. In this case the
partition function of the target theory is:

Zµ =

∫

DU det M(U ,µ, m)e−Sg (U) =

∫

DU Re det M(U ,µ, m)e−Sg (U), (2)

where Sg is the gauge action, det M denotes the fermionic determinant, including all quark types
with their respective masses collectively denoted by m, their respective chemical potentials col-
lectively denoted by µ, as well as rooting in the case of staggered fermions, and the integral is
over all link variables U . Replacing the determinant with its real part is not permitted for arbi-
trary expectation values, but it is allowed for i) observables satisfying either O(U∗) = O(U) or
ii) observables obtained as derivatives of Z with respect to real parameters, such as the chemical
potential, the quark mass or the gauge coupling.

Since the target theory is lattice QCD at finite chemical potential, the weights wt have wildly
fluctuating phases: this is the infamous sign problem of lattice QCD at finite baryon density. In
addition to this problem, generic reweighting methods also suffer from an overlap problem: the
probability distribution of the reweighting factor wt/ws has generally a long tail, which cannot be
sampled efficiently in standard Monte Carlo simulations.

Many attempts at reweighting to finite baryochemical potential, such as Refs. [13, 22–24]
use reweighting from zero chemical potential, when the weights are proportional to the ratio of
determinants det M(µ)/det M(0). However, these studies have so far been restricted to coarse
lattices, with temporal extent Nτ = 4, and mostly an unimproved staggered action, with the
exception of Ref. [13], that uses the 2stout improved staggered action [3], albeit still at Nτ = 4. It
was actually demonstrated in Ref. [25], that the main bottleneck in extending such studies to finer
lattices is the overlap problem in the weights wt/ws, which becomes severe already at moderate
chemical potentials, where the sign problem is still numerically manageable.
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This overlap problem in the weights wt/ws is not present if they take values in a compact space.
The most well-known of these approaches is phase reweighting [26, 27], where the simulated
theory - the so called phase quenched theory - has path integral weights:

ws = wPQ = |det Mud(µ)
1
2 |det Ms(0)

1
4 e−Sg . (3)

In this case the reweighting factors are pure phases:
�

wt

ws

�

PQ
= eiθ , (4)

where θ = Argdet M . We will contrast this approach with sign reweighting, where the simulated
- sign quenched - ensemble has weights:

ws = wSQ = |Re det Mud(µ)
1
2 |det Ms(0)

1
4 e−Sg . (5)

In this case the reweighting factor are signs:
�

wt

ws

�

SQ
= ε≡ signcosθ = ±1, (6)

provided that the target theory is the one with wt = Redet Me−Sg , i.e., provided one restricts one’s
attention to observables satisfying i) or ii).

2 The severity of the sign problem

A measure of the strength of the sign problem in the phase reweighting scheme is given by the
expectation value of the phases

Zµ
ZPQ
= 〈cosθ 〉PQ. Similarly, in the sign reweighting scheme the

severity of the sign problem is measured by
Zµ
ZSQ
= 〈ε〉SQ. The earliest mention of the sign reweight-

ing approach we are aware of is Ref. [28], where it was noted that out of the reweighting schemes
where the weights wt/ws are a function of the phase of the quark determinant only, sign reweight-
ing is the optimal one, with the weakest sign problem, in the sense that the ratio Zt/Zs is maximal.
In this section we study how much one gains by this optimality property of the sign quenched
ensemble, when compared to the phase quenched ensemble. For this purpose we introduce a
simplified model - to be later compared with direct simulation data - where the distribution of the
phases θ in the phase quenched ensemble is given by a wrapped Gaussian distribution:

PPQ(θ ) =
Gaussian
approx.

1
p

2πσ

∞
∑

n=−∞
e−

1
2σ2 (θ+2πn)2 . (7)

Once one has a model for this probability distribution, the strength of the sign problem can be
estimated in both the phase and sign quenched ensembles. The estimates and their small chemical
potential (i.e., small σ) asymptotics are given by:

〈cosθ 〉PQ
T,µ = e−

σ2(µ)
2 ∼

µB→0
1−

σ2(µ)
2

,

〈ε〉SQ
T,µ =

〈cosθ 〉PQ
T,µ

〈|cosθ |〉PQ
T,µ

∼
µB→0

1−
� 4
π

�
5
2
�

σ2(µ)
2

�

3
2

e
− π2

8σ2(µ) .
(8)
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Figure 1: The strength of the sign problem on 2stout improved 163×6 staggered lattices
as a function of µB/T at T = 140 MeV (left) and as a function of T at µB/T = 1.5. A
value close to 1 shows a mild sign problem, while a small value indicates a severe sign
problem. Data for sign reweighting (black) and phase reweighting (orange) are from
simulations. Predictions of the Gaussian model (see text) are also shown.

Note the two very different asymptotics at small chemical potential: the phase reweighting ap-
proach leads to a regular Taylor series, while in the sign reweighting approach the asymptotics
approach 1 faster than any polynomial.

The large-µ or large volume asymptotics are on the other hand very similar: in the large-σ
limit a wrapped Gaussian tends to the uniform distribution, and so at large chemical potential or
volume one arrives at

〈ε〉SQ
T,µ

〈cosθ 〉PQ
T,µ

∼
µB or V→∞

�∫ π

−π
dθ |cosθ |

�−1

=
π

2
, (9)

which asymptotically translates to a factor of (π2 )
2 ≈ 2.5 less statistics needed for a sign quenched

as compared to a phase quenched simulation.
To have a numerical estimate of the strength of the sign problem as a function of µ, rather than

σ we further approximate the variance of the weights by the leading order Taylor expansion [29]:

σ(µ)2 ≈



θ2
�

LO = −
4
9
χud

11 (LT )3
�µB

T

�2
, (10)

where

χud
11 =

1
T2

∂ 2p
∂ µu∂ µd

|µu=µd=0 (11)

is the disconnected part of the light quark susceptibility, which is easily obtained by performing
simulations at zero chemical potential.

The simple approximations made above are actually quite close to the actual simulation data,
as can be seen in Fig. 1: our simple model predicts the strength of the sign problem both as a
function of µB at a fixed temperature (left) and as a function of temperature at a fixed µB/T
(right). While deviations are visible at larger µ, even at the upper end of our µ̂B ≡

µB
T range

the deviation is at most 25%, and Eq. (9) approximates well the relative severity of the sign
problem in the two ensembles at µB/T > 1.5. This is of great practical importance, as it makes
the planning of future simulation projects with either the sign or phase reweighting approaches
relatively straightforward: simulation costs can be easily estimated beforehand.
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3 Lattice setup and numerical results

For the simulations we used a tree level Symanzik improved gauge action with the staggered Dirac
operator being a function of fat links, obtained by two steps of stout smearing [30]with parameter
ρ = 0.15. We only introduce a chemical potential for the up and down quarks, that have the same
chemical potential µ= µl = µu = µd = µB/3, while for the strange quark we have µs = 0. We used
a lattice size of 163 × 6, and performed a scan in chemical potential at fixed T = 140MeV, and a
scan in temperature at fixed µB/T = 1.5. In both cases, simulations were performed by modifying
the RHMC algorithm at µB = 0 by including an extra accept/reject step that takes into account

the factor |Redet Mud (µ)
1
2 |

det Mud (0)
. The determinant was calculated with the reduced matrix formalism [22]

and dense linear algebra, with no stochastic estimators involved.
The main observables we studied were the light quark condensate and density. The light-quark

chiral condensate was obtained via the formula

〈ψ̄ψ〉T,µ =
1

Z(T,µ)
∂ Z(T,µ)
∂mud

=
T
V

1

〈ε〉SQ
T,µ



ε
∂

∂mud
ln
�

�

�Redet M
1
2

ud

�

�

�

·SQ

T,µ
, (12)

using a numerical differentiation of the determinant det M = det M(U , mud , ms,µ) calculated with
the reduced matrix formalism of Ref. [22]. The step size in the derivative was chosen small enough
to make the systematic error from the finite difference negligible compared to the statistical er-
ror. The additive and multiplicative divergences in the condensate were renormalized with the
prescription

〈ψ̄ψ〉R(T,µ) = −
mud

f 4
π

�

〈ψ̄ψ〉T,µ − 〈ψ̄ψ〉0,0

�

. (13)

We also calculated the light quark density

χ l
1 ≡

∂
�

p/T4
�

∂ (µ/T )
=

1
V T3

1
Z(T,µ)

∂ Z(T,µ)
∂ µ̂

=
1

V T3〈ε〉SQ
T,µ



ε
∂

∂ µ̂
ln
�

�

�Redet M
1
2

ud

�

�

�

·SQ

T,µ
. (14)

In this case the derivative on a fixed configuration can be obtained analytically using the reduced
matrix formalism. The light quark density does not have to be renormalized.

Our results for a temperature scan between 130 MeV and 165 MeV at real chemical potential
µB/T = 1.5, zero chemical potential, and imaginary chemical potential µB/T = 1.5i are shown
in Fig. 2. We also show that a rescaling of the temperature axis of the form T → T

�

1+κ
�µB

T

�2�
,

where κ≈ 0.012 for the chiral condensate and κ≈ 0.016 for χ l
1/µl collapses the curves into each

other. Such a simple rescaling indicates that up to µB/T = 1.5 the chiral crossover does not get
narrower, which is what one would expect in the vicinity of a critical endpoint.

Our results for the chemical potential scan at a fixed temperature of T = 140 MeV are shown
in Fig. 3. We have performed simulations at µB/T = 1,1.5, 2,2.2, 2.5,2.7. The sign-quenched
results are compared with the results of analytic continuation from imaginary chemical potentials.
To demonstrate the magnitude of the systematic errors of such an extrapolation we considered
two fits. (i) As the simplest ansatz, we fitted the data with a cubic polynomial in µ̂2

B =
�µB

T

�2

in the range µ̂2
B ∈ [−10, 0]. (ii) As an alternative, we also and ansätze for both




ψ̄ψ
�

R and
χ l

1/µ̂l based on the fugacity expansion p/T4 =
∑

n An cosh(nµl/T ), fitting the data in the entire
imaginary-potential range µ̂2

B ∈
�

−(6π)2, 0
�

using respectively 7 and 6 fitting parameters. Fit
results are also shown in Fig. 3; only statistical errors are displayed. While sign reweighting and
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Figure 2: The renormalized chiral condensate (left) and the light quark number-to-light
quark chemical potential ratio (right) as a function of T at fixed µB/T = 1.5, 0 and 1.5i
on 2stout mproved lattices at Nτ = 6. The insets show a rescaling of the temperature
axis by T → T

�

1+ κ
�µB

T

�2�
, which approximately collapses the curves onto each other

if κ ≈ 0.012 and 0.016 are chosen for the chiral condensate and the quark number-to-
chemical potential ratio, respectively.

analytic continuation give compatible results, in the upper half of the µB range the errors from sign
reweighting are an order of magnitude smaller. In fact, sign reweighting can penetrate the region
µ̂B > 2 where the extrapolation of many quantities is not yet possible with standard methods [7,9].

4 Conclusions

Due to the increasing computing power of modern hardware, direct approaches to finite density
QCD are becoming increasingly feasible, and are opening up a new window to study the bulk ther-
modynamics of strongly interacting matter from first principles. In this conference contribution
and the paper Ref. [1]which it is based on, we studied the method of sign reweighting in detail for
the first time. While the method is ultimately bottlenecked by the sign problem, in the region of
applicability it offers excellent reliability compared to the dominant methods of Taylor expansion
and imaginary chemical potentials - which always provide results having a shadow of a doubt
hanging over them due to the analytic continuation problem. We have demonstrated that the
strength of the sign problem can be easily estimated with µ = 0 simulations, making the method
practical and the planning of simulation projects straightforward. We have also demonstrated that
the method extends well into the regime where the established methods start to lose predictive
power, and covers the range of the RHIC Beam Energy Scan (BES) [31,32].

The lattice action used in this study is often the first point of a continuum extrapolation in QCD
thermodynamics. Furthermore, while the sign problem is exponential in the physical volume, it
is not so in the lattice spacing. Continuum-extrapolated finite µB results in the range of the RHIC
BES and is already within reach for the phenomenologically relevant aspect ratio of LT ≈ 3.

On a more methodological point, the phase and sign reweighting approaches only guarantee
the absence of heavy tailed distributions when calculating the ratio of the partition functions (or
the pressure difference) of the target and simulated theories. Furthermore, the optimum property
of the sign quenched ensemble is only a statement about the denominator of Eq. (1) (right).
The optimal ensemble when both the numerator and the denominator are taken into account is
most likely, however, observable dependent. For these two reasons, the study of the probability
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Figure 3: The renormalized chiral condensate (left) and the light quark number-to-light
quark chemical potential ratio (right) as a function of (µB/T )

2 at temperature T = 140
MeV with the 2stout improved staggered action at Nτ = 6. Data from simulations at
real µB (black) are compared with analytic continuation from simulations at imaginary
µB (blue). In the left panel the value of the condensate at the crossover temperature
at µB = 0 is also shown by the horizontal line. The simulation data cross this line at
µB/T ≈ 2.2.

distributions of observables other than the pressure is an important direction for future work.
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