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ABSTRACT
We present results from a suite of eight direct N-body simulations, performed with Nbody6++GPU, representing realistic
models of rotating star clusters with up to 1.1 × 105 stars. Our models feature primordial (hard) binaries, a continuous mass
spectrum, differential rotation, and tidal mass loss induced by the overall gravitational field of the host galaxy. We explore the
impact of rotation and stellar evolution on the star cluster dynamics. In all runs for rotating star clusters we detect a previously
predicted mechanism: an initial phase of violent relaxation followed by the so-called gravogyro catastrophe. We find that the
gravogyro catastrophe reaches a finite amplitude, which depends in strength on the level of the bulk rotation, and then levels
off. After this phase the angular momentum is transferred from high-mass to low-mass particles in the cluster (both stars and
compact objects). Simultaneously, the system becomes gravothermally unstable and collapses, thus undergoing the so-called
gravothermal-gravogyro catastrophe. Comparing models with and without stellar evolution, we find an interesting difference.
When stellar evolution is not considered, the whole process proceeds at a faster pace. The population of heavy objects tend to
form a triaxial structure that rotates in the cluster centre. When stellar evolution is considered, we find that such a rotating bar is
populated by stellar black holes and their progenitors. The triaxial structure becomes axisymmetric over time, but we also find
that the models without stellar evolution suffer repeated gravogyro catastrophes as sufficient angular momentum and mass are
removed by the tidal field.

Key words: methods: numerical – galaxies: star clusters: general – stars: general, black holes

1 Introduction

Present-day detectors and data processing methods have made it
possible to resolve the photometry and kinematics of individual stars
(even in components of binary and higher-order hierarchical stars)
in star clusters (Giesers et al. 2018, 2019). These observations reveal
global bulk rotation of the star clusters and even resolve the rotational
kinematics of the extremely dense star cluster cores. On top of this,
the kinematic patterns of multiple populations in star clusters can and
have been mapped out in numerous studies (Bianchini et al. 2016,
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2018, 2019; Ferraro et al. 2018; Lanzoni et al. 2018a,b; Kamann
et al. 2016, 2018a,b, 2019; Sollima et al. 2019; Tiongco et al. 2019,
2021). Nowadays, we are also beginning to resolve the complex in-
teraction between a star cluster and its tidal field and the imprint that
the tidal field may leave on the internal cluster dynamics (Tiongco
et al. 2016a,b, 2017, 2018).
With the use of these observations, we can refine existing theoreti-
cal models of star cluster dynamics. While supporting observational
evidence of rotating and flattened star clusters accumulates, the ma-
jority of numerical and theoretical models of star clusters still rely
on the simplistic assumption of spherical symmetry (e.g. Wang et al.
(2016); Askar et al. (2017); Rizzuto et al. (2021b,a); Kamlah et al.
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(2022)), which are supported by a wide range of models with fully
self-consistent energy and angular momentum distribution functions
(e.g. Plummer (1911); King (1962);Wilson (1975)). Moreover, some
methods simply require spherical symmetry. This is the case for
Monte Carlo models and the mainstreamMonte-Carlo codes are cur-
rently unable to evolve initially rotating star cluster models (Hénon
1975; Cohn 1979; Stodolkiewicz 1982, 1986; Giersz 1998; Giersz
et al. 2015; Merritt 2015; Askar et al. 2017; Kremer et al. 2020,
2021). Here, we briefly point out that Vasiliev (2015) has developed
a novel Monte Carlo method for simulating the dynamical evolution
of stellar systems in arbitrary geometry.
Recently, Lahén et al. (2020) ran simulations of young massive star
clusters forming in metal-poor starburst dwarf galaxies and found
that the star clusters have significant angular momentum upon for-
mation. In these simulations, the more massive star clusters tend to
have larger angular momentum. But they also find that the angular
momentum is not always aligned with flattening, thereby indicating
a complex kinematic structure overall. Both observations and other
simulations support these results and find that star clusters show sig-
nificant fractality (Ballone et al. 2020; Pang et al. 2021), and internal
rotation at birth in general (Ballone et al. 2021). Velocity anisotropy
has been observed in star clusters with detected elongated structures
(Pang et al. 2020, 2021), and these structures might be induced by
rotation.
Akiyama & Sugimoto (1989) already described the basic phenom-
ena in a surprisingly small 1000 body direct 𝑁-body simulation; they
found a four-phase star cluster evolution: “(1) violent relaxation; (2)
a gravogyro catastrophe of finite amplitude driven by the negative
moment of inertia of a self-gravitating system through the transport
of angular momentum; (3) a leveling off of the gravogyro instability
where the transport of angular momentum is driven by coexisting,
yet still slow, gravothermal instability; and (4) a relatively rapid
gravothermal collapse”, directly cited from the abstract of Akiyama
& Sugimoto (1989). In the following years the focus shifted to the
derivation of rotating equilibriummodels, by Goodman (1983); Lon-
garetti & Lagoute (1996); Varri & Bertin (2012). These models are
an extension of standard King models, adding a rotational parameter
and a dependency of the distribution function on the angular momen-
tum, and we denote them in the following as rotating King models.
Such models were used as initial models for numerical solutions of
the corresponding 2-D orbit-averaged Fokker-Planck (FP) equation.
These models showed that not only the birth distribution, but also
the long-term dynamical evolution of a star cluster is significantly
affected by its initial bulk rotation, and follow-up work included bi-
nary heating and a stellar mass spectrum (Kim et al. 2002, 2004,
2008; Fiestas et al. 2006). Direct 𝑁-body models were resumed by
Ernst et al. (2007); Hong et al. (2013), in the first place to compare
and check the numerical solutions of the FP equation. Rotation in nu-
clear star clusters was studied using the FPmodel (Fiestas& Spurzem
2010; Fiestas et al. 2012) and by 𝑁-body and semi-analytic models
of Szölgyen & Kocsis (2018); Szölgyen et al. (2019, 2021) - they
were interested into the formation and evolution of rotating stellar or
black hole disks in nuclear star clusters. Large and long term 𝑁-body
simulations of star clusters, similar to globular clusters, were only
recently published by Tiongco et al. (2022); Livernois et al. (2022),
though with some restrictions on the stellar mass function.
In this paper we present and discuss the results of direct 𝑁-body sim-
ulations of rotating star clusters with and without stellar evolution.
The models feature primordial (hard) binaries, a continuous mass
spectrum, differential rotation, and tidal mass loss induced by the
overall gravitational field of the host galaxy.
The paper is structured as follows: in Sect. 2, we summarize the re-

search status on the gravothermal-gravogyro catastrophe. In Sect. 3
we discuss the methodology and in Sect. 4 we outline the initial
conditions for the simulations. In Sect. 5 we present the simulation
results and in Sect. 6 we summarize and conclude the work and we
give a perspective on future work and open questions.

2 Gravothermal-gravogyro catastrophe

In the following we introduce the twomain processes that mostly reg-
ulate the evolution of our rotating clusters, namely the gravothermal
and gravogyro catastrophes.

2.1 Gravothermal catastrophe

To understand the gravogyro catastrophe, it is didactically sensible to
first illustrate the gravothermal catastrophe. It has been known that
adding energy to a star cluster will make it cool down and expand
(Lynden-Bell 1999). This process was first proposed by Antonov
(1960, 1961, 1962). He found that an isothermal gas sphere is the
most probable state (maximum entropy 𝑆) of an initially spherical
self-gravitating system of 𝑁 particles with energy 𝐸 . However, he
additionally found that this is not a global maximum. Below a certain
density contrast between the central density 𝜌𝑐 (sphere of radius 𝑟𝑐)
and the density at the edge of the sphere (sphere of radius 𝑟𝑒) 𝜌𝑒
(𝜌𝑒/𝜌𝑐 < 1/709), he showed that there exists no global maximum
to the entropy 𝑆 at any fixed energy 𝐸 . This effect is purely gravita-
tional in nature and disappears in the absence of gravity (Lynden-Bell
1999).
Lynden-Bell &Wood (1968) then developed the thermodynamic the-
ory of self-gravitating gas spheres. Using linear response theories,
they were able to demonstrate that for certain configurations of such
systems, there exists no equilibrium state. Furthermore, they showed
that the specific heat capacity 𝐶V = d𝐸/d𝑇 of the system becomes
infinitely negative at around 3/100 . 𝜌𝑒/𝜌𝑐 and approaches and
ultimately reaches zero when the density contrast limit predicted by
Antonov (1962) is reached. Systems of self-gravitating gas spheres
between the two limits are stable at fixed 𝐸 and 𝑟E and they possess
a negative heat capacity 𝐶V. For larger density contrasts than 1/709,
the system is unstable (no maximum entropy 𝑆).
The following thought experiment is adapted from Lynden-Bell
(1999). We can consider an isothermal gas sphere in a density con-
trast that eventually results in a negative specific heat capacity 𝐶V as
an analogy to a star cluster in order to understand the gravothermal
catastrophe. We assume that the gas sphere expands adiabatically.
We would observe a gas sphere with a much denser core than halo.
As a result, mostly only the gas in the halo of the sphere will adia-
batically expand. Consequently, the drop in temperature by the gas in
the halo occurs much faster than the drop in temperature of the gas
in the core. Keep in mind, that the specific heat capacity of the total
system, 𝐶V,total can be split up into the specific heat capacity of the
gas in the core 𝐶V,core core and the specific heat capacity of the gas
in the halo 𝐶V,halo Due to the resulting temperature gradient, heat
will flow from the core to the halo of the gas sphere. As a result of
the negative 𝐶V,core the core will then contract and become hotter.
The gas in the halo will also get hotter but in contrast to the gas
in the core, it expands, because it has a positive 𝐶V,halo. If 𝐶V,halo
is very large, then this process will proceed indefinitely (in theory).
The core will continuously lose more and more heat and this will
cause it to contract further and further. This process is called the
gravothermal catastrophe under the condition that 𝐶V,total should
continuously increase and reach zero once the boundary condition
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Stellar evolution impact on rotating star clusters 3

by Antonov (1962) (𝜌𝑒/𝜌𝑐 = 1/709) is met.
We now understandwhat happens in an adiabatically expanding, self-
gravitating isothermal gas sphere. But in the context of stellar dynam-
ics and realistic star clusters, the situation is much more complex.
When replacing the gas molecules with actual stars in the thought
experiment above, we now deal with a isothermal, self-gravitating
sphere of stars. Heat is exchanged by repeated gravitational two-body
encounters between the stars. The timescale for these encounters is
much shorter at the centre of the cluster than at the outskirts of the
star cluster. Therefore, when a star cluster adiabatically expands it
is subject to the gravothermal catastrophe. The stellar density at the
centre and the temperature (velocity dispersion) increases at ever
smaller scales while the density in the halo decreases. This collapse
would produce extremely large stellar densities at the core of the star
cluster (Lynden-Bell & Eggleton 1980; Inagaki &Lynden-Bell 1983;
Hachisu & Sugimoto 1978; Hachisu et al. 1978; Lynden-Bell 1999).
Therefore, we have to answer why we do not observe star clusters
with such density profiles in the universe. Nowadays, we know that
it stems from the fact that binary stars (and hierarchical systems) act
as gravitational energy sources (Aarseth 1972, 1985; Heggie 1975;
Hénon 1975; Heggie 1984) that can halt core-collapse. It has been
shown that a collisional stellar system will evolve to a state of stars
with predominantly radial orbits in the halo and a central core, which
has an isotropic velocity distribution and possesses a central den-
sity that increases steadily (Larson 1970a,b; Hénon 1972a,b; Cohn
1980; Bettwieser 1983; Bettwieser & Spurzem 1986). The inclusion
of binary stars on the other hand has a drastic effect, see Bettwieser
& Sugimoto (1984). They confirmed that binary formation happens
near the centre of the star cluster and that they release energy. This ef-
fect causes the core to expand and to cool in temperature. The energy
exchange between the core and the halo will result in an isothermal
system. As a result, the gravothermal collapse occurs once more.
This process may repeat many times in a simulation in the presence
of binary stars (Lynden-Bell 1999).
So far, only closed-off systems were considered. If stars are allowed
to escape the system by a series of weak gravitational encounters, a
strong encounter or stellar evolution natal kicks, then this will ac-
celerate the process of the gravothermal catastrophe and, ultimately,
the whole system will disperse leaving behind only a single or a
collection of extremely hard binary stars (Padmanabhan 1990).

2.2 Gravogyro catastrophe and its coupling with the
gravothermal catastrophe

The linear response theories developed by Lynden-Bell & Wood
(1968) were first applied to rigidly rotating and isothermal self-
gravitating gas cylinders by Inagaki & Hachisu (1978). They were
able to define certain stability criteria for such systems, but were
unable to define the coupling of the heat to angular momentum
transport. To shed more light on this issue, Hachisu (1979) used the
theories by Hachisu & Sugimoto (1978) and he demonstrated that an
unstable system as set up above has a negative specific moment of in-
ertia even though its specific heat capacity 𝐶V is positive (gravother-
mally stable). This can be explained by visualising a fluid element in
a rigidly rotating and self-gravitating isothermal gas cylinder. When
angular momentum is removed from the fluid element, then its an-
gular speed also decreases. The region contracts towards the rotation
axis of the gas cylinder. The moment of inertia of this fluid element
decreases as a result. If the decrease of moment of inertia or the de-
gree of contraction are large enough, then the angular speed actually
becomes greater than its value before the removal of angular mo-
mentum. Ignoring gravity this may be coined as an effective negative

specific moment of inertia in analogy to the negative specific heat
capacity of gravothermal systems (see Sect. 2.1). Along these lines,
Hachisu (1979) called the underlying process the gravogyro catastro-
phe in analogy to the gravothermal catastrophe discussed above (the
angular velocity 𝜔 and the specific angular momentum 𝑗 correspond
to the temperature𝑇 and the specific entropy 𝑠 (Akiyama&Sugimoto
1989)). Hachisu (1979) then predicted two further important effects.
Firstly, the gravogyro catastrophe cannot proceed indefinitely since
the contraction of the star cluster is halted by binary stars. Secondly,
the heat transport from the inner regions of the star cluster to outer
regions assists the gravogyro catastrophe, because a loss of heat is
also associated with a loss of pressure from the fluid element and
thus its contraction is accelerated.
Later, the theories by Lynden-Bell & Wood (1968); Inagaki &
Hachisu (1978); Hachisu (1979) were also applied to rotating and
self-gravitating, isothermal gaseous disks and expanded to general
three-dimensional bodies by Hachisu (1982), who confirmed that the
instabilities are originating from a coupling of the gravothermal and
the gravogyro catastrophes. They found that in general configura-
tions of rotating bodies, both the gravothermal and the gravogyro
catastrophes will prevail if either one of the following conditions
hold: the central concentration of the gas needs to be large enough
or if both the rotation is fast and the temperature of the gas is low
enough. Akiyama & Sugimoto (1989) conducted first direct 𝑁-body
simulations (𝑁 = 1000, which is very small for statistical purposes
(Einsel & Spurzem 1999)) using the direct 𝑁-body code Nbody2
(Aarseth 1985), which is a precursor to the direct 𝑁-body code
Nbody6++GPU (Wang et al. 2015, 2016) used in the work presented
here. They observed a four-phase evolution in their simulations al-
ready outlined in the beginning of Sect. 1 and also concluded that
such a series of evolutionary phases in combinationwith galactic tidal
loss of stars would result in an overall loss of angular momentum
from the cluster.

2.3 2-D Fokker-Planck models vs. direct 𝑁-body simulations

Expanding on the solvers for the 2-D orbit-averaged Fokker-Planck
(FP) equation in (𝐸, 𝐽z) space developed by Goodman (1983), Einsel
& Spurzem (1999) modelled the evolution of rotating stellar systems
while assuming cylindrical coordinates and ignoring the existence of
a third integral of motion. They propose a rotating King model in the
form of

𝑓rk ∝
(
e𝛽𝐸 − 1

)
× e−𝛽Ω0𝐽z (1)

as a background distribution for the stars following Lupton & Gunn
(1987), where 𝛽 = 1/(𝑚𝜎2c ) and the dimensionless angular velocity
is given by𝜔0 =

√︁
9/4 × 𝜋𝐺𝑛c×Ω0. Potential-density pairs (see e.g.

Binney & Tremaine (2008)) for these models are created by relating
𝛽 to the King parameter𝑊0 via𝑊0 = 𝛽𝑚(𝜓 − 𝜓t), where 𝜓 and 𝜓t
are the central King potential and the King potential at the truncation
radius 𝑟t as well as the number of stars and shells in the computa-
tion. Einsel & Spurzem (1999) then established a family of rotating
King models that are parameterised by pairs of (𝑊0, 𝜔0) using nu-
merical and computational methods by Henyey et al. (1959); Cohn
(1979); Spurzem (1994, 1996). Einsel & Spurzem (1999) found that
with increasing initial angular velocity parameter 𝜔0, the system is
driven into strong mass loss and it contracts moderately. Further-
more, the models exhibit the features for the gravogyro catastrophe
found originally by Hachisu (1979): an increasingly faster rotating
core, although angular momentum is transported outwards from the
star cluster.
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The work by Einsel & Spurzem (1999) was then improved through
the inclusion of three-body binary heating (Kim et al. 2002). They
performed simulations of equal-mass systems without stellar evolu-
tion or tides, but nevertheless they confirmed that the collapse time
could be significantly reduced due to rotation. Kim et al. (2004)
then improved the research further by including a two-component
mass spectrum. Ultimately, they were able to show that generally
the angular momentum is transported from the high mass to the low
mass group as long as dynamical friction (Chandrasekhar 1943a,b,c;
Dosopoulou & Antonini 2017; Lingam 2018) wins over the gravo-
gyro catastrophe. In general, however, the underlying assumptions
in the 2-D FP models by Einsel & Spurzem (1999) (neglect of third
integral of motion, axisymmetry, see also Spurzem et al. (2005) for
a discussion of tidal fields) require comparisons with direct 𝑁-body
simulations. For this purpose, Kim et al. (2008) then investigated
single mass component models and showed that the FP results are
generally consistent with the 𝑁-body calculations. Their results also
confirmed earlier 𝑁-body simulations by Ernst et al. (2007). The
comparative studies between FP and direct 𝑁-bodymodels were later
expanded upon by Hong et al. (2013), who showed that the cluster
evolution is accelerated by not only the initial rotation but also the
mass spectrum of the cluster. They also demonstrated that the total
angular momentum and the total mass of the cluster both decrease
rapidly, while a bar-like structure forms and persists in the cluster
centre. The formation of a bar and its subsequent fairly rapid dissolu-
tion was already found earlier in the pioneer simulations by Akiyama
& Sugimoto (1989). Furthermore, it was confirmed that there is no
conflict with observed limits of Galactic globular cluster rotation
by expanding upon earlier comparisons between the FP models and
observations from Fiestas et al. (2006); Fiestas & Spurzem (2010).
Szölgyen et al. (2019), who initialised their 𝑁-model simulations
with rotating King models from Longaretti & Lagoute (1996), found
a process of anisotropic segregation of heavy masses towards the
central region, forming a disk-like structure. This has been proposed
earlier for galactic nuclei (Szölgyen & Kocsis 2018) and studied in
more detail in Szölgyen et al. (2021). The formation of such a disk
is very likely linked to the gravothermal-gravogyro catastrophe and
similar to the formation of the bar-like structure found by Akiyama
& Sugimoto (1989); Hong et al. (2013).
The work presented in this paper adds to the large body of theo-
retical work listed above. For the first time, we study the impact of
initial bulk rotation, realistic stellar evolution mass loss models in
combination with primordial binaries and stars drawn from a con-
tinuous IMF (Kroupa 2001) and the impact of the tidal field on the
global dynamics of the star clusters. With these settings, we study
the development, evolution and coupling of the gravothermal and
gravogyro catastrophes using direct 𝑁-body methods during the pre-
and post-core collapse phases of star cluster evolution over 1 Gyr.

3 Methods

3.1 Nbody6++GPU

The rotating star cluster models are evolved using the state-of-the-
art direct force integration code Nbody6++GPU, which is optimised
for high performance GPU-accelerated supercomputing (Spurzem
1999; Nitadori & Aarseth 2012; Wang et al. 2015). It is a successor
to the many direct force integration 𝑁-body codes of gravitational
𝑁-body problems, which were originally written by Sverre Aarseth
(Aarseth (1985); Spurzem (1999); Aarseth (1999a,b, 2003); Aarseth
et al. (2008) and sources therein).

The code is optimised for large-scale computing clusters by utilis-
ing MPI (Spurzem 1999), SIMD, OpenMP and GPU (Nitadori &
Aarseth 2012; Wang et al. 2015) parallelisation techniques. In com-
bination with the Kustaanheimo-Stiefel (KS) regularisation (Stiefel
& Kustaanheimo 1965), the Hermite scheme with hierarchical block
time-steps (McMillan 1986; Hut et al. 1995;Makino 1991, 1999) and
the Ahmad-Cohen (AC) neighbour scheme (Ahmad & Cohen 1973),
the code allows for star cluster simulations of realistic size without
sacrificing astrophysical accuracy by not properly resolving close
binary and/or higher-order subsystems of (degenerate) stars. With
Nbody6++GPU we can include hard binaries and close encounters
(binding energy comparable or larger than the thermal energy of sur-
rounding stars) using two-body and chain regularization (Mikkola
& Tanikawa 1999a,b; Mikkola & Aarseth 1998), which permits the
treatment of binaries with periods of days in conjunction and multi-
scale coupling with the cluster environment. The AC scheme permits
for every star to divide the gravitational forces acting on it into the
regular component, originating from distant stars, and an irregular
part, originating from nearby stars (“neighbours”). Regular forces,
efficiently accelerated on the GPU, are updated in larger regular time
steps, while neighbour forces are much more fluctuating and need
update in much shorter time intervals. Since neighbour numbers are
usually small compared to the total particle number, their implemen-
tation on the CPU using OpenMP (Wang et al. 2015) provides the
best overall performance. Post-Newtonian dynamics of relativistic
binaries is currently still using the orbit-averaged Peters &Matthews
formalism (Peters & Mathews 1963; Peters 1964), as described e.g.
in Di Carlo et al. (2019, 2020a,b, 2021); Rizzuto et al. (2021b,a);
Arca-Sedda et al. (2021).

3.2 McLuster & fopax

Our initial N-body particle distribution and velocities are obtained
in three steps.
Firstly, the star clusters are initialised withMcLuster (Kuepper et al.
2011; Kamlah et al. 2022; Leveque et al. 2022). This code is used
to either set up initial conditions for 𝑁-body computations or to
generate artificial star clusters for direct investigation (Kuepper et al.
2011). The McLuster output models can be read directly into the
Nbody6++GPU as initial models (also other codes, e.g. MOCCA
(Kamlah et al. 2022)). This makes McLuster the perfect tool to
initialise realistic star cluster simulations. The input parameters are
given in the Section and they can be found in Tab. 1.
Secondly, we generate 2-D Fokker-Planck initial models as used
in Einsel & Spurzem (1999); Kim et al. (2002, 2004, 2008) with
the Fokker-Planck code named fopax. The code produces a 2-D
mesh based output of density 𝜌 and velocity dispersions 𝜎 as a
function of 𝑟 and 𝑧 based on the rotating King model 𝑓 (𝐸, 𝐽z) that
are characterised by a pair of parameters (𝑊0, 𝜔0) (see Eq. 1).
Thirdly, a Monte Carlo rejection technique is then used to generate
a discrete system of 𝑁 particles following the known distributions
of 𝜌 and 𝜎. The output is in 𝑁-body format (one line per particle,
mass, and 3-D position, velocity data). This 𝑁-body distribution is
combined with the McLuster 𝑁-body distribution and all data is
scaled to standard Hénon units. As a result, we have an initial star
cluster model that is a rotating King model 𝑁-body distribution with
the chosen IMF and all relevant binary orbital parameter distributions
conserved from McLuster.
It is important here that the dimensionless King model parameter𝑊0
is identical in both McLuster and fopax (In our set-up 𝑊0 = 6.0).
In this way, we create models (𝑊0 = 6.0, 𝜔0 ∈ [0.0, 0.6, 1.2, 1.8];
see Tab. 1 in Einsel & Spurzem (1999) for up to 𝜔0 = 1.0) in
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Quantity Value
Particle number 1.1 × 105
Binary fraction 𝑓b 10.0%
Half mass radius 𝑟h 1.85 pc
Tidal radius 𝑟tid 65.59 pc

IMF Kroupa IMF (Kroupa 2001)
(0.08 − 150) M�

Density model King model (King 1962)
𝑊0 = 6.0

Eccentricity
distribution 𝑓 (𝑒) Thermal ( 𝑓 (𝑒) ∝ 𝑒2)

Semi-major axis
distribution 𝑓 (𝑎)

uniform in log(𝑎)
between the sum of the radii

of the two binary stars and 100 AU

mass ratio
distribution 𝑓 (𝑞)

uniform distribution of mass ratio
(0.1< 𝑞 <1.0) for 𝑚 > 5 M� and

random pairing for
the remaining binaries

(Kiminki et al. 2012; Sana & Evans 2011)
(Sana et al. 2013; Kobulnicky et al. 2014).

Table 1. Initial parameters that are identical across all eight initial models for
the Nbody6++GPU simulations.

Model ID Stellar evolution? 𝜔0

SEV𝜔00.0 yes 0.0
SEV𝜔00.6 yes 0.6
SEV𝜔01.2 yes 1.2
SEV𝜔01.8 yes 1.8
noSEV𝜔00.0 no 0.0
noSEV𝜔00.6 no 0.6
noSEV𝜔01.2 no 1.2
noSEV𝜔01.8 no 1.8

Table 2.Model identifiers (Model ID) for the eight Nbody6++GPU simula-
tions.

the construction of the initially rotating 𝑁-body distributions of star
cluster models presented in this paper. Models with (𝑊0, 𝜔0) =

(6.0, 0.0) are identical to traditional King models with𝑊0 = 6.0.
Furthermore, the rotatingKingmodel initial distributions are initially
more compact with increasing 𝜔0 (see Fig. 1 in Einsel & Spurzem
(1999)). Therefore, the structural input parameters from McLuster,
such as the half-mass radius 𝑟h, are (slightly) changed in this step.
Since the traditional calculation of the half-mass radii 𝑟h and by
extension also the Lagrangian radii 𝑟Lagr rely on the assumption of
spherical symmetry, which breaks down for the rotating models (and
in general, also for initially spherical star clusters in tidal fields),
they can only be used as an approximate or indicative measure for
the global, structural evolution of the star clusters. All of this also
implies that the initial half-mass relaxation times are smaller for
increasing 𝜔0 (see Tab. 1 in Einsel & Spurzem (1999)).

4 Initial conditions

4.1 Star cluster parameters

The initial models from McLuster (Kuepper et al. 2011; Kamlah
et al. 2022; Leveque et al. 2022) are constructed as smaller mock
models of the Milky Way GC NGC3201 and are shown in Tab. 1.
The initial number of objects is set to 105 with a binary fraction
of 0.1. This yields a total number of stars of 1.1 × 105. Our clus-
ters have an initial cluster mass of 6.41 × 104 M� . As sketched out

above, we use a King density model with a King model parameter of
𝑊0 = 6.0 (King 1962). The model shows no initial mass segregation
and is unfractal (Goodwin &Whitworth 2004). The model is initially
in virial equilibrium. The half-mass radius is set to 𝑟h=1.85 pc. As
outlined in Sect. 3.2, the initial model from McLuster is then redis-
tributed with a rotating King model, which are more compact than
their non-rotating counterparts (Einsel & Spurzem 1999). Therefore,
the internal structural parameters such as the 𝑟h and 𝑟c change in this
initialisation step from their original McLuster 𝑁-body distribution
(see already Fig. 1).
We use a Kroupa IMF (Kroupa et al. 2001) between 0.08 M� and
150.0 M� . The binaries are paired in their mass ratios 𝑞 following
(Kiminki et al. 2012; Sana & Evans 2011; Sana et al. 2013; Kobul-
nicky et al. 2014), meaning that we have a uniform distribution of
mass ratios (0.1< 𝑞 <1.0) for 𝑚 > 5 M� and random pairing for the
remaining binaries. Their semi-major axes are distributed uniformly
in log-scale between the sum of the radii of the two binary stars and
100 AU. The eccentricity distribution is thermal.
The cluster’s absolute metallicity is set to 𝑍 = 0.00051. We put our
cluster initial models on a circular orbit around the Galaxy of radius
13.3 kpc (according to (Cai et al. 2016) a circular orbit can be chosen
such that the mass loss evolution of the cluster is similar compared to
the eccentric orbit of NGC3201 (between 8.60 and 29.25 kpc, with
eccentricity 𝑒 =0.55 according to Gaia DR2 data (Gaia Collabora-
tion et al. 2018))) around a point-mass MW of mass 1.78× 1011 M�
(assuming a circular velocity 𝑣𝑐 = 240.0 kms−1 at the Solar dis-
tance) (Gaia Collaboration et al. 2018; Bobylev & Bajkova 2020).
For our cluster models this yields an initial tidal radius of 65.59 pc.
Therefore, the models are very tidally underfilling.
In the interest of aiding the discussion, we introduce model IDs for
our eight individual runs, see Tab. 2. For example, the non-rotating
model without stellar evolution is named noSEV𝜔00.0, while the
rotating model with 𝜔0 = 1.2 and stellar evolution switched on is
named SEV𝜔01.2. The details of the stellar evolution parameters are
discussed below. Furthermore, we will refer to the group of mod-
els without stellar evolution as noSEV models and to the group of
models with stellar evolution as SEV models from here on after.

4.2 Stellar evolution parameters

We follow the level C stellar evolution as presented in Kam-
lah et al. (2022), which also describes the stellar evolution routines
and parameters in detail. We use the metallicity-dependent winds
following Vink et al. (2001); Vink & de Koter (2002, 2005); Bel-
czynski et al. (2010) across the full mass range. For the compact
object evolution, we use remnant mass prescriptions following Fryer
et al. (2012) and here we choose the delayed supernova (SNe) mecha-
nism as the slow extreme of the convection-enhanced neutrino-driven
SNe paradigm. We use standard momentum conserving fallback-
scaled kicks (drawn from a Maxwellian distribution with a disper-
sion of 265.0 kms−1 from Hobbs et al. (2005)) for the neutron stars
(NSs) and black holes (BHs) (Belczynski et al. 2008), except for the
NSs and BHs that are produced by the electron-capture SNe (EC-
SNe), accretion-induced collapse (AIC) andmerger-induced collapse
(MIC) (Podsiadlowski et al. 2004; Ivanova et al. 2008; Gessner &
Janka 2018; Leung et al. 2020) and that are subject to low velocity
kicks (drawn from a Maxwellian distribution with a dispersion of
3.0 kms−1 from Gessner & Janka (2018)). The BHs receive natal
spins following the Geneva models (Banerjee et al. 2020; Baner-
jee 2021). The white dwarfs (WDs) receive natal kicks following
Fellhauer et al. (2003) (drawn from a Maxwellian distribution with
a dispersion of 2.0 kms−1 but, which is capped at 6.0 kms−1). We

MNRAS 000, 1–18 (2022)



6 A. W. H. Kamlah et al. (2022)

switch on the (pulsational) pair instability SNe following Belczynski
et al. (2016).

5 Results

5.1 Global dynamical evolution

5.1.1 Structural parameter evolution

We run each of the four initial models (𝜔0 = 0.0, 0.6, 1.2, 1.8) with
Nbody6++GPU once with stellar evolution switched on (SEV mod-
els) and once without (noSEVmodels). Hence we have eight distinct
simulations to compare and contrast. We discuss in the following
Figs. 1 to 6, to get an overview on the global evolution of the simu-
lated star clusters.
Fig. 1 shows the total cluster mass 𝑀cl (M�), the tidal radius 𝑟t (pc),
the half mass radius 𝑟h (pc), the mass of the core 𝑚c (M�) and
the radius of the core 𝑟c (pc) in the four panels, respectively. In
Nbody6++GPU, particles (single or binary stars) are removed from
the star cluster once they have reached a distance that is twice the
current tidal radius far away from the density centre. They are called
’escapers’ thereafter. The current tidal radius is then calculated using
the current cluster mass. Escapers do not contribute to the current
cluster mass. They are also not taken into account when calculating
any of the other structural parameters of the star clusters, such as 𝑟h
or 𝑚c.
First, we look at the time evolution of 𝑀cl and 𝑟t for all eight models.
While 𝑀cl and 𝑟t decrease significantly due to stellar evolution mass
loss in the SEVmodels, the noSEVmodels can only suffer mass loss
through escaping stars, either through strong dynamical encounters
or series of weak encounters. It is therefore unsurprising that in the
presence of the additional mass loss mechanism through stellar evo-
lution, the tidal radii of the respective SEV models exhibit a much
faster decrease. We also observe that the noSEV appear to approach
the SEV counterpart models in their tidal radii in the indicating that
the cluster evolution is faster in the long-term. We need simulations
longer than 1 Gyr to make a more qualified statement on this.
The half-mass radii 𝑟h show an interesting evolution in time. While
the evolution over the first couple of hundred Myrs is similar, the
noSEV clearly diverge from the SEV models, which means the
noSEV expand faster and more violently than the SEV models. This
evolution is not mirrored by the core radius 𝑟c evolution, which is
similar in the longer term leading up to 1 Gyr. There is one striking
difference though. All noSEV models collapse faster and exhibit a
stronger core collapse than their counterparts with stellar evolution.
However, the mass in the core evolves similarly meaning that the
core mass 𝑚c (M�) decreases faster and more strongly in all noSEV
models. The evolution of the core radii and core masses are occur
approximately synchronised, in all simulations.
The time evolution of the Lagrangian radii 𝑟Lagr or more precisely,
the radii of mass shells containing a certain percentage of the current
total cluster mass (in this paper 1 %, 5 %, 10 %, 30 %, 50 %, and
90 % are shown), and the time evolution of the average stellar mass
within these Lagrangian radii𝑀av are shown in Fig. 2 for the all eight
simulations. Each of the four columns represents a rotational param-
eter (𝜔0=0.0, 0.6, 1.2, 1.8) and every second row shows the noSEV
models on a light grey background. It appears that the core-collapse
phase of the star cluster noSEV models is more extreme, while the
overall collapse also happens earlier. This observation is especially
clear in the plots of 𝑀av in the bottom two rows of Fig. 2, which
shows a much faster mass segregation in the noSEV than in the SEV
models. Moreover, the expansion of the outer-most Lagrangian radii

Figure 1. Plot showing the total cluster mass 𝑀cl (M�) , the tidal radius
𝑟t (pc), the half mass radius 𝑟h (pc) and the mass of the core𝑚c (M�) and the
radius of the core 𝑟c (pc) in the four panels for all eight simulations with and
without stellar evolution for 𝜔0 = 0.0, 0.6, 1.2, 1.8, respectively. The time
axis is plotted logarithmically to show the details of the much more rapid
early cluster evolution. The models with stellar evolution (SEV models) are
plotted as solid lines and the models without stellar evolution (noSEV) runs
are plotted as dash-dotted lines.
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happens significantly faster in the noSEV than in the SEV models,
which adds further evidence for a faster evolution of the noSEV
models.
Overall, the discussion above can be related to the theorems de-
scribed already in Hénon (1975) (see also Breen & Heggie (2013)).
The evolution of the cluster system as a whole is governed by the
energy flow through the half-mass radius 𝑟h and it is independent of
internal energy sources. The energy flow is approximately equal to
(𝐺𝑀2cl/𝑟h)/𝑡𝑟h , where 𝑡𝑟h is the half-mass relaxation time-scale and
𝑀cl is the cluster mass, and this is equal to the energy generated at the
centre of the cluster. In general, stellar evolution causes mass loss and
results in an increase of 𝑟h. Additionally, the loss of mass by interac-
tion and relaxation for very massive stars (without evolution) causes
an increase in 𝑟h. Because in the case of no evolution we have more
massive stars than in the case of evolution, the core collapses deeper
and earlier. Mass loss through evolution slows down the collapse that
then continues further. To stop the core collapse (no evolution), it is
necessary to eject out some of the most massive binary systems and
the most massive stars (as can be seen in the following figures). Then
equilibrium occurs and both systems evolve similarly at the centre,
generating similar energy. So if the mass of the systemwithout stellar
evolution is greater, then 𝑟h must also be greater than in the case with
stellar evolution.
Here, we also need to point out an important caveat: technically, as
was also briefly outlined in Sect. 3, it is not entirely accurate to use
𝑟c, 𝑟h and 𝑟Lagr as measures for the global structure evolution of the
rotating star cluster models that deviate too far from spherical sym-
metry. Instead of using Lagrangian mass shells, it would be better to
sort the particles in terms of binding energy. This procedure would
yield spheroids of equipotential surfaces. With these, we would then
be able to calculate the respective radii along the principal axes of
the spheroid, which is done below for the investigation of shape evo-
lution of the star cluster models.
As was outlined in Sect. 1, bulk rotation leaves an imprint on the
shape of a star cluster. In general, the flattening of a rotating mass
distribution can be calculated by transforming the principal axes of a
the moment of inertia tensor relative to the density centre of the mass
distribution using different numbers of particles which are sorted
by their binding energy (Theis & Spurzem 1999). Fig. 3 shows the
principal axis ratios of the intermediate to major axis ratio 𝑏/𝑎 and
the minor to the major axis ratio 𝑐/𝑎. Furthermore, following Theis
& Spurzem (1999), we define a triaxiality parameter of the system

𝜏 =
𝑏 − 𝑐

𝑎 − 𝑐
, (2)

which is shown in the bottom two rows of Fig. 3 (in this paper 10 %,
30 %, 50 %, and 90 % are shown). As in Fig. 2, the noSEV mod-
els are plotted in a light-grey background. We note that stochastic
𝑁-body noise disturbs the clean numbers. First, in the inner shells
just the particle numbers are small. Second, our program does not
have a fixed orientation for 𝑎, 𝑏 and 𝑐; the principal axes analysis al-
ways computes three principal axes and sorts them according to size.
Therefore, stochastic noise always leads to 𝑏/𝑎 and 𝑐/𝑎 to be a bit
smaller than unity, never greater. Stochastic noise in these quantities
is also increased by the presence of massive stars, binaries, and fast
evolving stellar masses (stellar evolution). For this reason, we have
also refrained from plotting any shells below 50 % in this paper. We
would need much larger particle numbers than 1.1× 105 that we use
in this work to have a more robust calculation that is less affected
by these effects. Additionally, we note that the values of 𝜏 in Fig. 3
are unreliable, because the definition of tau is not suitable for nearly
spherical systems with 𝑏 ∼ 𝑐 and 𝑎 ∼ 𝑐.

Overall, the impact of the stellar evolution in combination with tidal
field mass loss from the cluster is significant. While the SEVmodels
return from the maximum triaxiality (𝑏 ≠ 𝑎 ≠ 𝑐) at minimum 𝑐/𝑎
and 𝑏/𝑎 to axisymmetry (𝑏 = 𝑎, but 𝑐 ≠ 𝑎 and 𝑐 ≠ 𝑏), the star clus-
ters without stellar evolution activated do not exhibit this evolution.
In fact, all noSEV models show the initial maximum triaxiality ear-
lier and more pronounced than the SEV models and while they then
shortly after are attempting to return to axisymmetric configurations,
they then show no, one or two consecutive triaxial "collapses" (𝜏 in
bottom row of Fig. 3). Furthermore, it is noteworthy that all shells
from 10% to 90 % are much more similar in their structure evolution
for the noSEV compared with their counterparts in the SEVmodels,
where there is more divergence between individual spheroidal shells.
This is possibly related to the tidal field mass loss, meaning that if
the tidal radius was (much) larger, the noSEV would show a similar
evolution compared with the SEV models.
From Fig. 3 and Fig. 2 we can deduce the following cluster evolution
qualitatively. Let us first look at the rotating clusters (𝜔0 > 0.0).
First, there is a strong core collapse, which can be identified by the
first maximum of the average mass in Fig. 2; it is earlier for noSEV
runs, because they keep high stellar masses and thus experience fast
mass segregation. ForSEV runs heavymasses evolve fast, have strong
mass loss, so collapse by mass segregation is slower. It is interesting
to note that approximately at the first core collapse there is a min-
imum value of triaxiality 𝜏 and 𝛿 shown in Fig. 4 (𝛿 = 1 − 𝑐/𝑎, a
measure of flattening between the major and minor axes (𝑎 and 𝑐), it
is 0 for spherical systems, and one for disky systems, see also Theis
& Spurzem (1999)). That is followed a couple of Myrs later by a
strong maximum in both 𝜏 and 𝛿. We interpret this as follows: dur-
ing collapse at high density the relaxation time is short, the system
is developing towards sphericity and isotropy. Afterwards a radial
orbit instability (ROI) is developing which produces the maximum
of 𝜏 and 𝛿; the ROI is stronger for faster rotation, because we have
less energy in the tangential unordered motion (tangential velocity
dispersion becomes smaller compared to rotational velocity). Here,
we did not examine in more detail the onset of ROI, the interested
reader is referred to Theis & Spurzem (1999) and earlier references
therein.
For the non-rotating system there is also a core-collapse by mass
segregation, faster in the noSEV case than with SEV; opposite to
expectation the system develops some non-sphericity, in the case of
noSEV𝜔00.0.
Second, we find a phase of restoration of axisymmetry for the SEV
models. The outermost shells exhibit oscillations in shape that are
dampened over time, and the system returns to a stationary, flattened,
axisymmetric state (𝜏 ∼ 1, 𝛿 > 0). It is interesting to note that the
noSEV model does not return to axisymmetry, on the contrary it
keeps some triaxiality during the last few 100 Myrs of our simu-
lation. The effect is more pronounced for the rotating systems, but
as discussed before, the values of 𝜏 for non-rotating models should
be taken with care. Why this is the case is currently unclear. Possi-
ble speculative explanations are ongoing repeated ROI due to central
core oscillations supported by the heavymasses, or interactions of the
external tidal field, removing angular momentum (see Sect. 5.1.2).

5.1.2 Angular momentum evolution

Wewant to explore how the angular momentum is transported within
the star cluster simulations and if and how this depends on the stellar
evolution and initial bulk rotation strength. For this purpose, we
divide the complete ZAMS particle set into four distinct mass groups
(very low mass (vlm), low mass (lm), medium mass (mm) and high

MNRAS 000, 1–18 (2022)



8 A. W. H. Kamlah et al. (2022)

Figure 2. Plot showing the Lagrangian radii 𝑟Lagr (pc) and the average mass 𝑀av (M�) within shells that contain 1%, 5%, 10%, 30%, 50%, and 90% of the
total cluster mass at the current simulation time step for up to 1 Gyr. The time axis is plotted logarithmically to show the details of the much more rapid early
cluster evolution. Each column represents one rotational parameter 𝜔0 of the rotating King model in ascending order from left to right (𝜔0=0.0, 0.6, 1.2, 1.8).
The results from the runs with stellar evolution switched on (SEV models) are plotted on a white background, while the results from the simulations without
stellar evolution (noSEV models) are highlighted in light grey.

mass (hm)):

𝑀vlm : 0.08 M� ≤ 𝑚ZAMS < 0.9 M�
𝑀lm : 0.9 M� ≤ 𝑚ZAMS < 6 M�
𝑀mm : 6 M� ≤ 𝑚ZAMS < 15 M�
𝑀hm : 15 M� ≤ 𝑚ZAMS < 150 M� ,

where 𝑚ZAMS is the ZAMS stellar mass of a single star (this also
means that a primordial binary star could have binary members that
are in two different mass groups). The mass groups are chosen such
that the stars from 𝑀hm become BHs, the stars from 𝑀mm become
NSs, the stars from 𝑀lm become WDs and the stars from 𝑀vlm

remain as MSs for the simulation time, approximately. We can then
follow the particles that originate from thesemass groups through the
full cluster evolution and compute their angular momentum across
the full evolution. As a result, we are in a position to plot the time
evolution of, for example, the square of the total angular momentum
𝐿2 for each of the four mass groups and compare them to follow
the angular momentum transfer. In Cartesian coordinates, 𝐿2 for an
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Figure 3. Plot showing the ratios of the principal axis of the moment of inertia tensor, 𝑏/𝑎 and 𝑐/𝑎, as well as the triaxiality parameter 𝜏 = (𝑏 − 𝑐)/(𝑎 − 𝑐)
within shells that contain 10%, 30%, 50%, and 90% of the total particle energy at the current simulation time step for up to 1 Gyr. The time axis is plotted
logarithmically to show the details of the much more rapid early cluster evolution. Each column represents one rotational parameter 𝜔0 in ascending order from
left to right (𝜔0=0.0, 0.6, 1.2, 1.8). The results from the runs with stellar evolution switched on (SEV models) are plotted on a white background, while the
results from the simulations without stellar evolution (noSEV models) are highlighted in light grey.

individual star is simply given as quadratic sum of three components

𝐿2𝑥 = (𝑦𝑝z − 𝑧𝑝y)2, (3)

𝐿2𝑦 = (𝑧𝑝x − 𝑥𝑝z)2, (4)

𝐿2𝑧 = (𝑥𝑝y − 𝑦𝑝x)2, (5)

which can then be done for all stars in each individual mass group.
The sum of 𝐿2 of all individual stars then gives the 𝐿2group, the total
sum of the square of the angular momentum.
All 𝐿2group are divided by 𝐿2𝜔00.6,𝑡=0, which is the square of the total
angular momentum of the 𝜔00.6 model(s) at 𝑡 = 0 (the sum of all

𝐿2group for the 𝜔00.6 models divded by 𝐿2
𝜔00.6,𝑡=0

is one). We do
this so that the models can be compared with each other more easily.
𝐿2group/𝐿2𝜔00.6,𝑡=0 is shown in Fig. 5 for all models. 𝑀group, which
is the mass of all the stars (and compact objects) in the four groups
as a function of time, is also shown in Fig. 5. First of all, we see that
the total mass in each mass group evolves similarly at least initially
across the SEV and across the noSEV models until stellar evolution
and associated mass loss take over. With increasing initial bulk ro-
tation, the mass loss from particularly the mass group of very low
mass stars, 𝑀vlm, is enhanced. This mass loss is assisted due to mass
segregation and therefore, it is unsurprising that 𝑀vlm is especially
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Figure 4. Plot showing the deviation from sphericity of the star cluster models, 𝛿 = 1 − 𝑐/𝑎, within shells that contain 10%, 30%, 50%, and 90% of the total
particle energy at the current simulation time step for up to 1 Gyr. The time axis is plotted logarithmically to show the details of the much more rapid early
cluster evolution. Each column represents one rotational parameter 𝜔0 in ascending order from left to right (𝜔0=0.0, 0.6, 1.2, 1.8). The results from the runs
with stellar evolution switched on (SEV models) are plotted on a white background, while the results from the simulations without stellar evolution (noSEV
models) are highlighted in light grey.

affected by this, because the member stars migrate to the cluster halo
over time. The noSEV models lose mass only via tidal field mass
loss or due to strong few-body encounters in the central high den-
sity region, which kick out stars and lift them up to escape energies.
They also lose more mass by escaping stars than the SEV models
(see Fig. 7 in Sect. 5.2). Due to stellar evolution, the SEV models
lose mass in all mass groups much earlier during the simulation. It
is especially striking in the medium mass 𝑀mm and high mass 𝑀hm
groups, which predominantly produce NSs and BHs, respectively.
We now discuss the evolution of the angular momentum of the mass
groups with the quantity 𝐿2group/𝐿2𝜔00.6,𝑡=0, which reveals an impor-
tant result that is particularly clear for increasing initial bulk rotation.
From Fig. 7 we can qualitatively conclude the angular momentum
loss and exchange - the angular momentum lost by the heavy mass
group goes into cluster mass loss in the non- or slowly rotating case,
only little is transferred to the light mass groups. The relative impor-
tance can be estimated from Fig. 7, which compares the mass loss for
noSEV and SEV models. The interesting finding here is, however,
that for the highly rotating systems a larger fraction of the heavy
mass angular momentum is transferred to the light mass groups (but
finally they also lose angular momentum due to general cluster mass
loss). This is a signature of gravogyro catastrophe.
The spikes in the 𝐿2group/𝐿2𝜔00.6,𝑡=0 curves are due to escaping stars
or compact objects, which gain large amounts of angular momentum
and then escape the cluster. It is important to keep in mind here that
compact objects receive natal kicks in our simulations. Therefore,
the number of these spikes is much higher in the SEV models (see
in particular for the 𝑀mm), because in the noSEV models, the stars
can only escape through dynamical interactions. We can particularly
see this in the evolution of the 𝐿2mm/𝐿2𝜔00.6,𝑡=0 and comparing it be-
tween the noSEV and SEVmodels. Remember that the objects from
this group produce mostly NSs that receive very large natal kicks
(several hundreds of kms−1). We see that in the intermediate to long
term of our simulations, the angular momentum loss from the SEV is
much larger than that from the noSEVmodels, which becomes espe-
cially clear for the models with very large initial bulk rotation. While
the noSEVmodels have a roughly constant angular momentum evo-

lution above 100 Myr for the 𝑀vlm, 𝑀lm and 𝑀mm mass groups, the
SEV models show a clear decrease of angular momentum in all four
mass groups. This effect is achieved through angular momentum loss
through escaping stars and mass loss due to stellar evolution.
We also see for the noSEV models that when comparing Fig. 5 with
Fig. 2 and Fig. 3, it becomes clearer that the noSEV models are
unstable in their global evolution for all four runs (𝜔0= 0.0, 0.6, 1.2,
1.8). By increasing the initial tidal radius in future simulations, this
might be a very different situation.
Lastly, Fig. 5 reveals another important result. In the following dis-
cussion we focus on the 𝑀mm mass group in the noSEV models.
We can see that this group consistently has an almost constant mass
(𝑀group; with very small fluctuations). It appears that stars from this
mass group are not ejected from the cluster. Furthermore, we see
from 𝐿2group/𝐿2𝜔00.6,𝑡=0 for this mass group that its angular momen-
tum effectively approaches zero after a couple of Myrs. This process
can imply that the 𝑀mm objects replace the depleting numbers of
𝑀hm objects in the cluster centre in the mid- to long-term cluster
evolution (see Contenta et al. (2015) for the formation of a NS sub-
system in the cluster centre).
Here, we also need to add an important caveat: the angular momenta
are computed relative to the cluster density centre. However, since
with have a tidal field the whole cluster experiences a (small) recoil
every time a particle escapes by nature of momentum conservation.
Therefore, the cluster density centremightmove relative to the cluster
centre of mass, which would have a (small) effect on the computation
of the angular momentum.

5.1.3 Bar and disk formation of heavy mass objects

Here, we explore the spatial evolution of the high mass group 𝑀hm.
We want to know what happens to the shape of the distribution of
these objects and how it is affected by initial bulk rotation and stellar
evolution. In the SEV models this corresponds to the shape of the
distribution of the BHs and their progenitor stars. Fig. 6 shows the
3-D spatial distribution of the stars and compact objects from𝑀hm at
0.0 Myr, 3.68 Myr, and 11.44 Myr from top to bottom, respectively.
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Figure 5. Plot showing the total mass of the four mass groups (𝑀vlm, 𝑀lm, 𝑀mm, 𝑀hm) in the top two rows and the square of the total angular momentum for
these groups divided by the square of the total angular momentum of the 𝜔00.6 model(s) at 𝑡 = 0, 𝐿2group/𝐿2𝜔00.6,𝑡=0, at the current simulation time step for
up to 1 Gyr. The time axis is plotted logarithmically to show the details of the much more rapid early cluster evolution. Each column represents one rotational
parameter 𝜔0 in ascending order from left to right (𝜔0=0.0, 0.6, 1.2, 1.8). The results from the runs with stellar evolution switched on (SEVmodels) are plotted
on a white background, while the results from the simulations without stellar evolution (noSEV models) are highlighted in light grey.

This time is approximately the time of maximum triaxiality for the
SEV𝜔01.8 model (meaning approximately the simulation snapshot
that is closest to maximum triaxiality). The bar formation of the BHs
and their progenitor stars is clear in the SEV𝜔01.2 and SEV𝜔01.8
models (see also Hong et al. (2013) for more on bar formation).
Their noSEV model counterparts, noSEV𝜔01.2 and noSEV𝜔01.8,
also show the formation of a bar. It seems to be similar in spatial
distribution, however, we know already from Fig. 3 that the noSEV
models do in fact yield slightly more maximally triaxial configura-
tions. This overall process has also been referred to anisotropic mass
segregation in Szölgyen et al. (2021); Panamarev & Kocsis (2022).
The noSEV𝜔01.2 and noSEV𝜔01.8 also attempt to return to ax-
isymmetric configurations at 11.44 Myr. However, they seem to be

slightly more concentrated than the SEV counterparts. We can infer
on this from Fig. 2. This effect is also due stellar evolution mass loss,
which is in turn related to the natal kicks that the BHs experience.
Therefore, it is natural that you can see larger spatial scattering in
the distributions regardless of 𝜔0 compared to their noSEV model
counterparts.
In summary, the initially rotating axisymmetric distribution of the
𝑀hm objects becomes a bar that rotates around the z-axis and evolves
toward a disc configuration over time (at least for theSEVmodels, see
also Fig. 3). This is strictly not the case for 𝑀hm objects in the non-
rotating (𝜔0 = 0.0) models. Here, the SEV and noSEV models stay
spherical at least for the first 11.44 Myr of the simulations. However,
we know from Fig. 3 that also the noSEV𝜔00.0 and noSEV𝜔00.6
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Figure 6. 3-D scatter plot showing the spatial distribution of the 𝑀hm mass group in all eight simulations at 0.0 Myr, 3.68 Myr, and 11.44 Myr from the top to
bottom in three separate rows with two sub-rows each; the top sub-row are always the models with stellar evolution (SEV models) and the bottom sub-row are
always the models without stellar evolution (noSEV models). There are four columns and each one represents a rotational parameter 𝜔0 in ascending order of
rotation from left to right. The stars and compact objects are color-coded by their mass between 0.0 M� and 150.0 M� . The stars and BHs are also projected
onto the three dimensional axes, which can be seen from the light-grey dots. We can clearly see the bar formation of the BHs and their progenitor stars in at
t=3.68 Myr and the spatial reconfiguration of the 𝑀hm objects to axisymmetric structures.
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deviate from spherical symmetry over time. This deviation in the
respective noSEV models is due to enhanced tidal field mass loss
and tidal tails in the cluster (see discussion in Sect. 5.1.1 and Fig. 4).
Young open clusters would be an ideal target for observations and fur-
ther simulations to test this experimental result. In Pang et al. (2022),
elongated shapes of young clusters of filamentary-type might still
carry the signal of a bar structure induced by rotation. However,
the dynamical bar structure may blend with the inherent filamentary
structure. We need to differentiate them carefully via kinematic data.

5.2 Escaper stars

The escapers from the simulations revealmore important information
and are shown in Fig. 7. In the following, we can study the temporal
evolution of the number of escapers, 𝑛esc. The SEV models initially
lose more stars and compact objects than the noSEVmodels, but the
noSEV models start losing stars significantly earlier, which is more
apparent in the semi-logarithmic scaling in Fig. 8, which is due to
the faster evolution of the noSEV models (see also Sect. 5.1.1). The
initially strong increase in the number of escapers is due to the large
cluster mass reduction (potential) and increase of a number of stars
called potential escapers. However, depending on the initial rotation,
the noSEV models produce more escapers after a couple of Myr of
simulation time. The runs with larger initial bulk rotation lose more
stars, which is also the case initially for the noSEVmodels. Here, the
number of escapers of the runs without any rotation surpass the most
strongly rotating run at about 600 Myr. We see a constant and almost
linear rise of escaper numbers for the noSEV compared with the
much flatter increase in escapers for the SEV models. We therefore
confirm that the tidal field mass loss is much stronger for the noSEV
models in the long-term, which can also be inferred from the time
evolution of the total mass of the escapers, 𝑀esc. The overall mass
is larger and increases much faster in the noSEV than in the SEV
models.
Interestingly, while the escaper numbers for the SEV models are
very similar, the total mass loss is much larger for the SEV𝜔01.8
models than for the SEV models that rotate less strongly initially.
These numbers can be attributed mostly to the much larger number
of initially escaping MS stars, 𝑛MSesc, which is also shown in Fig. 7.
The lower mass MS stars are driven onto large orbits around the
density centre of the star cluster by having the angular momentum
transported to them through the gravogyro catastrophe. We can also
see this effect from Fig. 5, which is discussed in Sect. 5.1.2. Interest-
ingly, the SEV𝜔00.6 retains many more MS stars than the SEV𝜔00.0
model. This discrepancy is also mirrored by the number of escaping
WDs, 𝑛WDesc. For the other runs, SEV𝜔01.2 and SEV𝜔01.8, these
are approximately similar over 1 Gyr. The number of escaping NS,
𝑛NSesc, are practically identical. The reason for this is that the NSs
that escape suffer from very large natal kicks and only those that form
via ECSNe, AIC or MIC are retained in the cluster. Since the IMF
is the same for all models, it is unsurprising that similar numbers
are retained. This is not the case for the BHs. The plot for 𝑛BHesc
reveals that the SEV𝜔01.8 models lose the largest number of BHs
by a considerable margin. It might be suspected that 𝑛BHesc should
be similar for all models just like the evolution of 𝑛NSesc. However,
the double-core collapse hump in combination with the fallback-
dependent scaling of the natal kicks produces a larger diversity (see
also Fryer et al. (2012); Kamlah et al. (2022)).
Fig. 8 shows the averagemass of the escapers𝑚esc,average for the SEV
and noSEVmodels. Apart from the fact that stars escape the noSEV
models earlier as was discussed above, 𝑚esc,average is much larger in
the noSEV than in the SEV models. We define 𝑚esc,average as 𝑀esc

divided by 𝑛esc at a specific point in time. Recall, that we use a IMF
following Kroupa (2001) between (0.08−150) M� (see Tab. 1). Our
IMF produces an average ZAMS for our cluster of around 0.58 M� .
We see that the stars that escape the noSEV models are on average
much more massive than the average star in the cluster. Due to the
convective angular momentum transport, which happens extremely
quickly and which is more dominant for increasing rotation (already
after 0.1 Myr, see Fig. 5), many (very) low mass, medium mass
stars are removed along with high mass stars in the noSEV𝜔01.8
model. This observation is mirrored in Fig. 7, where many more
stars are removed for the noSEV𝜔01.8 models initially than the
other noSEV models. This effect brings down the average mass of
the escapers. However, the noSEV𝜔00.6 and the noSEV𝜔01.2 pro-
duce remarkably similar evolution of 𝑚esc,average. Averaging over
more simulations would produce more reliable results.

5.3 Binary stars

The temporal evolution of the number of binaries retained in the star
clusters (both dynamical and primordial) can serve as a qualitative
indicator for the number of dynamical interactions. Fig. 9 shows this
number of binary stars 𝑛b for all eight simulations. We first concen-
trate on theSEVmodels only. TheSEV𝜔01.8 have considerably lower
numbers of binaries at 1 Gyr than the other models, which canmostly
be attributed to escaping or disrupted binaries (by stellar evolution or
dynamical encounters) in the very early simulations. The other sim-
ulations show a similar evolution of 𝑛b with the notable exception
that 𝑛b for SEV𝜔00.6 is larger than any of the other consistently over
1 Gyr. Now, comparing this with the evolution of 𝑛b in the noSEV
models, we find a different evolution. Here, the number of binaries
show a lower scattering at 1 Gyr. Additionally, noSEV𝜔01.8 appears
to produce an intermediate number of retained binary stars and the
noSEV𝜔00.0 simulation produces the lowest numbers. To achieve
greater clarity on this issue, we would need many simulations with
different random realisations and look at the simulation ensemble
average of the number of binaries for the different 𝜔0 values. We
would then be in a position if this is not a random effect or if there is
some systematic evolution occurring.
In the following discussion, we only consider the SEV models. The
number of compact binaries, 𝑛cb, reveals that the SEV𝜔01.8 produce
the lowest numbers of compact binaries retained in the cluster and
the models with SEV𝜔00.6 retain the largest numbers of compact
binaries, thereby mirroring the overall number of binaries retained in
the cluster. 𝑛cb consists practically only of BHBH and WDWD bina-
ries in our simulations, which is also why only the number of BHBH
binaries, 𝑛BHBH, and the number of WDWD binaries, 𝑛WDWD, are
shown in Fig. 9. Interestingly, there is a clear increase in the evolu-
tion of 𝑛BHBH for the SEV𝜔01.2 model. This is important because
it could indicate that IMBH formation might be preferential at this
initial bulk rotation (note that the maximum of this increase is al-
ready much later than the dissolution of the bar structure and occurs
when the clusters are axisymmetric again, see also Fig. 3 and Fig. 6).
But it could also just be statistical fluctuation (compare this also to
the smaller increases for the SEV𝜔00.6 and SEV𝜔01.8 models that
occur later on). The number of BHs and BHBHs are both too low in
our simulations to make a quantitative assessment on this. At 1 Gyr
all simulations appear to converge at 5 or 6 BHBH binaries retained
in the simulations. Our hypothesis here could be supported by the
study of Brownian motion of BHs in (non-)rotating star clusters of
Webb et al. (2019), who use very different initial conditions to the
work presented here (Plummer distribution with 5×104 stars and ro-
tation is induced by simply giving a fraction of stars some additional
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Figure 7. Plot showing over 1 Gyr the number of escapers, 𝑛esc, the total mass evolution of the escapers, 𝑀esc (M�), the number of escaping MS stars, 𝑛MSesc,
the number of escaping WDs, 𝑛WDesc, the number of escaping NSs, 𝑛NSesc, and the number of escaping BHs, 𝑛BHesc, respectively. The latter four are naturally
only shown for the SEV models.

rotational velocity following Lynden-Bell (1960), which is not phys-
ical. Distribution functions from, e.g., Goodman (1983); Longaretti
& Lagoute (1996); Einsel & Spurzem (1999); Varri & Bertin (2012)
should be used instead). They find that the orbits of BHs that receive
velocity kicks of arbitrary origin decay differently depending on the
star cluster rotation. The larger the star cluster rotation, the earlier the
orbits of the BHs circularise around the cluster centre due to the gain
of angular momentum. As a result, dynamical friction becomes less
effective in decaying the orbit. This may happen well before the BHs
enter the so-called Brownian regime (e.g. Chatterjee et al. (2002);
Lingam (2018)), where any systematic orbit decay has stopped and
the motion of the BHs is random. Due to the slowed down orbital
decay with increasing rotation in the pre-Brownian motion regime,
there could be more tidal capture events leading to larger BHBH
abundances via three-body scatterings, where a MS star in a BHMS
binary is exchanged with another BH (Webb et al. 2019).
The 𝑛WDWD evolution mirrors that of 𝑛cb, where 𝑛cb is offset from
𝑛WDWD mostly by 𝑛BHBH. It is unsurprising that the 𝑛cb is domi-
nated by 𝑛WDWD in the long-term and by 𝑛BHBH in the beginning
of simulation, because the massive stars evolve much faster than low
mass stars and also our IMF contains many more low mass stars than
high mass stars.

6 Summary, conclusion and perspective

6.1 Summary

For the first time we have studied the impact of initial bulk rotation,
realistic stellar evolution mass loss models (Kamlah et al. 2022) in
combination with primordial binaries and stars drawn from a con-
tinuous IMF (Kroupa 2001) as well as a tidal field mass loss on the
global dynamics of the star clusters and the development, evolution
and coupling of the gravothermal and the gravogyro catastrophes
using direct 𝑁-body methods. We have therefore expanded upon
but also greatly surpassed any previous study on this phenomenon
in astrophysical realism (Einsel & Spurzem 1999; Kim et al. 2002,
2004; Ernst et al. 2007; Kim et al. 2008; Fiestas et al. 2006; Fiestas
& Spurzem 2010; Hong et al. 2013; Wang et al. 2016; Szölgyen &
Kocsis 2018; Szölgyen et al. 2019, 2021; Tiongco et al. 2022; Liver-
nois et al. 2022).
In total, we have run eight simulations over 1 Gyr in total, four
with stellar evolution (SEV models) and four without stellar evolu-
tion (noSEV models). In each subgroup of the two aforementioned
groups, every individual model is distributed with a different rotating
King model based on Einsel & Spurzem (1999). We use one non-
rotating model (𝜔0 = 0.0) and three more models with increasing
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Figure 8. Plot showing the average mass of the escapers, 𝑚esc,average, over
1 Gyr of cluster evolution.

fractions of the initial total star cluster energy being stored in initial
bulk rotational energy (𝜔0 = 0.6, 1.2, 1.8). We make the following
observations:

• We obtain the same four phases in the early star cluster evo-
lution that were previously observed in direct 𝑁-body simulations
with low particle numbers by Akiyama & Sugimoto (1989) for
both the runs with and without stellar evolution. Fig. 2, Fig. 3 and
Fig. 5 can be used in combination to deduce the following: we
see a phase of violent relaxation that is followed by the gravogyro
catastrophe of finite amplitude, where the amplitude depends on
the degree of initial bulk rotation (see Fig. 3). This gravogyro
catastrophe then levels off and angular momentum is transported
from the high mass stars (and compact objects) to the lower mass
stars (and compact objects) (see Fig. 5). Simultaneously, the system
becomes gravothermally unstable and then collapses (see Fig. 2).
This is direct evidence for the coupling of the gravogyro and the
gravothermal catastrophes that was first discussed by Hachisu
(1979, 1982) and it is therefore appropriate to coin this process the
gravothermal-gravogyro catastrophe. We also directly observe the
predicted overall angular momentum loss from the cluster due to the
tidal field in all models (Akiyama & Sugimoto 1989).

• The SEV𝜔01.2 and SEV𝜔01.8 models evolve as follows: The
BHs and their progenitor stars, which were distributed axisymmet-
rically initially, very quickly form a central bar, which rotates, as
they transport angular momentum to lower mass stars and compact
objects (see Fig. 3, Fig. 5 and Fig. 6). The bar then becomes an
axisymmetric structure over longer time-scales. the outer halo stars
(and compact objects) form a more spherical configuration in the
long-term, while the stars (and compact objects) in the centre of the
cluster form an axisymmetric structure that more slowly becomes
spherical over time.

• The presence of stellar evolution and the tidal field of the star
cluster impacts the aforementioned processes in a way that can be
deduced mainly from Fig. 2, Fig. 3, Fig. 4 and Fig. 5. While the
early dynamical evolution between the models with and without
stellar evolution is similar qualitatively, the gravothermal-gravogyro
catastrophe is stronger and happens slightly earlier in the noSEV
models (see Fig. 1). Most notably, the systems without stellar

evolution evolve to similar configurations in the long-term (spherical
halo of lower mass stars and compact objects with an axisymmetric
centre of higher mass stars and compact objects), but are generally
prohibited by doing so due to strong tidal field mass and angular
momentum loss (see Fig. 1, Fig. 5, Fig. 4 and Fig. 7). Instead they
exhibit a second and even a third gravogyro collapse and approach
a maximally triaxial state in the limit of 1 Gyr. It is an open ques-
tion if this effect is dampened by larger initial tidal radius (see Fig. 1).

• The noSEV𝜔01.2 and noSEV𝜔01.8 models also form a bar
of the high mass stars that is more concentrated and more triaxial
than the bar that forms with stellar evolution due to the lack of
stellar evolution mass loss and compact object natal kicks. This bar
becomes axisymmetric over time as well, but is also more compact
than the counterparts in the SEV models (see Fig. 6).

• The models without stellar evolution reveal that the 𝑀mm
mass group (see Fig. 5) appear to replace the increasingly de-
pleting numbers of 𝑀hm objects in the cluster centre and form
a subsystem there in the mid- to long-term cluster evolution.
This result implies that mass segregation for the 𝑀hm objects has
effectively slowed down significantly at that point in simulation time.

• There is a significant increase in the number of BHBH bina-
ries, 𝑛BHBH, present in the SEV𝜔01.2 model (see Fig. 9). There are
also smaller increases in these numbers later on for the SEV𝜔00.6
and SEV𝜔01.8 models. However, it could also just be statistical
fluctuation. This needs to be explored with further simulations and
appropriate initial conditions that especially concern the IMF and
the binary (orbital) parameters.

6.2 Conclusion

The inclusion of initial bulk rotation in direct 𝑁-body simulations
of star clusters is still unusual, although it has been known for over
a century that star clusters even today show significant imprints of
rotation, for example, in their shape (Pease & Shapley 1917; Shapley
& Sawyer 1927; Shapley 1930; Kopal & Slouka 1936; King 1961;
Frenk & Fall 1982; Harris 1976, 1996; Kormendy 1985; White &
Shawl 1987; Lupton et al. 1987; Chen & Chen 2010; Bianchini et al.
2013). This work therefore provides a bridge between observations
and theory of the gravothermal-gravogyro catastrophe and the an-
gular momentum and heat transport within a star cluster to much
greater detail than any of the previous studies (see large body of
work listed in Sect. 1). However, this is just another milestone on
the road to unravel the impact of initial bulk rotation on realistic star
clusters because many important questions are yet to be answered.
Rizzuto et al. (2021b, 2022); Arca-Sedda et al. (2021) have shown
the formation and growth of an IMBH in a star cluster simulated by
the same code as used here; so far our initial stellar density have been
less than in their models. The question is what effect has rotation as
in our models on the number and growth of IMBH in star clusters?
This issue has only been briefly mentioned in Sect. 5.3 of this paper
and demands more simulations.

6.3 Perspective on future simulations

Reflecting on the discussion and conclusion above, there are several
research objectives that require improvements on the simulations
presented in this paper:

• Increasing the particle number will yield to better results on
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Figure 9. Plots showing the number of binary stars 𝑛b, the number of compact binary stars 𝑛cb, the number of binary black holes (BHBH) 𝑛BHBH, the number
of binary white dwarfs (WDWD) 𝑛WDWD. For the plot of 𝑛b both the SEV (solid lines) and the noSEV models (dash-dotted lines) are shown.

all sorts of statistics, but importantly in the context of this paper,
the calculation of 𝑏/𝑎, 𝑐/𝑎 and 𝜏 would be significantly improved,
especially in the innermost spheroids of the star cluster models.

• Accordingly, increasing the binary fraction will yield more
robust results on compact binary fractions and would enable us to
make better and less speculative assessments on how initial bulk
rotation affects compact binary formation.

• Increasing the density of the initial star cluster models will
enable us to make assessments on the initial stellar merger rates of
BH progenitor stars and subsequently IMBH formation.

• Extending our study to more flattened systems, to have a
steady transition from spheroidal to disky systems. Our current
initial models are not well-suited for disky systems, but e.g. Vergara
et al. (2021) provide suitable disky rotating models. How do
the gravothermal and gravogyro catastrophes proceed in disky
systems? In this paper we still used the concept of Lagrangian
radii, based on spherical systems (except when computing the
principal axes 𝑎, 𝑏, 𝑐). The latter has been initiated by Theis &
Spurzem (1999), it sorts the particles according to their energy in
the system, rather than according to their distance (and spherical
mass coordinate) from the center, which means that the system is -
in virial equilibrium - approximately subdivided using equipotential
surfaces rather than spherical shells containing certain fractions
of total mass. For strongly flattened systems it is necessary
to compute quantities like average masses and velocity disper-
sions in such new spheroidal shells defined by equipotential surfaces.

• Using a realistic 3-D tidal field, which is possible to be treated
with the Nbody6++GPU code version presented here, to study in
detail howmuch angular momentum is carried away by escapers will

enable us to assess how tidal shocks through galactic disk passages
affect the rotating star cluster. We could then also compare the sim-
ulation results to recent cluster observations (e.g. from Pang et al.
(2021, 2022)).

We are in the process of tackling some of these issues with direct 𝑁-
body simulations and we expect many exciting results in the future.
Among these, a recent work by Flammini Dotti et al. (2022) is
shedding light on the impact of the initial bulk rotation on the ejection
properties of free-floating planets and stars in rotating star clusters.
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