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A B S T R A C T

This study gives the derivation of the Hopf bifurcation calculation for neutral delay differential equations
using the centre manifold reduction theorem and normal form calculation. The whole concept was inspired by
a case study where a robotic arm subjected to nonlinear stiffness with delayed acceleration feedback controller
is modelled. Two different configurations are distinguished depending on the location of the acceleration
sensor, a collocated and a non-collocated one. After a brief investigation of the linear stability, the bifurcation
occurring at the loss of stability is calculated with the presented analytic equations for neutral delay differential
equations. Then, a nonlinear term is introduced in the control law that can modify the occurring subcritical
behaviour and improve the robustness of the system. The analytic results are carefully analysed and validated
via a numerical continuation software, which also provided useful information about the global behaviour of
the bifurcations in addition to the locally valid analytic results.
. Introduction

There is a trend in the manufacturing industry to develop machining
pplications for robotic arms [1,2], which faces two main problems
ynamically. Firstly, a robotic arm has a dynamically weak structure
ompared to dedicated machine tools and as such, it is prone to more
ignificant nonlinear behaviour considering e.g. the same amplitude of
scillation. Secondly, machining processes like turning and milling are
egenerative processes [3,4] as the past states of the dynamic system
lay an important role in the long-term behaviour of the mechanical
ystem. Application of robotic arms in the industry is almost impossible
ithout bypassing the dedicated control of the robot manufacturer,
hich is usually developed to have geometrical repeatability and ac-

urate path following. These requirements are not especially adequate
o control the robot during machining processes. This means that
he only possibility is to apply machining operation control through
he dedicated robot control, which results in a sluggish system with
elatively large computation, sampling, and reaction delay.

The current study presents a seed development to mimic an ac-
eleration feedback mechanism with the simplest possible model of
robotic arm through its dedicated position control by having the

bove-mentioned corresponding structural nonlinearity. Here, machin-
ng processes are not included due to their complexity, which must
e dealt with numerically anyways, while its pure delayed nature is
athematically less challenging and already studied [5,6] than the
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introduced multi-degree-of-freedom neutral type system of the gov-
erning problem. On the road to accomplish machining of metal parts
with robots, the first crucial step is to study the robot in itself with
the nonlinear stiffness behaviour and additional acceleration feedback
controller. This has to be achieved regardless of machining. We note
that in later studies, the full problem has to be tackled including also
machining, but the main motivation here is to carry out the analytical
development of a multi-degree-of-freedom neutral system, which un-
dergoes dynamic stability loss, corresponding to a Hopf bifurcation in
the nonlinear system.

The analytical study of Hopf bifurcations is important in several
aspects and can provide useful non-local information about the given
dynamical system. Hopf bifurcation calculation can detect the presence
of limit cycles caused by nonlinearity and predict their local nature
existing ‘around’ the equilibrium or in other words the working point.
The chance to get analytical or semi-analytical solutions to nonlinear
problems is always promising, in comparison to numerical schemes that
in their simple form serve as no more than numerical experiments.
The obtained expressions of these calculations can reveal important
parameter dependencies, which can be crucial for understanding how
the applied control can counter-effect the present nonlinearity. Another
issue with numerical solutions is that simulations cannot run backwards
in time in the case of delayed or neutral systems. This prevents finding
an unstable limit cycle in the same way as stable ones by simulating
backwards.
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As said before, the nonlinear behaviour of dynamical systems can
be investigated with appropriate numerical methods. There are a large
number of packages for the bifurcation analysis of systems of ordinary
differential equations (ODEs). XPPAUTO [7] is a simulation and anal-
ysis package that provides an interface to AUTO [8], while DsTool [9]
is an open source package that provides an interactive interface for all
computations involving dynamical systems. PyDSTool [10] is designed
for the replacement of DsTool, which provides tools for the simula-
tion and analysis of dynamical systems, with a focus on biological
applications. LOCBIF [11] is an interactive bifurcation analysis tool.
The MATCONT [12] MATLAB package emerged out of CONTENT [13]
that is an improved version of LOCBIF. The MATLAB-based continua-
tion program COCO [14] is a development platform for continuation
toolboxes.

Special methods are required to investigate retarded systems [15].
For retarded delay differential equations (RDDEs), the DDE-BIFTOOL
[16] is a robust numerical continuation software based on MATLAB.
Knut [17,18] is a graphical package for the analysis of RDDEs. For
neutral delay differential equations (NDDEs) the NDDE-cont [19] nu-
merical scheme was established as an extension to the DDE-BIFTOOL.
The results of the numerical solutions must be validated with analytical
solutions, whenever it is possible. Sometimes it is not an easy task
to use these numerical schemes and evaluate the results depending
on the investigated system. On the one hand, it can be problematic
to initialize branches in numerical schemes. On the other hand with
the help of analytical closed-form expressions, it is easy to obtain
results for different parameter sets quickly. However, the analytical
solutions are usually given by an expanded form, which is only a
local approximation. This approximation is only valid locally, in the
vicinity of the critical bifurcation point, and cannot give a good picture
of the global behaviour. In comparison, numerical solutions give an
efficient way to present the global picture of the bifurcations, but
limited understanding of parameter dependency.

The Hopf (PAH) theorem for two-dimensional dynamical systems
was derived by Andronov [20,21] which was suggested earlier by
Poincaré [22]. The theorem was later proven by Hopf for arbitrary
finite-dimensional systems [23]. Since then, it has been used in sev-
eral applications [24,25]. The generalization of the Hopf bifurcation
theorem to delay differential equations (DDEs) was done in [26].
Furthermore, an overview of the theorem can be found with results
to simple examples in [27]. The first closed-form result was derived
for a simple scalar RDDE [25], then results were published for vector
RDDEs in [15,28]. Since then, several studies have been carried out for
such systems, for example, [29] investigated nonlinearities in machine
tool vibrations, [30] calculated double Hopf bifurcations in machining
processes- and [31] investigated the nonlinear phenomena behind traf-
fic with a car following model and time delays, just to mention a few.
Furthermore, [32] gave a formal framework for the Hopf bifurcation
calculation together with the centre manifold reduction for RDDEs.

Several studies can be found in the literature that investigates bifur-
cations in NDDEs. Among others, simple scalar neutral equations were
studied in [33,34], neural-type neutral networks in [35], population
models in [36], and circuit systems in [37]. Furthermore, symbolic
calculations were presented in [38] together with the application to a
controlled crane. However, a formal framework for the centre manifold
reduction and normal form calculation of neutral delay differential
equations is yet to be given. This study aims to fill in this gap.

The theory of Hopf bifurcation calculation in NDDEs was motivated
by the nonlinear properties of a simple robotic arm with acceleration
feedback control. A similar study was published on the topic [39],
where the nonlinear behaviour of robots was investigated considering
the time delay of the acceleration feedback controller as well. In that
study, the analytical nonlinear properties were calculated with the
method of multiple scales [40,41].

Industrial robots were first used in machining applications for clay
prototyping [42,43] and later on for rapid prototyping [44,45] of plas-

tic parts. Open kinematical chain robots have a versatile configuration
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with a large workspace, which makes them suitable for machining
sculpture-like surfaces [46–48]. The disadvantage of this versatile con-
figuration is that it usually lacks rigidity. At first, the design concept of
robots focused on simple operations e.g. pick and place [49]. These
tasks do not require extreme geometric accuracy, repeatability is a
more important aspect here. The provided accuracy of stock robots was
enough for the previously mentioned clay or plastic prototyping.

In contrast to the structural design of robots, machine tools usually
do operations on metal parts. Their superstructure provides the nec-
essary stiffness and rigidity [50], which is required for the sufficient
geometrical accuracy of these operations. This results in robust and
expensive structures, in contrast to robotic arms. Besides the required
high accuracy in metal part machining, the reflected stiffness must
overcome the so-called cutting stiffness [51], which is the minimum
requirement for the stability of the operation. This is hard to achieve
with industrial robots having slender and not particularly stiff robotic
arms [52–54]. For this problem, stiffer designs of open kinematic chain
robotic arms can be found, but these configurations can drastically
reduce the workspace nullifying one of the main advantages of robotic
manufacturing.

To upgrade the dynamic performance of the robot, an online con-
trol solution can be deployed using built-in velocity or acceleration
feedback controllers. This can be problematic since the manufacturer
usually does not provide access to the built-in controllers. Contrarily,
the stock robots could be upgraded with the acceptance of the owners
using off-line techniques or certified built-in control. A possible solution
to increase the dynamic reflected stiffness of the end effector is to use
mounted passive or semi-active embedded solutions. However, indus-
trial robot users are usually not comfortable accepting these solutions.
Another possible relatively simple and cheap solution can be utilized
using additional feedback signals in the already built-in position control
of the robot. To achieve stable manufacturing using the new feedback
controller, careful parameter management and the synchronization of
time delays with the built-in controller are necessary.

Acceleration feedback is a popular choice in industrial applications
thanks to its simplicity. Consequently, in this study, an additional
acceleration feedback controller is proposed, which is fed through
the conventional built-in controller of the robot, which is usually
a proportional–derivative controller [55], to mitigate the vibrations
generated by the machining process [56–60] or to compensate for
the flexibility of the robotic arm [61,62]. The use of feedback con-
trollers commonly introduces time delays [15], which can have a
non-negligible effect on the stability of the system. Even small time de-
lays can considerably change the stability properties and the behaviour
of dynamical systems [63,64].

A two degrees-of-freedom (DoF) lumped model of a nonlinear
robotic arm subject to delayed acceleration feedback control is in-
vestigated here, inspired by [39]. In many studies the links of the
robotic arm are modelled [65,66]. In other approaches the arms are
modelled as continuum [67]. Our model is much simpler, so that we
can focus on the instabilities generated by the additional acceleration
feedback controller and derive closed form solutions. We consider
this as the simplest possible equivalent model that can reproduce
the nonlinear behaviour of the robotic arm together with the time
delay of the acceleration feedback controller. A collocated and a non-
collocated configuration are distinguished, based on the position of
the acceleration sensor. The system is collocated if the sensor is near
the actuator and non-collocated if it is near the end effector [68,69].
The stability of both configurations is briefly studied. Modelling the
stiffness nonlinearity of the robot, a third-order polynomial function
is introduced. Firstly, the main nonlinearity, which is the third-order
term, is considered and the bifurcations occurring at the loss of stability
are analytically studied with the Hopf bifurcation calculation derived
for NDDEs. Then, a third-order nonlinear term is introduced in the
control law to control the bifurcation in case of subcritical behaviour
to improve the robustness. Finally, a second-order term is also intro-

duced in the stiffness characteristic, which models the non-symmetric
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Fig. 1. Two degrees of freedom model of the robotic arm.

ehaviour of the system. The effect of this non-symmetric term on the
ifurcations is investigated with and without a nonlinear term in the
ontrol law. The analytical results are validated with the numerical
olutions from the NDDE-cont continuation software. The advantages
nd limitations of the analytical and numerical solutions are carefully
nalysed and compared.

. Mechanical model

A schematic of the adopted two DoF mechanical system can be
een in Fig. 1. The model consists of two lumped masses 𝑚1 and
2 connected by a nonlinear spring 𝑘 and a linear damping 𝑐. The
rescribed reference trajectory 𝑥d is programmed, such that in ideal
ircumstances an identical constrained motion 𝑥r is imposed to mass
1 via a linear spring 𝑘1 with time delay 𝜏r . This gives the dynamical

ystem governed by the following equations of motion

1�̈�1 + 𝑐(�̇�1 − �̇�2) + 𝑘(Δ𝑥) (𝑥1 − 𝑥2) + 𝑘1𝑥1 = 𝑘1𝑥r ,

𝑚2�̈�2 + 𝑐(�̇�2 − �̇�1) + 𝑘(Δ𝑥) (𝑥2 − 𝑥1) = 0,
(1)

where 𝑥1 and 𝑥2 are the displacements of the lumped masses. Overdot
( ̇ ) indicates derivation with respect to time 𝑡. Furthermore, Δ𝑥 ∶=
𝑥2 − 𝑥1 and the nonlinear spring is considered with a second-order
nonlinearity in the stiffness characteristic 𝑘(Δ𝑥) = 𝑘2+𝑘nl,1Δ𝑥+𝑘nl,2Δ𝑥2,
which will lead to a third-order polynomial nonlinearity in the system.
The physical interpretation of parameters 𝑘nl,1 and 𝑘nl,2 can be ex-
plained by the gear backlash phenomenon [70,71], which is related to
the tolerances of the gear teeth resulting usually in stiffening behaviour.
This plays an important role in robotic arms also, since the drives
are usually gear-driven. The nonlinear behaviour of the backlash is
often modelled with a third-order stiffness characteristic function [71].
In this sense, the parameter 𝑘nl,2 corresponds to the main nonlinear
characteristic of the drives of the robotic arms and 𝑘nl,1 corresponds
to a slight non-symmetric behaviour of the gear backlash. Apart from
the prescribed reference trajectory 𝑥d, an additional feedback signal 𝑥f ,
including a third-order nonlinear acceleration term is fed back with
time delay 𝜏f . In summary, this gives the ideal constrained motion 𝑥r .
The final constrained motion is 𝑥r (𝑡) = 𝑥d(𝑡− 𝜏r )+𝑎1�̈�1(𝑡− 𝜏)+𝑎nl,1�̈�31(𝑡−
𝜏) + 𝑎2�̈�2(𝑡 − 𝜏) + 𝑎nl,2�̈�32(𝑡 − 𝜏), where 𝜏 = 𝜏r + 𝜏f is the delay of the
control force. The linear part of the control law is present to improve
the dynamic performance of robots in future applications in machining.
With the nonlinear part of the control law we aim to modify possible
subcritical bifurcations to supercritical increasing the robustness of the
system. The linear and nonlinear acceleration control gains are 𝑎1, 𝑎2,
𝑎nl,1 and 𝑎nl,2 respectively. The values 𝑚1, 𝑚2, 𝑐, 𝑘1 and 𝑘2 are assumed
to be positive real numbers, while 𝑘nl,1, 𝑘nl,2, 𝑎1, 𝑎2, 𝑎nl,1 and 𝑎nl,2 are
generic real numbers. We assume that the control force is calculated
based on the value of the acceleration of mass 𝑚1 or 𝑚2; therefore,
we assume that either 𝑎1 = 0 and 𝑎nl,1 = 0 or 𝑎2 = 0 and 𝑎nl,2 = 0.
These two cases correspond to a non-collocated or collocated controller,
 S

3

respectively. With these considerations, the equations of motion can be
written as

𝑚1�̈�1 + 𝑐(�̇�1 − �̇�2) + 𝑘2(𝑥1 − 𝑥2) + 𝑘1𝑥1 − 𝑘nl,1(𝑥1 − 𝑥2)2

+ 𝑘nl,2(𝑥1 − 𝑥2)3 = 𝑘1(𝑥d𝜏r + 𝑎1�̈�1𝜏 + 𝑎nl,1�̈�
3
1𝜏 + 𝑎2�̈�2𝜏 + 𝑎nl,2�̈�

3
2𝜏 ),

2�̈�2 + 𝑐(�̇�2 − �̇�1) + 𝑘2(𝑥2 − 𝑥1) + 𝑘nl,1(𝑥2 − 𝑥1)2 + 𝑘nl,2(𝑥2 − 𝑥1)3 = 0,

(2)

here 𝑥d𝜏r = 𝑥d(𝑡− 𝜏r ), �̈�1𝜏 = �̈�1(𝑡− 𝜏), �̈�2𝜏 = �̈�2(𝑡− 𝜏). In order to focus
n the instabilities induced by the acceleration feedback controller,
onstant prescribed reference trajectory is assumed 𝑥d(𝑡) ≡ 𝑥d. This
esults in an equilibrium (𝑥1, 𝑥2) = (𝑥d, 𝑥d). With the introduction of

perturbations 𝑥1 = 𝑥1 + 𝑢1 and 𝑥2 = 𝑥2 + 𝑢2, the variation equations can
be written as

𝑚1�̈�1 + 𝑐(�̇�1 − �̇�2) + 𝑘2(𝑢1 − 𝑢2) + 𝑘1𝑢1 − 𝑘nl,1(𝑢1 − 𝑢2)2 + 𝑘nl,2(𝑢1 − 𝑢2)3

= 𝑘1(𝑎1�̈�1𝜏 + 𝑎nl,1�̈�
3
1𝜏 + 𝑎2�̈�2𝜏 + 𝑎nl,2�̈�

3
2𝜏 ),

2�̈�2 + 𝑐(�̇�2 − �̇�1) + 𝑘2(𝑢2 − �̃�1) + 𝑘nl,1(𝑢2 − 𝑢1)2 + 𝑘nl,2(𝑢2 − 𝑢1)3 = 0.

(3)

n order to reduce the number of parameters, we divide both equations
y 𝑚1, obtaining the system

̈1 + 2𝜒𝑟𝜔2(�̇�1 − �̇�2) + 𝜔2
2 𝑟(𝑢1 − 𝑢2) + 𝜔2

1𝑢1 −
𝑘nl,1
𝑚1

(𝑢1 − 𝑢2)2

+
𝑘nl,2
𝑚1

(𝑢1 − 𝑢2)3 − 𝜔2
1(𝑎1�̈�1𝜏 + 𝑎nl,1�̈�

3
1𝜏 + 𝑎2�̈�2𝜏 + 𝑎nl,2�̈�

3
2𝜏 ) = 0,

̈2 + 2𝜒𝜔2(�̇�2 − �̇�1) + 𝜔2
2(𝑢2 − 𝑢1) +

𝑘nl,1
𝑟𝑚1

(𝑢2 − 𝑢1)2 +
𝑘nl,2
𝑟𝑚1

(𝑢2 − 𝑢1)3 = 0,

(4)

where 𝑟 ∶= 𝑚2∕𝑚1 is the mass ratio, 𝜔1 ∶=
√

𝑘1∕𝑚1, 𝜔2 ∶=
√

𝑘2∕𝑚2
are the angular natural frequencies of the standalone 1 DoF fixed
spring systems and 𝜒 ∶= 𝑐∕(2𝑚2𝜔2) is the standalone damping ratio.
Then, we introduce the dimensionless time 𝑡𝜔1 → 𝑡 and displacements
𝑢1
√

|𝑘nl,2|∕(𝑟𝑘1) → 𝑢1 and 𝑢2
√

|𝑘nl,2|∕(𝑟𝑘1) → 𝑢2, reducing the system to

′′
1 + 2𝜒𝑟𝛾(𝑢′1 − 𝑢′2) + 𝛾2𝑟 (𝑢1 − 𝑢2) + 𝑢1 − 𝜈 𝑟 (𝑢1 − 𝑢2)2 + 𝜎 𝑟 (𝑢1 − 𝑢2)3

− (𝜅1𝑢′′1𝜏 + 𝜅nl,1𝑢
′′3
1𝜏 + 𝜅2𝑢

′′
2𝜏 + 𝜅nl,2𝑢

′′3
2𝜏 ) = 0,

𝑢′′2 + 2𝜒𝛾(𝑢′2 − 𝑢′1) + 𝛾2(𝑢2 − 𝑢1) + 𝜈 (𝑢2 − 𝑢1)2 + 𝜎 (𝑢2 − 𝑢1)3 = 0,

(5)

where prime (′) indicates derivation with respect to the new, rescaled
dimensionless time 𝑡, while 𝑢′′1𝜏 = 𝑢′′1 (𝑡 − 𝜏), 𝑢′′2𝜏 = 𝑢′′2 (𝑡 − 𝜏), with
the dimensionless time delay 𝜏𝜔1 → 𝜏. Besides, the dimensionless
standalone natural frequency ratio 𝛾 ∶= 𝜔2∕𝜔1, the rescaled control
parameters 𝜅1 ∶= 𝜔2

1𝑎1, 𝜅2 ∶= 𝜔2
1𝑎2, the rescaled nonlinear control

parameters 𝜅nl,1 ∶= 𝜔6
1𝑎nl,1𝑟 𝑘1∕|𝑘nl,2|, 𝜅nl,2 ∶= 𝜔6

1𝑎nl,2𝑟 𝑘1∕|𝑘nl,2| and
𝜈 ∶= (𝑘nl,1∕

√

𝑟 𝑘1)
√

|

|

1∕𝑘nl,2||, 𝜎 ∶= sign(𝑘nl2).

. Linear stability

The linear stability of the system can be investigated with the D-
eparation method [72]. The details of the calculation are omitted in
his study. We refer to [39], where a similar system was investigated,
hich gives the same results for the linear stability as our system.
ith the D-separation method, the D-curves can be given, which define

he critical (non-hyperbolic) boundaries. Stability boundaries are such
ritical boundaries, which surround the regions where the number of
nstable characteristic exponents is zero. For the collocated case we
mpose 𝜅2 = 0 and solve the equations for the collocated control
arameter 𝜅1, which gives (6) in Box I. In the non-collocated case 𝜅1 = 0
nd we can solve for the non-collocated control parameter 𝜅2, which
ives (7) in Box I.
olving the equations obtained from the D-separation method with
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𝜅1 = ±

√

2𝛾2𝜔2 ((𝑟 + 1)𝜔2 − 1) (2𝜒2((𝑟 + 1)𝜔2 − 1) − 𝜔2 + 1) + 𝛾4((𝑟 + 1)𝜔2 − 1)2 + 𝜔4 (𝜔2 − 1)2

𝜔4 (2 (2𝜒2 − 1)𝛾2𝜔2 + 𝛾4 + 𝜔4)
, (6)

𝜅2 = ±

√

2𝛾2𝜔2 ((𝑟 + 1)𝜔2 − 1) (2𝜒2((𝑟 + 1)𝜔2 − 1) − 𝜔2 + 1) + 𝛾4((𝑟 + 1)𝜔2 − 1)2 + 𝜔4 (𝜔2 − 1)2

𝛾2𝜔4 (4𝜒2𝜔2 + 𝛾2)
. (7)

Box I.
c

𝜆

T
c

Fig. 2. Stability boundaries for the collocated (a) and non-collocated systems (b) with
parameters 𝑟 = 1, 𝛾 = 1, 𝜒 = 0.05 in the plane of the control parameters 𝜅1 , 𝜅2 and the
time delay 𝜏. The black line shows the stability boundary and the grey zone the stable
region.

respect to sin𝜔𝜏 and cos𝜔𝜏, we obtain

𝑠(𝜔) ∶= sin𝜔𝜏 =
2𝜒𝛾𝜔 (𝜅1𝑟 𝜔2 − 𝜅2𝜔2 + 𝜅2)

𝑑(𝜔)
,

(𝜔) ∶= cos𝜔𝜏 = 1
𝜔2 𝑑(𝜔)

(𝛾2𝜔2(𝜅1(4𝜒2((𝑟 + 1)𝜔2 − 1) − (𝑟 + 2)𝜔2 + 2)

+ 𝜅2(4𝜒2((𝑟 + 1)𝜔2 − 1) − 𝜔2 + 1))
+ 𝛾4(𝜅1 + 𝜅2) ((𝑟 + 1)𝜔2 − 1) + 𝜅1𝜔

4(𝜔2 − 1)),

(8)

here

(𝜔) ∶= 2𝛾2𝜔2(𝜅1 + 𝜅2) ((2𝜒2 − 1) 𝜅1 + 2𝜒2𝜅2) + 𝛾4(𝜅1 + 𝜅2)2 + 𝜅2
1𝜔

4. (9)

From (8), we can directly obtain the value of 𝜏 as a function of 𝜔, i.e.

𝜏𝑛(𝜔) =
atan2(𝑠(𝜔), 𝑐(𝜔)) + 𝑛 2𝜋

𝜔
, 𝑛 ∈ Z. (10)

With these results, we can plot the stability boundaries. In the collo-
cated case we use the 𝜅1, 𝜏 plane and in the non-collocated case, the
2, 𝜏 plane. The stability boundaries can be seen in Fig. 2. The detailed
arameter analysis can be found in [39].

The nonlinear behaviour in robots is a non-negligible phenomenon.
ubcritical Hopf bifurcation means that an unstable limit cycle emerges
rom the bifurcation point inside the stable region. From an engineering
oint of view, this behaviour usually has negative effects. This means
hat for a large enough perturbation the system can become unstable
ven though the system is stable for small perturbations. The flexible
obotic arm can experience perturbations that can lead to such unstable
ibrations. In the case of a supercritical Hopf bifurcation, a stable
imit cycle emerges from the bifurcation point inside the unstable
egion. Contrary to subcritical behaviour, supercritical limit cycles are
sually a favourable phenomenon, because they limit the vibration
mplitude in an unstable parameter region. This means that they make

he system more robust. In addition, they make the system safer in

4

case of unexpected parameter changes. Consequently, the goal in the
development of nonlinear controllers is to change the nature of the
occurring Hopf bifurcations from subcritical to supercritical to increase
the robustness of the system.

4. Hopf bifurcation calculation in neutral systems

In this section, we aim to give an overview of the normal form
calculation of the Hopf bifurcation in neutral systems using the centre
manifold reduction. Normal form theories aim to transform the system
into a simpler form. Poincaré’s theory of normal forms, which is also
employed in this study, produces simple forms from differential equa-
tions in the neighbourhood of an equilibrium or periodic motion by
means of power series expansion [73]. Additionally, the local long-term
dynamics of the system is determined by the flow on a two-dimensional
centre manifold embedded in the infinite-dimensional phase space of
the delay differential equation [74]. Although there is a wide range
of studies regarding the calculation of Hopf bifurcations in delayed
systems, few studies carried out the calculation for neutral systems.
Therefore, we present here a clear derivation of the centre manifold
reduction and the Poincaré normal form for neutral delay differential
equations. For the retarded case [32] gives a good overview of the Hopf
bifurcation calculation.

4.1. Existence of the Hopf bifurcation

If two conditions are satisfied, then a Hopf bifurcation exists at the
critical bifurcation value 𝜇cr . Firstly, at the critical bifurcation param-
eter value, 𝜇cr exists a complex conjugate pair of purely imaginary
haracteristic exponents

1,2(𝜇cr ) = ±i𝜔, (11)

where 𝜔 ∈ R+ is the frequency at the critical value of stability.
The other condition is that the critical characteristic exponents 𝜆1,2
have to cross the imaginary axis with a nonzero speed by varying the
bifurcation parameter 𝜇

Re
d𝜆(𝜇)
d𝜇

|

|

|

|𝜇=𝜇cr
≠ 0. (12)

his derivative can be expressed via the implicit differentiation of the
haracteristic function with respect to the bifurcation parameter

d𝐷(𝜆(𝜇); 𝜇)
d𝜇

=
𝜕𝐷(𝜆(𝜇); 𝜇)

𝜕𝜇
+

𝜕𝐷(𝜆(𝜇); 𝜇)
𝜕𝜆

d𝜆(𝜇)
d𝜇

, (13)

where 𝐷(𝜆(𝜇); 𝜇) is the characteristic function. Therefore, the critical
characteristic exponent crosses the imaginary axis with speed

Re
d𝜆(𝜇)
d𝜇

|

|

|

|𝜇=𝜇cr
= Re −

𝜕𝐷(𝜆(𝜇); 𝜇)
𝜕𝜇

|

|

|𝜇=𝜇cr
𝜕𝐷(𝜆(𝜇); 𝜇) |

|

|

|

|

|

|

|

. (14)

𝜕𝜆

|𝜇=𝜇cr |
|𝜆=i𝜔
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For the collocated case, with 𝜅1 chosen as the bifurcation parameter
he crossing speed is

e
d𝜆(𝜇)
d𝜇

|

|

|

|𝜇=𝜅1cr
= (𝜔2(2𝛾𝜒(𝛾2((𝑟 + 1)𝜔2 − 1) − 3 𝑟 𝜔4 + 𝜔4 − 𝜔2)

× cos(𝜔𝜏) + 𝜔 (𝜅1cr𝜔 (𝛾3(𝛾𝜏 − 2𝜒) + 2𝛾𝜔2(𝛾𝜏(2𝜒2 − 1) − 𝜒) + 𝜏𝜔4)

+ 2 sin(𝜔𝜏) (𝛾4(𝑟 + 1) + 𝛾2(𝜒2(6 (𝑟 + 1)𝜔2 − 2) − (𝑟 + 3)𝜔2 + 1)

+ 2𝜔4 − 𝜔2))))
/

(4𝛾2𝜒2 + 2𝜔6(𝜅2
1cr (𝛾𝜏 (𝛾𝜏(2𝜒

2 − 1) − 2𝜒) + 8) + 8)

+ 𝜅2
1cr𝜏

2𝜔8 + 4𝜔2(𝛾4(𝜅2
1cr + (𝑟 + 1)2) − 2𝛾2(𝑟 + 1)(3𝜒2 − 1) + 1)

+ 4𝜅1cr𝜔 (𝜔 cos(𝜔𝜏) (𝜔2(𝛾(𝜏𝜒(𝛾2(𝑟 + 1) − 1) − 18𝛾(𝑟 + 1)𝜒2 + 4𝛾

× (𝑟 + 2)) + 4) − 𝛾2(𝛾𝜏𝜒 + 2𝛾2(𝑟 + 1) − 6𝜒2 + 2) + 𝜔4(𝛾(1 − 3 𝑟) 𝜏𝜒

− 8)) + sin(𝜔𝜏) ( − 2𝛾3𝜒 + 𝜔4(𝜏 (𝛾2(6 (𝑟 + 1)𝜒2 − 𝑟 − 3) − 1) − 12𝛾𝑟𝜒)

+ 𝛾𝜔2(𝛾𝜏 (𝛾2(𝑟 + 1) − 2𝜒2 + 1) − 2𝜒) + 2𝜏𝜔6)) + 𝜔4(𝛾4𝜅2
1cr𝜏

2 − 4𝛾3

× 𝜅2
1cr𝜏𝜒 + 4𝛾2(9𝜒2(𝜅2

1cr + (𝑟 + 1)2) − 4(𝜅2
1cr + 𝑟 + 1)) − 16)).

(15)

For the non-collocated case, with 𝜅2 chosen as the bifurcation parame-
ter

Re
d𝜆(𝜇)
d𝜇

|

|

|

|𝜇=𝜅2cr
= (𝛾𝜔2(𝛾𝜔 (𝜅2cr𝜔 (𝛾2𝜏 − 2𝛾𝜒 + 4𝜏𝜒2𝜔2) + 2 sin(𝜔𝜏)

× (𝛾2(𝑟 + 1) + 𝜒2(6 (𝑟 + 1)𝜔2 − 2) − 2𝜔2 + 1)) + 2𝜒(𝛾2((𝑟 + 1)𝜔2 − 1)

+ 4𝜔4 − 2𝜔2) cos(𝜔𝜏)))
/

( − 4𝛾3𝜅2
2cr𝜏𝜒𝜔

4 + 𝛾4𝜔2(𝜅2
2cr (𝜏

2𝜔2 + 4) + 4 𝑟

× (𝑟 + 2) + 4) + 4𝛾2(𝜒2(𝜅2
2cr𝜏

2𝜔6 + 9𝜔4(𝜅2
2cr + (𝑟 + 1)2) − 6 (𝑟 + 1)𝜔2

+ 1) + 2(𝑟 + 1)𝜔2(1 − 2𝜔2)) + 4𝛾𝜅2cr𝜔 ( sin(𝜔𝜏) ( − 2𝛾2𝜒 + 𝜔2(𝛾𝜏 (𝛾2(𝑟
+ 1) − 2𝜒2 + 1) − 6𝜒) + 2𝜔4(𝛾𝜏 (3 (𝑟 + 1)𝜒2 − 1) + 6𝜒)) + 𝜔 cos(𝜔𝜏)

× ( − 𝛾 (𝛾𝜏𝜒 + 2𝛾2(𝑟 + 1) − 6𝜒2 + 2) + 𝜔2(𝛾 ((𝑟 + 1)𝜒 (𝛾𝜏 − 18𝜒) + 4)

− 2𝜏𝜒) + 4 𝜏𝜒𝜔4)) + 4𝜔2(1 − 2𝜔2)2).

(16)

4.2. Centre manifold reduction

Neutral delay-differential equations in the form

�̇�(𝑡) = 𝐋 𝐮(𝑡) + 𝐑 �̇�(𝑡 − 𝜏) + 𝐅(𝐮(𝑡), �̇�(𝑡 − 𝜏)), (17)

where 𝐋, 𝐑 ∈ R𝑛×𝑛 are constant matrices and 𝐅(𝐮(𝑡), �̇�(𝑡 − 𝜏)) is an
analytic function with the near-zero feature 𝐅(𝟎, 𝟎) = 𝟎 can be rewritten
at the critical bifurcation parameter as an operator differential equation
on the Banach space ℋ of continuously differentiable functions 𝐮 ∶
[−𝜏, 0] → R2 as

�̇�𝑡 = 𝒜𝐮𝑡 +ℱ (𝐮𝑡), (18)

where 𝐮𝑡 ∈ ℋ is defined by the time shift

𝐮𝑡(𝜗) = 𝐮(𝑡 + 𝜗), 𝜗 [−𝜏, 0] . (19)

Generally, a 𝐮(𝑡 − 𝜏) term should also be included in (17) representing
retarded terms. However, in our system this term is not present and the
presented calculation can be easily extended to that case combining the
results presented in this study and the well-known expressions of the
retarded case. The linear operator 𝒜 can be expressed as

𝒜𝐮(𝜗) =
{

𝐮′(𝜗), 𝜗 ∈ [−𝜏, 0),
𝐋 𝐮(0) + 𝐑 𝐮′(−𝜏), 𝜗 = 0,

(20)

where ( ′ ) indicates derivation with respect to 𝜗. The nonlinear operator
ℱ can be expressed as

ℱ (𝐮)(𝜗) =
{

𝟎, 𝜗 ∈ [−𝜏, 0),
𝐅(𝐮(0),𝐮′(−𝜏)), 𝜗 = 0.

(21)

The right-hand side critical eigenfunction 𝐬(𝜗) of operator 𝒜 corre-
sponding to the critical characteristic roots 𝜆 = ±i𝜔 satisfies

𝒜 𝐬(𝜗) = i𝜔 𝐬(𝜗),
𝖧 𝖧

(22)

𝒜 𝐬 (𝜗) = −i𝜔 𝐬 (𝜗),

5

where the notation □𝖧 means the conjugate transpose. The real and
imaginary part of the eigenfunction 𝐬(𝜗) are 𝐬R(𝜗) = Re 𝐬(𝜗), 𝐬I(𝜗) =
Im 𝐬(𝜗). Now the first row of (22) can be written as

𝒜 𝐬R(𝜗) = −𝜔 𝐬I(𝜗),
𝒜 𝐬I(𝜗) = 𝜔 𝐬R(𝜗).

(23)

From (23) we arrive to the linear ODE form for the critical eigenset
[

𝐬′R(𝜗)
𝐬′I(𝜗)

]

= 𝜔
[

𝟎 −𝐈
𝐈 𝟎

] [

𝐬R(𝜗)
𝐬I(𝜗)

]

(24)

with defined boundary:
[

𝐋 𝜔 𝐈
−𝜔 𝐈 𝐋

] [

𝐬R(0)
𝐬I(0)

]

+
[

𝐑 𝟎
𝟎 𝐑

] [

𝐬′R(−𝜏)
𝐬′I(−𝜏)

]

=
[

𝟎
𝟎

]

, (25)

where 𝐈 ∈ R𝑛×𝑛 represents the identity matrix and 𝟎 ∈ R𝑛×𝑛 is the zero
matrix or the zero vector 𝟎 ∈ R𝑛. The general solution of (24) can be
written as
[

𝐬R(𝜗)
𝐬I(𝜗)

]

=
[

𝐒1
𝐒2

]

cos𝜔𝜗 +
[

−𝐒2
𝐒1

]

sin𝜔𝜗, (26)

where 𝐒1,2 ∈ R𝑛 are the coefficient vectors of the eigenfunctions 𝐬R,I.
It should be noted that 𝐒1,2 have two freely eligible variables as usual
in eigenvector problems. Substituting the values at the boundary gives
the following linear homogeneous algebraic equation
[

𝐋 + 𝜔𝐑 sin𝜔𝜏 𝜔 𝐈 − 𝜔𝐑 cos𝜔𝜏
−𝜔 𝐈 + 𝜔𝐑 cos𝜔𝜏 𝐋 + 𝜔𝐑 sin𝜔𝜏

] [

𝐒1
𝐒2

]

=
[

𝟎
𝟎

]

. (27)

The eigenfunctions 𝐬R(𝜗) and 𝐬I(𝜗) span the centre (critical) subspace
that is tangent to the two-dimensional centre manifold of the infinite-
dimensional phase space. In order to project the system to the space
spanned by 𝐬R(𝜗) and 𝐬I(𝜗) and to its complementary space we need
the left-hand side critical eigenfunction of 𝒜 denoted by 𝐧(𝜗). For this,
we need the adjoint operator 𝒜 ∗ satisfying

𝒜 ∗𝐧(𝜉) = −i𝜔𝐧(𝜉),
𝒜 ∗𝐧𝖧(𝜉) = i𝜔𝐧𝖧(𝜉).

(28)

With the help of a suitable definition for the bilinear form (inner
product), the adjoint operator can be defined satisfying the formal
adjoint problem

⟨𝐮,𝒜𝐯⟩ = ⟨𝒜 ∗𝐮, 𝐯⟩. (29)

The bilinear form for the neutral case is

⟨𝐮(𝜗), 𝐯(𝜗)⟩ = ∫

0

−𝜏
𝐮𝖧(𝜗 + 𝜏)𝐑𝐯′(𝜗) d𝜗 + (𝐮𝖧(0) − 𝐮𝖧(𝜏)𝐑) 𝐯(0). (30)

For the detailed derivation, see Appendix A. The bilinear form gives the
definition of the adjoint operator

𝒜 ∗𝐯(𝜉) =
{

−𝐯′(𝜉), 𝜉 ∈ (0, 𝜏] ,
𝐋𝖧𝐯(0) − 𝐑𝖧𝐯′(𝜏), 𝜉 = 0.

(31)

Now we can calculate the left-hand side critical eigenfunctions. The real
and imaginary part of vector 𝐧(𝜗) are 𝐧R(𝜗) = Re𝐧(𝜗), 𝐧I(𝜗) = Im𝐧(𝜗).
The first row of (28) can be rewritten as

𝒜 ∗𝐧R(𝜉) = 𝜔𝐧I(𝜉),
𝒜 ∗𝐧I(𝜉) = −𝜔𝐧R(𝜉).

(32)

Rewriting it gives a similar ODE with defined boundary as in Eqs. (24),
(25)
[

𝐧′R(𝜉)
𝐧′I(𝜉)

]

= 𝜔
[

𝟎 −𝐈
𝐈 𝟎

] [

𝐧R(𝜉)
𝐧I(𝜉)

]

,
[

𝐋𝖧 −𝜔 𝐈
𝜔 𝐈 𝐋𝖧

] [

𝐧R(0)
𝐧I(0)

]

−
[

𝐑𝖧 𝟎
𝟎 𝐑𝖧

] [

𝐧′R(−𝜏)
𝐧′I(−𝜏)

]

=
[

𝟎
𝟎

]

.
(33)

The general solution of (33) can be written as
[

𝐧R(𝜉)
]

=
[

𝐍1
]

cos𝜔𝜉 +
[

−𝐍2
]

sin𝜔𝜉, (34)
𝐧I(𝜉) 𝐍2 𝐍1
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⎡

⎢

⎢

⎣

𝑧

where 𝐍1,2 ∈ R𝑛 are the coefficient vectors, having two freely eligible
variables. Substituting the values at the boundary gives the following
linear homogeneous algebraic equation
[

𝐋𝖧 + 𝜔𝐑𝖧 sin𝜔𝜏 −𝜔 𝐈 + 𝜔𝐑 cos𝜔𝜏
𝜔 𝐈 − 𝜔𝐑𝖧 cos𝜔𝜏 𝐋𝖧 + 𝜔𝐑𝖧 sin𝜔𝜏

] [

𝐍1
𝐍2

]

=
[

𝟎
𝟎

]

. (35)

Using the bilinear form in (A.4), two orthonormal conditions can be
defined as

⟨𝐧R, 𝐬R⟩ = 1, ⟨𝐧R, 𝐬I⟩ = 0. (36)

This gives two more equations, which can be rearranged for 𝐍1,2 as

1
2

[

𝐒𝖧1 (2 𝐈 + 𝐑𝖧(𝜔𝜏 sin𝜔𝜏 − 2 cos𝜔𝜏)) − 𝐒𝖧2𝐑
𝖧(𝜔𝜏 cos𝜔𝜏 + sin𝜔𝜏)

𝐒𝖧1𝐑
𝖧(𝜔𝜏 cos𝜔𝜏 + sin𝜔𝜏) + 𝐒𝖧2 (2 𝐈 + 𝐑𝖧(𝜔𝜏 sin𝜔𝜏 − 2 cos𝜔𝜏))

𝐒𝖧1𝐑
𝖧(𝜔𝜏 cos𝜔𝜏 + sin𝜔𝜏) + 𝐒𝖧2𝐑

𝖧𝜔𝜏 sin𝜔𝜏
−𝐒𝖧1𝐑

𝖧𝜔𝜏 sin𝜔𝜏 + 𝐒𝖧2𝐑
𝖧(𝜔𝜏 cos𝜔𝜏 + sin𝜔𝜏)

][

𝐍1

𝐍2

]

=

[

1
0

]

.

(37)

Note that Eqs. (27), (35), (37) give 𝑘 = 2𝑛 + 2 equations to solve.
After the decomposition of the solution 𝐮𝑡(𝜗) into the components 𝑧1,2 ∶
R → R tangent to the centre subspace and into the infinite-dimensional
component 𝐰 ∶ R → XR𝑛 transverse to the centre subspace and writing
the equations into a truncated Taylor series form, we get

⎡

⎢

⎢

⎢

⎢

⎣

�̇�1
�̇�2
�̇�

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

0 𝜔 0

−𝜔 0 0

0 0 𝒜

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑧1
𝑧2
𝐰

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

∑𝑗+𝑘=2,3
𝑗,𝑘≥0 𝑓 (1)

𝑗𝑘0𝑧
𝑗
1𝑧

𝑘
2

∑𝑗+𝑘=2,3
𝑗,𝑘≥0 𝑓 (2)

𝑗𝑘0𝑧
𝑗
1𝑧

𝑘
2

∑𝑗+𝑘=2
𝑗,𝑘≥0

(

𝐟 (3𝑐)𝑗𝑘0 cos𝜔𝜗 + 𝐟 (3𝑠)𝑗𝑘0 sin𝜔𝜗
)

𝑧𝑗1𝑧
𝑘
2

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑𝑛
𝑖=1

(

𝑓 (10)
101,𝑖𝑧1 + 𝑓 (10)

011,𝑖𝑧2
)

𝑤𝑖(0) +
(

𝑓 (1𝜏)
101,𝑖𝑧1 + 𝑓 (1𝜏)

011,𝑖𝑧2
)

𝑤′
𝑖(−𝜏)

∑𝑛
𝑖=1

(

𝑓 (20)
101,𝑖𝑧1 + 𝑓 (20)

011,𝑖𝑧2
)

𝑤𝑖(0) +
(

𝑓 (2𝜏)
101,𝑖𝑧1 + 𝑓 (2𝜏)

011,𝑖𝑧2
)

𝑤′
𝑖(−𝜏)

⎧

⎪

⎨

⎪

⎩

𝟎, 𝜗 ∈ [−𝜏, 0) ,
∑𝑗+𝑘=2

𝑗,𝑘≥0 𝐟 (3)𝑗𝑘0, 𝜗 = 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(38)

For the detailed derivation of this form and for the expressions of the
coefficient terms see Appendix B.

4.3. Two-dimensional centre manifold

The centre manifold is tangent to the plane spanned by 𝑧1 and 𝑧2.
Generally, second-order expansion of the centre manifold is needed.
The second-order Taylor expansion of the centre manifold yields

𝐰(𝑧1, 𝑧2)(𝜗) =
1
2
(𝐡20(𝜗) 𝑧21 + 2𝐡11(𝜗) 𝑧1𝑧2 + 𝐡02(𝜗) 𝑧22). (39)

he unknown terms are 𝐡20,𝐡11,𝐡02 ∈ XR𝑛 . Taking the derivative of
(39) with respect to time yields

�̇�(𝑧1, 𝑧2)(𝜗) = −𝜔𝐡11(𝜗) 𝑧21 + 𝜔 (𝐡20(𝜗) − 𝐡02(𝜗)) 𝑧1𝑧2 + 𝜔𝐡11(𝜗) 𝑧22. (40)

On the other hand with

𝒜𝐰 =

{

1
2 (𝐡

′
20(𝜗) 𝑧

2
1 + 2 𝐡′11(𝜗) 𝑧1𝑧2 + 𝐡′02(𝜗) 𝑧

2
2), 𝜗 ∈ [−𝜏, 0) ,

𝐋𝐰(0) + 𝐑𝐰′(−𝜏), 𝜗 = 0.
(41)

Eq. (B.3) gives

�̇�(𝑧1, 𝑧2)(𝜗) =
1
2
(𝐡′20(𝜗) 𝑧

2
1 + 2 𝐡′11(𝜗) 𝑧1𝑧2 + 𝐡′02(𝜗) 𝑧

2
2)

+
𝑗+𝑘=2
∑

(

𝐟 (3𝑐)𝑗𝑘0 cos𝜔𝜗 + 𝐟 (3𝑠)𝑗𝑘0 sin𝜔𝜗
)

𝑧𝑗1𝑧
𝑘
2 .

(42)
𝑗,𝑘≥0 L

6

Comparing the coefficients of Eqs. (40) and (42) gives the system of
differential equations

⎡

⎢

⎢

⎢

⎣

𝐡′20(𝜗)
𝐡′11(𝜗)
𝐡′02(𝜗)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝟎 −2𝜔 𝐈 𝟎
𝜔 𝐈 𝟎 −𝜔 𝐈
𝟎 2𝜔 𝐈 𝟎

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝐡20(𝜗)
𝐡11(𝜗)
𝐡02(𝜗)

⎤

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

2 𝐟 (3𝑐)200

𝐟 (3𝑐)110

2 𝐟 (3𝑐)020

⎤

⎥

⎥

⎥

⎦

cos𝜔𝜗−

⎡

⎢

⎢

⎢

⎣

2 𝐟 (3𝑠)200

𝐟 (3𝑠)110

2 𝐟 (3𝑠)020

⎤

⎥

⎥

⎥

⎦

sin𝜔𝜗

(43)

with the boundary conditions

⎡

⎢

⎢

⎢

⎣

𝐋 2𝜔 𝐈 𝟎
−𝜔 𝐈 𝐋 𝜔 𝐈
𝟎 −2𝜔 𝐈 𝐋

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝐡20(0)
𝐡11(0)
𝐡02(0)

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

𝟎 −2𝜔𝐑 𝟎
𝜔𝐑 𝟎 −𝜔𝐑
𝟎 2𝜔𝐑 𝟎

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝐡20(−𝜏)
𝐡11(−𝜏)
𝐡02(−𝜏)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

2𝐑 𝐟 (3𝑐)200 cos𝜔𝜏 − 2𝐑 𝐟 (3𝑠)200 sin𝜔𝜏 − 2 𝐟 (3𝑐)200 − 2 𝐟 (3)200

𝐑 𝐟 (3𝑐)110 cos𝜔𝜏 − 𝐑 𝐟 (3𝑠)110 sin𝜔𝜏 − 𝐟 (3𝑐)110 − 𝐟 (3)110

2𝐑 𝐟 (3𝑐)020 cos𝜔𝜏 − 2𝐑 𝐟 (3𝑠)020 sin𝜔𝜏 − 2 𝐟 (3𝑐)020 − 2 𝐟 (3)020

⎤

⎥

⎥

⎥

⎦

.

(44)

The general solution of (43) is

⎡

⎢

⎢

⎢

⎣

𝐡20(𝜗)
𝐡11(𝜗)
𝐡02(𝜗)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝐇0

𝟎
𝐇0

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

𝐇1

𝐇2

−𝐇1

⎤

⎥

⎥

⎥

⎦

cos 2𝜔𝜗 +

⎡

⎢

⎢

⎢

⎣

−𝐇2

𝐇1

𝐇2

⎤

⎥

⎥

⎥

⎦

sin 2𝜔𝜗

+ 2
3𝜔

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

𝐟 (3𝑐)110 + 𝐟 (3𝑠)200 + 2 𝐟 (3𝑠)020

− 1
2 𝐟

(3𝑠)
110 − 𝐟 (3𝑐)200 + 𝐟 (3𝑐)020

−𝐟 (3𝑐)110 + 2 𝐟 (3𝑠)200 + 𝐟 (3𝑠)020

⎤

⎥

⎥

⎥

⎦

cos𝜔𝜗 +

⎡

⎢

⎢

⎢

⎣

𝐟 (3𝑠)110 − 𝐟 (3𝑐)200 − 2 𝐟 (3𝑐)020
1
2 𝐟

(3𝑐)
110 − 𝐟 (3𝑠)200 + 𝐟 (3𝑠)020

−𝐟 (3𝑠)110 − 2 𝐟 (3𝑐)200 − 𝐟 (3𝑐)020

⎤

⎥

⎥

⎥

⎦

sin𝜔𝜗

⎞

⎟

⎟

⎟

⎠

.

(45)

ubstituting back the boundary conditions and rearranging the equa-
ions give

⎡

⎢

⎢

⎢

⎣

𝐋 𝟎 𝟎
𝟎 𝐋 + 2𝜔𝐑 sin 2𝜔𝜏 2𝜔 𝐈 − 2𝜔𝐑 cos 2𝜔𝜏

𝟎 −2𝜔 𝐈 + 2𝜔𝐑 cos 2𝜔𝜏 𝐋 + 2𝜔𝐑 sin 2𝜔𝜏

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝐇0

𝐇1

𝐇2

⎤

⎥

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎢

⎣

𝐟 (3)200 + 𝐟 (3)020

𝐟 (3)200 − 𝐟 (3)020

𝐟 (3)110

⎤

⎥

⎥

⎥

⎦

+ 2
6𝜔

⎡

⎢

⎢

⎢

⎢

⎣

(𝐋 + 𝜔𝐑 sin𝜔𝜏)
(

−3 𝐟 (3𝑠)200 − 3 𝐟 (3𝑠)020

)

(𝐋 + 𝜔𝐑 sin𝜔𝜏)
(

𝐟 (3𝑠)200 − 𝐟 (3𝑠)020 − 2𝐟 (3𝑐)110

)

(𝐋 + 𝜔𝐑 sin𝜔𝜏)
(

2 𝐟 (3𝑐)200 − 2 𝐟 (3𝑐)020 + 𝐟 (3𝑠)110

)

+ (𝜔 𝐈 − 𝜔𝐑 cos𝜔𝜏)
(

−3 𝐟 (3𝑐)020 − 3 𝐟 (3𝑐)200

)

+ (𝜔 𝐈 − 𝜔𝐑 cos𝜔𝜏)
(

𝐟 (3𝑐)200 − 𝐟 (3𝑐)020 + 2 𝐟 (3𝑠)110

)

+ (𝜔 𝐈 − 𝜔𝐑 cos𝜔𝜏)
(

−2 𝐟 (3𝑠)200 + 2 𝐟 (3𝑠)020 + 𝐟 (3𝑐)110

)

⎤

⎥

⎥

⎥

⎥

⎦

.

(46)

With this, the truncated form of 𝐰(𝜗) can be calculated. Substitut-
ing back 𝐰(0) and 𝐰′(−𝜏) gives, the two-dimensional centre manifold
spanned by 𝑧1 and 𝑧2. Therefore, the derivative of 𝐰 with respect to 𝜗
has to be calculated as well.

𝐰′(𝜗) = 1
2
(𝐡′20(𝜗) 𝑧

2
1 + 2 𝐡′11(𝜗) 𝑧1𝑧2 + 𝐡′02(𝜗) 𝑧

2
2). (47)

.4. Poincaré normal form

The two-dimensional centre manifold can be written in the form

�̇�1
�̇�2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0 𝜔

−𝜔 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑧1
𝑧2

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

∑𝑗+𝑘=2,3
𝑗,𝑘≥0 𝑎(1)𝑗𝑘 𝑧

𝑗
1𝑧

𝑘
2

∑𝑗+𝑘=2,3
𝑗,𝑘≥0 𝑎(2)𝑗𝑘 𝑧

𝑗
1𝑧

𝑘
2

⎤

⎥

⎥

⎦

, (48)

where 𝑎(1)𝑗𝑘 , 𝑎(2)𝑗𝑘 ∈ R are the corresponding constant coefficients in
𝑗
1𝑧

𝑘
2 . With the coefficients of the Poincaré normal form, the Poincaré–

yapunov coefficient can be calculated with the Bautin formula [15] as
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b

s
c
𝑟
l

w
w

𝐶

Δ = 1
8𝜔

(

(𝑎(1)20 + 𝑎(1)02 ) (−𝑎
(1)
11 + 𝑎(2)20 − 𝑎(2)02 ) + (𝑎(2)20 + 𝑎(2)02 ) (𝑎

(1)
20 − 𝑎(1)02 + 𝑎(2)11 )

)

+ 1
8

(

3𝑎(1)30 + 𝑎(1)12 + 𝑎(2)21 + 3𝑎(2)03

)

.

(49)

The sign of the Poincaré–Lyapunov constant determines the type of the
Hopf bifurcation. If Δ < 0, then the bifurcation is supercritical, while
in the case of Δ > 0, the bifurcation is subcritical. The amplitude of the
oscillation is expressed as

𝐴 =

√

− 1
Δ
Re

d𝜆1,2(𝜇cr )
d𝜇

(𝜇 − 𝜇cr ). (50)

The first Fourier term of the oscillation of the centre manifold can be
calculated as
[

𝑧1(𝑡)
𝑧2(𝑡)

]

= 𝐴
[

cos𝜔𝑡
− sin𝜔𝑡

]

. (51)

By definition it is true that 𝐮(𝑡) = 𝐮𝑡(0) not too far from the critical
bifurcation parameter. Therefore, the periodic solution in the vicinity
of the bifurcation can be expressed as

𝐮𝑡(𝜗) ≈ 𝑧1(𝑡) 𝐬R(𝜗) + 𝑧2(𝑡) 𝐬I(𝜗),
𝐮(𝑡) = 𝐮𝑡(0) ≈ 𝑧1(𝑡) 𝐬R(0) + 𝑧2(𝑡) 𝐬I(0) = 𝐴 (𝐒1 cos𝜔𝑡 − 𝐒2 sin𝜔𝑡).

(52)

5. Odd cubic stiffness nonlinearity

In this section, we neglect the second-order term of the nonlinear
stiffness, which means that 𝜈 = 0 in (5), so we can focus on the
effect of the third-order term, whose coefficient is 𝜎. The resulting
nonlinearity will be an odd function. This means that the Hopf bi-
furcation can be directly calculated from the first two rows of (38)
and it is not necessary to calculate the truncated form of 𝐰. The
centre manifold reduction and Poincaré normal form calculations are
quite complicated. Therefore, the results of these calculations are not
presented here. However, the Hopf bifurcation calculation can be done
analytically and the expressions for the Poincaré–Lyapunov constant
can be given in closed form. The results from the analytical calculations
are verified with the NDDE-cont [19] continuation software for neutral
delay differential equations. First, we analyse the collocated and non-
collocated systems neglecting the nonlinear control parameter so that
the effect of the nonlinear stiffness can be investigated. Then, with the
introduction of the nonlinear control parameter, we try to influence the
Hopf bifurcation in order to increase the robustness of the system.

5.1. Collocated case

Firstly, we analyse the collocated case, which means that the non-
collocated control parameters are zero 𝜅2 = 0, 𝜅nl,2 = 0.

5.1.1. Linear control
In this section, we set the nonlinear control parameter zero (𝜅nl,1 = 0)

and investigate the effect of the cubic nonlinearity in the stiffness. In
Figs. 3(i) the value of the Poincaré–Lyapunov constant Δ is plotted
against the time delay 𝜏 for (a) hardening stiffness nonlinearity (𝜎 = 1)
and (b) softening stiffness nonlinearity (𝜎 = −1). In Figs. 3(ii) the
bifurcations can be seen for a given parameter set for (a) positive criti-
cal control parameter 𝜅1cr > 0 (b) negative critical control parameter
𝜅1cr < 0. In this case, the Poincaré Lyapunov constant has a simple
linear dependence on the coefficient of the third-order stiffness 𝜎:
Δ = 𝐶𝜎𝜎, (53)

7

Fig. 3. (i) Poincaré–Lyapunov constant Δ of the collocated system against the time
delay 𝜏 with linear collocated control for (a) hardening stiffness nonlinearity (𝜎 = 1);
(b) softening stiffness nonlinearity (𝜎 = −1). The blue line represents the upper stability
oundary, where the critical collocated control parameter is positive 𝜅1cr > 0 and the

red line the lower stability boundary, where it is negative 𝜅1cr < 0. (ii) shows the
bifurcations for (a) 𝜅1cr > 0 and time delay 𝜏 = 0.1; (b) 𝜅1cr < 0 and time delay 𝜏 = 0.8.
The black line represents the analytical solution and the red one the numerical result.
The bifurcations are subcritical (Δ > 0) for hardening stiffness nonlinearity (𝜎 = 1) and
upercritical (Δ < 0) for softening stiffness nonlinearity (𝜎 = −1). Continuous and dashed
urves show supercritical and subcritical branches respectively. The parameters are
= 1, 𝛾 = 1, 𝜒 = 0.05. (For interpretation of the references to colour in this figure

egend, the reader is referred to the web version of this article.)

here 𝐶𝜎 depends on the other parameters and in this case can be
ritten as

𝜎 = (3 𝑟 𝜔10(8 𝛾3𝜒 + 𝛾4𝜏 ((𝑟 + 1)𝜔2 − 1) + 𝛾2𝜏𝜔2( − 𝜔2(4 (𝑟 + 1)𝜒2 + 𝑟

+ 2) + 4𝜒2 + 2) + 2 𝛾𝜒𝜔2(𝑟 𝜔2 − 4) + 𝜏𝜔4(𝜔2 − 1)))
/

( 4 (𝛾4 + 2𝛾2

× (2𝜒2 − 1)𝜔2 + 𝜔4) (𝛾4𝜔4(2𝜔4(2 𝑟2 − 3 (𝑟 + 2) 𝜏2) + 16𝜒4(𝜏2𝜔2((𝑟

+1)𝜔2 − 1)2 + 4) + 8𝜒2(𝜏2𝜔2( − (𝑟 + 1) (𝑟 + 2)𝜔4 + (3 𝑟 + 4)𝜔2

− 2) − 8) + (𝑟 (𝑟 + 6) + 6) 𝜏2𝜔6 + 2𝜔2(3 𝜏2 − 8 𝑟) + 24) + 2𝛾2𝜔6(2𝜒2

× (𝜔4(𝑟2 − 2 (𝑟 + 2) 𝜏2) + (𝑟 (𝑟 + 2) + 2) 𝜏2𝜔6 + 2𝜔2(𝜏2 − 4 𝑟) + 8)

+ 𝜏2𝜔4(− (𝑟 + 2)𝜔2 + 𝑟 + 4) + 4 𝑟 𝜔2 − 2𝜏2𝜔2 − 8) + 𝛾8(𝜏2𝜔2((𝑟 + 1)

×𝜔2 − 1)2 + 4) + 2 𝛾6𝜔2(4𝜒2(𝜏2𝜔2((𝑟 + 1)𝜔2 − 1)2 + 4) + 𝜏2𝜔4( − (𝑟
+ 1) (𝑟 + 2)𝜔2 + 3 𝑟 + 4) + 4 𝑟 𝜔2 − 2𝜏2𝜔2 − 8) − 4𝛾5𝑟 𝜏𝜒𝜔6(3 (𝑟 + 1)

× 𝜔2 − 5) + 4𝛾3𝑟𝜏𝜒𝜔8(𝜔2(−4 (𝑟 + 1)𝜒2 + 𝑟 + 2) + 12𝜒2 − 6) + 4 𝛾𝑟𝜏

× 𝜒(𝜔2 + 1)𝜔10 + 𝜔8(𝜏2𝜔2(𝜔2 − 1)2 + 4))).

(54)

Fig. 3 shows that for hardening stiffness nonlinearity (𝜎 = 1), the
bifurcations are subcritical (Δ > 0) in the investigated parameter region
for both the upper (𝜅1cr > 0) and lower stability (𝜅1cr < 0) boundaries.
For softening nonlinearity (𝜎 = −1), the bifurcations are supercritical
(Δ < 0) for both stability boundaries showed in Fig. 2. As a result,
hardening behaviour can limit the robustness of the system. In this case,
a large enough perturbation can drive the system outside the unstable
limit cycle. In Figs. 3(ii) the black and red lines are the analytical
and numerical results respectively. The numerical solutions validate the
analytical curves. In the vicinity of the critical bifurcation parameter,
the analytical solution is a good estimation.
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Fig. 4. Bifurcation diagrams of the collocated system also considering the nonlinear
collocated control parameters. (a,b) with positive critical control parameter 𝜅1cr > 0
and time delay 𝜏 = 0.1; (c,d) with negative critical control parameter 𝜅1cr < 0 and time
delay 𝜏 = 0.8. (a,c) with hardening stiffness nonlinearity (𝜎 = 1); (b,d) with softening
stiffness nonlinearity (𝜎 = −1). The parameters are 𝑟 = 1, 𝛾 = 1, 𝜒 = 0.05. Darker and
lighter colour sets show numerical and analytical results respectively. Continuous and
dashed curves represent supercritical and subcritical branches respectively. The critical
collocated control parameter 𝜅nl,1cr separates the subcritical and supercritical analytical
results. The critical nonlinear control parameters can be found in Table 1. The table
below the figure shows the investigated nonlinear collocated control parameters.

Table 1
Critical nonlinear collocated control parameters for the positive critical control parame-
ter 𝜅1cr > 0 with time delay 𝜏 = 0.1 and negative critical control parameter 𝜅1cr < 0 with
time delay 𝜏 = 0.8. The table shows the results with hardening (𝜎 = 1) and softening
(𝜎 = −1) stiffness nonlinearity. The other parameters are 𝑟 = 1, 𝛾 = 1, 𝜒 = 0.05.

𝜏 = 0.1, 𝜅1cr > 0 𝜏 = 0.8, 𝜅1cr < 0

𝜎 = 1 𝜅nl,1cr = −8.93 ⋅ 10−3 𝜅nl,1cr = 3.29 ⋅ 10−4

𝜎 = −1 𝜅nl,1cr = 8.93 ⋅ 10−3 𝜅nl,1cr = −3.29 ⋅ 10−4

5.1.2. Nonlinear control
In order to control the occurring Hopf bifurcation and make it super-

critical, where it is actually subcritical due to the stiffness nonlinearity,
we introduce the nonlinear collocated control parameter 𝜅nl,1. In this
ase, the Poincaré–Lyapunov constant takes the form

= 𝐶𝜅nl,1𝜅nl,1 + 𝐶𝜎𝜎, (55)

here 𝐶𝜅nl,1 and 𝐶𝜎 depend on the other parameters. The full formula
s omitted in this study, because of its complexity. This simple formula
hows a linear dependence on both the cubic nonlinear stiffness param-
ter 𝜎 and the nonlinear collocated control parameter 𝜅nl,1. For each
arameter set a critical nonlinear collocated control parameter can be
efined, when Δ = 0 as

nl,1cr = −
𝐶𝜎
𝐶𝜅nl,1

𝜎. (56)

This critical nonlinear control parameter separates the local subcrit-
ical and supercritical analytical solutions near the critical bifurcation
 Δ

8

parameter. We assume that 𝐶𝜅nl,1 ≠ 0. The critical nonlinear collocated
ontrol 𝜅nl,1cr parameters for the parameter sets used in Fig. 4 can be
ound in Table 1. The values of the critical nonlinear control parameter
nl,1cr are symmetric for the hardening and softening nonlinearities,
ecause of the linear dependence in (56). Bifurcation diagrams with
umerical and analytical results for positive; negative critical control
arameters (𝜅1cr > 0, 𝜅1cr < 0) and hardening; softening nonlinearities

(𝜎 = 1, 𝜎 = −1) can be seen in Fig. 4 with several nonlinear control
parameter values. It should be noted that it is not an easy task to
initialize branches in the numerical continuation program for this
particular system, which highlights the importance of the analytical
solution. Although the analytical solution is only valid in the vicinity of
the critical bifurcation parameter, it is easy to obtain results anywhere
from the stability chart, once the analytical expressions are obtained,
which is not true for the numerical solutions. The numerical results in
Fig. 4 validate the analytical calculations. Near the critical bifurcation
parameter, the analytical solutions are accurate. In Figs. 4(a,b) for
𝜅1cr > 0, the analytical solutions become supercritical when 𝜅nl,1 <
𝜅nl,1cr . In contrast for Figs. 4(c,d) for 𝜅1cr < 0 this condition is 𝜅nl,1 >
𝜅nl,1cr . The numerical results for 𝜅nl,1 = 𝜅nl,1cr in Figs. 4(a,b) become
supercritical after diverging from the analytical solution; Figs. 4(c,d)
become slightly subcritical. In Fig. 4(b) the numerical result for 𝜅nl,1 =
0.015 diverges from the analytical solution and becomes supercritical
for higher amplitude values.

5.2. Non-collocated case

Now we investigate the non-collocated case, which means that the
collocated control parameters are zero 𝜅1 = 0, 𝜅nl,1 = 0.

.2.1. Linear control
In this section we set the nonlinear control parameter to zero (𝜅nl,2 =

). In Figs. 5(i) the value of the Poincaré–Lyapunov constant Δ is
lotted against the time delay 𝜏 for (a) hardening stiffness nonlinearity
= 1 and (b) softening stiffness nonlinearity 𝜎 = −1. In Figs. 5(ii)

he bifurcations can be seen for a given parameter set for (a) positive
ritical control parameter 𝜅1cr > 0 and (b) negative critical control
arameter 𝜅1cr < 0. The Poincaré–Lyapunov constant takes the same
inear form as in (53)

= 𝐶𝜎𝜎, (57)

here 𝐶𝜎 depends on the other parameters and in this case can be
ritten as in Eq. (58). Similarly to the collocated system with linear

ontrol investigated in Section 5.1.1, the bifurcations are subcritical
Δ > 0) for hardening stiffness nonlinearity (𝜎 = 1) and supercritical
Δ < 0) for softening stiffness nonlinearity (𝜎 = −1).

𝜎 = (3𝜔8(𝜔2 − 1) ( − 8𝛾2𝜒 + 𝛾3(𝜏 − (𝑟 + 1) 𝜏𝜔2) + 𝛾𝜏𝜔2(4𝜒2((𝑟 + 1)𝜔2

− 1) + 𝜔2 − 1) + 2𝜒𝜔2(𝜔2 + 1)))
/

(4𝛾 (𝛾4 + 2𝛾2(2𝜒2 − 1)𝜔2 + 𝜔4)

× (𝛾6(𝜏2𝜔2((𝑟 + 1)𝜔2 − 1)2 + 4) + 2𝛾4(4𝜒2𝜔2(𝜏2𝜔2((𝑟 + 1)𝜔2 − 1)2

+ 4) − 𝜔4(𝜏2(𝜔2 − 1) ((𝑟 + 1)𝜔2 − 1) + 4)) + 4𝛾3𝜏𝜒𝜔4((𝑟 + 1)𝜔4

− (𝑟 + 6)𝜔2 + 3) + 𝛾2𝜔4(16𝜒4(𝜏2𝜔2((𝑟 + 1)𝜔2 − 1)2 + 4) − 8𝜒2(𝜏2

× (𝜔2 − 1)𝜔2((𝑟 + 1)𝜔2 − 1) + 4) + 𝜏2𝜔2(𝜔2 − 1)2 + 4𝜔4) + 4𝛾𝜏𝜒

× 𝜔6(4𝜒2((𝑟 + 1)𝜔4 + (𝑟 − 2)𝜔2 + 1) − (𝜔2 − 1)2) + 4𝜒2𝜔6(𝜔2(𝜏2

× (𝜔2 − 1)2 + 𝜔2 + 2) + 1))).

(58)

.2.2. Nonlinear control
With the introduction of the nonlinear non-collocated control pa-

ameter, we are able to control the bifurcations and change the subcrit-
cal behaviour to supercritical. The Poincaré–Lyapunov constant can be
ritten in a similar form as in (55)
= 𝐶𝜅nl,2𝜅nl,2 + 𝐶𝜎𝜎, (59)
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Fig. 5. (i) Poincaré–Lyapunov constant Δ of the non-collocated system against the
ime delay 𝜏 with linear collocated control for (a) hardening stiffness nonlinearity
= 1; (b) softening stiffness nonlinearity 𝜎 = −1. The blue line represents the upper

stability boundary, where the critical non-collocated control parameter is positive
𝜅2cr > 0 and the red line the lower stability boundary, where it is negative 𝜅2cr < 0. (ii)
hows the bifurcations for (a) 𝜅2cr > 0 and (b) 𝜅2cr < 0. The black line represents the
nalytical solution and the red one the numerical result. The bifurcations are subcritical
Δ > 0) for hardening stiffness nonlinearity (𝜎 = 1) and supercritical (Δ < 0) for softening
tiffness nonlinearity (𝜎 = −1). Continuous and dashed curves show supercritical and
ubcritical branches respectively. The parameters are 𝑟 = 1, 𝛾 = 1, 𝜒 = 0.05, 𝜏 = 0.15.
For interpretation of the references to colour in this figure legend, the reader is referred
o the web version of this article.)

here 𝐶𝜅nl,2 and 𝐶𝜎 depend on the other parameters. The full formula
s omitted in this study, because of its complexity. A critical nonlin-
ar non-collocated control parameter can be defined similarly to the
ollocated case in (56) as

nl,2cr = −
𝐶𝜎
𝐶𝜅nl,2

𝜎, (60)

with 𝐶𝜅nl,2 ≠ 0. The critical nonlinear collocated control parameters for
the parameter sets from Fig. 6 can be found in Table 2. Equation (60)
is also linear; therefore, the critical nonlinear control parameter val-
ues are symmetric for the hardening (𝜎 = 1) and softening (𝜎 = −1)
stiffness nonlinearities. It should be noted that these critical nonlinear
control parameter values are 2–4 orders of magnitude larger than
those of the collocated case in Table 1. This can also be an important
aspect of the controller design. It is possible that the saturation of
the controller prevents too large gains to be used. Also, producing
larger gains requires more energy. Bifurcation diagrams with numerical
and analytical results for positive; negative critical control parameters
(𝜅2cr > 0, 𝜅2cr < 0) and hardening; softening nonlinearities (𝜎 = 1, 𝜎 =
−1) can be seen in Fig. 6 with several nonlinear control parameter
values. In Figs. 6(a,b) the analytical solutions become supercritical if
𝜅nl,2 < 𝜅nl,2cr . Conversely, in Figs. 6(c,d) the bifurcations are supercriti-
cal if 𝜅nl,2 > 𝜅nl,2cr . These conditions are similar to the conditions for the
collocated case in Section 5.1.2. The numerical results for 𝜅nl,2 = 𝜅nl,2cr
are supercritical after diverging from the analytical solution for all the
investigated cases. In Fig. 6(b) the numerical result for 𝜅nl,2 = 2.7 shows
a strong supercritical behaviour after the initial subcritical branch,
which is beneficial for the robustness. In Fig. 6(d) a similar behaviour
can be seen for the parameter value 𝜅 = −20.
nl,2

9

Fig. 6. Bifurcation diagrams of the non-collocated system also considering the non-
linear non-collocated control parameters. (a,b) with positive critical control parameter
𝜅2cr > 0; (c,d) with negative critical control parameter 𝜅2cr < 0. (a,c) with hardening
tiffness nonlinearity (𝜎 = 1); (b,d) with softening stiffness nonlinearity (𝜎 = −1). The
arameters are 𝑟 = 1, 𝛾 = 1, 𝜒 = 0.05, 𝜏 = 0.15. Darker and lighter colour sets show

numerical and analytical results respectively. Continuous and dashed curves represent
supercritical and subcritical branches respectively. The critical non-collocated control
parameter 𝜅nl,2cr separates the subcritical and supercritical analytical results. The critical
onlinear control parameters can be found in Table 2. The table below the figure shows
he investigated nonlinear non-collocated control 𝜅nl,2 parameter values.

Table 2
Critical nonlinear non-collocated control parameters for the positive critical control
parameter 𝜅2cr > 0 and negative critical control parameter 𝜅2cr < 0 with time delay
𝜏 = 0.15. The table shows the results with hardening (𝜎 = 1) and softening (𝜎 = −1)
stiffness nonlinearity. The other parameters are 𝑟 = 1, 𝛾 = 1, 𝜒 = 0.05.

𝜏 = 0.15, 𝜅2cr > 0 𝜏 = 0.15, 𝜅2cr < 0

𝜎 = 1 𝜅nl,2cr = −6.87 ⋅ 10−1 𝜅nl,2cr = 8.91
𝜎 = −1 𝜅nl,2cr = 6.87 ⋅ 10−1 𝜅nl,2cr = −8.91

6. General cubic stiffness nonlinearity

In this section, we add the second-order term to the nonlinear
stiffness and analyse its effect on the Hopf bifurcations. With this
term, the nonlinear stiffness represents realistic cases better and it is
not an odd function anymore. Therefore, it is necessary to calculate
the truncated form of 𝐰 with Eqs. (39)–(47). The expressions can
be obtained analytically in closed form. For hardening nonlinearity a
condition can be derived, which ensures, that the nonlinear stiffness
function does not turn back, which means that 𝑘nl(−Δ𝑥) < 0 and
𝑘nl(Δ𝑥) > 0. The condition can be written as

−2𝛾
√

𝜎 ≤ 𝜈 ≤ 2𝛾
√

𝜎. (61)
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Fig. 7. Bifurcation diagrams of the collocated system with linear control considering
he second-order term with coefficient 𝜈. (a,b) with positive critical control parameter
1cr > 0 and time delay 𝜏 = 0.1; (c,d) with negative critical control parameter 𝜅1cr < 0

and time delay 𝜏 = 0.8. (a,c) with hardening stiffness nonlinearity 𝜎 = 1; (b,d) with
softening stiffness nonlinearity 𝜎 = −1. The parameters are 𝑟 = 1, 𝛾 = 1, 𝜒 = 0.05. Darker
and lighter colour sets show numerical and analytical results respectively. Continuous
and dashed curves represent supercritical and subcritical branches respectively. The
table shows the investigated second-order coefficient 𝜈 parameter values.

6.1. Collocated case

Firstly, we analyse the collocated case, which means that the non-
collocated control parameters are zero 𝜅2 = 0, 𝜅nl,2 = 0.

.1.1. Linear control
In this section, we analyse the collocated system without the non-

inear collocated control parameter (𝜅nl,1 = 0). The Poincaré–Lyapunov
onstant can be expressed in the form

= 𝐶𝜎𝜎 + 𝐶𝜈𝜈
2, (62)

here 𝐶𝜎 and 𝐶𝜈 depend on the other parameters. The full formula
s omitted in this study, because of its complexity. It shows that the
ign of 𝜈 is not important regarding the analytically calculated Hopf
ifurcation. Therefore, only positive values of 𝜈 are considered. In Fig. 7
he bifurcations can be seen for a given parameter set for (a,b) positive
ritical control parameter 𝜅1cr > 0; (c,d) negative critical control param-
ter 𝜅1cr < 0. (a,c) shows the hardening stiffness nonlinearity (𝜎 = 1);
b,d) softening stiffness nonlinearity (𝜎 = −1). Generally, the second-
rder nonlinearity works towards supercriticality in the collocated
ystem, which is beneficial from an engineering point of view. It makes
he system more robust. In Fig. 7(a) the bifurcations for 𝜈 = 0 and
= 1 are subcritical. With 𝜈 = 1.5 the analytical solution gives slightly

upercritical behaviour. However, the analytical solution becomes sub-
ritical for higher amplitudes. In Fig. 7(b) the analytical solutions
ive supercritical behaviour for all the investigated 𝜈 parameters. The
umerical results are subcritical after an initial supercritical branch. In
ig. 7(c) the bifurcation is subcritical for 𝜈 = 0. The analytical solution
or 𝜈 = 1 gives slightly supercritical behaviour, but the numerical result
 t

10
Fig. 8. Bifurcation diagrams of the collocated system considering also the nonlinear
collocated control parameters. (a,b) with positive critical control parameter 𝜅1cr > 0 and
ime delay 𝜏 = 0.1; (c,d) with negative critical control parameter 𝜅2cr < 0 and time delay
= 0.8. (a,c) with hardening stiffness nonlinearity (𝜎 = 1); (b,d) with softening stiffness
onlinearity (𝜎 = −1). The parameters are 𝑟 = 1, 𝛾 = 1, 𝜒 = 0.05, 𝜈 = 0.5. Darker and
ighter colour sets show numerical and analytical results respectively. Continuous and
ashed curves represent supercritical and subcritical branches respectively. The critical
ollocated control parameter 𝜅nl,1cr separates the subcritical and supercritical analytical
esults. The critical nonlinear control parameters can be found in Table 3. The table
elow the figure shows the investigated nonlinear collocated control parameter 𝜅nl,1

values.

Table 3
Critical nonlinear collocated control parameters for the positive critical control parame-
ter 𝜅1cr > 0 with time delay 𝜏 = 0.1 and negative critical control parameter 𝜅1cr < 0 with
time delay 𝜏 = 0.8. The table shows the results with hardening (𝜎 = 1) and softening
𝜎 = −1) stiffness nonlinearity. The other parameters are 𝑟 = 1, 𝛾 = 1, 𝜒 = 0.05, 𝜈 = 0.5.

𝜏 = 0.1, 𝜅1cr > 0 𝜏 = 0.8, 𝜅1cr < 0

𝜎 = 1 𝜅nl,1cr = −7.92 ⋅ 10−3 𝜅nl,1cr = 2.45 ⋅ 10−4

𝜎 = −1 𝜅nl,1cr = 9.94 ⋅ 10−3 𝜅nl,1cr = −4.12 ⋅ 10−4

is mainly subcritical. For 𝜈 = 1.5, the analytical solution is already
supercritical. However, the numerical result turns back and becomes
subcritical. In Fig. 7(d) all the results are supercritical. The second-
order nonlinearity strengthens the supercritical behaviour. However,
one has to be careful, because the branches tend to become subcritical
after an initial smaller supercritical branch.

6.1.2. Nonlinear control
We introduce the nonlinear collocated control parameter. The

Poincaré–Lyapunov constant takes the form

Δ = 𝐶𝜅nl,1𝜅nl,1 + 𝐶𝜎𝜎 + 𝐶𝜈𝜈
2, (63)

here 𝐶𝜅nl,1 , 𝐶𝜎 and 𝐶𝜈 depend on the other parameters. The full
ormula is omitted in this study, because of its complexity. With this,
he critical nonlinear collocated control parameter can be given in the
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𝜅nl,1 = −
𝐶𝜎
𝐶𝜅nl,1

𝜎 −
𝐶𝜈

𝐶𝜅nl,1
𝜈2. (64)

The critical nonlinear collocated control parameters for the parameter
sets from Fig. 8 can be found in Table 3. Bifurcation diagrams with
numerical and analytical results for positive; negative critical control
parameters (𝜅1cr > 0, 𝜅1cr < 0) and hardening; softening nonlinearities
𝜎 = 1, 𝜎 = −1) can be seen in Fig. 8 for several nonlinear collocated
ontrol 𝜅nl,1 parameter values. In Figs. 8(a,b) the analytical solutions
ecome supercritical if 𝜅nl,1 < 𝜅nl,1cr . Conversely, in Figs. 8(c,d) the
ifurcations are supercritical if 𝜅nl,1 > 𝜅nl,1cr . In Figs. 8(a,d) the nu-
erical results for 𝜅nl,1 = 𝜅nl,1cr become supercritical after diverging

rom the analytical solution. In Fig. 8(c) it becomes subcritical. It
s subcritical after an initial supercritical branch in Fig. 8(b). The
umerical results in Fig. 8(b) become subcritical for higher amplitudes
or all the investigated nonlinear control parameters, which is not
avourable for robustness. Conversely in Fig. 8(d) the parameter values
nl,1 = 𝜅nl,1cr and 𝜅nl,1 = −0.0001 give strong supercritical behaviour.
urthermore, 𝜅nl,1 = −0.0007 becomes strongly supercritical after a
mall subcritical branch. This means that for softening stiffness non-
inearity (𝜎 = −1) from the viewpoint of robustness it is preferable to
perate the controller in the negative stable region rather than in the
ositive.

.2. Non-collocated case

Here we investigate the non-collocated case, which means that the
ollocated control parameters are zero 𝜅1 = 0, 𝜅nl,1 = 0.

.2.1. Linear control
In this section, we analyse the non-collocated system without the

onlinear non-collocated control parameter (𝜅nl,2 = 0). The Poincaré–
yapunov can be expressed in the same form as in (62)

= 𝐶𝜎𝜎 + 𝐶𝜈𝜈
2, (65)

where 𝐶𝜎 and 𝐶𝜈 depend on the other parameters. The full formula
s omitted in this study, because of its complexity. In Fig. 9 the bifur-
ations can be seen for a given parameter set for (a,b) positive critical
ontrol parameter 𝜅2cr > 0; (c,d) negative critical control parameter
2cr < 0. (a,c) shows the hardening stiffness nonlinearity (𝜎 = 1); (b,d)
oftening stiffness nonlinearity (𝜎 = −1). Generally, the second-order
onlinearity tends to make the bifurcations more supercritical, similarly
o the collocated case. In Fig. 9(a) the bifurcation is slightly subcritical
or 𝜈 = 0 and becomes supercritical for the other investigated 𝜈 values.
n Fig. 9(b) all the bifurcations are supercritical and larger 𝜈 values
trengthen this property. In Fig. 9(c) the bifurcations are subcritical
ith 𝜈 = 0 and 𝜈 = 1. Furthermore, the bifurcation with the analytical

olution for 𝜈 = 1.5 is also subcritical. In contrast, the numerical
esult for this parameter value shows a rather strong supercritical
ehaviour. In this case, the analytical and numerical results are quite
ifferent. Possibly, the region, where the analytical solution gives a
ood approximation is very small. In Fig. 9(d) all the bifurcations
re supercritical with the investigated parameters and larger 𝜈 values
ecrease the amplitude of the supercritical branch.

.2.2. Nonlinear control
We introduce the nonlinear non-collocated control parameter. in or-

er to control the occurring Hopf bifurcations. The Poincaré–Lyapunov
an be written in a similar form as in (63).

= 𝐶𝜅nl,2𝜅nl,2 + 𝐶𝜎𝜎 + 𝐶𝜈𝜈
2. (66)

here 𝐶𝜅nl,2 , 𝐶𝜎 and 𝐶𝜈 depend on the other parameters. The full

ormula is omitted in this study, because of its complexity. The critical

11
Fig. 9. Bifurcation diagrams of the non-collocated system with linear control con-
sidering the second-order term with coefficient 𝜈. (a,b) with positive critical control
parameter 𝜅2cr > 0 and time delay 𝜏 = 0.15; (c,d) with negative critical control
parameter 𝜅2cr < 0 and time delay 𝜏 = 0.3. (a,c) with hardening stiffness nonlinearity

= 1; (b,d) with softening stiffness nonlinearity 𝜎 = −1. The parameters are 𝑟 =
1, 𝛾 = 1, 𝜒 = 0.05. Darker and lighter colour sets show numerical and analytical results
espectively. Continuous and dashed curves represent supercritical and subcritical
ranches respectively. The table shows the investigated second-order coefficient 𝜈
arameter values.

onlinear non-collocated control parameter can be defined similarly to
he collocated case in (64) as

nl,2cr = −
𝐶𝜎
𝐶𝜅nl,2

𝜎 −
𝐶𝜈

𝐶𝜅nl,2
𝜈2. (67)

The critical nonlinear non-collocated control parameters for the
arameter sets from Fig. 10 can be found in Table 4. Bifurcation
iagrams with numerical and analytical results for positive; negative
ritical control parameters (𝜅1cr > 0, 𝜅1cr < 0) and hardening;

softening nonlinearities (𝜎 = 1, 𝜎 = −1) can be seen in Fig. 10. The
bifurcations were plotted for several nonlinear non-collocated control
parameters. The conditions of supercriticality of the analytical solution
are 𝜅nl,2 < 𝜅nl,2cr for Figs. 10(a,b) and 𝜅nl,2 > 𝜅nl,2cr for Figs. 10(c,d).
In all investigated bifurcations the numerical result for 𝜅nl,2 = 𝜅nl,2cr is
supercritical after diverging from the analytical solution. In Fig. 10(b)
the results for the nonlinear control parameters 𝜅nl,2 = 𝜅nl,2cr and
𝜅nl,2 = 7 show strong higher-order properties. In Fig. 10(d) the results
of the analytical and numerical solutions with 𝜅nl,2 = 0.5 are very close
to each other in the investigated amplitude region, there is practically
no difference between the two curves in the figure.

7. Conclusions

The main focus of this study was to give a detailed general deriva-
tion of the Hopf bifurcation calculation in neutral delay differential
equations using the centre manifold reduction and Poincaré normal
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n

𝜅
a

Fig. 10. Bifurcation diagrams of the non-collocated system with different nonlinear
on-collocated control parameters and hardening 𝜎 = 1; softening 𝜎 = −1 nonlinearities

for the parameter values 𝑟 = 1, 𝛾 = 1, 𝜒 = 0.05, 𝜈 = 0.5. The Hopf bifurcation
(a,b) for positive critical control parameters 𝜅2cr > 0 and time delay 𝜏 = 0.15; (c,d)
for negative critical control parameters 𝜅2cr < 0 and time delay 𝜏 = 0.3. Darker and
lighter colour sets show numerical and analytical results respectively. Continuous and
dashed curves represent supercritical and subcritical branches respectively. The critical
collocated control parameter 𝜅nl,2cr separates the subcritical and supercritical analytical
results. The critical nonlinear control parameters can be found in Table 4. The table
below the figure shows the investigated nonlinear non-collocated control parameter
𝜅nl,2 values.

form. This derivation was presented in Section 4. The problem was
inspired by industrial robotic machining when the measured acceler-
ation of the end effector is fed back to the dedicated position control
of the robot. The work is dealing with analysing the underlying stiff-
ening nonlinear behaviour of an industrial robot. The realized control
was developed to ensure the local stability of the robotic arm before
actually performing the machining operation, which results in a high
dimensional neutral type of nonlinear equation. The nonlinear stiff-
ness of the robotic arm was modelled with a third-order polynomial
function. The adopted two degrees-of-freedom mathematical model was
described in detail in Section 2. Two different configurations were
distinguished depending on the location of the acceleration sensor. The
collocated case represents a robotic arm with the acceleration sensor
close to the actuator and the non-collocated case with the sensor near
the end effector. All analytical results were validated by numerical
solutions obtained with the NDDE-cont continuation software. This
showed that the analytical calculations give a good local approximation
of the nonlinear behaviour in the vicinity of the critical bifurcation
parameter.

At first, the second-order term in the stiffness characteristic was
neglected in Section 5. The third order-term was considered to model
12
Table 4
Critical nonlinear non-collocated control parameters for the positive critical control
parameter 𝜅2cr > 0 with time delay 𝜏 = 0.15 and negative critical control parameter
2cr < 0 with time delay 𝜏 = 0.3. The table shows the results with hardening (𝜎 = 1)
nd softening (𝜎 = −1) stiffness nonlinearity. The other parameters are 𝑟 = 1, 𝛾 = 1, 𝜒 =

0.05, 𝜈 = 0.5.
𝜏 = 0.15, 𝜅2cr > 0 𝜏 = 0.3, 𝜅2cr < 0

𝜎 = 1 𝜅nl,2cr = 1.12 𝜅nl,2cr = 1.07
𝜎 = −1 𝜅nl,2cr = 2.49 𝜅nl,2cr = −1.18

the main nonlinear stiffness of industrial robotic arms. The Hopf bi-
furcation was calculated first considering only a linear acceleration
feedback controller. The systems with hardening and softening stiffness
nonlinearities showed different behaviours. Namely, the bifurcations
were supercritical for softening nonlinearity and subcritical for harden-
ing nonlinearity. In order to modify the possible subcritical behaviour
of the system, which can limit robustness, we introduced a third-order
nonlinear term in the acceleration control law. With this nonlinear con-
troller, we were able to define a critical nonlinear control parameter,
which divides the sub- and supercritical analytical solutions. Whether
to use the collocated or the non-collocated setup is up to the specific
parameters of the system. However, we would like to note that in
the non-collocated case much larger nonlinear gains are needed to
modify the subcritical bifurcations compared to the collocated case.
Furthermore, in the collocated case with non-symmetric stiffness non-
linearity, the bifurcations tend to become subcritical after an initial
supercritical branch, which limits robustness. In these cases, it may be
advisable to use the non-collocated setup. In the other cases also the
results should be checked with the numerical continuation to find these
fold bifurcations. If it is present maybe the other setup can provide
sufficiently robust results.

From the presented results, clear suggestions can be made to im-
prove the robustness of the system by modifying the occurring subcrit-
ical bifurcations to supercritical ones. These results were also studied
with numerical continuation, which showed that results far from the
critical bifurcation parameters can diverge from the locally valid an-
alytical results. This highlights the importance of also analysing the
global dynamic behaviour, as it can still limit robustness and the
effectiveness of the utilized acceleration controller.

With the introduction of the second-order term in the stiffness
characteristic in Section 6, we also investigated the non-symmetric
behaviour of the stiffness. The analytical results showed that the sign of
the second-order term does not change the bifurcations of the system,
only its magnitude is important. In the vicinity of the critical bifur-
cation parameter, the second-order term works toward supercritical
behaviour in both the collocated and non-collocated cases. This is bene-
ficial from an engineering point of view because it improves robustness
and works towards safety. We also carried out the same procedure
as in Section 5 namely, introduced the nonlinear control parameters
and defining the critical values that divide sub- and supercritical be-
haviour near the critical bifurcation parameter. However, the numerical
results showed that the bifurcations, especially in the collocated case
can become subcritical after an initial supercritical branch diverging
from the analytical solution. Although the analytical solution showed
supercriticality near the critical bifurcation parameter, this behaviour
can still limit robustness and one has to be careful of the global dynamic
picture in the development of nonlinear controllers.

In summary, the analytical expressions from the Hopf bifurcation
calculation of neutral delay differential equations were successfully
validated with the NDDE-cont numerical continuation software. With
the obtained analytical results, we were able to design a nonlinear
controller to modify the unfavourable nonlinear properties of the sys-
tem. Although the analytical solutions gave a good approximation of
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the local nonlinear behaviour, near the critical bifurcation parameter,
these results should always be analysed together with numerical results,
which provide information about the global dynamic behaviour as
well. The analytical calculations gave a good basis for analysing and
developing nonlinear controllers, as they can provide analytical closed-
form solutions, but one should always be weary of the global dynamic
behaviour as well.
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Appendix A. Derivation of the bilinear form for the neutral case

Here, we provide the detailed derivation of the bilinear form for
the neutral case. The general bilinear form a can be found in [26]. In
this study, we aim to derive the bilinear form for the neutral case in
a simpler form. We refer to [29], where it was derived from the usual
inner product for the retarded case as

⟨𝐮(𝜗), 𝐯(𝜗)⟩ = ∫

0

−𝜏
𝐮𝖧(𝜗 + 𝜏)𝐑𝐯(𝜗) d𝜗 + 𝐮𝖧(0) 𝐯(0). (A.1)

Modifying (A.1) for the neutral case. Instinctively, we assume that the
derivative term 𝐯′ is acting in (A.1) for the neutral case

⟨𝐮(𝜗), 𝐯(𝜗)⟩ = ∫

0

−𝜏
𝐮𝖧(𝜗 + 𝜏)𝐑𝐯′(𝜗) d𝜗 + 𝐮𝖧(0) 𝐯(0). (A.2)

Applying the defined bilinear form on 𝒜𝐯 gives

⟨𝐮(𝜗),𝒜𝐯(𝜗)⟩ = ∫

0

−𝜏
𝐮𝖧(𝜗 + 𝜏)𝐑𝐯′′(𝜗) d𝜗 + 𝐮𝖧(0) (𝐋𝐯(0) + 𝐑𝐯(−𝜏))

= −∫

0

−𝜏
𝐮′𝖧(𝜗 + 𝜏)𝐑𝐯′(𝜗) d𝜗 +

[

𝐮𝖧(𝜗 + 𝜏)𝐑𝐯′(𝜗)
]0
−𝜏 + 𝐮𝖧(0)𝐋𝐯(0)

+ 𝐮𝖧(0)𝐑𝐯(−𝜏)

= −∫

0

−𝜏
𝐮′𝖧(𝜗 + 𝜏)𝐑𝐯′(𝜗) d𝜗 + 𝐮𝖧(0)𝐋𝐯(0) + 𝐮𝖧(𝜏)𝐑𝐯′(0)

= −∫

0

−𝜏
𝐮′𝖧(𝜗 + 𝜏)𝐑𝐯′(𝜗) d𝜗 + 𝐮𝖧(0)𝐋𝐯(0) + 𝐮𝖧(𝜏)𝐑 (𝐋𝐯(0) + 𝐑𝐯′(−𝜏)).

(A.3)

It can be seen that in this form 𝒜 ∗ cannot be given to satisfy the formal
adjoint problem in (29). By getting rid of the terms that have mixed
product of 𝐋 and 𝐑 and second order product with 𝐑, the bilinear form
can be modified as

⟨𝐮(𝜗), 𝐯(𝜗)⟩ =
0
𝐮𝖧(𝜗 + 𝜏)𝐑𝐯′(𝜗) d𝜗 + (𝐮𝖧(0) − 𝐮𝖧(𝜏)𝐑) 𝐯(0) (A.4)
∫−𝜏
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similarly as in [33,34] for scalar neutral equations. This is the bilinear
form for the neutral case. With this form the expression with operator
𝒜 , following the same steps as in (A.3), reduces to

⟨𝐮(𝜗),𝒜𝐯(𝜗)⟩ = −∫

0

−𝜏
𝐮′𝖧(𝜗 + 𝜏)𝐑𝐯′(𝜗) d𝜗 + 𝐮𝖧(0)𝐋𝐯(0). (A.5)

Naturally, the adjoint operator 𝒜 ∗ satisfies the formal adjoint problem
with the bilinear form for the neutral case

⟨𝒜 ∗𝐮(𝜗), 𝐯(𝜗)⟩ = ⟨𝐮(𝜗),𝒜𝐯(𝜗)⟩ = −∫

0

−𝜏
𝐮′𝖧(𝜗+ 𝜏)𝐑𝐯′(𝜗) d𝜗+ 𝐮𝖧(0)𝐋𝐯(0).

(A.6)

Appendix B. Decomposition of the solution at the centre subspace

The solution 𝐮𝑡(𝜗) can be decomposed into the components 𝑧1,2 ∶
R → R tangent to the centre subspace and into the infinite-dimensional
component 𝐰 ∶ R → XR𝑛 transverse to the centre subspace

𝐮𝑡(𝜗) = 𝑧1(𝑡) 𝐬R(𝜗) + 𝑧2(𝑡) 𝐬I(𝜗) + 𝐰(𝑡)(𝜗), (B.1)

where
𝑧1(𝑡) = ⟨𝐧R, 𝐮𝑡⟩,
𝑧2(𝑡) = ⟨𝐧I, 𝐮𝑡⟩,
𝐰(𝑡) = 𝐮𝑡 − 𝑧1(𝑡) 𝐬R − 𝑧2(𝑡) 𝐬I.

(B.2)

Taking the derivative of the new variables with respect to time gives

�̇�1(𝑡) = ⟨𝐧R, �̇�𝑡⟩ = 𝜔𝑧2 + 𝐧⊺R(0)𝐅 = 𝜔𝑧2 + 𝐍⊺
1𝐅,

�̇�2(𝑡) = ⟨𝐧I, �̇�𝑡⟩ = −𝜔𝑧1 + 𝐧⊺I (0)𝐅 = −𝜔𝑧1 + 𝐍⊺
2𝐅,

�̇�(𝑡) = �̇�𝑡 − �̇�1𝐬R − �̇�2𝐬I = 𝒜𝐰 +ℱ (𝐮𝑡) − 𝐧⊺R(0)𝐅 𝐬R − 𝐧⊺I (0)𝐅 𝐬I
= 𝒜𝐰 +ℱ (𝐮𝑡) − 𝐍⊺

1𝐅 𝐬R − 𝐍⊺
2𝐅 𝐬I,

(B.3)

where 𝐅 = ℱ (𝑧1(𝑡) 𝐬R + 𝑧2(𝑡) 𝐬I + 𝐰(𝑡)) (0). For the detailed calculation
see [29]. Writing it into matrix form yields

⎡

⎢

⎢

⎢

⎣

�̇�1
�̇�2
�̇�

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0 𝜔 0
−𝜔 0 0
0 0 𝒜

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑧1
𝑧2
𝐰

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

𝐍⊺
1𝐅

𝐍⊺
2𝐅

ℱ (𝐮𝑡) − 𝐍⊺
1𝐅 𝐬R − 𝐍⊺

2𝐅 𝐬I

⎤

⎥

⎥

⎥

⎦

. (B.4)

For the Hopf bifurcation, the nonlinear terms in 𝑧1 and 𝑧2 should
be expanded with Taylor series up to third order and in 𝐰 up to
second-order terms. This gives

⎡

⎢

⎢

⎢

⎣

�̇�1
�̇�2
�̇�

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0 𝜔 0

−𝜔 0 0

0 0 𝒜

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑧1
𝑧2
𝐰

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

∑𝑗+𝑘=2,3
𝑗,𝑘≥0 𝑓 (1)

𝑗𝑘0𝑧
𝑗
1𝑧

𝑘
2

∑𝑗+𝑘=2,3
𝑗,𝑘≥0 𝑓 (2)

𝑗𝑘0𝑧
𝑗
1𝑧

𝑘
2

∑𝑗+𝑘=2
𝑗,𝑘≥0

(

𝐟 (3𝑐)𝑗𝑘0 cos𝜔𝜗 + 𝐟 (3𝑠)𝑗𝑘0 sin𝜔𝜗
)

𝑧𝑗1𝑧
𝑘
2

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑𝑛
𝑖=1

(

𝑓 (10)
101,𝑖𝑧1 + 𝑓 (10)

011,𝑖𝑧2
)

𝑤𝑖(0) +
(

𝑓 (1𝜏)
101,𝑖𝑧1 + 𝑓 (1𝜏)

011,𝑖𝑧2
)

𝑤′
𝑖(−𝜏)

∑𝑛
𝑖=1

(

𝑓 (20)
101,𝑖𝑧1 + 𝑓 (20)

011,𝑖𝑧2
)

𝑤𝑖(0) +
(

𝑓 (2𝜏)
101,𝑖𝑧1 + 𝑓 (2𝜏)

011,𝑖𝑧2
)

𝑤′
𝑖(−𝜏)

⎧

⎪

⎨

⎪

⎩

𝟎, 𝜗 ∈ [−𝜏, 0) ,
∑𝑗+𝑘=2

𝑗,𝑘≥0 𝐟 (3)𝑗𝑘0, 𝜗 = 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(B.5)

where

𝑓 (1)
𝑗𝑘0 = 1

𝑗!𝑘!
𝜕𝑗+𝑘𝐍⊺

1𝐅

𝜕𝑧𝑗1𝜕𝑧
𝑘
2

|

|

|

|

|𝟎
, 𝑓 (10)

𝑗𝑘𝑚,𝑖 =
1

𝑗!𝑘!𝑚!
𝜕𝑗+𝑘+𝑚𝐍⊺

1𝐅

𝜕𝑧𝑗1𝜕𝑧
𝑘
2𝜕𝑤

𝑚
𝑖 (0)

|

|

|

|

|𝟎
,

𝑓 (1𝜏)
𝑗𝑘𝑚,𝑖 = 1

𝑗!𝑘!𝑚!
𝜕𝑗+𝑘+𝑚𝐍⊺

1𝐅

𝜕𝑧𝑗1𝜕𝑧
𝑘
2𝜕𝑤

′𝑚
𝑖 (−𝜏)

|

|

|

|

|𝟎
,

𝑓 (2)
𝑗𝑘0 = 1

𝑗!𝑘!
𝜕𝑗+𝑘𝐍⊺

2𝐅

𝜕𝑧𝑗1𝜕𝑧
𝑘
2

|

|

|

|

|𝟎
, 𝑓 (20)

𝑗𝑘𝑚,𝑖 =
1

𝑗!𝑘!𝑚!
𝜕𝑗+𝑘+𝑚𝐍⊺

2𝐅

𝜕𝑧𝑗1𝜕𝑧
𝑘
2𝜕𝑤

𝑚
𝑖 (0)

|

|

|

|

|𝟎
,

𝑓 (2𝜏)
𝑗𝑘𝑚,𝑖 = 1

𝑗!𝑘!𝑚!
𝜕𝑗+𝑘+𝑚𝐍⊺

2𝐅
𝑗 𝑘 ′𝑚

|

|

|

(B.6)
𝜕𝑧1𝜕𝑧2𝜕𝑤𝑖 (−𝜏) |
|𝟎



A. Bartfai and Z. Dombovari International Journal of Non-Linear Mechanics 147 (2022) 104239
are real constant coefficients and

𝐟 (3𝑐)𝑗𝑘0 = [cos𝜔𝜗]

(

1
𝑗!𝑘!

𝜕𝑗+𝑘(−𝐍⊺
1𝐅 𝐬R − 𝐍⊺

2𝐅 𝐬I)

𝜕𝑧𝑗1𝜕𝑧
𝑘
2

|

|

|

|

|

|𝟎

)

,

𝐟 (3𝑠)𝑗𝑘0 = [sin𝜔𝜗]

(

1
𝑗!𝑘!

𝜕𝑗+𝑘(−𝐍⊺
1𝐅 𝐬R − 𝐍⊺

2𝐅 𝐬I)

𝜕𝑧𝑗1𝜕𝑧
𝑘
2

|

|

|

|

|

|𝟎

)

,

𝐟 (3)𝑗𝑘0 =
1

𝑗!𝑘!
𝜕𝑗+𝑘𝐅
𝜕𝑧𝑗1𝜕𝑧

𝑘
2

|

|

|

|

|

|𝟎

(B.7)

are real vector coefficients. The notations [cos𝜔𝜗] and [sin𝜔𝜗] mean
the coefficient of cos𝜔𝜗 and sin𝜔𝜗 respectively. We note here that for
nonlinearities of odd functions, the calculation of 𝐰 is not necessary,
since in this case the coefficients of the mixed terms with 𝑧1,2 and 𝑤𝑖
become zero. In the Taylor expansion, the coefficients from even order
derivatives are always zero. This means that the first two rows in (B.5)
can be separated and the approximate periodic solution can be directly
calculated by expanding only the nonlinearities of �̇�1 and �̇�2 up to third-
degree. We can also notice that for odd functions, the vector coefficients
in (B.7) become zero vectors.
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