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GENERIC POWER SERIES ON SUBSETS OF THE UNIT DISK

BALÁZS MAGA AND PÉTER MAGA

ABSTRACT. In this paper, we examine the boundary behaviour of the generic power series f with coefficients chosen from

a fixed bounded set Λ in the sense of Baire category. Notably, we prove that for any open subset U of the unit disk D

with a non-real boundary point on the unit circle, f pUq is a dense set of C. As it is demonstrated, this conclusion does not

necessarily hold for arbitrary open sets accumulating to the unit circle. To complement these results, a characterization of

coefficient sets having this property is given.

1. INTRODUCTION

Let Λ Ď C be a bounded subset with at least two elements, endowed with its usual subspace topology. Moreover,

assume that the product space

Ω :“ ΩΛ :“
8

ą

n“0

Λ

is a Baire space. Due to Alexandrov’s theorem (e.g. [5, p. 408]), this holds, for example, if Λ is Gδ . These general

conditions on Λ will be assumed throughout the paper.

For any λλλ “ pλnq8
n“0 P Ω we can define the power series

f pzq :“ fλλλ pzq :“
8
ÿ

n“0

λnzn
.

The resulting function is clearly holomorphic in the open unit disk D :“ t|z| ă 1u. Roughly speaking, we are interested

in the generic behaviour of f in terms of Baire category near the boundary BD “ S. The genericity is understood as

follows: if a property holds for a set of power series corresponding to a residual set of configurations in Ω, we say it is

generic.

This work is a direct continuation of our previous paper [6], in which we investigated the typical boundary behaviour

of real power series with coefficients chosen from a finite set Λ. (Actually, the set of coefficients was denoted by D in

that paper, we opted to introduce this notational modification as the symbol D is customarily preserved for the unit disk

in this setup.) While the probabilistic aspects of the problem was our main focus (considering the uniform distribution

over Λ), we proved straightforward results in terms of Baire category as well ([6, Theorem 3]). Notably, if Λ has

both positive and negative elements, for the generic power series f we have limsup1´ f “ `8 and liminf1´ f “ ´8,

while if Λ Ď r0,`8q (resp. Λ Ď p´8,0s), we have lim1´ f “ `8 (resp. lim1´ f “ ´8). It was natural to consider

the same problem in the complex setup as well, which is a more natural habitat of power series. (We note that while

those results were stated for finite Λ exclusively, the proofs can be generalized in a straightforward manner for any Λ
for which

Ś8
n“0 Λ is a Baire space.)

A direct prelude to our results is given in [1]. Even though the main focus of that paper is the theory of random

power series, where it presents spectacular results about natural boundaries without assuming independence, it contains

the following result relevant to our setting:

Proposition 1 ([1, Theorem 1.9]). For generic λλλ “ pλnq8
n“0 P Ω, the power series fλλλ has a natural boundary on BD.

That is it cannot be analytically continued through any of the boundary points of the convergence domain.
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Another predecessor of this line of research is [2], in which results are stated and proved about generic complex

power series. For a more detailed historical summary of the topic we also refer to that paper. We recall that while

the problem of the “general behaviour” dates back to Borel, the more thorougly examined probabilistic question was

worked out by several authors, as presented in [3]. In terms of Baire category, the first results were provided in [4].

The setup of [4] slightly differs from ours, as the topological vector space HpDq in which Baire category is investigated

is the space of all functions which are holomorphic in D with the topology of locally uniform convergence. (The Ω
we consider corresponds to a subspace of it.) Their main results stated that generically, S is a natural boundary and

f pDq “ C. These results were generalized by [2], in particular:

Proposition 2 ([2, Proposition 3.2]). Assume that U Ď D is open and U X S ‰ H. Then for generic f P HpDq we have

f pUq “ C generically. (For a set B Ď C, its closure is denoted by B throughout the paper.)

Our main goal is strengthening Proposition 1 in a similar manner. The proof of Proposition 2 relies on Runge’s

theorem on polynomial approximation, which is out of reach in our setup that poses restrictions on the permissible

holomorphic functions. Consequently, when one would like to verify similar results for Ω, different techniques are

required. As we will see, this leads to somewhat weaker theorems: roughly, we could only verify that f pUq is an open,

dense set instead of being equal to C. Our first main result is the following.

Theorem 1. Assume that U Ď D is open with an accumulation point ζ P S with non-vanishing imaginary part. Then

for generic λλλ “ pλnq8
n“0 P Ω, the image f pUq Ď C is dense and open.

As we will see below, the conclusion of Theorem 1 does not hold for all open sets accumulating to S. In order

to allow 1 or ´1 to be the accumulation point on the boundary, certain conditions on Λ should be introduced. The

necessary and sufficient conditions are summarised by our other theorems. By a real line, we mean a one-dimensional

real affine subspace of C, while by a real half-plane we mean one of the two components of the complement of a real

line. We refer to its closure as a closed real half-plane.

Theorem 2. If Λ is not contained by a real line, and U Ď D is open with ´1 P U, then for generic λλλ “ pλnq8
n“0 P Ω,

the image fλλλ pUq Ď C is dense and open. If Λ is contained by a real line, there exists an open U Ď D with ´1 P U for

which fλλλ pUq evades a closed real half-plane, regardless of the choice of λλλ .

Theorem 3. If Λ is not contained by a closed real half-plane of the form tz : α ď argz ď α ` πu, and U Ď D is open

with 1 P U, then for generic λλλ “ pλnq8
n“0 P Ω, the image fλλλ pUq Ď C is dense and open. If Λ is contained by a closed

real half-plane of the form tz : α ď argz ď α ` πu, then there exists an open U Ď D with 1 P U for which fλλλ pUq
evades a closed real half-plane, regardless of the choice of λλλ .

We note that the openness of f pUq for generic f is a trivial consequence of the open mapping theorem for analytic

functions in each of the cases, as such f are non-constant. This implies that the real task in these questions is proving

the density of the images.

We fix some notation for the rest of the paper. Throughout, Dr “ t|z| ă ru for general disks centered at the origin,

while its boundary is denoted by Sr (that is, D “ D1, S “ S1.) We use the notation projnpGq for the projection of

G Ď pλnq8
n“0 P Ω to the nth coordinate of the product.

For any ζ P S and any N P N, define

t0,1uNrζ s :“

#

8
ÿ

j“N

a jζ
j : a j P t0,1u, a j “ 0 with finitely many exceptions

+

.

A terminology we are going to use frequently is the following. For sets A,B Ď C and some ε ą 0, we say that A is an

ε-net of B, if for any w P B, there exists some z P A such that |z ´ w| ă ε .

Below we will also use the notation epxq “ e2π ix for x P C.

Acknowledgement. We are grateful to the anonymous referee for their careful reading of the manuscript and their

suggestions to improve the exposition.

2. PRELIMINARY STATEMENTS

We fix the following notation: for any c P C, set

Λ ` c :“ tλ ` c : λ P Λu, cΛ :“ tcλ : λ P Λu,
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and

λλλ ` c “ pλnq8
n“0 ` c :“ pλn ` cq8

n“0, cλλλ “ cpλnq8
n“0c :“ pcλnq8

n“0.

Set also

fΛpUq :“
ď

λλλPΩ

fλλλ pUq.

Our first lemma concerns the effect on fλλλ pUq of certain modifications on Λ, enabling us to circumvent some of the

technical burden in the proof of our theorems through replacing arbitrary Λ’s by simpler ones.

Lemma 1. (a) Let U Ď D be open. Assume that fλλλ pUq is dense in C. Then for any 0 ‰ c P C, fcλλλ pUq is also

dense in C.

(b) Let pUkq8
k“1 be a shrinking sequence of open subsets of D such that diampUkq Ñ 0 and none of them accu-

mulates to 1. Moreover, assume that all of the sets fλλλ pUkq are dense in C. Then for any c P C, all of the sets

fλλλ `cpUkq are dense in C.

(c) Assume that fΛpUq evades a closed real half-plane for some open U Ď D with 1 R U. Then for any c P C, the

same holds for fΛ`cpUq.

(d) If the assumption of (a) (resp. (b)) is a generic property in ΩΛ, then its implication is a generic property in

ΩcΛ (resp. ΩΛ`c).

Remark 1. The assumption of Lemma 1 (b) looks a bit complicated and one may wonder if it can be formulated in

a much simpler way, akin to Lemma 1 (a). Notably, one can intuitively believe that assuming U X Szt1u ‰ H, the

density of fλλλ pUq in C implies that fλλλ`cpUq is also dense in C for any c P C. (This formulation would be directly

usable in the proof of Theorem 1 and 2 to translate Λ.) However, this claim is false: a simple counterexample is given

by

Λ “ t0,1u, U “ D

and

fλλλ pzq “
8
ÿ

k“0

z2k`1 “
z

1 ´ z2
.

Indeed, fλλλ pzq “ α leads to a quadratic equation such that its roots has product -1. Consequently, it has a root in D,

which quickly yields the density of fλλλ pDq. However,

fλλλ ´ 1
2
pzq “ fλλλ pzq ´

1

2
¨

1

1 ´ z
“ ´

1

2p1 ` zq
,

for which fλλλ ´ 1
2
pUq is clearly not dense in C.

Proof of Lemma 1. Statement (a) follows trivially from the relation fcλ pUq “ c fλ pUq.

To prove (b) and (c), consider the mapping

(1) fλλλ ÞÑ fλλλ `c, fλλλ `cpzq “ fλλλ pzq `
c

1 ´ z
“ fλλλ pzq ` gpzq.

Now if pUkq8
k“1 is a sequence satisfying the conditions of (b), we clearly have diampgpUkqq Ñ 0, which easily implies

the statement due to (1).

As for (c), observe that in (1), gpUq is bounded under the assumptions. Therefore if fΛpUq is a subset of a closed

real half-plane, then so is fΛ`cpUq.

Finally, let us observe that (d) is obvious. �

The following three lemmata serve as a preparation to the proof of Theorem 1.

Lemma 2. Assume that pH jq
8
j“1 is a sequence of dense subsets of S. Then

Ť8
k“1

k
ř

j“1

H j is dense in C, where
k

ř

j“1

H j

denotes the Minkowski sum of H1, ...,Hk.

Proof. The proof follows from three simple observations:

‚ for any k ě 1,
¨

˝

k
ÿ

j“1

H j

˛

‚“
k

ÿ

j“1

H j;

3



‚ S1 ` S1 “ D2;

‚ Dr ` Sr1 “ Dr`r1 for 0 ă r1 ă r.

Putting together these claims yields that
¨

˝

k
ÿ

j“1

H j

˛

‚“ Dk

for k ě 2. Consequently,
¨

˝

8
ď

k“1

k
ÿ

j“1

H j

˛

‚“ C

clearly holds. �

Lemma 3. Let ζ P S be different from ˘1,˘i,˘ω ,˘ω2, where i “ ep1{4q, ω “ ep1{3q. Then for any N PN, t0,1uNrζ s
is dense in C, i.e. t0,1uNrζ s is an ε-net of C for any ε ą 0.

Proof. If ζ “ epxq with x P RzQ, then the statement follows simply from Lemma 2. Indeed, if w P C and ε ą 0 be

given, our goal is to approximate w with error smaller than ε with a finite sum of the form given in the statement.

Setting

H1 :“ H2 :“ . . . :“ tζ N
,ζ N`1

,ζ N`2
, . . .u

in Lemma 2, we obtain a certain z :“ ζ n1 ` . . .` ζ nk such that |z ´ w| ă ε . Possibly there are repetitions among the

n j’s, but any ζ n j can be replaced with another ζ n j1 on the cost of an arbitrarily small error, which altogether verifies

the claim.

If ζ “ epxq with x P Q, a root of unity different from ˘1,˘i,˘ω ,˘ω2, then its degree over Q is greater than 2. In

particular, ζ ` ζ ´1 P RzQ, and since ζ ,ζ ´1 can be obtained as arbitrarily large powers of ζ , we see that t0,1uNrζ s is

dense in R for any N P N. Then obviously t0,1uNrζ s is dense also in ζR, hence in C, too. �

Lemma 4. Let ζ P S be different from ˘1. Then t0,1uNrζ s is a 1-net of C for any N P N.

Proof. If ζ ‰ ˘i,˘ω ,˘ω2, then the statement is obvious from Lemma 3. Otherwise, we may assume N “ 0, and if

ζ “ ˘i (resp. ζ “ ˘ω or ζ “ ˘ω2), then Zrζ s Ă C is the lattice of Gaussian (resp. Eulerian) integers, which are

known from elementary geometry to satisfy that for any w P C, there exist a0,a1 P Z such that

|w ´ pa0 ` a1ζ q| ă 1.

Again, the potientially negative coefficients can be switched to a sum of positive ones by recording

´1 “
11
ÿ

j“1

ζ j
, ´ζ “

12
ÿ

j“2

ζ j
,

and repetitions can be treated via ζ k “ ζ k`12. �

The following three lemmata serve as a preparation to the proof of Theorem 3.

Lemma 5. If Λ Ď C is not contained by a closed real half-plane of the form tz : α ď argz ď α ` πu, then we can find

∆0 “ ∆4,∆1,∆2,∆3 elements of Λ such that

(2) 0 ď arg
∆ j`1

∆ j

ă π

for any 0 ď j ď 3.

Proof. Multiplying Λ by a nonzero scalar does not change the assumption, nor the implication. Consequently, we can

assume 1 P Λ. Let ∆0 “ 1. By the condition on Λ, tλ : ℑλ ą 0u is nonempty. Consequently, we can define

β :“ sup
λ PΛ, ℑλ ą0

argλ .

Now by the same argument, tλ P Λ : β ă argλ ă β ` πu is nonempty. However, due to the definition of β , we can

deduce that tλ P Λ : π ď argλ ă β ` πu is nonempty. Let ∆2 be an element of it. Due to the definition of β , we

can find ∆1 such that (2) is satisfied for j “ 0,1. Now if arg∆2 ą π , the choice ∆3 “ ∆2 guarantees that it is also

4



satisfied for j “ 2,3 and we are done. Otherwise we can choose ∆3 to be any element of the necessarily nonempty

tλ P Λ, ℑλ ă 0u, which yields (2) for j “ 2,3. �

Lemma 6. Assume that Λ Ď C is not contained by a closed real half-plane of the form tz : α ď argz ď α ` πu. Then

there exists an appropriate R ą 0 with the property that for any z P C satisfying |z| ą R, we can find λ P Λ such that

|z ` λ | ă |z|.

Proof. Fix ∆0,∆1,∆2,∆3 as guaranteed by Lemma 5. Let

α0 :“ max
0ď jď3

arg
∆ j`1

∆ j

ă π .

Now, if z ‰ 0 is arbitrary, we can find 0 ď j ď 3 such that for ∆ j we have
π`α0

2
ď arg

∆ j

z
ă 3π´α0

2
. Consequently, if

we consider the triangle determined by 0,z,z ` ∆ j, we have that the angle at z is smaller than the right angle, and its

size is bounded away from π
2

by some positive quantity. As the set of all ∆ j’s is bounded, this implies that if |z| ě R

for large enough R, then the side r0,zs of the triangle is larger than the side r0,z ` ∆ js. Defining R accordingly proves

the lemma. �

Note that if R is sufficient for some Λ in the setup of Lemma 6, then cR is sufficient for cΛ. In particular, if c ă 1,

the same R can be used.

Lemma 7. Assume that Λ Ď C is not contained by a closed real half-plane of the form tz : α ď argz ď α ` πu.

Then there exists R˚ ą 0 such that for any z, |z| ă 1, and 0 ď n0 ă n1 ă . . ., there exists pλn j
q8

j“0, λn j
P Λ such that

ˇ

ˇ

ˇ

ř8
j“0 λn j

zn j

ˇ

ˇ

ˇ
ď R˚.

Proof. We prove that R˚ “ R ` supλ PΛ |λ | is sufficient, where R is the one guaranteed by Lemma 6. Due to the note

following its proof, the same R can be used for any coefficient set of the form znΛ.

For z “ 0, the claim is trivial, regardless of the choice of pλn j
q8

j“0. Hence fix z ‰ 0, |z| ă 1. The proof depends on

a recursive construction of the sequence pλn j
q. Notably, let λn0

P Λ be arbitrary, and assume λn0
, . . . ,λnk

are already

defined. If
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

j“0

λn j
zn j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď R,

then λnk`1
P Λ can be chosen arbitrarily as well. Otherwise, we apply Lemma 6 to znk`1Λ to define λnk`1

such that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k`1
ÿ

j“0

λn j
zn j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

j“0

λn j
zn j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

These choices obviously guarantee that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

j“0

λn j
zn j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď R ` max
λ PΛ

|λ | “ R˚
,

regardless of the value of k. Consequently, the same bound holds for the sum of the series as well. �

3. PROOF OF THEOREM 1

Assume first that 0,1 P Λ. For any fixed w P C and ε ą 0, we introduce

Aw,ε :“ tλλλ “ pλnqnPN : there exists some τ P U such that | fλλλ pτq ´ w| ă εu.

Fixing w P C and ε ą 0, we introduce the abbreviation A :“ Aw,ε , and prove below that it is open and dense in Ω.

To see that A is open in Ω, let λλλ “ pλnqnPN P A, i.e. for some τ P U , ε0 :“ | fλλλ pτq ´ w| ă ε . Let N be large enough

to satisfy that
ÿ

nąN

supt|λ | : λ P Λuτn ă
ε ´ ε0

2
.
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Also, choose δ ą 0 in such a way that if |λ 1
n ´ λn| ă δ for all n ď N, then
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

nďN

λnτn ´
ÿ

nďN

λ 1
nτn

ˇ

ˇ

ˇ

ˇ

ˇ

ă
ε ´ ε0

2
.

Clearly, if

λλλ 1 “ pλ 1
nqnPN P

ą

nďN

tλ 1
n : |λ 1

n ´ λn| ă δu ˆ
ą

nąN

Λ Ď Ω,

then

| fλλλ 1pτq ´ w| ă ε,

hence λλλ 1 P A, which shows that A is open.

Now we prove that A is dense in Ω. It suffices to show that A intersects any set of the form

G :“ tλ0u ˆ . . .ˆ tλNu ˆ
ą

nąN

Λ Ď Ω.

Let us fix some ˘1 ‰ ζ P U X S throughout the proof. Our goal is to find an element λλλ “ pλnqnPN P G and some τ P U

such that | fλλλ pτq ´ w| ă ε . We immediately prescribe |τ ´ ζ | ă δ with 0 ă δ ă 2{5 chosen in such a way that
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

nďN

λnτn ´
ÿ

nďN

λnζ n

ˇ

ˇ

ˇ

ˇ

ˇ

ă
ε

2

is guaranteed by |τ ´ ζ | ă δ .

Relabeling our original w (shifting it by ´
ř

nďN λnζ n), and rescaling ε , we have to find a sequence pλnqnąN P

t0,1unąN and some τ P U in such a way that

(3)

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

nąN

λnτn ´ w

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε, |τ ´ ζ | ă δ .

Now we go by cases according to Lemmata 3–4 about the nature of ζ . To avoid notational difficulties, assume that

w ‰ 0 (which is not a real restriction, since if anything but zero can be arbitrarily approximated, then so can zero).

If ζ ‰ ˘i,˘ω ,˘ω2, then by Lemma 3, we may find and fix a finite sequence pλnqNănăK satisfying
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

NănăK

λnζ n ´ w

ˇ

ˇ

ˇ

ˇ

ˇ

ă
ε

2
, λn P t0,1u,

and then if |τ ´ ζ | is small enough (consistently with the earlier prescribed |τ ´ ζ | ă δ ),
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

NănăK

λnτn ´
ÿ

NănăK

λnζ n

ˇ

ˇ

ˇ

ˇ

ˇ

ă
ε

2
, |τ ´ ζ | ă δ ,

which, setting λK :“ λK`1 :“ . . . :“ 0, together clearly imply (3).

Now assume that ζ P t˘i,˘ω ,˘ω2u. Fix a finite set W which is a 1-net of D10|w|{ε . By Lemma 4, for any w1 P W ,

we may find and fix a finite sequence pλnqNănăKpw1q satisfying
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

NănăK

λnpw1qζ n ´ w1

ˇ

ˇ

ˇ

ˇ

ˇ

ă 1, λnpw1q P t0,1u,

where the upper bound K on the coefficient indices is uniform over w1 P W (this can be achieved, since W is finite).

Now if |τ ´ ζ | is small enough (consistently with the earlier prescribed |τ ´ ζ | ă δ ), then
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

NănăK

λnpw1qτn ´
ÿ

NănăK

λnpw1qζ n

ˇ

ˇ

ˇ

ˇ

ˇ

ă 1 for all w1 P W , |τ ´ ζ | ă δ .

Fix now M in such a way that ε{5 ă |τM| ă ε{3 (this is possible, since δ ă 2{5 implies |τ| ą 3{5, and that τ has a

power in the indicated annulus). Then
#

ÿ

NănăK

λnpw1qτn`M : w1 P W

+

6



gives rise to an ε-net of D2|w|. In particular, choosing the appropriate w1 (for which the sum in the last display is closest

to w), and setting

λn :“

$

’

&

’

%

λn, if n ď N,

λn´Mpw1q, if N ` M ă n ă K ` M,

0 otherwise,

(3) is achieved.

To sum up, any Aw,ε is open and dense, which in turn implies that the set

č

wPQ`Qi

8
č

k“1

Aw,1{k

is residual, hence the proof of Theorem 1 is complete, at least, when 0,1 P Λ. This, however, immediately gives rise

to the general case by applying Lemma 1 (a)–(b). Indeed, the proof of the density of A presented above guarantees τ’s

arbitrarily close to ζ , which means that the condition of Lemma 1 (b) is satisfied.

A fairly straightforward consequence of Theorem 1 is the following:

Corollary 1. For the generic pλnq8
n“0 P Ω, for any ζ P S and w P C there exists pζkq8

k“1 Ď D with ζk Ñ ζ such that

f pζkq Ñ w.

The proof is left as a simple exercise to the reader, it suffices to rely on the case of irrational arguments. With a

slightly different formulation, proving this statement was Problem 9 at the prestigious Miklós Schweitzer Memorial

Competition for Hungarian university students in 2020, proposed by the authors. Complete solutions were given by

Márton Borbényi and Attila Gáspár, who were awarded the two first prizes of the contest, and to whom we congratulate

hereby. A direct solution is available at [7] in Hungarian.

4. PROOF OF THEOREM 2

Due to the open mapping theorem, it suffices to prove that the density of f pUq holds generically.

Due to Lemma 1 (a)–(b), we can assume 0,1 P Λ. First we will consider the case when Λ is contained by a real

line. Following our assumption, this means Λ Ď R.

We will define U “
Ť8

k“1 Uk where

Uk “

"

z : ´
k ´ 1

k
ă ℜz ă 0, π ´ αk ă argz ă π ` αk

*

for αk ą 0 to be fixed later. (The lower bound on ℜz is somewhat arbitrary, separation from ´1 is relevant only.) Right

now we specify only that αk is small enough to guarantee that Uk Ď D.

As each Uk is open, the same holds for U . Now consider any z P Uk. As Uk Ď S, we can choose N large enough to

have

(4)

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“2N

zn

ˇ

ˇ

ˇ

ˇ

ˇ

ă 1.

We choose αk based on the choice of N such that

2Nαk ă arcsin

ˆ

1

N

˙

.

This clearly implies that

´arcsin

ˆ

1

N

˙

ă arg

˜

N´1
ÿ

n“0

z2n

¸

ă arcsin

ˆ

1

N

˙

and

π ´ arcsin

ˆ

1

N

˙

ă arg

˜

N´1
ÿ

n“0

z2n`1

¸

ă π ` arcsin

ˆ

1

N

˙

.
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However, the absolute value of each of these partial sums is at most N, which yields that their imaginary part is at most

1. Consequently,

ℑ

˜

2N´1
ÿ

n“0

zn

¸

ď 2.

By the same argument for any pλnq8
n“0 we have

ℑ

˜

2N´1
ÿ

n“0

λnzn

¸

ď 2 sup
λ PΛ

|λ |.

Taking (4) into consideration implies

ℑ

˜

8
ÿ

n“0

λnzn

¸

ď 3 sup
λ PΛ

|λ |.

As it holds for any k and z P Uk, we have it for any z P U , which concludes the proof of the first part.

In the other direction, our argument will be similar to the one we have given in the proof of Theorem 1. Indeed,

defining the set A as above, and following the argument verbatim, it suffices to find a sequence pλnqnąN P t0,1unąN

and some τ P U in such a way that

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

nąN

λnτn ´ w

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε, |τ ´ p´1q| ă δ .

Fix an element λ P Λ with non-vanishing imaginary part; its existence is guaranteed by the assumption that 0,1 P Λ
and Λ Ę R. Consider the lattice

ta ` bλ : a,b P Zu.

It obviously gives a δ -net of C for some δ ą 0. Consequently,

tξ pa ` bλ q : a,b P Zu

gives an ε{2-net of C for |ξ | “ ε0 if ε0 ą 0 is small enough. Fix ε0 accordingly, and fix R such that |w| ă ε0R. Now it

is clear that one can find mR such that for

CmR “ ta ` bλ : a,b P Z, |a|, |b| ă mRu,

ξCmR gives an ε{2-net of DR for |ξ | “ ε0.

Now let us notice that for large enough MR, any element of CmR can be written in the form

λ
k

ÿ

j“1

p´1qn j `
l

ÿ

j1“1

p´1q
n1

j1
,

where the exponents used are pairwise distinct, and N ă n j,n
1
j1

ă MR for j “ 1, . . . ,k and j1 “ 1, . . . , l. Denote the set

of such sums by Cp´1q, and motivated by this, let

Cpzq “

$

&

%

λ
k

ÿ

j“1

zn j `
l

ÿ

j1“1

z
n1

j1 : N ă n j,n
1
j1 ă MR are distinct

,

.

-

.

As Cpzq is determined by finitely many continuous functions of z, if |p´1q´ τ| is small enough, ξCpτq gives a ε-net of

Dε0R for any ξ , |ξ | “ ε0. On the other hand, we can choose τ in any neighborhood of ´1 so that |τ|M “ ε0 for some

M ą 0. Consequently, we have that τMCpτq forms a ε-net of Dε0R.

By definition, this implies that there exist pairwise distinct numbers N ă n j,n
1
j1

ă MR for j “ 1, ...,k, j1 “ 1, ..., l

such that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˝λ
k

ÿ

j“1

τn j`M `
l

ÿ

j1“1

τ
n1

j1
`M

˛

‚´ w

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε.

Now if we define pλnq8
n“N`1 such that λn “ λ if and only if n “ n j ` M for some 1 ď j ď k, moreover, λn “ 1 if and

only if n “ n1
j1

` M for some 1 ď j1 ď l, and otherwise λn “ 0, then we immediately obtain | fλλλ pτq ´ w| ă ε , which

concludes the proof.
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5. PROOF OF THEOREM 3

Due to the open mapping theorem, it suffices to prove that the density of f pUq holds generically.

First we will consider the case when Λ is contained by a closed real half-plane of the form tz : α ď argz ď α ` πu.

Due to Lemma 1 (a), we can assume that this half-plane is tℜz ě 0u.

We will define U “
Ť8

k“1 Uk where

Uk “

"

z : 0 ă ℜz ă
k ´ 1

k
, ´ αk ă argz ă αk

*

for αk ą 0 to be fixed later. (The upper bound on ℜz is somewhat arbitrary, separation from 1 is relevant only.) Right

now we specify only that αk is small enough to guarantee that Uk Ď S.

From this point, the proof of this part is basically a simplified version of the proof of the same part of the proof

of Theorem 2. Notably, for z P Uk we can find a threshold index such that the tail sum is very small due to |z| being

bounded away from 1, and then by choosing αk to be small enough, we can control the argument of the preceding

terms. (The relative simplicity in this case is due to the fact these arguments are all near 0, instead of being near to

0 and π alternatingly.) Based on these estimates, the real part of fλλλ pzq can be bounded from below, regardless of

λλλ “ pλnq8
n“0 and z P Uk, which concludes the proof of the first part.

We now prove the second part of the statement of the theorem. Defining the set A as in the proof of Theorem 1 and

following the argument verbatim, it suffices to find a sequence pλnqnąN P ΛnąN and some τ P U in such a way that
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

nąN

λnτn ´ w

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε, |τ ´ 1| ă δ .

Define ∆0,∆1,∆2,∆3 P Λ as guaranteed by Lemma 5. Denote their set by V , and define the convex polygon P “
convpV q. Due to the choice of V , 0 P intpPq, that is Dr Ď V for small enough r.

Notice that if P has diameter δ , then V is clearly a δ -net of P. Moreover, for any m we have that the Minkowski sum
řm

i“1 V is a δ -net of
řm

i“1 P: the proof proceeds by induction, capitalizing on the simple observation that
řm

i“1 P “

V `
řm´1

i“1 P. It clearly yields that
řm

i“1 V is a δ -net of Dmr as well for any m. Consequently, ξ ¨
řm

i“1 V gives an ε{2-

net of Dε0mr for any m and for |ξ | “ ε0, if ε0 ą 0 is small enough. Fix ε0 accordingly, noting that it does not depend

on m. Now fix R˚ as guaranteed by Lemma 7, and based on the choice of R˚ and ε0, fix m such that |w| ` R˚ ă ε0mr.

Let us remark that any element of
řm

i“1 V is expressible in the seemingly complicated form

3
ÿ

j“0

∆ jk j “
3

ÿ

j“0

∆ j

k j
ÿ

l“1

1n
p jq
l
,

where each 0 ď k j ď m, and the exponents n
p jq
l are pairwise distinct and their union equals tN ` 1,N ` 2, ...,N ` mu.

Let us denote the set of such combinations by Cp1q, and motivated by this, let

Cpzq “

$

&

%

3
ÿ

j“0

∆ j

k j
ÿ

l“1

zn
p jq
l : 0 ď k j ď m, N ă n

p jq
l ď N ` m are all distinct and their union is tN ` 1,N ` 2, ...,N ` mu

,

.

-

.

As Cpzq is determined by finitely many continuous functions of z, if |1 ´ τ| is small enough, ξCpτq gives a ε-net of

Dε0mr for any ξ , |ξ | “ ε0. On the other hand, we can choose τ in any neighborhood of 1 so that |τ|M “ ε0 for some

M ą 0. Consequently, we have that τMCpτq forms an ε-net of Dε0mr.

So far the coefficients of the power series we would like to define are fixed for the indices piqN
i“0. Motivated by

the previous paragraph, we would like to set aside the indices pN ` i ` Mqm
i“1. Notably, these are the indices which

are intimately connected to the lastly defined τMCpτq. Consequently, we apply Lemma 7 at this point for τ and the

complementary sequence pN ` 1,N ` 2, ...,N ` M,N ` m ` M ` 1,N ` m ` M ` 2, ...q: we can find elements of Λ

corresponding to these indices, pλnqN`M
n“N`1, pλnq8

n“N`m`M`1 such that

|w1| ď R˚
, where w1 :“

N`M
ÿ

n“N`1

λnzn `
8
ÿ

n“N`m`M`1

λnzn
.

Consequently, |w ´ w1| ď |w| ` R˚ ă ε0R. This implies that there exist numbers

N ă n
p jq
l ď N ` m
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for j “ 0,1,2,3 and l “ 1, ...,k j, such that their union fills tN ` 1,N ` 2, ...,N ` mu without any repetitions (that is the

numbers n
p jq
l are pairwise distinct for all the possible choices of j, l), and

(5)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3
ÿ

j“0

∆ j

k j
ÿ

l“1

τn
p jq
l

`M ´ pw ´ w1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă
ε

2
.

What remains from the definition of pλnq is fixing pλnqN`m`M
n“N`1`M , which we carry out now based on (5). Notably let

λn “ ∆ j if and only if n “ n
p jq
l `M for some 1 ď l ď k j. Then by the definition of w1 we obtain |

ř8
n“N`1 λnτ 1n ´w| ă ε .

This concludes the proof.

6. CONCLUDING REMARKS

Even though with a careful separation of cases we managed to generalize the most natural result given by Theorem

1, our results are far from being complete. In our view, the most interesting open problem related to them is whether

f pUq “ C holds generically in the setup of our theorems, similarly to what is proved in [2]. As f is uniformly locally

bounded in D, we clearly cannot rely on techniques similar to the ones seen there, hence answering this question

requires additional ideas.

Another interesting aspect partially inspired by this paper is whether we can rearrange the quantifiers in our state-

ments to some extent. More explicitly, each of our theorems addresses the question of what the generic image is of a

fixed open set. It would be desirable to find extensions of this result, for example a nontrivial family of open sets such

that generically, the image of each of them is dense.

REFERENCES

[1] J. Breuer , B. Simon, Natural boundaries and spectral theory, Adv. Math. 226, (2011), 4902–4920.

[2] J.-P. Kahane, Baire’s category theorem and trigonometric series, J. Anal. Math. 80, (2000), 143–182.

[3] J.-P. Kahane, Some Random Series of Functions, Heath, Mass., 1968; 2nd edn. Cambridge Univ. Press, 1985, (1993).

[4] S. Kierst, E. Szpilrajn, Sur certaines singularités desfonctions analytiques uniformes, Fund. Math. 21, (1933), 267-294.

[5] K. Kuratowski, Topologie, Vol. 1, 4th ed., PWN, Warsaw, 1958; English transl., Academic Press, New York; PWN, Warsaw, (1966).

[6] B. Maga, P. Maga, Random power series near the endpoint of the convergence interval, Publ. Math. Debrecen, 93 (3-4). (2018), 413-424.

ISSN 0033-3883

[7] https://www.bolyai.hu/Schweitzer2020_elozetes_megoldasok.pdf
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