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The sine-Gordon (SG), i.e. periodic scalar field theory is known to play an important role in d = 2
dimensions. A paradigmatic example is the topological phase transition of the vortex dynamics in
superfluid films and layered superconductors which are described by SG type models. Periodic scalar
potentials find applications in d = 4 dimensions, too. Higgs, inflaton and axion physics are examples
where scalar fields naturally appear, thus, the SG model can be used instead of the usual polynomial
one. The SG quantum field theory can be mapped onto the neutral Coulomb-gas (CG) in arbitrary
dimension and the renormalization group (RG) study of the d-dimensional CG model was obtained
in the dilute gas approximation. It signals a single phase for d > 2, however, it was shown recently,
that a suitable generalization of the SG model can posses a topological phase transitions in d = 4
dimensions. Our goals in this work are (i) to map out the phase structure of the (original) SG
and the equivalent neutral CG models by the functional RG method in arbitrary dimension, (ii) to
compare the 3-dimensional SG and isotropic XY spin models and show that they belong to different
universality classes, (iii) to study the consequences of the findings on higgs, inflaton, axion models
and on the topological phase transition in higher dimensions.

PACS numbers: 11.10.Hi, 05.70.Fh, 64.60.-i, 05.10.Cc

I. INTRODUCTION

Universality expresses the idea that different microscopic physics can give rise to the same scaling behavior at a
phase transition. If the scaling behaviour of different models agrees or disagrees it is possible to decide whether they
belong to the same universality class or not. If two different models can be mapped onto each other they belong to
the same universality class hence by the study of one model one can obtain the scaling behaviour of the other one.
Furthermore, models of the same class of universality can be used to test and compare various types of methods. A
canonical example for model equivalences is the sine-Gordon (SG) scalar field theory defined by the Euclidean action
[1–5]

S =

∫
ddx

[
1

2
(∂µϕx)2 + u cos(βϕx)

]
, (1)

which belongs to the universality class of the neutral Coulomb gas (CG) [6] and the isotropic XY classical spin
model [1] for d = 2. They undergo a topological, i.e., Kosterlitz-Thouless-Berezinski [7] (KTB) phase transition.
Moreover, the KTB universality regulates the scaling behaviour of the O(N) symmetric field theory with d = N = 2.
It is worth noting that signatures of the KTB scaling in this model have been also observed by the Functional
Renormalization Group (FRG) method [8]. Furthermore, the SG scalar theory is the bose form of the 2-dimensional
fermionic Thirring model [9] and the bosonic counterpart of multi-flavor Quantum Electrodynamics and multi-color
Quantum Chromodynamics are also SG type models [10]. Bosonization is well established only in d = 2 dimensions
but the mapping between the SG theory (1) and the neutral CG holds in arbitrary dimension [1, 3].

In d = 2 dimensions, the SG model has been used to describe the vortex dynamics in superfluid films and magnet-
ically coupled layered superconductors [11]. In addition, the holographic RG flow [12] and the the c-function [13] of
the SG model have also been studied.

In d > 2 dimensions one might expect no room for any physical application for the SG model, however, there are
various cases where periodic scalar fields can play a role in 4-dimensional physics. The most natural three situations
among these are the following (i) the periodic inflationary potential, (ii) the mass generation by a periodic Higgs
potential, (iii) the axion potential which naturally appears as a periodic function. The main concepts of these three
cases are summarised in the appendices. For example, in inflationary cosmology the so called natural inflation i.e.,
a periodic potential has already been used as a competing inflationary model, see Appendix A. Another possible
application is a periodic self-interaction which is proposed here as a possible extension of the standard model Higgs
potential. Using the usual parametrisation of the field around the first minimum, one recovers the Lagrangian of the
Higgs sector but with a periodic interaction term for a single-component real scalar field, see Appendix B. Finally, one
has to mention the periodic axion potential which was proposed to retain the CP conserving nature of QCD where
gauge symmetry and renormalizability allow the inclusion of CP violating terms but experimental data do not favour
such an extension, see Appendix C.
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Recently [14], an extension of the SG scalar theory has been studied in d = 4 dimensions. Eq.(2) of [14] has an
unusual kinetic term (∆ϕx)2 where ∆ is the 4-dimensional Laplacian and ϕ is a real scalar field. On the one hand, it
was shown in [14] by the exact FRG study performed in the momentum space that such extension of the SG model
undergoes a topological phase transitions. On the other hand, it is also known that the neutral Coulomb-gas which
is identical to the SG model (1) has a single phase in d > 2 dimensions, at least this is the result of the real space
renormalization group (RG) study obtained in the so called dilute gas approximation [15]. In the real space RG
approach the RG transformations are performed in the coordinate space by using a sharp cutoff, i.e., the charges
of the Coulomb gas are represented by solid discs with finite diameter and in the dilute gas approximation, only
two-body interactions are taken into account. This approximation is valid if the fugacity of the Coulomb gas remains
small. Since the fugacity of the Coulomb gas is directly related to the Fourier amplitude of the SG model, the dilute
gas approximation corresponds to the case where the Fourier amplitude is assumed to be small, so the RG equations
can be linearised with respect to the amplitude which gives the linearised RG flow. The single phase picture is based
on these dilute gas or linearised RG equations. Thus, it is a relevant question whether the exact phase structure of
the SG model (1) posses any topological phase transitions in higher dimensions.

Indeed, the RG study of the phase structure of the d-dimensional SG model (1) has already performed in [2–5]
using various approximations. For example, in Refs. [3–5] the RG equations were obtained in the leading order of
the derivative expansion of the action, i.e., in the local potential approximation (LPA) where the wave function
renormalization is kept to be constant. In Eq. (1), the scalar field can be rescaled (ϕ → βϕ) and as a result, the
frequency parameter β appears in the kinetic term and related to the wave function renormalization (z ≡ 1/β2).
Thus, LPA means constant dimensionful frequency. Another type of approximation has been used in [2], where RG
equations were obtained beyond LPA but they are expanded in terms of the Fourier amplitude. Let us note, that
the leading order in this approach is equivalent to the dilute gas approximation of the real space RG approach of the
corresponding neutral Coulomb-gas [3].

The goals of this work are (i) to go beyond the previously used approximations and to map out the exact phase
structure of the d-dimensional SG model in the framework of the functional RG method, (ii) to consider possible
equivalences between the SG scalar field theory, the neutral CG and the XY spin models in d 6= 2 dimensions, (iii)
to study the appearance of the topological phase transition in higher dimensions, (iv) to draw some conclusions on
phase structure of a periodic Higgs, inflaton and axion potentials.

First the functional RG study of the single and double frequency SG model is presented and the phase structures
of the SG, CG and XY models are compared. The findings of the present work is compared to recent results, then
applied for Higgs, inflaton and axion physics. Finally results are summarised in the conclusion.

II. FUNCTIONAL RG STUDY OF THE SG MODEL

The main purpose here is to perform the functional RG study of the SG model in arbitrary dimension (in particular
in d = 4) going beyond approximations used in previous works [2–5]. This is achieved by extending the RG analysis
of the single-frequency two-dimensional SG model [16] for higher dimensions and for higher harmonics. There is an
interest in the literature to improve the RG study of the d-dimensional periodic model (or the equivalent Coulomb
gas), e.g., the PhD thesis [17] was devoted to the RG study of the Coulomb gas (in the dilute gas approximation
which is equivalent to the linearised RG flow) for arbitrary dimensions. Findings of this work recover these ”dilute
gas results” and go beyond that by studying the full RG flow equations including wave function renormalization and
including higher harmonics in arbitrary dimension.

We use the effective average action FRG method [18, 19] where the evolution equation reads as

k∂kΓk[ϕ] =
1

2
Tr

[
k∂kRk

Rk + δ2
ϕΓk[ϕ]

]
, (2)

with the running momentum cutoff k and the Tr stands for the integration over all momenta and Rk is the regulator
function specified later. In order to solve the FRG equation, we consider the following ansatz for the SG model

Γk =

∫
ddx

[
1

2
zk(∂µϕx)2 + Vk(ϕx)

]
, Vk(ϕx) = uk cos(βϕx) (3)

where the local potential contains a single Fourier mode. The Fourier amplitude uk and the field independent
wavefunction renormalization zk depend on the RG scale k. The dimensionful frequency β, is scale independent, i.e.,
it remains constant over the RG flow because the RG transformation retains the periodicity of the dimensionful model
with an unchanged period length. Thus, β is a free parameter of the model which can be chosen arbitrarily. Although
RG transformations generate higher harmonics, we use the ansatz (3) which contains a single Fourier mode since in
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case of the 2-dimensional SG model [20] it was found to be an appropriate approximation [16, 21]. (Later the role of
higher harmonics is investigated.) Eq. (11) leads to the RG evolution equations for the blocked potential Vk(ϕ) and
the wavefunction renormalization zk,

k∂kVk =
1

2

∫
ddp

(2π)d
Dk k∂kRk, (4)

k∂kzk =

(
β

2π

∫ 2π/β

0

dϕ

)
(V ′′′k )2

∫
ddp

(2π)d
D2
k k∂kRk

(
2

d

∂2Dk
∂p2∂p2

p2 +
∂Dk
∂p2

)
, (5)

with Dk = (zkp
2 + Rk + V ′′k )−1 where V ′′k ≡ ∂2

ϕVk and V ′′′k ≡ ∂3
ϕVk. Since the l.h.s of (5) is independent of the

field, a projection onto the field-independent subspace has been introduced on the r.h.s of (5). The scale k covers the
momentum interval from the high-energy/ultraviolet (UV) cutoff Λ to zero. Inserting the ansatz (3) into Eqs. (4),
(5), flow equations for the dimensionful couplings can be derived

k∂kuk =

∫
p

k∂kRk
β2uk

(
P −

√
P 2 − (β2uk)2√

P 2 − (β2uk)2

)
, (6)

k∂kzk =

∫
p

β2 k∂kRk
2

[−(β2uk)2P (∂p2P + 2
dp

2∂2
p2P )

[P 2 − (β2uk)2]5/2
+

(β2uk)2p2(∂p2P )2(4P 2 + (β2uk)2)

d [P 2 − (β2uk)2]7/2

]
, (7)

where P = zkp
2 + Rk and

∫
p

=
∫
dp pd−1Ωd/(2π)d with the d-dimensional solid angle Ωd. Since the dimensionful

frequency is scale-independent, it is convenient to merge it with the scale-dependent wave function renormalization
zk. Thus, we introduce ẑk = zk/β

2, R̂k = Rk/β
2 and P̂ = P/β2 = ẑkp

2 + R̂k and the RG flow equations (6) and (7)
can be written as,

k∂kuk =

∫
p

k∂kR̂k
uk

 P̂ −
√
P̂ 2 − u2

k√
P̂ 2 − u2

k

 , (8)

k∂kẑk =

∫
p

k∂kR̂k
2

[−u2
kP̂ (∂p2 P̂ + 2

dp
2∂2
p2 P̂ )

[P̂ 2 − u2
k]5/2

+
u2
kp

2(∂p2 P̂ )2(4P̂ 2 + u2
k)

d [P̂ 2 − u2
k]7/2

]
, (9)

Before we further study the RG flow equations, we show that they can be derived by using the rescaled version of the
original action for the SG model,

Γk[θ] =

∫
ddx

[
1

2
ẑk(∂µθx)2 + uk cos(θx)

]
, (10)

where the rescaled (dimensionless) field θ = βϕ is introduced. Let us note, that the field carries a dimension for

d 6= 2 thus the frequency of the SG model (1) becomes a dimensionful parameter for d 6= 2, i.e., β2 = k2−dβ̃2
k where

β̃k is dimensionless, so the rescaled wavefunction renormalization has a dimension of kd−2, i.e., ẑk = z̃kk
d−2. The

corresponding FRG equation reads as

k∂kΓk[θ] =
1

2
Tr

[
k∂kRk

Rk + β2δ2
θΓk[θ]

]
=

1

2
Tr

[
k∂kR̂k

R̂k + δ2
θΓk[θ]

]
(11)

where the rescaled regulator function R̂k = Rk/β
2 has been used. Inserting the ansatz (10) into Eqs. (11), the RG

flow equations (8) and (9) can be obtained Thus, equations (8) and (9) are derived in two different ways.
Momentum integrals have to be performed numerically, except the linearized form of Eqs. (8), (9) around the

Gaussian fixed point where analytical results available. This requires a special choice for the regulator function Rk
such as the power-law [19] or the Litim-type [22] ones,

Rpow(k) = p2

(
k2

p2

)b
, RLitim(k) = p2

(
k2

p2
− 1

)
Θ(k2 − p2) (12)

where Θ(x) stands for the Heaviside step function and b is a free parameter of the power-law regulator. In general, the
regulator function beyond LPA should be given by the inclusion (multiplicative approach) or the exclusion (additive
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approach) of the field independent wavefunction renormalization zk. In the multiplicative approach, the rescaled

regulator R̂k contains the rescaled wavefunction renormalization ẑk. In the additive approach, the frequency can be
absorbed by the overall multiplicative constant of the rescaled regulator or can be chosen arbitrarily since it is a
scale-independent free parameter of the model. Important to note, that the additive approach requires the use of the
power-law regulator function.

The phase structure should be independent whether we use the multiplicative or additive approaches for the
definition of the regulator and of its parameters such as b. For example, one can choose b = 2, see Ref. [23]. Regarding
the regulator-dependence we note that the linearised RG flow equations can always be obtained analytically for the
power-law type regulator, thus, there is no real need for the use of the Litim-type one. The full RG flow (with higher
harmonics) requires a numerical treatment anyway (even for the Litim-type regulator) and produces us a complete
picture of the phase diagram.

Let us first discuss the linearized RG flow equations obtained by the additive approach of the regulator function
where dimensionless couplings ũk = k−duk, and z̃k = k2−dẑk are introduced. In this case, the RG flow equations have
the following forms for d = 1 dimension

(1 + k∂k)ũk =
1

4b sin( π2b )
z̃

1−2b
2b

k ũk +O(ũ2
k) (13)

(−1 + k∂k)z̃k = −c1(b)

4π
z̃

5−4b
2b

k ũ2
k +O(ũ3

k) (14)

with c1(b) = 5π(55+4b(5b−18))
48b2 sin[5π/(2b)] . Eqs. (13), (14) have a non-trivial fixed point at z̃? = [4b sin(π/(2b)]2b/(1−2b), ũ2

? =

(4π/c1)z̃
3−5/(2b)
? . For d = 2, linearized RG equations are

(2 + k∂k)ũk =
1

4πz̃k
ũk +O(ũ2

k) (15)

k∂kz̃k = −c2(b)

8π
z̃

2−2b
b

k ũ2
k +O(ũ3

k) (16)

with c2(b) = 2π(b−2)(b−1)
3b2 sin[2π/b] and result in a KTB type (i.e. infinite order) phase transition with z̃? = 1/(8π) [16, 20].

Important to note that c2(b) > 0 for b > 1. Finally, for d = 3, linearized RG equations are

(3 + k∂k)ũk =
1

8πb sin( π2b )
z̃

−1−2b
2b

k ũk +O(ũ2
k) (17)

(1 + k∂k)z̃k = −c3(b)

8π2
z̃

3−4b
2b

k ũ2
k +O(ũ3

k) (18)

with c3(b) = π(3+4b(b−2))
16b2 sin[3π/(2b)] . Due to the tree-level scaling of z̃k, the non-trivial fixed point appears for d < 2 and

disappears for d > 2 in the RG flow. However, a ”turning point” can be identified for d > 2 where the irrelevant
coupling ũk turns to a relevant one. For d = 3 the turning point is at z̃? = [24πb sin(π/(2b)]−2b/(1+2b).

In the multiplicative approach where the definition of the regulator Rk includes zk beyond LPA, the linearized RG
flow equations obtained for the dimensionless couplings are almost identical to those obtained by the additive case. The
prefactors of the r.h.s of the flow equations and the power of the Fourier amplitude ũ are identical in the multiplicative
and additive cases. The difference is due to the power of the dimensionless wavefunction renormalization z̃k. In the
multiplicative case, the r.h.s of the flow equations of the Fourier amplitude contain z̃−1

k and the flow equations of the

wavefunction renormalization have z̃−2
k independently of choice of the dimension d and the parameter b. Since the

flow equations of the multiplicative and additive approaches should give the same phase structure, in this work we
focus on the more complex additive case.

In general, RG equations (6) and (7) (exact for a single Fourier mode) have to be solved numerically. Important
feature of the exact RG flow the emergence of a new low-energy/infrared (IR) fixed point related to the degeneracy
of the blocked action. Namely, Eqs. (6), (7) become singular at the momentum scale where k̄ − k2−duk = 0 with
k̄ = minp2 P = bk2[z̃k/(b − 1)]1−1/b. Therefore, it is convenient to redefine the dimensionless coupling constant as

ūk ≡ k2−duk/k̄ = k2ũ/k̄ which tends to one in case of degeneracy. Exact RG equations (6), (7) were solved for b = 2
and flow diagrams are plotted in Fig. 1 for d = 1, in Fig. 2 for d = 2, and in Fig. 3 for d = 3 dimensions. The IR fixed
point (ū? = 1, 1/z̃? = 0) which corresponds to degeneracy was found in any dimensions. The d = 1 case needs further
improvement because in quantum mechanics spontaneous symmetry breaking is not allowed. The appearance of the
broken phase, was found for the anharmonic oscillator, see e.g. [24] where the higher order terms in the gradient
expansion handle the problem.
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FIG. 1: The exact phase diagram of the SG and the equivalent CG models for d = 1 dimensions (similar RG flow can be
drawn for d < 2). Arrows indicate the direction of the flow.
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FIG. 2: The exact phase diagram of the SG and the equivalent CG models for d = 2 dimensions which shows the Kosterlitz-
Thouless-Berezinski type phase transition.

Let us emphasize that only the exact RG flow with the inclusion of the wave function renormalization is suitable
for the determination of the IR fixed point since the perturbative (truncated) RG equations are non-singular [2].
Thus any previous attempts based on perturbation theory [2] or by the usage of the local potential approximation
[3–5] were unable to determine the IR behavior in a reliable manner. Furthermore, the exact RG flow changes the
position of the non-trivial fixed point obtained for d = 1. Indeed, for b = 2, linearized RG equations (13), (14)
result in 1/z̃? = 210/3 ≈ 10.08 and ū? = ũ?/(2

√
z̃?) ≈ 0.23 which have been modified by the exact RG, see Fig. 1.

Similarly, the turning point of the d = 3 case determined by the exact RG coincides with that of the linearized RG
which is 1/z̃? = 4(6π)4/5 ≈ 41.9 only for small ū, see Fig. 3. For d = 2 dimensions the critical value 1/z̃c = β2

c = 8π
which separates the phases of the model (see Fig. 2) is found to be scheme-independent. The comparison of exact and
perturbative (linearized) RG flow can be used for optimizing the renormalization schemes.

Finally, let us discuss the possibility of having a topological phase transitions in higher dimensions. In [14] it was
argued that the extended version of the SG model posseses a topological phase transition in d = 4 dimensions. The
kinetic terms of the extended model and the usual one (1) are different and this is the reason why one can observe a
phase transition for the extended SG theory. Indeed, the ∆2 kinetic term is sub-leading with respect to the standard
∇2 term and, so, the topological (or KTB) phase transition in d = 4 dimension is expected to be of ”higher order”
with respect to the standard one in d = 2, and so, it needs a specific tuning of the coupling in the ∇2 in order to
be observed. If one rescales the field by the frequency (ϕ→ βϕ) in both versions of the SG model, the dimension of
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FIG. 3: The exact phase diagram of the SG and the equivalent CG models for d = 3 dimensions which indicates a single phase
for d > 2.

the wavefunction renormalization can be determined. In the extended SG model it is dimensionless which requires
no tree-level scaling and it makes possible (under some other conditions) to observe a topological phase transition.
However, the kinetic term of the usual SG model (1) has a tree-level scaling which has serious consequence, the RG
flow has a turning instead of a critical point. The exact RG flow, see Fig. 5 in the following sections, confirms this
expectation. So, if the usual kinetic term is generated by the RG flow, the absence of the topological phase transition
is unavoidable in higher dimensions d > 2.

III. DOUBLE-FREQUENCY SG MODEL

Let us study the influence of higher harmonics on the phase structure of the single-frequency SG model. For d = 2
the higher frequency modes of the SG model correspond to vortices with higher vorticity of the related XY model
and it is known to play no role in the vortex dynamics (the excitation of vortices with higher vorticity has lower
probability). The equivalence between the SG and the XY models has been proven in d = 2 dimensions, so it is
important to clarify the results of the previous section which were obtained for the single-frequency SG model for
d 6= 2. Let us consider the double-frequency SG model

Γk =

∫
x

[ z̄k
2

(∂µθx)2 + u1k cos(θx) + u2k cos(2θx)
]

(19)

where the first Fourier amplitude is equivalent to that of the single-frequency SG model, u1k ≡ uk. In case of the
double-frequency model the parameter space is three-dimensional thus its projection to the ū, 1/z̃ plane is used to
compare RG trajectories of the 1-dimensional SG model with single and double frequency, see Fig. 4. Let us note, the
same normalized Fourier amplitude ū is used both for the single- and the double-frequency cases. The definition of ū
is given by the low-energy behavior of the inverse propagator (see the previous section) and it is normalized in such a
way that for the single-frequency model it tends to 1.0 in the low-energy limit of the broken phase. The low-energy
limit of ū in the broken phase of the double-frequency SG model is similar to that of the single-frequency model.
Similarly, a non-trivial saddle point appears in d = 1 dimension in the RG flow of the SG model both for the single-
and double-frequency cases but its position differs from each other, see Fig. 4. Let us also mention that the numerical
results shown in Fig. 4 are obtained by solving the RG equations (4) and (5) both for the single- and double-frequency
SG models in d = 1 using the same initial condition for u1Λ ≡ uΛ and for the double-frequency case the other Fourier
amplitude is chosen as u2Λ = 0.1u1Λ.

The main conclusion is that results of the RG analysis of the single- and double-frequency SG models are in
qualitative agreement which demonstrates that similarly to the d = 2 case, the higher harmonics do not modify the
phase structure given by the single-frequency model.
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FIG. 4: Lower half of the phase portrait of the SG model with single (10) and double frequency (19) are compared (in the ū,
1/z̃ plane) for d = 1. Results are in qualitative agreement.

IV. PHASE STRUCTURE OF THE NEUTRAL CG

The CG model has been the subject of an intense study in last decades [2, 3, 6, 15, 25, 26] and there is a continuous
interest in the use of the SG representation of CG systems [2, 3, 6, 26] since it has an important relevance in various
models of critical phenomena (e.g. superfluid transition in He films, melting of crystals in d = 2, arrays of Josephson
junctions, roughening transition). However, the complete understanding of the critical behaviour of the d-dimensional
neutral CG which is a plasma of equal number of positive and negative charges is still lacking. For example, previous
investigations (even for the well studied 2-dimensional CG model) were restricted to the case of low densities (limit of
low fugacity) and there are different competing views of what happens to the neutral plasma at high densities [25, 26].
Thus, an RG study of the d-dimensional CG beyond the dilute gas approximation is required which is one of the goal
of the present work.

Since the mapping between the CG and SG models holds in arbitrary dimension [3, 6] (and it is exact in case of
point-like charges) the RG study of the d-dimensional SG model can be directly used to map out the phase structure
of the CG model. In the framework of perturbation theory (limit of low fugacity) RG equations of the CG model in
arbitrary dimension is given in [15] and reads as

dx

dl
= −x(xy2 + d− 2),

dy

dl
= −y(x− d) (20)

with ∂l = −k∂k, y ∼ ũk and x ∼ 1/T̃ ∼ 1/z̃k where T̃ is the temperature and y is the fugacity. Using these identities
Eq. (20) can be rewritten as

((d− 2) + k∂k)z̃k = −czũ2
k, (d+ k∂k)ũk = cu

1

z̃k
ũk, (21)

with constants cu, cz and they are found to be similar to the linearized RG equations obtained for the SG model, see
Eqs. (13),(14), Eqs. (15),(16) and Eqs. (17),(16). For example, the non-trivial fixed point of the 1-dimensional SG
model can be identified in the flow generated by (21), too. In the so called sharp cutoff limit (b→∞) the linearized
RG equation derived for the Fourier amplitude of the SG model reduces to (d+ k∂k)ũk = Ωdũk/(z̃k2(2π)d) which is
identical to the second equation of (21). However, the sharp cutoff does not support to the derivative expansion at
higher order, i.e. for b→∞ the multiplicative constant cd(b) of the RG equation obtained for z̃k becomes infinity.

Most important new results of the exact RG flow are the existence of the high temperature (ū? = 1, 1/z̃? = 0)
and the absence of new further non-trivial fixed points. Let us note that, the perturbative (truncated) RG has a
non-singular structure hence it is not able to recover the degenerate potential therefore it is not suitable to observe
the high temperature fixed point [15]. Moreover, the exact RG changes the position of the non-trivial fixed point for
d < 2 and the turning point for d > 2. Furthermore, since the mapping between the SG and CG models is exact for
point-like charges the exact RG flow indicates a single phase for the CG for d > 2.
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V. CHECKING THE RESULTS

So far RG equations beyond the local potential approximation (LPA) have been derived for the SG model (with
single and double frequency) in d-dimensions. By using the mapping of the SG theory onto the CG model, its RG
flow and phase structure has been discussed beyond the dilute gas approximation. In this section let us check the
findings of the present work by comparing them to known recent results [17, 27].

Let us first rewrite the linearised RG flow equations (13), (14), (15), (16) and (17), (18) in a single form valid in
arbitrary dimensions

(d+ k∂k)ũk = Ab,d z̃
(2−d)−2b

2b

k ũk +O(ũ2
k) (22)

((d− 2) + k∂k)z̃k = −Bb,d z̃
(6−d)−4b

2b

k ũ2
k +O(ũ3

k) (23)

where Ab,d and Bb,d are constants depend on the dimension d and the regulator parameter b. For the comparison it

is convenient to use the frequency instead of the wave function renormalization (β̃2 = 1/z̃),

k∂kũk =
[
Ab,d (β̃2

k)
2b−(2−d)

2b − d
]
ũ (24)

k∂kβ̃
2
k = β̃2

k

[
(d− 2) +Bb,d ũ

2
k(β̃2

k)
6b−(6−d)

2b

]
, (25)

and take the limit b → ∞ which is identical to the so called sharp cutoff regulator (as mentioned in the previous
section),

k∂kũk =
[
A∞,b β̃

2
k − d

]
ũ (26)

k∂kβ̃
2
k = β̃2

k

[
(d− 2) +B∞,b ũ

2
kβ̃

6
k

]
. (27)

It is important to note that B∞,b cannot be defined unambigously in the functional RG approach since the sharp
cutoff confront to the derivative expansion, however, it is possible in the real space RG even beyond LPA.

Let us first compare Eqs. (26) and (27) to the RG equations (3.2.8) and (3.2.9) of [17] which is obtained in the
dilute gas approximation and reads

k∂kũk =

[
Kd

2
β̃2
k − d

]
ũ (28)

k∂kβ̃
2
k = β̃2

k

[
(d− 2) +

(
I1Kd

2
+B

)
ũ2
k

4
β̃6
k

]
. (29)

by using the following identifications 2z ≡ ũ, α ≡ β and ∂l ≡ −k∂k where Kd, I1 and B are constants. It is clearly
demonstrated that Eqs. (26) and (27) are identical to (28) and (29) up to some constant.

Finally, let us consider the flow equations above (45) in [27] which are obtained for the SG model in d = 2 using
the Wilson-Kadanoff blocking relation up to leading order terms and reads as

k∂kũk =

(
β̃2
k

4π
− 2

)
ũ (30)

k∂kβ̃
2
k =

3β̃6
kũ

2
k

4πΛ3
(31)

where the identifications g ≡ ũ and ∂l ≡ −k∂k are used. One finds agreement between Eqs. (24) (25) and Eqs. (30)
(31) since Ab,2 = 1/(4π) and b = 2 is chosen. Thus, it was shown that the findings of the present work recovers known
(approximate) results which validates our conclusions.

VI. ISOTROPIC CLASSICAL XY SPIN MODEL

The partition function of the d-dimensional isotropic classical XY spin model [1] can be expressed in terms of
topological excitations of the original degrees of freedom. For d = 2 dimensions, the dual theory is the vortex gas
which is known to belong to the class of universality of the neutral CG [28, 29, 32]. Two-dimensional generalized
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FIG. 5: Phase diagram of the SG model in d = 4 dimensions.

models are well known where both the CG and the vortex gas are included as particular limiting cases [28, 29, 32]
and are self-dual under the duality transformation. For d = 3, the dual theory is the gas of interacting vortex loops
[30, 31] (i.e. the lattice CG [32]). Corresponding flow equations have been derived for the parameters K (i.e. the
coupling between the spins) and y (i.e. the fugacity of the vortex loops) by real-space RG method (a ∼ 1/k where
a is the running cutoff in the coordinate space while k is the running momentum cutoff) in the limit of low fugacity
[3, 30, 31],

a∂aK = K − 4π3

3
K2y, a∂ay =

(
6− π2KL

)
y, (32)

where L approaches a constant in the IR limit (L→ 1) [30], or it is weakly divergent (L→ ln(a/ac) + 1) [31]. Since
a∂a = −k∂k and by using the identities y ≡ ũ, K ≡ 1/z̃, RG equations of (32) are rewritten as

k∂kz̃k = z̃k −
4π3

3
ũ2
k, k∂kũk =

(
1

z̃k

π2L

2
− 3

)
ũk, (33)

which can be compared to the linearized RG obtained for the SG (17), (18) and the CG (21) models in d = 3
dimensions. The only qualitative disagreement is the sign of the tree-level scaling term of z̃k but it has important
consequences since the RG flow of the vortex-loop gas has a non-trivial fixed point which is absent in case of the 3-
dimensional SG and CG models. Therefore, it demonstrates that the vortex-loop gas has a different scaling behaviour,
thus it belongs to a class of universality different from that of the SG and CG models for d 6= 2. For d = 2, the
couplings K, z̃ have no tree-level scaling thus SG, CG, XY models are in the same universality class. Let us emphasize
that RG equations are compared at the linearized level, however the exact RG study of the SG and CG models is
required since it shows the absence of new non-trivial fixed points, thus there is no room to find a mapping between
the parameters of the vortex-loop gas and the 3-dimensional CG which could produce the same phase structure.

VII. APPLICATION TO HIGGS, INFLATON AND AXION PHYSICS

In this section we apply the results of the functional RG study of the SG model obtained in d = 4 dimensions for
Higgs, inflaton and axion physics. The phase diagram of the four-dimensional SG model is shown in Fig. 5.

Let us first discuss its consequences on the stability of the periodic Higgs potential in the framework of the Higgs-
Yukawa model [51]

Γk =

∫
k

[
1

2
Zφ,k(∂µφ)2 + Uk(ρ) + Zψ,kψ̄i/∂ψ + ihkφψ̄ψ

]
(34)

where the Yukawa coupling (hk) has been introduced in order to couple the Higgs field (φ) to a fermion field (ψ) (top
quark). The scalar potential is assumed to be a periodic one, i.e., Uk(ρ) ∼ cos(βρ) with ρ = 1

2φ
2. The functional RG
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FIG. 6: Orange line represents the best fit of the periodic inflationary potential (for N ∈ [50, 60]) with respect to its frequency
to Planck results [35]. This gives the optimal value which is β = 0.15. The black line stands for the quadratic inflationary
potential (for N ∈ [50, 60]) which is almost excluded. Dashed lines indicate allowed regions for the periodic model (for various
frequencies where β = 0 recovers the quadratic potential).

equation suitable for the Higgs-Yukawa model reads as [51]

k∂kΓk =
1

2
STr

k∂kRk

Rk + Γ
(2)
k

. (35)

If the Yukawa coupling contains a linear term in the Higgs field (which is the usual case) and the scalar potential

periodic in the field components, then the Hessian of the running action Γ
(2)
k with respect to the fields (φ, ψ, ψ̄) has

a fully periodic part. In other words, the free boson contribution for the functional RG equation remains periodic
and the application of the RG study of the pure periodic scalar model on the stability problem [49, 50] represents
a reliable approximation. Although, the scalar potential is periodic in the magnitude, i.e., in ρ which requires a
more careful analysis where one has to treat the RG running of every couplings in a complete study but this is not
the goal here. Coming back to the RG results of the pure SG model the following statements can be done. Since
the dimensionless Fourier amplitude (ũk) tends to a constant value (see, Fig. 5) the dimensionless periodic potential
remains bounded from below and above which guarantee the stability at this level of approximation. A polynomial
potential can loose stability if it becomes unbounded from below, but a periodic potential with finite Fourier amplitude
cannot be unstable. This is why we argue that stability of the periodic scalar potential is guaranteed because the RG
study of the SG model results in a finite value for the amplitude. Furthermore, it also means that the dimensionful
Fourier amplitude (and consequently the dimensionful mass term for the Higgs) tends to a small number in the deep
IR limit. This is required since the Higgs mass at the scale of inflation (UV scale) should be large fixed by Cosmic
Microwave Background Radiation (CMBR) data and it should tend to the measured Higgs mass in the low-energy,
IR limit which orders of magnitude smaller than at the UV scale. Thus, the RG result of the pure periodic model
supports to consider the periodic model as a possible UV completion of the SM Higgs potential.

Let us turn to the discussion of the RG running of the (dimensionless) frequency β̃ of the periodic inflationary
potential, for the details see Appendix A. Conditions for the slow-roll-down inflation requires a small frequency
(β̃ = 0.15) which is shown by Fig. 6. The blue line of Fig. 5 stands for the RG trajectory for such a small frequency. It

is an almost vertical straight line, i.e. β̃ does not change over inflation and in the post-inflationary period. Moreover,
it tends to zero in the deep IR limit which allows the Taylor expansion of the periodic potential and results in a simple
quadratic potential. The RG study presented here, can be applied for a modified version of the periodic potential in
which, in addition to the periodic self-interaction, a linear term appears

V = gφ+ u cos(βφ) (36)

which was considered in [39] as a new type of inflationary potential. The idea is similar to the Higgs case, the Tr-term
of the functional RG equation remains periodic since not the potential but its Hessian appears there which is periodic
even for the above potential.

Finally, let us consider the consequences of the RG study of the SG model on axion physics. In Ref. [55] it was
shown that RG transformations results in a flat (dimensionful) axion potential at LPA. Findings of this work are
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suitable to go beyond LPA. Indeed, the flow diagram Fig. 5 clearly takes into account the (non-trivial) RG running
of the frequency which can be seen only beyond LPA. Since the dimensionless Fourier amplitude tends to a constant
value the corresponding dimensionful parameter vanishes in the IR limit, the dimensionful potential flattens out. This
confirms the flattening of the axion potential beyond LPA.

VIII. SUMMARY

In this work the functional RG study of the periodic scalar field theory, i.e. the sine-Gordon (SG) model has been
performed in arbitrary dimension and the wave function renormalization is included. This allows us to go beyond
approximations used in previous works and to consider the consequences of the RG study of the periodic scalar
model on Higgs, inflaton and axion physics and to consider the possibility of a topological phase transition in higher
dimensions.

For example a periodic Higgs potential was proposed as a possible extension of the standard quartic one. Using the
usual parametrisation of the field around the first minimum, one recovers the Lagrangian of the Higgs sector but with
a periodic type self-interaction term for a single-component real scalar field. The exact phase structure of the pure
SG scalar field theory (with no gauge and fermionic fields) was mapped out by the functional RG method in arbitrary
dimension. It was found that the SG model has a single phase in d > 2 and the potential remain bounded from below.
This result opens a new platform to perform stability studies for models with periodic type Higgs potentials, as an
example one can mention the so called massive sine-Gordon model which contains quadratic and periodic terms [48].

The RG running of the frequency parameter is used to answer to the question whether the conditions for slow-roll
inflation remains valid under RG transformations. It was shown that starting from a small value for the frequency
(which is required), it does not evolve along the corresponding RG trajectory. Thus, our analysis supports the viability
of a periodic inflationary potential.

Finally, it was also shown that the dimensionful periodic potential flattens out in the IR limit which confirms
previous results on the flattening of the axion potential.

The findings were used to determine the phase structure of the equivalent neutral Coulomb-gas (CG) too. The
high temperature fixed point of the d-dimensional SG and CG was determined and shown that the perturbative RG
is not suitable to recover it. The position of the non-trivial fixed point of the RG flow for d < 2 and the turning point
for d > 2 dimensions given by the exact flow is compared to the linearized one. Note, that for d = 1 dimension, the
broken phase should be vanish if the approximations used are improved [33].

The absence of new further non-trivial fixed points were also demonstrated which results in a single phase for the
SG scalar theory and the neutral CG with point-like charges for d > 2, thus, (i) no further phase transition can be
identified at high densities for the neutral CG as opposed to e.g. [25, 26], (ii) no topological phase transition can be
observed for the SG model with the usual kinetic term (1) in higher dimension d > 2, (iii) there is no way to find a
mapping between the phase structure of the neutral 3-dimensional CG and the vortex-loop gas which is the gas of
topological defects of the isotropic XY spin model for d = 3, i.e., they belong to different universality classes.
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Appendix A: Periodic inflationary potential

A possible application of the higher dimensional periodic, i.e. sine-Gordon type scalar field theory is inflationary
cosmology. Let us start with the Friedman-Robertson-Walker (FRW) metric gµν = diag(−1, a2, a2, a2) using natural
units c = h̄ = 1 where a = a(t) is the scale factor of which time-dependence is determined by the Friedman equation
(derived form the Einstein equation for the FRW metric). The solution of the Friedman equation with the assumption
for the equation of state p = −ρ results in exponential expansion, i.e., a(t) ∼ eHt where H is the Hubble constant. The
key observation is that scalar fields can mimic the required equation of state (under some conditions) thus represent
excellent models for inflation [34]. The Lagrangian of the Einstein-Hilbert action involving a real scalar field minimally
coupled to gravity is given by

S =

∫
d4x
√
−g

[
m2
p

2
R+ Lφ

]
, Lφ = −1

2
gµν∂µφ∂νφ− V (φ) =

1

2
φ̇2 − 1

2

1

a2
(∇φ)2 − V (φ)
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with
√
−g =

√
−det(gµν) = a3. The first observation is that over inflation the field can be considered to be

homogeneous (∇φ/a = 0). The simplest example for inflationary potential is the so-called chaotic monomial or large
field inflation where the potential reads

V = λm4−α
p φα, m2

p =
1

8πG
, mp = 2.4× 1018GeV

where mp is the (reduced) Planck mass, G is the gravitational constant and α = 2, 4 is a typical choice. Conditions
for the potential can be derived in order to fulfil the requirements of prolonged inflation (with slow roll down). These
conditions are written in terms of parameters (ε, η and N) which are the following for chaotic or large field inflation
(LFI)

ε =
1

2
m2
p

(
V ′

V

)2

=
1

2
m2
p

(
λαm4−α

p φα−1

λm4−α
p φα

)2

=
m2
p

2

α2

φ2
� 1

η =m2
p

V ′′

V
= m2

p

(
λα(α− 1)m4−α

p φα−2

λm4−α
p φα

)
= m2

p

α(α− 1)

φ2
� 1

N =− 1

m2
p

∫ φf

φi

dφ
V

V ′
= − 1

m2
p

∫ φf

φi

dφ
φ

α
=

1

2αm2
p

(φ2
i − φ2

f ) = [50− 60]

Since inflation ends when ε ≈ 1 or η ≈ 1 therefore one has to choose

φf = αmp =⇒ ε =
1

2
η =

α− 1

α
, φi =

√
2αm2

pN + φ2
f ≈
√

2αNmp

where at the last approximation we used that φi � φf . From the above parameters one can build up measurable
quantities such as the spectral index (ns ≈ 2η − 6ε) and the tensor-to-scalar ratio (r ≈ 16ε) which relates to each
other. For the quadratic case (α = 2) the relation is independent of N and valid up to order (1/N)

(ns − 1) +
r

4
= 0 ,

and can be compared to observations directly. For example, result of the Planck mission [35] put strong constraints on
the applicability of the quadratic LFI model, i.e., it is almost excluded by measured data on the thermal fluctuations
of the cosmic microwave background radiation (CMBR). Indeed, testing of competing scenarios for scalar inflationary
models against observation is a general issue, see for example [36, 37].

Let us now turn to our original plan, i.e., to use a periodic scalar field as an inflationary model. Consider the
sine-Gordon model in the following representation which is the so called Pseudo-Nambu-Goldstone boson potential
(PNGB) [38],

V = u [1− cos(βφ)]

where u, β are dimensionful parameters. Generalization of that can be find also in Ref. [39]. In d = 4 dimensions the

scalar field carries a dimension, φ = k(d−2)/2φ̃ where φ̃ is dimensionless and k is an arbitrary chosen momentum scale
convenient to take at the planck mass k = mp. Thus, the corresponding dimensionless parameters are β = m−1

p β̃ and

u = m4
pũ. Calculating ε, η and N parameters one finds

ε =
1

2
m2
p

(
V ′

V

)2

=
1

2
β̃2 sin2(β̃φ̃)

[1− cos(β̃φ̃)]2
� 1

η =m2
p

V ′′

V
= β̃2 cos(β̃φ̃)

1− cos(β̃φ̃)
� 1

N =− 1

m2
p

∫ φf

φi

dφ
V

V ′
= − 2

β̃2
log cos

(
β̃φ̃

2

)∣∣∣φ̃i

φ̃f

= [50− 60]

and assuming a small value for the frequency β̃ the conditions can be fulfilled [40] which validates the use of the

periodic scalar field theory in inflationary cosmology for small frequencies β̃ � 1. In this limit one can expand the
periodic potential and finds [40]

(ns − 1) +
r

4
= −β̃2
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where the last equation can be compared to the that of the quadratic potential. Precise measurements on ns and r
can be used to put constraints on the dimensionless frequency β̃ [40]. The important difference between the quadratic
and the periodic cases is the presence of the frequency in the above formula which is a running parameter of the
model thus renormalization effects should be taken into account at least in the post-inflation period.

Indeed, one of our goal is to determine the RG running of the pure sine-Gordon theory in d = 4 dimensions and to
discuss the consequences on the use of the periodic model to inflationary physics.

Appendix B: Periodic Higgs potential

In the standard model (SM) of particle physics the Brout-Englert-Higgs (BEH) mechanism [41, 42] has been used
to generate mass for the weak gauge bosons. Above a criticial temperature the electroweak symmetry is unbroken, all
elementary particles are massless. Below the critical temperature the symmetry is spontaneously broken and the W
and Z bosons acquire masses. Furthermore, fundamental fermions can also acquire mass as a result of their interaction
with the Higgs field. The SM Higgs field is an SU(2) complex scalar doublet with four real components

φ =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
.

The underlying symmetry of the electroweak sector is SU(2)L × U(1)Y , thus, the Higgs Lagrangian reads as

L = (Dµφ)?(Dµφ)− V (φ)− 1
2Tr (FµνF

µν),

V = µ2φ?φ+ λ(φ?φ)2, (Dµ = ∂µ + igT ·Wµ + ig′yjBµ)

and the vacuum expectation of the Higgs field is either at zero field for µ2 > 0 or at
√
φ?φ =

√
−µ2/(2λ) = v/

√
2 for

µ2 < 0. After the spontaneous symmetry breaking of SU(2)L × U(1)Y into U(1)Q the field around the groundstate
can be parametrized as

φ(x) =
1√
2

exp

(
i
T · ξ(x)

v

)(
0

v + h(x)

)
with v = 246 GeV known from low-energy experiments and the unitary phase can be dropped by choosing an
appropriate gauge. As a consequence of the BEH mechanism the photon remains massless but the weak gauge bosons
acquire masses. Three degrees of freedom of the Higgs field (out of the four) mix with weak gauge bosons while the
remaining degree of freedom becomes the Higgs boson which is discovered at CERN’s Large Hadron Collider. The
complete Lagrangian for the Higgs sector reads

L =
∂µh∂

µh

2
− M2

hh
2

2
− M2

hh
3

2v
− M2

hh
4

8v2
+

(
M2
WW

+
µ W

−µ +
M2
ZZµZ

µ

2

)(
1 +

2h

v
+
h2

v2

)
with Mh =

√
−2µ2 =

√
2λv2. The measured value for the Higgs mass Mh = 125.6 GeV [43, 44] implies λ = 0.13. This

is close to the predicted value based on the assumption of the absence of new physics between the Fermi and Planck
scales and the asymptotic safety of gravity [45]. This enables us to extrapolate the SM up to very high energies and
to interpret the Higgs boson as the inflaton by using two competing scenarios, (i) non-minimal coupling to gravity,
(ii) higgs-inflation from false vacuum.

Let us first discuss the large non-minimal coupling to gravity [46], which results in the following action

S =

∫
d4x
√
−ḡ

m2
p

2

[
(1 + ξh̃2)R̄− ḡµν∂µh̃∂ν h̃− 2m2

p

λ

4

(
h̃2 +

2v2

m2
p

)2
]

where ḡµν is the metric in the Jordan frame, ξ represents the coupling between gravity and the dimensionless Higgs
scalar h̃. To perform the slow-roll study, the action is usually rewritten in the Einstein frame where it takes the form

S =

∫
d4x
√
−g

[
m2
p

R

2
− 1

2
gµν∂µφ∂νφ−

m4
pλ

4ξ2

(
1− e−

√
2/3φ/mp

)2
]

in which the metric tensor being denoted by gµν and the new field variable is introduced via dφ/dh̃ =

mp

√
1 + ξ(1 + 6ξ)h̃2/(1 + ξh̃2) but as a possible drawback of the method, perturbative unitarity can be violated

for ξ 6= 0.
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In case of a Higgs inflation from false vacuum a minimal coupling is used, i.e., ξ = 0 which implies φ = mph̃ with
the same shape of potentials in both frames but the SM Higgs potential is extended and assumed to develop a second
(or more) minimum [47, 48]. This scenario can have difficulties to achieve an exit from the inflationary phase. In
addition, the measured Higgs mass is close to the lower limit, 126 GeV, ensuring absolute vacuum stability within
the SM [49] although it was also shown [50] that traditional Higgs inflation can be possible within a minimalistic
framework even if the SM vacuum is not completely stable.

Therefore, the UV completion of the Higgs potential which try to make connection between Higgs and inflationary
physics, is required to have no just a global but local minima which can be realised by adding new interaction terms
to the Lagrangian, such as λ2(φ?φ)3. Indeed, the stability study of various types of polynomial Higgs potentials in
the framework of simplified models has been performed by using functional renormalization group (RG) technique
[51]. However, in the RG point of view the phase structure has not been modified significantly if the Higgs potential
remains polynomial. Instead, a periodic self-interaction,

V = u[cos(β
√
φ?φ)− 1] = −uβ

2

2
|φ?φ|+ uβ4

4
(φ?φ)2 + ...

can influence more drastically the phase structure and the RG running of the couplings due to the periodicity which
should be protected by the RG. The frequency β can be chosen to keep the first minimum of the potential to be
equal to that of the standard quartic Higgs potential, i.e., β =

√
2π/v. The inclusion of higher harmonics can shift

the second minimum to take place at large fields. There are various scenarios to identify the Higgs mass by the
appropriate choice of u (i) using the Taylor expansion of the (tree-level, bare) potential around the zero field where
one finds µ2 = − 1

2uβ
2, (ii) including the RG running of the parameters in the co-called massive phase of the periodic

model where the Taylor expansion is more justified and the mass parameter is given by the infra-red (IR) values
µ2 = − 1

2uIRβ
2
IR, (iii) by means of the soliton mass.

With the same parametrisation of the field around the (first) minimum, the Lagrangian of the Higgs sector looks
similar to the usual one but with a periodic self-interaction term for h(x).

L =
1

2
∂µh∂

µh− u
[
cos

(
1√
2
β|v + h(x)|

)
− 1

]
+

(
M2
WW

+
µ W

−µ +
1

2
M2
ZZµZ

µ

)(
1 + 2

h

v
+
h2

v2

)
.

A similar structure is found for the O(N) extended version of the sine-Gordon model [52] which was studied in d = 2
dimensions and the dependence of its phase structure on N was determined but it has not been investigated in higher
dimensions. A rigorous functional RG study provides us a very powerful tool to attack such problems as it has
been done for the pure O(N) model in higher dimensions where the triviality of the model is re-examined [53]. The
assumption of a periodic Higgs potential means infinitely many degenerate minima and requires a careful functional
RG treatment.

Another goal of this work is to discuss some of the consequences of the renormalization of the pure sine-Gordon
model to Higgs inflation and to the stability problem in the framework of the Higgs-Yukawa theory.

Appendix C: Periodic axion potential

Our last example for applications of sine-Gordon type scalar field theory in higher dimensions is related to the
axion. Constraints from symmetry and renormalizability on the standard model QCD action allows to extend it by
a CP violating term. However, experimental data do not favour such an extension although the standard model
Lagrangian is not CP symmetric, so, QCD could be CP violating as well. Peccei and Quinn proposed a mechanism
and introduced a new hypothetical scalar field with U(1) symmetry in order to build up a CP conserving theory from
a model with massive fermions coupled to a non-Abelian gauge field [54]. The axion appears as a phase of a Goldstone
mode for a complex scalar Φ with a vacuum expectation value < Φ >= feiθ corresponds to the spontaneous break
down of the U(1) symmetry at the scale f . Integrating over the QCD degrees of freedom one arrives at the following
effective action

S =

∫
d4x

(
f2

2
∂µθ∂

µθ + u[1− cos(θ)]

)
=

∫
d4x

(
1

2
∂µφ∂

µφ+ u[1− cos(βφ)]

)
,

with φ = fθ and β = 1/f where the periodic potential appears naturally and the rescaling of the field has been done
by using the assumption that f is independent of the spacetime. In Ref. [55] it was shown that the axion potential
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flattens out under RG transformations which were taken in the so called local potential approximation. Our goal here
is to perform the functional RG study of the periodic scalar model, i.e., the sine-Gordon theory in d = 4 beyond the
local potential approximation in order to clarify the flattening of the axion potential.
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