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INTRODUCTION

This work describes the development of a compu-
ter program for the analysis of the time - dependnet in-—-
compressible viscoas flow problemse.

Mathematically, the problem is that of solving
numerically a partial differential equation in three
variables contaning non-linear terms. The most natural
boundary conditions to impose, those in which velocities
are prescribed at the boundary, are also among those
which are the most difficu&t to handle computationallye.
These varieus difficulties are illustrated in the recent
worke If was found necessary to approximate the bounda-~
ry conditions in a way which affected accuracy, and also
take such small time steps for reasons of stability and
accuracy that the computer time become excessivee

The method here depends on the use of the primi-
tive variables - i.e the velocities and the pressure -
and is applicable to problems in two and three space
dimensions. An analytical disscussion of the properties
of the method requires a background of numerical ana-
lysis for that reason, we have collected the relevant
informations, e.g definttions and theormes in chapter I.
In chapter II the general method of solving numerically
the Navier - Stokes equations for pressure and velocities
in Hydrodynamic is presented. Finally chapter III con=-

tains a flow chart and Algol 60 Program for solving

to



ii

the test example given at the and of chapter IT.

Finally at the end of this work a list of the referen-

ces used will be given.



CHAPTER I

PRELIMINARIES DEFENITIONS AND NOTATIONS

This chapter iincludes the required theoremes, notations

gnd definitions which we shall need throught this work.

§l. NORMS AND MATRICES

The norm of a matrix is a number assigned
to the matrix which is in some sense a measure of the
magnitude of the matrixe. The norm of A, denoted by
“Al'h&ve the following properties.
(1) "A"Z. 0, ”A“ = 0 if and only if A = O
(2) CA” =|C l”AII where C is any real number (1-1)
(3) A+B.“é “A ” - ”B “
(4) ||as || < A ” [ |

among the many possible ways of defining “A Hwhich

satisfy (1-1) we consider:

n 1/2
NI

aij) , the Euclidean norm
” ooy Ty T2
,A = max [i(AA )] , the spectral norm
S {4

(2

m

Both of which is defined for any nxp'matrix. In the
definition of the speectral norm the nohiﬁmﬁ){AAl) de-
L
m
| notes an eigenvalue of AA~, For vectors we define the

norm in the FEuclidian sense as,

"x ”: (xTx)1/2 = Ix ’



The spectral radius is defined, by,
(L) = mex p{A), the maximum madulus
P

elgenvalue of the mat-
rix A.

Thus “A” [(’(AA )
when A is symmetric, "A ”:: P(4)
Theorem 1.1

If A is the tridiagonal matrix,

c a b
where a,b and ¢ are

LO ¢ ?}u

real and bec )0, then the eigenvalues d¢f A are givenby,

’)I\n=a+2qbc cos%ld: g (M= 1, 2,40e; 1)

Theorem 1.2

A

For any matrix A, "A “ 2P(1), if A is symmetric, "A ” = (A1)

Def.,.The matrix A is convergent to zero if the sequan-

ce of matrices A, A2, A3, eeoe cpnverges to the null

matrix C,

Theorep 1.3
Lima® = 0 17 [a [ <2
Tp oo

proof:

I Yy N Y e o s YN
Theoreml.4
Lim AT = 0 if end only 1fr>‘ [(’Ifor alJ€’SF

Yo
eigenvalues “\; (i = 1, 2,40., n) of A

A4



proof: Consider the Jordan canonical form of A, A

Jordan submatrix of A is of the form, F)'.: O —[
I ¥
) o

_O ;7\c,

where 7‘1 is an eigenvalue of A, If the Jordan subma t—

rix is raised to the power r, then the result tendesdi

to the null matrix as r—-o; if and only if | k1.

Theoreml.5

If ’>ll ;f)\g, ""')n are the eigenvalues of A, then the
. k k k —~k
eigenvalues of A™ are ')‘1, ’}\2,..., )n , more generally

if p(x) is a polynomial, the eigenvalues of p(A) are
p( A )5eee, DA,

Theoreml.6

If A is real and symmetric, all eigenvalues and eigen-
vectors are real. lMoreover, eigenvectors corresponding
to distinet eigenvalues are orthggonal and the left
eigenvector corresponding to the eigenvector Xy is Xf,
Theorem 1.7

Any similarity transformation }?AP':L applied to A leaves
the eigenvalues of the matrix unchanged.

proof: Let } be an eigenvalue of A and x the associ-
ated eigenvector then,

Ax = Ax, so that , PAx = APx (1-2)



Let y = Px so that x = P ly,

subistituting in (1.2) gives

APy = Ny
Thﬂs‘) is an eigenvalue of PAP'l and y is the asso-

ciated eigenvector,

Theorepl.8

Let £(A) = [a =0

be the characteristic equation of A then f(A) = O

Theoggnl;9

Given an arbitrary matrix A, there exists a
non-singular matrix P, whose elements may be comp=-

lex, such that

Y Oe—— e om s 7
3o
9\ 2 N\ 1
(AN "
-1 : “‘_ \‘\ \\\ i 5
PTUAP = [0 NN (1-3%
. N N )
[} \\\ \"A\ o
i %
IO "1

Where Ji , k = 1, «eo, M&n is a matrix with an eigen-
value ‘Xi of A on its main diagonal and 1’S on the
diagonal above the main diagonal.

Thus

Pt oe o6
0 % 40N |
o R T
J - : N “a N \o
I i N
| M
!
| BN




Note that a given eigenvalue may appear as the dia-
gonal element of more than one Jk' The matrix in
(1-3) is called the Jordan canonical form of A. The

determinants

|es, - A - (’ki-?)yk

where Uk is the order of Jk are called the elementary

divisors of A.

§2. THE SUGCESSIVE OVERRELAXATION METHOD FOR

SOLVING A SET OF LINEAR ALGEBRIC EQUATIONS

An implicit finite differente formula which approxi-
mates a partial differential equation in any number of
space variables involves several grid points at the
advanced time level. So it is required to find the soiu-
tion of the equations which arises there. A set of si-
multanous linear equations, which can be written in the

forme.
Px=c , ([p|40) (2.1)

where P is & square matrix, with no zero on the main
diagonal, x, ¢ are vectors requiers to be solved at each

time stepe.

Equation (2.1) cen be written in the form

Ax=b , (|la] £0) (2.2)



where A = DP 3 _12 = D_

and D is a diagonal matrix chosen so that the elements

of the principal diagonal of A are unity. A can be written

in the form

A=T1I=L-1T

where I is the unit matrix, and L, U are the lower and
upper triangular matrices respectively.

An iterative process is used to solve (2«2). Ve begin
by initial valuef§6 and is successively improved by

the iterative process until it is arbitrary close to

Xe (2=2) can b written in the form

(I-L-U)x = b (2-3)

and‘gi, X are successive approximate solutions of

i+l
equation (2-2), then using of equation (2-3) give,

- (_Lb + U) _}Ei +2 ,(i:l,z,...)
which is the point Jacobi iterative method, or

(I -1) x;,1=Ux4 +D

which is the Gauss-Seidel iterative method. These two
methods are special cases of the general iterative
process

Bx. + 9 (i = 1, 2,000) (2-4)

Zj41 = PF t 8
where B = L + U and (I-L)~% in the point Jacobi and
Gauss-Seidel processes respectively.

An error in the ith iterate is

= X, - 5 ,(i = O, 1’ 2’.0.)

Then
&;,1 FX =3B, +Bx+ ¢

= Be, (1 = O, 1, 2,0.0)



then

i
&; =Be, » and so,

e, —+0, as i=we, if B y0
where O is the null matrix B is convergent (i.e Bl o
as i-»e) if and only if P(B) <1l (see theorm 1-2).
Thus the iteration (2.4) is convergent if and only if
t Paid 1s

Thus to solve equations (2-2) by the method of succes-

sive overrelexation, we introduce,

2

Nay, = g * Uy R (2-5)
where

= X + (1=-W)x, (2-6)

Xia i+l
whereW> 0 an arbitrary parameter, independent of i,
called the relaxation factor.

Elimination of §£+1 between (2-5), (2-6), gives,

[U +(1- u’)I]_}_gi+ wh

X;,q = (I-wL)'l[wU+(1-w)ﬂ§i+ ®(I-wlL)"h (2-7)

This is an iterative method of successive overrelaxa-
tion and simillar to (2.4) with
BE(I-wL)~t fmU+(1- N)I]

so the  method of successive overrelaxation will be

convergent if and only if,

¢ [(I < iyt fwus(1 -w)I}] £1

we can write
-]
H = (I- al) -{wU+(1-w )I}



Thus, if,) is an eigenvalue of }‘I” s then,

[5,-21 | =0 (2-8)
So, we shall calculate the maximum eigenvalue of H,
from equation (2-8) and minimize this with respect
tow .
Definition 2.1

A matrix is two-Cyclic if by a siutable permu-
tation of its rows and corresponding columns, it can
be written in the form,

I F
G I
where I is a square unit matrix, and ¥, G are rectan-

gular matricese.

Definition 2.2

A matrix is weakly two-cyclic if by a siutable
permutation of its rows and corresponding columns, it
can be written in the form

O F
G O

where O is a square null matrix.

Definition 2«3

If the matrix (I-L-U) is two-cyclic, then it is
consistently ordered if all the eigenvalues of the

metrix



|
AL + — U (a4 0)
are independent of A .
Thus returning to equation (2-8), it can be written

in the form,-

(1 -0m-2 {1 +a@- 1) -’RI‘

= 0
I{I + (U = D} -A(T —wI) ]=
lkU + wl) - 2'*3-]. I, B
[.}\/2( )}/ZL + 7\'1/2U) » ’)\+Q -1 Il . B

H\/ZL L2y ’)L+w- s [_ .
If T -L -U is two-cyclic and consistently ordered,
then

2
w

(L+U)-’>-‘,§-?—.—1—II=O

Thus for any eigenvalue?\of the successive overrelaxa-
tion Hm s there corresponds an eigenvalue}* of the

point Jacobi metrix (L + U), where

Jo = 2rdot (2-9)
@X
Equation (2=9) conects the eigenvelue of the succes-
sive overrelaxation matrix with the eigenvalues of the
point Jacobi matrix, provided that I-L-U is two-cyclic
and consistently ordered.
If the matrix I-L-U is symmetric as well as being two

cyclic and consistently ordered, and so (L + U) is

symmetric and hence the eigenvalues of (L + U) are real.
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Since (I+U) is weakly two-cyclic, its non-zero eigen-
values occure in pairs different in sign.
i.e
- (T + EN AT + V)
interchanging rows and corresponding columns of (L +U),

it can be written as,

where 01, 02, are square matrices of order r,s <res-
pectively and (L + U) is square matrix of order (r+s).
Since the interchanging of rows and columns does not
affect the eigenvalues of a matrix, the eigenvalues of

(L + U) are given by,

-‘}11 F

where Il, I2 are unit matrices of order =r and s

: respectively. Thus

iy F
| & »r5

by multiplyaing the first r rows and the last s

I
Q

columns of the determinant by -l. This shows also
that -)Lis also an eigenvalues of (L +U). We assume

that the point Jacobi method is convergent and hence,

0< (L +u)<1
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Also since I - L = U is a consistently ordered two-
cyclic matrix, the Gauss-Seidel method is also con-
vergent. From equation (2-9) we consider for a given

value ofj*in the range

o<m <L+ m<1
the two functions of’l

0 =£“-;%1 , g = pY/2

These fuunction can be shown in the figure (4), where
£f,(A) is a straight line passing through (1,1) and
g()) is a parabola.

|59 §

Figwe 1

Thus equation (2-9) geometrically represents the
intersection of the curves f,(A) and g(A) with the
two values ofj\ at the points of intersection A and B

given by

¥+ 2[(&*-1) -1/2 »sz])+(w-1)2 =0

ie.e

2 2 2 2 1
A= 1/2Rk @ —(w -1)4p0 [1/1»(» ~(w -1)
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It is clear that the large abscissa of the two points
of intersection decreases with increasingw , until
eventually fw() ) becomes a tangent to g(A ) at

the point C. Thus

2 2
1/4}* W -w+l =0

i.e
. 1/2
w < 1Ea-»2)

1/2pt

—_—
: 1/
1;':(1-}'&.2) 2
The range of Wmust include W= 1, and so, we have
1 +(1- n°)

if W)W ,f)\ has two cojugate complex roots,

.2 152
=3 a7 (w-D) i}kw{{u-l)-%'j@u?} d

Thus

A w-1
Thus the minimum value of ) is)\= & -1
where Wis given by (2-10) end M is the eigenvalue of

(L + U) in the range

oKL AL +U) L1,
since g(A) = P(T + U))l/z



N

is the envelope of all the curves g(:\) = »}.1/2’

where
OKKI P (L + 1)K 1,
it follows that,

min P(H) = F(Hop,t) = @41
where wopt is given by,

W _ 2

opt ~ 1/2

1+ (1 ’ﬁgpt)

)’;pt = P+

(2-11)

Thus we found the value of@ , given by (2-11), which

minimizes the maximum modulus eigenvalue of I}”.

Also since the point Jacobi method is convergent if

0 <P(L + U)K1 and so from equation (2-11) it fol-

lows that
m,
1< opt< 2
and also from (2-10)

o< Py, XK1
opt
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§3. SOME NOTES ABOUT THE ITERATIVE METHOD FOR
SOLVING PARTIAL DIFFERENCE EQUATIONS

In the numerical solution by finite differences
of boundary value problems involving partial differen-
tial equations, one is led to consider linear systems

of high order of the form

:E iy Uy d; =0 (i=1,2,e00,n) (3=1)

where Uys Upy eee; u, are unknown and where the real

numbers a and di are knowne The coefficients ai.

ij J
satisfy the conditions
0
(a) la’?E ,a. , and for some i the
L= 137 7 inYuality holds
521, 341 inquality

(b) Given any two nonempty disjoint subsets
S and T of W, the set of the first n po- (3-2¥
sitive integers such that SUT=W, there

exists a‘ij;é O such that igS and j€T.

I tcan be shown that the determinant of the matrix
A = (aij) does not vanishe. Moreover, if the matrix
& - (s%.) is symmetric, where B s = By Aea

= (844 ¥ 0 i3 = ®11%1 34711
(i,) = 1,2,00e4n), then A is positive definite.
For ii?Xis non positive real numbers, then the matrix
K' -2I, where I is the identity matrix, also satis-

fies (3-2) and hence its determinant can not vanish.



% 18 =

There fore all eigenvalues of E'are positive, and

: is positive definite. On the other hand if.f

is positive definite then a,, By (123, 0inemzfi)s

An appropriate method for solving equations (3-1)
numerically, is thet of systematic iteration, which
is better for computer. We shall consider linear
systems such that either the matrix A satisfies
conditions (3-2) or such that the matrix.r is posi=-
tive definites In order to define the iterative methods
it is necessary that aiif 0 (i=1,25eee,n), we shall
assume that a,;> 0, (i=1,2,e0e,n) 2lso the matrix A
has properity (A): there exist two disjoint subsets
S and T of W, the set of the first n integers, such

that SUT = W and if a; £ O then i = j or i€ S and

JET or i€T and JE€ S. ths is the Younge’s condition

for the matrix A.

A short summery will be given here for the solution
of linear systems derived from boundary value-prob-
lems, the matrix of which satisfies (3-1)and has
property (A).

An iterative method, which converge :s fastes than

the usual methods will given. We assume that the rows

and columns of A are arranged in the orderinge .
m+1 m

E b. ; ci} -(‘D-l)ui
J= J= it

(m_Z O, i=1,2,000,n) (3-3

L
3 o> by
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where ui is arbitrary (i=1,2,...,n), and

{"aij/aii (i#3)

b.. = (3=4)
1 0 (i=j3)
and
Ci = -dl/aii (i=1,2,...,n)
Equation (3-3) can bewritten in the form
N . ,m20 (3-5)
G 20 =

where u" = (ug_l, ug,..f.,uﬁ) " §=?€'f1,f2,...,fn),f is
fixed, and Lo-,w is a linear operator. ¢denotes the
ordering of the equations, andw is the relaxation fac-
tore This is the method of successive overrelaxation.
As we show in §2.that if A has property (A), then
there exist certain orderings ¢such that for all w a
relation holds between the eigenvalues of I’o-,u) and the
eigenvalues of the matrixB = (bij) defined by (3-4).
IfM*denotes the spectral norm ofB ,i.e the maximum of
modulii of the eigenvalues ofB, then L“_’«A converges
if and only if < 1 (the Gauss-Seidel method). Condi=-
tions (3.2) imply M< 1.

If A is assumed to be symmetric and have property (A)
then A< 1 if and only if A is positive definite. The

optimum relaxation factor wo ¢ 1s given by,

P

2 2 w _
moptyL = & opt-l) = 5 (3=6)
'wopt> 2



. AT =

For more details and complete proves of the following
theormes see [9] .
Theorem 3.1

A matrix A has property (A) if and only if there
exists a vector ¥= (¥, 62,...,Jn) with integral com-

ponents such that if e, £ 0 and i £ j then IISi- §; [ =1

Theorem %2

Let A be an n x n matrix with property (A) and with
a consistent ordering of rows and coulmnse If the ele-
/ 7 4 v
ments of A = (aij) and A = (aij) are defined by

; {aij (i£3)

& =
lJ ] 3 4
231;] (i>3j)
a. . (i=3)
a. . g{ LJ
ij /
1/2 s s
xayy (i£3)
Then for allfl we have
/ V]
lA I = IA |

Theorem3.3

Let A denote a matrix with property (A), and let
o denote a consistent orderinge. IfW£ O, and if A is

a non-zero eigenvalue of %r and if M satisfies,

Y
(A + 0= 2)% = of A2 (3-7)
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Then/is an eigenvalue ofB . On the other hand ifpR

is an eigenvalue of B, and if A satisfies (3-7), then
QAis an eigenvalue of L‘,_"‘u , whereB is given by (3-4),

and %r,w is defined by (3-5).

To prove this theorem we shall need the following

Lemma, and corrollariese.

Temma 3

If A is a k-fold non-zero eigenvalue of B s, then
(=M) is a k-fold eigenvalue ofB.

Cor.-.ollary 3.1

If,ﬁ is an eigenvalue afB, then/%z is an eigen-

value of La-l (Gauss-Siedel), if ) is a non zero eigen-
b

velue of L_ , and if M2 =), then Mis an eigenvalue

2
OfBo

Cor . ollary 3.2

If A is symmetric, then the method of simultanous
displacement converges if and only if A is positive
definite.

Cor.ollary 3.3

If A is symmetric, then there exists ®W such that

I%_w converges if and only if A is positive definite.
H

Theorem 3.4

Let * and A(W) denote respectively the spectral
norms of B and L . If &%pt which satisfies

Tl
2 Cavetep
Wopt A2 —4( wopt'l)' = 0 ’ wopt./éwz’ “A
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where a%pt’ the optimum relaxation factor, then the
rate of convergence of L is given by,
O-’U%Pt
N
R(L ) = = 2 log

& Ypt 1+(1- 1)

and for all real @ such that wf wop’c’

R(Lo_’w )< R(Lo_’ - )

§4. GARABEDIAN METHOD FOR THE ESTIMATION OF THE

RELAXATION FACTOR FOR SMALL MESH SIZE

Consider the Taplace difference equation for an
unknown function u of two independent variables in a
regiong) covered by a mesh with h units spaced apart.
We axe the subscripts p, ¢ to the location of the node
points, and superscript n to indicate steps in the

relaxation process, so that the method of successive

overrelaxation can be described by the equation.

n+1 n+l n

n+l n n
4(u 1> =u ) g1, 8 pogt Uy o $0 0

QsT QT = @(u

n
-4uq’r) (4-1)

where @ is the relexation factor, we express W in the

form,

2
w = < (4=2)
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where C is any positive velue, and constant, if we

rearrange (4-1), we get,

u? +u? +ul + 4u” =
h2
n+l _n n+1 n n+l _m n+l n
G, T -uG.sr TUg-1l,r +uQ'1’r Qs T -dq’r -uq,r-l +uq’r-1
z * 2
h h
n+1l P
+ 2 C q’rh g, r (4=3)

by refering the index n as time variable, and that it
indicate the location of new net points spaced at time
intervals equall to the original mesh size h, it is
known that (4-3) is the difference analogue of the

hyperbolic partial differential equatione

*agy 2Cu (4=2)
where Uy ? uyy denotes differention with respect to
x and y respectivelye.
Thus for small values of h the convergence of the ite-
rative scheme (4-1) can be investigated by an analysis
of the decay of time-dependent terms in the solution
of (4-4).

The substitution s = t + x/2 + y/2 , makes (4-4)

in a canonical form,

& . _ B
Uy * Vol W 2Cu, = 0 (4=5)

For a fixed set of boundary conditions, the method of
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separation of variables gives the representation,

o _s) (-
w® e Tl (x,5) (4-6)

u = Uo(x,y) +%‘_i|;ame

for the solution of (4-5), where UO is the steady-state
solution, where as bm are Fourier coefficients, where

1/2 1/2

n,= 20-(40%-2k2) ", q = 20 +(40-2k2) (4=7)

where Um and ki are the eigenfunctions and eigenvalues

of the equation,

25 = 0 (4-8)

2
va + km -

with homogenous boundary conditions,

p= Re[p, ] = Re [éo-(402-2k21)1/2] (4-9)

corresponding to the lowest eigenvalue k2 y, governs the
rate of convergence of the terms on the right in (4-6)

with in creasing time t.

By (4-9) the choice of the positive constant C
which maximizes p and hence y}elds the most rapied con-
1/2
vergence is clearly C = k1/2 , and if A denotes the

area of the regionﬂ) s it can be shown that,

1/2 1/2
kA Z kT (4-10)

where k = 2405 denotes the first root of the Beesel
function of the first kind of order zero. Thus the

good approximate formula for the relaxationwis,
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o = s & 2 (4-11)

17202 xn 143,014 n/al/2

This approach is given in the case of five-point Lap=-
lace difference equation, an approach to nine-point

Laplace difference equation can also be given.
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CHAPTER II

A NUMERICAL METHOD FOR SOLVING THE EQUATIONS

OF MOTION OF AN INCOMPRESSIBLE VISCOUS FLUID.

INTRODUCTION

The equations of motion of an incompressible  fluid

are
u du, 2P
ST+t U L e + V)¢ ui + E
2 J 9% Fo o4 * 17
ou 2 -%
———1 = 0 ) v = Z 3
0% J %5

where u; are the velocity components, p is the pressure,
/Z is the density, Ei are the components of the external
forces per unit mass, VY is the coefficient of the ki-
nematic viscosity, t is the time, i,j = 1,2,3 Xi,j de-
notes the space coordinates, the summation convention is
used in the equationse.

We begin by using the method of dimensionalless analy-

sis, writing

TP ! ok s
ui=T1 Xi'—'X"’ P = m P
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where U is a reference velocity, and X is a reference

lenght, the equations become

du. du. 2
i i _ p o2
—.a-—_t—-*-Ruj:'a-;c-g--—-,aXi +Vui+Ei (1)
Uu.
=4 =0 (2)
?Xj
where R = %; is the Ryenolds number. We now try to

introduce a finite difference method for solving these
equations in a bounded regiong) y in either two or three
dimentional space. The basic feature of this method

lies in the use of equations (1) and (2) rather than
higher-order derived equationse

This makes it possible to solve the equations and to
satisfy the imposed boundary conditions. We achive ade=-
quate computational efficiency, even in problems of
three dimensions and space variables.

The princibles of the used method:

Equation (1) can be written in the form

%% p )
STt T A Bl

1

wheretz_u depends on uy and Ei’ but not on p,
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equation (2) can be differentiated to give

/
%2%:0 (2)
The present method can be summerized as follows;
the time t is discretized, and at every time stepzﬂ}l
is evaluated, then it is decomposed into the sum of a
vector with zero divergence and a vector with zero curl.

u
The component with zero divergence is —q} which can be

3
used to obtain Uy at the next time level, and the
component with zero curl is %%g .

This decomposition exists and ;s uniqually determined
whenever the initial value problem for the Navier-Stokes
equations is well posed.

The existence and uniquness proofs for the solution

of these equations can be seen in[1].

Let u,, p denote only the solution of (1) but also its
discrete approximation, and let D u = 0 be a difference
approximation toz%%g = O

It is assumed that at time t = n At a velocity and

pressure fields u; , p  are given such that Du" = O.

The method used is to evaluate u?+1 3 pn+1 from equa-
tion (1) so that Du™*l = o.
n+1 o4

Let Tui = bu - Bui approximate eﬁ% s Where b is a

i
constant and Bui is a suitable Linear Combination of
Bun un+1_un-1 un+1_2un+2un-1 ,n-2

n-j- -1 4
i 5420 - [e'g r e 2ot~ 12 8% + Ol )J
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An auxilairy field ui"™ is first evaluated throught,
aux
bu; " -=Bu =F u (3)

where Fiu approximate‘tavu -u?uX differs from u?+1

because the pressure term and equation (2) have not

been taken into accounte. u?ux mey be evaluated by
an implicit scheme, i.e Fiu may depend on u?, u?ux

%
and intermediate fields, say Uy f? .

b ugux

;- B u; now approximates']& u within an error

which may depend on At.

. 0P . on+l n+l
Let Gip approximates 5;; * To obtain Uy y P it
is necessary to perform the decomposition
/
aux n+1l
F; u="buy ~ =Bu; =Tu; +G; D : (3)
D(Tu) = O

It is however, assumed that Du"~ 9 = 0, 3§ ZoO.
/
Substituting the value of T u; into equation (3), we

obtain
u?ux - u1(1+1 " b-l G.pn+1 (4)
i i
where Du?+1 = 0, and u?+1 satisfies the prescribed

boundary conditions. Since pn is usually avaiable and
is a good first guess for the values of pn+1 , the
decomposition (4) is probably best done by iteration.

For that purpose, we introduce the following iteration

scheme:
aux
pirlomel Bl e (5 a)
i i 1
pn+1,m+1 _ pn+1,m _j\Dun+1,m+1 ,m =1 (5 b)
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n+l,m+1

where A is a parameter, ug n+l,m+l

and p are successi-

n+l,m
i

n+l,m

ve approximations to u and p and G? p is a func-

n+1l,m+1 = n+l,m 1

tion of p nd p

pn+1,m+1 N pn+1,m

which converges to Gi pn+

as == Zero °*

m —p =2

We start by assuming that,

pn+1,1 - pn (5 ¢)

The iterations (5 a) are to be performed in the interior
0f9) , and the iterations (5 b) in the interior of D and
on its boundarye.

It is clear that (5 a) tends to (4) if the iterations
converge.

G? P is used instead og G,P in (= a) to improve the

rate of convergence of the iterations. A detailed dis-
cussion will be given in a later section.

The form of equation (5 b) was suggested by experience
with the artifitial compressibility method [2] , where
for the perpose of finding steady state solutions of

equations (1) and (2), p was related to u; by the egua-

tion,
2P _ congt Y4
ot 5
J

when for some ! and small predetermined constant & ,

n+l, 041 n+l,l'

ma o 2 |
— AL Llr.1+1,f+1 ol pn+1,i+1

i i
The iteration (5) ensure that equation (1) including
the pressure term is satisfiedtinsideﬁ), and equation‘

(2) is satisfied inside §) and on its boundary.
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Now we try to find specific schemes for evaluating
u?ux and specific representations for Du, Gip, G?p,
many other schemes and representations can be used [7].
The method which will be presented is efficient, and
suitable mainly for problems in which the boundaiy

data are smooth and the domain has a simple shape.

Evaluation of u?ux ’

Schemes for evaluating u?ux’ defined by (3) will
be presented here.
Equation (3) represents one step in time for the solu-

tion of the equation

ou.
i
it
We can use a combined DuFort-Frankel scheme, in which
the time and first space derivatives were approximated

by centered differences, and a second derivative such

“
e —B—% was replaced by
e
n n n+1l n-1 n
é;izg (uQ+1 + g * uq+ - u, ) qu1A(qu,n£¢)

This scheme is sutable only when an asymptotic steady
solution is soughte It is inaccurate when real time
dependence is studied, unless At is small.

Our reason for studying this scheme is that, the
DuFort-Frankel scheme is explicit and unconditionally
stable; it is a natural scheme to use when the nonli-

near terms in (1) are differenced in "Conservation-Law"
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d(uu.) U
form, i.e ————id_ rather than u . =i sy 1t is found
?Xj ') OX

in problems in which the viscosity is not small, it

is preferable to use "non-conservative" difference

scheme for non-linear terms, and avoid the DuFort-Fran-
kel one. The equation cam be approximeted in many

wayse. But we shall use schemes which are implicit, and
accurate to O(At) + 0(Ax2).

Implicit schemes were used because explicit ones requiere,

in three space dimenssions that
843 ax?
which is restrictive condition [2]. Also implicit sche-
mes of accuracy higher than 0(At), require the solution
of non-linear equations at every time-step, and make
n+l

and uy

: aux
it necessary to evaluate uiu

simultaneously
rather than in successione

Two schemes will be presented, for both of them,

— ¢..n+1 n . -1 . ¢

(A) In two-dimensional problems, we use & Beaceman-
Rachford analogue formula [7]. The implicit form of
equation (1) can be written in the form (neglecting
the pressure term),

auUX
L 2 1 07, AU
exp[-. Em;(_Rul D1+D1)_] . eXp [- 5 At(Ru2D2+D2ﬂUi(q’r) =

1 2 1 2 n .
exp[§£¢(-Ru1D1+D1i}expfﬁdt(-Ru2D2+D2{] Ui(q,r) * Ei(q,r)
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ie.e

[1- s6t(=Ru, D 1+D )][1- =4t (-RuzD +D )]

g l(q,r)

2 ; |
1D1+D1)][1+ -Z-At( -Ru D +D )] U (gr) +

[1+ %At(-Ru

'E‘,
+ ui(q,r)
which can be split into two forms, if an intermediate
N+
value G?+l = Uy 2 = 31 is introduced, retaining only

the second order termse.

1 2] 1* = l - 2 “ '
[1- 08(-Ray Dy 0| T oy =[14 2At('3“2D2+D2)] “1(g,T)”
+5 B

“i(q,r)

[1- Z0t(-Ru,D,+D )] Usflq,r) = [1+ %At(-Rulrlwl)] Uity

!
3 Bitq,n)
wich gives
* n At n * *
“i(q,r) T %ilq,r) ~ R:Mm 1(q,r)(ui(q+l,r)- ui(q-—l,r)) -
1

t n n n At *
= '%_4 Xq Uorq,r) (Bi(q,rel) ~ ui(q,r—l))+ 28%T (0 (qe1,2) *

»* *
T Y%(g-1,2) T zui(q,r)) o 2sz (ul(q,r+1) ¥ ul(q,r-l)
At
2l:L(q’r))"- = 5 (6 a)
aux * At * % *

Yi(q,r) = "i(qg,r) ~ 5 48%, Ui(q,r) (ui(q+1,r)- ui(q-l,r))

—R &t % aux aux * * i
— u at w C %+ ~2U
4ax,; 2(q;r) ( uc(q,m) - l{ (q',_,)) + 2 ax? ( “(9+y7r) ‘t(‘!-l;r) ‘(‘b"))

ot oy
4+ ot
2 AX, (u'"(‘l ra1) + & C(q.v-) -2 (q‘r)) +AtE (6h)
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- .2 2 22
where Di ol T Di B i = 1,2
| x5
n n n n
D.u? = Ynel T Up-l D20 Umy1 T 2uy + Up_q
i'm ~ 2p%4 ’ i'm © Ax2

*
where U; are intermediate fields, ui(q,r)=-ui(qA§,rAx2)

(B) In two-dimensional and three-dimensional problems
another scheme suggested by Semaraskii[3)will presented

in the form,

Kad n At n

Ty

*
Yilgszen) ™ “ilgazes) ~ B 2AXq Y1(q,r,8) (ui(q+l,r,s) -

(7 2)

L1 At , * »* o] :

- Ji(q-lr,s)) * bxzz (ui(q+1,r,s)v+ Yi(q-1,7,8)” 2“li(q,r,s,‘
2

a@% _L-lk VRA‘t
i(q,rys) = “il(qg,r,s) ~

> * (&
AXy Ua(gq,r,8) ' Yi(q,r+l,s) ~

‘** ) At ( X ¥
~ %ilg,p=1,8)° * AX:Z Yi(g,r+l,s) T Y%i(q,r-1,s) ~
2

- 2870 o gy) (7 b)
u“:.;q,r,s) = L{l??q_,r,s) - R?E%%; fJ?(q,r,s)(u??i,r,s+l) -
- u??é,r,s-l)) +A_%E_ u?%é,r,s+l) * u?%ﬁ,r,s-l)-

*3
- 2u§‘g§,r,s)) AL By o) (7 e)
where

Yi(g,r,s)= ui(qAx‘, I‘AX2,SAX3)
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Ei(q,r,s);? Ei(qA Xq 5 I'AXQ,SAXB)

%* *¥

and Uy Ui are auxiliary fieldse.

In symbolic form equations (6) can be written in the form

*
¥ n R n a4z 251 g,x) At n
“10q,0) = Pafqr) = ZAY¥ Vi(q,r) T . = BTF Ye(q,r)
Bug.l(élr) At %ul(g, . At %uril(gzr) LAt 5 (8 a)
DX 2 2 21
2 [2e] 'bxz
* ’bu*
aux > At i(q,x) ot
“1(q,7) = "ilq,e)” ® T "(q,r) T ex; "R T
" —auaux ) A® %ua.tg.x ; A
(g,r o 2ilg.p
Up(g, ) > %o + +Bx + 85 B, (8 b)
2
iee
R n D ot %% | %
(T+38% 0y0q,0) 35 2352 ) Yilq,n)
R n ) ot DP n At
= (I-3At u2(q,1:')‘ax2 ¥ —2'3X2 ) ui(q,r)""—Z'Ei
2
(I- AtQ,)u; = (I- AtQ)ul + &F &
= SNy sy W L TRy YR M4 (8 ¢)
where
Q i 2 R n
1‘25}{_12' - 1(q,r) 2%
R 1 d
W@ =73 2(q,r) 9x 2
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also,
R i) 0 aux
(143 8% Uyrq,0 3=+ 54 = S i
At * N * %
(I-R —é'ul(q,r)_axl+ T:é—;—z ul+-2—El (9&)
1
o aux ®. * At
(I - At Q2) uy = (I - At Ql) vy + = Ey (9 b)
where
¢ _R X _ L BE
L = Tllg.r) °x, 2 axlﬁ
* 132 g »
“2 = 3572 7 2 Y2(q,r) 'S?x_z

2*
where Ql, QZ’ Ql’ QZ’ involves differentiation with respect

to variebles X1y Epy and I the identity operator.

* At 2
u; = [(I -Ath) ur.ll + > EJ (I+AtQ1) + 0(ate)
u*i = (I -AtQ, +A41Q,) urll +4§ By + 0(at2) 6a)

¥% *
WP = (1 + aed)) up + 52 Srere +810,) = (T + atd) +

2 n At 2
EY AtQ2 - 4tQ -Ath) y & = H, ¥ 0(AtS)
WBUE L (T 4 At0 + ot0L) O + A B so(at?) Gy
i = 1 s i T2 i
uBtL o g2UX _ ag g0t o (I+a0. + Atgf) (I - 8tQ, +
g =0y i = 1 2 lo

+0810)) uf -85 E, + O(Atz)} - A%G,p

n+l
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n+1 ‘ * * n At
Uy = (I~ AtQZ + Ath +.Ath + Ath) u; + =B, +

+ 0(At2) - AtGipn+1

we can set at the boundary

> > *x n+1 ——
u; = { T= atQ, - Ath) u;" U= AYE, + At D

where Eip = G;P +0(at)
at the boundary the normal component of Gip is approxi-
maeted by one-sided differences while it is not necessary
in the interior ofP.
1

e
KAl n+1 % n+1 ® n+
u u; - Ath u; = Atu2ui

- OtE, + AtG.P
i i

o
il

&ux n+l
2 Uy + AtGip

But, u; = (I - 8tQ,+ atQ)) uf + &R, + o(at?)

* R n 2 1 02 %

ay = [1 -4 (3 vorq,m) 55 2 5,20 ¢

2
+ At(% 0% _E o 2 )}un + 28 B, +0(64%)
2 a'x"' 272 " 1g,r) % i TTE L
- 1

x n
u -

{ R n n - n \
i = ui(ﬁsAtz.Eaxz 2(q,1) (ui(q,r+l) Yi(g,r-1)’

(] : - 2u” 1,
i 24, (%3 (q,7+1) * %i(q,z-1) 2“11((;,1-))}+At{izx_l?

n n » n n °
(05 (qe1,r) + Bi(q-1,7)" 2%i(q,r)’ -Ti{_}'q 4 (q,7)
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* (u} ?(q_l,r))}] + 5 E, + 0(At?) (10)

i(gq+l,r) ~
also,

x *
ud* = [(:[ +8%Q; + atd, - AtQ - AQY) uj + 12 By + OfAt2)]

_ R *Q 1 92 132, R* D

= [r+at03 i - 3 a—x-lqz ) + At ( 2 i - 2% aX2)
1 902 R n? R no 1 22 n

- A&t (5 = -5 Uy =) = Ot (5 v 5==— + 5 ﬂu +
2 3X12 2 l‘bA1 2 "2 0%, 2 axzz i

+ ég E. + 0(At%)

ie.e

aux [ n { R * n 1 .
u = (u. + Q&% (U. u. )=
i i max i(g+l,r) ~ “i(g-1,r) 2
4&X1

(a2 3+¢1 - 2y }+Ati
t(g+l,r) i(g=1l,r) i(q,r) 4AK

(u? g2 - ) - (u -
i(q,r+l) T %i(q,r-1) i(q,r) i(g,r+D)

4Ax

n e n
& ui(q,r-l))} = A% Py 2(ll(q+l r) ¥ Yi(g-1,r) ~ 2ui(q_,r))
|

- B 0 (u® - 1 T U0 Q-
18y 1(q,xr) ' “i(qg+l,r) “i(g=1l,r) 48x, 2(q,1)

®
—~

n n .
Yi(q,r+l) ~ ui(q,r-l)) * 4Ax 2 (ul(q,r+1) t Yi(q,r-1) T

- 2u?(q,r))}+ A-_t E, + 0(At2) (11)
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A similar expressions for scheme (B) can be written

in symbolic form, as follows:

2 n
(I —bel)ui = ug
(T -86Q,)0; = d} (12)

aux *% ‘
(I- tQz)uy = u; + AtE;

Where I is the identity operator, and QI represents
differentiations with respeet to g onlye.
Tt is clear that scheme (6) is mccurate to O(At2) +O(Ax2)

in both cases when R = O and R £ O.

If both schemes are to be used in a problem in wich the

_ »* %
velocities are known at the boundary, values of Uss Uso

aux
g
that the several implicit operators can be inverted.

at the boundary have to be given in advance so

In the case of scheme (12), we have,

n+l n n 2
uy = (I + Ath + AtQ2 + AtQB)ui + AtEi - AtGip +0(AtS)

* n 2
u; = (I + Ath)uig 0(Aat)
*x n 2
u; = (I + AtQ1+AtQ2) u; + O(At<)

aux n 2
uy o= (T + AtQq + AtQ, + A’cQB)ui 3+ B By + 0(AtS)

The scheme will be accurate to O(At) at the boundary if,

%*
u. = u?+1 - AtQ2u2+l

n+l n
i 5 --A‘GQ3ui - At Ei +At Gip



= T

wk 1 n+1

n+
u; o= uyg ~AtQ3 u; T+ Dt Gip

n2ux o u‘:H'l + At Gi‘p‘n

(]
o]
]

Gipn + 0(at)

It is clear that more accurate expressions for the
auxiliary fields at the boundaries can be used but it
needs great programming effort on the computer.

In case of negligible viscosity, ieee V = O , another
schemes will used, i.e explicit schemes which accurate
to 0(At2) + 0(8x%), and stable when At =OfAx).

A scheme we suggested for this case can be given in the

explicit form,

n+l , oYy o
Yi(q,r) = ®XP ['At(ulfﬁii " u2‘ax )] 1(q,r) * Bi(qg,r)

DYy [t n
[1 -at ¢ Uy om ¥ Mgy } “i(q,2)* Fi¢q, )"

n
e -l

n n i(g+l,r) “i(g=-1,r)
ULi(q,r) -At{ul(q,r) f’ZAxl

ul’l = u’t’l
i(g,r+1) i-g,r-l)} N

ul E
2(g,x) 2A X, i(q,r)

retained only the first order terms, which can be solved

n+1

to give Uy o Such problem ¢an be discussed later.

The rest of this work will show how we can derive D,
G? , and the choice of),, used in (5 a) and (5 b), so
we need some facts about the DuFort - Frankel scheme

for heat equation, and its relation to the relaxation
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method for solving the Laplace equation [7]. Consider

the equation,
2 2
P 5 N ey ¢ D (13)
2 2
0%y 9%,

-vzu =

in some domainﬂ) s, rectangle for example. u is assumed
known on the boundary ofﬁ), it can be approximate to
the equation,

- TIu = f (14)
it is clear that L is the five point approximation to

the Laplacian, u &nd f are now mnm-component vectorse.

g

M e

ax,

Fryure?

m is the number of internal nodes of the resulting
difference equation. For simplicity we assume that the

mesh wedthes in the X1y Xy directions are equal, i.e.

ﬁbﬁ_::ﬁxz =DNx, so the operator L is represented
by an m x m matrix A.

The matrix A can be written in the form,

A =A-EFE-~-E
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/
where A is diagonal, and E, E respectively upper and

lower trianguler matrices. The convergent relaxation

scheme for solving (14) is given by,

/ /
(A - oF) yott {(l—‘ﬁ)Af+¢°E }un + WFf (15)

i - / -
and hence u™tl = (4 - wE) 1'[(1 -») 1 +<nE] u” +‘ﬂ(£;UE)ﬁ1f

where wis the relaxation factor, 0< W< 2, and u”? are
the successive iterates. [5}[7].
It is known that there is optimal relaxation factor
cgpt depends on the fact that Aasatisfies "Young,s con-
dition (a)" [9]. i.e there exists a permutation matrix
P such that,

P~lap = A= T (159
where A is diagonal, and N has the normal form,

0O G

d o
The zero submatrices here are squere, under this con-
dition ‘gpt can be determined. The materix A depends
on the order in which the components of un+1 are com=-
puted from u?. The changing of that order is equiva-
lent to transforming A into P-lAP, where P is a per-
nutation matrix.
The solution (17) is consider to be the steady solution

ol

of,

3%: V2U.+f (16)
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The latter equation can be approximated by the DuFort-

Frankel scheme,

n+1 n-1 _ 26T , m n n n n+1
QT Thgr T N2 (ge1,r *Mg-1,7 * Yg,re1 * Yg,r-172%g,x

n=1
- Zlq r) + 25 f

]
where

n

uq " nat)
b}

= U.(qAX., rsz,

which approximates (13), where AT= 0(Ax), we obtain,

(1 + 4 AT n+1 - (1 1 AT ) n-1 o AT ( n

Ax2 uq,r - Ax2 uq,r & Ax2 uq+1,r o
n
Uy op * Bopg uq,r—l) + 2AT T (17)
where
n =1, n+l | n=1
Uy e 2(uq’r * uq’r).
Clearly u” _ does not appear in (17) so the calculation

g, T

t
splits into two independent calculatiors on intenywined

meshes, one of which can be omitted then we can write,
2n

n+l [ n+1
gttt =(P2n+1 , (U™ has m components)

when we write,

A 8A‘Z'I/A‘.!tzg

= (18)
1+4 &T /pAx

We see that the iteration (17) reduces to an iteration

of the form (15), where the new components of il o

re

calculated in an order such that A has the normal form
/

(15) [This is clear since, the difference equation of

equation (14) can be written in the form,



= A1 =

AXE(uq,r+l T U+1,r t Yq,r-1 g1, ; )+ £ =
we can write,
n 4 n+l n-l :
= h h t t
Ug,r =3 (uq,r e ence the equation takes
the form,
(u u" + u? + u?
AAx q+l,r q-l,r QT+l q,r=-1

n+1 n-1
= - - o]
2uq,r Zuq,r) + £

Then it(élear that the DuFort - Franke scheme appears
to be a particular ordering of the over-relaxation
method whose existence is equivalent to Young’s con-
dition (A).

The best value of AT , i.e A’%pt can be determined

from and equation (18), clarly A%pt = 0(Ax),

w
opt
then for AT = A1épt the DuFort - Frankel scheme approxi-

mate also the equation,

o
T

—
=

)7’“ +f

dT?

see [4].

These remarks can be generalized to problems of more
than two space variables. Also it will be noted that,

we can approximate equation (16) by explicit method

ntl n n
~4u AT (9)
l#,r ‘r Axl ( 1"‘, 7-‘ r + q T+l + L%'r‘l 4 ?Ir ) + +

eand used as an iteration procedure for solving (14),

but the iteration converges only when AT/A{L1/4, and
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converges very slow [4].

The representation of D, Gil_G? and the iteration

procedure for determiningﬁu?+l, pn+1.

For simplicity we shall assume that the domainﬂ)
is two-dimensional and rectangular, and the velocities
are know at the boundary. Extension té& three - dimensi-
onal problems is possible, also domains of other shapes
can be treated by the help of interpolation procedures.
Firstly we defineﬁ). Let ﬁ denote the boundary of PDand G
the set of mesh nodes with a neighbor inﬁ . InP- B we
approximate the equation of continuaty by the centered

differencés, i.ee.

a1 =1 1_ ~u )
Du = —Q.—EX\ ( u\(q +,r) '(‘H;T)) +z sz<%(q,r-ﬂ) 2(qr-1) =of 20)

At the points of‘ﬁ we use second-order one-gided
differences, so that Du is accurate to O sz) everywhere,

On the boundary line X, = O, we have,

Du= 5 (4 "z‘cq,') 7 Uy ch,))] a5 avsn 'W—b‘)) °,' (21)
Du-= L ['nl é%( ) * (U‘ ' }')‘0 q::ﬁ
let (;A,T}) ;(g,i; e in 7? 2(9;1)] n&?‘lng.q:?ﬂl L

i=1, 2 and pn+1,m we shall evaluate simultanausly
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n+l,m+1 n+1l,m+l n+l,m+1 .
U (q+l, ) * “2(q,r+1) and Po,r using the formu-
la

n+l,m+l _ n+l,m 7)o on+l,m+l

q,T - Pq’r B

with similar expressions at the other boundaries.
Clearly equation (20) states that the total flow of the
fluid into a rectangle of sides 2 Axl, 2Ax2 is zero,

while equation (21) does nat have this elementry in-

terpolation.
JT (4,3)
e
_J9-b1) (9,) (941,1)

FiGure3 X2=0

Also we define Gip at every point of@-fS by,
)

\
s = ZAx\t Pasl,r = Pg-1,r

|
G o —— -
a» 2 A)(:(.pq,r+1 pQ9r‘1)

where pq’rgp(qAxl, rsz)

It is clear that %Bx- is approximated by centered diffe-
renees. One can use other forms for Gip and Du. Our

purpose now is to perform the decomposition (4).

n+1

L g
1

is given on the boundaryﬁ, uaimx is given in 9-/3,

also pm'1 is to be found in§)(including the boundary)

and um'l inD-{s, so that inD-(ﬂ
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aux n+1
uy = u; o+ AtGip

and inQ(including the boundary)

! - o

This must be done using the iterations (5), until now
the form of G?p is not specified. At a point (q,r) in
q)-F’- C , isee far from the boundary, we cun substi-

tute equation (5 a) into equetion (5 b) and obtain,

pn+1,m+1 _ pn+1,m = “ADEYE 4 Ammep (22)
An analggae to this method was used by Harlow and Welch

[9] s, as follows:

Let Du = O approximate-gxg = 0, and Gip approximate
%g%. It is assumed that at time t = n At velocity fields

u? are given, satisfying Du” = 0, then equation (2)

can be approximated by

n+1l n n n n
u;” T o= oug o+ atlug - ABQ U~ AQP + AE;  (23)
P TR’}
wher Lu approximates VWU , and Q;u epproximates %-‘;(-L—-
J
Performing the operator D on the previous equation,
assuming
Dun+1 = 0, we have
L'p" = - Du® + DLu”-DQu"+DE, faz)*
At i

wher L’p=DGp approximates VPP' This equation is a

difference analogue of the equation

QE, (24)

X,

2
VhP=-2- 2 uu o
. J J
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which can be obtained from equation (1) by taking its

divergence. In view of the definitions of D, G? s and .

u?ux s equation (22) is an iteration procedure for

solving an analogue of equation (23). In this sense
the method used is related to Harlow and Welch like a

predictor-corrector method, wheareas Harlow and Welch

n+1

first determine pn so that Du = 0, 2 guess will made at

the values at u2+1, pn+1, and then correct them until

1 = 0 is satisfiedes It is clear that

p not
at the points ofrsor C .- it is posible to substitu-

te (5 &) into (5 b) because at the boundary u?+1 is

prescribed, pitl.mtl _  uil oo allmm, (5 a) does not

the condition Dun+

hold and therfore (22) is not true. Near the boundary
the iterations (5)provide boundary data for (235 and
ensure that the constraint of incompressibility is
satisfied. We proceed as fallows:

We chose G?p and A such that (22) is rapidly conver-
ging iteration for solving (23¥; G?p at the boundary

are chosen so that the iteration (5) converges everywhere.

Let (g,r) again be a node in{)-ﬁ)- C. u?+1,m+1

n .
+1,m are assumed known. We shall evaluate si-

n+l,m+l
g, T
volved in the equation ™ - 0 at (qgyr), i.e

n+l,m+1 n+1l,m+1
“1(gt1,r) * %2(q,r#1)*"

and p

nultanously p and the velocity components in-
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These velocity components depend on the value of p
at (@,r) and on the values of p at the other pointss

The value of p at (g,r) can taken to be,

2 (p n+l,m+1 n+l,m
+ )
2 q, pq,
while at the other points we use pn+1{m. This leads

to the following formule,

n+l,m+1 n+l,m - n+l,m+l
= - AD 2
QT % ADu g

whereDu is given by (20).

Nty mil aw At B ym ntlm+l H+|,m> (2 5
Hann) = Vegary ~ ZAM( T %r + far )
n+lm41
A
u = Nty mal M\,M nﬂ,
o = - BGET )
Nt lmy|
anx nalym 4l |
X M ntl,m
2(qry = U -4t a1
W dam - BET TR
N4, m4+| \
(é(' " At ( ( n4l,my| nq-l,m) PM’M
qﬂ'—l) 2(7]!’-0 2 Ax 71-2 (25

; m n+l,m+1 n+1
It is clear that Gip-—»Gip [s1nce, ul(q-l rf*lﬁlq-l,r)

n+l,m+1 n+l i

as p : —»D “The first equation gives,
iy auy At - £) - P
19-1,7) = Qi(q-47) “Z‘Z‘x' —( 9T 9-27
n+| aux N,

At

ntl, m
u = )y m
|(7-‘)T) = (L| (q_’)r) - m\ ‘.1/’_ F?—ZI )

—



L -

n+l X

Qx n+l
u-|(¢'_|)r) -At R P‘]'r = W - At G‘P ] o

= Ul’(q-l,r) X (9-1,7)

and similar expressions for the other equations. In

C and/gthese formulae have to be modified. Consider again
the boundary line Xy = 0O, assume the velocities are
prescribed at the boundary i.e un?l 1) are given,

i =1, 2. There are several ways 6f including that
information in the iteration (5). The consistent way
would to Be sete.

aux n+ L n
Uilag,1)Y = Yglg, 20 * AT G;p

and n+l,m+1l_ n+l

Ui(q,1)" = Yi(g,1)

for the sake of simplicity, we chose an in incomnsistent

. aux n+1l,m
way of treating the boundary, we set Ai(q,l) = ‘1(q,1)‘
= pitlyml o+l gpio does not affect the values of
l(q,l) l(q,l)

u?+1, it introduce an additional error of O( At) into

the computed uvpressure term. Equations (25) can be sol-

ved for pn+1,m+1 as follows:
q,T
nthmal Ntl,m
— ’A | htl, m+l nelhym+l | nglmyl  ntm4)
ur - ur - s (U —u )1'2— u —-u )
20x; ™ 1@q+,) 1(g-4m) QX3 ~2(4yre)  2(q,™)
niym
= \ aux - -
[ e e
2ax L 1(9+,r) 2ax P‘h-z,r “'z‘(ky,r +P71r ))

::‘:-:,r) = M ( (PM,’M' "*"" ‘n+l,m ))} +

qzr
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QU nthym n4lm+! ntl, m
LU S .3 (P ' _.J_( P e ) .
202 L2°¢qre)  206X2 S 9re2 2 r Ur

auX nyl,m+l ntlm ni,m
u - At (1. ) )._ )
( 1(q,r-) 24x N2 ( P‘I/" + Lh" P‘7/’""2‘

collecting the similar terms we find that;

Ntm 4| A+l m "“,

qr (144 +42) 2 (- x.--(z)F -)Du + 41(‘“, + F,“,.) qn:." F:LI':)

ntlm+|

' -)[ 9M»l,m auk
P?,r - (l.l,at.-ml) (l-«,-dz)l?,r - )‘D(L +d‘(P+“ + P7-z,r)+"z(f’q ,..,1 qra

s 2 ,
“:' = )A{-/’Z‘; Axi 3 1L = 1, 2 ) alsO,

oy aux ‘”‘*‘
|

9r 20X
This can be seen to be a DuFort = Frankel relaxadtion

scheme for the solution of (23). The AT of the procee-

ding equations (17) is replaced byl—AZE. It is clear

that corresponding to Spt or opt? we find 1opt’

If p were known on/3and C, convergence of the itera-

tions (26 a) would fellow and):lopt would lead to
fastest convergence,
In[‘gand ¢ formulee (25) are modified by the use of

the values of ur.lHl at the boundary.

n+,m ntlm ’H't"’ h+l,m)]

a)



X2A

I,o

qwlﬂ 9% qiis8
P .
q-2,1 9= 91 q&i)l G42,) Xi
0"\ o Fdsure &
La A ’
niymi| nel, mel nil, m#l nHymtl  nthmi -
Du\ I (u,’ L )+__'_((1 % (27)
28K N 1(9412) 1€9-4,2) 28% N493) 2@
q'l ’
p+l,m+1 takes the form,
n]i\,m-n aux "’."m H"‘l[”"‘"" ”“’l/”
= u =
1(4+\,2) ‘(qu2) ~ ;'Z; ( P7+1; ( 9,2 |1 ) (2¢
il m4l
auy nti, mt! n+l,m nthm s
u-l X = W - Q b) ) 72
(9-1,2) 1(q-12) _——2AX| ‘( 9,2 + q-2,2 > q o
h‘”)bﬂ" w S
“m,-lﬂ)’ = U 5972
Nty m+ ntlm n+l mil  plym
u( )=umx (P/ _— / +P )) (28
2(9,3 2(93) - 2 AX?. 94 72 2
N4l m] aux (28
u uw
2 (qll) 2 (7/‘)
Subestituting equations (28) into (27) we have, using
the equation,
Ntpm+l nt,m w1, mH 5 htl, mi! il mtl 1 ntlm+!
= . AU -2 . e
1I2 9,2 - 24K, ul'(qﬂz) * 2 AX; 1¢9-1,2) 2AK11(7/3) 2AX2 2(‘{,')
ntlm+l
r;'I«H,m _ o) aux _ ( i ( n+l,)n+l h+l, ))
9 = 195 Zox LIGHD) T Zax N 2 "2\t ‘/2
3 awx ( hH/)n-H nfl,»y ntlm
2 W ( + 2,2 -
+ 2ox3 & 1(4-42) zm 2 2 -4



| Ml/
VIH, v ( +|/M+ ) - 2
A (fu - At ( -2 P 257‘22(‘7/0 / 7
25%; 7—(‘1/3) 2 AXI
ie€o = nelm  nglym

nt, m+)

et [(osgedPay = 3 D] At )
.qlz -

+hm
L PM J 7 g >2

whlymt] P vty m PHMJ 26 b)
o] a2y Quy. =

B =G+ o J—*)B =20 difiga Hm A9

where &
X
- 2( )
L . ;1‘,“( 1¢q+1/2) l(‘?-l,z)) aEY~] zNz 1(‘1’9) W
Similarly the eguations for p?ﬂj’m’{"l on the bozmdary/@
_i',..l»,

( e.g the line x, = 0) are given as fellows,
_Dh-\l,MH 2 [( nilym+l nal,m+\ ‘ Wt m4l nt)msl A“,mol (,LM’/,H,
D = w _u B I — -

]q; Axz ['2¢92) 2(7,1)) 4(2(1,3) 201,))] 2ax\ '((m,') ‘<‘i-',0)

i

where,

nl, myl Nl m n+|,n-+l n+|,
Quay J
e - )
L )-n lLZ“’IZ-) 2ok Ll ‘I, + 9, ) q7//
Uz (47 =
l}\(,qlnﬂ b ul(‘({‘-\ )9
z(?,l) ;}(‘I,I)
"+\/m+| o Al ntlym
at P -7

2 =

(?,‘ FY DT ekt 4 e s A /
nﬁ,mﬁ o a’-fﬁ’ ,9 = /
l(q'H/l) = u"(‘”"l)
nt\; m+l

anrx

u -
(q-60 = Geqo)

l\CnCC )
ntlm4) ) nt) m+/
= iR —A—;— 1(71) T 2 I(Q/‘) T 44X, 2(93) IS SES

nlm+l n+l,m+l
+ —/“l(q ')
2 AKi

i o/
2 Axi 19#01)



le€
Nty myl
! le;m —2_2- i (Lw _ ,_Ai. m-/m (PM/MH "*’l)}
ul - "9l T Thx; Z(qlz) 2 AXa2 N Al + 7,
QX M'/
Q’A 22 L At _ }
A2 g[q,/) + ’_I_ L 248 lAXz( F;/4‘ 92 )
X anX
22 AW A u .
T Yy ax: u"(%l) — 2nx) %(‘f“ﬂ) + 208X 1q-,) » 97 /
el ml nil) m m ntlhm
(szz) l(' 2“‘)" _”X.Dul’ iz 40(1(}773 ‘f(‘ht/ H//Z))]/? 126 ¢)
'1‘1;"'” ntl,m sl
other egﬁatlons can '%e deered on the other bounda-

ries, e.g pl,r i.e the line X, = O etcy, by similar

" aux anx aug | e
expresions, Du =2 _ LI 7 ]
o 3 h,l AX2 [(U'zc‘{,z) g'(q,)) 4 ( 2(713) 2(‘! '))
"™

| ua“'x w
* m,( gy ’(?—hl))
it is clear that we consider, u?ux at the boundazy

R n
is interpreted as ui+l.

The whole iteration system i.e. equations (26 a),
(26 b), (26 ¢), converges for allX>0 and converges
fastest when 7X4/)bpt'
Because of our representation of Du = Oy which expres-
ses the balance of mass in a rectangle of sides 2£>xi,
i=1, 2. The pressure iterations split into to calcu-
lations on intertwined meshes , coupled at the boun-
darye The most efficient ordering for performing the
iterations are such that resulting over-all scheme is
a DuFort-Frankel scheme for each one of the intertwi-

ned meshese. The iterations are to be done until for

some k,
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n+l,ktl _ onel,k 4L E

max
Pq,r q,Tr

Qs T
where € is a given small number.

The new velocities u?+1, i=1, 2 are to be evaluated

using (25 b), (25 e¢), (25 d), (25 e). This must be do-

n+l,m

ne only after p are converged. It is also better

8UX a2t the beging of each iteration.

to evaluating Du
There are two advantages for this iteration procedure
(1) Dun+1 can be made as small as one desire indepen-

dently of the error in Du® (2) we could theun use latest

iterate pn+1’k+1 to evaluate u?+lttrough formula such
as,

n+l _ udux n+l,k+1

us = Uy Gip

. 2P . 2
where G, p approximates =Y if At = 0o( Ax"),

n+l,k+1 n+l,k

when p and p differ by less than ¢ "

Duttl. of é/) Je Also a g&in in accuracy appears, which

can use to relax the convergence messure for iterationse.

This gain in accuracy is due to the fact that u2+1

are evaluated by using an appropriate combination of

pn+1,k aud pn+1,k+l’ o ther SHa% pn+1,k+1.

The problem of stability and convergence will be sup-

ported by numerigal evidence.
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Solution of a Test Probleme.

Our method can be applied to a simple-two-dimen-
sional test problem.® is the square Oéxigﬂ s, 1 =1, 2.
The external forces Ei, E2 assumed to be zero. i.ee.

El = E2 = 0

The boundary data are,

- -2%
ul' = - sin x2e ’ U.ll = 0
X1=O X2 = 0
; -2%
uq = sin x, e p uﬂ =0
Xl = 7T X2 = 7T
" -2%
u2L =0 , u4x = sin x; e
1 = 0 o = 0
u%x =0 , u% = = sin xle"zJc
¢l =T X2 =TT
also the initial data are,
uq = -cos x,; sin X5 u% = sin %, eos x,
=0 t=0
The exact solution of the problem ise.
- . -2t ek -2%
u; = =cos x; sin x, e » U, = sin x; cos x, e

1 -4%
P=-R7 (cos 2x, + cos 2x2) e

where R is the Reynolds number,



i BE

We first evaluate )0 for the equation,

pt
- Iy = f
in@ with a grid of mesh widths 2 Axl, 2Ax2, and u «

known on the boundary then,

w 2

°P% T 4 (1~ A"

where 0(:% (cos 2Ax1 + cos 2 sz) is the largest
eigenvalue of the associated Jacobi matrix [5) , [7} .
Aopt , At At
ut - D {: £ ¢
weput = 5~ (ZxZ - szﬁ

equation (18) van be written in the form

‘gpt =T§-§'§

then
_ 1
1 = 5, W2
(1- &)
and
) 4 1
= \
OPE T (atpgd 4+ BE4R) (- at)h
if we assume AX, = Ax2 = Ax, then,

o 2 Ax®

opt At sin(2Ax)
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CHAPTER IIT

We record here the list of symbol:s, Algol 60
listing, and logic flow chart for the two-dimensional

viscous flow test problem given at the end of chapter II.

A. List of Symbols

UlA|Q,R ui?x r) x=-cpopmponent of suxilizry
s velocitye.
U2A_Q,R] ug?x oy @ y-component of auxiliary
4 velocitye
] *
UlS‘Q’R] "1(g,r) , x-component of intermidiate
velocity -
i ] .
*
UesLe. ¥ u2(q,r) s y—-component of intermidiate
velocity -
Pl[%;R] p?:lé? s  the pressure before iteration.
Gy
Pz[Q,R:] p?;1;?+1, the pressure after iteration-
’ s
n
JI[Q;R] u1(q,r) , x=component of velocity at
time step ne.
I n
e LQ’%I Y2(q,r) , y-component of velocity at
time step n.
UlN|Q,R u§?1’2§1 the computed x-component of
S ds velocitye
U2N|Q,R 4;?1’$§1, the computed y-component of
: -1 Ty velocity .
au
DA[Q,R | Du "](q,r)

1A Pt
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AT, o
DT time step At.
Dx mesh interval A X.
EPS £
MAX max p§+1’m+1 - pn+1,m at each

) q,r ‘ﬁ’r q’r

time stepe.

ULER ebsolute difference between the exact

5 7
and computed value of "1(q,r) -

U2ER absolute difference between the exact
and computed value of uz(q p) =
% )

PER eabsolute difference between the exact
and computed value of pe.

~number of time stepse.
number of iterationse

x=coordinate

=0 S 7 R — N

y-coordinzate

T time

The Algol listing (Section C) and flow chart (Section B)

followe



Ul:

T2

=U1N

" 1 2T~T

- @) -
v
Ne=C

o3

AT s TA.

Read input values of DX, DT

PpQ
RS | ,

3

Ca“cwlﬁin problem parameters,initial
values, awdibound ry conditions
, TT ‘2
y oy b

]

Ul, U2; UlA, YR2A, UlS,

TT

Calculate the values of U
» UlA, U2A, also DA whlch dep@ndaon

aQ

N

?

1T 6

U Mg

Begin by considering
Bl: = P2

Calculate the values
of U1lN, U2N

OUTPUT: ULER, U2ER, PER,

The number of iterations
each N,o0f the pressure.

,,,

1Ai

{

9
or

Flow dhart




Schemes A and B, were used for the solution
of the test problem, i.e. formulae (6 a), (6 Db),
(7 a), (7 b), (7 ¢) were used to evaluate u?ux .
¢ is the convergence criterione. In tables I,
ITI, n is the number of time steps; e(ui), i=
=1, 2, are the maxima over § of the difference
between the exact and the computed solution Uy
e(p) in the tables represents the maximum over
the grid of the differences between the exact
pressure at time nAt and the computed pn di-
vided by Re The accuracy of the scheme is to
be judged by the smallness of e(u;).m is

the number of iterationse.



scheme A

=

W N oW A W N

n =
o ©

’

Table I

2

Ax= T/39;6t=2A%x"; & =

e(ui)

2+8x10™4
2+7x10™%
1.5x10%
1+8x10~%
1+3x10™4
1+3x10™%
1+6x10~%
1e4x10~%
1+3x10™4
1.8x10~%

e(uz)

2+6x10~%
2+ x10~%
1+3x10~%
19x10~4
1+7x10™4
1.8x10~%
1+9x10~4
1e7x20™4
1+6x10™%
2’3X10'4

e(p)

00243
0-0136
00069
00145
00089
0°0116
0°0144
00147
0°0156
0+0241

N N N N S N N I = =



scheme B; Ax ="7/39;

O N1 U W = B

20

Table II

e(uq)

3’9}{10"3
5+9%x107>
8+5x107>
1+0x1072
1.1x1072

150x10™2

At =AX2; £ =AX2;

e(u2)

4°4x107°
6+0x10™>
67x107°
7+4%107
7+9x107>
'7°8X10"3

e(p)
0+0404
0°0466
00505
O=0551
Q599
0+0839

16
11
10
10
10
10

20
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