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ABSTRACT 

Taguchi's T-Method is one of the Mahalanobis Taguchi System (MTS)-ruled 
prediction techniques that has been established specifically but not limited to small, 
multivariate sample data. When evaluating data using a system such as the Taguchi's 
T-Method, bias issues often appear due to inconsistencies induced by model 
complexity, variations between parameters that are not thoroughly configured, and 
generalization aspects. In Taguchi's T-Method, the unit space determination is too 
reliant on the characteristics of the dependent variables with no appropriate procedures 
designed. Similarly, the least square-proportional coefficient is well known not to be 
robust to the effect of the outliers, which indirectly affects the accuracy of the 
weightage of SNR that relies on the model-fit accuracy. The small effect of the outliers 
in the data analysis may influence the overall performance of the predictive model 
unless more development is incorporated into the current framework. In this research, 
the mechanism of improved unit space determination was explicitly designed by 
implementing the minimum-based error with the leave-one-out method, which was 
further enhanced by embedding strategies that aim to minimize the impact of variance 
within each parameter estimator using the leave-one-out bootstrap (LOOB) and 0.632 
estimates approaches. The complexity aspect of the prediction model was further 
enhanced by removing features that did not provide valuable information on the overall 
prediction. In order to accomplish this, a matrix called Orthogonal Array (OA) was 
used within the existing Taguchi's T-Method. However, OA's fixed-scheme matrix, as 
well as its drawback in coping with the high-dimensionality factor, leads to a sub-
optimal solution. On the other hand, the usage of SNR, decibel (dB) as its objective 
function proved to be a reliable measure. The architecture of a Hybrid Binary Artificial 
Bee Colony and Particle Swarm Optimization (Hybrid Binary ABC-PSO), including 
the Binary Bitwise ABC (BitABC) and Probability Binary PSO (PBPSO), has been 
developed as a novel search engine that helps to cater the limitation of OA. The SNR 
(dB) and mean absolute error (MAE) were the main part of the performance measure 
used in this research. The generalization aspect was a fundamental addition 
incorporated into this research to control the effect of overfitting in the analysis. The 
proposed enhanced parameter estimators with feature selection optimization in this 
analysis had been tested on 10 case studies and had improved predictive accuracy by 
an average of 46.21% depending on the cases. The average standard deviation of MAE, 
which describes the variability impact of the optimized method in all 10 case studies, 
displayed an improved trend relative to the Taguchi’s T-Method. The need for 
standardization and a robust approach to outliers is recommended for future research. 
This study proved that the developed architecture of Hybrid Binary ABC-PSO with 
Bootstrap and minimum-based error using leave-one-out as the proposed parameter 
estimators enhanced techniques in the methodology of Taguchi's T-Method by 
effectively improving its prediction accuracy.  
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ABSTRAK 

Kaedah-T Taguchi’s adalah salah satu teknik ramalan yang dijadualkan oleh 
sistem Mahalanobis Taguchi (MTS) yang telah dibuat secara khusus tetapi tidak terhad 
kepada data sampel kecil yang multivariasi. Semasa menilai data menggunakan sistem 
seperti Kaedah-T Taguchi, masalah nilai pincang sering dilihat disebabkan oleh 
ketidakseragaman yang disebabkan oleh model yang kompleks, variasi antara 
pemboleh ubah yang tidak dikonfigurasi secara menyeluruh, serta aspek generalisasi. 
Dalam kaedah-T Taguchi, penentuan unit ruang terlalu bergantung pada ciri-ciri 
pemboleh ubah bersandar, tanpa prosedur yang sesuai dirancang. Begitu juga, kuasa 
dua terkecil- pekali berkadar diketahui tidak teguh terhadap kesan titik terpencil, yang 
secara tidak langsung mempengaruhi ketepatan pemberat SNR yang bergantung pada 
ketepatan model. Kesan kecil dari titik terpencil dalam analisis data dapat 
mempengaruhi prestasi keseluruhan model ramalan kecuali penambahbaikan lebih 
banyak digabungkan ke dalam kerangka semasa. Dalam penyelidikan ini, mekanisma 
penentuan unit ruang yang lebih baik dirancang secara eksplisit dengan menerapkan 
kaedah ralat berdasarkan minimum bersama kaedah leave-one-out, yang selanjutnya 
ditambahbaik dengan menerapkan strategi yang bertujuan untuk meminimumkan 
impak variasi dalam setiap penganggar parameter menggunakan pendekatan leave-
one-out bootstrap (LOOB) dan 0.632 estimate. Aspek kompleksiti dalam model 
ramalan ditingkatkan dengan membuang pemboleh ubah tidak bersandar yang tidak 
memberikan maklumat berharga mengenai ramalan keseluruhan. Untuk mencapai 
matlamat ini, matriks yang disebut tatasusun ortogon (OA) digunakan dalam kaedah-
T Taguchi sedia ada. Walau bagaimanapun, ketetapan matriks tetap OA, serta 
kekurangannya untuk mengatasi faktor dimensi tinggi, membawa kepada penyelesaian 
yang sub-optimum. Namun, penggunaan SNR, desibel (dB) sebagai fungsi objektifnya 
terbukti menjadi ukuran yang boleh dipercayai. Seni bina Hybrid Binary Artificle Bee 
Colony dan Particle Swarm Optimization (Hybrid Binary ABC-PSO), termasuk Binary 
Bitwise ABC (BitABC) dan Probability Binary PSO (PBPSO), telah dibangunkan 
sebagai enjin carian baru yang membantu memenuhi kekurangan OA. SNR (dB) dan 
ralat mutlak purata (MAE) adalah sebahagian daripada ukuran prestasi yang digunakan 
dalam penyelidikan ini. Aspek generalisasi adalah penambahan asas yang 
digabungkan dalam penyelidikan ini untuk mengawal kesan overfitting dalam analisis. 
Penganggar parameter optimum yang dicadangkan dengan pengoptimuman pemilihan 
ciri dalam analisis ini telah diuji pada sepuluh (10) kajian kes dan telah menunjukkan 
peningkatan ketepatan ramalan dengan purata 46.21% bergantung kepada kes. Sisihan 
piawai purata kepada MAE, yang menggambarkan kesan kebolehubahan kaedah yang 
dioptimumkan dalam semua 10 kajian kes, menunjukkan tren yang lebih baik 
berbanding dengan kaedah-T Taguchi.  Keperluan untuk piawaian dan pendekatan 
yang lebih baik untuk titik terpencil disyorkan untuk penyelidikan masa depan. Kajian 
ini membuktikan bahawa seni bina Hybrid Binary ABC-PSO yang dibangunkan 
dengan Bootstrap dan kaedah ralat berdasarkan minimum bersama kaedah leave-one-
out sebagai penganggar parameter optimum yang dicadangkan meningkatkan teknik 
dalam metodologi kaedah-T Taguchi dengan meningkatkan lebih ketepatan ramalan 
dengan berkesan. 
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CHAPTER 1  

 

 

 

INTRODUCTION 

 

1.1 Research Overview 

The futures of industrial technologies look promising but somehow are always, 

to some extent, uncertain and unpredictable. Uncertainty and unpredictability are the 

focus of long-standing methodological concern since they are inherently related either 

to some form of modeling operation or to scientific risk considerations. Disruption 

tends to be a daily challenge to ensure a robust design, robust operating system as well 

as reliable performance and responsive risk control are all well responded and 

predicted. Much of our current issues of uncertainty have specific causes. How well 

we leverage it with the advanced cognitive algorithms, predictive modeling, and 

statistical analysis towards better industrial systems were aggressively discussed 

among analysts. Practitioners have used various prediction tools in numerous areas for 

the past few decades, and it is progressively enhanced and improved.  

In 1930, Dr. Prasanta Chandra, a prominent Indian statistician, developed a 

concept called Mahalanobis Distance (MD), a distance-based statistical approach used 

to distinguish similarities of a population group from another. In the 1980s, Dr. 

Genichi Taguchi developed the Mahalanobis Taguchi System (MTS) as a pattern 

recognition technique that blends Mahalanobis Distance (MD) theory and Robust 

Engineering concept to systematically and effectively classify and predict data in a 

multidimensional environment (Taguchi, Chowdhury and Wu, 2001; Teshima, 

Hasegawa and Tatebayashi, 2012c). MTS establishes a multivariate measurement 

scale that recognizes a normal or healthy observation from an abnormal or an 

unhealthy observation and integrates it with the concept of Signal-to-noise ratio (SNR) 

and Orthogonal Array (OA). Beginning with the introduction of MT-Method as a 
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classification technique that has so far gained much attention among scholars, several 

methods have also been established since then, which have utilized the same 

integration principles. One of them is Taguchi's T-Method, which was developed 

specifically for predictive analysis. 

The underlying principle of Taguchi's T-Method was based on a reference-

point equation, which created and summed the linear regression for individual 

independent variables towards the dependent variables that pass through the zero-point 

(origin). The formulated model involved the integration of the inverse regression 

concept, unit space, dynamic SNR as a weighting factor, and OA, which used dynamic 

SNR (dB) as an objective function for the variable selection optimization mechanism. 

Figure 1.1 illustrates the formulation of the integrated estimated output model in 

Taguchi's T-method, which applying the classical least square theory for determining 

the proportional coefficient.  Determination of unit space is done for the normalization 

phase, and it is said to be the population that is homogeneous concerning the target 

object. The selection of unit space is one of the most crucial phases to be identified in 

the early stages before any analysis has been carried out (Teshima, Hasegawa, and 

Tatebayashi, 2012b).  

 

Figure 1.1 Simplified illustration of Taguchi's T-Method formulated model for 
integrated estimated output prediction 
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Taguchi's T-Method was proposed for multivariate estimation to predict the 

integrated estimated output value, and one of its significant advantages is its ability to 

predict even with limited sample data. With multiple regression analyses, there is a 

limitation in that the sample size has to be higher than the number of variables. On the 

other hand, the said limitation does not apply to the Taguchi's T-Method. Additionally, 

the Taguchi's T-Method too has no direct influence from multicollinearity due to 

consideration upon individual regression as illustrated in Figure 1.1 (Teshima, 

Hasegawa, and Tatebayashi, 2012a; Negishi et al., 2017; Nishino and Suzuki, 2018). 

Unlike other optimization methods, the element of the dynamic SNR as the weightage 

element within Taguchi's T-Method are embedded to indirectly contribute to the 

robustness and sensitivity of the formulated model towards the variation effect as can 

be seen in Figure 1.1,  in which the weighting SNR should increase as the variability 

decreases. Section 2.3 in Chapter 2 will explain the principle of Taguchi's T-Method 

in more depth.  

Taguchi's T-Method has generally been practiced in Japan before and has only 

been practiced by non-Japanese researchers recently, owing to its simplicity and ease 

of interpretation as well as the advantages described earlier. Scholars using Taguchi's 

T-Method to conduct studies and solve various prediction analysis problems 

(Dasneogi and Cudney, 2009; Dasneogi, Cudney and Adekpedjou, 2009; Cudney, 

Shah, and Kestle, 2010). Figure 1.2 explicitly illustrates the pattern of studies 

performed since 2008 based on the number of papers published in the literature and 

how the progress is moving towards optimization of parameters and optimization of 

variable selection rather than just application purposes since the year 2012. From a 

different perspective, this increasing pattern has indirectly triggered that there are 

indeed a variety of enhanced approaches towards parameter and variable selection 

optimization available out there that can be further explored and incorporated into 

Taguchi's T-Method as a hybridization or integration element. However, studies 

related to the application of Taguchi's T-Method should be continually expanded in 

various fields of research in order to strengthen the theory and practicality of this 

method. 
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Figure 1.2 Trend of studies conducted in Taguchi's T-Method since 2008 clustered 
among areas of interest 

 

1.2 Research/ Problem Background 

The primary objective of developing a predictive model is to ensure that the 

results of previous learning observations are reliable and valid.  Nonetheless, validity 

is typically restricted to many areas, including the need for a large dataset and risk of 

the small dataset, the bias in data, complexity of the model, and generalization aspect. 

Every limitation is, in reality, closely related to one another. In a situation involving 

limited sample data such as in the product development phase, there is a possibility of 

obtaining an inaccurate prediction model due to high variability and bias effect in the 

dataset (Wilcox, 2005). However, the ability to predict with a small number of sample 

data is a significant challenge for most researchers today. Therefore, in enhancing the 

model's accuracy, a large dataset is needed even though the risk for variation and 

predictive model bias to occurs still exist (Schmidt and Finan, 2017). A complex model 

that involves high dimensional variables is often a significant challenge as not all 

variables are significant for the model, some of which could even deteriorate the 

overall performance and contribute significantly to the predictive model's bias (Hu et 

al., 2018). The generalization aspect defines the ability of the formulated prediction 

model to infer any future analysis precisely by depending on the formulated predictive 

model. The generalization in the context of this research is referring to the cross-
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validation approach, which is used to achieve satisfactory results for the training, 

testing, and validation phases despite limiting the impact of the overfitting issue. 

Undeniably, a good generalization is one of the keys to a successful future prediction 

(Xu and Goodacre, 2018).  

 

Multiple regression is the most commonly employed methodological method 

for linear analysis and is well known for its weakness of dealing with the number of 

variables greater than the number of sample units, as the degree of freedom is equal or 

less than zero (Carrascal, Galván and Gordo, 2009).  In the context of Taguchi's T-

Method, limited sample data, including data set of samples that are less than the 

number of variables, is not a matter of concern, as the analysis carried out by Inoh et 

al. (2012) and  Kawada and Nagata (2015) indicate that Taguchi's T-Method is 

performing better relative to multiple regressions up to twice the number of variables 

used. For instance, if the study considers six numbers of variables, the Taguchi's T-

Method will estimate at least 12 numbers of samples with better execution than 

multiple linear regressions. 

It is generally known that any prediction tools, including Taguchi's T-Method, 

are not exempted from the data bias issue.  However, with significant data sampling 

size, the bias effect shall be able to cancel each other (Roberts and Russo, 1999). In 

overseeing data analysis such as Taguchi's T-Method, biases between actual and 

measured data might involve variation induced by combination features, other obscure 

properties, and the correlation between some parameters which are not completely 

optimized  (Liu et al., 2019).  Although the SNR weightage was introduced in 

Taguchi's T-Method theory as an aspect of robustness and less sensitivity to variance, 

the possibility for variability still exists due to the sensitivity of noise variables as well 

as the lack of fit or non-linearity concern (Fowlkes and Creveling, 1995c). The 

formulated model for integrated estimated output presented in Figure 1.1 demonstrates 

how each of the parameter estimates (unit space, SNR weightage, proportional 

coefficient) is related to the dispersion and sensitivity to the impact of the variance. 

The presence of outliers could lead to an increased effect of bias and variability on 

each parameter estimates. This issue undoubtedly demands more research to ensure a 

higher degree of accuracy in the study. 
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Back then, it is a common practice among statisticians that the ordinary least 

square regression study is considered optimal with the condition that the errors are free 

from the effect of outliers. As a consequence, the normality assumption was believed 

to be randomized, independent, and equally distributed (Mazlina, Bakar, and Midi, 

2017; Huber, 1973). In the context of  Taguchi's T-Method, Nishino and Suzuki (2018) 

claimed that dealing with small samples, for example, in the case of early stages of 

mass production, Taguchi's T-Method, which uses the least-squares for proportional 

coefficient estimation, may fail to produce adequate models when the outliers are 

influenced. Not only in small sample cases but also large sample data, the effect of 

outliers was of great concern. Yoshimura and Nagata (2015), Negishi et al. (2017), 

Nakao and Nagata (2018), and Satoshi, Yasushi, and Nagata (2018) did highlight 

similar concern on the significant effect of outliers towards existing Taguchi's T-

Method model in their research. Several efforts have been made to resolve the 

problem. The enhancement of least-square estimates as well implicitly leads to the 

improvement of SNR weightage since both estimators are relying on the accuracy of 

the fit-line model. If the model is fitted well, reductions on variance and bias are 

expected, which leads to a greater level of accuracy. 

Kawada and Nagata (2015) were one of the early researchers who incorporated 

the Generalized Inverse Regression estimator (GIR) into Taguchi's T-Method, 

replacing the least-square approach for the proportional coefficient estimation. The 

approach was able to increase the accuracy of existing Taguchi's T-Method to a higher 

level. Negishi et al. (2017) proposed the Nonlinear Correction T-Method as an 

alternative way of improving the prediction of daily peak load, which involved a 

nonlinear regression. The results seem to provide higher accuracy, but it is only 

applicable for daily peak load prediction case. The study conducted to improve the 

parameter estimate of the proportional coefficient was performed with a variety of 

strategies incorporated into the existing Taguchi's T-Method which are; Circular least-

squares T-Method (Satoshi, Yasushi, and Nagata, 2018) and Median-Median Line 

(MML) (Nishino and Suzuki, 2018). Both approaches have successfully shown a 

positive impact on the existing Taguchi's T-Method accuracy, but it was just tested 

with a very minimal case study.   
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Another point of interest relevant to the Taguchi's T-Method was the 

determination of unit space as a measuring scale in defining the target object. The unit 

space, which is homogeneous and originates from a highly dense population, shall be 

positioned in the vicinity of the average (Teshima, Hasegawa, and Tatebayashi, 2012a; 

Suguru and Yasushi, 2018). The current unit space theory noticed that there was so 

much dependency on the specified characteristics and patterns of the dependent 

variables without providing adequate procedures and including independent variables 

as part of the selection criteria. The small impact of the outliers could affect the 

accuracy of the optimal unit space selection. The Ta and Tb Method proposed by Inoh 

et al. (2012), and the embedded of homogeneity of output by  Marlan et al. (2019) into 

the Taguchi's T-Method, substituting the existing unit space determination 

characteristics, offers another potential direction for unit space determination that is 

capable of having better accuracy. However, the findings are evaluated in a specific 

case analysis in which no particular method can be extended to all situations. Among 

all these proposed techniques, Ta Method is famously applied since it is done by just 

averaging every single variable data.   

Among the shortcomings observed in all the preceding literature is the 

approach of the generalization that previous researchers have not thoroughly practiced. 

The term generalization is used to reflect on how well new data can characterize a 

predictive model. Over-fitting is a modeling error observed when a trained model 

performs exceptionally well during the training phase but perform poorly on new 

unknown samples resulting from the presence of certain noise levels (Xu and 

Goodacre, 2018). In determining the most optimum unit space, the Leave-one-out 

(LOO) approach is proposed in this study. The approach will test the individual sample 

separately. Known as a tool used to estimate errors and has been shown to provide a 

nearly unbiased estimate of the model's true generalization (Cawley and Talbot, 2004), 

LOO in this study will choose the most optimum samples that contribute to the 

minimum error of the training population.  

However, the variability of LOO is considered to be relatively high (Kohavi, 

1995; Cawley and Talbot, 2007; Elisseeff and Pontil, 2002). Concerning to the LOO 

risk towards high variation, a non-parametric resampling method which is called 
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"bootstrapping," is proposed as another way to improve prediction performance due to 

small datasets, variation, and bias issues. Efron introduced the bootstrap method in 

1979, based on the resampling approach with unknown distribution. The series of 

bootstrap applied in this study which are Leave-one-out bootstrap (LOOB) and 

approach that could help in reducing the effect of overfitting which is called 0.632 

estimates capable in providing more reliable inferences when data is not statistically 

well-represented, or the sample size is small as well as reducing the potential of over-

fitting issues to occur (Kisielinska, 2013; Samart, Jansakul, and Chongcheawchamnan, 

2018). The integration of both the bootstrap series and the LOO helps to define a better 

accuracy of the unit space and parameter estimates (proportional coefficient and 

weightage SNR) within existing Taguchi's T-Method. 

The complexity of linear regression described in this work is primarily linked 

to describing the set of variables used in model formulation. In literature, this process 

is also known as item selection, variable selection, feature selection, and 

dimensionality reduction, which carry the same purpose on identifying the most 

optimal features within the model formulation. In MTS, the orthogonal array (OA) is 

a feature selection search mechanism that has been established between a series of 

MTS methods that share standard procedures but vary in objective function 

determination. The element of the OA within MTS has been debated and is believed 

to be insufficient as it offers a sub-optimal solution (Woodall et al., 2003; Pal and 

Maiti, 2010). Most of OA's concerns are based on its restriction in having appropriate 

combinations of features to be assessed and evaluated in the search for optimality, as 

it relies on a fixed scheme, as shown in the example of L12 array by Table 1.1 below. 

Abraham and Variyath (2003) argued that the fixed combination in OA is not optimal 

since the results may vary significantly if the column-to-column information is 

rearranged (Hawkins et al., 2003). Foster, Jugulum, and Frey (2009) agreed with 

Abraham and Variyath after proving the fact with 1000 random variables to column 

assignment.  Issues in OA have been highlighted as well by Hawkins (2003) and  Tsui, 

Sukchotrat, and Chen (2009), especially the fact that the OA design has a limitation in 

handling the higher-order interaction between variables, which might lead to an 

inconsistency in the identification of the significant variables. Therefore, developing a 

hybrid methodology for better accuracy is a preferred solution to these concerns. 
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Table 1.1 Orthogonal Array L12 and its fixed scheme assignment of variables 

No 
ITEMS 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 

1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 2 2 2 2 2 2 

3 1 1 2 2 2 1 1 1 2 2 2 

4 1 2 1 2 2 1 2 2 1 1 2 

5 1 2 2 1 2 2 1 2 1 2 1 

6 1 2 2 2 1 2 2 1 2 1 1 

7 2 1 2 2 1 1 2 2 1 2 1 

8 2 1 2 1 2 2 2 1 1 1 2 

9 2 1 1 2 2 2 1 2 2 1 1 

10 2 2 2 1 1 1 1 2 2 1 2 

11 2 2 1 2 1 2 1 1 1 2 2 

12 2 2 1 1 2 1 2 1 2 2 1 

note: 1 implies the usage of the variables and 2 implies otherwise 
 

Until recently, the OA element in the MTS classification approaches has been 

continuously improved by numerous machine-learning algorithms. However, the 

enhancement of the OA element within Taguchi's T-Method as a prediction tool is still 

at an initial stage and needs further attention. Kawada and Nagata (2015b) apply a 

stepwise forward and backward selection procedure for this purpose which, showed 

an increase in accuracy on many cases conducted. The published literature on OA 

improvement in Taguchi's T-Method is found not utilizing the generalization aspect 

thoroughly and focused on a somewhat limited case study. 

Hybrid Binary ABC-PSO algorithms, which have been found to provide more 

efficient results based on a literature study, have also been proposed. Motivated by 

their advantages in complementing each other's drawback, BPSO aims to allow greater 

use of the search mechanism in the hybrid algorithm, whereas the local ABC search 

mechanism helps prevent the particle (nectar) from being trapped at local optimum, 

which ideally contributes into an optimal amount of features selection combination. 
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1.3 Problem Statement 

Although Taguchi's T-Method is still reasonably new to researchers outside 

Japan, it is now a prevalent strategy among Japanese researchers and their industry 

experts. It was evident in Section 1.2 that the Taguchi's T-Method prediction model 

had several limitations involving unit space determination procedure (Inoh et al., 2012; 

Marlan et al., 2019),  parameter estimate accuracy (Negishi et al., 2017; Nishino and 

Suzuki, 2018; Satoshi, Yasushi and Nagata, 2018), as well as the OA structure that 

was seen as inefficient in exploiting a higher number of interactions which prone to a 

sub-optimal solution ( Ramlie et al., 2016; Muhamad, 2019).  Numerous studies are 

proposed to improve the accuracy of these limitations, which relate to the integrated 

estimate output model development.  

In most cases, the assumption that receives much attention from many 

statisticians is that the ordinary least square-based proportional coefficient analysis 

must be free from the effect of outliers. The errors and distribution were assumed to 

be normally distributed, observations are random, independent, and identically 

distributed and equally reliable with no outlier in the data since even a single outlier 

can lead to a severe effect of bias and variation (Huber, 1973; Tarr, Weber and Muller, 

2015; Mazlina, Bakar and Midi, 2017). Taguchi's T-Method is not fundamentally 

resistant to the effect of outliers (Kawada and Nagata, 2015a; Negishi et al., 2017; 

Nishino and Suzuki, 2018), so dealing with high sample data or inconsistent small 

sample data will put the prediction accuracy at risk. Therefore, generalizing the 

procedure as early as determining the optimal unit space using a proposed method 

called Tmbe and further enhance it using a series of bootstrap approaches and extended 

it to increase the accuracy of the proportional coefficient and SNR weightage as 

parameter estimators are part of the main agenda of this research. 

In the previous section, several OA arguments in MTS highlighted the need to 

enhance the features selection optimization by providing a new metaheuristic 

algorithm to substitute the OA. No attempt has been made to integrate the application 

of Tmbe, Bootstrap resampling, and Hybrid Binary ABC-PSO into Taguchi's T-Method 

framework so far.  This attempt forms the basis of this research interest in using such 
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approaches for greater predictive model accuracy and renders this research novel and 

stands at its level of notable achievement.  

1.4 Research Objectives 

The following research objectives have been developed to address the issues 

outlined in the previous section. 

1. To design an approach in determining the optimum unit space for improving 

the accuracy of an integrated estimate output model. 

2. To formulate mathematical models with optimum parameter estimators in 

improving the accuracy of an integrated estimate output model. 

3. To develop an architecture of feature selection using Hybrid Binary Artificial 

Bee Colony and Particle Swarm Optimization (Hybrid Binary ABC-PSO). 

4. To validate the accuracy and effectiveness of the algorithm. 

 

 

1.5 Research Scope 

The scope of this research focused on improving the accuracy of Taguchi's T-

Method and how does it reduce the effect of variation towards optimality. The methods 

proposed in improving the integrated estimated output model were confined on; 1) 

LOO, 2) LOOB, and 3) 0.632 estimates, while for the features selection optimization; 

1) BitABC, 2) PBPSO, and 3) Hybrid Binary ABC-PSO were bound to solve the 

weakness of OA's deployment on the existing Taguchi's T-Method. In this research, 

the performance of the proposed methods was assessed using several secondary 

datasets obtained from the UCI Machine Learning Repository (Lichman, 2013) and 

other sources that involved a different number of variables and sample data. The 

parameters setting applied were based on the compilation from the previous literature 

study. 
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The proposed technique and analysis carried out was driven by a linear 

relationship with no anticipated missing data and must involve multiple independent 

variables. The performance was measured mainly based on; 1) mean absolute error 

(MAE), 2) standard deviation (SD), and 3) SNR (dB) as the objective function. The 

robust element within SNR as the weightage parameter in the integrated estimated 

output model, and SNR (dB) as the objective function for feature optimization are the 

main reason to uphold the SNR element within this research.   

1.6 Significance of the Study 

In view of the current Taguchi's T-Method research domain, the integration of 

LOO, bootstrap resampling, and Hybrid Binary ABC-PSO into the Taguchi T-Method 

framework was the first to be introduced to date, which makes this research unique 

and stands at its level of significant accomplishment. The enhanced structure of unit 

space determination, as well as the generation of the optimal mathematical formulation 

by the integration between LOO and series of bootstrap algorithms, provide an easy, 

reliable, and systematic way to carry out the prediction analysis.   

A variant of swarm intelligence algorithms such as the BitWise ABC, PBPSO, 

and Hybrid Binary ABC-PSO was introduced to improve the feature selection 

optimization within Taguchi's T-Method, replacing the OA and serve as the first 

introduced approach within the Taguchi's T-Method item selection domain. The 

PBPSO was known capable of providing better exploitation search mechanisms, while 

the binary ABC, such as BitWise ABC local search mechanism, helps to prevent the 

particle (nectar) been trapped in local optima. The respective advantage of these two 

algorithms leads to the development of an architecture for Hybrid Binary ABC-PSO 

that proved to strengthen the capability of the integration between LOO and series of 

the bootstrap algorithms in bringing the accuracy of the integrated estimated output 

model within Taguchi's T-Method to a much higher level of accuracy. By 

incorporating the generalization aspect into the proposed framework, the over-fitting, 

variability, and bias concerns were implicitly at low risk, depending on the complexity 
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of some case study involved, as shown by the findings of the analysis in Chapter 4 of 

this thesis. 

1.7 Thesis Outline 

This thesis consists of five chapters. Chapter 1 provides a summary of 

Taguchi's T-method as a modern approach to predictive research. The problem 

background, research questions, and objectives, as well as the significance of the 

research, are all well described for the reader's attention. Chapter 2 explain the 

fundamental concept of Taguchi's T-Method and where it stands within the structure 

of the Mahalanobis Taguchi System (MTS). A brief and comprehensive overview of 

the utilization of Taguchi's T-Method in various engineering fields, as well as the 

enhancement research that has been adopted to the existing Taguchi's T-Method, is 

also being presented. An extended discussion on the drawback of Taguchi's T-Method 

concerning the limitation of the predictive model as a whole is well discussed. The 

discussion, therefore, leads to the reason for highlighting and introducing the proposed 

methods mentioned earlier.  

Chapter 3 describes the overall methodology of this research, which was 

divided into stage I and stage II development, reflecting the objectives of improving 

the integrated estimated output model and optimizing the selection of features, 

respectively. The comprehensive framework, conceptual design, and pseudocode of 

the proposed algorithms are all well described in this chapter, which was the critical 

contribution of this research work. Chapter 4 describes the implementation and 

theoretical review of the algorithms proposed. The discussions are described according 

to the development stage I and II and are focused on ten (10) separate case studies. 

The final results and findings of the specified case studies are further analyzed in terms 

of their overall feasibility and effectiveness against the research objectives and 

compared with a variety of research involving similar case studies as well as the 

existing Taguchi's T-Method and its variant from the literature. Chapter 5 correlates 

the study results to the objectives, together with several recommendations for future 

research work. 
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