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ABSTRACT: DNA computing involves computing models which use the recombination behaviour of DNA molecules as
computation devices. This idea was successfully applied by Adleman in his biological experiment in order to show the
solvability of the Hamiltonian path problem for larger instances. A DNA-based computation model called a sticker
system is an abstraction of the computations using the recombination behaviour as in Adleman’s experiment. In
this paper, the generative capacity of several variants of bounded delay and unrestricted weighted sticker systems
is investigated. The relation between families of languages generated by several variants of weighted sticker systems
and weighted grammars is also presented.
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INTRODUCTION

Computers have been informally defined as elec-
tronic devices which are able to receive, manipulate
and store the input and produce an output. With the
modern technological skills, many supercomputers
with microprocessors made from silicon have been
produced to match the higher speed of data process-
ing. However, these silicon-based supercomputers
are limited in terms of speed and density, design
complexity, non-recurring, high cost, power con-
sumption and heat dissipation as stated by Hassan
et al1. Hence this motivates new technologies in
computational devices to overcome the limitations
of the conventional silicon chip supercomputers.
One of the new technologies from the intersection
of computer sciences and bio-molecular sciences
is DNA computing. To overcome the limitation of
silicon-based computers, a bio-computer has been
proposed at the theoretical level to replace the dig-
ital switching primitives to DNA molecules.

There are two features of interest in DNA com-
puting, which are Watson-Crick complementarity
of DNA molecules that naturally occurs in DNA
molecules, and massive parallelism. Watson-Crick

complementarity enables the DNA molecules to
use the information encoded on a single-strand to
make far-reaching conclusions since the information
on the other strand can be decoded according to
the complementarity. Massive parallelism of DNA
strands allows the construction of many copies of
DNA strands to be carried out in parallel. From
there, many applications show that these two fea-
tures of DNA molecules on DNA-based computers
can solve many computationally intractable prob-
lems, for instance the Hamiltonian path problem2,
the satisfiability problem for arbitrary contact net-
works3 and the satisfiability problem for Boolean
circuits4.

In DNA computing, the sticker system, a DNA-
based computing device, has been introduced by
Kari in 19985. The sticker systems are devel-
oped by using the sticker operations based on the
Watson-Crick complementarity of DNA molecules.
The computation process on a sticker system us-
ing sticker operation is achieved when complete
double-stranded DNA molecules are formed from
incomplete DNA dominoes. The incomplete DNA
dominoes stick to other dominoes by ligation and
annealing. Hence in this paper, we investigate the
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level of generative power among these new variants
of weighted sticker systems. We should mention
that the ideas of using weights in increasing the
generative power of generative devices have been
widely investigated in formal language theory6–11.
Besides, the use of weights in sticker systems helps
to construct more accurate models for stochastic
phenomena and processes in many applications of
sticker systems and formal language theory.

PRELIMINARIES

In this section, some basic terminology, notation,
and definitions in formal language theory, sticker
systems, and weighted sticker systems are included.
For further information regarding the basic concepts
of formal language theory, automata and sticker
systems, the reader may refer to Refs. 12–15.

In this paper, we use the general notation as
follows. Symbols + and × denote the usual addition
and multiplication operations, respectively. Sym-
bols ⊕ and ⊗ denote the componentwise addition
and multiplication operations, respectively. The
sets of integers and positive rational numbers are
denoted by Z and Q+, respectively. The symbol
Zn denotes the n-dimensional vector space over
integers. The set of matrices with integer entities is
denoted byM. The cardinality of a set X is denoted
by |X |. The complete double-stranded sequence of
alphabet V is denoted by W Kρ(V ).

In the representation of DNA sequences, the
form of

�

x
y

�

represents a DNA molecule where x and y are the
upper DNA strand and lower DNA strand, respec-
tively, with a precise bonding between the corre-
sponding symbols in the strands x and y . Further-
more, for some symbols x , y , and W Kρ(V ), we shall
write

�

x
y

�

∈W Kρ(V )

instead of
�

x
y

�

in order to specify the complementarity relation ρ
for the precise bonding between the corresponding
symbols from the alphabet V in the upper strand and
lower strand of the molecule. Then for sticker sys-
tem, languages are generated from DNA molecule
sequences by initially starting from axioms A. The
prolongation then takes place from the left to the

right by using pairs (u, v) of dominoes in D ac-
cording to the sticker operation µ. Furthermore,
elements of W Kρ(V ) are called well-started double-
stranded sequences if there is at least a position

�

a
b

�∗

ρ

with a 6= λ and b 6= λ. The prolongation will
finally stop when no blank symbol exists in the
strings generated by the sticker system. Hence a
complete double-stranded sequence in W Kρ(V )will
be obtained12. Furthermore, the set of incomplete
molecules are denoted by

Wρ(V ) = Lρ(V )∪Rρ(V )∪ LRρ(V ),

where

Lρ(V ) =
��

λ
V ∗

�

∪
�

V ∗

λ

���

V
V

�∗

ρ

,

Rρ(V ) =
�

V
V

�∗

ρ

��

λ
V ∗

�

∪
�

V ∗

λ

��

,

LRρ(V ) = Lρ(V )∪Rρ(V ).

For two symbols x , y ∈ LRρ(V ), we have x ⇒ y if
and only if y = µ(u,µ(x , v)) for some (u, v) ∈ D,
where µ(a, b) is the sticking operation of dominoes
a and b. Since the prolongation to the right is inde-
pendent with the one to the left, thus µ(u,µ(x , v)) =
µ(µ(u, x), v). When x1 ∈ A is used as a starting
symbol and xk is in W Kρ(V ), a sequence x1⇒ x2⇒
·· ·⇒ xk is obtained. This sequence is called compu-
tation in γ with length k−1. We can also represent
the sequence x1 ⇒ x2 ⇒ ·· · ⇒ xk as x1 ⇒∗ xk. If
there is no sticky end or no blank symbol present
in the last symbol then the computation x1 ⇒∗ xk
where xk is in W Kρ(V ) is considered complete.
A complete computation will produce a complete
string w such that w∈W Kρ(V ). Hence the language
of such strings is the language generated by γ, called
the sticker language. For a complete computation
x1⇒ x2⇒· · ·⇒ xk where x1 ∈ A and xk ∈W Kρ(V ),
it is said to be of delay d if d ¾ d(x i), for 1 ¶ i ¶
k. Then for a sticker system γ, it is said to be of
bounded delay if there is d ¾ 1 such that Ld(γ) =
Lu(γ) for Ld(γ) the language of strings generated
by γ at the end of computations of delay at most
d, and Lu(γ) the unrestricted case. Furthermore,
there are several restrictions of sticker system12,
such as one-sided, regular, simple, simple one-sided
and simple regular sticker system. The generative
power of these restrictions has been investigated
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by Paun and Rozenberg16, and the results of the
characterizations for families of regular, linear and
recursively enumerable languages have been ob-
tained. Besides investigating the generative power
of sticker systems, some other restrictions to sticker
systems have been studied17–19. These papers have
shown that the generative power of a sticker system
increases when some algebraic structures, probabil-
ities and some weights are incorporated into the
sticker system. New variants of weighted sticker sys-
tems have been introduced by Gan et al19, namely,
weighted one-sided, weighted regular, weighted
simple, weighted simple one-sided and weighted
simple regular sticker systems. The finite pairs of
axiom LRρ(V ) and dominoes and Wρ(V )×Wρ(V ) of
these new variants are associated with the weights
from their chosen weighting spaces, such as (Z,+),
(Zk,⊕), (Zk,⊗), (Q+,×), (M,+). For the strand z
produced by strands x and y of Wρ(V ), the weight
for ω(z) is calculated from the weights ω(x) and
ω(y) according to the operation � and is defined as
ω(z) =ω(x)�ω(y). Thus, several types of thresh-
old languages generated by weighted sticker sys-
tems have been considered with different weighting
spaces and cut-points. Furthermore, the threshold
languages generated by weighted sticker systems
and their variants have a higher generative power
when compared to their respective usual sticker
systems19.

A Chomsky grammar is written in the form G =
(N , T, S, P), where N is the nonterminal character, T
is the terminal character, S is the axiom, and P is the
set of production rules, written in the form u→ v.
The language generated by G is denoted by L(G).

The families of recursively enumerable, context-
sensitive, context-free, linear, regular and finite lan-
guages are denoted by RE, CS, CF, LIN, REG and
FIN, respectively. For these language families, the
next strict inclusions, named Chomsky hierarchy,
hold13:

Theorem 1

FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE.

Next, we briefly cite some basic definitions and
results of iterative splicing systems.

Definition 1 [Ref. 12] A sticker system is a con-
struct of 4-tuple

γ= (V,ρ, A, D),

where V is an alphabet, ρ is the symmetric relation
in V , A is a finite subset of axioms LRρ(V ) and D is

a finite set of pairs Wρ(V )×Wρ(V ). The language
generated by the sticker system γ is defined as

L(γ) =

�

w ∈
�

V
V

�∗ �
�

� x ⇒∗ w, x ∈ A

�

.

There are five variants of families of sticker lan-
guages12, namely, one-sided, regular, simple, simple
one-sided and simple regular sticker languages as
denoted by OSL, RSL, SSL, SOSL, and SRSL, respec-
tively. The most general form of sticker systems is
also known as the universal sticker system. The
language generated by the universal sticker system
is named as universal sticker language and will be
denoted by USL. In 2013, another new variant of
sticker systems, namely, weighted sticker systems19,
have been introduced where some weights are con-
sidered in the classical model of the sticker system.
Next, we will give the formal definition of weighted
sticker system.

Definition 2 [Ref. 19] A weighted sticker system is
a 7-tuple

γ= (V,ρ, Aω, Dω,ω, M ,�),

where V is an alphabet, ρ is the symmetric relation
such that ρ ⊆ V × V , Aω is a finite set of axiom
such that A ⊆ LRρ(V )×M , Dω is a finite subset of
(Wω(V )×Wω(V ))× M , ω is a weighting function
such that ω : (LRω(V ) ∪ (Wω(V )×Wω(V )))→ M ,
M is a weighting space and � is the operation over
the weights ω(x), x ∈ LRω(V )∪ (Wω(V )×Wω(V )).

For the weighting space M , different sets of
algebraic structures such as rational numbers, inte-
gers, real numbers, Cartesian products of the sets of
numbers, or sets of matrices with integer entries can
be considered. Then the operations over weights are
defined with respect to the chosen weighting space.

Next, weighted sticker operations and the lan-
guage generated by a weighted sticker system will
be defined.

Definition 3 [Ref. 19] Given (x ,ω(x)), (y,ω(y))
∈ Aω and (u,ω(u)), (v,ω(v)) ∈ Dω,

[x ,ω(x)]⇒∗ [y,ω(y)]

if and only if
(i) [y,ω(y)] =µ([u,ω(u)],µ([x ,ω(x)], [v,ω(v)]))

and ω(y) =ω(x)�ω(v), and
(ii) [y,ω(y)] =µ(µ([x ,ω(x)], [u,ω(u)]), [v,ω(v)])

and ω(y) =ω(x)�ω(u).
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The language generated by the weighted sticker
system is defined as

ωSL=
�

y ∈W Kρ(V ) | [x ,ω(x)]

⇒∗ [y,ω(y)] for [x ,ω(x)] ∈ Aω
	

.

Here, a weighted sticker system with different
weights may generate the same strings. To eliminate
this ambiguity, a second operation over the weights
of strings has to be considered. Hence the selections
on the successful subset of the language generated
by a weighted sticker system with respect to some
cut-points are processed to obtain the threshold lan-
guages of the weighted sticker system. We consider
three types of threshold languages as stated in the
next definition.

Definition 4 [Ref. 19] Let ωSL(γ) be the lan-
guage generated by a weighted sticker system
γ = (V,ρ, Aω, Dω,ω, M ,�). A threshold weighted
sticker system language with respect to a thresh-
old (cut-point) τ ∈ M is a subset of ωSL(γ) de-
fined by ωSL(γ,?τ) = {y ∈W Kρ(V ) | [x ,ω(x)]⇒∗
[y,ω(y)] for [x ,ω(x)] ∈ A and ω(y)?τ}, where
? ∈ {=, 〈, 〉} is called the mode of ωSL(γ,?τ).

Furthermore, when we consider some weights to
sticker systems, we have new variants of sticker sys-
tems. The threshold languages generated by these
new variants of sticker system such as weighted one-
sided, weighted regular, weighted simple, weighted
simple one-sided, weighted simple regular, and
weighted universal sticker systems will be denoted
byωOSL,ωRSL,ωSSL,ωSOSL,ωSRSL, andωUSL,
respectively. The definitions of weighted one-
sided, regular, simple, simple one-sided, and simple
regular sticker systems are given below following
Ref. 19.

Definition 5 A weighted sticker system

γ= (V,ρ, Aω, Dω,ω, M ,�)

is said to be one-sided if for each pair
((u,ω(u)), (v,ω(v))) ∈ Dω either (u,ω(u)) ⇒
(λ, e) or (v,ω(v))⇒ (λ, e), where e is the identity
of the weighting space.

Definition 6 A weighted sticker system

γ= (V,ρ, Aω, Dω,ω, M ,�)

is said to be regular if for each pair
((u,ω(u)), (v,ω(v))) ∈ Dω we have (u,ω(u)) ⇒
(λ, e), where e is the identity of the weighting
space.

Definition 7 A weighted sticker system

γ= (V,ρ, Aω, Dω,ω, M ,�)

is said to be simple if for all pairs
((u,ω(u)), (v,ω(v))) ∈ Dω either

(u,ω(u)), (v,ω(v)) ∈
�

λ
V ∗

�

×M

or

(u,ω(u)), (v,ω(v)) ∈
�

V ∗

λ

�

×M .

Definition 8 A weighted sticker system

γ= (V,ρ, Aω, Dω,ω, M ,�)

is said to be simple one-sided if for all pairs
((u,ω(u)), (v,ω(v))) ∈ Dω either

(u,ω(u)), (v,ω(v)) ∈
�

λ
V ∗

�

×M

or

(u,ω(u)), (v,ω(v)) ∈
�

V ∗

λ

�

×M

and for each pair ((u,ω(u)), (v,ω(v))) ∈ D′, either
(u,ω(u)) ⇒ (λ, e) or (v,ω(v)) ⇒ (λ, e) with e the
identity of the weighting space.

Definition 9 A weighted sticker system
γ = (V,ρ, Aω, Dω,ω, M ,�) is said to be simple
regular if for all pairs ((u,ω(u)), (v,ω(v))) ∈ Dω,
either

(u,ω(u)), (v,ω(v)) ∈
�

λ
V ∗

�

×M

or

(u,ω(u)), (v,ω(v)) ∈
�

V ∗

λ

�

×M

and for each pair ((u,ω(u)), (v,ω(v))) ∈
D′, (u,ω(u)) ⇒ (λ, e) with e the identity of the
weighting space.

MAIN RESULTS

In this section, we investigate the generative power
of the variants of sticker systems with the presence
of weights. The results for the generative power of
the variants of weighted sticker systems are given in
the following.

Proposition 1 For X ∈ {U,O, R,S, SO,SR},

ωXSL(b) ⊆ωXSL(u),

where b is the bounded delay and u is the unrestricted
case.
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Proof : For the bounded delay, there is some d ¾ 1
such that Ld(γ) = Lu(γ) for Ld(γ) the string gener-
ated by γ in bounded delay and Lu(γ) is the string
generated by γ at the end of the unrestricted com-
plete computations. Since the dominoes of sticker
systems for bounded delay cases and unrestricted
cases are the same, we can easily obtain the same
weights for both cases when considered in some
weighting spaces. Hence Lωd(γ) = Lωu(γ). Hence
ωXSL(b) ⊆ωXSL(u). 2

Since the weighted cases for sticker systems also
do not have any erasing operation, we can clearly
obtain the following result:

Proposition 2 For each X ∈ {U, O,R, S,SO, SR} and
α ∈ {d, u},

ωXSL(α) ⊆ CS.

Now the generative power for variants of
weighted sticker systems will be investigated: the
relations between variants of weighted sticker sys-
tems, and the relations of the variants of weighted
sticker systems in the Chomsky hierarchy. Some
results on the generative power of variants of
weighted sticker systems are given in the following
theorems and corollary.

Theorem 2 ωOSL ⊆ωREG

Proof : Consider a weighted one-sided sticker system

γ= (V,ρ, Aω, Dω,ω, M ,�).

We construct a weighted context-free grammar G =
(N , T, S, P, M), such that

N =
§��

u
λ

��

l
,
��

u
λ

��

r
,
��

λ
u

��

l
,
��

λ
u

��

r
|

u ∈ V ∗, 0¶ |u|¶ d
ª

∪{S},

T =
�

V
V

�

ρ

.

Then by considering the weighted sticker system
and weighted grammar where the weights for the
production rules in weighted grammar such that

(i) S
ω′1−→

��

u1
u2

��

l

�

x1
x2

��

v1
v2

�

r

for
��

u1
u2

��

x1
x2

��

v1
v2

�

,ω
��

u1
u2

��

x1
x2

��

v1
v2

���

∈ Aω,

where

ω′1 =ω
��

u1
u2

��

x1
x2

��

v1
v2

��

with
�

u1
u2

�

,
�

v1
v2

�

∈
�

λ
V ∗

�

∪
�

V ∗

λ

�

and
�

x1
x2

�

∈W Kρ(V ).

(ii)
��

u1
u2

��

l

ω′2−→
��

u′1
u′2

��

l

�

w1
w2

�

for
�

u1
u2

�

,
�

u′1
u′2

�

∈
�

λ
V ∗

�

∪
�

V ∗

λ

�

,

�

w1
w2

�

∈W Kρ(V ),

and there is a pair in Dω of the form
���

z1
z2

�

,
�

λ
λ

��

,ω
��

z1
z2

��

λ
λ

���

and

ω′2 =ω
��

z1
z2

��

λ
λ

��

,

(iii)
��

u1
u2

��

r

ω′3−→
�

w1
w2

���

u′1
u′2

��

r
,

where
�

u1
u2

�

,
�

u′1
u′2

�

∈
�

λ
V ∗

�

∪
�

V ∗

λ

�

,

�

w1
w2

�

∈W Kρ(V ),

and there is a pair in Dω of the form
��

λ
λ

��

z1
z2

��

and

ω′3 =ω
��

λ
λ

��

z1
z2

��

,

(iv)
�

λ
λ

�

l

ω′4−→ λ,

where ω′4 = E

(v)
�

λ
λ

�

r

ω′5−→ λ,
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where ω′5 = E and E ∈ {(Z,+), (Zk,⊕), (Zk,⊗),
(Q+,×), (M,+)} is the identity element for each of
the selected weighting spaces.

So one-sided pairs can only build the sequences
by prolonging sequences to the left using rule (ii)
or prolonging sequences to the right using rule (iii)
independently. So with the similar argument to the
proof of Theorem 4 in Ref. 16, one concludes that
ωOSL ⊆ωREG. 2

Theorem 3 ωREG ⊆ωRSL(b)

Proof : By using the same arguments as in
the proof of Theorem 7 in Ref. 16 and by
considering a weighted finite automata M =
(Q,Z, s0, F,δ,ω, M ,�) and regular sticker system
γ= (V,ρ, Aω, Dω,ω′, M ,�), where

ρ = {(a, a) | a ∈ V},

Aω =
§�

x
x

�

,ω′
�

x
x

�
�

�

� x ,ω(x) ∈ Lω(M),

|x |¶ n+2
ª

∪
§��

x
x

��

u
λ

��

,

ω′
��

x
x

��

u
λ

��
�

�

� |xu|= n+2,

|x |¾ 1, |u|= i for 1¶ i ¶ n+1

: s0 xu
ω1→ si−1

	

,

where ω′
��

x
x

��

u
λ

��

=ω1,

Dω =
§��

λ
λ

�

,ω′
��

λ
λ

���

,
��

λ
v

��

x
x

��

u
λ

�

,

ω′
��

λ
v

��

x
x

��

u
λ

���
�

�

� 1¶ |v|¶ n+1,

|xu|= n+2, |x |¾ 1, |u|= i for

1¶ i ¶ n+1 : s j xu
ω2

→∗ si−1, j = |v| −1
ª

∪
§��

λ
λ

�

,ω′
��

λ
λ

���

,
��

λ
v

��

x
x

�

,

ω′
��

λ
v

��

x
x

���
�

�

� 1¶ |v|¶ n+1,

1¶ |x |¶ n, and s j x
ω3

→∗ sf, sf ∈ F

for ω′
�

ω′
��

λ
v

��

x
x

��

u
λ

���

=ω2,

ω′
�

λ
v

�

=ω3 and ω′
�

λ
λ

�

= E
ª

,

where E ∈ {(Z,+), (Zk,⊕), (Zk,⊗), (Q+,×), (M,+)}
is the identity element for each of the selected

weighting spaces. Hence we conclude thatωREG⊆
ωRSL(b). 2

From Proposition 1, Theorem 2 and Theorem 3,
the following theorem is obtained.

Theorem 4 ωOSL=ωRSL

Now we investigate the generative power of
the universal weighted sticker system, as shown in
Theorem 5.

Theorem 5 ωLIN ⊆ωUSL(b)

Proof : Consider a weighted linear grammar G =
(N , T, S, P,ω, M). There is an equivalent gram-
mar G′ = (N ′, T, S, P ′, M ′) with P ′ containing only
rules of the forms X

ω
→ aY , X

ω
→ Ya, X

ω
→ a

for X , Y ∈ N ′, a ∈ T (for instance, a rule X →
a1a2. . .anY bm bm−1. . .b1 in P can be replaced by the
rules X → a1X1, X1 → a2X2, . . ., Xn−1 → anY1, Y1 →
Y2 b1, Y2 → Y3 b2, . . ., Ym−1 → Ym bm−1, Ym → bm).
Then construct a weighted universal sticker system
such that γ= (T,ρ, Aω, Dω,ω′, M ,�) where

ρ = {(a, a) | a ∈ T},

Aω =
§�

x
x

�

,ω′
�

x
x

�
�

�

� x ,ω(x) ∈ Lω(M),

|x |¶ 3n+1
ª

∪
§��

u
λ

��

x
x

��

,

ω′
��

u
λ

��

x
x

��
�

�

� |xu|= 3n+1, |x |¾ 1,

|u|= i for 1¶ i ¶ n : X i →∗ xu
ª

∪
§��

x
x

��

u
λ

��

,ω′
��

x
x

��

u
λ

��
�

�

�

|xu|= 3n+1, |x |¾ 1, |u|= i

for 1¶ i ¶ n : X i →∗ xu
ª

and Dw contains groups of brick pairs (1) to (6)
in Ref. 16 (Theorem 8 pp.197) with the weights
defined as follows:

(i) ω′
�

x
x

�

=ω1

such thatω1 =ω(S⇒∗ x) (for S
r1
⇒ x1

r2
⇒ x2⇒· · ·⇒

rm x , ω(S⇒∗ x) =ω(r1)+ω(r2)+ · · ·+ω(rn));

(ii) ω′
��

u
λ

��

x
x

��

=ω2

such that ω2 =ω(X i ⇒∗ ux) for X i ⇒∗ ux;

(iii) ω′
��

x
x

��

u
λ

��

=ω3
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such that ω3 =ω(X i ⇒∗ xu) for X i ⇒∗ xu;

(iv) ω′
��

u
λ

��

x
x

��

λ
v

�

,
�

z
z

��

=ω4

such that ω4 = ω(X |u| ⇒∗ xuX |v|z) for X |u| ⇒∗
xuX |v|z;

(v) ω′
��

x
x

��

λ
v

�

,
�

z
z

��

u
λ

��

=ω5

such that ω5 = ω(X |u| ⇒∗ xX |v|zu) for X |u| ⇒∗
xX |v|zu;

(vi) ω′
��

x
x

��

λ
v

�

,
�

z
z

��

=ω6

such that ω6 =ω(S⇒∗ xX |v|z) for X |u|⇒∗ xX |v|z;

(vii) ω′
��

z
z

�

,
�

λ
v

��

x
x

��

u
λ

��

=ω7

such that ω7 = ω(X |u| ⇒∗ zX |v|xu) for X |u| ⇒∗
zX |v|xu;

(viii) ω′
��

u
λ

��

z
z

�

,
�

λ
v

��

x
x

��

=ω8

such that ω8 = ω(X |u| ⇒∗ uzX |v|x) for X |u| ⇒∗
uzX |v|x;

(ix) ω′
��

z
z

�

,
�

λ
v

��

x
x

��

=ω9

such that ω9 =ω(S⇒∗ zX |v|x) for S⇒∗ zX |v|x .
By using the similar arguments on the weights

in (1), the weights in (ii) to (ix) are also true by
calculating the weights in each production rule.

To prove the theorem, we use similar arguments
to the proof of Theorem 8 in Ref. 16. By us-
ing the weighted grammar and weighted universal
sticker systems above, we conclude that ωLIN ⊆
ωUSL(b). 2

Theorem 6 ωUSL(b) ⊆ωLIN

Proof : Considering a weighted universal sticker
system γ = (V,ρ, Aω, Dω,ω′, M ,�) and weighted
grammar G = (N , T, S, P,ω, M) where

N =
§��

u1
u2

�

,
�

v1
v2

��
�

�

�

�

u1
u2

�

,
�

v1
v2

�

∈
�

λ
V ∗

�

∪
�

V ∗

λ

�

, |u1|, |u2|, |v1|, |v2|¶ d
ª

∪{S},

T =
�

V
V

�

ρ

and P contains the rules similar as the rules 1–
4 in Ref. 16 (Theorem 6, pp.194–195) where the
weights are assigned to the rules as follows:

(i) S
ω1−→

�

w1
w2

���

u1
u2

�

,
�

v1
v2

���

z1
z2

�

,

where

ω1 =ω
��

x1
x2

�

,
�

y1
y2

��

,

(ii)
��

u1
u2

�

,
�

v1
v2

��

ω2−→
�

w1
w2

���

u′1
u′2

�

,
�

v′1
v′2

���

z1
z2

�

,

where

ω2 =ω
��

x1
x2

�

,
�

y1
y2

��

,

(iii)
��

u1
u2

�

,
�

v1
v2

��

ω3−→
�

w1
w2

���

x1
x2

�

,
�

z1
z2

���

z1
z2

�

,

where

ω3 =ω
��

w′1
w′2

��

x1
x2

��

z′1
z′2

��

,

(iv) S
ω4−→

�

w1
w2

�

,

where

ω4 =ω
��

w1
w2

��

.

Following similar arguments to the proof of
Theorem 6 in Ref. 16, by considering the weighted
grammar G defined above, we can obtain Ld(γ) ∈
ωLIN. Hence ωUSL(b) ⊆ωLIN. 2

Using Theorem 5 and Theorem 6, the following
corollary is obtained.

Corollary 1 ωUSL(b) =ωLIN
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