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Abstract

Dirichlet characters, and their partial sums, play a fundamental role in analytic num-

ber theory. In this thesis we study various distributions of these character sums,

and find the limiting distribution as the conductor tends to infinity. We consider

the limit of two main distributions: the continuous paths of character sums mod-

ulo a prime q on the complex plane, and partial sums of quadratic characters with

prime conductors in the dyadic range [Q, 2Q] for some Q > 0. The limiting distri-

butions are formulated as Fourier series with Steinhaus and Rademacher random

multiplicative functions as the respective Fourier coefficients.
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Notation

Symbol Meaning

f(x) ≪k g(x) There exists a constant C := Ck > 0 such that |f(x)| ≤ Cg(x).

f(x) ≫k g(x) There exists a constant C := Ck > 0 such that |f(x)| ≥ Cg(x).

f(x) = O(g(x)) f(x) ≪ g(x).

χ0 The principal character (χ0(n) = 1 for all n that is

co-prime to some modulus).

e(θ) e2πiθ (the complex exponential with period 1).

pk∥n pj | n and pk+1 ̸ |n.
dN(x)

∑
x1···xn=x 1 (the Nth divisor function for x ∈ N).

γ The Euler-Mascheroni constant (roughly 0.57721) [80].

L(χ, s) Dirichlet L-function
∑

n≥1 χ(n)n
−s, for Re(s) > 1.

ω(n) The distinct prime factors of n ∈ N.
Ω(n) The prime factors of n ∈ N, counted with multiplicity.

µ(n) The Möbius function (±1 for square free n with an even or

odd number of prime factors respectively, and 0 otherwise).

ϕ(q) The counting function for all the integers ≤ q which are coprime

to q, known as the Euler Totient Function.

π(n) The prime counting function, counting the number of

prime numbers ≤ n.

π∗(n) (π(2n)− π(n)), or counting all prime numbers in-between

2n and n.

P+(n) The largest prime divisor of n

(we take P+(1) = 1 as convention).

P−(n) The smallest prime divisor of n

(we take P−(1) = ∞ as convention).

n = □ Shorthand for when n is a square number.

T R/Z, or the real numbers modulo 1.

[x] The largest integer not exceeding x ∈ R.
{x} The fractional part of x ∈ R, or equivalently x− [x].

C([0, 1]) Continuous functions taking values ∈ [0, 1].
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Chapter 1

Introduction

People often attribute the start of analytic number theory to Peter Gustav Lejeune

Dirichlet who, in 1837, introduced the world to studying primes in arithmetic pro-

gressions [22]. Analytic number theory looks into the multiplicative and additive

structure of integers, referred to as multiplicative and additive number theory respec-

tively. In this thesis we will firmly focus on the former, specifically one of Dirichlet’s

main contributions to multiplicative number theory: Dirichlet characters.

A function f : N → C is multiplicative if f(a · b) = f(a) · f(b) when a, b are co-

prime, and is called completely multiplicative if f(a · b) = f(a) · f(b) for all integers

a, b. As a result, due to the fundamental theorem of arithmetic [51], multiplica-

tive functions are completely determined by their values at the prime powers, and

completely multiplicative functions depend only on the prime numbers. Since they

interact so well with the factorisation of integers, multiplicative functions are a good

tool for studying multiplicative structures.

Multiplicative functions have been rigorously studied by mathematicians over the

past couple of hundred years, notably Dirichlet, who defined Dirichlet characters in

the early 1800s [26]. Dirichlet characters are group characters on (Z/qZ)∗, and are

often extended to the following definition.

Definition 1.0.1. A Dirichlet Character modulo q is a function χ : Z → C×

where
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• χ(mn) = χ(m)χ(n) for all m,n ∈ Z,

• χ(n+ q) = χ(n) for all n ∈ Z,

• χ(n) = 0 for gcd(n, q) > 1.

They always have size 1, unless at a factor of the period, and there are ϕ(q)

Dirichlet characters for every modulus q. These characters were first introduced as

a way to study primes in arithmetic progressions [27]. This is due to orthogonality

relations that Dirichlet characters satisfy:

∑
n mod q

χ(n) =


ϕ(q) ;χ = χ0,

0 ; otherwise.

∑
χ mod q

χ(n) =


ϕ(q) ;n ≡ 1 (q),

0 ; otherwise.

(1.1)

Here χ0 is the principal character modulo q1. This is especially useful for detecting

congruence conditions; as a result, Dirichlet characters appear in many analytic

number theory proofs.

It is also convenient to call characters odd or even, depending on whether χ(−1)

equals −1 or 1 respectively. A Dirichlet character is primitive if it generates every

value e(j/q)(= e2πij/q) for j ∈ [1, q]. For prime moduli, which is the only case we

are considering in the thesis, every non-principal character is primitive.

There exists a class of real Dirichlet characters that only take values {0,±1},

with at least one −1 value. These are also known as quadratic characters as they

have order 2, and for prime modulus such a character is given by the Legendre

symbol
( ·
q

)
[62].

1The principal character modulo q is χ0(n) = 1 for all (n, q) = 1, and vanishes otherwise.

2



Let us consider all non principal Dirichlet characters modulo q, that is χ(n)

is not 1 for all (n, q) = 1. All values are multiplicative and distributed on the

unit circle, meaning the total sum
∑q

n=1 χ(n) vanishes. To show
∑

n≤q χ(n) = 0,

and subsequently proving Equation (1.1), take a ∈ Z such that gcd(a, q) = 1 and

χ(a) ̸= 1. Using the periodicity of characters, we can rearrange the order of the

sum. Therefore, noting that n 7→ a · n is a bijection on Z/qZ,

q∑
n=1

χ(n) =

q∑
n=1

χ(a · n).

Dirichlet characters are completely multiplicative, meaning we can separate χ(a ·n)

to χ(a) multiplied by χ(n). As a result,

q∑
n=1

χ(n) = χ(a)

q∑
n=1

χ(n).

Since χ(a) ̸= 1, the total sum
∑q

n=1 χ(n) must equal 0.

However, what happens to the partial sums, and how large can the partial sum

get before returning to 0? My research has centred on these partial sums of Dirich-

let characters with prime moduli, analysing how they relate to other multiplicative

functions. Character sums play a fundamental role in analytic number theory, and

I have investigated the distribution of the sums, as well as properties of the distri-

bution as the modulus tends to infinity.

For this thesis, we treat partial character sums as functions in t:

Definition 1.0.2. Let χ be a Dirichlet character with modulus q. For t ∈ [0, 1], let

3



Sχ(t) be the normalised partial character sum

Sχ(t) :=
1
√
q

∑
n≤qt

χ(n).

Partial character sums are 1-periodic in t, so we can also view Sχ(t) as a Fourier

series. We have

Sχ(t) =
τ(χ)

2πi
√
q

∑
k ̸=0

χ(k)

k
(1− e(−kt)), (1.2)

where τ(χ) is the Gauss sum

τ(χ) =

q∑
a=1

χ(a)e(a/q).

Note this is only valid where t is not a discontinuity of the function, so when qt

is not an integer value. This is a standard result, also known as Pólya’s Fourier

expansion [22, Chapter 23]. The proof of this is shown in Appendix A. Additionally,

for primitive characters the absolute value of τ(χ) is
√
q, hence the normalising

factor of 1/
√
q in our definition of Sχ(t).

There has been a lot of interest in the maxima of partial character sums. Since

Dirichlet characters χ(n) vanish when the modulus q shares a prime factor with n,

and are of size 1 otherwise2, we have the trivial bound [54, Chaper VIII, Section 1]

max
t∈[0,1]

|Sχ(t)| ≤
ϕ(q)
√
q
.

For prime q, ϕ(q) = q − 1, giving an upper bound of approximately
√
q. This has

2For this thesis we are only considering prime moduli. As a result, χ(n) vanishes only when
the modulus divides n. As a result, for very large conductors, characters are of size 1 almost
everywhere.
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been significantly improved, and notably the estimates hold as q gets large. In 1918,

Pólya and Vinogradov independently found the Pólya-Vinogradov bound [73,85]

max
t∈[0,1]

|Sχ(t)| ≪ log q.

The implicit constant has been improved since [13,35,45], with the sharpest constant

[60,74]:

|Sχ(t)| ≤


(

2

π2
+ o(1)

)
log q ; χ(−1) = 1,(

1

π2
+ o(1)

)
log q ; χ(−1) = −1.

When q belongs to certain structured subsequences of integers, the Pólya-Vinogradov

inequality can be improved. For instance, Goldmakher [31, 32] showed that if q is

smooth3 then |Sχ(t)| = o(log q). In the late 1970s, assuming the Generalised Rie-

mann Hypothesis (GRH)4, Montgomery and Vaughan [65] discovered

|Sχ(t)| ≪ log log q. (1.3)

The implied constant has since been improved by various mathematicians, but most

notably by Granville and Soundararajan [35] in 2007. This is also the best result

possible5, as proven in 1932 by Paley [69].

Theorem 1.0.1. [67, Theorem 9.24] Let χd be a real Dirichlet character modulo d.

3More specifically,
∏

p|q p ≤ exp
(
(log q)3/4

)
.

4The Generalised Riemann Hypothesis states that for s ∈ C and s ̸∈ R<0, L(χ, s) = 0 only if
Re(s) = 1/2. For χ = 1, this is the Riemann hypothesis.

5This is the best result uniformly over all characters. For fixed odd order characters, the upper
bound can be improved on GRH, with a nearly matching unconditional lower bound [35].
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There exists a positive constant c such that

max
M,N

∣∣∣∣∣ 1√
d

M+N∑
n=M+1

χd(n)

∣∣∣∣∣ > c log log d

for infinitely many d6.

A stronger form of Paley’s result was proven by Bateman and Chowla [4]. This

result was then extended to odd complex characters by Granville and Soundararajan

[35].

Theorem 1.0.2. [35, Theorem 3] Let q be a large prime and C ≥ 0. There exists

an absolute constant C0 such that for at least q1−C0/(log log q)2 characters χ modulo q,

with χ(−1) = −1, we have

1
√
q

∑
n≤x

χ(n) = C log log q +O(
√

log log q)

for all but o(q) natural numbers x ≤ q.

Combining the two theorems, the conditional bound in Equation (1.3) is opti-

mal7, as

max
t∈[0,1]

|Sχ(t)| ≫ log log q.

Additionally, we can consider short character sums with prime conductor and

6Here d is a positive quadratic discriminant, which is defined in Definition 4.2.1 and used in
Chapter 4

7Additionally, Lamzouri [58] found the optimal implicit constant for even order characters. For
more information, see [59].
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how it exhibits cancellation as a function of t. Burgess [16] proved

|Sχ(t)| ≪ t1/2q3/16 log q,

for small values of t, specifically t < q−3/8. Note the bound is trivial if you take

t ≤ q−3/4 [43]. The result has been subsequently slightly improved by Hildebrand

[44]. Assuming the Generalised Riemann Hypothesis, Granville and Soundararajan

[34] proved that, if x≪ q1/2+o(1) and log x/ log log q → ∞ as q → ∞,

∣∣∣∣∣∑
n≤x

χ(n)

∣∣∣∣∣ = o(x).

This is the best possible result, as for any given A > 0 and prime q, there exists a

non principal character such that

∣∣∣∣∣∑
n≤x

χ(n)

∣∣∣∣∣≫A x,

for x = logA q [34, Corollary A].

These results are about the maximum for all Dirichlet characters of a certain

modulus. If we instead considered the average maximum of character sums, the

result is significantly smaller.

Theorem 1.0.3. [66, Theorem 1] For any real k > 0,

1

ϕ(q)

∑
χ ̸=χ0

max
N

∣∣∣∣∣ 1
√
q

N∑
n=1

χ(n)

∣∣∣∣∣
2k

≪k 1,

where the summation is over all non-principal characters modulo q.

In other words, for all ε > 0, (100−ε)% of Dirichlet characters satisfy |Sχ(t)| ≪ε

7



1. This leads naturally to the following questions: how often is the maximum of

Sχ(t) large? What are the properties of the characters where the maximum of Sχ(t)

is large? What is the distribution of the character sums, not just their absolute

value? What happens as the modulus goes to infinity? Additionally, Paley showed

there is an infinite class of quadratic characters which are large, so what happens

if we restrict our distribution to real character sums? The aim of this thesis is to

answer these questions.

1.1 Summary of the Chapters

In this thesis, we investigate the distribution of character sums
∑
χ(n). In Chapter

2, we consider the sequence of distributions of all character sums over prime moduli,

and find the limiting distribution as the modulus tends to infinity. Then, in Chapter

3, we investigate properties of the limiting distribution, such as the support of the

law8 of the random process used. Next, in Chapter 4, we focus on quadratic char-

acters, of which there is only one for every odd prime conductor q. We investigate

the sequence of real character sums with moduli q ∈ [Q, 2Q] for some large Q, and

find the limiting distribution as Q → ∞. In both cases, the limiting distribution is

an almost surely continuous random process. These random processes are defined

in Sections 4.1 and 4.1.

However the character sum Sχ(t) is a step function, with jump discontinuities at

every t ∈ 1
q
Z. In order to circumvent the difficulties posed by these discontinuities,

it is natural to consider a continuous modification, where the steps are replaced by

straight line interpolations.

8A set C ⊂ C([0, 1]) is the support of the law of F if C is the intersection of all closed sets
K ⊂ C([0, 1]) such that P(F ∈ K) = 1.

8



Definition 1.1.1. Character paths are paths in the complex plane formed by

drawing a straight line between the successive partial sums

Sχ(x) =
1√
q

∑
n≤qx χ(n), Sχ(x+ 1/q) = 1√

q

∑
n≤qx+1 χ(n),

for x ∈ [0, 1) and qx ∈ Z. We parameterise character paths by the function

fχ(t) := Sχ(t) +
{qt}
√
q
χ (⌈qt⌉) ,

where {x} is the fractional part of the number x.

Note the difference between any character sum Sχ(t) and character path fχ(t) is

bounded by 1√
q
. Character paths inherit many properties of character sums, most

notably periodicity. As such, we can approximate fχ(t) as a truncated Fourier series,

also shown in Appendix A. Using character paths, we will define a distribution taking

values in the Banach space9 C([0, 1]).

The limiting distributions in Chapters 2 and 4 are formulated on Fourier se-

ries with random multiplicative functions10 as the Fourier coefficients. Paley and

Zygmund introduced random Fourier series in the 1930’s [70–72]. Random mul-

tiplicative functions were first introduced by Wintner [87] in 1944 as a model for

the Möbius function µ(n). Since then, they have been used as a model for Dirich-

let characters. The sums of random multiplicative functions have a long history.

See [12,37–39,41,42] for examples of recent work.

9A Banach space is a complete normed space. This is a vector space over a scalar field with
a distinguished norm.

10The two random multiplicative functions used are defined in Definitions 2.1.2 and 4.1.2 re-
spectively.

9



1.1.1 Summary of Chapter 2 and 3

When investigating the maximum of character sums, Bober, Goldmakher, Granville

and Koukoulopoulos [9] studied the distribution function for τ > 0,

Φq(τ) :=
1

ϕ(q)
#

{
χ mod q : max

t
|Sχ(t)| >

eγ

π
τ, q prime

}
,

where γ is the Euler-Mascheroni constant. The limiting distribution of Φq is

Φ(τ) := P
(
max

t
|F (t)| > 2eγτ

)
,

where F (t) is a random Fourier series11 properly defined later in the thesis (Equation

(2.3)). In Chapter 2, we investigate the distribution of character sums, not just their

maxima, and find the limiting distribution as the modulus goes to infinity through

the primes. We split the characters sums depending on if they’re odd or even. We

find the limiting distribution is, unsurprisingly, the same Fourier series F (t), albeit

also split by parity.

Theorem 1.1.1 (see Theorem 2.1.1). Let (Fq,±(t))q be the sequence of the distri-

butions of character paths12

Fq,±(t) := {fχ(t) : χ mod q, χ(−1) = ±1}.

The sequence weakly converges to the random process13 F±(t) in the Banach space

C([0, 1]) as q tends to infinity through the primes.

11The random series uses Steinhaus random multiplicative functions.
12The distribution Fq,±(t) will be further explained in Chapter 2.
13This is the same random process as in Bober, Goldmakher, Granville, and Koukoulopoulos’

work [9], and is further explained in Chapter 2.
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In other words, for any continuous and bounded map

ψ : C([0, 1]) → C,

we have, for prime q,

lim
q→∞

E (ψ (Fq,±)) = E (ψ(F±)) .

This answers an open problem set by Kowalski and Sawin [56, Section 5.2], where

they consider the limiting distribution of ‘Kloosterman Paths’. This chapter is taken

from the author’s paper ‘The Limiting Distribution of Character Sums’ [48].

In Chapter 3, we investigate properties of the random process F (t). In finding

the support of the law of F (t), we uncover interesting connections on the behaviour

of character sums.

Proposition 1.1.2. Let g be in the support of the law of the random process F over

C([0, 1]). For any ε > 0,

lim inf
q→∞

1

ϕ(q)

∣∣∣∣∣
{
χ mod q : sup

t∈[0,1]

∣∣∣∣ 1
√
q

∑
n≤qt

χ(n)− g(t)

∣∣∣∣ < ε

}∣∣∣∣∣ > 0.

Section 3.3 looks at some examples of functions in the support, and by the

proposition we know there are ε-close character sums.

1.1.2 Summary of Chapter 4

In Chapter 2, we investigate the behaviour of complex character sums. We have

a sequence of distributions of all character sums over prime moduli, and find the

limiting distribution of the corresponding character paths as the modulus tends to

11



infinity.

For every prime modulus q, there is only one (non-trivial) real character, other-

wise known as the Legendre symbol
( ·
q

)
. Legendre symbols are used a lot in Number

Theory, and results about their sums are connected with various open problems, such

as Vinogradov’s quadratic non residue conjecture (see e.g. [33]).

We can apply the Pólya-Vinogradov inequality to sums of Legendre symbols,

and more generally Jacobi symbols14 [20]. Let X ∈ N. Then, representing square

numbers as □,

∑
m≤X
m odd

(
m

n

)
=


X

2

ϕ(n)

n
+O(Xε) ; if n = □,

O(
√
n log n) ; if n ̸= □,

and

∑
n≤X
n odd

(
m

n

)
=


X

2

ϕ(m)

m
+O(Xε) ; if m = □,

O(
√
m logm) ; if m ̸= □.

For complex character sums modulo q, we know the majority of character sums

1√
q

∑
χ(n) are bounded by 1, proved by Montgomery and Vaughan [66] and shown

in Theorem 1.0.3. Montgomery and Vaughan also showed an analogous theorem for

quadratic character sums:

Theorem 1.1.3. [66, Theorem 2] For any k > 0,

1

π(Q)

∑
2<q≤Q
q prime

max
N

∣∣∣∣∣ 1
√
q

N∑
n=1

(
n

q

)∣∣∣∣∣
2k

≪k 1.

14Jacobi symbols
(
m
n

)
are the product of Legendre symbols

(
m
pi

)ai
, where n is odd and n =

∏
pai
i .
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Therefore, we would naturally guess that an analogous distribution of quadratic

character sums, as was in [48], has a similiar limiting distribution.

In Chapter 4, we investigate the distribution of real quadratic character sums

for the modulus q in a dyadic interval. The results of this chapter rely on the

Generalised Riemann Hypothesis, the conjecture that all non-trivial zeroes of L(s, χ)

lie on the critical line, where Re(s) = 1/2. The main result follows the same format

as Theorem 1.1.1.

Theorem 1.1.4 (see Theorem 4.1.1). Let (GQ,±(t))q be the sequence of the distri-

butions of character paths15

GQ,±(t) := {fχ(t) : q ∈ [Q, 2Q], χ mod q ∈ R, χ(−1) = ±1} .

Assuming the Generalised Riemann Hypothesis, the sequence weakly converges to the

random process16 G±(t) in the Banach space C([0, 1]) as Q tends to infinity through

the primes.

In other words, for any continuous and bounded map

ψ : C([0, 1]) → C,

we have

lim
Q→∞

E (ψ (GQ,±)) = E (ψ(G±)) .

For future work, the GRH assumption will hopefully be removed.

15The distribution Gq,±(t) will be further explained in Chapter 4.
16The random process uses Rademacher random multiplicative functions and is further explained

in Chapter 4.
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Chapter 2

The Distribution of Character Sums

2.1 Introduction

Given a primitive Dirichlet character χ modulo q, we define the normalised partial

character sum

Sχ(t) :=
1
√
q

∑
n≤qt

χ(n),

for t ∈ [0, 1]. Such character sums play a fundamental role in analytic number

theory. Our goal is to study the distribution of character sums for prime modulus

q, and find the limiting distribution as q → ∞, answering the open problem set by

Kowalski and Sawin [56, Section 5.2].

Bober, Goldmakher, Granville and Koukoulopoulos [9] investigated the maxi-

mum of these character sums. Taking τ > 0, they studied the distribution function,

Φq(τ) :=
1

ϕ(q)
#

{
χ mod q : max

t
|Sχ(t)| >

eγ

π
τ

}
. (2.1)

The limiting distribution of Φq is

Φ(τ) := P
(
max

t
|F (t)| > 2eγτ

)
,

14



where F (t) is a random Fourier series defined later in this chapter [9, Theorem 1.4].

We find, through different methods, that the limiting distribution of character sums,

not just their maxima, uses the same random series. Our main theorem can also be

used to recover their result.

Recall Definition 1.1.1, continuous character paths modulo q.

Definition 2.1.1. Character paths are paths in the complex plane formed by

drawing a straight line between the successive partial sums. We parameterise char-

acter paths by the function

fχ(t) := Sχ(t) +
{qt}
√
q
χ (⌈qt⌉) ,

where {x} is the fractional part of the number x.

Character paths, like character sums, are periodic and have the truncated Fourier

series1

τ(χ)

2πi
√
q

∑
0<|k|<q

χ(k)

k
(1− e(−kt)) +O

(
log q
√
q

)
. (2.2)

See Appendix A for further details. Character paths are polygonal, continuous and

closed. Examples of character paths on the complex plane can be seen in Figure

2.1.

We define the distribution of character paths by mapping a character χ mod q

to fχ(t) as a random process, choosing χ uniformly at random. Let us write Fq for

1Note the difference between character sums and character paths is bounded by 1√
q , so error

from the truncated Fourier series of Sχ(t) encapsulates the difference.
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Odd path defined by χ(5) = e
(

1
10007

)
. Even path defined by χ(5) = e

(
2

10007

)
.

Figure 2.1: Character paths of an odd and even character modulo 10007.

this random process,

Fq(t) := {fχ(t) : χ mod q}.

We also further define Fq,±(t) by fixing χ(−1) as +1 or −1 respectively, so distri-

butions of character paths are dependent on the character’s parity.

One of the main goals of this chapter is to find the limiting distribution of the

sequence (Fq)q as q → ∞ through the primes. For this, we need to define Steinhaus

random multiplicative functions.

Definition 2.1.2. We define,

1. Steinhaus random variables Xp to be random variables uniformly dis-

tributed on the unit circle {|z| = 1}.

16



2. Steinhaus random multiplicative functions Xn, n ∈ N, to be

Xn =
∏
pa∥n

Xa
p ,

where Xp are Steinhaus random variables for prime p. We extend this defi-

nition to n ∈ Z by taking X−1 = ±1 with probability 1/2 each, so X−|n| =

X−1X|n|. (Here p
a∥n means pa strictly divides n, so pa | n but pa+1 ̸ |n). Note

these random variables live on the same ambient probability space.

Steinhaus random multiplicative functions are completely multiplicative2, with

all values distributed on the unit circle. This leads to a natural question: can we

compare partial sums of characters with partial sums of Steinhaus random multi-

plicative functions, assuming similar behaviour? Sums of Steinhaus random multi-

plicative functions might be a good model for short character sums, but the period-

icity of the characters means that for long character sums the model fails. This can

be shown by considering moments of
∑
Xn and

∑
χ(n) [9]. For sums of Steinhaus

random multiplicative functions,

E

∣∣∣∣∣∑
n≤qt

Xn

∣∣∣∣∣
2
 ∼ qt.

However, for character sums the periodicity means

1

ϕ(q)

∑
χ ̸=χ0 mod q

∣∣∣∣∣∑
n≤qt

χ(n)

∣∣∣∣∣
2

∼ qt(1− t).

Consequently, we must find a way to incorporate the periodicity from the char-

2Strictly speaking, for each x ∈ X, the ambient probability space, n 7→ Xn(x) is completely
multiplicative.
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A sample of F−(t). A sample of F+(t).

Figure 2.2: Samples of F± with 10007 terms.

acter sums. Let F (t) be the random Fourier series

F (t) :=
η

2π

∑
|k|>0

Xk

k
(1− e(kt)), (2.3)

where Xk are Steinhaus random multiplicative functions for k ̸= 0 and η is a random

variable uniformly distributed on the unit circle. Additionally, take F±(t) where we

fix X−1 as +1 or −1. The infinite series is almost surely well defined, and we show

in Section 2.2 that this is almost surely the Fourier series of a continuous function.

Therefore we can think of F as a random process on C([0, 1]). Examples of the

paths formed by F± are shown in Figure 2.2.

Using the random Fourier series F , we state the main theorem of the chapter:

Theorem 2.1.1. Let F± be defined as above for t ∈ [0, 1]. The sequence of the

distributions of character paths (Fq,±(t))q weakly converges to the process F±(t) in

the Banach space C([0, 1]) as q → ∞ through the primes. In other words, for any

continuous and bounded map

ψ : C([0, 1]) → C,
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we have, for prime q,

lim
q→∞

E (ψ (Fq,±)) = E (ψ(F±)) .

2.1.1 Proof Outline

Theorem 2.1.1 shows that Steinhaus random multiplicative functions can be used

as Fourier coefficients of a random process F to find the limiting distribution of

character paths. In Section 2.2 we properly define the random process F and prove

some of its properties. Theorem 2.1.1 only makes sense if F (t) is a function almost

surely in C([0, 1]), which is proven in Theorem 2.2.3.

The proof of Theorem 2.1.1 can be split into two parts: proving that the sequence

(Fq,±(t))q converges in finite distributions to the random process F±(t) and that the

sequence of distributions is relatively compact. Convergence of finite distributions is

proved in Section 2.3, using the method of moments. To prove relative compactness,

it is sufficient to use Prohorov’s Theorem [7, Theorem 5.1], which states that if a

family of probability measures is tight, then it must be relatively compact. Section

2.4 proves the sequence of distributions (Fq,±(t))q satisfies the tightness property,

therefore proving Theorem 2.1.1.

Remark 2.1.1. As referred to earlier, Bober, Goldmakher, Granville and Kouk-

oulopoulos [9] investigated the distribution function Φq(τ), defined in Equation (2.1).

They proved (Φq,±(τ)) converges weakly to

Prob
(
max

t
|F±(t)| > 2eγτ

)
,

as q tends to infinity through the primes. Theorem 2.1.1 can be used to obtain the
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same result.

Remark 2.1.2. The definition of character paths is motivated by similar research

by Kowalski and Sawin [56, 57]. In their papers they define ‘Kloosterman paths‘

Kp(t), view the paths as random variables, and find their limiting distribution as

p→ ∞. This chapter, based on my paper [48], continues in this vein to investigate

the analogous limiting distribution of character paths. Due to the multiplicativity of

Dirichlet characters, our random multiplicative coefficients Xn are not independent.

This leads to interesting properties shown in Section 2.2.

Remark 2.1.3. Theorem 2.1.1 is restricted to q being prime, so a natural question is

to consider composite q as well. Steinhaus random multiplicative functions are non-

zero so we need a high percentage of primitive characters modulo q. If we take q as

not being ‘too smooth’ we might be able to relax this condition, as the contribution

from imprimitive characters could potentially be included in the error terms already

produced from the method. Future work could explore the generalised case when

the modulus of the characters is not prime.

2.2 Properties of F (t)

Recall the random process F , defined by the infinite sum

F (t) =
η

2π

∑
n̸=0

1− e(nt)

n
Xn,

where Xn are Steinhaus random multiplicative functions, defined in Definition 2.1.2,

and η is a random variable uniformly distributed on the unit circle. We define the
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infinite sum as a limit of the smooth sum3

η

2π

∑
n̸=0

P+(|n|)≤y

1− e(nt)

n
Xn,

as y → ∞. In this section we deal with samples of the random process and prove

some of their properties. We will be using sample functions of the random process,

which we define here for ease of notation.

Definition 2.2.1. Let G be defined as the function

G(t) :=
c

2π

∑
n̸=0

1− e(nt)

n
αn,

where c is a sample of a Steinhaus random variable and αn is a sample of a Steinhaus

random multiplicative function. We say G is a sample function4 of the random

process F .

The Fourier coefficients are bounded by O(1/n). This will be useful later in the

section, where we show the infinite series F can also be defined as the limit of partial

symmetric sums.

Our main result of Section 2.2 proves that any sample function of F is almost

surely continuous. This is non trivial and involves considering the y-smooth and

‘y-rough’ parts of the infinite sum G(t).

3Here P+(|n|) denotes the largest prime factor of |n|.
4A sample space is a collection of all possible experimental outcomes. Therefore, a sample

point/function corresponds to all possible outcomes of the experiment [55].
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Let

Sy :=
∑
n̸=0

P+(|n|)≤y

1− e(nt)

n
αn and Ry :=

∑
n̸=0

P+(|n|)>y

1− e(nt)

n
αn.

Note that Sy + Ry = π
c
G(t) and the two functions are not independent. We will

show that the rough part Ry is almost surely 0 as y tends to infinity.

Lemma 2.2.1. For all ε > 0 and sufficiently large y > 1,

P (∥Ry∥∞ > ε) ≪ exp

{
−ε2y1/3

log y(log y +O(1))2

(
log

(
(log y)20

log y +O(1)

)
+O (| log ε|)

)}

independently of Sy, where ∥ · ∥∞ := maxt∈[0,1] | · |. Notably for all ε > 0, we have

P (∥Ry∥∞ > ε) → 0 as y → ∞.

Proof. For all y ≥ 1,

∑
n≥1

P+(n)>y

1− e(nt)

n
αn =

∑
n≥1

P+(n)≤y

αn

n

∑
m>y

P−(m)>y

1− e(mnt)

m
αm,

where P−(m) is the smallest prime factor of m. By setting

Ty(α) := max
t∈[0,1]

∣∣∣∣∣∣∣∣
∑
m>y

P−(m)>y

1− e(mt)

m
αm

∣∣∣∣∣∣∣∣ ,
we have

∥Ry∥∞ := max
t∈[0,1]

∣∣∣∣∣∣∣∣
∑
n̸=0

P+(n)>y

1− e(nt)

n
αn

∣∣∣∣∣∣∣∣ ≤ 2
∑
n≥1

P+(n)≤y

Ty(α)

n
.
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We then use the following result for smooth sums (see e.g. [46], [67, Theorem 2.7]),

∑
P+(n)≤y

1

n
= eγ log y +O(1).

Consequently, ∥Ry∥∞ is bounded above by

∥Ry∥∞ ≤ 2Ty(α) (e
γ log y +O(1)) .

Adapting [9, Proposition 5.2] for Steinhaus random multiplicative functions5, for

k ≥ 3 and y ≥ k3, we obtain

E


 ∑

m>y
P−(m)>y

1− e(mt)

m
αm


2k≪ 1

(log y)40k
.

We set ρy as the probability Ty(α) > ε(y) > 1/(log y)20) and

k =

⌊
ε(y)2y1/3

log y

⌋
.

Therefore,

ρy ≤
E(Ty(α)2k)
ε(y)2k

≪ ε(y)−2k

(log y)40k
≤
(
ε(y)−1

(log y)20

) 2ε(y)2y1/3

log y

.

5We take q → ∞ and apply a sample of a Steinhaus random multiplicative function αn instead
of χ(n).
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Taking ε(y) = ε
2eγ log y+O(1)

for ε > 0,

P (∥Ry∥∞ > ε) ≤ P
(
Ty(α) >

ε

2eγ log y +O(1)

)
≪
(
2eγ log y +O(1)

ε(log y)20

) 2ε2y1/3

log y(2eγ log y+O(1))2

≪ exp

(
−ε2y1/3

log y(log y +O(1))2

(
log

(
(log y)20

log y +O(1)

)
+ log (O(ε))

))
.

To prove the final part of the lemma, we take y → ∞ to show the probability

tends to 0,

0 ≤ P (∥Ry∥∞ > ε) ≪ lim
y→∞

exp

(
−ε2y1/3

log y(log y +O(1))2

(
log

(
(log y)20

log y +O(1)

)
+O (log ε)

))
= 0.

Lemma 2.2.1 can be appreciated more by taking ε = 1/ log y, leading to the

following example.

Example 2.2.2. For sufficiently large y > 1, there exists a constant C > 0 such

that

P
(
∥Ry∥∞ >

1

log y

)
≪ exp

{
−y1/3

(log y)5
(C log log y)

}
.

This is independent of Sy.

Subsequently, defining F as the limit of its smooth parts, we get the following

theorem.

Theorem 2.2.3. Let F be the random Fourier series

F (t) := lim
y→∞

η

2π

∑
n̸=0

P+(|n|)≤y

1− e(nt)

n
Xn,

24



where Xn are Steinhaus random multiplicative functions and η is a random variable

uniformly distributed on {|z| = 1}. With probability 1 this is the Fourier series of a

continuous function.

Proof. We will prove this theorem by showing any sample of the random process F

is almost surely continuous.

Consider the sequence of functions (Sy)y and (Ry)y defined by

Sy(t) :=
c

2π

∑
n ̸=0

P+(|n|)≤y

1− e(nt)

n
αn,

Ry(t) :=
c

2π

∑
n ̸=0

P+(|n|)>y

1− e(nt)

n
αn,

where c, αn are on the unit circle and the sequence {αn} is completely multiplicative.

Note that samples of the random process F can be written as Sy(t) + Ry(t) for

appropriate choices of αn and c.

The function Sy is the y−smooth part of a sample of the random process F ,

which we call G(t). The sum Sy converges absolutely, so Sy(t) is a continuous

function (see e.g. [82]).

To prove continuity with probability 1, we use the first Borel-Cantelli Lemma

[14, 17] to show the y−rough part of G vanishes as y → ∞. Consider the sequence

{Ry : ∥Ry∥∞ > 1/ log y}y, where ∥Ry∥∞ is the maximum of the y−rough part of G.

Using Example 2.2.2,

∞∑
y=1

P(∥Ry∥∞ > 1/ log y)

≪
∞∑
y=1

exp

{
−y1/3

(log y)3(log y +O(1))2

(
log

(
(log y)20

log y +O(1)

)
+O (log log y)

)}
<∞.
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As a result, the probability of ∥Ry∥∞ > ε occuring infinitely often is zero. Conse-

quently, Ry, the rough part of the sample of F , vanishes almost surely as y → ∞.

As a result, the sequence of continuous functions (Sy) uniformly converges to its

limit, which by the Uniform Limit Theorem [68, Chapter 2] must be continuous. By

uniform convergence we can compute the Fourier expansion, which recovers exactly

what we expect. We defined F as the limit of its smooth parts, so therefore any

samples of F are almost surely continuous.

At the start of this section, we defined F (t) as the limit as y → ∞ of the smooth

sum

η

2π

∑
n̸=0

P+(|n|)≤y

1− e(nt)

n
Xn.

Since the Fourier coefficients are bounded by O(1/n) and F is almost surely a Fourier

series of a continuous function, all finite Fourier sums converge to F uniformly [47].

Consequently, we can also define the process F as the limit as N → ∞ of the partial

symmetrical sums

η

2π

∑
|n|≤N

1− e(nt)

n
Xn.

Therefore for the rest of the chapter we can interchangeably use either definition for

the infinite series F (t).
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2.3 Convergence of Finite-Dimensional Distribu-

tions of Fq

In order to prove Theorem 2.1.1, we will first show convergence of finite-dimensional

distributions. We take (Fq,±(t))q prime as the sequence of distributions of character

paths modulo q dependent on the parity of the characters. We split the distribution

as odd and even character paths have different behaviour, due to the constant term

vanishing when χ is even. As such, we also want two limiting distributions, for Fq,+

and Fq,− respectively. Let F±(t) be random processes defined by

F+(t) :=
η

π

∑
k≥1

Xk

k
sin(2πkt), and F−(t) :=

η

π

∑
k≥1

Xk

k
(1− cos(2πkt)),

where Xn are Steinhaus random multiplicative functions, defined in Definition 2.1.2,

and η is uniformly distributed on the unit circle.

Theorem 2.3.1. Let q be an odd prime. The sequence of the distributions of

character paths (Fq,±(t))q converges to the process F±(t) in the sense of conver-

gence of finite distributions. In other words, for every n ≥ 1 and for every n-tuple

0 ≤ t1 < · · · < tn ≤ 1, the vectors

(Fq,±(t1), . . . ,Fq,±(tn))

converge in law as q tends to infinity through the primes to

(F±(t1), . . . , F±(tn)) .

We prove this by the method of moments. We will define a moment Mq, of our
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distribution Fq and a moment M for the random process F . In Section 2.3.3, we

prove M is determinate6. Subsequently, in Section 2.3.4, we prove this sequence of

momentsMq converges to M , the moment of F . This is sufficient to prove Theorem

2.3.1.

We are considering odd and even character paths separately. In this proof we

will focus on results for odd character paths as the proof is analogous for the even

character case. Where this is not the case, any changes will be addressed throughout

the section.

2.3.1 Definitions of the Moments

The Fourier series of the character path is

fχ(t) =
τ(χ)

2πi
√
q

∑
0<|k|<q

χ(k)

k
(1− e(−kt)) +O

(
log q
√
q

)
.

This results from truncating the Fourier series of the character sum Sχ(t) and the

trivial inequality |fχ(t) − Sχ(t)| ≤ 1√
q
. The paths of odd and even characters

are shown to differ greatly, exemplified in Figure 2.1, due to the constant term

τ(χ)
2πi

√
q

∑
χ(k)/k vanishing when χ is even. As such, this chapter will assess distribu-

tions of these character paths modulo odd prime q separately, dependent on parity.

As a Fourier series we split this into

fχ(t) =


−τ(χ)
π
√
q

q∑
k=1

χ(k)

k
sin(2πkt) +O

(
log q
√
q

)
; if χ even,

τ(χ)

πi
√
q

q∑
k=1

χ(k)

k
(1− cos(2πkt)) +O

(
log q
√
q

)
; if χ odd.

6Determinacy is defined in Section 2.3.3
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We define our moments Mq and M . In this section we will assume χ is odd as

the proof is analogous to the even case. Therefore, taking a function from the odd

distribution Fq,−, we will take the character path modulo q as

fχ(t) =
τ(χ)

πi
√
q

∑
1≤n≤q

χ(n)

n
(1− cos(2πnt)) +O

(
log q
√
q

)
.

We will also be considering the odd random series

F−(t) =
η

π

∑
n≥1

Xn

n
(1− cos(2πnt)),

which for ease of notation will be referred to as F (t) for the rest of this section.

Definition 2.3.1. Let k ≥ 1 be given and t = (t1, . . . , tk), where 0 ≤ t1 < · · · <

tk ≤ 1, be fixed. Additionally fix n = (n1, . . . , nk) and m = (m1, . . . ,mk), where

ni,mi ∈ Z≥0. We define the moment sequence Mq(n,m) as

Mq(n,m) =
2

ϕ(q)

∑
χ odd

k∏
i=1

fχ(ti)
nifχ(ti)

mi
,

and the moment M(n,m) as

M(n,m) = E

(
k∏

i=1

F (ti)
niF (ti)

mi

)
.

The momentM(n,m) is well defined. To show this we prove the equivalent result

that E(|F (t)|n) is bounded for all n. By Fubini’s theorem (e.g. [25, III, Theorem

14.1]),

E (|F (t)|n) =
ˆ ∞

0

nxn−1P (|F (t)| > x) dx.
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We then use a result by Bober, Goldmakher, Granville and Koukoulopoulos [9]: Let

c = e−γ log 2. For any τ ≥ 1,

P
(
max
0≤t≤1

|F (t)| > 2eγτ

)
≤ exp

{
−e

τ−c−2

τ

(
1 +O

(
log τ

τ

))}
.

Therefore, combining both equations, the moment is finite and well defined. F (t) is

a random process, defined by the almost surely converging sum

F (t) =
η

π

∑
a≥1

Xa

a
(1− cos(2πat)).

As shown in Section 2.2 we can define F as the limit of the symmetric partial

sums. The infinite series F is not absolutely convergent, so justification is needed

to manipulate the product
∏k

i=1 F (ti)
niF (ti)

mi
.

We write the expansion of F (ti)
ni as

ηni

πni

∑
ai,1,...,ai,ni

≥1

ni∏
j=1

Xai,j

ai,j
(1− cos(2πai,jti)),

and F (ti)
mi

in a similar manner. Without changing the order of summation, the

product
∏k

i=1 F (ti)
niF (ti)

mi
is therefore

ηnηm

πn+m

∑
· · ·
∑ k∏

i=1

ni∏
j=1

mi∏
j′=1

Xai,jXbi,j′

ai,jbi,j′
(1− cos(2πai,jti))(1− cos(2πbi,j′ti)),

where n = |n| and m = |m| as above. The sums are over ai,j ≥ 1 and bi,j′ ≥ 1,

where j ∈ [1, ni] and j
′ ∈ [1,mi] for i ∈ [1, k].

The moment M(n,m) is the expectation of this multivariate sum. To simplify

the equation, we want to swap the order of expectation with the order of summation.
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Since the moment is finite, we use Lebesgue’s dominated convergence theorem [3,

Section 5.6] to bring the expectation inside the sum. Using the multiplicativity of

Steinhaus random multiplicative functions, the moment M therefore equals7

E
(
ηnηm

πn+m

)∑
· · ·
∑

E
(
XaXb

) k∏
i=1

ni∏
j=1

mi∏
j′=1

(1− cos(2πai,jti))(1− cos(2πbi,j′ti))

ai,jbi,j′
,

where

a :=
k∏

i=1

ni∏
j=1

ai,j and b :=
k∏

i=1

mi∏
j′=1

bi,j′ .

Steinhaus random multiplicative functions Xn are orthogonal as n can always

be written as a unique prime factorisation and E(Xp) = 0 for all primes p. In other

words,

E
(
XaXb

)
= 1a=b :=


1 ; if a = b,

0, ; otherwise.

Therefore we can rewrite the moment M =M(n,m) as follows,

M = E
(
ηnηm

πn+m

) ∞∑
l=1

∑
ai,j ,bi,j>0
a=b=l

1

ab

k∏
i=1

ni∏
j=1

mi∏
j′=1

(1− cos(2πai,jti))(1− cos(2πbi,j′ti)),

where a and b are the product of ai,j and bi,j′ respectively. Taking 1
ab

= 1
l2

and

bounding (1− cos(x)) ≤ 2, M is clearly bounded as a function of ni and mi. These

variables are fixed and finite, and the number of such tuples is (n+m) ≪ lε in each

case, so the moment is absolutely convergent. Therefore, we can swap the order of

7Note the moment will be different for F+, where we have sin(2πat) instead of (1− cos(2πat)).
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summation. As a result,

M(n,m) = E
(
ηnηm

πn+m

)∑
a≥1

Bn,t(a)Bm,t(a), (2.4)

where

BN,t(x) :=
∑

x1···xk=x

k∏
i=1

βNi,ti(xi) (2.5)

and

βNi,ti(xi) =
∑

y1···yNi
=xi

1

xi

Ni∏
j=1

(1− cos(2πyjti)). (2.6)

The moment Mq(n,m) can be also be rewritten using methods from Bober and

Goldmakher [8]. First, we use the Fourier expansion of fχ(t), so

fχ(ti)
nifχ(ti)

mi
=

τ(χ)niτ(χ)
mi

(π
√
q)ni+miini−mi

∑
1≤a≤qni

1≤b≤qmi

χ(a)χ(b)βni,q,ti(a)βmi,q,ti(b) +O

(
(log q + 1)ni+mi

√
q

)
,

where βN,q,t is defined as

βN,q,t(x) :=
1

x

∑
x1···xN=x

xi≤q

N∏
k=1

(1− cos(2πxkt)), (2.7)

for (x, q) = 1 and 0 otherwise8.

Continuing to expand Mq(n,m), we take a product of all fχ(ti)
nifχ(ti)

mi
for

8For even characters, βN,q,t would instead sum over the product of sin(2πxkt).
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i ∈ [1, k].Therefore,

k∏
i=1

fχ(ti)
nifχ(ti)

mi
=

τ(χ)nτ(χ)
m

(π
√
q)n+min−m

∑
1≤a≤qn

1≤b≤qm

for i∈[1,k]

χ(a)χ(b)Bn,q,t(a)Bm,q,t(b) +O

(
(log q)n+m

√
q

)
,

where

n := n1 + · · ·+ nk and m := m1 + · · ·+mk

and

BN,q,t(x) :=
∑

x1···xk=x
xi≤qNi

k∏
i=1

βNi,q,ti(xi), (2.8)

for (x, q) = 1 and 0 otherwise. Note that BN,t and βNi,ti from Equations (2.5) and

(2.6) are the limits as q → ∞ of BN,q,t and βNi,q,ti respectively. Furthermore, we

take the average of this product over all odd Dirichlet characters χ to find

Mq(n,m) =
1

(π
√
q)n+min−m

∑
1≤a≤qn

1≤b≤qm

(Bn,q,t(a)Bm,q,t(b))
2

ϕ(q)

∑
χ mod q
χ odd

χ(a)χ(b)τ(χ)nτ(χ)
m

(2.9)

+O

(
(log q)n+m

√
q

)
.

This form is more useful for future calculations and will be used to prove Mq tends

to M as q → ∞ through the primes.

33



2.3.2 Bounding the Moments

Later in the chapter we will be interested in bounding BN,q,t and BN,t. The inequality

we find is independent of q, so we can consider both bounds at the same time.

Therefore for this subsection we will work with BN,q,t.

Recall,

BN,q,t(x) =
∑

x1···xk=x
xi≤qNi

k∏
i=1

βNi,q,ti(xi),

where

βN,q,t(xi) =
∑

y1···yN=xi
yj≤q

1

xi

N∏
j=1

(1− cos(2πyjt)),

for (xi, q) = 1 and 0 otherwise. Since |1−cos(2πyjt)| ≤ 2, we always have the bound

|βN,q,t(x)| ≤
2NdN(x)

x
,

where dN(x) is the Nth divisor function9
∑

x1···xN=x 1. As a result,

BN,q,t(x) ≤
2N

x

∑
x1···xk=x
xi≤qNi

k∏
i=1

dNi
(xi),

where N =
∑
Ni = |N |. To further bound B we next use the following lemma.

Lemma 2.3.2. Let dN1(x1), dN2(x2) be the N1th and N2th divisor function of x1, x2 ∈
9For F+ and even character paths, the 2N vanishes in the bound of β as | sin(2πyjt)| ≤ 1.

However, since this bound is only included in error terms and the ni and mi terms are fixed, the
difference of the constant is irrelevant.
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N respectively. We have the relation

dN1(x1)dN2(x2) ≤ dN1+N2(x1 · x2).

Proof. We apply a combinatorial argument, where we view dN(x) as the number of

ways of choosing N positive integers that multiply to x. Therefore dN1+N2(x1 · x2)

is at least the number of ways of choosing N1 integers multiplying to x1 times the

number of ways of choosing N2 integers multiplying to x2.

Using Lemma 2.3.2, we bound BN,q,t(x) by

BN,q,t(x) ≤
2NdN(x)

x

∑
x1···xk=x
xi≤qNi

1 ≤ 2NdN(x)dk(x)

x
≤ 2NdN+k(x)

x
. (2.10)

In parts of the proof, it is sufficient to use the looser bound BN,q,t(x) ≤ 2Nxε/x,

however we will mainly apply the bound from Equation (2.10). This will be useful

in future equations. Note that this is independent of q and t, so the bounds hold

for BN,t = limq→∞ BN,q,t.

2.3.3 Proving Determinacy

Our aim is to use the method of moments to prove the distribution of character paths

modulo q converges to F (t) in the sense of finite distributions. For this we need to

show the moment M(n,m) is determinate, or in other words show the moment only

has one representing measure. To show that M is a determinate complex moment

sequence, it is sufficient to show that it satisfies

∞∑
n=1

M(n, n)−1/2n = ∞, (2.11)
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where n = (n1, . . . , nk) and n = |n| =
∑

i ni. This is also known as the Carleman

condition [78, Theorem 15.11].

Lemma 2.3.3. The moment M(n,m) satisfies Equation (2.11).

Proof. This is shown using Equation (2.4) and taking n = m. Setting n = |n| = |m|,

we have

M(n,m) =
1

π2n

∑
a≥1

Bn,t(a)
2.

We use the bound of B from Equation (2.10), taking dk(a) ≤ aεk for small εk > 0,

so

M(n, n) ≤ 22n

π2n

∑
a≥1

dn(a)
2

a2−2εk
=:

22n

π2n

∑
a≥1

dn(a)
2

a2σ
,

taking σ := 1 − εk. We can use Proposition 3.2 from Bober and Goldmakher [8],

which states for 1/2 < σ ≤ 1 that,

∞∑
a=1

dn(a)
2

a2σ
≤ exp

(
2nσ log log(2n)1/σ +

(2n)1/σ

2σ − 1
+O

(
n

2σ − 1
+

(2n)1/σ

log(3(2n)1/σ−1)

))
.

(2.12)

Here we have shown the sum
∑∞

n=1M(n, n)−1/2n has the lower bound

π

2

∞∑
n=1

exp

(
−σ log log

(
(2n)1/σ

)
− (2n)1/σ−1

2σ − 1
+O

(
1

2σ − 1
+

(2n)1/σ−1

log(3(2n)1/σ−1)

))
.

The lower bound can be rewritten as

π

2

∞∑
n=1

σσ

(log 2n)σ
exp

(
−(2n)

1−σ
σ

2σ − 1

)
exp

(
O

(
1

2σ − 1
+

(2n)1/σ−1

log(3(2n)1/σ−1)

))
.
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Tending σ = 1− εk to 1, this sum diverges10. Therefore

∞∑
n=1

M(n, n)−1/2n = ∞,

and the Carleman condition holds. As a result, the claim is proved.

2.3.4 Convergence of Moments

In this section we show the moment sequence Mq converges to the multivariate

moment of F , therefore proving Theorem 2.3.1. Separating the distribution by

parity, we have two lemmas.

Lemma 2.3.4. Let k ≥ 1 be given and 0 ≤ t1 < · · · < tk ≤ 1 be fixed. Fix

n = (n1, . . . , nk) and m = (m1, . . . ,mk), where ni,mi ∈ Z≥0. Let

Mq,−(n,m) =
2

ϕ(q)

∑
χ odd

k∏
i=1

fχ(ti)
nifχ(ti)

mi
.

Then for all ε > 0,

Mq,−(n,m) =M−(n,m) +On,m,k

(
q−1/2+ε

)
,

where

M−(n,m) = E

(
k∏

i=1

F−(ti)
niF−(ti)

mi

)
.

Importantly, Mq,−(n,m) →M−(n,m) as q → ∞ through the primes.

10This is clear by comparison test (see e.g. [28]).
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Lemma 2.3.5. Let k ≥ 1 be given and fix t, n,m as in Proposition 2.3.4. Let

Mq,+(n,m) =
2

ϕ(q)

∑
χ even

k∏
i=1

fχ(ti)
nifχ(ti)

mi
.

Then for all ε > 0,

Mq,+(n,m) =M−(n,m) +On,m,k

(
q−1/2+ε

)
,

where

M+(n,m) = E

(
k∏

i=1

F+(ti)
niF+(ti)

mi

)
.

Importantly, Mq,+(n,m) →M+(n,m) as q → ∞ through the primes.

In this section we only look at the Fq,− case, where χ is odd. There are equivalent

propositions and lemmas for the even case, where the proofs are analogous to the

proofs shown in the section. In places where the proof differs, we will state the

results for Fq,+ and how it does not largely affect the proof.

These lemmas are sufficient to prove Theorem 2.3.1, showing (Fq(t))q prime con-

verges in finite distributions to F (t). We prove Lemma 2.3.4 using a combination

of the following two propositions.

Proposition 2.3.6. Let k ≥ 1 be given and t = (t1, . . . , tk), where 0 ≤ t1 < · · · <

tk ≤ 1, be fixed. Fix n = (n1, . . . , nk) and m = (m1, . . . ,mk), where ni,mi ∈ Z≥0

and

n := n1 + n2 + · · ·+ nk = m1 + · · ·+mk.
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The moment sequence defined in Proposition 2.3.4 can be expressed as

Mq,−(n,m) =
1

π2n

∑
a≥1

Bn,t(a)Bm,t(a) +On,m,k

(
(log q)2n

√
q

)
,

where BN,t is defined as

BN,t(a) =
1

a

∑
x1···xk=a

k∏
i=1

( ∑
y1···yNi

=xi

Ni∏
j=1

(1− cos(2πyjt))

)
.

Proposition 2.3.7. Let k ≥ 1 be given and t = (t1, . . . , tk), where 0 ≤ t1 < · · · <

tk ≤ 1, be fixed. Fix n = (n1, . . . , nk) and m = (m1, . . . ,mk), where ni,mi ∈ Z≥0

and

n := n1 + n2 + · · ·+ nk = m1 + · · ·+mk.

Then

M−(n,m) =
1

π2n

∑
a≥1

Bn,t(a)Bm,t(a),

where BN,t is defined as in Proposition 2.3.6.

Before the proof of the propositions, we will use them to prove Lemma 2.3.4.

Proof of Lemma 2.3.4. Take n = n1 + n2 + · · ·+ nk and m = m1 + · · ·mk. We split

the proof into two cases: n = m and n ̸= m. The first case has already been shown

by Propositions 2.3.6 and 2.3.7:

Mq,−(n,m) =
1

π2n

∑
a≥1

Bn,t(a)Bm,t(a) +On,m,k

(
(log q)2n

√
q

)
=M−(n,m) +On,m,k

(
(log q)2n

√
q

)
.
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Therefore, the only case left to show is when n ̸= m. We recall Equation (2.4):

M−(n,m) = E
(
ηnηm

πn+m

)∑
a≥1

Bn,t(a)Bm,t(a).

Since η is uniformly distributed on the unit circle, E(ηnηm) = 0 and the momentM−

vanishes. Therefore, to conclude the proof, we need to show the moment Mq,− ≪

q−1/2+ε, and therefore vanishes as q → ∞. As shown in Equation (2.9), we can write

Mq,−(n,m) as

Mq,−(n,m) =
1

(π
√
q)n+m

∑
1≤a≤qn

1≤b≤qm

(Bn,q,t(a)Bm,q,t(b))
2

ϕ(q)

∑
χ odd

χ(a)χ(b)τ(χ)nτ(χ)
m

+O

(
(log q)n+m

√
q

)
.

Assuming n > m, we rewrite τ(χ)nτ(χ)
m

as qmτ(χ)n−m. Therefore, taking χ(a) :=

χ(a),

2

ϕ(q)

∑
χ

χ(a)χ(b)τ(χ)nτ(χ)
m
=

2qm

ϕ(q)

∑
χ odd

χ(a · b)τ(χ)n−m.

Lemma 2.3.8. For N ∈ N,

2

ϕ(q)

∣∣∣∣ ∑
χ mod q
χ(−1)=σ

χ(a)τ(χ)N
∣∣∣∣ ≤ 2Nq(N−1)/2,

where σ = {−1, 1}.

This lemma is a slight generalisation of a result by Granville and Soundararajan

[35, Lemma 8.3] and uses Deligne’s bound on hyper-Kloosterman sums. Below

follows Granville and Soundararajan’s proof, with a modification to include when χ
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is even.

Proof. Firstly, we rewrite the sum as exponential sums, using orthogonality of char-

acters and the definition of the Gauss sum τ(χ). Taking 1χ(−1)=σ = (1+σχ(−1))/2,

2

ϕ(q)

∑
χ mod q
χ(−1)=σ

χ(a)τ(χ)N =
∑

x1,...,xN mod q
x1···xN≡a mod q

e

(
x1 + · · ·+ xN

q

)

+ σ
∑

x1,...,xN mod q
x1···xN≡−a mod q

e

(
x1 + · · ·+ xN

q

)
.

Then, using Deligne’s bound [24]

max
b∈(Z/qZ)×

∣∣∣∣ ∑
x1,...,xN mod q
x1···xN≡b mod q

e

(
x1 + · · ·+ xN

q

) ∣∣∣∣ ≤ Nq(N−1)/2,

we have proved the lemma.

As a result, we have the inequality

|Mq,−(n,m)| ≤ 2(n−m)

π(n+m)
√
q

∑
1≤a≤qn

1≤b≤qm

|Bn,q,t(a)||Bm,q,t(b)|+O

(
(log q)n+m

√
q

)
.

We also have the bound on B, as shown in Equation (2.10),

BN,q,t(x) ≤
2NdN(x)dk(x)

x
.

Therefore, trivially bounding both divisor functions by qε for ε > 0,

∑
1≤a≤qn

|Bn,q,t(a)| ≪ 2nqε
∑

1≤a≤qn

1

a
≤ 2nqε log(qn).
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We get an analogous result for
∑

1≤b≤qm |Bm,q,t(b)|. As a result,

Mq,−(n,m) ≪ 22+n+m(n−m)qε log(qn) log(qm)

πn+m
√
q

+O

(
(log q)n+m

√
q

)
≪n,m q−1/2+ε,

which tends to zero as q → ∞. By a similar method we can show this is also the

case when n < m. Therefore Lemma 2.3.4 holds.

Having proven Lemma 2.3.4 assuming Propositions 2.3.6 and 2.3.7, we will now

prove both results, showing when |n| = |m| both limq→∞Mq and M equal

1

π2n

∑
a≥1

Bn,t(a)Bm,t(a).

Recall that we are only proving the odd character case, as the proof is analogous

for Fq,+. For odd characters, BN,q,t(x) is defined in Section 2.3.1 as

∑
x1···xk=x
xi≤qNi

k∏
i=1

βNi,q,ti(xi) =
∑

x1···xk=x
xi≤qNi

1

x

k∏
i=1

∑
y1···yNi

=xi

yi≤q

Ni∏
j=1

(1− cos(2πyjt)).

For ease of notation, in the proofs we refer toMq,− andM− asMq andM respectively.

Proof of Proposition 2.3.6. Taking n = m, where

n := |n| = n1 + · · ·+ nk, m := |m| = m1 + · · ·+mk,

we rewrite Equation (2.9) as

Mq (n,m) =
1

π2n

∑
1≤a,b≤qn

(Bn,q,t(a)Bm,q,t(b))
2

ϕ(q)

∑
χ odd

χ(a)χ(b) +O

(
(log q)2n

√
q

)
,

where Bn,q,t is defined as in Equation (2.8).
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Using the orthogonality of χ, and noting we are only summing over odd charac-

ters11 χ modulo q, the moment sequence becomes

Mq(n,m) =
1

π2n
Σ+(n,m)− 1

π2n
Σ−(n,m) +O

(
(log q)2n

√
q

)
, (2.13)

where

Σ+(n,m) :=
∑

1≤a,b≤qn

a≡b mod q

Bn,q,t(a)Bm,q,t(b), Σ−(n,m) :=
∑

1≤a,b≤qn

a≡−b mod q

Bn,q,t(a)Bm,q,t(b).

The aim is to get the main sum independent of q. Using ideas from Bober and

Goldmakher [8, Proof of Lemma 4.1], we consider Σ+ and Σ− simultaneously. First

we split the sums into arithmetic progressions mod q,

Σ±(n,m) =
∑

1≤a,b<q
a≡±b mod q

∑
0≤γ1,γ2<qn−1

Bn,q,t(a+ γ1q)Bm,q,t(b+ γ2q).

We simplify Σ± by splitting the inner sum into γ1 = γ2 = 0, γ1 ̸= 0, and γ2 ̸= 0:

∑
0≤γ1,γ2<qn−1

Bn,q,t(a+ γ1q)Bm,q,t(b+ γ2q)

= (Bn,q,t(a)Bm,q,t(b)) +
2∑

j=1

∑
0≤γ1,γ2<qn−1

γj ̸=0

Bn,q,t(a+ γ1q)Bm,q,t(b+ γ2q).

11The method for the even character case would differ here. Firstly recall B involves sin instead
of (1 − cos) in the even case. Additionally, since these are even characters, we would have Mq =
1

π2n Σ+ + 1
π2n Σ− + O

(
(log q)2nq−1/2

)
, where we are adding the Σ− term instead of subtracting it.

However, the Σ− term is eventually swallowed by the error term, so this does not affect the end
result.
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For ease of notation, we define the above latter sum as

Ω =
2∑

j=1

∑
0≤γ1,γ2<qn−1

γj ̸=0

Bn,q,t(a+ γ1q)Bm,q,t(b+ γ2q).

We can bound Ω by using the bound of B shown in Equation (2.10), so

Ω ≤ 22n
2∑

j=1

∑
0≤γ1,γ2<qn−1

γj ̸=0

dn(a+ γ1q)dk(a+ γ1q)

a+ γ1q

dn(b+ γ2q)dk(b+ γ2q)

b+ γ2q
.

By bounding the divisor functions by On,k(q
ε), we can further bound the sum to

Ω ≪n,k q
ε

2∑
j=1

∑
0≤γ1,γ2<qn−1

γj ̸=0

1

a+ γ1q

1

b+ γ2q
.

We can use the bound on partial harmonic series (see e.g. [1, Theorem 3.2]),

ωx :=

qn−1∑
γ=1

1

x+ γq
≤ log(qn−1)

q
,

to further bound Ω. As a result,

2∑
j=1

∑
0≤γ1,γ2<qn−1

γj ̸=0

1

a+ γ1q

1

b+ γ2q
=

(
1

a
+ ωa

)
ωb + ωa

(
1

b
+ ωb

)
≤ log(qn−1)

q

(
1

a
+

1

b
+

2 log(qn−1)

q

)
.

Therefore Σ± can be written as

Σ± =
∑

1≤a,b<q
a≡±b mod q

(Bn,q,t(a)Bm,q,t(b)) +On,k

qε log(qn−1)

q

∑
1≤a,b<q

a≡±b mod q

(
1

a
+

1

b
+

2 log(qn−1)

q

) .
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For Σ+ we have a ≡ +b mod q and 1 ≤ a, b ≤ q. Therefore a = b and we have

Σ+ =
∑

1≤a<q

(Bn,q,t(a)Bm,q,t(a)) +On,k

(
qε log(qn−1)

q

∑
1≤a<q

(
2

a
+

2 log(qn−1)

q

))
.

For Σ− we have 1 ≤ a, b ≤ q and a ≡ −b mod q. Therefore b = q − a and

Σ− =
∑

1≤a<q

(Bn,q,t(a)Bm,q,t(q − a)) +On,k

(
qε log(qn−1)

q

∑
1≤a<q

(
1

a
+

1

q − a
+

2 log(qn−1)

q

))
.

We bound the partial harmonic series again by log q to simplify both errors for Σ+

and Σ−. Consequently both error terms above can be bounded by

On,k

(
log(qn−1)

q1−ε

(
2 log q + 2 log(qn−1)

))
.

By combining the error terms, the moment sequence from Equation (2.13) is12

Mq(n,m) =
1

π2n
Σ+(n,m)− 1

π2n
Σ−(n,m) +O

(
(log q)2n

√
q

)
=

1

π2n

∑
1≤a≤q

(Bn,q,t(a)Bm,q,t(a))−
1

π2n

∑
1≤a≤q

(Bn,q,t(a)Bm,q,t(q − a))

+On,k

(
22n+2(log qn−1)2

q1−ε

)
+O

(
(log q)2n

√
q

)
.

Our aim is to only have one main term,

1

π2n

∑
a≥1

(Bn,t(a)Bm,t(a)) .

12Recall we are adding the Σ− term instead of subtracting it in the even character case.
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Therefore, we want to first bound the term

1

π2n

∑
1≤a≤q

(Bn,q,t(a)Bm,q,t(q − a)) , (2.14)

and then extend the sum

∑
1≤a≤q

(Bn,q,t(a)Bm,q,t(a))

over all positive integers.

To bound Expression (2.14) we again use the bound of B from Equation (2.10)

to show

∑
1≤a<q

(Bn,q,t(a)Bm,q,t(q − a)) ≤ 22n
∑

1≤a<q

dn(a)dk(a)

a

dn(q − a)dk(q − a)

q − a

≪n,ε q
ε
∑

1≤a<q

1

a(q − a)
≤ qε

2 log q

q
.

As a result,

Mq(n) :=Mq(n, n) =
1

π2n

∑
1≤a≤q

(Bn,q,t(a)Bm,q,t(a)) +On,k

(
log q

q1−ε

)
+On,k

(
(log qn−1)2

q1−ε

)
+O

(
(log q)2n

√
q

)
.

This can be simplified, as Bn,q,t is equivalent to Bn,t when 1 ≤ a ≤ q, and we can

combine the errors. Since k, n,m are all fixed, we omit the dependencies on the

error for ease of notation. Therefore

Mq(n) =
1

π2n

∑
1≤a≤q

(Bn,t(a)Bm,t(a)) +O

(
(log q)2n

√
q

)
. (2.15)
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The final step is to extend the main sum to infinity. We rewrite the sum

∑
1≤a≤q

(Bn,t(a)Bm,t(a)) =
∑
a≥1

(Bn,t(a)Bm,t(a))−
∑
a>q

(Bn,t(a)Bm,t(a)) .

By bounding B as before, the second sum has the upper bound

∑
a>q

(Bn,t(a)Bm,t(a)) ≤ 22n
∑
a>q

(
d2n(a)d

2
k(a)

a2

)
.

For all ε, we take dn(a)
2dk(a)

2 = O(a2εk,n) =: Ok(a
ε), so

∑
a>q

(Bn,t(a)Bm,t(a)) ≪
∑
a>q

aε

a2
≪ q−1+ε. (2.16)

This bound is clearly smaller than the error term in Equation (2.15), so as a result,

Mq(n) =
1

π2n

∑
a≥1

(Bn,t(a)Bm,t(a)) +O

(
(log q)2n

√
q

)
.

To finish proving Lemma 2.3.4 we prove Proposition 2.3.7, showing how the

expectation also equals the sum

1

π2n

∑
a≥1

(Bn,t(a)Bm,t(a)) .

Proof of Proposition 2.3.7. We are interested in the expectation

M(n,m) = E

(
k∏

i=1

F (ti)
niF (ti)

mi

)
.

Using Equation (2.4) from Section 2.3.1, and n := n1 + · · ·nk = m1 + · · ·+mk, the
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moment is equivalent to

M(n,m) = E
(
ηnηn

π2n

)∑
a≥1

Bn,t(a)Bm,t(a).

Therefore we have

E

(
k∏

i=1

F−(ti)
niF−(ti)

mi

)
=

1

π2n

∑
a≥1

Bn,t(a)Bm,t(a),

proving Proposition 2.3.7.

Therefore we have shown the multivariate moment sequence

Mq(n,m) =
2

ϕ(q)

∑
χ odd

k∏
i=1

fχ(ti)
nifχ(ti)

mi

converges, as q → ∞ through the primes, to

E

(
k∏

i=1

F (ti)
niF (ti)

mi

)
,

for all k-tuples n,m and 0 ≤ t1 < · · · < tk ≤ 1. This section only addressed

the odd character case, but the proof is similar for even characters and leads to

the same results. Therefore (Fq,±)q prime, the distribution of odd/even character

paths fχ modulo q, converges to F± as q → ∞ in the sense of convergence of finite

distributions.
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2.4 Relative Compactness of the Sequence of Dis-

tributions

In the previous section we showed (Fq) converges in finite distributions to the pro-

cess F as q → ∞ through the primes. If we can prove the sequence of distributions is

relatively compact, then it follows that (Fq) converges in distribution to F [7, Exam-

ple 5.1]. This is much stronger than convergence of finite-dimensional distributions

and concludes the proof of Theorem 2.1.1.

Prohorov’s Theorem [75] states that if a sequence of probability measures is tight,

then it must be relatively compact [7, Theorem 5.1]. For this we use Kolmorogorov’s

tightness criterion, quoted from Revuz and Yor:

Proposition 2.4.1. [76, Th. XIII.1.8] Let (Lp(t))t∈[0,1] be a sequence of C([0, 1])−valued

processes such that Lp(0) = 0 for all p. If there exist constants α > 0, δ > 0 and

C ≥ 0 such that for any p and any s < t in [0, 1], and we have

E(|Lp(t)− Lp(s)|α) ≤ C|t− s|1+δ,

then the sequence (Lp(t)) is tight.

For our sequence of processes (Fq(t))t∈[0,1] we have fχ(0) = 0 for all q. We also

have the trivial bound

|fχ(t)− fχ(s)| ≤
√
q|t− s|,
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leading to

E
∣∣fχ(t)− fχ(s)

∣∣2k ≤ qk|t− s|2k.

As a result, for k > 1 if we take |t− s| < 1
q1−ε for ε ∈ (0, k−1

2k−1
), we have

E
∣∣fχ(t)− fχ(s)

∣∣2k ≤ |t− s|2k−
k

1−ε =: |t− s|1+δ1 , (2.17)

where δ1 :=
k−1+ε(1−2k)

1−ε
. Therefore if we show a similar bound for E

∣∣fχ(t)− fχ(s)
∣∣2k

for |t− s| > 1
q1−ε then the tightness condition holds for our sequence of processes.

Various authors have found results bounding the average of the difference of

character sums [2,40,49]. For example, Cochrane and Zheng [19] prove for positive

integers k and Dirichlet characters modulo prime q,

1

q − 1

∑
χ ̸=χ0

∣∣∣∣∣
s+t∑

n=s+1

χ(n)

∣∣∣∣∣
2k

≪ε,k q
k−1+ε + |t− s|kqε.

To prove tightness however we need the |t− s| term independent of q.

Lemma 2.4.2. Let q be an odd prime. For all ε ∈ (0, 1), there exists constants

C1(ε), C2 independent of q such that for all 0 ≤ s < t ≤ 1,

E
∣∣fχ(t)− fχ(s)

∣∣4 ≤ C1(ε)|t− s|1+δ2 + C2
qε

q
,

where δ2 := 1− ε.

This lemma can be applied to characters of all moduli, not just primes, but for

our work it is sufficient to look only at primitive characters. Clearly if |t−s|1+δ2 ≥ qε

q
,
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then the equation becomes

E
∣∣fχ(t)− fχ(s)

∣∣4 ≤ C|t− s|1+δ,

which, combined with Equation (2.17) above, proves the sequence (Fq) is tight for

all s, t ∈ [0, 1].

Lemma 2.4.2 is similar to a result of Bober and Goldmakher [8, Lemma 4.1] and

we use parts of their work in the proof. Unlike Section 2.3.3, we will consider the

odd and even case at the same time.

Proof of Lemma 2.4.2. Using the Fourier expansion of fχ, the difference (fχ(t) −

fχ(s)) can be written as

τ(χ)

2πi
√
q

∑
1≤|n|≤q

χ(n)

n
e(−sn) (1− e(−(t− s)n)) +O

(
log q
√
q

)
.

Consequently,

∣∣fχ(t)− fχ(s)
∣∣4 ≤ 24

π4

∣∣∣∣ ∑
1≤n≤q

χ(n)

n
e(−sn) (1− e(−(t− s)n))

∣∣∣∣4 +O

(
(3 + log q)4

q2

)
.

Similar to Section 2.3.1 and [8, Lemma 4.1], we define

b(n) =


1

n

∑
n1n2=n
ni≤q

2∏
j=1

(e(−snj) (1− e (−(t− s)nj))) ; (n, q) = 1,

0 ; otherwise.
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Therefore,

∣∣∣∣ ∑
1≤n≤q

χ(n)

n
e(−sn) (1− e(−(t− s)n))

∣∣∣∣4 = ∣∣∣∣ ∑
1≤n≤q2

χ(n)b(n)

∣∣∣∣2.
The sum b(n) can be bounded using (1− e(x)) ≤ min{2, 2π|x|}, so

|b(n)| ≤ d(n)min

{
22

n
, (2π(t− s))2

}
. (2.18)

As a result, taking n = a+mq,

E
∣∣∣∣ ∑
1≤n≤q2

χ(n)b(n)

∣∣∣∣2 = q∑
a=1

∣∣∣∣ q∑
m=0

b(a+mq)

∣∣∣∣2 ≤ 2

q∑
a=1

|b(a)|2 + 2

q∑
a=1

∣∣∣∣22 q∑
m=1

d(a+mq)

a+mq

∣∣∣∣2.
(2.19)

We are interested in bounding the latter inner sum,

Da :=

q∑
m=1

d(a+mq)

a+mq
=

∑
q<m≤(a+q2)

m≡a(q)

d(m)

m
.

By Abel summation (see e.g. [83, Theorem 1]) this is

1

a+ q2

∑
q<m≤(a+q2)

m≡a(q)

d(m) +

ˆ (a+q2)

q

1

t2

∑
m≤t

m≡a(q)

d(m)dt.

In order to further bound the sum, we use the Shiu’s upper bound [79, Theorem 1],

∑
n≤x

n≡a (q)

d(n) ≪δ
xϕ(q) log x

q2
< x · log x

q
,
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which is valid for all x ≥ q1+δ for any δ > 0. Therefore,

Da =
1

a+ q2

∑
q≤m≤(a+q2)

m≡a(q)

d(m) +

ˆ (a+q2)

q

1

t2

∑
m≤t

m≡a(q)

d(m)dt

= O

(
log(a+ q2)

q

)
+O

(ˆ (a+q2)

q1+δ

log t

qt
dt

)
+

ˆ q1+δ

q

1

t2

∑
m≤t

m≡a(q)

d(m)dt.

We bound d(a) ≪ aε, so the sum
∑

m≤t,m≡a (q) d(a) is bounded by O(aε(t/q+1)).

As a result,

Da = O

(
log q

q

)
+Oδ

(
(log q)2

q

)
+Oδ

(
aε
log q

q

)
.

As a result, fixing δ > 0, Equation (2.19) becomes

q∑
a=1

∣∣∣∣ q∑
m=0

b(a+mq)

∣∣∣∣2 ≤ 4

q∑
a=1

|b(a)|2 +O

(
q∑

a=1

∣∣∣∣aε (log q)q

∣∣∣∣2
)

= 4

q∑
a=1

|b(a)|2 +O

(
qε

q

)
.

Therefore the only sum left to evaluate is
∑

a≤q |b(a)|2. Using the bound from

Equation (2.18) and splitting the cases 1
a
> π2(t− s)2 and 1

a
< π2(t− s)2, we have

q∑
a=1

|b(a)|2 ≤ 24

π4(t− s)4
∑

a≤π−2(t−s)−2

d(a)2 +
∑

π−2(t−s)−2<a≤q

d(a)2

a2

 .

We combine the two sums by Rankin’s trick. Taking x = π−2(t− s)−2,

1

x2

∑
a≤x

d(a)2 ≤ xσ1

x2

∞∑
a=1

d(a)2

aσ1
, 1 < σ1 < 2,

∑
a≥x

d(a)2

a2
≤ 1

xσ2

∞∑
a=1

d(a)2

a2−σ2
, 0 < σ2 < 1.
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Note σ1, σ2 are bounded so that the sums converge and tend to zero as x → ∞.

These sums are addressed by one of Ramanujan’s identities (see e.g. [21]). For

Re(s) > 1,
∞∑
n=1

d(n)2

ns
=
ζ(s)4

ζ(2s)
.

Therefore

q∑
a=1

|b(a)|2 ≤ 24
(

1

x2−σ1

ζ(σ1)
4

ζ(2σ1)
+

1

xσ2

ζ(2− σ2)
4

ζ(2(2− σ2))

)
.

Taking σ := min(2− σ1, σ2) ∈ (0, 1) and substituting back π−2(t− s)−2 = x,

1

x2−σ1

ζ(σ1)
4

ζ(2σ1)
+

1

xσ2

ζ(2− σ2)
4

ζ(2(2− σ2))
≤ C

xσ
= Cπ2σ(t− s)2σ,

for some C = C(σ) > 0. As a result,

E
∣∣fχ(t)− fχ(s)

∣∣4 ≤ C(t− s)2σ +O

(
qε

q

)
.

Taking σ = 1− ε and therefore 2σ = 2− ε, we have completed the proof.

Lemma 2.4.2 shows that the Kolmogorov’s tightness criterion argument holds

for

|t− s|1+δ2 ≫ qε

q
,

where we take α = 4 from Proposition 2.4.1. Therefore, combining with Equation
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(2.17), we have shown for constant K,

E
∣∣fχ(t)− fχ(s)

∣∣4 ≤

|t− s|1+δ1 ; if |t− s| ≤ q−(1−ε1),

K|t− s|1+δ2 ; if |t− s| ≥ q−(1−ε2).

Here we can choose δ1 and δ2 in such a way that δ1 =
1−3ε1
1−ε1

for ε1 ∈ (0, 1
3
) and and

δ2 = 1 − ε2 where ε2 ∈ (0, 1). This is possible as our initial parameter choices are

flexible enough to allow this.

For the right choice of ε1 and ε2 we have

qε2

q
<
qε1

q
.

Therefore taking δ := min(δ1, δ2), Kolmorogorov’s tightness criterion holds for all

t, s and (Fq) is tight. As a result, (Fq)q prime converges in distribution to the random

process F as q → ∞, proving Theorem 2.1.1. This concurs with the result from

Bober, Goldmakher, Granville and Koukoulopoulos for their distribution function,

Φq(τ) :=
1

ϕ(q)
#

{
χ mod q : max

t
|Sχ(t)| >

eγ

π
τ

}
,

weakly converging to their limiting function [9, Theorem 1.4]

Φ(τ) := P
(
max

t
|F (t)| > 2eγτ

)
.
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Chapter 3

Further Properties of the Random

Process

3.1 Introduction

In Chapter 2, we considered random multiplicative functions and how they are used

in the limiting distribution of complex character sums. Recall the definition of

Steinhaus random multiplicative functions Xk from Definition 2.1.2. We therefore

define the corresponding random series

F+(t) :=
η

π

∑
k≥1

Xk

k
sin(2πkt) and F−(t) :=

η

π

∑
k≥1

Xk

k
(1− cos(2πkt)). (3.1)

Here Xk are Steinhaus random multiplicative functions and η is a random variable

uniformly distributed on the unit circle. The main result of Chapter 2 uses the

random series to show the limiting distribution of character sums.

Theorem 3.1.1 (Theorem 2.1.1). Let q be an odd prime and F± be defined as above

for t ∈ [0, 1]. The sequence of the distributions of character paths (Fq,±(t))q weakly

converges to the process F±(t) as q → ∞ through the primes.

The infinite sum defining the random process converges with probability 1 [9].

Theorem 2.2.3 also shows F is almost surely continuous.
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In this chapter, we investigate the support of F (t) and more connections between

character sums and this random process. In Section 3.2 we find the support of the

law1 of F (t). These are the functions of the form

g(t) =
c

π

∑
n≥1

an
n
(1− e(−nt)),

where c, {ap} are on the unit circle and the sequence {an} is completely multiplica-

tive. This then leads to the following proposition.

Proposition 3.1.2. Let g be in the support of the law of the random process F over

C([0, 1]). For any ε > 0,

lim inf
q→∞

1

ϕ(q)

∣∣∣∣∣
{
χ mod q

∣∣ sup
t∈[0,1]

:

∣∣∣∣ 1
√
q

∑
n≤qt

χ(n)− g(t)

∣∣∣∣ < ε

}∣∣∣∣∣ > 0.

In other words, there is a non zero probability that for every character sum there

exists an ε-close function in the support of F (t), and vice versa.

Remark 3.1.1. This chapter is motivated by Kowalski and Sawin’s unpublished work

‘On the support of Kloosterman paths’ [57]. They find statistical results for Kloost-

erman paths by considering the support of their random Fourier series. In this

chapter, we find the support of the law of F (t), and use this to prove interesting

properties of character sums.

3.2 Support of the Random Process

Let F (t) be the random process defined in Chapter 2 and Equation 3.1. In this

section we will consider the support of the law of F (t).

1The support of the law of a random process is properly defined in Definition 3.2.1.
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Definition 3.2.1. [6, Chapter VII] A set C ⊂ C([0, 1]) is the support of the law

of F if

C =
⋂

{K ⊂ C([0, 1]) closed : P(F ∈ K) = 1}

= {x ∈ C([0, 1]) : P(F ∈ G) > 0 for any neighbourhood G of x} .

Using the definition above, we have the following theorem.

Theorem 3.2.1. The support of the law of the random process F (t), denoted S,

over C([0, 1]) is the set of continuous functions g : [0, 1] → C with the following

properties:

• g(0) = g(1) = 0,

• there exists c ∈ U such that cĝ(nm) = ĝ(n)ĝ(m) for all n,m ∈ Z̸=0,

• |ĝ(ξ)| = 1/2π|ξ| for all ξ ̸= 0,

• ĝ(0) = −
∑

ξ ̸=0 ĝ(ξ).

Here ĝ(ξ) =
´ 1
0
g(t)e(−ξt)dt is the Fourier transform of the function g(t). Note

that these properties imply that the Fourier series of g converge uniformly to g [30].

Also note that if we take n = m = 1 then the second condition implies that unless

ĝ(1) = 0, which then implies that g = 0 identically, c = ĝ(1).

Proof. For this proof, we will define a set S, whose elements satisfy all the properties

stated in the theorem. We then show the set S is closed, contained in the support

of F , and supp(F ) ⊂ S.

As in Section 2.2, for y ≥ 1 we define the smooth and rough parts of the random
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process F respectively by,

Sy =
η

2π

∑
n̸=0

P+(|n|)≤y

1− e(nt)

n
Xn and Ry = F − Sy =

η

2π

∑
n̸=0

P+(|n|)>y

1− e(nt)

n
Xn.

By absolute convergence, we know that the support of Sy is the closure of the set

of elements

g̃y :=
c

2π

∑
n ̸=0

P+(|n|)≤y

1− e(nt)

n
αn

with αn completely multiplicative and |c| = 1.

Let g̃ = limy→∞ g̃y, which is a convergent series, and ε > 0 be fixed. Then for

all sufficiently large y we have

∥∥∥∥∥∥ c2π
∑

P+(|n|)>y

1− e(nt)

n
αn

∥∥∥∥∥∥
∞

:= max
t∈[0,1]

∣∣∣∣ c2π ∑
P+(|n|)>y

1− e(nt)

n
αn

∣∣∣∣ < ε.

Therefore g̃y belongs to the intersection of the support of Sy and the open ball

Uε of radius ε around g̃. As a result, for all large enough y we have

P(Sy ∈ Uε) > 0.

We are interested in the probability

P(∥F − g̃∥ < 2ε) ≥ P(∥Sy − g̃∥∞ < ε and ∥Ry∥∞ < ε)

= P(∥Sy − g̃∥∞ < ε)P(∥Ry∥∞ < ε : ∥Sy − g̃∥ < ε).

Note that Sy and Ry are not independent, which is why the probability ∥Ry∥ < ε
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is dependent on ∥Sy − g̃∥. However, by Lemma 2.2.1, we know P(∥Ry∥∞ < ε)

approaches 1 as y → ∞ independent of the value of ∥Sy∥∞ and is positive for all

large enough y. Therefore

P(∥F − g̃∥ < 2ε) > 0.

Since ε > 0 is arbitrary, we have g̃ ∈ supp(F ). Therefore the closure of the set of

the convergent series

c

2π

∑
n̸=0

1− e(nt)

n
αn

is contained in the support of F .

As such, let S be the set

S =


g ∈ C([0, 1])

∣∣∣∣∣∣∣∣∣∣∣∣∣

g periodic with period 1,

∃c ∈ U : cĝ(nm) = ĝ(n)ĝ(m) ∀n,m ∈ Z̸=0,

|ĝ(ξ)| = 1/2π|ξ| ∀ξ ̸= 0,

ĝ(0) = −
∑

ξ ̸=0 ĝ(ξ).


.

Let g be an arbitrary function in the set S. Since ĝ(n) = O(1/n) and g is continu-

ous, then the Fourier series of g converges uniformly to g [81, Chapter 2, Question

3.b)(iii)]. Therefore,

g(t) =
∑
ξ∈Z

ĝ(ξ)e(ξt) =
∑
ξ ̸=0

(e(ξt)− 1)ĝ(ξ).

We claim S is closed and therefore is exactly the set of convergent functions. To

prove this, we let h be a limit point of the set S. That is, suppose there exists a
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sequence (hn) such that all functions hn(t) are in S and hn converges uniformly to

h on C([0, 1]).

For all n ∈ N we can write hn ∈ S as

hn(t) =
∑
ξ∈Z

e(ξt)ĥn(ξ),

where ĥn has all the necessary properties. The sequence (hn) is a sequence of

continuous functions and uniformly converges, so by the Uniform Limit Theorem [68,

Chapter 2] the limit h(t) is also continuous.

We claim h ∈ S. The limit h is periodic with period 1 and ĥ = limn→∞ ĥn.

Clearly the second and third properties of S are preserved, so it is left to show that

ĥ(0) = − lim
n→∞

∑
ξ ̸=0

ĥn(ξ) = −
∑
ξ ̸=0

lim
n→∞

ĥn(ξ) = −
∑
ξ ̸=0

ĥ(ξ).

By the Dominated Convergence Theorem (see e.g. [36, Section 5.6]) we can swap

the limit with the infinite sum, therefore proving the final defining property of S is

satisfied and h ∈ S. Since h is an arbitrary limit point, S is closed and the set of

convergent series

∑
ξ ̸=0

(e(ξt)− 1)ĝ(ξ)

is contained in the support of F .

Finally, we show all functions in the support of the law of F are contained in S,
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therefore showing S = supp(F ). Let

f̃(t) :=
c

2π

∑
k ̸=0

1− e(kt)

k
αn

be an arbitrary function in supp(F ), with c on the unit circle and αk completely

multiplicative. Clearly f̃ is periodic with period 1, so has the Fourier transform

ˆ̃f(ξ) =
c

2π

ˆ 1

0

e(ξt)

(∑
k ̸=0

1− e(kt)

k
αk

)
dt =

c

π

∑
k ̸=0

αk

k

ˆ 1

0

e(ξt) (1− e(kt)) dt

=


c

2π

∑
k ̸=0

αk

k
; ξ = 0,

− c

π

α−ξ

ξ
; ξ ̸= 0.

As a result, f̃ satisfies all the properties of S and therefore supp(F ) ⊂ S.

Once we know the support, we have the following proposition.

Proposition 3.2.2 (See Proposition 3.1.2). Let g be in the support of the law of

the random process F over C([0, 1]). For any ε > 0,

lim inf
q→∞

1

ϕ(q)

∣∣∣∣∣
{
χ mod q : sup

t∈[0,1]

∣∣∣∣ 1
√
q

∑
n≤qt

χ(n)− g(t)

∣∣∣∣ < ε

}∣∣∣∣∣ > 0.

Additionally, if we assume g is not in the support of F , then there exists a δ > 0

such that

lim
q→∞

1

ϕ(q)

∣∣∣∣∣
{
χ mod q : sup

t∈[0,1]

∣∣∣∣ 1
√
q

∑
1≤n≤qt

χ(n)− g (t)

∣∣∣∣ < δ

}∣∣∣∣∣ = 0.

Proof. Recall the sequence of distributions of character paths (Fq) for prime q. From

Theorem 2.1.1 we know the sequence (Fq) converges in distribution to F as q → ∞
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through the primes. Therefore using the standard result [7, Theorem 2.1], it is

equivalent to say that for any open set U ⊂ C([0, 1]), we have

lim inf
q→∞

1

ϕ(q)

∣∣ {χ mod q : fχ(t) ∈ U}
∣∣ > P(F ∈ U).

Let g be a continuous sample function of F . If U is an open neighbourhood of g in

C([0, 1]), then by definition we have P(F ∈ U) > 0. Consequently,

lim inf
q→∞

1

ϕ(q)

∣∣ {χ mod q : fχ(t) ∈ U}
∣∣ > 0.

Now take U as the open ball of radius ε > 0 around g. Thus, fχ(t) is a member of

U if and only if

sup
t∈[0,1]

|fχ(t)− g(t)| < ε,

for all χ modulo q. Therefore, noting the difference between the character paths fχ

and character sums tends to 0 as q → ∞, we have

lim inf
q→∞

1

ϕ(q)

∣∣∣∣∣
{
χ mod q : sup

t∈[0,1]

∣∣∣∣ 1
√
q

∑
n≤qt

χ(n)− g(t)

∣∣∣∣ < ε

}∣∣∣∣∣ > 0.

For the latter part of Proposition 3.2.2, we assume g is not in the support of law

of F , for example the non continuous saw-tooth function

1

π

∑
n≥1

sin(2πkt)

k
.

There exists a neighbourhood U ⊂ C([0, 1]) of g such that P(F ∈ U) = 0. Therefore

for some δ > 0, U contains the closed ball C of radius δ around g. We use the
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standard result [7, Theorem 2.1] again to show

0 ≤ lim sup
q→∞

1

ϕ(q)

∣∣ {χ mod q : fχ(t) ∈ C}
∣∣ ≤ P(F ∈ C) = 0.

Therefore by the same reasoning, we have

lim inf
q→∞

1

ϕ(q)

∣∣∣∣∣
{
χ mod q : sup

t∈[0,1]

∣∣∣∣∣ 1
√
q

∑
n≤qt

χ(n)− g(t)

∣∣∣∣∣ < δ

}∣∣∣∣∣ = 0.

Finally, by choosing specific functions from the support of the law of F , we find

some interesting arithmetic statements. This is explored in the following section.

3.3 Examples of Functions in the Support of the

Law of F (t)

Proposition 3.2.2 states that the Fourier series is a good approximation for the

character sum. If we find examples of g(t), a function in the support of the law of

the random process F , then we know there exists a character sum which exhibits

the same behaviour. In this section, we will consider some interesting examples of

g(t).

3.3.1 Example 1

Let P be large and g1,P (t) be defined as

g1,P (t) :=
1

π

∞∑
n=1

λ(n)

n
sin(2πnt).
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Figure 3.1: The function g1,10007(t), where the sum is truncated at 10, 000 terms.

Here λ(n) is completely multiplicative and defined by

λ(p) =


−1 ; p ≤ P,

Xp ; otherwise,

where Xp are random variables uniformly distributed on the unit circle. In other

words, λ(n) is the completely multiplicative Liouville function2 when P+(n) ≤ P

and is randomly distributed on the unit circle otherwise. The function, by Theorem

2.2.3, is almost surely continuous. Therefore g1,P (t), for any P > 0, is almost surely

in the support of the law of F (t) by Theorem 3.2.1. See Figure 3.1 for an example

of g1,P when P = 10, 007.

Using Proposition 3.2.2, there is a positive proportion of character sums which

are ε-close to g1,P (t).
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The function g2(t), where a2 = 1 and The function g3(t), where a2, a3 = 1 and

ap = −1 for all p ̸= 2. ap = −1 for all p ̸= 2, 3.

Figure 3.2: The function gm(t), truncated with 10,000 terms, for m = 2 and 3.

3.3.2 Example 2

In Example 1, we took λ(p) = −1 for all primes ≤ P . Here we define the function

gm,P (t) :=
∞∑
n=1

an
n

sin(2πnt),

where ap = 1 for the first m− 1 primes, −1 for all other primes ≤ P , and randomly

uniformly distributed on the unit circle otherwise. For example, g2,P (t) has a2 = 1

and ap = −1 for primes p ∈ (2, P ], and randomly distributed on the unit circle for

all p > P . Figure 3.2 shows g2,10,007(t) and g3,10007(t), and Figure 3.1 shows the

case ap = −1 for all primes p ≤ 10, 007. As in Example 1, the function is almost

surely continuous for all finite m ∈ Z and almost surely in the support of the law of

F (t). Note that as m and P tend to infinity, this tends to the saw tooth function

g∞(t) = 1/2 − {t}, which is not continuous and not in the support of the law of

2Let n =
∏k

i=1 p
ai
i . The Liouville function is defined by λ(n) = (−1)

∑
ai . We also define

λ(1) = 1. This is equivalent to defining λ as a completely multiplicative function where λ(p) = −1.
See [63] for more information on the function.
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F (t).

Figure 3.3: The function g∞(x) with x ∈ [0, 1].

It is future work to further investigate these functions in the support of the

law of our random process F , using them to discover more about the behaviour of

character sums.
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Chapter 4

The Distribution of Real Character

Sums

4.1 Introduction

Given the real Dirichlet character modulo prime q, otherwise known as the Legendre

symbol
( ·
q

)
, we define the normalised partial character sum

Sq(t) :=
1
√
q

∑
n≤qt

(
n

q

)
, (4.1)

for t ∈ [0, 1]. Legendre symbols, and therefore quadratic residues modulo primes,

play an important role in many areas of number theory. Davenport and Erdös [23]

studied the distribution of a similar function,

Sq,H(x) :=
∑

x<n≤x+H

(
n

q

)
,

as x runs through the positive integers. They found that it tends to a normal

distribution with mean zero and variance H, provided logH = o(log q) and H → ∞

as q → ∞.

In a follow up to Chapter 2, our goal is to study the distribution of real character

sums Sq(t) for q ∈ [Q, 2Q] with Q ∈ Z, and the corresponding limiting distribution
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as Q → ∞. The notation has changed for this chapter, but the same methodology

of Chapter 2 can be used in the quadratic case.

The character sum defined in Equation (4.1) is discontinuous, with jumps at

every t ∈ 1
q
Z. As in Definition 1.1.1, we define a character path as the continuous

function fq(t), where we concatenate the points where the function changes. For the

rest of the chapter, we will refer to character paths fq(t) instead of the discontinuous

sums Sq(t). Character paths are continuous, periodic in t with period 1, and can be

approximated by the truncated Fourier expansion as in Appendix A:

fq(t) =
τ(
( ·
q

)
)

2πi
√
q

∑
0<|n|<Q

(
n

q

)
1− e(−nt)

n
+O

(√
q logQ

Q

)
. (4.2)

The difference between the character sum and character path is always bounded

by 1√
q
, and since we are taking q ∈ [Q, 2Q], we get that |Sq(t) − fq(t)| ≤ 1√

Q
.

This is smaller than the error in the Fourier truncation, making Equation (4.2) an

acceptable approximation of the character path. Additionally, τ(
( ·
q

)
) is the Gauss

sum,

τ

((
·
q

))
:=

q∑
a=1

(
a

q

)
e(a/q) =


√
q, q ≡ 1 (4),

i
√
q, q ≡ −1 (4).

The value of the prime modulo 4 influences the shape of the character path, as

shown in Figure 4.1. We refer to character paths as odd if q ≡ −1 mod 4, as then(−1
q

)
= −1, and even if q ≡ 1 mod 4, as

(−1
q

)
= 1.

We now define the distribution of real character paths.

Definition 4.1.1. Let Q be a large integer. We define the distribution of char-

acter paths by taking q 7→ fq(t) as a random process, choosing a prime q ∈ [Q, 2Q]
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Character path for q = 991 ≡ 1 mod 4 Character path for q = 997 ≡ 3 mod 4.

Figure 4.1: Character paths for q = 991 and q = 997, where the x-axis is qt.

uniformly at random. Let FQ(t) denote the distribution, where

FQ(t) := {fq(t) : Q ≤ q ≤ 2Q, q prime} .

We also define FQ,±(t) by fixing the value of
(−1

q

)
as either +1 or −1 for all q ∈

[Q, 2Q].

We are investigating the limit of the distribution of real character sums, i.e.

when Q→ ∞. For this, we need Rademacher random multiplicative functions.

Definition 4.1.2. Let Xp = {±1} be Rademacher random variables, indepen-

dently taking values ±1 with equal probability. We define Rademacher random

multiplicative functions Xn, for n ∈ N, as

Xn =
∏
pa∥n

Xa
p ,

where Xp are Rademacher random variables. We also let X−1 = {±1} so the

definition extends to negative numbers.

More properties of Rademacher random multiplicative functions can be seen
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Sample of F (t) with X−1 = −1. Sample of F (t) with X−1 = 1

Figure 4.2: Samples, with 10,000 points, of F (t), where the x axis is t.

in [18, 38,39,61].

Our aim is to find the limiting distribution of FQ. To begin, we define a sum

very similar to Equation (4.2). Let F±(t) be the random functions

F+(t) :=
1

π

∑
n≥1

Xn
sin(2πnt)

n
and F−(t) :=

1

π

∑
n≥1

Xn
1− cos(2πnt)

n
,

where Xn are Rademacher random multiplicative functions. By defining X = {1, i},

depending on if X−1 = 1 or −1 respectively, we can combine the random functions

to obtain

F (t) :=
X

2πi

∑
n ̸=0

Xn
1− e(−nt)

n
.

See Figure 4.2 for examples of the random process.

This infinite sum is defined as the limit of the symmetrical partial sums

FN(t) :=
X

2πi

∑
0<|n|<N

Xn
1− e(−nt)

n
.
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Benatar, Nishry, and Rodgers [5] studied a similar function,

PN(t) =
1√
N

N∑
n=1

Xne(nt).

Combining partial summation with [5, Theorem 1.3], for any ε > 0,

max
t

|FN(t)| ≤
exp(3

√
logN log logN)√

N
+O

(
1− N ε

√
N

)
.

Additionally, the function FN(t) is clearly in L2([0, 1]), since

∑
0<|n|<N

∣∣∣∣Xn
1− e(−nt)

n

∣∣∣∣2 ≤ 23
∑

0<n<N

1

n2
≤ 23

(
π2

6
− 1

N

)
.

For fixed t ∈ [0, 1], the limit of the partial sums converges almost surely [53,

Lemma 1]. In the proof of Theorem 4.2.1, we will show the process is almost surely

continuous.

We can now state the main theorem of the chapter:

Theorem 4.1.1. Let F±(t) be the random processes defined above for t ∈ [0, 1].

Assuming the Generalised Riemann Hypothesis (GRH) for all Dirichlet L-functions,

the sequence of distributions of real character paths (FQ,±(t))Q weakly converges to

the process F±(t) in the Banach space C([0, 1]) as Q→ ∞. In other words, for any

continuous and bounded map

ϕ : C([0, 1]) → R,
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we have

lim
Q→∞

E(ϕ(FQ,±)) = E(ϕ(F±)).

The proof of the theorem is split into 2 main steps: showing convergence in finite

distributions by proving the multivariate moments of FQ converge to multivariate

moments of F as Q → ∞, and showing that the sequence (FQ)Q is relatively com-

pact. The combination of both steps proves convergence in distribution, thereby

proving Theorem 4.1.1.

Remark 4.1.1. Theorem 4.1.1 requires F (t) to be a function almost surely taking

values in C([0, 1]). In Section 4.2, we prove the distribution FQ(t) converges in finite

distribution to

X

2πi

∑
n̸=0

Xn
1− e(−nt)

n
. (4.3)

A priori, both the series and F (t) are distributions on L2([0, 1]). On L2, distributions

are determined by their finite dimensional distributions [10, Corollary 2.4].

In proving Theorem 4.2.1, we will prove the limiting distribution of (FQ(t))Q is

continuous and the finite dimensional distributions match those of F (t). Therefore,

as a random process in L2([0, 1]), the function in Equation (4.3) is almost surely the

Fourier series of a continuous function. Combined with the fact that the Fourier

coefficients are bounded by O(1/n), the Fourier series converges uniformly to its

defining function [47]. Therefore, by the Uniform Limit Theorem [68, Chapter 2],

the Fourier series is almost surely continuous and uniquely defines F (t) [88, Theorem

9.2].

Remark 4.1.2. The assumption of GRH comes from using a strong version of the
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Prime Number Theorem in Arithmetic Progressions (see e.g. [11, Chapter 7]). With-

out the Generalised Riemann Hypothesis, the error term is too large and does not

vanish as Q → ∞. GRH is also needed to prove the tightness condition for the

sequence (FQ). Siegel zeroes are likely to be the worst problem, but for this proof

it is not sufficient to only assume there are not real zeroes. It is a future project

to remove the dependence on GRH in both parts of the proof. Future ideas involve

changing where we truncate the Fourier series in Equation (4.2), using the zero den-

sity estimate for quadratic L-functions L(1/2, χd), and using different methods so

we are not relying on the error bound on the Prime Number Theorem in Arithmetic

Progressions.

Remark 4.1.3. Theorem 4.1.1 follows on from Chapter 2, and the paper [48] which

Chapter 2 is based on, where we look at the limiting distribution of character sums

modulo q as q → ∞. The sequence of distributions of complex character sums

weakly converges to a random Fourier series, with Steinhaus random multiplicative

functions as Fourier coefficients, as q → ∞. In this chapter, we find an analogous

result for real Dirichlet characters, which includes a similar random process. We

cannot use the orthogonality of characters in the same way, so the methods are

slightly different. Additionally, since the values are all real in this chapter, the

graphs shown are instead time graphs instead of maps of the complex plane.
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4.2 Proof of Convergence in Finite

Distributions

Recall the definitions of the real character path, which we have split into odd and

even sums,

fq,+(t) =
1

π

Q∑
a=1

(
a

q

)
sin(2πat)

a
+O

(√
q logQ

Q

)
,

fq,−(t) =
1

π

Q∑
a=1

(
a

q

)
1− cos(2πat)

a
+O

(√
q logQ

Q

)
.

We do the same with the random Fourier series, where we fix X−1 = +1 or −1,

F+(t) =
1

π

∑
a≥1

Xa
sin(2πat)

a
, F−(t) =

1

π

∑
a≥1

Xa
1− cos(2πat)

a
.

As stated in the introduction, in this section we will prove the following theorem:

Theorem 4.2.1. Assume GRH and let Q ∈ Z and (FQ,±(t))Q be the sequence of

distributions of character paths, where for ϱ = {±}

FQ,ϱ(t) := {fq,ϱ(t) : Q ≤ q ≤ 2Q, q prime} .

Then (FQ,±)Q converges to the process F± in the sense of convergence of finite

distributions1. In other words, for every n ≥ 1 and for every n−tuple 0 ≤ t1 <

1This is a weaker form of convergence. To prove Theorem 4.1.1, we also need the sequence (FQ)
to be relatively compact.
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· · · < tn ≤ 1, the vectors

(FQ,±(t1), . . . ,FQ,±(tn))

converge in law as Q→ ∞ to

(F±(t1), . . . , F±(tn)).

The behaviour of both fq and F vary greatly depending on the values of
(−1

q

)
and

X−1 respectively. For this section we will fix the sums as even, so
(−1

q

)
= X−1 = 1,

as the odd case is analogous.

Theorem 4.2.1 can be proved by the method of moments. We define the limiting

moment and moment sequence as follows: let k ≥ 1 and n = (n1, . . . , nk) for

ni ∈ Z≥0. Then the moments are

M±(n) := E

(
k∏

i=1

F±(ti)
ni

)
, (4.4)

MQ,±(n) :=
2

π∗(Q)

∑
q∈[Q,2Q]
q≡±1 (4)

k∏
i=1

fq,±(ti)
ni , (4.5)

where π∗(Q) := π(2Q)− π(Q).

Proposition 4.2.2. Let k ≥ 1, n = (n1, . . . , nk) for ni ∈ Z≥0, and M±(n) and

MQ,±(n) be defined as above. Then, assuming GRH,

MQ,±(n) =M±(n) +O

(
(logQ)n+2

√
Q

)
.

Additionally, the moment M±(n) only has one representing measure, and the mo-
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ment sequence is therefore determinate.

This proposition will be proved in 2 parts, first showing the limiting moment

M±(n) equals a certain sum and is determinate, then proving the moment sequence

MQ,±(n) equals the same sum, plus an error which converges to 0 as Q→ ∞. Since

we are only considering the even case, we will point out when the odd case differs.

4.2.1 The Limiting Moment

Using the definition of F+(t), we can heavily simplify the moment in Equation (4.4).

Taking n =
∑
ni,

M+(n) =
1

πn
E

 ∑
a1,1,...,ak,nk

>0

k∏
i=1

ni∏
j=1

Xai,j

sin(2πai,jti)

ai,j

 =
1

πn
E

(∑
a>0

Xa

a
Bn,t(a)

)
,

where2

Bn,t(a) :=
∑

a1···ak=a

k∏
i=1

∑
bi,1,···bi,ni

=ai

ni∏
j=1

sin(2πbi,jti).

We are allowed to reorder the sums in the expectation as F (t) converges almost

surely [53, Lemma 1].

Lemma 4.2.3. The sum Bn,t(a) is bounded above by aε.3

Proof. Firstly, we introduce absolute value signs and take | sin(2πbi,jti)| ≤ 1. The

2For the odd case, Bn,t(a) is defined in the same way, but (1 − cos(2πbi,jti)) instead of
sin(2πbi,jti).

3The equivalent sum for M−(n) is also bounded by aε. The proof is analogous.
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sum is then a product of divisor sums, so

Bn,t(a) ≤
∑

a1···ak=a

k∏
i=1

dni
(ai).

We then use Proposition 2.3.2, showing dN1(x1)dN2(x2) ≤ dN1+N2(x1 · x2). As a

result, taking n =
∑
ni,

Bn,t(a) ≤
∑

a1···ak=a

k∏
i=1

dni
(ai) ≤ dk(a)dn(a) ≤ dk+n(a).

By bounding d(a) by aε, we have finished the proof. For later parts of the section,

we may also use the stronger bound Bn,t(a) ≪ dn(a).

Taking the expectation inside the sum, which is permitted since F (t) converges

almost surely,

M+(n) =
1

πn

∑
a>0

E(Xa)

a
Bn,t(a) =

1

πn

∑
a′>0

1

a′2
Bn,t(a

′2). (4.6)

This is due to E(Xa) = 1 when a is a square number (i.e. a = a′2) and vanishes

otherwise. In the next section, we will show MQ,+(n) equals the same sum, with an

error that vanishes as Q→ ∞.

Additionally, we have the following lemma.

Lemma 4.2.4. The moment M(n) only has one representing measure.

Proof. In this proof we will only show the lemma is true for M+(n), but the same

bounds hold for M−(n). It is sufficient to show M(n) satisfies the Carleman condi-
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tion [78, Theorem 15.11]:

∞∑
n=1

|M(2n)|−
1
2n = +∞, (4.7)

for n = (n1, . . . , nk) and n = |n| =
∑
ni.

Using the definition of M(2n),

M(2n) =
1

π2n

∑
a>0

1

a2
B2n,t(a

2) ≤
∑
a>0

d2(n+k)(a
2)

a2
.

We ideally want to apply a result from Bober and Goldmakher [8, Proposition 3.2]:

∞∑
a=1

d2(n+k)(a)
2

a2
≤ exp

(
4(n+ k) log log(4(n+ k)) +O

(
4(n+ k)

log 3

))
. (4.8)

Our aim is to directly apply Bober and Goldmakher’s result. This follows from the

claim:

Claim. Let a,N > 0 and dN(a) to be the Nth divisor function of a. Then d2N(a
2) ≤

d2N(a)
2.

Proof. The divisor function is multiplicative, so for a = pj11 · · · pjkk , dN(x) =
∏

i≤k dN(p
ji
i ).

For prime powers [8],

dN(p
j) =

(
N + j − 1

j

)
.

Therefore,

dN(a
2) =

∏
i≤k

(
N + 2ji − 1

2ji

)
and (dN(a))

2 =
∏
i≤k

(
N + ji − 1

ji

)2

.
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Using the definition of binomial coefficients,

(
N + 2j − 1

2j

)
=

(
N + j − 1

j

) j−1∏
k=0

N + j + k

j + 1 + k
.

For j, k,N ≥ 1, N+j+k
j+1+k

≤ N+k
k+1

. Therefore,

(
N + 2j − 1

2j

)
≤
(
N + j − 1

j

) j−1∏
k=0

N + k

k + 1
=

(
N + k − 1

j

)2

.

As a result, the claim holds.

Therefore, we use Equation (4.8), the result from Bober and Goldmakher [8],

and |M(2n)|− 1
2n is bounded below by

exp

(
−2 log log(4(n+ k))− 2k

n
log log(4(n+ k)) +O

(
2(n+ k)

n log 3

))
> exp (−2 log log(4(n+ k))) .

This can be rewritten as C(log(4(n+ k)))−2 for some constant C. As a result,

∞∑
n=1

|M(2n)|−
1
2n ≥ C

∞∑
n=1

1

(log(4(n+ k)))2
.

The lower bound diverges, so the sum in Equation (4.7) is therefore infinite, finishing

the proof.
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4.2.2 The Moment Sequence

The moment sequenceMQ,+(n) sums over all primes q ∈ [Q, 2Q] which are equivalent

to 1 modulo 4. Using the definition of fq,+(t),

MQ,+(n) =
1

πn

1

2π∗(Q)

∑
q∈[Q,2Q]
q≡1 (4)

k∏
i=1

(
Q∑

a=1

(
a

q

)
sin(2πati)

a
+O

(√
q logQ

Q

))ni

, (4.9)

where n =
∑
ni and we define π∗(Q) as (π(2Q)− π(Q)). As in Section 4.2.1, we

similarly define Bn,Q,t as

Bn,Q,t(a) :=



∑
a1···ak=a

k∏
i=1

∑
bi,1,···bi,ni

=ai
bi,j<Q

ni∏
j=1

sin(2πbi,jti) ; (a, q) = 1

0 ; (a, q) > 1.

(4.10)

Note that we included a condition that the sum Bn,Q,t(a) vanishes when (a, q) > 1.

This helps us later in the proof, and comes from
(
a
q

)
= 0 when a and q share a

factor. Also note that the major difference to Bn,t is that the bi,j are all less than

Q. Consequently, we can also bound |Bn,Q,t(a)| by aε. As a result, we multiply out

the brackets in Equation (4.9), so

MQ,+(n) =
1

πn

1

2π∗(Q)

∑
q∈[Q,2Q]
q≡1 (4)

Qn∑
a=1

(
a

q

)
1

a
Bn,Q,t(a) +O

(
(logQ)n√

Q

)
. (4.11)
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The sum can be split into whether a is a square number or not. If a is a square,

then
(
a
q

)
= 1 and

1

πn

1

2π∗(Q)

∑
q∈[Q,2Q]
q≡1 (4)

Qn∑
a=1
a=□

(
a

q

)
1

a
Bn,Q,t(a) =

1

πn

Qn∑
a=1

1

a2
Bn,Q,t(a

2).

This is the same as Equation (4.6), the value of M+(n). If a is not a square, then

the sum is

1

πn

1

2π∗(Q)

∑
q∈[Q,2Q]
q≡1 (4)

Qn∑
a=1
a̸=□

(
a

q

)
1

a
Bn,Q,t(a).

Following the ideas of Montgomery and Vaughan [66, Lemma 6], we instead sum

over fundamental discriminants.

Definition 4.2.1. A fundamental discriminant d satisfies one of the following

conditions:

• d ≡ 1 mod 4 and d is square free,

• d = 4D, where D ≡ 2, 3 mod 4 and D is square free.

For each non zero integer a, we can write 4a uniquely in the form dr2, where d

is a fundamental discriminant. As a result,
(
a
q

)
=
(
d
q

)
, unless q|r. Let

fd =
∑
a≤Qn

4a=dr2

1

a
Bn,Q,t(a).
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Therefore,

Qn∑
a=1
a̸=□

(
a

q

)
1

a
Bn,Q,t(a) =

4Qn∑
d=1

′
(
d

q

)
fd +O


Qn∑
a=1
a̸=□
q2|a

(
a

q

)
1

a
Bn,Q,t(a)

 ,

where
∑′

is a sum over fundamental discriminants. Note that the a ̸= □ condition

is no longer needed for the main term. The error can be simplified by taking a = q2a′

and |B(q2a)| ≤ Qε, so

∑
a≤Qn

a̸=□
q2|n

|B(a)|
a

=
1

q2

∑
a′≤Qn

a′ ̸=□

|B(q2a)|
a′

≤ Qε · logQ
q2

.

Therefore, taking π∗(Q) := (π(2Q) − π(Q)) ≈ Q
logQ

, the moment sequence from

Equation (4.11) is

MQ,+(n) =
1

πn

Qn∑
a=1

1

a2
Bn,Q,t(a

2) +O

 logQ

Q

∣∣∣∣∣∣∣∣
4Qn∑
d=1

′
fd

∑
q∈[Q,2Q]
q≡1 (4)

(
d

q

)∣∣∣∣∣∣∣∣
 (4.12)

+O

(
Qε(logQ)2

Q2

)
+O

(
(logQ)n√

Q

)
.

Consider the sum in the first error,

4Qn∑
d=1

′
fd

∑
q∈[Q,2Q]
q≡1 (4)

(
d

q

)
.

The Legendre symbol
(
d
·

)
is the unique primitive character modulo |d| [67, The-

orem 9.13], which we will denote as χd(q). Using the orthogonality of Dirichlet
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characters, the sum
∑
χd(q) over the primes can be rewritten as

∑
q∈[Q,2Q]

χd(q)

(
1

φ(4)

∑
χ mod 4

χ(q)

)
=

1

φ(4)

∑
q∈[Q,2Q]

χd(q) (χ0(q) + χ−4(q)) ,

where χ0 is the trivial character and χ−4 is the Kronecker symbol
(−4

n

)
. In other

words,

n 1 2 3

χ0 1 0 1

χ−4 1 0 −1

.

Therefore4,

∑
q∈[Q,2Q]

q≡1 mod 4

χd(q) =
1

2

 ∑
q∈[Q,2Q]

χd(q) +
∑

q∈[Q,2Q]

χd(q)χ−4(q)

 .

Since d be a fundamental discriminant, then χd(q) =
(
d
q

)
is uniquely given as a prim-

itive quadratic character modulo d [67, Theorem 9.13]. Additionally, χd(q)χ−4(q) =

χ4d(q)
5. Therefore,

∑
q∈[Q,2Q]

q≡1 mod 4

(
d

q

)
=

1

2

∑
q∈[Q,2Q]

χd(q) +
1

2

∑
q∈[Q,2Q]

χ4d(q).

4For the odd case where q ≡ 3(4), everything uses the same method except we have∑
q∈[Q,2Q]
q≡3(4)

χd(q) =
1

ϕ(4)

∑
q∈[Q,2Q]

χd(q) (χ0(3q) + χ−4(3q)) .

5Note this could be imprimitive if 4|d.
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Assuming GRH6, the sum
∑

q∈[Q,2Q] χd(q) is bounded by [67, Theorem 13.7]

O
(
Q1/2 log(dQ)

)
.

Therefore,

4Qn∑
d=1

′
fd

∑
q∈[Q,2Q]
q≡1 (4)

(
d

q

)
≪
√
Q

4Qn∑
d=1

′ |fd| log(dQ) ≪n

√
Q log(Q)

4Qn∑
d=1

′ |fd|.

To bound
∑

|fd|, we rearrange the sum back to non fundamental discriminants:

∑
0<d≤4Qn

′|fd| =
∑

0≤d≤4Qn

∣∣∣∣∣∣∣
∑
a≤Qn

4a=dr2

Bn,Q,t(a)

a

∣∣∣∣∣∣∣ ≤
∑
a≤Qn

|Bn,Q,t(a)|
a

.

Recall the definition

Bn,Q,t(a) :=
∑

a1···ak=a

k∏
i=1

∑
bi,1,···bi,ni

=ai
bi,j<Q

ni∏
j=1

sin(2πbi,jti).

Therefore,

∑
a≤Qn

Bn,Q,t(a)

a
≤

k∏
i=1

(∑
a≤Q

| sin(2πati)|
a

)ni

≤
k∏

i=1

(logQ)ni = (logQ)n,

where n =
∑
ni.

6All bounds for
∑

q χd(q) without assuming GRH are not sufficient for this case, as we are
summing over large values of d and the potential zeroes near 1 cause the double sum to explode
as Q → ∞.
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As a result, the moment sequence in Equation (4.12) is

MQ,+(n) =
1

πn

Qn∑
a=1

1

a2
Bn,Q,t(a

2) +O

(
logQ

Q
·
√
Q(logQ)n+1

)
+O

(
Qε(logQ)2

Q2

)
+O

(
(logQ)n√

Q

)

=
1

πn

Qn∑
a=1

1

a2
Bn,Q,t(a

2) +O

(
(logQ)n+2

√
Q

)
.

To finish the proof, the main term has to be independent of Q. This is achieved

in 2 steps, removing the dependence from Bn,Q,t then showing the tail of the sum

is smaller than the error term in Equation (4.13). By rearranging the sum into

arithmetic progressions,

Qn∑
a=1

1

a2
Bn,Q,t(a

2) =
∑

1≤a≤Q

∑
0≤m≤Qn−1

1

(a+mQ)2
Bn,Q,t((a+mQ)2).

When m = 0, all the summands are ≤ Q, so trivially Bn,Q,t = Bn,t. Consequently,

Qn∑
a=1

1

a2
Bn,Q,t(a

2) =
∑

1≤a≤Q

1

a2
Bn,t(a

2) +
∑

1≤a≤Q

∑
1≤m≤Qn−1

1

(a+mQ)2
Bn,Q,t((a+mQ)2).

By bounding B((a+mQ)2) by Qε, using the claim stated earlier in the proof,

∑
1≤a≤Q

∑
1≤m≤Qn−1

1

(a+mQ)2
Bn,Q,t((a+mQ)2) ≤ Qε

Q2

∑
1≤a≤Q

∑
1≤m≤Qn−1

1

(a/Q+m)2
≪ Qε

Q
.

As a result, the summands are independent of Q, and

MQ,+(n) =
1

πn

∑
a≤Q

1

a2
Bn,t(a

2) +O

(
Qε

Q

)
+O

(
(logQ)n+2

√
Q

)
. (4.13)
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The final step is to extend the sum

∑
a≤Q

1

a2
Bn,t(a

2) =
∑
a≥1

1

a2
Bn,t(a

2) +O

(∑
a>Q

1

a2
Bn,t(a

2)

)
.

By Rankin’s trick, for any σ > 0

∑
a>Q

1

a2
Bn,t(a

2) ≤ 1

Qσ

∑
a≥1

1

a2−σ
Bn,t(a

2).

By choosing σ ∈ (1/2, 1), the error term is less than the error in Equation (4.13)

and

MQ,+(n) =
1

πn

∑
a≥1

1

a2
Bn,t(a

2) +O

(
(logQ)n+2

√
Q

)
.

Combined with Section 4.2.1, this concludes the proof of Proposition 4.2.2.

4.3 Relative Compactness of the Sequence of Dis-

tributions FQ

Our aim is to prove Theorem 4.1.1, the sequence of real character paths (FQ) con-

verges in distribution to the random process F . If we can prove (FQ) is relatively

compact, then it follows from Theorem 4.2.1 that the sequence converges in distri-

bution to F [7, Example 5.1]. This finishes the proof of the main theorem of the

chapter.

We will prove relative compactness in the same way as in Chapter 2 (and [48,

Section 4]). Firstly, Prohorov’s Theorem [7, Theorem 5.1] states that if a sequence

of probability measures is tight then it is relatively compact. We prove tightness by
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Kolmogorov’s tightness criterion (see Proposition 2.4.1 or [76, Theorem XIII.1.8]),

shown in the following proposition.

Proposition 4.3.1. The sequence of real character paths,

FQ(t) := {fq(t) : Q ≤ q ≤ 2Q, q prime}

is a sequence of real continuous processes, where fq(0) = 0 for all Q. Furthermore,

there exist constants α > 0, δ > 0 and C ≥ 0 such that for any prime q and any

s < t in [0, 1] we have

E (|fq(t)− fq(s)|α) ≤ C|t− s|1+δ. (4.14)

We prove Proposition 4.3.1 in 2 parts:

Lemma 4.3.2. Let s < t in [0, 1]. There exists ε1 > 0 and C > 0 such that,

E
(
|fq(t)− fq(s)|4

)
< C|t− s|1+ε1 ,

whenever7

|t− s| > 1

Q1/2−ε′1
.

Lemma 4.3.3. Let s < t in [0, 1]. Assuming GRH (or the weaker Generalised

7Taking Qε′1 = (logQ)
6

1+ε1 Q
ε1

2(1+ε1) .
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Lindelof Hypothesis8.), for any ε2 > 0,

E
(
|fq(t)− fq(s)|4

)
< 4|t− s|1+ε2 ,

where9

|t− s| < 1

Qε′2
.

Combining the 2 Lemmas, Proposition 4.3.1 is true for all s < t in [0, 1].

Proof of Lemma 4.3.2. In Section 4.2.2, we consider the moment sequence MQ(n).

By abusing the definition, we get results for the expectation of |fq(t)−fq(s)|. Using

Equation (4.13) and taking n with only one element, so n = (4),

E
(
|fq(t)− fq(s)|4

)
=

1

π4

Q∑
a=1

1

a2
B4,s,t(a

2) +O

(
(logQ)6√

Q

)
,

where

B4,s,t(a
2) :=

∑
a1···a4=a2

4∏
j=1

e(−ajs) (1− e(−aj(t− s))) .

By bounding (1− e(x)) by min{2, 2π|x|},

B4,Q,s,t(a
2) ≤ d4(a

2)min{24, a2(2π|t− s|)4}. (4.15)

8The Generalised Lindelof Hypothesis states that for any primitive character modulo q and any
ε > 0, L(1/2, χ) ≪ qε [64]

9Taking ε′2 = ε2
1+ε2

.
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As a result,

1

π4

Q∑
a=1

1

a2
B4,Q,s,t(a

2) ≤ 24

π4

∑
a≥ 1

(π|t−s|)2

d4(a
2)

a2
+ (2|t− s|)4

∑
a≤ 1

(π|t−s|)2

d4(a
2).

The first sum can be bounded using Rankin’s trick. For σ ∈ (0, 1),

24

π4

∑
a≥ 1

(π|t−s|)2

d4(a
2)

a2
≤ C|t− s|2σ

∑
a≥1

d4(a
2)

a2−σ
= C ′|t− s|2σ,

for some constant C ′. The second sum can be trivially bounded by taking d4(a
2) =

O(aε) for any ε > 0. As a result,

(2|t− s|)4
∑

a≤ 1
(π|t−s|)2

d4(a
2) ≤ C|t− s|4−2(1+ε) = C|t− s|2−2ε.

By choosing σ = (1 + ε)/2 for any ε, then

E
(
|fq(t)− fq(s)|4

)
≤ C ′|t− s|1+ε +O

(
(logQ)6√

Q

)
.

Therefore for |t− s| > (logQ)
6

1+ε

√
Q

1
1+ε

for any ε > 0,

E
(
|fq(t)− fq(s)|4

)
≤ C ′|t− s|1+ε.

Proof of Lemma 4.3.3. Recall the definition of fq(t): the concatenation of points in
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the time graph of 1√
q

∑
n≤qt χ(n). We note the trivial bound

|fq(t)− fq(s)| ≤
1
√
q
|qt− qs| = √

q|t− s|.

Burgess [15] and Wang [86] proved that if |t− s| > q−3/4+ε for any ε > 0,

|fq(t)− fq(s)| ≪
q1/2|t− s|
logA q

,

for any A > 0. Using Abel Summation, we can improve this. As a result,

∑
n≤qt

χ(n) ≤ |qt|1/2
∑
n≤qt

χ(n)√
n

− |qs|1/2
∑
n≤qs

χ(n)√
n

+

ˆ qt

qs

u−1/2
∑
n≤u

χ(n)√
n
du.

By Burgess’ bound [16, Theorem 3],

∑
n≤u

χ(n)√
n

= O(q3/16+ε),

for any ε > 0. Consequently,

∑
qs≤n≤qt

χ(n) ≤ q1/2 · 3q3/16+ε(|t|1/2 − |s|1/2).

Since s < t, (|t|1/2 − |s|1/2) ≤ |t− s|1/2. As a result,

|fq(t)− fq(s)| ≤ q3/16+ε|t− s|1/2.
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In this case,

E
(
|fq(t)− fq(s)|4

)
≤ |t− s|2

π(2Q)− π(Q)

∑
q≤[Q,2Q]

q3/4+ε ≤ Q3/4+ε|t− s|2.

Therefore for any δ,

E
(
|fq(t)− fq(s)|4

)
≤ |t− s|1+δ

is satisfied if

|t− s| < Q− 3/4+ε
1−δ .

However for any δ > 0, this covers only a small percentage of values t, s ∈ [0, 1].

Let us assume the Generalised Lindelöf Hypothesis [50, Corollary 5.20], an im-

plication of GRH [29, Section 1.9]: for any ε > 0,

L(1/2, χ) ≪ qε.

It is a folklore conjecture (see e.g. [32]), using the Generalised Lindelof Hypothesis,

that

|fq(t)− fq(s)| ≤ qε|t− s|1/2.

As a result,

E
(
|fq(t)− fq(s)|4

)
≤ Qε|t− s|2.
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Consequently for |t− s| < 1

Q
ε

1−δ
,

E
(
|fq(t)− fq(s)|4

)
≤ |t− s|1+δ.

Combined with Lemma 4.3.2, Equation 4.14 is true for all s < t in [0, 1].

Therefore, assuming GRH, the sequence of distributions satisfies Kolmogorov’s

tightness criterion and is therefore tight. As a result, (FQ) is relatively compact and,

using Theorem 4.2.1, conditionally converges in distribution to the random process

F .

We have therefore proven Theorem 4.1.1, the main theorem of the chapter.
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Chapter 5

Concluding Remarks and FutureWork

In this final chapter, we conclude the main results of the thesis.

We started by considering character sums

Sχ(t) :=
1
√
q

∑
n≤qt

χ(n),

and the continuous modification to character paths

fχ(t) := Sχ(t) +
{qt}
√
q
χ (⌈qt⌉) .

In Chapter 2, we considered the distribution of complex character paths with

prime modulus,

Fq,±(t) : = {fχ(t) : χ mod q, χ(−1) = ±1}.

The limiting distribution of the complex case was a random process, formulated

as Fourier series with Steinhaus random multiplicative functions as the Fourier co-

efficients. This mirrored the work of Bober, Goldmakher, Granville, and Kouk-

oulopoulos [9], who found the limiting distribution of the maximum of character

sums used the same random distribution. In Chapter 3, we identified the support

of the law of the aforementioned random process, and found examples of functions

in the support. Future work is to further investigate the links between the random
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process and character sums.

In Chapter 4, we modified our distribution from Chapter 2 to the distribution

of real character paths with prime modulus:

GQ,±(t) : = {fχ(t) : q ∈ [Q, 2Q], χ mod q ∈ R, χ(−1) = ±1} .

Here we picked our prime conductor in a dyadic range [Q, 2Q] for some large Q,

and investigated the behaviour as Q → ∞. By assuming GRH, a condition we

hope to remove, the limiting distribution of (GQ) is formulated as a Fourier series

with Rademacher, instead of Steinhaus, random multiplicative functions as Fourier

coefficients.

Independent to removing the condition on the Generalised Riemann Hypothesis,

further advances in this field could include removing the condition that the conductor

of the character paths has to be a prime number. There could then exist a scenario

where there are too many characters that vanish due to sharing a factor with the

modulus. As a result, the limiting distributions with Steinhaus and Rademacher

random multiplicative functions as Fourier coefficients may not provide the best

model. However, for suitably smooth conductors, where the number of prime factors

is not too large, the same limiting distributions shown in this thesis could suffice.
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Appendix A

The Fourier Expansion of Sχ(t)

Recall the definition

Sχ(t) :=
1
√
q

∑
n≤qt

χ(n),

for any primitive Dirichlet character χ mod q. We view this as a function over

‘time’ t, for 0 ≤ t ≤ 1. We extend this domain by using the periodicity of χ and

finding the Fourier expansion.

Lemma A.0.1. The normalised partial character sum has the Fourier series

Sχ(t) =
τ(χ)

2πi
√
q

∑
k ̸=0

χ(k)

k
(1− e(−kt)),

where τ(χ) denotes the Gauss sum

τ(χ) =

q∑
a=1

χ(a)e(a/q).

Note that this is only valid for t which is not a discontinuity of the function.

Proof. First, we find the Fourier coefficients of the periodic function Sχ(t):

Ŝχ(k) =

ˆ 1

0

Sχ(t)e(−kt)dt.

By splitting the integral into t ∈ [a/q, (a + 1)/q] for 0 ≤ a < q and using the
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definition of Sχ(t), the Fourier transform equals

Ŝχ(k) =
1
√
q

q∑
n=1

χ(n)

ˆ 1

n/q

e(−kt)dt =


1
√
q

q∑
n=1

χ(n)

(
1− n

q

)
; k = 0,

1
√
q

q∑
n=1

χ(n)
1− e(−kn/q)

−2πik
; k ̸= 0.

The total sum
∑q

n=1 χ(n) vanishes, so we can simplify Ŝχ(k). Therefore,

Ŝχ(0) = − 1

q3/2

q∑
n=1

nχ(n).

We use this for k ̸= 0 as well, so

Ŝχ(k) =
1

2πik
√
q

q∑
n=1

χ(n)e(−kn/q) =:
χ(−k)τ(χ)
2πik

√
q
,

using the definition of the Gauss sum τ(χ) and noting that χ is primitive.

As a result, the Fourier series is

Sχ(t) =
∑
k∈Z

Ŝχ(k)e(kt) = − 1

q3/2

q∑
n=1

nχ(n)− τ(χ)

2πi
√
q

∑
k ̸=0

χ(k)

k
e(−kt).

We can simplify this further by noting that Sχ(0) = 0. Therefore,

− 1

q3/2

q∑
n=1

nχ(n) =
τ(χ)

2πi
√
q

∑
k ̸=0

χ(k)

k
,

leading to the desired result.

In Chapters 2 and 4, we use the following truncation of the Fourier series [67,
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Equation 9.19]:

Sχ(t) =
τ(χ)

2πi
√
q

∑
0<|k|≤K

χ(k)

k
(1− e(−kt)) +O

(
ϕ(q)

K
√
q
log(K)

)
. (A.1)

This holds whenever t is not a discontinuity of the function. This equates to when-

ever tq ∈ Z. This is particularly useful when considering character paths, a contin-

uous version of character sums, as there are no discontinuities to worry about.

The error is calculated using the following theorem.

Theorem A.0.2. [67, Theorem D.2] If f has a bounded variation1 on [0, 1], then

for any t,

∣∣∣∣∣∣f(t
+) + f(t−)

2
−
∑
|k|≤K

f̂(k)e(kt)

∣∣∣∣∣∣ ≤
ˆ 1−

0+
min

(
1

2
,

1

(2K + 1)π sin(πx)

)
|df(t+ x)|.

Proof. Let DK(x) be the Dirichlet kernel,

DK(x) =
K∑

k=−K

e(kx).

We have,

K∑
k=−K

f̂(k)e(kt) =

ˆ
T
f(x)DK(t− x)dx =

ˆ
T
f(t− x)DK(x)dx,

where T = R/Z. Dirichlet kernels have certain properties that can help us analyse

1A function f has bounded variation if the total variation is bounded [84]. The total variation
on an interval [a, b] is the supremum of the sum of |f(xi+1) − f(xi)| over the set of all partitions
of [a, b], {P = {x0, . . . , xnP

}} [52].
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the integral. Firstly, DK is an even function, so the integral is equivalent to

ˆ
T
DK(x)f(t+ x)dx. (A.2)

If x ̸∈ Z, DK(x) is a geometric series and

DK(x) =
e((K + 1)x)− e(−Kx)

e(x)− 1
=

sin((2K + 1)πx)

sin(πx)
.

Additionally let EK(x) be the function

EK(x) = s(x) +
K∑
k=1

sin(2πkx)

πk
,

where s(x) is the saw-tooth function

s(x) =


{x} − 1

2
; if x ̸∈ Z,

0 ; if x ∈ Z.

Figure A.1: The saw-tooth function s(x) for x ∈ [0, 5/2].

The function is also known as the secant coefficient, and has the bound [67,
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Lemma D.1]

|EK(x)| ≤ min

(
1

2
,

1

(2K + 1)π| sin(πx)|

)
. (A.3)

Since EK is an odd periodic function, we can take x ∈ [0, 1/2]. For x ∈ Z, this is

now just the x = 0 case. For x ̸∈ Z, we can differentiate EK to obtain

E
′

K(x) = 1 + 2
K∑
k=1

cos(2πkx) = DK(x).

Therefore, since f has bounded variation on T, Equation (A.2) equals

ˆ 1−

0+
E

′

K(x)f(t+ x)dx =

ˆ 1−

0+
f(t+ x)dEK(x).

Using integration by parts (see [67, Theorem A.2] for more),

ˆ 1−

0+
f(t+ x)dEK(x) = EK(1

−)f(t+ 1−)− EK(0
+)f(t+ 0+)−

ˆ 1−

0+
EK(x)|d(f(t+ x)|.

From the definition of EK , and using the 1−periodicity of f ,

K∑
k=−K

f̂(k)e(kt) =

ˆ 1−

0+
f(t+ x)dEK(x) =

f(t−) + f(t+)

2
−
ˆ 1−

0+
EK(x)df(t+ x).

Finally, rearranging the equation and applying the bound from Equation (A.3),

∣∣∣∣∣f(t+) + f(t−)

2
−

K∑
k=−K

f̂(k)e(kt)

∣∣∣∣∣ ≤
ˆ 1−

0+
min

(
1

2
,

1

(2K + 1)π| sin(πx)|

)
|df(t+ x)|.

Character sums have a bounded variation on [0, 1], notably ϕ(q). We can improve
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this by using the Legendre-Eratosthenes sieve.

Theorem A.0.3. [67, Theorem 3.1] Let S(x, y; q) denote the number of integers n

such that x < n ≤ x+ y and (n, q) = 1. Then for any real x and y ≥ 0,

S(x, y; q) =
ϕ(q)

q
y +O

(
2ω(q)

)
,

where ω(q) is the number of distinct primes factors2 of q.

The theorem tells us that the residues are well distributed in the interval [0, q].

Additionally, for y ≥ qε the error term is smaller than the main term, as ω(n) ≪

log n/ log log n for n ≥ 3 [77, Theorem 11].

As a result, for α, β ∈ [0, 1] where (β − α) > q−1+ε,

Var[α,β]Sχ(t) ≪
ϕ(q)
√
q
(β − α). (A.4)

Here Var[α,β] is the total variation3. For (β − α) < q−1, the variation is bounded by

O(1/
√
q) or vanishes, depending on the locations of α and β. Therefore, knowing

the variation, we apply Theorem A.0.2 to character sums Sχ(t). When t is not a

discontinuity of the function,

∣∣∣∣∣∣Sχ(t)−
τ(χ)

2πi
√
q

∑
|k|≤K

χ(k)

k
(1− e(−kt))

∣∣∣∣∣∣
≤
ˆ 1−

0+
min

(
1

2
,

1

(2K + 1)π sin(πx)

)
|dSχ(t+ x)|+O

(
1
√
q

)
.

The error term is due to Sχ(t) being a step function, so the Fourier series could be

2In our case, q is prime so ω(q) = 1.
3The total variation on an interval [a, b] is the supremum of the sum of |f(xi+1) − f(xi)| over

the set of all partitions of [a, b], {P = {x0, . . . , xnP
}} [52].
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up to 1/
√
q away from the character sum. We split the integral into K intervals of

equal length. For K ≤ q1−ε, we can use Equation (A.4) to bound |dSχ(t + x)| by
ϕ(q)
K
√
q
dx. As a result, the integral has the upper bound

ϕ(q)

K
√
q

K∑
i=1

ˆ i/K

(i−1)/K

min

(
1

2
,

1

(2K + 1)π sin(πx)

)
dx. (A.5)

To simplify the proof, we will take the minimum as 1/((2K + 1)π sin(πx)), except

for the first and final interval. Therefore, the integral is bounded by

ϕ(q)

K2
√
q
+

ϕ(q)

πK(2K + 1)
√
q

K−2∑
i=1

ˆ (i+1)/K

i/K

1

sin(πx)
dx.

Taking 1/ sin(πx) ≪ 1
x
, which holds for 0 < x < 1/2, we see that Equation (A.5) is

bounded by

Φ :=
ϕ(q)

K2
√
q
+

ϕ(q)

K(2K + 1)
√
q

K/2−1∑
i=1

∣∣∣∣log( i

K

)∣∣∣∣+ K−2∑
i=K/2+1

1

K sin
(
πK−1

K

)
 .

Therefore,

Φ ≤ ϕ(q)

K2
√
q
+

ϕ(q)

K(2K + 1)
√
q

(
K logK +

1

sin
(
πK−1

K

))≪ ϕ(q)

K
√
q
logK.

Consequently, for K ≤ q1−ε, as the integral bound is larger than 1/
√
q

Sχ(t) =
τ(χ)

2πi
√
q

∑
|k|≤K

χ(k)

k
(1− e(−kt)) +

(
ϕ(q)

K
√
q
logK

)
.

When K > q1−ε, we can still split the integral into K intervals. Recalling that

character sums are step functions with ϕ(q) jumps, for K > ϕ(q) there must be
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intervals where the variation vanishes4. Therefore we say the variation is bounded

by 1 for ϕ(q) intervals and vanishes otherwise. For ease of notation, we will order

the ϕ(q) intervals by n1 < · · · < nϕ(q), where |nj+1 − nj| < ϕ(q). Therefore for

K > q,

∣∣∣∣∣∣Sχ(t)−
τ(χ)

2πi
√
q

∑
|k|≤K

χ(k)

k
(1− e(−kt))

∣∣∣∣∣∣
≪ 1

√
q

ϕ(q)−1∑
i=1

ˆ ni+1/K

ni/K

min

(
1

2
,

1

(2K + 1)π sin(πx)

)
dx+O

(
1
√
q

)
.

As above, we take 1/((2K + 1)π sin(πx)) as the minimum except for the first and

last term. Therefore the integral is bounded by

ϕ(q)

K
√
q
+

1

π(2K + 1)
√
q

ϕ(q)−1∑
i=2

ˆ ni+1/K

ni/K

1

sin(πx)
dx.

By bounding 1/ sin(πx) by 1/x, the above equation is bounded by

ϕ(q)

K
√
q
+

1

K
√
q

ϕ(q)−1∑
i=1

∣∣∣log (ni

K

)∣∣∣ dx.
To err on the side of caution, we take | log(ni/K)| ≤ logK. The second term is

consequently bigger than the first, and therefore for K > q,

Sχ(t) =
τ(χ)

2πi
√
q

∑
|k|≤K

χ(k)

k
(1− e(−kt)) +O

(
ϕ(q)

K
√
q
logK

)
+O

(
1
√
q

)
.

In Chapters 2 and 4, we take K = q and Q respectively, where q ∈ [Q, 2Q] in

the latter case. For both cases, the first error is larger than 1/
√
q, so we use the

4This is shown by the pigeonhole principle.
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following formula:

Sχ(t) =
τ(χ)

2πi
√
q

∑
|k|≤K

χ(k)

k
(1− e(−kt)) +O

(
ϕ(q)

K
√
q
logK

)
.
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