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Abstract 

This thesis explores whether early life exposure to disease has long-term consequences 
for one’s health and economic outcomes, measured in older age. It builds upon the 
Developmental Origins of Health and Disease hypothesis (DOHaD), which suggests that 
adverse early life circumstances can contribute to long-lasting, irreversible effects on 
one’s health and well-being in older age. Research investigating developmental origins 
requires both detailed data on early life circumstances and later-life outcomes, which 
can be challenging to undertake. 

In this interdisciplinary thesis, we expanded the literature with new research, software, 
and data. Chapter 2 shows ArchiveOCR: a new custom-coded software solution to 
digitising historical tables and its first use case of digitisation of 40,000 tables of weekly 
regional disease notifications. Chapter 3 details WeightGIS, and how it was 
implemented in the construction of a time-invariant 1931-1971 district structure for 
England and Wales. Chapter 4 contains a large new historical database on 20th Century 
England and Wales using the methods within Chapter one and two. 

The data was then utilised in two research chapters. Chapter 5 shows that UK Biobank 
participants who experienced increased exposure to scarlet fever had a higher risk of 
later-life heart disease and declined fluid intelligence. Finally, chapter 6 found UK 
Biobank participants with high genetic risk to asthma were at less risk of developing 
asthma in later-life if exposed to scarlet fever or pertussis in early life, but those with 
moderate risk had no associated decline in risk.  
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1 Chapter 1: Introduction 

Until the 1950s, it was still believed that a foetus was akin to a parasite, therefore 

protecting it from the actions of the mother1. After thalidomide was introduced as a 

treatment for morning sickness in the 1950s, which subsequently led to an epidemic of 

birth defects, researchers began to take in utero exposures seriously1. However, given 

obvious ethical concerns of human experimentation, researching the effects of 

exposures within utero or childhood was challenging. Crucially, one must also wait to 

observe a change to determine the effect1, which delays warnings of potential harm for 

years or even decades. 

Researchers have sought to work around these limitations with the use of historical 

records. David Barker, whose work spawned the foetal origins’ hypothesis, used 

historical data extensively. One of Barkers’ first papers found an association between 

infant mortality rates and later life heart diseases2. Barker utilised 212 local authorities’ 

data on infant mortality and extracts from the international classification of diseases 

(ICD) 8 records from 1968 to 19782. Barker argued that the infant mortality rate could 

be used as a proxy for the unobserved early life deprivation of nutrition, which 

subsequently led to an increased probability of later life ischemic heart disease2. 

Barkers’ work specifically received some criticism, such as from Mervyn Susser, for 

being mostly correlational yet drawing conclusions without sufficient rigorous testing3. 

However, the principles of using historical data itself were supported by sound 

evidence from a natural shock of the ‘Dutch Hunger Winter’. Dutch citizens had their 

rations of food-restricted to only 400-800 calories a day for nearly six months from 

19444. These restrictions led to women in multiple stages of pregnancy being affected4. 

Mothers who experienced the famine in the third trimester had children born with 

starkly decreased birth weight5, but the children were relatively healthy later in life1. 

Conversely, those exposed in the first half of the pregnancy reported standard birth 

weights but had increased incidence of later life health issues such as heart disease1. As 
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such, a child born of healthy birth weight but with negative exposures in utero could 

still experience consequences in adulthood4. 

A central strength of studies investigating the Dutch Hunger Winter came from having 

a famine that was extensively and reliably documented6. However, just as important 

were the records of military conscripts who provided their place and date of birth 

cohorts6, and could be tested for health and well-being later in life. Without these well-

kept historical statistics, studies investigating the effects of starvation in differing 

trimesters would have been difficult, if not impossible, because of the ethical concerns 

of experimentation on humans4. 

There is no shortage of historical statistics, as the idea of a census dates as far back as 

Babylon7. The UK has a wealth of historical records spanning back centuries. The 

Labour Gazette, the Annual, Quarterly, or even weekly Registrar-General’s reports, and 

even census records all offer crucial insights of the UK across time. The UK also has 

detailed cohort studies for external data to be utilised with, especially during the 20th, 

such as the 1946 National survey on health and development8, the 1958 National Child 

Development study9, the 1970 British Birth cohort10, and the UK Biobank11,12. 

Therefore, the UK is in theory an exceptional location to undertake research 

investigating for long-term consequences of early life exposures or circumstances. 

Despite a wealth of historical records existing within the UK and efforts by both 

government, researchers, and public bodies to digitise these records, limited amounts 

are available. The National Archives estimated that only 10% of its documentation is 

available in any digital form13 and will include simple scans and images which, whilst 

crucial for historical preservation, are not conducive to research. 

Converting the information into data tables faces multiple issues. Manual digitisation 

can be extremely expensive due to labour costs14. Said costs often act as barriers for 

larger projects, limiting digitised material to easy but often aggregated statistics. 

Conversely, many projects ignore these risks but then fail to complete15. 
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An alternative is to use technology that utilises optical character recognition (OCR). 

OCR takes pixel data and converts it to ASCII data a computer can use16. Many solutions, 

such as Google’s Tesseract, are both open source and free to use. However, larger 

projects often require a level of computer science to get the most out of these solutions, 

which can be a significant barrier to entry. 

Even when digitisation is successful, such as the extensive efforts of Vision of Britain by 

the University of Southampton, digitising the exact information does not make it usable. 

The modifiable area unit problem17, or that locations can vary both in name and 

boundaries, frustrates comparing regions over time. The UK’s regional levels change 

significantly over the 20th century, making most regional data suffer from the 

modifiable area unit problem18. Construction of a time-invariant location would 

therefore require extensive historical knowledge of each of the UK’s regions to link 

them appropriately. 

These barriers are not insurmountable, with many papers from David Barker19,20,21, 

among many others1, utilising parts of these records successfully to undergo their 

research. However, if there was a greater enthuses on data preservation for purpose, in 

addition to preservation, there would be a greater potential for a wider group of 

disciplines and professions to utilise these statistics for public good. 

Within this interdisciplinary thesis, I expanded the literature investigating the 

Developmental Origins of Health and Disease (DOHaD) hypothesis with new research, 

software, and data. The new data constructed as part of this thesis represents some of 

the most detailed records of 20th century infectious diseases that are currently 

available to research. However, a diverse set of data sources have been digitised beyond 

this. This has allowed for research within this thesis to differentiate itself by being able 

to both expand with greater detail beyond existing research questions and explore 

completely new ones. 



19 
 

1.1 Contributions 

As many of the current off-the-shelf options for digitisation are complicated to use, this 

thesis further seeks to reduce the barrier of entry of digitisation so that others can also 

undertake similar projects. Chapter 2 provides a significant contribution through the 

construction of a new piece of software called ArchiveOCR, which was specifically 

tailored to assist large scale digitisation of historical numerical tables. ArchiveOCR 

achieved a predictive accuracy of 99.5% from 3,058,921 characters from around 40,000 

tables of weekly regional disease notifications for England and Wales from 1941 to 

1973. The accuracy itself is not a contribution, OCR software frequently advertises an 

accuracy of 99%22. However, when applied to historical data, this advertised rate often 

declines. Digitisation of newspapers from 1803 to 1954 led to accuracy that varied from 

as a high as 98.02% to as low as 71%22. Here, ArchiveOCR managed to worked fairly 

consistently, even with older material. 

The data constructed from ArchiveOCR had complex geospatial qualities which made 

standardisation and quality control complex. The data was reported at a district level, 

regional zones within the UK prior to 197423. However, district definition is not static. 

Districts change names and boundaries within the 20th century, know as the modifiable 

area unit problem24, which can limited comparability of regions across time. Chapter 3 

details the software solution to these problems of WeightGIS, which can construct time-

invariant locations using areal or sub-unit population weighting. The software is itself 

a significant contribution, simplifying standardisation of complex geo-spatial 

geographies and linking data to said geographies into just a few steps. However, 

WeightGIS has also been utilised to create time invariant districts between 1931-1974 

within England and Wales. This allows any data within districts between 1931-1974 to 

be standardised to the 1951 census, allowing for compatibility within locations and 

removes the modifiable area unit problem. 

Both software solutions have been used in tandem to construct a new database from 

historical administrative data and linked it to the UK Biobank. Chapter 4 details the 
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construction of the Biobank Historical Geospatial Information System (BIO-HGIS), and 

how it is designed to assist research new research questions whilst utilising one of the 

largest cohort studies in the UK. The disease notifications represents one of the largest 

new contributions of new data, but this thesis has also processed a wide range of 

additional resources. Administrative data on population, unemployment of counts, and 

geo-locating each individual air raid dropped during the Blitz represent just a few of 

the additional data contributions construct during this thesis. 

Whilst the digitisation and quality control of the historical data is itself a contribution, 

the ability to link to the UK Biobank strengths its importance. Briefly, the UK Biobank is 

a prospective cohort study of UK adults aged 40-69 at time of recruitment12. The UK 

Biobank contains extensive later life information on the health and well-being of its 

participants, most of whom have been genotyped. However, the UK Biobank itself has 

collected relatively little information on individuals’ early life circumstances. BIO-

HGIS’s ability to link administrative data to the UK Biobank participants allows 

construction of early life environments and exposures for its participants. Therefore, 

BIO-HGISs other main contribution is that it allows one main weakness of the UK 

Biobank, of a lack detail on early life, to be partially mitigated. 

The data within BIO-HGIS was used to investigate two research papers. Each paper 

focused on the exploring the potential for long-term consequences of early life exposure 

to childhood diseases, linking itself to the DOHaD research literature. Due to the use of 

brand-new data, each paper offers answers to question that have previously been 

difficult or impossible to investigate. Within Chapter 5, we explored if scarlet fever 

could lead to later life cardiovascular and cognitive health, in addition to educational 

attainment. Whilst we found limited evidence for long-term effects on cognitive health 

or educational attainment, we found a positive association between increased early life 

exposures to scarlet fever and later life ischemic heart disease. The crucial contribution 

of this paper is that it represents on the most well powered studies to date to show an 
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association between streptococcus infections and increased risk of later life 

cardiovascular health. 

Within Chapter 6, we examined whether exposure to disease in early life affects the 

development of asthma. Presently the literature is filled with hypothesis on why asthma 

rates rose so rapidly during the later half of the 20th century within the UK. Many point 

to change in the environment, but evidence is often inconclusive and ignores the highly 

genetic component of asthma. In this paper, we tested a hypothesis based on lab 

experimentation that found that other components of the immune system25^ may 

attenuate the excessive immune response, produced by those with high genetic risk of 

asthma26,27. Many of these components remain heightened after infection, so we 

hypothesised that during an era of heightened childhood infections, that individuals 

would have reduced risk of asthma. To differentiate from the literature, we also 

constructed and controlled for genetic risk to asthma given its high heritability28. 

We found that increased exposure to childhood diseases of scarlet fever and pertussis 

were association with reduced risk of developing later life asthma, but conditional on 

genetic risk. That is, that those exposed to scarlet fever or pertussis had a reduced 

probability of developing asthma, compared to those with low exposures of these 

diseases and the same PGS. However, those exposed to higher rates of scarlet fever or 

pertussis still have a higher risk than those exposed to said diseases, but with a lower 

PGS. This studies association suggests that declining disease incidence within the 20th 

century may in part be relate to the rise in asthma, but also stresses the importance of 

considering gene environmental interactions within research. 
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1.2 Thesis Outline 

This thesis comprises eight chapters, including the introduction and conclusion, which 

are organised as follows: 

Chapter 1: Introduction: This chapter contains an introduction and overall 

contribution from the contents within the thesis and outlines were said content is 

placed within it. 

Chapter 2: ArchiveOCR: Scalable and accessible digitisation for tables: Chapter 2 

covers the construction of ArchiveOCR, and how, in principle, it works to digitise 

tabular historical records. Chapter 2 also covers how ArchiveOCR was used for its first 

project of digitising 40,000 tables of historical records, detailing its accuracy. 

Chapter 3: WeightGIS: To Automate Standardisation of Regions: Chapter 3 covers 

why WeightGIS was constructed, discussing the issues surrounding standardising 

geospatial data. How WeightGIS works and what is required from the end user at each 

step is detailed. Chapter 3 concludes with its use case to create a time-invariant set of 

weights for England and Wales between 1931 and 1974. 

Chapter 4: Data Resource Profile: Biobank Historical Geospatial Information 

System (BIO-HGIS): This chapter summarises the data constructed throughout the 

PhD and motivates why the following two software chapters were required. Chapter 4 

also covers some background knowledge of the UK geospatial make up during 1931 to 

1974 to help to understand in future chapters. This Chapter further motivates why this 

data is of such importance by covering each data source, why it is important, and how 

this data has been used within the thesis or will be used within future work. 

Chapter 5: Early life exposure to scarlet fever is associated with ischemic heart 

disease later in life.: Co-authored with Neil Davies, Frank Windmeijer, and Stephanie 

von Hinke. Chapter 5 investigates if there are further long-term consequences of 
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exposure to scarlet fever in childhood and later life cardiovascular diseases, fluid 

intelligence, and educational attainment. 

Chapter 6: Can gene-environment interactions explain the rise in asthma 

incidence in the 20th century?: Co-authored with Neil Davies, Frank Windmeijer, and 

Stephanie von Hinke. Chapter 6 investigates a plausible biological mechanism to explore 

if a gene-environment interaction between the declining disease incidence and genetic 

predisposition to asthma explains part of the increase in asthma prevalence in the 20th 

century. 

Chapter 7: Conclusion: This section will conclude the thesis and highlight future work. 
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2 Chapter 2: ArchiveOCR: Scalable and accessible digitisation for 
tables 

2.1 Introduction 

Digitisation is transferring media from its original physical form to a digital one using 

computational hardware and software15. Modern type scripts are easier to digitise as 

they are regular, so can usually utilise large generalisable training sets of multiple fonts 

and achieve low Character Error Rates (CERs)29. Older text has much larger variation, 

which often requires source specific training29. Therefore, whilst the problem of 

digitally transcribing modern text is practically a solved problem, most of the cultural 

corpus of humanity remains a challenge to digitise. 

There are many state-of-the-art, commercial, or commonly used solutions to Optical 

character recognition (OCR), many of which have been used to digitised historical 

records to varying degrees of accuracy. A common commercial option is ABBYY 

FineReader. One of the largest known uses of ABBYY FineReader 11 was the digitisation 

of a repository of historical newspapers published in Finland between 1771-192930. 

However, the resulting CER ranged between 8 to 13%30, which is highly undesirable. 

Over the years, many open source solutions now offer similar or better performance, 

such as calamari31, OCRopyor its fork Kraken32, and Tesseract33. A Calamari model 

achieved a 70% improvement over ABBYY FineReader, and a CERs of close to 1% from 

digitising various German literature spanning 1781 to 189229. Tesseract 3.04 reported 

a 9.16% improvement over ABBYY FineReader 11, with further improvements within 

Tesseract 4.034. The F1 score (average precision and recall) of Tesseract could also be 

substantially improved by stronger impact  

Whilst a wealth of open-source options for OCR exists, 4 of the largest big 5 technology 

companies have also invested heavily in this field. Microsoft Azure, Amazon Web 

Services (AWS) Textract, Google Vision, and Facebooks Dectron235 are all examples of 

commercial options in this field. Some of these have already seen publications using 
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them for historical documentation directly. For example, AWS Textract and 

Comprehend were used in digitising 22,436 card indexes on bank loans from 1932 to 

1957 with a spot check on a random 100 cards resulting in a 3.65% error rate36. 

Facebooks Detectron2’s could be used itself, but because its licence is open and more 

permissible, it has also been utilised as part of the OCR pipeline in other software, such 

as LayoutParser37. This full pipeline allows for complex page segmentation, and the use 

of pre-trained models to help extract a wide variation of attributes, such as images, 

tables, headings and more37. Crucially, this software still depends on training models, 

but the ability to create custom models, and the aim to facilitate and openly encourage 

sharing of them, makes it an appealing option. Sadly, this option did not exist in 2019 

when this project was undertaken but will be a core point of comparison at the point of 

release. 

The scale of material that requires digitisation has also led to some considerations of 

crowdsourcing some of the work. A project that achieved significant success using 

crowdsourcing was the Bentham papers Transcription Initiative, which resulted in 2.6 

million words being transcribed over 4 years38. Critically, this implementation is the 

polar opposite of OCR, with 100% of the work being transcribed directly. Whilst it may 

seem potentially inefficient, it keeps digitisation open to anyone. There have, however, 

been community efforts on a more technique front, such as Hugging Face39, which aims 

to bring machine learning enthusiasts together in the attempt to further generalising 

training methods. 

Therefore, the proposed problem at present appears to be a lack of a middle ground. 

Many highly technical solutions exist, but they potentially require more knowledge 

than a potential ‘citizen scientist’ may have. Given the scale of documentation requiring 

digitisation, this is problematic. Whilst many of these advanced solutions are 

impressive, if they require source specific training, then the generalisability benefit is 

lost. However, ignoring all software benefits and just undertaking manual transcription, 
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whilst it makes the project open, is a slow option that cannot scale. As of 2020, only 8% 

of the National archives within the UK are available digitally13, with considerably less, 

therefore, expected to have been digitised beyond pure images. 

2.1.1 A middle ground solution 

My proposed solution, ArchiveOCR, is a currently Python-based software solution 

focused on the digitisation of tables. It can scale from notebooks to super-computers, 

whilst also reducing barriers to entry through graphical user interfacing front ends. 

Whilst not a derivative of pre-existing digitisation software packages, it does 

extensively use the pre-existing open-computer vision library 40 and numpy41. 

However, ArchiveOCR specifically uses a custom written wrapper for CV2 of 

imageObjects, that makes CV2 work in an image based Object-Oriented Programming 

(OOP) approach; publicly available on GitHub. 

ArchiveOCR is positioned as a middle ground solution due to how it works. ArchiveOCR 

has zero learning functionality, and instead is a purely guided identification via the user, 

with said parameters designed to mirror how a human interacts with source material. 

Instead of setting more transitional machine learning hyper-parameters, which guide 

models but are not part of the end result, ArchiveOCR uses hyper-parameters explicitly. 

These parameters are explicit in that they directly affect what happens on the page 

rather than merely guiding a model. For example, if the user states there are two 

columns of data on the page, ArchiveOCR will only attempt to find two columns of data. 

ArchiveOCR will never attempt to find anything it has not been told to, even if it exists. 

If ArchiveOCR cannot match a page to the hyper-parameters, it will simply declare the 

page does not conform and stop. 

Whilst ArchiveOCR hyper-parameters start set at a project level, the hyper-parameters 

can be adjusted on a per page or even element, like a table, basis. This means that 

outliers can be handled separately, or within smaller groups, with their own set of 

hyper-parameters. They can also be copied across to similar projects and adjusted if the 
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sources are similar. When used on a set of tables that is reported as a series, with the 

same structure but with new data, most hyper-parameters should only be required to 

be set once. If you have tens of thousands of similar pages, it then will undertake the 

same operation consistently, assuming tolerances set by the user have been set 

appropriately, without any further guidance. 

The following sections detail how ArchiveOCR works through its main method of table 

identification, and any relevant hyper-parameters that are required for that process. 

Each process of ArchiveOCR has its hyper-parameters explained before an example 

model explanation, and, where appropriate, a rough pseudo code of said processes 

algorithm. It concludes with ArchiveOCR’s first major use, the digitisation of 

approximately 40,000 tables of weekly disease notifications from the Registrar-

General’s Weekly Return for England and Wales (1941-73)42. 

2.2 Isolating tables from lines 

Identification of tables requires knowing the horizontal and vertical lines of the table’s 

bounds. Frequently, table detection uses standard algorithms such as Hough line 

transformations43. Here, for identification of a straight line, each pixel found via edge 

detection is incrementally compared and voted on if it meets the slope-intercept 

parametric equation of a line43. Whilst robust to noise, it can be complex to 

parameterize when the position and rotation of the image can differ across the sample. 

Here, we use a simple custom-made algorithm, that operates on the structure of the 

underlying pixel matrix instead. 

2.2.1 Definition of an image 

An image is a matrix (M) of pixels of height (y) X width (x) of rows and columns. As with 

most programming languages, python is base zero, and the cv2 library is top down, so 

the top left element of the matrix is p0,0 and exists up to lowermost right pixel of py,x 

as shown in Equation 2-1. The value of a given py,x element depends on the colour 

dimension of the image. For example, a binary image constructed of single Bits only 
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allows each element to be zero or one, which leads to a monochrome image of black or 

white44. In binary or other forms of monochromatic ‘grey scale’ images, py,x is equal to 

an integer. However, most modern images use ‘True colour’, which by default is a vector 

of three 8-Bit integers, allowing 256 values ranging from 0 to 255, for red, green, and 

blue respectively45. In this case, the value of py,x is a vector of length three for the red, 

green and blue values. Some images may also contain a fourth 8-Bit integer, so that 

pixels can store additional information, such as transparency. 

Equation 2-1: A matrix representation of Figure 2-1 

𝑴𝒚×𝒙 =  (

𝒑𝟎𝟎 … 𝒑𝟎𝒙
… … …

𝒑𝒚𝟎 … 𝒑
𝒚𝒙

) 

2.2.2 Hyper-parameters of line isolation 

A line that is not perfectly horizontal or vertical will be composed of rows or columns 

of smaller perfectly horizontal or vertical lines, as shown in Figure 2-1. For the custom 

line isolation, all images are inverted, so black text becomes white, and are converted 

into binary images so that only white and black integers of zeros and ones represent 

the pixels. The inversion is used as by default, the CV2 library identifies white elements 

from a black background. 

 

Figure 2-1: An example of a pixel representation of a horizontal line with a positive 
gradient. Here, the black line has been broken into individual smaller lines with grey 
scale shading for clarity. 

The algorithm exploits one of two key rules to simplify line detection. For a horizontal 

line, there should be longer sequences of sequential white pixels within the rows of the 
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matrix. Conversely, if the line is vertical, the longer sequential sequences of white pixels 

should be within the columns. ArchiveOCR will run the line identification twice, 

horizontally and vertically, but to identify what is a line and not another element 

requires a set of hyper-parameters. Users specify the minimum length a line segment 

can take for a given horizontal or vertical line. This can be visually determined by 

zooming into the image, and usually be specified by investigating the font size, or sizes 

of other elements on the page. 

For example, suppose we specify an image of 5000 X 8000 pixels that is purely 

constructed of lines and text without noise. If the text font size is 120 pixels high, then 

setting the vertical line minimum length threshold above the font size guarantees only 

the lines will be identified. Clearly, noise, page curvature, and other defects can make 

line identification challenging. Curvature, in particular, may result in parts of a line 

being smaller than the text, so have to be removed. However, as long as enough of the 

line segments can be captured by this algorithm, then they can be grouped and 

reconstructed later. 

Grouping represents the second line identification hyper-parameter. If the lines are 

badly damaged, only a small part of the line might be available. This could mean that, 

for example, a vertical line 10 pixels wide is only able to identify parts of the line in the 

first and last two columns. The user specifies how wide or tall, for vertical and 

horizontal lines respectively, a given line identification should be. Pixels found within 

that range will be grouped together, rather than assuming them to be separate parts of 

a different line. 

2.2.3 Custom line isolation 

Algorithm 2-1 shows an example process for extracting a vertical line from within an 

image. However, the only difference between the vertical and horizontal isolation 

methods is that vertical isolation searches for sequential sequences within columns, 

whereas the horizontal isolation searchers within rows. 
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The algorithm takes two input parameters. The first is the input image, which is 

constructed as a matrix (M) akin to equation 1, but with each pixel element (p) equal to 

either zero or one. The second parameter is the minimum length a line is allowed to 

take (L), which helps remove smaller elements that may not be a line. L is a hyper 

parameter set by the user. For vertical line isolation, each column is isolated as a vector 

(V). 

 
Algorithm 2-1: Rough line detection (Example for vertical line) 

 
Input: A Matrix (M) of size width (w) X height (h) where each mw,h is a 0 or a 1, and a 
minimum length target parameter (L). 

Output: Matrix M 

1—–for i = 0 to w do 

2———create a vector (V) isolated as the ith column from M 

3———Create a vector of sub vectors from the sequential white pixel elements 

4———for SV in V do 

5————-if the length of SV >= L 

6—————–Save the pixel coordinates from SV in terms of y, x 

7————-end if 

8———end for 

9—–end for 

10—-Set all elements of M to 0, then set all saved y, x coordinates to be equal to 1 

11—-return M 

 

The algorithm then groups sequential white pixel elements together into sub vectors 

(SV) which are separated via the black pixels. If a given SV’s length is greater than the 

minimum length L, these pixel coordinates are stored. This process loops until all 

columns have been processed, then a matrix of dimension of M is returned, but all pixels 

other than the stored elements set to black. 

For example, suppose we have a binary image matrix of 10 X 2 and the minimum length 

L of four. The example image contains only one pixel vertical line of length five in 

column one, but also some noise in the same column. The algorithm would isolate 
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column zero as a vector of p0,0 to p9,0 with each p element equal to zero. The algorithm 

searches for white pixels, which would be equal to one, and finds none. Therefore, no p 

elements from column zero are saved. 

The algorithm then isolates the first column from p0,1 to p9,1 and finds the first five 

elements are white, then three are black, then two are white. Which will result in two 

new vectors of lengths five and two. However, as the minimum length was set to four, 

only the first of the two vectors will be stored, which means when the algorithm 

finishes, only these five pixels will remain in white. 

2.2.4 Table isolation through line identification 

For each table, lines are constructed based on the rough estimates created in Algorithm 

2-1. An example of this output on a table with some curvature damage is shown in 

Figure 2-2. For vertical lines, shown in Figure 2-2, the line grouping searches each row 

within the image for white pixels. For the list of pixels found, they are then grouped 

based on their x position with a spacing parameter, said spacing parameter being a 

hyper-parameter provided by the end user. The row then counts how many groups 

exist within this row, and proceeds to the next. 

 

Figure 2-2: An image showing the output of Algorithm 1 on a damaged page 
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Once all rows have been evaluated, it looks for the most common row count of pixel 

groups and keeps those rows for line identification. Each group can then be transposed 

with a line of best fit plotted through each group. In more complex setups, it is possible 

to plot lines of best fit between line groups, rather than through the whole set of line 

groups. This allows for curvature that would otherwise, with linear approximation 

across line grounds, result in table elements being cut off. Each table is then saved to 

disk for the next process. If the number of columns meets the user target, it is given a 

success tag, which can assist larger scale operations from crashing by conditioning the 

follow-up process on previous success. 

2.3 Isolating table contents 

Tables are traditionally made up of columns and rows. Isolation of rows can be 

undertaken by the same methodology as finding tables, just by looking for continuous 

white space between words or characters. However, the input image is likely to not be 

perfectly rectangular, and some level of rotation is probable; this may interfere with 

row identification. To avoid this, ArchiveOCR applies a 2D perspective transformation 

by extracting the first and last position of each bounding line using the perspective 

transformation within CV2. 

2.3.1 Hyper-parameters of Table isolation 

ArchiveOCR is built primarily for series table extraction, so adds considerable 

additional hyper-parameters to try to ensure tables conform to a set standard. 

Therefore, by default, ArchiveOCR expects each table that is isolated to have a hyper-

parameter of column and row counts, specified by the end user. These can be relaxed, 

which for less consistent tables is required, but ArchiveOCR cannot explicitly check the 

table is correct without a known specification. 

Users must provide a pixel font size hyper-parameter, which can be calculated by 

measuring (in pixels) the width and height of characters in the source material. The 

height and width of the font are both equally important. The height is used to help split 
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rows, within a given column, that might not be possible through traditional white / 

black space delimiting. If we know the font has a height of around 30 pixels, but we find 

a row that is 92 pixels in height, then we know something is wrong with this row. 

Similarly, when splitting characters, if we know characters are around 40 pixels wide, 

but find a character that is 82 pixels wide, then the system can identify that something 

is incorrect. Finally, the user provides a tolerance for these widths and heights, which 

can allow characters slightly too large to not be split. If an element requires splitting, 

then the number of new splits is calculated as the floor of the element dimension 

divided by the font size dimension. 

2.3.2 Rough row isolation 

Rows are roughly isolated through white space delimiting, with a tolerance of black 

pixels to be overwritten set by the user shown in Figure 2-3. Whilst perspective 

transformations will reduce errors in identification, issues may still persist from 

obstructions, damage, erosion, and poor lighting. Rows that have been damaged or 

defaced may be large, as they were not delimited. By calculating, for each column of 

data, each rows height, an average row height can be constructed to assist delimiting 

damaged rows. 

 

Figure 2-3: Rough row isolation via white space delimiting. Left-hand side shows an 
example column, with the right-hand side being the mask constructed from white space 
delimiting. 
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For the rows that are larger than the average, they can be split by ⌊row height / average 

row height⌋ row height new rows. By flooring the result, only rows that are significantly 

larger are changed, and small variations remain unaltered. However, rows may still yet 

not be in the correct order, due to missing rows for example, so Algorithm 2-2 was 

derived to sort rows into their positions in the table, as described next. 

2.3.3 Row Sorting 

The rows that where roughly isolated are ordered vertically within columns but may 

be incorrect. For example, if the first row is missing in any of the columns, the second 

row will appear as the first. A simple solution to solve this would be to construct each 

rows centroid, by isolating the first and last pixels vertically from the row and averaging 

them. For example, if the row existed between (4, 4) and (24, 36), we know the row is 

20 pixels tall and 32 pixels wide, with its (y, x) centroid being at (14, 20). 

However, even after perspective transformation, page warping may mean that items 

closer to a page’s seam start lower on a page and finish sooner. Furthermore, if a row’s 

height varies because the information spans multiple lines, then comparing the distance 

between the centroids of the rows will lead to row elements being incorrectly rejected. 

This issue is avoided by using relative distance, constructed as the centroid of the 

distance between the row elements. Using the right-hand side of Figure 2-3, this 

represents constructing the centroid from the black horizontal lines between the rough 

isolated rows. Whilst the relative distance between rows will still differ based on page 

warping, it will differ significantly less than the rows absolute positions. 

Algorithm 2-2 shows the process of sorting rows, which continues until all rows have 

been accepted or until more than half the columns no longer have entries; with the 

remaining entries assumed to be noise. Algorithm 2-2 takes in the rough rows that 

where isolated for each column (CR), a bounding parameter (B), and the average height 

of the rows (AHR). The bounding parameter determines the maximum distance in 
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terms of y a row can be from a row in another column and still be considered part of 

the current row. 

 

Algorithm 2-2: Row sorting 

 
Input: A List of Lists (CR), where each sub list represents a column’s (C) rough row 
(R) extraction using white space delimiting, a bound (B), and average height (ARH). 

Output: A List of Columns, which each column containing the rows in that column  

1—–i = 0 

2—–While length of empty C is less than number of C / 2 

3———Create the present row (PR) by extracting Ri for each C in CR 

4———for j = 0 to length of PR do 

5————-Compare Relative distance (RD) for Ri,j in PR to all other R in PR 

6———end for 

7———if Each Ri’s RD is within B distance of at least one other Ri’s RD 

8————-Append PR to out list, remove each Ri from CR 

9———Elif All Ri’s are not within B distance to another Ri 

10————-All elements are random, remove each Ri from CR 

11——–Elif Some Ri’s are not within B distance of another Ri 

12————for f for index positions of failed Ri do 

13—————-for subsequent row (RS) in Cf do 

14——————–if RS RD is within B distance of at least one other non-failed Ri 

15————————Replace Ri at index position f within RS, remove rows in Cf before     

   RS 

16——————–end if 

17—————-end for 

18—————-if No RS found for Ri at index position f 

19——————–Row is missing, add a row of dimensions ARH to Cf 

20—————-end if 

21————end for 

22————Append fixed PR to out list, remove each Ri from CR 

23——–end if 

24——–i += 1 
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Algorithm 2-2 iterates through the rough column-row data set and isolates the present 

row (PR) from each row (R) at the current index position i (Ri) in each column. If the 

relative distance (RD) between Ri and Ri+1 is within B distance of at least one other Ri in 

PR, then we assume it is in the correct position. If all rows in PR have at least one link, 

the row is assumed to be correct and accepted. Conversely, if no rows are within B 

distance of at least one other row in PR, then it is impossible to know which row is 

correct, so PR is deleted. 

However, if only some rows fail it is possible to reconstruct PR which is undertaken as 

a two-step process. First, Algorithm 2 assumes that the failed Ri has failed due to noise 

existing before the actual row. This means that there would be more rows present in 

this column than entries to fill. Each failed Ri’s column is iterated through searching for 

an R that meets the distance condition to any non-failed R within PR. If found, R’s before 

this matching Ri+n in this column are deleted and Ri+n replaces Ri in PR. If no match is 

found, then the second step is assumed, that the row is missing. Here a row is 

prepended into the current column of size with the height derived from the average 

height of the rows or AHR. 

2.3.4 Character isolating 

Once we have isolated a row, we can use the same method used to isolate the rough 

rows to isolate the characters within a row. This time, instead of isolating the horizontal 

distance between elements, to isolate rows, the vertical white space between elements 

in the row is isolated and used to separate the individual characters. As before, in the 

case of characters that cannot be split purely on white space, users provide a pixel size 

of the font to be isolated. Then, characters that are not isolated through white space 

delimiting, determined by the width of the isolated characters, are then split based on 

⌊Character Width / pixel font size⌋. 
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2.4 Optical Character Recognition (OCR) through pattern matching 

ArchiveOCR does not use a deep learning mechanism, so the user needs to provide a list 

of samples to compare against for pattern matching. Pattern matching compares two 

images’ pixels, normally a binary image, where a match is simply where the ones or 

zeros are the same for a given pixel between each image. A success is defined by an 

acceptance threshold, representing a percentage number of pixels that must match. 

Pattern matching can be highly accurate, and in modern text and when using characters 

of the same font, can lead to accuracy close to 100%16. 

2.4.1 Hyper-parameters of OCR 

At its core, the OCR within ArchiveOCR is simply an implementation of a pattern match 

algorithm, as described above, that is within the cv2 python library. Whilst ArchiveOCR 

has a ‘training’ mode, it does not involve any machine learning, and is merely a way of 

making the software export characters rather than identify then. Therefore, a ‘hyper-

parameter’ of sorts, is that the user must manually sort the letters that are exported 

into folder bins. So, all the capital A’s go into a folder with the same character, and so 

on. 

The user then provides two thresholds, a sufficiency threshold, and an identification 

threshold. The sufficiency threshold governs at which point a training character can be 

replicated by an existing character. This threshold is a float between 0 and 1, 

representing a percentage. If the user sets the sufficiency threshold to be high, say 0.9, 

then a training character must be 90% similar to another sample in order to be 

removed. Reducing the sufficiency threshold leads to more characters matching within 

the training characters, resulting in fewer characters being used in the predictive stage. 

The predictive threshold is the second hyper-parameter required by the end user, 

which governs how many pixels a training character must match a detected character 

for it to be classified as that character. If the predictive threshold is high, say 0.9, then 

little deviation is permitted for a match to a given character. Whilst this prevents type 
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1 error of predicting a character is actually a different character, setting the threshold 

too high on varied texts will increase type 2 error, where a character cannot predict 

itself. In high-quality text, said risk is less prevalent, as character variation is low. 

The user needs to manage these two thresholds carefully. Whilst setting the sufficiency 

threshold lower may help reduce needless characters being kept, it may have 

consequences for the accuracy of the actual digitisation. Characters that are removed 

may be predictive of unseen characters not in the training sample in ways that 

characters that have been kept cannot. Therefore, initially, some source specific 

experimentation on these thresholds will be required to set them so that type 1 and 2 

errors, as well as additional training runs, are minimised. 

Finally, whilst optional, the user can specify a hyper-parameter of the content of the 

column data. For example, if the data is purely numerical, then there is little point trying 

to match to alphabetical characters. This reduces error and speeds the process up, so is 

a recommended hyper-parameter where the structure of the table is known. 

2.4.2 Constructing the training set 

After setting ArchiveOCR to a training model on an example set of pages, it isolated the 

characters shown in Table 2-1. The user can then try different sufficient thresholds to 

determine if they have done enough training for the characters to predict unseen 

characters. With this example set, we can see, using character 0, that whilst we start 

with 170 characters, that only 36 of them are unique when requiring samples to be at 

least 85% unique. This further reduces to 12, when requiring characters to only be 75% 

unique. This means that the predictive rate for these characters on the training sample 

leads to a 78.67% and 92.94% predictive rate, respectively. 

How high a predictive rate you should aim for depends on the text. The higher the 

variation the text holds, the fewer characters are likely to match. For example, using the 

character 8, when requiring characters to be 85% similar or more to be removed, the 

model still keeps 103 of the 183 characters we observe. Whilst reducing the sufficiency 
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threshold increases the predictive rate, it is still only 76.5%. This suggests that there is 

extensive variation within 8s in our sample, and we may yet need more observations of 

8’s to predict it. ArchiveOCR will export a table like Table 2-1, but for a single predictive 

rate, each time the user asks to re-compile the samples. By comparing the output of 

these tables at different sufficiency thresholds, and looking at the predictive rate, it is 

designed to suggest if more training is required. 

Table 2-1: Based on a training sample of characters, and two acceptance rates of 85% 
and 75%, how many characters were kept as ‘sufficient’ and what is the predictive rate 
of those characters. 

Character Total 

Characters 

provided 

85% Kept 

Characters 

85% 

Predictive 

Rate 

75% Kept 

Characters 

75% 

Predictive 

Rate 

0 170 36 78.67 12 92.94 

1 403 38 90.57 15 96.28 

2 256 40 84.38 10 96.09 

3 246 46 81.38 15 93.90 

4 181 16 91.16 5 97.24 

5 201 46 77.11 17 91.54 

6 183 48 73.77 13 92.90 

7 163 12 92.64 7 95.71 

8 183 103 43.72 43 76.50 

9 181 45 75.14 17 90.61 

2.5 Example use case of digitisation of weekly notifiable diseases 

ArchiveOCR was built originally to assist digitisation of weekly reports of notifiable 

diseases from the Registrar-General’s Weekly Return (1941-73)34. Each page has two 
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tables side by side, shown in Figure 2-4, documenting the number of disease 

notifications that were present in each district; regional zones in the UK prior to 197423. 

 

Figure 2-4: An example page from the Registrar-General’s Weekly Return34 
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Weekly returns between February 1941 and December 1973 were digitised, leading to 

approximately 1670 weeks, 20,000 pages, and 40,000 tables requiring digitisation. 

ArchiveOCR can, for a series data set, allow users to provide row and column names to 

accelerate the process. There were only 12 major changes to row names, so these were 

digitised once separately and then loaded for the relevant pages. However, at present, 

a column labelled ‘Other’ could not be digitised due to it having multiple nested rows 

within potential entries; work since has been undertaken to address this limitation. 

2.5.1 Training OCR 

The only columns processed were numeric, meaning only characters 0-9 required 

training. Training was done from a single week of each year, representing 33 manual 

sorting training runs. A sufficiency acceptance rate of 85% led to 909 sufficient 

characters being isolated across the ten digits outlined in Table 2. The predictive 

acceptance rate was set to 75%. 

Table 2-2: Number of sufficient characters used for this process. 

Character Count 

0 41 

1 89 

2 221 

3 144 

4 50 

5 85 

6 101 

7 34 

8 75 

9 69 
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2.5.2 Validation of output 

There were 15,098,150 characters for identification, although only 3,058,921 of these 

were not dashes and processed; dashes were isolated based on height and set to zero. 

Each page was then manually validated using the inline totals of the counties that the 

districts are within. After analysing two years of data, it became clear automation could 

be applied, and a script was built to calculate where the errors were and highlight them 

to accelerate the process. Between the years of 1943 and 1973, this script identified 

there were 13,927 errors (0.45%) that required correction shown in Figure 2-5. 

 

Figure 2-5: Number errors within each year. The total corrections per year are on the 
left-hand horizontal axis and average per week on the right-hand horizon 

To assist future revisions, a simple script and GUI was built to iterate through these 

errors, where each error could be assigned one of eight reasons why the error had 

occurred. Figure 2-6 shows the result of this process, where the error clause has been 

broken into two categories. Misprinted values N = 1658, (0.054%), printing location 

errors (N = 119, 0.004%), no character being present (N = 374, 0.012%), the character 

being eroded (N = 1579, 0.052%), and the character being obstructed (N = 1257, 

0.041%) are errors deemed not explicitly the fault of ArchiveOCR. 



43 
 

 

Figure 2-6: Error by types by week across 33 years of weekly reports 
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Conversely, failing to recognise a character representing type one error (N = 2778, 

0.091%), row placement issues from Algorithm 2-2 (N = 3790, 0.124%), and prediction 

errors representing type 2 error (N = 3851, 0.126%) are deemed a fault of the setup 

and the system itself. Whilst the script to find the errors could only find regions of the 

page, this review process could identify individual rows, with the total rows with errors 

being 15,419. Whilst this system regrettably did not note how many characters 

required correction, given on average there is 1 character per row, for the 3,058,921 

characters isolated this means the predictive accuracy was 99.5%. 

Accuracy is a complex metric, as OCR accuracy is both the accuracy of isolation of 

elements, and the correct prediction of the text within the elements34. Most professional 

software reports an accuracy of 99%22, which is the required standard from many 

governments for OCR software46, but this is on clean ink-jet text that is likely already 

available in a digital form. Digitisation of newspapers from 1803 to 1954 led to accuracy 

that varied from as a high as 98.02% to as low as 71%22. Therefore, given the historical 

nature of the documentation, we are confident ArchiveOCR represents a contributed to 

this field. 

2.6 Conclusion 

ArchiveOCR offers an easy-to-use alternative to many OCR packages and software at 

present and has been tested on a large dataset. It has continued to be used for further 

projects and avoids overly complicated methods of operation, focusing on structural 

components of pixels within tables, columns, or rows for identification. Using 

ArchiveOCR allowed for 15,098,150 characters to be processed and cleaned within the 

span of two months, mostly by a single individual with little financial cost, something 

which would be challenging using presently available means. 
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3 Chapter 3: WeightGIS: Automate Standardisation of Regions 

3.1 Introduction 

The aggregation of individual-level data into larger districts can change the underlying 

mean and standard deviations of the data, which can change associations to phenotypic 

outcomes47. Bias resulting from changes of areal data, because of scaling or zoning, is 

known as the Modifiable Area Unit Problem48,49. This bias is a form of selection bias 

which can significantly change the value and direction of regression analysis if not 

account for50 

To demonstrate this, let us use an example. In this case, the reported data is at the 

district level containing 10,000 individuals, a lower order unit of 1km grid squares 

exists, as well as households (and their location) where the data originates from. Figure 

3-1 shows this example visually, with the circles representing a household with an 

individual infected with a notifiable disease. The district is locally also unofficially 

divided in terms of north-south areas, with the north area shaded in Figure 1. If this 

represents weekly data, then this district reported 20 cases of a notifiable disease in 

this week. 

The scaling issue here is that, by reporting the aggregate of these disease cases, the 

observed associations this disease may have when aggregated may not be 

representative of the underling truth. For example, an outbreak of 20 cases might not 

be considerable for an area with 10,000 individuals, as this only results in 0.2 cases per 

100 individuals. However, if only 500 individuals live across the North, then given 17 

of these cases occurred in the north, this instead results in 3.4 cases per 100 individuals. 

When we aggregated, we lose the ability to utilise this underlying variation and 

potentially miss important associations. 

Aggregation like this can also inflate correlation values when comparing between 

districts49. This is because as you aggregated smaller zones into large ones, the overall 

variation in the data is reduced, making areas more artificially more comparable. This 
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can cause difficulty in interpreting analysis, as the homogenous distribution 

assumption of the variable across the larger geospatial units becomes far harder to 

hold51. The larger the aggregation, the more bias is likely introduced as a result to any 

subsequent analysis48. 

 

Figure 3-1: An example district (outlined in black), with 1km grid squares (grey outlines), 
households (circles), and a division of the district in a north (shaded) and area. 
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The next issue that can result from the Modifiable Areal Unit Problem is that of zoning. 

Suppose in this example that the government is in the process of re-drawing the 

electoral boundaries and decides to split the current district on the north-south 

division. However, other parties complain that this would result in ruling power 

maximizing their voting share, and instead propose it be divided east and west, so that 

both new districts remain politically diverse. Regardless of the choice, the decision is 

purely arbitrary, yet may still have significant consequences for areal data. Despite 

reporting the exact same week, the counts and subsequent means and standard 

deviations of the rates of these east-west and north-south splits of our example weeks 

disease notifications would be completely different, depending on how the district is 

partitioned49. This could change the outcome of any analysis using this data, despite the 

reasoning for this change being an arbitrary decision on where to draw a boundary. 

If these boundaries change frequently over time, this limits any potential for 

comparison of population characteristics or dynamics in a time series setting when 

using areal data52. This is a widespread problem53,48,52,54, for example, between 1841 

and 1972 there were 4247 changes to the districts in Britain, and over 20,000 at a 

smaller geographic level of parishes between 1876 and 197248. 

There have been various solutions to limit the bias caused from Modifiable Areal Unit 

Problem. One of the original solutions was aggregation into larger static geospatial 

units that remain constant over time51. Whilst simple to apply, aggregation like this has 

significant consequences when interpreting analysis. Similar to the concerns of the 

aggregation of individual to regional data, the means and standard deviations can be 

manipulated on aggregation which may change the result. You also in this instance are 

implicitly giving up useful information that exists, which is highly undesirable. 

Despite these problems, aggregation is still commonly applied, as alternative methods 

can be complex. For example, a recent paper undertook a Genome Wide Association 

Study (GWAS) investigating the association between regional Infant Mortality Rates 
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(IMR) as a proxy for early life environment55 and natural selection. The hypothesis 

being that certain genetic variants may not survive in populations that have a harsh 

early life environment but could if one’s early life environment was better. However, 

the authors aggregated district level IMR (approximately 1472 districts) to 62 counties 

55, despite the extensive variation that exists in IMR at a district level56. Given the level 

of aggregation this results in, serious questions should be asked on what the inference 

of said results mean. 

Whilst more challenging, other techniques found within a GIS background mostly 

involve weighting. One of the simplest forms of weighting is areal interpolation, where 

the difference between areas in geographic units (such as meters squared) is used to 

represent the weight52. Multiplying the population base parameter by said weight, 

scales it to the original shape of the location, allowing it to remain consistent over 

time52. This too, has significant problems, the most obvious being that of the 

assumption of homogenous populations across geospatial space48. If 60% of the 

population live in the 5% of the area that was transferred, then the weights will not 

account for this. 

More complex solutions have utilised additional source data to construct the weights. 

Satellite data of density of infrastructure57, night-time light58, road map data59, and sub-

unit populations52,48, are all examples of methods used to address the homogenous 

population problem of areal weighting. However, in principle, all methods of weighting 

at present require an estimation of the source population that moved to another 

district52. Although, many of the more advanced techniques require data, such as from 

satellites, that cannot be utilised in a historical context which is of particular concern in 

this instance. 

3.1.1 Pipeline Justification 

A review of data constructed after digitising district level data from the registrar 

generals’ weekly disease notifications42 in England and Wales from 1941 to 1973 led to 
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significant concerns. Considerable changes to both the number and shape of districts 

occur within this period, which would make the study of population and regional 

characteristics over time extremely challenging without introducing bias. The UK 

especially has established long-running geospatial disparities. The north-south divide, 

based on evidence of migration pattern to London from 1851 to 1911, was already 

established in the 19th century60. However, even in adjoined locations, it is common to 

find wages and living conditions that differ and remain entrenched 61. Therefore, these 

circumstances would warrant weighting to limit any potential selection bias that is a 

result of zoning issues that occur over the course of the 32-year period. 

Given our data was historical, we had limited options to use for weighting. Whilst 

aggregation would be simple, any interpretation of the results would be questionable, 

as it would reduce the variation in the data set from around 1472 locations to only 62. 

Previous literature suggested that for the UK, parishes would be sufficiently small that 

they could act as a sub-unit population weighting parameter for larger areas such as 

districts48. There are approximately 17,000 parishes, relative to the 1472 districts as of 

1951 in England and Wales, making weighting highly specific to settlement level 

populations. Weighting via sub-units is not new but can involve a considerable amount 

of laboriously manual labour. Given the scale of the task ahead, I designed a new 

pipeline for undertaking these procedures. 

Within this paper, I first present a python package, WeightGIS, that is designed to act as 

a pipeline to standardise regional boundaries by using sub-units. It has been 

generalised so should be of use to other researchers undertaking similar problems in 

other countries, which given the frequency of the problem52, should be useful. I then 

present the sub-unit population weights constructed via WeightGIS and compare said 

weights to standard areal weighting that is also commonly used. Weights allow for any 

external data that can be linked to districts to be standardised between the years of 

1931-1974 to the 1951 census by default. Finally, I explain how, in future work, these 

weights will be validated, and with this validation, any underlying issues corrected. The 
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future aim being to construct a time-invariant view of the UK from the first census 

undertaken by a centralised office of the General Register Office in 185148, to the recent 

2021 census. 

3.2 Construction of weights 

WeightGIS uses shapefiles, a format for boundary data, to compare changes relative to 

a base year by investigating overlapping geometry and sub geometry. For instance, for 

WeightGIS, shapefiles’ polygons represent the regions or locations for WeightGIS to 

compare. There are multiple python-based packages to load shapefiles presently. 

WeightGIS uses an altered version of pyshp62, named ShapeObject63, which loads 

geometry as Shapely64 compatible geometry. The Shapely64 library contains crucial 

methods for the calculation of overlap between polygons. Therefore, adjusting a pre-

existing loader from pyshp62 to construct shapefiles as objects of Shapely64 geometry 

simplifies the WeightGIS process. Although developed for WeightGIS, ShapeObject63 is 

available separately. 

 

Figure 3-2: Changes to Newburn UD, highlighted polygon, in 1931 (Left) compared to 
1951 (Right) 



51 
 

Here, we utilise data from the Great British Historical GIS project65 to explain the 

process of WeightGIS through an example. Specifically, as shown in Figure 3, the 

example utilises changes involving Newburn urban district (UD) in 1931 and 1951. This 

example will also use the parish structure and population as of 1921 for sub-unit 

weighting. 

3.2.1 Construction of base weights 

The first step is to create the base weights. These weights represent total changes 

between geographical regions and act as the rough weights that may need to be 

adjusted. Whilst comparisons between shapefiles can determine if and to what extent 

changes occurred, they cannot infer when they occurred. In this stage, the base weights 

are the combined effect of all changes between shapefiles. After constructing the base 

weights, WeightGIS then has methods to help assign when they occur and to unpick 

combined changes. 

Returning to the example, between 1931 and 1951, Newburn UD both ceded and gained 

territory. Newcastle Upon Tyne County Bough (CB) absorbed part of Newburn’s eastern 

border. However, Newburn also gained part of the Castle Ward rural district (RD) to 

the north. Figure 3-3 details these changes. As we are using the base year of 1951, the 

only districts that overlap with the 1951 shape of Newburn UD are Castle Ward RD and 

Newburn UD. As Newcastle Upon Tyne CB absorbed territory before the base year 

shape, this change had already occurred by 1951. Therefore, weights before 1951 will 

not include Newcastle Upon Tyne CB. 

WeightGIS can construct both area weights and sub-unit weights. The area differences 

between the shapefiles are the weight for area weighting. Despite potentially being less 

accurate, area weighting is useful if using highly detailed shapefiles that do not have a 

lower level available to use as a sub-unit weight. Area weighting works by isolating the 

percentage of the base shape that overlaps another shape, in another shapefile, at the 

same level. Referring to Figure 3-3, the 1951 shape of Newburn UD includes the polka-
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dotted area, but not the line dashed area, with the opposite for the 1931 shape of 

Newburn UD. The area overlaps for the 1951 shape for Newburn UD are, as of 1931, 

93.9% for Newburn UD and 0.4% for Castle Ward RD. Therefore, with area weighting, 

these values represent the weights. 

 

Figure 3-3: The grey outline shows Newburn UD borders as of 1951. The territory 
Newburn UD gained from Castle Ward RD shown with polka dots, were as territory 
ceded to Newcastle Upon Tyne CB line dashes. 

Subunit weighting is more complicated. WeightGIS will divide the comparison shape 

into smaller areas using the subunit shapefile. Doing so creates a comparison shape but 

one made of subunits, with Figure 3-4 showing both the 1931 shapes of Newburn UD 

on the left and Castle Ward RD on the right after subdivision. WeightGIS then isolates 

the parts of this comparison shape of subunits that overlap the base shape, highlighted 

in grey in Figure 3-4. The weight is the total population in the highlighted area divided 

by the population total of the complete set of subunits. 

Using the change between Newburn UD and Newcastle Upon Tyne CB as an example, 

the 1931 district shapefile comprises the seven parishes shown in Figure 3-4. Table 3- 

1 shows the seven parish populations before and after area weighting. The change  
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Figure 3-4: Areas of sub-units that are part of 1951 Newburn UD shown in grey 
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between Newburn UD and Newcastle Upon Tyne CB affects only a single parish of East 

Denton CP (7 in Figure 3-4). 

Table 3-1: Population of parishes contained within Newburn UD, with the first entry 
corresponding to the parish that was partially absorbed by Newcastle Upon Tyne CB in 
1951. 

ID Parish Name 1931 

Population 

1951 

Population 

1 Thockley CP 2640 2640 

2 Newburn CP 4523 4523 

3 WallBottle CP 3080 3080 

4 Newburn Hall CP 4164 4164 

5 Sugley CP 1054 1054 

6 West Denton CP 504 504 

7 East Denton CP 2865 1869 

- Total 

Population 

18829 17833 

 

Newburn UD in 1951, therefore, contains six whole parishes and 64.73% of the 

population of East Denton CP, which leads to population totals for Newburn as of 1931 

and 1951 of 18829 and 17833, respectively. The weight is then the difference in subunit 

populations totals between the base year and the alternate shapefiles’ year. With the 

base year of 1951, the weight is 17833 / 18829 or 94.71%. Applying the same process 

to the change with Castle Ward RD leads to a weight of 0.24%. 

3.2.2 Algorithmic generalisation of base weight construction 

Algorithm 3-1 shows the generalised iteration process explained in section 3.2.1. For a 

base shapefile of length (BL), determined from the number of polygons within the 



55 
 

shapefile, WeightGIS isolates each ith polygon as the base polygon (BP). WeightGIS will 

then compare BP to each alternative polygon (AP) in each alternative shapefiles (AS). If 

BP overlaps part of AP, then WeightGIS will calculate a weight. If no change occurs, the 

area weight is 100%, and WeightGIS will also set the population weight to equal 100%. 

Otherwise, WeightGIS uses the sub-unit shapefile (SUS) AP into sub-unit polygons 

containing a weighting parameter (WP). 

 
Algorithm 3-1: Construction of base weights 

 
Input: A list of shapefiles (LS), the name of the shapefile to be set as the base, and a 
sub-unit shapefile (SUS) with a weight parameter (WP) within its attribute table. 

Output: A json database of weights for location in the base shapefile, for each 
reference time. 

1—–Isolate base shapefile (BS) from other shapefiles of length (BL) 

2—–for i=0 to BL do 

3———Isolate the ith base polygon (BP) from BS 

4———for alternate shapefile (AS) in LS that is not BS do 

5————-Isolate each alternate polygon (AP) as a list (APL) in AS that overlaps BP 

6————-for AP in APL do 

7—————–Calculate area overlap between BP and AP 

8—————–if area overlap != 100% 

9———————Divide AP and into subunits from SUS, calculate total ∑ 𝑊𝑃𝐴𝑃
𝑖=0  

10——————–Isolate within subunits shaped as AP by BP, calculate total  ∑ 𝑊𝑃𝐵𝑃
𝑖=0  

11——————–Calculate the population weight from WP totals as 
∑ 𝑊𝑃𝐵𝑃

𝑖=0

∑ 𝑊𝑃𝐴𝑃
𝑖=0

∗ 100 

12—————-Elif area overlap == 100% 

13——————–population weight == 100% 

14—————-end if 

15————end for 

16——–end for 

17—-end for 

 

The subunits that overlap AP are first made fit, with the fitted sub-unit area used to 

scale the WP. Once all sub-units that make up AP have been isolated, the total of WP 

from these fitted subunits is calculated. The BP is then overlaid on the AP shape made 
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up of subunits, with any areas not included removed. The weight is then the summation 

of WP in BP divided by the summation of WP in AP. This process iterates until all BP 

weights have been constructed from comparisons to AP in all alternate shapefiles. Then, 

WeightGIS stores the calculated percentages weights as python floats in a JSON 

database. Python floats are equivalent to C double, which gives 14 floating points of 

precision. 

3.2.3 JSON datastructure 

Figure 3-5 shows an example JSON database for a base shapefile with a single entry, 

with the JSON structure used by WeightGIS as follows. First, the database states the 

name of BP, constructed from one or multiple entries within the BS attribute table. 

Second, the date for the weights of a given AS, which is derived from the names of the 

shapefiles themselves. The third level includes the names of AP that overlap the base 

shape within that AS’s date level. Finally, each third-level overlap stores both the area 

and population weights calculated. In the base year, there will only be a single level 

3.3 Quality control weights 

The base weights both lack standardised names and dates. Specifically, the changes do 

not show exactly when the change occurred, only that a change occurred between the 

years of the shapefiles. If the difference in time between shapefiles is large, this leads to 

many years being inappropriately weighted. Also, a lack of standardised names can lead 

locations to appear to change drastically despite the location only changing the name. 

The weights, therefore, require quality control procedures. 

3.3.1 Quality controlling names 

WeightGIS can create a standardised set of names, here referred to as a place reference, 

for each location in the base year. This look-up database standardises all names to those 

used in the base year. Locational name changes represent one of the most common 

sources of place variation over time66, so this is a required step to use the weights. 
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{ 

  "10108949__NEWBURNUD": { 

    "1931": { 

      "10108937__CASTLE WARDRD": { 

        "Area": 0.3510946943497809, 

        "Population": 0.23678662780411672 

      }, 

      "10108949__NEWBURNUD": { 

        "Area": 93.86227723032636, 

        "Population": 94.71453886174326 

      } 

    }, 

    "1951": { 

      "10108949__NEWBURNUD": { 

        "Area": 100.0, 

        "Population": 100.0 

      } 

    } 

  } 

} 

Figure 3-5: JSON data structure of a weight entry 
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To standardise names, WeightGIS constructs unique IDs or utilises pre-existing IDs that 

link to the location of the geometry. The unique location IDs can infer locations of 

different names as identical if they overlap. WeightGIS also allows for a multi-level 

structure of names. Multi-level names can be corrected simultaneously but can assist 

with frequent within-level name duplication.  

Table 3-2: An example of a multi-level place reference for districts and counties. 

GID District District Alternate 

1 

County County 

Alternate 1 

10002217 AXMINSTERUD  DEVON DEVONSHIRE 

10002229 BUDLEIGH 

SALTERTONUD 

BUDLEIGH 

SALTERTON MB 

DEVON DEVONSHIRE 

10002230 LYNTONUD LYNTONMB DEVON DEVONSHIRE 

10025369 IVYBRIDGEUD  DEVON DEVONSHIRE 

10026260 TIVERTONMB  DEVON DEVONSHIRE 

However, WeightGIS requires strict nesting of lower-level units. Therefore, if a lower 

level suffers from ambiguity, the end-user must manually assign the low-level to higher-

level relation. Using the UK as of 1951 as an example, users may use a County-District 

structure of names, as shown in Table 3-2. WeightGIS will then standardise any 

alternative names back to the first instance. For example, WeightGIS would rename 

Lynton MB to Lynton UD. 

3.3.2 Quality controlling dates 

Shapefiles reflect the changes that occurred between their dates. However, it does not 

detail when these changes occurred. By investigating the base weights that are not 

equal to 100%, WeightGIS will produce a changelog detailing expected changes. Table 

3-3 shows an example changelog with the changes the end-user added. WeightGIS 

compares each shapefile and adds an expected change if the weights are not 100%. The 
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maximum expected change is the number of alternative shapefiles. It is then up to the 

user to locate when these changes occurred and fill in the dates. Removing any non-

changing location saves the end-user some time. 

Table 3-3: An example change log. 

GID Name Expected 

Changes 

Changes1 Changes2 

10173322 STROUD RD 1 01/04/1935 01/04/1936 

10108913 NEWCASTLE UPON 

TYNE CB 

1 01/04/1935 - 

10108925 AMBLE UD 0 - - 

10108937 CASTLE WARD RD 1 01/04/1935 - 

10108949 NEWBURN UD 1 01/04/1935 - 

To assign the dates, WeightGIS searches for the number of changes that occurred per 

observed change. If a single date exists between two shapefiles, WeightGIS assigns the 

date from the changelog to the observed change. Using the Newburn UD example of 

before, the change that is observed by 1951 occurred on 01/04/1935. Subsequently, 

the date of the weighted change is, therefore, 01/04/1935, rather than 1951. Crucially, 

if multiple changes occur, WeightGIS can only utilise the last change, as this change is 

the only observed change between the shapefiles. So, for Stroud RD, all the changes will 

have been set to have occurred on 01/04/1936. Further shapefiles can add additional 

changes if sufficient information allows for their construction. 

3.4 Quality control external data 

WeightGIS has methods to assist standardisation of external data into one that is 

compatible with the weights. Most quality control methods are generalisable, but the 

user must undertake some steps themselves. WeightGIS requires individual files for 

each point in time, with the file names as ISO 8601 or yyyy-mm-dd. 
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3.4.1 Standardisation of names 

Standardisation of names uses the place reference constructed initially from shapefiles. 

Each name in the external data is cross-referenced against the names in the place 

reference. If a match is found, but it is not a reference name, then WeightGIS reassigns 

the name as the reference. Crucially, external files may contain names not used within 

the shapefiles, with a common reason being spelling mistakes. Users can submit a 

custom spell check sheet to correct all instances to a set reference name. For genuine 

alternative names, the user must update the place reference itself. 

3.4.2 Solve Ambiguity 

Sometimes, records may break down regions into ambiguous locations. For example, 

records may split regions into North and South sub-regions. Unless these regions have 

a distinct polygon in the base shapefile, then merge issues may arise. Setting all 

instances of sub-regions to the same reference name prevents the data from being lost. 

However, this leads to ambiguities, which WeightGIS detects and merges during this 

quality control step. In addition, the merge warnings may reveal improperly 

standardised names which, unless corrected, WeightGIS will aggregate. 

3.4.3 Relational databases 

As WeightGIS uses JSON to store the weights, it also requires the external data to be in 

the same format before it can weight the external data. JSON loads as dictionaries which 

increases both the speed of assignment and merging of external datasets. However, 

unlike SQL, the plain text storage of JSON can assist with debugging for those less 

familiar with database structures. Once the individual dates have been quality 

controlled, WeightGIS will restructure the CSV data of date-place-attribute-values to a 

JSON database format per location of attribute-date-value. This also allows for multiple 

databases to be quickly joined by location, which can reduce the number of weighting 

processes that are required. 
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3.5 Weighting External Data 

When both the names and dates of the weights have been quality controlled, they can 

then be applied to external data. First, WeightGIS constructs a master database from all 

the quality-controlled external datasets. Then, this master database undergoes 

weighting using the process shown in Algorithm 3-2. WeightGIS isolates, for each 

weight location, the dates of any changes. If there is only a single date, no changes occur, 

and the unweighted data is the weighted version. 

 
Algorithm 3-2: Construct weighted database 

 
Input: Master database from quality controlled external data (MD), and the quality 
controlled JSON Weights database (WD). 

Output: A weighted JSON database 

1—–For i=0 to length of WD do 

2———Extract dates of changes (DC) for WD location i 

3———if The length of DC == 1 

4————-No changes, assign unweighted data to output database for all dates 

5———Elif The length of DC > 1 

6————-For weight group (WG) in DC do 

7—————-Set the start and end date for this WG 

8—————-For Place weight (PW) in WG do 

9——————–For each attribute-date-value set in MD for WDi 

10———————–If start data <= date < end date 

11—————————Weighted value = (value * (weight / 100)) 

12———————–end if 

13——————-end for 

14—————end for 

15—————Sum the weighted value for each attribute-date 

16—————Assign weighted value to output 

17————end for 

18——–end if 

19—-end for 
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If more than a single date exists, then values require weighting. WeightGIS sets the start 

and end dates between weight groups (WG). If this WG is the last group, then the end 

date of the whole dataset becomes the last date instead. The calculated weight for each 

attribute-date-value weight is (value * (weight / 100)) because WeightGIS stores the 

weights as percentages. Across each date, WeightGIS sums the individually weighted 

values from each weight location to construct the weighted value. This process iterates 

through each place in WD, then stores the weighted values in a JSON database. 

3.6 Example use case by weighting England and Wales between 1931-1974 

WeightGIS was designed to assist in construction of a time-invariant district data set 

from the registrar generals’ weekly disease notifications1 in England and Wales from 

1941 to 1973. To apply WeightGIS to this data, we used district shapefiles from the 

Great British Historical GIS project65 for the years 1931, 1951, 1961, and 1971 in 

addition to the parish shapefile of 1921. For the weight parameter, we linked the parish 

population from Vision of Britain67. We selected 1951 to construct as our base weight 

reference year, as it is the centre of the distribution of the shapefiles date range. 

Table 3-4: The number of changes that occurred for each district taking 1951 as the base 
year (N = 1472) 

Changes Count 

0 385 

1 716 

2 300 

3 51 

4 14 

5 4 

6 2 

We constructed the changelog from Vision of Britain67, with most districts changed at 

least once over the 40 years of study, as shown in Table 3. Of the 1472 districts in the 

base year of 1951, to which we standardised to, WeightGIS standardised 1395. The 77 

districts which remained had greater than one change occurring between the 
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shapefiles. To fix these remaining 77, we used information from Vision of Britain67 that 

showed parishes associated with each change, which we used to reconstruct additional 

shapefiles. After rerunning WeightGIS, this allowed standardisation of all 1472 districts. 

Figure 3-6 shows the districts that exist in the standardised dataset, with those 

highlighted in colour requiring a border redrawing by hand, to handle more than a 

single change between census years. 

 

Figure 3-6: Areas in England and Wales that required at least one additional shapefile to 
be drawn between census shapefiles from additional data as shown in colour. 



64 
 

3.6.1 Evaluating differences between weight types 

We calculated both area and sub-unit population weights using WeightGIS. The area 

weights are the difference in km squared between each district that changed. Whereas 

for population weighting, the shapefiles were subdivided into parishes, and the weight 

was calculated from the change in parish population. Of the changes that occurred, 73% 

had no difference between area and subunit population weighting, as shown in Figure 

3-7. 

 

Figure 3-7: The percentage difference in weighting parameter between the area weight 
estimate, and the sub-unit population weight estimate. 

Most of the changes that occurred are documented as reassigning parishes, or parts 

thereof, to another district. There was, therefore, bound to be similarity, although it was 

considerably higher than initially expected. Despite this, area weighting would still have 

led to under or over estimations. The area weights tended to be overestimated when 
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involving changes with rural districts, but only 219 by over 5%, and an underestimated 

for urban districts, although only 244 by over 5%. 

Rural areas are larger and made up of significantly more parishes than other district 

types and are best suited to show the strength of WeightGIS. Whilst rural districts have 

less population than many urban areas and with much lower density, the total 

population can still be considerable. A 10% area change can therefore easily be an 

overestimate if the specific parishes in question were of lower population density. 

Whilst the inverse is also possible, if the larger parishes were absorbed, as the changes 

for rural districts are also large, it was less likely to underestimate than overestimate. 

In comparison, Urban districts comprise fewer parishes but at a higher density. If one 

of four parishes is part of a change, despite it potentially only making up 25% of the 

area, it is highly possible to have over 25% of the population. As with rural districts, the 

inverse is also true, and if one of the smaller parishes were involved in the change, then 

area weighting would overestimate. 

3.6.2 Next steps: Validation 

Whilst the differences between area and population weighting are interesting, this 

comparison does not validate how well the underlying weighting procedure has 

worked. For validation to work, it must be possible to compare the weighted value to 

the actual value that existed for the weighted shape in another time period. For 

example, if the district of Leeds has grown by 30% by 1971 compared to its 1951 size, 

it is required that sub-unit data exists sufficiently small enough to recreate the 1951 

version of Leeds as of 1971. This task is challenging, as the only subunit below districts 

is parishes, and outside of basic population counts and demographics, no information 

was recorded48. 

Therefore, in a historical context, validation requires an assumption. As the only data 

available consistently at each census is parish population, the population is the only 

variable that can be weighed and then validated reliably. All other variables will have 
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to hold the assumption that they are proportioned relative to the population of these 

parishes, as we cannot validate how weighting works at an individual phenotypic level, 

as no such data is known to exist. Work has currently started on this validation. The aim 

initially is to compare how weighting has performed by location by comparing the 1951 

weights to the 1931, 1961, and 1971 census reports on parish population. This work is 

still ongoing, as further data is required to be acquired and digitised in order for this 

validation to be completed. 

3.6.3 Conclusion 

The modifiable area unit problem can frustrate the creation of panel data as locations 

change names or boundaries. WeightGIS offers simple, mostly automated methods to 

create weights, and also contains a suite of quality control measures to help clean 

external data before weighting. As not all areas will be suitable for subunit weighting, 

WeightGIS still allows for both area weighting to increase its potential use. Whilst 

WeightGIS still requires manual efforts, such as getting the dates of location changes, it 

offers a more automated solution that is currently known to exist. Therefore, whilst still 

containing manual efforts, often undertaking these efforts increases the understanding 

the underlying geography of the area. If the individual is to become the data manager 

of said geospatial files and weights, this in invaluable. However, as it remains intensive 

work which will likely precluded individuals not focused a given country or time period 

within it. WeightGIS offers a pipeline of resources, so regardless of weight type, 

WeightGIS should be of use to those working with time-varying locations and data. We 

hope that the validation procedure being undertaken will provide clarity of its 

importance and use in the future. 
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4 Chapter 4: Data Resource Profile: The Biobank Historical 
Geospatial Information System (BIO-HGIS) 

The UK Biobank is a prospective cohort study of UK adults aged 40-69 at time of 

recruitment12. It contains extensive later life information on the health and well-being 

of its participants, most of whom have been genotyped. Many external sources of data 

have already been linked to the UK Biobank, such as the Hospital Episode Statistics68, 

allowing for the UK Biobanks’ potential to grow over time. However, the UK Biobank 

itself has collected relatively little information on individuals’ early life circumstances. 

A solution to this is to reconstruct individual exposures by using administrative level 

data. Whilst there is limited data on early life circumstances within the UK Biobank, 

crucially, the UK Biobank did collect the participants’ place of birth as coordinates69. By 

utilising the birth coordinates, therefore, individuals within the UK Biobank can be 

mapped to regional areas of the UK during the 20th century. Using these regional 

Statistics, link via location of birth, to construct exposures allows the furthering of the 

UK Biobank’s use case for even more research. 

However, at present, there is a lack of extensively detailed administrative data from the 

20th century at lower enough levels of geographic density which could be utilised to 

reconstruct early life exposures. Even when said data exists, due to its complexity such 

as due to issues of geographic areas changing over time48, it can be challenging to use. 

This is heightened by the fact that research focused on the UK Biobank tends to be 

health related, with such researchers not necessarily having a Geographic Information 

System (GIS) background. 

Within this chapter, I present the accumulation of interdisciplinary work and methods 

to create a new database, called the Biobank Historical Geographic Information System 

(BIO-HGIS). At the start of this research project, the scope was to just link current 

administrative data from the past that exists, or undertake small digitisation projects, 

to the UK Biobank; hence the databases current name. Since then, the project has grown 
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drastically, with large new detailed datasets being digitised. A simple data return to the 

UK Biobank, therefore, would limit the benefits of the current research that has been 

undertaken. 

With so much new data, many other cohort studies with cohort data after 1931 such as 

the 1946 National Survey on Health and Development8, the 1958 National Child 

Development study9, or the 1970 British Birth Cohort10, also stand to benefit from this 

new data. Furthermore, for many researchers less focused on health outcomes directly, 

detailed geospatial data is of extensive benefit. 

Depositing the data in a data repository like the UK Data service also risks the data not 

sufficiently being used, despite its potential impact. Therefore, a decision was made to 

turn a simple data return into a new database project focused on the digitisation, 

protection, and provision of historical statistics at geospatial administrative locations. 

This involves the construction of a new website, which will allow for the vast amounts 

of data to be visually explored for more general members of the public or media. It will 

also allow the data to be downloaded.  

At present, the construction of this new website is still underway. However, once 

finalised, the aim is to release the data within this paper in stages. Once a chapter 

involving the data has been accepted for publication, the aim will be to ensure that links 

within that paper link to the source data on the website. This should aid replication 

studies, but also ensure that there is no lag between interest in the data source and the 

ability to use it. Over time, it should also expose different audiences to more and more 

data, as links will take people to a larger database than at the point of publication. It is 

hoped that papers within this thesis will start being published over the course of 2023, 

and with that, so too will the data start be being made available. 
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4.1 Geographical levels within the UK 

Before considering the data within BIO-HGIS, an understanding of UK geography is 

required in understanding the structure of BIO-HGIS, and the level of detail within the 

data sources. This next section briefly summarises how the UK was structured from 

1931 to 1974. The United Kingdom (UK) had multiple regional levels from 1931 to 

1974. First, the UK comprises the four countries of England, Wales, Scotland, and 

Northern Ireland. England and Wales have the following sub-divisions, from the most 

aggregated to lowest level of detail: regions, subregions, counties, administrative 

counties, districts, and parishes; shown in Figure 4-1. 

Regions and sub-regions represent broad areas, such as the North or Northwest, that 

represent large historical regions that subdivide the nations within the UK. The sub-

regions have a similar structure and use as the current government office regions. 

Counties are like regions but are more detailed, with 64 counties as of 1951. Many of 

these county’s stem from their original classification in the Middle Ages Domesday 

record from 108670. However, others have changed since, with Yorkshire becoming 

divided and areas of the North aggregated. 

Administrative counties divide counties further into rural and urban areas in addition 

to the county boroughs. Administrative counties are mostly a division for statistical 

reporting as opposed to a historical measure. County Boroughs are a form of a district, 

which could act independently of county controls for matters such as sanitation and 

health care71, hence their separate inclusion within administrative counties. As for 

districts, there were within England and Wales four core types, with some additional 

London specific classifiers, shown in Table 4-1. Broadly, higher-order districts 

represent increasing levels of density of development, with there being approximately 

1870 districts in Great Britain and 1472 districts in England and Wales. 
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Figure 4-1: A visual break down of regions within Great Britain during 1931-1971 using shapefiles from Vision of Britain. 
The second row of images represents the highlighted county in the upper right of the first row.44 
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Table 4-1: Explanation of what each district constitutes from Vision of britain71. 

District Break 

Down 

Code Description 

Rural District RD Contains market-towns of differing size 

Urban District UD Containing small towns 

Municipal Borough MB Towns which do not possess the more dignified title 

of city 

County Borough CB Towns able to free themselves from county control 

London specific Various Various London types exist 

Parish level data is significantly denser, allowing for extensive variation, with nearly 

14,000 parishes within Great Britain. The parishes are strongly associated with the 

church72, with the church’s original aim that every settlement, no matter its size, should 

have a church with a priest72. However, very little information was recorded for 

parishes outside of census years. 

Most of the data in the BIO-HGIS is at a district level and focused on England and Wales. 

The focus on England and Wales is in part due to the devolved nature within the UK73. 

Devolution meant records could be recorded separately for different nations, especially 

Northern Ireland and Scotland, which would lead to additional costs and difficulty in 

digitisation. Conversely, England and Wales’s records were reported together from 

1931 to 1974, so easy to collect. 

To allow linkage to the UK Biobank, we used all geographic layers in Figure 4-1 as 

shapefiles67 to geo-locate everyone within the UK Biobank. To do so, we use the easting 

and northing coordinates of birth provided by the UK biobank, and then placed each 

coordinate within a given geographic layer. This means that each individual in the UK 

Biobank can link to any data from any of the regional layers within Figure 4-1. We aim 
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to provide this linkage file to the UK Biobank, so anyone can link regional data, from 

BIO-HGIS or otherwise, to Biobank participants based on their birth coordinate. 

4.2 Data Waves 

BIO-HGIS has been constructed over many years, with each wave of digitisation focused 

on specific outcomes and continues to grow. Each individual data collection wave is 

summarised in Table 4-2. The following sections detail the content of each wave further, 

provide a context for its collection, and its present or future intended use. 

4.3  Wave 1: Supporting data for the Great British Historical Database on 

Health and Health Care 

The first wave focused on finalising data from the Great British Historical Database on 

Health and Health Care (GBHDHHC)74. The GBHDHHC contains the majority of Table 17 

within the Registrar General’s Statistical Review of England and Wales. Table 17 

contained the estimated population, births by legitimacy and sex, deaths by sex, and 

various measures of infant mortality for each district annually. However, whilst the 

efforts undertaken by GBHDHHC were extensive, spanning most years from 1930 to 

1974, it lacked five years of data from 1958 to 1962. 

Whilst district population may not be a crucial outcome variable itself, it is vital for 

converting the counts that many historical records report to rates. Therefore, wave one 

focused on digitising the remaining five years of data that were missing with help of 

ABBYY FINEREADER 14. This process, despite its automation, still led to considerable 

manual time costs. Given larger datasets were to be processed, this experience inspired 

the creation of a custom software for digitisation of ArchiveOCR, as shown in Chapter 

2. 
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Table 4-2: Data collection waves for the BIO-HGIS 

Wav

e 

Data Source Variables Dates Time 

Dimensio

n 

Spatial 

dimension 

Description 

1 Registrar 

General’s 

Statistical 

Review of 

England and 

Wales and the 

Great British 

Historical 

Database on 

Health and 

Health Care 

(GBHDHHC) 

Estimated 

population, Births 

by legitimacy and 

sex, Deaths by sex, 

infant mortality 

1930-

1974 

Annual Districts Mostly Quality controlling the 

Great British Historical Database 

on Health and Health Care 

(GBHDHHC), but also digitised 

the five years of data that was 

missing 
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2 Register 

Generals 

Weekly 

Return 

Acute Meningitis, 

Acute Polio Non 

Paralytic, Acute 

Polio Paralytic, 

Diphtheria, 

Dysentery, Food 

Poisoning, Infective 

Jaundice, Measles, 

Pneumonia, Scarlet 

Fever, Tuberculosis 

Meninges and CNS, 

Tuberculosis 

Respiratory, 

Pertussis 

1941-

1974 

Weekly Districts Notifiable diseases reported 

weekly for each district within 

England and Wales. Here we 

digitised the 40,000 tables these 

weekly reports between 1941-

1974. Not all Disease remain 

notifiable across the whole date 

range. 

3 War, State, 

and Society 

Air Raid count, 

Deaths from Air 

raids, Injured from 

Air Raids, Expected 

Causality from Air 

Raids 

1939-

1945 

Daily Districts Each of the 32,000 air raids were 

transcribed by the War, State, 

and Society research group. 

Here, we geo-locate each of 

these locations into a district. 
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4 Vision of 

Britain, 

NOMIS, 

CASWEB 

Numerous 1931, 

1951, 

1961, 

1971 

Annual Districts The data collected through the 

census frequently changes, but 

this makes comparisons difficult. 

Here we standardised several of 

the variables, such as 

employment by age groups, and 

linked all of the possible 

variables for standardisation at a 

later date 

5 Registrar 

General’s 

Statistical 

Review of 

England and 

Wales 

Mortality by age 

and sex in roughly 

5-year bins 

1947-

1972 

Monthly England 

and Wales 

Mortality data by rough age 

groupings by sex and month of 

death 
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5 Registrar 

General’s 

Statistical 

Review of 

England and 

Wales 

Scarlatina and 

rheumatic deaths 

1848-

1901 

Annual England 

and Wales 

19th century mortality data 

relating to Streptococcus 

pyogenes 

5 Registrar 

General’s 

Statistical 

Review of 

England and 

Wales 

Population for 

England and Wales, 

Scotland, Ireland, 

and Northern 

Ireland 

1861-

2018 

Annual National Individual population counts, 

opposed to UK totals that are 

more readily available. 

6 Hansard: 

Direct Grant 

Schools Vol 

738 

Grant value, Pupil 

Count, Pupil 

Teacher Ratio 

1966 Annual Parishes The amount of money granted 

by the state for each individual 

grammar school, with number of 

pupils and that ratio to teachers 
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7 Labour 

Gazette 

Unemployment of 

Males, Females, and 

under 18s 

1945-

1971 

Monthly Subset of 

Districts 

Unemployment in the largest 

towns, cities, and urban areas 

were recorded monthly in the 

Labour Gazette. 

7 Labour 

Gazette 

Unemployment of 

Males, Females, and 

under 18s by Sector 

1947-

1971 

Monthly Great 

Britain, UK 

Unemployment by Census 

groupings of professions, such as 

Mining, with some select 

individual professions also 

reported within each category, 

such as Coal Mining 
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Upon completing this process, it was attempted to merge the data into the UK Biobank. 

The extent of the modifiable area unit problem18 had been underestimated, and the 

process of manual merging was time-consuming. As many districts were abolished or 

changed drastically in terms of boundary, a considerable number of locations could 

only be roughly merged, leading to drastic changes in variables within certain districts 

over time. This experience led to some useable data but showed a better method was 

required. This challenge would later lead to the creation of WeightGIS, as shown in 

Chapter 3, to handle the output of Wave 2 and to quality control all data waves, 

including Wave 1. 

4.3.1 ‘Beyond’ Barker: Infant mortality at Birth and Ischemic Heart Disease in Older 
Age 

After the data was quality controlled by WeightGIS, we attempted a replication of David 

Barkers 1986 paper2. This work was undertaken jointly with Stephanie von Hinke, Hans 

van Kippersluis, and Pietro Biroli. Barker showed that regional infant mortality was 

associated with an increased risk of later-life heart disease but only used 212 local 

authorities’ data on infant mortality as of 19212. Here we worked on replicating the 

principle of Bakers’ work but using the time-varying accounts for infant mortality 

across 1472 districts between 1934 and 197156. We linked these data sources to the UK 

Biobank and constructed an early life environment with the infant mortality in the 

district and year of birth for each participant (N = 378,873). 

The first crucial difference to Barker’s paper was that, by utilising the UK Biobank, we 

could use a regional level construction of early life environments but individually 

measured outcomes of ischemic heart disease. Barker’s paper, in comparison, had a 

regional measure for both the early life environment and outcome. We further used the 

genotyped participants within the UK Biobank to construct a polygenic score for each 

participant to investigate the potential of the gene-environment interplay between 

early life environment and ischemic heart disease. In doing so, we sought to investigate 
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if genetic susceptibility can aggregate adverse early life circumstances. We then 

undertook further sensitivity analyses with a sibling sub-sample (N=33,069). 

We found several key findings. Our first was from a direct replication of Barker, using a 

regression of a binary measure of ischemic heart disease on infant mortality rates in 

the year and district of birth. We found a strong association between the infant 

mortality rates, proxying for adverse early life circumstances, and later life ischemic 

heart disease. Even adding both the polygenic score for ischemic heart disease and 

allowing for gene-environmental interplay did not notably change the result. A one 

standard deviation increase in the infant mortality rate in the year and district of birth 

increased the probability of ischemic heart disease by 1.1 percentage points, but was 

stronger for those with a high polygenic score. 

We then utilised the district fixed effects, which showed that over half of this association 

between ischemic heart disease and early life environment was capturing time-

invariant differences between districts. This means that infant mortality rates are likely 

to capture far more than just individual level nutritional deficiencies that Barker 

suggested. Whilst our results were robust but attenuated for district fixed effects, the 

same was not true for family fixed effects, suggesting that infant mortality rates do not 

capture the within family variation. As we found a non-negligible gene-environment 

interaction, we also found evidence that even those at high genetic risk of later life 

diseases, such as ischemic heart diseases, can have this risk mitigated with 

interventions to their environments. Improving early life circumstances could reduce 

the variation in later life ischemic heart disease stemming from genetic risk. 

4.4 Wave 2: Weekly notifiable diseases from 1941 to 1973 

To survive childhood was historically difficult but doing so unscathed was considerably 

harder. The poliovirus could leave its victim paralysed or otherwise disfigured75, 

streptococcus permanently damages the heart or limbs through rheumatism76, or 

measles reduce the immune system antibody repertoire leaving individuals vulnerable 
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to subsequent infection and mortality.77. Whilst many of these diseases are no longer 

prevalent, scarring from early exposures remains a risk even within the 21st century. 

Those infected with malaria continue to have a persistent risk of haemoglobinuria, 

jaundice and anemia78,79, and those with pneumonia have an increased risk of chronic 

lung disease80. 

Infections can also lead to declines in mental health, well-being, or cognition through 

the impairment of brain functionality81,82. Early life infections during critical periods of 

brain development are associated with increased aggressive behaviour and subsequent 

violent criminal behaviour82. Multiple psychiatric disorders, from obsessive-

compulsive disorders to depression, have also been similarly associated83, although the 

evidence is still often poorly established83. One of the well-established pathways is 

because of inflammatory responses in the brain84, with neuro-inflammation linked to 

multiple forms of paediatric autoimmune neuropsychiatric disorders and Sydenham 

chorea85. Longer-term consequences of difficult to recognise symptoms have also been 

described, such as declines in later life cognitive health86. 

Those affected in utero by the 1918 influenza pandemic reported declined socio-

economic outcomes, such as educational attainment, lower income, and lower socio-

economic status87. Reductions in mental health in childhood, which could continue into 

midlife for males, has also been further associated with exposure in utero to the 1918 

influenza pandemic88. Each additional infection-related hospitalisation in Finland was 

associated with lower log earnings, fewer years in employment, and a higher likelihood 

of requiring social welfare89. Whilst infections are crucial, simply being in poor health, 

be it from birth weight, nutrition, or otherwise, have similar outcomes90,91. 

Vaccines92,93,77, penicillin94,95, and general improvements to living conditions96 reduced 

childhood mortality throughout the 20th century. These innovations led to the leading 

cause of death in western nations to change from contagious diseases to the non-

transmissible94, such as cardiovascular disease. Despite this success, many infections 
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once thought to be mostly banished have begun to return. Scarlet fever97, pertussis98, 

and measles99 have all risen to a level that would have been unprecedented a decade 

ago. 

Whilst still far from their peaks within the 19th century or before, this rise is 

concerning. Many of these diseases still have unknown quantities, and the research 

body continues to discover the increasing burden these diseases placed on survivors. 

For example, streptococcus pyogenes, the bacteria behind scarlet fever, may in some 

cases cause inflammation of the brain, leading to severe behavioural regression85. 

However, the return of these diseases occurred relatively recently, so any renewed 

investigation into the potential consequences of early life infections of more historical 

childhood diseases must utilise data from the past. 

Limited data are available historically for diseases. However, research methods have 

adapted to meet this challenge through the utilisation of exogenous historical shocks in 

an environment1. For example, one of the most comprehensive examples of this 

methodology was for those affected in utero by the 1918 influenza pandemic, which 

resulted in reductions in their later life socio-economic outcomes87. Within the UK, 

extracts from the Registrar General’s Weekly Return were used to construct indices of 

the Asian flu outbreak in 1957100. These indices were then utilised in combination with 

the National Childhood Development study and found that mean test scores, at both 

ages 7 and 11, were reduced100. 

Exogenous shocks alone cannot answer every question, but as most of the extensive 

historical records on disease notifications have not been digitised, there is little 

alternative at present. To alleviate this, we digitised the Registrar General’s Weekly 

Return for notifiable diseases across the 1472 districts of England and Wales42 between 

1941 and 1973. If a notifiable disease was found by a general practitioner, it was 

required that these instances be reported to the central state. The total of these in each 

district is reported each week in the Registrar General’s Weekly Return. 
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Digitisation of the main body of the table resulted in data from 13 notifiable diseases. 

We started in 1941 as the tables within the Registrar General’s Weekly Return changed 

drastically before 1941, which would have added considerable time costs to the project. 

Furthermore, both measles and pertussis, which are reported consistently from 1941 

to 1973, were also only notifiable from the week starting from the 4th November 1939. 

Table 4-3: Diseases by dates of availability within BIO-HGIS 

Disease Start Date End Date 

Acute Meningitis 01/01/1970 31/12/1973 

Acute Polio Non-Paralytic 08/01/1955 21/09/1968 

Acute Polio Paralytic 08/01/1955 21/09/1968 

Diphtheria 01/01/1941 08/01/1955 

Dysentery 01/01/1970 31/12/1973 

Food Poisoning 01/01/1970 31/12/1973 

Infective Jaundice 01/01/1970 31/12/1973 

Measles 01/01/1941 31/12/1973 

Pertussis 01/01/1941 31/12/1973 

Pneumonia 01/01/1941 08/01/1955 

Scarlet Fever 01/01/1941 31/12/1973 

Tuberculosis Meninges and CNS 01/01/1970 31/12/1973 

Tuberculosis Respiratory 08/01/1955 31/12/1973 

We only digitised the main body of the table, which was purely numeric, rather than the 

alphanumeric overflow column for less notifiable diseases. For example, diphtheria 

used to belong to the main body of the table because of its prevalence up to 1955, but 

thereafter it was simply placed in the overflow. As such, information for diphtheria at 
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present is limited to 1941 to 1955. Other diseases become notifiable after the start of 

the sample, such as tuberculosis, which means there is no information for tuberculosis 

before 1955. The full list of diseases by dates available is shown in Table 4-3. A future 

wave will seek to digitise the additional years of data and the less common notifiable 

diseases. 

Figure 4-2 shows the digitised weekly totals from 4 of the 13 notifiable diseases in their 

current form. Unlike the current annual totals available from the Office of National 

Statistics, this offers 52 times more detail. To our knowledge, this data source is 

currently the most detailed version of notifications in the UK, and the world, for the 

20th century. 

However, the true strength of the weekly notifications is that each week has 1472 data 

points representing the districts allowing for both within year and geospatial variance. 

Targeted efforts to digitise parts of the weekly records have been undertaken before101, 

but to our knowledge, our version is the most complete version to date. The aggregation 

of the notifications of pertussis, measles, scarlet fever, and pneumonia within 1472 

districts in England and Wales from September 1945, converted into rates per 100,000 

population, is shown in Figure 4-6.  

Given the extensive possibilities for this data source and 18 months of work to construct 

it, many research papers involving the diseases have been started or planned. The 

remaining parts of this section cover these papers and, if sufficiently developed, will 

also link to a relevant chapter within the thesis. These sections cover a brief background 

of each disease. However, only diseases with at least five years of data have been 

investigated, so any disease that was added after 1970 has been discounted. In some 

cases, papers utilised multiple disease notifications, but otherwise, the following 

sections follow the same order as Table 4-3.
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Figure 4-2: The number of cases of each of the 13 notifiable diseases per week 
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Figure 4-3: The aggregation of the notifications of pertussis, measles, scarlet fever, and 
pneumonia within 1472 districts in England and Wales from September 1945, converted 
into rates per 100,000 population 
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4.4.1 Acute Poliomyelitis 

Poliomyelitis (polio) led to deformation and death for thousands of years102 despite 90-

95% of those infected being completely asymptomatic103,102. Another 4-8% would 

experience abortive poliomyelitis, where polio did not enter the central nervous system 

(CNS) and was a mild diseases103,102. Non-paralytic polio was a worse version of 

abortive poliomyelitis and less common, which further induced fever and pains in the 

neck and led to muscle weakness103,75, but was rare. The most serious, yet most 

commonly known, outcome of paralytic polio, could result to irreversible limb paralysis 

from the disease entering the CNS75, occurred in less than 1% of patients. Polio was 

considered endemic up to the 19th century, with paralytic outbreaks only surging from 

the unsanitary and cramped conditions of the era of industrialisation102. The polio 

vaccine introduced in 1950 reduced paralytic polio cases in the United States from 

58,000 to 5600 within a year and is considered one of science’s definitive success 

stories102. 

However, non-paralytic cases are thought to have been significantly under-reported75. 

Despite an expected ratio of 1:10:50 in paralytic, non-paralytic, and abortive cases 

respectively75, the UK reported 13,491 paralytic and only 9097 non-paralytic cases 

during 1956-196842. Abortive poliomyelitis, given its mild nature, is not a notifiable 

disease in the UK, so cases of abortive polio are unknown. Studies show conflicting 

evidence as to the prevalence and consequences of non-paralytic polio104,105,75. The 

main concern is if non-paralytic polio, considered fully recoverable, can itself lead to 

prolonged muscle damage even if less than full paralysis75. 

To estimate if non-paralytic polio cases are under-reported, we intend to use the actual 

observed cases from BIO-HGIS to investigate if exposure to non-paralytic polio was 

associated with increased later life muscle disorders, BMI, white matter scarring in the 

brain, and reduced bone density using the UK Biobank. We seek to investigate muscle 

disorders across the body. Muscle disorders affecting the lower limbs are the most 
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known and widely established for polio106. However, instances of carpal tunnel 

syndrome in polio survivors have shown it is not exclusive to the lower limbs^107^. We 

seek to investigate scarring on the brain, as 92% of polio survivors suffered white 

matter scarring to only 1-2% in controls, which can lead to long-term fatigue75. Finally, 

we seek to investigate BMI and bone density as polio both increases the risk of 

osteoporosis108, and as potential muscle pain leads to a loss in mobility, and higher 

BMI109. 

We will then further seek to utilise both the non-paralytic and paralytic cases, which, 

given their severity, should not suffer from under-reporting, as sensitivity analysis. The 

mortality associated with paralytic means it is unlikely that the UK Biobank will have 

sampled paralytic polio survivors. Therefore, given the known ratio of paralytic to non-

paralytic cases, if combining the two notifications increases the predictive power, this 

estimates a degree of under-reporting within non-paralytic polio. 

4.4.2 Diphtheria 

Diphtheria has existed since ancient times110 and was a frequent cause of death, with 5-

10% of those affected not surviving111.In more severe cases which required hospital 

treatment, the mortality rate could reach as high as 50% in the 19th century112. Whilst 

sometimes tracheotomy was attempted to save the patient, the operation itself was 

dangerous, with an 80-90% mortality rate in the 19th century112. 

The introduction of the vaccine in the 1940s led to cases of diphtheria dramatically 

declining110. However, the UK tended to have higher hesitancy and backlash against 

vaccination, which started with the first vaccine against small pox113. This backlash was 

higher than many other western nations, with lower levels of education and apathy 

being central issues113. Only 28% of those who left school before 14 were vaccinated 

against smallpox, compared to 61% of those leaving school after 15113. 
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The decline in cases of diphtheria after the introduction of the vaccine led to diphtheria 

becoming a less known disease and apathy, with newer parents no longer concerned 

about the risks of diphtheria113. The social class structure continued to play a significant 

factor, with only 60% of those leaving education before 14 immunised, compared to 

over 85% of those leaving after 15113. Said apathy was also spatially clustered, with only 

7 of the 26 areas needing improvements to vaccine uptake outside the North or the 

Midlands.113. 

Targeted measures such as vaccinations at school improved the diphtheria vaccination 

uptake113, with targeted measures having a successful history in tackling vaccine 

apathy. The hookworm eradication campaign in 1910-1915 both reduced hook worms’ 

instance and prevalence in the American south114. Similarly, targeted intervention and 

vaccination against tuberculosis in schools in Norway had a similar effect115. In both 

instances, the reduction in cases also led to individuals obtaining increased educational 

attainment114,115. These gains were higher for those born in areas that originally 

suffered higher rates of the disease114,115. 

In this paper, we seek to investigate the changes in weekly diphtheria rates by location 

and district type. In doing so, we may better understand how hesitancy existed and was 

eased in the past, which may assist with handling similar issues currently experienced 

around COVID-19. We hypothesise that areas with greater autonomy and higher initial 

cases would experience greater percentage reductions than their rural or urban 

centrally run counterparts. We can then further investigate if, similar to other known 

examples in the literature, individuals who experienced greater percentage reductions 

in cases attained higher levels of educational attainment. 

4.4.3 Scarlet Fever 

Records from the 17th and 18th centuries showed that scarlet fever cases were often 

benign116. However, scarlet fever transitioned from a benign illness to one of the most 
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common causes of early life mortality within just a few years116. The scarlet fever case-

fatality rate rose to 15% in 1834 and often exceeded 30% by the mid-19th century116. 

Scarlet fever is caused by streptococcus pyogenes (S. pyogenes)117, and is a possible 

outcome of untreated prior infection of S. pyogenes, such as strep pharyngitis118. Strep 

pharyngitis represents 20-40% of all pharyngitis cases119 and one of the most common 

causes for visiting a general practitioner, even at present120. In an era before penicillin, 

there was not an effective treatment, which meant each case of pharyngitis posed a risk 

of developing scarlet fever. 

A significant link to later life mortality was rheumatic heart disease121, where the heart 

valves are permanently damaged76. Rheumatic heart disease is a consequence of acute 

rheumatic fever, traditionally starting two weeks after an untreated infection of S. 

pyogenes76 and avoided if treatment occurs within nine days118. The risk of developing 

rheumatic heart disease after an untreated infection was high. A case study in Austria 

found 35% had developed rheumatic heart disease a year after infection, which after 

ten years increased to 61% ten76. 

The case mortality rate for scarlet fever dramatically declined to close to 1% at the end 

of the 19th century within just a few years, at a rate not dissimilar to its original rise116. 

The theory behind the sharp rise and fall of scarlet fever cases is that older strains were 

more virulent but less transmissible. The industrialisation in the 19th century, and 

subsequent increases in density, allowed the higher virulent strains of scarlet fever to 

spread rapidly116. Over time, reduced overcrowding, improved sanitation, medical 

standards, and rising herd immunity reduced the case mortality rate116,96. As scarlet 

fever can be prevented by treating preceding infections118, the introduction of penicillin 

further reduced the risk of developing scarlet fever later in the 20th century. 

The latent risk of heart disease from early life infections of streptococcus declined with 

cases across the 20th century121. However, scarlet fevers’ decline slowly reversed after 

the 1980s122, despite further improvements to health and socio-economic 
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circumstances across the 20th and 21st century. Scarlet fever cases have since risen 

further across Asia123, Europe124, and the UK97 in the 21st century. Studies have since 

found multiple additional links to latent effects from S. pyogenes infections125,126,127,85. 

With cases rising and potential latent conditions still under-investigated, this recent 

surge could lead to considerable consequences for this generation. 

In Chapter 5, we investigate if there were broader risks to heart disease, later-life 

cognition, and educational attainment outside the most established link to rheumatic 

heart disease76,119 from exposure to scarlet fever using the UK Biobank. We constructed 

scarlet fever exposure using rates of scarlet fever in an individual’s place of birth from 

data within BIO-HGIS. We found that increased exposure to scarlet fever across 

childhood was associated with increased risk of declines in later latent cognition and 

increased risk of heart disease. 

4.4.4 Pertussis 

Pertussis is highly infectious, with an expected mortality rate of around 10% before the 

introduction of the vaccine in the 1940s128. The introduction of the whole-cell pertussis 

vaccine led to a 157-fold reduction of pertussis cases between 1940 and 1973 within 

the United States129. However, pertussis cases, unlike vaccinations of measles, did not 

change their pattern or frequency of infection cycle129. Immunity from the pertussis 

vaccine wanes from as early as four years old130,131,129. Waning immunity ensures there 

are always susceptible individuals, but far less than before the vaccine129. Importantly, 

for vaccinated individuals who ultimately end up infected, the illness is significantly less 

severe than in unvaccinated children129. 

Pertussis cases have seen a recent resurgence, but the true nature of this is complex129. 

Pertussis can be challenging to diagnose132. Only 5-25% of pertussis cases were 

estimated to have been reported in England and Wales as of the mid-20th century133. 

There is not a known recent estimate for pertussis reporting in the UK. However, it is 

estimated that only 3-12% of pertussis cases in the United States were reported as of 
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the end of the 20th century134. A similar study investigating Germany as of 2015 still 

estimated that only 54 to 61% of cases were being identified. Therefore, despite a 

resurgence in cases, a significant part of this resurgence has stemmed from 

improvements in reporting pertussis from new tools to assist diagnosis129. 

As pertussis and many other childhood infections declined over the 20th century, 

asthma cases grew rapidly. Asthma increased from just 4% of 9-12-year-olds in 1964 

to nearly 30% in 2004135. Asthma instance fell to 18.6% in 2014135, which was 

correlated with the rise in cases of diseases that declined in the 20th century rising 

again, such as scarlet fever97,124, pertussis136 and measles137. However, the literature 

has conflicting evidence for the impact of early life infections on later life 

asthma138,139,140,141,142,143,144,145,140,146,147,148,149,150, which in part comes from the 

extensive changes to early life environments across the 20th century. 

In Chapter 6, we aim to quantify the potential impacts of early life infections on later 

life instances of asthma using rates of scarlet fever, pertussis, and measles from BIO-

HGIS. We constructed exposures for individuals from the UK Biobanks based on the 

participants’ year, month, and place of birth. We found little evidence of any 

associations between exposures to scarlet fever, pertussis, or measles up to the age of 

10 on later life asthma instance. However, this principal hypothesis, and the literature 

at present, almost completely ignores genetic liability despite asthma’s high 

heritability28. 

Based on a plausible biological mechanisms151, we hypothesised that diseases may have 

moderated asthma incidence for the genetically susceptible from a gene-environment 

interaction. This biological mechanism would mean that only those who were 

genetically predisposed to asthma could potentially have a protective association from 

infection, which may in part explain the conflicting evidence in the literature. We found 

evidence for both scarlet fever and pertussis, that increased exposure up the age of ten 

had a protective association against asthma, but conditional to those of heightened 
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genetic susceptibility. However, we continued to find little evidence of a protective 

association to later life asthma from exposure to measles. 

4.4.5 Measles 

Measles is one of the most infectious diseases, with over 90% of children infected when 

measles was endemic152. However, unlike many diseases, measles mortality was often 

through secondary infections153, with the most common secondary infection being 

pneumonia154, which in part is because of measles immunosuppressive qualities77. 

Immunosuppression inhibits the host’s immune system 155, making them susceptible to 

follow-up infections77. As measles immunosuppression specifically reduced hosts’ 

antibody diversity, with a loss of nearly 20-50%77, hosts were highly vulnerable after 

infections. 

The measles vaccine reduced childhood mortality, especially in impoverished nations, 

ranging from 30 to 90 percent92,93,77. The impact of the MMR vaccine introduced later 

in 1988 has been estimated to have saved over 20 million lives worldwide from the 

prevention of measles alone between 2000-2015156. However, given most deaths from 

measles were because of secondary infections157, this could well be a considerable 

underestimate. 

Measles historic decline has since been reversed, with measles cases now 300% larger 

than in 2018, infecting over seven million children and causing 100,000 preventable 

deaths directly annually158. This has occurred even in western nations such as the UK99, 

which has no longer been able to maintain its measles free status. Despite extensive 

efforts attempting to quantify the impact of immunosuppression on secondary 

infections77,155, limited access to disease data has limited advances in this field of 

research. 

In this paper, we seek to attempt to estimate how measles outbreaks led to subsequent 

increases in pneumonia, scarlet fever, pertussis, and respiratory tuberculosis using 
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data collected within BIO-HGIS. We aim to construct 30 months of prior measles rates 

from the weekly reports and investigate the association between increases in measles 

in the prior 30 months and increases to the disease phenotypes.   

4.4.6 Tuberculosis 

Multiple forms of tuberculosis have affected humans. At the start of the 19th century, 

one in four deaths were from respiratory tuberculosis159. Bovine tuberculosis 

originated from cows due to milk consumption and was also a deadly killer before 

pasteurisation160. A post-mortem of 1420 children under 12 in 1880 Britain found that 

30% had died from bovine tuberculosis160. The Bacille Calmette-Guérin (BCG) vaccine 

would eventually be created from attenuation of bovine tuberculosis161, first 

introduced in 1921, and is one of the most administered vaccines in humans history161. 

It was hoped that respiratory tuberculosis (tuberculosis hereafter) could be banished 

to history162, but these hopes were quashed in the 1980s and 1990s with resurgent 

rates of tuberculosis162. Apathy towards the vaccine and higher migration were key for 

the resurgence in tuberculosis cases162. Cases would rise year-on-year in the UK 

between 1980 and 2012 until it declined once more162. 

Unfortunately, cases in the developing world remain elevated, with World Health 

Organisation targets to eradicate the disease consistently missed163. There are 

currently nearly 9 million new cases of tuberculosis each year, with half expected to 

develop a pulmonary dysfunction as a result164. The damage caused by tuberculosis is 

highly heterogeneous, with increasing evidence that genetic susceptibility to 

tuberculosis may be the cause164. 

We seek to construct exposures to tuberculosis up to the age of ten using the exposure 

data from the BIO-HGIS and link it to UK Biobank participants using their place of birth. 

Here, we seek to explore two core questions. First, we will attempt to quantify the 

damage caused by tuberculosis to lung functionality. We will utilise the forced 
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expiratory volume and forced vital capacity as our dependent phenotypes for measures 

of lung functionality. Then we will investigate if lung functionality damage from 

exposure is greater for those with higher polygenic susceptibility to tuberculosis and 

chronic obstructive pulmonary disease. 

4.4.7 Pneumonia 

Pneumonia was branded ‘captain of the men of death’ by William Osler165,166, one of the 

most cited clinicians and argued to be one of the fathers of modern medicine167. In the 

late 19th to early 20th century, its case mortality rate ranged as high as 30-40%165. 

Streptococcus pneumoniae is a common cause of pneumonia which, despite its high 

burden, is not usually highly contagious168. Whilst those living in cramped conditions, 

prisons or shelters are associated with increased risk, schools and general workplaces 

are not168. However, in those who are hospitalised, most would die within the first day 

or one week168. 

Multiple medical advances have reduced the burden. Early treatment with penicillin or 

serum reduced the mortality drastically, with now nearly 90% surviving if treated 

promptly168. Later advances of conjugate vaccines in the 1980s169 have helped reduce 

the case frequency of pneumonia in children by about 90%, relative to the early 20th 

century168. Despite the advances, mortality remains between 5-10%168, with 

pneumonia accounting for the greatest burden of all childhood morbidity80, 

representing one in every five deaths of children worldwide168. 

For those who survive infection with pneumonia in early life, there is a considerable 

risk of permanent lung damage80. In studies looking at the long-term consequences of 

pneumonia, both restrictive and obstructive lung function were found to be elevated in 

those affected with pneumonia80, in addition to reductions in educational 

attainment100. In one such study, records of babies from those born in Derbyshire were 

used to contact individuals80,170. The 13 men who had survived pneumonia within the 
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first two years of life had significantly lowered forced expiratory volume and forced 

vital capacity80,170. 

We seek to replicate the principle of this study but on a wider scale. Here we seek to 

construct exposures to pneumonia up to the age of five from rates within BIO-HGIS from 

participants within the UK Biobank. We then seek to investigate the association of 

increased exposure on participants’ forced expiratory volume, and forced vital capacity, 

collected as part of the spirometry analysis by the UK Biobank. Doing so will utilise the 

largest prospective cohort study to date to further investigate an instance of prolonged 

effects of early life infections from pneumonia on lung functionality. 

4.5 Wave 3: The Blitz 

In 2015 Europe celebrated that it had achieved 70 years of continued peacetime. Said 

peace, however, ignores the breakup of Yugoslavia in 1992, and 140,000 lives lost in 

the process171. It also ignores that peace within Europe has not reciprocated elsewhere, 

with the frequency of war not declining itself172. Those who survive conflict can face 

significant life altering ailments, some of which are visually apparent such as post-

traumatic stress disorders173. However, the potential consequences are far greater, and 

may even have intergenerational effects, with evidence that preconception parental 

trauma resulting in methylation within Holocaust survivors could also be found within 

their children174. 

Investigating prolonged consequences for survivors of conflict is complicated, as you 

require data on exposures to conflict and a cohort study that samples them later in life. 

Most cohort studies in the UK are post-war, with one of the earliest being the 1946 

National Survey on Health and Development8. However, the UK Biobank sampled 

individuals aged 40-69 from 2006 to 201012, which provides one of the largest cohort 

studies that includes those born before or during the Second World War within the UK. 

However, as limited information exists in early life for those within the UK Biobank, 

exposure to wartime conditions is not a measured statistic. 
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Within Wave 3, we sought to remedy this by merging information from War, State and 

Society175 to the UK Biobank. The War, State and Society digitised the individual reports 

of each of just over 32,000 reports of the Blitz across the United Kingdom. The database 

contains the settlement or rough area of each air raid, and a casualty report, with the 

intensity reported in 12 hourly windows175. Given the generalisation of the UK Biobank 

birth coordinate to a 1 km grid coordinate69, not where they were at that specific 

moment, a proximity exposure based on distance to epicentre is not possible. This is 

furthered by the fact that the epicentre is just a settlement name or locations name, not 

exactly where it hit. 

Therefore, to reasonably link the data to the UK Biobank, we used these settlement 

names and locations provided by War, State and Society175 to geo-locate them as easting 

and northing coordinate using the Google Maps API. The API returns multiple results 

for location. We used the first result, which is at the lowest level of detail, as the 

coordinate of the centroid of that air raid. Each point was then mapped to a district, so 

that each district from 1939 to 1945 had daily measures of Blitz intensity, both morning 

and night-time, for each of the Blitz variables. This worked well except for London, 

which was aggregated as ‘London’ in the original reports, so sadly is just reported as a 

single area, rather than having individual boroughs. 

4.5.1 War intensity on stillbirth and spontaneous miscarriage 

As the Second World War loomed, psychiatrists made dire predictions about the 

consequences of mental trauma from air raids176. These reports were incorrect, with 

only a few cases of ‘bomb neuroses’, mental illness resulting from experiencing air 

raids, per week176. However, there are concerns that less serious cases of mental illness 

went unreported as most medics were pre-occupied with physical ailments176. 

Coronary symptoms, superstition, fatalism, and even miscarriages increased176,177, as 

did senility amongst the elderly176. 
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Stress during pregnancy poses risks to stillbirth, potentially by as much as 42%178. A 

pregnant mother losing their parent during pregnancy was associated with small 

consequences such as lower APGAR scores and birth weight179. However, evidence of 

long-term consequences of maternal stress is more varied with both no association to 

long-term harm179 and increased uptake of ADHD, depression, and anxiety medication 

from family ruptures180. 

Those who experienced adverse childhood experiences (ACE) were nearly twice as 

likely to have experienced a stillbirth181. Wartime conditions are not covered under 

ACE, which focuses on physical, emotional, and sexual abuse within a household182. 

However, experiencing one of the largest human conflicts of the 20th century may have 

similar consequences. We intend to use the Blitz data to create an intensity measure for 

UK Biobank participants. Then, we seek to investigate if those who experience a higher 

intensity of the Blitz were more likely to have a stillbirth or spontaneous miscarriage 

later in life. 

4.5.2 Blitz notifiable disease modelling 

On the 1st of September 1939, the largest human population movement in British 

history began183. Over 96 hours, nearly 1.47 million children, pregnant women, and the 

disabled were relocated away from urban areas feared to be targeted by the Blitz to the 

rural countryside183. This process led to serious epidemiological concerns that it would 

be a super-spreading event, but in reality, the initial evacuation led to a below odds risk 

of disease183. 

Much of the current focus has been on whether the relocation of children led to 

increases in cases of childhood diseases for those who left. However, less attention has 

been placed around the role of how the Blitz directly affected the number of cases in 

areas targeted for destruction by the Luftwaffe. In many shelters, scabies and impetigo 

spread freely, although infectious diseases such as scarlet fever were lower than 

feared176. Despite this, how air raids contributed to increases in infectious disease has 



98 
 

not been extensively modelled. We seek to model how air raids within a given week and 

district affected notifiable diseases, using the weekly disease notifications from BIO-

HGIS. 

4.6 Wave 4: Census standardisation 

A census offers extremely in-depth accounts of society and is well suited to analyse 

within a census year. There have been multiple efforts to digitise census data. Vision of 

Britain attempts to show how the UK changed from 1801 to modern day and has 

digitised multiple extracts of census data such as the employed by industry counts, 

population counts, and provide shapefiles for census years of the UK67. Vision of Britain 

has been vital too much of our work, especially the shapefiles, with the data on industry 

counts being the only known digital source for industry at this era in the UK. 

The NOMIS site contains extensive census records for more modern years, however, 

have recently started focusing on the digitisation of older records, and of relevance, are 

their efforts to digitise the 1961 census184. The efforts in this case cover the whole 

census but are working on a particular census in which there is a considerable amount 

of missing data. Therefore, whilst the number of topics and variables available is much 

higher than Vision of Britain for census data, some of it is hard to use due to said 

missing-ness. Whilst NOMIS contains a considerable amount of census data, it does not 

contain information for 1971. This instead was downloaded from the UK Data Service 

Census data service of CASWEB185. This data is by far the cleanest but has no historical 

data prior to 1971. 

Whilst each census data is of use in of itself, difficulties arise when combining multiple 

census years18, such as changes to locations or questions17,18. Whilst efforts have been 

made to standardise locations over time, as shown in Chapter 3, if variables themselves 

do not exist in each census wave, then census data will remain difficult to utilise in a 

time varying context. Further efforts have begun on standardising these variables, so 

that they exist in each census year. However, the missing-ness of the data in 1961 is 
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proving to be a bottleneck, and so presently, efforts have been limited to amenities, 

densities, unemployment, and those of working age by age groups. Work on this wave 

is ongoing. 

4.7 Wave 5: The Registrar General’s Statistical Review of England and Wales 

Within the Registrar General’s Statistical Review of England and Wales there is a wealth 

of information, such as the annual population counts shown in Wave 1. Many other 

tables exist that could offer similar value, but they are large which adds costs to 

digitisation. Wave 5 was designed as a scoping wave, digitising smaller tables or parts 

of larger tables, to attempt to justify future work. Whilst less valuable that the other 

resources, this work still adds to the database and helps to further protect the past. 

4.7.1 Wave 5A: Measures of Mortality 

Currently, within BIO-HGIS, there are district-level reports on infant mortality, but only 

at an annual level. If infant mortality had a seasonal pattern, then the use of annual data 

could be problematic if a study seeks to assign infant mortality rates as a proxy for the 

early life environment. 

Two known sources of infant mortality data exist outside the current annual data from 

the Annual Statistical Review. Infant mortality was reported weekly for a subset of 

districts, and monthly mortality by age groups for the whole of Great Britain. Whilst the 

weekly infant mortality rates offer a higher time dimension, they are only reported for 

80~ districts, which limits the spatial dimension compared to the annual reports. 
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Figure 4-4: Mortality over time. Mortality over time. Panel A: Monthly mortality by age 
bins 1947; Panel B: Monthly mortality by age bins 1972; 
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Whilst the weekly reports are a valuable resource, we first digitised the monthly 

mortality for Great Britain to seek evidence of seasonality and if said seasonality also 

varied over time. This wave focused on digitising the monthly mortality for Great 

Britain from 1947 to 1972. Figure 4-4, Panels A and B, shows the monthly mortality by 

age bins in 1947 and 1972. This shows that infant mortality decreases over the 20th 

century, and that more children died in winter than in summer months. 

However, as these are aggregate figures, it is still possible that individual districts 

experienced different seasonality. Towns experiencing dryer and warmer conditions 

have historically been linked to higher infant mortality than wetter areas due to 

summer diarrhoea, which occurred mostly in July to September186. Whilst beyond the 

scope of BIO-HGIS to date, there is still a justifiable reason to investigate infant 

mortality rates at a weekly level. A future Wave of BIO-HGIS will attempt to do this. 

4.7.2 Wave 5B: Disease mortality distributions: Static or fluid? 

Covid-19 has shown that age specific effects are common in infectious diseases, with 

mortality being starkly different in younger individuals than older cohorts187. Many 

diseases follow a U-shaped distribution of age mortality188, but increasingly evidence is 

arising that J-shape and other mortality distributions exist for what are thought to be 

childhood diseases187. Measles, polio and tuberculosis are all thought as childhood 

infectious that can lead to mortality, yet this mortality is increasingly found in much 

later in childhood187. Both diseases and environments have changed significantly over 

the last century, but little focus has been placed on how these changes alters the 

distribution of deaths within diseases across the age spectrum187. 

We seek to further the literature in two ways. All international causes of deaths (ICD) 

by age for the 20th century to present at a national level have already been digitised or 

made available by the Office of National Statistics189. Within nation estimates also exist 

for administrative counties for an abridged list of the ICD. These records have not been 
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digitised but will be the focus of a separate investigation and digitisation wave in the 

future. 

Disease names and definitions change over time, which makes comparisons difficult 

when using ICD codes much before ICD 8. Our first contribution is therefore to assist 

standardization of older ICD codes to the more modern versions, such as ICD 10. In 

doing so, we should be able to investigate if the age distribution for diseases within the 

ICD changed significantly over the 20th century. We will then further investigate if any 

such changes were as a result of exogenous shocks to the environment. 

 

Figure 4-5: Scarlet Fever / Scarlatina Deaths 1848-1972 for England and Wales 
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Our second contribution comes from the inclusion of data from the 19th century. Many 

diseases have changed virulence over the 19th century, but this information remains 

mostly inaccessible. Most records of annual causes of death go back further in time than 

1901 and can be constructed using currently known national records as far back as 

1848. We seek to digitise the additional data on mortality per formation of the ICD and 

link them to ICD 10. Limited efforts have already been undertaken on digitisation, such 

as for scarlet fever, or as it was called in the 19th-century scarlatina, as shown in Figure 

4-5. By adding additional years from the 19th century, we seek to expand our power to 

find any possible change to the diseases age-mortality distributions. 

4.7.3 Wave 5C: Annual population counts for sub nations within the UK 

If using the data Wave 5, and desiring the results as rates, then currently most of the 

available estimates are for the UK as a whole. This wave was designed to digitise the 

population for each individual nation so that rates could be constructed related to the 

national counts rather than the UK as a whole. Wave 5C digitised the population counts 

from 1861 to 1971, after which estimates for population counts for nations within the 

UK are more commonly available. This was used to convert the counts of age and month 

mortality into rates per 10,000 within Figure 4-4. 

4.8 Wave 6: Grammar Schools 

The UK has a history of educational class division, with vocational education 

traditionally being looked down upon as for the less able, less motivated, less 

employable, and ultimately designed for the lower social classes190. Whilst certain 

regions have moved away from the tracked tripartite system introduction in 1944, 

England continues to have resistance to fully comprehensive schools191. Grammar 

schools still have advocates, with selected schools increasing their intake in the 21st 

century192, despite concerns about the effects of segregation on widening inequalities 

and reducing social cohesion192. 
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Wave 6 focused on digitising locations of grammar schools in existence as of 1968 in 

England and Wales from the parliamentary papers193. Similar to the data from War, 

State, and Society, the grammar schools were only provided as names. Therefore, we 

used the same procedure as the Blitz’s bombing points and geo-located the grammar 

schools names using the Google Maps API. Each school contains information as of 1968 

for the amount of government funding they received, pupils in attendance, and the 

pupil-teacher ratio at said school. These schools are aggregated within each parish, 

where we also derive the total number of schools per parish. The location of these 

schools is shown in Figure 4-6. 

 

Figure 4-6: Locations of direct grant grammar schools in existence as of 1968 in England 
and Wales 
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4.8.1 Structural differences in BMI across the UK regions 

Obesity rates have increased in the latter part of the 20th century, a trend that is now 

spreading to traditionally leaner middle income and lower income countries194. Higher 

education is commonly associated with lower obesity rates in the western world195,196. 

Causality has often been challenged, but others have utilised changes in school-leaving 

age as an exogenous shock for causal inference197. Other studies have used mendelian 

randomisation (MR) to show that higher educational attainment is associated with 

lower BMI196,198, as well as higher type two diabetes199,198 and coronary artery 

disease198. 

A common limitation of studies in the literature seeking to show that higher educational 

attainment is associated with reductions in BMI, is that they ignore the potential of area 

differences200. Here, we aim to investigate if individually reported educational 

attainment is associated with BMI after controlling for individuals polygenic scores for 

education, proximity to grammar schools, and regional level educational attainment 

from the 1961 census. We seek to utilise the change in mandatory years of education 

that affect those born after 1957 to further push for casual inference. 

4.9 Wave 7: Unemployment 

Defining deprivation is complex, with multiple historical measures existing, such as the 

Townsend deprivation index or the Jarman index201. The original Townsend 

deprivation index was a function of four variables of non-car ownership, non-home 

ownership, the log of unemployment, and the log of overcrowding202. Many of these 

variables are only available in census years making a time-varying measure difficult. 

However, simple regional unemployment is often highly correlated to such deprivation 

measures. Regional standardised unemployment rates had a 92.4% correlation with 

the Townsend deprivation index and 86.6 to the Jarman index in 1995203. 
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We seek to utilise monthly unemployment data from the unemployment Labour 

Gazette204 to construct a time varying measure of deprivation from 1931 to 1971. We 

then seek to compare this measure to both the original Townsend index of 1971, and 

constructed Townsend indices from new historical data, or imputation, for the census 

years of 1931, 1951, and 1961. In doing so, we seek to explore how simple 

unemployment rates may be used in lieu of the Townsend index for capturing 

deprivation. To validate our findings, we will investigate how our measures of 

deprivation predict health outcomes utilising the ICD 10 codes and the UK Biobank 

through a Phenome-wide association study (PheWAS). 

4.10 Conclusion 

BIO-HGIS has been designed to help remember the past, in the hope this data can help 

prevent similar mistakes or outcomes occurring in the future and designed to 

iteratively add new and meaningful data for research and public information. Whilst 

the BIO-HGIS itself currently only contains UK data, much of the methods sections of 

this thesis that have been used to construct it are generalisable to other countries’ data. 

The papers that have been started or shown later within this thesis as working papers 

represent a fraction of the potential of the database. Most research projects have been 

focused exclusively on the UK Biobank, despite the huge potential for use in the many 

additional cohort studies that exist throughout the 20th century. Whilst the focus of the 

work behind the construction of the data remains focused on health, many disciplines 

may find extensive use for such data that is outside the remit of our knowledge. 

BIO-HGIS has limitations even when applied to its targeted source data of the UK 

biobank, such as from the generalisation of the birth coordinates within the UK 

Biobank. However, said generalisation mainly limits the use of distance-dependent 

measures. For example, if a participant’s actual birth coordinate is within 1 km of the 

main road, but the generalisation moves them further away, this could lead to 

measurement error for distance-dependent analysis. Regional data limits this 
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measurement error to only being born within 1 km of a region’s bounds. The use of 

regional data could also lead to limited variation, as all those born within a given 

location are assigned the same exposure. When investigating exposures over prolonged 

periods, individuals born a single month apart in the same location of birth will still 

share extensively the same exposure. Identifying variation, therefore, comes more from 

individuals who were born many years apart within the same place of birth. 

Fortunately, given the UK Biobank has close to half a million participants born over 

nearly 40 years205 this is often possible. 

Whilst this is significant work left to be undertaken. Much the data within BIO-HGIS has 

already been used to start or write a paper, as mentioned throughout the subsections 

of this paper. Therefore, whilst not publicly available yet, as these papers begin to be 

published, hopefully across 2023, the data will be made available for others. The hope 

is that, given the extensive work undertaken to quality control and document said data, 

that when it is made available, it should be easy to use. This should further research in 

the UK Biobank for years to come, assist other disciplines answer questions that cannot 

currently be answered, and protect our heritage from the passage of time. 
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5 Early life exposure to scarlet fever is associated with ischemic 
heart disease later in life. 

5.1 Introduction 

Streptococcus pyogenes (S. pyogenes) can cause rheumatic heart disease, which causes 

permanent life-threatening heart damage76,119, yet can arise from an otherwise minor 

infection of untreated streptococcal pharyngitis119. Whilst rheumatic heart disease is 

one of the most known complications, elevations of S. pyogenes anti-bodies have been 

linked to other diseases, such as Crohn’s disease125, narcolepsy126, Henoch-Schoenlein 

purural206, psoriasis127, Sydenham chorea85, and paediatric autoimmune 

neuropsychiatric disorders associated with streptococcal infections85 (PANDAS). As 

infections from S. pyogenes are heterogeneous, both in anti-body response207,208 and 

duration207, there may be further yet unknown long-term consequences of infections 

from S. pyogenes. 

In this study, we investigated the relationship between early life exposure to S. 

pyogenes and later life outcomes using regional incidence of scarlet fever in childhood. 

To do so, we used regional (district) level weekly scarlet fever notifications from the 

Registrar-General’s Weekly Returns42 and linked these exposures to UK Biobank 

participants. Given infections from S. pyogenes have already been associated to heart 

disease through rheumatism76,209,210, we sought to investigate if early life infections are 

related to other cardiovascular diseases later in life. 

We further investigated the relationship between S. pyogenes exposure and later life 

cognitive and educational attainment. We do so specifically because S. pyogenes 

infections are linked to neuropsychiatric disorders through PANDAS because of 

neuroinflammation85. Prolonged neuroinflammation is associated with age-related 

cognitive impairment211 and neuropsychiatric disorders that are highly detrimental to 

educational attainment212. More generally, other childhood diseases have been 
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associated with lower later life cognition86, and for those in worse health with lower 

educational attainment87. 

5.2 Methods 

5.2.1 Population and exposure 

We used data from participants within the UK Biobank, a prospective cohort study of 

502,506 UK adults aged 40-69 from 2006 to 2010, who lived within 25 miles of an 

assessment centre12. We used the UK Biobank for its detailed information on later life 

health and specifically for older cohorts born in an era of more frequent S. pyogenes 

infections. However, as the UK Biobank includes limited information on early life 

conditions, we constructed proxy measures of exposure to S. pyogenes by using the 

notifications of scarlet fever from the Registrar General Weekly Reports for England 

and Wales42. 

To construct this proxy exposure to scarlet fever, we used the weekly incidence of 

scarlet fever reported in districts between 1946 and 1973. We linked the participants’ 

location of birth to one of the 1472 districts across England and Wales as of the 1951 

census, using a shapefile available from Vision of Britain67. We isolated cases of scarlet 

fever within the district of birth 52 weeks after the first full week of the participants’ 

year and month of birth. We then used the annual population estimates from the Great 

British Historical Database on Health and Health Care74 to convert the number of scarlet 

fever cases to incidence rates per 10,000 population. We iterated forward and created 

district incidence rates of scarlet fever up to the age of ten, as scarlet fever is most 

common between the ages of 2-10213, peaking between the ages of 4-6214. We used the 

annual incidence rates of scarlet fever to construct average exposures of scarlet fever 

by the ages of one, five, and ten. The average exposures were constructed as the mean 

of the annual exposure incidence rates experienced up to that age. 
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5.2.2 Phenotype definition 

We used ICD 9 and 10 codes from the diagnosis and death register to define heart 

disease phenotypes. We used definitions for acute myocardial infarction (AMI), 

ischemic heart disease (IHD), stroke, and cardiovascular diseases (CVD) as previously 

defined215. For ICD 10 codes, we constructed AMI from I21-22, IHD from I21-25, stroke 

from I6 and G45, and CVD from I0-99 and G45. All ICD9 and ICD10 codes are within 

supplement Table 5-S1. S. pyogenes is known to cause valve complications76, so we 

defined additional outcomes, including non-rheumatic damage to heart valves using 

ICD codes I34-38, and rheumatic damage using ICD 10 I0. 

For later-life cognition, we used participants’ fluid intelligence, UK Biobank variable 

20016. The score is the sum of the correct number of answers to 13 logic and reasoning 

multiple-choice questions within two minutes216. For educational attainment, we use 

the questionnaire on qualifications achieved, UK Biobank variable 6138, and 

transformed the variable into years of schooling following the literature217. We then 

standardise both fluid intelligence and educational attainment to have a mean of zero 

and standard deviation of 1. 

5.2.3 Statistical analysis 

We estimated the association between regional incidence of scarlet fever and 

cardiovascular outcomes using linear probability modelling (LPM) linear regression for 

cognition and educational attainment. Due to declining rates of scarlet fever across the 

sample, we controlled for participants’ year of birth. We defined the year to start in 

September of year t until August of year t+1, which ensures that each year is specific to 

the scarlet fever season218. Doing so also controls for years specific effects of our 

outcomes. We also controlled for seasonality of scarlet fever through the month of birth 

and gender because of potential sex differences of both our scarlet fever exposure219 

and our outcomes. We controlled for the district of birth to control for stronger 

associations for those in lower socio-economic position220, and all time-invariant 
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differences between districts. Finally, we estimated the relationships between the 

phenotypes of interest and average exposure to scarlet fever, with the above set of 

controls. 

The sample data was formatted in python 3.7. Python 3.7 package weightGIS221 was 

used to standardise districts to 1951, and to map locations of birth to a district. 

Statistical analyses were performed in Stata version 14 with the reghdfe package222. 

QGIS 3.10 was used to construct maps, with other figures made with python 3.7 and 

Blender 2.83 using the pyBlendFigures package223, Stata 14, or Excel. 

5.3 Results 

The UK Biobank contains 502,506 adults. As the disease notifications were limited to 

England and Wales, we removed all participants born in Scotland (n = 39 488). We also 

excluded those born before June 1946 for two reasons. First, because of the 

introduction of penicillin in 1946224, those born before penicillin faced a different 

disease environment in early life. Second, those born between 1939 and 1945 may have 

moved in early childhood because of the Second World Wars evacuation orders183. 

These issues could lead to measurement error, so we excluded participants before June 

1946, leading to a loss of 122,177 participants. To ensure all participants had ten years 

of exposure data and because the disease data ended in 1973, we excluded those born 

after 1963 (N=41,339). As linkage to the disease notifications required a birth 

coordinate, we exclude participants who had not reported one (n=35,022). After 

removing six districts which only had a single participant within them, this led to an 

analysis sample of 241,679 individuals, observed within 1,452 districts. 

The descriptive statistics for the outcomes of interest in the analysis sample are shown 

in Table 5-1. Some instances of heart disease are rare, such as rheumatic disease, but 

the analysis sample still observed hundreds of cases, even for these rarer definitions. 

The sample participants on average correctly answered 6.26 (2.10 standard deviations 

(SD)) out of the 13 total questions used to construct the measure of fluid intelligence. 
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The analysis samples fluid intelligence is slightly higher, with a lower standard 

deviation, than the full UK Biobank sample of 5.99 (2.14 SD). On average, the sample 

also had attained more education than the population given the sample were born 

between 1946 and 1963. 

Table 5-1: Descriptive statistics of count, mean, and standard deviation. All heart related 
phenotypes come from the full sample of 241,679, with the count in the table 
representative of the number of cases. For fluid intelligence and educational attainment, 
there we only 99,189 and 207,242 observations respectively. 

Variable Unit Mean Standard 

Deviation 

Age Years 68.541 5.134 

Sex Male 0.445 0.497 

Rheumatic Disease With disease 0.003 0.059 

Vascular Disease With disease 0.008 0.091 

Acute myocardial 

infarction 

With disease 0.017 0.128 

Ischemic heart disease With disease 0.047 0.212 

Stroke With disease 0.018 0.132 

Cardiovascular 

diseases 

With disease 0.274 0.446 

Fluid Intelligence Questions correctly 

answered out of 13 

6.259 2.098 

Educational 

Attainment 

Years of Schooling 16.555 3.989 
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5.3.1 Distribution of sample 

Figure 5-1A shows the share of the population covered by our analysis sample from the 

UK Biobank of each district. We used the 1951 population estimates and then calculated 

the share of the number of UK Biobank participants born in that district. In most rural 

districts, our sample population represents about 0.05-0.5% of the total population. 

Whereas in more urban areas, we observed a higher share of between 0.5% to 1% of 

the total population. Figure 5-1B shows the distribution of the scarlet fever totals within 

1951 per 100,000 population within each district. Within 1951, there is notable 

variation in the rate of scarlet fever notifications across the districts within England and 

Wales. 

5.3.2 Exposures 

Figure 5-2 shows the mean exposure for the average scarlet fever incidence rates at 

ages one, five, and ten for each birth cohort. Given the declining trend in cases, shown 

in supplementary Figure 5-S2, those born later experienced on average lower exposure. 

Variation between years and districts is higher for exposures by younger age, where 

individual year variations have a greater effect on the incidence rates than exposures 

averaged out by age five or ten. 

5.3.3 LPM estimates of associations between district-level scarlet fever exposure and 

individuals’ later-life cardiovascular health 

Figure 5-3 presents the associations of an additional case of scarlet fever per 10,000 in 

a district per year by the age of one, five, and ten, with cardiovascular outcomes. We 

found little evidence that rates of scarlet fever associated with rheumatic diseases. We 

found weak evidence that participants exposed to higher levels of scarlet fever were 

less likely to subsequently develop vascular disease: for exposure at age one (-0.18, 

95%CI: -0.72; 0.36), age five (-0.77, 95%CI: -2.21; 0.66) and age ten (-1.16, 95%CI: -

3.38; 1.06).
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Figure 5-1: Left-hand side shows the share of the population covered by our analysis sample from the UK Biobank. The 

right-hand side shows the distribution of the total scarlet fever cases within 1951 per 100,000. 
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Figure 5-2: The mean exposure for participants, derived from their district of birth, per birth cohort for average scarlet 
fever incidence rates at the age one, five, and ten.
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There was some evidence of a positive association between exposure to scarlet fever 

and AMI, IHD, and stroke. The strength of the association increased with age for AMI 

and IHD, but not with stroke. The association between exposure to scarlet fever and 

risk of AMI increased from age one (0.51, 95%CI: -0.31; 1.33), to age five (1.59, 95%CI: 

-0.23; 3.42), and age ten (3.24, 95%CI: 0.31; 6.17). Similarly, the association of scarlet 

fever and IHD increased with age: at age one (0.76; 95%CI: -0.53: 2.04), age five (2.62, 

95%CI: -0.64; 5.87) and age ten (7.25, 95%CI 1.58; 12.92). 

 

Figure 5-3: Risk difference associations and 95% CIs of an additional case of regional 
incidence of scarlet fever experienced on average by the age of 1, 5, and 10 per 10,000 
individuals on cardiovascular outcomes. N = 241,679 for all LPM models. 

A positive association was found for stroke by age one (0.64, 95%CI: -0.13; 1.41), age 

five (1.93, 95%CI: -0.19; 4.04), and age ten (2.39, 95%CI: -0.96; 5.73). However, the CIs 
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for stroke widen at a greater pace than the increased strength of association, making 

the CIs at all ages overlap zero. Finally, we found little evidence of an association 

between early life exposure to scarlet fever and later-life CVD. 

5.3.4 OLS estimates of associations between district-level scarlet fever exposure to 

individuals’ cognition and educational attainment 

Figure 5-4 presents the association of an additional annual regional case of scarlet fever 

per 10,000 in the district of birth with educational attainment and fluid intelligence, 

with 95% CIs, by the age of one, five, and ten. We found little evidence that exposure to 

scarlet fever in childhood associated with educational attainment. Scarlet fever was 

negatively associated with fluid intelligence: for exposure at age one (-0.13, 95%CI: -

0.23; -0.04), age five (-0.16, 95%CI: -0.39; 0.08), and age ten (-0.17, 95%CI: -0.54; 0.19). 

However, the confidence intervals widen greatly at later ages of average exposure to 

scarlet fever and overlap zero. 

 

Figure 5-4: The standard deviation change associated with an additional case of scarlet 
fever per 10,000 individuals. N=99,189 for fluid intelligence; N=207,242 for educational 
attainment. 
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5.3.5 Multiple hypothesis testing 

As we have investigated the impact of exposure to scarlet fever on multiple phenotypes, 

it is appropriate that we undertake multiple hypothesis testing, so we validate our 

results using the Bonferroni correction. As the exposures of interest (exposure at age 1, 

age 5 and age 10) are nested, we are testing 8 hypotheses. The pre and post corrected 

P values are shown in Table 5-2. Using this Bonferroni correction for multiple 

hypothesis testing, only our result for fluid intelligence at age 1, in addition to IHD at 

age 10, are found to remain significant. 

Table 5-2: P values for exposure of scarlet fever by age 1, 5, and 10 each phenotype 
before and after Bonferroni correction. As exposures are nested, each exposure group is 
corrected for 8 hypotheses.  
 

By Age 1 By Age 5 By Age 10 

Phenotype P Bonferroni P P Bonferroni P P Bonferroni P 

Rheumatic Disease 0.801 1.000 0.749 1.000 0.873 1.000 

Vascular Disease 0.514 1.000 0.292 1.000 0.307 1.000 

AMI 0.222 1.000 0.087 0.696 0.030 0.240 

IHD 0.247 1.000 0.115 0.920 0.012 0.096 

Stroke 0.101 0.808 0.074 0.592 0.162 1.000 

CVD 0.692 1.000 0.804 1.000 0.826 1.000 

Educational 
attainment 

0.305 1.000 0.771 1.000 0.399 1.000 

Fluid Intelligence 0.005 0.040 0.187 1.000 0.353 1.000 

5.4 Discussion 

In this paper, we investigate the potential for long-running consequences from 

exposure to scarlet fever in childhood to worse later life cardiovascular health and 

cognitive performance. We found weak evidence of an association for AMI and stroke, 

with stronger evidence robust to multi-hypothesis testing for IHD and fluid intelligence. 

Unlike previous annual national data from Public Health England225, our study has three 

core benefits. First, it better captured individual exposures by specifying 52 weeks from 

the participants’ year and month and birth. Second, the weekly analysis was recorded 
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within areas of England and Wales, rather than the aggregate within England and 

Wales, which meant we could exploit extensive spatial variation across the districts. 

Finally, the weekly data allowed for controlling both within year variance in outcomes 

and the seasonality of the exposure and outcomes. To our knowledge, this is one of the 

first papers to investigate the association between early life exposure to scarlet fever 

and later-life heart disease, education, and intelligence within the context of England 

and Wales in the 20th century in a very large sample. 

Whilst our new data is a strength, that lack of a strong source of existing data for scarlet 

fever prior to our investigation means we have few papers to paper our results to. A 

study that investigated 19th century Sweden and found a negative association between 

exposure to scarlet fever in early life and later life cardiovascular disease226. The only 

known prior study to have investigated educational attainment for this birth cohort was 

at age 11 on a sample of 43,820 Birmingham children 227. Children infected with scarlet 

fever in the years prior to the eleven plus examinations had similar exam results 

compared to non-infected peers227. Our investigation into fluid intelligence is based on 

a potential rare complication of S. pyogenes of PANDAS, but results investigating 

PANDAS to fluid intelligence are not comparable to the effect of scarlet fever, and we 

know of no former studies that have reported comparable estimates of the associations 

of scarlet fever and fluid intelligence directly. However, a previous study investigating 

early life exposures and multiple childhood diseases at ages one and two86 found 

negative associations to later life fluid intelligence, which is similar to our analysis for 

exposure to scarlet fever by age 1. 

Many of our phenotypes result in null findings, especially after accounting for a 

Bonferroni correction to multi hypothesis testing. This could be argued as a strong 

negative result, as our data is some of strongest to data. Whilst possible, there are 

considerations as to why our result may yet be underestimated and therefore 

underpowered to find results. A key example of this is rheumatic disease. Rheumatic 

fever, the cause of rheumatic heart disease, is caused by S. pyogenes, and specifically 
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requires a previous untreated infection of S. pyogenes76, such as scarlet fever. Yet, our 

result would suggest that areas with higher infection rates of an S. pyogenes disease 

does not link to any increase in rheumatic fever, despite this being a known biological 

pathway. 

Part of this is due to the low number of cases, as whilst rheumatic heart disease is still 

a leading cause of premature death, it declined across the western sharply since 

1950121. Even for those unfortunate enough to be infected, as the UK Biobank sampled 

individuals aged 40-69, few individuals with rheumatic heart diseases as a result of 

early life exposures would likely have survived. Therefore, our result for rheumatic 

diseases is in part due to survivor bias, which is likely to significantly decrease our 

ability to find any associations. 

Another bias that is likely to have attenuated our ability to detect effects is that of 

selection bias. The UK Biobank suffers from its participants being healthier and of 

higher socioeconomic status from the population sample228,229. Of particular concern is 

that individuals are also less likely to live in deprived areas229. Whilst this traditionally 

relates to participants current home address, the birth coordinates, as shown within 

Figure 5-1, also shows a strong bias for larger urban areas, with little rural 

participation. Therefore, we have reason to believe that our results suffer from 

considerable downward bias, as our participants were less likely exposed than an 

average member of the population. 

This paper uses WeightGIS to standardise districts over time, to ensure greater 

comparability and ensure consistent within district characteristics. Whilst WeightGIS 

uses parish level population weights, subdividing England and Wales into nearly 17,000 

locations, it is still a percentage-based weight and may result in variables with a degree 

of imprecision. This may result in measurement error, as individuals are assigned 

exposures that are higher or lower than they otherwise should be. Whilst this may bias 

our estimates if the measurement error is high, the areas that suffer from errors in 
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WeightGIS worst are rural areas. Given the sample is predominately living in urban 

areas, which do not change as drastically, any bias caused by weighting should be 

minimal. 

A further source a measurement error is due to residential mobility, which the UK 

Biobank lacks detailed information on. As many of our larger findings exist for those 

exposed constantly up the age of ten, if individuals moved before the age of ten, this 

would result in measurement error. However, as we measured the exposure at a district 

level, this would only occur if individuals moved outside the district of birth. Estimates 

of residential mobility between 1938-1947 have been estimated to be 7% for 

individuals aged 0-19 per year220, which suggests bias resulting from residential 

mobility may not be small. However, this particular estimate includes war years, such 

as the evacuation during blitz, so is believed to be a much higher estimate than for those 

born later in the sample. There is also the consideration that individual birth locations 

are generalised to 1km69 grid points. Those born closer to district borders have a higher 

potential of measurement error from being assigned the wrong district of birth which 

may further result in underestimates of our outcomes of interest. 

Therefore, as we believe that our estimations suffer from downward bias, the 

magnitude of the result for IHD should be of concern. Just under 4.7% of our analysis 

sample in the UK Biobank, which is healthy by far than the standard population, have 

IHD. Yet, our results indicate showed that being exposed to a sustained additional case 

of scarlet fever each year, on average, by the age of ten, increases the probability of 

being diagnosed with IHD by 7.25 percentage points, or the absolute risk difference. 

This increase in absolute risk difference suggests that consistently highly exposure to 

scarlet fever in early life may have stark impacts to later life health. The underlying 

selection bias in the sample result in this estimation not generalising to the population. 

However, given S. Pyogenes pre-established links to heart disease through rheumatic 

fever and the resulting rheumatic heart disease, the associations we have found within 
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this paper are important to be further considered, especially given scarlet fevers return 

in recent years in the UK230. 

5.5 Supplementary Information  
Table 5-3: (5-S1) ICD 9 and 10 codes used for heart definitions 

Definition ICD9 Codes ICD 10 Codes 

RD 3909-3929 I0 

V 4240 I34-I38 

IHD 4109-4149 I21-I25 

AMI 4109,4129 I21-I22 

STROKE 4309-4359 I6, G45 

CVD 3909-4599 I, G45 

 

Figure 5-5: (5-S2) Rate of scarlet fever cases in England and Wales per 100,000 from 
1912-2018206,34 
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6 Can gene-environment interactions from childhood diseases 
explain the rise in asthma incidence in the 20th century? 

6.1 Introduction 

Over 334 million people globally suffer from asthma,231 with the prevalence growing 

from just 4% of 9-12-year old’s in 1964, to 29.5% in 2004, then more recently back to 

18.6% in 2014.135 The cause for the rise in cases is still not fully understood. The 

environment changed substantially over the latter half of the 20th century and has been 

found to be associated with increased levels of asthma,135232. Reduced breastfeeding,233 

increased numbers of caesarean sections,234 increased pre- and neonatal antibiotic 

treatments,235,236, reductions in exposure to livestock,237 pets,238 dust,239 common 

childhood diseases138, and unpasteurised milk,240,241 have all been associated with 

increased asthma incidence. Many of these findings have themselves been 

disputed,242,243,244,245,148,146 leading to a lack of definitive evidence as to the cause of the 

rise in asthma cases. However, none of these studies take underlying genetic liability to 

asthma into account. 

Failing to control for genetic risk is importance is due to how those who are genetically 

at risk of asthma respond to allergens. Those at genetic risk of asthma are susceptible 

to produce an excessive immunoglobulin E (IgE) response to otherwise harmless 

environmental allergens26,27. However, asthma is both polygenic and with strong 

environmental components, with the risk of developing asthma highly dependent on 

the interaction between these risk elements246. Therefore, studies that investigate the 

impact of a particular environment on the risk of developing asthma without 

considering individuals’ genetic risk, fail to consider the potential difference in risk 

those with predetermined risk face. 

With such a sharp rise in asthma rates, this precludes the rise in asthma cases being 

purely genetic, as changes in genetic makeup would take generations to occur247. 

However, if the genetic risk is moderated by certain beneficial environments, then, 



124 
 

whilst the prevalence of the underlying genetics cannot change so quickly, the 

prevalence of the actual disease could. Many environments changed, but here we 

focused on the changes the underlying exposure to early life disease based on a paper 

investigating IgE inhibition25. 

A Lab study found that specific expressions of Immunoglobulin G (IgG) can inhibit 

excessive IgE Responses25. IgG levels are increased in response to an infection248 and 

individuals can remain IgG positive for months or years249. Currently, one of the few 

affective treatments for asthma, immunotherapy, does much of the same thing, by using 

micro doses of the allergen to build up IgE regulation over time250. If diseases exposure 

can lead to increased persistence of IgG, and can inhibit an excessive IgE response, then 

we hypothesize that disease exposure in early life may have resulted in a protective 

environment. 

The disease environment changed over the 20th century considerably. As over half of 

individuals develop asthma before the age of ten251, the change to disease exposure 

early in life may be crucial to understanding the rise in asthma in the 20th century. 

Vaccines meant many previously common diseases, such as measles, tuberculosis, 

pertussis, diphtheria, mumps, rubella and polio declined252,253. This saved millions of 

lives, with the MMR vaccine alone estimated to have prevented 20 million deaths just 

from measles between 2000-2015156. However, for those born before these 

introductions, the prevalence of common childhood disease would have been 

significantly higher than after. If the IgG levels from infection were able to help regulate 

the IgE response that asthmatics have, then for those with a high genetic risk, the 

disease environment may have had an unexpected protective effect. Conversely, for 

those without genetic risk, the change in the disease environment should conceivably 

have no effect. 

Therefore, by incorporating individuals’ genetic liability in the analysis, we could 

investigate how exposure differs not just among those with greater exposure, but also 
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between those at greater vulnerability because of genetic risk. In this study, we 

investigated how the change across the 20th century of incidence of infectious diseases 

affected the risk of asthma. We focused on the three respiratory diseases of scarlet 

fever, pertussis, and measles, all of which have been associated with 

asthma140,146,130,148,149. This study has a key contribution, in that it may help explain 

conflicting evidence in the literature for the changing disease environment on asthma 

instance by including a genetic component138,139,140,141,142,143,144,145,140,146,147,148,149. 

6.2 Methods 

6.2.1 Cohort population and data sources 

The UK Biobank has been described elsewhere11. Briefly, the UK Biobank is a 

prospective cohort study of UK adults aged 40-69 at time of recruitment12. The UK 

Biobank contains extensive later life information on the health and well-being of its 

participants, whom crucially for our analysis, have also been genotyped. Unfortunately, 

the UK Biobank contains limited early life information. Therefore, we used data from 

the Registrar-General’s Weekly Return42, which provided notification totals for roughly 

1472 districts, regional zones within the UK prior to 197423, to construct exposures for 

UK Biobank participants. Due to notifiable cases being reported as counts, we then 

merged in district population estimates from the Great British Historical Database on 

Health and Health Care74 to allow construction of incidence rates. 

6.2.2 Exposure Construction 

Exposures were defined for each participant using their year, month, and location of 

birth. Each participant was assigned to a district based on their location of birth. We 

then defined the exposure in the first year as the rate of disease per 100 population in 

the 52 weeks from the first full week of the year and month of birth. We constructed 

exposures for scarlet fever, pertussis, and measles independently for each year up to 

the age of ten, to account for the ages they are most likely to be infected,213,214,152,254,255. 
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We then used these annual incidence rates to construct average exposures for scarlet 

fever, pertussis, and measles by the ages of one, five, and ten. The average exposures 

were constructed as the mean of the annual exposure in the years up to that age. 

6.2.3 Construction of asthma phenotype and PRS 

We defined asthma cases from three sources. First, we used the hospital inpatient 

codes, stored both as ICD 9 and ICD 10. Specifically, we assigned anyone with ICD 9 493, 

ICD 10 J45 or ICD 10 J46 as asthmatic. We also used both self-reported and doctor 

diagnosed data fields from the UK Biobank variables of 3786 and 6152 to supplement 

anyone who lacked inpatient data. As our hypothesis is related to asthma specifically, 

we removed anyone with asthma alongside other atopic diseases of hay fever or 

dermatitis. We also ensured that controls do not have hay fever or dermatitis, in 

addition to not having asthma. 

Participants genetic susceptibility to asthma was constructed as a polygenic score 

(PGS) using LDpred256 with an R squared of around 1%. We used summary statistics of 

a prior GWAS (23,948 cases, 118,538 controls) using European ancestries and not 

including the UK Biobank on asthma257. We standardised our PGS to have a mean of 

zero and standard deviation of 1 for our analysis. 

6.2.4 Statistical analysis 

The association from early life exposures to scarlet fever, pertussis and measles on 

asthma was estimated using logistical regression and reported as odds ratios with 95% 

confidence intervals (CIs). We also clustered the standard errors by district of birth. For 

sensitivity analysis, we repeated our analysis, but only for those in the highest and 

lowest quartiles for exposure and genetic risk, to further investigate the robustness of 

our results. 

Our covariates included were designed to capture the potential time varying and 

invariant characteristics that may be associated with either our outcome or exposure. 
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Both scarlet fever and pertussis cases gradually declined over our sample period258, 

whereas measles cases remained constant given its immunisation introduction of 

around 1968. Asthma cases also began to rise significantly after the 1960s.135 We 

controlled for these time trends’ using participants’ year and month of birth. 

Controlling for the year and month of birth of the participant also controls for the 

distinctive seasonal patterns of scarlet fever218, pertussis259, and measles260. 

Those in lower economic position tend to be at great risk of asthma261. However, 

asthma incidence tends to be lower in higher social economic areas, even amongst those 

of low income262. In addition, exposures are themselves often confounded through 

social economic position, as disadvantaged individuals had a higher likelihood of living 

in unsanitary or worse living conditions263. Whilst we do not know individuals specific 

social-economic position of birth, we control for regional differences by including fixed 

effects for the 1472 districts. In doing so, we controlled both for time invariant 

differences between districts and any confounding of social-economic position of our 

outcome or exposures. 

The setup and cleaning of the data was undertaken in python 3.7, with the statistical 

analysis being undertaken in Stata 14. The project code, Stata logs of the analysis, and 

editable figures are available in this project’s GitHub repository available at 

https://github.com/sbaker-dev/AsthmaDisease. The UK Biobank data cannot be made 

available but can be accessed to bona fide researchers by applying to the UK Biobank. 

Merged disease counts from the Registrar Generals Reports, converted as rates per 100 

individuals, as well as district of birth identifiers, will be made available to other 

researchers through the UK Biobank. 

6.3 Results 

The UK Biobank contains 502,506 adults. However, participants not born in England or 

Wales were excluded (n = 39 488), as our exposure data was limited to England and 

Wales. As linkage to a district of birth is required to construct exposures, those lacking 
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a birth coordinate were also removed from the study sample (n = 57 799). Both 

bacterial infections of scarlet fever and pertussis can be treated by penicillin, which was 

not widely available before 1946224. Those born before 1946 will have had a very 

different disease environment than those after, so our analysis excluded those born 

prior to 1946 (n = 122 177). This also excludes the period of the Second World War, 

where evacuations of children may have increased the measurement error of 

participants’ location of birth183. To ensure all individuals had ten years of exposure, we 

excluded individuals born after 1963 (n = 50 468), as the digitised weekly returns end 

in 1973. 

This left 232 556 participants within 1450 districts within the analysis sample. The 

analysis sample comprised of 128 446 (55.23%) females and 104 110 males (44.77%). 

Table 6-1 shows the analysis sample breakdown of for age, sex, and asthma status of 

the participants. Supplementary Figure 6-S1 shows the share of the population the 

analysis sample represents within each district to the district population estimates as 

of the 1951 census. 

Table 6-1: Summary statistics of the analysis sample. Total sample size 232 556. 

Variable Unit Mean Standard 

deviation 

Age Years 68.72 ± 5.11 

Sex Male (%) 0.45 ± 0.5 

Asthma 

Status 

Asthmatic 

(%) 

0.16 ± 0.37 

6.3.1 Exposures 

Figures 6-1, 6-2, and 6-3 shows the mean rate and standard deviations for measles, 

scarlet fever, and pertussis respectively, with individual exposure in the UK Biobank 

assigned based on these regional measures. Figures 1-3 show that there is variation by 
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district for each disease and that said variation changes over time, although for more 

common diseases such as measles, this variation is greater at. The mean rates for scarlet 

fever, pertussis, and measles by age do decline, although this is less the case for measles. 

Table 2 shows the mean and standard deviations of the exposures calculated for the UK 

Biobank participants from this regional data. As we average over a larger number of 

years, thus requiring data later in the sample, the averages do decline for scarlet fever 

and pertussis but less so for measles, since the measles vaccine was not widely 

introduced in the UK until 1968258. 

Table 6-2 shows the mean regional rate of scarlet fever, pertussis, and measles by age. 

The annual incidence for scarlet fever and pertussis declined over our sample periods, 

so as individuals age, they therefore experienced less exposure to these diseases. Whilst 

the exposure rate for measles does decline as participants age, since the measles 

vaccine was not widely introduced in the UK until 1968237, it is far more consistent 

across the age range. 

Table 6-2: The means and standard deviations, in parentheses, for the average exposures 
experienced by the ages of one, five, and ten for scarlet fever pertussis and measles. 

Average Exposure by age Scarlet Fever Pertussis Measles 

One 0.11 (0.09) 0.22 (0.19) 0.96 (0.71) 

Five 0.10 (0.06) 0.19 (0.14) 0.95 (0.26) 

Ten 0.08 (0.05) 0.15 (0.11) 0.89 (0.23) 

 

6.3.2 Early life exposures and their interplay with PGS of asthma on asthma incidence 

The association of regional rates of childhood diseases and asthma incidence are shown 

in Figure 6-4 Panel A, and the interaction between a regional rates of childhood disease 

and the PGS of asthma on asthma incidence are shown in Figure 6-4, Panel B.  
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Figure 6-1: The means and standard deviations of scarlet fever rates per 1000 across 1472 districts 
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Figure 6-2: The means and standard deviations of pertussis rates per 1000 across 1472 districts 
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Figure 6-3: The means and standard deviations of measles rates per 1000 across 1472 districts 
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Finally, the association of a standard deviation increase of the asthma PGS on asthma 

incidence is shown in Figure 6-4, Panel C. The results are reported as odds ratios. 

For the main associations between the childhood diseases and asthma shown in Figure 

6-4, panel A, we found little evidence of associations between childhood diseases and 

asthma incidence. There was little evidence that increased rates of scarlet fever 

exposure at age one, five, and ten associated with incidence asthma (OR=1.21, 95%CI: 

0.90; 1.61; 0.88, 95%CI: 0.50; 1.55; and 0.82, 95%CI: 0.37; 1.79 respectively). Similarly, 

there was little evidence that participants who experienced higher rates of pertussis 

had higher asthma incidence by age one, five or ten (OR=1.05, 95%CI: 0.92; 1.20; 

OR=1.05, 95%CI: 0.80; 1.38; OR=1.09, 95%CI: 0.74; 1.59). We found little evidence of 

any association between increased exposure to measles and asthma incidence. 

We found evidence of a negative interaction between district level rates of scarlet fever 

and genetic liability for asthma (Figure 6-4, Panel B). We found evidence of an 

interaction between exposure to scarlet fever, and the genetic liability, on asthma 

incidence increased as from age one (OR=0.84, 95%CI: 0.74; 0.96), age five (OR=0.72, 

95%CI: 0.60; 0.88), and age ten (OR=0.68, 95%CI: 0.54; 0.87). Similarly, we found 

evidence of a negative interaction between increased exposure to pertussis, and genetic 

liability on asthma incidence, although this was smaller than scarlet fever. Increased 

exposure to pertussis at age one, interacted with genetic liability, increased asthma 

incidence at age one (OR=0.95, 95%CI: 0.89; 1.01), age five (OR=0.92, 95%CI: 0.84; 

1.00), and age ten (OR=0.87, 95%CI: 0.78; 0.97). We found limited evidence of an 

interaction of an exposure to measles and genetic liability, on asthma incidence. 
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Figure 6-4: Associations of early life disease exposure rates per 100 individuals and their interplay with the PGS for asthma 
across childhood on asthma. 
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The protective associations shown in Figure 6-4, Panel B, must be made relative to the 

increased risk of asthma incidence participants face from having a higher PGS for 

asthma. Figure 6-4, Panel C, shows that an increased standard deviation of the PGS for 

asthma increased the risk of asthma by between 25-29%. Those exposed to scarlet 

fever or pertussis have a reduced probability of developing asthma, compared to those 

with low exposures of these diseases and the same PGS. However, those exposed to 

higher rates of scarlet fever or pertussis still have a higher risk than those exposed to 

said diseases, but with a lower PGS. 

In a sensitivity we repeated the analysis comparing the upper and lower quartiles of 

genetic susceptibility (Supplementary Figure 6-S2 and 6-S3). For those in the highest 

genetic risk quartile, we found a similar but weaker relationship to Figure 6-4, Panel B 

for both scarlet fever and pertussis and still no association for measles. Conversely, for 

those in the lowest genetic ricks quartile, we found little evidence of any protective 

association from exposures to scarlet fever, pertussis, or measles. 

As we have investigated the impact of three different exposures to asthma, it is 

appropriate that we undertake multiple hypothesis testing, which we do through the 

Bonferroni correction. As each exposure of interest (by age 1, 5 and 10) is nested, we 

are testing three different hypotheses. The pre and post corrected P values are shown 

in Table 6-3. Our results remain robust except the interaction effect between pertussis 

and the polygenic score for asthma by age 5, which is no longer significant. 

6.4 Discussion 

In this large prospective cohort study, we examined if increase exposure to childhood 

disease was associated with later life risk of asthma, and if this risk differed at different 

levels of genetic risk. There have been a few studies investigating the direct impact of 

the disease we investigate on asthma incidence. Previous studies suggested that scarlet 

fever was protective using national trend data264, pertussis to exacerbate allergic 

airway inflammation146, and measles having no associated protection148. Our analysis  
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Table 6-3: P values for exposure of scarlet fever, pertussis, and measles by age 1, 5, and 10, the polygenic score, and the 
interaction between the two, to asthma before and after Bonferroni correction. As exposures are nested, each exposure 
group is corrected for 3 hypotheses.  

 By age 1 By age 5 By age 10 

Exposures P Bonferroni P P Bonferroni P P Bonferroni P 

Scarlet fever       

Direct effect 0.202 0.606 0.659 1.000 0.615 1.000 

Polygenic score <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Interaction 0.009 0.028 0.001 0.003 0.002 0.006 

Pertussis       

Direct effect 0.453 1.000 0.721 1.000 0.663 1.000 

Polygenic score <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Interaction 0.13 0.39 0.05 0.14 0.01 0.04 

Measles       

Direct effect 0.608 1.000 0.938 1.000 0.946 1.000 

Polygenic score <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Interaction 0.304 0.913 0.746 1.000 0.189 0.567 
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found no evidence of a direct association between the disease environment and 

increased risk of asthma. As such, for a large proportion of the population, the declining 

rates of infectious diseases are unlikely to explain the rise in asthma incidence. 

However, our paper is the first, to our knowledge, to investigate this question further 

by interacting early life exposure with genetic risk. For those with increased genetic 

risk of asthma, we found an association between increased exposure and reduced risk 

of developing asthma for both scarlet fever and pertussis. However, much of our results 

for pertussis are not robust to multi-hypothesis testing. However, for a those 

predisposed to be at risk of asthma, there is some evidence of an association that the 

changing disease environment may explain part of the rise in asthma prevalence over 

the latter 20th century. 

Whilst our method of using district level data does result in less specific exposures than 

if measured individually, said individual level exposures may suffer from individual 

level confounding due to socioeconomic position. Instead, our regional exposure rates 

provide a summary measure of the environment within each district for participants 

exposed at a particular age. As such, this reduces socioeconomic confounding, with 

differences between districts controlled for by fixed effects. By controlling for the 

cohort year, we are also only comparing outcomes of participants with exposures with 

the outcomes of those born in the same local area but having been exposed to at a 

different rate. Hence, a strength of our modelling approach is that it limits the role of 

individual level confounding factors that can be challenging to address. 

Many environments changed over the later 20th century at the same time such as diet, 

sanitation, pollution, and antibiotic use148. It is possible that the changing nature of 

diseases is also capturing other changing environments that we do not explicitly control 

for, which is a weakness of this study. Many of these, such as antibiotic treatment, are 

difficult if not impossible to control for at an individual level. Therefore, it is possible 

our diseases environment is confounded by these unobserved environments that may 
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play equal or greater roles. To attempt to limit this bias, we have undertaken several 

steps. We controlled for individuals’ year of birth, which captures general changes in 

both observed and unobserved environments that occur year-on-year. We further 

limited our study to only those born after introduction of antibiotics, to remove any 

potential of availability and exposure to them. As we lack a measure of individual-level 

antibiotic use in childhood within the UK Biobank, this is the best we can presently do 

with the data available. 

The UK Biobank lacks detailed information on location of residence throughout the 

participants’ lives, limiting this information to place of birth and residence at or after 

joining the study. Since individuals are assigned disease exposures that are derived 

from regional measures of disease incidence rates, we assumed that individuals have 

not moved by the age of ten. Any residential mobility up to the age of ten will have led 

to measurement error which may have attenuated our estimates. Before our sampling 

period, a historical estimate for annual residential mobility of 0–19-year-olds born 

between 1938-1947 was estimated to around 7%220. Therefore, with each additional 

year, the likelihood of measurement of individuals moving out of the district increases. 

However, this annual estimate is inclusive of those born during the war years, so is 

likely to not be representative of a post-war Britain. 

UK Biobank participants tend to be healthier, leaner, smoke less, suffer from less 

disease, be older, and live in more socioeconomically advantaged areas which also 

results in selection bias228. This selection bias reduces the risk of infection of childhood 

diseases, due to the inverse correlation between wealth and disease exposure263, so our 

results are likely to suffer from downward bias. They also have a higher proportion of 

asthmatics, with 16% of the sample having asthma compared to only 12% of the 

population265. This could in part be due to the higher density of individuals within the 

UK Biobank living in urban areas, which tend to have higher prevalence of asthma than 

rural areas237. It may also be, for those with milder symptoms, be that they were more 

likely to go to a doctor for a diagnosis. 
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This study used WeightGIS to create time invariant locations to ensure district level 

characteristics at a population level remained broadly constant. However, whilst 

weighting using 17,000 sub-locations in England and Wales should reduce weighting 

imprecision, a degree of measurement error will be caused using these methods. This 

may result in individuals being assigned higher or lower exposures than they would 

otherwise have experienced. As individuals in our sample are predominately born in 

urban areas, which proportionally change less, any measurement errors impact on our 

estimates as a result of the use of WeightGIS should be minimised. 

Whilst our analysis is not perfect, it has replicated an interesting hypothesis in 

principle, that exposure to disease may be protective for certain subgroups. Should the 

lab results be further replicated, and IgG from infection be proven to be protective 

against asthma, then the policy implications are complex. The genetic component is 

fixed, and cannot be changed, therefore, the only thing that can be changed is the 

environment. However, we don’t want to suggest that children should purposely get 

infected with unattenuated disease, as this will carry its own risk. Therefore, only if an 

attenuated bacterium could generate the regulatory response would it be 

implementable, as then it would be a treatment. 

Given the polygenic nature of asthma, it is not possible to just screen for individual SNPs 

as predictors of asthma, as would be done for Mendelian traits like Huntington’s246. 

Mass screening and storing genetic data has its risks and ethical concerns, see266 for a 

review. As this is undesirable, the consideration for a policymaker comes to a trade-off 

between the potential benefits of treatment and costs. The associational results we 

presented suggest that there was no consequence for those who were not genetically 

liable to exposure. Universal treatment offers the maximum possible protection, but 

much of the financial cost for non-genetically liable individuals may be considered 

waste. It would be down to the policymaker to evaluate the benefits of maximising the 

reduction in asthma incidence against the potential financial cost of treatment. 
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If the cost is too high, then the alternative is to use family history and apply to those 

considered at risk. Asthma is highly heritable at around 82%.28 Around 25% and 50% 

of the children with a single or both parents respectively having asthma, develop 

asthma themselves251. Therefore, determining whom should undergo treatment based 

on genetic susceptibility can be done through investigating parental and recent family 

history of asthma incidence. Whilst the coverage of this policy would be lower, so too 

will the cost, as only those most likely to benefit are the ones who are treated. 

There remains the possibility that reduce exposure to childhood diseases may in part 

be responsible for the large increases in asthma incidence experienced in the latter half 

of the 20th century. Our analysis shows that for those who were at the greatest risk for 

asthma genetically, exposure to scarlet fever or pertussis was associated with reduced 

incidence of asthma. Crucially, these individuals are still at a greater level of risk, 

comparably, than those exposed to childhood diseases with lower genetic risk. 

However, our sensitivity analysis on the uppermost quartile of genetic risk found 

reduced results, which suggests that the protective association is not limited only to 

those of the highest risk. Therefore, whilst exposing children to infectious diseases will 

not lead to reductions in overall asthma incidence, it may in part explain this pattern 

for some of the most vulnerable. More research focus needs to be placed in exploring 

the potential for mechanisms that may exist, potentially exclusively, for those of the 

highest genetic susceptibility to diseases, such as asthma. 

 

 

 

 



141 
 

6.5 Supplementary materials 

 

Figure 6-5: (6-S1) The share of the population covered by our analysis sample from the UK Biobank relative to the 
population totals of each district within 1951 
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Figure 6-6: (6-S2) Associations of early life disease exposure rates per 100 individuals and their interplay with the PGS 

for asthma across childhood on asthma for those with a polygenic risk in the uppermost quartile. 
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Figure 6-7: (6-S3) Associations of early life disease exposure rates per 100 individuals and their interplay with the PGS 

for asthma across childhood on asthma for those with a polygenic risk in the lowermost quartile. 
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7 Concluding remarks 

The thesis has made multiple contributions to both the scientific literature. One its 

major contributions is the construction of new data. This allows for future 

contributions to the literature when this data is made public and has allowed this thesis 

to contain research that is distinctive from others in the literature. Availability is a key 

part of data quality, with collaboration and subsequent validation of research through 

data sharing crucial for rapid advancement in the literature267. However, data that fails 

to be usable, reliable, relevant, and readable will at best fail to facilitate such 

advancement268, and at worst may even lead to erroneous findings. Whist the data will 

be made public, it will only be released when it meets all the criteria of good quality 

data. 

Creation of said data required digitisation but using currently available methods would 

have been extremely time consuming and costly. The European Central Commission 

estimated that the cost of digitising Europe’s cultural heritage would be upwards of 100 

billion Euros, driven by the fact that costs of digitisation are not insignificant269. The 

money saved from using ArchiveOCR to process 40,000 tables of notifiable diseases is 

difficult to estimate, as the price per page varies based on the combination of scale, 

scope, and skills. However, an estimated cost can through establishment of a few 

assumptions. Any costs of scanning historical documentation are ignored, and it is 

assumed that it takes 15 minutes to fully digitisation and clean a page using 

commercially available OCR software. Using the minimum hourly wage of 2021 of 8.91 

per hour, and if an individual works 8 hours a day, it would cost £89,100. It would also 

have taken three and a half years to process all 40,000 tables. Instead of spending the 

duration of my PhD constructing this resource, this thesis has created new tools to 

digitise historical records, digitised the diseases notifications and many other 

resources, in a fraction of the time and cost. 
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Without WeightGIS to standardise the data that has been produced, limited amounts 

could have been utilised for research. Most districts change over the 44 years of 1931 

to 1974, limiting capacity to comparing within locations. Studies that have used small 

parts of the disease notifications have in the past simply had to drop any district that 

changed101. Dealing with boundary changes has proven historically to be significantly 

challenging48, but with WeightGIS, any data from districts between 1931 and 1974 can 

be now standardised and used across time. Using GIS has also allowed for the data 

within BIO-HGIS to be linked to the UK Biobank. Linkage to the UK Biobank allows for 

studies using regionally measured exposures and environments, to be used to estimate 

individual level outcomes. This allows for a much broader reach and impact of research. 

Streptococcus pyogenes has, within recent years, mutated into a new strain of M1T1, 

which is closer to its historical counterparts from the early parts of the 20th century. 

Should there be further mutations, there is a risk not just in a spike in childhood 

mortality but also increased latent consequences for survivors. This is in part due to the 

heterogeneity in immune responses, which allows at a population level for variation in 

outcomes from the exposure. Whilst an increasing number of long-term health 

outcomes have been established, many more have yet to be fully investigated. Within 

this thesis, we were unable to find robust associations between increased exposure to 

scarlet fever in childhood increased risk of heart disease outcomes. Given this 

established risk to rheumatic heart disease there is considerable concern that for some 

research outcomes, the underlying bias may still make the data less appealing. Despite 

this, we did still find some weak association with increased exposure to scarlet fever 

and reduced later life fluid intelligence. These associational findings are some of the 

first that we know of. If new strains of streptococcus pyogenes continue, and 

streptococcal disease become more prevalent, the consequences of infections such as 

scarlet fever may be broader than previously thought, but more research is required as 

where unable to prove anything causally here. 
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Whilst this thesis has not been able to causally prove why asthma cases have increased, 

it utilised a gene-environmental interaction to show the importance of both elements. 

Changes to the environment have frequently been associated to increase in asthma 

instances135,232, but have failed to account for the genetic makeup of their sample. 

However, in order for a gene-environmental interaction study to be constructed, a 

cohort study with geneotyped individuals, and a sufficiently detailed list of exposures 

in early life is required. This does not currently exist, but by utilising BIO-HGIS we were 

able to modify the UK Biobank to allow for this study. 

Within our study in Chapter 6 we found that despite diseases frequently being 

dismissed as a potential cause to rise in asthma148, that when considering the innate 

genetic risk of participants, that the changing disease environment was associated to 

increased asthma risk. However, our results also contradict an older hypothesis, simply 

suggesting that child with higher exposures were less likely to have atopic disease138. 

Those at genetic risk were associated with less risk of later life asthma with exposure, 

but those with little genetic risk stood to gain little from exposure to childhood diseases. 

Studies must strive to consider that associations from exposures or early life 

circumstances may hide effects for genetic sub-groups of the population that may not 

be well represented, or over-represented, in that study sample. 

In all, this thesis has striven to collect, digitised, standardise, innovate, and deliver data, 

software, methods, and research. Taken as a whole, this thesis represents a conclusion, 

but only to the prelude of the true project ahead. The methods developed within this 

thesis will be used to protect more of our past, and us it to try to inform those in the 

present of the potential future of their past actions if they remain unchanged. The skills 

learned to undertake research will be used to further seek to research ways of utilising 

our past to reduce the inequalities of health, place and birth. There is significant more 

work to be undertaken. However, when the data is finally made public, it is hoped that 

the research communities of multiple disciplines can explore our past to try to help 

further the research body as a whole. 
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7.1 Future Work 

Whilst ArchiveOCR is still within an alpha stage and not yet available, it represents 

another significant contribution that will become part of future work. Considerable 

time constraints have left much to be desired, and to truly be accessible to all, it requires 

a much cleaner front end graphical user interface. Whilst the code base is simple to use, 

with only two main command calls, the number of arguments make it unwieldy for 

newer or less experienced users. Future work will focus not just on updating the code 

base to a 2022 standard, but also to focus on the accessibility aims of the project. In 

doing so, it is hoped that ArchiveOCR can be used as tool for others to protect their own 

past and heritage. Whilst WeightGIS has been publicly accessible for a while, it requires 

proper user documentation to ensure it can be used by others and that the findings 

within this thesis can be replicated. 

BIO-HGIS requires extensive work before being made public, but work has started on 

construction of the front and back end of a web application for data investigation. 

However, extensive user documentation still is required for it be of much use for 

external researchers. Many data sources also require further digitisation or 

standardisation before they are complete. In the coming year it is hoped that all current 

digitisation projects can be finalised, so that the data can begin to be made public as the 

chapters go for publication. However, additional resources, such as weekly infant 

mortality, may also be produced depending on time and funding commitments. 

However, this thesis has already produced more data than I could possibly utilise. 

Although, that is not to say that hypotheses have not been constructed for the wealth of 

data. Many of these hypotheses were used as justification for digitisation in the first 

place, many of which are shown within Chapter 3. The aim is to produce a paper for 

each of the major notifiable diseases, releasing the data from that disease after 

publication. Currently, scarlet fever, pertussis, measles, and pneumonia have all be 

utilised within research in this thesis. The next paper will seek investigate if exposure 
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to non-paralytic polio, assumed to be self-limiting, still had the potential for later life 

declines in muscle functionality, white matter, or bone density in addition to increased 

BMI. Similar to Chapter 5, there is also a potential gene-environment interaction to 

exploit utilising the polygenic score for tuberculosis and exposure to tuberculosis from 

the disease notifications. However, unlike scarlet fever, pertussis, and measles the rate 

of tuberculosis is much lower, which will reduce the power to detect meaningful effects. 

Whilst the Blitz data was constructed within 2020, I never managed to utilise it myself. 

Given current European events as of March 2022, further investigating the potential 

consequences of exposure air raids on increased risk of later life stillbirths and 

miscarriage has become unfortunately more relevant than ever. The other current focus 

is constructing an alternative to the Townsend index that can be used across the sample 

period of BIO-HGIS. Whilst district fixed effects assist in capturing time-invariant 

differences, the impact of deprivation is difficult to untangle. Digitisation of monthly 

unemployment data from 1931-1974 will allow for the construction of an index of 

deprivation. Given the Townsend index in 1971 was 92.4% correlated to 

unemployment203 this will allow for a measure, even if imperfect, of capturing said 

inequalities. We then hope to use this index for a research paper, utilising it for a 

PheWAS, to show how inequalities from location of birth are associated with declines 

in later life health and well-being. 

The proposals and chapters within this thesis represented a select few of an ever-

increasing scope of research that could be undertaken. The hope going forward is that 

it will be increasingly possible to work collaboratively with pre-released data on 

research papers, to speed up the time to publication and eventual release of the data to 

public. For long term future work, there is a desire to set up a research group focused 

on protecting historical documentation. With a team of individuals, projects that are 

currently unfeasible for one individual to process, can be protected and hopefully used 

for research and public good for years and decades to come. 
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