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ABSTRACT

We introduce TAPHSIR ś a tool for anaphoric ambiguity detection

and anaphora resolution in requirements. TAPHSIR facilities re-

viewing the use of pronouns in a requirements specification and

revising those pronouns that can lead to misunderstandings during

the development process. To this end, TAPHSIR detects the re-

quirements which have potential anaphoric ambiguity and further

attempts interpreting anaphora occurrences automatically. TAPH-

SIR employs a hybrid solution composed of an ambiguity detection

solution based on machine learning and an anaphora resolution

solution based on a variant of the BERT language model. Given

a requirements specification, TAPHSIR decides for each pronoun

occurrence in the specification whether the pronoun is ambiguous

or unambiguous, and further provides an automatic interpretation

for the pronoun. The output generated by TAPHSIR can be easily

reviewed and validated by requirements engineers. TAPHSIR is pub-

licly available on Zenodo (https://doi.org/10.5281/zenodo.5902117).
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· Computing methodologies → Machine learning; Natural

language processing.
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1 INTRODUCTION

The overall success of a project depends to a large extent on the

quality of requirements [4, 5, 10]. In particular, ensuring the pre-

cision and consistency of requirements is paramount for avoiding

major development risks such as time and budget overruns, failure

to meet customers’ needs, and systems that are not trustworthy.

The requirements quality challenge is exacerbated by the fact that

requirements are often written in natural language [17]. Although

natural language facilitates communication among different stake-

holders, textual requirements are highly prone to ambiguity. At an

early stage of software development, requirements engineers spend

considerable time and effort inspecting requirements specifications

(RSs) to identify various quality issues such as incompleteness,

inconsistency and ambiguity. Doing such inspections entirely man-

ually is not only time-consuming but can also be error-prone, since

engineers may overlook unacknowledged ambiguity. Ambiguity

is unacknowledged when different individuals have diverging in-

terpretations for the same requirement, and yet, each individual

is confident about their own interpretation. In such cases, the re-

quirement from the perspective of each individual is regarded as

unambiguous and thus not flagged for further discussion. Compared

to acknowledged ambiguity that is often discussed and resolved

during inspection sessions, unacknowledged ambiguity may propa-

gate to later stages of development and lead to serious problems

due to unconscious misunderstandings.

In this paper, we propose the tool TAPHSIR, standing forTowards

Anaphoric Ambiguity Detection and Resolution in Requirements.

In Arabic, TAPHSIR means łinterpretationž. TAPHSIR focuses on

pronominal anaphoric ambiguity, an ambiguity type that has been

explored only to a limited extent in requirements engineering

(RE) [6, 22]. There are no existing tools in RE to handle anaphoric

ambiguity, although this type of ambiguity is prevalent in NL re-

quirements: it is estimated that up to 20% of industrial require-

ments may suffer from anaphoric ambiguity [6, 19]. TAPHSIR im-

plements the best solution emerging from our multi-solution study

of anaphoric ambiguity in natural-language requirements, pub-

lished in a technical paper [3] at the 44th International Conference

on Software Engineering (ICSE 2022). This best solution is a hybrid

one, where feature-based machine learning (ML) is used for detect-

ing anaphoric ambiguity and a large-scale language model (LM)

from the BERT family is used for anaphora resolution.

This work is licensed under a Creative Commons Attribution-

NonCommercial 4.0 International License.
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Figure 1: Application Example of TAPHSIR.

Compared to our earlier technical paper [3], we present in this

current paper an in-depth, practitioner-oriented description of

TAPHSIR, elaborating the tool’s architecture and its engineering

as well as how end-users can use the tool. We further discuss the

accuracy of TAPHSIR in detecting anaphoric ambiguity (including

unacknowledged cases) and resolving anaphora.

TAPHSIR aims to reduce the time and effort that requirements en-

gineers spend inspecting the use of pronouns in an RS. To illustrate,

consider the example in Figure 1. The figure shows a requirements

engineer reviewing the requirements in the file łmyRS.txtž and

using TAPHSIR for automated analysis of pronominal anaphora in

that RS. The pronoun łthemž in R2 contains anaphoric ambiguity

since it is not clear whether the pronoun refers to the write-once

folders (in R2), records only (in R1), or records, parts, folders and

groups of folders altogether (in R1). Deciding about the exact inter-

pretation has an impact on properly implementing the requirement.

TAPHSIR defines a context for each pronoun occurrence. This con-

text is composed of the requirement in which the pronoun occurs

and the preceding requirement. Within this context, the tool iden-

tifies all noun phrases (NPs) preceding the pronoun as candidate

antecedents [14]. In our example, TAPHSIR will consider, in addi-

tion to those mentioned above, the following candidate antecedents:

access, obliteration, system. TAPHSIR then goes through different

steps as we explain in the next section, and produces an output file

(łmyRS.csvž in Figure 1). This output lists all pronoun occurrences

in the input RS, and provides both the detection decision as well

as the resolution result. We note that TAPHSIR can recommend a

resolution also for those pronouns that are marked as ambiguous,

since it applies two separate solutions for detection and resolu-

tion. Running TAPHSIR in this example requires ≈22.5 seconds to

produce the results [3].

In the remainder of this tool demonstration paper, we outline

TAPHSIR’s main components. We further discuss through the lens

of unacknowledged ambiguity the evaluation of TAPHSIR on a

manually curated dataset (DAMIR [3]).

2 TOOL ARCHITECTURE

TAPHSIR is a usable prototype tool for anaphoric ambiguity han-

dling. The tool realizes a technical solution that resulted from an

empirical examination of several alternative solutions [3]. Figure 2

shows an overview of TAPHSIR architecture. The tool is imple-

mented in Python 3.8 [20]. Below, we discuss an end-to-end appli-

cation of the tool going through steps 1 ś 7 of Figure 2.

2.1 Preparation

Prior to using the tool, the user needs to perform some preliminary

setup. To do so, one can type in the following on the command line:

python pip install -r libraries.txt

python -m spacy download en_core_web_sm

The first command installs the required libraries, and the second one

downloads en_core_web_sm which is needed for operationalizing

the natural language processing pipeline in SpaCy. To be able to

apply the tool, the user further needs to ensure that the input file

is in the right format. TAPHSIR expects as input a text file (with

the extension *.txt) containing a set of requirements (or sentences).

2.2 Reader

This step parses the text of the input requirements specification,

preprocesses it using an NLP pipeline, and identifies the require-

ments that should be subject to anaphoric ambiguity analysis. The

NLP pipeline consists of the following seven modules illustrated in

Figure 2: (i) tokenizer splits the input text into tokens, (ii) sentence

splitter demarcates the sentences in the text, (iii) part-of-speech tag-

ger (POS) assigns a POS tag for each token, (iv) lemmatizer identifies

the canonical form of a token, (v) constituency parser identifies the

structural units of sentences, (vi) dependency parser defines the

grammatical dependencies between the tokens in sentences, and

(vii) semantic parser extracts information about words’ meanings.

The output of this step is a set of triples, each of which includes

a (i) a pronoun occurrence, (ii) context defined as the requirement in

which the pronoun occurs and a preceding requirement (recall from

Section 1, and (iii) a likely antecedent to that pronoun occurrence.

The number of triples depends on the number of likely antecedents.

In Figure 1, there are three possible antecedents as discussed in

Section 1, namely łrecords, parts, folders and groups of foldersž,

łrecordsž, and łwrite-once foldersž. Following this, this steps gener-

ates three triples associated with the pronoun occurrence łthemž,

where each triple includes one possible antecedent. The triples will

further have the same context, which combines R1 and R2.

ML-based Anaphoric Ambiguity Detection Our earlier work [3]

indicates that, for the task of anaphoric ambiguity detection, (feature-

based) ML leads to better accuracy than language modeling and

off-the-shelf NLP methods. For anaphoric ambiguity detection, we
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[CLS] C [SEP] P Antecedent

SpanBERT

OutputRS: Requirements Specification, LF: Language Features, FE: Features Embeddings 

Figure 2: Overview of TAPHSIR Architecture.

employ an ensembleML classifier that combines the results of a clas-

sifier trained over language features (𝑀𝐿𝐿𝐹 ) and another trained

over feature embeddings (𝑀𝐿𝐹𝐸 ). For training and applying ML

classifiers, we use Scikit-learn 0.24.1 [16]. This component takes as

input a set of triples associated with one the pronoun occurrence

from the previous step, and derives as output a final label for that

pronoun (ambiguous or unambiguous).

2.3 Language Features Extraction

This step extracts the different sets of learning features. In our

work, we collected a set of 45 language features (LFs) from the NLP

and RE literature. These features capture the characteristics of the

relationship between the pronoun and its likely antecedent, e.g.,

both agree in gender or number. For extracting LFs, we use SpaCy

3.0.5 [7], NLTK 3.5 [11], Stanza 1.2 [18], and CoreNLP 4.2.2 [12].

The result of this step is a vector representing each input triple,

where each entry in this vector is the result of computing an LF. For

the example in Figure 1, we will generate three vectors representing

the LFs of the pronoun łthemž and each of its likely antecedents.

2.4 Extraction of Features Embeddings

This step extracts the feature embeddings (FEs) for each input triple.

FEs are mathematical vectors that encapsulate the semantic and

syntactic regularities of the sentence [9]. In our work, we extract

768 dimensional FEs from the BERT language model [2]. For that,

we use the Transformers library, particularly the bert-base-cased

model. Similar to the previous step, the output of this step is a

vector representing each input triple. In a similar manner, this step

results in three vectors for the example in Figure 1.

2.5 Classification

In this step, we pass the vector representation of each input triple

to two pre-trained classifiers, namely𝑀𝐿𝐿𝐹 that is trained over LFs,

and𝑀𝐿𝐹𝐸 trained over FEs. For each triple, the two classifiers inde-

pendently predict a label as follows: correct (conversely, incorrect)

indicating that the antecedent refers (conversely, does not refer) to

the pronoun, or inconclusive when the anaphoric relation cannot

be inferred. We then apply a set of rules on the predicted labels

for the triples associated with one pronoun occurrence to conclude

whether the pronoun is deemed ambiguous or unambiguous by

each of the two classifiers. The rules, presented in the RE litera-

ture [22], consider the prediction probabilities produced for each

possible antecedent.

Finally, we combine in an ensemble manner the results of the two

classifiers𝑀𝐿𝐿𝐹 and𝑀𝐿𝐹𝐸 to derive the final label for the pronoun

(i.e., ambiguous or unambiguous). If the two classifiers agree on

the label (e.g., both conclude that the pronoun is ambiguous), then

this label will be the final one for that pronoun. Otherwise, the

label with the highest prediction probability will be selected. This

ensemble learning method yields a more accurate prediction.

SpanBERT-based Anaphora Resolution. Based on the empir-

ical findings in our earlier work [3], we know that for the task

of anaphora resolution, the SpanBERT language model [8] out-

performs alternatives. Consequently, the resolution component in

TAPHSIR uses a SpanBERT model that is fine-tuned on a curated

dataset from requirements. The dataset will be discussed in the next

section. We implement SpanBERT using the Transformers 4.6.1 li-

brary [21] provided by Hugging Face (https://huggingface.co/) and

operated in PyTorch [15]. This model takes as input, from the triples

generated in the first step, only the pronoun and the context in

which it occurs (i.e., disregards the likely antecedents). As Span-

BERT is originally trained to extract text spans, SpanBERT in our

work predicts as output the likely antecedent for the pronoun from

its context.

2.6 Encoder

To be able to use SpanBERT model, the input pair of context and

pronoun has to be encoded into the same format as the training data

that BERT has been trained on. To do so, the input tuple is passed

on to BERT’s tokenizer which adds two special tokens: [CLS] to

represent the classification output and [SEP] to separate the context

from the pronoun occurrence. The token [SEP] informs BERT about

which pronoun occurrence to analyze in the given context.
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2.7 Resolver

In this step, we pass on the encoded input to the fine-tuned Span-

BERT model and have the model predict the text span which likely

represents the antecedent of the pronoun. SpanBERT can predict

multiple such text spans with different probabilities indicating the

likelihood of being the right antecedent. If an antecedent is pre-

dicted with a high probability (greater than 0.9), then we consider

this as the resolution result for the pronoun.

2.8 Output

Given an input RS, the output of our tool is a csv file listing all

pronoun occurrences in the input, and for each occurrence, provid-

ing the predicted label (ambiguous or unambiguous) and the most

probable antecedent.

3 EVALUATION

In this section, we evaluate how accurately TAPHSIR can detect

unacknowledged cases of anaphoric ambiguity and bring them to

the attention of the requirements engineer.

3.1 Dataset Description

In this section, we use the curated dataset DAMIR (standing for

Dataset for Anaphoric Ambiguity In Requirements) [3]. We curated

this dataset with the help of two third-party annotators who under-

went half-day training on ambiguity in requirements. We collected

22 industrial requirements specifications covering eight domains

including satellite communications, medicine, aerospace, security,

digitization, automotive, railway, and defence.

We preprocessed this collection and prepared the list of triples

(a context, a pronoun occurrence and a possible antecedent) as

explained in Section 2. The possible antecedents for a pronoun

include all of the noun phrases preceding that pronoun [13]. The

annotators then examined each pronoun occurrence and its pos-

sible antecedent considering the context in which they occur, and

assigned a label correct, incorrect, or inconclusive with the same

indications as explained in Section 2. We then post-processed the

annotations and grouped them per pronoun occurrence as follows.

We mark a pronoun as ambiguous in two cases: (i) if at least one

annotator acknowledges the ambiguity of this pronoun by labeling

one or more associated triples as inconclusive; or (ii) if the same

triple associated with this pronoun receives different labels from

the two annotators (e.g., correct versus incorrect). The former case

implies acknowledged ambiguity, and the latter implies unacknowl-

edged ambiguity.

As a result, DAMIR dataset contains a total of 737 pronoun oc-

currences that are analyzed for anaphoric ambiguity. About 46%

of these pronouns (342/737) are deemed ambiguous by the anno-

tators. Out of the ambiguous pronouns, we identified ≈87% with

unacknowledged ambiguity, i.e., the annotators assumed that the

pronoun is unambiguous yet had two different interpretations for

that pronoun.

3.2 Results and Analysis

To assess how TAPHSIR performs in detecting unacknowledged am-

biguity, we run TAPHSIR (depicted in Figure 2) on DAMIR dataset.

TAPHSIR applies the an ensemble ML classifier for detecting

ambiguity and SpanBERT for resolving anaphora as discussed in

Section 2. On DAMIR dataset, TAPHSIR detects ambiguous cases

with a perfect recall of 100% with a precision of ≈60%, while rec-

ommends automated resolution with an accuracy of ≈96% [3]. The

perfect recall implies that TAPHSIR detects all unacknowledged

ambiguous cases that were not explicitly marked by the human

annotators as ambiguous.

The precision value indicates that the requirements engineer will

invest some manual effort filtering out false positives, i.e., falsely

detected ambiguous requirements. In the context of ambiguity in

RE, recall is often favored over precision [1]. Achieving 100% recall

ensures that all requirements suffering from all potentially ambigu-

ous requirements will be brought to the attention of the engineers

and further discussed at an early stage.

In a practical scenario where requirements engineers review

requirements under time pressure, only the requirements that are

found problematic by at least one engineer would be thoroughly

discussed. The engineers might not discuss those requirements

which they could confidently interpret unaware of having multiple

inconsistent interpretations. In conclusion, we believe that TAPH-

SIR has a potential in practice since it perfectly detects also those

requirements with unacknowledged ambiguity which would go oth-

erwise unnoticed during manual inspection sessions. That said, a

user study is required to assess the practical usefulness of the tool.

4 CONCLUSION

We presented TAPHSIR ś a tool for detecting anaphoric ambiguity

and resolving anaphora in natural-language requirements. Our

current implementation reflects our findings in a multi-solution

study [3]. TAPHSIR combines solutions based on machine learning

and language models. We further evaluated how well TAPHSIR can

detect unacknowledged ambiguity cases, i.e., the situation where

different individuals perceive a requirement as unambiguous but, in

reality, interpret the requirement differently. Our results show that

TAPHSIR detects all ambiguous requirements (i.e., recall = 100%)

including unacknowledged cases.

In future, we plan to do a user study to assess how useful is TAPH-

SIR in practice. Another topic for investigation is to use TAPHSIR as

a bottom layer in a broader application in analyzing requirements,

e.g., using the resolution results in an extracting domain model

form a requirements specification.
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