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ABSTRACT

We introduce WikiDoMiner ś a tool for automatically generat-

ing domain-specific corpora by crawling Wikipedia. WikiDoMiner

helps requirements engineers create an external knowledge re-

source that is specific to the underlying domain of a given require-

ments specification (RS). Being able to build such a resource is

important since domain-specific datasets are scarce. WikiDoMiner

generates a corpus by first extracting a set of domain-specific key-

words from a given RS, and then querying Wikipedia for these

keywords. The output of WikiDoMiner is a set of Wikipedia ar-

ticles relevant to the domain of the input RS. Mining Wikipedia

for domain-specific knowledge can be beneficial for multiple re-

quirements engineering tasks, e.g., ambiguity handling, require-

ments classification, and question answering. WikiDoMiner is pub-

licly available on Zenodo under an open-source license (https:

//doi.org/10.5281/zenodo.6672682)
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1 INTRODUCTION

Requirements specifications (RSs) vary considerably across domains

in large part due to the specific terminology associated with each

domain [1, 7]. Several requirements engineering (RE) tasks can be

performed more accurately when scoped to a specific domain. For

example, Winkler and Vogelsang [18] propose an automated solu-

tion for classifying requirements and non-requirements for the auto-

motive domain. Ferrari et al. [8] investigate defects in requirements
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for the railway domain. Ezzini et al [5] propose a domain-specific

method for handling ambiguity in requirements. Addressing RE au-

tomation in a domain-specific manner usually necessitates domain-

specific knowledge resources. Such resources are nonetheless often

unavailable, since domain-specific datasets in RE are scarce.

In the recent RE literature, there is an increasing reliance on natu-

ral language processing (NLP) technologies for automation, leading

to the rapidly emerging research area of NLP4RE [19]. Meanwhile,

NLP is shifting towards the application of large-scale language

models, e.g., BERT [3], for solving downstream NLP tasks such as

question answering, natural language inference, and paraphras-

ing [17]. Language models are often pre-trained on large bodies of

generic text. For instance, the original BERTmodel is pre-trained on

the entire (English) Wikipedia and the BookCorpus. This way, pre-

trained language models would learn about word co-occurrences as

well as syntactic and semantic regularities in passages. Pre-trained

language models can then be fine-tuned for solving downstream

tasks. Fine-tuning is the process of exposing a pre-trained model

to another dataset that is task-specific and/or in-domain [4].

Due to this evolutionary development in NLP, many NLP4RE

solutions ś even some of the most recent ones ś need to be re-

examined and revamped to fit the new technological trend. The

reason is not only to improve the accuracy of the existing NLP4RE

solutions, but also to avoid relying on NLP libraries that will soon be

outdated, in turn leading to maintenance headaches and upgrading

difficulties. Another essential aspect that is likely to impact the cur-

rent NLP4RE literature is reusability. The current implementation

tendency in view of the available large-scale language models is

towards Python-based libraries. To enable better reusability of the

existing NLP4RE solutions, it is advantageous to have a more ho-

mogeneous implementation in Python, even when similar libraries

are available in other languages, e.g., Java.

In this paper, we present WikiDoMiner (Wikipedia Domain-

specific Miner). Given an RS as input, WikiDoMiner automatically

generates a domain-specific corpus fromWikepedia, without any a-

priori assumptions about the domain of the input RS. WikiDoMiner

is a re-implementation of the corpus generator in an earlier re-

search prototype, MAANA [5]. MAANA is an automated ambiguity

handling tool which uses frequency-based heuristics to detect coor-

dination and prepositional-attachment ambiguity. In that context, a

large domain-specific corpus is needed for estimating word frequen-

cies. In our ongoing research since MAANA, we have increasingly

needed domain-specific corpus generation, not for frequency-based

statistics but rather for fine-tuning pre-trained language models.

This prompted us to build and release WikiDoMiner as a stand-

alone tool and a more robust and usable alternative to the corpus

generator in MAANA. MAANA’s corpus generator is Java-based.

Furthermore, it requires a local dump of Wikipedia installed as an

SQL database. This consumes significant resources and makes both

This work is licensed under a Creative Commons Attribution-

NonCommercial 4.0 International License.
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the installation and (re-)use of MAANA complex.WikiDoMiner lifts

this major limitation and further, by virtue of being Python-based,

is much easier to use alongside language models.

In the rest of this paper, we outline the workings ofWikiDoMiner

and demonstrate the tool’s application in two different domains.

2 TOOL ARCHITECTURE

WikiDoMiner is a usable prototype tool for generating domain-

specific corpora. Figure 1 shows an overview of WikiDoMiner ar-

chitecture. The tool is implemented in Python 3.7.13 [16] using

Google Colab1. Below, we discuss the different steps of the tool

marked A ś C in Figure 1.

2.1 Preprocess Text

In the first step, we parse the textual content of the input RS and

preprocess the text. To do so, we apply an NLP pipeline composed

of six modules, four of which are related to parsing and normaliz-

ing the text, and two are for performing syntactic parsing. These

modules include: A tokenizer splits the text into different tokens

(e.g., commas and words), sentence spitter identifies the boundaries

of sentences in the running text (e.g., a sentence in English can

end with a period), lemmatizer finds the canonical form of a word

(e.g., the singular word łcommunicationž is the canonical form of

its plural variant łcommunicationsž and the infinitive łtransmitž

is the canonical form for its past-tense variant łtransmittedž), and

finally, a stopwords removal module removes the stopwords such

as articles (łthež) and prepositions (e.g., łinž). To perform syntactic

analysis, we further apply: POS tagger that assigns a part-of-speech

tag for each token (e.g., the tag VBD is assigned to łtransmittedž

indicating a past-tense verb), and a syntactic parser that identifies

the syntactic units in the text (e.g., łthe notification servicež is a

noun phrase ś NP).

To operationalize the NLP pipeline, we use the Tokenizer, Porter

Stemmer andWordNet Lemmatizer available in NLTK 3.2.5 [12]. We

further apply Python RE 2.2.1 regex library2, in addition to available

modules in SpaCy 3.3.0 [10] including the English stopwords list,

Tokenizer, NP Chunker, Dependency Parser, and Entity Recognizer.

2.2 Extract Keywords

In this step, we extract a set of keywords that are representative for

the underlying domain. To do that, we adapt a glossary extraction

method from the RE literature [2]. The basic idea in this step is to

collect the noun phrases in the input RS, and sort them according to

their frequency of use. To ensure that these keywords are domain-

specific, WikiDoMiner applies two measures. First, we remove from

the list any keyword that is available in WordNet [6, 14], which

is a generic lexical database for English. The intuition of this step

is to remove very common words that are not representative of

the underlying domain. For instance, the word łroverž exists in

WordNet3 as a noun referring to łsomeone who leads a wandering

unsettled lifež or łan adult member of the Boy Scouts movementž.

These two meanings do not fit the łroverž in the łlunar roverž

1https://colab.research.google.com/?utm_source=scs-index
2https://docs.python.org/3/library/re.html
3http://wordnetweb.princeton.edu/perl/webwn?s=rover&sub=Search+WordNet&
o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=

context, and the NP łlunar roverž. This way, we filter out the word

łroverž when it occurs alone (i.e., łthe roverž), and keep it as part of

the NP (łlunar roverž). We note that the the NP łlunar roverž is not

available in WordNet, but is in Wikipedia4.

As a secondmeasure,WikiDoMiner computes term frequency/in-

verse document frequency (TF/IDF) [13] instead of mere frequency.

TF/IDF is a traditional method that is often applied in the context

of information retrieval (IR) to assign a score reflecting the impor-

tance of words to a specific document in a document collection.

In WikiDoMiner, the importance of the words (NPs in our case)

indicates that the words are significant for the underlying domain.

We note that IDF is computed only when there are multiple docu-

ments from other domains available. Otherwise the TF/IDF scores

are similar to term frequencies. Once the TF/IDF scores are com-

puted, we sort the keywords in descending order of these scores

and select the top-𝐾 keywords. While the default value applied by

WikiDoMiner is 𝐾 = 50, we show in the demo of the tool that this

parameter can be configured by the user according to the intended

application.

We implement the different modules using WordNet from NLTK

3.2.5 [12], and TF-IDF transformation from Scikit-learn 1.0.2 [15].

2.3 Query Wikipedia

In this step, we use the keywords from the previous set to query

Wikipedia and collect the relevant articles which will then consti-

tute our final domain-specific corpus.

To better understand this step, we first explain the structure

of a category in Wikipedia, illustrated in Figure 2. Each article

in Wikipedia belongs to one or more categories. Each category

contains a set of articles and sub-categories. To illustrate, assume

that we are querying Wikipedia for the keyword łrail transportž

within the łRailwayž domain. Our first hit will be a page titled

łRail Transportž5. Note that we refer to a page in Wikipedia as

an article. If we view the category structure for this article6, we

find out that it belongs to a category under the same name łRail

Transportž, i.e., Category A in Figure 2. Inside this category, there

are 31 sub-categories such as łLocomotivesž, łRail Infrastructurež,

and łElectric rail transportž. Category A contains 22 other pages

alongside the above mentioned pages, such as łBi-directional vehi-

clež and łPocket wagonž. Viewing the structure of a sub-category,

e.g., łRail Infrastructurež will show us again the available pages

and sub-categories.

In WikiDoMiner, the result of querying Wikipedia for a given

keyword is a Wikipedia article whose title partially matches the

keyword. We consider the title of a Wikipedia article as partially

matching the keyword if they have some overlap. For example, if

we query Wikipedia for the keyword łEfficiency of rail transportž,

then we will retrieve the same article mentioned above whose title,

łRail Transportž, partially matches the keyword.

For each keyword, we retrieve fromWikipedia a matching article

if applicable. Some applications might require that the domain-

specific corpus be sufficiently large. For example, to accurately

estimate the frequencies of words co-occurrences, one needs a

4https://en.wikipedia.org/wiki/Lunar_rover
5https://en.wikipedia.org/wiki/Rail_transport
6https://en.wikipedia.org/wiki/Category:Rail_transport

1707

https://colab.research.google.com/?utm_source=scs-index
https://docs.python.org/3/library/re.html
http://wordnetweb.princeton.edu/perl/webwn?s=rover&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=
http://wordnetweb.princeton.edu/perl/webwn?s=rover&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=
https://en.wikipedia.org/wiki/Lunar_rover
https://en.wikipedia.org/wiki/Rail_transport
https://en.wikipedia.org/wiki/Category:Rail_transport


WikiDoMiner: Wikipedia Domain-Specific Miner ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Requirements

Specification Wikipedia

A CB

txt

Wikipedia 

Articles

Preprocess Text Extract Keywords Query Wikipedia

Tokenizer
Sentence 

Splitter

POS 

Tagger

Lemma-

tizer

Syntactic 

Parser

NP 

Extractor

Frequency 

Computer

Articles 

Retriever

Corpus 

Expander

Preprocessed 

Text

Top-K Domain-

specific Keywords

Stopwords 

Removal

Figure 1: Tool Architecture.

rail transport Keyword
2

Keyword
K...

...

Categories ...

Articles ...

Sub- Categories

Articles ...

RS

depth 0

depth 1

depth 2

Articles

Extract
Keywords A

22

31

860

Figure 2: Illustration of Traversing Wikipedia Categories

(Example Keyword: łrail transportž).

large corpus [11]. Similarly, to pre-train a domain-specific language

model, a large text body should be available. Therefore, we expand

our corpus by defining a configurable parameter depth to control

the level of expansion, thus allowing the user to adjust the size

and relevance of the corpus based on their needs. The minimal

depth depth = 0 can be used to extract directly matching articles

only (leading most often to a few hundred articles). WikiDoMiner

further retrieves, for each matching article, all articles in the same

categories for depth = 1 (e.g., the two other pages in the example

above), subcategories of depth = 2, sub-subcategories of depth = 3,

and so on.

Specific details of our implementation are as follows. We use

the Wikipedia 1.4.07 and Wikipedia-API 0.5.48 libraries to query

Wikipedia. Other libraries which we use but which are not neces-

sary to run the tool include PyPDF2 2.2.09 to read requirements

documents in PDF format, the word2vec similarity feature in SpaCy

3.3.0 library [10], and the WordCloud 1.5.010 library to visualize the

most prevalent words in the extracted corpora.

7https://wikipedia.readthedocs.io/
8https://wikipedia-api.readthedocs.io/
9https://pypdf2.readthedocs.io/
10https://amueller.github.io/word_cloud/

3 APPLICATION

In this subsubsection, we apply WikiDoMiner to automatically gen-

erate domain-specific corpora for two distinct domains, namely,

railway and transportation. We further assess how representative

the corpus generated for each of these domains is. We do so by

computing the semantic relatedness of each domain-specific cor-

pus against RSs from the same domain other than those used for

generating the corpus. Generating a domain-specific corpus is not

a frequent activity. In practice, requirements engineers would typ-

ically have a small set of RSs from a given domain at the time of

generating a domain-specific corpus and would utilize this corpus

to perform activities on other RSs not involved in the generation

process.

3.1 Data Collection

For the two domains considered in this section, we collected a total

of six RSs from the PURE dataset [9], with three RSs from each

domain. One RS is used for generating the corpus and the others

are used for evaluating semantic relatedness against the resulting

corpus.

In the following we list the six RSs:

• From the railway domain, we used RS1 (ERTMS) about train

control, RS2 (EIRENE SYS 15) and RS3 (EIRENE FUN 7 ) both

about digital radio standard for railway.

• From the transportation domain, we used RS4 (CTC NET-

WORK) about traffic management infrastructure, RS5 (PON-

TIS) about highway bridge information management, and RS6

(MDOT ) about transportation info management.

3.2 Domain-specific Corpora

For illustration, we centre our discussion around the railway do-

main. We generate the corpus from RS1, and evaluate the related-

ness on RS2 and RS3. The first step inWikiDoMiner is to preprocess

RS1. WikiDoMiner then extracts a set of keywords based on their

TF/IDF scores. Examples of such keywords include trainborne equip-

ment and emergency brake. We select the top-𝐾 keywords, where

𝐾 = 50.

The next step is to query the keywords onWikipedia. For our set

of keywords in this domain, we retrieve 15 matching articles. We

then set the configuration parameter depth to 1. Following this, we

collect for each article that matches a keyword the articles in the

respective categories (see Figure 2). Finally, we collected a total of

686 articles, which are considered as our domain-specific corpus.

We applyWikiDoMiner on RS4 (from the transportation domain)

in a similar manner. The two resulting corpora are depicted in
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Figure 3: Word-cloud Visualization of Domain-specific Corpora (Left-hand Side ś Railway Domain, and Right-hand Side ś

Transportation Domain).

Figure 3 as word clouds. We show for each domain the main terms

that frequently occur in the corpus. We see that the keywords rail,

track, train, railway, and railroad characterize the railway corpus,

while the transportation corpus is characterized by the keywords

traffic, road, street, and lane. We note that the railway domain can

be regarded as a sub-domain of the transportation domain. This

observation is highlighted through the frequent terms that the two

corpora have in common in Figure 3, such as signal, system, vehicle,

and driver.

3.3 Domain Representativeness

To examine how representative the resulting domain-specific cor-

pora are, we compute semantic relatedness as follows. We first

transform each article in the corpus into a vector representation

using word2vec. We do the same for the test RS. Then, we compute

the cosine similarity between the vector representing the (test) RS

and the vector representing each article. In the following, we report

the minimum, average, and maximum cosine similarity scores for

each domain:

• Railway domain (cosine similarity between the railway cor-

pus and test RSs): min=0.27, average=0.94, and max=0.98

• Transportation domain (cosine similarity between the trans-

portation corpus and test RSs): min=0.67, average=0.95, and

max=0.99.

Our results show that the domain-specific corpora are, on aver-

age, highly similar to the test (unseen) RSs not used for generating

the corpora. In particular, the average semantic similarity is ≥ 0.94,

indicating that many articles in the corpus are relevant to the test

RSs. The minimum score of 0.27 in the railway domain implies that

there are articles in the corpus which are more document-specific,

i.e., more relevant to the RS that induced the corpus but having little

in common with the test RSs. Note that, despite some document-

specific articles being present in the generated corpus, the very high

average semantic similarity (≥ 0.94) indicates that such articles are

a small minority and thus do not have a significant negative impact

on the in-domain usability of the generated corpus.

The gap seen between the minimum scores reported for the

two domain-specific corpora can be explained by the following: As

mentioned in Section 3.1, all RSs from the transportation domain

in our collection are on the topic of traffic and transportation in-

formation management. This leads to extracting many keywords

related to information management. In contrast, the RSs in our

collection from the railway domain are tailored to more specific

topics, namely train control and digital radio standard for railway.

This in turn leads to extracting document-specific terms which are

related to train control (i.e., the topic of the RS used for corpus

generation) but not so much to digital radio standard for railway

(i.e., the topic of the test RSs). To summarize, our experiments

show that WikiDoMiner has successfully generated representative

corpora for two distinct domains.

4 CONCLUSION

We presented WikiDoMiner, a tool for automatically generating

domain-specific corpora from Wikipedia. Our current implementa-

tion is a significantly enhanced and usable adaptation of the cor-

pus generation component briefly outlined in our earlier work [5].

WikiDoMiner extracts keywords from a given requirements spec-

ification (RS) and then queries these keywords in Wikipedia. For

each keyword, WikiDoMiner looks for a matching article whose

title has some overlap with the keyword. To expand the corpus, we

provide the user with the possibility to configure a parameter depth

that controls how deeply the Wikipedia category structure should

be traversed. We assess the relatedness of the resulting corpora to

RSs different from those used for corpus generation. Our empirical

results show that, across two distinct domains, WikiDoMiner yields

an average semantic relatedness of ≥ 0.94 for in-domain analysis.

In the future, we plan to utilize WikiDoMiner for addressing new

analytical problems beyond ambiguity analysis. Notable target prob-

lems include question answering and requirements classification.
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