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ABSTRACT

We introduce COREQQA, a tool for assisting requirements engi-

neers in acquiring a better understanding of compliance require-

ments by means of automated Question Answering. Extracting

compliance-related requirements by manually navigating through

a legal document is both time-consuming and error-prone. CORE-

QQA enables requirements engineers to pose questions in natu-

ral language about a compliance-related topic given some legal

document, e.g., asking about data breach. The tool then automat-

ically navigates through the legal document and returns to the

requirements engineer a list of text passages containing the possi-

ble answers to the input question. For better readability, the tool

also highlights the likely answers in these passages. The engi-

neer can then use this output for specifying compliance require-

ments. COREQQA is developed using advanced large-scale lan-

guage models from BERT’s family. COREQQA has been evaluated

on four legal documents. The results of this evaluation are briefly

presented in the paper. The tool is publicly available on Zenodo

(https://doi.org/10.5281/zenodo.6653514).
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· Software and its engineering → Requirements analysis; ·

Computing methodologies→ Information extraction.
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1 INTRODUCTION

With the growing reliance on personal data and confidential in-

formation, software systems are increasingly subject to compliance

against regulations to enforce necessary safeguards for informa-

tion protection and human safety [13, 16]. Failing to comply with

relevant regulations can lead to legal, fiscal or reputational impli-

cations for an organization. Regulatory compliance is regarded as

an essential yet challenging task by the Requirements Engineering

(RE) community [5, 18, 21].

In this paper, we propose the tool COREQQA (Compliance

Requirements Understanding using Question Answering). CORE-

QQA is motivated by actual practical needs, considering that re-

quirements engineers are being increasingly involved in software

compliance against relevant regulations, e.g., all software systems

in Europe must comply with GDPR (Regulation (EU) 2016/679) ś

the European regulation on data protection, privacy and personal

data transfer [11]. Manually handling compliance requirements is

tedious and error-prone since requirements engineers have to read

through entire legal documents. Such documents are usually hefty,

contain complicated natural language (NL) structures, frequently

refer to external regulations, and are not easy to peruse without

legal expertise [2, 20].

An automated Question Answering (QA) tool such as CORE-

QQA helps requirements engineers efficiently navigate through

the compliance-related content of legal documents. QA is the task

of automatically finding the answer to a question posed in NL

from a given text passage. In our work, we refer to a single text

passage as a context span. Instead of reviewing long, complex le-

gal documents, COREQQA enables requirements engineers to ask

a question about a compliance-related topic, and then returns a

list of relevant context spans in which the answer is likely to be

found. This way, COREQQA pinpoints the requirements engineers

to the portions of the legal document where they need to invest

their efforts and time.

We illustrate in Figure 1, the QA assistance provided by CORE-

QQA to a requirements engineer, who is interested in understanding

the regulations related to personal data breach. The example ques-

tion is specifically related to the process for handling personal data

breaches. The answer to this question is mined in the GDPR text.

The legal obligations with regard to handling data breaches can

have a significant impact on the software development process,

e.g., sending notifications to different responsible agents within

legally-binding time constraints. COREQQA assists the require-

ments engineer in retrieving relevant information to define the

This work is licensed under a Creative Commons Attribution-

NonCommercial 4.0 International License.
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  When the personal data breach is 

likely to result in a high risk to the 

rights and freedoms of natural 

persons, the controller shall 

communicate the personal data 

breach to the data subject without 

undue delay. (…)

As soon as the controller becomes 

aware that a personal data breach 

has occurred, the controller should 

notify the personal data breach to 

the supervisory authority without 

undue delay and , where feasible, 

not later than 72 hours after having 

become aware of it (…)

The controller should communicate 

to the data subject a personal data 

breach, without undue delay, where 

that personal data breach is likely to 

result in a high risk to the rights and 

freedoms of the natural person in 

order to allow him or her to take the 

necessary precautions (…)
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Figure 1: Example of COREQQA’s QA assistance on

GDPR [11].

respective compliance requirements for handling data breaches

for the software system under development. As we elaborate in

Section 2, COREQQA returns as output the top-𝑁 1 relevant con-

text spans from a given legal document and the potential answers

highlighted in the context spans. COREQQA builds on large-scale

natural language processing (NLP) language models for solving

the QA task (also widely known as machine reading comprehension

(MRC) task [14]). QA models for MRC generally assume that for

each question, the relevant context span (containing the answer) is

known a priori. Developing a practical QA tool with this restriction

is infeasible, as requirements engineers have no means of know-

ing the exact context span with the correct answer in advance.

Therefore, in COREQAA we first find top-𝑁 relevant context spans

which likely contain the answer. To do so, we compute the semantic

similarity between each context span in the legal document and

the input question. Then, we demarcate the answer to the input

question using the QA models.

We further observe that information relevant to answering the

question could be found in multiple non-contiguous context spans

(i.e., different sections in the same legal document). For example, the

top-3 context spans selected in Figure 1 are all directly relevant for

answering the question. The first two spans (retrieved from differ-

ent sections of the document) explain the process of communicating

breach details to the data subject, while the third span specifies how

to communicate breach details to the supervisory authorities. Thus,

by retrieving multiple relevant spans and further highlighting the

likely answers, COREQQA enables the requirements engineer to

specify a complete and precise set of compliance requirements. We

leave configuring the 𝑁 parameter to the requirements engineer.

While selecting higher values of 𝑁 entails more time and effort for

1
𝑁 is a configurable parameter and is set 𝑁 = 3 for the example question in the figure

reviewing the retrieved context spans, we believe that using CORE-

QQA is still much more cost-effective in practice than manually

traversing the entire legal document for the answer.

In the remainder of this tool demonstration paper, we elabo-

rate the architecture of the tool, the dataset that we generated for

developing COREQQA as well as an end-to-end usage scenario.

2 TOOL ARCHITECTURE

The end-to-end architecture of COREQQA is illustrated in Fig-

ure 2. COREQQA aims at answering a given question posed by a

requirements engineer in NL on some legal document. Below, we

elaborate the main steps of the tool marked as 1 ś 3 in Figure 2. We

implemented COREQQA in Python 3.8.

2.1 Text Preprocessing
In the first step, COREQQA parses the legal document and applies

a simple NLP pipeline which is composed of tokenization and sen-

tence splitting. The tool then applies a set of regular expressions

for normalizing the text (e.g., removing periods from the ending of

acronyms, łArt.ž becomes łArtž). The motivation for normalizing

the text is to improve the accuracy of sentence splitting. We opera-

tionalize the NLP pipeline using NLTK library [6, 17], and the re

module in Python for regular expressions2. In this step, we further

partition the legal document into context spans. Due to technical

constraints of underlying QA models, the maximum size of each

context span is 512 tokens. To maintain coherence, we split the

document into paragraphs first, and then check their size. Each

paragraph fitting this size limitation is regarded as one context

span. Otherwise, we split the paragraph into half, and check the

size again. This process is iteratively performed until size limita-

tions are met. The output of this step is the list of context spans

representing the input legal document.

2.2 Relevant Context Retrieval
In the second step, COREQQA computes the semantic similar-

ity between the input question and each context span generated

from the previous step. We implement this step using the BERT

cross-encoder (BCE) model available in the Sentence-Transformer

2.1.0 [19] provided by Hugging Face3. BCE takes as input two text

fragments, and returns as output a score between 0 and 1 indicating

how semantically similar the two fragments are, with 1 being iden-

tical. To assess the relevance of the context span, we first compute

BCE between the question and each sentence in the context span

and then assign to the context span the maximum score achieved

by any sentence. The intuition behind this computation strategy is

that only a portion of the context span is expected to contain the

likely answer to the input question.

Once we compute a score per context span, we rank the spans in

descending order. We do this using the sort function from pandas

in Python4. The result of this step is a list of top-𝑁 relevant context

spans to the input question. We keep the value N as a parameter

that can be initialized by the requirements engineer. The value of

𝑁 depends on the practical context in which COREQQA is applied.

2https://docs/python.org/3.8/library/re/
3https://huggingface.co/
4https://pandas.pydata.org
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Figure 2: Overview of the end-to-end architecture of COREQQA.

Selecting large values (e.g., ≥ 10) entails that the requirements engi-

neer will review many context spans to gain a better understanding

of the compliance requirements associated with the question. Se-

lecting small 𝑁 values (e.g., ≤ 3) entails less context spans to be

reviewed, but also a higher risk for the right answer not to be found

in any of the top-𝑁 relevant spans. In Figure 1, we show an example

of top-3 context spans retrieved in this step. The default value of

the configurable parameter 𝑁 is set to 5 in COREQQA, based on

previous experiments [2].

2.3 Answer Extraction
In the last step, we pass on the top-𝑁 context spans deemed relevant

in the previous step together with the input question to a pre-

trained QA model. In our work, we apply the Transformers library

to extract answers for the given question using the RoBERTa QA

model (roberta-base-squad2-distilled). RoBERTa then extracts from

each context span a potential answer for the input question. In

Figure 1, we highlight the extracted answers in green. We note that

the engineer has access to the context spans already in the previous

step. Thus, this step is not essential for providing assistance to the

requirements engineer in understanding the questions related to

compliance requirements. However, highlighting the answer in the

context span improves readability and leads to a more efficient

reviewing process. In practice, when the engineer selects a larger

number 𝑁 (say 10), it is then advantageous to demarcate the answer

automatically to help the engineer quickly navigate through the

context spans.

2.4 Final Output Representation

For presenting the final output of the tool to the requirements

engineer, we export for each question the top-𝑁 context spans

and the highlighted answers within these context spans as a Mi-

crosoft Word document. The document also shows for each context

span a confidence score (range 0ś1) of the answer highlighted in

the span. This confidence score is automatically assigned to the

extracted answer by the QA model. We use the python-docx li-

brary v0.8.11 (https://python-docx.readthedocs.io) for exporting

the output and visualizing highlighted answers in the relevant

top-𝑁 context spans.

3 EVALUATION

COREQQA has been evaluated on four legal documents, wherein

the question-answer pairs were identified by two experts ś one

expert in legal informatics and the other in requirements engineer-

ing [2]. In the following, we describe the four documents:

•GDPR or General Data Protection Regulation (EU) 2016/679 is the

European privacy law that harmonises the data protection, privacy

and personal data transfer requirements [11]. The experts identified

36 question-answer pairs from the entire document. The document

was partitioned in 301 context spans by the łText Preprocessingž

step of Figure 2.

• Directive (EU) 2019/770 is the European directive for regulat-

ing the supply of digital content or digital services, and laying

down rules for contracts between any trader and consumer of

digital content or service [9]. The experts identified 33 question-

answer pairs in this document, and the document was split into

120 context spans.

•Directive (EU) 2019/771 is the European directive concerning the

sale of goods [10]. Directive (EU) 2019/771 complements Directive

(EU) 2019/770, as it formalises the contracts on the sale of goods that

contain digital elements that require digital content or service. For

example, the regulations related to the contracts of the smartphone

are covered by Directive (EU) 2019/771, whereas the regulations for

operating systems or apps on the smartphone might be covered by

Directive (EU) 2019/770. The experts identified 19 question-answer
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pairs in Directive (EU) 2019/771, and the document text was split

into 102 context spans.

• Luxembourg Law of 25 March 2020 is an amendment to nu-

merous existing finance and banking related laws in Luxembourg.

The amendment was intended to set due diligence measures for a

central electronic data retrieval system related to bank accounts and

safe-deposit boxes in Luxembourg, and was a step towards tackling

money laundering [1]. The experts identified 19 question-answer

pairs in this legal document. The document text was split into 23

context spans.

To identify the most accurate similarity metric for context span

retrieval, we compared BCE (Section 2.2) with TF-IDF similarity [3]

ś ametric commonly used in the NLP domain. BCEwas significantly

more accurate than TF-IDF in our experiments. Overall, from the

107 questions over the four documents, BCE retrieves the correct

context span for 100 questions (for the top-5 spans). In addition to

RoBERTa, we further evaluated three QA models, namely BERT [8],

ALBERT [15], ELECTRA [7] for answer extraction (Section 2.3).

RoBERTa was deemed the most accurate as it correctly extracted

the answers for 97 questions.

We also analyzed the questions where COREQQA did not highly

rank the correct context span (within top-5) or RoBERTa model did

not extract the correct answer. Our analysis showed that generic

questions, such as the ones formulated for defining or elaborating

on a legal concept, were not correctly answered. This is because the

legal document (or even a given context span) would usually contain

several instances of such legal concept, thus misleading both the

context span retrieval and answer extraction steps of COREQQA.

We also realized that complicated questions (e.g., with composite

conditions) were difficult to answer for COREQQA.

Last but not least, COREQQA answers questions within reason-

able execution time. Thus, in short, our evaluation indicates that

COREQQA produces accurate results and is fit for use by require-

ments engineers in practice. For answering one question from a

legal document including an average of 620 sentences, COREQQA

requires a total of ≈34 seconds.

4 USAGE SCENARIO

In this section, we describe an end-to-end example illustrating

how our tool can be applied in practice by a requirements engineer.

Let KoopaApp be a new system under development. KoopaApp is a

gym fitness app for maintaining users’ workout information and

other health-related data. KoopaApp accesses personal information

such as the location from other apps on the users’ smartphone.

During the pandemic, such applications often raised concerns about

privacy. For example, several health applications were analyzed for

privacy-related issues in the RE literature [4, 12].

A requirements engineer (Daisy) is in charge of specifying the

KoopaApp requirements, including compliance requirements. As

an example, we focus only on a subset of compliance requirements

related to privacy and data protection. Daisy (as is often the case

in most software projects) is not very familiar with the privacy

regulations, yet she knows well the functionalities and characteris-

tics of the KoopaApp. During the elicitation of requirements, Daisy

identifies a set of functionalities that make use of personal data and

are thus subject to compliance. Some of these functionalities are

related to the security of collected personal data. We assume here

that Daisy or her team are aware of the relevant legal documents for

their project. Suggesting relevant documents is beyond the scope

of COREQQA. Accounting to possible security threats, Daisy poses

a question (łWhat is the procedure for handling a personal data

breach?ž) using the COREQQA tool on the GDPR [11]. COREQQA

in turn provides the output shown in Figure 1.

From the output of COREQQA, Daisy is able to formulate the

following compliance requirements (prefixed with the ID𝐶𝑅) under

the label Users Data Breach.

Notify Users about the Data Breach.

𝐶𝑅1 . If a data breach is identified on the KoopaApp server, the

KoopaApp-NotifyService shall inform the affected users.

𝐶𝑅2 . The KoopaApp-NotifyService shall email the affected users on

the registered email address and store the ‘user informed’ response

on the server.

𝐶𝑅3 . The KoopaApp-NotifyService shall notify the affected users

on the app and store the ‘read’ response on the server.

Notify the CIO about the Data Breach.

𝐶𝑅4 . If a data breach is identified on the KoopaApp server, the

KoopaApp-NotifyService shall send an email to the Chief Informa-

tion Officer notifying the breach, within 72 hours of its occurrence.

The four compliance requirements fulfill the regulations pro-

vided in Figure 1.

5 CONCLUSION

We presented COREQQA ś a tool for assisting requirements engi-

neers in better understanding compliance requirements through

question-answering based on regulatory or legal documents. CORE-

QQA is developed using a manually created dataset that combines

a joint effort of a requirements engineer and a legal expert over

four diverse legal documents. The tool is based on recent large-

scale language models that are pre-trained for question-answering.

Specifically, the tool applies the Sentence BERT cross encoder for

retrieving the most relevant text passages from a legal document for

a given question. The tool further employs the RoBERTa question-

answering model for highlighting the likely answers to the question

in the retrieved text passages.

In future, we plan to conduct a user study to assess how useful

COREQQA is in practice.
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