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Preface

The content of this thesis lies in the intersection of mathematics, computer
science, and cryptology. It combines mathematical formalization with prac-
tical methods to achieve new results in complexity theory, computational
number theory, and cryptography. The thesis consists of four main parts,
each reporting on a different work. Those works are completely indepen-
dent and differ from multiple points of view such as their background, their
objectives, and their results. Their presentation style changes according to
the target audience. The main parts are complemented by an auxiliary part
that prepares several results required in the thesis. The individual parts
are related through a short story of Jay, a young, soon to be, numismatic
illustrating the everyday use of scientific results.

Part I: Toolbox

Part I prepares a collection of results required in the main parts. Chap-
ter 1 fixes the notations and conventions. Chapter 2 prepares some statisti-
cal concepts. Chapter 3 revises some fundamental complexity notions, and
Chapter 4 introduces the so-called 3-SAT problem required in Part II. In
Chapter 5, two particular mathematical results are developed. To be precise,
Theorem 5.1 yields the number of solutions of a linear multivariate modular
equation and Theorem 5.2 upper bounds the volume of a high-dimensional
shpere. Chapter 6 introduces (integer row) lattices, outlines their most
important properties, and develops some elementary results. Chapter 7
concentrates on q-ary lattices. Based on the results from Chapter 5, two
unconditional probabilistic lower bounds for a shortest lattice vector v of a
q-ary lattice Λq(A) generated by a random matrix A ∈ (Z ∩

(
− q

2 ,
q
2

]
)k×m

are obtained. Theorem 7.3 shows that ∥v∥∞ ≥ q
m−k
m

4 with probability at

least 1−2−m and Theorem 7.5 proves that ∥v∥2 ≥ min
{
q,
√

m
8πeq

m−k
m

}
with

probability at least 1− 1√
πm

2−m. The latter result is required in Part IV.

v
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Part II: Simultaneous Chinese Remaindering

Part II introduces and studies a new computational problem called the Si-
multaneous Chinese Remainder Problem. Chapter 8 starts by revising the
traditional Chinese Remainder Problem which asks to retrieve, if it ex-
ists, the unique integer x ∈ SM ⊂ Z such that x ≡ ri mod mi for all
i ∈ {1, . . . , k} where m1, . . . ,mk denotes a given list of moduli,
ri ∈ {0, . . . ,mi − 1} represents a remainder modulo mi, and SM denotes
a representative solution set consisting of lcm(m1, . . . ,mk) consecutive inte-
gers. In Chapter 9, this problem is generalized to the Simultaneous Chinese
Remainder Problem by replacing for each i ∈ {1, . . . , k} the single remain-
der ri by a nonempty set of remainders Ri ∈ {0, . . . ,mi− 1} any remainder
of which may be chosen to satisfy the congruence modulo mi. Section 9.2
argues that the number of corresponding solutions in SM grows exponen-
tially in the size of the remainder sets, thus causing any solving method that
computes all solutions to run in exponential time. In Chapter 10, two par-
ticular decision problems for the Simultaneous Chinese Remainder Problem
are studied. The Existential Simultaneous Chinese Remainder Problem, de-
scribed in Definition 10.1, asks to decide whether there exists a solution for
a given Simultaneous Chinese Remainder Problem. As the moduli may not
be coprime, its solution may not be trivial. On the contrary, Theorem 10.2
proves that this problem is NP− complete. The Bounded Simultaneous Chi-
nese Remainder Problem, described in Definition 10.7, restricts to coprime
moduli for which solutions are guaranteed to exist and asks to decide whether
there exists a solution of a given size. Theorem 10.8 shows that also this
problem is NP− complete. In Chapter 11, multiple Simultaneous Chinese
Remainder search problems are considered. For simplicity, these problems
are restricted to coprime moduli and choose the trivial representative solu-
tion set SM = {0, . . . , (

∏k
i=1mi) − 1}. The Minimal Simultaneous Chinese

Remainder Problem, introduced in Definition 11.1, asks to find the minimal
solution of a given Simultaneous Chinese Remainder Problem. Correspond-
ing problem variants asking to find the maximal solution or a solution inside
a given interval are also formalized and are shown in Proposition 11.5 to be
polynomially equivalent to the Minimal Simultaneous Chinese Remainder
Problem. The Minimal Simultaneous Chinese Remainder Problem in turn
is NP− hard by Theorem 11.2. Despite the obvious hardness of the gen-
eral problem, subsequent chapters study the Minimal Simultaneous Chinese
Remainder Problem in further detail. Chapter 12 outlines a rough upper
bound for the minimal solution. Chapter 13 yields the proof-of-concept that
the minimal solution can be found without the need of comparing all the
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solutions of a given Simultaneous Chinese Remainder Problem. Chapter 14
outlines an observation on mixed-radix comparison systems allowing to re-
formulate a given Minimal Simultaneous Chinese Remainder Problem into
a function minimization problem. Indeed, Corollary 14.8 shows that a par-
ticular family of functions over the remainder sets is minimized with respect
to the remainders of the minimal or maximal solution. In Chapter 15, two
existing lattice-based solving methods are presented and one of them is im-
proved. In Chapter 16, the Simultaneous Chinese Remainder Problem is
reformulated as a sieving problem, and it is shown that the maximal solu-
tion can be represented as the solution of a particular multiple-choice subset
sum problem. Chapter 17 contains an illustrative example that summarizes
the previous development. In Chapter 18, some empirical data is visualized
and some heuristics for the Simultaneous Chinese Remainder Problem are
discussed. Finally, in Chapter 19, we discuss some open questions and future
research directions.

Part III: A Conjecture On Primes In Arithmetic
Progressions And Geometric Intervals

Part III introduces a new conjecture on prime numbers. In Chapter 20, a
synopsis of the results on the distribution of primes is presented with a focus
on primes in arithmetic progressions. Chapter 21 starts by recalling Linnik’s
theorem which claims that there are absolute constants C and L such that
for any integer q ≥ 2 and any integer 1 ≤ a ≤ q − 1 with gcd(a, q) = 1,
the smallest prime p0 ≡ a mod q satisfies p0 ≤ CqL. Conjecture 21.2 gen-
eralizes this claim by postulating that for every integer t ≥ 2 a prime of
this form can be found in the interval [qt, qt+1). In Chapter 22, Conjec-
ture 21.2 is strengthened through some partial proofs. Lemma 22.1 proves
that it holds for every sufficiently large exponent t, Theorem 22.7 improves
the required lower bound on t under the Extended Riemann Hypothesis,
and Lemma 22.9 computationally verifies the conjecture for all q < 45000.
Theorem 22.10 combines those partial results to conclude that the conjec-
ture holds unconditionally for every modulus q < 45000 or every sufficiently
large exponent t and Theorem 22.11 shows that it holds under the Extended
Riemann Hypothesis for every t ≥ 3, as well as, for t = 2 for sufficiently
large q. In Chapter 23, the relation of Conjecture 21.2 to other classical con-
jectures is studied. Theorem 23.4 shows that if Conjecture 21.2 holds, then
Pomerance’s conjecture, postulating that (pk − 1) divides

∏k−1
i=1 pi(pi − 1)

for any k ≥ 2, where pi denotes the i-th prime, also holds. Furthermore,
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Corollary 23.5 concludes that Pomerance’s conjecture holds for any prime
pk such that the largest square factor of pk−1 is 45000-smooth. Chapter 24
describes some prospective research on primes in arithmetic progressions.

Part IV: On The (M)iNTRU Assumption Over Fi-
nite Rings

Part IV devises an attack against two recent computational hardness as-
sumptions called the inhomogeneous NTRU assumption and the matrix in-
homogeneous NTRU assumption. Chapter 25 loosely situates those new
hardness assumptions in the cryptographic field. Chapter 26 formalizes the
assumptions, outlines some existing applications, and specifies the assump-
tion of our study – the (M)iNTRU assumption – consisting in a particular
case of the original assumptions. For Zq = Z∩

(
− q

2 ,
q
2

]
, the (M)iNTRU search

problem formalized in Section 26.3 asks one to retrieve
s ∈ Z×

q from a given vector (a0, . . . , aℓ) ∈ Zℓ+1
q where a0 :=

[
s−1e0 mod q

]
and ai :=

[
s−1(2i−1 − ei) mod q

]
∀i ∈ {1, ..., ℓ} for some given values

e0, . . . , eℓ ∈ Zq following a distribution χ that produces with overwhelm-
ing probability elements of small norm. The (M)iNTRU decision problem
requests to distinguish such a vector from a uniformly at random chosen
vector in Zℓ+1

q . In Chapter 27, a first lattice attack against the decision
problem is devised. Given a challenge vector x := (x0, . . . , xℓ), Section 27.1
first constructs another vector y := (y0, . . . , yℓ−1) by setting y0 := x0 and
yi := [2xi − xi+1 mod q] for all i ∈ {1, . . . , ℓ − 1}, and then considers the
q-ary lattice Λq(y). Section 27.2 devises a particular lattice basis of Λq(y).
In Section 27.3, it is concluded that if x was a random vector, then the short-

est lattice vector is with high probability larger than min

{
q,
√

ℓ
8πeq

ℓ−1
ℓ

}
.

On the other hand, if x was a (M)iNTRU vector, then Section 27.4 shows
that under some explicit conditions on the error terms e0, . . . , eℓ, the short-
est lattice vector is certainly smaller than the given bound. In Section 27.6,
these observations lead to an elementary distinction criterion that solves the
(M)iNTRU decision problem using ordinary LLL reduction. It is noteworthy
that in Section 27.6.2 an exact success condition based on the underlying er-
ror distribution is filtered out and in case this condition is satisfied, a success
probability of at least 1− 1√

πℓ
2−(ℓ+1) is obtained. Chapter 28 presents a simi-

lar attack that is slightly more general but relies on heuristic assumptions. In
Chapter 29, the first attack is generalized to the MiNTRU decision problem,
which asks to distinguish a matrix A :=

[
S−1 × (G−E) mod q

]
∈ Zn×m

q
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where S ∈ (Zq)
n×n
inv is unknown, E ∈ Zn×m

q is unknown, and G is known,
from a matrix that is sampled uniformly at random in Zn×m

q . Despite the
consideration of stronger lattice reductions in Equation (29.16), Section 29.2
yields that the described attack is not strong enough to put cryptographic
applications in danger. In Chapter 30, the hardness of the MiNTRU as-
sumption is questioned by comparing it with the NTRU problem and the
learning-with-errors assumption. Finally, Chapter 31 gives an outlook on
potential research objectives for the MiNTRU assumption.

Part V: A Conditional Attack Against Functional
Encryption Schemes

Part V outlines a conditional attack against the indistinguishability security
notion of public-key functional encryption, that endangers a family of DDH-
based functional encryption schemes for the bounded-norm inner-product
functionality. Chapter 32 reviews the motivation and application of func-
tional encryption – an ambitious cryptographic paradigm established to al-
low evaluations over encrypted data that reveal the evaluation in plain with-
out leaking further information on the underlying plaintexts. Chapter 33
formally defines the corresponding notion in the public-key setting. First,
Definition 33.1 defines a functionality F : K ×M → Σ ∪ {⊥} as a func-
tion over a key space K and a message spaceM that either outputs a valid
element from Σ or a special error symbol ⊥ not included in Σ. Second, Defi-
nition 33.2 defines a functional encryption scheme for a functionality F as a
quadruple of algorithms: FE.Setup – generating the master public and mas-
ter secret key, FE.KDer – encrypting evaluation keys, FE.Enc – encrypting
messages, and FE.Dec – either outputting F(k,m) if a ciphertext and an en-
crypted key match or ⊥ otherwise. In Chapter 34, the most important secu-
rity notions of functional encryption schemes are listed, and, in Chapter 35,
data-privacy is deepened with a focus on indistinguishability. In Chapter 36,
a conditional attack against the indistinguishability of functional encryption
schemes is devised. To do so, Section 36.1 highlights the particular role of
the error symbol ⊥ and analyzes how it can be represented in a functional
encryption scheme. It is put forth that a functionality may be split into a
function and an error trigger. Section 36.2 investigates how this error trig-
ger can be implemented in practice and concludes that only the decryption
procedure may be suitable for such an implementation. Having in mind the
special role of the error trigger, Section 36.3 revises the functional encryp-
tion indistinguishability notion. It claims that ciphertexts of two challenge



x Preface

messages m0,m1 are indistinguishable, even if the decryption procedure can
be used. However, as in this way ciphertexts can be evaluated, the notion
restricts an adversary to use keys k such that F(k,m0) = F(k,m1) only.
Section 36.4 outlines that if F(k,m0) = F(k,m1) =⊥, then the decryption
procedure can be hijacked to devise a conditional distinguisher. Essentially,
it is noted that despite the same evaluation output, the decryption proce-
dure may behave differently for such messages. Working out the underlying
conditions culminates in Theorem 36.2. Chapter 37 motivates the previous
study by showing that the attack partially invalidates a family of existing
DDH-based functional encryption schemes for the inner-product functional-
ity when restricting them to bounded-norm evaluations. In Chapter 38, a
hypothetical indistinguishability definition, that would weaken security by
forbidding our attack, is studied. It is concluded that such a definition would
declare the previously mentioned functional encryption schemes secure for
the bounded-norm inner-product functionality, but would be incompatible
with other primitives. At last, in Chapter 39, some promising research ques-
tions on functional encryption are highlighted.
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Act I: The collection

“After many years of patience, the day has come”, thought Jay, “finally,
you can help pa and pops to work on the family collection.” With great
excitement, he got up and rushed to the kitchen. Standing next to the self-
crafted oak wood table, he stared into an empty room and sighed: ”Where
are they? Did they forget my birthday?” He heard a soft rustle in his back
and turned around expecting a beloved one, but it was just Mrs Skizzles,
granny’s cat, pleading for breakfast. Heartbroken, Jay decided to go back
to sleep when his pa entered from the garage.

“You are already up?”, exclaimed his dad seemingly surprised, “your
mom and Missy went out to buy pastries; they should be back every minute.”
While handing Jay a wrapped box, he suggested: “In the meantime, you can
open my present!”. Jay speculated that this may be his first personal col-
lectable and remembered the very first time he looked at the most precious
family item. As a kid, he discovered the shiny acquisition that sparkled in
the sun putting a stream of light over the ceiling; a spectacular show for a
four-year-old. A fine relief portrayed a man and sharp edges delimited an
unintelligible inscription. Pops’ bedtime stories helped little Jay to under-
stand the historical and cultural background of this strangely shaped golden
platter. He got to know that this Byzantine coin portraying Justinian II is
a masterpiece of coinage and he grew a lasting passion for numismatics.

Knowing that his pa promised to introduce him on the occasion of his
fourteenth birthday to the family tradition, he expected a small set of coins.
That is why he was stunned to find only a set of bizarre gadgets in his
gift. “Won’t I contribute to the collection”, Jay queried disappointed. “You
will”, assured his pa, “but first, you need to familiarize yourself with the
tools!”.
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Abstract I

This part is devoted to the preparation of a collection of results that will be
needed in the remainder of the thesis. First, we establish some mathematical
formalism and define our computer scientific notations. If not stated oth-
erwise, the described conventions hold for the remainder of the document.
Next, we introduce some statistical notions. Starting from random experi-
ments, we define random variables, probabilities, and random vectors. Then,
we present our complexity-theoretic framework. After characterizing deci-
sion problems and their solving methods, we discuss some machine models
and revise the most important complexity classes. Subsequently, we zoom
in on the first NP− complete decision problem known as 3-SAT. Following
this information theoretic deviation, we concentrate on some mathematical
results. We compute the number of solutions of a linear multivariate con-
gruence and then we approximate the volume of a high-dimensional sphere.
Next, we focus on the geometry of numbers by introducing integer row lat-
tices. We start by defining some of their invariants such as the determinant
and their successive minima. Then, we announce Minkowski’s theorems and
discuss some lattice reduction techniques. After revising the most impor-
tant properties of lattices, we have a look at so-called q-ary lattices. Those
lattices are of particular interest in cryptography as they have some pe-
culiar properties. Through a detailed analysis, we manage to develop two
probabilistic lower bounds for the shortest vector in a q-ary lattice.
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Chapter 1

Notations and conventions

1.1 Set notations

We use standard notations on sets where ∩ denotes intersection, ∪ denotes
union, and \ denotes exclusion. A set S can be defined by enumeration,
delimiting its elements by curly brackets { }, or, if another set S ′ is given,
by the set-builder notation S = {n ∈ S ′ | P (n)} meaning that S contains all
elements of S ′ that satisfy the property P . Set inclusion is denoted by ⊆,
where the inclusion may not be strict. The set product of two sets S1 and
S2 is denoted by S1×S2. Sm denotes the set of row vectors with entries in S
and Sk×m denotes the set of matrices with k rows and m columns. We con-
found S1×m and Sm. The infimum (inf), supremum (sup), minimum (min),
and maximum (max) of a set S is either denoted by the subscript-element
notation, e.g., mins∈S s or the set-input notation, e.g., minS. We abuse the
notation by using it with lists, vectors, and matrices. The cardinality of S
is given by |S|.

1.2 Integers and real numbers

N stands for the natural numbers including 0, Z stands for the ring of integers
and R denotes the ring of real numbers. Particular subsets of those rings
can be obtained using subscript and superscript notation. For example Z>2

denotes the set of integers strictly larger than two and R+ denotes the set
of non-negative real numbers. Intervals are delimited by brackets [ ] and
parentheses ( ), where a bracket indicates that the corresponding interval
bound is included and a parenthesis denotes the contrary. Given two integers
a, b that are not both zero, a|b means that a divides b, gcd(a, b) denotes the

7



8 Chapter 1. Notations and conventions

greatest common divisor and lcm(a, b) the lowest common multiple of a
and b. Assuming 0 ≤ a ≤ b, we denote by b! the factorial of b and by
( b
a ) = b!

a!(b−a)! the binomial coefficient of b by a. For a real value α, we

indicate by ⌊α⌋ the maximal integer smaller than or equal to α, and by ⌈α⌉,
the minimal integer larger than or equal to α. The exponential function is
given by exp(α) or eα. The natural logarithm of α > 0 is given by log(α),
and the base b ∈ Z≥2 logarithm is denoted by logb(α).

1.3 Other mathematical notations

Given a ring R, we denote by R× the invertible elements in R. To avoid any
confusion, we set (R)m×m

inv to be the set of invertible matrices with entries
in R. A norm on R is indicated by ∥ · ∥. On R, | · | stands for the absolute
value. For a matrix A, we denote its transpose by A⊤. a−1 denotes the
inverse of a with respect to its ambient space. ⟨·, ·⟩ stands for an inner-
product function. Given a function f , we mean by im(f) its image and by
ker(f) its kernel. Real number approximations are given by ≈ and group
isomorphisms are indicated by ≃. Asymptotic approximations are given by
∼ or the Landau symbols (see Section 3.2). Equality is given by =, but the
first time a symbol is defined, we use :=.

1.4 Modulo operations

Let q ∈ Z≥2. Then, Z/qZ denotes the ring of integers modulo q. We define
Zq := Z ∩

(
− q

2 ,
q
2

]
and note that Z/qZ is in bijection with Zq. For a, b ∈ Z,

we distinguish three distinct modular operations:

1. a ≡ b mod q denotes that [a] = [b] in Z/qZ.

2. [a mod q] denotes the unique integer a0 ∈ Zq = Z∩
(
− q

2 ,
q
2

]
such that

a ≡ a0 mod q.

3. Ja mod qK denotes the unique integer a0 ∈ Z∩ [0, q) such that a ≡ a0
mod q.

We abuse the notation and use the same symbolism for vectors and ma-
trices where the operations are carried out componentwise. For example,
if v = (v1, . . . , vn) ∈ Zn, then [v mod q] = ([v1 mod q], . . . , [vn mod q]).
Operations inside brackets, such as +,−, ·, or inverses always take place
modulo q. For example [a+b·s−1 mod q] first computes a+b·s−1 modulo q
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where s−1 denotes the inverse of s modulo q, and subsequently outputs the
unique representative in Zq. We let Z×

q denote the set of invertible elements
of Zq modulo q. We note that x ∈ Z is invertible modulo q if and only if
gcd(x, q) = 1. We let (Zq)

n×n
inv denote the set of matrices in Zn×n

q that are
invertible modulo q.

1.5 General conventions

Usually, lowercase letters such as a stand for elements. Bold lowercase letters
like a denote vectors and ai denotes the i-th entry of the vector a. Bold
uppercase letter, such asA, denote matrices andAi,j denotes the component
in the i-th row and j-th column of the matrix. Normal uppercase and
calligraphic uppercase letters stand for sets.

1.6 Algorithmic notations

Algorithms are seen as being randomized and modeled by a Turing machine.
The action of running an algorithm A on an input input with access to a
subroutine (or oracle) O is denoted by AO(·)(input). The assignment of an
algorithm output is denoted by ←. If the algorithm is deterministic, then
the plain arrow is used. If the algorithm is randomized, then the arrow
is indexed by $. For example, the action of running a randomized algo-
rithm A with a subroutine O on input input with a uniformly at random
sampled random coins r and assigning the output to output is denoted by
output←$ AO(·)(input; r). If the random coin is implicit or unknown, it may
be removed from the notation. We abuse the arrow notation for value assess-
ments. Deterministic value assessments are denoted by ←. For illustration,
a ← 2 means that a receives the value 2. Sampling a value uniformly at
random from a finite set S and assessing it to a variable a is denoted by
a←$ S. If another distribution is used for the sampling process, say χ, then
we write a ←χ S (see also Chapter 2). We denote the set of all functions
that are negligible with respect to a parameter λ by Negl(λ). The bit size
of an integer n is the minimal positive integer β such that |n| < 2β.





Chapter 2

Statistics

The upcoming presentation is based on [Shy13, HKO01], but considers a
finite discrete setting.

2.1 Probabilistic model

A probabilistic model is a mathematical description of an uncertain situa-
tion. A probabilistic model involves an experiment that produces exactly
one out of several possible outcomes which cannot be predicted before car-
rying out the experiment. The set of all possible outcomes of an experiment
is completely determined before it is carried out and the experiment can
be repeated under the same conditions as often as desired. An experiment
can be anything that may result in a different outcome in each iteration, for
example, a coin toss or radiation counts. The set of all possible outcomes Ω
is called the sample space and a subset A ⊆ Ω is called an event.

A σ-field F over Ω is a non-empty set of events that satisfies the following
conditions:

• Ω ∈ F .

• If A ∈ F , then Ω \A ∈ F .

• For every collection of events {Ai ∈ F}i∈N where N ⊆ N, we have⋃
i∈N Ai ∈ F .

These conditions imply that ∅ ∈ F and that
⋂

i∈N Ai ∈ F . For a finite
or infinite countable sample set Ω, a σ-field is given by the powerset of Ω
denoted by P(Ω) and including all subsets of Ω. For Ω = R, a σ-field is given
by the Borel set denoted by B(R) and generated by the open intervals of R.

11
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We note that B(R) includes every open, closed, and semi-closed interval in
R, as well as singleton sets and intervals tending to infinity. A measure on
a σ-field F is any mapping τ : F −→ R such that

• τ(A) ≥ 0 for all A ∈ F ,

• τ(∅) = 0, and

• for every collection of disjoint events {Ai}i∈N where N ⊆ N, that is
Ai ∩Aj = ∅ for all i ̸= j, we have τ

(⋃
i∈N Ai

)
=
∑

i∈N τ(Ai).

If F is a σ-field over Ω and a measure on F exists, then we call F a mea-
surable event space over Ω. A remarkable measure on B(R) is the Lebesgue
measure defined by L([a, b]) = b− a for a < b.

2.2 Probability

A probability measure P on a σ-field F over a sample space Ω is any mapping
P : F −→ [0, 1] that satisfies:

• P(A) ≥ 0 for every event A ∈ F ,

• P(Ω) = 1, and

• for every collection of disjoint events {Ai}i∈N where N ⊆ N, we have
P
(⋃

i∈N Ai

)
=
∑

i∈N P(Ai).

A probability measure P is indeed a measure as P(Ω) = P(Ω) + P(∅), such
that P(∅) = 0. Furthermore, it has many nice properties. The complemen-
tary probability rule states that P(Ω \ A) = 1 − P(A) for all A ⊆ Ω. The
conditional probability rule yields the probability of an event A ∈ F given
an event B ∈ F as P(A|B)P(B) = P(A ∩ B). Furthermore, two events
A,B ∈ F are called independent if P(A|B) = P(A). A probability space is
any triplet (Ω,F ,P) where Ω is a sample space, F is a σ-field over Ω called
the event space, and P is a probability measure over F . One example of a
probability space is (Ω,P(Ω),PΩ) where Ω is finite and PΩ(A) =

|A|
|Ω| for all

A ⊆ Ω. Another example is ([0, 1],B([0, 1]),PL) where PL([a, b]) = b − a is
the Lebesgue measure on [0, 1].
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2.3 Random variables

For i ∈ {1, 2}, let Fi be a measurable event space over Ωi. A function
g : Ω1 → Ω2 is a measurable function if the preimage of g satisfies
g−1(B) = {a ∈ Ω1 | g(a) ∈ B} ∈ F1 for all B ∈ F2. We note that g is
defined for all the elements in the sample space Ω1 and not for the events
in F1. If Ω1 is countable and F1 = P(Ω), then any function from Ω1 to Ω2

is measurable. Given a probability space (Ω,F ,P), we define a real-valued
random variable over Ω as a measurable function ω : Ω −→ R with respect
to B(R). Since ω is measurable, any interval in B(R) must have an inverse
image in F . For any borelian B ⊆ R, we define a probability measure on
B(R) by setting Pω(B) := P(ω−1(B)) = P({a ∈ Ω | ω(a) ∈ B}). We abuse
the notation and set P(ω ∈ B) := Pω(B) which intuitively means that the
outcome of ω is in B. Similarly, for b ∈ R, we define P(ω = b) := Pω({b}),
and we set P(ω ≤ b) := Pω((−∞; b]). We proceed in the same way for other
comparison symbols. This abuse of notation is motivated by the fact that
Pω behaves like P, but relies on R only. The support of a random variable ω
is the set of real numbers b ∈ R such that P(ω ≤ b+ ϵ) > P(ω ≤ b− ϵ) for all
ϵ > 0. If a real-valued random variable has a finite support, then it is called
finite. In the following, we consider finite real-valued random variables only.

2.4 Univariate distribution

Let ω : Ω −→ R be a finite real-valued random variable over the sample space
Ω with support E. The cumulative distribution function Fω : Ω −→ [0, 1] of
ω is defined by Fω(b) := P(ω ≤ b) for all b ∈ R. The cumulative dis-
tribution function is completely defined by the probability mass function
pω : Ω −→ [0, 1] of ω defined by pω(b) := P(ω = b). Indeed, for b ∈ R, let
E≤b = E ∩ (−∞, b], then Fω(b) =

∑
b′∈E≤b

pω(b
′). Reciprocally, the cumula-

tive distribution function of ω completely determines the probability mass
function of ω by pω(b) = Fω(b) if b ≤ min(E) and pω(b) = Fω(b) − Fω(b0)
where b0 = maxE<b. The frequency distribution of ω is a table that displays
the frequency of each outcome of ω. It is clear that the probability mass
function and the frequency distribution of ω are equivalent.

The expectation, or mean, of a finite real-valued random variable ω
with support E is defined by µω := E[ω] :=

∑
b∈E b pω(b). Furthermore,

E[aω+b] = aE[ω]+b for all a, b ∈ R. We note that if g : R→ R, then g◦ω is
a finite real-valued random variable over Ω with probability mass function
pg◦ω(b) = P(g◦ω = b) for all b ∈ R. Additionally, E[g◦ω] =

∑
b∈E g(b)pω(b).
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The variance of ω is defined by σ2ω := E[ω2]−E[ω]2. The standard deviation
is defined by σω :=

√
E[ω2]− E[ω]2. Chebychev’s inequality states that for

a random variable ω with finite expected value µ and finite non-zero vari-
ance σ2, we have P(|ω − µ| ≤ kσ) ≤ 1

k2
for every k > 0. This indicates

in particular that the probability that ω outputs values outside the interval
[µ − 10σ, µ + 10σ] is only 1

100 . For 0 < α < 1, an α-quantile qα of ω is any
real number such that P(ω ≤ qα) ≥ α and P(ω ≥ qα) ≥ 1− α. If the set Q
of all α-quantiles is given by Q = [b1, b2] for some consecutive b1 < b2 ∈ E,
then we define the α-quantile as b1+b2

2 . The median is the 1
2 -quantile, the

first quartile is the 1
4 -quantile, and the third quartile is the 3

4 -quantile.

2.5 Multivariate distributions

A real-valued random (row) vector ω = (ω1, . . . , ωn) over Ω is a vector
whose coordinates are real-valued random variables over Ω. We note that
the structure of Ω is not relevant. Equipping Rn with the lexicographic
order, we can directly generalize the univariate case to this multivariate
setting. Concretely, for b ∈ Rn, the cumulative distribution function for
ω is defined by Fω(b) = P(ω ≤ b), the probability mass function of ω by
pω(b) = P(ω = b), and the frequency distribution by the frequency of each
possible outcome of ω. Hereinafter, we mean by distribution any of those
representations as the others can be obtained from it. Random matrices
can be defined similarly and generalize random vectors. The coordinates
of a random vector ω = (ω1, . . . , ωn) over Ω are said to be independent if
Fω(b) =

∏n
i=1 Fωi(bi) for all b = (b1, . . . , bn) ∈ Rn. A random vector is finite

if it consists of finite random variables. The support of a finite real-valued
random vector ω is the set E = {b ∈ Rn | pω(b) > 0}.

Expectations can be generalized to finite real-valued random vectors by
setting E[ω] =

∑
b∈E bpω(b) where E denotes the support of ω. The re-

sulting vector is the mean vector which is generally denoted by µω.

• (Linearity) If ω1, . . . ,ωm denote random vectors over Ω and a1, . . . , am
denote scalars, then E [

∑m
i=1 aiωi] =

∑m
i=1 aiE[ωi].

• (Linear transformation) If ω denotes a random vector over Ω and
A ∈ Rn×m, then E [ωA] = E[ω]A.

• (Composition) Let g : Rn −→ Rm. Then g ◦ ω is a finite real-valued
random vector and E[g ◦ ω] =

∑
b∈E g(b)pω(b).
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For a random vector ω = (ω1, . . . , ωn) over Ω, the n × n matrix
Rω = E[ω⊤ω] is called the auto-correlation matrix. The auto-correlation
matrix is always symmetric, positive semi-definite, and its eigenvalues are
real and non-negative. The n × n matrix Cω = E[(ω − µω)⊤(ω − µω)] is
called the auto-covariance matrix and represents on its (i, j)-th entry the
covariance between ωi and ωj . The entries on the diagonal represent the
variance of the random variables ω1, . . . , ωn. We note that if an entry of Cω

is 0, then the corresponding random variables are said to be uncorrelated.
Independent random variables are always uncorrelated, but the reciprocal
does not necessarily hold. Through linear transformations, we observe that
Cω = Rω − µ⊤ωµω.

2.6 Particular distributions and sampling processes

We call a distribution of a real-valued random vector ω symmetric if for all
b ∈ Rn, we have pω(b) = pω(−b). In this case, the mean is
µω = (0, . . . , 0), and, by Chebychev’s inequality, we can expect the entries
of a vector returned by ω to not be much larger in absolute value than the
standard deviation of the corresponding random variable. For a finite real-
valued random variable with support E, we say that ω follows the uniform
distribution over E if P(ω = b) = 1

|E| for all b ∈ E and P(ω = b) = 0 oth-

erwise. We say that a second random variable ω′ follows the distribution ω
over R if P(ω′ = b) = P(ω = b) for all b ∈ R. We refer to [Shy13, HKO01]
for a broad overview of the most relevant distributions.

Let ω be a finite real-valued random vector with support E ⊆ R. We
abuse our notation and call any distribution of ω the distribution ω. Fur-
thermore, we say that a vector v ∈ R has been sampled following the distri-
bution ω if v is an output of ω. Intuitively, it is a vector sampled from the
support of ω such that the probability of obtaining v is pω(v). We fix the
notation v←ω R to denote that v ∈ R has been sampled following the dis-
tribution ω. If ω follows the uniform distribution over E, we note v←$ E.

If we have some information on the support of ω, we change our notation
to indicate this. For example, if E ⊆ E′ ⊆ Rn, then we write ω : Ω −→ E′

to indicate that values in Rn \E′ are impossible events. If a random variable
with codomain Rn is desired, one can simply extend ω by setting pω(b) = 0
for all b ∈ Rn \ E′. We apply the same strategy for the other notations,
such as v←ω E′. Furthermore, we highlight that the above notions can be
generalized to another codomain Ω′ instead of R. In this case, one generally
speaks of a random element.





Chapter 3

Complexity notions

This chapter revises some elementary notions from complexity theory. The
upcoming development is strongly based on [Lee90] and loosely based on
[Coo00].

3.1 Decision problems

A problem is a set X = XI ×XA of ordered pairs (I, A) of strings in {0, 1}∗
representing all possible finite strings made of 0’s and 1’s, where I ∈ XI

is called the problem instance and A ∈ XA is called an answer to that
instance. A problem instance needs to be completely defined, meaning that
for each instance I ∈ XI there needs to be at least one answer A ∈ XA.
This yields a total relation on X. A problem function f = fI × fA ⊆ X is
a string relation in which each string I ∈ fI is the instance of precisely one
problem. In other words, for each I ∈ fI , there exists exactly one answer
A ∈ fA. A decision problem is a problem function

d = dI × dA ⊆ {0, 1}∗ × {0, 1} (3.1)

in which the only possible answers are 1 indicating “yes” and 0 indicating
“no”. As the answer values are fixed, the decision problems only differ in
their instance values dI ⊆ {0, 1}∗. A particular subset L of {0, 1}∗ is called
a language. Its complementary language is co−L = {0, 1}∗ \ L. A decision
problem d = dI × {0, 1} is completely defined by its language dI = L and
its affirmative solutions A = 1. To be precise, if L is a language, then the
decision problem dL corresponding to L is defined by

dL = {(x, 1) : x ∈ L} ∪ {(x, 0) : x ∈ co−L}. (3.2)

17
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Reciprocally, if d is a decision problem, then the language L(d) correspond-
ing to d = dI × {0, 1} is defined by

L(d) = {x ∈ dI : (x, 1) ∈ d}. (3.3)

We note that an instance set dI can always be extended over all bit strings
in {0, 1}∗ by including (x, 0) for all x /∈ dI .

3.2 Solving methods

We regard a decision problem d = dI ×{0, 1} as solved if and only if there is
a general method M called solving method that is able to solve any instance
I ∈ dI . In other words, M is an algorithm which on input I ∈ dI computes
A ∈ {0, 1} such that (I, A) ∈ d. The size of a problem instance I, denoted
by |I|, is its length as a bit-string. Let M be a solving method of a decision
problem d and let R be a set of resources used by that method. We define
RM : N → N by setting RM (n) to be the maximal amount of resources R,
used when M is applied to any input x of size n. Common resources of
interest are the computational time needed to solve a problem instance and
the required memory space. As it is often complicated to assess the exact
amount of resources, approximate bounds are used. We use the Landau
symbols. Indeed, let f, g be two real-valued functions defined on some un-
bounded subset of positive real numbers such that g(x) > 0 for sufficiently
large x:

1. We write f(x) = o(g(x)) if for all C > 0 there exists x0 ∈ R such that
|f(x)| ≤ Cg(x) for all x ≥ x0.

2. We write f(x) = O(g(x)) if there exist C > 0 and x0 ∈ R such that
|f(x)| ≤ Cg(x) for all x ≥ x0.

3. We write f(x) = Ω(g(x)) if lim sup
x→+∞

∣∣∣f(x)g(x)

∣∣∣ > 0.

The requirements of a problem X for resources from a resource set R under
methods from a method class C is upper bounded by T (n) if and only if there
is a method M ∈ C for solving X such that RM (n) = O(T (n)) and it is
lower bounded by T (n) if and only if any method M ∈ C to solve X satisfies
RM (n) = Ω(T (n)). We have the following classification of requirements
where k > 1 and 0 < c < 1 denotes any positive constant:
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Name RM (n) Name RM (n)

Constant O (1) Cubic O
(
n3
)

Log-logarithmic O (log (log (n))) Polynomial O
(
nk
)

Logarithmic O (log (n)) Quasipolynomial O
(
n(log(n))

k
)

Polylogarithmic O
(
(log (n))k

)
Subexponential O

(
2n

c)
Linear O (n) Exponential O

(
2n

k
)

Linearithmic O (n log (n)) Factorial O (n!)

Quasilinear O
(
n(log (n))k

)
Superexponential O

(
22

nk)
Quadratic O

(
n2
)

Unbounded <∞

Figure 3.1: Classification of asymptotic upper bounds.

3.3 Machine models

To compare different solving methods, one needs to formalize their func-
tioning. To do so, we define a list of allowed operations, which is called a
computation model.

3.3.1 Turing machines

Intuitively, a Turing machine manipulates symbols, such as 0 and 1, on a
strip of tape according to a predefined set of rules. In the abstract model,
the machine operates on an infinite memory tape, which is divided into
discrete cells that can be assigned a specific symbol. For each operation,
the machine positions its head over one such cell and reads the symbol in
the cell. Based on the scanned symbol and the current state of the machine
that is registered in a user-specified finite table of instructions, the machine

1. either erases, writes, or updates a symbol in the cell,

2. moves either to the cell to the left of the current cell, moves to the cell
to the right of the current cell, or stays at the current cell,

3. updates, if required, its state, and,

4. based on the symbol in the new cell and its new state, proceeds to
another instruction or halts the computation.

Using this syntax, the computation time is defined to be the number of
steps made before the machine halts and the computation space is defined
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to be the number of cells that are visited by the head during the whole
computation. The computation space may be relatively small compared to
the input size, but the computation time is at least as large as the input
size. In practice, the strip of tape in a Turing machine might be split into
multiple components, for example, we consider the following subdivision:

1. a semi-infinite read-only tape for input,

2. a semi-infinite write-only tape for output,

3. a read-write work tape.

3.3.2 Deterministic Turing machines

A deterministic Turing machine (DTM) is a Turing machine with the ad-
ditional requirement that it needs to follow a fully deterministic instruction
set. In other words, for each given state and cell input, the machine can
only follow a single instruction. Such a machine is said to have solved a
given problem d, if, whenever it starts with a problem instance I written
in the leftmost cells of its input tape, it eventually halts with an answer A
written in the leftmost cells of the output tape.

3.3.3 Non-deterministic Turing machines

A non-deterministic Turing machine (NDTM) is a Turing machine following
a non-deterministic instruction set. Put differently, given a state and a cell
input, the machine has multiple choices for its next move. As it is not clear
which possibility will be chosen, its computation steps need to be seen as
a tree, where the nodes and leaves correspond to the tape configurations
that can be obtained. A non-deterministic Turing machine answers “yes” to
a given problem instance I if the tree of reachable configurations contains
any configuration in which the machine halts and the output tape contains
the string representing “yes”. Otherwise, it answers “no”. In case the
configuration tree is finite (we will only consider such cases hereinafter), the
computation time corresponds to the depth of the tree and the computation
space is the maximal number of cells used by any configuration.
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3.4 Reductions

Let X = XI × {0, 1} and Y = YI × {0, 1} be decision problems. A (Turing)
reduction or transformation from X to Y is any function

f : {0, 1}∗ −→ {0, 1}∗ (3.4)

that can be computed by a deterministic Turing machine, such that a prob-
lem instance x ∈ XI has the affirmative answer 1 if and only if the problem
instance y = f(x) ∈ yI has the affirmative answer 1. We usually focus on
polynomial time reductions, meaning that the function in the above defini-
tion needs to be computable in polynomial time.

3.5 Complexity classes

Complexity classes help us to classify problems based on their best known
solving method. Hereinafter, we highlight some of the most relevant com-
plexity classes and describe some of their inherent properties.

3.5.1 P

P is the complexity class that represents the set of all decision problems that
can be solved in polynomial time by a deterministic Turing machine.

3.5.2 NP

NP is the complexity class of all decision problems whose instances with
affirmative answer 1 allow a witness that can be verified in polynomial time.
The computation time for this witness may be unbounded, as long as the
verification can be carried out sufficiently fast. Equivalently, NP is the set
of all decision problems that are solvable in polynomial time by a nondeter-
ministic Turing machine.

3.5.3 NP-complete

NP− complete is the complexity class containing all NP problems to which
NP problems are reducible to in polynomial time. Put differently, a decision
problem X = XI ×{0, 1} is in NP− complete if X is in NP and if any other
decision problem Y = YI × {0, 1} in NP can be reduced to X in polynomial
time. Thus, if a deterministic polynomial-time algorithm can be found to
solve any NP− complete problem, then, every problem in NP can be solved
in polynomial time.
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3.5.4 NP-hard

NP− hard is the complexity class containing all problems to which every
NP− complete problem can be reduced to in polynomial time. Put dif-
ferently, a problem X = XI × XA is in NP− hard if there is a problem
Y = YI × {0, 1} in NP− complete that can be reduced to X in polynomial
time. Intuitively, these problems are at least as hard as the NP− complete
problems. Contrary to NP− complete problems, NP− hard problems do
not need to be in NP, nor to be decision problems. As all NP prob-
lems are reducible in polynomial time to all NP− complete problems, and
all NP− complete problems are reducible in polynomial time to NP− hard
problems, solving a single NP− hard problem in polynomial time yields a
polynomial time solving method for all NP-problems. We note that any
NP− complete problem is also NP− hard.

3.5.5 P versus NP

The most famous open problem in computer science and a millennium prob-
lem of the Clay Mathematics Institute [CMI00] asks whether any decision
problem whose proof can be verified in polynomial time can also be solved
in polynomial time. It is straightforward that P is a subset of NP. The open
question is thus whether NP problems have deterministic polynomial-time
solutions.

3.6 Remark on Boolean values

To simplify some passages, we freely switch between the integer values 0, 1
and the Boolean values 0, 1.



Chapter 4

3-SAT

One of the most important complexity classes is the NP− complete class
as it takes on the role of the transistor between regular NP problems and
NP− hard problems. In particular, no NP− complete problem is substan-
tially harder than the others. Indeed, all of them are polynomially reducible
to each other. The most difficult task was to find the very first NP− complete
problem that needed to be reducible to all the other NP problems. This mile-
stone was achieved by Steven Cook in 1971 [Coo71] who showed that the
so-called Satisfiability problem is NP− complete. One year later, the list of
NP− complete problems increased considerably with Karp’s 21 combinato-
rial problems [Kar72] and has since then experienced a tremendous expan-
sion. Hereinafter, we give some more details on the Satisfiability problem
and one of its variants, the 3-clause Satisfiability problem.

4.1 Satisfiability problem

A Boolean expression (or logic formula) φ is built from variables v1, . . . , vn
that may take one of the two values TRUE (1) or FALSE (0), parenthesis,
and the three operators:

• AND used for conjunction and denoted by ∧,

• OR used for disjunction and denoted by ∨, and

• NOT used for negation and denoted by ¬.

A formula is said to be satisfiable if it can be made TRUE (1) by assigning
appropriate logical values to its variables.

23



24 Chapter 4. 3-SAT

Definition 4.1. The satisfiability problem (SAT) asks to determine whether
a given Boolean expression is satisfiable.

Despite its simple outline, the problem turns out to be extremely dif-
ficult. Indeed, if a formula is built from n variables, then there are 2n

possibilities to assess their Boolean values and, in the worst case, only a sin-
gle assessment leads to TRUE (1). Nonetheless, it makes a good candidate
for the pioneer NP− complete problem.

Theorem 4.2 (Cook’s Theorem [Coo71]). The satisfiability problem is
NP− complete.

It is clear that a given witness can be verified in polynomial time using
elementary Boolean logic. The difficult task is to show that any other NP
problem can be reduced to it in polynomial time. We skip the details of this
proof and refer the reader to Cook’s original article [Coo71]. We highlight
that the most significant contribution is that any other NP problem to which
the Satisfiability problem can be reduced to in polynomial time becomes,
through transitivity, automatically another NP− complete problem.

4.2 Conjunctive normal form

To instantiate a more manageable version of the Satisfiability problem, we
need some more insights on Boolean logic. A literal is either a variable v
or its negation ¬v. A clause is a single literal or a disjunction of literals.
A Boolean expression is in conjunctive normal form if it consists of a single
clause or a conjunction of clauses. It is crucial to note that every Boolean
expression can be transformed into an equivalent one in conjunctive nor-
mal form. Equivalence means that it contains the same variables and is
satisfiable with a specific set of values (v1, . . . , vn) if and only if the origi-
nal expression is satisfiable with this specific set of values (v1, . . . , vn). The
drawback of this transformation is that the formula in conjunctive normal
form may be exponentially larger than its original (in particular, it may
not be a polynomial time transformation). The advantage of a conjunctive
normal form is that the investigation of satisfiability becomes somewhat eas-
ier. Indeed, a Boolean expression in conjunctive normal form is satisfiable
if and only if all its clauses are simultaneously satisfiable. Thereby, a sim-
ple contradiction between two clauses is enough to conclude unsatisfiability.
Nonetheless, the remaining problem keeps being efficiently unsolved for now.
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4.3 k-SAT

Considering Boolean formulas in conjunctive normal form allows one to sys-
tematically compare their solving methods. Thus, we may consider the
Satisfiability problem with expressions in conjunctive normal form. Fur-
thermore, to get even more control on the expressions we can restrict to
formulas with clauses containing a fixed number of distinct literals only.
This can be achieved by inserting, if necessary, auxiliary variables into the
original expression. With this level of symmetry, we discover a new problem.

Definition 4.3. The k-clause Satisfiability problem (k-SAT) asks to deter-
mine whether a given Boolean expression in conjunctive normal form with
exactly k distinct literals per clause is satisfiable.

Of course, if the clauses consist of isolated literals, satisfiability is trivial.
Indeed, either the conjunction contains a variable and its negation and is so
trivially unsatisfiable, or it does not contain both of them and is satisfiable.
This proves that 1-SAT can be solved in linear time and is in P. The
first nontrivial situation arises for clauses consisting of two distinct literals.
Remarkably, the 2-SAT problem is still in P [Coo71] and even linear-time
solving algorithms exist [APT79].

Theorem 4.4. 2-SAT problem is in P.

The picture changes when considering larger clause sizes. An interesting
by-product of Cook’s proof for his theorem is that every satisfiability prob-
lem can be reduced to one with 3 literals per clause only. By transitivity,
we thus deduce the following result [Coo71].

Theorem 4.5 (Cook’s Theorem). 3-SAT is NP− complete.





Chapter 5

Miscellaneous

This chapter prepares some auxiliary results that will be needed hereinafter.
In Section 5.1 the number of solutions of a linear multivariate modular
equation is computed. Section 5.2 approximates the volume of a higher
dimensional sphere.

5.1 Solving linear multivariate congruences

First, we compute the number of solutions of multivariate equations modulo
q ∈ N≥2.

Theorem 5.1. Let q ∈ N≥2 and let a1, . . . , an, b ∈ Z. Then, the congruence

a1x1 + · · ·+ anxn ≡ b mod q (5.1)

has a solution (x1, . . . , xn) ∈ Zn if and only if g = gcd(a1, . . . , an, q) divides
b. Furthermore, if Equation (5.1) has one solution, then it has gqn−1 distinct
solutions in Zn

q where Zq := Z ∩ (−q/2, q/2].

Proof. Let f : (Z/qZ)n → (Z/qZ) be the map defined by

f([x1], . . . , [xn]) =
n∑

i=1

ai[xi]. (5.2)

Then, Equation (5.1) has a solution if and only if [b] belongs to the image
of f . As im(f) = ([g]) where g = gcd(a1, . . . , an, q) and ([g]) ⊆ Z/qZ
denotes the ideal generated by [g], we deduce the first part of the claim.
Furthermore, in this case, the number of solutions of Equation (5.1) equals
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the number of elements in the kernel of f . By the first isomorphism theorem
[Hum96, Theorem 8.13], im(f) ≃ (Z/qZ)n/ ker(f) and so

| ker(f)| = |(Z/qZ)
n|

| im(f)|
=
qn

q
g

= gqn−1

proving the second part of the claim.

5.2 Volume of a sphere of radius R

Next, we develop an explicit upper bound for the number of lattice points
inside a high-dimensional sphere. Our result is a slightly less precise, but
explicit version of [MO90].

Theorem 5.2. Let m ∈ N≥2. Then, the volume V (Sm(R)) of the m-
dimensional sphere of radius R defined by Sm(R) = {x ∈ Rm | ∥x∥2 = R} is
upper bounded by

V (Sm(R)) ≤ 1√
πm

(
2πe

m

)m
2

Rm.

Proof

It is well known (e.g., [CS99, Section 2.C]) that the volume of the
m-dimensional sphere is given by

V (Sm(R)) =
π

m
2

Γ
(
m
2 + 1

)Rm, (5.3)

where Γ(z) =
∫ +∞
0 xz−1e−x dx denotes the Gamma function. Thus, in

order to prove our claim, it is sufficient to find a suitable lower bound for
the Gamma function. This can be achieved by using some of its elementary
properties (see [Abr74, Chapter 6] for all properties used hereinafter), as
well as explicit versions of Stirling’s approximation [Twe03] of the factorial
function. We use the following theorem from [Rob55].

Theorem 5.3. For all n ∈ N≥1, the factorial n! is bounded by

√
2πnn+

1
2 e−ne

1
12n+1 < n! <

√
2πnn+

1
2 e−ne

1
12n .

Lemma 5.4. Let m ∈ N≥2. Then,

Γ
(m
2

+ 1
)
>
√
πm

(m
2e

)m
2
.
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Proof. Assume first that m = 2n for some n ∈ N≥1. Then:

Γ
(m
2

+ 1
)
= Γ(n+ 1) = n! (5.4)

Using the lower bound of Theorem 5.3 yields

Γ
(m
2

+ 1
)
>
√
2πnn+

1
2 e−ne

1
12n+1 =

√
2π
(m
2

)m+1
2
e−

m
2 e

1
6m+1 . (5.5)

Rearranging the terms and observing that e
1

6m+1 > 1 proves the claim.

Assume next that m = 2n+ 1 for some n ∈ N≥1. Then:

Γ
(m
2

+ 1
)
= Γ

(
n+ 1 +

1

2

)
. (5.6)

Using the Legendre duplication formula [MOS66, p.3], we deduce that

Γ

(
n+ 1 +

1

2

)
= 21−2(n+1)√πΓ(2(n+ 1))

Γ(n+ 1)
. (5.7)

As the entries of the Gamma functions are now positive integers, we may
replace them by factorials:

21−2(n+1)√πΓ(2(n+ 1))

Γ(n+ 1)
= 21−2(n+1)√π (2(n+ 1)− 1)!

n!
(5.8)

= 2−2(n+1)√π (2(n+ 1))!

(n+ 1)!
. (5.9)

Applying the lower bound of Theorem 5.3 to the factorial in the numerator
and the upper bound to the factorial in the denominator, we deduce that

2−2(n+1)√π (2(n+ 1))!

(n+ 1)!
(5.10)

> 2−2(n+1)√π
√
2π(2(n+ 1))2(n+1)+ 1

2 e−2(n+1)e
1

24(n+1)+1

√
2π(n+ 1)n+1+ 1

2 e−(n+1)e
1

12n

(5.11)

=
√
2π

(
n+ 1

e

)n+1

e
− 12n+25

288n2+300n (5.12)

=
√
2π

(
m+ 1

2e

)m+1
2

e
− 6m+19

72m2+6m−78 . (5.13)
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This latter expression can be lower bounded by our claimed value:

√
2π

(
m+ 1

2e

)m+1
2

e
− 6m+19

72m2+6m−78 >
√
πm

(m
2e

)m
2

(5.14)

Indeed, rearranging the terms shows that the inequality is equivalent to√
m+ 1

me

(
m+ 1

m

)m
2

> e
6m+19

72m2+6m−78 . (5.15)

As only positive values are considered, squaring and applying the natural
logarithm on both sides leads to the equivalent inequality

(m+ 1) log

(
m+ 1

m

)
> 1 +

6m+ 19

36m2 + 3m− 39
. (5.16)

Finally, Lemma 5.5 (below) proves correctness of Equation (5.16) for all odd
integers m ≥ 3, which in turn concludes the proof.

Lemma 5.5. The function f : R+ −→ R defined by

f(x) = (x+ 1) log

(
x+ 1

x

)
− 1− 6x+ 19

36x2 + 3x− 39

is positive for every positive odd integer strictly greater than 1.

Proof. It’s first derivative is given by

f ′(x) = log

(
x+ 1

x

)
− 432x4 − 1389x2 − 175x+ 507

3x(12x2 + x− 13)2
(5.17)

and its second derivative by

f ′′(x)

=
3456x6 − 16848x5 − 40140x4 − 15911x3 + 12013x2 + 1521x− 6591

3x2(x+ 1)(12x2 + x− 13)3
. (5.18)

As the denominator in the second derivative is positive for all x > 1, the
sign of the second derivative is determined by its numerator

3456x6 − 16848x5 − 40140x4 − 15911x3 + 12013x2 + 1521x− 6591 (5.19)

which has a single positive root 6 < x0 < 7. As f ′′(x) > 0 for all x > x0,
this implies that the first derivative f ′ is monotonically increasing on the
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interval [7,+∞[. As lim
x→+∞

f ′(x) = 0, we deduce that f ′(x) < 0 for all

x ∈ [7,+∞[. Thus the considered function f is monotonically decreasing on
the interval [7,+∞[. As lim

x→+∞
f(x) = 0, we deduce that f(x) > 0 for all

x ∈ [7,+∞[. Furthermore, we computationally verify that f(3) ≈ 0.025 and
f(5) ≈ 0.038.

Using Lemma 5.4, we conclude that the Gamma function used in Equa-

tion (5.3) can be universally lower bounded by
√
πm

(
m
2e

)m
2 , which is sum-

marized in the next proposition.

Proposition 5.6. For all m ∈ N≥2, Γ(
m
2 + 1) >

√
πm

(
m
2e

)m
2 .

Thus, we deduce that

V (Sm(R)) =
π

m
2

Γ(m2 + 1)
Rm (5.20)

≤ π
m
2

√
πm

(
m
2e

)m
2

Rm (5.21)

=
1√
πm

(
2πe

m

)m
2

Rm (5.22)

which proves Theorem 5.2.





Chapter 6

Lattice preliminaries

Hereinafter, we give a short overview of some well-known lattice results. Our
development is loosely based on the presentations in [Cas71, NV09, Gal12].

6.1 Lattices

The (integer row) lattice generated by the row vectors v1, . . . ,vn ∈ Zm is
the linear span

Λ = L(v1, . . . ,vn) :=

{
n∑

i=1

xivi | xi ∈ Z ∀i ∈ {1, . . . , n}

}
. (6.1)

If the vectors v1, . . . ,vn are linearly independent, they are called a basis
of Λ. Similarly, a matrix B is called a basis matrix of Λ if the rows of B
are linearly independent and Λ is generated by them (if the rows are not
linearly independent, B is only called a generating matrix ). It is well known
that two bases B,B′ generate the same lattice if and only if there exists a
unimodular matrix U ∈ GL(Z, n) such that B = UB′. The dimension of a
lattice Λ is the dimension of its ambient space Zm. The rank of a lattice is
its dimension as a Q-span. A lattice is called full-rank if its rank is equal to
its dimension.

6.2 Determinant

The determinant of a lattice Λ is defined by det(Λ) :=
√
det(BBT ) where

B denotes any basis of Λ. Geometrically seen, the determinant of a lattice
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corresponds to the volume of its fundamental parallelepiped defined for a
basis {b1, . . . ,bn} by

F(Λ) :=

{
n∑

i=1

xibi | xi ∈ [0, 1) ∀i ∈ {1, . . . , n}

}
. (6.2)

Furthermore, if b∗
1, . . . ,b

∗
n denotes the Gram-Schmidt orthogonalization of

b1, . . . ,bn, then det(Λ) =
∏n

i=1 ∥b∗
i ∥2. Since ∥b∗

i ∥2 ≤ ∥bi∥2 for all
i ∈ {1, . . . , n}, we deduce Hadamard’s inequality [Had93]:

det(Λ) ≤
n∏

i=1

∥bi∥2. (6.3)

6.3 Successive minima

For i ∈ {1, . . . , n}, the ith successive minimum of Λ denoted by λi(Λ) is
defined as the smallest radius r > 0 such that Λ contains at least i linearly
independent vectors of length bounded by r. Symbolically,

λi(Λ) := inf{r ∈ R>0 | dim(span(Λ ∩B(0, r))) ≥ i} (6.4)

where B(0, r) := {x ∈ Rm | ∥x∥ ≤ r} denotes the closed ball of radius r
around 0 for some norm ∥ · ∥ on Rm. If not stated otherwise, we consider
the Euclidean norm ∥ · ∥ = ∥ · ∥2. Naturally,

λ1(Λ) ≤ · · · ≤ λn(Λ). (6.5)

The successive minima are achieved and the lattice vectors with norm λi(Λ)
are called the i-th shortest vectors, but they may not be unique.

6.4 Minkowski’s theorems

For n ∈ Z≥1, the n-dimensional Hermite constant [Her50] is defined by

γn := sup

(
λ1(Λ)

det(Λ)
1
n

)2

(6.6)

where the supremum is taken over all rank n lattices. The exact value of
γn is only known for 1 ≤ n ≤ 8 [Wat66] and n = 24 [CK04]. For example,

γ24 = 4. Hermite’s inequality [Her50] yields γn ≤ γn−1
2 with γ2 =

√
4
3 , and
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[NV09] points out the linear bound γn ≤ 1 + n
4 , as well as the asymptotic

behaviour

n

2πe
+

log(πn)

2πe
+ o(1) ≤ γn ≤

1.744n

2πe
(1 + o(1)). (6.7)

Using Minkowski’s convex body theorem [Min96] and a result by Blichfeldt
[Bli14], one obtains Minkowski’s first theorem [Min96] yielding an upper
bound for the first lattice minimum:

λ1(Λ) ≤
√
γn detΛ

1
n . (6.8)

Minkowski’s second theorem [Min96] gives an upper bound for the geometric
mean of the successive minima by stating that each 1 ≤ i ≤ n: i∏

j=1

λj(Λ)

1/i

≤
√

n

2πe
det(Λ)1/n. (6.9)

6.5 Gaussian heuristic

The Gaussian Heuristic [Ajt06, GN08] predicts that for a “random” full-
rank lattice of “large” dimension, we expect the shortest vector to not be
much smaller than the value predicted by Minkowski’s theorems. Symboli-
cally,

λ1(Λ) ≃
√

n

2πe
det(Λ)1/n. (6.10)

The notion of “random” lattices can be made precise using the Haar measure
[Ajt06], but we skip the details of this formalisation. We heuristically assume
that for such lattices the lattice minima can be expected to be approximately
of the same size, i.e., for all i ∈ {1, . . . , n}

λi(Λ) ≃
√

n

2πe
det(Λ)1/n. (6.11)

We assume that the same holds for lattices that are not full-rank.

6.6 Sublattices

We say that a lattice Λ′ is a sublattice of a lattice Λ if Λ′ ⊆ Λ. In this case,
we call Λ a superlattice of Λ′. If both lattices have the same rank, we call
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Λ′ a full-rank sublattice of Λ. In this case, Λ′ is also a subgroup of Λ and
the group index [Λ : Λ′] is well-defined. Additionally, one can show that

[Λ : Λ′] = det(Λ′)
det(Λ) . Thus, det(Λ) divides det(Λ

′) and both lattices coincide if
their determinants are equal.

6.7 Dual lattices

One may generalize integer lattices to real lattices by allowing real entries
in the generating vectors (but still limiting to integer combinations only).
For a real lattice Λ its dual lattice Λ∨ is defined by

Λ∨ := {w ∈ spanR(Λ) | ⟨v,w⟩ ∈ Z ∀v ∈ Λ} (6.12)

and consists of the set of linear functionals on Λ which take integer values
on each lattice point of Λ. A basis B∨ for Λ∨ is obtained from a basis
B of Λ by setting B∨ = B(BTB)−1 ∈ Rn×m. This basis relation yields
that (Λ∨)∨ = Λ and det(Λ∨) = 1

det(Λ) . Banaszczyk’s transference theorem

[Ban93] relates the successive minima of a lattice and its dual through the
inequality:

1 ≤ λkλ∨n−k+1 ≤ n ∀k ∈ {1, . . . , n}. (6.13)

6.8 Lattice reduction

Lattice reduction aims at computing so-called reduced bases with particular
properties such as short and almost orthogonal basis vectors. We consider
some particular lattice reductions that intend to approximate a shortest
vector of a given lattice Λ.

6.8.1 Gauss-Lagrange reduction

For rank 2 lattices, the Gauss-Lagrange algorithm [Gal12, Section 17.1] can
be used to reduce a given lattice basis. It essentially consists in a generaliza-
tion of Euclid’s greatest common divisors algorithm and manages to find a
basis consisting of shortest vectors only. We note that for high rank lattices
a basis consisting of shortest vectors only cannot be expected. Indeed, for
n ≥ 5, there exist so-called non-standard lattices that do not allow such a
basis [FTW17]. Yet any lattice allows a basis containing a shortest vector
[Ger08, Lemma 6.2].
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6.8.2 LLL

The Lenstra, Lenstra, and Lovász (LLL) algorithm [LLL82] generalizes the
Gauss-Lagrange algorithm. It has a polynomial runtime but manages only
to find a basis containing an exponential approximation of a shortest vector.
To be precise, let b1, . . . ,bn be a given basis of Λ and denote by b∗

1, . . . ,b
∗
n

the associated Gram-Schmidt orthogonalization defined by b∗
1 := b1 and

b∗
i := bi −

∑i−1
j=1 µi,jb

∗
j for all i ∈ {2, . . . , n} where µi,j :=

⟨bi,b∗j ⟩
⟨b∗j ,b∗j ⟩

. Let

1
4 < δ < 1. We say that b1, . . . ,bn is δ-LLL reduced if:

1. Size condition: |µi,j | ≤ 1
2 for all 1 ≤ j < i ≤ n.

2. Lovász condition: ∥b∗
i ∥22 ≥ (δ − µ2i,i−1)∥b∗

i−1∥22 for all 2 ≤ i ≤ n.

Traditionally, δ = 3
4 , but in practice δ = 0.99 is chosen. LLL reduced bases

have many good properties such as

• 2
1−i
2 λi(Λ) ≤ ∥bi∥2 ≤ 2

n−1
2 λi(Λ) for all i ∈ {1, . . . , n}, and

• det(Λ) =
∏n

i=1 ∥bi∥2 ≤
∏n

i=1 ∥bi∥2 ≤ 2
n(n−1

2 det(Λ),

indicating that a reasonably good approximation of the shortest vectors
is achieved but must be expected to include a blow-up term exponential
in the lattice rank. The LLL-algorithm computes such a basis in time
O(n5m log(B)3) where B denotes the largest entry in absolute value of any
basis vector b1, . . . ,bn. New variants of LLL such as [NS09, NSV11] achieve
the same approximation with an improved time complexity. Nonetheless,
hereinafter we make use of the original instantiation only.

6.8.3 BKZ

The block Korkin-Zolotaref (BKZ) algorithm [Sch87] generalizes the LLL
algorithm by not only considering the relative sizes of two adjacent vectors
in the basis (see the Lovász condition), but by comparing the size of β neigh-
bouring vectors [GHGKN06]. This strongly improves the output quality of
the reduction, but also increases its complexity. More precisely, for δ ≥ 1, we
call a basis b1, . . . ,bn δ-SVP reduced [LN20] if ∥b1∥2 = δλ1(Λ). Given addi-
tionally a block size 2 ≤ β ≤ n, we call the basis
(δ, β)-BKZ -reduced [SE94] if it is size reduced and for every i ∈ {1, . . . , n},
the basis bi, . . . ,bmin(i+β−1,n) is δ-SVP reduced. We note that for δ = 1 a
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shortest vector is given for each considered block of vectors. In this case, we
have the following

∥b1∥2 ≤ γ
n−1
β−1

β λ1(Λ) (6.14)

where γβ denotes the Hermite constant in dimension β [Sch87]. The BKZ
algorithm finds such a basis in time exponential in the block size. Thus, de-
spite the exactness of the shortest vector output, the BKZ algorithm suffers
from a slow runtime. It is rather efficient for small block sizes β ≤ 30 but
degrades significantly beyond this bound. One solution is to use the recent
improved BKZ 2.0 instantiation [CN11], which was particularly designed for
large block sizes. However, its runtime is still exponential. For a fixed block
size, stopping the algorithm after a polynomial number of rounds allows for
a polynomial runtime, but decreases the precision of the output [LN20].



Chapter 7

Q-ary lattices

In this chapter, we give a probabilistic estimate on the size of the shortest
vector of q-ary lattices. For a general overview of lattices and the corre-
sponding notations we refer to Chapter 6. In Section 7.1, we follow [MR09]
to define q-ary lattices. In Section 7.2, we give a probabilistic estimate of
the shortest vector in a q-ary lattice in the infinity norm, and in Section 7.3
we do the same for the Euclidean norm.

7.1 Definition and properties

Definition 7.1. Let Λ be an integer row lattice. If qZm ⊆ Λ ⊆ Zm for some
q ∈ Z≥2, then Λ is called a q-ary lattice.

By definition, every q-ary lattice has full rank n = m as it contains
the m linearly independent vectors (q, 0, . . . , 0), . . . , (0, . . . , 0, q). This also
implies that the successive minima of a q-ary lattice are upper bounded by
λi(Λ) ≤ q for all i ∈ {1, . . . ,m}. Given any matrix A ∈ Zk×m, we define the
two special q-ary lattices:

Λq(A) =
{
y ∈ Zm | y ≡ xA mod q for some x ∈ Zk

}
(7.1)

representing the linear combinations of the rows of A modulo q, and

Λ⊥
q (A) =

{
y ∈ Zm | yAT ≡ 0 mod q

}
(7.2)

representing systems of k linear homogeneous equations modulo q defined by
the rows of A. Interestingly, any q-ary lattice may be expressed as Λq(A)
or Λ⊥

q (A) for some matrix A ∈ Zm×m
q where Zq = Z ∩

(
− q

2 ,
q
2

]
[MR09].
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Furthermore, those two lattices are scaled duals. Indeed, Λ⊥
q (A) = qΛq(A)∨

and Λq(A) = q(Λ⊥
q (A))∨. This yields that det(Λq(A)) det(Λ⊥

q (A)) = qm.
Additionally, we obtain the following lemma.

Lemma 7.2. Let q,m, k be fixed positive integers such that m ≥ k, and let
A ∈ Zk×m. Then,

det(Λ⊥
q (A)) ≤ qk and det(Λq(A)) ≥ qm−k

with equalities if and only if the rows of A are linearly independent modulo
q.

Proof. As Λ⊥
q (A) is a full-rank sublattice of Zm, we derive det(Λ⊥

q (A)) =

[Zm : Λ⊥
q (A)]. Applying the first isomorphism theorem [Hum96, Theorem

8.13] to fA : Zm → Zk
q defined by x 7→ fA(x) :=

[
xAT mod q

]
, we deduce

that |Zm/ker(fA)| = |im(fA)|. As ker(fA) = Λ⊥
q (A) and im(fA) ⊆ Zk

q , we
finally obtain

det(Λ⊥
q (A)) = [Z : Λ⊥

q (A)] = |Zm/ker(fA)| = |im(fA)| ≤ qk. (7.3)

Furthermore, equality is achieved if and only if im(fA) = Zk
q which in turn

holds if and only if the rows of A are linearly independent modulo q. The
claim for Λq(A) follows from our previous observation that

det(Λq(A)) det(Λ⊥
q (A)) = qm. (7.4)

Due to their special structure, q-ary lattices cannot be seen as random
(as required for the Gaussian heuristic). Nonetheless, [AFG14] states that
the Gaussian heuristic appears to hold exceedingly well for such lattices. If
the rows of A are linearly independent modulo q, the previous lemma yields
that the Gaussian heuristic for Λq(A) would be λ1(Λq(A)) ≃

√
m
2πe q

(m−k)/n.
In the next sections, we develop two precise probabilistic results on the size
of the shortest vector of a q-ary lattice.

7.2 Shortest vector approximation - Infinity norm

In this section, we compute the probability of finding unusually short vectors
of q-ary lattices in the infinity norm ∥ · ∥∞.
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Theorem 7.3. Let q,m, k ∈ N≥1 be fixed positive integers such that m ≥ k.
Then, the probability that for a uniformly at random chosen matrix
A ∈ Zk×m

q , with Zq = Z ∩
(
− q

2 ,
q
2

]
, the first lattice minimum of Λq(A)

satisfies

λ∞1 (Λq(A)) ≥ q
m−k
m

4

is at least 1−2−m. Here, λ∞1 (Λq(A)) denotes the length of a shortest lattice
vector of Λq(A) in the infinity norm.

Remark 7.4. The initial consideration of this probability was given in
[Wen18, Lemma 2.17] and considered prime q only. Although the author
classifies the result as well-known, we were not able to find it in the liter-
ature. Furthermore, the claimed proof contains a minor mistake as it only
considers the first quadrant of the Euclidean space and neglects its symmet-
ric copies around the origin. For a correct proof, we needed to slightly shrink
the lower bound in the claimed probability.

Proof. We want to analyse the opposite of the claimed probability, namely
the probability that for a random matrix A ∈ Zk×m

q there exists a vector

x ∈ Zk such that xA ≡ b mod q for some b ∈ Zm such that

0 < ∥b∥∞ <
q

m−k
m

4
= B (7.5)

As we are working modulo q, it suffices to consider x ∈ Zk
q and b ∈ Zm

q .

First, we note that the number of possible matrices A ∈ Zk×m
q is qkm. Thus,

it remains to determine the number of matrices that also satisfy the claimed
property. We note that

S :=
{
A ∈ Zk×m

q | ∃x ∈ Zk
q ,∃b ∈ Zm

q : xA ≡ b mod q ∧ 0 < ∥b∥∞ < B
}

⊆
⋃

b∈Zm
q

0<∥b∥∞<B

{
A ∈ Zk×m

q | ∃x ∈ Zk
q : xA ≡ b mod q

}
(7.6)

⊆
⋃

x∈Zk
q

⋃
b∈Zm

q
0<∥b∥∞<B

{
A ∈ Zk×m

q | xA ≡ b mod q
}

(7.7)

The set
{
A ∈ Zk×m

q | xA ≡ b mod q
}

denotes all the solutions of the
modular equation xA ≡ b mod q with fixed x and b, and variable unknown
A. Each column of A and the corresponding entry of b give rise to an indi-
vidual linear multivariate congruence. Indeed, letting A = (a1 . . .am) where
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ai denotes the i-th column of A and bi denotes the i-th entry of the vector
b, we may consider the modular equation ⟨x,ai⟩ ≡ bi mod q. By Theo-
rem 5.1, we know that this equation can only have solutions if g = gcd(x, q)
divides bi. This holds only for a fraction 1

g of all values for bi and, conse-

quently, only for
(
1
g

)m
of all values for b. In case of a suitable value bi,

Theorem 5.1 implies that the equation has exactly gqk−1 solutions for ai,
and consequently (gqk−1)m solutions for A if all entries of b allow a solution.
Symbolically,

|S| ≤
∑
x∈Zk

q

∑
b∈Zm

q

0<∥b∥∞<B

∣∣∣{A ∈ Zk×m
q | xA ≡ b mod q

}∣∣∣ (7.8)

=
∑
x∈Zk

q

∑
b∈Zm

q

g| gcd(b)
0<∥b∥∞<B

∣∣∣{A ∈ Zk×m
q | xA ≡ b mod q

}∣∣∣ (7.9)

=
∑
x∈Zk

q

∑
b∈Zm

q

g| gcd(b)
0<∥b∥∞<B

(gqk−1)m (7.10)

≤
∑
x∈Zk

q

(
2B

g

)m

(gqk−1)m (7.11)

=
∑
x∈Zk

q

(2Bqk−1)m (7.12)

where the multiplicand
(
2B
g

)m
in Equation (7.11) stems from the fact that

there are less than 2B distinct values for b ∈ Zm
q that satisfy 0 < ∥b∥∞ < B

(each entry of b ranges in {−B+1, . . . , B−1}) and at most a fraction
(
1
g

)m
of such b’s satisfy g| gcd(b). As the remaining sum runs over qk values, we
deduce that

|S| ≤ qk(2Bqk−1)m = qk

(
2
q

m−k
m

4
qk−1

)m

=

(
qk

2

)m

. (7.13)

Thus, the probability that for a random matrix A ∈ Zk×m
q , there exists

a vector x ∈ Zk and a vector b ∈ Zm such that xA ≡ b mod q with
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0 < ∥b∥∞ < q
m−k
m

4 is

P

(
λ∞1 (Λq(A)) <

q
m−k
m

4

∣∣∣∣∣ A ∈ Zk×m
q

)
≤

(
qk

2

)m
qkm

= 2−m. (7.14)

Considering the opposite event, and applying the complementary probability
rule, finally leads to the desired conclusion:

P

(
λ∞1 (Λq(A)) ≥ q

m−k
m

4

∣∣∣∣∣ A ∈ Zk×m
q

)
≥ 1− 2−m. (7.15)

7.3 Shortest vector approximation - Euclidean norm

In this section, we compute the probability of finding unusually short vectors
of q-ary lattices in the Euclidean norm.

Theorem 7.5. Let q,m, k ∈ N≥1 be fixed positive integers such that m ≥ k.
Then, the probability that for a uniformly at random chosen matrix
A ∈ Zk×m

q , with Zq = Z ∩
(
− q

2 ,
q
2

]
, the first lattice minimum of Λq(A)

satisfies

λ1(Λq(A)) ≥ min

{
q,

√
m

8πe
q

m−k
m

}
is at least 1 − 1√

πm
2−m. Here λ1(Λq(A)) denotes the length of a shortest

lattice vector of Λq(A) in the Euclidean norm ∥ · ∥2.

Remark 7.6. The initial consideration of this probability was given in
[Wen18, Lemma 2.18] and considered prime q only. We note that the term√

m
8πeq

m−k
m corresponds to half the Gaussian Heuristic of Λq(A) if the rows

of A are linearly independent.

Proof. By definition, the q-ary lattice Λq(A) contains the m linearly inde-
pendent vectors (q, 0, . . . , 0), . . . , (0, . . . , 0, q). Thus, the first lattice mini-
mum is trivially upper bounded by q and so it is sufficient to compute the
probability for λ1(Λq(A)) ≥ B where

B =

√
m

8πe
q

m−k
m < q (7.16)
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Actually, we analyse the opposite of the claimed probability, namely the
probability that for a random matrix A ∈ Zk×m

q there exist vectors x ∈ Zk

and b ∈ Zm such that xA ≡ b mod q with 0 < ∥b∥2 < B. As we work
modulo q, it suffices to consider x ∈ Zk

q and b ∈ Zm
q . We remark that

the number of possible matrices A ∈ Zk×m
q is qkm. Thus, it remains to

determine the number of matrices that also satisfy the claimed property.
We note that

S :=
{
A ∈ Zk×m

q | ∃x ∈ Zk
q , ∃b ∈ Zm

q : xA ≡ b mod q ∧ 0 < ∥b∥2 < B
}

⊆
⋃

b∈Zm
q

0<∥b∥2<B

{
A ∈ Zk×m

q | ∃x ∈ Zk
q : xA ≡ b mod q

}
(7.17)

⊆
⋃

x∈Zk
q

⋃
b∈Zm

q
0<∥b∥2<B

{
A ∈ Zk×m

q | xA ≡ b mod q
}

(7.18)

The set
{
A ∈ Zk×m

q | xA ≡ b mod q
}

denotes all the solutions of the
modular equation xA ≡ b mod q with fixed x and b and variable unknown
A. Each column of A and the corresponding entry of b give rise to an
individual linear multivariate congruence. Indeed, letting A = (a1 . . .am)
where ai denotes the i-th column of A and bi denotes the i-th entry of the
vector b, we may consider the modular equation ⟨x,ai⟩ ≡ bi mod q. By
Theorem 5.1, we know that these equations can only have solutions if the
divisor condition g = gcd(x, q)|bi is satisfied. This holds only for a fraction
1
g of all values for bi and consequently only for

(
1
g

)m
of all values for b.

In case of a suitable value bi, Theorem 5.1 implies that the equation has
exactly gqk−1 solutions for ai, and consequently (gqk−1)m solutions for A if
all entries of b allow a solution. Symbolically,

|S| ≤
∑
x∈Zk

q

∑
b∈Zm

q

0<∥b∥2<B

∣∣∣{A ∈ Zk×m
q | xA ≡ b mod q

}∣∣∣ (7.19)

=
∑
x∈Zk

q

∑
b∈Zm

q

g| gcd(b)
0<∥b∥2<B

∣∣∣{A ∈ Zk×m
q | xA ≡ b mod q

}∣∣∣ (7.20)

=
∑
x∈Zk

q

∑
b∈Zm

q

g| gcd(b)
0<∥b∥2<B

(gqk−1)m (7.21)
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≤
∑
x∈Zk

q

1√
πm

(
2πe
m

)m
2 Bm

gm
(gqk−1)m (7.22)

=
∑
x∈Zk

q

1√
πm

(
2πe

m

)m
2

Bmqmk−m (7.23)

where the multiplicand
1√
πm( 2πe

m )
m
2 Bm

gm in Equation (7.22) stems from the

fact that there are less than 1√
πm

(
2πe
m

)m
2 Bm distinct values for b ∈ Zm

q

that satisfy 0 < ∥b∥2 < B (see Theorem 5.2) and at most a fraction
(
1
g

)m
of such b’s satisfy g| gcd(b). As the remaining sum runs over qk values, we
deduce that

|S| ≤ qk 1√
πm

(
2πe

m

)m
2

Bmqmk−m =
1√
πm

(
qk

2

)m

. (7.24)

Thus, the probability that for a random matrix A ∈ Zk×m
q , there exist vec-

tors x ∈ Zk and b ∈ Zm such that xA ≡ b mod q with

0 < ∥b∥2 <
√

m
8πeq

m−k
m = B is

P

(
λ21(Λq(A)) <

√
mq

m−k
m

2
√
2πe

∣∣∣∣∣ A ∈ Zk×m
q

)
≤

1√
πm

(
qk

2

)m
qkm

=
2−m

√
πm

. (7.25)

Considering now the opposite event and applying the complementary prob-
ability rule finally leads to the desired conclusion:

P

(
λ21(Λq(A)) ≥

√
mq

m−k
m

2
√
2πe

∣∣∣∣∣ A ∈ Zk×m
q

)
≥ 1− 1√

πm
2−m. (7.26)
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Act II: The count

Little did Jay know about the work and rigour of a coin collector. Coins
should be treated with care. Some are allowed to be cleaned, others not.
New coins must be analysed with microscopic precision and the historical
background needs to be worked out. “Mastering the right machinery was a
difficult task, but finally, I’m ready!” told Jay his pa.

That weekend, the annual “Big Count” was planned – an inventory
of all coins, tokens, and paper money in the family collection. Jay was
proud to have been assigned the counting of pennies but has been surprised
by the sheer quantity that pops put on the kitchen table. The new ones
are made of copper, and the old ones of nickel, zinc, or bronze. At least
two wheelbarrows of those one-cent U.S. coins perfectly blended in with the
brown oak wood table.

Counting was arduous. Jay tried first to count by stacks of fives, but
soon realised that there is not enough space to store them. Then he tried
to pile twenty at a time, but shortly after the staples collapsed, ruining his
count again. After watching the hilarious performance of his son, Jay’s pa
gave him a hint: “You don’t need to form individual piles. Simply choose
a count value, such as three, five, or seven, and always put this number of
coins aside on a big heap. The only important quantity is the number of
remaining pennies at the end. If you count those remainders for sufficiently
many count values, we can combine the remainder information and find out
the total number of coins.”

Astonished that such an easy way of counting exists, Jay started over
by applying his pa’s technique, and soon he was done with the task. As it
was already late, he went to bed. The next morning, he was terrified as he
spotted Mrs Skizzles on his notebook taking a bath. When he hushed her
away it was too late, some numbers were already unreadable such that for
a single count value several remainders were possible. “Maybe pa can still
figure out the total number of pennies, or at least an approximation of it”,
hoped Jay.
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Abstract II

The classical Chinese Remainder Problem asks to find all integer solutions
to a given system of congruences where each congruence is defined by one
modulus and one remainder. If solutions exist, they are completely defined
by the minimal positive solution and the lowest common multiple of the con-
sidered moduli. It is well known that there are efficient algorithms to find
this minimal positive solution and so the Chinese Remainder Problem can
be solved in polynomial time. Hereinafter, we consider a direct generaliza-
tion of the Chinese Remainder Problem where not only a single remainder is
given per modulus but each modulus is accompanied by a non-empty set of
remainders. We call this new problem the Simultaneous Chinese Remainder
Problem. The solutions of a problem instance are completely defined by
a set of minimal positive solutions upper bounded by the lowest common
multiple of the considered moduli. The size of the set of minimal positive
solutions grows exponentially in the remainder set sizes and so any solving
method requires exponential time. Through a direct reduction from the
3-SAT problem, we prove that already deciding whether a solution exists is
NP-complete. Similarly, we show that if the existence of solutions is guar-
anteed, then deciding whether a solution of a particular size exists is still
NP-complete. We deepen this result by studying the minimal solution of a
Simultaneous Chinese Remainder Problem instance. First, we develop some
rough upper bounds and then we concentrate on concrete solving methods.
Naturally, no polynomial time algorithm can be expected to find the mini-
mal solution, yet some insights are gained. Subsequently, we present some
experimental results and discuss corresponding heuristics. We finish our
study with a list of open questions.
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Chapter 8

Chinese Remaindering

In the third century book Sunzi Suanjing [Kat93, Section 7.5.1], the follow-
ing puzzle was raised:

“There are certain things whose number is unknown. If we count them by
threes, we have two leftovers; by fives, we have three leftovers and by

sevens, two are left over. How many things are there?”

Today, we know that the solution to this riddle is 23 or more precisely
23+k·105 for any k ∈ N. This chapter is devoted to the general formalization
of this problem and a short review of its solving methods.

8.1 The Chinese Remainder Problem

The Chinese Remainder Problem has first been announced and solved in
all generality by Qin Jiushao in his Mathematical Treatise in Nine Sections
[Lib73]. Subsequently, it was put into its modern form by Gauss [Gau95]
using the notion of congruences.

Definition 8.1 (Chinese Remainder Problem (CRP)). Let m1, . . . ,mk ∈ N
be positive integers, and, for all i ∈ {1, . . . , k}, let ri ∈ {0, . . . ,mi−1} denote
a remainder modulo mi. Find, if it exists, x ∈ SM , where SM denotes a set
of M = lcm(m1, . . . ,mk) consecutive integers, such that

x ≡ r1 mod m1,
...

...
x ≡ rk mod mk.
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We refer to this problem by CRP((m1, r1), . . . , (mk, rk),SM ) and to x, if it
exists, as the primitive solution. Any other integer x′ /∈ SM satisfying all
the congruences is called non-primitive solution.

We note that the given value restrictions do not have an impact on
the generality of the problem. Indeed, any r′i ∈ Z is congruent to some
ri ∈ {0, . . . ,mi − 1} modulo mi such that the choice of the remainder rep-
resentatives does not matter. Furthermore, if there exists a solution x ∈ Z,
then y ∈ Z is a solution if and only if y = x + k lcm(m1, . . . ,mk) for some
k ∈ Z. In particular, in this case, there is a unique χ ∈ SM that satisfies all
congruences.

Remark 8.2. The set SM in Definition 8.1 allows us to switch between dif-
ferent solution representatives, such as the canonical representatives
{0, 1, . . . ,M} and the symmetric representatives Z ∩

(
−M

2 ,
M
2

]
where

M = lcm(m1, . . . ,mk).

In this chapter, we consider SM = {0, . . . , lcm(m1, . . . ,mk)− 1} only and so
we use the simplified notation CRP((m1, r1), . . . , (mk, rk)).

8.2 Complexity of Chinese Remaindering

In this section, we quickly investigate the complexity of Chinese Remain-
dering. We refer to Chapter 3 for our complexity-theoretic framework.

8.2.1 Corresponding decision problems

The traditional Chinese Remainder Problem consists in a search problem re-
quiring a non-binary integer solution. For an easy comparison in Chapter 10,
we raise the following two decision problems.

Definition 8.3. The Existential Chinese Remainder Problem asks to deter-
mine whether a given Chinese Remainder Problem CRP((m1, r1), . . . , (mk, rk))
has a solution.

Definition 8.4. The Bounded Chinese Remainder Problem asks us to de-
termine whether a given Chinese Remainder Problem CRP((m1, r1), . . . ,
(mk, rk)) has a solution x < B for some predefined B ∈ SM .

We prove that the initial search problem and the invoked decision prob-
lems can be solved at essentially the same cost. In particular, we devise a
polynomial-time solving algorithm that solves all of them simultaneously.
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8.2.2 The case of two congruences

When considering two congruences only, the Chinese Remainder Problem
takes the form {

x ≡ r1 mod m1,
x ≡ r2 mod m2.

(8.1)

Rewriting these congruences as Diophantine equations leads to solving{
x = r1 + k1m1,
x = r2 + k2m2.

(8.2)

for some k1, k2 ∈ Z. Put differently, we need to solve the bivariate linear
Diophantine equation

r1 + k1m1 = r2 + k2m2. (8.3)

Restructuring both sides of the equation leads to

k1m1 − k2m2 = r2 − r1. (8.4)

Recognizing the special form of this equation, we note that it can be solved
by the Extended Euclidean Algorithm. Indeed, on input (m1,m2), the Ex-
tended Euclidean Algorithm returns a triple (g, t1, t2) such that
g = gcd(m1,m2) and g = t1m1 + t2m2. Thus, Equation (8.4) has a solution
if and only if g divides r2−r1, in which case k1 = t1

r2−r1
g and k2 = −t2 r2−r1

g .
The primitive solution x to the initial Chinese Remainder Problem is then
obtained as

x =

s
r1 + t1

r2 − r1
g

m1 mod
m1m2

g

{
(8.5)

where Ja mod bK returns the smallest non-negative remainder of a modulo
b. To limit the size of the intermediate values, all of these computations can
be carried out modulo m1m2

g . A slightly improved computation is obtained
by

x =

s
r1 +

s
t1
r2 − r1
g

mod
m2

g

{
m1 mod

m1m2

g

{
. (8.6)

The time complexity of the recombination procedure is dominated by the
Extended Euclidean Algorithm. If max{m1,m2} < 2n, then the usual text-
book Extended Euclidean Algorithm runs in time O(n2) and the Schönhage
controlled Euclidean descent performs the same task in time O(k log2(n))
[Mö08]. The resulting triple (g, t1, t2) has no entry larger than the initial
moduli [FH96]. So, the multiplication t1

r2−r1
g can be performed in time
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O(n2) with the usual textbook multiplication and in time O(k log(n)) with
the Harvey-Hoeven algorithm [HvdH21]. The subsequent modular reduc-
tion modulo m2

g takes place in time O(n2) as at most n subtractions of an
n-bit integer are required. Under Newton-Raphson [GG13, Theorem 9.8],
the required divisions are as efficient as the considered multiplication. Simi-
larly, the second multiplication with m1 is performed in time O(n2) and the
final modular reduction modulo m1m2

g takes time O(n2) as at most a single

reduction of an n2 bit integer is needed. Thus, the overall time complexity
is O(n2) and so quadratic in the input size.

8.2.3 The multi-congruence case

The simple two congruence case can be generalised to k congruences through
a recursive process. More precisely, we simplify the system

x ≡ r1 mod m1,
...

...
x ≡ rk mod mk,

(8.7)

by treating one congruence at a time. First, we apply the solving method
from Section 8.2.2 to the first two congruences modulom1 andm2. Thereby,

we deduce the congruence x ≡ r1,2 mod
(
m1m2

g

)
. Then, we apply the same

method to this new congruence and the congruence modulom3. Inductively,
we repeat the procedure until we combined all the congruences to a single
one. As the time complexity of the two congruence case is determined by the
length of the considered moduli, we observe that the application becomes
heavier with each iteration. Indeed, assuming that max(m1, . . . ,mk) < 2n,
the first iteration takes place in time O(n2). The subsequent iteration in-
cludes one modulus that is smaller than 2n and one that is only smaller
than 22n. Thus, the time complexity grows to O(4n2). The same trend
is maintained until the last iteration, which takes time O((k − 1)2n2). As∑k−1

i=1 i
2 = (k−1)k(2k−1)

6 , the overall time complexity is O(k3n2). Noticing
that the Extended Euclidean Algorithm only needs a single reduction to get
back to the faster case of two n-bit numbers and that the computation of t1
can be carried out modulo m2

g decreases the computation time to O((kn)2)
which is quadratic in the input size.

Remark 8.5. Note that the bit complexity is based on the total input size.
As there are k moduli, each being smaller than 2n, the total input length
is O(kn). The length of the remainders can be discarded, as it would only
multiply the given order by a constant factor.
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Hence, we deduce that the Existential, the Bounded, and the traditional
Chinese Remainder Problem can be solved in polynomial time.

8.3 Chinese Remainder Theorem

In Section 8.2.2, the existence of solutions for a system of two congruences
was based on the condition that the difference of the given remainders is
divisible by the greatest common divisor of the considered moduli. Ap-
plying this condition to the multi-congruence case in Section 8.2.3 shows
that if ri ̸≡ rj mod gcd(mi,mj) for some i, j ∈ {1, . . . , k}, then the given
Chinese Remainder Problem cannot have a solution. Conversely, if ri ≡ rj
mod gcd(mi,mj) for all i, j ∈ {1, . . . , k}, then our method shows how to
construct a suitable solution.

Theorem 8.6 (Chinese Remainder Theorem [Coh93]). Let m1, . . . ,mk ≥ 2
be integers, let r1, . . . , rk ∈ Z and let M = lcm(m1, . . . ,mk). If ri ≡ rj
mod gcd(mi,mj) for all i, j ∈ {1, . . . , k}, then there is a unique integer
χ ∈ {0, 1, . . . ,M − 1} such that

χ ≡ r1 mod m1,
...

...
χ ≡ rk mod mk.

If we assume the considered moduli to be pairwise coprime, the greatest
common divisor condition is trivially satisfied, and so the system of congru-
ences always has a solution. Furthermore, in this case

M = lcm(m1, . . . ,mk) =

k∏
i=1

mi. (8.8)

For the remainder of this chapter, we consider pairwise coprime moduli.

8.4 Particular solving methods

Using state-of-the-art algorithms, one can show that Chinese Remaindering
with pairwise coprime moduli is quasilinear with time complexity
O(k log2(kn)) [VDH16]. Hereinafter, we study some solving methods for
pairwise coprime moduli. None of these methods achieves the acclaimed
complexity, but they illustrate some other properties of Chinese Remainder-
ing.
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8.4.1 Systematic search

As the primitive solution to a Chinese Remainder Problem

CRP ((r1,m1), . . . , (rk,mk)) (8.9)

is upper bounded byM , it can be found through a systematic search. Indeed,
one can start at 0 and count upwards until an integer satisfying all congru-
ences is found. Such a procedure requires in the worst case M =

∏k
i=1mi

trials and does so not consist in an efficient solution.

8.4.2 Textbook CRT

The textbook CRT gives a remarkable closed form formula for the desired
primitive solution. Indeed, if M =

∏k
i=1mi, Mi = M

mi
and

M̃i = JM−1
i mod miK for all i ∈ {1, . . . , k}, then the primitive solution

is given by

χ =

t
k∑

i=1

riM̃iMi mod M

|

. (8.10)

The computation of the individual terms, as well as the final sum may involve
large integers. Therefore, in practice, a recursive computation method is
used.

Algorithm 8.1: Textbook CRT [Coh93]

Input: Given CRP((m1, r1), . . . , (mk, rk))
Output: The algorithm computes the primitive solution χ.

1 m′
1 ← m1;

2 r′1 ← r1;
3 for i = 2 until k do
4 (1, t′i−1, ti)←Extended Euclidean Algorithm(m′

i−1,mi)
▷ where (1, t′i−1, ti) ∈ Z3 s.t. 1 = t′i−1m

′
i−1 + timi

5 m′
i ← m′

i−1mi;
6 r′i ← Jt′i−1m

′
i−1ri + timir

′
i−1 mod m′

iK;

7 return χ← r′k

8.4.3 Garner’s algorithm

The runtime of the Textbook CRT, can be improved by carrying out only a
single large computation. The resulting solving method is known asGarner’s
algorithm [Gar59].
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Algorithm 8.2: Garner’s algorithm [Coh93]

Input: CRP((m1, r1), . . . , (mk, rk))
Output: The algorithm computes the primitive solution χ

1 C1 ← 1
2 for i = 2 until k do
3 Ci ←

q
(m1 · · ·mi−1)

−1 mod mi

y

4 y1 ← Jr1 mod m1K
5 for i = 2 until n do
6 yi ←

Jri − (y1 +m1(y2 +m2(y3 + (· · ·+mi−2yi−1) . . . )))Ci mod miK
7 return χ← (y1 +m1(y2 +m2(y3 + (· · ·+mn−1yk) . . . )))

8.5 The power of Chinese Remaindering

The most important consequence of the Chinese Remainder Theorem is its
guarantee for the existence of an efficiently computable inverse of a particular
ring isomorphism.

Theorem 8.7. Let m1, . . . ,mk be pairwise coprime integers and let
M =

∏k
i=1mi, then the map

Jx mod MK 7→ (Jx mod m1K, . . . , Jx mod mkK)

defines a ring isomorphism

Z/MZ ≃ Z/m1Z× · · · × Z/mkZ.

Since the initial map and its inverse are efficiently computable, we can freely
switch between Z/MZ and Z/m1Z × · · · × Z/mkZ. One can considerably
speed up the computation runtime in Z/MZ by first performing operations
in Z/miZ for each i ∈ {1, . . . , k} individually and subsequently recovering
the final result in Z/MZ using the given isomorphism. For example, this op-
timization strategy is used in the signing step of the famous RSA algorithm
[RSA78] which in turn is a sub-procedure of the well known HTTPS cer-
tification protocol. A wide range of applications of the Chinese Remainder
Theorem can be found in [DPS96].
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8.6 Chinese Remaindering and Polynomial Inter-
polation

Polynomial Interpolation can be seen as a generalization of Chinese Remain-
dering where the ring of integers is replaced by a polynomial ring. Indeed,
both problems recover the inverse of a particular ring isomorphism defined
on a pairwise spanning system of ideals [Lip71]. To further emphasise their
similarity, we recall their definitions:

• Let m1, . . . ,mk be pairwise coprime integers, and let ri ∈ {0, . . . ,
mi−1} for all i ∈ {1, . . . , k}. The Chinese Remainder Problem asks to
find an integer x ∈ SM such that x ≡ ri mod mi for all i ∈ {1, . . . , k}.

• Let x1, . . . , xk be pairwise distinct real numbers, and let yi ∈ R for all
i ∈ {1, . . . , k}. The Polynomial Interpolation Problem asks to find a
polynomial P ∈ R[X] such that P (xi) = yi for all i ∈ {1, . . . , k}.

It is not surprising that solving methods for one problem are also related to
the other problem. We base the upcoming development on [Sch87, Mac82].

8.6.1 Lagrange

Lagrange Interpolation constructs n polynomials such that they vanish at
every point xi except at one where the value 1 is fixed. A sum of these
polynomials leads to the desired solution. To be precise, let x1, . . . , xk be
pairwise distinct real numbers, and let yi ∈ R for all i ∈ {1, . . . , k}. Set

Li(X) =
k∏

j=1
j ̸=i

X − xj
xi − xj

, (8.11)

then

P (X) =
k∑

i=1

yiLi(X) (8.12)

is such that P (xi) = yi for all i ∈ {1, . . . , k}. The crucial part of the
construction is to note that Li(xj) = δi,j where δi,j denotes the Kronecker
symbol defined by δi,j = 1 if j = i and δi,j = 0 otherwise. Applying the
same trick to the Chinese Remainder Problem CRP ((r1,m1), . . . , (rk,mk))
leads to a non-primitive solution

x =
k∑

i=1

riM̃iMi, (8.13)
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where the notations from Section 8.4.2 are used. Indeed, we note that
bi := M̃iMi ≡ δi,j mod mj for all i, j ∈ {1, . . . , k}. Carrying out an ad-
ditional modular reduction corresponds to Equation (8.10). Due to this
connection, we classify the Textbook CRT in Section 8.4.2 as a Lagrangian
solving method.

8.6.2 Newton

Newton interpolation builds the interpolation polynomial through a recur-
sive procedure. More precisely, let x1, . . . , xk be pairwise distinct real num-
bers and let yi ∈ R for all i ∈ {1, . . . , k}. Set

c1 = y1,

c2 = y2−c1
x2−x1

,

c3 = y3−(c1+c2(x3−x1))
(x3−x1)(x3−x2)

,
...

...
...

ck =
yk−

∑k
i=1(ci

∏i−1
j=1(xk−xj))∏k−1

i=1 mi
,

(8.14)

then,

P (X) =
k∑

i=1

ci

j−1∏
j=1

(X − xj) (8.15)

= c1 + c2(X − x1) + · · ·+ ck(X − x1)(X − x2)...(X − xk−1) (8.16)

= c1 + (X − x1)(c2 + (X − x2)(c3 + (· · ·+ (X − xk−1)ck)...)) (8.17)

is such that P (xi) = yi for all i ∈ {1, . . . , k}. Replacing (X−xj) by mj , and
cj by yj for all j ∈ {1, . . . , k}, we observe that this procedure corresponds
to Garner’s algorithm in Section 8.4.3 leading to the primitive solution

χ = y1 +m1(y2 +m2(y3 + (· · ·+mn−1yk) . . . )). (8.18)

Due to this connection, we classify Garner’s algorithm as a Newtonian solv-
ing method. For completeness, we note that the improvement in Equa-
tion (8.17) is called an Horner scheme.





Chapter 9

Simultaneous Chinese
Remaindering

Let us get back to the puzzle at the beginning of Chapter 8, but instead of
considering a single remainder for each count, we put forth a set of potential
remainders:

“There are certain things whose number is unknown. If we count them by
threes, we have one or two leftovers; by fives, we have three or four

leftovers; and by sevens, two, three, or five are left over. How many things
are there?

In this chapter, we first formalize the problem of finding all solutions to
such a statement. Next, we investigate its relation to the traditional Chi-
nese Remainder Problem and conclude some elementary properties. A sim-
ple counting argument shows that any method finding all solutions has an
exponential runtime. Finally, we describe two elementary solving methods.

9.1 The Simultaneous Chinese Remainder Prob-
lem

The classical Chinese Remainder Problem asks to find all integer solutions
to a given system of congruences where each congruence is defined by one
modulus and one remainder. We consider a direct generalization of the
Chinese Remainder Problem where not only a single remainder is given per
modulus but each modulus is accompanied by a non-empty set of remainders.

69
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Definition 9.1 (Simultaneous Chinese Remainder Problem (SimCRP)).
Let m1, . . . ,mk ∈ N be positive integers and, for all i ∈ {1, . . . , k}, define
the nonempty set Ri ⊆ {0, . . . ,mi − 1} of remainders modulo mi. Find
all x ∈ SM , where SM denotes a set of M = lcm(m1, . . . ,mk) consecutive
integers such that for some (r1, . . . , rk) ∈ R1 × · · · × Rk

x ≡ r1 mod m1,
...

...
x ≡ rk mod mk.

We refer to this problem by SimCRP((m1,R1), . . . , (mk,Rk),SM ) and call
each such solution a primitive solution. The set of all primitive solutions is
called primitive solution set. An integer x′ /∈ SM satisfying such a system
of congruences is called non-primitive solution.

As for the traditional Chinese Remainder Problem, we note that the
given value restrictions do not have an impact on the generality of the prob-
lem. Indeed, any r′i ∈ Z is congruent to some ri ∈ {0, . . . ,mi − 1} modulo
mi such that the choice of the remainder representatives does not mat-
ter. Furthermore, if there exists a solution x ∈ Z for some (r1, . . . , rk) ∈
R1×· · ·×Rk, then y ∈ Z is a solution if and only if y = x+k lcm(m1, . . . ,mk)
for some k ∈ Z. In particular, in this case, there is a unique χ ∈ SM that
satisfies all the congruences.

Remark 9.2. The set SM in Definition 9.1 allows us to switch between dif-
ferent solution representatives, such as the canonical representatives
{0, 1, . . . ,M} and the symmetric representatives Z ∩

(
−M

2 ,
M
2

]
.

9.2 Complexity of Simultaneous Chinese Remain-
dering

It is clear that a Simultaneous Chinese Remainder Problem instance

SimCRP((m1,R1), . . . , (mk,Rk),SM ) (9.1)

can be decomposed into
∏k

i=1 |Ri| traditional Chinese Remainder Problem
instances. Indeed, each (r1, . . . , rk) ∈ R1×· · ·×Rk gives rise to one Chinese
Remainder Problem

CRP((m1, r1), . . . , (mk, rk),SM ). (9.2)
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Put differently, traditional Chinese Remaindering is recovered by setting
|Ri| = 1 for all i ∈ {1, . . . , k}. This implies that solutions to the Simultane-
ous Chinese Remainder Problem underlie the same existential condition as
the solutions to the traditional Chinese Remainder Problem and that they
can be found with the same techniques. The condition Ri ⊆ {0, . . . ,mi−1}
for all i ∈ {1, . . . , k} implies that none of the resulting Chinese Remainder
Problem instances have the same primitive solution. However, contrary to
traditional Chinese Remaindering, the large number of potential solutions
implies that the Simultaneous Chinese Remainder Problem cannot be solved
efficiently. To be precise, the input size is linear in the number of remain-
ders. Indeed, assuming that mi < 2n for all i ∈ {1, . . . , k}, the input size

of the Simultaneous Chinese Remainder Problem is O
(
(k +

∑k
i=1 |Ri|)n

)
.

On the contrary, the output size is exponential in the number of remain-
ders. Indeed, there are up to

∏k
i=1 |Ri| solutions, and their representation

in SM is of bit-size O(nk). Thus, the output size is O
((∏k

i=1 |Ri|
)
nk
)
.

As 1 ≤ |Ri| ≤ mi for all i ∈ {1, . . . , k}, the remainder set sizes |Ri| can be
assumed to be exponential in n making so the output size exponential in
nk. We note that even if |Ri| = 2 for all i ∈ {1, . . . , k}, the output size is
O
(
2knk

)
and so exponential in k.

Remark 9.3. To recover a polynomial time solvable problem instance, only
a constant number of remainder sets can be polynomial in the input size, and
all the other remainder sets need to be singletons. We refer to Section 10.2.9
for another interesting observation.

9.3 Recursive Garner

Based on the decomposability of a Simultaneous Chinese Remainder Prob-
lem instance into individual Chinese Remainder Problem instances, we con-
clude that we can apply any solving algorithm for Chinese Remaindering
to its generalization. For example, if m1, . . . ,mk are pairwise coprime and
SM = {0, . . . , lcm(m1, . . . ,mk)− 1}, then we can devise a recursive version
of Garner’s algorithm from Section 8.2 to find all primitive solutions.

For a given primitive solution x′ ∈ SM ′ of CRP((m1, r1), . . . , (mℓ, rℓ),SM ′)
where M ′ = lcm(m1, . . . ,mℓ) for some 1 ≤ ℓ < k, we can reduce

CRP((m1, r1), . . . , (mk, rk),SM ) (9.3)

to
CRP((M ′, x′), (mℓ+1, rℓ+1), . . . , (mk, rk),SM ). (9.4)
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Thus, a space-time trade-off allows us to decrease the number of intermediate
computations.

Algorithm 9.1: Recursive Garner Algorithm

Input: SimCRP((m1, {r1,1, . . . , r1,t1}), . . . , (mk, {rk,1, . . . , rk,tk}),SM ).
Output: The algorithm computes the primitive solution set X .

1 j ← 2;
2 C1 ← 1;
3 for i = 2 until k do
4 Ci ←

q
(m1 · · ·mi−1)

−1 mod mi

y

5 y1 ← Jr1,1 mod m1K
6 for i = 2 until k do
7 yi ←

Jri,1 − (y1 +m1(y2 +m2(y3 + · · ·+mi−2yi−1) . . . ))Ci mod miK
8 X ← {y1 +m1(y2 +m2(y3 + · · ·+mk−1yk) . . . )}
9 (a1, . . . , ak−1, ak)← (1, . . . , 1, 1);

10 while ai < ti for some i = 1, . . . , k do
11 ak ← ak + 1;
12 ℓ← k
13 while aℓ > tℓ do
14 aℓ ← 1;
15 ℓ← ℓ− 1;
16 aℓ ← aℓ + 1

17 for i = ℓ until k do
18 yi ←

Jri,ai − (y1 +m1(y2 +m2(y3 + · · ·+mi−2yi−1) . . . ))Ci mod miK
19 X ← X ∪ {y1 +m1(y2 +m2(y3 + · · ·+mk−1yk) . . . )}
20 return X

We observe that the precomputations (lines 1-9) only need to be carried out
once and that the main loop (lines 10-19) only changes a fraction of the
coefficients yi in each iteration. The run-time can be speed-up by ordering
the moduli in decreasing order and in increasing order of the remainder set
sizes. Indeed, yi is computed

∏i
j=1 tj times. Nonetheless, we cannot escape

the exponential complexity described in Section 9.2 that is caused by the
number of solutions.



Chapter 10

Two Simultaneous Chinese
Remainder Decision
Problems

This chapter is devoted to two particular Simultaneous Chinese Remain-
der decision problems: the Existential and the Bounded Simultaneous Chi-
nese Remainder Problem. The Existential Simultaneous Chinese Remainder
Problem asks to decide whether a given Simultaneous Chinese Remainder
Problem has a solution or not. Through a direct reduction from 3-SAT,
we show that this problem is NP− complete. Next, we leave the general
framework and consider pairwise coprime moduli such that the existence
of solutions is guaranteed. The Bounded Simultaneous Chinese Remainder
Problem asks to decide whether there is a solution smaller than a given
bound. Through another reduction from 3-SAT, we show that also this
problem is NP− complete. Our development makes use of the complexity
notions from Chapter 3 and the background work from Chapter 4.

10.1 Existential Simultaneous Chinese Remainder
Problem

First, we try to decide whether solutions of a given Simultaneous Chinese
Remainder Problem exist.

Definition 10.1. The Existential Simultaneous Chinese Remainder Prob-
lem asks to determine whether a given Simultaneous Chinese Remainder
Problem SimCRP((m1,R1), ..., (mk,Rk),SM ) has a solution or not.

73
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We note that the moduli of the considered Simultaneous Remainder Prob-
lem may not be coprime such that the existence of solutions is non-trivial.
Albeit the problem merely deviates from its classical equivalent in the num-
ber of potential remainders, the underlying decision problem experiences a
significant complexity change.

Theorem 10.2. The Existential Simultaneous Chinese Remainder Problem
is NP− complete.

10.1.1 Proof intuition

To show that a problem is NP− complete, we need to prove two independent
properties. First, the problem needs to be in NP. This means that if a
problem instance is answered affirmatively, then there needs to be a witness
that can be verified in polynomial time. Thus, a polynomially verifiable
witness needs to be outlined. Second, any other problem in NP needs to be
reducible to the considered problem in polynomial time. It suffices to show
that a particular NP− complete problem can be reduced to the considered
problem in polynomial time as the general claim follows from transitivity.

10.1.2 Proof structure

We prove Theorem 10.2 through a polynomial reduction from the 3-SAT
problem to the Existential Simultaneous Chinese Remainder Problem. Our
proof is subdivided into 3 parts:

A. Membership in NP : Proves that the Existential Simultaneous Chinese
Remainder Problem is in NP.

B. Problem construction: Focuses on the polynomial-time construction
of a SimCRP instance for a given 3-SAT instance.

C. Solution matching : Outlines the desired relation between solutions of
the initial 3-SAT instance and the constructed SimCRP instance.

10.1.3 A. Membership in NP

Let
SimCRP((m1,R1), ..., (mk,Rk),SM ) (10.1)

be a Simultaneous Chinese Remainder Problem instance with a primitive
solution x. Then, we claim that x can be used as a witness. Indeed, x
has polynomial size in the Simultaneous Chinese Remainder Problem input.
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Furthermore, for each i ∈ {1, . . . , k} computing ri := Jx mod miK and
verifying whether ri ∈ Ri reveals in polynomial time that x is indeed a
solution of the considered congruence system.

10.1.4 B. Problem construction

Let φ(v1, . . . , vt) be a Boolean expression in conjunctive normal form con-
sisting of T clauses with 3 literals per clause. We polynomially reduce the
satisfiability of φ to a specific Simultaneous Chinese Remainder Problem.
We note that the input size of the given 3-SAT instance is O(T ) as t ≤ 3T .
Thus, for a polynomial reduction, the time and space of every upcoming
computation need to be polynomial in t or T .

We start by precomputing the first 2t prime numbers p1, . . . , p2t. By the
Prime Number Theorem, we know that p2t < 2t(log(2t) + log(log(2t))) for
all t ≥ 3 [Dus99]. Applying Eratosthenes sieve to the set

Z ∩ [2; 2t(log(2t) + log(log(2t)))] (10.2)

reveals at least 2t prime numbers. By [Sor98], Erathostenes sieve runs on
this interval in time

O(t log(t) log(log(t log(t)))) (10.3)

and space O(t log(t)). Thereby, this first computation is polynomial in the
3-SAT input size.

Using these prime numbers, we design a particular Simultaneous Chi-
nese Remainder Problem. Intuitively, we let each positive literal vi of the
given Boolean expression φ correspond to the remainder set Ri := {0, 1}
modulo pi and each negative literal ¬vi to the remainder set Rt+i := {0, 1}
modulo pt+i. However, instead of using these remainder sets individually, we
consider specific polynomial size combinations. These combinations either
mimic clauses of φ or simulate the logical laws of non-contradiction and the
excluded middle.

First, we construct congruences corresponding to clauses of φ. We set
ℓi := vi and ℓt+i := ¬vi for all i ∈ {1, . . . , t}. For each clause
Cj = ℓj1 ∨ ℓj2 ∨ ℓj3 where j ∈ {1, . . . , T} and j1, j2, j3 ∈ {1, . . . , 2t}, we
let mj := pj1pj2pj3 . This multiplication is efficiently computable as the
considered primes are bounded in the 3-SAT input size. Additionally, we
set

Rj := {r001, r010, r100, r110, r101, r011, r111} (10.4)
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where 
rabc ≡ a mod pj1 ,
rabc ≡ b mod pj2 ,
rabc ≡ c mod pj3 .

(10.5)

Each such remainder set can be computed in polynomial time as is demon-
strated in Section 8.2. Furthermore, a polynomial number of such remainder
sets needs to be computed, namely T . Thus, we obtain in polynomial time
for each clause Cj a pair (mj ,Rj) consisting of a modulus and its corre-
sponding remainder set.

Remark 10.3. A solution to the upcoming Simultaneous Chinese Remain-
der Problem directly yields the solution to the considered 3-SAT problem.

Second, we construct congruences corresponding to the logical laws. For
each i ∈ {1, . . . , t}, we let mT+i := pipt+i and RT+i := {r01, r10} where{

rab ≡ a mod pi,
rab ≡ b mod pt+i.

(10.6)

A similar argument than above shows that each modulus and its correspond-
ing remainder set can be computed in polynomial time. As the number of
such pairs is polynomial in the input size of the 3-SAT problem, namely t,
the cumulative construction is carried out in polynomial time as well.

Remark 10.4. These congruences make sure that a solution r to the up-
coming Simultaneous Chinese Remainder Problem does not violate the law
of non-contradiction or the excluded middle. These laws assert that either
a Boolean variable or its negation is true, but not both of them.

Ultimately, theses polynomial time constructions lead to the following
Simultaneous Chinese Remainder Problem:

SimCRP((m1,R1), . . . , (mT ,RT ), (mT+1,RT+1), . . . , (mT+t,RT+t),SM ). (10.7)

with SM := {0, . . . , lcm(m1, . . . ,mT+t)− 1} = {0, . . . , (
∏2t

i=1 pi)− 1}.

Remark 10.5. It doesn’t matter which set of solution representatives SM
is chosen as the existence of a solution in one set also proves the existence
of a solution in every other set of representatives. We chose the traditional
representative set for simplicity only.
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10.1.5 C. Solution matching

To conclude that the above construction consists in a reduction, it suffices to
show that a solution of the resulting Existential Simultaneous Chinese Re-
mainder Problem instance yields also a solution for the initial 3-SAT problem
instance. We prove that the Simultaneous Chinese Remainder Problem in-
stance in Equation (10.7) has a solution if and only if the Boolean formula
φ(v1, . . . , vt) is satisfiable. We note that this relation does not need to be
efficiently computable.

If φ is satisfiable, then there is a Boolean evaluation (v′1, . . . , v
′
t) ∈ {0, 1}t

such that φ(v′1, . . . , v
′
t) = 1. We construct the following traditional Chinese

Remainder Problem

CRP((p1, v
′
1), . . . , (pt, v

′
t), (pt+1, 1− v′1), . . . , (p2t, 1− v′t),SM ). (10.8)

As the moduli are pairwise coprime, the Chinese Remainder Theorem guar-
antees the existence of a primitive solution x ∈ SM . We claim that x is
also a primitive solution of Equation (10.7). Indeed, if x satisfies all the
congruences encoded in Equation (10.7), then, as x ∈ SM , it is a primitive
solution. We note that by Equation (10.8), x trivially satisfies the congru-
ences corresponding to the logic laws in Equation (10.6). Furthermore, by
replacing a, b, c in Equation (10.5) by the claimed values, we deduce that all
the systems of congruences have a common non-contradictory solution.

Reciprocally, if the Simultaneous Chinese Remainder Problem instance
in Equation (10.7) has a solution x ∈ SM , then, the tuple defined by
(Jx mod p1K, . . . , Jx mod ptK) is a Boolean evaluation satisfying φ. By
construction, for each j ∈ {1, . . . , k}, x ≡ rabc mod mj for some remainder
rabc ∈ Rj = {r001, r010, r100, r110, r101, r011, r111}. Reducing this term further
with Equation (10.5) implies that

x ≡ a mod pj1 ,
x ≡ b mod pj2 ,
x ≡ c mod pj3 ,

(10.9)

for j1, j2, j3 ∈ {1, . . . , 2t} and some a, b, c ∈ {0, 1} not all 0. By construction,
it is clear that Jx mod piK ∈ {0, 1} for all i ∈ {1, . . . , t} revealing so (binary)
Boolean values. As at least one of a, b, c is non-zero, the corresponding clause
Cj = Jx mod pj1K∨ Jx mod pj2K∨ Jx mod pj3K is satisfied. As this conclu-
sion holds for each clause of φ, φ is satisfied. It remains to show that there
is no contradiction. This is taken care of by the uniqueness of Chinese Re-
maindering and the fact that x satisfies Equation (10.6) such that a variable
and its negative cannot have the same value.
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10.2 Bounded Simultaneous Chinese Remainder
Problem

As Theorem 10.2 shows that deciding whether a given Simultaneous Chinese
Remainder Problem

SimCRP((m1,R1), . . . , (mk,Rk),SM ) (10.10)

has a solution or not is NP− complete, finding any solution, if it exists
is at least as hard. To simplify the problem, we may restrict to pairwise
coprime modulim1, . . . ,mk. In this case, the traditional Chinese Remainder
Theorem proves the existence of

∏k
i=1 |Ri| solutions in SM . The Existential

Chinese Remainder Problem becoming trivial, we may ask about the size of
solutions.

Remark 10.6. The notion of size in this setting either means the smallest
element in the chosen set of representatives SM ⊆ Z or the smallest element
in SM in absolute value. Whereas the former notion is absolute, the latter
notion strongly depends on the choice of the representative set. Despite the
seeming ambiguity, Section 10.2.10 shows that it makes no difference.

Hereinafter, we consider the particular representative set SM = Z∩
(
−M

2 ,
M
2

]
and the size in absolute value.

Definition 10.7. The Bounded Simultaneous Chinese Remainder Prob-
lem asks to determine whether a given Simultaneous Chinese Remainder
Problem SimCRP((m1,R1), ..., (mk,Rk),SM ), with pairwise coprime mod-
uli m1, . . . ,mk and representative set SM = Z ∩

(
−M

2 ,
M
2

]
, has a solution

|x| < B for some given bound B ∈ SM such that 0 < B < M
2 where

M =
∏k

i=1mi.

The following result shows that the Bounded Simultaneous Chinese Remain-
der Problem is hard in general.

Theorem 10.8. The Bounded Simultaneous Chinese Remainder Problem
is NP−complete.

10.2.1 Proof intuition

The proof intuition is the same as in Section 10.1.1.
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10.2.2 Comment

[MA76] states that deciding whether for given positive integers a, b, c there
is a positive integer x < c such that x2 ≡ a mod b is NP− complete
even if the prime decomposition b =

∏k
i=1 p

αi
i is known and solutions to

x2 ≡ a mod pαi
i for all i ∈ {1, . . . , k} are given. The Bounded Simultane-

ous Chinese Remainder Problem naturally extends this problem to quadratic
non-residues. Therefore, we could reduce this problem on quadratic residues
to the Bounded Simultaneous Chinese Remainder Problem and conclude its
NP− completeness. Yet, hereinafter, we develop a direct reduction from
3-SAT. We follow closely the development in [MA76].

10.2.3 Proof structure

Our proof outlines a polynomial reduction from the 3-SAT problem to the
Bounded Simultaneous Chinese Remainder Problem. It is subdivided into
3 parts:

A. Membership in NP : Proves that the Bounded Simultaneous Chinese
Remainder Problem is in NP.

B. Problem construction: Focuses on the polynomial-time construction
of a SimCRP instance for a given 3-SAT instance.

C. Solution matching : Outlines the desired relation between solutions of
the initial 3-SAT instance and the constructed SimCRP instance.

Albeit the proof structure is the same as for Theorem 10.2, the problem
construction is highly different and requires some intermediate observations.

10.2.4 A. Membership in NP

Let

SimCRP((m1,R1), ..., (mk,Rk),SM ) (10.11)

be a Simultaneous Chinese Remainder Problem instance with a primitive so-
lution x such that |x| < B. Then, we claim that x can be used as a witness.
Indeed, x has polynomial size in the Simultaneous Chinese Remainder input.
Furthermore, for each index i ∈ {1, . . . , k} computing ri = Jx mod miK and
verifying whether ri ∈ Ri reveals in polynomial time that x is indeed a so-
lution of the considered congruence system. An auxiliary linear comparison
with B shows that |x| < B.
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10.2.5 B. Problem construction

Let φ(v1, . . . , vt) be a Boolean expression in conjunctive normal form con-
sisting of Tφ clauses with 3 literals per clause. Without loss of generality,
we can assume that φ does not contain clauses that contain simultaneously
a variable vi and is negation ¬vi for some i ∈ {1, . . . , t}. Otherwise, we
can reduce φ in linear time to such an expression by simply ignoring those
clauses as they are anyways satisfied. Similarly, we can assume that φ does
not contain duplicate clauses as they are either all satisfied or all not sat-
isfied. We note that in such a reduced Boolean expression, there are less
than T = (2t)3 distinct ordered clauses. We note that we distinguish clauses
with the same literals but in a different order. For example v1 ∨ v2 ∨ v3 and
v2 ∨ v1 ∨ v3 are distinguished (albeit only one of them is contained in ϕ by
a previous assumption). Let (C1, . . . , CT ) be an enumeration of all ordered
clauses that can be formed in this way. We say that a literal ℓ belongs to a
clause C and denote it by ℓ ∈ C if ℓ is the first, second, or third literal of the
ordered clause. Similarly, we say that an ordered clause C belongs to the
Boolean expression φ and denote it by C ∈ φ if C occurs among the clauses
of φ. Our first objective is to construct a Simultaneous Chinese Remainder
Problem corresponding to the Boolean expression φ.

We note that by assumption each ordered clause Cj for j ∈ {1, . . . , T}
appears at most once among the clauses of φ. To encode which clauses
belong to φ, we set for each j ∈ {1, . . . , T} the value

ϵj :=

{
1 if Cj ∈ φ
0 if Cj /∈ φ

(10.12)

The cumulative information on those ϵj can be stored as an integer in base
8 notation

τφ := −
T∑

j=1

ϵj8
j . (10.13)

This computation is polynomial in the 3-SAT input size. Indeed, the genera-
tion of the ordered list of clauses is cubic in t and running once through φ to
assign the ϵj values is linear in the input size of φ. Finally,

−τφ ≤ 8T+1−1
8−1 − 1 < 8T+1 making sure that the bit length of the result

and its intermediate values are polynomially bounded in the 3-SAT input
size.

Next, we wish to encode which literals belong to the enumerated clauses.
To do so, we use the same base 8 representation approach. More precisely,
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for each i ∈ {1, . . . , t}, we set

f+i =

T∑
j=1

1Cj (vi) 8
j and f−i =

T∑
j=1

1Cj (¬vi) 8j (10.14)

where 1C denotes the indicator function defined by 1C(v) = 1 if v ∈ C
and 1C(v) = 0 if v /∈ C. Again, these computations can be carried out in
polynomial time.

Subsequently, we can start to devise the Simultaneous Chinese Remain-
der Problem. We set

n = 2T + t (10.15)

and compute the first n+1 primes p0, . . . , pn larger than 12. We note that n
is a polynomial value in T . As described in Section 10.1.4 the computation
of such primes is polynomial in n and the largest prime has size O(n log(n)).

The pairwise coprime moduli of the Simultaneous Chinese Remainder
Problem are obtained by setting m−1 := 8T+1 and for all j ∈ {0, . . . , n}
setting

mj := pn+1
j . (10.16)

It is important to note that these moduli are still polynomial in the
3-SAT input size. Indeed, the bit size of the largest modulus is O(n2 log(n)).
Furthermore, for later use, we set

M :=
n∏

i=0

mi and Mj :=
M

mj
. (10.17)

M is at most n + 1 times larger than the largest modulus and thus of bit
size O(n3 log(n)).

Remark 10.9. A polynomial number of multiplications of polynomial bit-
sized integers leads to a polynomial bit-sized integer.

For the remainder sets and the bound of the Bounded Simultaneous
Chinese Remainder Problem, we define first the following parameters:

• For j = 0, let
λ0 := JM−1

0 mod 8T+1K. (10.18)

• For j ∈ {1, . . . , T} let

λ2j−1 :=

s
−1

2
8jM−1

2j−1 mod 8T+1

{
(10.19)

and
λ2j :=

r
−8jM−1

2j−1 mod 8T+1
z
. (10.20)
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• For j ∈ {2T + 1, . . . , 2T + t} let

λj :=

s
1

2

(
f+j−2T − f

−
j−2T

)
mod 8T+1

{
. (10.21)

We note that the inverses above are taken with respect to the modulus 8T+1

and that the parameter in Equation (10.21) is well defined as f+j−2T and

f−j−2T are divisible by 8 for all j ∈ {2T + 1, . . . , 2T + t}. The computation
of these parameters requires the use of the Extended Euclidean Algorithm
on integers of polynomial size in the 3-SAT input. Thus, each computation
is polynomial in the 3-SAT input size. We define the bound

B :=

n∑
j=0

λjMj , (10.22)

the remainder set

R−1 :=

{t

−τφ −B −
t∑

i=1

f−i mod 8T+1

|}
(10.23)

and for each j ∈ {0, . . . , n} the remainder set

Rj := {J−λjMj mod mjK , JλjMj mod mjK} (10.24)

all of which are computable in polynomial time from the given parameters.
Ultimately, theses polynomial time constructions lead to the following

Simultaneous Chinese Remainder Problem:

SimCRP((m−1,R−1), . . . , (mn,Rn),SM ′). (10.25)

with SM ′ := Z ∩
(
−8T+1M

2 , 8
T+1M
2

]
where M =

∏n
i=0mi, and the solution

bound B =
∑n

j=0 λjMj .

10.2.6 Bound analysis

We note that the solution bound B in Equation (10.22) satisfies the required

condition B < 8T+1M
2 . Indeed,

B <
n∑

j=0

8T+1 Mj =
n∑

j=0

8T+1 M

pn+1
j

. (10.26)
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By construction, we have pj > 12 for all j ∈ {0, . . . , n}. Furthermore,

12 >
(
4(n+ 1)8T+1

) 1
n+1 . (10.27)

Indeed, this equation is equivalent to

12n+1

8T+1
> 4(n+ 1). (10.28)

Using n = 2T + t, we observe that the left hand side is equal to

12n+1

8T+1
= 12t−118T+1, (10.29)

such that Equation (10.28) is equivalent to

12t−1 18T+1 > 4(2T + T + 1). (10.30)

An elementary function analysis proves Equation (10.30) which implies Equa-
tion (10.27). Thus, Equation (10.26) becomes

B <
n∑

j=0

8T+1 M

4(n+ 1)8T+1
=
M

4
<

8T+1M

2
(10.31)

as required by the Bounded Simultaneous Chinese Remainder Problem.

10.2.7 Some observations

First, we note that x ∈ SM ′ is a solution of the Simultaneous Chinese
Remainder Problem instance in Equation (10.25) if and only if{

x ≡ −τφ −B −
∑t

i=1 f
−
i mod 8T+1,

x ≡
∑n

j=0 αjλjMj mod M,
(10.32)

where αj ∈ {−1, 1} for all j ∈ {0, . . . , n}. Indeed, any such x is a solution
as the first congruence satisfies Equation (10.23) and the second congruence
satisfies Equation (10.24). Furthermore, a trivial comparison shows that for
varying αj each such solution differs in at least one congruence and their
total number is 2n+1 which is exactly the number of solutions expected for
the problem. Thus, any solution needs to be of this form.

By the second congruence in Equation (10.32), we deduce that any so-
lution satisfies

x =
n∑

j=0

αjλjMj + kM (10.33)
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for some k ∈ Z. As B =
∑n

j=0 λjMj , it trivially holds that

−B ≤
n∑

j=0

αjλjMj ≤ B (10.34)

and by our observation in Equation (10.31), we know that B < M
2 showing

that −B < x < B if and only if k = 0. Thus, x is a solution to the
Simultaneous Chinese Remainder Problem instance in Equation (10.25) if
and only if {

x ≡ −τφ −B −
∑t

i=1 f
−
i mod 8T+1,

x =
∑n

j=0 αjλjMj ,
(10.35)

for some αj ∈ {−1, 1} for all j ∈ {0, . . . , n}.
Inserting the expression x =

∑n
j=0 αjλjMj and B =

∑n
j=0 λjMj into

the first congruence of Equation (10.35) leads to

τφ +

t∑
i=1

f−i +

n∑
j=0

(αj + 1)λjMj ≡ 0 mod 8T+1. (10.36)

Setting for all j ∈ {0, . . . , n} βj := 0 if αj = −1 and βj := 1 if αj = 1 yields

τφ +

t∑
i=1

f−i +

n∑
j=0

2βjλjMj ≡ 0 mod 8T+1. (10.37)

Using the definitions of λ0, . . . , λn, we deduce that

n∑
j=0

2βjλjMj (10.38)

≡ 2β0λ0M0 +

T∑
j=1

(2β2j−1λ2j−1M2j−1 + 2β2jλ2jM2j)

+

2T+t∑
j=2T+1

2βjλjMj mod 8T+1 (10.39)

≡ 2β0 +

T∑
j=1

(−β2j−18
j − 2β2j8

j) +

t∑
j=1

β2T+j(f
+
j − f

−
j ) mod 8T+1 (10.40)

Using the expression in Equation (10.40) and replacing τφ, f
+
i , f

−
i by their

respective representations from Equation (10.13) and Equation (10.14), Equa-
tion (10.37) becomes
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2β0 +

T∑
j=1

(
−ϵj − β2j−1 − 2β2j +

t∑
i=1

β2T+i1Cj
(vi) +

t∑
i=1

(1− β2T+i)1Cj
(¬vi)

)
8j

≡ 0 mod 8T+1. (10.41)

Setting

Rj := −ϵj−β2j−1−2β2j+
t∑

i=1

β2T+i1Cj (vi)+

t∑
i=1

(1−β2T+i)1Cj (¬vi) (10.42)

for all j ∈ {1, . . . , T}, Equation (10.41) becomes

2β0 +
T∑

j=1

Rj8
j ≡ 0 mod 8T+1. (10.43)

We note that β0 ∈ {0, 1} and for each j ∈ {1, . . . , T},

−4 ≤ Rj ≤ 3. (10.44)

Indeed, as each clause is composed of 3 literals the sum of the two sums in
Equation (10.42) of Rj belongs to {0, 1, 2, 3} explaining the upper bound.
Furthermore, ϵj ∈ {0, 1} and βj ∈ {0, 1} leading to the lower bound.

We note that the congruence in Equation (10.43) holds and so x is a
solution to the Simultaneous Chinese Remainder Problem instance in Equa-
tion (10.25) if and only if β0 = 0 and

Rj = 0 (10.45)

for all j ∈ {1, . . . , T}. Concretely, by the bounds on Rj , we have

2β0 +
T∑

j=1

Rj8
j ≥ 0− 4

T∑
j=1

8j = −4

7
(8T+1 − 8) > −8T+1 (10.46)

2β0 +

T∑
j=1

Rj8
j ≤ 2 + 3

T∑
j=1

8j =
3

7
(8T+1 − 8) < 8T+1 (10.47)

and so the congruence in Equation (10.43) is satisfied if and only if

2β0 +
T∑

j=1

Rj8
j = 0 (10.48)

over the integers. The same argument in a downwards induction loop from
T to 1 shows that Equation (10.48) holds if and only if β0 = 0 and Rj = 0
for all j ∈ {1, . . . , T}.
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10.2.8 C. Solution matching

To conclude that our construction in Section 10.2.5 consists in a reduction,
it remains to show that a solution to the constructed Bounded Simultane-
ous Chinese Remainder Problem instance yields also a solution to the initial
3-SAT problem instance. We prove that the Simultaneous Chinese Remain-
der Problem instance in Equation (10.25) has a primitive solution bounded
by B if and only if the Boolean formula φ(v1, . . . , vt) is satisfiable. We note
that this relation does not need to be efficiently computable.

We relate solutions in the following manner:

• for all i ∈ {1, . . . , t}, vi = β2T+i,

• for all j ∈ {1, . . . , T}, β2j−1 + 2β2j + ϵj equals the number of 1 valued
literals in Cj ,

• for j = 0, β0 = 0.

If there exists a solution x ∈ SM ′ of the Simultaneous Chinese Remainder
Problem in Equation (10.25) such that |x| < B, then, by Equation (10.45),
Rj = 0 for all j ∈ {1, . . . , T}. Let k ∈ {1, . . . , T} be the index of any clause
Ck ∈ φ. Then, by definition ϵk = 1 and so, as Rk = 0, Equation (10.42)
implies

t∑
i=1

β2T+i1Cj (vi) +
t∑

i=1

(1− β2T+i)1Cj (¬vi) > 0 (10.49)

Thus, either β2T+i = 1 and vi ∈ Cj , or β2T+i = 0 and ¬vi ∈ Cj . In both
cases, by the particular choice of the value vi, the clause Cj is satisfied.
As this holds for every clause, φ is satisfied. Additionally, we observe that
β2j−1+2β2j+ϵj corresponds to the number of 1 valued literals in Cj . Indeed,
otherwise, Rj ̸= 0. Furthermore, β0 = 0 by construction.

Reciprocally, assume that (v′1, . . . , v
′
t) is a list of values that satisfies

φ. Then, a direct construction based on Equation (10.42) shows that for
each k ∈ {0, . . . , 2T + t} the value of βk is fixed such that Rj = 0 for all
j ∈ {1, . . . , T}. Indeed, for each i ∈ {0, . . . , 2T + t} the value of βi is com-
pletely determined by the above relations and they imply that∑t

i=1 β2T+i1Cj (vi) +
∑t

i=1(1 − β2T+i)1Cj (¬vi) = ϵj + β2j−1 + 2β2j . In-
serting βj into αj in Equation (10.35) leads immediately to a solution to the
Bounded Simultaneous Chinese Remainder Problem in Equation (10.25).
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10.2.9 The hardness of different instances

We highlight that the development above reduces any 3-SAT instance to
a Bounded Simultaneous Chinese Remainder Problem instance with a par-
ticular form. Concretely, the considered Simultaneous Chinese Remainder
Problem SimCRP((m−1,R−1), . . . , (mn,Rn),SM ′) in Equation (10.25) con-
sists of remainder sets with at most two elements. Indeed, |R−1| = 1 and
|Ri| = 2 for all i ∈ {0, . . . , n}.

Intuitively, the problem seems to get easier if the remainder set sizes
grow: there are more solutions, and so, heuristically, the probability of
finding small solutions grows. Thus, for a sufficiently large bound B, the
problem should become trivial. This intuition is backed up in Chapter 12
where a rough upper bound for the minimal solution is developed.

Strangely, the problem also becomes easier if fewer remainders are used.
Indeed, if the remainder sets contain only a single element, then we recover
the Bounded Chinese Remainder Problem that can be solved in polynomial
time. Similarly, problem instances with slightly larger remainder sets can
be solved polynomially as is described in Remark 9.3.

10.2.10 A generalization

Although the Bounded Simultaneous Chinese Remainder Problem has been
announced with respect to the solution representation set SM = Z∩

(
−M

2 ,
M
2

]
and the size in absolute value, we point out that this arbitrary choice does
not impact the conclusion. Indeed, we may consider the following general-
ization.

Definition 10.10. The General Bounded Simultaneous Chinese Remainder
Problem asks to determine whether a given Simultaneous Chinese Remain-
der Problem SimCRP((m1,R1), ..., (mk,Rk),SM ), with pairwise coprime
moduli m1, . . . ,mk has a solution x ∈ SM such that x < B for some prede-
fined B ∈ SM .

Through an elementary shift of the solution set, we obtain the following
result.

Theorem 10.11. The General Bounded Simultaneous Chinese Remainder
Problem with a fixed representative set SM is polynomially equivalent to the
Bounded Simultaneous Chinese Remainder Problem.

Proof. Let

SimCRP((m1,R1), ..., (mk,Rk),SM ) (10.50)
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with bound B ∈ SM be a given General Bounded Simultaneous Chinese
Remainder Problem instance. We devise a polynomial reduction to the
Bounded Simultaneous Chinese Remainder Problem instance. Indeed, we
compute β := B+minSM

2 . Next, we set R′
i := {Jr − ⌊β⌋ mod miK | r ∈ Ri}

for all i ∈ {1, . . . , k} and B′ := B − ⌈β⌉. Finally, we construct the Bounded
Simultaneous Chinese Remainder Problem instance

SimCRP((m1,R′
1), ..., (mk,R′

k),S ′M ) (10.51)

with bound B′ where S ′M = Z ∩
(
−M

2 ,
M
2

]
and M =

∏k
i=1mi. We note

that all of these computations are linear in the input size. Furthermore, any
solution x′ ∈ S ′M to the Bounded Simultaneous Chinese Remainder Prob-
lem in Equation (10.51) yields a solution x ∈ SM to the General Bounded
Simultaneous Chinese Remainder Problem in Equation (10.50) by setting
x := x′+⌊β⌋. By construction −B′ < x′ < B′ and so replacing B′ = B−⌈β⌉
yields

−B + ⌈β⌉+ ⌊β⌋ < x′ + ⌊β⌋ < B − ⌈β⌉+ ⌊β⌋. (10.52)

As β = B+minSM
2 , the left hand side equals minSM and the right hand side

equals B if β ∈ Z and B − 1, otherwise. Thus, x ∈ SM and x < B. As
Jx′ mod miK ∈ R′

i, also

Jx mod miK = Jx′ + ⌊β⌋ mod miK ∈ Ri (10.53)

by construction. Thus, x is indeed a solution to the General Bounded Si-
multaneous Chinese Remainder Problem in Equation (10.50). Conversely,
if the General Bounded Simultaneous Chinese Remainder Problem in Equa-
tion (10.50) has a solution other than B − 1, then also the Bounded Si-
multaneous Chinese Remainder Problem in Equation (10.51) has a solution
whose existence can be shown through a similar development. However, if
β /∈ Z, then the above reduction is falling short of the potential solution
B − 1 which needs to be tested individually in polynomial time.

Reciprocally, let

SimCRP((m1,R1), ..., (mk,Rk),S ′M ) (10.54)

with a bound B ∈ S ′M such that 0 < B < M
2 where S ′M = Z ∩

(
−M

2 ,
M
2

]
and M =

∏k
i=1mi be a given Bounded Simultaneous Chinese Remainder

Problem instance. We devise a polynomial reduction to a General Bounded
Simultaneous Chinese Remainder Problem instance for a fixed set of solution
representatives SM . SM needs to be part of the problem input as the set SM
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may have an exponential representation, whose computation could hinder a
polynomial-time reduction. We compute β := B +minSM . Next, we set

R′
i := {Jr + β mod miK | r ∈ Ri} (10.55)

for all i ∈ {1, . . . , k} and B′ := B + β. Finally, we construct the General
Bounded Simultaneous Chinese Remainder Problem instance

SimCRP((m1,R′
1), ..., (mk,R′

k),SM ) (10.56)

A similar development as above shows that any solution x to the General
Bounded Simultaneous Chinese Remainder Problem in Equation (10.56)
reveals a solution x′ = x−β to the Bounded Simultaneous Chinese Remain-
der Problem in Equation (10.54) and that if the Bounded Simultaneous
Chinese Remainder Problem in Equation (10.54) has a solution, so does
the General Bounded Simultaneous Chinese Remainder Problem in Equa-
tion (10.56).

Clearly, the General Bounded Simultaneous Chinese Remainder Problem
is in NP as a solution x < B to a given Simultaneous Chinese Remainder
Problem instance problem instance can be used as a polynomially verifiable
witness. Thereby, we conclude the following corollary.

Corollary 10.12. The General Bounded Simultaneous Chinese Remainder
Problem is NP−complete.





Chapter 11

Simultaneous Chinese
Remainder Problem variants

In Section 9.2 we showed that the Simultaneous Chinese Remainder Prob-
lem can in general only be solved in exponential time in its input size.
Theorem 10.2 yields that even deciding whether there exit solutions or not
is NP− complete. Simplifying the problem by considering pairwise coprime
moduli such that solutions are guaranteed to exist trivially solves the former
problem but raises the question about the size of the smallest solution. The-
orem 10.8 proves that if the solution set SM = Z ∩

(
−M

2 ,
M
2

]
is considered

then deciding whether a solution of a given size exists is again NP− complete.
Furthermore, Theorem 10.11 yields that the considered solution set SM does
not have an impact on the complexity of the problem.

In this chapter, we focus on finding solutions with particular properties.
For simplicity, we still consider pairwise coprime moduli m1, . . . ,mk and
we restrict to the traditional representative set SM = {0, . . . ,M − 1} with
M =

∏k
i=1mi. Hereinafter we omit SM from our notation.

11.1 The Minimal Simultaneous Chinese Remain-
der Problem

We first concentrate on finding the minimal solution to a Simultaneous Chi-
nese Remainder Problem.

Definition 11.1. The Minimal Simultaneous Chinese Remainder Problem
asks to determine the minimal solution to a given Simultaneous Chinese
Remainder Problem SimCRP((m1,R1), ..., (mk,Rk)).

91
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As Corollary 10.12 proves that the General Bounded Simultaneous Chi-
nese Remainder Problem is NP− complete, and as the Minimal Simulta-
neous Chinese Remainder Problem trivially solves the General Bounded
Simultaneous Chinese Remainder Problem, the Minimal Simultaneous Chi-
nese Remainder Problem must be at least equally hard.

Theorem 11.2. The Minimal Simultaneous Chinese Remainder Problem
is NP− hard.

We note that any solution to a Minimal Simultaneous Chinese Remainder
Problem can be verified in polynomial time.

11.2 Other related problems

In the same mindset as above, we can construct other problems asking for
solutions of a specific size.

Definition 11.3. The Maximal Simultaneous Chinese Remainder Problem
asks to determine the maximal solution to a given Simultaneous Chinese
Remainder Problem SimCRP((m1,R1), ..., (mk,Rk)).

Definition 11.4. The Interval Simultaneous Chinese Remainder Problem
asks to determine, if possible, a solution x to a given Simultaneous Chinese
Remainder Problem SimCRP((m1,R1), ..., (mk,Rk)) inside a given interval
I := [a, b] with a, b ∈ Z ∩ [0,

∏k
i=1mi).

Remarkably, none of these problems is substantially harder than the
Minimal Simultaneous Chinese Remainder Problem as shows the following
proposition.

Proposition 11.5. The Minimal, Maximal, and Interval Simultaneous Chi-
nese Remainder Problems can be reduced to each other in polynomial time.

Proof. The general approach of the reductions is still the same as in Chap-
ter 10, but we adopt an algorithmic perspective using problem solvers as
sub-routines.

1. First, we show that the Minimal and Maximal Simultaneous Chinese
Remainder Problems are linearly equivalent:

(a) LetA be an algorithm to solve Minimal Simultaneous Chinese Re-
mainder Problem instances. We construct a linear time reduction
to find the maximal solution of SimCRP((m1,R1), ..., (mk,Rk)):
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i. Change the remainder sets to

Ri := {J−r mod miK | r ∈ Ri}. (11.1)

ii. Use algorithm A to find the minimal solution χmin of

SimCRP((m1,R1), ..., (mk,Rk)). (11.2)

iii. Return χmax =
r
−χmin mod

∏k
i=1mi

z
.

We note that the first step carries out |Ri| modular reductions
for each i ∈ {1, . . . , k}. Each such reduction is linear in mi as a
single addition is required. The last step requires a single reduc-
tion linear in the input size. For correctness, we need to show
that χmax is indeed the maximal primitive solution of the initial
Simultaneous Chinese Remainder Problem instance. Assume by
contradiction that it is not. Then, there is another solution x
such that χmax < x. This implies that

t

−χmax mod
k∏

i=1

mi

|

>

t

−x mod
k∏

i=1

mi

|

(11.3)

contradicting the minimality of χmin.

(b) A similar development shows the converse implication.

2. Second, we show that the Minimal Simultaneous Chinese Remainder
Problem is quasi-linearly equivalent to the Interval Simultaneous Chi-
nese Remainder Problem:

(a) LetA be an algorithm to solve the Minimal Simultaneous Chinese
Remainder Problem. We construct a linear time reduction to
find, if it exists, a solution of SimCRP((m1,R1), ..., (mk,Rk)) in
I := [a, b] with a, b ∈ Z ∩ [0,

∏k
i=1mi[:

i. Change the remainder sets to

Ri = {Jr − a mod miK | r ∈ Ri}. (11.4)

ii. Use the algorithm A to find the minimal solution

χmin = SimCRPmin((m1,R1), ..., (mk,Rk)). (11.5)

iii. Compute χI =
r
χmin + a mod

∏k
i=1mi

z
.
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iv. If χI < b, return χI , else return null.

Once again, linear time follows from the efficiency of modular
arithmetic and correctness stems from the minimality of χmin.

(b) Let A be an efficient algorithm to solve the Interval Simultaneous
Chinese Remainder Problem. We construct a quasi-linear time
reduction to find the minimal solution of SimCRP((m1,R1), ...,
(mk,Rk)) :

i. Set a = 0 and b =
∏k

i=1mi − 1 and let I = [a, b].

ii. If b− a < 1, return I ∩ N, else continue.

iii. Set c = b−a
2 and set I ′ = [a, c].

iv. Use A to solve SimCRPI′((m1,R1), ..., (mk,Rk)) either re-
sulting in a solution χ or null.

v. If a solution χ is obtained set I = [a, c], else set I = [c, b]
restart from (ii).

This procedure is dominated by the number of calls to A which
is log2((

∏k
i=1mi) − 1) leading to a quasi-linear time reduction.

Correctness stems directly from the construction.

11.3 Problems in the literature

The Simultaneous Chinese Remainder Problem appeared already under dis-
tinct forms in the literature. The upcoming examples are all based on pair-
wise coprime moduli and the traditional representative set SM = {0, . . . ,
M − 1} with M =

∏k
i=1mi. [BN00, Problem 3] introduced the Noisy

Chinese Remainder Problem which essentially consists in a Simultaneous
Chinese Remainder Problem with remainder sets of a fixed common size m
with the objective of finding all sufficiently small solutions. This problem
was a byproduct of their new polynomial reconstruction method. The se-
ries of papers [ZX97, Xia99, Xia00] considers the detection of frequencies in
under-sampled waveforms, which can be reduced to a Simultaneous Chinese
Remainder Problem where a set of particular solutions needs to be filtered
out. [Lip09] introduced the Chinese Remainder Theorem with limits which
corresponds to the Interval Simultaneous Chinese Remainder Problem.
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11.4 Applications

Theorem 11.2 implies that an efficient Minimal Simultaneous Chinese Re-
mainder Problem solver could be used to solve any NP problem. Thus,
the Minimal Simultaneous Chinese Remainder Problem has a prestigious
amount of applications. Besides those complexity-theoretic related conse-
quences, some direct applications can be outlined.

11.4.1 Factoring with extra information

The first application consists in an elementary factoring algorithm. However,
this factorisation requires some extra information about the factors.

Motivating example

We start with a quick look at what information is sufficient to determinis-
tically filter out a factor of a given integer. To do so, let N = p · q ∈ N
be a composite integer 1 < p < q. If for some pairwise coprime moduli
m1, . . . ,mk such that p < M =

∏k
i=1mi, the remainders pi = Jpi mod miK

are known, then the classical Chinese Remainder Theorem may be used to
recover p and decompose N into its two factors. Often those remainders are
not known exactly, but can be reduced to a small set of potential remainders;
in other words, instead of knowing the remainders pi, one only knows that
Jp mod miK ∈ Ri for some nonempty remainder set Ri ⊂ {0, . . . ,mi − 1}.
The problem of recovering p in plain becomes a Simultaneous Chinese Re-
mainder Problem.

Remainder sets of size 2

A comparably easy problem instance may be obtained by granting only
two possibilities for pi (i.e. |Ri| = 2) for all i ∈ {1, . . . , k}. In this case,
Coppersmith’s theorem (see Theorem 15.1) predicts that p can be found in
time polynomial in (log(M), 22), provided that p <

√
M . This scenario

may occur if for each modulus mi, the remainder ri of one factor of N is
given but cannot be assigned to its specific factor such that either ri ≡ p
mod mi or ri ≡ q mod mi.

General remainder sets

Assume that for eachmi the remainder of p is known up to a small number of
possibilities Jp mod miK ∈ Ri. Assume, in addition, that p < M . Then, p is
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a primitive solution of SimCRP((m1,R1), . . . , (mk,Rk)). IfM , is sufficiently
large, then p can be expected to be one of the smallest solutions, and so a
Minimal Chinese Remainder Problem may find it.

Concrete application

In [BN00], the authors suggested the factorization of integers of the form
N = p2q. More precisely, N is a quadratic residue modulo mi if and only if
q is so. Thus, q can be determined up to half of all possible remainders for
each mi.

11.4.2 Point counting on elliptic curves

The next application was described in [BN00] and consists in point counting
on elliptic curves over finite fields. The main idea of this application is to
use the Schoof-Elkies-Atkins (SEA) algorithm [Sch95], but instead of only
using the good Elkies primes resulting in exact remainder information, also
Atkins primes resulting in imprecise remainder information is used. This
loss in precision is compensated by the screening of a Simultaneous Chinese
Remainder Problem instance over the Hasse range [Has36]. We refer to
[BN00] for a detailed development.



Chapter 12

An upper bound for the
minimal solution

In Chapter 11 we focused on some variants of the Simultaneous Chinese
Remainder Problem aiming at finding a solution with particular properties
such as minimality, maximality, or being contained in a specified interval.
Proposition 11.5 claims that all of these problems are polynomially equiv-
alent and Theorem 11.2 yields that they are NP− complete. Yet not all
instances are equally hard. In this chapter, we develop some elementary up-
per bounds for the minimal solution of a Simultaneous Chinese Remainder
Problem. We note that by the polynomial reduction in Proposition 11.5,
any such result also yields a lower bound for the maximal solution.

Hereinafter, we consider Simultaneous Chinese Remainder Problem in-
stances of the form

SimCRP((m1,R1), . . . , (mk,Rk),SM ) (12.1)

with pairwise coprime moduli and the fixed representative set SM = {0, . . . ,
M − 1} with M =

∏k
i=1mi. As there is no ambiguity, we drop SM from

our notation. Furthermore, we focus on the Minimal Simultaneous Chinese
Remainder Problem only.

12.1 Intuition

Going back to Garner’s algorithm (Algorithm 8.2), we observe that any
x ∈ {0, . . . ,M − 1} can be uniquely represented as a sum

x = y1 +m1(y2 + · · ·+mk−2(yk−2 +mk−1yk) . . . ) (12.2)
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where yi ∈ {0, . . . ,mi − 1} for all i ∈ {1, . . . , k}. Thereby, we obtain a
bijection

{0, . . . ,M − 1} ↔ {0, . . . ,m1 − 1} × · · · × {0, . . . ,mk − 1}. (12.3)

In general, this bijection does not correspond to the isomorphism from
Theorem 8.7 as yi ̸= Jx mod miK. Let f denote this bijection such that
f(x) = (y1, . . . , yk) and let x′ ∈ {0, . . . ,M − 1} be a second element with
f(x′) = (y′1, . . . , y

′
k). Equation (12.2) shows that x < x′ if and only if yi < y′i

for some i ∈ {1, . . . , k} and yj = y′j for all j ∈ {1, . . . , i − 1}. This defines
the lexicographic order on {0, . . . ,m1−1}×· · ·×{0, . . . ,mk−1}, granting a
mapping between comparison functions. This conclusion is used by so-called
mixed radix comparison aiming at comparing elements in a residue number
system [ST67]. Moreover, it yields an elementary upper bound B0 for the
maximal minimal solution of a Simultaneous Chinese Remainder Problem.
Concretely, given the number of remainders in each remainder set, we can
predict the maximal minimal solution over any choice of remainders with a
fixed remainder set size, which is

B0 − 1 := f(m1 − |R1|, . . . ,mk − |Rk|). (12.4)

Based on a simple counting argument on the maximal number of solutions
inside a given interval, we manage to formally prove this conclusion and gain
some additional insights.

12.2 Maximal number of solutions inside a given
interval

We start by studying the maximal number of primitive solutions inside a
given interval.

Lemma 12.1. Let m1, . . . ,mk ≥ 2 be pairwise coprime integers. For all
i ∈ {1, . . . , k}, let Ri ⊆ {0, 1, . . . ,mi − 1} be a non-empty set of possi-
ble remainders modulo mi and let ti = |Ri| be its size. Furthermore, let
j ∈ {1, . . . , k} and set m0 = t0 = 1. Then, any set I ⊆ Z consisting of
Mj :=

∏j
i=0mi consecutive integers contains at most Tj :=

∏j
i=0 ti solu-

tions of SimCRP((m1,R1), . . . , (mk,Rk)).

Proof. Assume by contradiction that for some j ∈ {1, . . . , k} there is a
set I consisting of Mj consecutive integers that contains Tj + 1 distinct
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primitive solutions of SimCRP((m1,R1), . . . , (mk,Rk)). Let y = min{I},
I = {x− y | x ∈ I}, and for all i ∈ {1, . . . , k} let

Ri = {Jr − y mod miK | r ∈ Ri}. (12.5)

Then, I = {0, . . . ,Mj − 1} contains Tj + 1 distinct primitive solutions of
SimCRP((m1,R1), . . . , (mk,Rk)). Let 0 ≤ x1 < · · · < xTj+1 < Mj denote
these solutions. Then, for each i ∈ {1, . . . ,Tj + 1}, xi is the solution of
a Chinese Remainder Problem CRP((m1, r1i), . . . , (mj , rji)) where rsi ∈ Rs

for all s ∈ {1, . . . , j}. As the solutions are distinct and strictly smaller than
Mj , any two of the Tj+1 corresponding Chinese Remainder Problems differ
in at least one congruence. However, there are only Tj possibilities to form
pairwise distinct Chinese Remainder Problems with R1, . . . ,Rk. This yields
the desired contradiction.

12.3 Elementary upper bound

The rough approximation of the number of solutions in a fixed interval de-
scribed in Lemma 12.1 is sufficient to deduce an unconditional upper bound
for the maximal minimal solution of a Simultaneous Chinese Remainder
Problem with fixed remainder set sizes.

Theorem 12.2. Let m1, . . . ,mk ≥ 2 be pairwise coprime integers. For
all i ∈ {1, . . . , k}, let Ri ⊆ {0, 1, . . . ,mi − 1} be a non-empty set of possi-
ble remainders modulo mi and let ti = |Ri| be its size. Furthermore, set
m0 = t0 = tk+1 = 1.

1. For any j ∈ {0, 1, . . . , k}, there are at least Tk−j :=
∏k−j

i=0 ti primitive
solutions of SimCRP((m1,R1), . . . , (mk,Rk)) strictly smaller than

Bk−j := Mk −
k∑

i=k−j

(ti+1 − 1)Mi

where Mi :=
∏i

ℓ=0mℓ for all i ∈ {0, . . . , k}.

2. The minimal solution χmin of SimCRP((m1,R1), . . . , (mk,Rk)) satis-
fies

χmin < B0.

Proof. SimCRP((m1,R1), . . . , (mk,Rk)) has exactly Tk =
∏k

i=1 ti primi-
tive solutions. Thus, there are Tk primitive solutions strictly smaller than
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Bk = Mk. Next, assume that for some j ∈ {0, . . . , k − 1} there are at least

Tk−j =
∏k−j

i=0 ti primitive solutions strictly smaller than

Bk−j = Mk −
k∑

i=k−j

(ti+1 − 1)Mi = Mk −
j∑

i=1

(tk−i+1 − 1)Mk−i. (12.6)

If tk−(j+1)+1 = 1, then Tk−j = Tk−(j+1) and Bk−j = Bk−(j+1) which implies
the claim for j + 1. Thus, assume tk−(j+1)+1 ≥ 2. By Lemma 12.1, each
set consisting of Mk−(j+1) consecutive integers contains at most Tk−(j+1)

solutions. In particular, each set of the form

{Bk−j − (a+ 1)Mk−(j+1), . . . , Bk−j − aMk−(j+1) − 1} (12.7)

with a ∈ {0, . . . , tk−(j+1)+1−2} contains at most Tk−(j+1) solutions. There-
fore, there are at most (tk−(j+1)+1 − 1)Tk−(j+1) primitive solutions in the
set

tk−(j+1)+1−2⋃
a=0

{Bk−j − (a+ 1)Mk−(j+1), . . . , Bk−j − aMk−(j+1) − 1} (12.8)

=
{
Bk−j − (tk−(j+1)+1 − 1)Mk−(j+1), . . . , Bk−j − 1

}
(12.9)

and consequently, there are at least

Tk−j − (tk−(j+1)+1 − 1)Tk−(j+1) = Tk−(j+1) (12.10)

primitive solutions strictly smaller than

Bk−j − (tk−(j+1)+1 − 1)Mk−(j+1) = Bk−(j+1). (12.11)

By induction, we conclude that the first claim holds for each j ∈ {0, 1, . . . , k}.
Setting j = k, we deduce that there is at least T0 = 1 solution strictly smaller
than B0.

As ti ≥ 1 for all i ∈ {0, 1, . . . , k + 1} and Mℓ > 0 for all ℓ ∈ {0, . . . , k}, the
bounds in Theorem 12.2 satisfy

0 ≤ B0 ≤ B1 ≤ · · · ≤ Bk = Mk (12.12)
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12.4 Optimal ordering

We highlight that the order of the moduli in Theorem 12.2 has an impact
on the resulting upper bounds. The analysis of an optimal ordering of the
moduli requires an auxiliary result.

Lemma 12.3. Let m,m′ ≥ 2 be positive integers and t, t′ ∈ R. Then,

t′ − 1

m′ +
t− 1

mm′ ≤
t− 1

m
+
t′ − 1

mm′ ⇔ t′ − 1

m′ − 1
≤ t− 1

m− 1
.

Proof. We observe that:

t′ − 1

m′ +
t− 1

mm′ ≤
t− 1

m
+
t′ − 1

mm′ ⇔
t′ − 1

m′ −
t′ − 1

mm′ ≤
t− 1

m
− t− 1

mm′ (12.13)

⇔ (t′ − 1)
m− 1

m′m
≤ (t− 1)

m′ − 1

mm′ (12.14)

⇔ t′ − 1

m′ − 1
≤ t− 1

m− 1
. (12.15)

Proposition 12.4. Let m1, . . . ,mk ≥ 2 be pairwise coprime integers. For
all i ∈ {1, . . . , k}, let Ri ⊆ {0, 1, . . . ,mi − 1} be a nonempty set of possi-
ble remainders modulo mi and let ti = |Ri| be its size. Furthermore, set
m0 = tk+1 = 1. Let B0 := Mk −

∑k
i=0(ti+1 − 1)Mi where Mℓ :=

∏ℓ
i=0mi

for all ℓ ∈ {0, . . . , k}. Let σ be a permutation on {0, 1, . . . , k + 1} fix-
ing 0 and k + 1, in other words, σ(0) = 0 and σ(k + 1) = k + 1. Let
B′

0 := M′
k −

∑k
i=0(tσ(i+1) − 1)M′

i where M′
ℓ :=

∏ℓ
i=0mσ(i) for all

ℓ ∈ {0, . . . , k}.

1. Let σ be an adjacent transposition switching j and j + 1 for some
j ∈ {1, . . . k − 1} (that is, σ(i) = i for all i ∈ {0, . . . k + 1} \ {j, j + 1}
and σ(j) = j + 1, σ(j + 1) = j). Then B′

0 > B0 if and only if
tj−1
mj−1 <

tj+1−1
mj+1−1 . Furthermore, B′

0 = B0 if and only if
tj−1
mj−1 =

tj+1−1
mj+1−1 .

2. B0 is minimal if and only if t1−1
m1−1 ≤

t2−1
m2−1 ≤ · · · ≤

tk−1
mk−1 .

Proof. For the first claim, we note that

B′
0 > B0 (12.16)

⇔M′
k −

k∑
i=0

(tσ(i+1) − 1)M′
i >Mk −

k∑
i=0

(ti+1 − 1)Mi (12.17)
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⇔(−tσ(j) + 1)M′
j−1 + (−tσ(j+1) + 1)M′

j

> (−tj + 1)Mj−1 + (−tj+1 + 1)Mj (12.18)

⇔(−tj+1 + 1)Mj−1 + (−tj + 1)Mj−1mj+1

> (−tj + 1)Mj−1 + (−tj+1 + 1)Mj (12.19)

⇔(−tj+1 + 1) + (−tj + 1)mj+1 > (−tj + 1) + (−tj+1 + 1)mj (12.20)

⇔(−tj + 1)(mj+1 − 1) > (−tj+1 + 1)(mj − 1) (12.21)

⇔(tj − 1)(mj+1 − 1) < (tj+1 − 1)(mj − 1) (12.22)

⇔ tj − 1

mj − 1
<

tj+1 − 1

mj+1 − 1
(12.23)

The equality statement is obtained by using in the above inequalities the
equal sign.

For the second claim, assume first that B0 is minimal and assume by con-
tradiction that there are ℓ1, ℓ2 ∈ {1, . . . k} such that ℓ1 < ℓ2 and
tℓ2−1

mℓ2
−1 <

tℓ1−1

mℓ1
−1 . Then, there exists j ∈ {ℓ1, . . . , ℓ2 − 1} such that

tj+1−1
mj+1−1 <

tj−1
mj−1 . By the first claim B′

0 := M′
k −

∑k
i=0(tσ(i+1) − 1)M′

i where

M′
ℓ :=

∏ℓ
i=0mσ(i) and σ is the adjacent transposition switching j and j + 1

is smaller than B0 directly contradicting its minimality. Reciprocally, as-
sume that t1−1

m1−1 ≤
t2−1
m2−1 ≤ · · · ≤

tk−1
mk−1 and assume by contradiction that

B0 is not minimal. There exists a minimal B′
0 := M′

k−
∑k

i=0(tσ(i+1)−1)M′
i

such that B′
0 < B0 for some permutation σ ̸= Id. In particular, there exists

ℓ1, ℓ2 ∈ {1, . . . , k} such that ℓ1 < ℓ2, σ(ℓ2) < σ(ℓ1), and
tσ(ℓ2)

−1

mσ(ℓ2)
−1 <

tσ(ℓ1)
−1

mσ(ℓ1)
−1

directly contradicting our assumption t1−1
m1−1 ≤

t2−1
m2−1 ≤ · · · ≤

tk−1
mk−1 .

12.5 Limitations

We note that the bound B0 in Theorem 12.2 represents a bound on the
maximal minimum, and, as such, it is not tight in general. Even its improve-
ment from Proposition 12.4 is usually not achieved. Indeed, asymptotically,

the bound B0 is of size O
(

M
maxmi

)
where M =

∏k
i=1mi, but empirical

observations predict that the minimal solution is magnitudes smaller (see
Section 18.4).



Chapter 13

Deterministic solving
method

By Theorem 11.2 we cannot expect to find a polynomial-time solving method
of the Minimal Simultaneous Chinese Remainder Problem. Yet, it is inter-
esting to study its solving methods. In this chapter, we start this study
by proving that a solving method does not need to compute all solutions
of a given Simultaneous Chinese Remainder Problem instance to find its
minimum.

Let m1, ...,mk ≥ 2 be pairwise coprime integers, for all i ∈ {1, ..., k},
let Ri = {ri,1, . . . , ri,ti} ⊆ {0, 1, ...,mi − 1} be a non-empty set of remain-
ders modulo mi and consider the Simultaneous Chinese Remainder Problem
SimCRP((m1,R1), ..., (mk,Rk)).

13.1 The trivial case: k=1

When facing a single modulus m1, the Simultaneous Chinese Remainder
Problem turns out to be a simple comparison problem. Indeed, given m1

and R1, it is sufficient to find minr1∈R1 r1 to solve SimCRP((m1,R1)). This
minimum may be found through any suitable comparison function and is
linear in |R1|.

13.2 The first non-trivial case: k=2

The first nontrivial example of a Simultaneous Chinese Remainder instance
arises when considering two moduli m1,m2. Indeed, due to the chaotic
modular metric, a direct comparison of remainders does usually not yield
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the minimal solution. There are constructions of comparison functions in
residue number systems [Isu16], but computing the minimum by means of
such a function requires |R1||R2| comparisons.

13.2.1 A solving algorithm

The question arises whether there is any method for finding the minimal
solution in less than |R1||R2| steps. We answer this question positively
by putting forth the following algorithm inspired by Garner’s algorithm
(Algorithm 8.2).

Algorithm 13.1:Minimal Simultaneous Chinese Remaindering for
two moduli.
Input: SimCRP((m1,R1), (m2,R2)).
Output: The algorithm computes the minimal solution χ.

1 C2 ← Jm−1
1 mod m2K

2 R∗
1 ← {J−r1C2 mod m2K | r1 ∈ R1}

3 R∗
2 ← {Jr2C2 mod m2K | r2 ∈ R2}

4 R∗
1 ← sort(R∗

1)
5 R∗

2 ← sort(R∗
2)

6 x−1 ← min
r∗1∈R∗

1

r∗1 + min
r∗2∈R∗

2

r∗2

7 for each r∗1 ∈ R∗
1 do

8 xr∗1 ← min+
r∗2∈R∗

2

(r∗1 + r∗2 −m2)

9 y2 ← min
r∗1∈R∗

1∪{−1}
xr∗1

10 Rs ← {r∗1 ∈ R∗
1 ∪ {−1} | xr∗1 = y2}

11 y1 ← min
r∗1∈Rs

J−r∗1m1 mod m2K

12 return χ← y1 +m1y2

13.2.2 Analysis

On input (m1, r1), (m2, r2) Garner’s algorithm computes C1 := 1,
C2 := Jm−1

1 mod m2K, y1 := r1, y2 := J(r2 − r1)C2 mod m2K and out-
puts the solution χ = y1 +m1y2. To find the minimal value when varying
the remainders in the input, we need to minimize

y2 = J(r2 − r1)C2 mod m2K (13.1)

= JJr2C2 mod m2K + J−r1C2 mod m2K mod m2K . (13.2)
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To do so, we first compute

R∗
1 = {J−r1C2 mod m2K | r ∈ R1}, and (13.3)

R∗
2 = {Jr2C2 mod m2K | r2 ∈ R2}, (13.4)

which requires |R1| + |R2| modular multiplications. Next, we sort the ele-
ments of R∗

1 and R∗
2 in increasing order, which requires |Ri| log(|Ri|) com-

parisons for each i ∈ {1, 2}. Finally, we need to combine the elements from
those two sets to find the minimal value modulo m2. As exactly one element
from each set needs to be chosen and as each such element is non-negative
and strictly smaller than m2, the modulo operation is either not carried out
at all or m2 is subtracted once. Thus, the minimum either corresponds to
the sum of the minima of both sets, or it corresponds to the minimal sum
greater than m2. With the elements being ordered, we can efficiently find
those combinations. Indeed, for the sum of the minima of both sets, we only
need to sum the first element in each list. For a minimal sum larger than
m2, we go through all the elements r∗1 ∈ R∗

1 and find the minimizing element
r∗2 ∈ R∗

2. This minimizing element can be found in O(|R∗
2| log(|R∗

2|)) steps
through a logarithmic search. The sum of r∗1 and the minimizing element
in R∗

2 is reduced modulo m2 and stored as xr∗1 . The minimum of these
values is set to be y2. Subsequently, the corresponding minimal value for
y1 is defined by the minimal remainder r1 whose attributed r∗1 allows us to
achieve y2. All in all, the algorithm only requires O(t log(t)) steps where
t = max(|R1|, |R2|).

Remark 13.1. Algorithm 13.1 consists in a time-space trade-off improv-
ing the efficiency of a Minimal Simultaneous Chinese Remainder solver.
Whereas a direct comparison requires O(t2) steps to find the minimum, it
does not need to store any additional variables. Algorithm 13.1 stores aux-
iliary values in R∗

1,R∗
2,Rs, but improves the number of required steps to

O(t log(t)).
Especially for large moduli sets, a substantial gain is obtained.

13.3 The general case

In the general case, we may recycle the previous idea to simplify the overall
complexity. Given m1, ...,mk and corresponding remainder sets R1, . . . ,Rk,
computing all Simultaneous Chinese Remainder solutions and comparing
them to find the minimum requires O(

∏k
i=1 |Ri|) steps. In particular, if all

the remainder sets are of approximately the same size, then O(tk) steps are
required where t = max{|R1|, . . . , |Rk|}.
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On the other hand, we can simplify this computation by splitting the
remainder sets into two disjoint groups R(1) and R(2) such that∏

Ri∈R(1)

|Ri| ≈
∏

Rj∈R(2)

|Rj |. (13.5)

In this way, we can compute the solution to all Chinese Remainder Prob-
lem instances from each group using traditional Chinese Remaindering and
subsequently use Algorithm 13.1 to recombine the resulting groups. The
number of steps shrinks from O(tk) to O(ktk/2 log(t)).

Remark 13.2. Any state-of-the-art solving method of the Minimal Simul-
taneous Chinese Remainder Problem can be expected to have an exponen-
tial runtime. Indeed, the currently best 3-SAT solvers run in time 1.307n

[HKZZ19]. As by Theorem 11.2 the Minimal Simultaneous Chinese Re-
mainder Problem is NP− hard, its solving methods cannot be expected to be
substantially faster.



Chapter 14

Family of minimizing
functions

Before we continue to study solving methods of the Minimal Simultaneous
Chinese Remainder Problem, we outline a peculiar result on mixed radix
comparison. This result allows us to construct a family of functions which
minimize in either the minimal or maximal solution of a Simultaneous Chi-
nese Remainder Problem instance. Our development consists in a direct
generalization of [DIP93].

14.1 Declaring a new modulus and auxiliary coef-
ficients

Hereinafter, let m1, . . . ,mk be pairwise coprime moduli, let
mmax = maxi∈{1,...,k}mi, set M =

∏k
i=1mi, and Mi = M

mi
for all

i ∈ {1, . . . , k}. We define a new modulus

SQ = c1M1 + · · ·+ ckMk (14.1)

where c1, . . . , ck ∈ N such that gcd(ci,mi) = 1 for all i ∈ {1, . . . , k}. This
new modulus is pairwise coprime to all the initial moduli.

Lemma 14.1. For all i ∈ {1, . . . , k}, we have gcd(SQ,mi) = 1.

Proof. By construction, we have

gcd(SQ,mi) = gcd(c1M1 + · · ·+ ckMk,mi) = gcd(ciMi,mi) = 1 (14.2)

107



108 Chapter 14. Family of minimizing functions

Coprimality between SQ and mi allows us to compute the inverse of mi

modulo SQ and to define the additional variables

κi = J−cim−1
i mod SQK (14.3)

for all i ∈ {1, . . . , k}. A remarkable property of those κi is that their collec-
tive sum is a multiple of SQ.

Lemma 14.2. Using the above definition, we have κ1 + · · · + κk ≡ 0
mod SQ.

Proof. We have

κ1 + · · ·+ κk ≡ 0 mod SQ (14.4)

⇔−M(κ1 + · · ·+ κk) ≡ 0 mod SQ (14.5)

⇔− κ1m1M1 − · · · − κkmkMk ≡ 0 mod SQ (14.6)

⇔c1M1 + · · ·+ ckMk ≡ 0 mod SQ (14.7)

where the last congruence holds by the definition of SQ.

14.2 Constructing new functions minimizing in an
extremum

We construct a particular comparison function over {0, 1, . . . ,M − 1}.

Proposition 14.3. The function

D+ : {0, 1, . . . ,M − 1} → {0, . . . , SQ− 1}

defined by D+(X) = Jκ1x1+ · · ·+κkxk mod SQK where xi = JX mod miK
for all i ∈ {1, . . . , k} is non-decreasing on {0, 1, . . . ,M − 1}.

Proof. As for each X ∈ {0, 1, . . . ,M − 1} and each i ∈ {1, . . . , k}, we have

xi = JX mod miK =
(
X −

⌊
X
mi

⌋
mi

)
, we deduce that

D+(X) (14.8)

=

s
κ1

(
X −

⌊
X

m1

⌋
m1

)
+ · · ·+ κk

(
X −

⌊
X

mk

⌋
mk

)
mod SQ

{
(14.9)

=

s
X(κ1 + · · ·+ κk)− κ1

⌊
X

m1

⌋
m1 − · · · − κk

⌊
X

mk

⌋
mk mod SQ

{
. (14.10)



14.2. Constructing new functions minimizing in an extremum 109

By Lemma 14.2, (κ1 + · · · + κk) ≡ 0 mod SQ and by the definition of κi,
κimi ≡ −ci mod SQ for all i ∈ {1, . . . , k}. Thus,

D+(X) =

s
c1

⌊
X

m1

⌋
+ · · ·+ ck

⌊
X

mk

⌋
mod SQ

{
. (14.11)

As X < M , also
⌊

X
mi

⌋
< Mi for all i ∈ {1, . . . , k} implying

c1

⌊
X

m1

⌋
+ · · ·+ ck

⌊
X

mk

⌋
< SQ (14.12)

and so

D+(X) = c1

⌊
X

m1

⌋
+ · · ·+ ck

⌊
X

mk

⌋
(14.13)

over the integers. As each floor function is non-decreasing inX, so isD+.

Remark 14.4. We remark that for X < Y ∈ {0, . . . ,M − 1}, we either
have D+(X) < D+(Y ), or xi < yi for all i ∈ {1, . . . , k}. Thus, D+ consists
in a mixed radix comparison function. [DIP93] obtained this conclusion for
c1 = · · · = ck = 1.

Corollary 14.5. Let X1, . . . , Xz ∈ {0, . . . ,M − 1} for some z ∈ Z≥1, then

min
i∈{1,...,z}

D+(Xi) = D+

(
min

i∈{1,...,z}
Xi

)
.

Thus, D+ offers an elegant way to find the minimum among a given set
of elements. However, often the minimum in absolute value is required.
Therefore, we construct the same function over ZM = Z ∩

(
−M

2 ,
M
2

]
.

Proposition 14.6. The function

D : ZM → ZSQ

defined by D(X) = [κ1x1+· · ·+κkxk mod SQ] where xi = JX mod miK for
all i ∈ {1, . . . , k} is non-decreasing on Z ∩

(
−M

2 +mmax,
M
2

]
. Furthermore,

D(X) ≥ 0 if and only if X ≥ 0.

Proof. Following the proof of Proposition 14.3, we deduce that

D(X) =

[
c1

⌊
X

m1

⌋
+ · · ·+ ck

⌊
X

mk

⌋
mod SQ

]
. (14.14)
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As −M
2 +mmax < X ≤ M

2 , we have −Mi
2 <

⌊
−Mi

2 + mmax
mi

⌋
≤
⌊

X
mi

⌋
≤ Mi

2

for all i ∈ {1, . . . , k} implying

−SQ
2

< c1

⌊
X

m1

⌋
+ · · ·+ ck

⌊
X

mk

⌋
≤ SQ

2
(14.15)

and so

D(X) = c1

⌊
X

m1

⌋
+ · · ·+ ck

⌊
X

mk

⌋
(14.16)

over the integers. As each floor function is non-decreasing in X, so is D.
Furthermore, if Y ∈ R, then ⌊Y ⌋ ≥ 0 if and only if Y ≥ 0. Thus, D(X) ≥ 0
if and only if X ≥ 0.

Remark 14.7. For X ∈ Z ∩
(
−M

2 ,−
M
2 +mmax

]
, we have

−SQ
2
−

k∑
i=1

ci
2
≤ c1

⌊
X

m1

⌋
+ · · ·+ ck

⌊
X

mk

⌋
≤ −SQ

2
+

k∑
i=1

ci
mmax

mi
(14.17)

and so, if the middle sum is smaller than or equal to −SQ
2 , a modular re-

duction is peformed by D(X). In this case, the resulting integer is at least
of size SQ

2 −
∑k

i=1
ci
2 . To guarantee monotonicity of D, we need to eliminate

those values from the considered set.

Corollary 14.8. Let {X1, . . . , Xz} ⊆ Z ∩
(
−M

2 +mmax,
M
2

]
for some Z≥1.

Let X ∈ {X1, . . . , Xz} be such that:

1. Function minimality: |D(X)| = mini∈{1,...,z} |D(Xi)|, and

2. Representation minimality: for all X ′ ∈ {X1, . . . , Xz} that satisfies
|D(X ′)| = mini∈{1,...,z} |D(Xi)| we have |X| ≤ |X ′| .

Then, X is either the minimal non-negative element or the maximal negative
element in {X1, . . . , Xz}.

Proof. Let

X+
min = min{Xi ≥ 0 | i ∈ {1, . . . , z}}, (14.18)

X−
max = max{Xi < 0 | i ∈ {1, . . . , z}}. (14.19)

Assume by contradiction that X /∈ {X+
min, X

−
max}. If X ≥ 0, then, by

minimality of X+
min, we have X > X+

min and by monotonicity of D, we have

0 ≤ D(X+
min) ≤ D(X). (14.20)
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If the second inequality is strict, we get a contradiction with the function
minimality of X and equality contradicts the representation minimality of
X. Thus, in this case, X = X+

min. Similarly, if X < 0, then, by maximality
of X−

max, we have X < X−
max and by monotonicity of D, we have

D(X) ≤ D(X−
max) < 0 (14.21)

and so
|D(X)| ≥ |D(X−

max)| > 0 (14.22)

If the first inequality in Equation (14.22) is strict, we get a contradiction with
the function minimality of X and equality contradicts the representation
minimality of X. Thus, in this case, X = X−

max proving the claim.

Corollary 14.8 shows that the minimal function output of D in absolute
value is either obtained for the minimal non-negative or the maximal neg-
ative element in a given set of comparison values. However, the minimal
function output may not be reached by the minimal function input in abso-
lute values. To better understand this bias, we note that for all Y ∈ R+ \Z,
we have

⌊Y ⌋ < Y < | ⌊−Y ⌋ | = ⌊Y ⌋+ 1 (14.23)

and for all Y ∈ Z≥0, we have

⌊Y ⌋ = Y = | ⌊−Y ⌋ | < ⌊Y ⌋+ 1. (14.24)

Thus, for all X ∈ Z ∩
(
0, M2 −mmax

)
, we have

D(X) = c1

⌊
X

m1

⌋
+ · · ·+ ck

⌊
X

mk

⌋
(14.25)

< c1

∣∣∣∣⌊−Xm1

⌋∣∣∣∣+ · · ·+ ck

∣∣∣∣⌊−Xmk

⌋∣∣∣∣ (14.26)

=

∣∣∣∣c1 ⌊−Xm1

⌋
+ · · ·+ ck

⌊
−X
mk

⌋∣∣∣∣ (14.27)

= |D(−X)| (14.28)

where the inequality in Equation (14.26) follows from the fact that
X ∈ Z ∩

(
0, M2 −mmax

)
is not divisible by all moduli and the equality

in Equation (14.27) is obtained as ci > 0 for all i ∈ {1, . . . , k}. Thereby, the
function evaluation of a negative integer is in absolute value always larger
than the function evaluation of its positive equivalent. Nonetheless, as

|D(−X)| = c1

∣∣∣∣⌊−Xm1

⌋∣∣∣∣+ · · ·+ ck

∣∣∣∣⌊−Xmk

⌋∣∣∣∣ (14.29)
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≤ c1
(⌊

X

m1

⌋
+ 1

)
+ · · ·+ ck

(⌊
X

mk

⌋
+ 1

)
(14.30)

= c1

⌊
X

m1

⌋
+ · · ·+ ck

⌊
X

mk

⌋
+

k∑
i=1

ci (14.31)

= D(X) +

k∑
i=1

ci, (14.32)

the function evaluation of a negative integer is in absolute value bounded
by the function evaluation of its positive equivalent.

14.3 Intermediate sizes

For efficiency reasons, one may ask about the size of the intermediate values
and the final output of the function D+ or D. Of course, intermediate values
can be bounded as a function of SQ which itself is a function of c1, . . . , ck
and M1, . . . ,Mk. Very roughly, one can upper bound SQ by CMmax where
C =

∑k
i=1 ci and Mmax = maxi∈{1,...,k}Mi. Assuming that ci is polynomial

in M , the new modulus is polynomial in M . The function outputs underlie
the same comment. For example, for all Z ∩

(
−M

2 +mmax,
M
2

]

|D(X)| ≤ D(|X|) +
k∑

i=1

ci, (14.33)

≤ c1
⌊
|X|
m1

⌋
+ · · ·+ ck

⌊
|X|
mk

⌋
+

k∑
i=1

ci (14.34)

≤ c1
|X|
m1

+ · · ·+ ck
|X|
mk

+
k∑

i=1

ci (14.35)

= |X|c1M1 + · · ·+ ckMk

M
+

k∑
i=1

ci (14.36)

= |X|SQ
M

+ C (14.37)
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14.4 A family of functions minimized in an ex-
tremum

The function D is completely defined by

D(X) = [κ1x1 + . . . , κkxk mod SQ]. (14.38)

This implies that we can also work with the remainders

(x1, . . . , xk) ∈ Zm1 × · · · × Zmk
(14.39)

instead of the recombined elements in ZM to retrieve a minimizing element.
Thus, modifying the underlying coefficients ci of the function D results in a
family of non-related functions defined by

SQγ = cγ1M1 + · · ·+ cγkMk (14.40)

and
Dγ(X) =

[
κγ1x1 + . . . , κγkxk mod SQγ

]
(14.41)

each minimizing in either the maximal negative or the minimal non-negative
element of a given set. In the next chapter, this conclusion is used to investi-
gate the Simultaneous Chinese Remainder Problem from a new perspective.





Chapter 15

Lattice solving methods

In this chapter, we present two lattice-based solving methods to find the
minimal primitive solution to the Simultaneous Chinese Remainder Prob-
lem. Both methods were already studied in [BN00] but we generalize and
improve the second method.

Hereinafter, let m1, ...,mk ≥ 2 be pairwise coprime integers and for all
i ∈ {1, ..., n} let Ri = {ri,1, . . . , ri,ti} ⊆ {0, 1, ...,mi − 1} be a non-empty set

of possible remainders modulo mi. Let M =
∏k

i=1mi and Mi =
M
mi

for all
i ∈ {1, . . . , k}. We consider the Simultaneous Chinese Remainder Problem
instance

SimCRP((m1,R1), ..., (mk,Rk)). (15.1)

Let χ denote any solution of this problem instance and let χmin denote its
minimal solution.

15.1 Coppersmith’s method

The first solving technique is based on Coppersmith’s theorem on finding
small roots of small degree univariate modular polynomials.

Theorem 15.1 ([Cop97, Corollary 1]). Let P be a monic polynomial of

degree T in one variable modulo M ∈ Z≥2. If B ≤ M
1
T , then in time

polynomial in (log(M), 2T ), we can find all x0 ∈ Z such that P(x0) ≡ 0
mod M and |x0| ≤ B.

To find these solutions, Coppersmith relies on three main observations.
First, finding roots of real polynomials is efficient as shows for example
the Vincent-Collins-Akritas method [RZ04]. Thus, if the modular polyno-
mial can be transformed into an integer polynomial, it can also profit from
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those efficient algorithms. Second, if the coefficients of a modular polyno-
mial are sufficiently small, then the corresponding real polynomial has the
same roots. Third, a polynomial with large coefficients can be transformed
into a polynomial with small coefficients through the construction of a par-
ticular lattice and the use of elementary lattice reduction (i.e., LLL). We
skip the details of this construction and refer to [Gal12, Chapter 19] for an
illustrative summary.

15.1.1 The approach

If the minimal solution of the considered Simultaneous Chinese Remainder
Problem in Equation (15.1) is sufficiently small, then it suffices to construct
first a polynomial whose roots correspond to the solutions of the Simul-
taneous Chinese Remainder Problem and subsequently use Coppersmith’s
result. The relation between Chinese Remaindering and Polynomial Inter-
polation described in Section 8.6 helps us with this construction. Indeed,
let T = maxi∈{1,...,n}{ti} and let for each i ∈ {1, .., n}, let

Pi(x) := (x− ri,1)T−ti

ti∏
j=1

(x− ri,j). (15.2)

Then, for any solution χ of the Simultaneous Chinese Remainder Problem
instance in Equation (15.1)

Pi(χ) ≡ 0 mod mi. (15.3)

Set

bi :=
q
M−1

i mod mi

y
Mi (15.4)

and compute

P (x) :=

k∑
i=1

biPi(x). (15.5)

Then, bi ≡ δi,j mod mj , where δi,j denotes the Kronecker symbol defined
by δi,j = 0 whenever j ̸= i and δi,i = 1. Thus, P ≡ Pi mod mi for all
i ∈ {1, ..., n} which implies that:

1. P (χ) ≡ 0 mod M as P (χ) ≡ Pi(χ) ≡ 0 mod mi for all i ∈ {1, ..., k}.

2. P (x) is of degree T as all the Pi’s are so and the leading terms do not
cancel out because bi > 0 for all i ∈ {1, . . . , k}.
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3. P (x) is monic modulo M as all the Pi’s are monic, of the same degree
and multiplied by coefficients that satisfy

∑k
i=1 bi ≡ 1 mod M .

Thereby, provided that χmin is sufficiently small, we can use Coppersmith’s
method for finding it.

Proposition 15.2. If χmin < M
1
T , then the minimal solution of the Simul-

taneous Chinese Remainder Problem SimCRP((m1,R1), ..., (mk,Rk)) can be
found in time polynomial in (log(M), 2T ).

15.1.2 Comments

We note that the definition of the initial polynomials Pi in Equation (15.2)
sets the first term in the product to be (x − ri,1)T−ti . This choice has the
sole purpose of obtaining a degree T polynomial whose roots do not differ
from the remainders ri,1, . . . , ri,ti . However, one may replace this auxiliary
term with any other product of monomials whose roots do not differ from
the given remainders and result in a degree T − ti polynomial.

We remark that the success of Coppersmith’s method strongly depends
on the size of the largest remainder set. Indeed, the largest remainder set
defines T and so the upper bound M

1
T for the minimal solution χmin. A

single large remainder set is sufficient to make the method impractical.
We need to pay attention to the fact that a solution of the considered Si-

multaneous Chinese Remainder Problem obtained by Coppersmith’s method
may not correspond to the minimal, but the maximal solution. Therefore,
the sign needs to be checked.

Finally, we observe that the recursive use of the method allows us to
always find the minimal solution. Indeed, if the minimal solution was not
found in the interval [0,M

1
T ], then, the minimal primitive solution is greater

than M
1
T . Thus, we can shift the solutions of the considered Simultane-

ous Chinese Remainder Problem instance in Equation (15.1) collectively by

2M
1
T to the left by computing

R̃i =
{r

ri −
⌊
2M

1
T

⌋
mod mi

z ∣∣∣ r ∈ Ri

}
, (15.6)

and repeat the process with R̃i. Now, either the minimal solution is found
or we continue with another shift.
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15.2 Bleichenbacher-Nguyen method

The second solving method represents the Simultaneous Chinese Remainder
Problem as a particular sum over binary unknowns and mimics Lagrange’s
interpolation method to solve it.

15.2.1 First approach

Let

bi :=
[
M−1

i mod mi

]
Mi (15.7)

such that bi ≡ δi,j mod mj . Then, the minimal solution χmin modulo

M =
∏k

i=1mi satisfies

χmin ≡
k∑

i=1

Jχmin mod miK bi mod M (15.8)

indicating that we only need to find the right indices of the corresponding
remainders. To do so, we define unknown binary values ηi,j by ηi,j = 1
if χmin ≡ ri,j mod mi and ηi,j = 0 otherwise. With this notation, Equa-
tion (15.8) takes the form

χmin ≡
k∑

i=1

ti∑
j=1

ηi,jri,jbi mod M. (15.9)

To find χmin, set TΣ =
∑k

i=1 ti and consider the (TΣ + 1) × (TΣ + 1) row
lattice

Λ = L


M 0 0 ... 0

r1,1b1 B 0 ... 0
r1,2b1 0 B ... 0

...
...

. . .
...

rn,tk
bk 0 0 ... B

 , (15.10)

whose elements are given by (X, η1,1B, η1,2B, ..., ηn,tkB) ∈ ZTΣ+1 such that

X ≡
∑k

i=1

∑m
j=1 ηi,jri,jbi mod M . As desired, Λ contains the target vector

v := (χ, η1,1B, η1,2B, ..., ηn,tkB). (15.11)

A quick analysis shows that the target vector has norm√
χ2 + kB2 ≤ B

√
k + 1 (15.12)
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and is thus comparably short. Indeed, the determinant of Λ is
det(Λ) = MBTΣ and so the Gaussian heuristic predicts a shortest vector
of length

λ1(Λ) ≃
√
TΣ + 1

2πe
det(Λ)

1
TΣ+1 =

√
TΣ + 1

2πe
(MBTΣ)

1
TΣ+1 . (15.13)

Thus, if B
√
k + 1 ≤

√
TΣ+1
2πe (MBTΣ)

1
TΣ+1 , then the target vector has a high

chance of being a shortest vector.

Remark 15.3. The Gaussian heuristic needs to be considered with caution.
In [BN00, Appendix C], the authors remark that any sufficiently small linear
combination of ri,1, ..., ri,ti gives rise to a shorter lattice point.

To limit the possibility of bad recombinations, a block condition on the
indices can be inserted, namely that

ti1∑
j=1

ηi1,j =

ti2∑
j=1

ηi2,j (15.14)

for all 1 ≤ i1, i2 ≤ k. A lattice Λ̃ with this additional condition can be ob-
tained in polynomial time as the intersection of the full-dimensional lattice
Λ ⊆ ZTΣ+1 with the (TΣ− k+1)-dimensional vector subspace satisfying the
above condition. Thus, Λ̃ is a (TΣ−k+1)-dimensional lattice in ZTΣ+1. De-
spite this improvement, bad cross combinations persist and the combination
of two suitable basis vectors of Λ̃ is sufficient to generate a shorter vector
than v.

15.2.2 Remarks

The Bleichenbacher-Nguyen method enjoys a straightforward classic con-
struction and it should find the minimal solution beyond Coppersmith’s
bound. However, it suffers from many undesired cross-combinations result-
ing in shorter lattice vectors than the target vector. Even after intersect-
ing with a suitable vector space, most of those cross combinations remain.
For example, the combination of the first, second, and third row in Equa-
tion (15.10) leads to

([(r1,1 − r1,2)b1 mod M ], B,−B, 0, . . . , 0) . (15.15)

having only two entries equal to B in absolute value. In comparison, our
target vector v in Equation (15.11) has k entries equal to B in absolute
value. Thus, if [(r1,1 − r1,2)b1 mod M ] is sufficently small or B sufficiently
large, then v is not be a shortest vector.
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15.2.3 Second approach

To improve the Bleichenbacher-Nguyen method, we make use of the family of
functions constructed in Chapter 14. Indeed, let Γ ∈ N≥1 and define, for each
γ ∈ {1, . . . ,Γ}, a functional modulus

SQ(γ) = c
(γ)
1 M1 + · · ·+ c

(γ)
k Mk (15.16)

for some c
(γ)
1 , . . . , c

(γ)
k ∈ N such that gcd(c

(γ)
i ,mi) = 1 for all i ∈ {1, . . . , k}.

Define the corresponding functional coefficients as

k
(γ)
i :=

[
−c(γ)i m−1

i mod SQ(γ)
]

(15.17)

for all γ ∈ {1, . . . ,Γ} and all i ∈ {1, . . . , k}. By Corollary 14.8, the functions
D(1), . . . , D(Γ) defined by these moduli are minimized for either the minimal
or maximal solution χ of the underlying Simultaneous Chinese Remainder
Problem.

Remark 15.4. Remark 14.7 guarantees that the restricted analysis of D
on the interval

(
−M

2 +mmax,
M
2

]
does not counterfeit the upcoming results.

Theorem 12.2 indicates that the smallest solution can only be expected to lie
in this interval if all remainder sets are singletons. Furthermore, elements
from this set produce relatively large function outputs in absolute value such
that it is unlikely that a lattice minimum with such an entry exists.

We note that if

χ ≡
k∑

i=1

ti∑
j=1

ηi,jri,jbi mod M, (15.18)

then,

D(γ)(χ) ≡
k∑

i=1

ti∑
j=1

ηi,jri,jk
(γ)
i mod SQ(γ) (15.19)

for all γ ∈ {1, . . . ,Γ}. This conclusion can be obtained by inserting Equa-
tion (15.18) into

D(γ)(χ) =
[
k
(γ)
1 χ1 + . . . , k

(γ)
k χk mod SQ(γ)

]
(15.20)

where χi = Jχ mod miK and observing that χi ≡
∑ti

j=1 ηi,jri,j as bi ≡ δi,j
mod mj . We define our lattice by extending the Bleichenbacher-Nguyen
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lattice with the additional functional moduli and their functional coefficients.
This leads to the (TΣ + 1 + Γ)× (TΣ + 1 + Γ) row lattice

Λ = L



M 0 0 ... 0 0 0 ... 0

r1,1b1 B 0 ... 0 r1,1k
(1)
1 r1,1k

(2)
1 ... r1,1k

(Γ)
1

r1,2b1 0 B ... 0 r1,2k
(1)
1 r1,2k

(2)
1 ... r1,1k

(Γ)
1

...
...

. . .
...

...
...

...
rk,tk bk 0 0 ... B rk,tkk

(1)
k rk,tkk

(2)
k ... rk,tkk

(Γ)
k

0 0 0 ... 0 SQ(1) 0 ... 0

0 0 0 ... 0 0 SQ(2) ... 0

...
...
...

...
...

...
. . .

...
0 0 0 ... 0 0 0 ... SQ(Γ)


(15.21)

whose elements are given by

(X, η1,1B, η1,2B, ..., ηk,tkB,X
(1), . . . , X(Γ)) ∈ ZTΣ+1+Γ (15.22)

such that

X ≡
k∑

i=1

m∑
j=1

ηi,jri,jbi mod M (15.23)

and

X(γ) ≡
k∑

i=1

m∑
j=1

ηi,jri,jk
(γ)
i mod SQ(γ) (15.24)

for all γ ∈ {1, . . . ,Γ}. To limit the possibility of bad recombinations, we
impose again that any combination satisfies

ti1∑
j=1

ηi1,j =

ti2∑
j=1

ηi2,j (15.25)

for all 1 ≤ i1, i2 ≤ k which is achieved by the following intersection

Λ̃ = Λ ∩ L



1 0 0 ... 0 0 0 ... 0 ... 0 0 ... 0
0 B 0 ... 0 B 0 ... 0 ... B 0 ... 0
0 0 B ... 0 B 0 ... 0 ... B 0 ... 0
...
...

. . .
...
...

...
...
...

...
0 0 0 ... B B 0 ... 0 ... B 0 ... 0
0 B 0 ... 0 B 0 ... 0 ... B 0 ... 0
0 B 0 ... 0 0 B ... 0 ... B 0 ... 0
...
...
...

...
...

. . .
...
...

...
0 B 0 ... 0 0 0 ... B ... B 0 ... 0
...
...
...

...
...

. . .
...
...

...
0 B 0 ... 0 B 0 ... 0 ... B 0 ... 0
0 B 0 ... 0 B 0 ... 0 ... 0 B ... 0
...
...
...

...
...
...

...
...

. . .
0 B 0 ... 0 B 0 ... 0 ... 0 0 ... B


. (15.26)
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We note that the matrix in Equation (15.26) is only a generating set and
not a basis of L. Furthermore, we observe that Λ̃ contains the target vector

τ :=
(
χ, η1,1B, η1,2B, ..., ηk,tkB,D

(1)(χ), . . . , D(Γ)(χ)
)

(15.27)

where for all γ ∈ {1, . . . ,Γ}, D(γ) denotes the centrally symmetric function
corresponding to the modulus SQ(γ) defined in Chapter 14. The target vec-
tor τ is comparably short. Indeed, setting max{SQ(1), . . . , SQ(Γ)} = SQmax

and using the rough estimate Dmax(χ) ≤ χSQmax

M from Equation (14.37)
yields

∥τ∥2 ≤

√
kB2 + χ2 + Γχ2

(
SQmax

M

)2

. (15.28)

The determinant of Λ is det(Λ) =M ·BTΣ
∏Γ

i=1 SQ
(i) and so the Gaussian

heuristic predicts a short vector of length

λ1(Λ) ≃
√
TΣ + Γ + 1

2πe
det(Λ)

1
TΣ+Γ+1 (15.29)

=

√
TΣ + Γ + 1

2πe

(
M ·

Γ∏
i=1

SQ(i) ·BTΣ

) 1
TΣ+Γ+1

. (15.30)

To put this analysis into context, we restrict to a particular set of mod-
uli with nice properties. Set Γ = k + 1, define SQ(k+1) =M1 + · · ·+Mk

and let SQ(i) = SQ(k+1) + Mi for all i ∈ {1, . . . , k}. Assuming that the
initial moduli mi were ordered in increasing order m1 < · · · < mk yields

that max{D(1)(χ), . . . , D(k+1)(χ)} = D(1). Since D(1)(χ) ≤ χSQ(1)

M and

SQ(1) ≤ (k + 1)M1, this implies that D(1)(χ) ≤ χ (k+1)
m1

. Thus,

∥τ∥2 ≤

√
kB2 + χ2 + χ2

(k + 1)3

m2
1

(15.31)

≤ B

√
k + 1 +

(k + 1)3

m2
1

(15.32)

≤ B
√
k + 1

m1 + k + 1

m1
. (15.33)

The determinant of Λ is det(Λ) = M · SQ · BTΣ ·
∏k

i=1 SQ
(i) and so the

Gaussian heuristic predicts a short vector of expected length

λ1(Λ) ≃
√
TΣ + k + 2

2πe
det(Λ)

1
TΣ+k+2 (15.34)
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=

√
TΣ + k + 2

2πe
(M · SQ ·

k∏
i=1

SQ(i) ·BTΣ)
1

TΣ+k+2 (15.35)

≤
√
TΣ + k + 2

2πe
(M · kMk ·

k∏
i=1

(k + 1)Mk ·BTΣ)
1

TΣ+k+2 (15.36)

≤
√
TΣ + k + 2

2πe
M

k+2
TΣ+k+2 ·B

TΣ
TΣ+k+2

(
k

mk

) k+1
TΣ+k+2

. (15.37)

Thus, if
√
k + 1m1+k+1

m1

(
mk
k

) k+1
TΣ+k+2 ≤

√
TΣ+k+2

2πe

(
M
B

) k+2
TΣ+k+2 , then the target

vector has a high chance of being a shortest vector.

Remark 15.5. Once again, the Gaussian heuristic should be used with
caution. Indeed, our method still suffers from bad combinations caused by
sufficiently small linear combinations of remainders. In particular, for all

ri,j1 , ri,j2, there exists a vector of length B
√
r2i,j1 + r2i,j2 obtained by sub-

tracting the corresponding rows in Equation (15.21). Thus, if ri,j1 , ri,j2 , B
are sufficiently small, this vector is a short vector.





Chapter 16

Reformulations

In this chapter, we reformulate some Simultaneous Chinese Remainder Prob-
lem variants.

16.1 A sieving problem

In this section, we display the General Bounded Simultaneous Chinese Re-
mainder Problem from Definition 10.10 as a particular sieving problem. For
this development, let m1 = p1, ...,mk = pk be distinct primes and let for
all i ∈ {1, ..., k} Ri = {ri,1, . . . , ri,ti} ⊆ {0, 1, ..., pi − 1} be a non-empty set

of possible remainders modulo pi. Let M =
∏k

i=1 pi and Mi = M
pi

for all
i ∈ {1, . . . , k}. We consider the Simultaneous Chinese Remainder Problem
instance

SimCRP((p1,R1), ..., (pk,Rk)) (16.1)

with solutions in {0, . . . , (
∏k

i=1 pi) − 1}. Our presentation follows [CM05,
Chapter 6] and [HH11, Chapter 2]. We refer to [For20] for an alternative
description of the upcoming sieving results.

16.1.1 Intuition

Informally, a mathematical sieve requires a base set A, a prime set P where
for each prime p ∈ P a specific set Ap ⊆ A of undesired elements is given,
and an upper sieving bound z. It then approximates the number of elements
in A \

⋃
p∈P Ap. We note that this last quantity is related to the primitive

solution set of a Simultaneous Chinese Remainder Problem. Indeed, if

• A = {0, . . . , (
∏k

i=1 pi)− 1},
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• P = {p1, . . . , pk}, and

• Api = {a ∈ A | Ja mod piK /∈ Ri},

then A \
⋃

p∈P Ap is the primitive solution set of

SimCRP((p1,R1), ..., (pk,Rk)). (16.2)

If A = {0, . . . , B−1} for some B ∈ {0, . . . , (
∏k

i=1 pi)−1}, then A\
⋃

p∈P Ap

represents the set of primitive solutions smaller than B. Thus, if
|A \

⋃
p∈P Ap| > 0, then the corresponding General Bounded Simultane-

ous Chinese Remainder Problem instance has an affirmative solution.

16.1.2 Auxiliary notations

Hereinafter, A = A1 ⊆ N denotes any non-empty subset of natural numbers.
P denotes a set of prime numbers. The letter p is used to denote a generic
prime, and z ∈ R+ denotes a fixed positive real number. For any prime
p ∈ P, we fix an associated set Ap ⊆ A. For any square-free natural number
d generated by primes of P only, let Ad =

⋂
p|dAp be the intersection of

the associated sets of the prime divisors of d. Let P (z) =
∏

p∈P
p<z

p be the

product of all primes from P that are smaller than z. Let

S(A,P, z) =

∣∣∣∣∣∣A \
⋃

p|P (z)

Ap

∣∣∣∣∣∣ (16.3)

be the number of elements in A that do not belong to any associated set Ap

for all p dividing P (z).

Remark 16.1. Choosing the sets A,P,Api for all i ∈ {1, . . . , k} as indicated
at the end of Section 16.1.1 and setting z > maxi∈{1,...,k} pi, shows that
S(A,P, z) is the number of primitive solutions of Equation (16.2) smaller
than B.

Additionally, let µ : N≥1 → {−1, 0, 1} denote the multiplicative Möbius
function defined by µ(1) = 1, µ(p) = −1, µ(pα) = 0 for all α ≥ 2 so that
µ(p1...pk) = (−1)k. Let ν : N≥1 → N≥1 be the prime divisor function
counting the number of distinct prime divisors of a given natural number.
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16.1.3 Elementary sieve results

Using the notations from Section 16.1.2, the following fundamental result
on sieves can be deduced.

Theorem 16.2 (Theorem 6.2.1 in [CM05]). For any function g such that
g(1) = 1, we have

S(A,P, z) =
∑

d|P (z)

µ(d)g(d)|Ad| −
∑

d|P (z)

∑
p|P (z)
p<q(d)

µ(d)(g(d)− g(pd))S(Apd,P, p)

where q(d) denotes the smallest prime divisor of d with the convention that
q(1) = +∞.

Theorem 16.2 is remarkable as it generalizes a variety of classical results.
Indeed, setting g(d) = 1 for all d ∈ N leads to the inclusion-exclusion prin-
ciple

S(A,P, z) =
∑

d|P (z)

µ(d)|Ad|, (16.4)

and setting g(1) = 1 and g(d) = 0 for all d > 1 leads to Buchstab’s identity

S(A,P, z) = |A| −
∑

p|P (z)

S(Ap,P, p). (16.5)

To illustrate these results, consider the following Simultaneous Chinese
Remainder Problem

SimCRP((3, {1, 2}), (5, {2, 3}), (7, {3, 4, 5})). (16.6)

Setting

• A = {0, . . . , 104},

• Ā3 = {0},

• Ā5 = {0, 1, 4}, and

• Ā7 = {0, 1, 2, 6},

allows to define Ap = {x ∈ A | Jx mod pK ∈ Āp} for all p ∈ {3, 5, 7}.
Setting Ad = ∩p|dAp and observing that |Ad| = |A|

d |Ād|, we can compute
S(A, {3, 5, 7}, z) which corresponds to the number of primitive solutions of
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Equation (16.6). Indeed, the inclusion-exclusion principle correctly predicts
that for z > 7 there are

S(A, {3, 5, 7}, z) (16.7)

=
∑
d|105

µ(d)|Ad| (16.8)

= |A| − |A3| − |A5| − |A7|+ |A15|+ |A21|+ |A35| − |A105| (16.9)

= 105− 35− 63− 60 + 21 + 20 + 36− 12 (16.10)

= 12 (16.11)

solutions to Equation (16.6) inside A. Buchstab’s identity yields the same
conclusion, but interchanges the summation order:

S(A, {3, 5, 7}, z) (16.12)

= |A| −
∑

p|P (z)

S(Ap,P, p) (16.13)

= |A| − S(A3, {3, 5, 7}, 3)− S(A5, {3, 5, 7}, 5)− S(A7, {3, 5, 7}, 7) (16.14)

= |A| − (|A3|)− (|A5| − |A15|)− (|A7| − |A21| − |A35|+ |A105|) (16.15)

= 12. (16.16)

We note that these computations used exact information on the sets Ad

which are usually not available. Indeed, the elegant conclusion
|Ad| = |A|

d |Ād| stems from our particular choice of A. However, if A is
chosen differently, this exact information can only be determined by com-
puting Ad explicitly which would trivially solve the underlying Simultaneous
Chinese Remainder Problem. Thus, usually, |Ad| is only determined approx-

imately. For example,
⌊
|A|
d

⌋
|Ād| ≤ |Ad| ≤

⌈
|A|
d

⌉
|Ād| where Ād denotes the

undesired remainders modulo d. As each combination of primes needs to be
considered, an exponential number of errors needs to be handled.

The computations can be simplified by considering only the most im-
portant terms of the sum in Equation (16.4). For example, setting g(d) = 1
whenever the number of distinct prime divisors of d is lower than 1 and
g(d) = 0 otherwise (i.e., ν(d) > 1) leads to the equality

S(A,P, z) = |A| −
∑

p|P (z)

|Ap|+
∑

p|P (z)

∑
p1|P (z)
p1<p

S(App1 ,P, p1). (16.17)

Recursively applying the same strategy to the rightmost sum reveals grad-
ually more terms of the inclusion-exclusion principle. As the rightmost
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sum is always non-negative, this approach yields increasingly precise lower
bounds for S(A,P, z). These bounds are called lower Bonferroni bounds for
S(A,P, z). For example, the first Bonferroni bound is obtain as

S(A,P, z) ≥ |A| −
∑

p|P (z)

|Ap|. (16.18)

the second one by

S(A,P, z) ≥ |A| −
∑

p|P (z)

|Ap|+
∑

p|P (z)

∑
p1|P (z)

p1<p

(
|App1

| −
∑

p2|P (p1)

|App1p2
|
)
. (16.19)

and the n-th Bonferroni bound by

S(A,P, z) ≥
∑

d|P (z)
ν(d)<2n−1

µ(d)|Ad|. (16.20)

Yet again, the difficulty lies in determining |Ad| for all the square-free divi-
sors d considered inside the sums.

16.1.4 Brun’s sieve

A good approximation of S(A,P, z) using Theorem 16.2 requires an ade-
quate error management. This may be achieved by a particular choice of
the function g in Theorem 16.2 which simultaneously minimizes the number
and the size of the errors. An extraordinarily creative choice of g allowed
Viggo Brun [Bru15] to prove the following theorem.

Theorem 16.3 (Brun’s sieve). Let ω : N → N be a multiplicative function
and assume that for all square-free d composed of primes of P only, we have

|Ad| = ω(d)
d |A| + Rd for some Rd ∈ Q. Let W (z) =

∏
p|P (z)

(
1− ω(p)

p

)
, let

b ∈ N≥1 and let λ ∈ R+ be such that 0 < λe1+λ < 1. Suppose that

1. |Rd| ≤ ω(d) for all squarefree d composed by primes of P only,

2. there exists A1 ≥ 1 such that 0 ≤ ω(p)
p ≤ 1− 1

A1
, and

3. there exist κ > 0 and A2 ≥ 1 such that for all 2 ≤ w ≤ z∑
w≤p<z

ω(p) log(p)

p
≤ κ log

( z
w

)
+A2.
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Let α = 2λ
κ

1
1+ϵ where ϵ = 1

1+ 1

200e1/κ

. Then, for all sufficiently large z we

have

S(A,P, z) > |A|W (z)

(
1− 2λ2be2λ

1− λ2e2+2λ
e
(2b+2)

c1
λ log(z)

)
− E

where c1 =
A2
2

(
1 +A1

(
κ+ A2

log(2)

))
and E = z

2b−1+ 2.01

e2λ/κ−1 .

Remark 16.4. Theorem 16.3 is an explicit version of [HH11, Theorem 2.1]
that can be directly deduced from their proof by taking care of the error terms.
Similarly, it can be shown that

log(z) ≥ max

(
log(2)e

2c1e
α

κ log(2)ϵ , 33max(A2, κ)

)
(16.21)

is sufficiently large to deduce the desired conclusion.

Setting ω(pi) = |Āpi | for all i ∈ {1, . . . , k} where Āpi = {0, . . . , pi−1}\Ri

and multiplicatively extending ω to squarefree composites d|P (max pi) re-
veals again the connection to the General Bounded Simultaneous Chinese
Remainder Problem. Despeit its promising potential to solve the General
Bounded Simultaneous Chinese Remainder Problem, Brun’s sieve is imprac-
tical for most instances. Indeed, the required sieving bound z is generally
large, which increases the error E. Thus, to guarantee a positive lower
bound, |A| and W (z) need to be sufficiently large. As W (z) is fixed by the
given moduli and A ⊂ {0, . . . , (

∏k
i=1 pi)−1} cannot be arbitrarily extended,

one can usually only deduce a trivial negative lower bound for S(A,P, z).

16.2 A subset sum problem

In this section, we formulate the Maximal Simultaneous Chinese Remain-
der Problem from Definition 11.3 as a particular subset sum problem. For
this development, let m1, ...,mk be pairwise coprime moduli and let for all
i ∈ {1, ..., k} Ri = {ri,1, . . . , ri,ti} ⊆ {0, 1, ...,mi − 1} be a non-empty set

of possible remainders modulo mi. Let M =
∏k

i=1mi and Mi =
M
mi

for all
i ∈ {1, . . . , k}. We consider the Simultaneous Chinese Remainder Problem
instance

SimCRP((m1,R1), ..., (mk,Rk)) (16.22)

with solutions in {0, . . . , (
∏k

i=1mi)− 1}. Our presentation follows [KPP04].
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16.2.1 The multiple-choice knapsack problem and its subset
sum equivalent

The traditional knapsack problem puts forth a set of items R, where each
item has a weight w and a price p and asks to choose a subset of items such
that the sum of prices is maximized subject to a knapsack capacity constraint
claiming that the sum of weights cannot pass a fixed bound c. The multiple-
choice knapsack problem generalizes this problem by considering multiple
sets of items such that from each set exactly one item needs to be chosen.

Definition 16.5 (Multiple-choice knapsack problem). LetN1, . . . ,Nk ⊆ R2

be non-empty sets of items and let c ∈ R be a knapsack capacity. For all
i ∈ {1, . . . , k} and each j ∈ {1, . . . , |Ni|}, let the item vi,j = (pi,j , wi,j) ∈ Ni

have a profit pi,j and a weight wi,j . Maximize
∑k

i=1

∑|Ni|
j=1 ηi,jpi,j sub-

ject to the constraints that
∑k

i=1

∑|Ni|
j=1 ηi,jwi,j ≤ c,

∑|Ni|
j=1 ηi,j = 1 for all

i ∈ {1, . . . , k}, and ηi,j ∈ {0, 1} for all i ∈ {1, . . . , k}.

Usually, the prices pi,j , the weights wi,j , and the knapsack capacity c are
non-negative integers, a convention that we adopt hereinafter. If pi,j = wi,j

for all i ∈ {1, . . . , k} and all j ∈ {1, . . . , |Ni|}, then we talk about the
multiple-choice subset sum problem.

16.2.2 Problem construction

We observe the striking resemblance of the constraints from Definition 16.5
with Equation (15.9) and we use this similarity to reformulate the considered
Simultaneous Chinese Remainder Problem instance into a multiple-choice
subset-sum problem. Indeed, for all i ∈ {1, . . . , k}, we let
bi :=

[
M−1

i mod mi

]
Mi and set

Ni = {Jrbi mod MK | r ∈ Ri}. (16.23)

Naturally, any solution χ of the considered Simultaneous Chinese Remainder
Problem instance in Equation (16.22) satisfies

χ ≡
k∑

i=1

ti∑
j=1

ηi,jwi mod M (16.24)

for some wi ∈ Ni for all i ∈ {1, . . . , k} and the corresponding binary co-
efficients ηi,j . It remains to construct an integer problem. To do so, we
introduce another value set

N∗ = {0,M, 2M, . . . , (k − 1)M} (16.25)
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and set the knapsack capacity to c = kM − 1. The sets N1, . . . ,Nk,N∗
and c define our multiple-choice subset sum problem. By construction, if
χ1 the maximal solution to the Simultaneous Chinese Remainder Problem
instance in Equation (16.22) and χ2 is the solution of the considered subset
sum problem, then

χ1 = Jχ2 mod MK. (16.26)

Remark 16.6. We note that the subset-sum constructed from the Simulta-
neous Chinese Remainder Problem offers more structure than random subset
sum problems. For example, all elements from one set Ni are divisible by bi
for all i ∈ {1, . . . , k}.

Remark 16.7. We can also construct an equivalent subset sum problem
using the function D+ from Proposition 14.3. By choosing SQ < M , we
have a trade-off between the precision of the solution and the efficiency of
the solving methods.

16.2.3 Remarkable results

[Pis03] showed that a multiple-choice subset sum problem with N1, . . . ,Nk

and knapsack capacity c can be solved with a dynamic programming algo-
rithm in time and space O(TΣ+ c

log(c)) where TΣ =
∑k

i=1 |Ni|. This matches

the complexity of the ordinary subset sum problem. [HLLP16] developed
an approximate binary search algorithm that returns for all t ∈ N, in time

O(TΣ(t+ log(k)), a solution z such that z∗−z
z∗ ≤

2+ 1
2t

3+ 1
2t

where z∗ denotes the

optimal solution. [Law77] developed a fully polynomial time approximation
scheme finding a solution z such that z∗−z

z∗ ≤ ϵ in time O(TΣlog(TΣ)+
kTΣ
ϵ ).

We note that the large size of the solution that we expect for the multiple-
choice subset-sum constructed in Section 16.2.2 makes these solving methods
impractical. Indeed, the exact solver from [Pis03] has a time complexity of
O( kM

log(kM)) that is much higher than other solving methods that we stud-
ied in previous chapters. Considering the approximate solvers, we observe
that ϵ in z∗−z

z∗ ≤ ϵ shrinks with increasing k. Indeed, as z∗ < kM we de-

duce that z∗−z
kM ≤ z∗−z

z∗ . To obtain a non-trivial solution, we require that
z∗−z ≤M . Thus, ϵ ≤ 1

k . Thereby, [HLLP16] is not suitable for our purpose
and [Law77] can only be used for sufficiently small ϵ, which increases the
time complexity. For example, if z∗ − z ≤ ϵ

√
M , then we require ϵ ≤ 1

k
√
M
,

which implies a time complexity of O(TΣlog(TΣ) + k2TΣ
√
M).



Chapter 17

An illustrative example

In this chapter, we summarize our previous development through a concrete
Simultaneous Chinese Remainder Problem instance. Indeed, consider

SimCRP((3, {1, 2}), (5, {2, 3}), (7, {3, 4, 5}),SM ) (17.1)

and let M = 3 · 5 · 7 = 105. As the moduli are coprime, solutions are
guaranteed and the Existential Simultaneous Chinese Remainder Problem
from Definition 10.1 is trivial. If SM = Z∩

(
−M

2 ,
M
2

]
= {−52, . . . , 52}, then

its primitive solution set is

{−52,−38,−37,−32,−23,−17,−2, 17, 32, 38, 47, 52} (17.2)

showing that the Bounded Simultaneous Chinese Remainder Problem in
Definition 10.7 has an affirmative solution for any bound B > 2. If
SM = Z ∩ [0,M) = {0, . . . , 104}, then its primitive solution set is

{17, 32, 38, 47, 52, 53, 67, 68, 73, 82, 88, 103} (17.3)

showing that the General Bounded Simultaneous Chinese Remainder Prob-
lem in Definition 10.10 has an affirmative solution if and only if B > 17.
Focusing on the latter problem setup, we note that the minimal solution is
17 and the maximal one 103. We note that

2− 1

5− 1
<

3− 1

7− 1
<

2− 1

3− 1
. (17.4)

such that under the optimal ordering from Proposition 12.4, Theorem 12.2
predicts that there are at least 12 solutions smaller than 105, 6 smaller than
70, 2 smaller than 60 and 1 smaller than 59. We observe that the given upper
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bounds are not tight which shows a general deficiency. To find the mini-
mal solution, Chapter 13 suggests first computing the 4 solutions modulo 15
by combining the remainder information modulo 3 and 5 and subsequently
computing the minimal solution through at most 10 comparisons. A direct
search for the minimal solution would require the computation of 12 solu-
tions modulo 105 and 11 comparisons. Using the development of Chapter 14,
we observe that for

SQ = 5 · 7 + 3 · 7 + 3 · 5 = 71, (17.5)

the function

D+ : {1, 2} × {2, 3} × {3, 4, 5} → {0, . . . , 70} (17.6)

defined by D+(x3, x5, x7) = J47x3 + 14x5 + 10x7 mod SQK is minimized
in D+(2, 2, 3) = 10, which corresponds to the minimal solution 17. On the
other hand, the function

D : {1, 2} × {2, 3} × {3, 4, 5} → {0, . . . , 70} (17.7)

defined by

D(x3, x5, x7) = [47x3 + 14x5 + 10x7 mod SQ] (17.8)

is minimized in D(1, 3, 5) = −3, which corresponds to the maximal solution
103 ≡ −2 mod 105 and consists in the smallest solution in absolute value.
Coppersmith’s method from Section 15.1 constructs the polynomial

P(x) := x3 + 23x2 + 26x+ 73 mod 105, (17.9)

and, as |−2| ≤ 4 < 105
1
3 = B, it successfully retrieves the maximal solution.

However, it is not guaranteed to find the minimal solution 17. Due to
the small size of the problem, neither the Bleichenbacher-Nguyen method
from Section 15.2.1 nor our improvement from Section 15.2.3 extend the
bound B. However, for comparison, we note that our improvement yields
a bound B ≃ 0.165 whereas Bleichenbacher-Nguyen yields B ≃ 0.0197. In
practice, both methods find the maximal and minimal solution. The running
example of Section 16.1 shows that sieve techniques might be used to find
all the solutions of Equation (17.1), but its small size hinders a theoretical
conclusion on the sieving bounds. To construct the multiple-choice subset
sum problem from Section 16.2.2, we set N1 = {35, 70}, N2 = {42, 63},
N3 = {45, 60, 75}, N∗ = {0, 105, 210}, and c = 315. The desired solution is
313 = 70 + 63 + 75 + 105 corresponding to the maximal solution 103.
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Experiments and heuristics

To better understand the Minimal Simultaneous Chinese Remainder Prob-
lem, we complete our theoretical development with some experimental re-
sults. These results allow us to analyze the behaviour of the minimal solu-
tion of Simultaneous Chinese Remainder Problem instances and to create
some heuristics. Hereinafter, we let m1, . . . ,mk ≥ 3 denote pairwise co-
prime moduli, M =

∏k
i=1mi, and Mi =

M
mi

for all i ∈ {1, . . . , k}. We use
the distribution notions from Chapter 2.

18.1 Cumulative distribution

Using the pairwise coprime moduli m1, . . . ,mk, we can build 2
∑k

i=1 mi dis-
tinct set products

R1 × · · · × Rk ⊆ {0, . . . ,m1 − 1} × · · · × {0, . . . ,mk − 1}. (18.1)

Removing every combination containing an empty set, we deduce that we
can build

∏k
i=1(2

mi − 1) distinct Simultaneous Chinese Remainder Problem
instances. As the moduli are pairwise coprime, we know that each problem
instance has exactly

∏k
i=1 |Ri| solutions. Computing the occurrence of an

integer as a minimal solution reveals a particular frequency distribution. In
Figure 18.1 we represent the counts of our study as scatter plots. A point
on position (x, y) indicates that x has been counted y times as the minimal
solution among the

∏k
i=1(2

mi−1) distinct Simultaneous Chinese Remainder
Problem instances. We note that the corresponding frequency distribution
has the same properties as the given scatter plots, but downscales the y-axis
to the probability space [0, 1] by dividing the count values by

∏k
i=1(2

mi−1).
For comparison purposes, we represent the count values only.
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Remark 18.1. The data sets for the statistics in this chapter were com-
puted using Sagemath 9.0 running on Python 3.7.3. The scatter plots were
generated using GraphPad Version 9.

The remarkable shape of our data resembles a geometric distribution (the
discrete version of an exponential distribution). The geometric distribution
is a discrete probability distribution that models the number of failures
before the first success. Let ω : Ω −→ R denote a real-valued random
variable following the geometric distribution. Then, ω is supported on the
set N and its probability mass function is defined by

P(ω = k) = (1− p)kp (18.2)

where p denotes the probability of success. The characteristics of the geo-
metric distribution are that:

1. the mode, meaning the integer value with the highest probability, is 0,

2. the mean is µ = 1−p
p , and

3. the median is
⌈

−1
log2(1−p)

⌉
− 1.

To link the geometric distribution to our data, we note that Ω can be fixed as
the set containing the

∏k
i=1(2

mi−1) distinct Simultaneous Chinese Remain-
der Problem instances for a fixed set of pairwise coprime modulim1, . . . ,mk.
Assume that we employ a brute-force counting method to find the minimal
solution of a Simultaneous Chinese Remainder Problem instance that starts
at 0 and counts upwards until it finds a solution. Then, we can define ω
such that it returns the number of iterations required by the brute-force
counting method to solve a problem instance from Ω. Success means finding
the minimal solution.

Remark 18.2. We note that this description does not perfectly reflect the
geometric distribution as the trials should take place under the same con-
dition. However, in each iteration of the brute-force counting algorithm
another integer is tested. Nonetheless, we will see that the geometric distri-
bution fits well our data.

Both, the geometric distribution and our data, are right-skewed, meaning
that they have a longer tail of values on their right than on their left. In
particular, the mode seems to be 0, the median is relatively low, and, due to
the long tail, the average is shifted to the right of the median. To simplify
our study, we focus in Section 18.2 on particular subsets of all Chinese
Remainder Problem instances.



18.1. Cumulative distribution 137

0 26
0

1000

2000

3000

4000

5000

104

SimCRP(3,5,7)

Minimal Solution

C
o

u
n

t

1 9

Median: 4

Mean: 7

Mode: 0

IQR

(a) SimCRP with 3 moduli

0 31 62
0

10000

20000

30000

40000

419

SimCRP(3,4,5,7)

Minimal Solution

C
o

u
n

t

3 20

Median: 8

Mean: 17

Mode: 0

IQR

(b) SimCRP with 4 moduli

0 40 80
0

500000

1000000

1500000

2000000

2500000

1259

SimCRP(4,5,7,9)

Minimal Solution

C
o

u
n

t

Mean: 21

Median: 10

 3  24
IQR

Mode: 0

(c) SimCRP with 4 moduli

0 84
0

1×107

2×107

3×107

4×107

4619

SimCRP(3,4,5,7,11)

Minimal Solution

C
o

u
n

t

Mean: 44

Median: 19

7 48
IQR

Mode: 0

167

(d) SimCRP with 5 moduli

Figure 18.1: Scatter plots for the minimal solution of Simultaneous Chinese Re-
mainder Problem instances with fixed moduli. An axis cut has been made at 95%
of the counts. The mean is rounded to the closest integer and the rightmost entry
on the horizontal axis represents the maximal minimal solution.
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18.2 Fixed remainder set size

Let us restrict to Simultaneous Chinese Remainder Problem instances with
remainder sets of a fixed size. Concretely, for all i ∈ {1, . . . , k}, we consider
|Ri| = ti for some fixed ti ∈ {1, . . . ,mi}.

18.2.1 Closed form formula

Let

R(k) :=

{
R1 × · · · × Rk

∣∣∣∣ ∀i ∈ {1, . . . , k}|Ri| = ti ∧ Ri ⊆ {0, . . . ,mi − 1}

}
(18.3)

denote the set of all remainder set combinations that can be obtained for
the given remainder set sizes. We note that this set is in bijection with the
Simultaneous Chinese Remainder Problem instances that can be obtained
under the same conditions. By counting the number of combinations, we
deduce that

|R(k)| =
k∏

i=1

(
mi

ti

)
. (18.4)

For all n ∈ {0, . . . ,M − 1}, let

S(n) :=

{
R1 × · · · × Rk ∈ R(k)

∣∣∣∣ n is the minimal solution of
SimCRP((m1,R1), . . . , (mk,Rk))

}
. (18.5)

Then:

• 0 is the minimal solution if and only if 0 ∈ Ri for all i ∈ {1, . . . , k}.
Thus, 0 is the minimal solution in

|S(0)| =
k∏

i=1

(
mi − 1

ti − 1

)
(18.6)

instances, where
(
n
k

)
= n!

k!(n−k)! denotes a binomial coefficient.

• 1 is the minimal solution if and only if 1 ∈ Ri for all i ∈ {1, . . . , k} and
0 /∈ Rj for at least one j ∈ {1, . . . , k}. Thus, 1 is the minimal solution
in

|S(1)| =
k∏

i=1

(
mi − 1

ti − 1

)
−

k∏
i=1

f(mi − 2, ti − 2) (18.7)

instances, where f(n, k) =
(
n
k

)
if n ≥ k ≥ 0, and f(n, k) = 0, other-

wise. In particular, |S(0)| ≥ |S(1)|.
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• 2 is the minimal solution if and only if 2 ∈ Ri for all i ∈ {1, . . . , k},
0 /∈ Rj for at least one j ∈ {1, . . . , k}, and 1 /∈ Rj for at least one
j ∈ {1, . . . , k}. Thus, 2 is the minimal solution in

|S(2)| =
k∏

i=1

(
mi − 1

ti − 1

)
− 2

k∏
i=1

f(mi − 2, ti − 2) +

k∏
i=1

f(mi − 3, ti − 3) (18.8)

instances. In particular, |S(1)| ≥ |S(2)|.
In general, n ∈ {1, . . . ,M − 1} is the minimal solution if and only if{

(n1, . . . , nk) ∈ R1 × · · · × Rk and
(a1, . . . , ak) /∈ R1 × · · · × Rk for all a ∈ {0, . . . , n− 1}

where for all b ∈ {0, . . . ,M −1} and all i ∈ {1, . . . , k} we abuse our notation
and set

bi := Jb mod miK. (18.9)

Thus,

S(n) =

{
R1 × · · · × Rk ∈ R(k)

∣∣∣∣ (n1, . . . , nk) ∈ R1 × · · · × Rk

∧ T (n) ∩R1 × · · · × Rk = ∅

}
, (18.10)

where T (0) = ∅ and for all n ∈ {1, . . . ,M − 1}

T (n) = {(a1, . . . , ak) | a ∈ {0, . . . , n− 1}} . (18.11)

As the Equations (18.6)-(18.8) illustrate, the formula for the number of
instances |S(n)| satisfying these conditions gets increasingly complicated
and we are not aware of a universal description for all n ∈ {0, . . . ,M − 1}.

18.2.2 Recursive counting function

Starting from a different perspective, a recursive counting method can be
obtained. Concretely, we target to get a recursion on the number of remain-
der sets. To do so, we first generalize the notation in Equation (18.3) and
fix for each j ∈ {1, . . . , k} the set

R(j) :=

{
R1 × · · · × Rj

∣∣∣∣ ∀i ∈ {1, . . . , j}|Ri| = ti ∧ Ri ⊆ {0, . . . ,mi − 1}

}
. (18.12)

Subsequently, we adapt the sets in Equation (18.10) and Equation (18.11)
to obtain

S(n, j, T ) :=

{
R1 × · · · × Rj ∈ R(j)

∣∣∣∣ (n1, . . . , nj) ∈ R1 × · · · × Rj

∧ T ∩R1 × · · · × Rj = ∅

}
, (18.13)

such that S(n) = S(n, k, T (n)), and

T ⊆ {0, . . . ,m1 − 1} × · · · × {0, . . . ,mj − 1}. (18.14)
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Remark 18.3. For technical reasons that appear in Equation (18.19), we
need to consider T in Equation (18.14) to be any subset of the cartesian
product {0, . . . ,m1 − 1} × · · · × {0, . . . ,mj − 1}.
As the set {R1 × · · · × Rj ∈ R(j) | (n1, . . . , nj) ∈ R1 × · · · × Rj}, having car-
dinality

∏j
i=1

(
mi−1
ti−1

)
, is the disjoint union of S(n, j, T ) and

SC(n, j, T ) :=

{
R1 × · · · × Rj ∈ R(j)

∣∣∣∣ (n1, . . . , nj) ∈ R1 × · · · × Rj

∧ T ∩R1 × · · · × Rj ̸= ∅

}
, (18.15)

we deduce that

j∏
i=1

(
mi − 1

ti − 1

)
= |S(n, j, T )|+ |SC(n, j, T )|. (18.16)

Thus, to compute |S(n, j, T )|, it is sufficient to compute |SC(n, j, T )|. We
observe that for fixed j > 1 and all R1 × · · · × Rj ∈ R(j), the intersection

T ∩R1 × · · · × Rj ̸= ∅ (18.17)

if and only if there exists xj ∈ Rj such that

Txj ∩R1 × · · · × Rj−1 ̸= ∅ (18.18)

where

Txj :=

 (x1, . . . , xj−1)

∣∣∣∣∣∣
(x1, . . . , xj−1, xj) ∈ T ∧
∀i ∈ {1, . . . , j − 1}
xi ∈ {0, . . . ,mi − 1}

 . (18.19)

Put differently, Equation (18.17) is equivalent to⋃
xj∈Rj

Txj ∩R1 × · · · × Rj−1 ̸= ∅. (18.20)

This leads to the recursive counting formula

∣∣SC(n, j, T )
∣∣ = ∑

Rj⊆{0,...,mj−1}
|Rj |=tj
nj∈Rj

∣∣∣∣∣∣SC

n, j − 1,
⋃

xj∈Rj

Txj

∣∣∣∣∣∣ . (18.21)

To complete the recursion, we need to assure that the basis case can also be
computed. If j = 1, then Equation (18.16) yields that∣∣SC(n, 1, T )

∣∣ = (m1 − 1

t1 − 1

)
− |S(n, 1, T )| (18.22)
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and Equation (18.13) becomes

S(n, 1, T ) = {R1 ∈ R(1) | (n1 ∈ R1) ∧ (T ∩R1 = ∅)} (18.23)

where T ⊆ {0, . . . ,m1 − 1}. Clearly, if n1 ∈ T , then |S(n, 1, T )| = 0. If
n1 /∈ T and |T | > m1 − t1, then any remainder set R1 ∈ R(1) has a non-
empty intersection with T . Indeed, otherwise |T ∪ R1| = |T | + |R1| >
(m1− t1)+ t1 = m1 which is impossible as T ∪R1 ⊆ {0, . . . ,m1− 1}. Thus,
in this case, |S(n, 1, T )| = 0. If n1 /∈ T and |T | ≤ m1 − t1, then Ri contains
n1 and any combination of t1− 1 other elements that are not included in T .
Thus, in this case, |S(n, 1, T )| =

(
m1−1−|T |

t1−1

)
. In summary,

|S(n, 1, T )| =

{
0 if (n1 ∈ T ) ∨ (|T | > m1 − t1),(
m1−1−|T |

t1−1

)
otherwise,

(18.24)

which completes the recursion.

18.2.3 A constructive approach

Although the recursive method from Section 18.2.2 computes |S(n)| for each
n ∈ {0, . . . , n− 1}, it is not optimal. To be precise, with the current defini-
tion, the procedure needs to start anew for each n as no information from
previous iterations is recycled. Furthermore, the complexity of the compu-
tations increases for increasing n as the initial set T (n), defined by T (0) = ∅
and T (n) = {(a1, . . . , ak) | a ∈ {0, . . . , n− 1}} for all n > 0, increases such
that the resulting union

⋃
xj∈Rj

Txj grows as well. Thereby, the number of

elementary operations (comparisons and insertions) increases which makes
the procedure less efficient for large n.

In this subsection, we prove that there is an inherent relation between
SC(n) := SC(n, k, T (n)) and SC(n + 1) that will be exploited in Sec-
tion 18.2.4 to design an improved counting method. Concretely, we prove
that for all n ∈ {0, . . . ,M − 2},

SC(n+ 1) = SC
+1(n) ∪ SC(n+ 1, k, T (1)) (18.25)

where

SC
+1(n) :=

{
R+1

1 × · · · × R
+1
k | R1 × · · · × Rk ∈ SC(n)

}
(18.26)

with
R+1

i := {Jri + 1 mod miK | ri ∈ Ri} (18.27)

for all i ∈ {1, . . . , k}.
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First, we prove that SC
+1(n) ⊆ SC(n+ 1). To do so, let

R1 × · · · × Rk ∈ SC(n), (18.28)

where, by Equation (18.13),

SC(n) =

{
R1 × · · · × Rk ∈ R(k)

∣∣∣∣ (n1, . . . , nk) ∈ R1 × · · · × Rk

∧ T (n) ∩R1 × · · · × Rk ̸= ∅

}
. (18.29)

As |Ri| = ti, it also holds that |R+1
i | = ti, such that

R+1
1 × · · · × R

+1
k ∈ R(k) (18.30)

and so SC
+1(n) ⊆ R(k). By Equation (18.27) and since

(n1, . . . , nk) ∈ R1 × · · · × Rk, (18.31)

we also have

((n+ 1)1, . . . , (n+ 1)k) ∈ R+1
1 × · · · × R

+1
k . (18.32)

Furthermore, as

T (n) ∩R1 × · · · × Rk ̸= ∅, (18.33)

there exists a ∈ {0, . . . , n− 1} such that

(a1, . . . , an) ∈ R1 × · · · × Rk. (18.34)

By Equation (18.27), this implies that

((a+ 1)1, . . . , (a+ 1)k) ∈ R+1
1 × · · · × R

+1
k . (18.35)

As (a+ 1) ∈ {1, . . . , n}, we deduce that ((a+ 1)1, . . . , (a+ 1)k) ∈ T (n+ 1),
whereby

T (n+ 1) ∩R1 × · · · × Rk ̸= ∅. (18.36)

Thus,

R+1
1 × · · · × R

+1
k ∈ S

C(n+ 1). (18.37)

Since this argument holds for every R1× · · · ×Rk ∈ SC(n), we deduce that

SC
+1(n) ⊆ SC(n+ 1), (18.38)

as desired.
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Next, we prove that SC
+1(n) contains almost all elements of SC(n + 1).

More precisely, we show that for all

R1 × · · · × Rk ∈ SC(n+ 1) (18.39)

for which there exists a ∈ {1, . . . , n} such that

(a1, . . . , ak) ∈ R1 × · · · × Rk (18.40)

we have
R1 × · · · × Rk ∈ SC

+1(n). (18.41)

Indeed, let
R−1

i := {Jri − 1 mod miK | ri ∈ Ri}. (18.42)

Then, as |Ri| = ti, it also holds that |R−1
i | = ti, such that

R−1
1 × · · · × R

−1
k ∈ R(k). (18.43)

Since R1 × · · · × Rk ∈ SC(n+ 1), we know that

((n+ 1)1, . . . , (n+ 1)k) ∈ R1 × · · · × Rk, (18.44)

so that, by Equation (18.42),

(n1, . . . , nk) ∈ R−1
1 × · · · × R

−1
k . (18.45)

Furthermore, as
(a1, . . . , ak) ∈ R1 × · · · × Rk, (18.46)

Equation (18.42) implies that

((a− 1)1, . . . , (a− 1)k) ∈ R−1
1 × · · · × R

−1
k . (18.47)

Since a ∈ {1, . . . , n}, we deduce that (a− 1) ∈ {0, . . . , n− 1}, which implies
that ((a− 1)1, . . . , (a− 1)k) ∈ T (n) revealing that

T (n) ∩R1 × · · · × Rk ̸= ∅. (18.48)

Thereby,
R−1

1 × · · · × R
−1
k ∈ S

C(n). (18.49)

Since (R−1
i )+1 = Ri, we deduce that

R1 × · · · × Rk ∈ SC
+1(n). (18.50)
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The last observation yields that SC
+1(n) contains all remainder set prod-

ucts that have a nonempty intersection with T (n + 1) \ T (1) where
T (1) = {(0, . . . , 0)}, which shows that

SC
+1(n) =

{
R1 × · · · × Rk ∈ R(k)

∣∣∣∣ ((n+ 1)1, . . . , (n+ 1)k) ∈ R1 × · · · × Rk

∧ (T (n+ 1) \ T (1)) ∩R1 × · · · × Rk ̸= ∅

}
.

Thus, only remainder set products which include the tuple (0, . . . , 0) may
not belong to SC

+1(n). Hence, by Equation (18.29), we conclude that

SC(n+ 1) (18.51)

=

{
R1 × · · · × Rk ∈ R(k)

∣∣∣∣ ((n+ 1)1, . . . , (n+ 1)k) ∈ R1 × · · · × Rk

∧ T (n+ 1) ∩R1 × · · · × Rk ̸= ∅

}
(18.52)

= SC
+1(n) ∪ (18.53){
R1 × · · · × Rk ∈ R(k)

∣∣∣∣ ((n+ 1)1, . . . , (n+ 1)k) ∈ R1 × · · · × Rk

∧ T (1) ∩R1 × · · · × Rk ̸= ∅

}
(18.54)

= SC
+1(n) ∪ S(n+ 1, k, T (1)) (18.55)

where we used in Equation (18.55) the notation from Equation (18.15). This
completes the proof of Equation (18.25).

Remark 18.4. The union in Equation (18.55) may not be disjoint.

18.2.4 Improved counting method

The constructive recursion in Equation (18.25) introduces an improved meth-
od to compute |S(n+1)| for all n ∈ {0, . . . ,M − 2} as essentially all the in-
formation from SC(n) can be recycled. However, using this recursion, SC(n)
needs to be computed explicitly and updated in each iteration. Concretely,
to compute SC(n+1), one needs to compute first SC

+1(n) from S(n) through
a simple modular shift of remainder set products. Then, SC(n+ 1, k, T (1))
needs to be computed and merged with SC

+1(n). By Equation (18.15),

SC(n+ 1, k, T (1)) (18.56)

=

{
R1 × · · · × Rk ∈ R(k)

∣∣∣∣ (n1, . . . , nk) ∈ R1 × · · · × Rk

∧ T (1) ∩R1 × · · · × Rk ̸= ∅

}
(18.57)

=

{
R1 × · · · × Rk ∈ R(k)

∣∣∣∣ (n1, . . . , nk) ∈ R1 × · · · × Rk

∧ (0, . . . , 0) ∈ R1 × · · · × Rk

}
(18.58)

for all n ∈ {0, . . . ,M−1}. We observe that |SC(n+1, k, T (1))| can be easily
computed. Concretely, for all i ∈ {1, . . . , k}:
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1. If ni = 0, then there are
(
mi−1
ti−1

)
choices for Ri.

2. If ni ̸= 0 and ti = 1, then there is no choice for Ri, which implies that
SC(n+ 1, j, T (1)) = ∅.

3. If ni ̸= 0 and ti > 1, there are
(
mi−2
ti−2

)
choices for Ri.

The choices in the above descriptions are obtained through the combinations
of the elements in {0, . . . ,mi−1}\{0, ni} which can be directly constructed.

We note that for increasing n, the set SC(n) increases as well. Thereby,
the computation of SC

+1(n) becomes less efficient. On the contrary, the
computation of S(n + 1, k, T (1)) is almost independent from this increase.
As, we expect that |SC

+1(n)| > |S(n+1, k, T (1))|, for most n ∈ {0, . . . ,M−2},
our procedure could be optimized by limiting the number of operations
needed to compute SC

+1(n), even if this increases the number of operations
needed to compute SC(n+ 1, k, T (1)). We note that we are only interested
in the cardinality of the set SC(n) and so we may interchange it with a
bijective equivalent whose computation is more efficient. To do so, we set
for all S ⊆ R(k) and all n ∈ {0, . . . ,M − 1} the notation

S−n := {R−n
1 × · · · × R−n

k | R1 × · · · × Rk ∈ S}, (18.59)

where for all i ∈ {1, . . . , k}

R−n
i := {Jri − n mod miK | ri ∈ Ri}. (18.60)

Trivially, |S| = |S−n| which indicates that S is in bijection with S−n. Fur-
thermore, we remark that with this notation Equation (18.25) becomes

SC
−(n+1)(n+ 1) = (SC

+1)−(n+1)(n) ∪ SC
−(n+1)(n+ 1, k, T (1)) (18.61)

= SC
−n(n) ∪ SC

−(n+1)(n+ 1, k, T (1)). (18.62)

Thus, to compute SC
−(n+1)(n + 1), the set SC

−n(n) is completely recycled
without the need of changing its elements. Yet, it remains to compute the
auxiliary set SC

−(n+1)(n+1, k, T (1)) and merge it with SC
−n(n). We note that

SC
−(n+1)(n+ 1, k, T (1)) is obtained by first computing SC(n+ 1, k, T (1)) as

described in Equation (18.58) and then shifting all its remainder set products
by −(n+ 1). This leads to the simple pseudocode in Algorithm 18.1.
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Algorithm 18.1: Minimal solution counter

Input: Given a list of pairwise coprime moduli (m1, . . . ,mk) and a
list of remainder set sizes (t1, . . . , tk).

Output: The algorithm computes a list indicating how often each
n ∈ {0, . . . , (

∏k
i=1mi)− 1} is the minimal solution among

all Simultaneous Chinese Remainder Problem instances
with the given moduli and remainder set sizes.

1 Counts←
[∏k

i=1

(
mi−1
ti−1

)]
;

2 SC = ∅;
3 for n = 0 until (

∏k
i=1mi)− 2 do

4 for R1 × · · · × Rk ∈ SC(n+ 1, k, T (1)) do
5 Shift← {};
6 for (x1, . . . , xk) ∈ R1 × · · · × Rk do
7 Shift← Shift ∪

{
(Jx1 − (n+ 1) mod m1K, . . .

8 . . . , Jxk − (n+ 1) mod mkK)
}
;

9 SC ← SC∪ Shift;

10 Counts.append
(
(
∏k

i=1

(
mi−1
ti−1

)
)− |SC |

)
11 return Counts

18.2.5 Particular observations

By Equation (18.26), SC(n) is in bijection with SC
+1(n). Thus, Equa-

tion (18.25) implies that |SC(n + 1)| ≥ |SC(n)| for all n ∈ {0, . . . ,M − 2}.
Hence, by Equation (18.16), the sequence {|S(n)|}n∈{0,...,M−1} is decreas-
ing for increasing n. In particular, this yields that 0 is the mode of the

distribution with |S(0)| =
∏k

i=1

(
mi−1
ti−1

)
and that

|S(n)| =
k∏

i=1

(
mi − 1

ti − 1

)
− |SC(n)| ≤

k∏
i=1

(
mi − 1

ti − 1

)
(18.63)

for all n ∈ {0, . . . ,M − 1}. Furthermore, this indicates that the “for” loop
in line 3 of Algorithm 18.1 can be stopped if the first 0 is appended to the
counting list in line 10 as no subsequent integer appears as the minimal
solutions of a Simultaneous Chinese Remainder Problem instance with the
given moduli and remainder set sizes.
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Figure 18.2: Scatter plots for the minimal solution of Simultaneous Chinese Re-
mainder Problem instances with fixed moduli and remainder sets of fixed sizes. An
axis cut has been made at 99% of the counts. The mean is rounded to the closest
integer and the rightmost entry on the horizontal axis represents the maximal min-
imal solution.
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18.3 Simulating the distributions

In this section, we simulate our data with respect to the geometric distribu-
tion. To do so, we need to find a suitable probability parameter p that defines
the simulating geometric distribution. As the cumulative distributions from
Section 18.1 result as the sum of partial distributions as described in Sec-
tion 18.2, we restrict our attention to the distribution of the minimal solution
of Simultaneous Chinese Remainder Problem instances with fixed moduli
m1, . . . ,mk and fixed remainder set sizes |Ri| = ti for all i ∈ {1, . . . , k}. By
Section 18.2.5 the mode of the corresponding distribution is 0, which holds
also for the geometric distribution. Therefore, we simply define the desired
probability parameter p such that the probability of obtaining 0 in the geo-
metric distribution is the same as for the empirical distribution. To be pre-
cise, Equation (18.4) yields that there are |R(k)| =

∏k
i=1

(
mi
ti

)
Simultaneous

Chinese Remainder Problem instances with the given remainder set sizes.
Furthermore, by Equation (18.6), there are |S(0)| =

∏k
i=1

(
mi−1
ti−1

)
Simultane-

ous Chinese Remainder Problem instances with minimal solution 0. Thus,
the probability of obtaining a Simultaneous Chinese Remainder Problem
instance with minimal solution 0 by sampling the remainder sets uniformly
at random from R(k) is |S(0)|

|R(k)| =
∏k

i=1
ti
mi

. As the probability of obtaining 0

in the geometric distribution is P(ω = 0) = (1− p)0p = p, we set

p :=

k∏
i=1

ti
mi
. (18.64)

Thereby, the mean of the geometric distribution is

µ :=
1− p
p

=
1

p
− 1 =

(
k∏

i=1

mi

ti

)
− 1 (18.65)

and using the fact that log(1 + x) ≤ x for x > −1, the median is

q1/2 :=

⌈
−1

log2(1− p)

⌉
− 1 ≤ − log(2)

log(1− p)
≤ log(2)

p
= log(2)

k∏
i=1

mi

ti
. (18.66)

These formulas correspond to our intuition on the minimal solution of a Si-
multaneous Chinese Remainder Problem instance with fixed remainder set
sizes. Indeed, assuming that the solutions are well-distributed in

{0, . . . ,M − 1}, we expect to find the minimal solution close to
(∏k

i=1
mi
ti

)
.

Equation (18.65) confirms this intuition on average and Equation (18.66)
yields that generally the minimal solution is even smaller.
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Figure 18.3: Scatter plots for the minimal solution of Simultaneous Chinese Re-
mainder Problem instances with fixed moduli and remainder sets of fixed sizes
(blue) featuring a simulation using the geometric distribution (black). An axis cut
has been made at 99% of the counts. The mean is rounded to the closest integer
and the rightmost entry on the horizontal axis represents the maximal minimal
solution.
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18.4 The maximal minimal solution

Contrary to the geometric distribution, which assesses for each natural num-
ber n ∈ N a non-zero probability, our data sets have a maximal entry. This
maximal entry, found as the rightmost value on the x-axis of our scatter-
plots, represents the maximal minimal solution of any Simultaneous Chinese
Remainder Problem instance with remainder sets of the given sizes. We ob-
serve that the maximal minimal solution seems to be negatively proportional
to the remainder set sizes. By inspection, we deduce that the maximal min-
imal solution for a Simultaneous Chinese Remainder Problem instance with
remainder sets of size |Ri| = ti for all i ∈ {1, . . . , k} is often given by

M :=M − 1−
k∑

i=1

(ti − 1)Mi (18.67)

with Mi =
M
mi

. We note that if M ≥ 0, then M is the minimal solution of

SimCRP((m1,R1), . . . , (mk,Rk)) (18.68)

where

Ri = {J−1− ψiMi mod miK | ψi ∈ {0, . . . , ti − 1}} (18.69)

for all i ∈ {1, . . . , k}. Indeed, this particular problem instance has the
primitive solution set

S :=

{
M − 1−

k∑
i=1

ψiMi | ψi ∈ {0, . . . , ti − 1} ∀i ∈ {1, . . . , k}

}
(18.70)

and so it contains M. As any other integer in S is strictly larger than M and
smaller thanM , M is indeed its minimal solution. For example, Figure 18.4a
shows that the maximal solution for the moduli 11, 13, 17 and remainder sets
of size 2 is given by 1879 = 2431−1−221−187−143. This minimal solution
is achieved by SimCRP((11, {9, 10}), (13, {7, 12}), (17, {9, 16})) having the
primitive solution set {1879, 2022, 2066, 2100, 2209, 2243, 2287, 2430}.

Remark 18.5. Our development only shows that M is a lower bound for
the maximal minimal solution, but it does not rule out that a larger minimal
solution exists. In particular, if M < 0, the resulting lower bound is trivial.
Yet, M seems to be the maximal minimal solution for a non-negligible por-
tion of all remainder set sizes. This indicates that the proven upper bound
from Theorem 12.2 may be several magnitudes too large.
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Figure 18.4: Scatter plots for the minimal solution of Simultaneous Chinese Re-
mainder Problem instances with fixed moduli and remainder sets of fixed sizes. An
axis cut has been made at 99% of the counts. The mean is rounded to the closest
integer and the rightmost entry on the horizontal axis represents the maximal min-
imal solution.
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18.5 Remainder sets of size two

Figure 18.4 confirms our intuition from Remark 9.3 claiming that it seems to
be easier to find the minimal solution of a Simultaneous Chinese Remainder
Problem instance with large remainder set sizes. Indeed, comparing Fig-
ure 18.4a and Figure 18.4c, we observe that Simultaneous Chinese Remain-
der Problem instances with larger remainder sets tend to have smaller mini-
mal solutions when compared to Simultaneous Chinese Remainder Problem
instances with smaller remainder sets. In particular, it seems that for Simul-
taneous Chinese Remainder Problem instances with large remainder sets a
simple brute force counting method is rather efficient. However, the same
does not hold for small remainder set sizes. In this logic, the “hardest” Si-
multaneous Chinese Remainder Problem instances are those with remainder
sets of size two, which is aligned with the conclusion in Section 10.2.9.

Let us concentrate on the special case |Ri| = 2 for all i ∈ {1, . . . , k}.
By Equation (18.4), there are |R(k)| =

∏k
i=1

(
mi
2

)
= 1

2k

∏k
i=1mi(mi − 1)

Simultaneous Chinese Remainder Problem instances with remainder sets of
size two. By Equation (18.6), there are |S(0)| =

∏k
i=1

(
mi−1

1

)
=
∏k

i=1(mi−1)
Simultaneous Chinese Remainder Problem instances with minimal solution
0, such that the probability of sampling such an instance uniformly at ran-
dom from R(k) is

∏k
i=1

2
mi

. The simulating geometric distribution from Sec-

tion 18.3 is then defined by p =
∏k

i=1
2
mi

and has mean µ = (
∏k

i=1
mi
2 )−1 and

median q1/2 ≤ log(2)
∏k

i=1
mi
2 . In particular, this predicts that the major-

ity of Simultaneous Chinese Remainder Problem instances with remainder
set size two have a rather small minimal solution, however the tail of the
distribution is rather long. Concretely, Section 18.4 yields that the maxi-
mal minimal solution of Simultaneous Chinese Remainder Problem instances
with remainder set size two is lower bounded by M = M − 1 −

∑k
i=1Mi,

which in turn is bounded by

M1(m1 − 1− k) ≤M ≤Mk(mk − 1− k). (18.71)

If m1 ≥ k+1, then the maximal minimal solution is larger thanM1 and so a
brute-force counting method is generally not recommended to solve this kind
of Simultaneous Chinese Remainder Problem instances. This confirms our
intuition on the hardness of the Simultaneous Chinese Remainder Problem
instances with small remainder set sizes.
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Figure 18.5: Scatter plots for the minimal solution of Simultaneous Chinese Re-
mainder Problem instances with fixed moduli and remainder sets of size 2 (blue)
featuring a simulation using the geometric distribution (black). An axis cut has
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the rightmost entry on the horizontal axis represents the maximal minimal solution.
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18.6 Moduli with common divisors

Our statistics were developed for pairwise coprime moduli only. This choice
is due to our focus on the Minimal Chinese Remainder Problem that is de-
fined for pairwise coprime moduli. As Figure 18.6 shows, composite moduli
produce a similar distribution, but with some irregularities such as the range
of minimal solutions. The number of instances with no solution is discarded
from the distributions.
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Figure 18.6: Scatter plots for the minimal solution of Simultaneous Chinese Re-
mainder Problem instances with fixed non-coprime moduli. Except for (a), an axis
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Chapter 19

Open Questions

The Simultaneous Chinese Remainder Problem remains relatively unex-
plored and many open questions on the topic persist.

The intriguing reduction of 3-SAT to the Existential Simultaneous Chi-
nese Remainder Problem in Section 10.1 enables an elementary number theo-
retic framework for the study of a well-known complexity-theoretic problem.
Advances in one direction may have a direct impact on the other one. The
same holds for the reduction constructed in Section 10.2 for the Bounded
Simultaneous Chinese Remainder Problem. The empirical observations in
Chapter 18, indicate that most Simultaneous Chinese Remainder Problem
instances have a rather small minimal solution, even for small remainder
sets. Thereby, it might be interesting to attempt a classification of “easy”
problems and to investigate the corresponding 3-SAT instances. The chal-
lenge in such an analysis lies in outlining the properties of Simultaneous
Chinese Remainder Problems obtained from the given reductions as they
cannot be seen as randomly sampled.

Concerning our statistical experiments, we note that a computational
verification of our observations in Chapter 18 with sufficiently many large
moduli may reveal new properties of the minimal solutions. A full descrip-
tion of the maximal minimal solution of a Simultaneous Chinese Remainder
Problem with fixed remainder set sizes would improve the rough bound from
Chapter 12. Furthermore, the development of an upper bound that does not
only depend on the remainder set sizes, but also on the internal structure
of the remainder sets may help us better understand the general problem.

The compelling “modulus switch” described in Chapter 14 raises the
question of the internal structure of Simultaneous Chinese Remainder Prob-
lem solutions. Mixed-radix comparison methods may be used to improve
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the investigated solving techniques or to give a new perspective on solving
techniques. For example, the described lattice constructions to find the min-
imal solution may be improved. Regarding lattices, we may also formalize a
new Simultaneous Chinese Remainder Problem asking to find the maximal
distance between any two solutions for a given instance. This corresponds
to the Bounded Distance Decoding Problem and seems a priory as hard as
the other variants that we studied. Finally, the construction of a special
purpose fully polynomial-time approximation scheme for finding the mini-
mal solution would simultaneously shed light on the “hard” instances and
reveal new bounds for the maximal minimum.
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Naturales, Bogotá, 1995. Translated from the Latin by Hugo Bar-
rantes Campos, Michael Josephy and Ángel Ruiz Zúñiga, With
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Act III: The second count

Despite the similarity to the traditional remainder computation, the
uncertainty of the remainders seemed to make the problem exponentially
harder. Jay’s pa confessed: “I found a list of potential candidates for the
number of pennies that you counted the day before, but there is no possibility
to find the exact number without additional information.” Pops confirmed:
“Unfortunately, the total number of pennies from last year’s count does not
sufficiently reduce the list of candidates and as my memory leaves much to
be desired, I don’t remember the number of new acquisitions”. “It seems
that you need to recount the whole lot”, announced Jay’s pa.

Jay was devastated. He looked at the pile of pennies and thought,
“this will take a while”. He had calluses on his fingers from the first count
but started nonetheless with the second count. He moved the cold metal
to the middle of the table and prepared another page in his notebook. As
pops knew that Jay intended to play with Missy, he wanted to help him.
However, he knew that Jay needed to complete this task on his own. Instead
of helping to count, he gave Jay some advice: ”If you make sure that the
count values cannot be divided by the same number, then you need fewer
counts”. Jay was thrilled as he believed that not even his pa knew this
secret.

“How should I choose the count values”, asked Jay curiously. “You will
find a way”, replied pops, “remember the prime numbers that you learned
in school?”. Having in mind the disaster created by stupid Mrs Skizzles, Jay
wanted to avoid that his work could be destroyed anew. He guessed that if
all the count values had the same form, then he could remember them by
heart. As his birthday is the fourth of July, he looked for primes that are a
multiple of seven plus four. He quickly found 11, but then needed to count
to 53. He was surprised that there was one prime between 7 and 72 and
another between 72 and 73. “Is the same true if I choose other numbers”,
he asked himself, “and what happens for larger exponents?”
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Abstract III

Dirichlet’s theorem on primes in arithmetic progressions states that for any
positive integer q and any coprime integer a, there are infinitely many primes
in the arithmetic progression a+ nq (n ∈ N). The Prime Number Theorem
for arithmetic progressions is slightly more precise and outlines asymptotic
intervals where those primes can be found. However, neither of both results
predicts the exact location of primes in arithmetic progressions so that their
distribution needs yet to be determined. A particular interest lies in the first
prime p0 that can be found in an arithmetic progression a + nq. Linnik’s
theorem gives the elegant upper bound p0 ≤ qL where L denotes an absolute
and explicitly computable constant. Albeit only L = 5 has been proven, it is
widely believed that L ≤ 2. Hereinafter, we postulate the following explicit
generalization of Linnik ’s theorem:

Conjecture. For any integers q ≥ 2, 1 ≤ a ≤ q− 1 with gcd(q, a) = 1, and
t ≥ 1, there exists a prime p such that

qt ≤ p < qt+1 and p ≡ a mod q.

Given today’s best upper bound of Linnik’s constant L, the proof of this
conjecture is likely to be out of reach. Nonetheless, the conjecture can
be proven for all sufficiently large t and computationally verified for all
sufficiently small q. Surprisingly, the conjecture has a direct impact on a
claim of Pomerance related to Carmichael’s totient conjecture, both results
being thoroughly discussed herein.
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Chapter 20

The distribution of primes

20.1 Primes in general

Circa 300. BC in Book IX Proposition 20 of his famous Elements [Wil88],
Euclid delivered the first proof for the infinity of primes. Only 21 centuries
later the claim was made more precise by Legendre [Leg09] (and Gauss
[Gau76]) approximating the number of primes π(x) below a given bound x.
In 1896 the conjectured asymptotic behaviour

π(x) ∼ x

log(x)
(20.1)

got independently proven by Hadamard [Had93, Had96] and De la Vallée
Poussin [DlVP96]. Their result is known as the Prime Number Theorem and
has been improved considerably so that more precise estimates are known
today. Dusart [Dus98] proved that

π(x) =
x

log(x)

(
1 +

1

log(x)
+

2

log2(x)
+O

(
1

log3(x)

))
, (20.2)

and Trudigan [Tru14] showed that for all x ≥ 229

|π(x)− li(x)| ≤ 0.2795
x

log3/4(x)
e−

√
log(x)
6.455 (20.3)

where li denotes the logarithmic integral li(x) :=
∫ x
0

dt
log(t) . An extensive

review of similar results can be found in [Kou19].
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20.2 Primes in arithmetic progressions

In the same line of work, primes with particular properties were studied.
A specific interest laid on primes in arithmetic progressions. Dirichlet’s
theorem on primes in arithmetic progressions [Dir37] guarantees that there
are infinitely many primes in the arithmetic progression a + nq (n ∈ N) if
the starting point a and the progression size q are coprime. De la Vallée
Poussin [DlVP96] outlined that primes are evenly distributed among the
coprime congruence classes of q. His Prime Number Theorem for arithmetic
progressions yields that

π(x; q, a) ∼ x

φ(q) log(x)
(20.4)

where π(x; q, a) denotes the number of primes in the arithmetic progression
a+nq smaller than x and φ denotes the Euler totient function [Gau66, §38].

Using Brun’s sieve [Bru15], Titchmarsh [Tit30] proved that for any
0 < a < q such that gcd(a, q) = 1 and any x > q,

π(x; q, a) = O

 1

1− log(q)
log(x)

x

φ(q) log(x)

 (20.5)

where the implied constant is effectively computable. Montgomery and
Vaughan [MV73] managed to upper bound the implied constant and de-
duced that

π(x; q, a) <
2x

φ(q) log(xq )
. (20.6)

Furthermore, their construction shows that the same bound holds for any
interval of length x, that is, for any y > 0,

π(y + x, q, a)− π(y, q, a) < 2x

φ(q) log(xq )
. (20.7)

If x is sufficiently large, these bounds can be further improved. For example,
Maynard [May13] developed an estimation of Dirichlet L-functions [Dir37],
in which he dealt with exceptional zeroes and applied the Deuring-Heilbronn
phenomenon [Deu33, Hei34], to deduce that for all x > q8 the upper bound

π(x; q, a) <
2

φ(q)
Li(x) (20.8)
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holds, where Li(x) := li(x)−li(2). Furthermore, under the same conditions,
he deduced the asymptotic behaviour

π(x; q, a) = O

(
log(q)

q1/2
x

φ(q) log x

)
, (20.9)

where the implied constant is effectively computable.

20.3 Another prime counting function

Despite its remarkably simple definition, the natural prime counting function

π(x; q, a) =
∑
p≤x

p≡a mod q

1 (20.10)

is generally not convenient to work with. Indeed, as a function by con-
stant steps, it is rather difficult to approach by a continuous function and
smoothening it typically implies a large error. Thus, to allow for elemen-
tary analytic transformations, we may consider functions that add a non-
constant term for each prime. The first Tchebychev prime counting function
for arithmetic progressions is defined by

θ(x; q, a) :=
∑
p≤x

p≡a mod q

log(p). (20.11)

Through a meticulous analysis of Dirichlet L-functions and an extensive
computational study, Bennett et al. [BMOR18] achieved the following tight
bounds for all sufficiently small progression sizes.

Theorem 20.1 (Bennett, Martin, O’Bryant, Rechnitzer, [BMOR18]). Let
q ≥ 3 and 0 < a < q be integers such that gcd(a, q) = 1. Then, there exist
positive constants cθ(q) and xθ(q) such that∣∣∣∣θ(x; q, a)− x

φ(q)

∣∣∣∣ < cθ(q)
x

log(x)

for all x ≥ xθ(q). Moreover, cθ(q) ≤ c0(q) and xθ(q) ≤ x0(q) where

c0(q) =

{
1

840 if 3 ≤ q ≤ 104,
1

160 if 104 < q,

and

x0(q) =

{
8 · 109 if 3 ≤ q ≤ 105,

e0.03
√
q(log(k))3 if 105 < q.
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A complete list of optimal constants cθ and xθ for all 3 ≤ q ≤ 105 and their
enormous underlying data set is available at

https://www.nt.math.ubc.ca/BeMaObRe/.

20.4 A generalization of primes in arithmetic pro-
gressions

Chebotarev’s density theorem [Tsc26] is a generalization of the Prime Num-
ber Theorem for arithmetic progressions. To be precise, let L,F be number
fields and let L/F be a Galois extension with Galois group G := Gal(L/F ).

For a prime ideal p of F that is unramified in L, let
[
L/F
p

]
be the conjugacy

class of Frobenius automorphisms in G above p. Then, Chebotarev’s density
theorem yields that for any x > 1 and any conjugacy class C ⊆ G,

π(x;C,L/F ) ∼ |C|
|G|

x

log(x)
(20.12)

where π(x;C,L/F ) denotes the number of prime ideals of F that are unram-

ified in L such that
[
L/F
p

]
= C and the absolute norm NF/Q(p) is smaller

than x. Choosing F = Q and L = Q
[
e

2πi
q

]
yields the Prime Number The-

orem for arithmetic progressions. Albeit explicit estimates of the implied
error term exist (e.g., see Lagarias’ and Odlyzko’s estimates in [LO77] and
its subsequent improvements), the tightness of the resulting bounds can-
not compete with the precision of the current error estimates for the Prime
Number Theorem for arithmetic progressions. A detailed account of this
conclusion and related information can be found in [Zam17].

https://www.nt.math.ubc.ca/BeMaObRe/
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A new conjecture

The study of the distribution of primes in fixed intervals turns out to
be highly challenging. Whereas cumulative results are usually obtained
by smoothening the prime counting functions or by a convenient sieving
method, both approaches are inefficient if short intervals are involved be-
cause the committed error becomes too important.

21.1 Linnik’s constant

The best illustration of the complexity of studying the distribution of primes
with particular properties in short intervals is the strenuous quest for pre-
dicting the size of the smallest prime in an arithmetic progression. A mile-
stone has been achieved by Linnik [Lin44a, Lin44b] in 1944 with the proof
that there is an absolute upper bound polynomial in the progression size.

Theorem 21.1 (Linnik). There are absolute constants C and L such that
for any integer q ≥ 2 and any integer 1 ≤ a ≤ q − 1 with gcd(a, q) = 1, the
smallest prime p0 ≡ a mod q satisfies p0 ≤ CqL.

Although Linnik’s original development did not contain estimates for his
predicted constants C and L, his development showed them to be effec-
tively computable. The infimum over all possible absolute constants L for
which Theorem 21.1 holds is known as Linnik’s constant. A stream of work,
outlined in Heath-Brown’s seminal work [HB92], developed a decreasing se-
quence of upper bounds for L leading to today’s best unconditional upper
bound L ≤ 5 [Xyl11]. Under the Generalized Riemann Hypothesis (GRH),
Chowla [Cho34] concludes that any constant L > 2 is admissible. Further-
more, aligned with Schinzel’s conjecture H2 [SS58], Heath-Brown [HB92]
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conjectures the unconditional upper bound L ≤ 2, and Bombieri et al.
[BFI89] show that this claim holds for almost all moduli.

21.2 A generalization of Linnik’s constant

Leaning on the discussion about the smallest prime in an arithmetic progres-
sion, the question on the position of subsequent primes arises. By keeping
the coefficient C = 1 constant in Theorem 21.1 and allowing the exponent
L to vary, the positions of these primes can be roughly bounded.

Conjecture 21.2 (Barthel, Müller [BM22]). For any integers q ≥ 2,
1 ≤ a ≤ q − 1 with gcd(q, a) = 1 and t ≥ 1, there exists a prime p such that

qt ≤ p < qt+1 and p ≡ a mod q.

Considering t = 1 and dropping the lower bound for the desired prime p,
we recover the conjectured size L ≤ 2 of Linnik’s constant. Consequently,
it is unlikely to find a full proof of Conjecture 21.2 with the current state
of mathematics. Nonetheless, as the geometric intervals [qt, qt+1) expand
faster than the occurrence of primes decreases, a proof can be anticipated
for sufficiently large t. Based on the asymptotic behaviour of the Prime
Number Theorem for arithmetic progressions, we can even shrink the con-
sidered intervals for large t and still prove the existence of such primes.
Whereas the approximation of the error term in the Prime Number Theo-
rem for arithmetic progressions is a prominent research direction, its main
results, like Equation (20.5), describe the asymptotic behaviour of the prime
counting functions only which usually hides large implicit constants. Only
a few explicit results, such as Theorem 20.1, exist. Conjecture 21.2 yields a
practical range for the positions of primes in arithmetic progressions with-
out any hidden constant or complicated coefficients. The trade-off for its
elementary description is the optimality of its range.



Chapter 22

A partial proof

22.1 An elementary proof for progression size q=2

If the progression size in Conjecture 21.2 is q = 2, then the conjecture claims
that for any exponent t ≥ 1, there exists a prime p such that

2t ≤ p < 2t+1 and p ≡ 1 mod 2. (22.1)

As any prime, other than 2, is odd, the claim follows directly from Bertrand’s
postulate [Ber45] affirming that for any n ≥ 2, there is a prime p such
that n < p < 2n. Initially proven by Tchebychev [Tch52] through an ana-
lytic development, Bertrand’s postulate follows also from Sylvester’s theorem
[Syl12], a combinatorial result stating that the product of k consecutive in-
tegers strictly larger than k is necessarily divisible by a prime greater than
k. Although, Laishram, Shorey, and Tijdeman [LS06, ST07] generalized
Sylvester’s theorem to consecutive elements in arithmetic progressions, their
results are not sufficient to conclude the existence of a prime in the desired
range [qt, qt+1) for q ≥ 3.

22.2 An existential proof for every sufficiently large
exponent t

A proof for larger moduli can be partially obtained by analytical methods.
As described at the end of Chapter 21, we may use the Prime Number
Theorem for arithmetic progressions to conclude Conjecture 21.2 for every
sufficiently large exponent t. However, for the sake of explicit results, we
rely on Theorem 20.1 only. More precisely, using the explicit constants of
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Theorem 20.1, we devise

Tθ(q) := max

{
cθ(q)φ(q)(q + 2)

(q − 1) log(q)
− 1; logq(xθ(q)); 1

}
, (22.2)

which represents an explicit lower bound for the exponents t verifying Con-
jecture 21.2.

Lemma 22.1. Let q ≥ 3, 1 ≤ a ≤ q − 1 with gcd(a, q) = 1, and t ≥ Tθ(q).
Then, there exists a prime p such that qt ≤ p < qt+1 and p ≡ a mod q.

Proof. By construction, t ≥ Tθ(q) ≥ logq(xθ(q)), and so

qt+1 > qt ≥ qTθ(q) ≥ qlogq(xθ(q)) = xθ(q). (22.3)

Thus, Theorem 20.1 yields the two estimates

qt+1

φ(q)
−cθ(q)

qt+1

(t+ 1) log(q)
< θ(qt+1; q, a) <

qt+1

φ(q)
+cθ(q)

qt+1

(t+ 1) log(q)
(22.4)

and

qt

φ(q)
− cθ(q)

qt

t log(q)
< θ

(
qt; q, a

)
<

qt

φ(q)
+ cθ(q)

qt

t log(q)
. (22.5)

First, subtracting the upper bound of Equation (22.5) from the lower bound
of Equation (22.4) and subsequently using t ≥ Tθ(q) ≥ 1 gives

θ
(
qt+1; q, a

)
− θ

(
qt; q, a

)
> qt

[
q − 1

φ(q)
− cθ(q)

log(q)

qt+ t+ 1

t(t+ 1)

]
, (22.6)

≥ qt
[
q − 1

φ(q)
− cθ(q)

log(q)

q + 2

t+ 1

]
. (22.7)

By construction, t ≥ Tθ(q) ≥ cθ(q)φ(q)(q+2)
(q−1) log(q) − 1, and so the last quantity is

non-negative. Thus, θ
(
qt+1; q, a

)
> θ

(
qt; q, a

)
which guarantees the exis-

tence of a prime p ∈ [qt, qt+1) such that p ≡ a mod q.

As one expects, the lower bound on the exponent t in Lemma 22.1 depends
only on the modulus q and not on the congruence class a.

Remark 22.2. A direct computation using the constants xθ and cθ shows
that for all 3 ≤ q ≤ 45000 we have

Tθ(q) > 1.

Thus ⌈Tθ(q)⌉ ≥ 2, which is required in Section 22.4.

Remark 22.3. If Tθ(q) > 8, a tighter lower bound for t can be achieved by
considering Maynard’s estimate in Equation (20.8) for the upper bound of
θ
(
qt+1; q, a

)
.
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22.3 Consideration under ERH

Assuming the Extended Riemann Hypothesis (ERH), we can reduce the lower
bound on the exponents t for which Conjecture 21.2 holds. Indeed, under
ERH, the error term in the Prime Number Theorem for arithmetic progres-
sions can be drastically decreased. Bach and Shallit [BS96] developed the
following explicit estimate.

Theorem 22.4 (Bach, Shallit). Let q ≥ 3 be an integer and let a be an
integer that is coprime to q. Then, assuming ERH,∣∣∣∣π (x; q, a)− li(x)

φ(q)

∣∣∣∣ < √x(log(x) + 2 log(q)) ∀x ≥ 2.

Subtracting the upper bound for π
(
qt; q, a

)
from the lower bound for

π
(
qt+1; q, a

)
yields

π
(
qt+1; q, a

)
− π

(
qt; q, a

)
>
li
(
qt+1

)
− li

(
qt
)

φ(q)
−
√
qt log(q)(

√
q(t+ 3) + (t+ 2)). (22.8)

Repeated integration by parts reveals the following recursive approxima-
tion of the difference of logarithmic integrals.

Lemma 22.5. For all α > β > 1 and all n ∈ N \ {0}, we have

li (α)− li (β) =

(
n∑

i=1

(i− 1)!
α log (β)i − β log (α)i

log (α)i log (β)i

)
+ n!

∫ α

β

dt

log(t)n+1
.

As 1
log(t)n+1 > 0 for all t > 1, the integral

∫ α
β

dt
log(t)n+1 is strictly positive for

all α > β > 1 which implies the following approximation.

Lemma 22.6. For all α > β > 1 and all n ∈ N \ {0}, we have

li (α)− li (β) >
n∑

i=1

(i− 1)!
α log (β)i − β log (α)i

log (α)i log (β)i
.

Choosing n = 1, α = qt+1 and β = qt in Lemma 22.6, we find the lower
bound

li
(
qt+1

)
− li

(
qt
)
>

qt

log(q)

(
qt− (t+ 1)

t(t+ 1)

)
. (22.9)
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Inserting this lower bound into (22.8) yields

π
(
qt+1; q, a

)
− π

(
qt; q, a

)
>

qt(qt− (t+ 1))

φ(q) log(q)t(t+ 1)
−
√
qt log(q)(

√
q(t+ 3) + (t+ 2)) (22.10)

and using the trivial bound φ(x) ≤ x gives

π
(
qt+1; q, a

)
− π

(
qt; q, a

)
>
qt−1(qt− (t+ 1))

log(q)t(t+ 1)
−
√
qt log(q)(

√
q(t+ 3) + (t+ 2)). (22.11)

If t ≥ 4, then we observe that for all q ≥ 36, we have

√
q(t+ 3) + (t+ 2) ≤ 2t

√
q (22.12)

and so

π
(
qt+1; q, a

)
− π

(
qt; q, a

)
>
qt−1(qt− (t+ 1))

log(q)t(t+ 1)
− 2
√
qt+1 log(q)t. (22.13)

Thus,

π(qt+1; q, a)− π(qt; q, a) > q
t+1
2

(
q

t−3
2 (qt− (t+ 1))

log(q)t(t+ 1)
− 2 log(q)t

)
, (22.14)

≥ q
t+1
2

(
q

t−3
2 (q − 2)

log(q)(t+ 1)
− 2 log(q)t

)
, (22.15)

= q
t+1
2
log(q)

t+ 1

(
q

t−3
2

q − 2

log(q)2
− 2t(t+ 1)

)
, (22.16)

> q
t+1
2
log(q)

t+ 1

(
q

t−3
2 − 2t(t+ 1)

)
︸ ︷︷ ︸

=:A(q,t)

, (22.17)

where the last inequality holds for all q ≥ 4. An elementary function study
shows that A(q, t) ≥ 0 for all t ≥ 4 and all q ≥ 1600.

If t = 3, then (22.11) yields

π
(
q4; q, a

)
− π

(
q3; q, a

)
>
q2(3q − 4)

12 log(q)
−
√
q3 log(q)(6

√
q + 5), (22.18)

≥ 2q3

12 log(q)
− 7q2 log(q) =: B(q). (22.19)



22.4. Computational verification 177

where the last inequality holds for all q ≥ 25. An elementary function study
shows that B(q) ≥ 0 for all q ≥ 2596.

If t = 2, then (22.11) becomes

π
(
q3; q, a

)
− π

(
q2; q, a

)
>
q(2q − 3)

6 log(q)
− q log(q)(5√q + 4), (22.20)

=
q2

3 log(q)
− q

2 log(q)
− 5q

3
2 log(q)− 4q log(q) =: C(q), (22.21)

where C(q) ≥ 0 for all q ≥ 17386763.
By summarizing the above development and taking care of the individual

conditions on t and q, we conclude the following theorem.

Theorem 22.7. Assume ERH, then

1. for all t ≥ 4, all q ≥ 1600, and 1 ≤ a ≤ q − 1 with gcd (q, a) = 1,

2. for t = 3, all q ≥ 2596, and 1 ≤ a ≤ q − 1 with gcd (q, a) = 1,

3. for t = 2, all q ≥ 17386763, and 1 ≤ a ≤ q − 1 with gcd (q, a) = 1,

there exists a prime p such that

qt ≤ p < qt+1 and p ≡ a mod q.

Remark 22.8. Through an advanced analysis of the above estimates and
a more rigorous development, we may further improve the lower bounds
for q. For example, considering n = 2 terms in the approximation of
li
(
qt+1

)
− li

(
qt
)
in Lemma 22.6, which defines Equation (22.9), leads to

the desired conclusion for t = 2 and all q ≥ 16484144. For the sake of
simplicity, the less precise but more readable variant has been chosen. Yet,
the conjectured bound of Linnik’s constant seems to be out of reach of such
a development.

22.4 Computational verification

Lemma 22.1 demonstrates unconditionally and Theorem 22.7 under ERH
that for a fixed q ≥ 3 Conjecture 21.2 holds for all sufficiently large expo-
nents. Based on the unconditional development in Section 22.2, we know
that the remaining exponents vary at most in 0 < t < Tθ(q). Using the
explicit lists of constants cθ(q) and xθ(q) from [BMOR18] published at
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https://www.nt.math.ubc.ca/BeMaObRe/,

we computationally verified the conjecture for those finitely many exponents
for all 3 ≤ q ≤ 45000.

Lemma 22.9. Let 3 ≤ q ≤ 45000, 1 ≤ a ≤ q − 1 with gcd (q, a) = 1, and
1 ≤ t ≤ Tθ(q). Then, there exists a prime p such that qt ≤ p < qt+1 and
p ≡ a mod q.

The computational verification, used a slightly optimized brute-force
strategy to compute for each modulus 3 ≤ q ≤ 45000 and each coprime
remainder 1 ≤ a ≤ q − 1 an explicit list L (q, a) of primes p1, ..., p⌈Tθ(q)⌉−1

satisfying

q < p1 < q2 < p2 < ... < q⌈Tθ(q)⌉−1 < p⌈Tθ(q)⌉−1 < q⌈Tθ(q)⌉ (22.22)

and pi ≡ a mod q for all i ∈ {1, ..., ⌈Tθ(q)⌉− 1}. We note that by construc-
tion Tθ(q) > 1 (see Remark 22.2) such that the list L (q, a) was non-empty.
To obtain a list L (q, a), the program computed for each t ∈ {1, . . . , ⌈Tθ(q)⌉},
the first prime in the interval [qt, qt+1). This prime was retrieved by check-
ing the primality of the first element in the arithmetic progression in the
desired interval, namely qt + a, jumping to the next element by adding q
if it was composite, and repeating the same procedure until a prime was
found. Prime testing of a candidate p was carried out in two steps. First,
p was pre-processed by the Baillie-PSW pseudoprime test [BWJ80], which
is known to certify primality if p < 264 [Fei22]. Next, upon passing this
pre-processing, p was either classified a prime (if p < 264), or it was postpro-
cessed by a deterministic prime certifying test (using the SageMath build-in
Pari/GP isprime function). The resulting data sets and its SageMath source
code can be found at

https://files.uni.lu/jim.barthel/PrimesInAP/.

This verification simultaneously guarantees the correctness of the conjec-
tured size of Linnik’s constant for all q ≤ 45000.

22.5 Computational cost

To illustrate the time needed to carry out the computer assisted verification
in Section 22.4, we highlight that for each modulus 3 ≤ q ≤ 45000, the
verification algorithm created φ(q) lists L (q, a), each being of size ⌈Tθ(q)⌉−1.
In particular, for a fixed prime q, the program computed one list for each

https://www.nt.math.ubc.ca/BeMaObRe/
https://files.uni.lu/jim.barthel/PrimesInAP/


22.6. Conclusion 179

a ∈ {1, . . . , q − 1}. For each list, the program checked in the worst case the
primality of q⌈Tθ(q)⌉−1−2 elements. Thus, the overall number of verifications
for a fixed prime q was upper bounded by q⌈Tθ(q)⌉.

Concretely, the verification took place on an ASUS VivoBook S551LB
from 2013 with an Intel Core i7-4500U dual-core (1.80GHz, 2.40GHz) pro-
cessor and an 8GB HDD RAM running on Microsoft Windows 10 Home.
The software used was SageMath 9.0 running on Python 3.7.3. installed in
January 2020. The overall (physical) runtime was approximately 4 months,
not including a second verification of correctness.

22.6 Conclusion

Combining Lemma 22.1, Theorem 22.7, and Lemma 22.9 leads to the fol-
lowing two conclusions.

Theorem 22.10.

1. For all 2 ≤ q ≤ 45000, all t ≥ 1, and all 1 ≤ a ≤ q − 1 with
gcd (q, a) = 1,

2. for all q > 45000, all t ≥ Tθ(q), and all 1 ≤ a ≤ q−1 with gcd (q, a) = 1,

there exists a prime p such that

qt ≤ p < qt+1 and p ≡ a mod q.

Theorem 22.11. Assume ERH,

1. for all 2 ≤ q ≤ 45000, all t ≥ 1, and all 1 ≤ a ≤ q − 1 with
gcd (q, a) = 1, and

2. for all t ≥ 3, all q ≥ 2, and all 1 ≤ a ≤ q − 1 with gcd (q, a) = 1, and

3. for t = 2, all q ≥ 17386763, and all 1 ≤ a ≤ q − 1 with gcd (q, a) = 1,

there exists a prime p such that

qt ≤ p < qt+1 and p ≡ a mod q.





Chapter 23

Relation to other conjectures

Conjecture 21.2 turns out to be related to some well-known open ques-
tions. Hereinafter, we outline a link to Carmichael’s totient conjecture
[Car07, Car22]. However, before exploring this relationship, we rapidly re-
vise the known results on Carmichael’s conjecture.

23.1 Carmichael’s conjecture

In 1907, Carmichael [Car07] published a note on Euler’s phi function φ
claiming that the relation φ(x) = n is never uniquely satisfied for any given
value of n. However, he recognized that his proof was erroneous and he
admitted that he is not in the possession of a complete proof [Car22]. Today
his claim is known as Carmichael’s conjecture and remains open.

Conjecture 23.1 (Carmichael [Car22]). For a given number n, the equation
φ(x) = n either has no solution or it has at least two solutions.

Curiously, Ford [For99] managed to prove that for any integer s ≥ 2 and
s = 0, there are infinitely many integers n such that the equality φ(x) = n
has exactly s solutions. Yet, the case s = 1 remains unproven.

23.2 Computational verification

Carmichael’s conjecture is widely believed to be true and numerous proper-
ties of counterexamples have been discovered. Indeed, assume that there is
a positive integer n such that φ(x) = n has a unique solution x. Carmichael
[Car22] showed that 4|x, and if there are distinct primes p1, ..., pn and posi-
tive integer exponents a1, ..., an such that (

∏n
i=1 p

ai
i )|x and 1+

∏n
i=1 p

ci
i = P
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is a prime number for some 0 < ci < ai for all i ∈ {0, ..., k}, then P 2|x.
Furthermore, he proved that if x is divisible by a Fermat prime, then x is
divisible by the square of this prime. Subsequently, Klee [KJ47] generalized
those observations by showing that if there are distinct primes p1, ..., pn and
positive integer exponents a1, ..., an such that (

∏n
i=1 p

ai
i )|x and for two dis-

joint subsets B,C ⊆ {1, . . . , n}, 1 +
(∏

i∈B p
ai−1
i (pi − 1)

∏
j∈C p

ci
i

)
= P is

a prime number for some 0 < ci < ai for all i ∈ {0, ..., k}, then P |x. Fur-
thermore, if B has the property that whenever a prime P |(pi − 1) for some
i ∈ B, we have P |x, then P 2|x. Additionally, he observed that it is suffi-
cient to study counterexamples that are not divisible by 8 or any Fermat
prime larger than 3. Using these properties, some specific optimisations,
and many hours of computation time, a stream of work by Klee, Schlafly,
Wagon, and Ford [KJ47, SW94, For98] managed to prove that the minimal
counterexample x0 of Carmichael’s conjecture satisfies

x0 > 1010
10
. (23.1)

The main idea of their computational verification consists in the study of
the divisor set D(x0) = {d ∈ N : d|x0} of the minimal counterexample x0
of Carmichael’s conjecture. By its theoretical properties, {22, 32} ⊆ D(x0)
which then implies that {72, 432} ⊆ D(x0). Similarly, if 33 ∈ D(x0), then

{192, 1272, 22872, 1013472, 3040392} ⊆ D(x0). (23.2)

Otherwise,
{132, 792, 5472, 33192, 18547632} ⊆ D(x0). (23.3)

In the same way, more divisors of x0 can be computed. For a full proof in
this direction, it would be sufficient to prove that x0 has infinitely many
prime factors. For example, it suffices to show that for any Sb ⊆ D(x0)
containing all primes of D(x0) up to some upper bound b, there is A′ ⊆ Ab

such that 1 +
∏

p∈A′ p is a prime.

23.3 Pomerance’s conjecture

The only known attempt for constructing a counterexample of Carmichael’s
conjecture has been developed by Pomerance [Pom74]. His construction
relies on the following observation.

Theorem 23.2 (Pomerance [Pom74]). If x is a natural number such that
for every prime p, (p− 1)|φ(x) implies p2|x, then φ(x) = φ(y) has only the
trivial solution y = x.
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However, Pomerance emphasises that likely such a counterexample does not
exist. Concretely, he points out that if the following conjecture holds, then
there cannot be such a counterexample as it would necessarily be divisible
by every single prime.

Conjecture 23.3 (Pomerance [Pom74]). If k ≥ 2, then (pk − 1) divides∏k−1
i=1 pi(pi − 1), where pi denotes the i-th prime.

23.4 The link with our conjecture

Rewriting Pomerance’s conjecture in terms of primes in arithmetic progres-
sions congruent to 1 finally reveals the link with Conjecture 21.2. Concretely,
for any prime q, let vq : N→ N denote the q-adic valuation map defined by

vq(0) =∞ and vq(n) = max{v ∈ N : qv|n}. (23.4)

Using this notation, Pomerance’s conjecture is equivalent to the claim that
for all k ∈ N≥2 and all q ∈ {p1, p2, ..., pk−1},

vq(pk − 1) ≤ vq

(
k−1∏
i=1

pi(pi − 1)

)
. (23.5)

Indeed, any prime divisor of (pk − 1) is smaller than pk and so (pk − 1)
divides

∏k−1
i=1 pi(pi − 1) if and only if for all q ∈ {p1, p2, ..., pk−1} and ℓ ∈ N,

qℓ|(pk − 1) implies that qℓ|
∏k−1

i=1 pi(pi − 1). The valuation map allows for
an easy comparison of those divisors by outlining for each term the highest
prime power of q. Concretely, let q ∈ {p1, p2, ..., pk−1}. Then

qt ≤ pk − 1 < qt+1 (23.6)

for some t ∈ N which trivially means that

vq(pk − 1) = t. (23.7)

If t = 0, then, by the non-negativity of the valuation map, Equation (23.5)

is satisfied. If t > 0, we need to show that vq

(∏k−1
i=1 pi(pi − 1)

)
≥ t. We

observe that this is a direct consequence of Conjecture 21.2. More precisely,
Conjecture 21.2 predicts that for all t′ ∈ {1, ..., t − 1} there is a prime Pt′

such that qt
′ ≤ Pt′ < qt

′+1 and Pt′ ≡ 1 mod q; put differently, q|(Pt′ − 1).
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By construction, each of these primes is smaller than pk and belongs to
{p1, . . . , pk−1}, so that

vq

(
k−1∏
i=1

pi(pi − 1)

)
= 1 + vq

(
k−1∏
i=1

(pi − 1)

)
(23.8)

≥ 1 + vq

(
t−1∏
t′=1

(Pt′ − 1)

)
(23.9)

≥ 1 + (t− 1) = t (23.10)

proving Equation (23.5). Thereby, we conclude the following retroaction of
Conjecture 21.2 on Carmichael’s conjecture.

Theorem 23.4. If Conjecture 21.2 holds, then Pomerance’s conjecture holds,
and hence there does not exist a counterexample to Carmichael’s conjecture
based on Theorem 23.2.

As by Theorem 22.10, Conjecture 21.2 holds for all q ≤ 45000, Pomerance’s
conjecture holds for a non-negligible proportion of all primes.

Corollary 23.5. Pomerance’s conjecture holds for any prime pk such that
the largest square factor of pk − 1 is 45000-smooth.

Proof. If pk − 1 is squarefree, then, for all q ∈ {p1, p2, ..., pk−1} we have
vq(pk − 1) ≤ 1 and

vq

(
k−1∏
i=1

pi(pi − 1)

)
≥ vq

(
k−1∏
i=1

pi

)
≥ 1 (23.11)

such that Pomerance’s conjecture trivially holds. Next, assume that
pk − 1 = B2χ where B is 45000-smooth and χ is squarefree. Then, by
reordering the prime factors, we obtain pk − 1 = B′χ′ where B′ is 45000-
smooth and χ′ is either equal to 1 or squarefree with smallest prime factor
being larger than 45000. In both cases, Equation (23.11) shows again that∏k−1

i=1 pi(pi − 1) is trivially divisible by χ′. Using the same valuation argu-

ment as above (23.6-23.10), we conclude that B′ divides
∏k−1

i=1 pi(pi−1). As
B′ and χ′ do not share common factors, Pomerance’s conjecture holds.

Remark 23.6. Theorem 23.4 does not contradict the general existence of a
counterexample of Carmichael’s conjecture, but only rules out counterexam-
ples originating from Theorem 23.2. In this sense, Corollary 23.5 strength-
ens the correctness of Carmichael’s conjecture but is not sufficient to validate
it.



Chapter 24

Open Questions

An unconditional proof of Conjecture 21.2 would be striking. Indeed, for
t = 1, it would imply the conjectured size L = 2 of Linnik’s constant.
Slightly less ambitious but not less relevant is to prove the conjecture un-
der the Extended Riemann Hypothesis. Albeit, the proof of Linnik’s con-
stant L = 2 is still hard under this assumption, we expect that an advanced
computer-assisted development can further decrease the lower bound in The-
orem 22.11 allowing to validate Conjecture 21.2 for t = 2 for all moduli.

As the design of the conjecture was mainly based on its elegance and
practicality, one may be interested in improving the precision of the conjec-
ture on the intervals where it holds. Explicit error estimates on the Prime
Number Theorem in arithmetic progression may be used to find shorter
intervals granting the existence of primes in an arithmetic progression. Fur-
thermore, small sieves may be used to find them explicitly.

The connection of our conjecture to Pomerance’s conjecture may be fur-
ther exploited to study the latter claim. Albeit its impact on Carmichael’s
conjecture is marginal, Pomerance’s conjecture is of general interest as it
describes an interesting property of prime numbers.
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Dissertation for the degree of Doctor of Mathematics.

[Fei22] Jan Feitsma. Pseudoprimes. http://www.janfeitsma.nl/

math/psp2/index, March 16 2022.

[For98] Kevin Ford. The distribution of totients. Ramanujan J., 2(1-
2):67–151, 1998. Paul Erdős (1913–1996).
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On The (M)iNTRU
Assumption Over Finite

Rings

The contents of this part have been published as:

Jim Barthel, Volker Müller and Răzvan Roşie (2021). On the MiNTRU
assumption in the integer case. ProvSec 2021
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Act IV: The obfuscation

Jay quickly carried out his second count and kept his promise to Missy
by participating in her tea party. As usual, he had to vehemently deny her
offer to eat some sand cake. Both had incredible fun pretending to be on
the California beach slurping Mocktails; ma’s creation was the best seller.
Meanwhile, Jay’s pa computed the total number of coins, albeit slightly dis-
tracted from the giggles and waves of laughter from Missy’s room. Jay’s
notes revealed that the family collection contained 1478 pennies. Further-
more, a total of over 4000 coins and tokens were counted.

“Did you have fun counting the pennies?”, asked Jay’s pa at the dinner
table. “Of course”, replied Jay, “I can’t wait to tell my friends about this.”
“Your friends?”, injected pops, “you can’t do that otherwise they will rob
us!”. “Oh Pieter!”, exclaimed granny, “no one will steal your old rusty
coins”. “I still remember the twelfth of June 1963 when my lucky penny
was stolen right after showing it to my buds in the club” responded pops
angrily. “Not this story again”, declared Jay’s pa, “you lost it, that’s all”.
“No, it was stolen. I know it!” reacted pops.

“You need to know Jay”, said granny, “your pops is a bit paranoid. He
won’t share his treasures but prefers to hide them in the basement. He even
encrypts the counting lists by taking another list, adding errors to this list,
and finally multiplying it with the counting list.” “You never know who’s
watching”, explained pops, “and, by the way, if you try to make fun of me,
do it correctly: I’m first multiplying the counting list with the other list and
then I’m adding errors.”. “It doesn’t matter”, sighed granny while shaking
her head. Seemingly annoyed pops got up and went away. Right before
leaving the room, he countered: “it does matter!”.
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Abstract IV

The inhomogeneous NTRU (iNTRU) assumption is a recent computational
hardness assumption. Intuitively, it claims that first adding a random low
norm error vector to a known gadget vector and then multiplying the result
with a secret vector is sufficient to obfuscate the considered secret vector.
The matrix inhomogeneous NTRU (MiNTRU) assumption replaces vectors
with matrices and still claims to hide the secret. Albeit those assump-
tions strongly remind the well-known learning-with-errors (LWE) assump-
tion, their hardness has not been studied in full detail yet. In this part, we
break the basis case of the iNTRU and MiNTRU decision problems through
an elementary q-ary lattice reduction attack. Concretely, we restrict the
iNTRU assumption to finite integer rings and the MiNTRU assumption to
vectors. This leads to a problem that we call (M)iNTRU. Starting from a
challenge vector, we construct a particular q-ary lattice that shall reveal the
nature of the challenge vector. Indeed, for a challenge vector following the
uniform distribution, we obtain a random q-ary lattice for which it is unlikely
that it contains an unusually short vector. For a challenge vector following
the (M)iNTRU distribution, we obtain a special q-ary lattice that contains
an unusually short vector. Thereby, elementary lattice reduction allows us
to distinguish a random challenge vector from a synthetically constructed
one. Subsequently, we describe how our attack can be generalized to the
general iNTRU and MiNTRU problem and we highlight its inherent limita-
tions. Ultimately, we conclude our development with a short comparison of
the MiNTRU assumption with other well-known hardness assumptions and
discuss some open questions.
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Chapter 25

Introduction

The pillars of modern cryptography are objectively verifiable security no-
tions. Whereas the definition of abstract procedures, such as public-key cryp-
tography [DH76], is purposely designed in a universal manner, concrete in-
stantiations, such as the Diffie-Hellmann key exchange [DH76], often require
a link to presumably hard problems, such as the discrete logarithm prob-
lem [DH76]. This particular link is obtained through a reduction from the
considered problem to a desired hardness assumption. Intuitively, the con-
sidered problem instance is insecure if the underlying assumption is wrong.
For example, as long as discrete logarithms cannot be efficiently computed,
the original Diffie-Hellmann key exchange is secure. This helps us to define
secure parameters and to point out insecure cryptographic schemes. For
illustration, Shor’s algorithm [Sho94] shows the vulnerability of the Diffie-
Hellmann key exchange towards quantum computers.

To not put all eggs in one basket, a myriad of security assumptions
has been worked out. In particular, the quantum threat and the corre-
sponding technological advances pushed the cryptographic community to
find new hardness assumptions. Intriguing ideas such as elliptic curve cryp-
tography [Mil85, Kob87] and lattice-based cryptography [Ajt96] have been
conceptualized. Both of these cryptographic orientations play a major role
in the U.S. national institute of standards and technology (NIST) post-
quantum cryptography standarization [NIS17]. When focussing on lattice-
based cryptography, we may distinguish two central hardness assumptions:
the Learning-with-Errors (LWE) assumption [Reg05], and the NTRU as-
sumption [HPS98]. Both of those assumptions are seemingly quantum se-
cure and each presents its own advantages. Furthermore, both got equipped
with a broad range of variants.
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At AsiaCrypt 2019, Genise et al [GGH+19] increased the existing spec-
trum of post-quantum assumptions by two new computational hardness as-
sumptions: the inhomogeneous NTRU (iNTRU) assumption and the matrix
inhomogeneous NTRU (MiNTRU) assumption. Below, the intuition on these
assumptions is given. The formal definitions can be found in Chapter 26.

Given a challenge vector (a0, . . . , aℓ), the inhomogeneous NTRU decision
problem (iNTRU) asks one to distinguish whether its entries were sampled
uniformly at random from a chosen set of representatives Rq of a polynomial
ring, or whether they were synthetically constructed. In the latter case, the
challenge vector follows the iNTRU distribution that can be described as
follows: first a secret invertible element s ∈ R×

q is chosen at random. Then,
small norm error elements ei ∈ Rq following a specific error distribution are
sampled. Finally, the vector entries are defined by a0 :=

[
s−1e0 mod qp

]
and ai :=

[
s−1(2i−1 − ei) mod qp

]
for all i ∈ {1, . . . , ℓ} where the modulo

operation first reduces the elements with respect to a polynomial p(x) and
then with respect to an integer q. The iNTRU assumption claims that both
distributions are computationally indistinguishable.

The matrix inhomogeneous NTRU decision problem (MiNTRU) essen-
tially replaces vectors over Rq by matrices with entries in Zq := Z∩

(
− q

2 ,
q
2

]
.

The MiNTRU assumption claims that deciding whether a matrix was cho-
sen uniformly at random or stems from a particular sampling distribution is
computationally infeasible. We remark that the iNTRU and MiNTRU prob-
lems intersect if vectors in Zℓ+1

q are considered. We denote this elementary
case by (M)iNTRU. As the existing security analysis of these problems is
scarce, further research is required.

Hereinafter, we investigate the hardness of those two security assump-
tions in further detail. We succeed in developing two elementary lattice-
based distinguishers for Rq = Zq, breaking so the decisional hardness as-
sumptions in their basis case. Our key idea consists in transforming the vec-
tor entries from ai to bi := [2ai − ai+1 mod q] ≡ (−2ei + ei+1)s

−1 mod q,
which makes the (M)iNTRU entries independent of the gadget terms 2i.
Then, we construct a particular q-ary lattice which contains an extremely
short vector if the challenge vector follows the (M)iNTRU distribution. An
observation on the shortest vector of q-ary lattices predicts that it is highly
unlikely that a vector of this magnitude exists in a random q-ary lattice,
which yields a natural distinction criterion. Remarkably, the size difference
between the shortest vector of a random q-ary lattice and a q-ary lattice con-
structed from a (M)iNTRU vector is sufficiently large to be spotted through
elementary lattice reduction. The upcoming development is based on the
lattice notions defined in Chapter 6 and the particular results of Chapter 7.



Chapter 26

Inhomogeneous NTRU
assumptions

Let us start by formally defining the problems of interest. Section 26.1
establishes the inhomogeneous NTRU assumptions and quickly revises their
applications. Section 26.2 does the same for the matrix inhomogeneous
NTRU assumptions. Section 26.3 introduces the problem of our study. We
use the notations and conventions established in Chapter 1 and Chapter 2.

26.1 The inhomogeneous NTRU assumption

In this section, we (re-)define the inhomogeneous NTRU (iNTRU) assump-
tion over polynomial rings, describe some variants, and outline its use.

26.1.1 The iNTRU assumption

The inhomogeneous NTRU problem has been introduced in
[GGH+19, Section 4.1, formula (3)]. Its definition is based on a particular
sampling process. Concretely, let p(x) = xn+cn−1x

n−1+· · ·+c1x+c0 ∈ Z[x]
be a monic polynomial. Let q ∈ Z≥2, ℓ = ⌈log2(q)⌉, and Zq = Z ∩

(
− q

2 ,
q
2

]
.

For all g ∈ Z[x], define [g mod qp] ∈ Zq[x] by first reducing g modulo p(x)
to obtain a polynomial with degree strictly smaller than deg(p) = n and
subsequently reducing the coefficients of the resulting polynomial modulo q
to obtain coefficients in Zq. Let Rq = {[g mod qp] ∈ Zq[x] | g ∈ Z[x]} and
R×

q = {g ∈ Rq | ∃g−1 ∈ Rq, [g−1g mod qp] = 1}. Let χ be a symmet-
ric distribution with support in Zq = Z ∩

(
− q

2 ,
q
2

]
and standard deviation

σχ = O(
√
q). We refer to χ as the error distribution.
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Definition 26.1 (iNTRU distribution). Let s be sampled uniformly at ran-
dom in R×

q and let e0, . . . , eℓ be sampled independently in Rq such that their
coefficients follow the error distribution χ. Define the iNTRU distribution
as the distribution of the vector (a0, . . . , aℓ) defined by

a0 := [s−1e0 mod qp] (26.1)

ai := [s−1(2i−1 − ei) mod qp] ∀i ∈ {1, ..., ℓ}. (26.2)

Given a vector (a0, . . . , aℓ) following the iNTRU distribution and the
corresponding modulus qp, the iNTRU search problem consists in finding
the value of s. The iNTRU search assumption predicts that this can only
be achieved with negligible probability. Given a vector (x0, . . . , xℓ) and a
modulus qp, the iNTRU decision problem consists in distinguishing whether
the vector has been sampled following the iNTRU distribution or the uniform
distribution over Rℓ+1

q . The iNTRU decision assumption predicts that such
a distinction can only be made with negligible probability. In [GGH+19],
the iNTRU decision problem is defined over abstract rings. However, for
technical reasons, we restrict to polynomial rings. If p(x) = x, then,Rq = Zq

and the underlying error distribution χ may be considered to be the discrete
Gaussian distribution with standard deviation σχ = 2

√
q. Furthermore, for

practical reasons, one may consider shortened iNTRU vectors by removing
the first vector entries.

26.1.2 Applications

The iNTRU assumptions have only been used once, namely in [GL20] where
the pseudorandomness of two ring-based short integer solution lattice trap-
doors is based on them. Below, we given an intuition on their construction.
Indeed, we first illustrate the notion of trapdoors and describe the short in-
teger solution problem. Subsequently, we portray the basic idea from [GL20]
used to construct the short integer solution lattice trapdoors. Finally, we ex-
plain how the security of these trapdoors relates to the iNTRU assumptions.

Trapdoors

Intuitively, a trapdoor can be seen as an information that allows one to
invert a particular function [DH76]. For example, let A ∈ (Rm×m

q )inv be an
invertible matrix modulo qp and let fA : Rm

q → Rm
q be defined by fA(x) :=

[A · xT mod qp], then A is a trapdoor for fA as it allows us to recover x
from fA(x) by multiplying it on the left by its inverse.
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Short Integer Solutions

The Short Integer Solution (SIS) problem (see [Ajt96, PR06, LS14]) is a
cryptographic problem which, in the ring version, asks to find, for a given
vector a ∈ Rm

q and a bound value β ∈ R>0, a vector x ∈ Rm
q such that

fa(x) := a · xT ≡ 0 mod qp and ∥x∥ρ < β for a suitable metric ∥ · ∥ρ.
Despite its difficulty, the problem can be tackled if some additional in-

formation on a is known. Assume that it is easy to solve the short integer
solution problem for some particular function fg where g is a known vector
called the gadget. Assume further to know a low norm matrix R, called
a g-trapdoor, such that a ·R ≡ g mod qp. Then, the initial short integer
solution problem can be easily solved. By our first assumption, a vector x
such that fg(x) ≡ 0 mod qp and ∥x∥ρ < β can be efficiently determined and
a transformed vector x′ := [R ·x mod qp] can be computed using the known
g-trapdoor R. Thus, it remains only to verify the size condition ∥x′∥ρ < β,
which, due to the low norm entries of R, is usually satisfied. Often, the
computation of x makes use of a discrete Gaussian sampling procedure such
that multiple potential candidates can be generated increasing so the chance
to find a suitable vector x′. We refer to [GPV08] for a detailed description.

Their idea

[GL20] constructs two short integer solution trapdoors using the inherent
trapdoor potential of the iNTRU distribution. Concretely, a shortened iNTRU
vector a = (a1, . . . , aℓ) can be represented as a = [s−1(g+e) mod qp] where
g = (1, 2, 22, . . . , 2ℓ−1) is the gadget vector, e = (e1, . . . , eℓ) ←χ Rℓ

q is the
error vector and s ∈ R×

q is the secret. Since sa ≡ g + e mod qp and we
expect g+e ≈ g, the secret s is almost a g-trapdoor for a, falling short of e.

Pseudorandomness

A trapdoor should be pseudorandom, which means that it should be hard to
be guessed. Translated to the construction above, this means that s should
not be deducible from a = [s−1(g+ e) mod qp] and, in particular, a should
be indistinguishable from a uniformly at random sampled vector. These
properties follow directly from the iNTRU search and decision assumption.
By devising two distinct preimage sampling processes for s, [GL20] obtains
two distinct trapdoor schemes. We note that, for technical reasons, the
final trapdoor constructions replace the gadget g by an approximate gadget
f = (2j , . . . , 2ℓ−1) for some j ∈ N>1, but the key idea remains the same. We
refer to [GL20, Section 3] for the detail of their constructions.
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26.2 The matrix inhomogeneous NTRU assumption

In this section, we (re)define the matrix inhomogeneous NTRU (MiNTRU)
assumption, describe some variants, and outline its use.

26.2.1 The MiNTRU assumption

The matrix inhomogeneous NTRU problem was introduced in [GGH+19,
Section 4.1, formula (4)]. Its definition is based on a particular sampling
process. Concretely, let q ∈ Z≥2, n ∈ Z≥1, ℓ = ⌈log2(q)⌉, m = n(ℓ + 1),
and G = [0|I|2I|...|2ℓ−1I] ∈ Zn×m be a particular matrix called the gadget
matrix. Let χ be a symmetric distribution with support in Zq = Z∩

(
− q

2 ,
q
2

]
and standard deviation σχ = O(

√
q). We refer to χ as the error distribution.

Let (Zq)
n×n
inv denote the set of matrices in Zn×n

q that are invertible modulo q.

Definition 26.2 (MiNTRU distribution). Let S be sampled uniformly at
random in (Zq)

n×n
inv and let E be an n ×m matrix whose entries have been

sampled independently following the error distribution χ. Set the MiNTRU
distribution as the distribution of the matrix A defined by

A :=
[
S−1 × (G−E) mod q

]
(26.3)

where the modulo operation returns for each matrix entry the unique rep-
resentative in Zq.

The MiNTRU search problem consists in retrieving the hidden secret ma-
trix S from a MiNTRU matrix A and its modulus q, and the decision prob-
lem asks one to distinguish a uniformly at random sampled matrix X from
a MiNTRU matrix A. The MiNTRU assumptions claim that these problems
can only be solved with negligible probability. In [GGH+19] only the deci-
sion problem was defined, but the search variant may be of cryptographic
use. Following a suggestion of [GGH+19] the underlying error distribution
χ may be considered to be the discrete Gaussian distribution with standard
deviation σχ = 2

√
q. Although no standard parameters have been defined,

the original article suggests to use the matrix dimension n = O(q1/4). Vari-
ants of the MiNTRU problem may be obtained by removing some parts of
the MiNTRU matrix. For example, the small secret variant is obtained by
removing the first n× n block of the MiNTRU matrix and sampling the in-
vertible secret matrix S such that its entries follow the error distribution χ.
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26.2.2 Applications

The MiNTRU assumptions have only been invoked in their original formal-
ization paper [GGH+19] where they are used to prove the semantic secu-
rity of a new homomorphic encryption scheme for finite automata. Below,
we illustrate their construction. More precisely, we first give an intuition
on homomorphic encryption schemes for non-deterministic finite automata.
Then, we describe the basic encryption procedure of [GGH+19] and its cor-
responding homomorphic evaluation. At last, we explain how the security
of the basic encryption procedure relates to the MiNTRU assumptions.

Homomorphic encryption and non-deterministic finite automata

Homomorphic encryption (HE) [RAD78] enables computations over
encrypted data leaving the result under encrypted form. A particular case
is given for the evaluation of encrypted non-deterministic finite automata
(NFA) [RS59] that can be interpreted as a matrix product. Intuitively, a ho-
momorphic encryption scheme for non-deterministic finite automata allows

one to evaluate the product
[(∏k

i=1Mk+1−i

)
· v mod q

]
. However, instead

of evaluating this product in plain, the computation is carried out over en-
cryptions of the matrices Mi ∈ Zn×n

q and the vector v ∈ Zn
q . [GGH+19]

devises a suitable scheme for such a computation.

Their basic encryption procedure

The encryption of a given message M ∈ Zn×n
q takes place in two steps: first,

a secret matrix S ∈ (Zq)
n×n
inv is chosen uniformly at random and an error

matrix E ∈ Zn×m
q with m = n × (ℓ + 1) is sampled with respect to the

error distribution χ. Then, a gadget matrix G = [0|I|2I|...|2ℓ−1I] ∈ Zn×m

is constructed and the ciphertext C :=
[
S−1 × (M×G+E) mod q

]
is

computed. The decryption of a ciphertext C is obtained by computing
[S×C−E mod q] ≡ M ×G mod q and recovering M through a known
trapdoor of the gadget matrix G. Similarly, a vector v ∈ Zn

q can be en-
crypted by setting c :=

[
S−1 × (v + e) mod q

]
where e ∈ Zn

q is sampled
with respect to the error distribution χ.

Chained encryption for homomorphic evaluation

Homomorphic evaluation of an encrypted product
(∏k

i=1Mk+1−i

)
· v, is

achieved through a recursive process. First k + 1 secret keys (Si,Ei) with
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i ∈ {0, . . . , k} are chosen uniformly at random. Then, the initial vector v
is encrypted as c :=

[
S−1
0 × (βv + e) mod q

]
. Next, the matrices Mi are

iteratively encrypted by Ci :=
[
S−1
i × (Mi × Si−1 ×G+Ei) mod q

]
for

all i ∈ {1, . . . , k}. The homomorphic evaluation can now take place starting
from c0 := c and recursively computing ci :=

[
Ci ×G−1(ci−1) mod q

]
for

all i ∈ {1, . . . , k} where G−1(ci) denotes a discrete Gaussian vector, which
satisfies G ×G−1(ci) ≡ ci mod q. The decryption of the final ciphertext

ck corresponds to the desired output
[(∏k

i=1Mk+1−i

)
· v mod q

]
.

Security of the new scheme

Semantic security of the underlying encryption procedure implies semantic
security of the homomorphic encryption scheme. The basic encryption pro-
cedure above is linked to the MiNTRU assumptions as an encrypted matrix
C =

[
S−1 × (M×G+E) mod q

]
consists almost in a MiNTRU matrix

A =
[
S−1 × (G+E) mod q

]
, except for the additional factor M. Through

a convolution of error distributions, the security of the encryption scheme
can be reduced to the MiNTRU assumptions [GGH+19, Proposition 4.2.].

26.3 The (M)iNTRU problem

Choosing in Section 26.1.1 the polynomial p(x) = x and setting in Sec-
tion 26.2.1 the matrix dimension to n = 1 leads to the same problem. Con-
cretely, let q ∈ Z≥2, ℓ = ⌈log2(q)⌉ and let χ be a symmetric distribution
with support in Zq = Z ∩

(
− q

2 ,
q
2

]
and standard deviation σχ = O(

√
q). We

refer to χ as the error distribution.

Definition 26.3 ((M)iNTRU distribution). Let s be sampled uniformly at
random in Z×

q and let e0, . . . , eℓ be sampled independently in Zq following
the error distribution χ. Set the (M)iNTRU distribution as the distribution
of the vector (a0, . . . , aℓ) defined by

a0 :=
[
s−1e0 mod q

]
, (26.4)

ai :=
[
s−1(2i−1 − ei) mod q

]
∀i ∈ {1, ..., ℓ}. (26.5)

Similar to the iNTRU and MiNTRU search problems, the (M)iNTRU search
problem consists in retrieving the hidden secret value s from a (M)iNTRU
vector (a0, . . . , aℓ) and its modulus q, and the decision problem only asks to
distinguish a random vector (x0, . . . , xℓ) from a (M)iNTRU vector (a0, . . . , aℓ).
In the upcoming section, we focus on the (M)iNTRU decision problem and
we show that it can be solved through an elementary lattice attack.
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Attacking the (M)iNTRU
assumption - First approach

In this chapter, we develop a lattice attack against the (M)iNTRU decision
assumption. The attack constructs a particular q-ary lattice and employs
elementary lattice reduction to approximate its shortest vector. The size of
this approximation helps us to distinguish (M)iNTRU vectors from random
ones. The key for this distinction is Theorem 7.5 which gives a probabilis-
tic estimate on the expected size of the shortest vector. Furthermore, in
case a (M)iNTRU vector has been detected, it often allows us to filter out
the underlying secret s. Although our development is based on full-length
challenge vectors, it can be modified to apply to shortened vectors as well.

27.1 Lattice construction

Let x = (x0, . . . , xℓ) denote a challenge vector whose entries either follow
the uniform distribution or the (M)iNTRU distribution over Zℓ+1

q where
Zq = Z ∩

(
− q

2 ,
q
2

]
. We construct a new vector y := (y0, . . . , yℓ−1) by setting

y0 := [x0 mod q] and yi := [2xi − xi+1 mod q]. (27.1)

for all i ∈ {1, . . . , ℓ − 1} where the modulo operation returns the unique
representative of the result in Zq. Subsequently, using the notation from
Section 7.1, we construct the ℓ× ℓ q-ary row lattice:

Λq(y) =
{
t ∈ Zℓ

∣∣∣ t ≡ ty mod q for some t ∈ Z
}
. (27.2)

205
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27.2 A lattice basis

Next, we wish to find an explicit lattice basis of Λq(y). To obtain this basis,
we require one entry of y to be invertible modulo q. In case no entry of y
is invertible modulo q, the upcoming transformation cannot be carried out
and the subsequent analysis does not hold. Although the analysis could still
be adapted to that situation, we suggest using in this case our second attack
described in Chapter 28. However, as the following proposition shows, it is
rather unlikely to not find an invertible element of y modulo q.

Proposition 27.1. The probability that a uniformly at random sampled
vector (y0, . . . , yℓ−1) ∈ Zℓ

q contains at least one invertible element modulo q
tends to 1 for increasing q.

Proof. The probability that a random y ∈ Zq is invertible modulo q is φ(q)
q

where φ denotes the Euler totient function [Gau66, §38]. Thus, the probabil-

ity that none of the entries in (y0, . . . , yℓ−1) is invertible is only
(
1− φ(q)

q

)ℓ
.

As by [RS62],

φ(q) >
q

eγ log(log(q)) + 3
log(log(q))

, (27.3)

the probability is upper bounded by(
1− 1

eγ log(log(q)) + 3
log(log(q))

)ℓ

(27.4)

where γ ≈ 0.57721566 is Eulers constant [Lag13]. An elementary function
analysis shows that this upper bound tends to 0 for increasing q.

Remark 27.2. We note that for most values of q, the probability that none
of the entries of y is invertible is far smaller than the upper bound outlined

in Equation (27.4). For example, if q is prime, the probability is only
(
1
q

)ℓ
.

Thus, assume that t ∈ {0, . . . , ℓ − 1} is an index such that yt is invertible
modulo q, or, in other words, such that gcd(yt, q) = 1. Then, we transform
the vector y to obtain a new vector z := (z0, . . . , zℓ−1) by setting

zi :=
[
y−1
t yi mod q

]
∀i ∈ {0, . . . , ℓ− 1} (27.5)

where zt = 1. With this new vector, we can develop an explicit lattice basis
of Λq(y).
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Lemma 27.3. With y and z as above, we have

Λq(y) = L



z0 . . . zt−1 1 zt+1 . . . zℓ−1

q . . . 0 0 0 . . . 0
...

. . .
...

...
...

...
0 . . . q 0 0 . . . 0
0 . . . 0 0 q . . . 0
...

...
...

...
. . .

...
0 . . . 0 0 0 . . . q


.

Proof. To prove that both lattices coincide, it suffices to show that each gen-
erating vector of one lattice is also contained inside the other one. By defini-
tion, Λq(y) is generated by the canonical vectors (q, 0, . . . , 0), . . . , (0, . . . , 0, q)
and y. The lattice on the right hand side is generated by the same vectors,
but replaces y and the canonical vector with q on its (t + 1)-th entry with
the vector z.

First, we note that z ∈ Λq(y). Indeed, multiplying y by y−1
t and sub-

tracting as often as needed the canonical vectors (q, 0, . . . , 0), . . . , (0, . . . , 0, q)
from the result shows that z ∈ Λq(y). Therefore, the lattice on the right is
a sublattice of Λq(y).

Reciprocally, we observe that the canonical vector with q on its (t+1)-th
entry is obtained by subtracting for each i ∈ {0, . . . , t − 1, t + 1, . . . , ℓ} the
canonical vector with q on its i-th entry exactly zi times from qz. Further-
more, multiplying z by yt and subtracting the canonical vectors from the
result as often as necessary shows that y is contained in the lattice on the
right, showing that Λq(y) is a sublattice of the lattice on the right.

In the two subsequent sections, we study the differences of Λq(y) assuming
that the initial challenge vector x either follows the uniform or the (M)iNTRU
distribution. During this analysis, we freely switch between the two expres-
sions of Λq(y) to enjoy the properties of a q-ary lattice, but also the prop-
erties that can be deduced from its particular basis given in Lemma 27.3.

27.3 Case of a random challenge vector

Assume that our initial challenge vector x = (x0, . . . , xℓ) was sampled uni-
formly at random. Then, the entries of our constructed vector y ∈ Z1×ℓ

q still
follow the uniform distribution. By Theorem 7.5, we have

P

(
λ1(Λq(y)) ≥ min

{
q,

√
ℓ

8πe
q

ℓ−1
ℓ

})
≥ 1− 1√

πℓ
2−ℓ. (27.6)
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where λ1(Λq(y)) denotes the first lattice minimum of Λq(y) in the Euclidean
norm. Thereby, for sufficiently large ℓ, the shortest lattice vector can be
expected to satisfy

λ1(Λq(y)) ≥ min

{
q,

√
ℓ

8πe
q

ℓ−1
ℓ

}
. (27.7)

27.4 Case of a (M)iNTRU challenge vector

Assume next that the challenge vector x = (x0, . . . , xℓ) was synthetically
constructed following the (M)iNTRU distribution. We will show that in this
case, Λq(y) contains an unusually short lattice vector that is considerably
smaller than the expected size of its random equivalent.

27.4.1 First observation

We recall that a synthetically constructed vector a := (a0, . . . , aℓ) ∈ Zℓ+1
q

following the (M)iNTRU distribution satisfies

a0 :=
[
s−1e0 mod q

]
and ai :=

[
s−1(2i−1 − ei) mod q

]
(27.8)

for all i ∈ {1, . . . , ℓ} where e0, . . . , eℓ denote random errors sampled from
the symmetric error distribution χ producing with overwhelming probability
elements that are small in absolute value. Thereby, the transformation

y0 :=
[
s−1e0 mod q

]
and yi :=

[
s−1(−2ei + ei+1) mod q

]
(27.9)

for all i ∈ {1, . . . , ℓ − 1} produces elements where the numerators e0 and
−2ei + ei+1 for all i ∈ {1, . . . , ℓ− 1} are still quite small compared to q. To
be precise, the numerators follow the distribution χ′ where:

1. The mean µχ′ of χ′ is

µχ′ = −2µχ + µχ = 0

where the first equality follows from the sum of random variables and
since ai and ai+1 follow the distribution χ, and the second equality
comes from the symmetry of χ implying that µχ = 0.

2. The variance σ2χ′ of χ′ is given by

σ2χ′ = 3σ2χ

since ai and ai+1 follow the same distribution χ.
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As χ produces with overwhelming probability elements with a small absolute
value, so does χ′. Thus, we can expect the numerators to be quite small
when compared to the modulus q.

27.4.2 Second observation

Considering the transformation leading to z, we observe that its entries are
given by

zi =
[
(−2ei + ei+1)e

′−1
t mod q

]
∀i ∈ {0, . . . , ℓ− 1} (27.10)

where e′t = e0 if t = 0 and e′t = −2et + et+1 if t ∈ {1, . . . , ℓ− 1}. Thus, each
entry zi can be expressed as the quotient of two small norm error elements.

27.4.3 An unusually short lattice vector

Our two observations show that our lattice contains the unusually short
vector

v := (e0, (−2e1 + e2), . . . , (−2eℓ−1 + eℓ)) (27.11)

that can be obtained from e′tz by subtracting the canonical vectors
(q, 0, . . . , 0), . . . , (0, . . . , 0, q) as often as needed. If the error entries are
bounded in absolute value by some constant K > 0, for example

max{|e0|, | − 2e1 + e2|, . . . , | − 2eℓ−1 + eℓ|} ≤ K, (27.12)

then the size of v is upper bounded by

∥v∥2 ≤
√
ℓK2 ≤

√
ℓ K. (27.13)

This allows us to give explicit bounds for the error values such that the size
of v is smaller than the expected value in Equation (27.7).

Proposition 27.4. If max{|e0|, |−2e1+e2|, . . . , |−2eℓ−1+eℓ|} ≤ min
{

q√
ℓ
,

1√
8πe

q(ℓ−1)/ℓ
}
, then the target vector v is shorter than min

{
q,
√

ℓ
8πeq

ℓ−1
ℓ

}
.

Proof. Replace K in Equation (27.13) with min
{

q√
ℓ
, 1√

8πe
q(ℓ−1)/ℓ

}
.

In practice, the error terms are chosen to be of size O(
√
q), which implies

that the required size condition is almost always satisfied.
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27.5 Lattice reduction

As the preceding development yields good estimates on the expected size of
the shortest lattice vector of Λq(y), we can investigate the effect of elemen-
tary lattice reduction on Λq(y).

27.5.1 Case of a random challenge vector

If x was sampled uniformly at random, then we concluded in Equation (27.7)
that the shortest lattice vector of Λq(y) can be expected to be of size

λ1(Λq(y)) ≥ min

{
q,
√

ℓ
8πeq

ℓ−1
ℓ

}
. Therefore, the shortest LLL reduced ba-

sis vector is at least of the same size.

27.5.2 Case of a (M)iNTRU challenge vector

Slightly decreasing the error bound K in Equation (27.13) guarantees that
the first LLL reduced vector is smaller than the expected random value.
Indeed, generally, the first LLL reduced vector with factor δ does not corre-
spond to the smallest lattice vector but only consists in a good approxima-
tion of it. More precisely, the first LLL reduced vector w1 of Λq(y) satisfies

∥w1∥ ≤ α
ℓ−1
2 λ1(Λq(y)) where α = 1

δ− 1
4

. However, in practice, this artificial

blow-up is barely observed. α can be decreased by increasing δ, but such an
improvement is limited to δ < 1. For the sake of explicit results, we consider
hereinafter δ = 63

64 < 0.99 resulting in α = 64
47 <

√
2. With these parameters,

we deduce from Equation (27.13) that

∥w1∥2 ≤ α
ℓ−1
2

√
ℓK ≤ 2

ℓ−1
4

√
ℓK ≤ 2

log2(q)
4

√
ℓK ≤ q

1
4

√
ℓK. (27.14)

Adapting K accordingly leads to the following conclusion.

Proposition 27.5. If max{|e0|, |−2e1+e2|, . . . , |−2eℓ−1+eℓ|} ≤ min
{

q3/4√
ℓ
,

1√
8πe

q
3ℓ−4
4ℓ

}
, then ∥w1∥2 is smaller than min

{
q,
√

ℓ
8πeq

ℓ−1
ℓ

}
.

Proof. Replace K in Equation (27.14) by min
{

q3/4√
ℓ
, 1√

8πe
q

3ℓ−4
4ℓ

}
.

We note again that [GGH+19] suggested K = O(
√
q) so that we can expect

the condition of Proposition 27.5 to hold in practice.
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27.6 Conclusion

We conclude that:

1. If the challenge vector was sampled uniformly at random, the first
LLL reduced vector can be expected with high probability (see Equa-

tion (27.6)) to be lower bounded by min

{
q,
√

ℓ
8πeq

ℓ−1
ℓ

}
.

2. If the challenge vector follows the (M)iNTRU distribution with a suf-
ficiently small error bound, the first LLL reduced vector is determin-

istically smaller than min

{
q,
√

ℓ
8πeq

ℓ−1
ℓ

}
(see Proposition 27.5).

Hence, conditioned on the symmetric error distribution χ, we can distinguish
between a challenge vector that was sampled uniformly at random and a
challenge vector that follows the (M)iNTRU distribution by comparing the

length of the first LLL reduced vector with min

{
q,
√

ℓ
8πeq

ℓ−1
ℓ

}
.

27.6.1 Comment on the error distribution

We point out that our development did not use a particular error distribu-
tion. The behaviour of χ not being known makes the analysis harder but
still allows for our conclusion. In practical applications of the (M)iNTRU as-
sumption, the error distribution is known as it needs to be hard-coded into
the resulting primitives. This additional information may be used to obtain
tighter bounds and impossibility results. For example, most implementa-
tions of the Discrete Gaussian distribution set the probability for elements
sampled outside a given error range to 0 such that K in Equation (27.13)
can be made precise.

27.6.2 Comment on the success probability

If the maximal error term is sufficiently small, then we are guaranteed that
our distinguisher always recognizes (M)iNTRU challenge vectors. Indeed, if

max{|e0|, |e1|, . . . , |eℓ|} ≤ min

{
q3/4

3
√
ℓ
,

1

3
√
8πe

q
3ℓ−4
4ℓ

}
, (27.15)

then the size condition of Proposition 27.5 holds and (M)iNTRU challenge
vectors are correctly assessed. Thus, in this case the overall success prob-
ability depends on wrongly assessed random challenge vectors only. The



212 Chapter 27. Attacking the (M)iNTRU assumption - First approach

probability of such bad evaluations is given in Equation (27.6). Assuming
that it is decided uniformly at random whether the challenge vector stems
from the uniform distribution or the (M)iNTRU distribution, the overall
success probability is higher than 1− 1√

πℓ
2−(ℓ+1).

If the maximal error term is larger than the upper bound in Equa-
tion (27.15), then only a heuristic success probability can be obtained. The
probability of success in correctly assessing random challenge vectors does
not change, but correct identification of (M)iNTRU challenge vectors may be
at risk. As the size of a single error element is not important, but only the
size of the resulting error vector v matters, there is a high probability that
an isolated large vector entry does not imply a violation of the vector size
condition for v. Furthermore, our development uses the worst-case approx-
imation of LLL reduced vectors, which is not observed in practice. Thus, if
the error distribution range or its variation is sufficiently small, then a high
success rate can be expected.

27.7 Empirical tests

An implementation of this distinguisher in SAGEMATH (distinguisher1)
and the corresponding statistics can be found at:

https://orbilu.uni.lu/handle/10993/47990

Practical experiments confirm the above conclusions but show another sur-
prising side effect, namely that almost always the secret s can be obtained
from (M)iNTRU challenge vectors. Indeed, typically, the first LLL reduced
vector w1 corresponds to either v or its negative. If so, choosing the error
term in the t-th position e′t, and computing

[
e′ty

−1
t mod q

]
= ±s reveals the

secret s. Thus, the corresponding (M)iNTRU search problem seems to be
solvable with the same lattice method. However, a theoretical confirmation
of this observation remains open.

https://orbilu.uni.lu/handle/10993/47990


Chapter 28

Attacking the (M)iNTRU
assumption - Second
approach

In this chapter, we describe a second attack against the (M)iNTRU assump-
tion. It may be applied if the attack described in Chapter 27 cannot be used
or if the result of this attack needs to be double-checked. The upcoming at-
tack is still based on the same idea as the one described in Chapter 27 but
avoids the invertibility condition by constructing another lattice. The trade-
off for the universality of this second attack is its dependence on heuristics.

28.1 Lattice construction

Let x = (x0, . . . , xℓ) denote again a (M)iNTRU challenge vector following ei-
ther the uniform distribution or the (M)iNTRU distribution over Zℓ+1

q where
Zq = Z ∩

(
− q

2 ,
q
2

]
. Similar than in our first attack, we construct the vector

y = (y0, . . . , yℓ−1) by setting

y0 := [x0 mod q] and yi := [2xi − xi+1 mod q] , (28.1)

for all i ∈ {1, . . . , ℓ − 1} where the modulo operation returns the unique
representative of the result in Zq. Contrary to our first attack, we construct
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now the (ℓ+ 1)× (ℓ+ 1) row lattice:

Λ = L



y0q y1q y2q . . . yℓ−1q 1
q2 0 0 . . . 0 0
0 q2 0 . . . 0 0
0 0 q2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . q2 0


(28.2)

Clearly, Λ is a q2-ary lattice as the vector (0, . . . , 0, q2) can be obtained by
multiplying the first row by q2 and subtracting the other rows as often as
needed.

28.2 Case of a random challenge vector

Assume that our initial challenge vector x = (x0, ..., xℓ) was sampled uni-
formly at random. Then, the entries of y follow the uniform distribution.
Thus, the first row of our lattice basis could be thought of as behaving, up
to the common factor q and the last entry, randomly. This would motivate
the use of Theorem 7.5 to conclude that with high probability

λ1(Λ) ≥ min

{
q2,

√
ℓ+ 1

8πe
q

2ℓ
ℓ+1

}
. (28.3)

However, considering the special shape of the first row of the basis matrix
of Λ, the lattice cannot be seen as random. This precaution is justified
since Λ contains an unusually short vector, namely v1 := (0, . . . , 0, qg ) where
g = gcd(y0, . . . , yℓ−1, q), which is obtained by multiplying the first row by
q
g and subtracting the other rows as often as needed. Thus, λ1(Λ) ≤ q

g ≤ q
directly contradicting the desired conclusion.

Nonetheless, we will see that the lower bound in Equation (28.3) is a
good estimate for the subsequent successive minima and in particular for
λ2(Λ). Concretely, we will prove that, apart from the trivially short vector
v1 = (0, . . . , 0, qg ) and its multiples, it is unlikely to find another vector
smaller than the expected value in Equation (28.3).

Lemma 28.1. Let B ≤ q
2 be an integer and S ⊆ Z be fixed. Choose

r ∈ Zq2 = Z∩
(
− q2

2 ,
q2

2

]
uniformly at random and for each i ∈ {0, . . . ℓ− 1},

let yi ∈ Zq = Z ∩
(
− q

2 ,
q
2

]
be chosen uniformly at random. Set

y = (y0q, y1q, . . . , yℓ−1q, 1).
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Then, the probability that r ∈ S and the Euclidean norm of the vector[
ry mod q2

]
is at most Bq, where the modulo reduction returns for each

entry the unique representative in Zq2, is upper bounded by

Bq∑
βℓ=−Bq

βℓ∈S

ℓ(2⌊B/ gcd(βℓ, q)⌋+ 1)

q2

(
gcd(βℓ, q)

q

)ℓ

.

Proof. We observe that by switching from the Euclidean norm to the infinity
norm, we have

P
((∥∥[ry mod q2

]∥∥
2
≤ Bq

)
∧ (r ∈ S)

)
(28.4)

≤ P
((
max

{ ∣∣[ry mod q2
]∣∣ } ≤ Bq) ∧ (r ∈ S)

)
(28.5)

where the maximum is taken over all modulo q2 reduced entries of ry. Equa-
tion (28.5) is equal to the following probability of intersection of events

P


ℓ−1∧

i=0

( ∣∣[ryiq mod q2
]∣∣ ≤ Bq)︸ ︷︷ ︸

=:Ci

 ∧ ( ∣∣[r mod q2
]∣∣ ≤ Bq)︸ ︷︷ ︸

=:Cℓ

∧(r ∈ S)

 . (28.6)

Each event C0, . . . , Cℓ−1 in this probability statement can be written as a
union of events:

Ci =

Bq∨
βi=−Bq

(
[
ryiq mod q2

]
= βi). (28.7)

As this event can only take place whenever βi is a multiple of q (otherwise,
the equality cannot be satisfied), we need only to consider the restricted
union of events

B∨
βi=−B

(
[
ryiq mod q2

]
= βiq) =

B∨
βi=−B

([ryi mod q] = βi). (28.8)

Furthermore,

Cℓ =

Bq∨
βℓ=−Bq

(
[
r mod q2

]
= βℓ) =

Bq∨
βℓ=−Bq

(r = βℓ) (28.9)

which is restricted to βℓ ∈ S by the last condition. Thus, the probability in
Equation (28.6) becomes
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P


ℓ−1∧

i=0

B∨
βi=−B

([ryi mod q] = βi)

 ∧
 Bq∨

βℓ=−Bq
βℓ∈S

(r = βℓ)


 . (28.10)

Reordering the events gives

P

 B∨
β0=−B

· · ·
B∨

βℓ−1=−B

Bq∨
βℓ=−Bq

βℓ∈S

(
ℓ−1∧
i=0

([ryi mod q] = βi) ∧ (r = βℓ)

) . (28.11)

As these events are mutually exclusive, this probability is equal to

B∑
β0=−B

· · ·
B∑

βℓ−1=−B

Bq∑
βℓ=−Bq

βℓ∈S

P

(
ℓ−1∧
i=0

([ryi mod q] = βi) ∧ (r = βℓ)

)
. (28.12)

Using Bayes’ conditional probability rule [Bay01], this quantity can be rewrit-
ten as:

B∑
β0=−B

· · ·
B∑

βℓ−1=−B

Bq∑
βℓ=−Bq

βℓ∈S

P (r = βℓ)P

(
ℓ−1∧
i=0

([ryi mod q] = βi)
∣∣∣ (r = βℓ)

)
(28.13)

=

Bq∑
βℓ=−Bq

βℓ∈S

P (r = βℓ)

B∑
β0=−B

· · ·
B∑

βℓ−1=−B

P

(
ℓ−1∧
i=0

([ryi mod q] = βi)
∣∣∣ (r = βℓ)

)
(28.14)

Naturally P (r = βℓ) = 1
q2

for any βℓ ∈ Zq2 . It remains to investigate the

value of the second probability in Equation (28.14). To do so, we rewrite
βℓ = gℓβ

′
ℓ where gℓ = gcd(βℓ, q). Then, for fixed β0, . . . , βℓ−1, βℓ, we have

P

(
ℓ−1∧
i=0

([ryi mod q] = βi)
∣∣∣ (r = βℓ)

)
(28.15)

=P

(
ℓ−1∧
i=0

([βℓyi mod q] = βi)

)
(28.16)

=P

(
ℓ−1∧
i=0

(
[
gℓβ

′
ℓyi mod q

]
= βi)

)
(28.17)
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The events in this probability are only satisfiable if βi is a multiple of gℓ,
say βi = β′igℓ. Thus, our cumulative probability is rewritten as

Bq∑
βℓ=−Bq

βℓ∈S

1

q2

⌊B/gℓ⌋∑
β′
0=−⌈B/gℓ⌉

· · ·
⌊B/gℓ⌋∑

β′
ℓ−1=−⌈B/gℓ⌉

P

(
ℓ−1∧
i=0

([gℓβ
′
ℓyi mod q] = β′

igℓ)

)
(28.18)

=

Bq∑
βℓ=−Bq

βℓ∈S

1

q2

⌊B/gℓ⌋∑
β′
0=−⌈B/gℓ⌉

· · ·
⌊B/gℓ⌋∑

β′
ℓ−1=−⌈B/gℓ⌉

P

(
ℓ−1∧
i=0

([
β′
ℓyi mod

q

gℓ

]
= β′

i

))
(28.19)

By definition gℓ = gcd(βℓ, q), which implies that β′ℓ is invertible modulo q
gℓ
.

As

P

(
ℓ−1∧
i=0

([
β′ℓyi mod

q

gℓ

]
= β′i

))
(28.20)

=P

(
ℓ−1∧
i=0

([
yi mod

q

gℓ

]
=

[
β′iβ

′−1
ℓ mod

q

gℓ

]))
, (28.21)

it is clear that each event in the intersection depends only on yi so that the
events are mutually independent. Thus,

P

(
ℓ−1∧
i=0

([
yi mod

q

gℓ

]
=

[
β′iβ

′−1
ℓ mod

q

gℓ

]))
(28.22)

=

ℓ−1∏
i=0

P
([
yi mod

q

gℓ

]
=

[
β′iβ

′−1
ℓ mod

q

gℓ

])
(28.23)

=

(
1
q
gℓ

)ℓ

(28.24)

=

(
gℓ
q

)ℓ

. (28.25)

Thereby, the cumulative probability is given by

Bq∑
βℓ=−Bq

βℓ∈S

ℓ(2⌊B/gℓ⌋+ 1)

q2

(
gℓ
q

)ℓ

. (28.26)
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To put the previous lemma into context, we point out that if
S = {kq | k ∈ Z}, then the probability is smaller than (2B+1)ℓ

q2
which is

upper bounded by 1√
q for sufficiently large q. Thus, although our lattice

contains the short vector v1 = (0, . . . , 0, qg ) and its multiples, the probabil-
ity of finding a short vector with a non-zero entry in the first ℓ − 1 vector
entries is rapidly decreasing for increasing q. For small bounds B, we expect
with high probability that such a vector does not even exist. So, we may
return to our initial guess claiming that the size of the second lattice minima
is

λ2(Λ) ≥ min

{
q2,

√
ℓ+ 1

8πe
q

2ℓ
ℓ+1

}
. (28.27)

28.3 Case of a (M)iNTRU challenge vector

Assume next that the challenge vector x = (x0, . . . , xℓ) has been syntheti-
cally constructed following the (M)iNTRU distribution. Then, Λ contains,
apart from the trivially short vector v1 = (0, . . . , 0, qg ) and its multiples,
another unusually short vector.

28.3.1 An observation

We recall that a synthetically constructed vector a := (a0, . . . , aℓ) ∈ Zℓ+1
q

following the (M)iNTRU distribution satisfies

a0 :=
[
s−1e0 mod q

]
and ai :=

[
s−1(2i−1 − ei) mod q

]
(28.28)

for all i ∈ {1, . . . , ℓ} where e0, . . . , eℓ denote random errors sampled from
the symmetric error distribution χ producing with overwhelming probability
elements that are small in absolute value. Thereby, the transformation

y0 :=
[
s−1e0 mod q

]
and yi :=

[
s−1(−2ei + ei+1) mod q

]
(28.29)

for all i ∈ {1, . . . , ℓ − 1} produces elements where the numerators e0 and
−2ei + ei+1 for all i ∈ {1, . . . , ℓ − 1} follow the distribution χ′ with mean
µχ′ = 0 and variance σ2χ′ = 3σ2χ so that we can expect them to be quite
small when compared to the modulus q.

28.3.2 An unusually short lattice vector

We remark that Λ contains the vector

v2 := (e0q, (−2e1 + e2)q, . . . , (−2eℓ−1 + eℓ)q, s) (28.30)
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obtained by multiplying the first row in Equation (28.2) by s and subtracting
the other rows as often as necessary. Compared to Equation (28.27), this
vector is unusually short. Indeed, assume that the error entries are upper
bounded by some constant K > 0, for example

max{|e0|, | − 2e1 + e2|, . . . , | − 2eℓ−1 + eℓ|} ≤ K. (28.31)

Then, the size of v may be upper bounded by

∥v2∥2 ≤
√
ℓK2q2 + s2 ≤

√
ℓK2q2 + q2 ≤

√
ℓ+ 1 qK. (28.32)

If K is sufficiently small, then this upper bound is smaller than the expected
heuristic size in Equation (28.27). More precisely, we deduce the following
proposition.

Proposition 28.2. If max{|e0|, |−2e1+e2|, . . . , |−2eℓ−1+eℓ|} ≤ min
{

q√
ℓ+1

,

1√
8πe

q
ℓ−1
ℓ+1

}
, then the target vector v2 is shorter than min

{
q2,

√
ℓ+1
8πe q

2ℓ
ℓ+1

}
.

Proof. Replace K in Equation (28.32) by min
{

q√
ℓ+1

, 1√
8πe

q
ℓ−1
ℓ+1

}
As usually the error terms are chosen to be of size O(

√
q), our target vector

v2 is almost surely smaller than the expected heuristic bound in Equa-
tion (28.27).

Remark 28.3. Proposition 28.2 reveals the reason why we multiplied all but
one entry of the first row of the lattice basis for Λ in Equation (28.2) by q.
The last entry of v encodes the secret s which might be large compared to
the error values. To compensate for its size, we need to increase the size of
the error values. As s < q, the multiplicand q achieves this goal.

28.4 Lattice reduction

As the above development yields a motivated heuristic estimate on the ex-
pected size of the second shortest lattice vector of Λ, we can investigate the
effect of elementary lattice reduction on Λ. To carry out this analysis, we
use LLL reduction. We note that an LLL reduced basis (w1, . . . ,wℓ+1) sat-

isfies ∥wi∥2 ≤ α
ℓ
2λi(Λ) where λi(Λ) denotes the i-th successive minimum of

Λ and α = 1
δ− 1

4

. For the sake of explicit results, we consider δ = 63
64 < 0.99

resulting in α = 64
47 <

√
2.
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Let us start by considering the first LLL reduced vector, namely w1. As
Λ contains the vector v1 = (0, . . . , 0, qg ) where g = gcd(y0, . . . , yℓ−1, q), we

assume λ1(Λ) ≤ q
g . This implies that

∥w1∥2 ≤ α
ℓ
2
q

g
≤ 2

ℓ
4
q

g
≤ 2

log2(q)+1
4

q

g
≤ (2q)

1
4
q

g
. (28.33)

Lemma 28.1 yields that such a short vector can only be found with extremely
low probability. Thus, it is unlikely that, apart from v1 and its multiples,
another vector of this magnitude exists. Thereby, we can expect w1 to be
(a multiple of) v1.

28.4.1 Case of a random challenge vector

If x was chosen uniformly at random, we concluded in Equation (28.27) that
the second lattice minima can be expected to be of the size

λ2(Λ) ≥ min

{
q2,

√
ℓ+1
8πe q

2ℓ
ℓ+1

}
. Thus, the second LLL reduced basis vec-

tor is at least of the same size.

28.4.2 Case of a (M)iNTRU challenge vector

On the other hand, if x was sampled using the (M)iNTRU distribution, we
argue that the second reduced LLL basis vector is smaller than its ran-
dom counterpart. Assuming that w1 is a multiple of v0, the second LLL
output w2 needs to contain at least one nonzero entry on the first ℓ vec-
tor entries as otherwise it would not be linearly independent from w1. By
Equation (28.32), we know that ∥v2∥2 ≤

√
ℓ+ 1 qK where K denotes the

maximal error term and Proposition 28.2 shows that our target vector is

almost surely smaller than min

{
q2,

√
ℓ

8πeq
2ℓ
ℓ+1

}
. If we further reduce the

upper bound K, we obtain a similar result for w2.

Proposition 28.4. If max{|e0|, | − 2e1 + e2|, ..., | − 2eℓ−1 + eℓ|} ≤

min
{

q3/4

21/4
√
ℓ+1

, q
3ℓ−5
4(ℓ+1)

23/4
√
πe

}
, then ∥w2∥2 is smaller than min

{
q2,

√
ℓ

8πeq
2ℓ
ℓ+1

}
.

Proof. Let max{|e0|, | − 2e1 + e2|, . . . , | − 2eℓ−1 + eℓ|} ≤ K. Then we know

that ∥w2∥2 ≤ α
ℓ
2λ2(Λ) ≤ α

ℓ
2v. Using again the fact that α ≤

√
2 implies

α
ℓ
2 ≤ (2q)

1
4 and using Equation (28.32), we conclude

∥w2∥2 ≤ (2q)
1
4

√
ℓ+ 1 qK.
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Replacing K by min
{

q3/4

21/4
√
ℓ+1

, q
3ℓ−5
4(ℓ+1)

23/4
√
πe

}
proves the proposition.

The upper bound for K in Proposition 28.4 is O
(
q

3
4

)
and, as usually

K = O(
√
q), we can expect the condition to hold in practice. In com-

parison, using Lemma 28.1, we conclude again that such a short vector can
only be expected with low probability.

28.5 Conclusion

We conclude that:

1. If the challenge vector was sampled uniformly at random, then the
second LLL reduced vector can be expected to be lower bounded by

min

{
q2,

√
ℓ

8πeq
2ℓ
ℓ+1

}
.

2. If the challenge vector follows the (M)iNTRU distribution, then the sec-
ond LLL reduced vector is with high probability smaller than

min

{
q2,

√
ℓ

8πeq
2ℓ
ℓ+1

}
.

Hence, we can heuristically distinguish between a uniformly at random sam-
pled challenge vector and a synthetically constructed one by simply compar-

ing the length of the second LLL reduced vector with min

{
q,
√

ℓ
8πeq

2ℓ
ℓ+1

}
.

28.6 Empirical tests

An implementation of this distinguisher in SAGEMATH (distinguisher2)
and the corresponding statistics can be found at:

https://orbilu.uni.lu/handle/10993/47990

The practical experiments confirm the heuristic assumption on the first and
second LLL reduced basis vector, as well as the subsequent conclusions.
Furthermore, in case of a (M)iNTRU challenge vector, it seems that we can
filter out the secret s. Indeed, typically, the second LLL reduced vector w2

corresponds to ±v2 and its last entry directly reveals s. Thus, the corre-
sponding (M)iNTRU search problem seems to be solvable with essentially the
same lattice method. However, a theoretical confirmation of the underlying
heuristic assumptions is still open.

https://orbilu.uni.lu/handle/10993/47990




Chapter 29

Generalizations and
limitations of our attacks

After mounting two attacks against the (M)iNTRU decision assumption, we
quickly discuss how the attacks can be generalized to its parent assump-
tions. We exemplify this generalization on the MiNTRU assumption in Sec-
tion 29.1, the generalization to the general iNTRU assumption being similar.
We note that these generalizations are strictly limited and do not endanger
cryptographic instantiations yet. These limitations are discussed in detail
in Section 29.2.

29.1 MiNTRU

Intuitively, replacing the one-dimensional integer elements in the (M)iNTRU
problem with matrices leads to theMiNTRU problem. Thus, it is not surpris-
ing that our attacks can be modified to apply to the MiNTRU decision prob-
lem. Hereinafter, we develop an attack based on our first distinguisher. The
development is based on full-length challenge matrices, but can be adapted
to shortened matrices as well.

29.1.1 Lattice construction

Let X be a challenge matrix following either the uniform distribution or the
MiNTRU distribution over Zn×m

q where Zq = Z∩
(
− q

2 ,
q
2

]
and m = n(ℓ+1).

We decompose our challenge matrix into (ℓ + 1) individual n × n matrices
X0, . . . ,Xℓ such that

X = [X0| . . . |Xℓ]. (29.1)

223
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Then, we construct the matrix Y = [Y0| . . . |Yℓ−1] by setting

Y0 := [X0 mod q] and Yi = [2Xi −Xi+1 mod q] (29.2)

for all i ∈ {1, . . . , ℓ−1} where the modulo operation returns for each matrix
entry the unique representative of the result in Zq. This allows us to define
the ℓn× ℓn q-ary row lattice

Λq(Y) =
{
t ∈ Zℓn

∣∣∣ t ≡ yY mod q for some y ∈ Zn
}
. (29.3)

Remark 29.1. As in the one-dimensional case, we remark that almost
surely there is one n×n submatrix of Y that is invertible modulo q. Indeed,
let the prime decomposition of q be given as q =

∏k
i=1 q

αi
i . Then, a random

n× n matrix is invertible modulo q if and only if it is so modulo qαi
i for all

i ∈ {1, . . . , k}, which is valid for a single i with probability
∏n

j=1(1− q
−jαi
i ).

Therefore, the probability that none of the matrices Y0, . . . ,Yℓ−1 is invert-

ible is only
(
1−

∏k
i=1

∏n
j=1(1− q

−jαi
i )

)ℓ
.

Assume that there is an index t ∈ {0, . . . , ℓ− 1} such that the matrix Yt is
invertible modulo q. Then, we can define

Zi :=
[
Y−1

t Yi mod q
]
∀i ∈ {0, . . . , ℓ− 1} (29.4)

where Zt = I is the n× n identity matrix. We note that

Λq(A) = L



Z0 . . . Zt−1 I Zt+1 . . . Zℓ−1

qI . . . 0 0 0 . . . 0
...

. . .
...

...
...

...
0 . . . qI 0 0 . . . 0
0 . . . 0 0 qI . . . 0
...

...
...

...
. . .

...
0 . . . 0 0 0 . . . qI


(29.5)

and find a direct generalization of Lemma 27.3.

29.1.2 Case of a random challenge matrix

Assume that our initial challenge matrix X was sampled uniformly at ran-
dom. Then, our constructed matrices Yi still follow the uniform distribu-
tion. By Theorem 7.5,

P

(
λ1(Λq(Y)) ≥ min

{
q,

√
nℓ

8πe
q

ℓ−1
ℓ

})
≥ 1− 1√

πnℓ
2−nℓ (29.6)
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where λ1(Λq(Y)) denotes the first lattice minimum of Λq(Y) in the Eu-
clidean norm. Thereby, the shortest lattice vector can be expected to satisfy

λ1(Λq(Y)) ≥ min

{
q,

√
nℓ

8πe
q

ℓ−1
ℓ

}
. (29.7)

29.1.3 Case of a MiNTRU challenge matrix

Assume next that the initial challenge matrix X was synthetically con-
structed following the MiNTRU distribution. We will show that in this case,
the lattice contains a nontrivial short vector, magnitudes smaller than the
heuristic in Equation (29.7).

First observation

We recall that a synthetically constructed matrix A following the MiNTRU
distribution satisfies A :=

[
S−1 × (G−E) mod q

]
. Thus, decomposing

A = [A0| . . . |Aℓ] yields

A0 =
[
S−1(G0 −E0) mod q

]
and

Ai =
[
S−1(2i−1I−Ei) mod q

] (29.8)

for all i ∈ {1, . . . , ℓ} where E0, . . . ,Eℓ denote random error matrices whose
entries are sampled from the symmetric error distribution χ producing with
overwhelming probability elements that are small in absolute value. Thereby,

Y0 =
[
−S−1E0 mod q

]
≡ S−1E′

0 mod q and

Yi =
[
S−1(−2Ei +Ei+1) mod q

]
≡ S−1E′

i mod q
(29.9)

for all i ∈ {1, . . . , ℓ − 1} where the entries of E′
i follow the distribution χ′

with mean µχ′ = 0 and standard deviation σ′ =
√
3σ. In particular, as

χ produces with overwhelming probability elements with a small absolute
value, so does χ′.

Second observation

Continuing to outline the effect of our variable changes leads to

Zi =
[
E′−1

t E′
i mod q

]
∀i ∈ {0, . . . , ℓ− 1}. (29.10)
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Third observation

By construction, it is clear that

E′
tZi ≡ E′

i mod q ∀i ∈ {0, . . . , ℓ− 1} (29.11)

and so, denoting the j-th row of E′
i by e

(j)
i yields

e
(j)
t Zi ≡ e

(j)
i mod q ∀i ∈ {0, . . . , ℓ− 1} and ∀j ∈ {1, . . . , n}. (29.12)

Some short lattice vectors

Interestingly, our observations imply that our lattice contains the n linearly
independent vectors

e(j) =
(
e
(j)
0 | . . . |e

(j)
ℓ

)
∀j ∈ {1, . . . , n} (29.13)

obtained through a linear combination (defined by e
(j)
t ) of the first n rows

followed by subtracting the other rows as often as needed. Assume that the
error entries of the error matrices E′

i (or only of a specific row of the error
matrices) are upper bounded by some constant K > 0. Then, the size of
e(j) is upper bounded by

∥e(j)∥2 ≤
√
ℓnK2 ≤

√
ℓn K. (29.14)

Proposition 29.2. If the error entries of the error matrices E′
i are upper

bounded by min
{

q√
ℓn
, 1√

8πe
q(ℓ−1)/ℓ

}
, then the target vectors e(j) are shorter

than min

{
q,
√

ℓn
8πeq

ℓ−1
ℓ

}
for each j ∈ {1, . . . , n}.

Proof. Replace K in Equation (29.14) by min
{

q√
ℓn
, 1√

8πe
q(ℓ−1)/ℓ

}
.

Since in practice the error terms are of size O(
√
q), the size condition is

almost always satisfied.

29.1.4 Lattice reduction

Having good estimates on the expected size of the shortest lattice vector,
we can investigate the effect of lattice reduction.
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Case of a random challenge matrix

If X was sampled uniformly at random, we concluded in Equation (29.7)
that the shortest vector can be expected to be of size λ1(Λq(Y)) ≥ min {q,√

nℓ
8πeq

ℓ−1
ℓ

}
and so any reduced vector is at least of the same size.

Case of a MiNTRU challenge matrix

Contrary to the one-dimensional case, the large lattice dimension avoids the
theoretic conclusion of an unusually short lattice vector through usual LLL
reduction. Indeed, LLL with δ = 63

64 outputs w1 such that

∥w1∥2 ≤ q
n
4 2

n−1
4

√
ℓnK (29.15)

which is too loose for a theoretical conclusion. In particular, if n ≥ 4, the
bound is larger than q, the trivial upper bound for the lattice minima in a
q-ary lattice.

Remark 29.3. Note that if n = 1, then we recover the same bound as in
Equation (27.14).

Since in general LLL performs better in practice than in theory, good re-
sults can be expected for low degrees (we achieved a 50% success rate for
dimension 6), but a general solution cannot be expected in this direction.

Through BKZ reduction, the approximation factor can be strongly im-
proved and for a small enough block size, one may even get a polynomial
runtime (see [LN20, Theorem 2]). Thus, slightly larger dimensions may be
treated. To be precise, BKZ with block size β achieves

∥b1∥2 ≤ γ
ℓn−1
β−1

β λ1(Λq(Y)) (29.16)

for its first reduced vector b1 where γβ denotes the Hermite constant. To
put this into context, consider the block size β = 24 for which BKZ still
finishes in a reasonable amount of time. Then,

∥b1∥2 ≤ 4
ℓn−1
23 λ1(Λq(Y)) ≤ 2

2ℓn
23

√
ℓnK ≤ (2q)

2n
23

√
ℓnK (29.17)

indicating that the method would work for sufficiently small dimension n
and noise K. Unfortunately, this improvement is still not exact enough to
handle large dimensions. The same holds if better BKZ bounds are used for
the cryptanalysis (see [GN08, SB10]).
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A speculative dimension gain might be achieved through the new BKZ
2.0 algorithm [CN11] which is particularly well suited for large block sizes.
Nonetheless, the inherent size condition and the time increase remain. The-
oretical success can only be shown through exact shortest vector problem
solvers whose run-times are exponential in the lattice dimension. Therefore,
this attack is impractical for large dimensions.

29.1.5 Conclusion

We conclude that:

1. If the challenge matrix was sampled uniformly at random, then the
shortest lattice vector can be expected to be lower bounded by

min

{
q,
√

ℓn
8πeq

ℓ−1
ℓ

}
.

2. If the challenge matrix follows the MiNTRU distribution, then the
shortest lattice vector is, conditioned on the error distribution χ,

smaller than min

{
q,
√

ℓn
8πeq

ℓ−1
ℓ

}
.

Hence, if we could achieve a tight approximation of the shortest lattice
vector, we could distinguish with high probability between a randomly sam-
pled challenge matrix and a synthetically constructed MiNTRU matrix by
simply comparing the length of the shortest vector approximation with

min

{
q,
√

ℓn
8πeq

ℓ−1
ℓ

}
. An implementation of the corresponding distinguisher

can be found at:

https://orbilu.uni.lu/handle/10993/47990

29.1.6 Improvements and observations

Remark 1: Recovering the secret

We note that if a MiNTRU matrix is detected, then it is tempting to pad the
n shortest lattice vectors together to recover the error matrices E′

i, which can
be used to reveal first the original error matrices Ei and subsequently the
secret matrix S. Unfortunately, such a procedure does not work in general.
Indeed, the shortest lattice vectors may not correspond to the error vectors,
as shorter vectors may be obtained through linear combinations of them.

https://orbilu.uni.lu/handle/10993/47990
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Remark 2: Minor improvement

To reduce computational power, it is crucial to decrease the lattice dimen-
sion. This may be achieved by not considering the ℓ matrices Z0, . . . ,Zℓ−1,
but only b of them for some 1 ≤ b ≤ ℓ. As long as the error terms are
small enough (c.f. Proposition 29.2), the construction works out. This can
also be formally proven by simply replacing ℓ with b in the whole chapter.
We note that it doesn’t matter which copies Zi are chosen as long as Zt

is part of the chosen set. Intuitively, Zt guarantees that only small linear
combinations appear after reduction. The other b− 1 Zi’s may be chosen at
random. Empirical tests suggested that b = 5 is sufficient for the standard
deviation σχ = 2

√
q. Furthermore, we note that there is no restriction on

choosing complete copies of the matrices Zi. Any combination of individual
columns works out fine. Only Zt must appear completely. However, this
improvement does not solve the real bottleneck of the attack, which is the
large matrix dimension n.

Remark 3: Dependence of matrices

When developing the matrices Zi =
[
Y−1

t Yi mod q
]
, one may think of re-

peating the same construction for another index t′ in order to obtain linearly
independent matrices Z′

i =
[
Y−1

t′ Yi mod q
]
that can be used to gain more

knowledge on the corresponding lattices. Unfortunately, this is not the case
as Z′

i ≡ Z′
tZi mod q and so no more information can be generated through

a simple index change.

Remark 4: iNTRU

A similar development shows that the attack may be adapted to the general
iNTRU assumption. However, it suffers from the same restrictions. The
dimension of the considered polynomial ring or equivalently the degree of
the reduction polynomial takes on the role of the matrix dimension showing
that the attack only works for small degrees.

29.2 Impact on cryptographic schemes

Our attacks are devised for the case of integer rings only. Their efficiency
for general rings is limited. Although they represent a potential theoret-
ical threat, our constructions are not strong enough to impact the secu-
rity of concrete cryptographic constructions such as [GL20] or [GGH+19]
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that use iNTRU with rings of a large degree or MiNTRU with matrices of
a large dimension. For example, [GGH+19] suggests to use the MiNTRU

assumption with matrix dimension n = O
(
q

1
4

)
where q, in turn, is of size

q = O(242). Further security analyses may be required to develop practical
attacks against protocols using the iNTRU and MiNTRU assumption with
cryptographic parameters. Our development gives a first indication that the
iNTRU, respectively the MiNTRU assumption, may not be as hard as other
well-known assumptions such as LWE, but it does not have a direct impact
on cryptographic instantiations.

Other such doubts were raised by Lee and Wallet in [LW20] who de-
veloped a sublattice attack based on [KF17] against the MiNTRU assump-
tion. Albeit the authors manage to fully retrieve secret Bernoulli matrices
S ∈ {−1, 0, 1}n×m from a given MiNTRU matrix, the manageable entropic
noise is limited. We note that [GGH+19] was updated to bypass the toy
example attack from [LW20] by setting the secret matrix to not being a
Bernoulli matrix anymore. However, the claimed hardness of the underly-
ing assumption is debatable. In Chapter 30, we deepen this suspicion by
comparing the MiNTRU to other well-known hardness assumptions.



Chapter 30

Comparisons with other
hardness assumptions

To position the iNTRU and MiNTRU problems in the cryptographic field,
we compare them to some related computational hardness assumptions and
outline some inherent differences.

30.1 NTRU

Given the nominative link to the famous NTRU cryptosystem [HPS98], one
expects that the iNTRU and MiNTRU problems can be obtained as variants
of the former well-established counterpart. Naturally, we observe the simi-
larities of iNTRU’s use of polynomial rings with the NTRU instantiation, but
iNTRU misses the intricate polynomial convolution and the double modulus
of NTRU. In [GGH+19, Section 1.2], the authors presented a connection
of iNTRU to Matrix-NTRU and in [GGH+19, Appendix D], the small se-
cret MiNTRU variant is cryptanalyzed by known NTRU attacks. The small
secret variant of MiNTRU is obtained by first sampling the secret matrix
S ∈ (Zq)

n×n
inv such that its entries follow the error distribution χ, and then

removing the first n×n block from theMiNTRUmatrix. The authors consid-
ered known NTRU attacks such as dimension reduction [MS01], the hybrid
attack [HG07], and the overstretched key recovery attack [KF17] to assess
the hardness of the small secret MiNTRU variant. We note that [LW20]
used the overstretched attack against Bernoulli secrets (see Section 29.2).
However, apart from the attacks, the connection to NTRU and its innate
security level is missing.
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30.2 Learning-with-Errors

Due to the link of the iNTRU and MiNTRU problem with lattices, it is
natural to consider other lattice-related primitives for comparison purposes.
Besides the NTRU problem, we may consider the learning-with-errors (LWE)
[Reg05, Reg10] problem. Roughly speaking, the LWE search problem over
finite rings first chooses a secret vector s ∈ Zn

q , samples a vector a ∈ Zn
q

uniformly at random and samples an error element e ∈ Zq from a particular
error distribution χ. Subsequently, it computes t = [⟨a, s⟩ + e mod q] and
asks to retrieve s from (a, t). Usually, not a single sample, but a polynomial
number of samples (a, t) is given, with varying a and e. For our comparison,
we consider a particular variant of the general LWE problem.

30.2.1 Multi-secret LWE

The multi-secret variant of the learning-with-errors problem is particularly
well suited to be compared with the MiNTRU problem. The multi-secret
variant was used in [PW08, PVW08, GGH+19] and can be reduced to the
usual LWE. It is defined by a particular sampling process:

Let q ∈ Z≥2, n ∈ Z≥1, m ∈ Z≥n, and χ be a (symmetric) error distribu-
tion over Zq with standard deviation σχ = O(

√
q).

Definition 30.1 (Multi-secret LWE distribution ). Let S ∈ Zn×n
q be sam-

pled uniformly at random and let E ∈ Zn×m
q be sampled such that its

entries follow the error distribution χ. Let A ∈ Zn×m
q be sampled uniformly

at random. Set the multi-secret LWE distribution as the distribution of pairs
(A,B) where

B := [S×A+E mod q] . (30.1)

The multi-secret LWE search problem asks to retrieve the secret matrix S
from a multi-secret LWE pair (A,B) and its modulus q. The corresponding
decision problem asks to distinguish a multi-secret LWE pair (A,B) from a
pair (X,Y) that was sampled uniformly at random. It is believed that both
problems can only be solved with negligible probability.

30.2.2 Hardness of multi-secret LWE

The hardness of LWE problems has been well-studied and many surprising
properties, such as self-reducibility [Reg05] proving hardness on average,
were found. Furthermore, explicit reductions to known supposedly hard
lattice problems were outlined [Reg05, Pei09]. Those results and the fact
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that after 16 years, no efficient general attack was mounted push us to believe
that the LWE problems are hard.

However, not all LWE instances are equally hard. Indeed, their hardness
depends on the chosen error scale χ. For example, neither the decision nor
the search variant is solvable for completely random errors, but are solv-
able for (binary) Bernoulli errors [STA20]. The number of samples obtained
for an LWE instance seems to have only a small impact on the hardness as
one can produce, through linear combinations, as many valid samples as re-
quired [Reg10]. Yet, most hardness reductions depend on sample restrictions
[STA20].

Multi-secret LWE can be reduced to the usual LWE problem and the
additional information leakage (of the multiple secrets) is supposed to not
make the problem easier [PW08, Lemma 6.2]. Thus, the multi-secret variant
seems to be as hard as the usual LWE.

30.2.3 Connection to MiNTRU

To strengthen the MiNTRU assumption and so the semantic security of their
encryption scheme, the original formalization paper [GGH+19] relates the
MiNTRU problem to the multi-secret variant of the LWE problem. Indeed,
setting in Definition 30.1 B = G and isolating A leads to the definition
of A in Equation (26.3). Pseudorandomness of MiNTRU in dimension n
can be deduced from pseudorandomness of the n-secret LWE. However,
this reduction is conditioned on two controversial assumptions. First, the
MiNTRU error distribution is distorted because it replaces the natural error
distribution χn×m by χn×m ·B−1(G). The latter distribution may not cor-
respond to the low-norm error distribution expected in the MiNTRU setting.
In particular, heavier entropic noise is produced. Second, the n-secret LWE
is given trapdoor oracle access to B. This trapdoor oracle access consists
in a non-standard assumption and its pseudorandomness requires further
investigation. The use of the gadget matrix G in the MiNTRU case and the
inversion of S do apparently not have a considerable effect on the hardness,
but, intuitively, they leak some more information on the MiNTRU matrices.

The main comparison point of the multi-secret LWE and MiNTRU stems
from our own development. We formally proved that an elementary lattice
attack is sufficient to break low-dimensional MiNTRU decision problems. On
the contrary, the multi-secret LWE seems to not suffer from such a vulnerabil-
ity. The most decisive difference can be found in the basic case n = 1 where
the MiNTRU restricts to (M)iNTRU and the multi-secret LWE restricts to
ordinary LWE. On the one hand, our study indicates that, with high prob-
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ability, the (M)iNTRU decision problem with errors of size O(
√
q) can be

solved. Furthermore, it seems that the search version can often be obtained
at no additional cost. On the other hand, [APS15], its corresponding LWE
estimator, and [BLP+13] show that neither the ordinary search LWE, nor its
decision version are solvable if errors of size O(

√
q) are used. This difference

may or may not have an impact on the hardness assumption for iNTRU with
high degree polynomial rings or MiNTRU with high dimensional matrices,
but it certainly outlines a discrepancy between the required secure param-
eter bounds. After all, multiplying a secret and adding an error is not the
same as adding an error and multiplying a secret!



Chapter 31

Open Questions

The iNTRU and MiNTRU assumptions are relatively new and so their hard-
ness is not well understood yet. Although our attack targets to break the
MiNTRU decision assumption in low dimensions, we do not advocate abol-
ishing the assumptions in general. Indeed, it is scientifically more valuable
to further investigate the hardness assumptions.

On the one hand, new attacks for large dimensions may be devised to
further weaken the assumptions. Merging our ideas with those from [LW20]
may result in such an attack, but we suppose that the large lattice dimension
decreases the general application range. From another perspective, working
out the exact distribution ofMiNTRUmatrices may reveal a computationally
detectable difference between the MiNTRU distribution and the uniform
distribution.

On the other hand, we note that proving the MiNTRU assumption to
be hard in general offers a new pragmatic hardness assumption that can be
used for various security proofs. Such a proof may be obtained by reduc-
ing the learning-with-errors problem or another supposedly hard problem
to the MiNTRU problem without relying on auxiliary non-standard assump-
tions. Alternatively, the MiNTRU assumption can be strengthened through
additional heuristic arguments in favour of its hardness, or through more
experimental results on known attacks such as those outlined in [GGH+19].

We take the opportunity to highlight again the key result on q-ary lat-
tices that enabled our analysis in Chapter 27 and Chapter 29, namely The-
orem 7.5. This explicit probability result allows us to predict the precise
success probability and to give exact conditions on when our attack applies.
One may formulate similar results for other ℓp norms that can be applied to
other developments.
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Act V: The cryptographer

Pitying his pops, Jay decided to join him after dinner. Slowly he
climbed up the spiral staircase to the attic where his pops has his workspace.
After knocking, he opened the croaking wooden door and entered the dusty
room. “Pops, are you here”, he asked anxiously. The wind blew softly be-
tween the roof boards and a neon tube brightened the room. “Yes, I am
reading”, replied his pops calmly, “did you know that the 1933 Double Ea-
gle has been sold for 7.6 million U.S. dollars?”. His pops always followed
such sales. “Really?” asked Jay excitedly and approached the rocking chair.
“But that’s probably not why you reach out to me, is it?”, questioned pops.

“No”, replied Jay timidly. “Sit down and tell me what lies in your
heart?”, invited pops. Jay sat down and asked: “Is it true that you know
how to encrypt messages?” “Indeed”, replied pops, “my good friend Alan
taught me how to do that. At first, it was a hurdle, and I made many
mistakes, but now I believe to have mastered the essentials.” Pops saw the
astonished gaze of his grandson and suggested: “Do you want to see my new
idea?” Of course, Jay wanted to see it, he might be the first to do so.

Pops took a large notebook out of the closet. It contained a collection
of formulas and schematic drawings. “Look here”, pointed out pops, “I
invented a way to encrypt our counting list such that our collection can be
evaluated but the individual counts are hidden.” He wrote down a particular
formula and continued: “I can enable you to find the total of the face values
of our coins or the numismatic values, but you will not be able to guess
the number of coins without any additional information.” He highlighted
a particular part of his formula and indicated: “Although I succeeded in
devising such an encryption method, it seems to have some deficiencies.
Its security leaves the traditional cryptanalysis and I don’t know whether I
captured all security threats.”
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Abstract V

Functional encryption emerged as an ambitious cryptographic paradigm gen-
eralizing a variety of public-key encryption primitives. Contrary to the
classical framework that only permits encrypting or decrypting messages,
functional encryption allows evaluating functions over encrypted messages
without leaking information on the corresponding plaintext messages. Such
powerful machinery has diverse applications ranging from data mining to
obfuscation but suffers from severe limitations regarding flexibility and se-
curity. Due to its novelty, many of its aspects are not well understood yet
and require more research. We develop a conditional attack against a family
of functional encryption schemes. We base our attack on the currently weak-
est data-privacy notion for functional encryption: indistinguishability. Intu-
itively, indistinguishability in the public-key setting is based on the premise
that no adversary can distinguish between the encryptions of two known
plaintext messages. As functional encryption allows us to evaluate functions
over encrypted messages, the adversary is restricted to evaluations resulting
in the same output only. To ensure consistency with other primitives, the
decryption procedure of a functional encryption scheme is allowed to fail
and output an error. We observe that an adversary may exploit the special
role of these errors to craft challenge messages that can be used to win the
indistinguishability game. Indeed, albeit the functional evaluation of those
messages leads to the common error symbol, their intermediate computation
values may differ. A formal decomposition of the underlying functionality
into a mathematical function and an error trigger reveals this dichotomy.
Our observation yields a practical criterion for the security of functional
encryption schemes which leaves the scope of traditional public-key crypt-
analysis. To further motivate our abstract attack, we outline its impact on
multiple candidate DDH-based inner-product functional encryption schemes
when restricting them to bounded-norm evaluations. Finally, we show that
a weaker indistinguishability notion that declares those schemes as secure for
bounded-norm evaluations is incompatible with other classical primitives.
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Chapter 32

A short review of functional
encryption

32.1 Historical motivation

The primary goal of cryptography was always to assure a secure commu-
nication channel between two or more parties. The presence of malicious
opponents made it necessary to use on the first end an encryption method
hiding messages and on the other end a decryption method recovering them.
Classically, it was believed that this is the best that can be expected from
cryptographic schemes. However, fully-homomorphic encryption [Gen09]
challenged this traditional view by allowing evaluations over encrypted data.
In this setting, a user can perform an operation on a ciphertext in such a
way that the decryption of the result corresponds to the initial message to
which the same operation has been applied to. As only a holder of the secret
key is able to decrypt ciphertexts, computations on the encrypted data can
be outsourced to potentially hostile third-parties. Yet, as no information on
the evaluations can be obtained without the secret key, some optimization
problems, such as retrieving messages with particular properties, cannot be
fully outsourced. A new paradigm known as functional encryption seems to
solve the latter problem. Introduced by O’Neill, Boneh, Sahai, and Waters
[O’N10, BSW11], functional encryption allows to evaluate encrypted data
and obtain the result in plain without leaking disclosed information on the
underlying data. To achieve this level of flexibility, a holder of the secret key
must provide an evaluator with a functional key that can be used for the
desired evaluation. Intuitively, a functional key permits to learn a specific
property of the underlying data but does not reveal other information.
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32.2 Applications

There exists a wide plethora of applications of functional encryption. Indeed,
[GKP+13] illustrates its use for data-mining where surgical access over data
is crucial. In particular, this includes searching for keywords over encrypted
data or encrypted image recognition. [BGI14] extends the definitional land-
scape to functional signatures and functional pseudorandom functions. Both
notions inherit the properties of their classical counterparts but present some
more flexibility. For example, functional signature schemes provide a master
signing key that can be used to sign any message and a set of functional sign-
ing keys that can only be used to sign a message with particular properties.
This may be of medical use where a doctor can prescribe any medicine, but
a nurse is restricted to a specific set of antibiotics. Another recent stream of
works studies the relationship between functional encryption and indistin-
guishability obfuscation [GGH+13, AJ15, BV18, AFH+20, LPST16, JLS21]
which targets to render a program unintelligible but still functional. Besides
those novel applications, we should not forget about the classical primitives
that are generalized by functional encryption, such as traditional public-key
encryption [DH76], identity-based encryption [Sha85], and attribute-based
encryption [SW04], each with its own important range of applications.

32.3 Instantiations

Despite its novelty, several candidate functional encryption schemes have
already been developed. Some of them were designed to support gen-
eral circuits of polynomial size [GGH+13, GGHZ16], others to support
multi-input functions, where each input can be encrypted independently
[LPST16, KS17, JLS21, BKS16]. Both groups include developments in the
private-key and public-key setup. Notable schemes, such as [GKP+13] prove
the existence of functional encryption based on fully-homomorphic encryp-
tion, attribute-based encryption, and garbling schemes [BGG+14]. Last but
not least, some realizations of functional encryption concentrate on simple
functionalities such as inner-products [ABDCP15, BBL17, BJK15, DDM16,
Lin16, BCFG17, CLT18] or quadratic functionalities [BCFG17].



Chapter 33

Functional encryption

Functional encryption emerged in the public-key setting [O’N10, BSW11]
but has recently been adapted to the private-key setting [BKS16, KS17].
Whereas in public-key functional encryption schemes the master public key,
needed to encrypt messages, is publicly available, the private-key framework
restricts encryption privileges to holders of the master private key. This dif-
ference is significant from multiple points of view including efficiency, mal-
leability, and use cases. Hereinafter, we consider the public-key context only
and we refer to [BKS16, KS17] for an overview of the private-key setting.

As described in Section 32.1, functional encryption arouse as an ambi-
tious paradigm allowing evaluations over encrypted data. To define a func-
tional encryption scheme, we need to fix which operations shall be supported;
in other words, we need to define its functionality [O’N10, BSW11, BO13].

Definition 33.1 (Functionality). A functionality F defined over (K,M) is
a function F : K ×M→ Σ ∪ {⊥} where the set K is the key space, the set
M is the plaintext message space, the set Σ is the output space, and ⊥ is a
special error symbol not contained in Σ.

Given a specific functionality F , we may devise a corresponding functional
encryption scheme. Just like traditional public-key encryption schemes, a
functional encryption scheme has a general setup that generates the master
secret key msk that is kept secret and the master public key mpk that is
available to everyone. Using the master public key, anyone can encrypt a
messagem and obtain the corresponding ciphertext CT. Decryption deviates
from the classical setting as no one should be able to recover the plaintext
m, but only a specific evaluation F(k,m). To grant permission for such
an evaluation, a holder of the master secret key generates a functional key
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skk corresponding to a key k. This functional key skk can then be used to
evaluate the ciphertext CT. If someone attempts to evaluate the ciphertext
without knowledge of such a functional key, the decryption procedure is
allowed to fail and return the special error symbol ⊥. Formally, we retrieve
the following definition [O’N10, BSW11, BO13].

Definition 33.2 (Functional Encryption Scheme - Public-Key Setting). A
functional encryption scheme FE in the public-key setting for a functionality
F over (K,M) consists of a quadruple of algorithms (FE.Setup, FE.KDer,
FE.Enc, FE.Dec) such that:

1. (msk,mpk)←$ FE.Setup(λ) : given a security parameter λ, it outputs
a pair of master secret/public keys.

2. CT←$ FE.Enc(mpk,m): the randomized encryption procedure encrypts
the plaintext m ∈M under the master public key mpk.

3. skk←$ FE.KDer(msk, k): using the master secret key, the (possibly
randomized) key-derivation procedure outputs a functional key skk
corresponding to a key k ∈ K.

4. y ← FE.Dec(skk,CT) decrypts the ciphertext CT using a functional key
skk to learn either a valid message evaluation F(k,m) or the special
error symbol ⊥.

We say that a public-key functional encryption scheme FE is correct if for
all m ∈M and all k ∈ K such that F(k,m) ̸=⊥, the following holds:

Pr

 y = F(k,m)

∣∣∣∣∣∣∣∣
(msk,mpk)←$ FE.Setup(λ)∧
CT←$ FE.Enc(mpk,m)∧
skk←$ FE.KDer(msk, k)∧
y ← FE.Dec(skk,CT)

 ∈ 1−Negl(λ) .

Following [BO13], we stress that correctness makes no requirement on what
happens when F(k,m) =⊥. If this is the case, decryption might also result
in the error symbol ⊥, but it is not forced to do so.



Chapter 34

Security notions

The greatest challenge for functional encryption is to define a universal,
reliable, and non-restricting security notion. A suitable definition should not
only capture the security concepts of the generalized traditional primitives
but also foresee precautions for new threats. We rapidly revise a variety of
distinct security notions for functional encryption.

34.1 Data-privacy

The first and most important security notion consists in data-privacy [O’N10].
Traditionally, data-privacy protects the confidentiality of the encryptor by
hiding the encrypted plaintext messages. Functional encryption requires fur-
ther that no information about the plaintext messages can be gained from
the performed evaluations. In symbols, data-privacy implies that the en-
crypted evaluation of F(m, k) does not leak any information about the mes-
sagem and stresses in particular the role of the ciphertext CT. Data-privacy
for functional encryption is essentially covered by two concurrent notions:
indistinguishability [O’N10], claiming that an adversary cannot distinguish
between the encryptions of two known plaintext messages, and semantic
security [O’N10], capturing the idea that an adversary cannot gain more in-
formation from a ciphertext than what can be obtained from the functional
keys and their corresponding function evaluations. Roughly speaking, in-
distinguishability directly compares ciphertexts, whereas semantic security
relies on the computational indistinguishability of ciphertext distributions.
These notions are deepened in Chapter 35.
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34.2 Function-hiding

Function-hiding [BRS13], also known as function-privacy or key-hiding, cap-
tures the idea that “it should not be possible to learn any information, be-
yond the absolute minimum necessary” on the key defining a functional key.
It protects the evaluator by hiding the information about the evaluations he
desires to carry out. In symbols, function-privacy implies that the encrypted
evaluation of F(m, k) does not leak any information about the queried key
k and stresses, in particular, the role of the functional key skk. It is crucial
to note that the word function in this setting makes neither reference to the
functionality F , nor to its internal function f (see Section 36.1), but only to
the key k. As k can be thought of as defining F(m, k) (a message m can be
evaluated on multiple keys), pioneer works referred to k as “the function”
of the evaluation.

Despite its utility, [BS15] points out that “in the public-key setting,
where anyone can encrypt messages, only a limited form of function-privacy
can be satisfied”. Yet, slightly restricting the adversarial privileges in the
original definition, one may devise a satisfiable counterpart. Two lines of
work were devoted to such a construction: [BRS13] formalizes a comple-
mentary notion to data-privacy by invoking a new security game that is
independent of data-privacy. [AAB+13] devises an umbrella notion that
captures simultaneously data-privacy and function-privacy. Both construc-
tions are built on simulation security.

34.3 Consistency and robustness

Consistency [BKKW21] grants protection to the decryptor by preventing
the encryptor from crafting ciphertexts that cannot be related to valid mes-
sages, even though they are decrypted to some valid function evaluation. It
strengthens the correctness of encryption and avoids fraud on valid evalua-
tions. Robustness ensures that “a ciphertext cannot correctly decrypt un-
der two different secret keys” [FLPQ13]. It makes encryption schemes more
mis-use resistant [ABN10] and is a desirable feature for many schemes. We
highlight that robustness advocates that if a message is evaluated under two
different keys, then at least one evaluation returns the special error symbol
⊥. However, it does not predict the evaluation behaviour of two distinct
messages under the same key.



Chapter 35

Focus on data-privacy

This chapter is devoted to the study of two data-privacy notions for func-
tional encryption, namely indistinguishability and semantic security. Here-
inafter, we let FE be any functional encryption scheme for the functionality
F : K ×M→ Σ ∪ {⊥}.

35.1 Indistinguishability

Indistinguishability [O’N10] for functional encryption consists in a pragmatic
security game attesting data-privacy if it can only be won with probability
1
2 . In the game, the adversary is allowed to choose two messages m0,m1 one
of which will be encrypted by the challenger. Subsequently, the adversary
can ask for functional keys and shall distinguish which message has been
encrypted. However, to ensure that the adversary cannot trivially win the
game by choosing two keys with distinct evaluations for m0 and m1, we
need to limit the adversary’s querying capacity to keys leading to the same
evaluation under m0 and m1. Formally, we deduce the following definition
[BSW11, BO13].

Definition 35.1. We say that a public-key functional encryption scheme FE
is indistinguishably secure against chosen plaintext attacks (IND−FE−CPA-
secure) if the advantage of any PPT adversary A against the IND−FE−CPA-
game defined in Figure 35.1 is negligible:

AdvIND−FE−CPA
A,FE (λ) :=

∣∣∣∣Pr [IND− FE− CPAA
FE(λ) = 1

]
− 1

2

∣∣∣∣ ∈ Negl(λ).

Indistinguishability, is subdivided into selective and adaptive security. In the
selective security game (sIND − FE − CPA), the adversary starts the game
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sIND− FE− CPAA
FE(λ):

b←$ {0, 1}
L← ∅
(m0,m1)←$ A(λ)
(mpk,msk) ←$ FE.Setup(λ)
CT←$ FE.Enc(mpk,mb)
b′←$ AKDerOmsk(·)(λ,CT,mpk)
if ∃k ∈ L s.t. F(k,m0) ̸= F(k,m1)

return 0

return b
?
= b′

Proc. KDerOmsk(k):

L← L ∪ {k}
skk←$ FE.KDer(msk, k)
return skk

aIND− FE− CPAA
FE(λ):

b←$ {0, 1}
L← ∅
(mpk,msk) ←$ FE.Setup(λ)
(m0,m1)←$ AKDerOmsk(·)(λ,mpk)
CT←$ FE.Enc(mpk,mb)
b′←$ AKDerOmsk(·)(λ,CT,mpk)
if ∃k ∈ L s.t. F(k,m0) ̸= F(k,m1)

return 0

return b
?
= b′

Proc. KDerOmsk(k):

L← L ∪ {k}
skk←$ FE.KDer(msk, k)
return skk

Figure 35.1: The indistinguishability chosen-plaintext experiments defined
for a public-key functional encryption scheme. In both games, the adversary
A can use the key derivation procedure KDerOmsk as often as desired.

by choosing the plaintext messages m0,m1. Subsequently, the functional
encryption setup takes place. In this scenario, functional key queries are
only allowed after the plaintexts have been chosen. In the adaptive security
game (aIND−FE−CPA), the functional encryption setup takes place before
the adversary needs to choose the plaintext messages m0,m1. In this case,
the adversary may query for functional keys before choosing the plaintext
messages. This allows him to adapt his plaintext choice to the received func-
tional keys. In both cases, the early loss condition for forbidden functional
key queries holds.

Remark 35.2. We note that adaptive security implies selective security,
but the reciprocal does not necessarily hold. In this sense, selective security
is a weaker security notion.

Unfortunately, neither selective nor adaptive security perfectly reflects
our intuition on security as they fail to capture some elementary counterex-
amples. [BSW11] investigates the case of the trivial functionality defined
by F(k,m) = m for all k ∈ K. For this functionality, the intuitively in-
secure encryption scheme Enc(mpk,m) = m passes the indistinguishability
game. Indeed, due to the forbidden query condition, an adversary is only
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allowed to issue plaintext messages m0 = m1 which are trivially indistin-
guishable. Thus, the adversary cannot win the game. This loophole is a
severe drawback, as the trivial functionality F(k,m) = m is used to recover
the traditional public-key paradigm: the functionality and the key deriva-
tion procedure have no effect, such that only the encryption and decryption
procedures are applied.

35.2 Semantic security

Semantic security captures the idea that a secret key skk should only reveal
the function evaluation F(k,m) and no other information. It grants secu-
rity under so-called key-revealing selective opening attacks (SS1). Unfor-
tunately, such a strong security notion seems to be unachievable: [BSW11]
proved this claim in the non-programmable random oracle model and [BO13]
in the standard model. To replace this utopic semantic security notion,
[BO13] proposes two new definitions SS2 and SS3. SS2 is equivalent to
IND − FE − CPA-security for all functionalities and experiences the same
drawbacks. SS3 seems to finally capture an achievable and superior security
notion. Indeed, contrary to indistinguishability, SS3-security successfully
rules out the trivial encryption scheme Enc(mpk,m) = m from being secure
because it detects message leakage through publicly available information.

35.3 Informal comparison

[BO13] shows that SS3 is strictly stronger than IND−FE−CPA. This means
that any SS3-secure functional encryption scheme is also IND− FE− CPA-
secure, but the reciprocal might not hold, as illustrates the trivial encryption
scheme Enc(mpk,m) = m. Yet, this notion of semantic security coincides
with the indistinguishability notion for a large class of functionalities. The
disadvantage of SS3 is its dependence on the indistinguishability of cipher-
text distributions, which is hard to handle in practice. IND − FE − CPA
provides a pragmatic advantage as the indistinguishability of ciphertexts
is sufficient to testify security. We note the difference between ciphertext
distributions and individual ciphertexts. In the latter case, the cumulative
role of the underlying distributions is not taken into account. Although
slightly weaker, IND − FE − CPA continues to be used in practice. Here-
inafter, we focus on indistinguishability only, as any scheme that is not
IND− FE− CPA-secure cannot be SS3-secure. Concretely, we devise a con-
ditional attack against indistinguishability which has an impact on a range
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of DDH-based inner-product functional encryption schemes when restricting
them to bounded-norm evaluations.



Chapter 36

Our attack

In this chapter, we provide a selective chosen-plaintext attack which shows
that under some conditions, functional encryption schemes cannot achieve
indistinguishability. We start by decomposing a functionality into a mathe-
matical function and an error trigger. This separation raises the question of
where such an error trigger may appear in a functional encryption scheme.
Upon discussing the position of the error trigger, we revise the indistin-
guishability notion and point out a potential threat of functional encryption
schemes which leaves the scope of traditional public-key encryption. Finally,
we devise a conditional attack against error-proned functional encryption
schemes.

We highlight that our development crucially relies on the special role of
the error symbol ⊥ in functional encryption. Therefore, our observations ap-
ply to error-proned constructions only. Error-free schemes, such as [ALS16]
and other post-quantum lattice-based constructions, for which F(k,m) ̸=⊥
for all m ∈M and k ∈ K do not underlie our attack.

Remark 36.1. The central element of the upcoming analysis is the separa-
tion of a functionality into an internal function and an error trigger. This
allows us to study the relation between error evaluations and indistinguisha-
bility. We point out that there is an analogous development in [BKKW21]
with respect to function-hiding. In that work, the authors assigned different
error symbols to error evaluations, each depending on a distinct error cause.
The resulting consistency attack in [BKKW21, Section 5.B] is similar to our
indistinguishability attack but focusses on keys instead of messages.
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36.1 Functionalities and their error symbols

A functionality F : K ×M → Σ ∪ {⊥} is a function that is allowed to fail
and return a special error symbol ⊥. Albeit the error symbol seems to be
meaningless, it is required to successfully capture a family of cryptographic
primitives (see Section 38.2). Abstractly, a functionality may be decomposed
into an internal function f : K × M → Σ′ with Σ ⊆ Σ′ and an error
trigger E : Σ′ → Σ ∪ {⊥} such that E(y) = y for all y ∈ Σ and E(y) =⊥
otherwise (see [DS00, KLZ96] for the general concept of decompositions).
In this interpretation, f can be preceded by yet another error trigger ruling
out incompatible function inputs. This auxiliary error trigger should be
thought of as returning a different error symbol and may not be needed if
only valid inputs are given to the functionality. Hereinafter, we restrict the
inputs of the functionality to K and M so that this auxiliary error trigger
is not needed.

36.2 Functional encryption and error triggers

A functional encryption scheme for the functionality F : K×M→ Σ∪{⊥}
mimics the functionality F but hides the plaintext message space M. In
practice, many functional encryption schemes rely on the decomposed func-
tionality described in Section 36.1. Indeed, a suitable internal function and
an error trigger can be directly deduced from the functionality. If the corre-
sponding construction is not used in a black-box manner, this decomposition
is public. Before we continue to investigate the impact of this publicly avail-
able information, we discuss which one of the four functional encryption
sub-algorithms FE.Setup, FE.KDer, FE.Enc, FE.Dec allows the implementa-
tion of the error trigger:

FE.Gen: The key generation algorithm generates the master secret key
and master public key for the functional encryption scheme. It is not
related to functional evaluations and therefore the error trigger would
have no effect.

FE.Enc: The encryption algorithm encrypts admissible plaintext messages
with respect to the master public key. It is not associated with the
functional keys, so the error trigger would miss one input value. Unde-
sired input messages can be avoided by shrinking the plaintext message
spaceM.
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FE.KDer: The key derivation algorithm generates functional keys. It is
not associated with ciphertexts and so the error trigger would miss
one input value. Undesired key queries can be avoided by shrinking
the query space K.

FE.Dec: The decryption algorithm decrypts a given ciphertext using a suit-
able functional key to learn the outcome of the functional evaluation
of a message and a queried key. The decryption algorithm consists in
the only procedure that has simultaneous access to plaintext message
and key information. Thereby, it is the only sub-algorithm that can
contain the error trigger.

Thus, an error trigger may only be implemented in the decryption procedure
of a functional encryption scheme. If we stick to the original error trigger
E , then an input from Σ′ is required to capture the intuition that some
information about f(k,m) is processed. However, such a direct input may
not be desired. In this case, the original error trigger E may be replaced by
an equivalent one E ′ : Ω→ Σ ∪ {⊥} with another input set Ω. Nonetheless,
the error trigger E ′ needs to process the information f(k,m).

36.3 Revision of indistinguishability

A functional encryption scheme is IND−FE−CPA-secure if an adversary can
only win the indistinguishability game in Figure 35.1 with negligible advan-
tage. Our focus lies on the weakest indistinguishability notion, namely se-
lective security against chosen-plaintext attacks (sIND−FE−CPA-security).
In this game, an adversary first chooses two admissible plaintext messages
m0 and m1. After handing those messages to the challenger, the functional
encryption scheme is set up. The functioning of the functional encryption
scheme is known to the adversary, but he ignores the randomly chosen pa-
rameters. Upon the generation of the master secret key and the master
public key, a message will be encrypted at random. The adversary shall
now distinguish which message has been chosen. For this task, he has oracle
access to the key derivation procedure and may use the ciphertext and the
master public key. Furthermore, the decryption procedure is public and can
be used to receive a function evaluation of a queried key and the challenge
message. To ensure that the adversary cannot trivially win the game by re-
questing the functional key for some key k such that F(k,m0) ̸= F(k,m1),
IND − FE − CPA-security forbids such queries by letting the adversary lose
the game.
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Although compromising key queries are foreseen in the indistinguisha-
bility notion, it is falling short to tackle another practical problem. If a
functional encryption scheme contains an error trigger in its decryption
procedure, then the decryption procedure also assembles some information
f(k,m) of the internal function of the functionality. An adversary may
be able to simulate the decryption procedure and partially filter out this
information.

36.4 Attacking indistinguishability

Assume first that the decryption procedure computes the value f(k,m) and
subsequently applies E(f(m, k)) to reveal F(k,m). Then, the adversary can
exploit a loophole in the IND − FE − CPA-security definition to always win
its security game. More precisely, choosing two plaintext messages m0,m1,
and a key k such that F(k,m0) = F(k,m1) =⊥ but f(k,m0) ̸= f(k,m1),
the adversary can always win the game. As F(k,m0) = F(k,m1) =⊥, the
adversary does not loose the game through a forbidden functional key query.
As m0,m1, k are known, the adversary may compute the two distinct values
f(k,m0), f(k,m1). By simulating the decryption procedure with the chal-
lenge ciphertext and the functional key skk, but stopping before triggering
an error, he recovers exactly one of the values f(k,m0), f(k,m1) and finds
out which message has been encrypted.

Of course, no candidate functional encryption scheme involves such a
plain intermediate value. Generally, the intermediate values are obfuscated
through secure cryptographic primitives such as one-way functions. Unfor-
tunately, if the underlying one-way function is known, then the same trick
still compromises IND− FE− CPA-security.

Theorem 36.2. Let F : K × M → Σ ∪ {⊥} be a functionality, let
f : K × M → Σ′ be its internal function where Σ ⊆ Σ′, and let
E : Σ′ → Σ ∪ {⊥} be its error trigger such that F = E ◦ f where E(y) = y
for all y ∈ Σ and E(y) =⊥ otherwise. Let FE be a functional encryption
scheme for the functionality F . Let OWF : Σ′ → G be a known efficiently
computable one-way function used in the functional encryption scheme FE.
Assume that for a key k ∈ K and a plaintext message m ∈ M, the de-
cryption procedure computes OWF(f(k,m)) as an intermediate value. If
there exist k ∈ K and m0,m1 ∈ M such that F(k,m0) = F(k,m1) =⊥ but
OWF(f(k,m0)) ̸= OWF(f(k,m1)), then the functional encryption scheme
FE is not sIND− FE− CPA-secure.
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Proof. We are going to play the sIND− FE− CPA-security game from Fig-
ure 35.1 against the functional encryption scheme FE. We impersonate an
adversary. We start the game by releasing the plaintext messages m0 and
m1. Then, FE.Setup generates the master secret key msk and the master
public key mpk. Next, one of our plaintext messages mb with b ∈ {0, 1}
is encrypted by FE.Enc using the master public key and we obtain the cor-
responding ciphertext CT. Subsequently, we use the FE.KDer oracle once
to query for the functional key skk corresponding to k. This query is valid
as F(k,m0) = F(k,m1) =⊥, in other words, we do not lose the game due
to a forbidden functional key query. After this, we simulate the decryp-
tion procedure FE.Dec. We run through all the intermediate decryption
steps but stop when we obtain gb = OWF(f(k,mb)) (i.e., before recover-
ing F(k,mb)). Once we obtain gb, we compute g0 = OWF(f(k,m0)) and
g1 = OWF(f(k,m1)). This is possible as we know k,m0,m1 in plain, as
well as the internal function f and the used one-way function OWF. As
OWF(f(k,m0)) ̸= OWF(f(k,m1)), either g0 = gb or g1 = gb, but not
both. Thus, we can distinguish with certainty which of our initial messages
has been encrypted and win so the security game.

Theorem 36.2 is independent of the chosen error trigger, whose exact func-
tioning may be difficult to simulate. It only uses the internal function f
that must be hard-coded into the scheme. Roughly speaking, our attack
only requires that:

1. The decryption procedure computesOWF(f(k,m)), whereOWF and
f are known, and

2. there exist k ∈ K and m0,m1 ∈M such that:

(a) F(k,m0) = F(k,m1) =⊥, but
(b) OWF(f(k,m0)) ̸= OWF(f(k,m1)).

It is clear that any scheme that successfully avoids error evaluations such
that F(k,m) ̸=⊥ for all k ∈ K and m ∈ M, does not fulfil condition 2.(a)
above and is not impacted by our attack. Such a scheme may be achieved by
restricting inputs as described in [ACF+17] and [ABDCP15, Construction
4.1] or by using an error-free decryption algorithm [ALS16].

Remark 36.3. A similar attack applies if F(k,m0) = F(k,m1) = s ∈ Σ
and OWF(f(k,m0)) ̸= OWF(f(k,m1)), but usually f(k,m0) = f(k,m1)
in this case.
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36.5 Summary

The pragmatic decomposition of a functionality F : K×M→ Σ∪{⊥} into
an internal function f : K ×M → Σ′ with Σ ⊆ Σ′ and an error trigger
E : Σ′ → Σ ∪ {⊥} such that E(y) = y for all y ∈ Σ and E(y) =⊥ other-
wise, in combination with the special status of the error symbol allows for
a conditional attack against the security of functional encryption schemes.
Any scheme underlying this attack is not sIND − FE − CPA secure which
consists in the weakest data-privacy notion for functional encryption. In
particular, Theorem 36.2 shows that it is not sufficient to hide the internal
function f through the means of a one-way function as it can be reverse-
engineered. Hence, Theorem 36.2 simultaneously yields a necessary criterion
for sIND − FE − CPA and provides a pragmatic sanity test. Furthermore,
it highlights that the design of the decryption procedure requires special
attention.



Chapter 37

Impact on the bounded-norm
inner-product functionality

To further motivate our attack, we show how it compromises a family of
candidate functional encryption schemes for the inner-product functionality
when restricting them to bounded-norm evaluations.

37.1 Bounded-norm inner-product functionality

The bounded-norm inner-product functionality essentially multiplies two
vectors and checks if the result is sufficiently small. Abstractly, we get
the following definition.

Definition 37.1 (Bounded-norm inner-product functionality). Let
(y,x) ∈ Zn

q × Zn
q where Zq = Z ∩

(
− q

2 ,
q
2

]
and let B < q. We define

IPB(y,x) := [x · y⊤ mod q], if |[x · y⊤ mod q]| ≤ B and IPB(y,x) := ⊥
otherwise.

Remark 37.2. In the literature, the inner-product functionality is not re-
stricted to bounded-norm evaluations, however, in practice, it is often used in
this way, for example when discrete logarithms need to be computed. Choos-
ing q and B sufficiently large and keeping the entries of x and y sufficiently
small results in the traditional non-restricted inner-product functionality.

Despite its simplicity, a functional encryption scheme for the inner-
product functionality may find attractive applications. [ABDCP15] gives
the example of weighted averages that need to be computed without leaking
any information on the message vector. Another motivational example is
the outsourcing of tax-related computations:
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Assume that a national fiscal agency stores the monthly incomes of its
citizens in an encrypted format. The data of a citizen can be thought of
as a vector x = (x1, . . . , x12) representing his monthly income. To increase
the annual budget, the ministry of financial affairs wants to introduce a
new differential tax scale that reduces taxes at the beginning of the year,
but increases them by the end. In this way, they would gain more from
the interests of the citizens’ bank deposits that accumulate over the whole
year. For example, a potential tax scale could look like 1% for January,
2% for February, . . ., 12% for December and can be represented by a vector
y = (1, . . . , 12). To determine a tax scale that achieves the highest income
but has the lowest impact on the household budget of its citizens, the gov-
ernment needs to carry out a variety of simulations. Unfortunately, the
national fiscal agency does not have the computing power to carry out such
a large-scale simulation. Thus, the government decides to outsource these
computations to an audit company. The functional encryption scheme al-
lows the audit company to query the database and perform the simulation
without knowing the actual financial assets of the citizens. In this scenario,
q needs to be chosen sufficiently large to avoid overflows, and B may be
set such that the impact on high-income households is discarded from the
results.

37.2 Applicability of our attack

Considering the bounded-norm inner-product functionality, we recognize its
internal function f : Zn

q×Zn
q → Zq to be defined by f(y,x) :=

[
x · y⊤ mod q

]
for all x,y ∈ Zn

q and the corresponding error trigger to be defined by
E : Zq → Zq ∪ {⊥} where E(k) = k whenever |k| < B and ⊥ otherwise. If B
is sufficiently small (e.g. 0 < B < q−1

2 ), there are multiple evaluation pairs
(y,x) that evaluate to the error symbol. For example x∗

0 = (B+1, 1, . . . , 1),
x∗
1 = (−B − 1, 1, . . . , 1), and y∗ = (1, 0, . . . , 0). Thus, if a bounded-norm

inner-product functional encryption scheme uses a known one-way function
OWF to hide intermediate values f(y,x), and if for at least two evaluation
pairs (y,x0), (y,x1), we have OWF(f(y,x0)) ̸= OWF(f(y,x1)), then our
attack from Theorem 36.2 applies.

Remark 37.3. The upcoming schemes were designed for the traditional
inner-product functionality, which is not restricted to bounded-norm evalua-
tions. Thereby, our attack does not directly contradict their security proofs.
However, the need of these schemes to compute discrete logarithms makes
the discussion on bounded-norm evaluations relevant.
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37.2.1 A concrete example

In [ABDCP15, Construction 3.1], the authors propose an elementary inner-
product functional encryption scheme:

1. The master secret key (msk) is a uniformly at random sampled vector
s ∈ Zn

q , and the master public key (mpk) is gs := (gs1 , . . . , gsn) where
g ∈ G is a generator of the multiplicative group G.

2. To encrypt a vector x ∈ Zn
q , first r ∈ Zq is sampled uniformly at

random and then the ciphertext is computed as

CT := (gr, grs+x) := (gr, (gs1)r · gx1 , . . . , (gsn)r · gxn).

3. The functional key corresponding to a vector y ∈ Zn
q is generated as

sky :=
[
s · y⊤ mod q

]
.

4. Decryption is carried out through a look-up table containing gb for all

|b| < B. If
(∏n

i=1 CT
yi
i

)
·
(
CT

sky
0

)−1
inG, corresponding to g[x·y

⊤ mod q],

is found inside the look-up table, the corresponding discrete loga-
rithm is obtained, otherwise an error is thrown. In other words,

IPB(x,y) =
[
x · y⊤ mod q

]
if the value g[x·y

⊤ mod q] was in the
lookup table and ⊥ otherwise.

This scheme makes use of the one-way function OWF : Zq → G sending
an element t ∈ Zq to its cyclic group encoding gt ∈ G. Furthermore, the

decryption procedure computes OWF(f(y,x)) = g[x·y
⊤ mod q] as an inter-

mediate value. As for x∗
0 = (B + 1, 1, . . . , 1), x∗

1 = (−B − 1, 1, . . . , 1) and
y∗ = (1, 0, . . . , 0), we haveOWF(f(y∗,x∗

0)) = gB+1, andOWF(f(y∗,x∗
1)) =

g−(B+1). Those values are usually non-equal. Indeed, q is generally an odd
prime and |G| = q−1, so that the equality of both values implies that 2(B+1)
divides a multiple of q−1 which is impossible if B is sufficiently small. In the
unlikely event that they would be equal, we may choose x∗

1 = (B+2, 1, . . . , 1)
which then produces a different value. Thus, all of the conditions of our at-
tack are satisfied and Theorem 36.2 claims that the considered FE scheme is
not sIND− FE−CPA-secure. For illustration, playing the indistinguishabil-
ity game with the suggested challenge plaintexts and the corresponding key
shows that IPB(x

∗
0,y) = IPB(x

∗
1,y) =⊥ which makes the queries admis-

sible, and regularly computing
(∏n

i=1 CT
y∗
i

i

)
/ CT

sky∗
0 = g[x

∗
b ·(y

∗)⊤ mod q]

produces either gB+1 or g−B−1 which can be distinguished.
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37.2.2 Our attack against other candidate constructions

Albeit the scheme from [ABDCP15, Construction 3.1] has been chosen to
illustrate our attack, it does not consist in an isolated example. Any inner-
product functional encryption scheme based on the DDH assumption using a
polynomially bounded look-up table for decryption falls prey to the same at-
tack. The reason is that they all use the same internal function and the same
one-way function. Thus, the same arguments can be used to conclude their
vulnerability when only bounded-norm evaluations are considered. Other
such schemes are [BJK15, DDM16, CLT18].

A clever restriction of the bounded-norm inner-product functionality al-
lowing only short vectors as functionality inputs (i.e., max(x) < X and
max(y) < Y such that nXY < B) as described in [ABDCP15, Construc-
tion 4.1] or [ACF+17] may prevent error decryption and thus also our attack.
Unfortunately, those bounds shrink the number of possible message-key eval-
uations. Furthermore, no boundary cases, such as a single large entry or mu-
tually eliminating entries, are allowed, which might be hindering for some
applications. Additionally, this solution is devised to work over the inte-
gers and not over finite integer rings. As modular reductions are disabled
its application range shrinks. If simultaneously restricted vector entries are
considered, but modular reductions are allowed, like in [Tom19, Section 4.1],
then our attack applies again.

The security proofs of the referenced constructions certifying indistin-
guishability do not consider the bounded-norm condition. Indeed, the proofs
consider the non-restricted inner-product functionality and carry out a stan-
dard reduction to the DDH assumption. Whereas this reduction is perfectly
binding if only valid decryptions exist, the same does not hold true if errors
can be obtained, which is the case for the bounded-norm inner-product func-
tionality. Our attack illustrates this auxiliary threat which leaves the scope
of traditional public-key encryption. In particular, the simple obfuscation
through DDH-encodings is not sufficient to grant indistinguishability. This
observation remained unperceived until now.

Nonetheless, there are candidate constructions for the bounded-norm
inner-product functionality, such as [ALS16], which do not underlie our at-
tack and do not require any entry restrictions on the vector entries. Such
post-quantum constructions give the proof-of-concept that error-free func-
tional encryption schemes are achievable and that the special role of the
error symbol may not be needed for this functionality. At the same time,
our attack backs them up by proving their superiority compared to error-
proned schemes.



Chapter 38

A patch for
indistinguishability?

DDH-based constructions are generally pragmatic and easy to implement.
As such, they enjoy great interest among practitioners. To complement our
attack, we would like to investigate the impact of a slight definitional change
weakening indistinguishability but declaring the referenced DDH-based con-
structions secure for the bounded-norm inner-product functionality.

38.1 A weaker indistinguishability notion

The decisive element of our attack lies in the observation that the functional
evaluation of two message-key pairs may be equal but that the underlying
internal function evaluated in the same pairs is not. One solution could be
to relate the security definition to the internal function instead of the func-
tionality. However, such a definition increases the risk of function-specific
attacks and shrinks the number of potential functionalities. From another
perspective, we observe that the problematic situation seems only to arise
if the functionality evaluates to the error symbol. This can be detected in
the output layer of the scheme. Thereby, a pragmatic solution to declare
the DDH-based constructions from Section 37.2.2 indistinguishably secure
for the bounded-norm inner-product functionality may consist in not only
forbidding functional key queries that result in different evaluation values,
but also queries whose evaluations return the error symbol. In Figure 38.1
we formalize a corresponding security game.
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sIND− FE− CPAA
FE(λ):

b←$ {0, 1}
L← ∅
(m0,m1)←$ A(λ)
(mpk,msk) ←$ FE.Setup(λ)
CT←$ FE.Enc(mpk,mb)
b′←$ AKDerOmsk(·)(λ,CT,mpk)
if ∃k ∈ L s.t. F(k,m0) ̸= F(k,m1)

return 0
if ∃k ∈ L s.t. F(k,m0) =⊥

return 0

return b
?
= b′

Proc. KDerOmsk(k):

L← L ∪ {k}
skk←$ FE.KDer(msk, k)
return skk

aIND− FE− CPAA
FE(λ):

b←$ {0, 1}
L← ∅
(mpk,msk) ←$ FE.Setup(λ)
(m0,m1)←$ AKDerOmsk(·)(λ,mpk)
CT←$ FE.Enc(mpk,mb)
b′←$ AKDerOmsk(·)(λ,CT,mpk)
if ∃k ∈ L s.t. F(k,m0) ̸= F(k,m1)

return 0
if ∃k ∈ L s.t. F(k,m0) =⊥

return 0

return b
?
= b′

Proc. KDerOmsk(k):

L← L ∪ {k}
skk←$ FE.KDer(msk, k)
return skk

Figure 38.1: Weaker indistinguishability chosen-plaintext experiments de-
fined for a public-key functional encryption scheme. Note that the first
early abort check implies that F(k,m0) = F(k,m1) for all k ∈ L, and so the
second early abort check guarantees that F(k,m0) ̸=⊥ and F(k,m1) ̸=⊥.

38.2 The shortcoming of this definition

Despite introducing a weaker data-privacy notion for functional encryption,
the pragmatic patch of Figure 38.1 suffers from another major inconve-
nience: it is incompatible with a family of classical primitives known as
predicate encryption schemes. A predicate encryption scheme [KSW08] is
a specific form of public-key encryption where secret keys correspond to
predicates and ciphertexts are associated with attributes. It generalizes tra-
ditional primitives such as identity-based encryption [Sha85] and attribute-
based encryption [GKP+13]. Such primitives can be expressed as particular
functionalities [BSW11] and so they may be seen as functional encryption
schemes.

Definition 38.1 (Predicate Encryption Functionality). Denote by
P : K0 × Ω → {0, 1} a polynomial time predicate where K0 denotes the
key space and Ω denotes the attribute space. The Predicate Encryption
functionality (for P) is defined by PEF : K0× (Ω×M0)→M0 ∪{⊥} such
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that PEF (k, (x,m)) = m whenever P(k, x) = 1 (i.e., the key and attributes
are matching) and PEF (k, (x,m)) =⊥ otherwise.

Contrary to bounded-norm inner-product schemes, the security of pred-
icate encryption schemes requires the use of the error symbol. We explain
this relation in further detail below.

38.2.1 Identity-based encryption

In identity-based encryption, ciphertexts and keys are associated with iden-
tities, and a key can only be used to decrypt a ciphertext if the identities
match [Sha85]. The upcoming definition stems from [DG21].

Definition 38.2 (Identity-Based Encryption). An identity-based encryp-
tion scheme (IBE) for an identity space Ω and an associated message space
M0 is a quadruple of algorithms (IBE.Setup, IBE.KDer, IBE.Enc, IBE.Dec)
such that:

1. (msk,mpk)←$ IBE.Setup(λ) : given a security parameter λ, it outputs
a pair of master secret/public keys.

2. CT←$ IBE.Enc(mpk, x,m): the randomized encryption procedure en-
crypts the plaintext m ∈ M0 with respect to an identity x ∈ Ω and
the master public key mpk.

3. skx←$ IBE.KDer(msk, x): using the master secret key msk, the (pos-
sibly randomized) key-derivation procedure outputs a functional key
skx corresponding to the identity x ∈ Ω.

4. y ← IBE.Dec(skx,CT) decrypts the ciphertext CT using the functional
key skx in order to either learn a message m ∈M0 or the special error
symbol ⊥.

An IBE scheme is correct if for all messagesm ∈M0 and all identities x ∈ Ω,
the following holds:

Pr

 y = m

∣∣∣∣∣∣∣∣
(msk,mpk)←$ IBE.Setup(λ)∧
CT←$ IBE.Enc(mpk, x,m)∧
skx←$ IBE.KDer(msk, x)∧
y ← IBE.Dec(skx,CT)

 ∈ 1−Negl(λ) .

Identity-based encryption is a special case of predicate encryption where
the predicate key space is K0 = {0, 1}∗, the set of attributes is Ω = {0, 1}∗
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and the predicate is defined as simple comparison (i.e. x = x∗). Thus, we
may compare its traditional indistinguishability game [DG21] in Figure 38.2
with the original one for functional encryption.

IND− IBE− CPAA
IBE(λ):

b←$ {0, 1}
(mpk,msk) ←$ IBE.Setup(λ)
(x∗,m0,m1)←$ AKDerOmsk(·)(λ,mpk)
CT←$ IBE.Enc(mpk, x∗,mb)
b′←$ AKDerOmsk(·)(λ,CT,mpk)
if ∃x ∈ L s.t. x = x∗

return 0
if |m0| ≠ |m1|

return 0

return b
?
= b′

Proc. KDerOmsk(x):

L← L ∪ {x}
skx←$ IBE.KDer(msk, x)
return skx

aIND− FE− CPAA
FE(λ):

b←$ {0, 1}
L← ∅
(mpk,msk) ←$ FE.Setup(λ)
(m0,m1)←$ AKDerOmsk(·)(λ,mpk)
CT←$ FE.Enc(mpk,mb)
b′←$ AKDerOmsk(·)(λ,CT,mpk)
if ∃k ∈ L s.t. F(k,m0) ̸= F(k,m1)

return 0

return b
?
= b′

Proc. KDerOmsk(k):

L← L ∪ {k}
skk←$ FE.KDer(msk, k)
return skk

Figure 38.2: On the left, the indistinguishability chosen-plaintext exper-
iment defined for an identity-based encryption scheme. On the right, the
adaptive indistinguishability chosen-plaintext experiment defined for a func-
tional encryption scheme.

The described indistinguishability notion for identity-based encryption
limits the adversary to not being able to trivially decrypt the challenge
messages. The peculiarity is that, in terms of functional encryption, only
queries for keys evaluating to the error symbol are allowed. Indeed, only
queries such that x ̸= x∗ or, in other words, F(x, (x∗,m0)) =⊥ are valid.
Therefore, the classic early abort condition for functional encryption stating
that F(x0, (x∗,m0)) ̸= F(x1, (x∗,m0)) is never satisfied. The negative effect
of this restriction is that the weaker indistinguishability notion in Figure 38.1
is not compatible with identity-based encryption as the removal of error
queries removes every query possibility from the adversary.

38.2.2 Attribute-based encryption

Attribute-based encryption generalizes identity-based encryption by not only
allowing a single identity, but a set of attributes validating decryption. The
formal definition below stems from [GKP+13].
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Definition 38.3 (Attribute-Based Encryption). An attribute-based encryp-
tion scheme (ABE) for a class of predicates P ∈ {Pn}n∈N and an associated
message space M0 is a quadruple of algorithms (ABE.Setup, ABE.KDer,
ABE.Enc, ABE.Dec) such that:

1. (msk,mpk)←$ ABE.Setup(λ) : given a security parameter λ, it outputs
a pair of master secret/public keys.

2. CT←$ ABE.Enc(mpk, x,m): the randomized encryption procedure en-
crypts the plaintext m ∈ M0 with respect to an attribute x ∈ {0, 1}n
(n ∈ N) and the master public key mpk.

3. skP ←$ ABE.KDer(msk, P ): using the master secret key msk, the (pos-
sibly randomized) key-derivation procedure outputs a functional key
skP corresponding to the predicate P ∈ {Pn}n∈N.

4. y ← ABE.Dec(skP ,CT) decrypts the ciphertext CT using a predicate
key skP to learn a message m ∈M0 or the special error symbol ⊥.

An ABE scheme is correct if for all messages m ∈ M0, all predicates
P ∈ {Pn}n∈N, and all attributes x ∈ {0, 1}n such that P (x) = 1, the
following holds:

Pr

 y = m

∣∣∣∣∣∣∣∣
(msk,mpk)←$ ABE.Setup(λ)∧
CT←$ ABE.Enc(mpk, x,m)∧
skP ←$ ABE.KDer(msk, P )∧
y ← ABE.Dec(skP ,CT)

 ∈ 1−Negl(λ) .

Remark 38.4. Contrary to [GKP+13], we point out that correctness makes
no requirement when P (x) ̸= 1 [GVW15].

Attribute-based encryption is a special case of predicate encryption where
the predicate key space K0 is a set of Boolean formulas that evaluate the
vector attributes Ω = Rn. Thus, we may compare its traditional indistin-
guishability game [GKP+13] in Figure 38.3 with the original one for func-
tional encryption.

The adversary is again limited to not decrypting the challenge messages.
Furthermore, in line with the identity-based encryption game, we observe
that only queries for keys evaluating to the error symbol are allowed. In-
deed, only queries such that P (x) = 0 or, in other words, F(P, (x,m0)) =
F(P, (x,m1)) =⊥ are valid. Thus, if x∗ /∈ {x0, x1}, then the classic early
abort condition for functional encryption stating that F(x0, (x∗,m0)) ̸=
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IND− ABE− CPAA
ABE(λ):

b←$ {0, 1}
(mpk,msk) ←$ ABE.Setup(λ)
P ←$ A(λ,mpk)
skP ←$ ABE.KDerOmsk(msk, P )
(m0,m1, x)←$ A(skP )
CT←$ ABE.Enc(mpk, x,mb)
b′←$ A(λ,CT,mpk)
if |m0| = |m1| and P (x) = 0

return b
?
= b′

return 0

aIND− FE− CPAA
FE(λ):

b←$ {0, 1}
L← ∅
(mpk,msk) ←$ FE.Setup(λ)
(m0,m1)←$ AKDerOmsk(·)(λ,mpk)
CT←$ FE.Enc(mpk,mb)
b′←$ AKDerOmsk(·)(λ,CT,mpk)
if ∃k ∈ L s.t. F(k,m0) ̸= F(k,m1)

return 0

return b
?
= b′

Proc. KDerOmsk(k):

L← L ∪ {k}
skk←$ FE.KDer(msk, k)
return skk

Figure 38.3: On the left, the indistinguishability chosen-plaintext experi-
ment defined for an attribute-based encryption scheme. On the right, the
adaptive indistinguishability chosen-plaintext experiment defined for a func-
tional encryption scheme.

F(x1, (x∗,m0)) is never satisfied. Again, the negative effect of this restriction
is that the weaker indistinguishability notion in Figure 38.1 is not compati-
ble with attribute-based encryption, as the removal of error queries removes
all query possibilities from the adversary.

38.2.3 Incompatibility with predicate encryption

Analysing the indistinguishability security game of identity-based encryp-
tion and attribute-based encryption, we note that none of them formally
contradicts our attack, but they do not favour it either. As we did not
manage to find vulnerable schemes, we believe that our attack is no threat
to such primitives in practice. This accentuates the negative impact which
would have the pragmatic change of Figure 38.1 as it compromises the well-
established traditional security games by removing every query possibility
from an adversary. Thereby, we conclude that this pragmatic patch is not
universal enough to capture the right level of security for all functionalities
of interest.



Chapter 39

Open Questions

Secure functional encryption schemes are difficult to achieve and the cor-
responding security notions deviate from their classical equivalents. Our
development outlines a new threat and indicates how to avoid it. It is im-
portant to monitor flaws that emerge from new cryptographic primitives
and to give best-practice examples for constructing secure schemes. Our
new perspective on the error symbol and its implementation may be used
for other security analyses leading to necessary criteria for secure functional
encryption schemes.

Our study focussed on the impact of our attack on DDH-based functional
encryption schemes for the bounded-norm inner-product functionality. How-
ever, its applicability has a wider range. A systematic literary review may
filter out other vulnerable functional encryption schemes and may retrieve
other affected functionalities. The same comment holds for other crypto-
graphic primitives.

We believe that it is important to further investigate the special role
of the error symbol in functional encryption. For example, in case of an
error evaluation, correctness in functional encryption does not mandate the
decryption procedure to output an error (see Section 35.1). Outputting a
random value instead of an error may have an impact on the interpretation
of the output, but also on the security notions. As our study in Chapter 38
shows, the error symbol is of the highest importance for some sub-primitives
of functional encryption, and cannot be avoided in the definition, yet it needs
to be handled with care.
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Ending act: The future

Jay was staggered by the wisdom and the broad knowledge of his pops.
He enjoyed every second of their conversation and listened carefully to the
elderly advice. “Jay”, it echoed through the staircase, “it’s time for bed!”
It was barely ten o’clock, but Jay’s mother knew that he would oversleep
if he does not get his nine hours of sleep. “I’m coming”, shouted Jay. He
hugged his pops and thanked him for the nice time.

He ran down the stairs and started his sleeping ritual: taking a shower,
putting pyjamas on, washing his teeth, saying good night to everyone, stick-
ing the tongue out to Mrs Skizzles, preparing his knapsack for school, and
making himself comfortable in bed. Before sleep, he read a comic, as usual.
The story was about his favourite character, Uncle Scrooge, and how he
gained his first dime. Then, he turned off the lights and went to sleep.

Jay was lying there and reflected on his achievements: he mastered
the numismatic essentials, he managed to help in the big count, albeit he
needed to carry out the work twice, and he got to know about encryption
procedures and their subtleties. However, Jay was not satisfied. He knew
that he could do more, he knew that he could still improve. “One day”,
he thought, “I will even outsmart pops and then I will be able to teach
him something new.” It was not clear on which topic Jay would become a
specialist nor when he would reach his goal, but Jay would not give up until
he did. “In the future”, he figured out, “I still have a lot to learn. Until
then, I will simply tackle one problem at a time, and see where it leads me
to...”
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