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• Machine learning (ML) is the science that
makes computer able to learn from data.

• A branch of arPficial intelligence combined
with staPsPcal learning and compuPng
technologies revoluPonizes digital and data-
intensive disciplines by producing tools and
techniques to analyze and extract valuable
informaPon and knowledge from big data.

Was ist maschinelles Lernen und wozu wird es 
verwendet?



Typen von maschinellen Lernen und deren Anwendung
Supervised learning:
A model is trained based on the given 
input and output (the label of the input). 
Unsupervised learning:
A model is trained only on the inputs, 
without their labels. 
Semi-supervised learning:
A model is trained based on a small 
portion of labeled data and a large 
number of unlabeled data and make 
predictions on new data.
Reinforcement learning:
It is concerned with how intelligent 
agents ought to take actions in an 
environment in order to maximize the 
notion of cumulative reward.

Supervised learning Unsupervised learning

Reinforcement learning



Typen von maschinellen Lernen und deren Anwendung (2)



Was sind die grundlegenden
Stufen des maschinellen
Lernens?

Figure. Machine learning workflow



Deep learning (DL) is a form of machine learning
techniques that imitates the way human brain (neuron)
acquire certain types of knowledge. The term ‘deep
learning’ refers to the artificial neural networks having
many layers that enable learning from data (like human
learns from experience).

Why DL ?
qDL methods are data-driven, sufficiently automatic, efficient, and

intelligent for reliable processing of big (massive) data.
qThey can detect and process non-linear complex phenomena.
qThey are able to process multi-disciplinary and multi-modal data.

Deep Learning

~ 86 billion neurons are in the human brain, each
neuron connected to thousands of other neurons. A
neuron receives a sufficient number of signals
through synapses from other neurons within a few
milliseconds, it fires its own signal. 1

Artificial neural network 2

Credit: 1, Stevenson; 2, James Liang, 2018. 



Machine Learning Vs Deep Learning

q For normal/classical methods, we tell the 
computer very specific instructions what to 
do. Whereas for machine learning, we tell 
the computer how to figure out the answer 
itself, using the data we have.

q DL is a machine learning subfield that 
performs in an intelligent and automatic 
fashion, where features are trained by itself.

q DL algorithms attempt to learn (multiple 
levels of) representation by using a hierarchy 
of multiple layers.

q If we provide DL system with a lot of 
information/data, it begins to understand it 
and responds efficiently.



Was sind die Typen des Deep Learning und dessen
Anwendungen?



Wie beeinflussen ML and DL raumbezogene Big Data?

Geo/GIS science research can be characterized by massive (big) and 
multimodal-multidisciplinary sources of geolocated (geospatial) data, from 
which it is often crucial to extract high level information in the form of 
spatial semantics, spatial object relationships, trajectories, or more 
generally, numeric codes related to objects embedded in geographical 
coordinates. 

Applications: city modelling, object detection, semantic segmentation, 
geometry generation, change detection, autonomous navigation, disaster 
monitoring, mapping, environment analysis, urban planning, weather 
forecasting, earth observation, …. 



Wie hilft Deep Learning bei der semantischen Segmentierung?

Semantic segmentation: 
Point-wise (pixel for image) classification/labelling. 

Uses:
Visualisation 
Classification 
Modeling 
Reconstruction 
Scene understanding, …..

Problems of standard methods: usually not automatic or even not sufficiently semi-automatic

We need sufficiently automatic, robust, reliable and efficient methods

Solution: Data-driven approaches like deep neural networks (Deep Learning)



Convolutionales Neurales Netzwerk (CNN)

A CNN architecture comprises a set of convolutional layers that are followed by a ReLU layer,
then a pooling layer, then another set of convolutional layers followed by a ReLU layer, then
another pooling layer, this process continues several times. At the top of the stack, a regular
feedforward neural network is added, composed of a few fully connected layers with ReLUs, and
the final layer produces the classification outputs having class probabilities obtained by a
Softmax layer.

A standard CNN needs regular and structured data.

CNN (LeCun, 1989) 
is the most well-known 
supervised DL 
architecture that has 
gained unprecedent 
success in image 
segmentation and 
classification.



Punktwolken: Vorteile und Herausforderungen

Point cloud, collection of a large number of single spatial measurements of points that represent 
objects or space. These points usually defined by 3D vectors, the geometric coordinates (x, y, and z). 
Additional characteristics (e.g., color, intensity, return number, etc.) may be available. 

Source: LiDAR, SAR, product of photogrammetry, structure from motion, etc.

Advantage:
§ Point clouds can capture geometry of objects: shape, size, orientation, etc.
§ Point clouds can avoid combinatorial irregularities and so easier to learn

Challanges: 
§ Unstructured
§ Irregular/unordered data format
§ Permutation-invariance
§ Sparse
§ Inhomogeneous data density
§ Presence of data acquisition artefacts
§ Presence of noise, occlusions, and outliers
§ Huge data volume



Punktbasierdendes Deep Learning und das Multi-Layer 
Perceptron (MLP)

Point clouds are orderless and unstructured 
that makes standard CNN infeasible for 
semantic segmentation. 
Point-based networks directly work on 
irregular point clouds. 
Point-based networks usually use shared MLP 
as the basic unit for its high efficiency. 

ØA mulP-layer perceptron (MLP) is 
composed of one input layer, one or more 
hidden layers and one output layer.

ØEvery layer excluding the output layer 
includes a bias neuron and is fully 
connected to the next layer. 



Semantische Segmentierung von Punktwolken

Developed
final model

Training/label data

Validation/label data

Target/unclassified data

DL architecture

Classified/labeled output

ML workflow



Untersuchungen zum PointNet Algorithmus

q PointNet (Qi et al., 2017)

q Processes each point identically and independently
q Learns per-point features using a set of shared

multi-layer perceptrons (MLPs)
q Three Basic Modules:
q A symmetry function (max pooling)
q Local and global information aggregation
q Two joint alignment (transformation) networks

Sensitive to the standard hyper-parameters
- block size
- number of points in a block 
- batch size 
- input vectors
- number of points in an object class 
- point density

THE 6th SMART CITY APPLICATIONS International Conference, Safranbolu, Turkey, 27-29 October, 2021

Figure. PointNet architecture



Sensibilität bzgl. Blockgröße, Auswahlsgröße, und der Anzahl der 
Punkte in einem Block

Block size 
(No. of points) 5m×5m (2,048) 10m×10m (2,048) 15m×15m (2,048) 10m×10m 

(4,096)
Batch size 24 32 36 24 32 36 24 32 36 32
Class\Metrics F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU
PL 12.4 6.6 4.6 2.4 21.2 11.9 3.0 1.5 15.1 8.2 5.7 2.9 4.4 2.4 0.8 0.4 1.1 0.5 1.6 0.8
LV 70.3 54.3 74.2 58.9 76.7 62.1 75.5 60.7 74.8 59.7 71.9 56.2 73.4 57.9 73.3 57.9 73.2 57.7 73.9 58.6
IS 83.9 72.3 82.9 70.7 86.7 76.5 88.5 79.3 87.5 77.7 87.7 78.1 87.9 78.4 86.7 76.5 85.9 75.3 86.3 75.9
Car 24.8 14.2 52.8 35.9 51.1 34.3 38.1 23.5 39.7 24.8 32.5 19.4 30.0 17.7 29.6 17.3 30.3 17.8 39.3 24.6
Fence 16.6 9.1 14.4 7.8 19.9 11.1 11.5 6.1 17.4 9.4 11.1 5.9 12.0 6.4 10.3 5.4 15.8 8.6 23.1 13.1
Roof 69.8 53.6 71.0 55.1 75.0 59.9 73.0 57.4 79.9 66.5 59.6 42.4 65.6 48.8 71.1 55.2 65.3 48.4 72.2 56.5
Facade 15.1 8.2 14.8 8.0 12.4 6.6 14.0 7.5 14.7 7.9 10.4 5.1 7.5 3.9 5.7 2.9 10.8 5.9 13.3 7.1
Shurb 26.5 15.3 29.6 17.3 33.6 20.2 22.5 12.7 24.3 13.8 28.2 16.4 28.3 16.7 28.7 16.7 20.7 11.6 17.6 9.7
Tree 61.3 44.2 63.2 46.2 66.5 49.8 59.2 42.1 61.0 43.9 52.2 35.3 50.9 34.2 53.9 36.9 49.9 33.2 58.9 41.7
mF1, mIoU 42.3 30.9 45.3 33.6 49.2 36.9 43.3 32.3 46.0 34.7 39.9 29.1 40.0 29.6 39.6 29.9 39.2 28.8 42.9 32.0
OA 64.4 67.7 70.4 70.0 72.8 64.4 66.6 68.2 65.2 68.1

Table. PointNet performance metrics for the Vaihingen test dataset (values are in %).

Figure. (a) Vaihingen test
dataset with ground-truth
labels, and (b) semantic
segmentation results with
error (false negative, red) for
the test dataset.

Ø It provides a promising 
opportunity for 
semantic segmentation 
without any data 
transformation. This 
algorithm performs 
better for the data with 
sufficient density.

Ø PointNet is vulnerable 
to hyper-parameters: (i) 
point density, (ii) block 
size, (iii) number of 
sample points within a 
block, (iv) batch size, 
and (v) input point 
vectors. 



DL zur Erkennung von Boden und nicht-Boden Flächen

q Precise ground surface topography is crucial for 3D city analysis, digital terrain modelling, natural
disaster monitoring, high-density map generation and autonomous navigation, …

q Pointwise classification of ground and non-ground points in Aerial Laser Scanning (ALS) point clouds.

Features
Models Required featuresCovariance Features

(CovF)
z Features (zF) LiDAR Features 

(LiF)
Others

Eigenvalues (λ!, λ",  λ#),  PC1 
(ν!), Normal (ν#), Curvature (σ$), 
Linearity (L%), Planarity (L$), 
Scattering (S%), Omnivariance
(O%), Eigentropy (E%), Plane 
Offset (PO), Verticality (θ)

Minimum z (𝑀&), 
Range (𝑅&), Mean z 
( ̅𝑧 ), Variance z (𝜎&!), 
Point height z (𝑃&), 
Relative position 
(𝑅𝑃&)

Intensity
(I), Return 
Number (RN)

Point Density 
(PD), Positive 
Openness (PO), 
Echo Ratio
(ER)

Model 1
All features;

𝐶𝑜𝑣𝐹 ∪ 𝑧𝐹 ∪ 𝐿𝑖𝐹 ∪ ( 𝑃𝐷, 𝑃𝑂, 𝐸𝑅)

Model 2
𝐶𝑜𝑣𝐹 ∪ 𝑧𝐹 ∪ 𝐿𝑖𝐹 ∪ 𝑃𝐷, 𝑃𝑂, 𝐸𝑅
−(𝜃, 𝜎', 𝐿(,, 𝐿', 𝑆(, 𝑂(, 𝐸(, ̅𝑧, 𝑅𝑁)

Model 3 𝐶𝑜𝑣𝐹 ∪ 𝑧𝐹 ∪ 𝐿𝑖𝐹 ∪ 𝑃𝐷, 𝑃𝑂, 𝐸𝑅
− (𝜆!, 𝜆", 𝜆#, 𝜈!, 𝑀&, 𝑅𝑃&, 𝑅𝑁)

Table: Features and developed models. 

Figure: Workflow of the proposed algorithm.

XXIV ISPRS CONGRESS, Nice, France, 5-9 July, 2021



Training scene; Actueel Hoogtebestand Nederland data Test scene; Digital terrain modelling; ground (blue) and  non-ground (yellow) 
surface extraction

q The feature-based ground point filtering algorithm follows a not end-to-end DL architecture.
q It needs less training data than end-to-end DL approach.
q It does not require mulR-scale features.
q It performs well in the presence of steep slopes and height disconRnuRes in the terrain.
q New method achieves accuracy of 97% for per-point ground surface points classificaRon.
q It requires clear understanding about underlying data structure, and the feature vectors.

XXIV ISPRS CONGRESS, Nice, France, 5-9 July, 2021

DL zur Erkennung von Boden und nicht-Boden Flächen
(2)



2-Stufen Merkmalsentnahme: 
Anwendung von DL zur Punktwolken Klassifizierung

q Not end-to-end deep learning (DL) methods use multi-type and multi-scale (MTMS) hand-
crafted features (HcF) that make the network heavy, challenging, computationally intensive and
vulnerable to overfitting.

q Efficient feature management can reduce storage and computational complexities, builds better
classifiers, and improves overall performance.

q This study presents a two-step PCA (Principal Component Analysis) based feature extraction
algorithm that extends the PointNet (a DL) framework for use on large-scale aerial LiDAR
data, and contributes by
(i) developing a new feature extraction algorithm, (ii) exploring the impact of dimensionality
reduction in feature extraction, and (iii) introducing a non-end-to-end PointNet variant for per
point classification in point clouds.

9th International Workshop 3D-ARCH, Mantova, Italy, 2-4 March, 2022



Vorgeschlagene Methode zur 2-Stufen 
Merkmalsentnahme
Multi-type-multi-scale (MTMS) features: HcF
generated by different type of neighborhood with
different sizes.

Prospects of MTMS features: MTMS can provide
more detail about point local neighborhood
information, and help to understand
correspondence with neighboring objects.

Problems with MTMS features: It makes the
network heavy, can create unnecessary and
redundant features to the learning process, and
may leads to over fitting.

Why feature dimension reduction?

It can manage the available features in a optimal
way that can reduce the related complexities for
the deep networks.

Figure. Workflow of the proposed feature extraction approach

Figure. Variants explained by PCs
9th International Workshop 3D-ARCH, Mantova, Italy, 2-4 March, 2022



Versuchsergebnisse

Figure. Vaihingen test data set, (a) ground-truth;
classification results for the inputs (b) Group 1; (c)
Group 2; (d) Group 3; (e) Group 4; (f) Group 6. Results
in the black rectangle in (b) show that many points of the
impervious surface, fence and low vegetation are
misclassified (red). Misclassifications for the same part
are almost similar in the figures (e) and (f), but
significantly better than (b).

Input 
features

Group 1 Group 2 (LiFs) Group 3 (LiFs+SFs) Group 4 Group 5 Group 6 Group 7
x, y, z x, y, z, xn, yn, zn, RN, I, zh Group 2 + all SFs Group 2+10PCs Group 2+ 7PCs Group 2+ 5PCs Group 2+ 3PCs

Table. Groups of features that are used in the network as the input vectors. Point coordinates (x, y, z), normalized point coordinates (xn, yn, zn),
RN (return number), I (intensity), zh (height of the interest point), and NPCs (N: number of PCs).

Class

Group 2 (LiFs)
(x, y, z, xn, yn, zn, 

RN, I, zh )

Group 3
LiFs + all SFs

Group 6
LiFs+5PCs

F1 IoU F1 IoU F1 IoU
PL 27.88 16.19 52.79 35.86 54.65 37.60
LV 69.70 53.49 73.67 58.32 73.55 58.17
IS 87.66 78.04 88.64 79.59 88.92 80.05
Car 37.45 23.03 36.34 22.20 42.37 26.88
Fence 09.45 04.96 09.95 05.23 10.73 05.67
Roof 71.20 55.28 83.98 72.39 85.73 75.02
Facade 15.12 08.18 30.61 18.07 28.91 16.90
Shrub 19.34 10.71 29.35 17.20 25.72 14.76
Tree 54.92 37.8 67.47 50.91 67.01 50.39
mF1, mIOU 43.64 32.10 52.53 39.97 53.07 40.60

OA 66.78 74.64 75.36

q It is justified that dimension reduction in feature space has potential for
increasing the performance of feature-based DL algorithm. The new non-end-to-
end PC-based variant of PointNet outperforms the original PointNet.

q The new algorithm achieves an Overall Accuracy (OA) of 74.64% by using 9
input vectors and 14 shape features, whereas with the same 9 input vectors and
only 5PCs (principal components) it achieves a higher OA of 75.36%.

Point density: 
4-6 pt/m!

No. of points 
for training 
set: 753, 876
No. of points 
for test set: 
411, 772
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Resampling Methoden für einen robusten Validierungsdatensatz
in der DL Punktwolkenklassifizierung

§ A validation data set is important for training a supervised MLmodel.
§ Selecting a part of available data to produce a validation set can produce overfitted results.
§ Resampling techniques involve repeatedly drawing many samples, hence, DL models
based on resampling methods can give better generalization power to a model with a good
performance for the unseen (test/future) data.

Contributions:
q Investigating the generalization capability of the four most popular resampling methods: k-
fold cross-validation (k-CV), repeated k-CV (Rk-CV), Monte Carlo CV (MC-CV) and
bootstrap for creating training and validation data sets used for developing, training and
validating DL based point cloud classifiers (e.g., PointNet),

qJustifying Mean Square Error (MSE) as a statistically consistent estimator, and
qExploring the use of MSE as a reliable performance metric for supervised DL.

XXIV ISPRS CONGRESS, Nice, France, 6-11 June, 2022
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Versuch: Resampling Methoden für einen robusten Validierungsdatensatz
in der DL Punktwolkenklassifizierung

Figure. Classification results for the Vaihingen test data set (Scene 1). (a) ground-truth, results of: (b)
simple random sampling-based train/test split, (c) stratified sampling-based train/test split, and (d)
stratified sampling based Rk-CV. Many points are misclassified in the black rectangles for plots b and c.

Methods
Stratified sampling Simple random sampling

MSE results Classification results MSE results Classification results
mMSE sdMSE mF1 mIoU OA mMSE sdMSE mF1 mIoU OA

Train/test split 0.0257 --- 41.53 31.53 70.24 0.0269 --- 39.44 29.81 68.04   
k-CV 0.0284 0.0019 41.39 31.12 71.22 0.0269 0.0004 41.19 29.81 69.69
Rk-CV 0.0248 0.0016 42.57 32.52 71.74 0.0273 0.0018 42.44 32.08 70.33
MC-CV 0.0275 0.0016 41.47 31.73 71.69 0.0267 0.0009 41.35 31.59 70.69
Bootstrap 0.0309 0.0003 42.41 32.15 71.72 0.0304 0.0003 40.55 30.84 71.21

Table. Results based on train/test split and resampling methods (k-CV, Rk-CV, MC-CV and
bootstrap). Outcomes reveal impact on error metrics, and classification performance metrics
(in %) for the ISPRS benchmark Vaihingen test data set (Scene 1 and 2).

q Experiment shows that a specific
resampling method does not
always produce the best results for
all data sets.

q The train/test split method did not
achieve better results than a
resampling method.

q Since Bootstrap draws samples
with replacement, it has more
possibility of getting
autocorrelation between points,
however, results show that
Bootstrap has more potential for
small data sets.
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This study investigates the inability of train/test split and k-fold cross-validation methods to create
training and validation data sets, and to achieve sufficient generality for supervised DL.
In response, the bootstrap is a computer based statistical resampling method that has been used
efficiently for estimating the distribution of a sample estimator and to assess a model without having
knowledge about the population.
This paper couples cross-validation and bootstrap to have their respective advantages in view of data
generation strategy and to achieve better generalization of a DL model.
Contributions:
q Developing an algorithm for better selection of training and validation data sets,
q Exploring the potential of bootstrap for drawing statistical inference on the necessary performance
metrics (e.g., mean square error), and

q Introducing a method that can assess and improve the efficiency of a DL model. The proposed
method is applied for semantic segmentation and is demonstrated via a DL based classification
algorithm, PointNet, through aerial laser scanning point cloud data.

kCV-B: Bootstrap mit Cross-Validierung für die DL 
Modelentwicklung, -prüfung und -auswahl

THE 7th SMART CITY APPLICATIONS International Conference, Castelo Branco, Portugal, 19-21 October, 2022
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Figure. A schematic diagram; kCV-B: cross-validation couples with
bootstrap to get B validations sets for each of k training sets. Fi is the ith
(i =1,2,…,k) fold for a data set having k folds, where k-1 folds are used as
a training set, and B bootstrap validations sets are used to validate the
model developed by the training set.

Vorgeschlagene Methode

Training Training Training Training Validation Test
Training Training Training Validation Training Test
Training Training Validation Training Training Test
Training Validation Training Training Training Test

Validation Training Training Training Training Test

Training Validation Test

Figure. k-fold Cross Validation (kCV)

Figure. Train/test split method

THE 7th SMART CITY APPLICATIONS International Conference, Castelo Branco, Portugal, 19-21 October, 2022

Training Training Training Training Validation Test
Training Training Training Validation Training Test
Training Training Validation Training Training Test
Training Validation Training Training Training Test

Validation Training Training Training Training Test



Figure. Classification results (misclassified points in yellow): (a) ground-truth,
(b) train/test split, (c) bootstrap, (d) kCV, and (e) kCV-B. Many building and
ground points are misclassified in red ellipses.

Versuch mit dem ALS Datensatz

Class Training 
points

Test 
points

Train/test 
split

Boot-
strap

kCV kCV-B

F1 F1 F1 F1
uC 1,878,838 693,778 85.2 80.3 84.3 89.2

Ground 2,152,235 1,680,188 81.9 85.5 91.1 93.2

Building 1,441,483 902,834 78.9 82.9 89.9 89.2

Mean F1 81.9 82.9 88.5 90.5

OA 81.6 83.5 89.2 91.1

Table. Classification results of an ALS test data set. 

q The proposed bootstrap coupling with kCV has
demonstrated to improve model quality.

q Using large values of k and B improve the generality
and performance of a model, but there is a trade-off
between generalization, accuracy and time to
compete the process.

q Reasonably, kCV-B takes more time than the existing
methods, but with high-powered computing facilities
it can produce higher generalization power for the
test and future data.



DL für die semantische Segmentierung
(laufende Arbeiten)

Test data; Dudelange, Luxembourg Figure. Semantic segmentation for large scale outdoor scene classification
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Robuste Methode zur Erkennung der 
Gebäudeausmaße

q The building footprint is crucial for a volumetric 3D representation of a building that is applied in urban
planning, 3D city modeling, cadastral extraction, topographic map generation, and many more…

q Aerial laser scanning (ALS) has been recognized as the most suitable means of large-scale 3D point cloud
data acquisition.

q Besides the presence of noise and outliers, data incompleteness and occlusions are two common phenomena
for point clouds.

q Most of the existing methods for building footprint extraction employ classification, segmentation, voting
techniques (e.g., Hough-Transform or RANSAC), or Principal Component Analysis (PCA) based methods,
but most of them are not free from outlier effects and do not produce good results in the presence of data gaps.

This paper presents a novel algorithm that employs MCMD (maximum consistency within
minimum distance), MSAC (a robust variant of RANSAC) and a robust regression to
extract reliable building footprints in the presence of outliers, missing points and irregular
data distributions. The algorithm is successfully demonstrated through ALS point clouds.

Gi4DM & Urban Geoinformatics 2022, 1-4 November, 2022, Beijing , Chaina
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Vorgeschlagene Methode

Figure. Flowchart of the proposed algorithm.

Step 0: We employ RandLA-Net (a DL) approach to segment/label 
building points.  
Step 1: Vertical surface (e.g., building walls) are separated from non-
vertical surfaces (e.g., roofs) using surfaces points slope and height 
measurements based on MCMD algorithms. 
Step 2: Projection of 3D points onto 2D plane, footprint-lines 
detection from 2D points using robust variant of RANSAC.
Step 3: Footprint-lines refinement using spatial segmentation. 
Step 4: Footprint-lines fitting using robust regression.
Step 5: Final footprint extraction. 
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Versuch zur Erkennung von Gebäudeausmaßen

Figure. Building footprints extraction of AHN data set: (a) classification of vertical (blue) and non-vertical (maroon) surfaces, (b) 3D vertical surfaces (facades) below the roofs, (c) 2D (x, y)
points for the vertical surfaces, (d) extracted lines using MSAC for the points in plot (c), (e) spatial segmentation for the 2D facades points in plot (d), (f) elimination of redundant/false (red)
lines in (e); using 𝐴! = 5", and nPT=10, (g) LTS regression lines for the points in plot (f); black dots are the end points of the lines, (h) footprint-lines for the buildings in 3D, red lines within the
three green ellipses are from the hanging walls that have no ground connection, (i) final footprint-lines for the buildings, and (j) footprint (green)-lines aligned with the 3D buildings in plot (a).

Figure.  (a) Labelled AHN data set, (b) front-view of the buildings to extract footprint, 
(c) side-view of the buildings.
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Erkennung von Straßenflächen und Straßeninstallationen
von mobilen Laserscanner Daten

Investigate problems of road surface extraction in the presence of noise and
outliers, and to propose a statistically robust algorithm for road surface
elements (road pavement, curb, divider/islands, and sidewalk) extraction
using Mobile Laser Scanning (MLS) point clouds.

q Road surface extraction is crucial for many applications including 3D city analysis and
ensuring road safety.

q MLS (vehicle based mobile laser scanning) is the most appropriate mapping system for
the road environment.

q Most of the existing methods for road surface extraction use classical approaches that
do not relieve problems caused by the presence of noise and outliers.

XXIV ISPRS CONGRESS, Nice, France, 6-11 June, 2022
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Vorgeschlagene Methode

XXIV ISPRS CONGRESS, Nice, France, 6-11 June, 2022

Figure: Workflow for the proposed method.
Rz is the range of z (height) values within a
patch points.

Step 1:Slicing the raw point clouds along the road.
Step 2: Filtering ground and non-ground points using 
weighted robust regression technique.  
Step 3: Slicing the stripes from Step 2 into small 
patches along the road width.
Step 4: Calculation of the range Rz of the patches, and 
find abnormal height values.  
Step 5: Decision making using some prespecified 
criteria to identify road surface categories 
(components). 
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Versuch: Erkennung von Straßenflächen und
Straßeninstallationen

Method Point
label

No. of points Performance metrics
GT D P (%) R (%) MCC

Proposed 
method 

Pavement 707,458 707,400 99.99 99.99 0.999
Sideway 86,922 86,541 100.00 99.56 0.997
Curb 14,928 15,346 97.28 100.00 0.986

Zhao et al. 
(2021)

Curb 14,928 16,663 72.61 81.05 0.764

Figure. Road surface extraction: (a) road
point cloud, (b) different stripes in
different colors, (c) one selected stripe
along the road length, (d) iterative fitting
for ground filtering using RLWR on the x-
z profile, (e) iterative fitting for ground
filtering using RLWR on the y-z profile ,
(f) filtered ground points for plot (c), (g)
patches along the road width, (h) bar
diagram for the 𝑅# values for the patches
of plot (g), (i) classified road surface
points for plot (c), (j) ground truth curb
surface, (k) curb extracted by the proposed
method, (l) curb extracted by Zhao et al.
(2021), and (m) classified road and non-
ground surfaces for the full data set.

MLS data: 
Length = 53m

Total points: 1,112, 462
Stripes = 106, Patches = 100 

Table. Road surface extraction results. Ground-truth (GT), and detected (D). P, R and
MCC are for precision, recall and Matthews correlation coefficient, respectively.

(i) Proposed algorithm extracts
road pavement, curb, road divider
and sidewalk.
(ii) It produces robust results in
the presence of noise and outliers.
(iii) It performs well in the
presence of steep slopes, sharp
edges, and corners.
(iv) It is successful for both
straight and curved roads.
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