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Abstract—The low earth orbit (LEO) satellite system is one
of the promising solutions to provide broadband services to
a wide-coverage area for future integrated LEO-6G networks,
where users’ demands vary with time and geographical locations.
Conventional satellites with fixed beam pattern and footprint
planning may not be capable of meeting such dynamic requests
and irregular traffic distributions. As the development of flexible
satellite payload with beamforming capabilities, spot beams with
flexible size and shape are considered potential solutions to this
issue. As an early investigation, in this paper, we consider the
scenarios where satellite payloads are equipped with multiple
beam patterns and study the optimal beam pattern selection.
We exploit the potential synergies of joint resource optimization
between adaptive beam patterns and non-orthogonal multiple
access (NOMA) in a LEO satellite system, where NOMA is
employed to reduce intra-beam interference and flexible beam
pattern is adopted to mitigate inter-satellite interference. The
formulated problem is to minimize the capacity-demand gap
of terminals, which falls into mixed-integer nonconvex pro-
gramming (MINCP). To tackle the discrete variables and non-
convexity, we design a joint approach to allocate power and
select beam patterns. Numerical results show that the proposed
scheme achieves capacity-demand gap reduction of 37.8% over
conventional orthogonal multiple access (OMA) and 42.5% over
the fixed-beam-pattern scheme.

Index Terms—low earth orbit (LEO) satellite systems, non-
orthogonal multiple access (NOMA), adaptive beam patterns

I. INTRODUCTION

Low earth orbit (LEO) satellite systems are envisioned as
one of the promising solutions for coverage extension in the
upcoming beyond 5G (B5G) and 6G era [1]. To deliver expo-
nentially growing traffic and support ubiquitous connectivity,
the industry is in the process of deploying hundreds or thou-
sands of LEO satellites in the space [2], e.g., SpaceX Starlink.
However, with densely deployed LEO satellites, terminals may
receive considerable interference from neighboring satellites
[3]. Besides, due to the heterogeneity of traffic distribution,
resource allocation in LEO satellite systems needs to be more
adaptive. The mitigation of interference and provision of high-
quality services are challenging, calling for the introduction of
more flexibility in resource allocation [4].

In conventional satellite systems, beam patterns are fixed
and the projected beam shapes (or footprints) remain constant

Fig. 1: Illustrative examples of adaptive beam patterns in LEO satellite
systems.
[5]. When LEO satellites are densely deployed and traffic de-
mands are irregularly distributed, this fixed beam pattern may
limit the performance improvement. With the development of
flexible payloads, beam shapes can be altered by changing
beam patterns via beamforming networks (BFN) [5]. By
adjusting beam patterns on a frame basis, satellite transmission
can be more adaptive to irregular traffic distribution [6]–[8],
with mitigated co-channel interference [9], and with benefits
of facilitating integration with terrestrial systems [9], [10]. We
provide illustrative instances of adaptive beam patterns in Fig.
1. When a terminal is located in the area covered by two
adjacent satellite beams, e.g., in Fig. 1(a), the terminal may
suffer from strong inter-satellite interference. To reduce the
interference, both satellites could select patterns with smaller
but more concentrated beams to cover the associated terminals,
as depicted in Fig. 1(b). Another typical example is to change
patterns with larger beams to cover terminals beyond the beam
edge but with high demand, e.g., from Fig. 1(c) to Fig. 1(d).

Considering the advantages in traffic adaptation and interfer-
ence mitigation, adaptive beam pattern has received significant
attention. The authors in [6] jointly optimized beamwidth
and transmit power to adapt to varying traffic. In [7], more
factors affecting the beam shape, e.g., beam center and rotation
angle, were taken into account and the footprint planning was
designed to match irregular traffic distribution. In both works,
the expressions of transmit antenna gain w.r.t. configuration
parameters (e.g., beamwidth, beam center, rotation angle) were978-1-6654-3540-6/22 c© 2022 IEEE



derived. But the relationship between transmit antenna gain
and configuration parameters is complex in general. Directly
optimizing footprints is difficult in practical implementation
[5]. Alternatively, multiple candidate beam patterns can be
designed in advance for various possible scenarios and a
suitable beam pattern can be selected depending on traffic
distribution and interference. Beam pattern selection can be
applied to both regular and irregular footprints and candidate
patterns can be easily updated when necessary. In [8], the
authors optimized beam pattern selection to meet irregular
traffic distribution and discussed its practical implementation.
The above works focused on optimizing rate matching to
traffic distribution over an area instead of traffic demands
of specific terminals. In this paper, we study beam pattern
selection to alleviate capacaity-demand mismatch of terminals
and investigate the implicit coupling between beam pattern
selection and resource allocation for multiple terminals in each
beam.

To facilitate the accommodation of multiple terminals in
each beam, non-orthogonal multiple access (NOMA) is ap-
plied. By superposition coding and successive interference
cancellation (SIC), spectral efficiency can be enhanced com-
pared to orthogonal multiple access (OMA) [11]. NOMA has
proven its advantages in LEO satellite systems, e.g., supporting
massive connectivity [12] and assisting file delivery [13].
In this paper, we study resource allocation in LEO satellite
systems where NOMA is applied in each satellite beam to
reduce intra-beam interference whereas adaptive beam patterns
are adopted to mitigate inter-satellite interference.

As an early-stage study, it is necessary to outline the optimal
strategies of beam pattern selection according to heterogeneous
traffic requests and characterize the mutual impacts between
NOMA and adaptive beam patterns. Motivated by this, in
this paper, we investigate the potential synergy of NOMA
and adaptive beam patterns in LEO satellite systems. We
formulate a resource allocation problem to jointly optimize
power allocation and beam pattern selection, which is mixed-
integer nonconvex programming (MINCP). Considering the
difficulty of solving the MINCP problem, we convert the
nonconvexity and binary variables into a solvable way and
design a scheme to jointly optimize power and beam patterns.
Numerical results verify the advantages of the joint optimiza-
tion over conventional schemes, e.g., OMA and fixed beam
pattern.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider downlink transmission in a LEO satellite
system, as depicted in Fig. 2. S satellites fly over the area
of interest, where the coverages may overlap partially with
neighboring satellite beams. Denote S as the set of the
satellites and Ks as the set of the terminals associated to
the s-th satellite. Each satellite generates one beam and all
the satellites occupy the same frequency band. The gateway
delivers data from the core networks to satellites and col-
lects information from terminals, e.g., channel status, traffic

Fig. 2: An illustrative scenario of the considered LEO satellite system.
Adaptive beam patterns are adopted to adjust the beam shapes and NOMA is
applied in each beam to serve multiple terminals.

demand, terminals’ positions, etc. The resource manager, co-
located with the gateway, is in charge of executing resource
allocation algorithms based on the feedbacks.

Denote Ns as the set of the candidate beam patterns of
satellite s. Each pattern refers to one specific beam shape.
With optimized decisions informed by the gateway, one beam
pattern is selected out of Ns. Through altering phases and
amplitudes by the BFN on the satellite payload, each feed
element generates an elementary beam and the shaped beam is
constructed by these elementary beams [5]. The resulted beam
shape is defined as the coverage within the ϕ-dB contour,
which can be regular (e.g., circular or elliptical beams) or
irregular [5].

The relationship between the transmit antenna gain of a
beam pattern and the corresponding configuration parameters
is sophisticated and may not be captured by explicit expres-
sions, especially for patterns with irregular beam shapes [5],
[7], [8]. For better illustration, we use circular beam as an
example to abstract the beam pattern model. For the n-th beam
pattern of the s-th satellite, the peak gain (regarding the beam
center) is expressed as [5], [6],

Gtx
sn,max =

ξϕ

3

(
70π

θsn,ϕdB

)2

, (1)

where ξ is the antenna efficiency and θsn,ϕdB is the ϕ-
dB angular beamwidth. From (1), we observe that, as the
beamwidth increases, the peak gain decreases to disperse
outwards to enlarge the coverage. On the other hand, as the
beam shrinks, the peak gain increases and the directivity is
more concentrated on the beam center. The transmit antenna
gain of the s-th satellite to terminal k under the n-th pattern
is [5],

[
Gtx
skn

]
=
[
Gtx
sn,max

]
−

3Gtx
sn,max

ξ

(
θsk
70π

)2

, (2)

where θsk is the off-axis angle between the s-th satellite’s
beam center and the k-th terminal. The operator [·] converts the
value into dB. For other types of beam shapes, the expression
would be more complicated, e.g., the transmit antenna gain for



elliptical beams depends on beam center position, beamwidth
(w.r.t. the major and minor axis), and tilt angle [5], [7].

The channel loss from satellite s to terminal k is,

[Ltotal
sk ] = [Lba

sk ] + [Lga
sk] + [Lsc

sk] + [Lra
sk], (3)

where Lga
sk, Lsc

sk, and Lra
sk are gaseous, scintillation, and rain

attenuation exceeded for ρ% of an average year, respectively.
The corresponding models follow 3GPP TR 38.811 [14]. Lba

sk

is the basic path loss, which is derived by,

[Lba
sk ] = [Lsk] + [Lsf

sk], (4)

where Lsf
sk denotes shadow fading following log-normal dis-

tribution. Lsk denotes the free-space path loss, expressed by,

Lsk = 32.45 + 20 log10(f freq) + 20 log10(dsk), (5)

where dsk is the distance from satellite s to terminal k, and
f freq is the frequency. The channel gain from satellite s to
terminal k under beam pattern n is expressed as,

|hskn|2 = Gtx
sknG

rx
sk/L

total
sk . (6)

The channel gain from satellite s to terminal k is derived as,

|hsk|2 =
∑
n∈Ns

ysn|hskn|2, (7)

where ysn ∈ {0, 1} indicates beam pattern selection, where
satellite s selects the n-th pattern if ysn = 1 and not otherwise.

By employing NOMA, each satellite can multiplex at most
K̄ terminals with different power levels at the same frequency
band. We use φslk to indicate the decoding order between
terminal k and l served by satellite s. If φslk = 0, terminal k
performs SIC to decode l’s signal and remove it. If φslk = 1,
terminal k views l’s signal as noise. Denote psk as the transmit
power of terminal k assigned by satellite s. We apply one
of the most widely-adopted rules to decide decoding orders,
where the decoding order is identical to the ascending order

of ωsk =

∑
s′∈S\{s} |hs′k|

2 ∑
k′∈K

s′
ps′k′+σ2

|hsk|2 [15], i.e.,

φslk =

{
0, if ωsk ≤ ωsl;
1, otherwise.

(8)

The signal-to-interference-plus-noise ratio (SINR) of terminal
k associated to satellite s is derived as,

γsk =
|hsk|2psk

I intra
sk + I inter

sk + σ2
, (9)

where I intra
sk =

∑
l∈Ks\{k} |hsk|

2φslkpsl and I inter
sk =∑

s′∈S\{s} |hs′k|2
∑
k′∈Ks′

ps′k′ are intra-beam and inter-
satellite interference, respectively. σ2 is the noise power. The
offered capacity of terminal k served by satellite s is,

Rsk = B log(1 + γsk), (10)

where B is bandwidth.

B. Problem Formulation
We formulate a resource allocation problem to jointly opti-

mize power allocation and beam pattern selection to minimize
the sum of capacity-demand gap1:

P0 : min
p,y,φ

∑
s∈S

∑
k∈K

(Rsk −Dsk)2 (11a)

s.t.
∑
k∈Ks

psk ≤ P̄s,∀s ∈ S, (11b)∑
n∈Ns

ysn = 1,∀s ∈ S, (11c)

Rsk ≥ Rmin
sk ,∀k ∈ Ks∀s ∈ S, (11d)

ωsk − ωsl ≤ Cφslk,∀s ∈ S,∀k, l ∈ Ks, k 6= l, (11e)
φskl + φslk = 1,∀s ∈ S,∀k, l ∈ Ks, k 6= l, (11f)

where p � 0, y ∈ {0, 1}, φ ∈ {0, 1} collect all psk, ysn,
and φslk, respectively. In (11b), the total tranmit power of
the s-th satellite should be no larger than the power budget
P̄s. Constraints (11c) restrict that each satellite can only
select one beam pattern. In (11d), terminals’ minimum-rate
requirements is expressed. Constraints (11e) and (11f) convey
the relationship between ωsk and φslk as in (8). Here C is a
large number meeting C ≥ maxs∈S,k∈K{ωsk}. If φslk = 0,
terminal k decodes l’s signal and thus ωsk ≤ ωsl. If φslk = 1,
terminal l decodes k’s signal and thus ωsk−ωsl ≤ C. Together
with constraints (11f) which confine only one decoding order
for each satellite beam, we can derive that ωsk > ωsl.

Due to the non-convexity of the R-function in p, y, and
φ and the presence of binary variables y and φ, P0 is
identified as mixed-integer nonconvex programming (MINCP)
[16]. Thus solving P0 is a non-trivial task.

III. A JOINT APPROACH FOR POWER ALLOCATION AND
BEAM-PATTERN SELECTION

We provide a joint approach to solve P0. We first equiva-
lently convert the binary variables into continuous confined by
nonlinear equations and then reformulate P0 into augmented
Lagrangian formulation. Next, we design a penalty dual de-
composition (PDD) [17] based approach to jointly allocate
power and select beam patterns.

We use the following equations to equivalently express y:

ysn(1− ȳsn) = 0,∀s ∈ S,∀n ∈ Ns, (12)
ysn − ȳsn = 0,∀s ∈ S,∀n ∈ Ns, (13)

where y ∈ {0, 1} are relaxed into 0 � y � 1. ȳsn are auxiliary
variables. Equations (12) and (13) are established if and only
if ysn = ȳsn = {0, 1}. We use ȳ to collect all ȳsn. Since
φ depends on ωsk, we do not directly optimize φ but decide
decoding orders according to (8) when ωsk is updated.

We then rewrite P0 as the following formulation,

P ′0 : min
p,y,ȳ

∑
s∈S

∑
k∈Ks

(Rsk −Dsk)
2 (14a)

1Remark that terminal association is assumed given. The optimization
problem involving terminal association will be studied in future works.



s.t. (11b), (11c), (11d), (12), (13), (14b)

where (12) and (13) are nonlinear equations, leading to the
nonconvexity of the problem. Since PDD is designed to
tackle the problem with nonlinear equation constraints [17],
we propose a PDD-based joint approach. The corresponding
augmented Lagrangian function is defined as,

L(p,y, ȳ;λ,µ) =
∑
s∈S

∑
k∈Ks

(Rsk −Dsk)
2

+
1

2ρ

(∑
s∈S

∑
n∈Ns

(ysn(1− ȳsn) + ρλsn)
2

+
∑
s∈S

∑
n∈Ns

(ysn − ȳsn + ρµsn)
2

)
, (15)

where λsn and µsn are Lagrangian multipliers for (12) and
(13), respectively. λ and µ collect all λsn and µsn, respec-
tively. We apply ρ > 0 to penalize the objective when the
solution does not establish the equations. The augmented
Lagrangian problem of P ′

0 is expressed as,

P1 : min
p,y,ȳ

L(p,y, ȳ;λ,µ) s.t. (11b), (11c), (11d). (16)

The joint approach is executed in a double-loop way. In the
inner loop, we decompose P1 into several solvable subprob-
lems, and then sequentially (or parallely) solve them. In the
outer loop, the penalty and Lagrangian multipliers are updated.

A. Inner Loop

At the begining of each iteration, we calculate and sort ωsk
to decide decoding orders φslk according to (8). Then we adopt
the idea of block coordinate descent (BCD) to decompose P1

into several subproblems with different blocks of variables.
1) Optimize p: We first optimize p by solving the following

subproblem,

min
p
F1(p) =

∑
s∈S

∑
k∈Ks

(Rsk −Dsk)2 s.t. (11b), (11d). (17)

We can observe that constraints (11d) are linear as,

|hsk|2psk ≥ (2R
min
sk − 1)

(
I intra
sk + I inter

sk + σ2
)
. (18)

But F1(p) is nonconvex. At the i-th iteration, we approximate
F1(p) at around p = p(i−1) to a surrogate function F̃1(p),
which should satisfy the following two conditions:
• F̃1(p) is strictly convex in p;
• OF̃1(p(i−1)) = OF1(p(i−1)), where OF1(·) is the gra-

dient.
Based on the conditions, we apply the following surrogate
function,

F̃1(p)=(p−p(i−1))OF1(p(i−1))+
1

2α
‖p− p(i−1)‖2, (19)

where α > 0. The gradient is computed by deriving the partial
derivatives as in (20). Then we solve the following problem,

min
p
F̃1(p) s.t. (11b), (11d), (21)

which is quadratic convex programming. The optimal solution
p∗ can be solved by interior-point method [16]. Then we
update p by the following rule,

p(i) = p(i−1) + δ
(i)
1 (p∗ − p(i−1)), (22)

where δ(i)
1 is the stepsize for updating p at the i-th iteration.

2) Optimize y: Then, we solve the following subproblem
to optimize y,

min
y
F2(y) =

∑
s∈S

∑
k∈Ks

(Rsk −Dsk)2

+
1

2ρ

(∑
s∈S

∑
n∈Ns

(ysn(1− ȳsn) + ρλsn)2

+
∑
s∈S

∑
n∈N

(ysn − ȳsn + ρµsn)2

)
s.t. (11c), (11d), (23)

which is nonconvex due to ysn appearing at both numerator
and denominator of the SINR funtion in (9). We adopt the
following surrogate function to approximate F2(y) at y =
y(i−1),

F̃2(y) = (y−y(i−1))OF2(y(i−1))+
1

2β
||y−y(i−1)||2, (24)

where OF2 collects the partial derivatives, which is derived in
(25). Then the problem is converted into,

min
y
F̃2(y) s.t. (11c), (11d). (26)

By obtaining the optimal y∗ via interior-point method, we can
update y by,

y(i) = y(i−1) + δ
(i)
2 (y∗ − y(i−1)), (27)

where δ(i)
2 is the stepsize for updating y at the i-th iteration.

3) Optimize ȳ: We optimize ȳ by solving the following
subproblem,

min
ȳ

∑
s∈S

∑
n∈N

(ysn(1−ȳsn)+ρλsn)2+(ysn−ȳsn+ρµsn)2, (28)

which can be decomposed into SN convex subproblems:

min
ȳsn

(ysn(1− ȳsn) + ρλsn)2 + (ysn − ȳsn + ρµsn)2. (29)

By letting the first-order partial derivative equal to zero, the
optimal ȳsn can be obtained by,

ȳsn =
ysn + y2

sn + ρµsn + ρλsnysn
1 + y2

sn

. (30)

B. Outer Loop

In the outer loop, we update the Lagrangian multipliers as,

λsn=λsn+
1

ρ
ysn(1− ȳsn), µsn=µsn+

1

ρ
(ysn − ȳsn). (31)

The the penalty is updated by,

ρ = ρη, (32)

where 0 < η ≤ 1.



∂F1

∂psk
=2B(Rsk −Dsk)

(
|hsk|2

|hsk|2psk + I intra
sk + I inter

sk + σ2

)
+

∑
l∈Ks\{k}

2B(Rsl −Dsl)

(
|hsl|2φslk

|hsl|2psl + I intra
sl + I inter

sl + σ2
− |hsl|2φslk

I intra
sl + I inter

sl + σ2

)

+
∑

s′∈S\{s}

∑
k′∈Ks′

2B(Rs′k′ −Ds′k′)

(
|hsk′ |2

|hs′k′ |2ps′k′ + I intra
s′k′ + I inter

s′k′ + σ2
− |hsk′ |2

I intra
s′k′ + I inter

s′k′ + σ2

)
(20)

∂F2

∂ysn
=
∑
k∈Ks

2B(Rsk −Dsk)


|hskn|2

(
psk +

∑
l∈Ks\{k}

φslkpsl

)
|hsk|2psk + I intra

sk + I inter
sk + σ2

−
|hskn|2

∑
l∈Ks\{k}

φslkpsl

I intra
sk + I inter

sk + σ2


+

∑
s′∈S\{s}

∑
k′∈Ks′

2B(Rs′k′ −Ds′k′)

 |hsk′n|2
∑

k∈Ks

psk

|hs′k′ |2ps′k′ + I intra
s′k′ + I inter

s′k′ + σ2
−
|hsk′n|2

∑
k∈Ks

psk

I intra
s′k′ + I inter

s′k′ + σ2

 (25)

Algorithm 1 Joint Power Allocation and Pattern Selection

Input: Initialized p, y, ȳ.
1: repeat
2: repeat
3: Calculate ωsk and update φ by (8).
4: Solve problem (21) and update p by (22).
5: Solve problem (26) and update y by (27).
6: Update ȳ by (30).
7: until Convergence or reaching I iterations
8: Update λ and µ by (31) and ρ by (32).
9: until Convergence or reaching J iterations

Output: Optimized p, y, φ.

The procedure of the joint scheme is summarized in Alg.
1. The inner loop (line 2 to line 8) iterates until it converges
or reaches the maximum number of iteration I . The outer
loop (line 1 to line 10) terminates when convergence or
reaching J iterations. The complexity of Alg. 1 mainly falls
into solving convex quadratic programming problems in (21)
and (26). Assume K = maxs∈S{Ks} and N = maxs∈S{Ns}.
The complexity of solving problem (21), which contains SK
variables and S+SK linear constraints, is O(S3K3(S+SK))
[18]. Similarly, problem (26) is with SN variables and
S+SK linear constraints, thus the corresponding complexity
is O(S3N3(S + SK)). The overall complexity of Alg. 1 is
O(JIS3(S + SK)(K3 +N3)).

IV. NUMERICAL RESULTS

In simulation, we consider a square area with 500 × 500
km2. Denote K̄ as the number of multiplexed terminals.
Each satellite chooses K̄ terminals with the best channel
gains. The optimization involving terminal association will
be discussed in future works. The parameters are sum-
marized in Table I, unless otherwise stated. We consider
beam patterns which generate circular beams with 4.3-dB
beamwidths {1.2◦, 1.8◦, 2.4◦, 4.8◦, 9.6◦}. Beams with 1.2◦

TABLE I: Simulation parameters

Parameter Value
Frequency, f freq 20 GHz (Ka band)
Bandwidth, W 400 MHz
Satellite height 600 km

Number of satellites, S 5
Power budget, P̄s 43 dBm

Receive antenna gain 42, 36, 32 dBi
Noise power, σ2 -126.47 dBW

Minimum association rate, Rmin
k 500 kbps

Number of iteration, I , J 200, 20
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Fig. 3: Convergence performance of Alg. 1: (a) Evolution of capacity-demand
gap; (b) Constraint violation.

beamwidth have the largest directivity to the beam center
and smallest inter-satellite interference whereas those with
9.6◦ beamwidth generate the widest service range but large
interference to terminals associated to adjacent satellites. For
pracitcal consideration, we assume the decoding error ratio due
to SIC imperfection is 10−3. The results are averaged over 500
instances.

In Fig. 3, we present the convergence performance of Alg. 1.
The capacity-demand gap increases as the algorithm evolves,
and eventually converges at the 7-th iteration. At the end of
the iterations, the constraint violation maintains at below 10−5,
which guarantees the establishment of the equality constraints
(12) and (13).

We evaluate the gap performance of the proposed scheme
w.r.t. the number of multiplexed terminals K̄ in Fig. 4(a).
Note that the case of K̄ = 1 refers to the conventional
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Fig. 5: Performance evaluation in the scenarios with the coexistence of
satellites with single pattern (beamwidth 2.4◦) and multiple patterns.

OMA scheme. Compared to the OMA scheme, NOMA has
performance gain from 37.8% (K̄ = 2) to 72.2% (K̄ = 5) in
minimizing the capacity-demand gap. In Fig. 4(b), we compare
the performance of the proposed scheme between multiple
beam patterns and fixed single beam pattern. Among the three
fixed-pattern schemes, the one with 2.4◦ beamwidth outper-
forms the other two, demonstrating the necessity of appro-
priate selection of beam patterns. The performance is largely
improved by introducing spatial-domain flexibility compared
to conventional single beam pattern schemes. Compared to
the scheme with fixed 2.4◦ beamwidth, the schemes with 3
patterns and 5 patterns have reduction of 42.5% and 60.9% in
capacity-demand gap.

In practice, LEO satellites functioned with adaptive beam
patterns would coexist with those with conventional payloads
in the system. We evaluate the scenarios with the coexistence
of different types of LEO satellites in Fig. 5. By introducing
satellites with adaptive beam patterns, the capacity-demand
gap can be largely reduced, from 26.5×104 to 15.1×104 and
18.5×104 when introducing 5 and 3 beam patterns, respec-
tively. The more satellites with spatial-domain flexibility, the
more performance gain is obtained.

V. CONCLUSION

In this paper, we have investigated potential synergies of
adaptive beam patterns and NOMA in a LEO satellite system.
We have formulated an resource problem of jointly optimizing
power allocation and beam pattern selection. We have dis-
cussed how to tackle nonconvexity and binary variables and
designed a joint scheme to solve the problem. Finally we have
evaluated the performance and demonstrated the superiority of
the joint scheme over benchmarks.
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