
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Machine Learning for Computer Vision

AN EMBEDDED IN-CABIN LIGHTWEIGHT
HIGH-PERFORMANCE 3D GAZE

ESTIMATION SYSTEM

CANDIDATE SUPERVISOR

Angely Oyola Suárez Francesco Conti, PhD

CO-SUPERVISOR

Prof. Samuele Salti

Academic year 2022/23

Session 1st

To my love, my mother, who introduced me to computers

without knowing that I was going even crazier.

ii

Contents

1 Introduction and Related Work 1

1.1 Summary . 1

1.2 Gaze Estimation On the Edge 3

1.3 Thesis Goals . 5

1.4 Thesis Contributions . 5

1.5 Thesis Structure . 6

2 Dataset Collection and System Overview 7

2.1 Dataset . 8

2.2 System Overview . 11

2.2.1 Face Detector by means of Facial Landmarks 11

2.2.2 Drowsiness detection 17

2.2.3 3D Gaze Estimator 18

2.2.4 Deployment on the edge 31

2.2.5 Gaze Estimation in live 40

2.2.6 Gaze Zones Calibration 45

3 Experimental Results 46

3.1 Evaluation . 46

3.2 Live Demo . 49

3.3 Experiments . 51

4 Discussion and Conclusions 56

iii

4.1 Final Remarks . 56

4.2 Limitations . 57

4.3 Future work . 58

Bibliography 60

Acknowledgements 71

iv

List of Figures

1.1 Appearance-based deep learning neural network to estimate

2D and 3D gaze. Workflow of [86] 3

2.1 Acquisition set-up adopted by [38] 8

2.2 Subject’s and camera position adopted by [38] 10

2.3 Flowchart of the proposed system 12

2.4 Eye landmarks returned by MediaPipe Face Mesh [27] 19

2.5 Gaze Estimation in difficult scenarios. Whereas a) and b) ap-

pear to be the same image, their gaze vectors are different.

Then, the head pose helps to distinguish where she is looking. 21

2.6 ReLU6 activation function of MobileNetV2 [22] 23

2.7 Depth-wise separable convolution introduced by MobileNets

[33] . 24

2.8 a) Traditional residual block and b) Inverted Residual Block

proposed on MobileNetV2. Figure from [66] 25

2.9 Architecture of MobileNetV2 as backbone of the proposed

model [66] . 26

2.10 Pinball Loss . 29

2.12 Split of the cabin into Gaze Zones 31

2.13 Split of the cabin into quadrants. It is based on Yaw (θ) and

Pitch (ϕ) angles . 32

2.14 Deployment on the edge pipeline adopted by Pytorch Mobile

[61] . 33

v

2.15 IEEE 32-bit floating point representation [70] 34

2.16 Quantization Aware Training (QAT) Pipeline 38

2.17 Pytorch transition from Eager to Script 38

2.18 Raspberry Pi4 model B used in the experiments of this work . 41

2.19 Raspberry Pi4 case . 42

2.20 Materials used on the live demo 42

2.21 Camera set-up adopted by this work 44

2.22 Outside view of the embedded system created in this work . . 44

3.1 Comparison of the Proposed Model with the top-3 models re-

ported on the Gaze360 dataset benchmark. In the x-axis the

number of operations [GigaOPs]. In the y-axis the Angular

Error [degree]. The size of each figure varies according to the

number of parameters. 48

3.2 Live demonstration of the system proposed in this work. A

3D gaze estimator deployed on a Raspberry Pi4. The system

is able to detect: the driver’s face and head orientation using

3D facial landmarks, the 3D gaze and nine in-cabin gaze zones. 50

3.3 Flowchart followed to quantize a model using Tensorflow Lite 55

vi

List of Tables

2.1 Performance of the Facial Landmark Detector on two mobile

devices[86] . 14

2.2 MobileNetV2 Classification Head 25

2.3 Pinball Loss Quantiles . 28

2.4 Gaze zone description . 31

2.5 List of materials used to perform gaze estimation on Rasp-

berry Pi4 . 40

3.1 Comparison of performance of the model in their FP32 and

optimized versions. 1st row: Eager FP32 model, 2nd row:

INT8 (QAT + Layers Fusion) and the last row: the proposed

model Pytorch JIT Script . 47

3.2 Performance of the different models created with ResNet18

as feature extractor and comparison with the FP32 version of

the proposed model that makes use ofMobileNetV2 as feature

extractor . 53

vii

Chapter 1

Introduction and Related Work

1.1 Summary

Human gaze has been revealed as an important cue to obtain information about

internal cognitive state [82], such as intention detection and visual attention.

Therefore, human gaze estimation, also known as eye tracking, has become an

active field of computer vision research in recent years. It has been applied to

different fields, some of them: human robot interaction [77] [26], augmented

reality [35], medicine [30], aviation [58], and automotive [53] [81].

In the latter field, gaze estimation has been a key part of Advanced Driver

Assistance Systems (ADAS), enabling the development of cutting-edge sys-

tems that ensure safe driving, mitigate road accidents, facilitate autonomous

driving and provide comfort. This thesis will focus on the development of a

lightweight and low-cost in-cabin gaze estimator capable of operating at the

edge. Although the main objective is safety related by monitoring driver at-

tention, the system can be extended to other purposes as well.

Gaze estimation can refer to the detection of the 2D device’s coordinates

(x,y) intersecting the gaze vector, known as the point of gaze (PoG), as well as

the estimation of the 3D gaze direction in the camera reference system [84],

as shown in 1.1. To recover the 3D gaze vector, this thesis will focus on the

latter group .

1.1 Summary 2

When estimating the 3D gaze vector or 2D gaze point, there are different

approaches that can be followed. They can be classified as model-based or

appearance-based.

To detect gaze, the first group analyzes the geometry of the eye and some of

its parts, such as: pupil center, pupil outline, iris, corneal reflection, and glint

[16]. Although they can obtain high accuracy, they are limited to dedicated

devices such as infrared and depth sensors, which may incur high investment

and low user experience due to physical intrusion [36].

In contrast, the appearance-based group does not analyze eye geometry,

but only appearance. They are based on gaze direction regression of features

extracted from images containing eyes or a face. Without the need for dedi-

cated devices, appearance-based estimators are also known as unconstrained

gaze estimators due to their calibration-free, subject-free and viewpoint-independent

[15] architecture. With respect to performance, they can obtain good accuracy

with only one RGB camera, a needs-covering human gaze dataset, a well-

performing feature extractor, and an effective regression function to map the

appearance of the eye - the human gaze [16] [15] (see Figure 1.1).

Despite the importance of this topic, only a small number of works in

computer vision are concerned with gaze estimation [64]. Although most of

them are capable of running in real time and with high performance, they

are limited to the use of dedicated hardware and, in most cases, expensive

devices such as infrared sensors, depth cameras, and GPUs. In the automo-

tive field, the driver’s head and eyes are key components for inferring gaze

and visual attention at the same time [78]. Several use cases of gaze esti-

mation have been reported in this field [44] [4] [81]. They focus on solving

this task to improve safety and/or comfort by: drowsiness detection, driver

distraction [1], emotion recognition [46], degenerative disease detection [10],

ADAS enhancement [39], autonomous driving [8], and augmented reality-

based systems [45]. Although high-performance solutions exist, only a few

are non-intrusive embedded systems based on deep learning.

1.2 Gaze Estimation On the Edge 3

In this work, a low-cost, lightweight and high-performance embedded sys-

tem based on deep learning, capable of estimating the 3D gaze vector and the

in-cabin gaze zone where the driver is looking, while detecting drowsiness, is

proposed. The system falls into the group of appearance-based 3D gaze esti-

mation by analyzing only RGB images using deep neural networks. Although

gaze-zone detection can be treated as a classification problem rather than re-

gression, our proposal is based on the latter group for the following reasons

1) Lack of large datasets for in-cabin gaze zone detection. 2) The calibration

and training required each time a new gaze zone is added. 3) The advantages

of having the gaze vector in 3D.

Figure 1.1: Appearance-based deep learning neural network to estimate 2D
and 3D gaze. Workflow of [86]

1.2 Gaze Estimation On the Edge

With the current rise of IoT technologies, the deployment and direct inference

on the edge (MCUs and embedded systems in general) of machine learning

models, including those based on deep learning, has gained interest [75].

1.2 Gaze Estimation On the Edge 4

Although there are several gaze estimation systems that offer high perfor-

mance and real-time inference, most of them are very limited to work with

dedicated and, in most cases, expensive devices, such as: infrared sensors,

depth cameras and GPUs. So far, there are few works estimating 3D gaze on

edge devices using an RGB camera as the only sensor.

Improving the performance of deep learning models running on GPUs in-

volves changes to the model architecture that, in most cases, increase its size

and computational complexity. However, when deployed at the edge, this is

something that is not acceptable due to the limited computational power and

memory of the devices used [32].

Therefore, running models on the edge requires, in most cases, a trade-off

between model size, complexity, and memory footprint with performance and

inference time [11]. There exist efficient architectures such as MobileNets

[33], ShuffleNet [83] and MobileVit [49] that allow us to inference on mobile

devices in real time and with high performance when solving general tasks

such as Image Classification, Segmentation, or Object Detection.

However, when developing specific task-oriented models, even more if it

refers to two deep-learning-based models working in sequence, as is the case

of this work, achieving a high performance with those architectures will be,

in most of cases, only possible at expense of the inference time.

For that reason, before deploying on device, themodel needs to pass through

an optimization process using a set of methodologies such as quantization, fu-

sion of layers, distillation, pruning, and clustering that allow to perform com-

putation at lower bit-widths than floating point precision, and to speed up the

inference time by dropping some model parameters for keeping a low impact

in the performance.

Machine learning on the edge, also known as TinyML has the main goal

of developing efficient high-performance systems without the need of spe-

cialized hardware. It matches the main goal of this work, to come up with a

low-energy, low-cost and high-performance on-device system, that is able to

1.3 Thesis Goals 5

detect in short time where the driver is looking at through 3D gaze estimation.

1.3 Thesis Goals

The present thesis aims to achieve the following goals:

• develop a low-cost, efficient and high-performance on-device system

capable of estimating the driver’s gaze using deep learning and an RGB

camera.

• identify the in-cabin gaze zone where the driver is looking.

• detect possible drowsiness.

1.4 Thesis Contributions

In this work, an end-to-end embedded system based on deep-learning is pro-

posed to estimate in-cabin 3D gaze. The main contributions are as follows:

• creation of a low-cost embedded prototype of an efficient appearance-

based 3D gaze estimator capable of detecting possible drowsiness, driver’s

3D gaze and the in-cabin gaze zone using a Raspberry Pi 4 and an RGB

camera.

• creation of a gaze estimationworkflow by assembling two deep-learning-

based models. The first one detects the driver’s face using 3D facial

landmarks, while the second one estimates the 3D gaze vector. Finally,

using the gaze vector, the in-cabin gaze zone is classified.

• application of optimization techniques, such as quantization and layers

fusion, to reduce model size and speed up inference while maintaining

good performance.

1.5 Thesis Structure 6

• experiments trying different deep-learning-based models on the role of

the backbone and regression head, optimization techniques and recom-

mendations of related work. This analysis may be useful for researchers

interested in this field.

1.5 Thesis Structure

This thesis is organized as follows: Chapter 2 covers the dataset and overview

of the proposed system. Chapter 3 describes the evaluation of the gaze esti-

mation model, the live demonstration and the experiments performed. Con-

clusions, limitations of the proposed system and future development are found

in Chapter 4.

Chapter 2

Dataset Collection and System

Overview

Though there are several open-source datasets for training deep-learning-based

gaze estimators such as: MPIIFaceGaze [86], EYEDIAP [24] and Columbia

[71], only few of them cover different variation in illumination, subject and

distance from the camera, as well as, wider head pose, yaw (θ) and pitch (ϕ)

gaze ranges.

Even if the driver’s gaze will be hardly ever 360[◦] on both θ and ϕ, how-

ever, it has been used the largest subject, pose and illumination variant open-

source dataset for unconstrained 360[◦] 3D gaze estimation, Gaze 360 dataset

[38], to train the proposed model.

More details of the dataset creation, including the camera set-up and the

equations used to calculate the 3D gaze vector, which will be used as ground

truth to train and validate the proposed model, will be found starting from 2.1.

2.1 Dataset 8

2.1 Dataset

Set-Up

Gaze 360 dataset has been created using a LadyBug 5 360[◦] panoramic cam-

era. The camera is composed by 5 units of 5 [Mpx] with a horizontal range

view of 120[◦] each one and another upward-facing unit with the same char-

acteristics but not used for gathering data. The portable set-up is shown in

2.1 and a full face can be detected by at least one of the units if the person is

standing far away from the camera at least 1 meter.

All frames have been rectified to remove barrel distortion. Later, the head

and feet keypoints have been detected on each rectified frame usingAlphaPose

[23]. All participants have been indicated to look at the only target present in

the set-up, an AprilTag [76] mobile board with a cross on it. AprilTag is a

visual tag detector widely used for its robustness and efficiency in fields such

as robotics and computer vision. The visual tag has been used tomake possible

the 3D gaze tracking, while the cross to get gaze fixation.

Figure 2.1: Acquisition set-up adopted by [38]
to create Gaze360 dataset

3D Gaze Estimation

In order to estimate the 3Dworld reference coordinates of the target cross pt, it

has been firstly estimated the 3D pose of the visual tag using both the already

2.1 Dataset 9

known camera calibration parameters and the tag size. Already known the tag

3D coordinates and the board geometry, the 3D coordinates of the pt have been

calculated.

The gaze vector is expressed in the camera coordinates systems L and is

calculated as gL = pt − pe. In order to estimate the position of the subject’s

eyes pe, it has been calculated the distance d of the subject’s eyes from the

camera by means of trigonometry 2.2. The step by step followed is detailed

below:

• it has been assumed that both the subjects and the camera set-up lay on

the same horizontal plane.

• α and β are the spherical coordinates of eyes and feet respectively and

have been estimated using both the keypoints detected by AlphaPose

and the Global Cartesian 3D camera system L = [Lx, Ly, Lz].

• with the already known camera height h, α and β, it has been calculated

z using 2.1. It represents the subject’s feet distance from the camera.

• finally, d, the distance of the subject’s eyes distance from the camera

has been calculated as 2.2.

z = h. tan(π

2
− α) (2.1)

d = z

cos β
) (2.2)

If the gaze vector is calculated in the camera coordinates system L as men-

tioned before gL = pt − pe, it would suffer of changes with the rotation of the

camera and the variation of L. Therefore, the gaze vector has been expressed

2.1 Dataset 10

Figure 2.2: Subject’s and camera position adopted by [38]
to estimate a) the subject’s eyes distance from camera and the gaze

transformation b) from the camera system to the subject’s eyes system.

in the subject’s eyes coordinate system E. As the origin of E it has been defined

pe.

In fig. 2.2 can be appreciated that Ez has the same direction as gL, Lx and

Ly without roll define the plane where Ex lies on. Thus, the gaze vector in the

eyes’ coordinates is defined as:

g = E.(gL

||gL||2
) (2.3)

Following the equation 2.3, when the subject looks directly the camera,

the gaze will be g = [0, 0, −1].

It is worth to mention that a control experiment was applied in order to

validate the accuracy of the calculated gaze, those that have be used as ground

truth to train the model proposed on this work. The experiment has carried

with a single participant and two as total with three recordings by each one.

Together with the Ladybug 5 360 [◦] camera, it has been used an additional

front-facing test camera placed over the participant’s right eye. Later, it was

2.2 System Overview 11

estimated the gaze on both cameras, applying the equations mentioned before.

The validation resulted in amean difference between both gaze labels of 2.9[◦].

2.2 System Overview

The flowchart of the proposed system is shown in Figure 2.3. The proposed

system is composed by two deep neural networks models working sequen-

tially. The first corresponds to a ready-to-use face detector model (API) that

receives the driver’s frontal RGB image as input, that in normal circumstances,

it will include the driver’s face. Then, based on a proposed 3D facial land-

marks analysis, the facewill be identified and cropped from the original image.

The second model corresponds to the gaze estimator. It receives the already

cropped face as input and estimates the 3D gaze vector. Finally, the 3D coor-

dinates of the gaze are converted into spherical coordinates and classified into

a gaze zone.

Regarding the programming language and deep learning framework, it has

been used Python 3.7.13 and Pytorch 1.11.0 respectively. To keep organized

the libraries and dependencies required, it has been created an environment

in anaconda 2.1.1. The model described in this work as well as the ones de-

scribed in the Experiments (section 3.3) have been created and trained using a

workstation with the following characteristics: Windows 10 OS, Core i7, 64

Gb RAM, 2 Tb SSD, 4 processors Intel Zeon Gold 6248R and one graphic

card NVIDIA Quadro RTX 6000.

2.2.1 Face Detector by means of Facial Landmarks

There are several ready-to-use real-time high-performance face detectors, such

as [13] and [21] that are able to run on mobile devices. But, since this work

aims not only to detect the gaze but also possible drowsiness. Then, the se-

lected solution needs to allow to accomplish both purposes without the need

of extra devices, which would mean an extra cost, and also without adding too

2.2 System Overview 12

Capture RGB Image of driver’s frontal image

Face Detector: Detect 33 3D facial landmarks

Crop driver’s face based on facial landmarks analysis

Gaze Estimator: Estimate 3D Gaze by regression

Classify Gaze Zone based on spherical coordinates

In-Cabin Gaze Zone

Figure 2.3: Flowchart of the proposed system

much extra computation.

In order to detect drowsiness, it can be adopted different approaches. This

thesis proposes to analyze the blink rate as well as the open and close state of

the eye, both based on the eye aspect ratio (EAR). A similar approach has been

followed by [48] and [50], high-performance real-time drowsiness detectors .

Since it is needed to detect the driver’s eyes as well as the face to perform

the gaze estimation, then it has been used a single 3D face landmarks detector

to tackle both needs. MediaPipe FaceMesh open-source Google API [27] [37]

is based on a deep neural network face detector, BlazeNet [5].

MediaPipe is able to estimate 468 3D face landmarks in real-time on mo-

bile devices and with only monocular images, it means without any additional

depth sensor [27].

Starting from 2.2.1 there will be found relevant details about the model,

set-up and the face detection method adopted by this thesis.

2.2 System Overview 13

Model

The face mesh model that detects the 3D face landmarks is a deep neural net-

work that receives as input a face detected by [5], another light-weight deep

neural network. It is worth to mention that the face image has been centered,

rotated and aligned in a way that a horizontal line can connect the center of

eyes, that are at the same time the center of a segment the connect eyes corners.

Finally, an image resize is applied, the size depends of the selected model, 256

for the full model and 118 for the smallest. It is worth to mention that the final

image has 25% margin on each side [29].

Even though there is no a very detailed explanation of the model neither

in the original paper [5] nor on the website [27], it can be summarized from

[29] that the backbone implemented is a customizedMobileNetV2-like neural

network with an aggressive sub-sampling in the first layers [5]. Based on [28]

it can be added that the model has multi-heads that output: 3D landmarks co-

ordinates, 2D semantic contours and a face presence flag. It allows to perform

2D supervision and refined detection confidence

Although there is not depth information in the input, the model is able to

estimate 3D face landmarks by working with the coordinates x and y of the

vertices in the image pixel coordinates. The depth indicated by the coordinate

z is of synthetic nature and is calculated as the depth relative to a plane passing

through the mesh’s center [37]. In order to keep a fixed aspect ratio between

the span of x and z, the values are re-scaled proportionally to the face width

[29].

MediaPipe face mesh solution is available in three different models: full,

light and lightest that can be easily selected in the set-up explained in 2.2.1.

The performance will be improved by increasing the model’s size, but it will

also result in longer inference time as described in Figure 2.1

2.2 System Overview 14

Model(input) IOP MAD Time[ms] (iPhone XS) Time[ms] (Pixel 3)

Full (256×256) 3.96% 2.5 7.4
Light (128×128) 5.15% 1 3.4
Lightest (128×128) 5.29% 0.7 2.6

Table 2.1: Performance of the Facial Landmark Detector on two mobile de-
vices[86]

Limitations

As detailed in [29], the model will not may be able to detect face landmarks

if:

• the subject is looking away from the camera more than 80[◦].

• the subject is positioned too far away the camera.

• the vertical inclination is greater than 8[◦].

• there is more than 50% occluded face.

The aforementioned limitations, though, do not affect the performance of

the pipeline proposed by this work since result in a limited presence in the con-

straints imposed by the set-up of the camera detailed in 2.2.5 and the limited

movements performed while driving.

Face Detection

The proposed system aims to detect the 3D gaze and the in-cabin gaze zone

using a live video given by a RGB camera. It has been created a main script

that reads each frame of the video, apply a pre-processing to finally detect the

3D face landmark using MediaPipe API.

To read each frame at time τ it has been used the function VideoStream of

the library imutils [65]. The pre-processing converts the frame from BGR to

RGB and resize it to 640,480, both operations have been performed using the

library OpenCV [7].

2.2 System Overview 15

In order to detect 3D face landmarks, it has been instantiated a MediaPipe

face mesh solution and the parameters have been set-up as follows:

• static_image_mode = False to avoid a new landmark detection for each

frame, allowing only a face tracking. It reduces latency.

• refine_landmarks=True to refine landmarks around eyes and lips.

• max_num_faces=1 represents the maximum number of faces to be de-

tected.

• min_tracking_confidence=0.5 is the minimum confidence used by the

face landmark detector to consider a landmark tracking as valid, oth-

erwise a new facial detection will be automatically invoked. Higher

values will increase both the performance and latency.

• min_detection_confidence=0.5 is the minimum confidence used by the

face detector to consider a detection as valid .

Once the MediaPipe face mesh solution has been instantiated and the pa-

rameters have been set-up, the input frame is sent by reference to the solution.

After the processing, the facial landmarks are returned. Sending the frame by

reference by means of setting the frame as read-only before the processing,

will definitely improve the performance.

It is worth to mention that the processing of the frame, to obtain the facial

landmarks, may results in an empty list. It can be possible if no person (face)

was detected in front of the camera or if it has been incurred in one of the

limitations described in 2.2.1.

Head Orientation

Given the model limitations 2.2.1 it may result in low accurate face landmarks

when the driver is looking backward. Therefore, it will may result in poor face

2.2 System Overview 16

detection as well as poor gaze estimation. This thesis proposes to tackle this

problem, by only analyzing the head orientation.

If the face landmark detection results not empty, it will be returned 463

3D landmarks. Each landmark is composed by the coordinates x, y and z and

have been normalized to [0.0, 1.0] by the image width and height respectively.

The coordinate z represents the distance (depth) of the head’s center and the

camera and it uses roughly the same scale as x.

The landmarks have been analyzed to create a geometric method to detect

the head’s rotation angles and finally its orientation (right, left, up, down). It

has been achieved by analyzing the 2D and 3D coordinates of specific parts

of the face as: eyes, nose and mouth.

To come upwith the head rotation and orientation, it has been needed to use

the 1) intrinsic camera parameters that allows us to link the pixel coordinates

of an image point (2D) with their corresponding 3D coordinates in the world

reference frame

1 ∗ w 0 h/2

0 1 ∗ w w/2

0 0 1

 where w and h are the frame width

and height respectively and 2 the rotation matrix calculated with the functions

solvePnP and Rodrigues of the library OpenCV. Finally, with the function

RQDecomp3x3 of OpenCV it has been applied a RQ decomposition to the

3x3 rotation matrix in order to get the euler angles of each coordinate x, y and

z.

To detect the head orientation between right, left, up, down and backward,

the euler angles has been thresholded. The values for the thresholds have

been set based on personal experiments. They may need an initial calibration

if there are changes in the set-up or environment.

Face detection

In order to detect the face all the face landmarks were analysed. The minimum

and maximum values for the x and y coordinates were taken apart.

2.2 System Overview 17

Thus, the four most salient points of the face mesh were found. xmin and

xmax represent the beginning and the end respectively of the face mesh along

the horizontal axis while ymin and ymax the beginning and the end along the

vertical.

The bounding box containing the face was calculated adding a certain mar-

gin to each one of the above mentioned points. The best value of margin,

covering the full head, was found to be 30% of h and 30% of w for y and x

respectively. Where h is the face mesh’s height and w the face mesh’s width,

both calculated following the Equations in 2.4.

h = ymax − ymin

x = xmax − xmin

(2.4)

It is worth to say that the aforementioned value of margin was found by

running experiments on the full gaze estimation pipeline. So, the combination

of head pose and gaze vector is how the gaze zone is detected in natural driving

as also mentioned in [78].

In fact, it has been seen in the experiments carried for this thesis, the fact

of analysing also the head pose, allows to estimate a correct gaze zone even

if the eyes are not visible enough. An example of this situation is shown in

Figure 2.5.

2.2.2 Drowsiness detection

Drowsiness or fatigue is one of the main factors in road accidents [62]. There-

fore, this thesis aims to detect possible drowsiness by analyzing the state of

the eyes over time.

Though most recent works on drowsiness detection [17] [62] are based on

machine learning and deep learning models, this thesis proposes the analysis

of eyes open and closed as well as blink rate over time as performed in [56].

2.2 System Overview 18

This has been selected mainly because of the low computational addition, ro-

bustness and good performance shown in [72] [12] [43].

The 468 3D face landmark points composing the face mesh includes 16

landmarks for each eye that represent its inner contour, as shown in 2.4.

The eye aspect ratio (EAR) is proposed by the Czech Technical University

[72] [12] and has been obtained by dividing the vertical and the horizontal

euclidean distance as mentioned in [43] as seen in 2.5.

Figure 2.4 shows the points selected to create the vertical (159 and 146)

and the horizontal line (33 and 13).

Since the blink is usually performed by both eyes synchronously, a com-

pounded EAR has been calculated by averaging the EAR of each eye as shown

in 2.6.

When closing eyes the EARlr tends to go from its maximum value to

zero. Thereby, this thesis proposes to detect drowsiness when it is detected

a constant value ≤ 0.2 of EARlr in 10 consecutive number of frames. Both

values may be calibrated, since the EARlr will might vary with the kind of

eyes.

EAR =

√
(x2

159 − x2
145) + (y2

159 − y2
145)√

(x2
33 − x2

13) + (y2
33 − y2

13)
(2.5)

EARlr = EARl + EARr

2
(2.6)

2.2.3 3D Gaze Estimator

The gaze estimator aims to identify the 3D driver’s gaze through a deep-

learning-based model. As mentioned in the previous sections, the gaze iden-

tification will be performed on a RGB image after detection and respective

2.2 System Overview 19

Figure 2.4: Eye landmarks returned by MediaPipe Face Mesh [27]

cropping of the driver’s face.

The model created in this work is based on a deep convolutional neural

network pre-trained on ImageNet [20] and fine-tuned on Gaze 360 dataset

[38]. For training, basic techniques of data augmentation such as RandomRe-

sizedCrop and Resize have been adopted.

Before coming up with the proposed model, it has been created and eval-

uated different models. They can be grouped in:

• 1) Spatial-Temporal: Predict the gaze on a set of images by analyzing

the changes along the time. Their architectures are based on spatial-

temporal convolutional neural networks.

• 2) Static: Predict the gaze on a single image. Their architectures are

based on convolutional neural networks and simple regressors.

The explanation of each one of the experiments performed in this thesis

can be found in Section 3.3. It includes results and comparison of different

architectures resulting at combining feature extractors, heads of regression and

hyper-parameter set-ups. Thus, the one with the best trade-off performance-

computational cost has been chosen as the proposed model of this work, and

it will be the one described in the next sections.

2.2 System Overview 20

Data Preparation

Data preparation includes themost relevant information about how the datasets

and dataloaders were created, the techniques of data augmentation adopted as

well as the set-up of hyper-parameters resulting in the best performance.

Dataset

The dataset Gaze 360 is organized into 79 folders each containing two

inner folders, one with full body images and the latter with head-only crops.

Within each folder, there are other folders each containing a single sequence

of images of the participants. In this work, only the images corresponding to

the head crops have been used.

Regarding to the gaze ground truth, a .TXT file has been provided for each

split (training, validation, test). Each file contains by rows the image path and

the 3D coordinates of the gaze. Each of the four elements is separated by

blanks.

Therefore, it has been created a custom Pytorch dataset [57] that returns

a pair of tensors of type torch.FloatTensor. In case of working with a static

model, they correspond to the image and its corresponding normalized gaze

in spherical coordinates (θ, ϕ). The shapes of the tensors as proceeds: Image

tensor (3,224,224) considering the image’s number of channels first and later

the image’s shape, Gaze tensor (2) for storing (θ, ϕ).

If working with a spatial-temporal model, the dataset will always return

two torch.FloatTensor. The first represents a sequence images to be analyzed.

The length of the sequence has been set in a variable w_size. Therefore, the

tensor shape for the sequence of images will be (3 ∗ w_size, 224, 224) and (2)

for the spherical coordinates of the gaze corresponding to the last image of the

sequence.

DataAugmentationData augmentation involves a suite of label-preserving

techniques applied to deep learning models to improve the training at the same

2.2 System Overview 21

(a) Gaze = (0.47, −0.23, −0.85) (b)Gaze = (0.41, −0.26, −0.88)

Figure 2.5: Gaze Estimation in difficult scenarios. Whereas a) and b) appear
to be the same image, their gaze vectors are different. Then, the head pose
helps to distinguish where she is looking.

time avoid overfitting. It has been converted in a powerful and almost manda-

tory tool in the development of robust high-performance models [68].

In the proposed model, simple data augmentation techniques available in

torchvision.transforms have been applied. The transforms have been selected

by following the recommendation of [38] and [14].

The training split has been transformed only applying RandomResized-

Crop. It basically makes random crops to the original image covering a scale

or a ratio received as parameter. It has been used a scale of 0.8 and 1 to cover

the 80% and 100% of the original image respectively. Finally, each crop has

been resized to [224, 244].

It has been shown that face processing with this initial resolution allows

to handle difficult scenarios, similar to those in Figure 2.5, where the eyes are

hardly visible and the gaze can be easily misestimated. There are different

factors that can create these difficult scenarios, such as: wearing glasses, light

reflection, dark environments, eyes’ occlusion, eyes’ shape etc. In Figure 2.5

those factors are eye shape and eye size.

Dataloader

To create the dataloaders of each split (train, validation and test) it has

2.2 System Overview 22

been used the Pytorch class torch.utils.data.DataLoader. The configuration

as follows:

• dataset: the custom dataset created in Section 2.2.3.

• batch_size: the batch’s sizemay influence the learning process, a batch’s

size equal to 80 gave the best performance to the proposed model.

• shuffle: True for all the splits and experiments.

• sampler: only when tuning hyper-parameters. It was used the 80% of

random samples of the training.

• num_workers: 0 in all the experiments.

• pin_memory: True in all the experiments.

Model

Backbone

The gaze estimator proposed in this work uses as backbone MobileNetV2

[66] pre-trained on ImageNet and fine-tuned onGaze360 dataset. MobileNetV2

has shown to be a good fit because of its efficiency and performance when de-

veloping on mobile and resource constrained environments [67][2].

MobileNetV2 is an improvement of MobileNetV1 and it includes a novel

module in its architecture. The inverted residual blocks with linear bottleneck

work with a low-dimension input that have been firstly expanded and filtered

by a 3x3 convolution layer and a lightweight depth-wise separable convolu-

tion respectively. Applying this module results in a significant reduction in the

parameters and floating-point operations per second (FLOPS). Which repre-

sents at the same time a reduction in the memory footprint and main memory

access, common bottlenecks when developing on the edge [69] [47].

2.2 System Overview 23

As shown in Figure 2.9 the first layer of MobileNetV2 results in a re-

duction of the input resolution by the half. It has been done by applying a

convolution layer with 32 filters and stride of 2. Then, the activations pass

trough 19 residual bottleneck layers with expansion factor of 6 except the first

block that uses one of 1.

Not like its previous version,MobileNetV2 uses ReLU6 as activation func-

tion. It is a ReLU with an upper cutoff of 6 and can be thought as having

6 replicated bias-shifted Bernoulli units rather than an infinite value [42].

ReLU6 has shown robustness when working with low-precision.

Figure 2.6: ReLU6 activation function of MobileNetV2 [22]

Some relevant parts of the MobileNetV2 architecture will be described in

the next sections.

Depth-wise Separable Convolutions It is the core of theMobileNets fam-

ily andmost modern efficient neural network architectures. It consists on split-

ting the common convolution into two layers, the depht-wise and the point-

wise. As can be seen in Figure 2.7, the depth-wise convolution performs a

spatial filtering to each input channel (depth) by means of a single 3x3 convo-

lution. On the other part, the point-wise performs a linear combination to the

2.2 System Overview 24

depth-wise outputs by means of 1x1 convolutions. This mix of filtering and

combination results in a significant reduction of computation as well as model

size.

Figure 2.7: Depth-wise separable convolution introduced by MobileNets [33]

Considering an input tensor I of size Cin x W x H where Cin represents

the number of channels (depth) and W, H the weight and height respectively.

Applying a standard convolutional kernel of size Cout x Cin x k x k to produce

an output O will result in a computational cost of W x H x Cin x Cout x k2.

Instead, applying a depth-wise separable convolution will result in a compu-

tational cost of W x H x Cin x (Cout + k2). It will result in a reduction of

computational cost equal to:
Cout + k2

Cout × k2 (2.7)

With a reduction of almost k2. The computation of MobileNetV2 will be

of almost 9 smaller than a standard convolution since it uses a k=3 depth-wise

2.2 System Overview 25

separable convolution [66].

Linear Bottleneck It has been shown in [66], that applying non-linear

layers in bottlenecks results in a considerable reduction of performance given

that ReLU squashes too much information when the features are in low di-

mension. Then, linear bottleneck expands the channels dimension, projecting

the low dimension features into a higher dimension given an expansion ratio.

Inverted Residual Block MobileNetV2 is an updated version of Mo-

bileNetV1 and the use of Inverted Residual Blocks is part of the new changes.

Known also as MBConv Blocks, they are adopted by mobile architectures that

use inverted structure in exchange for efficiency. The main difference from

the traditional residual block can be seen in Figure 2.8. It basically follows

the narrow - wide - narrow patterns instead of wide - narrow - wide adopted

by a common residual block.

Figure 2.8: a) Traditional residual block and b) Inverted Residual Block pro-
posed on MobileNetV2. Figure from [66]

Regression Head

Since it has been used MobileNetV2 pre-trained on ImageNet, it comes

with an attached head of classification as shown below:

Backbone’s output

nnDropout 0.2
nnLinear(self.last_channel, num_classes)

Table 2.2: MobileNetV2 Classification Head

The classification head has been used to build the proposed model, but the

2.2 System Overview 26

last linear layer (Table 2.2) has been modified to re-project the 1280 features

of the last channel (backbone’s output) into a lower dimension (256). Later, it

has been attached a non-linear function (RELU).

Finally, a regression head has been attached by means of a linear layer.

This layer re-projects the 256 embedding features to the required number of

outputs. To estimate the gaze, the proposed model yields 3 values: θ, ϕ and

confidence.

Figure 2.9: Architecture of MobileNetV2 as backbone of the proposed model
[66]

Training Set-up

The proposed model is composed by a regression head able to estimate the 3D

gaze vector and confidence with a single image, and as backbone (feature ex-

tractor), a pre-trained MobileNetV2 on ImageNet, which has been fine-tuned

on Gaze360 dataset on almost all the layers, except the first four. It has been

used Pytorch 1.11.0 [57] and Adam optimizer.

Pytorch allows to useMulti-process data loading by setting a positive num-

ber of workers, but in this work the number of workers was set to zero. Indeed,

the data was loaded on CPU and pushed it to GPU while training. To speed

2.2 System Overview 27

up the host to device transfer, it has been enabled pin_memory that allows the

dataloader to allocate in page-locked memory. The batch size was set to 80.

It was used an initial learning rate 1×10−3 for training the head of regres-

sion and the two last layers of the backbone (originally created as classification

head), the rest of the backbone was let frozen. The training has been done for

50 epochs using ReduceLROnPlateau as learning rate scheduler. The sched-

uler has been set up with patience equal 2, factor equal 0.1, threshold equal

0.1, mode equal ’min’ and min_lr equal 1x10−7.

The backbone (MobileNetV2) has been fine-tuned at all except the first

four layers (initial convolution and the three bottlenecks) (see Fig. 2.9). It

has been trained for 100 epochs using the same learning rate scheduler con-

figuration used to train the head. Each one of the layer has been unfrozen in

a progressive way using a decreasing learning rate that has started at 1×10−3

and ended at 2×10−6.

TensorboardX [73] has been used as tool of visualization. It was helpful for

the progressive unfreezing of the layers. It was noticed that when unfreezing

each layer per time, using the configuration of the hyper-parameters already

described, the model took around ten epochs to converge. It means, that after

ten epochs a new layer was unfrozen.

Loss Function

Taking into account the nature of the Gaze360 dataset, the wide range of

gaze directions and head orientation in an unconstrained environment make

it more difficult to estimate a precise 3D gaze vector. As indicated in [38],

accuracy is difficult to achieve in this type of problem because of key aspects

such as: partial or complete occlusion of one or both eyes and when the eye

is viewed from a lateral angle.

Pinball loss, also known as quantile loss and hinge loss, has been used

as the regression loss of the proposed model. As can be seen in Figure 2.10,

its shape is similar to the trajectory of a ball on a pinball machine, hence its

name. The function is always positive, and the lower the pinball loss, the more

2.2 System Overview 28

accurate the quantile prediction. In this way, the assumption that the variables

behave the same in the upper tails of the distribution is eliminated [19].

Therefore, the uncertainty quantification (UQ) in the regression has been

applied to model the error bounds. Quantiles 10 and 90 were used along with

the mean value. Considering the output of the model (θ, ϕ, σ), the quantiles

were created as shown in the table 2.3:

Quantile Composed by

10 % (θ − σ), (ϕ − σ)
90 % (θ + σ), (ϕ + σ)

Table 2.3: Pinball Loss Quantiles

With the spherical coordinates (θ, ϕ) of the predicted gaze and ground

truth, together with the confidence σ, the pinball loss (Lτ) for the quantile

τ has been calculated as follows:

qτ =

θGT − (θ − σ), if τ ≤ 0.5

θGT − (θ + σ), otherwise
(2.8)

Lτ (θ, σ, θGT) = max(t.qτ , −(1 − t)qτ) (2.9)

Where qτ represents the predicted quantile and τ can take two values: 0.1

and 0.9. The same equations 2.8 and 2.9 have been used with the angle ϕ.

Finally the losses for both angles θ, ϕ and quantiles τ=0.1 and τ=0.9 have

been averaged.

Although Pinball loss was used to train the model, angular error is the met-

ric commonly used to validate the performance of a gaze estimator. Therefore,

in Figures 2.11a and 2.11b, the behavior of angular error during training and

validation can be observed.

The largest decrease in angular error was experienced during training of

2.2 System Overview 29

Figure 2.10: Pinball Loss

the regression head, composed of a set of linear layers, and keeping the back-

bone frozen. It decreased from 87.23[◦] to 39.86[◦] in 50 epochs. A drop rate

of almost one degree per epoch (0.95[◦/epoch]) was obtained.

Gaze Zone

The in-cabin gaze zone is the component or area of the vehicle where the driver

looks. In this work, nine gaze zones were classified according to the spherical

gaze coordinates (θ, ϕ). The in-cabin zones and their descriptions are shown

in Fig 2.12 and Table 2.4, respectively. They were created inspired by [18]

and [78].

The workflow of the proposed system allows the gaze zones to be changed.

However, an initial calibration will be required to create the angular ranges

(θ, ϕ) for each zone. More technical details on calibration can be found in

2.2.5.

The process of gaze discretization and subsequent zone retrieval is straight-

forward and does not require training. The cabin has been divided into nine

non-overlapping 2D quadrants as shown in 2.13 where each quadrant repre-

sents a zone. Yaw (θ) is placed on the horizontal axis while pitch (ϕ) is placed

on the vertical axis. Thus, after having calculated the spherical coordinates of

the gaze (θ, ϕ), they have been sent as a parameter to a function that returns

the in-cabin zone (quadrant) where both angles are contained.

2.2 System Overview 30

0 20 40 60 80 100 120 140 160
0

20

40

60

80

epochs

an
gu
la
re
rr
or
[◦
]

(a) Gaze Estimation Training plot curve

30 40 50 60 70 80 90 100 110 120 130 140 150 160

20

30

40

50

epochs

an
gu
la
re
rr
or
[◦
]

(b) Gaze Estimation Validation plot curve

2.2 System Overview 31

In case of a new calibration has been performed and new angles ranges

have been detected for each zone, they need to be modified in the aforemen-

tioned function.

Figure 2.12: Split of the cabin into Gaze Zones

Gaze Zone Id Description

1 Left Mirror
2 Right Mirror
3 Straight
4 Rear-View Mirror
5 Left Windshield
6 Middle Windshield
7 Steering Wheel
8 Radio
9 Glove Box

Table 2.4: Gaze zone description

2.2.4 Deployment on the edge

The pipeline usually followed when deploying on the edge can be split in two

macro steps. The first involves the creation, training and evaluation of the

model up to have achieved the required goals and performance, the latter relies

on the deployment on device. Since deep-learning neural networks are both

compute and memory intensive, thus before moving to a such limited device,

it will be needed to compress the model in order to reduce the computational

load. While compressing the model it will might be considered trade-offs

between the computational load and latency with performance.

2.2 System Overview 32

Figure 2.13: Split of the cabin into quadrants. It is based on Yaw (θ) and Pitch
(ϕ) angles

Considering the device’s architecture and the preferred deep learning frame-

work, it can be chosen between a set of model optimization toolkits that allow

to optimize models with the best practices and minimum complexity. Some

of them are: Tensorflow Lite[74], Pytorch Mobile [61], MXNet [52] and X-

Cube-AI [80]. Moreover, the deep-learning framework used to create the

model should not restrict the one will be used on device. Indeed, there are

open-source tools as ONNX [55] that allow to interchange models between a

selection of frameworks. ONNX has been used for the experiments performed

in this work, more details can be found in the section of experiments 3.3.

Regarding the development of the system proposed on this thesis, it has

been used Pytorch for training and evaluating the model as well as for optimiz-

ing it (with Pytorch Mobile). The pipeline followed for deploying the model

on device has been shown in Figure 2.14.

Model Optimization

Deploying deep learning Neural Networks on the edge demands to have a

light-weight, memory-efficient and high-performance model. There are sev-

eral techniques that allow us to speed-up by means of optimization. It can be

2.2 System Overview 33

Figure 2.14: Deployment on the edge pipeline adopted by Pytorch Mobile
[61]

mentioned: quantization, layers fusion, pruning, distillation, clustering and

scripting.

Regardless the technique chosen, the optimization of a model reduces the

model’s size, latency and memory usage at the expense of some performance

(accuracy, loss).

Latency is considered a crucial metric when deploying a deep learning

model even worse if it will be performed on the edge. It refers to the amount

of time a single sample takes to be inferred (forward pass trough the model).

Being related to the power consumption of the model and entire system, so,

most of time mobile deep-learning-based models strive to get low latency to

even real-time inference.

In order to achieve high accuracy and low latency when estimating the

3D gaze on such resource-constrained device as a Raspberry Pi4, and accord-

ing to the performance obtained, the model proposed on this work has been

optimized by means of quantization and layers fusion.

2.2 System Overview 34

Quantization

Training a deep-learning model demands propagating the loss signal trough

several layers in order to update all of the parameters, which implies a lot of

multiply and accumulate operations. By default, most of the Deep Learning

frameworks and GPUs, represent the weights, activations and gradients as 32-

bit floating numbers (FP32). Given the intense computational load of a deep-

learning-based model, such high-precision representation will allow to avoid

overflow issues and sometimes to converge faster. However, high-precision

also means a slower and less memory-efficient model.

Recently works [40] [34] [79] have shown that most of deep learning use

cases, do not need such large precision. Indeed, it rarely will be required too

large magnitude (8 bits in fp32) (Figure 2.15) and in some cases the same

accuracy as FP32 can be obtained with a reduced-precision data type (FP16,

16/8/4/2-bit integers).

Figure 2.15: IEEE 32-bit floating point representation [70]

Quantization is a set of techniques applied to reduce basically the latency

by means of transforming the floating points used by the model into inte-

gers. Considering INT8 numerical representation has a quarter as many bits of

FP32, then it will be almost 4x faster. However, it is constrained to be applied

only to the forward-pass.

Pytorch Mobile allows us to choose between several quantization options

depending where and how the quantization will be performed.

Based on where the quantization will be applied, it can be chosen between:

• Post Training Quantization: Quantization is applied after training and

the quantized parameters are learned with an initial calibration. It can

2.2 System Overview 35

be grouped into Dynamic and Static. While first refers to a dynamic

during inference quantization of activations, the last refers to a fuse of

activations into preceding layers together a calibration.

• Quantization Aware Training: Quantization is applied during training

where the quantized parameters are also learned.

Based on how the quantization will be applied, it can be chosen between:

• Only Weight Quantization: Statically quantization for weights.

• Dynamic Quantization: Dynamic quantization for activations and stat-

ically for weights.

• Static Quantization: Statically quantization for both weights and acti-

vations.

To come up with a quantized model, it is also needed to make use of quan-

tization backend engine (qegine). Pytorch allows to choose between the fol-

lowing two options:

• Qnnpack: Useful when the device is an ARM CPU.

• Fbgemm: Useful when the device is a x86 CPU with AVX2 support or

higher.

On this thesis it was tried several kinds of quantization (detailed in section

3.3), the one resulting with the best performance was a 8-bit integer Static

Quantization Aware Training (QAT). Even if there are faster approaches that

allow to convert an already trained model into a low-precision one, the QAT

models the quantization error in both the forward and backward pass using

fake-quantization modules that simulate the quantize and dequantize opera-

tions in the training. A fake-quantization module has been instantiated by

using the pytorch class torch.quantization.FakeQuantize.

2.2 System Overview 36

It has been created a new model GazeQuantized that includes inside its

forward pass the quantization of the input quant(input) and the dequantiza-

tion of the output dequant(output) using the pytorch functions QuantStub and

DeQuantStub respectively.

Layer Fusion

Another optimization technique that has been applied to the proposedmodel

is layer fusion. It combines similar convolutional and attention layer weights

to achieve higher computational efficiency [54]. As seen in Figure 2.16, the

layer fusion has been applied prior to model training and quantization. Con-

sidering the backbone of the proposedmodel, MobileNetV2, the fusion will be

applied sequentially only to the convolutional layers of the Inverted Residual

Bottleneck as well as to the first three layers of Convolution + Batch Normal-

ization + RELU located at the beginning of the model.

At the end, the quantized model resulted with fewer layers than its FP32

version, thus improving computational efficiency. In order to preserve in-

formation across the fussed layers, training was performed on both the FP32

model and the quantized model.

The below function fuse_model has been created to come up with the

aforementioned fusion of layers.

1

2 from torch.quantization import fuse_modules

3

4 def fuse_model(self):

5 '''

6 fuse_model: fuse specific layers of the model

7 '''

8 for m in self.modules():

9 if type(m) == ConvBNReLU:

10 fuse_modules(m, ['0', '1', '2'], inplace=True

)

11 if type(m) == InvertedResidual:

2.2 System Overview 37

12 for idx in range(len(m.conv)):

13 if type(m.conv[idx]) == nn.Conv2d:

14 fuse_modules(m.conv, [str(idx)\

15 , str(idx + 1)], inplace=True)

Later, the backend quantization enginewas configured alongwith the quan-

tization settings. In this case, taking into account the architecture of the ma-

chine used for training (x86), the fgemm engine was chosen. Subsequently,

the model was prepared and converted to a quantized version using the pre-

pare_qat and convert functions of the torch.quantization library. At this point,

the size of the model has been reduced by 4x from its FP32 version.

The model has been trained with the same hyper−parameter settings and

data used in the FP32 version. It has converged over 10 epochs using an initial

learning rate of 1×10−5 and a final decaying learning rate of 1×10−6 set by

the scheduler ReduceLROnPlateau.

The quantization (QAT) workflow along with the layer fusion used in the

proposed model can be seen in Figure 2.16.

From Eager to Script

Finally, the model has been transformed into a script. The Pytorch Script [59]

functions convert modules and functions into a production-ready version using

just-in-time compilation (JIT). This allows a faster running at non expenses of

performance and without having to worry about Python run-time and python

Global Interpreter Lock (GIL).

When talking about converting a model into a script, specifically when

using Pytorch, the model transitions between two modes. As seen in Figure

2.17, the eager mode involves the model created so far, then before converting

it into a script. This mode, allows to have a faster prototyping, training and

evaluation. Then, to switch to a script mode, Pytorch allows you to choose

between two functions:

2.2 System Overview 38

Pre-trained model

Fuse modules

Insert stubs & observers

Training

data

Training / Finetuning

Quantization

QAT Model

Figure 2.16: Quantization Aware Training (QAT) Pipeline

Eager Mode Script Mode
torch.jit.script()
torch.jit.trace()

Figure 2.17: Pytorch transition from Eager to Script

• Pytorch Jit Script: It will inspect the source code, compile it as Torch-

Script code using the TorchScript compiler, and return a ScriptModule

or ScriptFunction [59].

• Pytorch Jit Trace: Trace a function and return an executable or Script-

Function that will be optimized using just-in-time compilation. [60].

In this work, the eager model has been converted into pytorch script using

torch.jit.script(). Pytorch allows to perform the aforementioned transforma-

tion in a user-friendly way, as seen below:

1

2 from torch.jit import save, script

2.2 System Overview 39

3

4 path = '.models/optimized/GazeMobileScript.pth'

5

6 '''

7 quantized_model in eager mode after QAT and layers fusion

.

8 Script function of torch.jit returns a script module

using the torch script compiler.

9 '''

10

11 save(script(quantized_model), path)

Inference on device

In order to perform inferences with the optimized model using the device pro-

posed by this work, a 1.5GHz Raspberry Pi4 64-bit Quad core Cortex-A72

(ARM v8) SoC, the backend quantization engine Qnnpack was first config-

ured as follows:

1 torch.backends.quantized.engine = 'qnnpack'

After having configured the backend quantization engine, the script ver-

sion of the optimized model has been loaded as shown below:

1 path = '.models/optimized/GazeMobileScript.pth'

2 # Load script model

3 model = torch.jit.load(path, map_location='cpu')

And the inference has been straightforward as shown follows:

1 import torch

2

3 input_image = torch.zeros(1,3,224,224)

4 ...

5 input_frame = Image.fromarray(frame , 'RGB')

6

7 # Frame as tensor

2.2 System Overview 40

8 input_image[:,:,:,:] = image_normalize(transforms.

ToTensor()(transforms.Resize((224,224)) (input_frame))

)

9

10 # Inference

11 output , confidence = model(input_image)

2.2.5 Gaze Estimation in live

In this section it will be described the list of materials, how the device (Rasp-

berry Pi4) was configured and the gaze zones created to perform a gaze esti-

mation on a real drive.

Materials

Below, it will be found the list of materials (hardware) used to estimate the

in-cabin gaze on a Raspberry Pi4.

Hardware Quantity

Raspberry Pi4 Model B 1
Case for Raspberry Pi4 Model B 1

External 10 Gb memory 1
Webcam Full HD 1

Smartphone as screen mirroring 1
Portable Charger 5V 3A 1

Table 2.5: List of materials used to perform gaze estimation on Raspberry Pi4

A raspberry pi4 model B 8 Gb RAM (Figure 2.18) has been used as device

to run the proposed system. A case is used to enclose the raspberry and facil-

itate the tests on the ride. An internal cooler and whilst heat-sinks to reduce

the thermal throttling (Figure 2.19).

2.2 System Overview 41

Considering the maximum voltage (5V) and current (3A) supply (15W)

supported by the device [63], it has been used a portable charger (power bank)

with the required specifications.

A Full HD (1080p) 2Mpx 60fps webcam has been used to record the

driver’s video. It has been connected to the Raspberry by USB. How the cam-

era is positioned in the vehicle is important, then, the set-up adopted by this

work is described in section 2.2.5.

Each component of the aforementioned list of hardware can be seen in the

figure 2.20

Figure 2.18: Raspberry Pi4 model B used in the experiments of this work

Set-up

In this sections it will be given more details about the set-up of raspberry Pi4

as well as how the components have been placed in the vehicle.

Raspberry Pi 4

It has been firstly upgraded the operating system to the last version, Bulls-

eye 64bit [9]. It has been done since the available Pytorch wheels performs

only on 64bit OS. Later, the value of the allowed swapmemory has been incre-

mented to 4096 Mb, in that way it can be avoided problems of segmentation

2.2 System Overview 42

Figure 2.19: Raspberry Pi4 case

Figure 2.20: Materials used on the live demo

2.2 System Overview 43

faults while running the system.

Regarding to the installation of the required libraries to be able to run the

system, it has been downloaded mini Conda from [51] and created an envi-

ronment for the project. Then, all the installs required have been done using

a .YAML file, resulting from the export of the main environment (worksta-

tion used to train the model). It is worth to mention that the device has been

accessed through SSH protocol, using Bitvise client [6].

To monitor the output while being on the road, it has been used a smart-

phone of 64 Gb RAM as screen mirroring. The connection between devices

has been done using the software VNC [31]. It has been required both devices

to be connected to the same network, then it has been used the smartphone to

create a private wireless network (hotspot).

In-cabin set-up

The requirements regarding the set-up basically rely on how the camera

is positioned. As shown in 2.21, the camera needs to be placed in front of

the driver with a maximum distance of 60 cm. In no case the camera should

obstruct the driver’s vision and it should record the full head of the driver when

he looks directly.

The embedded system, composed by the Gaze Estimator running on a

Raspberry Pi4, has been enclosed in the case and looks small as shown in

Figure 2.22. Before starting the ride, the system has been firstly connected

to a private network hosted by the smartphone, followed by the start of the

screen mirroring.

The first ride with a vehicle, which has not been used before in any test,

will be used for an initial calibration of the gaze zones. More details can be

found in the next section.

2.2 System Overview 44

Figure 2.21: Camera set-up adopted by this work

Figure 2.22: Outside view of the embedded system created in this work

2.2 System Overview 45

2.2.6 Gaze Zones Calibration

As is mentioned in section 2.2.3, the driver’s gaze zone is detected by thresh-

olding the yaw (θ) and pitch (ϕ) of the gaze with respect to a specific setting

(in-cabin 2D quadrants). Since, it may incur in different settings depending

on: 1) the dimensions of the car cabin and 2) the position of the driver relative

to the camera. Therefore, an initial calibration is necessary.

The aforementioned calibration consists on the following steps:

• 1) Creation of the gaze zones (offline).

• 2) Set-up of the camera as mentioned in 2.2.5.

• 3) Record a video of a short drive in which the driver will look at all the

zones at least twice.

• 4) Extraction of frames. A pre-processing will be needed to keep only

useful frames.

Later, the gaze estimator will detect the yaw (θ) and pitch (ϕ) for each

frame, allowing us to create the ranges for each zone (in-cabin 2D quadrant)

as seen in Figure 2.13.

Further explanation can be found in 3.2

Chapter 3

Experimental Results

3.1 Evaluation

The performance of the proposed model for estimating the 3D gaze vector of

people in images has been evaluated. The images used for training and evalu-

ation are the disjoint training and validation sets of the Gaze360 [38] dataset.

Since the dataset already contained cropped heads, for evaluation it was not

necessary to use the facial landmark detector described in section 2.2.1, which

will allow us to focus on the main task, 3D gaze estimation. However, it has

been shown in section 3.2 that the proposed model performs well even when

the facial landmark detector is used as part of the pre-processing to detect and

crop the heads.

The last row of Table 3.1 shows the performance of the proposed model,

which has been optimized by quantization, layer fusion and JIT scripting, as

described in Section 2.2.4. It performs with low latency in CPU inference time

(10.83 [ms]) as well as low angular error (17.71[◦]). It is worth to take note of

the fact that, given the nature of the Gaze360 dataset, angles can take values

up to 360[◦].

When optimizing a model, regardless of the type of technique applied, the

goal will be always to reduce the computational workload at the expense of

performance. However, it can be seen in Table 3.1, that in our case, the drop

3.1 Evaluation 47

in accuracy (angular error) from the FP32 eager version of the model to the

optimized one was low. Considering the type of problem that this thesis aims

to solve (in-cabin gaze zone detection), a drop of 3.3% from the initial angular

error (17.15%), is not significant. Therefore, it can be said that the optimized

model retains a high performance.

The small drop in performance can be explained by the applied quantiza-

tion technique. Static aware training quantization (explained in section 2.2.4)

is well known to maintain high accuracy while reducing computational work-

load.

It can also be seen in Table 3.1 how converting the eager model to a JIT

script significantly reduced the memory occupancy of the parameters (almost

99.9%) and the latency in inference time (CPU) by 85.16% while maintaining

almost the same accuracy reported by the quantized eager model.

Model Parameter Mem-
ory Occupancy
[Mb]

Angular Error [◦] Latency
[ms]

Eager FP32 10.20 17.15 72.99
Eager INT8 2.98 17.75 62.51
JIT Script 0.01 17.72 10.83

Table 3.1: Comparison of performance of the model in their FP32 and op-
timized versions. 1st row: Eager FP32 model, 2nd row: INT8 (QAT +
Layers Fusion) and the last row: the proposed model Pytorch JIT Script

.

In Figure 3.1 the performance of the proposed model has been compared

with the top-3 3D gaze estimation architectures reported in theGaze360 dataset

benchmark [25]. It can be seen that all the models, including the proposed by

this work, have similar performance (angular error can take values up 360[◦]).

However, the proposed model has reported a 92% reduction in parameter

count and a 96% reduction in the number of operations with respect to the

SOTA, and only a 7.3[◦] decrease on a 360[◦] scale.

3.1 Evaluation 48

Figure 3.1: Comparison of the ProposedModel with the top-3models reported
on the Gaze360 dataset benchmark. In the x-axis the number of operations
[GigaOPs]. In the y-axis the Angular Error [degree]. The size of each figure
varies according to the number of parameters.

3.2 Live Demo 49

3.2 Live Demo

Two live demonstrations have been performed using the proposed gaze es-

timation system deployed on a raspberry pi 4. The first, used as an initial

gaze zone calibration (see section 2.2.6), consisted on recording a video of

a thirty-minute ride using the hardware list detailed in 2.2.5. The driver was

previously told to look at all the nine zones in the cabin (2.12) including the

backward. The video was then processed offline to extract frames and dis-

card those repeated or invalid. Later, the 3D gaze vector and the in-cabin gaze

zone were offline estimated for each frame using the system deployed on the

raspberry pi. Finally, the angle ranges of each gaze zone (2D quadrant) were

set in the system to be used in the next drives.

After calibration of the gaze zones, the second demonstration was per-

formed on a thirty-minute drive in which the driver was not forced to look at

all the zones, but to drive naturally. The same webcam and setup as in the first

demonstration was used. However, this time, the inference was performed on-

line by the system running on the raspberry pi 4. The 3D gaze, gaze zone and

FPS information were saved in a CSV file in the local memory of the device.

The data were also read in real time using a smartphone connected to the rasp-

berry via the open source software Real VNC [31].

The results of the live demonstration can be seen in Figure 3.2. The im-

ages have been captured by the smartphone used as screen mirroring. In each

of them, the 3D facial landmarks and the cropped face sent as input to the

gaze estimation model can be seen. On the lower left, the estimated yaw and

pitch angles are shown, as well as the head orientation detected by the facial

landmark model. On the right side, one can see at the bottom the in-cabin

gaze zones adopted in this work and at the top the gaze zone detected by the

system.

3.2 Live Demo 50

(a) Gaze zone detected: ”Left Mirror” (b) Gaze zone detected: ”Right Mirror”

(c) Gaze zone detected: ”Straight” (d) Gaze zone detected: ”Glove Box”

Figure 3.2: Live demonstration of the system proposed in this work. A 3D
gaze estimator deployed on a Raspberry Pi4. The system is able to detect: the
driver’s face and head orientation using 3D facial landmarks, the 3D gaze and
nine in-cabin gaze zones.

3.3 Experiments 51

3.3 Experiments

This section will describe each of the experiments performed in this work. The

experiments cover a variation of the regression head by using three different

architectures and a feature extractor different fromMobileNetV2 (the one used

in the proposed solution). The results of applying different techniques and

engines to optimize the model are also described.

It is worth mentioning that, the feature extractor, the regression head and

the optimization technique adopted by the proposed system as a solution are

not explained in this section, since they have already been described in the

previous sections.

Variation of Feature Extractor

Experiments have started using ResNet18 as feature extractor. It has been pre-

viously trained on ImageNet and fine-tuned on the Gaze360 dataset. As for

the type of transfer learning applied, it has been with few shots. The main rea-

son is that there was an available checkpoint [38] of ResNet18 trained on the

same dataset to solve the 3D gaze estimation. As part of a technical decision

in this thesis, the feature extractor was configured to return an embedding of

256 features.

Variation of Regression Head

Three models have been created, using three different regression heads: Bi-

LSTM, TCN and single linear layer.

LSTM as Regression Head A bi-directional two layers LSTM has been

attached to the feature extractor. Later, a linear layer with 512 (2 × number

of features returned by the backbone) features as input and three (yaw, pitch

and confidence) as output has been attached to the LSTM.

3.3 Experiments 52

Since, it was the same architecture adopted by [38] and for what a check-

point was available, then, only transfer learning with zero-shots has been per-

formed when using ResNet18 as feature extractor.

It could be seen that although it is the same architecture and checkpoint

adopted by [38], neither the validation nor the test error were similar to the

one reported in the Gaze360 benchmark. The difference of about 2[◦] can be

explained by the variation in numerical precision of the hardware used in both

works. The validation error resulted in 15.35[◦] and the test error in 16.11[◦].

TCN as Regression Head

A Temporal Convolutional Network (TCN) is composed by causal convo-

lutions and dilations. Since it has more hyper-parameters than the LSTM, it

has been used Optuna [3] to facilitate their tuning. Those tuned were: learning

rate, optimizer, weight decay, number of layers, hidden layers and dropout of

the TCN.

Given the factors of time, size of splits and resource limitation, the hyper-

parameters have been tuned by taking only a subset of the training set. It has

been created with random samples covering 50% of the training set. Then, the

3 best hyper-parameter settings have been selected.

Only the regression head (TCN) has been trained, and as initial checkpoint,

it has been used [3]. The training has been performed for around 30 epochs

using each one of the top-3 hyper-parameters settings returned by Optuna.

The best performance resulted 14.3[◦] for the validation angular error. In-

deed, it was the best performance obtained in this work, but, since it was also

needed to consider the computational workload, the proposed model was an-

other lighter.

It could be appreciated that, for hyper-parameter tuning, doing so on a

smaller subset of the training can be useful since it will be faster than training

the full set, but it is recommended to select random and representative sam-

ples. Furthermore, having trained the full set with the top-3 hyper-parameters

settings gave us a higher probability of finding the best performing one.

3.3 Experiments 53

Linear Layer as Regression Head

Since we were looking for a light-weight architecture, it has been attached

a simple linear layer to perform the regression of the yaw, pitch and the confi-

dence. In that way, it could be also seen the gap of performance by using the

others head of regression. The linear layer receives as input the embedding of

256 features, which has been returned by the feature extractor, and projects it

into a lower dimension of three (yaw, pitch and confidence).

The model was fine tuned with a frozen backbone for 30 epochs. It was

used Adam as optimizer, 1×10−3 as learning rate and batch size 80.

The best checkpoint resulted in 16.32[◦] as validation angular error, almost

2[◦] higher than when using TCN as head of regression.

Table 3.2 below shows the results obtained by each of the models men-

tioned above.

Model Angular Error[◦]

ResNet18 + TCN 14.67
ResNet18 + Bi-LSTM 15.35

ResNet18 + Linear Layer 16.32
MobileNetV2 + Linear Layer 17.15

Table 3.2: Performance of the different models created with ResNet18 as fea-
ture extractor and comparison with the FP32 version of the proposed model
that makes use of MobileNetV2 as feature extractor .

Variation of Optimization Technique

A different technique of optimization and engine have been tried before com-

ing up with the best-performance set-up to reduce the computational workload

of the model proposed as solution in this work (MobileNetV2 as feature ex-

tractor and a linear layer as regression head).

As a different optimization engine, it has been firstly used Tensorflow Lite

[74]. Since, the models have been created using Pytorch, it has been needed

to convert the Pytorch model into ONNX, to finally convert it into Tensor-

flow. ONNX [55] comes by Open Neural Network Exchange and allows to

3.3 Experiments 54

interchange models between different Machine Learning Frameworks.

Theworkflow adopted can be seen in Figure 3.3 and starts with the Pytorch

model already trained. Then, it is converted into ONNX by using the function

torch.onnx.export that receives as input:

• Model: Pytorch model.

• Sample input: A tensor with the size similar to the model’s input. It has

been used a random tensor torch.rand((1, 7, 3, 224, 224)).

• Opset version: The ONNX opset version. In our case it was set to 12

• Input names: In our case, only one input is received, the tensor repre-

senting the driver’s frontal image.

• Output names: In our case there are three outputs (θ, ϕ, σ).

Once the ONNXmodel has been created and then validated using the func-

tion onnx.checker.check_model, the model has been converted into Tensor-

flow by means of the functions onnx_tf.backend.prepare and export_graph.

Then, the Tensorflow model has been quantized trying two post-training inte-

ger quantization techniques: 16-bit integer and 8-bit integer.

Even if both optimization techniques reduced the memory footprint of the

parameters in around 4x, similar to the results obtained by the proposed solu-

tion, in both cases (16INT and 8INT), the drop of performance was significant,

around 46% worse than the one reported by the eager FP32 version. There-

fore, as it has been described in the quantization of the proposed solution, the

optimization engine has been changed to Pytorch mobile and a quantization-

aware training technique has been applied due to recommendations to avoid

large drops in performance.

3.3 Experiments 55

Pytorch model

Convert model into ONNX

Verify ONNX model

Convert ONNX model into Tensorflow

Quantize model with tensorflow lite engine

Tensorflow Lite model

Figure 3.3: Flowchart followed to quantize a model using Tensorflow Lite

Chapter 4

Discussion and Conclusions

4.1 Final Remarks

A lightweight, high-performance embedded system capable of detecting the

3D gaze and the in-cabin gaze zone where the driver is looking has been devel-

oped. An RGB camera has been used as the only sensor to capture the driver’s

frontal image.

The system is composed of two deep learning-based neural networks that

work sequentially. The first is a ready-to-go face detection API, based on a

MobileNet-like architecture, which analyzes the driver’s frontal image and re-

turns 3D facial landmarks. Specific landmarks have then been processed to

detect the eyes and, based on their state, drowsiness could be detected. Then,

parallel processing has been performed, to detect the face and crop it with

an additional margin. At the end, the complete head of the driver has been

cropped from the original image and sent as input to the second model. This

model is in charge of estimating the 3D gaze vector using a light-weight ar-

chitecture, MobileNetV2, as a backbone.

In order to run on RaspberryPi4, the eager FP32 version of the model has

been optimized by the techniques: 8-bit integer quantization aware training

and layers fusion, using Pytorch Mobile. Subsequently, the already optimized

4.2 Limitations 57

eager model has been converted into a JIT script, resulting in near-SOTA per-

formances with almost 90% less memory footprint.

Finally, the 3D gaze vector has been classified as a gaze zone based on

the yaw and pitch angles (θ, ϕ) and the in-cabin configuration. This configu-

ration, basically divides the vehicle cabin into disjoint 2D quadrants, one for

each zone. In this work, nine gaze zones have been proposed including: right

mirror, left mirror, straight ahead, rear view mirror, center windshield, right

windshield, glove box, steering wheel and radio.

4.2 Limitations

This work aims to estimate the 3D gaze vector using as input a RGB image

containing the driver’s frontal image. To ensure accurate results as mentioned

in 3.1, the RGB image needs to contain a human head or at least the face.

Although the proposed system aims to detect the in-cabin gaze zones, those

located in front of the driver facing the camera (yaw θ ∈ [-90,90]), it is also

able to detect a backward gaze zone. This last is done by means of a head

orientation analysis.

When detecting frontal in-cabin gaze zones, it will be needed a RGB image

containing a full head and at least one visible eye. Even if the eyes are opened

or closed, the system will be able to estimate the 3D gaze vector and the in-

cabin gaze zone.

Considering the dataset used for training the neural network did not con-

tain images of people wearing glasses, so the fact the driver wear glasses, it

may impact the performance given the strong reflections and distortions cre-

ated. Even it is a problem, it can mitigated by fine tuning the neural network,

as explained in 4.3

4.3 Future work 58

4.3 Future work

Given the nature of the Gaze360 dataset, the variety of head orientation, gaze

direction and environments, it can be considered one of the most challenging

datasets for performing gaze estimation. Although the results obtained in this

thesis have been satisfactory, it should be useful to evaluate the performance

of the model on other datasets such as: MPIIGaze [85] and GazeCapture [41].

It has been noticed that images with poor light as well as the presence of

glasses or dark sunglasses may incur in a drop of performance. It can result in

a wrong gaze zone classification since on such scenarios, it will be difficult to

detect the eyes and gaze. However, this kind of problem can be mitigated by

using external sources of light, infrared sensors as well as a better camera.

It has been observed that when processing images in low light, as well as

those in which the driver is wearing eyeglasses or sunglasses, where the eyes

are not sufficiently visible, a drop in performance may be incurred. It may

result in a wrong classification of the gaze zone, as it will be difficult to detect

the eyes and gaze in such scenarios. However, this type of problem can be

mitigated by using external light sources, infrared sensors as well as a better

camera.

Improved drowsiness detection can be implemented by monitoring other

types of signals, e.g.: frequency of mouth opening, hand and headmovements,

as well as analysis of other body parts useful for detecting drowsiness.

To reduce latency at the time of inference, the skip of redundant frames

during streaming can be proposed, as well as the use of higher performance

camera. As for model optimization, other techniques, such as pruning, can be

applied.

The proposed system can be adapted to ADAS to gain insight into driver

behavior. Signals such as speed and steering wheel turn can be analyzed to-

gether with the 3D gaze vector to detect distractions and future actions, all-

together to ensure a safe road. The system can also be used for different or

4.3 Future work 59

complementary approaches to safety. For example, it can work together with

an augmented reality system that, based on the 3D gaze, displays a virtual

dashboard with specific options that the driver can select with his or her eyes.

Outside the automotive domain, 3D gaze can be useful for detecting cus-

tomer behavior in a grocery store. PoG (2D coordinates point of gaze) can be

used to detect user behavior on a website or mobile application.

Bibliography

[1] C. Ahlström, A. Anund, and E. H. Kjellman. Stress, fatigue and inatten-

tion amongst city bus drivers–an explorative study on real roads within

the adas & me project. In 6th International Conference on Driver Dis-

traction and Inattention (DDI2018), volume 2, pages 1–7, 2018.

[2] L. Ai, Z. Luo, C. Wang, and Y. Wu. Mobilenet investigation: its appli-

cation and reproducing edge detectors using depth-wise separable con-

volution. In ICMLCA 2021; 2nd International Conference on Machine

Learning and Computer Application, pages 1–6. VDE, 2021.

[3] T. Akiba, S. Sano, T. Yanase, T. Ohta, andM. Koyama. Optuna: A next-

generation hyperparameter optimization framework.CoRR, abs/1907.10902,

2019. arXiv: 1907.10902. URL: http://arxiv.org/abs/1907.

10902.

[4] A. A. Bamidele, K. Kamardin, N. S. N. Abd Aziz, S. M. Sam, I. S.

Ahmed, A. Azizan, N. A. Bani, and H. M. Kaidi. Non-intrusive driver

drowsiness detection based on face and eye tracking. International Jour-

nal of Advanced Computer Science and Applications, 10(7), 2019.

[5] V. Bazarevsky, Y.Kartynnik, A.Vakunov, K. Raveendran, andM.Grund-

mann. Blazeface: sub-millisecond neural face detection onmobile gpus.

arXiv preprint arXiv:1907.05047, 2019.

[6] Bitvise SSH Client. https://www.bitvise.com/ssh- client-

download/. [Online; accessed 10-May-2022].

https://arxiv.org/abs/1907.10902
http://arxiv.org/abs/1907.10902
http://arxiv.org/abs/1907.10902
https://www.bitvise.com/ssh-client-download/
https://www.bitvise.com/ssh-client-download/

BIBLIOGRAPHY 61

[7] G. Bradski. TheOpenCVLibrary.Dr.Dobb’s Journal of Software Tools,

2000.

[8] C. Braunagel, E. Kasneci, W. Stolzmann, and W. Rosenstiel. Driver-

activity recognition in the context of conditionally autonomous driving.

In 2015 IEEE 18th International Conference on Intelligent Transporta-

tion Systems, pages 1652–1657. IEEE, 2015.

[9] Bullseye Raspberry Pi OS. https://www.raspberrypi.com/news/

raspberry-pi-os-debian-bullseye/. [Online; accessed 10-May-

2022].

[10] D. B. Carr and P. Grover. The role of eye tracking technology in assess-

ing older driver safety. Geriatrics, 5(2), 2020. ISSN: 2308-3417. DOI:

10.3390/geriatrics5020036. URL: https://www.mdpi.com/

2308-3417/5/2/36.

[11] R. C. Castanyer, S. Martı́nez-Fernández, and X. Franch. Integration of

convolutional neural networks inmobile applications. In 2021 IEEE/ACM

1st Workshop on AI Engineering-Software Engineering for AI (WAIN),

pages 27–34. IEEE, 2021.

[12] J. Cech and T. Soukupova. Real-time eye blink detection using facial

landmarks. Cent. Mach. Perception, Dep. Cybern. Fac. Electr. Eng.

Czech Tech. Univ. Prague:1–8, 2016.

[13] M. N. Chaudhari, M. Deshmukh, G. Ramrakhiani, and R. Parvatikar.

Face detection using viola jones algorithm and neural networks. In 2018

Fourth International Conference on Computing Communication Con-

trol and Automation (ICCUBEA), pages 1–6. IEEE, 2018.

[14] C.-S. Chen, H.-T. Lin, et al. 360-degree gaze estimation in the wild

using multiple zoom scales. arXiv preprint arXiv:2009.06924, 2020.

https://www.raspberrypi.com/news/raspberry-pi-os-debian-bullseye/
https://www.raspberrypi.com/news/raspberry-pi-os-debian-bullseye/
https://doi.org/10.3390/geriatrics5020036
https://www.mdpi.com/2308-3417/5/2/36
https://www.mdpi.com/2308-3417/5/2/36

BIBLIOGRAPHY 62

[15] Z. Chen and B. E. Shi. Appearance-based gaze estimation using dilated-

convolutions. In Asian Conference on Computer Vision, pages 309–

324. Springer, 2018.

[16] Y. Cheng, H. Wang, Y. Bao, and F. Lu. Appearance-based gaze es-

timation with deep learning: a review and benchmark. arXiv preprint

arXiv:2104.12668, 2021.

[17] V. R. R. Chirra, S. R. Uyyala, and V. K. K. Kolli. Deep cnn: a machine

learning approach for driver drowsiness detection based on eye state.

Rev. d’Intelligence Artif., 33(6):461–466, 2019.

[18] I.-H. Choi, S. K. Hong, and Y.-G. Kim. Real-time categorization of

driver’s gaze zone using the deep learning techniques. In 2016 Interna-

tional conference on big data and smart computing (BigComp), pages 143–

148. IEEE, 2016.

[19] Y. Chung, W. Neiswanger, I. Char, and J. Schneider. Beyond pinball

loss: quantile methods for calibrated uncertainty quantification. CoRR,

abs/2011.09588, 2020. arXiv: 2011.09588. URL: https://arxiv.

org/abs/2011.09588.

[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:

a large-scale hierarchical image database. In 2009 IEEE conference on

computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[21] C. N. Duong, K. G. Quach, I. Jalata, N. Le, and K. Luu. Mobiface: a

lightweight deep learning face recognition on mobile devices. In 2019

IEEE 10th international conference on biometrics theory, applications

and systems (BTAS), pages 1–6. IEEE, 2019.

[22] H. et al. Pytorch ReLU6 activation function. https://pytorch.org/

docs/stable/generated/torch.nn.ReLU6.html/, 2017. [Online;

accessed 10-May-2022].

https://arxiv.org/abs/2011.09588
https://arxiv.org/abs/2011.09588
https://arxiv.org/abs/2011.09588
https://pytorch.org/docs/stable/generated/torch.nn.ReLU6.html/
https://pytorch.org/docs/stable/generated/torch.nn.ReLU6.html/

BIBLIOGRAPHY 63

[23] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu. Rmpe: regional multi-person

pose estimation. In Proceedings of the IEEE international conference

on computer vision, pages 2334–2343, 2017.

[24] K. A. FunesMora, F.Monay, and J.-M. Odobez. Eyediap: a database for

the development and evaluation of gaze estimation algorithms from rgb

and rgb-d cameras. In Proceedings of the symposium on eye tracking

research and applications, pages 255–258, 2014.

[25] Gaze360 Benchmark. https://paperswithcode.com/sota/gaze-

estimation-on-gaze360/. [Online; accessed 10-May-2022].

[26] S. Gillet, R. Cumbal, A. Pereira, J. Lopes, O. Engwall, and I. Leite.

Robot gaze can mediate participation imbalance in groups with differ-

ent skill levels. In Proceedings of the 2021 ACM/IEEE International

Conference on Human-Robot Interaction, pages 303–311, 2021.

[27] Google. MediaPipe Face Mesh. https : / / google . github . io /

mediapipe/solutions/face_mesh/, 2019. [Online; accessed 10-

May-2022].

[28] Google. MediaPipe Face Mesh CVPR 2019 Official Slides. https :

//sites.google.com/view/perception-cv4arvr/facemesh/,

2019. [Online; accessed 10-May-2022].

[29] Google.MediaPipe FaceMeshModel Card. https://drive.google.

com/file/d/1QvwWNfFoweGVjsXF3DXzcrCnz-mx-Lha/preview/,

2019. [Online; accessed 10-May-2022].

[30] K.Harezlak and P.Kasprowski. Application of eye tracking inmedicine:

a survey, research issues and challenges. Computerized Medical Imag-

ing and Graphics, 65:176–190, 2018.

[31] A. Harter. Real VNC. https://www.realvnc.com/es/connect/

download/viewer/raspberrypi/, 2010. [Online; accessed 10-May-

2022].

https://paperswithcode.com/sota/gaze-estimation-on-gaze360/
https://paperswithcode.com/sota/gaze-estimation-on-gaze360/
https://google.github.io/mediapipe/solutions/face_mesh/
https://google.github.io/mediapipe/solutions/face_mesh/
https://sites.google.com/view/perception-cv4arvr/facemesh/
https://sites.google.com/view/perception-cv4arvr/facemesh/
https://drive.google.com/file/d/1QvwWNfFoweGVjsXF3DXzcrCnz-mx-Lha/preview/
https://drive.google.com/file/d/1QvwWNfFoweGVjsXF3DXzcrCnz-mx-Lha/preview/
https://www.realvnc.com/es/connect/download/viewer/raspberrypi/
https://www.realvnc.com/es/connect/download/viewer/raspberrypi/

BIBLIOGRAPHY 64

[32] J. He, K. Pham, N. Valliappan, P. Xu, C. Roberts, D. Lagun, and V.

Navalpakkam. On-device few-shot personalization for real-time gaze

estimation. In Proceedings of the IEEE/CVF international conference

on computer vision workshops, pages 0–0, 2019.

[33] A.G.Howard,M. Zhu, B. Chen, D.Kalenichenko,W.Wang, T.Weyand,

M. Andreetto, and H. Adam.Mobilenets: efficient convolutional neural

networks for mobile vision applications. CoRR, abs/1704.04861, 2017.

arXiv: 1704.04861. URL: http://arxiv.org/abs/1704.04861.

[34] A. Jain, S. Bhattacharya, M. Masuda, V. Sharma, and Y. Wang. Ef-

ficient execution of quantized deep learning models: A compiler ap-

proach.CoRR, abs/2006.10226, 2020. arXiv: 2006.10226. URL: https:

//arxiv.org/abs/2006.10226.

[35] S. Kapp,M. Barz, S.Mukhametov, D. Sonntag, and J. Kuhn. Arett: aug-

mented reality eye tracking toolkit for head mounted displays. Sensors,

21(6):2234, 2021.

[36] A. Kar and P. Corcoran. A review and analysis of eye-gaze estimation

systems, algorithms and performance evaluation methods in consumer

platforms. IEEE Access, 5:16495–16519, 2017.

[37] Y. Kartynnik, A. Ablavatski, I. Grishchenko, andM. Grundmann. Real-

time facial surface geometry from monocular video on mobile gpus.

arXiv preprint arXiv:1907.06724, 2019.

[38] P. Kellnhofer, A. Recasens, S. Stent, W. Matusik, and A. Torralba.

Gaze360: physically unconstrained gaze estimation in the wild. In Pro-

ceedings of the IEEE/CVF international conference on computer vi-

sion, pages 6912–6921, 2019.

[39] M. Q. Khan and S. Lee. Gaze and eye tracking: techniques and appli-

cations in adas. Sensors, 19(24):5540, 2019.

https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://arxiv.org/abs/2006.10226
https://arxiv.org/abs/2006.10226
https://arxiv.org/abs/2006.10226

BIBLIOGRAPHY 65

[40] D. S. Khudia, J. Huang, P. Basu, S. Deng, H. Liu, J. Park, and M.

Smelyanskiy. FBGEMM: enabling high-performance low-precision deep

learning inference. CoRR, abs/2101.05615, 2021. arXiv: 2101.05615.

URL: https://arxiv.org/abs/2101.05615.

[41] K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar, W.

Matusik, and A. Torralba. Eye tracking for everyone. In Proceedings

of the IEEE conference on computer vision and pattern recognition,

pages 2176–2184, 2016.

[42] A. Krizhevsky and G. Hinton. Convolutional deep belief networks on

cifar-10. Unpublished manuscript, 40(7):1–9, 2010.

[43] A. Kuwahara, K. Nishikawa, R. Hirakawa, H. Kawano, andY. Nakatoh.

Eye fatigue estimation using blink detection based on eye aspect ratio

mapping (earm). Cognitive Robotics, 2:50–59, 2022.

[44] A. S. Le, T. Suzuki, and H. Aoki. Evaluating driver cognitive distrac-

tion by eye tracking: from simulator to driving. Transportation research

interdisciplinary perspectives, 4:100087, 2020.

[45] J.-h. Lee, I. Yanusik, Y. Choi, B. Kang, C. Hwang, J. Park, D. Nam, and

S. Hong. Automotive augmented reality 3d head-up display based on

light-field rendering with eye-tracking. Optics Express, 28(20):29788–

29804, 2020.

[46] J. Z. Lim, J. Mountstephens, and J. Teo. Emotion recognition using eye-

tracking: taxonomy, review and current challenges. Sensors, 20(8):2384,

2020.

[47] D. Liu, H. Kong, X. Luo, W. Liu, and R. Subramaniam. Bringing ai to

edge: from deep learning’s perspective. Neurocomputing, 2021.

https://arxiv.org/abs/2101.05615
https://arxiv.org/abs/2101.05615

BIBLIOGRAPHY 66

[48] C. B. S. Maior, M. J. das Chagas Moura, J. M. M. Santana, and I. D.

Lins. Real-time classification for autonomous drowsiness detection us-

ing eye aspect ratio. Expert Systems with Applications, 158:113505,

2020.

[49] S. Mehta and M. Rastegari. Mobilevit: light-weight, general-purpose,

and mobile-friendly vision transformer. CoRR, abs/2110.02178, 2021.

arXiv: 2110.02178. URL: https://arxiv.org/abs/2110.02178.

[50] S.Mehta, S. Dadhich, S. Gumber, andA. JadhavBhatt. Real-time driver

drowsiness detection system using eye aspect ratio and eye closure ra-

tio. In Proceedings of international conference on sustainable comput-

ing in science, technology and management (SUSCOM), Amity Univer-

sity Rajasthan, Jaipur-India, 2019.

[51] Mini Conda. https://github.com/conda- forge/miniforge/.

[Online; accessed 10-May-2022].

[52] MXNet. https://mxnet.apache.org/versions/1.9.1/. [Online;

accessed 10-May-2022].

[53] R. A. Naqvi, M. Arsalan, G. Batchuluun, H. S. Yoon, and K. R. Park.

Deep learning-based gaze detection system for automobile drivers us-

ing a nir camera sensor. Sensors, 18(2):456, 2018.

[54] J. O’Neill, G. V. Steeg, and A. Galstyan. Compressing deep neural net-

works via layer fusion. CoRR, abs/2007.14917, 2020. arXiv: 2007 .

14917. URL: https://arxiv.org/abs/2007.14917.

[55] ONNX. https://onnx.ai/about.html/. [Online; accessed 10-

May-2022].

[56] N. N. Pandey and N. B. Muppalaneni. Real-time drowsiness identifica-

tion based on eye state analysis. In 2021 International Conference on

Artificial Intelligence and Smart Systems (ICAIS), pages 1182–1187.

IEEE, 2021.

https://arxiv.org/abs/2110.02178
https://arxiv.org/abs/2110.02178
https://github.com/conda-forge/miniforge/
https://mxnet.apache.org/versions/1.9.1/
https://arxiv.org/abs/2007.14917
https://arxiv.org/abs/2007.14917
https://arxiv.org/abs/2007.14917
https://onnx.ai/about.html/

BIBLIOGRAPHY 67

[57] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.

Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Z.

Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,

L. Fang, J. Bai, and S. Chintala. Pytorch: an imperative style, high-

performance deep learning library.CoRR, abs/1912.01703, 2019. arXiv:

1912.01703. URL: http://arxiv.org/abs/1912.01703.

[58] S. Peißl, C. D. Wickens, and R. Baruah. Eye-tracking measures in avia-

tion: a selective literature review.The International Journal of Aerospace

Psychology, 28(3-4):98–112, 2018.

[59] Pytorch Jit Script. https://pytorch.org/docs/stable/generated/

torch.jit.script.html/. [Online; accessed 10-May-2022].

[60] Pytorch Jit Trace. https://pytorch.org/docs/stable/generated/

torch.jit.trace.html/. [Online; accessed 10-May-2022].

[61] Pytorch Mobile. https://pytorch.org/mobile/home/. [Online;

accessed 10-May-2022].

[62] M. Ramzan, H. U. Khan, S. M. Awan, A. Ismail, M. Ilyas, and A. Mah-

mood. A survey on state-of-the-art drowsiness detection techniques.

IEEE Access, 7:61904–61919, 2019.

[63] Raspberry Pi4 Model B Specifications. https://www.raspberrypi.

com/products/raspberry- pi- 4- model- b/specifications/.

[Online; accessed 10-May-2022].

[64] A. Recasens, A. Khosla, C. Vondrick, and A. Torralba. Where are they

looking? Advances in neural information processing systems, 28, 2015.

[65] A. Rosebrock. Imutils. https://pypi.org/project/imutils/,

2021. [Online; accessed 10-May-2022].

https://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://pytorch.org/docs/stable/generated/torch.jit.script.html/
https://pytorch.org/docs/stable/generated/torch.jit.script.html/
https://pytorch.org/docs/stable/generated/torch.jit.trace.html/
https://pytorch.org/docs/stable/generated/torch.jit.trace.html/
https://pytorch.org/mobile/home/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://pypi.org/project/imutils/

BIBLIOGRAPHY 68

[66] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen. In-

verted residuals and linear bottlenecks: mobile networks for classifica-

tion, detection and segmentation. CoRR, abs/1801.04381, 2018. arXiv:

1801.04381. URL: http://arxiv.org/abs/1801.04381.

[67] S. Savitz, C. Perera, and O. Rana. Edge analytics on resource con-

strained devices. International Journal of Computational Science and

Engineering, 2021.

[68] C. Shorten and T. M. Khoshgoftaar. A survey on image data augmen-

tation for deep learning. Journal of big data, 6(1):1–48, 2019.

[69] J. Shuja, K. Bilal, W. Alasmary, H. Sinky, and E. Alanazi. Applying

machine learning techniques for caching in next-generation edge net-

works: a comprehensive survey. Journal of Network and Computer Ap-

plications, 181:103005, 2021.

[70] Single-precisionf loating − pointformat. https://en.wikipedia.

org/wiki/Single-precision_floating-point_format/. [On-

line; accessed 10-May-2022].

[71] B. A. Smith, Q. Yin, S. K. Feiner, and S. K. Nayar. Gaze locking: pas-

sive eye contact detection for human-object interaction. In Proceedings

of the 26th annual ACM symposium on User interface software and

technology, pages 271–280, 2013.

[72] T. Soukupova and J. Cech. Eye blink detection using facial landmarks.

In 21st computer vision winter workshop, Rimske Toplice, Slovenia,

2016.

[73] TensorboardX. https : / / tensorboardx . readthedocs . io / en /

latest/tutorial.html/. [Online; accessed 10-May-2022].

[74] Tensorflow lite. https://tensorflow.google.org/lite/. [On-

line; accessed 10-May-2022].

https://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
https://en.wikipedia.org/wiki/Single-precision_floating-point_format/
https://en.wikipedia.org/wiki/Single-precision_floating-point_format/
https://tensorboardx.readthedocs.io/en/latest/tutorial.html/
https://tensorboardx.readthedocs.io/en/latest/tutorial.html/
https://tensorflow.google.org/lite/

BIBLIOGRAPHY 69

[75] G.Wang, Z. P. Bhat, Z. Jiang, Y.-W. Chen, D. Zha, A. C. Reyes, A. Nik-

tash, G. Ulkar, E. Okman, and X. Hu. Bed: a real-time object detection

system for edge devices. arXiv preprint arXiv:2202.07503, 2022.

[76] J.Wang and E. Olson. Apriltag 2: efficient and robust fiducial detection.

In 2016 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 4193–4198. IEEE, 2016.

[77] L. Wang and C. Wang. Gaze estimation of multi-camera and multi-

screen system oriented to human-computer interaction. In The Interna-

tional Conference onCyber Security Intelligence and Analytics, pages 786–

792. Springer, 2022.

[78] Y.Wang, G. Yuan, Z. Mi, J. Peng, X. Ding, Z. Liang, and X. Fu. Contin-

uous driver’s gaze zone estimation using rgb-d camera. Sensors, 19(6):1287,

2019.

[79] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius. Integer quan-

tization for deep learning inference: principles and empirical evalua-

tion. CoRR, abs/2004.09602, 2020. arXiv: 2004.09602. URL: https:

//arxiv.org/abs/2004.09602.

[80] XCubeAI. https://www.st.com/en/embedded- software/x-

cube-ai.html/. [Online; accessed 10-May-2022].

[81] J. Xu, J. Min, and J. Hu. Real-time eye tracking for the assessment of

driver fatigue. Healthcare technology letters, 5(2):54–58, 2018.

[82] R. Zhang, A. Saran, B. Liu, Y. Zhu, S. Guo, S. Niekum, D. Ballard, and

M. Hayhoe. Human gaze assisted artificial intelligence: a review. In

IJCAI: Proceedings of the Conference, volume 2020, page 4951. NIH

Public Access, 2020.

[83] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: an extremely effi-

cient convolutional neural network formobile devices.CoRR, abs/1707.01083,

https://arxiv.org/abs/2004.09602
https://arxiv.org/abs/2004.09602
https://arxiv.org/abs/2004.09602
https://www.st.com/en/embedded-software/x-cube-ai.html/
https://www.st.com/en/embedded-software/x-cube-ai.html/

BIBLIOGRAPHY 70

2017. arXiv: 1707.01083. URL: http://arxiv.org/abs/1707.

01083.

[84] X. Zhang, Y. Sugano, and A. Bulling. Evaluation of appearance-based

methods and implications for gaze-based applications. In Proceedings

of the 2019 CHI conference on human factors in computing systems,

pages 1–13, 2019.

[85] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling. Appearance-based gaze

estimation in the wild. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 4511–4520, 2015.

[86] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling. It’s written all over

your face: full-face appearance-based gaze estimation. In Proceedings

of the IEEE conference on computer vision and pattern recognition

workshops, pages 51–60, 2017.

https://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083

Acknowledgements

First of all, I would like to thank my mother for her constant support and

endless love. For always being patient and supportive with me, especially

when I need it most, when I am in my weird informatics mood.

Thanks to my grandparents, who together with my mother, have raised me

as a woman of values and principles. I am a firm believer that a child’s future

starts at home.

I would like to thank the University of Bologna for opening the doors to

international students, supporting them and making them feel less far from

home throughout their studies.

I would like to thank Prof. Francesco Conti and Prof. Samuele Salti for

their constant support throughout this thesis. Thank you for having shared

with me valuable insights and for having supported me at all times.

I would like to thankGianluca Toscano, DennyDi Pardo and all my cowork-

ers at TEORESI for being supportive, inclusive and kind throughout the in-

ternship and thesis project.

I would like to thank my boyfriend and his mother, for being my angels at

all times. Thank you for motivating me to learn a new language, Italian, which

definitely allowed me to enjoy my time here more. Thank you for accepting

my loud laughs and last-minute plans. Thank God I met you at the right time,

without them, all this would have been more difficult.

I would like to thank Joice Arcos and her family for their constant endorse-

ment, especially during my first arrival in Italy. For being my first friends and

for their support in those moments when I was not even able to say ”Salve,

vorrei un caffè per favore”.

Last but not least, I would like to thank the Angely of three years ago.

Thank you for being determined, adventurous and risk-taking by deciding to

leave your whole life in Ecuador and cross the Atlantic to achieve your dreams,

no matter that it would mean starting from scratch.

Love you all.

	Introduction and Related Work
	Summary
	Gaze Estimation On the Edge
	Thesis Goals
	Thesis Contributions
	Thesis Structure

	Dataset Collection and System Overview
	Dataset
	System Overview
	Face Detector by means of Facial Landmarks
	Drowsiness detection
	3D Gaze Estimator
	Deployment on the edge
	Gaze Estimation in live
	Gaze Zones Calibration

	Experimental Results
	Evaluation
	Live Demo
	Experiments

	Discussion and Conclusions
	Final Remarks
	Limitations
	Future work

	Bibliography
	Acknowledgements

