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Plant diseases and pests are risk factors that threaten global food security. 

Excessive chemical pesticide applications are commonly used to reduce the 

effects of plant diseases caused by bacterial and fungal pathogens. A major 

concern, as we strive toward more sustainable agriculture, is to increase crop yields 

for the increasing population. Microbial biological control agents (MBCAs) have 

proved their efficacy to be a green strategy to manage plant diseases, stimulate 

plant growth and performance, and increase yield. Besides their role in growth 

enhancement, plant growth-promoting rhizobacteria/fungi (PGPR/PGPF) could 

suppress plant diseases by producing inhibitory chemicals and inducing immune 

responses in plants against phytopathogens. As biofertilizers and biopesticides, 

PGPR and PGPF are considered as feasible, attractive economic approach for 

sustainable agriculture; thus, resulting in a “win-win” situation. Several PGPR 

and PGPF strains have been identified as effective BCAs under environmentally 

controlled conditions. In general, any MBCA must overcome certain challenges 

before it can be registered or widely utilized to control diseases/pests. Successful 

MBCAs offer a practical solution to improve greenhouse crop performance 

TYPE Review
PUBLISHED 06 October 2022
DOI 10.3389/fpls.2022.923880

OPEN ACCESS

EDITED BY

Nikolay Vassilev,  
University of Granada,  
Spain

REVIEWED BY

Joginder Singh,  
Lovely Professional University,  
India
Stefany Castaldi,  
University of Naples Federico II, Italy

*CORRESPONDENCE

Khaled A. El-Tarabily  
ktarabily@uaeu.ac.ae  
Synan F. AbuQamar  
sabuqamar@uaeu.ac.ae

SPECIALTY SECTION

This article was submitted to  
Plant Pathogen Interactions,  
a section of the journal  
Frontiers in Plant Science

RECEIVED 19 April 2022
ACCEPTED 24 August 2022
PUBLISHED 06 October 2022

CITATION

El-Saadony MT, Saad AM, Soliman SM, 
Salem HM, Ahmed AI, Mahmood M, 
El-Tahan AM, Ebrahim AAM, Abd 
El-Mageed TA, Negm SH, Selim S, 
Babalghith AO, Elrys AS, El-Tarabily KA and 
AbuQamar SF (2022) Plant growth-
promoting microorganisms as biocontrol 
agents of plant diseases: Mechanisms, 
challenges and future perspectives.
Front. Plant Sci. 13:923880.
doi: 10.3389/fpls.2022.923880

COPYRIGHT

© 2022 El-Saadony, Saad, Soliman, Salem, 
Ahmed, Mahmood, El-Tahan, Ebrahim, Abd 
El-Mageed, Negm, Selim, Babalghith, Elrys, 
El-Tarabily and AbuQamar. This is an open-
access article distributed under the terms 
of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that 
the original publication in this journal is 
cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.923880&domain=pdf&date_stamp=2022-10-06
https://www.frontiersin.org/articles/10.3389/fpls.2022.923880/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.923880/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.923880/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.923880/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.923880/full
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.923880
mailto:ktarabily@uaeu.ac.ae
mailto:sabuqamar@uaeu.ac.ae
https://doi.org/10.3389/fpls.2022.923880
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


El-Saadony et al. 10.3389/fpls.2022.923880

Frontiers in Plant Science 02 frontiersin.org

with reduced fertilizer inputs and chemical pesticide applications. This current 

review aims to fill the gap in the current knowledge of plant growth-promoting 

microorganisms (PGPM), provide attention about the scientific basis for policy 

development, and recommend further research related to the applications of 

PGPM used for commercial purposes.

KEYWORDS

biofertiIizers, biopestcide, crop yield, disease suppression, pathogen suppression, 
plant growth-promoting rhizhobacteria

Introduction

Plant pathogens and pests can have a large impact on 
agricultural productivity. Plant diseases reduce yields by 21–30% 
in several important crops worldwide (Savary et  al., 2019). 
Meanwhile, certain plant pathogens have developed long-term 
resistance against chemical management (Lucas, 2011). Some 
economically important plant diseases have become more 
prevalent. Dependence on chemical pesticides has become one of 
the most pressing challenges to global environmental sustainability 
and public health (Fones et al., 2020). Because many of insecticides 
are difficult to break down into simpler components that are less 
dangerous, toxic residues remain in the soil; thus, posing health 
concerns (Gilden et al., 2010). Awareness of the environmental 
and health risks associated with synthetic chemical pesticides is 
highly recommended for sustainable crop management and less 
used chemicals (Donley, 2019).

Synthetic agrochemicals have been considered unsustainable, 
causing the quest for more environmentally friendly alternatives. 
The focus of modern agriculture research has turned to farm 
practices. Plant growth-promoting rhizobacteria (PGPR) are 
effective, environmentally safe, and non-toxic naturally occurring 
microorganisms than can serve as a promising alternative to 
chemical pesticides. Besides, environmental factors can affect 
agricultural productivity; thus, this may worsen the scenario in a 
variety of ways. We have many reasons to take serious actions 
toward plant disease control management to improve our health 
and reduce the effects of environmental stresses (Chaloner et al., 
2021). Biological control provides one of the most economical and 
long-term effective strategies for managing plant diseases and 
reducing crop loss.

Recent advances in our understanding to plant growth-
promoting microorganisms (PGPMs) warrant a proper scientific 
evaluation of the relationship between the properties of PGPMs 
and their impact on plant growth, yield, and resistance/tolerance 
to biotic and abiotic stresses. In addition, this review study builds 
on a growing body of literature concerning some potential 
implementations of PGPMs in sustainable agriculture. Here, the 
aim is to provide a state-of-knowledge review reporting the effects 
of PGPMs on plants and finding solutions to the challenges that 

face microbial biological control agents (MBCAs) when applied 
on a large scale compared with those of chemicals.

PGPR as promising biocontrol 
agents

Soil is a complex ecosystem containing various groups of 
microorganisms, including bacteria, fungi, protists, and animals 
(Müller et al., 2016). These microorganisms play key roles in plant 
development, nutrient regulation, and biocontrol activities. They 
settle in the rhizosphere and endo-rhizosphere of plants, where 
they use a variety of direct and indirect processes to support plant 
growth. Lyu et al. (2020) have stated that the phytomicrobiome 
(plant-associated microorganisms) can provide competitive, 
exploitative, or neutral alliances with plants; thus, affecting crop 
yield. Recently, scientists have looked deeply into employing 
beneficial PGPR to inhibit phytopathogens and promote plant 
growth (Qiao et al., 2017; Alwahshi et al., 2022). A key part of this 
might be  attributed to the enhancement of target specificity 
between PGPR and the plant species (Lommen et al., 2019).

According to Zgadzaj et al. (2016), rhizosphere microbiome 
refers to bacterial, archaeal and fungal communities as well as 
their genetic material closely surrounding plant root systems. 
Microorganisms can indirectly impact crop health and 
phenotypic plasticity by influencing the growth of plants and 
defense responses due to their co-evolution with plants on a 
large scale (Goh et al., 2013). The rhizosphere is home to various 
microorganisms that provide steady PGPR supplies (Antoun 
and Kloepper, 2001). The phytomicrobiome includes the 
bacterial population that colonize the rhizosphere, on the root 
surface, and between the root cortex cells (Inui Kishi et  al., 
2017). Since plants can first colonize the terrestrial 
environments, PGPR have co-evolved with related plants; 
resulting in synergistic host plants’ relationships (Gouda et al., 
2018). The effects, methods, and possibility for successfully 
applying PGPR to agricultural plant production in controlled 
situations have been the subject of numerous studies. This is 
critical for developing more widely used methods of biological 
control that consider field settings.
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Safety and quality control are more crucial in vegetable 
cultivation since we use them less processed or unprocessed, and 
they have impact on health. PGPR are more achievable under 
greenhouse conditions. Because of the controlled environment, a 
significant number of prospective BCA has been discovered, and 
maybe ready for placement (Singh et al., 2017); thus, they have 
been confirmed to be successful in greenhouse investigations (Liu 
et  al., 2018). Bacillus subtilis, Bacillus amyloliquefaciens and 
Pseudomonas stutzeri are among those shown to achieve success 
in root colonization as well as prevention of the pathogen 
Phytophthora capsici in cucumber (Islam et al., 2016). At the post-
harvest stage, B. subtilis can protect tomato fruits from infection 
by Penicillium sp. and Rhizopus stolonifer (Punja et al., 2016).

Under greenhouse conditions, B. amyloliquefaciens isolates, 
diminish Fusarium oxysporum causing Fusarium wilt disease 
(Gowtham et al., 2016). In controlled situations, PGPR -as BCAs- 
are effective, indicating their role in greenhouse production 
systems and their efficacy in commercial horticulture. It is not 
necessary to distinguish the indirect PGPR pathways for pathogen 
infection avoidance and plant growth promotion under abiotic 
stresses. In addition, PGPR with biocontrol activities that also 
enhance plant growth would be more effective in practice. Plant 
tolerance to abiotic conditions and resistance to phytopathogens 
causing plant diseases can be improved by PGPR (Bhat et al., 2020; 
Leontidou et al., 2020). Some strains benefit plants’ coping with 
stress and flourishing in abiotic environments (Goswami and 
Deka, 2020).

While most researchers have reported PGPR under these 
controlled conditions, few of them have investigated their 
effectiveness as BCAs, especially when combined with an abiotic 
stress. This is a critical factor in field biocontrol, and when climate 
change affects the ecosystem. The long synergism between PGPR 
and plant may deliver various benefits to the host plant (Fan 
et al., 2020).

Biocontrol mechanisms using 
PGPR

PGPR can enhance the availability of certain nutrients 
[phosphate solubilization and nitrogen (N2) fixation], or 
synthesize the phytohormones [indole-3 acetic acid (IAA), 
ethylene (ET), jasmonic acid (JA), gibberellic acid (GA), and 
cytokinins (CKs); Mengiste et al., 2010; Vejan et al., 2016; Gouda 
et al., 2018; Sham et al., 2019].

PGPR colonizing a host plant can stimulate its growth through 
direct and indirect mechanisms (Figure 1). Direct mechanisms 
include the production of plant hormones, solubilization of 
phosphates, and increased uptake of iron. Indirect effects include 
antibiotics production, nutritional competition, parasitism, 
pathogen toxin inhibition, and induced resistance (Elnahal et al., 
2022). The attitude of “PGPR” in creating phytohormones, 
molecules of signaling metabolites, and related substances 
describe how plants protect themselves from drought as an 

example of abiotic stress and salinity (Jochum et  al., 2019). 
According to Abbas et al. (2019), PGPR may also alter the shape 
of the roots, resulting in increased root surface and improved root 
performance. In addition, PGPR can compete with other bacteria 
by colonizing rapidly and accumulating a greater supply of 
nutrients, preventing other organisms from growing (Salomon 
et al., 2017, Abd El-Mageed et al., 2020). PGPR have different 
strategies to colonize, of which each is tied to a particular host 
(Choudhary et  al., 2011). In general, pathogen infections can 
be suppressed by using antibiotics and antifungal metabolites; 
thus considered a well-known direct biological control strategy 
(Raaijmakers et al., 2002). Bacteriocins, antibacterial proteins, and 
enzymes are examples of antimicrobial peptides (Compant et al., 
2005). Antibiotics are small antimicrobial molecules produced by 
PGPR that can inhibit the process of metabolic or growth activities 
of microbial pathogens (Duffy et  al., 2003). These antibiotics, 
which are mostly strain-specific, can target the ribosomal RNA 
(rRNA), alter the membrane structure, and damage the cell walls 
of bacterial pathogens (Abriouel et al., 2011; Maksimov et al., 
2011; Nazari and Smith, 2020).

Many bacteria produce bacteriocins, where some have a 
greater variety of inhibitory activities than others (Abriouel et al., 
2011). Siderophores are specialized chelating agents of ferric iron 
that inhibit phytopathogens from gaining access to iron; thus, 
maintaining plant health particularly in iron-deficient 
environments (Shen et al., 2013). PGPR can manage various plant 
diseases by depriving pathogens of iron, thereby reducing disease 
development and generating extracellular siderophores (Radzki 
et al., 2013). Bacteriocins, siderophores, and antibiotics have thus 
been identified as the three supreme operative approaches for 
potential biocontrol prior to in vivo applications (Kloepper et al., 
1980). Several studies have investigated PGPR as a potential plant 
disease management tool to synthesize plant-beneficial 
metabolites such as siderophores (Subramanian and Smith, 2015).

PGPR can indirectly increase crop stress tolerance. Signal 
chemicals, such as phytohormones and specialized signal 
molecules, enable plant-to-microbe and microbe-to-plant 
communication (Lyu et al., 2020). The control and regulation of 
activities in the holobiont include the host plant and the 
“specific” phytomicrobiome (the plant-phytomicrobiome 
interaction). Two microbe-to-plant signals, lipo-
chitooligosaccharides (LCOs) and thuricin17 (TH17), enhance 
stress tolerance in different plant species (Lyu et  al., 2020). 
Resistance-inducing and antagonizing PGPR might be useful as 
new inoculants with combinations of different mechanisms of 
action, leading to a more efficient use for biocontrol strategies 
and plant growth promotion (Glick, 1995).

PGPR can also produce volatile organic compounds (VOCs) 
that play a significant role in plant growth and induced systemic 
resistance (ISR) to pathogens (Raza et al., 2016). Beneduzi et al. 
(2012) found that PGPR can trigger ISR as a strategy to improve 
disease resistance of plants. Roots colonization by arbuscular 
mycorrhizal fungi (AMF) and certain strains of non-pathogenic 
bacteria can improve plant resistance to biotic stresses 
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(Mauch-Mani et  al., 2017; Pérez-de-Luque et  al., 2017). ISR 
triggered by PGPR and plant growth-promoting fungi (PGPF) 
can be found in a wide range of plant taxa (Bhattacharyya and 
Jha, 2012). Systemic acquired resistance (SAR); however, can 
be activated by a pathogen infection (Gao et al., 2015). Salicylic 
acid (SA) signaling is associated with the production of 
pathogenesis-related (PR) genes. Unlike SAR, ISR functions 
independently of SA, but requires responses to ET and JA. This 
can be  achieved by the induction of defense-related gene 
expression; although is not always associated with induced PR 
proteins (Mathys et al., 2012).

Previous studies have identified ISR to stimulate PGPR via the 
SA-dependent pathway rather than the JA/ET-dependent pathway 
(Takishita et al., 2018). Other plant hormones, such as auxins, GA, 
CKs and brassinosteroids, may also contribute to plant immunity 
(Nakashita et al., 2003; Kazan and Manners, 2009; Giron et al., 
2013; Rady et al., 2021). Hormonal crosstalk is thought to allow 
the cultivation and exert their immunological growth and defense 
reactions (Pieterse et  al., 2014; AbuQamar et  al., 2017; Sham 
et al., 2017).

PGPR are involved in diverse mechanisms to enhance plant 
growth and/or act as BCAs. Crop production promotion and 
disease management could be  investigated together to ensure 
sustainability and cost-effectiveness of agricultural systems. Thus, 
effective PGPR strains can promote stress tolerance and nutrient 
absorption, plant development, and battling fungal/bacterial 
diseases. Thus, this appears to be a win-win situation to the PGPR 
strain and the host plant.

Challenges of employing PGPR as 
BCAs

PGPR-based biocontrol provides effective and long-lasting 
disease management. Europe and the United States are the most 
promising marketplaces for biocontrol products, followed by 
South America (Barratt et al., 2018). Although many PGPR have 
been tested in vitro and commercially proven as BCAs, new 
biocontrol products have been released from research activities 
carried out in the United States and Europe (Glick, 2012; O’Brien, 
2017; Rosier et al., 2018). In general, the market of BCAs and their 
products is growing; yet, it is not well-adopted compared with 
chemical pesticides as the most common crop management 
method (Mishra et al., 2015).

Before being publically accepted/registered as a commercial 
BCA, there are certain requirements/needs that have to be taken 
into consideration (Bashan et  al., 2014). As such, researchers 
should improve the efficacy of BCAs to manage certain disease(s). 
This can be achieved by having a BCA that has as many beneficial 
characteristics and mechanisms of action as possible. Such 
characteristics may include, but not limited to, the ability of the 
BCA to grow fast in vitro, produce a wide range of bioactive 
metabolites, possess high rhizosphere competence abilities, 
enhance plant growth performance, be environmentally safe, have 
the compatibility with other rhizobacteria/fungi, and be tolerant 
to abiotic stresses (Lyu et al., 2020). Successful colonization of root 
tissues and/or the rhizosphere is a critical component for any 

FIGURE 1

Direct and indirect mechanisms mediated by plant growth-promoting rhizobacteria (PGPR) with beneficial effects on host plants. ACC, 
1-aminocyclopropane-1-carboxylic acid; SOD, superoxide dismutase; CAT, catalase; and POX, peroxidase.
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PGPR strain to be an effective BCA; thus, to perform well against 
plant pathogens. On the other hand, performance of the 
inoculated PGPR may vary, depending on the survival rate in the 
soil, crop compatibility, interaction with other local microbial 
species and the environmental factors (Vejan et al., 2016). Survival 
and colonization are major components when identifying effective 
BCA isolates. In vitro antagonism experiments are often used to 
investigate the effect of bacterial isolates on certain diseases, prior 
to greenhouse and/or field trials (Bashan et al., 2014).

Performance of PGPR is generally assessed according to the 
geographical areas, soil types, host crop species, and under various 
environmental conditions (Choudhary et al., 2011). BCA growth 
is often easier to monitor under controlled conditions, i.e., 
greenhouses. The preference of this stage by most researchers 
could be attributed to the stability of environmental conditions. 
Greenhouse experiments evaluating the performance of BCAs 
under controlled conditions can provide strong theoretical and 
practical support for the application of PGPR in the field. Thus, 
this ensures the feasibility and efficacy of PGPR for commercial 
horticulture production, disease management and climate change 
conditions such as those found under field conditions.

PGPR stability is also influenced by the method, formulations, 
transportation, and storage conditions. To achieve high levels of 
the BCA survival (McIntyre and Press, 1991), one should improve 
the formulation technology (Lobo et al., 2019), increase the shelf-
life of the BCA product (Carrasco-Espinosa et al., 2015), optimize 
the production of targeted microbial types (Zhang et al., 2019) and 
achieve low-cost production at large scales (Kang et al., 2017). 
Many scientists have attempted to extend the shelf-life of PGPR 
by decreasing the storage temperature and/or modifying the 
combinations of additives (Lee et al., 2016; Berger et al., 2018). 
Extensive research on the risks and benefits of BCAs is also 
required, because agricultural disease management approaches 
rely on this balance.

Due to the diverse modes of action, identification, 
characterization, the registration of promising PGPR strains take 
time and require academic-industry collaborations. Using natural 
sources (e.g., BCAs) to control pathogens also poses a set of legal 
and ethical issues that may threaten the local biodiversity (Hajek 
et al., 2016). In that regard, new species/populations of BCAs have 
been restricted from entering specific countries. For commercial 
uses, the application of PGPR in protected environments such as 
greenhouses is much easier, due to a more isolated and controlled 
environment delivery and potentially less negative ecological 
consequences. Another challenge that is linked to the widespread 
implementation of PGPR-based biocontrol is the regulatory 
problems. Currently, each country has its regulatory system that 
greatly vary among them (Bashan et al., 2014).

High development costs for new commercial BCAs, for 
example, have been identified as a barrier to the BCA industry’s 
expansion in Australia (Begum et al., 2017). The high regulatory 
expenses of importing new BCAs into Australia is one of the most 
serious challenges. BCA registration requies tight coordination 
among governmental institutes, universities, and industrial sectors 

to facilitate the assessment and commercialization of new BCAs 
and their products. The shortage of programs for financial and 
ecological benefits can also be added as a challenging problem 
(Heimpel et al., 2013). For global marketing and local practical 
applications, commercialization should follow international 
legislation. The International Biological Control Organization 
(IOBC) have gathered academicians, researchers and practitioners 
from different sectors/fields to identify the barriers and provide 
recommendations to overcome these limitation (Barratt 
et al., 2018).

When compared to chemical pesticides, which are more 
reliable and predictable, farmers could notice little or no economic 
gain. Such programs, including local seminars, training workshops 
and free conferences may increase awareness about the application 
of BCA in specific farming areas. Finally, PGPR-based biocontrol 
can hold a lot of promises to reduce agrochemicals use in 
agriculture. The widespread use of PGPR as BCAs requires 
massive effort from regulatory bodies and crop growers to 
convince the public and earn their trust in the capacity of the new 
BCA products to manage diseases and increase crop yields. High-
value crop production in greenhouses could be an ideal place to 
test the efficacy of PGPR as BCAs in response to different abiotic 
stresses. Based on recent successful greenhouse trials, BCAs can 
be  used in the field for managing disease and associated 
agricultural plant growth enhancement (Alwahshi et al., 2022).

Rhizobacteria as BCAs

In the past few decades, rhizobacteria have gained attention 
when applied to grains, seeds, roots, and/or soils to help the plant 
grow and develop. Rhizobacteria are important for N2 fixation, 
promotion of plant growth, and biological control of plant 
pathogenic microorganisms. Recently, various microbial species 
are presently used in bacterization, containing Azospirillum, 
Azotobacter, Bacillus, Rhizobium, Serratia, Stenotrophomonas, 
Streptomyces Acinetobacter, Agrobacterium, Alcaligenes, 
Arthrobacter, Bradyrhizobium, Frankia, Pantoea, Pseudomonas, 
and Thiobacillus (Whipps, 2001). Many plant diseases associated 
with nematodial, bacterial and fungal infections have been 
reported to be managed by PGPR. The use of BCAs has been 
controversial in suppressing nematode populations because other 
soil microorganisms and the host plant can be adversely affected. 
To manage diseases associated with plant-parasitic nematodes a 
combination of biological management, nematicides, organic soil 
amendments, and crop rotation have been used (Timper, 2011). 
In vitro culture filtrates of a strain of Pseudomonas sp. can suppress 
juvenile mortality of Meloidogyne javanica; thus, considerably 
reduce root gall and nematode population, and enhance plant 
development and yield (Nasima et  al., 2002). Furthermore, 
inoculations with Bacillus spp. affect nematode behavior and 
feeding (Viaene et al., 2006). Pseudomonas striata, Pseudomonas 
fluorescens, and B. subtilis strains also overturn the population of 
nematodes (Table  1; Khan et  al., 2012). Root-knot nematode 
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TABLE 1 Bacterial and fungal plant growth-promoting strains used as biocontrol agents against plant pathogenic microorganisms.

Host Pathogen Disease PGP strains
Bacteria/Fungi References

I. Bacteria

Soybean Fusarium solani, Macrophomina phaseolina Root rot Bradyrhizobium sp. Parveen et al., 2019

Sclerotinia sclerotiorum White mold Butia archeri Vitorino et al., 2020

Pigeon pea Fusarium udum Fusarium wilt Rhizobacteria spp. Dukarea and Paulb, 2021

Erwinia tracheiphila Glutamicibacter spp. FBE-19 Fu et al., 2021

Apple Mucor piriformis Mucor rot Pseudomonas fluorescens Wallace et al., 2018

Rice Meloidogyne incognita Root-knot nematode Trichoderma citrinoviride 

Snef1910

Tariq et al., 2020

Magnaporthe oryzae Blast disease Pseudomonas putida BP25 Ashajyothia et al., 2020

Xanthomonas axonopodis pv. glycines Bacterial pustule Pseudomonas parafulva JBCS1880 Kakembo and Lee, 2019

Phytophthora capsici NA Pseudomonas, Burkholderia Khatun et al., 2018

Xanthomonas oryza Bacterial leaf blight Bacillus subtilis strain GBO3 Faizal Azizi and Lau, 2022

Strawberry Macrophomina phaseolina Charcoal rot disease Azospirillum brasilense Viejobueno et al., 2021

Botrytis cinerea Gray mold Bacillus amyloliquefaciens Y1 Maung et al., 2021

Cotton Macrophomina phaseolina Charcoal rot disease Pseudomonas aeruginosa and 

Sargassum ilicifolium

Rahman et al., 2017

Colletotrichum gossypii Ramulosis disease Bacillus amyloliquefaciens, and 

Bacillus velezensis

Ferro et al., 2020

Citrus fruit Penicillium digitatum Blue mold Bacillus megaterium Mohammadi et al., 2017

Oil seed rape Sclerotinia sclerotiorum Sclerotinia stem rot Trichoderma atroviride Hidayah et al., 2022

Brassica campestris L. Sclerotiniose Bacillus thuringiensis Wang et al., 2020

Canola Sclerotinia stem rot Paenibacillus chlororaphis Savchuk and Fernando, 2004

Maize Fusarium graminearum Stalk rot Bacillus methylotrophicus Cheng et al., 2019

Wheat Stagonospora nodorum Stagonospora nodorum 

blotch

Bacillus subtilis 26DCryChS Maksimov et al., 2020

Rhizoctonia solani AG-8 Wheat root pathogen Bacillus subtilis Zhang et al., 2021a

Pepper Phytophthora capsici Blight and fruit rot Bacillus licheniformis BL06 Li et al., 2020

Tomato Fusarium oxysporum f. sp. lycopersici Fusarium wilt Brevibacillus brevis Liu et al., 2022

Rhizoctonia solani Damping-off Burkholderia cepacia BY Al-Hussini et al., 2019

Mango Lasiodiplodia theobromae Dieback Streptomyces samsunensis UAE1, 

Streptomyces cavourensis UAE1, 

Micromonospora tulbaghiae UAE1

Kamil et al., 2018

Tea Colletotrichum sp, Shoot necrosis Trichoderma camelliae Chakruno et al., 2022

Date palm Fusarium solani Sudden death syndrome Streptomyces polychromogenes 

UAE2, Streptomyces 

coeruleoprunus UAE1

Alblooshi et al., 2022

Streptomyces tendae UAE1, 

Streptomyces violaceoruber UAE1

Alwahshi et al., 2022

Thielaviopsis punctulata Black scorch Streptomyces globosus UAE1 Saeed et al., 2017

Royal poinciana Neoscytalidium dimidiatum Stem canker Streptomyces rochei UAE2, 

Streptomyces coelicoflavus UAE1 

and Streptomyces antibioticus 

UAE1

Al Raish et al., 2021

Streptomyces griseorubens UAE2 Al Hamad et al., 2021

Banana Fusarium spp. Postharvest diseases Trichoderma spp. Snehalatharani et al., 2021

II. Fungi

Rice Helminthosporium oryzae, Bipolaris oryzae Leaf brown spot Trichoderma viride, Trichoderma 

harzianum, Trichoderma 

hamatum

Khalili et al., 2012; Mau et al., 

2022 

(Continued)
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(RKN) infestations have been successfully managed via biological 
management using Bacillus isolates (Lee and Kim, 2016). Few 
studies have reported the endophytic P. fluorescens and Bacillus 
spp. to promote systemic resistance in crops against nematodes 
owing to the increased activities of phenylalanine ammonia-lyase, 
polyphenol oxidase, and peroxidase, as defense-related enzymes 
for producing antagonistic chemicals and altering explicit root 
exudates such as amino acids and polysaccharides (Abbasi et al., 
2014). P. fluorescens isolates increased defense enzymes in 
tomatoes resistant to RKN (Kavitha et al., 2013). In comparison 
with the control, the application of P. fluorescens and Paecilomyces 
lilacinus resulted in low nematode community in roots, tubers and 
soils (Mohan et al., 2017).

According to Jha et al. (2015), losses resulting from post-fresh 
fruit and vegetable harvest in India ranged between 4.6% and 
15.9%. Although fungicides can inhibit the growth of 
phytopathogens, their use causes problems to the environment as 

well as the human and animal health (Nunes, 2012). The most 
environmentally acceptable practice to control post-harvest fungal 
diseases is by using BCAs. In general, BCAs can protect plants 
from fungal diseases, and are currently a viable option to manage 
post-harvest diseases associated with plant pathogens (Ghazanfar 
et  al., 2016). In agriculture, BCAs can offer a number of 
advantages, including the reduction in the causing agents, farming 
preservation, minimum labor, soil, water plant contamination, 
and waste management difficulties (Torres et al., 2016). Fungal 
species, such as Alternaria, Aspergillus Penicillium, and Fusarium 
producing mycotoxins, are harmful to green vegetables and cause 
post-harvest diseases. Mycotoxins, such as fumonisin, ochratoxins, 
aflatoxins and other toxins, are released in vegetables and fruits 
infected with the fungal pathogens, Fusarium, Alternaria, and 
Aspergillus (Sanzani et  al., 2016). The use of biopriming and 
pelletizing techniques of Serratia plymuthica HRO-C48 alongside 
Verticillium dahliae in canola plants revealed a significant 

Host Pathogen Disease PGP strains
Bacteria/Fungi References

Scorzonera Alternaria scorzonerae, Fusarium culmorum Root and stem rot Trichoderma harzianum T-22 Patkowska, 2021

Trichoderma spp. Bilesky-José et al., 2021

Sclerotinia sclerotiorum, Botrytis cinerea, 

Fusarium solani, Fusarium cucurbitae, 

Pythium aphanidermatum, Rhizoctonia 

solani, Mycosphaerella melonis

Trichoderma aggressivum Sánchez-Montesinos et al., 2021

Tobacco Fusarium, Rubrobacter, and Talaromyces 

spp.

Root rot Paenibacillus polymyxa 

Trichoderma harzianum

Yao et al., 2021

Okra Meloidogyne incognita Root-knot disease Trichoderma virens Tariq et al., 2018

Beans Botrytis cinerea Chocolate spot Trichoderma atroviride Yones and kayim, 2021

Sclerotinia sclerotiorum Wild mold Trichoderma asperellum Zapata-Sarmiento et al., 2020

Onion Sclerotium cepivorum White rot Rivera-Méndeza et al., 2020

Tomato Colletotrichum gloeosporiodes Crop loss Trichoderma longibranchiatum De la Cruz-Quiroz et al., 2018

Cabbage Fusarium oxysporum Cabbage Fusarium wilt Rhizobactrin Khafagi et al., 2020

Sclerotium sclerotiorum Cabbage wilt Trichoderma hamatum Jones et al., 2014

Cocoa Phytophthora Palmivora Black pod Aspergillus fumigates Adebola and Amadi, 2010

Tomato Fusarium oxysporum f. sp. lycopersici Wilt Penicillium oxalicum Murugan et al., 2020

Rhizophagus intraradices Verticillium wilt Penicillium pinophilum Ibiang et al., 2021

Meloidogyne javanica Root-knot disease Paecilomyces lilacinus Hanawi, 2016

Vigna radiata Meloidogyne incognita Purpureocillium lilacinum Khan et al., 2019

Pineapple Meloidogyne javanica Purpureocillium lilacinum Kiriga et al., 2018

Carrot Pochonia chlamydosporia Bontempo et al., 2017

Kiwi Postharvest diseases Kiwi fruit wound Debaryomyces hansenii Sui et al., 2021

Soil-borne pathogens Rhizosphere Tsegaye et al., 2018

Tomato Sclerotium rolfsii Southern blight Stenotrophomonas maltophilia 

PPB3

Sultana and Hossain, 2022

Phytophthora infestans Late blight Rhizopus spp. Agbor et al., 2021

Peaches Monilinia laxa Postharvest fruit decay Aureobasidium pullulans Di Francesco and Baraldi, 2021

Sweet potato Ceratocystis fimbriata Black rot disease Pseudomonas chlororaphis subsp. 

aureofaciens SPS-41

Zhang et al., 2021b

Rice Pyricularia oryzae Rice blast fungus Rhizobacteria Nabila and Kasiamdari, 2021

Chickpea Rhizoctonia bataticola Chickpea dry root rot Bacillus subtillis Chiranjeevi et al., 2021

TABLE 1 (Continued)
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biocontrol (Muller and Berg, 2008); thus, providing evidence of 
the ability of BCAs to manage diseases comparable to 
chemical fungicides.

Bacillus spp. produce a variety of compounds involved in the 
biocontrol of phytopathogens on various plants, including potato, 
rice, tomato, wheat, groundnut, brinjal, chickpea, and cucumber 
(Peng et al., 2014). Bacillus sp. BS061 isolate can mitigate the effect 
of Botrytis cinerea to reduce the occurrence of gray mold and 
powdery mildew diseases in strawberry and cucumber (Kim et al., 
2013). Park et al. (2013) found that Pectobacterium carotovorum 
SCC1 can manage soft rot disease in tobacco plants when 
conjugated with B. subtilis strain B4 and BTH fungicides. The 
root-knot and root rot pathogens are often suppressed when 
Pseudomonas spp. are used as BCAs (Habiba et al., 2016). Farhat 
et al. (2017) revealed that PGPR isolates had antifungal activities 
in mungbean plants against Rhizoctonia solani, Macrophomina 
phaseolina, F. solani, and F. oxysporum. These isolates can also 
be used to prevent fungal infections that cause root rot disease. 
The application of the bacterial BCA, Pseudomonas aeruginosa, 
can manage anthracnose in the chili pepper against the causal 
pathogen Colletotrichum capsici (Jisha et al., 2018). P. aeruginosa 
can also induce systemic resistance of chili pepper to anthracnose.

Synthetic chemical pesticides are mainly used for post-harvest 
disease management. Thus, this may lead to plant pathogen 
resistance, soil deterioration, and toxicological hazards for the 
humans and the environment. Nowadays, a general trend, as a 
result, has been shifted toward finding an alternative to the use of 
agrochemicals in plant disease management. Compared to 
synthetic chemical fungicides, the use of microbial antagonists or 
BCAs has become a “hot” topic due to the numerous advantages 
as non-hazardous, green, economical and feasible applications to 
control post-harvest pathogen infections (Bonaterra et al., 2012).

Fungi as BCAs

Fungal BCAs are able to antagonize plant pathogens and 
protect their host plants. For example, several strains of 
Trichoderma have been developed as BCAs against the fungal 
pathogens Penicillium, Fusarium, Aspergillus, Alternaria, Pythium, 
Rhizoctonia, Phytophthora, Pyricularia, Botrytis, and 
Gaeumannomyces (Pal and Gardener, 2006; Adebola and Amadi, 
2010; Agarwal et al., 2011; Alam et al., 2011; Nally et al., 2012). As 
a BCA, Trichoderma can suppress various air- and soil-borne plant 
pathogens; thus, can be  conceivably used as biopesticides in 
greenhouse and/or field trials. According to Silva et al. (2017), 
certain strains of nematophagous fungi can manage the 
populations of Meloidogyne enterolobii in an integrated pest 
management (IPM) approach. AMF could also protect crops 
against soil-borne pathogens, including RKN, albeit the unclear 
mechanisms of antagonism (Vos et al., 2012).

The use of nematophagous and endoparasitic fungi has been 
deployed as antagonists to suppress RKN (Pendse et al., 2013). The 
talc-based formulation of the fungal BCA, Paecilomyces lilacinus, 

was found to be  more active in reducing the population of 
Meloidogyne incognita in soils cultivated with tomato plants (Priya 
and Kumar, 2006). The efficiency of P. lilacinus in controlling 
nematodes was observed in several horticultural crops, including 
tomato, okra, and capsicum (Rao, 2007). The most widely used 
BCA for plant-parasitic nematodes is the fungus P. lilacinus, which 
has shown an appropriate replacement to synthetic chemical 
control in pre- and post-planting applications (Atkins et al., 2005). 
P. lilacinus infects eggs, juveniles and females of M. javanica by 
direct hyphal penetration (Esfahani and Pour, 2006). P. lilacinus 
can boost tomato yield while reducing the population of 
M. incognita in the soil and on the roots (Kalele et al., 2010). RKN 
management can also be achieved by using P. lilacinus and Bacillus 
firmus either individually or in combination. However, the 
mixture of P. lilacinus and B. firmus applied in soils 2 weeks prior 
to tomato transplantation showed the best practice to control 
Meloidogyne spp. (Anastasiadis et al., 2008).

Coating the seed with Trichoderma viride and P. lilacinus 
effectively reduced the nematode population in the soil. Species of 
Aspergillus and Paecilomyces were found to be  antagonistic to 
M. incognita when compared to the single bio-agent treatment; 
thus, resulting in enhanced plant growth (Table 1; Bontempo et al., 
2017). Kerry and Hidalgo-Diaz (2004) developed a management 
technique using the nematophagous fungus Pochonia 
chlamydosporia to manage RKN for the purpose of organic 
vegetable production. Okra seeds treated with Trichoderma 
harzianum, T. viride, P. lilacinus, P. chlamydosporia, and 
P. fluorescens at 20 g kg−1 seed signifcantly reduced the nematode 
population in the soil and promoted plant growth development 
(Kumar et  al., 2012). Sharf et  al. (2014) have reported that 
P. chlamydosporia exhibited nematicidal effects against 
M. incognita on infected common bean under greenhouse 
condition. Trichoderma spp. synthesizing chitinases, lytic 
enzymes, proteases, and glucanases were found to manage 
vegetable crop diseases (Punja and Utkhede, 2003). T. harzianum, 
T. viride, and T. hamatum have nematocidal properties when they 
colonize the roots of host plant and enhance their growth 
performance (Girlanda et al., 2001; Siddiqui and Shaukat, 2004; 
Zhang and Zhang, 2009). Because crop yield is mainly influenced 
by climatic conditions, agronomic factors, pests, and nutrient 
availability in the soil (Harman et al., 2004; Elrys et al., 2019a, 
2020a), researchers must consider these factors in the selection of 
fungal BCAs.

Likewise, Trichoderma spp. can prevent nematode penetration 
and development in plants through the regulation of metabolites 
(Bokhari, 2009). Usman and Siddiqui (2012) have shown that the 
M. incognita and other RKN are more affected by the culture 
filtrate of Trichoderma. Species of Trichoderma can produce 
viridin, a nematicidal chemical (Watanabe et al., 2004). Gliotoxin 
and acetic acid, have also been reported as nematicidal substances 
in the culture filtrates of T. virens and T. longibrachiatum, 
respectively (Anitha and Murugesan, 2005). In response to 
M. incognita, T. polysporum has the ability to synthesize 
cyclosporine, the peptide that has a nematicidal action (Li et al., 
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2007). The efficacy of P. lilacinus, as bioagents or bioproducts in 
mixtures, significantly decreased the number of M. incognita on 
eggplant (Hanawi, 2016). It has been shown that different sources 
of N and carbon affect the growth and antagonism of 
Trichothecium roseum and T. viride (Arya, 2011). Although 
fructose and lysine were mostly effective against T. viride, 
rhamnose and glycine were more effective against T. roseum. 
There is an adverse effect of fungal culture filtrates on the egg 
hatching and juvenile mortality of RKN. Plants treated with the 
fungal BCA, Lecanicillium muscarium, decreased the number of 
galls in plants, eggs, juveniles (J2) and the reproduction factor (Rf) 
of Meloidogyne hapla compared to control plants (Hussain et al., 
2017). In addition, plant growth was greatly improved when 
treated with L. muscarium. Trichoderma and P. lilacinum isolates 
dramatically reduced nematode egg number and mass, minimized 
root gal injury, and improved plant root mass development when 
compared to control plants without the fungal BCAs (Kiriga et al., 
2018). Overall, more than 30 genera and 80 species of fungi can 
parasite RKN (Gaziea-Soliman et al., 2017). Prince et al. (2011) 
have demonstrated that the fungus, Colletotrichum falcatum, has 
antagonistic potential against the fungal pathogens Penicillium 
citrinum, Botrytis cinerea, and Trichodermum glaucum. Moreover, 
other fungi, such as Ampelomyces speciosus and Acremonium 
alternatum, have the ability to degrade the mycelia of fungal 
pathogens, indicating that not only rhizobacteria, but also fungi 
can serve as BCAs (Kiss, 2003).

Mechanisms used by MBCAs

Understanding the appropriate conditions for implementing 
proper programs against plant pathogens requires collaborations 
between different research groups focusing on the mechanisms 
associated with MBCAs to manage diseases on plants. In the last 
two decades, extensive research has focused on the antifungal 
effect, rhizosphere colonization, and crop benefits linked to 
MBCA (Compant et al., 2010; Al Hamad et al., 2021; Al Raish 
et al., 2021; Alwahshi et al., 2022). Thus, the products of MBCA 
on plant fungal pathogens and their impacts on plants are 
illustrated in Figure  2. The primary strategy of MBCA are 
summarized as antibiosis, competition for micronutrients such 
as iron, mycoparasitism, production of hydrolytic enzymes, and 
induction of ISR in host plants (Figure  3). In addition, the 
production of metabolites that are inhibitory to plant 
pathogenic rhizosphere microorganisms is considered one of 
the major biocontrol activities in many MBCA (Haas and 
Keel, 2003).

In several microorganisms, antibiosis, also known as 
secondary metabolites, results in the production of various toxic 
chemicals to pathogenic microorganisms; thus, they are suitable 
for the plant growth and development. An antibiotic-producing 
microorganism must manufacture the antibiotic in the correct 
microniche on the root surface to effectively control plant diseases 
(Lugtenberg and Kamilova, 2009). Actinobacteria (8,700 distinct 

antibiotics), bacteria (2,900), and fungi (4,900) can produce 
massive amounts of antibiotics (Bérdy, 2005). Mutagenesis has 
been reported to be  successful in determining the role of 
antibiotics generated by bacterial BCA isolates to control 
pathogens associated with plant infections (Liu et al., 2007).

Ongena and Jacques (2008) have investigated the lipopeptides 
(surfactin, iturin, and fengycin) in Bacillus spp. It has also been 
reported that pyrrolnitrin, 2,4-diacetylphloroglucinol (DAPG), 
and phenazine can be  potential antibiotic metabolites in 
Pseudomonas (Raaijmakers and Mazzola, 2012). Pseudomonas 
spp. have the ability to generate pyoluteorin, siderophores, and 
cyanide, among other antimicrobial chemicals (Compant et al., 
2010). In addition, the enzymatic activity of cellulase, proteases, 
β-glucanase, and chitinase can lyse fungal cells (Hernandez-Leon 
et al., 2015). Antibiotic metabolites produced by Pseudomonas 
spp. are regulated by complex regulatory networks and high 
number of transcription factors (Berry et al., 2014). Significant 
classes of antifungal antibiotics are lipopeptides or peptides that 
are produced by the ribosomes or non-ribosomes of Bacillus spp. 
(Figure  2). Arseneault and Filion (2017) have discussed that 
antibiotics can be generated by BCA strains in soil.

Bacillus spp. have the ability to produce various biologically 
active chemicals that hinder the development of several crop 
diseases (Zhao et al., 2013). An investigation by Chowdhury et al. 
(2015) revealed that the quantity of antibacterial or antifungal 
chemicals produced by Bacillus spp. in the rhizosphere is 
somewhat little, causing doubts on the role of rapid management 
of plant diseases. Several isolates of P. fluorescens were found to 
generate cyclic lipopeptides (CLPs), such as viscosinamide, 
amphisin and tensin, that were effective against fungal pathogens, 
R. solani and Pythium ultimum (Nielsen et al., 2002).

Biological control is an application of beneficial organisms, 
genes, and their products in the form of metabolites (Glare et al., 
2012). Several in vitro metabolites of microorganisms were 
utilized to control pathogenic infections (Köhl et al., 2019). As a 
result, these secondary metabolites can be utilized as products of 
a BCA; and thus, they are effective to ameliorate the negative 
impact of other pathogenic microorganisms while also being 
environmentally friendly. Antimicrobial activities of some fungal 
BCAs may also exhibit antagonistic effects against fungi. For 
example, Trichoderma spp. are commonly found in soil and 
provide a variety of volatile and nonvolatile compounds. Volatile 
compounds, such as cyanide, hydrogen, ET, aldehydes, ketones 
and alcohols; and nonvolatile substances, such as peptides, can 
inhibit the mycelial growth in some pathogenic fungi. Many 
antifungal compounds, such as gliovirin, gliotoxin, viridiol, 
heptelidic acid, valinotrocin, and viridin can be  produced by 
Gliocladium virens, which acts as a MBCA. Singh et al. (2005) 
demonstrated that gliotoxin can effectively reduce the fungal 
pathogens, Pythium aphanidermatum, M. phaseolina, Pythium 
debaryanum, R. solani, Sclerotium rolfsii, and Rhizoctonia 
bataticola. Vinale et al. (2009) have stated that the production of 
1-hydroxy-3-methylanthraquinone, 1,8-dihydroxy-3-methyl-
anthraquinone, T22 azaphilone, harzianolide, T39butenolide, and 
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harzianopyridone by T. harzianum strains T22 and T39 has the 
ability to control the plant fungal pathogens Leptosphaeria 
maculans, Phytophthora cinnamomi, R. solani, Botrytis cinerea, 

and P. ultimum. Several secondary metabolites have been isolated 
and recognized by different methods such as high-performance 
liquid chromatography (HPLC) and gas chromatography–mass 

FIGURE 3

Pathways of microbial biocontrol agents (MBCAs).

FIGURE 2

Fungal and bacterial biocontrol agents (BCAs) and their impact on plant. ET, ethylene; HCN, hydrogen cyanide.
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spectrometry (GC–MS). Shanthiyaa et al. (2013) have investigated 
three isolates, Cg-5, Cg-6, and Cg-7, that produce the secondary 
metabolite, chaetoglobosin A, in the culture filtrate detected by the 
UV spectrum at 250 nm. The antimicrobial compounds released 
by fungi may also control phytopathogens during post-harvest 
infections. The post-harvest infection causes excessive damages in 
vegetables and fruit (Figures 4, 5).

Competition in the rhizosphere

Co-existence of two living microorganisms occurs when a 
population of a particular microorganism strives to achieve 
something greater, such as space or food supply (Stirling, 2017). 
Pathogenic and non-pathogenic microorganisms compete for 
food and resources in the rhizosphere. It has been known for a 
long time that non-pathogenic plant-associated bacteria are 
usually protected by colonizing plants and, as a result, this 
debilitate the limited available substrates and prevent the spread 
of the pathogens. The abilities of any microorganism to compete 
with others for essential nutrients and exudates secreted by the 
plant roots and their capability of colonizing into the root surface 
of host plants are termed rhizosphere competence. In the 
rhizosphere, the beneficial interactions between plants and 
microorganisms can regularly occur; thus, promoting growth and/

or enhancing tolerance to biotic and abiotic stresses in plants 
(Zamioudis and Pieterse, 2012).

Rhizosphere competence can successfully establish microbial 
communities on or near the plant roots. Plant root colonization 
by PGPM can protect plants against pathogens and promote plant 
growth, and chemotaxis to root exudates is considered as an 
essential prerequisite for efficient root colonization (de Weert and 
Bloemberg, 2006). Microbial community in the rhizosphere is 
found to be  important shortly after planting, but regularly 
decreases during the cropping season (Weller, 2007). Adesina et al. 
(2009) have reported in vitro antagonism of 15 Pseudomonas 
strains to R. solani in the rhizosphere. Only Pseudomonas jessenii 
RU47 has been effective to bottom rot disease on lettuce caused by 
R. solani. Tryptophan can stimulate the growth of adventitious 
roots and root hairs of the IAA-producing B. subtilis SRB28, which 
can colonize root tissues in sorghum, produce microcolonies, and 
persist in the rhizosphere (Das et al., 2010).

Rhizosphere microorganisms promoting plant growth, 
represent a wide range of species. PGPM are categorized 
according to their ability to colonize roots, survive, increase their 
numbers in the microhabitats on the root surface, compete with 
indigenous microorganisms, and increase resistance in host crops 
(Gamalero et  al., 2004). PGPM can not only promote plant 
development, but also they are often used as BCAs to suppress 
plant diseases. The plant-associated Bacillus, Pseudomonas, 
Lactobacillus and actinobacteria strains are used as biofertilizers 

FIGURE 4

Pathways and modes of action of microbial biocontrol agents (MBCAs). ET, ethylene; ISR, induced systemic resistance; JA, jasmonic acid; PR, 
pathogenesis-related; SA, salicylic acid; SAR, systemic acquired resistance.
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and BCAs in agriculture (Borriss, 2011; Sivasakthi et al., 2014; 
Lamont et  al., 2017; Shivlata and Satyanarayana, 2017). 
Furthermore, Acetobacter, Serratia, Azospirillum, Paenibacillus 
Burkholderia, Herbaspirillum, and Rhodococcus can also enhance 
growth in crop plants (Babalola, 2010). Chakraborty et al. (2013) 
reported that a number of PGPR traits, such as production of 
siderophore, solubilization of phosphate, synthesis of IAA, and 
antagonism against fungal pathogens, were found to stimulate 
growth in tea plants. This has been linked with an increase in the 
number of shoots and leaves under greenhouse and field 
conditions. In general, soils with active microbial ecosystems and 
high organic matter require less fertilizer than soils without any 
microorganisms (Bender et al., 2016).

Biofertilizers made from microorganisms that help plants 
obtain their nutrients can colonize plant roots, to solubilize P, 
produce siderophore and HCN, and fix N2 (Figure 5; Pii et al., 2015; 
El-Sobky et al., 2022). N2 fixation by PGPR provides a considerable 
amount of N to the farming systems worldwide, with estimations 
ranging from 20 to 22 Tg N annually (Herridge et al., 2008), which 
may reach in some years to up to 40 Tg N (Galloway et al., 2008). 
Moreover, it has been reported that the biological N2 fixation may 
provide the African countries approximately 12 Tg N year−1 (Elrys 
et  al., 2019b, 2020b). Crop yields might be  limited by other 
nutritional elements, such as Fe and Zn. Similar to P, Fe is highly 
abundant in soils; yet, it is not available to plants in most cases. The 
synthesis of organic acids or siderophores by various PGPR strains 
increases Fe accessibility (Ahmed and Holmstrom, 2014).

Auxins are produced by a variety of PGPR (Gupta et al., 2015) 
that is involved in plant growth and development (Jha and Saraf, 
2015) and plant architecture (Vacheron et al., 2013). The auxin, 
IAA, produced by PGPR has received much of attention. It is 
highly involved during PGPR-plant interactions (Afzal et  al., 
2015). Auxin-producing PGPR have been reported to cause 
transcriptional alterations in the hormone levels, resistance/
tolerance to biotic/abiotic stress, and regulation of cell wall-linked 
genes (Spaepen et al., 2014). IAA may also increase root length 
(Hong et al., 1991), enhance root biomass, while reducing the size 
and density of stomata (Llorente et al., 2016). Plant growth and 
development can also be stimulated by the induction of auxin-
response genes (Ruzzi and Aroca, 2015).

In addition, PGPRs can produce GA and CKs (Gupta et al., 
2015), although the exact process remains unknown (Kang et al., 
2009). A limited number of PGPR strains can produce huge 
amounts of GA; thus, significantly increase the shoot growth in 
plants (Jha and Saraf, 2015). Exudates are expected to contain 
organic acids, sugars, and amino acids, which are highly abundant 
in the cytoplasm of plants, but low quantities of complex 
secondary metabolites, including flavonoids, terpenes, and 
phenolic substances, which may attract certain rhizosphere 
microorganisms (Musilova et  al., 2016). Plant health and 
physiology could be improved due to PGPR colonization of roots, 
resulting in more seeds and blooms (Kumar et  al., 2016). 
According to Nivedhitha et al. (2008), actinobacteria isolated 
from the rhizosphere of bamboo was found to be  capable to 

FIGURE 5

Dynamic microbial ecologies. ABA, abscisic acid; BCA, biocontrol agents; ET, ethylene; GA, gibberellic acid; IAA, indole acetic acid; ISR, induced 
systemic resistance; JA, jasmonic acid; PGR, plant growth regulators; SA, salicylic acid.
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suppress the fungal pathogen, Fusarium sp., while boosting plant 
growth and development. Harzianic acid produced by 
T. harzianum not only promoted plant growth, but also showed 
antifungal effects against Pythium irregulare, Sclerotinia 
sclerotiorum, and R. solani, even at very low doses (Vinale et al., 
2009). MBCA are important to the advancement and 
improvement of plant growth development, as well as the 
prevention of the attack of plant pathogens.

Future perspectives

Biological control management is one of the most promising 
applications for sustainable agriculture. It is a proven to 
be eco-friendly agricultural pest control approach. This strategy 
uses living microorganisms to reduce the pest populations in a 
conservative, dependable, and ecologically amicable manner. In 
the developed countries, biological control is a remarkable tool 
to achieve sustainable, less expensive, and safe pest control 
management; thus, offering benefits to breeders and consumers 
when compared to synthetic (chemical) pest management. This 
review has provided an overview of antagonistic modes of 
action of MBCA, which are regarded as practical substitutions 
to synthetic fungicides as well as stimulation of plant growth 
and development for post-harvest purposes. Researchers 
working in the field of MBCA must anticipate new and distinct 
questions, in order to provide solutions that help in the 
development of novel biocontrol technologies/applications. 
Bioinformatics, molecular biology, analytical chemistry, and 
biostatistics have also shed lights on new research areas aimed 
at defining the MBCA-pathogen-plant interaction (Spadaro and 
Gullino, 2005).

One should not neglect the environmental conditions that 
also play a crucial role in the process of antagonism and the 
mode(s) of action of MBCA. The following conditions should 
be taken into consideration, when researchers isolate, identify and 
characterize a MBCA strain:

1. The spread of the infection associated with nematodes, 
fungi, and bacteria, as well as the potential antagonists in the 
micro- and macro-environment of the interaction.

2. The best conditions for the application of BCA.
3. The reaction of MBCA to the local communities and to 

various management strategies.
4. The limiting factors of effective colonization and articulation 

of biological control characteristics.
5. The plant components and dynamics that induce 

host defense.

Conclusion

Many crops are affected by various pathogens. PGPM of pests 
and diseases in crops are generally regarded as a sustainable 
alternative for conventional chemical plant protection. These 

PGPR and PGPF acting as MBCAs are a safe, effective, and 
environmentally friendly form of pest management that do not 
harm the environment or the human health. PGPR/PGPF are 
antagonistic microorganisms that could be  exploited as 
biopesticides and biofertilizers for better plant health and growth 
improvement. Adoption of PGPR/PGPF-based biopesticides/
biofertilizers on a commercial scale may substantially contribute 
to sustainable agriculture and safe environment. This review has 
provided an overview on the research related to PGPMs, their 
benefits and effects as potential bioinoculants for plant growth 
and biological control. The increased use of PGPMs requires the 
achievement of accurate selection of beneficial PGPR/PGPF 
strains and consortia, the mechanisms underlying PGPM-plant 
interactions, and the ability to prepare for future agricultural  
challenges.
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