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1. Introduction

In the following, we first state timings for the individ-
ual steps of our algorithm. After this, the full results on
the Choi dataset [1] are presented, for which a concise ver-
sion was shown in the paper. Subsequently, the developed
region modality is evaluated on the RBOT dataset [16],
demonstrating improved tracking success. Also, we com-
pare to state-of-the-art 6DoF pose estimation algorithms on
the YCB-Video dataset [18] and discuss the role of 3D object
tracking. Finally, using predictions from modern pose esti-
mation algorithms, we demonstrate that ICG is well-suited
for highly efficient pose refinement.

2. Timings

In our work, an average framerate of 788.4Hz was given
for the evaluation on the YCB-Video dataset [18]. This cor-
responds to a total duration of 1.27ms per frame. Of this
time, the algorithm needs 0.52ms for the computation of
correspondence lines, 0.58ms for correspondence points,
0.09ms for the calculation of gradient vectors and Hessian
matrices, 0.05ms for the update of color histograms, and
the remaining 0.03ms for other operations such as the op-
timization and pose update. The timings demonstrate that
the region- and depth-modality are well balanced, requiring
similar amounts of computation.

3. Choi Dataset

In the paper, only the averages over rotational and trans-
lational RMS errors were presented for the Choi dataset [1].
For the sake of completeness, we also want to provide the
full results with respect to the errors in the x, y, and z di-
rections and in the roll, pitch, and yaw angles. The results
for each of the four evaluated objects as well as the mean
values are shown in Tab. 1.

Table 1. RMS errors for translation and rotation parameters on the
Choi dataset [1]. Results are from the respective papers.

Approach Choi [1] Krull [7] Tan [15] Kehl [6] ICG (Ours)

Kinect
Box

X 1.84 0.83 0.15 0.76 0.05
Y 2.23 1.67 0.19 1.09 0.11
Z 1.36 0.79 0.09 0.38 0.03
Roll 6.41 1.11 0.09 0.17 0.02
Pitch 0.76 0.55 0.06 0.18 0.02
Yaw 6.32 1.04 0.04 0.20 0.02

Milk

X 0.93 0.51 0.09 0.64 0.02
Y 1.94 1.27 0.11 0.59 0.05
Z 1.09 0.62 0.08 0.24 0.02
Roll 3.83 2.19 0.07 0.41 0.06
Pitch 1.41 1.44 0.09 0.29 0.04
Yaw 3.26 1.90 0.06 0.42 0.06

Orange
Juice

X 0.96 0.52 0.11 0.50 0.04
Y 1.44 0.74 0.09 0.69 0.03
Z 1.17 0.63 0.09 0.17 0.02
Roll 1.32 1.28 0.08 0.12 0.05
Pitch 0.75 1.08 0.08 0.20 0.03
Yaw 1.39 1.20 0.08 0.19 0.06

Tide

X 0.83 0.69 0.08 0.34 0.02
Y 1.37 0.81 0.09 0.49 0.03
Z 1.20 0.81 0.07 0.18 0.01
Roll 1.78 2.10 0.05 0.15 0.03
Pitch 1.09 1.38 0.12 0.39 0.04
Yaw 1.13 1.27 0.05 0.37 0.03

Mean Translation 1.36 0.82 0.10 0.51 0.04
Mean Rotation 2.45 1.38 0.07 0.26 0.04

4. RBOT Dataset

In our work, we modified the region-based approach of
SRT3D [11, 12] to be independent of the scale space and to
incorporate a user-defined uncertainty. In the following, we
want to show that this is not only convenient for the com-
bination with the depth modality but that the modifications
also improve tracking results. We thereby use the RBOT
dataset [16] to compare our approach to the state of the art
in region-based tracking as well as to additional methods
that include edge information.

All experiments in the evaluation are performed as de-
fined by [16]. The required translational and rotational er-
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Table 2. Tracking success rate for all objects and scenarios on the RBOT dataset [16]. Methods that incorporate information from edges in
addition to region are indicated by a ⋆. Results are from the respective publications.

Approach Ape Soda Vise Soup Camera Can Cat Clown Cube Driller Duck Egg Box Glue Iron Candy Lamp Phone Squirrel Avg.

Regular

Tjaden [16] 85.0 39.0 98.9 82.4 79.7 87.6 95.9 93.3 78.1 93.0 86.8 74.6 38.9 81.0 46.8 97.5 80.7 99.4 79.9
Zhong [19] 88.8 41.3 94.0 85.9 86.9 89.0 98.5 93.7 83.1 87.3 86.2 78.5 58.6 86.3 57.9 91.7 85.0 96.2 82.7
Huang [5]⋆ 91.9 44.8 99.7 89.1 89.3 90.6 97.4 95.9 83.9 97.6 91.8 84.4 59.0 92.5 74.3 97.4 86.4 99.7 86.9
Liu [10]⋆ 93.7 39.3 98.4 91.6 84.6 89.2 97.9 95.9 86.3 95.1 93.4 77.7 61.5 87.8 65.0 95.2 85.7 99.8 85.5
Li [9]⋆ 92.8 42.6 96.8 87.5 90.7 86.2 99.0 96.9 86.8 94.6 90.4 87.0 57.6 88.7 59.9 96.5 90.6 99.5 85.8
Sun [13]⋆ 93.0 55.2 99.3 85.4 96.1 93.9 98.0 95.6 79.5 98.2 89.7 89.1 66.5 91.3 60.6 98.6 95.6 99.6 88.1
SRT3D [12] 98.8 65.1 99.6 96.0 98.0 96.5 100.0 98.4 94.1 96.9 98.0 95.3 79.3 96.0 90.3 97.4 96.2 99.8 94.2
ICG (Ours) 98.1 66.4 99.6 96.0 97.4 96.9 100.0 98.5 94.8 97.6 98.0 95.5 80.8 95.9 91.0 97.1 96.6 99.9 94.4

Dynamic Light

Tjaden [16] 84.9 42.0 99.0 81.3 84.3 88.9 95.6 92.5 77.5 94.6 86.4 77.3 52.9 77.9 47.9 96.9 81.7 99.3 81.2
Zhong [19] 89.7 40.2 92.7 86.5 86.6 89.2 98.3 93.9 81.8 88.4 83.9 76.8 55.3 79.3 54.7 88.7 81.0 95.8 81.3
Huang [5]⋆ 91.8 42.3 98.9 89.9 91.3 87.8 97.6 94.5 84.5 98.1 91.9 86.7 66.2 90.9 73.2 97.1 89.2 99.6 87.3
Liu [10]⋆ 93.5 38.2 98.4 88.8 87.0 88.5 98.1 94.4 85.1 95.1 92.7 76.1 58.1 79.6 62.1 93.2 84.7 99.6 84.1
Li [9]⋆ 93.5 43.1 96.6 88.5 92.8 86.0 99.6 95.5 85.7 96.8 91.1 90.2 68.4 86.8 59.7 96.1 91.5 99.2 86.7
Sun [13]⋆ 93.8 55.9 99.6 85.6 97.7 93.7 97.7 96.5 78.3 98.6 91.0 91.6 72.1 90.7 63.0 98.9 94.4 100.0 88.8
SRT3D [12] 98.2 65.2 99.2 95.6 97.5 98.1 100.0 98.5 94.2 97.5 97.9 96.9 86.1 95.2 89.3 97.0 95.9 99.9 94.6
ICG (Ours) 98.4 67.0 99.5 95.7 97.6 97.5 99.8 98.6 94.9 97.5 97.4 97.1 85.5 96.0 91.5 97.7 96.2 99.9 94.9

Noise

Tjaden [16] 77.5 44.5 91.5 82.9 51.7 38.4 95.1 69.2 24.4 64.3 88.5 11.2 2.9 46.7 32.7 57.3 44.1 96.6 56.6
Zhong [19] 79.3 35.2 82.6 86.2 65.1 56.9 96.9 67.0 37.5 75.2 85.4 35.2 18.9 63.7 35.4 64.6 66.3 93.2 63.6
Huang [5]⋆ 89.0 45.0 89.5 90.2 68.9 38.3 95.9 72.8 20.1 85.5 92.2 26.8 15.8 66.2 52.2 58.3 65.1 98.4 65.0
Liu [10]⋆ 84.7 33.0 88.8 89.5 56.4 50.1 94.1 66.5 32.3 79.6 94.2 29.6 19.9 63.4 40.3 61.6 62.4 96.9 63.5
Li [9]⋆ 89.1 44.0 91.6 89.4 75.2 62.3 98.6 77.3 41.2 81.5 91.6 54.5 31.8 65.0 46.0 78.5 69.6 97.6 71.4
Sun [13]⋆ 92.5 56.2 98.0 85.1 91.7 79.0 97.7 86.2 40.1 96.6 90.8 70.2 50.9 84.3 49.9 91.2 89.4 99.4 80.5
SRT3D [12] 96.9 61.9 95.4 95.7 84.5 73.9 99.9 90.3 62.2 87.8 97.6 62.2 43.4 84.3 78.2 73.3 83.1 99.7 81.7
ICG (Ours) 98.0 64.3 95.4 95.8 84.8 74.8 99.9 90.5 61.9 88.5 97.4 63.4 45.3 84.2 81.2 74.0 84.8 99.4 82.4

Unmodeled Occlusion

Tjaden [16] 80.0 42.7 91.8 73.5 76.1 81.7 89.8 82.6 68.7 86.7 80.5 67.0 46.6 64.0 43.6 88.8 68.6 86.2 73.3
Zhong [19] 83.9 38.1 92.4 81.5 81.3 85.5 97.5 88.9 76.1 87.5 81.7 72.7 52.5 77.2 53.9 88.5 79.3 92.5 78.4
Huang [5]⋆ 86.2 46.3 97.8 87.5 86.5 86.3 95.7 90.7 78.8 96.5 86.0 80.6 59.9 86.8 69.6 93.3 81.8 95.8 83.6
Liu [10]⋆ 87.1 36.7 91.7 78.8 79.2 82.5 92.8 86.1 78.0 90.2 83.4 72.0 52.3 72.8 55.9 86.9 77.8 93.0 77.6
Li [9]⋆ 89.3 43.3 92.2 83.1 84.1 79.0 94.5 88.6 76.2 90.4 87.0 80.7 61.6 75.3 53.1 91.1 81.9 93.4 80.3
Sun [13]⋆ 91.3 56.7 97.8 82.0 92.8 89.9 96.6 92.2 71.8 97.0 85.0 84.6 66.9 87.7 56.1 95.1 89.8 98.2 85.1
SRT3D [12] 96.5 66.8 99.0 95.8 95.0 95.9 100.0 97.6 92.2 96.6 95.0 94.4 79.0 94.7 89.8 95.7 93.6 99.6 93.2
ICG (Ours) 97.3 66.3 99.3 96.0 95.0 96.5 100.0 97.7 92.9 96.4 96.1 96.5 82.1 96.1 89.7 95.8 94.2 99.2 93.7

Modeled Occlusion

Tjaden [16] 82.0 42.0 95.7 81.1 78.7 83.4 92.8 87.9 74.3 91.7 84.8 71.0 49.1 73.0 46.3 90.9 76.2 96.9 77.7
Huang [5]⋆ 87.8 45.5 98.1 87.2 89.0 89.8 95.1 91.4 77.4 97.1 87.7 83.0 62.5 88.6 69.7 94.1 86.0 98.9 84.9
SRT3D [12] 97.9 68.3 99.2 95.4 96.8 96.4 99.6 98.6 93.0 96.4 96.6 96.2 82.9 95.1 91.0 96.0 94.5 99.6 94.1
ICG (Ours) 97.9 69.1 99.5 97.2 97.1 96.9 99.9 98.9 93.2 97.0 97.8 97.2 84.3 96.0 92.6 97.4 95.3 99.8 94.8

rors are calculated as follows

et =
∥∥MtttMgt

∥∥
2
, (1)

er = cos−1

(
trace(MRRRMgt)− 1

2

)
. (2)

Based on those errors, the tracking success is calculated
as the percentage of estimated poses with et < 5 cm and
er < 5◦. In cases of unsuccessful tracking, the algorithm is
re-initialized with the ground-truth pose. For ICG, we use
the same parameter values as in [12] and define a decreasing
standard deviation of σr = {15, 5, 3.5, 1.5}.

Results of the evaluation are shown in Tab. 2. The
reported scores show that both SRT3D and ICG achieve
significantly higher results than the remaining algorithms.
However, on average, ICG performs about half a percent-
age point better than SRT3D. This demonstrates that setting

a defined standard deviation σr instead of using an implicit
variance of σ2 = shs

2
/n̄2 helps to further improve results.

5. 6DoF Pose Estimation
Given the strong results of modern 6DoF pose estima-

tion methods [2, 8], the question arises whether 3D object
tracking is even necessary. In order to answer this, we com-
pare ICG with state-of-the-art pose estimation methods on
the YCB-Video dataset [18]. The ADD(S) metric is thereby
adopted to ensure compatibility with reported results from
PVN3D [3] and FFB6D [2]. It is a combined metric that
uses the ADD-S score for symmetric objects and the ADD
error in all other cases.

Results of the evaluation are shown in Tab. 3. The com-
parison demonstrates that ICG is able to outperform most
methods by a considerable margin for the ADD-S score, per-
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Table 3. Comparison against state-of-the-art 6DoF pose estimation methods on the YCB-Video dataset [18] with ADD(S) and ADD-S area
under curve scores in percent. Results for Augmented Autoencoders2 [14], CosyPose3 [8], and ICG were computed by us. All other values
are from the respective publications. Note that while CosyPose was trained on real data, good results can also be obtained using synthetic
data alone [4]. Symmetric objects for which the ADD(S) metric reports the ADD-S instead of the ADD error are indicated by a ⋆.

Approach PoseCNN [18] Augmented
Autoencoders2 [14]

DenseFusion
[17] CosyPose3 [8] PVN3D [3] FFB6D [2] ICG (Ours)

(Training) Data Real RGB 3D Model Real RGB-D Real RGB Real RGB-D Real RGB-D 3D Model

Objects ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S

002 master chef can 50.9 84.0 27.1 50.6 - 96.4 37.3 90.6 80.5 96.0 80.6 96.3 66.4 89.7
003 cracker box 51.7 76.9 32.2 64.5 - 95.5 76.8 94.9 94.8 96.1 94.6 96.3 82.4 92.1
004 sugar box 68.6 84.3 73.6 88.6 - 97.5 95.2 97.6 96.3 97.4 96.6 97.6 96.1 98.4
005 tomato soup can 66.0 80.9 72.3 84.4 - 94.6 90.5 94.6 88.5 96.2 89.6 95.6 73.2 97.3
006 mustard bottle 79.9 90.2 77.5 90.9 - 97.2 92.7 96.5 96.2 97.5 97.0 97.8 96.2 98.4
007 tuna fish can 70.4 87.9 71.2 92.2 - 96.6 93.9 97.5 89.3 96.0 88.9 96.8 73.2 95.8
008 pudding box 62.9 79.0 47.9 67.7 - 96.5 93.5 96.2 95.7 97.1 94.6 97.1 73.8 88.9
009 gelatin box 75.2 87.1 74.8 82.9 - 98.1 94.1 96.1 96.1 97.7 96.9 98.1 97.2 98.8
010 potted meat can 59.6 78.5 53.6 63.3 - 91.3 75.9 84.0 88.6 93.3 88.1 94.7 93.3 97.3
011 banana 72.3 85.9 13.1 51.6 - 96.6 90.0 95.6 93.7 96.6 94.9 97.2 95.6 98.4
019 pitcher base 52.5 76.8 77.6 91.7 - 97.1 94.0 97.3 96.5 97.4 96.9 97.6 97.0 98.8
021 bleach cleanser 50.5 71.9 42.0 62.6 - 95.8 82.1 92.7 93.2 96.0 94.8 96.8 92.6 97.5
024 bowl⋆ 69.7 69.7 79.1 79.1 - 88.2 87.8 87.8 90.2 90.2 96.3 96.3 98.4 98.4
025 mug 57.7 78.0 58.0 80.9 - 97.1 87.8 94.9 95.4 97.6 94.2 97.3 95.6 98.5
035 power drill 55.1 72.8 61.2 77.9 - 96.0 89.7 95.1 95.1 96.7 95.9 97.2 96.7 98.5
036 wood block⋆ 65.8 65.8 55.2 55.2 - 89.7 80.5 80.5 90.4 90.4 92.6 92.6 97.2 97.2
037 scissors 35.8 56.2 0.8 7.0 - 95.2 67.6 81.5 92.7 96.7 95.7 97.7 93.5 97.3
040 large marker 58.0 71.4 55.6 67.6 - 97.5 84.3 93.1 91.8 96.7 89.1 96.6 88.5 97.8
051 large clamp⋆ 49.9 49.9 72.2 72.2 - 72.9 91.3 91.3 93.6 93.6 96.8 96.8 96.9 96.9
052 extra large clamp⋆ 47.0 47.0 59.5 59.5 - 69.8 75.7 75.7 88.4 88.4 96.0 96.0 94.3 94.3
061 foam brick⋆ 87.8 87.8 56.2 56.2 - 92.5 94.7 94.7 96.8 96.8 97.3 97.3 98.5 98.5

All Frames 60.0 75.9 57.5 72.8 - 93.1 83.8 92.6 91.8 95.5 92.7 96.6 87.9 96.5

Table 4. Refined and unrefined results on the YCB-Video dataset [18] with ADD and ADD-S area under curve scores in percent. For
PoseCNN with multi-hypothesis ICP, results are taken from the corresponding publication [18]. To evaluate the refinement, predicted
poses for PoseCNN [18] are taken from the YCB Video toolbox1 while results for Augmented Autoencoders2 [14] and CosyPose3 [8] are
computed using source code from the respective repositories.

Approach PoseCNN [18] PoseCNN1 [18] Augmented Autoencoders2 [14] CosyPose3 [8]

Refinement MH ICP - ICG (Ours) - ICG (Ours) Iterative Matching IM + ICG (Ours)

Objects ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S

002 master chef can 69.0 95.8 50.0 84.6 66.7 94.7 27.1 50.6 38.3 67.2 37.3 90.6 38.6 93.1
003 cracker box 80.7 91.8 53.0 77.5 67.8 85.6 32.2 64.5 43.8 71.6 76.8 94.9 81.4 97.9
004 sugar box 97.2 98.2 68.3 84.5 91.9 96.3 73.6 88.6 85.2 94.9 95.2 97.6 95.8 98.2
005 tomato soup can 81.6 94.5 66.1 81.4 82.8 91.3 72.3 84.4 82.3 90.0 90.5 94.6 92.6 95.9
006 mustard bottle 97.0 98.4 80.8 91.1 93.9 97.4 77.5 90.9 87.9 96.9 92.7 96.5 96.3 98.4
007 tuna fish can 83.1 97.1 70.5 88.4 82.2 93.5 71.2 92.2 78.6 95.2 93.9 97.5 92.2 95.6
008 pudding box 96.6 97.9 62.2 79.3 72.3 85.1 47.9 67.7 58.6 81.7 93.5 96.2 81.9 91.6
009 gelatin box 98.2 98.8 74.9 87.7 95.1 97.8 74.8 82.9 81.9 88.9 94.1 96.1 93.5 97.9
010 potted meat can 83.8 92.8 59.3 78.8 69.1 82.4 53.6 63.3 61.7 68.0 75.9 84.0 78.8 85.7
011 banana 91.6 96.9 72.3 86.3 80.4 92.0 13.1 51.6 18.2 60.1 90.0 95.6 95.2 98.2
019 pitcher base 96.7 97.8 52.9 77.6 85.9 93.6 77.6 91.7 92.1 98.0 94.0 97.3 96.7 98.7
021 bleach cleanser 92.3 96.8 50.2 71.7 74.7 87.6 42.0 62.6 54.4 70.9 82.1 92.7 90.0 97.8
024 bowl 17.5 78.3 3.0 69.6 5.5 78.0 17.3 79.1 19.6 79.5 34.5 87.8 36.6 89.8
025 mug 81.4 95.1 58.4 78.8 88.2 96.6 58.0 80.9 82.8 93.6 87.8 94.9 94.9 98.2
035 power drill 96.9 98.0 55.2 73.2 95.1 97.9 61.2 77.9 81.9 89.3 89.7 95.1 96.2 98.3
036 wood block 79.2 90.5 26.4 64.3 35.5 69.9 1.6 55.2 2.5 60.8 24.8 80.5 29.0 87.4
037 scissors 78.4 92.2 34.8 55.9 59.0 79.6 0.8 7.0 0.7 7.5 67.6 81.5 73.9 86.9
040 large marker 85.4 97.2 58.2 71.9 83.6 95.3 55.6 67.6 65.9 75.7 84.3 93.1 90.8 97.5
051 large clamp 52.6 75.4 24.6 50.1 50.7 74.0 32.8 72.2 41.2 83.3 40.1 91.3 40.8 94.6
052 extra large clamp 28.7 65.3 16.3 44.5 25.8 67.7 26.9 59.5 32.5 63.6 40.2 75.7 40.5 75.1
061 foam brick 48.3 97.1 40.4 88.2 42.2 92.5 19.4 56.2 22.5 57.7 51.7 94.7 52.7 97.6

All Frames 79.3 93.0 53.7 76.3 73.1 89.3 50.5 72.8 61.2 80.3 76.1 92.6 78.9 94.7

forming on par with the best reported results from FFB6D.
This is remarkable since FFB6D trains on large amounts of

pose-annotated real-world data that originates from a sim-
ilar pose distribution. For many applications, such data is
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not available. In contrast, ICG only requires a texture-less
3D model and no training data. With respect to the ADD(S)
metric, both PVN3D and FFB6D report better results. The
main reason for this is that our method is by design not con-
sidering texture and thus has a considerable disadvantage if
the geometry is not conclusive. However, in return, there is
no need for textured 3D models, which are required for all
competing methods.

In contrast to 6DoF pose estimation methods, ICG
considers the pose on a frame-to-frame basis without re-
initialization. This leads to a small number of objects that
get stuck in local minima and thus show relatively poor per-
formance. On the other hand, ICG benefits from temporal
consistency and performs more accurate than FFB6D for
most objects. The advantage of our tracker becomes partic-
ularly obvious when comparing the required computation.
While FFB6D depends on a high-end GPU and reports a
runtime of 75ms [2], ICG requires only 1.3ms per frame
on a single CPU core, which is 57× faster. This is espe-
cially crucial in reactive, real-time applications for which
hardware constraints exist. In conclusion, the experiment
demonstrates that while tracking by detection is possible,
for many real-world applications, it is not the most sensible
solution. Given the high efficiency and good performance
of ICG, in our opinion, it is best to rely on continuous 3D
tracking for local pose updates while using 6DoF pose esti-
mation for global initialization and long-term consistency.

6. 6-DoF Pose Refinement
Given that ICG is a local optimization method, the ques-

tion emerges how well it would work for pose refinement.
In the following, we thus use ICG to improve the predic-
tions of PoseCNN, Augmented Autoencoders, and Cosy-
Pose and compare results on the YCB-Video dataset [18].
Depending on the pose estimation algorithm, errors along
the principal axis are relatively large. To cope with those
larger translational errors, we use the following parameters
rt = {300, 250, 100}, σd = {100, 50, 20}, λt = 100, and
conduct 7 instead of 4 iterations. For efficiency, strides are
increased from 5mm to 10mm. All other parameters re-
main the same as in the evaluation of tracking. With the
increased number of iterations and considered area, the run-
time increases to 2.7ms per frame.

Results of the conducted evaluation are shown in Tab. 4.
We thereby report both refined and unrefined scores for the
considered 6DoF pose estimation methods. In addition, re-
sults from [18] are provided, which were obtained using an
extensive multi-hypothesis ICP approach on the predictions
of PoseCNN. According to [17], this refinement algorithm
requires more than 10 s for a single pose. The evaluation

1https://github.com/yuxng/YCB_Video_toolbox
2https://github.com/DLR-RM/AugmentedAutoencoder
3https://github.com/ylabbe/cosypose

Table 5. Ablation study comparing refined results for ICG with
and without the region modality to unrefined results. Values show
ADD and ADD-S area under curve scores over all frames on the
YCB-Video dataset [18] in percent.

Approach PoseCNN1 [18]
Augmented

Autoencoders2 [14]
CosyPose3 [8]

Refinement ADD ADD-S ADD ADD-S ADD ADD-S

Unrefined 53.7 76.3 50.5 72.8 76.1 92.6
ICG w/o Region 65.0 84.2 57.5 76.9 76.8 93.3
ICG w/ Region 73.1 89.3 61.2 80.3 78.9 94.7

shows that, even for the very good results of CosyPose, ICG
is able to improve pose estimations for almost all objects.
Also, it is interesting to see that, while it can not fully com-
pete with extensive multi-hypothesis ICP refinement, the
difference is not as big as one might expect. This is es-
pecially impressive considering that ICG is more than three
orders of magnitude faster.

Finally, we want to ensure that the pose refinement uses
both depth and region information and that improvements
are not only from the ICP-based depth modality. We thus
conducted a short ablation study, for which results are
shown in Tab. 5. The obtained scores demonstrate that ICG
is not just a blown-up ICP approach but that the addition
of region information significantly helps to improve perfor-
mance. Given the good pose predictions and computational
efficiency, we are thus confident that, while ICG is an ex-
cellent 3D object tracking approach, it also has many appli-
cations in pose refinement.
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