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1. Introduction

In the following, we first state timings for the individ-
ual steps of our algorithm. After this, the full results on
the Choi dataset [ 1] are presented, for which a concise ver-
sion was shown in the paper. Subsequently, the developed
region modality is evaluated on the RBOT dataset [16],
demonstrating improved tracking success. Also, we com-
pare to state-of-the-art 6DoF pose estimation algorithms on
the YCB-Video dataset [ | 8] and discuss the role of 3D object
tracking. Finally, using predictions from modern pose esti-
mation algorithms, we demonstrate that /CG is well-suited
for highly efficient pose refinement.

2. Timings

In our work, an average framerate of 788.4 Hz was given
for the evaluation on the YCB-Video dataset [18]. This cor-
responds to a total duration of 1.27ms per frame. Of this
time, the algorithm needs 0.52 ms for the computation of
correspondence lines, 0.58 ms for correspondence points,
0.09 ms for the calculation of gradient vectors and Hessian
matrices, 0.05ms for the update of color histograms, and
the remaining 0.03 ms for other operations such as the op-
timization and pose update. The timings demonstrate that
the region- and depth-modality are well balanced, requiring
similar amounts of computation.

3. Choi Dataset

In the paper, only the averages over rotational and trans-
lational RMS errors were presented for the Choi dataset [1].
For the sake of completeness, we also want to provide the
full results with respect to the errors in the x, y, and z di-
rections and in the roll, pitch, and yaw angles. The results
for each of the four evaluated objects as well as the mean
values are shown in Tab. 1.

Table 1. RMS errors for translation and rotation parameters on the
Choi dataset [1]. Results are from the respective papers.

Approach Choi [1] Krull [7]  Tan[I5] Kehl [6] ICG (Ours)
X 1.84 0.83 0.15 0.76 0.05
Y 223 1.67 0.19 1.09 0.11
Kinect Z 1.36 0.79 0.09 0.38 0.03
Box Roll 6.41 1.11 0.09 0.17 0.02
Pitch 0.76 0.55 0.06 0.18 0.02
Yaw 6.32 1.04 0.04 0.20 0.02
X 0.93 0.51 0.09 0.64 0.02
Y 1.94 1.27 0.11 0.59 0.05
Milk Z 1.09 0.62 0.08 0.24 0.02
Roll 3.83 2.19 0.07 0.41 0.06
Pitch 1.41 1.44 0.09 0.29 0.04
Yaw 3.26 1.90 0.06 0.42 0.06
X 0.96 0.52 0.11 0.50 0.04
Y 1.44 0.74 0.09 0.69 0.03
Orange Z 1.17 0.63 0.09 0.17 0.02
Juice Roll 1.32 1.28 0.08 0.12 0.05
Pitch 0.75 1.08 0.08 0.20 0.03
Yaw 1.39 1.20 0.08 0.19 0.06
X 0.83 0.69 0.08 0.34 0.02
Y 1.37 0.81 0.09 0.49 0.03
Tide Z 1.20 0.81 0.07 0.18 0.01
Roll 1.78 2.10 0.05 0.15 0.03
Pitch 1.09 1.38 0.12 0.39 0.04
Yaw 1.13 1.27 0.05 0.37 0.03
Mean Translation 1.36 0.82 0.10 0.51 0.04
Mean Rotation 245 1.38 0.07 0.26 0.04
4. RBOT Dataset

In our work, we modified the region-based approach of
SRT3D [11,12] to be independent of the scale space and to
incorporate a user-defined uncertainty. In the following, we
want to show that this is not only convenient for the com-
bination with the depth modality but that the modifications
also improve tracking results. We thereby use the RBOT
dataset [16] to compare our approach to the state of the art
in region-based tracking as well as to additional methods
that include edge information.

All experiments in the evaluation are performed as de-
fined by [16]. The required translational and rotational er-



Table 2. Tracking success rate for all objects and scenarios on the RBOT dataset [

]. Methods that incorporate information from edges in

addition to region are indicated by a *. Results are from the respective publications.

Approach Ape Soda Vise Soup Camera Can Cat  Clown Cube Driller Duck EggBox Glue Iron Candy Lamp Phone Squirrel Avg.
Regular
Tjaden[16] 850 390 989 824 797 87.6 959 933 78.1 930 868 746 389 810 468 975 807 994  79.9
Zhong [19] 888 413 940 859 869 890 985 937 831 873 862 785 586 863 579 917 850 962 827
Huang [S]* 919 448 997 8.1 893 906 974 959 839 97.6 91.8 844 590 925 743 974 864 997 869
Lin[10]* 937 393 984 916 846 892 979 959 863 951 934 777 615 878 650 952 857 998 855
Li [91* 928 426 968 875 907 862 99.0 969 868 946 904 870 57.6 887 599 965 906 995 858
Sun[I3]* 930 552 993 854 961 939 980 956 795 982 897 89.1 665 913 606 986 956 99.6 88.1
SRT3D[12] 988 651 996 960 980 965 1000 984 941 969 980 953 793 960 903 974 962 998 94.2
ICG(Ours) 981 664 996 960 974 969 1000 985 948 97.6 980 955 80.8 959 910 971 966 999 944
Dynamic Light
Tjaden[16] 849 420 990 813 843 889 956 925 775 946 864 773 529 779 479 969 817 993 812
Zhong [19] 89.7 402 927 865 866 892 983 939 818 884 839 768 553 793 547 887 810 958 813
Huang [5]* 918 423 989 899 913 878 976 945 845 981 919 867 662 909 732 971 892 996 873
Lin[10]* 935 382 984 888 870 885 981 944 851 951 927 761 581 796 621 932 847 996 841
Li [o1* 935 431 966 885 928 8.0 996 955 857 968 O9L1 902 684 868 597 961 915 992 867
Sun[I13]* 938 559 99.6 856 977 937 977 965 783 986 910 916 721 907 630 989 944 100.0 888
SRT3D[12] 982 652 992 956 97.5 981 1000 985 942 975 979 969 861 952 893 970 959 999 946
ICG (Ours) 984 670 995 957 976 975 998 986 949 975 974 971 855 960 915 977 962 999 949
Noise
Tjaden[16] 77.5 445 915 829 517 384 951 692 244 643 885 112 29 467 327 573 441 966 566
Zhong [19] 793 352 826 862 651 569 969 670 375 752 854 352 189 637 354 646 663 932 636
Huang [5S]* 89.0 450 895 902 689 383 959 728 201 855 922 268 158 662 522 583 651 984 650
Liu[10]* 847 330 888 8.5 564 501 941 665 323 796 942 296 199 634 403 616 624 969 635
Li [9]* 89.1 440 916 894 752 623 986 773 412 815 916 545 318 650 460 785 69.6 97.6 Tl4
Sun[13]* 925 562 980 851 917 790 977 862 401 966 908 702 509 843 499 912 894 994 805
SRT3D[12] 969 619 954 957 845 739 999 903 622 878 976 622 434 843 782 733 831 997 817
ICG(Ours) 980 643 954 958 848 748 999 905 619 885 974 634 453 842 812 740 848 994 824
Unmodeled Occlusion
Tjaden[16] 80.0 427 918 735 761 817 898 826 687 867 805 670 466 640 436 888 686 862 733
Zhong[19] 839 381 924 815 813 855 975 889 761 875 817 727 525 772 539 885 793 925 784
Huang [S]* 862 463 97.8 875 865 863 957 907 788 965 860 80.6 599 868 696 933 818 958 836
L [10]* 871 367 917 788 792 825 928 861 780 902 834 720 523 728 559 869 778 930 776
Li [9]* 893 433 922 831 841 790 945 886 762 904 870 807 616 753 531 9.1 819 934 803
Sun[13]* 913 567 978 820 928 899 966 922 718 970 850 846 669 877 561 951 898 982 85
SRT3D[12]  96.5 668 990 958 950 959 1000 976 922 966 95.0 944 790 947 898 957 93.6 996 932
ICG(Ours) 973 663 993 960 950 965 1000 977 929 964 961 965 821 961 897 958 942 992 937
Modeled Occlusion
Tjaden[16] 820 420 957 811 787 834 928 879 743 917 848 710 49.1 730 463 909 762 969 777
Huang [5]* 87.8 455 981 872 890 898 951 914 774 971 877 830 625 886 697 941 860 989 849
SRT3D[I12] 979 683 992 954 968 964 996 986 930 964 966 962 829 951 910 960 945 996 94.1
ICG (Ours) 979 691 995 972 971 969 999 989 932 970 978 972 843 960 926 974 953 998 948
rors are calculated as follows a defined standard deviation o, instead of using an implicit
variance of o2 = s»5 /52 helps to further improve results.
et = [|ntw M
trace(yBRu, ) — 1 5. 6DoF Pose Estimation
1 MAtM,,
€ = Cos . () ) .
2 Given the strong results of modern 6DoF pose estima-

Based on those errors, the tracking success is calculated
as the percentage of estimated poses with e; < 5cm and
e; < 5°. In cases of unsuccessful tracking, the algorithm is
re-initialized with the ground-truth pose. For ICG, we use
the same parameter values as in [ 1 2] and define a decreasing
standard deviation of o, = {15,5,3.5,1.5}.

Results of the evaluation are shown in Tab. 2. The
reported scores show that both SRT3D and ICG achieve
significantly higher results than the remaining algorithms.
However, on average, ICG performs about half a percent-
age point better than SRT3D. This demonstrates that setting

tion methods [2, 8], the question arises whether 3D object
tracking is even necessary. In order to answer this, we com-
pare ICG with state-of-the-art pose estimation methods on
the YCB-Video dataset [18]. The ADD(S) metric is thereby
adopted to ensure compatibility with reported results from
PVN3D [3] and FFB6D [2]. It is a combined metric that
uses the ADD-S score for symmetric objects and the ADD
error in all other cases.

Results of the evaluation are shown in Tab. 3. The com-
parison demonstrates that /CG is able to outperform most
methods by a considerable margin for the ADD-S score, per-



Table 3. Comparison against state-of-the-art 6DoF pose estimation methods on the YCB-Video dataset [ 18] with ADD(S) and ADD-S area
under curve scores in percent. Results for Augmented Autoencoders® [14], CosyPose” [8], and ICG were computed by us. All other values
are from the respective publications. Note that while CosyPose was trained on real data, good results can also be obtained using synthetic
data alone [4]. Symmetric objects for which the ADD(S) metric reports the ADD-S instead of the ADD error are indicated by a *.

Approach PoseCNN [18] Augmented DenseFusion CosyPose® [8] PVN3D [3] FFB6D 2] | 1CG (Ours)
Autoencoders” [14] [17]

(Training) Data | Real RGB | 3D Model | RealRGB-D | Real RGB | RealRGB-D | RealRGB-D | 3D Model
Objects ‘ ADD(S) ADD-S ‘ ADD(S) ADD-S ‘ ADD(S) ADD-S ‘ ADD(S) ADD-S ‘ ADD(S) ADD-S ‘ ADD(S) ADD-S ‘ ADD(S) ADD-S
002 _master_chef_can 50.9 84.0 27.1 50.6 - 96.4 37.3  90.6 80.5 96.0 80.6 96.3 66.4  89.7
003 _cracker_box 517 769 322 64.5 - 95.5 76.8 949 94.8 96.1 94.6 96.3 824 92.1
004_sugar_box 686 843 73.6 886 - 975 952 97.6 9.3 974 9.6 97.6 9.1 984
005 _tomato_soup_can 66.0 80.9 72.3 84.4 - 94.6 90.5 946 88.5 96.2 89.6 95.6 732 973
006_mustard_bottle 799 902 775 909 - 92 927 9.5 962 975 970 978 9.2  98.4
007_tuna_fish_can 704 879 712 922 - 966 939 975 893 960 889  96.8 732 9538
008_pudding_box 629 79.0 479 67.7 - 96.5 935 96.2 95.7 971 946 971 73.8 889
009_gelatin_box 752 87.1 748 829 - 981 941  96.1 9%.1 977 9.9  98.1 972 988
010_potted_-meat_can 59.6 785 53.6 63.3 - 91.3 759 84.0 88.6 933 88.1 947 933 973
011 _banana 723 859 13.1 51.6 - 96.6 90.0 95.6 93.7 96.6 949 972 95.6 98.4
019_pitcher_base 525 768 776 917 - 971 940 973 9.5 974 %9 976 97.0 988
021_bleach_cleanser 505 719 42.0 62.6 - 95.8 82.1 92.7 932 96.0 948 96.8 92.6 975
024 _bowl™* 69.7  69.7 79.1 79.1 - 88.2 87.8 878 90.2 90.2 963 96.3 984 984
025_mug 577 178.0 58.0 80.9 - 97.1 87.8 949 954 976 942 973 95.6 98.5
035_power_drill 55.1 728 61.2 77.9 - 96.0 89.7 95.1 95.1  96.7 959 972 96.7 98.5
036_wood_block™ 65.8 65.8 55.2 55.2 - 89.7 80.5 80.5 904 904 926 926 972 972
037 _scissors 358 56.2 0.8 7.0 - 95.2 67.6 815 927  96.7 95.7 977 935 973
040_large_marker 580 714 55.6 67.6 - 97.5 843 93.1 91.8 96.7 89.1 96.6 88.5 97.8
051.large_clamp* 499 499 72.2 722 - 72.9 913 913 93.6 93.6 96.8  96.8 969 96.9
052_extra_large_clamp*|  47.0  47.0 595 59.5 - 698 757 751 884 884 9%.0  96.0 043 943
061 _foam_brick* 87.8 878 56.2 56.2 - 92,5 947 947 96.8  96.8 973 973 98.5 98.5
All Frames ‘ 60.0 759 ‘ 57.5 72.8 ‘ - 93.1 ‘ 83.8 92,6 ‘ 918 955 ‘ 92.7 96.6 ‘ 879 96.5

Table 4. Refined and unrefined results on the YCB-Video dataset [18] with ADD and ADD-S area under curve scores in percent. For
PoseCNN with multi-hypothesis /CP, results are taken from the corresponding publication [18]. To evaluate the refinement, predicted
poses for PoseCNN [18] are taken from the YCB_Video_toolbox' while results for Augmented Autoencoders® [14] and CosyPose3 [8] are
computed using source code from the respective repositories.

Approach ‘ PoseCNN [ 18] ‘ PoseCNN' [18] ‘ Augmented Autoencoders® [14] ‘ CosyPose} [8]
Refinement | MH ICP | - | ICG (Ours) | - | ICG (Ours) | Iterative Matching | IM +ICG (Ours)
Objects | ADD ADD-S | ADD ADD-S | ADD ADD-S | ADD ADD-S | ADD ADD-S | ADD ADD-S | ADD ADD-S
002_master_chef_can 69.0 958 500 846 66.7 947 27.1 506 383 672 373 90.6 386 931
003_cracker_box 807 918 530 715 678 856 322 645 438 716 768 94.9 814 979
004_sugar_box 972 982 683 845 919 963 736 886 852 949 952 97.6 958 982
005_tomato_soup_can 81.6 945 66.1 814 82.8 913 723 844 823 90.0 90.5 946 926 959
006.-mustard bottle 970 984 80.8 911 939 974 775 909 87.9  96.9 927 965 9.3 984
007tuna_fish_can 83.1 971 705 884 822 935 712 922 786 952 939 975 9.2 956
008_pudding_box 9.6 979 622 793 723 85.1 419 617 586 817 935 962 819 916
009_gelatin_box 982 9838 749 877 95.1 978 748 829 81.9 889 94.1  96.1 935  97.9
010_potted_meat.can 838 9238 593 788 69.1 824 536 633 617  68.0 759 840 788 857
011.banana 9.6 969 723 863 80.4 92,0 13.1 516 182 60.1 9.0 956 952 982
019_pitcher_base 9.7 978 529 716 859 936 716 917 92.1  98.0 940 973 96.7  98.7
021_bleach_cleanser 923 96.8 502 717 747 876 420 626 544 709 821 927 9.0 97.8
024_bowl 175 783 30 69.6 55 780 173 79.1 196 795 345 878 36.6 89.8
025.mug 814 951 584 788 882 966 580 809 82.8 936 87.8 949 949 982
035_power_drill 969  98.0 552 732 95.1 979 612 779 81.9 893 89.7  95.1 9.2 983
036-wood_block 792 905 264 643 355 69.9 1.6 552 25 608 248 80.5 290 874
037_scissors 784 922 348 559 590 796 08 7.0 07 15 676 815 739 869
040_large_marker 854 972 582 719 83.6 953 556 616 659 757 843 931 %08 975
051_large_clamp 526 754 246 501 507 740 328 722 412 833 401 913 408  94.6
052.extra_largeclamp | 287  65.3 163 445 258 617 269  59.5 325 63.6 402 757 405 751
061 _foam_brick 483 97.1 404 882 422 925 194 562 25 517 517 947 527 976
All Frames | 793 930 | 537 763 | 731 83 | 505 728 | 612 8.3 | 761 926 | 789 947
forming on par with the best reported results from FFB6D. pose-annotated real-world data that originates from a sim-
This is remarkable since FFB6D trains on large amounts of ilar pose distribution. For many applications, such data is



not available. In contrast, /CG only requires a texture-less
3D model and no training data. With respect to the ADD(S)
metric, both PVN3D and FFB6D report better results. The
main reason for this is that our method is by design not con-
sidering texture and thus has a considerable disadvantage if
the geometry is not conclusive. However, in return, there is
no need for textured 3D models, which are required for all
competing methods.

In contrast to 6DoF pose estimation methods, ICG
considers the pose on a frame-to-frame basis without re-
initialization. This leads to a small number of objects that
get stuck in local minima and thus show relatively poor per-
formance. On the other hand, ICG benefits from temporal
consistency and performs more accurate than FFB6D for
most objects. The advantage of our tracker becomes partic-
ularly obvious when comparing the required computation.
While FFB6D depends on a high-end GPU and reports a
runtime of 75 ms [2], ICG requires only 1.3 ms per frame
on a single CPU core, which is 57x faster. This is espe-
cially crucial in reactive, real-time applications for which
hardware constraints exist. In conclusion, the experiment
demonstrates that while tracking by detection is possible,
for many real-world applications, it is not the most sensible
solution. Given the high efficiency and good performance
of ICG, in our opinion, it is best to rely on continuous 3D
tracking for local pose updates while using 6DoF pose esti-
mation for global initialization and long-term consistency.

6. 6-DoF Pose Refinement

Given that /CG is a local optimization method, the ques-
tion emerges how well it would work for pose refinement.
In the following, we thus use ICG to improve the predic-
tions of PoseCNN, Augmented Autoencoders, and Cosy-
Pose and compare results on the YCB-Video dataset [18].
Depending on the pose estimation algorithm, errors along
the principal axis are relatively large. To cope with those
larger translational errors, we use the following parameters
re = {300, 250, 100}, o4 = {100, 50,20}, A, = 100, and
conduct 7 instead of 4 iterations. For efficiency, strides are
increased from 5mm to 10 mm. All other parameters re-
main the same as in the evaluation of tracking. With the
increased number of iterations and considered area, the run-
time increases to 2.7 ms per frame.

Results of the conducted evaluation are shown in Tab. 4.
We thereby report both refined and unrefined scores for the
considered 6DoF pose estimation methods. In addition, re-
sults from [ 18] are provided, which were obtained using an
extensive multi-hypothesis /CP approach on the predictions
of PoseCNN. According to [17], this refinement algorithm
requires more than 10s for a single pose. The evaluation

lhttps://github.com/yuxng/YCB?Videoitoolbox
2https://github.com/DLR-RM/AugmentedAutoencoder
3https://qithub.com/\/labbe/cosypose

Table 5. Ablation study comparing refined results for /CG with
and without the region modality to unrefined results. Values show
ADD and ADD-S area under curve scores over all frames on the
YCB-Video dataset [18] in percent.

Augmented

Approach PoseCNN' ‘ S ‘ CosyPose’

PP ‘ [18] Autoencoders” [14] Y 81
Refinement \ ADD ADD-S \ ADD ADD-S \ ADD ADD-S
Unrefined 537 763 50.5 72.8 76.1  92.6
ICG w/o Region 65.0 842 57.5 76.9 76.8 933
ICG w/ Region 73.1 893 61.2 80.3 789 947

shows that, even for the very good results of CosyPose, ICG
is able to improve pose estimations for almost all objects.
Also, it is interesting to see that, while it can not fully com-
pete with extensive multi-hypothesis /CP refinement, the
difference is not as big as one might expect. This is es-
pecially impressive considering that ICG is more than three
orders of magnitude faster.

Finally, we want to ensure that the pose refinement uses
both depth and region information and that improvements
are not only from the /CP-based depth modality. We thus
conducted a short ablation study, for which results are
shown in Tab. 5. The obtained scores demonstrate that ICG
is not just a blown-up ICP approach but that the addition
of region information significantly helps to improve perfor-
mance. Given the good pose predictions and computational
efficiency, we are thus confident that, while ICG is an ex-
cellent 3D object tracking approach, it also has many appli-
cations in pose refinement.
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