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Highlights associated with fatty liver disease.
� Differences in mitochondrial features are observed between SAT and
VAT in human obesity.

� VAT respiration is downregulated in obese humans with fatty liver.

� VAT respiration is also decreased in obese humans with non-alco-
holic steatohepatitis.

� Lower VAT respiration is coupled with lower adipose tissue insu-
lin sensitivity.
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Mitochondrial respiration is decreased in visceral but not
subcutaneous adipose tissue in obese individuals with fatty

liver disease
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Background & Aims: Adipose tissue dysfunction is involved in macrophage marker CD68 (p = 0.002) than VAT from participants

the development of insulin resistance and is responsible for
excessive lipid delivery to other organs such as the liver. We
tested the hypothesis that impaired mitochondrial function is a
common feature of subcutaneous (SAT) and visceral adipose
tissue (VAT), but may differently contribute to adipose tissue
insulin resistance (IR) in obesity, non-alcoholic fatty liver (NAFL)
and steatohepatitis (NASH).
Methods: In this cross-sectional study, we analyzed tissue-
specific insulin sensitivity using stable isotope dilution and
hyperinsulinemic-normoglycemic clamp tests. We also assessed
mitochondrial respiration, mRNA and protein expression, and
tissue morphology in biopsies of SAT and VAT from obese
humans without NAFL, with NAFL or with NASH (n = 22/group).
Results: Compared to individuals without liver disease, persons
with NAFL and NASH had about 30% (p = 0.010) and 33% (p =
0.002) lower maximal mitochondrial respiration, respectively, in
VAT, but not in SAT. The lower maximal mitochondrial respira-
tion of VAT was associated with lower adipose tissue insulin
sensitivity (b = 0.985, p = 0.041) and with increased VAT protein
expression of tumor necrosis factor A across all groups (b =
−0.085, p = 0.040). VAT from individuals with NASH was char-
acterized by lower expression of oxidative phosphorylation
complex IV (p = 0.042) and higher mRNA expression of the
words: Adiposity; hepatic steatosis; fat depots; energy metabolism; insulin-
ulated glucose disposal.
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without NAFL.
Conclusions: Humans with non-alcoholic fatty liver disease have
distinct abnormalities of VAT energy metabolism, which corre-
late with adipose tissue dysfunction and may favor progression
of NAFL to NASH.
Lay summary: Adipose tissue (commonly called body fat) can be
found under the skin (subcutaneous) or around internal organs
(visceral). Dysfunction of adipose tissue can cause insulin resis-
tance and lead to excess delivery of fat to other organs such as
the liver. Herein, we show that dysfunction specifically in
visceral adipose tissue was associated with fatty liver disease.
Clinical trial number: NCT01477957.
© 2022 The Authors. Published by Elsevier B.V. on behalf of European
Association for the Study of the Liver. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Introduction
Adipose tissue (AT) contributes to the orchestration of whole-
body metabolic homeostasis via release of free fatty acids
(FFAs), hormones, cytokines and exosomes.1,2 During develop-
ment of obesity, AT dysfunction in association with local insulin
resistance (IR) and inflammation favors ectopic fat deposition,
whole-body IR and ultimately type 2 diabetes (T2D).3 In the
context of IR and fasting hypertriglyceridemia, circulating FFAs
derived from AT lipolysis contribute to about 60% of hepatic
triglyceride synthesis in overweight/obese humans with non-
alcoholic fatty liver disease (NAFLD).4 Recent studies suggest
that AT dysfunction with increased lipogenic substrate flux may
be key to NAFLD development.5

White AT dysfunction is characterized by abnormal adipokine
release and progressive fibrosis, but may also include altered
mitochondrial function.6 Although subcutaneous AT (SAT) rep-
resents the main source of circulating FFAs and can exhibit lower
2022 vol. - j 1–11
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expression of genes regulating the mitochondrial respiratory
chain in obesity and T2D,2 lower citrate synthase activity (CSA)
has also been reported in the visceral AT (VAT) of obese
humans.7 VAT can also secrete hormones and proinflammatory
cytokines that interact with resident liver macrophages and
other immune cells involved in inflammation-induced IR.8

Secretome analyses showed that proteins involved in the regu-
lation of cellular processes, in inflammatory responses or in
extracellular matrix organization are released prominently and
abundantly by human VAT.9,10 A recent study also identified
distinct properties of VAT stem cells, promoting fibrotic remod-
eling under obesogenic stimuli in mammals.11 Collectively, there
is evidence that VAT could contribute to hepatic dysregulation in
metabolic diseases. However, little is known about tissue-
specific differences between SAT and VAT parameters contrib-
uting to mitochondrial functionality, oxidative and endoplasmic
reticulum (ER) stress.

NAFLD, ranging from fatty liver (NAFL), steatohepatitis
(NASH) to fibrosis and cirrhosis, correlates tightly with IR.12

However, hepatic mitochondrial respiration is not uniformly
impaired in obese humans with NAFLD. Indeed, hepatic mito-
chondrial respiration is even higher in obese humans with NAFL
compared to those with NASH.13 As VAT has been considered a
major culprit in the development of NAFLD,14 it is interesting to
examine whether oxidative capacity in VAT shows similar al-
terations to that observed in the liver.

We tested the hypothesis that (i) impaired mitochondrial
function is a common feature of SAT and VAT, but (ii) may
differently contribute to AT IR in obesity-related NAFL and NASH.
Specifically, VAT could present with abnormal mitochondrial
respiration in NAFL (OBE-NAFL) and even more so in NASH
(OBE-NASH) when compared to obese humans without NAFL
(OBE-CON).

Materials and methods
Study cohort
This cross-sectional study included all consecutive obese vol-
unteers undergoing bariatric surgery within the BARIA_DDZ
cohort (supplementary CTAT table), recruited between March
2015 and February 2020, who had a complete data set for
mitochondrial respiration in SAT and VAT (Fig. S1). Based on liver
histology, participants were stratified into three groups: OBE
without (OBE-CON, n = 22) or with NAFL (OBE-NAFL, n = 22) or
NASH (OBE-NASH, n = 22), with similar age, sex, body weight and
BMI. All volunteers showing at least grade 1 steatosis were
classified as having NAFL and those with at least grade 1 steatosis
plus at least grade 1 ballooning and at least grade 1 lobular
inflammation were classified as having NASH.15 All participants
with NASH exhibited profound steatosis, liver cell ballooning and
lobular inflammation (Table S1, Fig. S2). Specific causes of liver
disease were excluded based on medical history, lab tests and
histological features. Some participants from the OBE-CON
(n = 2), OBE-NAFL (n = 5) and OBE-NASH (n = 9) groups had
T2D with near-normoglycemic control by lifestyle modification
or antihyperglycemic medication (Table S2).

Before inclusion, all participants gave written informed con-
sent to the protocol, which was approved by the institutional
review board of Heinrich-Heine-University Düsseldorf and
conducted in accordance with the ethical standards as set
down in the 1964 Declaration of Helsinki and its last amend-
ments of 2013.
2 Journal of Hepatology
Statistical analyses
Statistical analyses are described in the supplementary materials
and methods.

For further details regarding the materials and methods used,
please refer to the CTAT table and supplementary information.

Results
Individuals with NASH exhibit greater AT IR
All three groups had comparable age, sex and body composition
as well as circulating FFA levels (Table 1, Fig. S3A-C). OBE-NASH
had higher fasting glycemia than both other groups and higher
glycosylated hemoglobin A1c and serum alanine aminotrans-
ferase activity than OBE-CON (Table 1).

Compared to OBE-NASH, fasting AT IR was 34% lower in OBE-
CON and tended to be 30% lower in OBE-NAFL (p = 0.073)
(Fig. 1A). Fasting hepatic IR was similar between groups (Fig. 1B).

During hyperinsulinemic-euglycemic clamps, reflecting
postprandial metabolic conditions, AT insulin sensitivity (IS)
tended to be lower in OBE-NASH than in OBE-CON (p = 0.080)
(Fig. 1C), while hepatic IS was similar between groups (Fig. S3D).
Whole-body IS tended to be lower in OBE-NASH than in OBE-
CON (p = 0.058) (Fig. S3E), mainly due to decreased insulin-
stimulated glucose oxidation rates (Fig. 1D), but not non-
oxidative glucose disposal (Fig. S3F). Insulin-suppressed lipid
oxidation rates were 51% and 59% lower in OBE-CON than in
OBE-NAFL and OBE-NASH, respectively (Fig. 1E), resulting in
decreased metabolic flexibility in OBE-NASH compared to OBE-
CON (Fig. 1F).

Individuals with NASH exhibit lower mitochondrial
respiration, as well as complex IV expression in VAT, but
not SAT
Using a substrate-uncoupler-inhibitor protocol (Fig. S4), VAT
oxidative phosphorylation (OXPHOS) capacity (P) with electron
input through electron transferring flavoprotein (ETF) ([ETF]P),
was 32% and 33% lower in OBE-NAFL and OBE-NASH, respec-
tively, than in OBE-CON (Fig. 2A), with similar differences for ETF
and complex (C)I combined ([ETF+CI]P). Maximal ADP-
stimulated mitochondrial respiration with convergent electron
input through ETF, CI and CII combined, [ETF+CI+II]P, was 30%
and 33% lower in OBE-NAFL and OBE-NASH than in OBE-CON
(Fig. 2A). Instead, in SAT, mitochondrial respiration was similar
in all groups (Fig. 2B). Although mitochondrial respiration can
decline with aging,16 adjustment for age did not affect results of
mitochondrial respiration in both AT compartments (data not
shown). Both CSA and mitochondrial DNA (mtDNA) copy number
were similar between groups in both compartments (Fig. 2C-D).
Consequently, mitochondrial respiration normalized by mtDNA
remained lower in VAT of OBE-NAFL and OBE-NASH than in OBE-
CON and similar in SAT of all groups (Fig. S5A-B).

To further characterize differences in mitochondrial respira-
tion, we assessedmitochondrial coupling efficiency by calculating
respiratory control ratio (RCR) and leak control ratio (LCR), which
were similar between groups in both SAT and VAT (Fig. S5C-F).

On the other hand, the protein expression of OXPHOS CIV was
lower in VAT of OBE-NASH than OBE-CON, but this difference
was not seen in SAT (Fig. 2E-F). Also, the sum of all bands related
to OXPHOS CI-CV tended to be lower in OBE-NASH than in OBE-
CON (p = 0.062) only in VAT (OBE-CON median: 8.5 [first quar-
tile: 7.0, third quartile: 9.7] arbitrary units [AU], OBE-NAFL 9.4
[6.2, 12.2] AU, OBE-NASH 6.8 [5.7, 8.8] AU), but not SAT (OBE-CON
2022 vol. - j 1–11



Table 1. Characteristics of the participants.

Variable OBE-CON OBE-NAFL OBE-NASH

Age (years) 35 (31–45) 40 (35–44) 45 (32–51)
Female/male (n) 20/2 18/4 18/4
Body weight (kg) 155 (130–165) 150 (139–162) 148 (136–173)
BMI (kg/m2) 53 (46–59) 51 (47–53) 51 (47–55)
Waist circumference (cm) 132 (124–140) 138 (128–143) 137 (128–144)
Hip circumference (cm) 148 (142–162) 153 (140–160) 145 (141–158)
HbA1c (%) 5.4 (5.2–5.6) 5.5 (5.3–5.9) 6.0 (5.2–6.7)a

Fasting glucose (mg/dl) 80 (76–93) 88 (83–93) 98 (85–124)a,b

Fasting insulin (mU/L) 17 (11–33) 21 (16–30) 26 (21–33)
Fasting triglycerides (mg/dl) 99 (81–124) 125 (90–158) 152 (107–178)
Fasting FFA (lmol/L) 536 (418–658) 635 (490–794) 705 (585–792)
hsCRP (mg/dl) 0.84 (0.60–2.67) 0.84 (0.48–1.32) 0.74 (0.44–0.94)
ALT (U/L) 25 (17–32) 30 (20–41) 41 (30–55)a

ALT, alanine aminotransferase; FFA, free fatty acids; HbA1c, hemoglobin A1c; hsCRP, high-sensitivity C-reactive protein; OBE-CON, obese humans without non-alcoholic fatty
liver; OBE-NAFL, obese humans with NAFL; OBE-NASH, obese humans with NASH.
Data are median (IQR) and absolute numbers, as applicable. a p <0.05 vs. OBE-CON, b p <0.05 vs. OBE-NAFL, one-way ANOVA corrected for multiple comparisons with Tukey-
Kramer multiple comparisons test.
7.3 [4.9, 10.5] AU, OBE-NAFL 6.1 [4.3, 7.8] AU, OBE-NASH 6.6 [4.8,
7.8] AU).

It is conceivable that adipocyte size and number drives the
observed decreased mitochondrial respiration in VAT.17,18 How-
ever, analysis of AT morphology in a subgroup of the study
population revealed that both adipocyte number and mean
adipocyte size were similar between all groups and in both
compartments (Fig. S6A-D).
Levels of one biomarker of mitophagy are higher only in SAT
of individuals with NAFL compared to those with NASH
Maintaining mitochondrial respiration requires a balance be-
tween biogenesis, reserve capacity, mitophagy and the
mitophagy-induced recruitment of the autophagic machinery.19

In both AT compartments, protein biomarkers of macro-
autophagy, including the autophagy-related gene 5, p62 and
the microtubule-associated protein 1 light chain 3 A/B II/I ratio,
were similar between groups (Fig. S7A-B).

Despite no differences in VAT (Fig. 3A), OBE-NAFL exhibited
higher levels of the phosphorylated Parkin (pParkin) than OBE-
NASH in SAT (Fig. 3B). Protein markers of mitochondrial fusion
(optic atrophy 1, mitofusin 1 and 2) and fission (dynamin-related
protein 1 and serine 616 phosphorylated DRP1 and their ratio)
were similar between groups in both compartments (Fig. S7C-F).

The same applied for the AT mRNA expression of transcription
factors regulating mitochondrial biogenesis, including nuclear
respiratory factor (NRF)1, mitochondrial transcription factor A
(TFAM) and PPARGC1A (peroxisomal proliferator activated re-
ceptor c-coactivator 1A) (Fig. 3C-D).
Selective upregulation of inflammation in VAT of NAFL and of
ER stress in SAT of NASH
Next, we examined the role of AT oxidative stress and inflam-
mation on NAFLD.3 There were neither differences in lipid per-
oxidation, as assessed by thiobarbituric acid reactive substances
(TBARS) (Fig. S8A-B) nor measures of anti-oxidant defense, as
assessed by the protein expression of superoxide dismutase 1
and catalase, between groups, in either VAT or SAT (Fig. S8C-F).
Despite similar interleukin 6 (IL6) expression (Fig. 4A-B), the
mRNA expression of tumor necrosis factor A (TNFA) was higher
only in VAT of OBE-NAFL compared to OBE-CON (Fig. 4A-B).
Journal of Hepatology
In VAT, expression of activating transcription factor 4 (ATF4)
and the transcription factor C/EBP homologous protein (CHOP)
were similar between the groups (Fig. 4C). On the other hand,
in SAT, ATF4 was higher in OBE-NASH than in OBE-CON and
CHOP tended to be higher in OBE-NASH than in OBE-NAFL (p =
0.054) (Fig. 4D). Indeed, ATF4 regulates the expression of CHOP,
which upregulates pro-apoptotic protein expression.20 Other
biomarkers of ER stress, including protein kinase-like ER ki-
nase, inositol-requiring enzyme 1a, eukaryotic translation
initiation factor 2a and binding immunoglobulin protein 1
were similar across all groups and in both compartments (data
not shown).

Finally, mRNA expression of the macrophage marker, CD68,
was higher in OBE-NASH than in OBE-CON, but only in VAT, not
in SAT (Fig. 4E-F). Other macrophage markers including CD163
and monocyte chemoattractant protein 1 were comparable
across all groups in SAT and VAT (Fig. 4E-F). Also, the immuno-
histochemical analysis of macrophage-specific antigens revealed
similar numbers of CD68+, CD163+ and CD11c+-expressing cells
in both SAT and VAT in a subgroup (n = 4 per group) (Fig. S9A-F).
Mitochondrial respiration is higher in VAT of obese persons
without NAFLD than in SAT of obese people with or
without NAFLD
Comparison of the features of SAT and VAT within and between
groups showed higher [ETF]P in the VAT of OBE-CON than in SAT
of all three studied groups (Fig. S10A), with similar differences
for [ETF+CI]P and for maximal ADP-stimulated mitochondrial
respiration ([ETF+CI+II]P) (Fig. S10A). Of note, VAT of OBE-NAFL
and OBE-NASH displayed similar mitochondrial respiration as
SAT of all groups (Fig. S10A).

Accordingly, protein expression of OXPHOS CIV and CV was
higher in VAT than in SAT of OBE-CON and OBE-NAFL (Fig. S10B).
Protein expression of OXPHOS CIII-CV was also higher in VAT of
OBE-CON compared to SAT of both OBE-NAFL and OBE-NASH.

Of note, OBE-CON and OBE-NAFL had lower pParkin/Parkin
ratio in VAT than in SAT (Fig. S10C). OBE-CON also featured
reduced mRNA expression of NRF1, but not TFAM, in VAT
compared to SAT (Fig. S10D).

Finally, the mRNA expression of TNFA, was higher in SAT than
in VAT of OBE-CON (Fig. S10E), despite the similar IL6 (p = 0.885,
data not shown). Similarly, TBARS were increased in SAT of OBE-
2022 vol. - j 1–11 3
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Fig. 1. Tissue-specific IR and substrate oxidation in OBE-CON, OBE-NAFL or OBE-NASH. (A) AT IR and (B) hepatic IR during fasting as well as (C) AT IS, (D)
insulin-stimulated GOX and (E) insulin-suppressed LOX rates during clamp, (F) metabolic flexibility during fasting and clamp conditions. Means ± SEM, levels of
significance of each significant and borderline significant difference are marked in the figure (one-way ANOVA corrected for multiple comparisons with Tukey-
Kramer multiple comparisons test). AT, adipose tissue; AU, arbitrary units; FFA, free fatty acid; GOX, glucose oxidation; IR, insulin resistance; IS, insulin sensitivity;
LOX, lipid oxidation; OBE-CON, obese humans without non-alcoholic fatty liver; OBE-NAFL, obese humans with NAFL; OBE-NASH, obese humans with NASH.
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CON and OBE-NAFL compared to VAT of all three groups
(Fig. S10E). On the other hand, VAT showed increases in ATF4
when compared to SAT of OBE-CON (Fig. S10F), and in CHOP
when compared to SAT of all respective groups (Fig. S10F).
Obese individuals with NAFLD show no differences in
systemic oxidative stress, or inflammation when compared to
obese humans without NAFLD
Plasma TBARS, reflecting systemic oxidative stress, were not
different between the groups (Fig. 5A), as were plasma TNFA and
plasma IL6 levels (Fig. 5B-C). Only plasma fibroblast growth
factor 21 (FGF21) was higher in OBE-NAFL than in OBE-CON
(Fig. 5D). Finally, high-molecular weight adiponectin and leptin
were similar across all groups (Fig. 5E-F).
4 Journal of Hepatology
Mitochondrial respiration in VAT associates positively with AT
IS, but negatively with inflammation of VAT
In VAT, maximal ADP-stimulated mitochondrial respiration
([ETF+CI+II]P) associated positively with AT IS (b = 0.985, p =
0.041) and tended to associate negatively with the degree of
hepatic steatosis (b = −0.004, p = 0.099) across all groups com-
bined (Table S3). The sum of OXPHOS CI-CV in VAT associated
negatively with the degree of hepatic steatosis upon adjustment
for T2D (b = −0.006, p = 0.048) (Table S3). Maximal ADP-
stimulated respiration further associated negatively with TNFA
expression in VAT (b = −0.085, p = 0.040) and with plasma
FGF21 (b = −0.196, p = 0.041) (Table S3). Plasma FGF21 also
associated positively with the degree of liver steatosis across
all groups, only upon adjustment for T2D (b=0.009,
p = 0.022) (Table S3).
2022 vol. - j 1–11
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Only in OBE-NASH, maximal ADP-stimulated respiration of
SAT associated with the degree of hepatic steatosis (b = −0.010,
p = 0.002, p for the interaction = 0.005) (Table S3).

Discussion
This study showed that obese humans with NAFL and NASH
exhibit marked reductions of mitochondrial respiration in VAT
Journal of Hepatology
when compared to similarly obese humans without NAFLD.
Mitochondrial respiration in VAT associated positively with
insulin-stimulated IS of whole-body AT, but negatively with local
inflammation. Nevertheless, compared to those without NAFL,
SAT of obese humans with NAFLD showed no further alterations
of mitochondrial function, but only differences in biomarkers of
mitophagy and ER stress.
2022 vol. - j 1–11 5
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The present data cannot confirm the previously reported
uniform impairment of mitochondrial respiration in both fat
depots of obese humans. For instance, in both VAT and SAT of
obese humans, proteomic analyses revealed decreased abun-
dance of enzymes involved in fatty acid oxidation.21 In contrast,
the present findings rather support the hypothesis of a specific
downregulation of energy metabolism in VAT, at least in persons
with NAFLD and when compared to a carefully matched control
group with comparable whole-body and abdominal obesity.
Importantly, comparison of both fat depots revealed that only
VAT of obese humans without NAFLD exhibits elevated mito-
chondrial respiration compared to SAT of all studied groups.
Interestingly, mitochondrial respiration in VAT of obese people
with NAFLD was comparable to that measured in SAT of obese
non-steatotic people. This is in line with studies showing that
VAT is generally characterized by higher oxidative metabolism in
obese humans22 and that only mitochondrial respiration in SAT,
but not VAT, associates negatively with BMI in overweight peo-
ple.23 Our findings differ from previous evidence showing lower
mitochondrial respiration in VAT of obese humans, whose liver
histology was, however, not reported.24
6 Journal of Hepatology
Of note, the present study cannot assess whether mito-
chondrial respiration of both AT compartments is different be-
tween lean non-steatotic and obese humans without NAFLD, as
reported for human livers.13 But other studies have already
suggested a reduction in O2 consumption rates in both SAT and
VAT when comparing overweight/obese humans with non-
obese individuals.25

The markedly lower mitochondrial respiration in VAT of both
OBE-NAFL and OBE-NASH could stem from impaired respiratory
control. However, the observed comparable RCR and LCR across
all groups and both fat depots suggests an intact coupling in both
compartments. These findings are consistent with previous
studies showing that adaptation of mitochondrial respiration
coexists with unchanged RCR in SAT of murine obesity.26 The
rather high values of [ETF+CI+II]L compared to [ETF+CI+II]P and
the relatively low RCR are in line with findings in the deep
compartment of SAT,27 and slightly higher when compared to
abdominal SAT.28 Use of different methods for tissue per-
meabilization, such as digitonin in the chamber27 (like in the
present study) or saponin prior to addition of AT in the cham-
ber,28 may explain the differences between studies.
2022 vol. - j 1–11
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Lower mitochondrial mass may represent another possible
reason for the reduced mitochondrial respiration in OBE-NAFL
and NASH. In the absence of a single validated gold-standard,
the present study employed 3 independent parameters, CSA,
mtDNA and protein levels of OXPHOS CI-CV, as a proxy for
mitochondrial content, as previously suggested.24,25,29,30 While
reduced CSA was reported in SAT and omental AT of obese
humans,25 the present study revealed similar CSA between
groups in both compartments. No differences were detectable for
Journal of Hepatology
mtDNA, in contrast to previous studies reporting lower mtDNA
in VAT than in SAT of less obese humans.24 Despite the slightly
decreased expression of OXPHOS CIV in VAT of OBE-NASH than
in OBE-CON, the lack of changes in RCR, LCR and other bio-
markers of mitochondrial mass suggests an adaptive response to
the altered metabolic conditions in NAFL and NASH. As the
respirometry analysis in this study allows us to completely assess
the OXPHOS system,19 the results point to a true lower intrinsic
mitochondrial functionality within VAT of humans with NAFLD.
2022 vol. - j 1–11 7



0

50

100

150

200

250
300

350
A Circulating TBARS

0.0

0.5

1.0

1.5

2.0
2.5

3.5
B Circulating TNFA

0

2

4

6

8

10
10

15
C Circulating IL-6

Female
Male

OBE-NASHOBE-CON OBE-NAFL OBE-NASHOBE-CON OBE-NAFL OBE-NASHOBE-CON OBE-NAFL

[μ
m

ol
 * 

L-1
]

[p
g 

* m
l-1

]

[p
g 

* m
l-1

]

0

200

400

600

800
0.016

0.097

D Circulating FGF21

0

1,000

2,000

3,000

4,500
5,000
5,500

E HMW-Adiponectin

0

20,000

40,000

60,000

80,000

100,000

120,000
140,000

150,000

F Leptin

Female
Male

OBE-NASHOBE-CON OBE-NAFL OBE-NASHOBE-CON OBE-NAFL OBE-NASHOBE-CON OBE-NAFL

[p
g 

* m
l-1

]

[p
g 

* m
l-1

]

[ n
g 

* m
l-1

]

Fig. 5. Systemic oxidative stress and inflammation in OBE-CON, OBE-NAFL or OBE-NASH. Plasma concentrations of (A) TBARS, (B) TNFA, (C) IL6, (D) FGF21, (E)
HMW-adiponectin and (F) leptin. Means ± SEM, levels of significance of each significant and borderline significant difference are marked in the figure (one-way
ANOVA corrected for multiple comparisons with Tukey-Kramer multiple comparisons test). FGF21, fibroblast growth factor 21; HMW, high-molecular weight; IL6,
interleukin-6; OBE-CON, obese humans without non-alcoholic fatty liver; OBE-NAFL, obese humans with NAFL; OBE-NASH, obese humans with NASH; TBARS,
thiobarbituric acid reactive substances; TNFA, tumor necrosis factor A.

Research Article NAFLD and Alcohol-Related Liver Diseases
Likewise, comparison of both fat compartments revealed lower
CIV-V expression in SAT of all groups than in VAT of OBE-CON,
thus supporting differential adaptation of VAT in NAFLD.

Mitochondrial dynamics cannot account for the observed
differences, as biomarkers of these pathways were similar in VAT
between groups. Only in SAT, lower expression of pParkin in
OBE-NASH may suggest altered mitophagy. Of note, VAT of OBE-
CON and OBE-NAFL featured lower pParkin and pParkin/Parkin
ratios, but increased expression of ER stress markers than SAT of
the respective groups. The downregulated mitophagy in these
groups could contribute to the gradual increase in ER stress
markers, due to the previously described negative feedback
mechanisms between autophagy and ER stress.31

Another novel finding of this study is the association between
maximal ADP-stimulatedmitochondrial respiration ([ETF+CI+II]P)
in VAT with AT IS, which remains a matter of debate. While some
8 Journal of Hepatology
studies found a positive correlation between mitochondrial
oxidative capacity in SAT and AT glucose metabolism,29 others
dissociated AT respiration from tissue-specific IR.18 Differences
among these results and our study may rely on the lack of data
from human VAT.18 Although the current study detected elevated
AT IR only in OBE-NASH, data from another cohort of BARIA_DDZ
indicate that obese humans with NAFL also have higher AT IR.32

These findings support a role for AT IR in the previously re-
ported association between increased AT lipolysis and NAFLD
in humans.33

Recent evidence indicates that SAT shows adequate expand-
ability in obese people with and without NAFLD34 and that SAT
inflammation and increased fatty acid release in relation to fat-
free mass are unrelated to IR.35 Given the critical role of AT
mitochondria in fatty acid oxidation36 and FFA release into the
circulation, VAT can contribute up to 50% of the FFA delivered to
2022 vol. - j 1–11



the liver,37 as well as contributing to IR by interfering with
insulin-stimulated glucose transport.3 Of note, [ETF]P, which was
reduced only in VAT of obese individuals with NAFLD, reflects
oxygen consumption linked to fatty acid oxidation. Taken
together, these data support that downregulation of mitochon-
drial respiration in VAT contributes to impaired insulin-mediated
suppression of AT lipolysis, leading to increased FFA release to
the portal vein and NAFLD progression in obese people.

Despite no changes in circulating pro-inflammatory bio-
markers, OBE-NAFL showed higher TNFA expression in VAT,
which correlated negatively with maximal ADP-stimulated
mitochondrial respiration ([ETF+CI+II]P) across all groups. This
extends and supports previous findings on the TNFA-mediated
downregulation of OXPHOS genes in VAT of obese females.38

We also found greater levels of TNFA in SAT of OBE-CON and of
TBARS in SAT of OBE-CON and OBE-NAFL than in VAT of the
corresponding groups. Nevertheless, VAT TNFA levels were not
increased in OBE-NASH, in contrast to previous evidence
showing higher human VAT TNFA mRNA expression in partici-
pants with NASH, but with higher BMI, compared to those with
NAFL.39 Our findings suggest a link between VAT-derived TNFA
and early hepatic damage, in line with evidence pointing to
hepatocytes and Kupffer cells as the primary sources of TNFA
production in the context of NASH.40 Both expression and sys-
temic IL6 concentrations were similar between groups, in line
with equally high IL6 levels in obese insulin-sensitive and
insulin-resistant humans.35 Only in VAT, mRNA expression of the
macrophage marker CD68 was increased in OBE-NASH, sup-
porting previous evidence for a linear correlation between
CD68+ VAT macrophages and hepatic inflammation in
obese humans.41

Finally, FGF21 also correlated negatively with maximal ADP-
stimulated mitochondrial respiration ([ETF+CI+II]P) in VAT
across all groups. This finding lends further support to the sug-
gested link between FGF21 and impaired muscle mitochondrial
respiration in humans,42 but does not allow for conclusions on
causality given the complex function of FGF21 in the metabolism
of various tissues.43

The present study benefits from the assessment of various
independent features of mitochondrial function in a cohort
tightly matched for measures of obesity. Our participants un-
derwent comprehensive phenotyping of energy metabolism and
detailed biopsy assessment of liver histology. Although liver bi-
opsies were assessed by a validated score,15 our data need to be
carefully interpreted in the context of the limitations of the
evaluation tool. As the primary aim was to examine AT mito-
chondrial function in obese NAFLD, the lack of a lean control
group does not represent a study limitation, but means our
findings are not generalizable to individuals with lean NAFLD.
Also, the cross-sectional design does not allow for conclusions on
causality. This study found no trend towards differences in
mitochondrial respiration and content between males and fe-
males. However, the higher proportion of female volunteers, also
known from other bariatric surgery cohorts,44 cannot exclude
that such sex differences might occur, as reported in AT of high-
fat fed and obese mice.45 Further, the experimental setup, i.e.
assessing AT respiration during the presurgical period,
comprising diet, fasting and weight loss, does not necessarily
reflect physiological day-to-day conditions in people with or
without NAFLD.46 Finally, expression of mitochondrial respira-
tion normalized to mitochondrial content remains a matter of
Journal of Hepatology
debate.19 Nevertheless, the present study revealed similar results
when expressing respiration rates either per protein or addi-
tionally per mtDNA, confirming their robustness.

In conclusion, maximal ADP-stimulated mitochondrial respi-
ration ([ETF+CI+II]P) in VAT is reduced in obese individuals with
NAFL or NASH compared to those without NAFLD and correlates
positively with AT IS, but negatively with local VAT inflamma-
tion. These data indicate an important role of compartment-
specific AT energy metabolism for IR and hepatic lipid accumu-
lation in the context of obesity. It is tempting to speculate that
improvement of mitochondrial respiration in VAT could serve as
a future therapeutic target to prevent the manifestation and
progression of NAFLD.
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