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Motivation
Why do we consider hybrid RANS/LES methods?

▪ Hybrid RANS/LES methods (HRLM) combine “cheap” RANS modelling with 

accurate local scale-resolving simulation (LES)

▪ Potential for improved accuracy

▪ However, enormous computational effort due to large Reynolds numbers
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Efficiency

▪ Reduce computational effort by

▪ Coupling with wall functions

▪ Improving embedded wall-

modelled LES

Accuracy

▪ Capture relevant physical 

phenomenon, i.e. transition

▪ Provide powerful methods to 

prescribe synthetic turbulence

Addressed within one work package in the DLR project ADaMant

▪ Developments in the DLR CFD-solvers TRACE and TAU

▪ Methods potentially adapted in new solver CODA
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P. Spalart, 2005, DESider Keynote – The uses of DES: 

Natural, extended, and improper



Transitional hybrid RANS/LES 
Why and how?

▪ Why?

▪ In the past, Delayed Detached-Eddy Simulation (DDES) model has been 

widely developed for fully turbulent flows

▪ Transition is a relevant phenomenon in turbomachinery design process

▪ To achieve a better predictive quality, DDES needs to be capable to 

incorporate transition process

▪ How?

▪ Seamless DDES based Menter-SST turbulence model[1]

▪ Couple DDES with the 𝛾-transition model[2]

▪ Eliminate undesired production term 𝑃𝑘
lim
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A. Scilitoe, PhD thesis, 2017

[1] M. Strelets, 2012, Detached Eddy Simulation of Massively Separated Flows
[2] Menter et al., 2015, A One-Equation Local Correlation-Based Transition Model
[3] 𝐶𝑑𝜔= Cross-diffusion term of the 𝜔-transport equation

[3]



Transitional hybrid RANS/LES
Focus: separation-induced transition

▪ Canonical test case: Volino series (flat plate with adverse pressure gradient)
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• DDES-𝛾: own-developed model coupling (orange)

• DDES-𝛾-𝑃𝑘
𝑙𝑖𝑚: simple coupling of DDES and 𝛾-transition model without relevant corrections (purple)

• DDES-FT: fully turbulent simulation without transition model (green)

▪ Reduced modeled content 

in separated shear layer 

allows the development of 

resolved scales ▪ Improved prediction of transition 

process



Transitional hybrid RANS/LES
Focus: separation-induced transition

▪ Turbomachinery test case: Turbine cascade T106C
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▪ Improved results 

through maintaining a 

laminar boundary layer 

prior to separation

▪ Better prediction of wake losses on 

suction side

Suction sidePressure side

• DDES-𝛾: own-developed model coupling (orange)

• DDES-FT: fully turbulent simulation without transition model (green)



Transitional hybrid RANS/LES
Why is DDES superior to LES on same mesh?
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▪ Computation of 𝜇𝑡 for LES only based on grid information → too coarse 

mesh yields unphysical “overproduction” of 𝜇𝑡

▪ Computation of 𝜇𝑡 for DDES based on 𝑘- and 𝜔-transport equations + 

𝛾-transport equation suppresses 𝜇𝑡 in laminar regions → premature 

computation of 𝜇𝑡 prior to separation is prevented



Wall functions for hybrid RANS/LES
Assessment for aeronautical 2D flow

▪ Approach:

▪ Combine classic analytical wall functions (Knopp, 2006) with DDES & IDDES

▪ Assess potential for wall-normal grid coarsening, i.e. upper limit of 𝑦+(1)

▪ Test case: DLR F15 3-element airfoil

▪ Airfoil with deployed slat & flap at 𝑅𝑒 = 2.1 × 106, 𝛼 = 6°

▪ DLR-TAU using SA-IDDES (WMLES-mode on main-wing & flap)

▪ Results:

▪ Approach feasible for relevant

aerodynamic flow case

▪ Widely consistent flow predictions

(e.g. cp, cf) up to 𝑦+(1) = 20

▪ Increasing deviations (separation

on flap, lift loss) on coarser grids
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𝑦+(1) = 20

(α-corrected)
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▪ Test case: High-Lift Common Research Model (CRM-HL)

▪ High-Lift configuration at wind-tunnel conditions, 𝑅𝑒 = 5.45 × 106, 𝛼 = 7.05°

▪ Main test case in 4th AIAA High-Lift Prediction Workshop (2022)

▪ DLR-TAU code using SA-DDES

▪ Results: 

▪ Consistent results in linear lift range (higher AoA t.b.d.)

▪ Reduced computation time, with further potential

(* wall-functions not yet optimized for unsteady runs)

Wall functions for hybrid RANS/LES
3D demonstration
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CRM-HL Low-Re High-Re

Mesh points 218 × 106 115 × 106

y+(1) ~1 ~35

CL / CD / Cmy 1.747 / 0.1793 / −0.339 1.752 / 0.1795 / −0.337

Runtime saving - -25 % * α = 7.05°
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A. Probst and S. Melber-Wilkending, AIAA 

2022-3590

High-Re Low-Re



Embedded WMLES in DLR-TAU code
Outline of approach

▪ Embedded WMLES: Local wall-modelled LES (IDDES) zone within RANS simulation

▪ Additional grid-point savings possible compared to non-zonal (global) IDDES

▪ Essential part: Synthetic turbulence (STG) at RANS/WMLES interface

▪ Application in 3D:

▪ User-defined ST fronts via polyline control points

▪ Automatic extraction of RANS-input (upstream)

▪ Automatic switch to WMLES-mode in ST forcing region

▪ ST injection via smoothly varying source terms
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Local ST injection on swept high-lift wing 

(initial phase of simulation):

2D sketch:
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Embedded WMLES with wall functions
Assessment for canonical 2D flow

▪ Test case: NASA wall-mounted hump

▪ Local separation with reattachment, 𝑅𝑒𝑐 = 0.94 × 106

▪ WMLES embedded in the separated region

▪ Variation of wall-normal resolution using wall functions

▪ Results: 

▪ Accurate predictions of separation length

▪ Growing deviations in skin friction for 𝑦+(1) ≥ 25

➢ Combined approach offers potential for significant efficiency gain
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NASA hump EWMLES

𝑦+(1) 1 12.5 25 50

Sep. length vs. Exp. -1,8 % 1,4% 0,1 % -3,4 %

Runtime saving - -27.2 % -35,4 % -43 %

RANS    WMLES

ST forcing
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▪ Synergy from Aeroacoustics: Application and adaptation of highly parallelized synthetic 

turbulence generator from aeroacoustics sound sources to LES inflow forcing in potentially 

large forcing sub-volumes  

Synthetic Turbulence Generator for WM-LES
Fast Random Particle-Mesh Method (FRPM) for WMLES inflow forcing 

Resulting sound field on fuselage of full-scale aircraft from inboard 

slat, Fast Multipole BEM propagation of sources, 𝑓 ≈ 1𝑘𝐻𝑧

acoustic response on surface

▪ 200x800x111 vol. points, 35 mio. particles

▪ ~0.8h on 48 CPUs (for 1 acous. spectrum)

FRPM: Unsteady (3+1-D) sound sources at inboard slat 
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▪ Mesh sizes:

▪ #1: coarse: Δ𝑥 = 0.0004 (0.143 mio. points)

▪ #2: medium: Δ𝑥 = 0.0002 (1.138 mio. points)

▪ #3: fine: Δ𝑥 = 0.0001 (9.031 mio. points)

▪ Gauss spectrum with realized local integral length scale

▪ No length scale limits

▪ Performance: 3𝜇𝑠/(𝑝𝑛𝑡 ∗ 𝑡𝑠𝑡𝑒𝑝) using 6 CPUs

FRPM domain 

Synthetic Turbulence Generator for WMLES
TAU/FRPM volume forcing test case: Backward Facing Step (BFS)

u-component v-component w-component

Snapshot of synthetic turbulence fields, coarse mesh #1: Δ𝑥 = 0.0004; 143k points
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𝑙𝑓𝑎𝑐 = 1

▪ Gauss spectrum with realized local integral length scale

▪ Realized synthetic turbulence length scale

𝐿𝑠𝑦𝑛𝑡ℎ.𝑡𝑢𝑟𝑏= 𝑙𝑓𝑎𝑐
𝑘𝑡
𝜔

▪ Accurate reconstruction for 𝑙𝑓𝑎𝑐 = 1

𝑙𝑓𝑎𝑐 = 1

Synthetic Turbulence Generator for WMLES
TAU/FRPM volume forcing test case: Backward Facing Step (BFS)

Left: reconstruction of turbulence kinetic energy (green) relative to RANS (black), near wall missing amplitudes due to WMLES adapted

resolution of synthetic turbulence reconstruction; Right: snapshot of u-component of velocity 

TAU/ FRPM test case 

Backward Facing Step
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Synthetic Turbulence Generator for WMLES
Active 2+1-D wall forcing for overset WM-LES 

▪ Approach:

▪ Adaption of 3+1-D synthetic turbulence generator (FRPM) to 

setup wall normal turbulence (based on AIAA 2009-3269)

▪ Extraction of RANS turbulence statistics from precursor RANS at 

virtual slip-wall distance  

▪ First test via weak coupling: transformation of wall normal 

turbulent velocity fluctuations into equivalent kinematic wall 

roughness (Lagrangian frame) and generation of modified surface 

description (STL)

▪ Simulation with modified surface roughness („kinematic 

roughness“)
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kinematic roughness



Active Wall Model
Application example – DU97 profile
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Direct Noise Computation (DNC) with kinematic roughness model

DU97W300-FB kinematic roughness based WMLES-DNC 

(4kCPUh total for 0.4sec real-time sample) 
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Pressure coefficient along blade surface



To put in a nutshell…

▪ Lessons learned #1

▪ The coupling of DDES and 𝜸-transition model yield promising results 

for the prediction of separation-induced transition

▪ Lessons learned #2

▪ The combination of I/DDES with wall functions showed significant 

improvements in terms of computational cost

▪ Lessons learned #3

▪ The prescription of synthetic turbulence with the FRPM method 

showed good agreement with experimental reference data
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Thanks for your attention! Any questions?
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