
Usability and maintainability of the software tools
VIOLIN and CORAL

Bachelor Thesis

for the examination of

Bachelor of Science

of the study course Information Technology

at the Baden-Wuerttemberg Cooperative State University

by

Maikhanh Dang
August 2022

__
Time of Project 07.06.2022 - 30.08.2022
Student ID, Course 9572551, TINF19IT1
Company Deutsches Zentrum für Luft- und Raumfahrt e.V.
Location Berlin-Charlottenburg
Supervisor in the Company M. Sc. Stephen Schade
Reviewer Prof. Dr. Holger Gerhards

Author’s declaration

Hereby I solemnly declare:

1. that this Bachelor Thesis, titled Usability and maintainability of the software tools
VIOLIN and CORAL is entirely the product of my own scholarly work, unless
otherwise indicated in the text or references, or acknowledged below;

2. I have indicated the thoughts adopted directly or indirectly from other sources at
the appropriate places within the document;

3. this Bachelor Thesis has not been submitted either in whole or part, for a degree at
this or any other university or institution;

4. I have not published this Bachelor Thesis in the past;

5. the printed version is equivalent to the submitted electronic one.

I am aware that a dishonest declaration will entail legal consequences.

Berlin, 29. August 2022

Maikhanh Dang

Abstract

The software tools Virtual Acoustic FLyover Simulation (VIOLIN) and AirCraft Engine
NOise AuRALization (CORAL) have been developed and continuously expanded in the
course of this bachelor’s program. So far, the focus was on a clean software programming
development as well as the content of the software. However, in the process, the software
quality of the tools was less prioritized. In the scope of this thesis, various modifications
are implemented and designed in interest of the quality characteristics usability and
maintainability and evaluated quantitatively. For this purpose, the quality model of the
ISO/IEC 25010 and the complementary metrics defined in the ISO/IEC 25023 are used.
The evaluation shows an evident quality improvement for both software tools. However,
in doing so, the quality measures of ISO/IEC 25023 are critically reviewed and their
informative value are put into question.

Kurzfassung

Im Verlaufe dieses Bachelorstudiums wurden die Software-Tools VIOLIN and CORAL
entwickelt und kontinuierlich erweitert. Hierbei lag der Fokus bisher auf der geschickten
programmiertechnischen Umsetzung und auf den Inhalten der Tools, wobei der Aspekt der
Softwarequalität in diesem Prozess vernachlässigt wurde. Im Rahmen dieser Bachelorarbeit
werden Implementierungen zur Verbesserung der Qualitätseigenschaften Nutzbarkeit und
Wartbarkeit umgesetzt und quantitativ bewertet. Zu diesem Zweck werden das Qual-
itätsmodell aus der ISO/IEC 25010 und die dazugehörigen Metriken aus der ISO/IEC
25023 verwendet. Die Evaluierung bestätigt eine erkennbare Verbesserung der Software-
qualität beider Tools. Allerdings werden dabei die Metriken kritisch reflektiert und die
Aussagekraft dieser in Frage gestellt.

Contents

Acronyms V

List of Figures VI

List of Tables VII

Glossary IX

1. Introduction 2

2. Theoretical framework 3
2.1 The meaning of software quality . 3
2.2 Usability and maintainability in software Engineering 5
2.3 Software Testing . 10
2.4 Software Documentation . 13

3. Methods and materials 14
3.1 The Requirements-Properties Matrix . 14
3.2 GitLab CI/CD . 15
3.3 Python modules, frameworks and tools . 16

3.3.1 The module ”logging” . 16
3.3.2 The framework ”unittest” . 17
3.3.3 The tool ”pdoc” . 18
3.3.4 The tool ”pyreverse” . 18

3.4 Software product quality measures of the ISO/IEC 25023 standard 19
3.4.1 Conformance conditions . 19
3.4.2 Identification code of the quality measures 20
3.4.3 Usability measures . 20
3.4.4 Maintainability measures . 22

4. The software process chain 23
4.1 The flyover tool ”VIOLIN” . 24
4.2 The auralization tool ”CORAL” . 26

5. Definition of requirements 28
5.1 User profile and needs . 28
5.2 Typical application scenarios . 30
5.3 The software quality requirements . 35

III

6. Concept for implementation 36
6.1 The application modes . 36

6.1.1 Concept using lambda functions . 37
6.1.2 Concept using the ”logging” module 38
6.1.3 Comparison of concepts . 39

6.2 The test suite . 40
6.2.1 Structure of the testing framework 41
6.2.2 The integration tests . 43
6.2.3 The unit tests . 44
6.2.4 Conformance of the testing framework to the requirements 44

6.3 Guideline for software documentation . 45
6.3.1 The user documentation . 45
6.3.2 The technical documentation . 46

6.4 Continuous integration . 47
6.5 A post-processing script . 48

6.5.1 Structure of the post-routine . 49
6.5.2 The relevant plots . 50
6.5.3 The adjustable parameters . 54

7. Evaluation of the software quality 55
7.1 General approach . 55
7.2 Score system of the evaluation . 57
7.3 Evaluation of the software tool VIOLIN . 60
7.4 Evaluation of the software tool CORAL . 63

8. Summary & Discussion 66
8.1 Requirements and implementation results 66
8.2 The evaluation results . 69
8.3 Interpretation and discussion . 71

9. Recommendations for future work 75

Acknowledgements I

Bibliography II

A. Quality measures of the ISO/IEC 25023 standard V

B. Appendix to software testing IX

Acronyms

API application programming interface
CD Continuous Delivery
CD Continuous Deployment
CI Continuous Integration
CORAL AirCraft Engine NOise AuRALization
dB(A) A-weighted decibel
DFT Discrete Fourier Transform
DLR Deutsches Zentrum für Luft und Raumfahrt
E2E end-to-end
EPNL effective perceived noise level
f-string formatted string
GIGO garbage in, garbage out
GUI Grahical User Interface
HDF Hierarchical Data Format
HTML HyperText Markup Language
ICAO International Civil Aviation Organization
ID identification
IOC Inversion of Control
ISTFT Inverse Short-Time Fourier Transform
JSON JavaScript Object Notation
PN PropNoise++
QME Quality Measure Element
reST reStructuredText
RMS root mean square
SARPs Standards And Recommended Practices
SPL sound pressure level
SQuaRE Systems and software Quality Requirements and Evaluation
TOB third octave band
UI User Interface
UML Unified Modeling Language
UN United Nations
VIOLIN Virtual Acoustic FLyover Simulation

V

List of Figures

2.1 Software Quality Characteristics Tree by Boehm [11] 6
2.2 Truncated software quality model of McCall [14] 6
2.3 The software testing pyramid . 11
2.4 Process steps of the Golden Master Testing 12

4.1 Flowchart of the overall process chain . 23
4.2 3D-Illustration of an exemplary flyover event in VIOLIN 24
4.3 Calculation steps of the software tool VIOLIN 25
4.4 Calculation steps of the software tool CORAL 25
4.5 Steps to synthesize a broadband time signal in CORAL 27

5.1 Illustration of the application scenario ”Auralization of flyover with PN” . 31
5.2 Illustration of the application scenario ”Auralization of flyover with HEIDI” 31
5.3 Illustration of the application scenario ”Auralization of sound immission

from distributed engines” . 32
5.4 Illustration of the application scenario ”Certification and community noise” 33
5.5 Illustration of the application scenario ”Auralization of engine tests” 34

6.1 Directory tree of testing framework . 41
6.2 Generalized directory tree of an integration test case 42
6.3 Directory tree of a unit test case . 42
6.4 General directory tree of a software project with focus on the documentation

artifacts . 47
6.5 General structure of the GitLab CI/CD pipeline of both software tools . . 47
6.6 Directory tree of the post-processing routine 49
6.7 Exemplary VIOLIN post-processing of the test case HEIDI_NASA_STCA55_Sideline

. 52
6.8 Exemplary CORAL post-processing of the test case HEIDI_NASA_STCA55_Sideline

. 53

7.1 Calendar date of software version used for the evaluation 55

8.1 Software quality evaluation results of VIOLIN 70
8.2 Software quality evaluation results of CORAL 70

VI

List of Tables

2.1 Usability attributes of various quality models 8
2.2 Maintainability attributes of various quality models 10

3.1 Portion of a Requirements-Properties Matrix adopted from Boehm [11] . . 15
3.2 The standard levels or severity of events and their applicability adopted

from [24] (in increasing order of severity) 17
3.3 Selection of usability measures proposed in ISO/IEC 25023 [17] 21
3.4 Selection of maintainability measures proposed in ISO/IEC 25023 [17] . . . 22

5.1 Overall Requirements-Properties Matrix of the software process chain . . . 35

6.1 Evaluation of concepts for the implementation of application modes 40
6.2 Evaluation of the testing framework . 44

7.1 Target values of the measures for the pre- and post-quality-analysis versions
of VIOLIN . 60

7.2 Comparison of pre- and post-quality-analysis results of VIOLIN using
measurement functions proposed in [17] . 62

7.3 Target values of the measures for the pre- and post-quality-analysis versions
of CORAL . 63

7.4 Comparison of pre- and post-quality-analysis results of CORAL using
measurement functions proposed in [17] . 65

8.1 Comparison of the proposed implementations to the defined software re-
quirements . 68

A.1 Selected appropriateness recognizability measures of ISO/IEC 25023 [17] . V
A.2 Selected learnability measures of ISO/IEC 25023 [17] VI
A.3 Selected operability measures of ISO/IEC 25023 [17] VI
A.4 Selected user error protection measures of ISO/IEC 25023 [17] VI
A.5 Selected modularity measures of ISO/IEC 25023 [17] VII
A.6 Selected reusability measures of ISO/IEC 25023 [17] VII
A.7 Selected analyzability measures of ISO/IEC 25023 [17] VII
A.8 Selected modifiability measures of ISO/IEC 25023 [17]VIII
A.9 Selected testability measures of ISO/IEC 25023 [17]VIII

VII

B.1 Commonly used assert methods of the framework unittest adapted from [25] IX

VIII

Glossary

For the purposes of this thesis, the following terms and definitions apply.

analyzability

degree of effectiveness and efficiency with which it is possible to assess the impact on
a product or system of an intended change to one or more of its parts, or to diagnose
a product for deficiencies or causes of failures, or to identify parts to be modified
(adopted from ISO/IEC 25010:2011).

appropriateness recognizability

degree to which users can recognize whether a product or system is appropriate for
their needs (adopted from ISO/IEC 25010:2011).

assertion

Boolean expression at a specific point in the software that should always evaluate to
true.

atmospheric absorption

resonance absorption by air molecules.

auralization

process for artificially making an acoustic phenomena audible.

compatibility

degree to which a product, system or component can exchange information with
other products, systems or components, and/or perform its required functions,
while sharing the same hardware or software environment (adopted from ISO/IEC
25010:2011).

docstring

string literal to document a specific segment of code.

IX

Doppler effect

time compression or expansion of a sound wave with changes in the distance between
transmitter and receiver.

fake

testing double with working but usually simplified implementation using shortcuts,
thus not suitable for production.

functional suitability

degree to which a product or system provides functions that meet stated and implied
needs when used under specified conditions (adopted from ISO/IEC 25010:2011).

golden file

expected output file of a software test.

golden master

last-known verified or acceptable output of a software.

introspection

ability to exam the type and properties of objects like classes and functions at
runtime.

job

user-defined unit of work that is to be accomplished by a computer (adopted from
ISO/IEC 25023:2016).

lambda function

anonymous function that is not bound to an identifier.

lazy evaluation

evaluation of an expression when needed.

X

learnability

degree to which a product or system can be used by specified users to achieve specified
goals of learning to use the product or system with effectiveness, efficiency, freedom
from risk and satisfaction in a specified context of use (adopted from ISO/IEC
25010:2011).

legacy code

still active old or outdated computer source code.

logging

automatic generation of a log of software processes.

maintainability

degree of effectiveness and efficiency with which a product or system can be modified
by the intended maintainers (adopted from ISO/IEC 25010:2011).

measure

variable to which a value is assigned as the result of measurement (adopted from
ISO/IEC 25023:2016).

measurement

set of operations having the object of determining a value of measure (adopted from
ISO/IEC 25023:2016).

measurement function

algorithm or calculation performed to combine two or more quality measure elements
(adopted from ISO/IEC 25023:2016).

mock

testing double substituting a real object by mimicking behavior.

modifiability

degree to which a product or system can be effectively and efficiently modified
without introducing defects or degrading existing product quality (adopted from
ISO/IEC 25010:2011).

XI

modularity

degree to which a system or computer program is composed of discrete components
such that a change to one component has minimal impact on other components
(adopted from ISO/IEC 25010:2011).

module

package of code and data for reuse.

operability

degree to which a product or system has attributes that make it easy to operate and
control (adopted from ISO/IEC 25010:2011).

performance efficiency

performance relative to the amount of resources used under stated conditions (adopted
from ISO/IEC 25010:2011).

portability

degree of effectiveness and efficiency with which a s system, product or component can
be transferred from one hardware, software or other operational or usage environment
to another (adopted from ISO/IEC 25010:2011).

quality characteristic

category of quality attributes that bears on software product or system quality
(adopted from ISO/IEC 25023:2016).

quality measure

derived measure that is defined as a measurement function of two or more values of
quality measure elements (adopted from ISO/IEC 25023:2016).

quality model

defined set of characteristics, and of relationships between them, which provides a
framework for specifying quality requirements and evaluating quality (adopted from
ISO/IEC 25023:2016).

reliability

degree to which a system, product or component performs specified functions under
specified conditions for a specified period of time (adopted from ISO/IEC 25010:2011).

XII

reusability

degree to which an asset can be used in more than one system, or in building other
assets (adopted from ISO/IEC 25010:2011).

security

degree to which a product or system protects information and data so that persons
or other products or systems have the degree of data access appropriate to their
types and levels of authorization (adopted from ISO/IEC 25010:2011).

software quality

degree to which a software product conforms to user specifications.

software stakeholder

person who has a stake in the software.

software testing

process of evaluating and verifying the software.

spectrogram

time-varying frequency spectrum.

strict evaluation

evaluation of function parameters before evaluation of function body.

stub

testing double containing predefined data and answers to function calls..

test coverage

percentage measure of the degree to which testing is performed by a set of tests.

test suite

collection of software test cases.

testability

degree of effectiveness and efficiency with which test criteria can be established for a
system, product or component and tests can be performed to determine whether
those criteria have been met (adopted from ISO/IEC 25010:2011).

XIII

testing pyramid

visual metaphor for software testing standard.

tool

set of utilities or programs that help with the software developing process.

unit

small testable part of a software.

usability

degree to which a product or system can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a specified context of
use (adopted from ISO/IEC 25010:2011).

user error protection

degree to which a system protects users against making errors (adopted from ISO/IEC
25010:2011).

XIV

Foreword

The German Aerospace Center (Deutsches Zentrum für Luft und Raumfahrt (DLR)) is the
research center of the Federal Republic of Germany for aerospace. However, the activities
of the DLR reach far beyond this area. The DLR is engaged in a wide range of research
in areas of energy and transport as well as security and digitalization. The extensive
research and development work in these areas is conducted in national and international
partnerships with other companies and research institutes. In addition to researching the
earth and solar system, the DLR is also developing environmentally friendly technologies
for the mobility, energy supply and security of the future. [1]

The DLR institute for Propulsion Technology focuses on the development of efficient and
environmentally friendly aircraft propulsion systems and power plant turbines. Highly
efficient methods and fast simulation processes are developed and applied in research. Ad-
ditionally, demanding measuring methods and unique test facilities are used to investigate
powerful and quiet propulsion concepts as well as environmentally friendly turbomachinery
components and low-emission combustion chambers. [2]

The department for Engine Acoustics, a department of this institute, deals specifically
with the acoustics of turbomachines and gas turbines, especially aircraft engines. The
research activities of the department focus on fan noise. In particular, the noise generation,
propagation and radiation are investigated. The noise levels are predicted either analytically,
numerically or experimentally. The goal is to identify the noise sources and, above all, to
reduce this noise. [3]

1

1. Introduction

As part of the dual bachelor’s program in Computer Science of the Baden-Wuerttemberg
Cooperative State University, two analytical software tools were developed in the practical
phases at the German Aerospace Center (DLR): Virtual Acoustic FLyover Simulation
(VIOLIN) and AirCraft Engine NOise AuRALization (CORAL). Both tools process data
from an analytical noise prediction. The tool VIOLIN is a post-processing and noise
immission tool. With VIOLIN, sound generated from an aircraft, e.g. fan or jet noise, can
be propagated to one or more observer positions during a virtual flyover. The resulting
sound levels are evaluated using various noise metrics. This is used for virtual certification
in the design phase. For further evaluation, the resulting sound fields are auralized using
the tool CORAL. Auralization is the artificial process to make an acoustic phenomena
audible.

During the development phase, the focus was on the modular software design and structure
as well as the content of the software. Both tools were continuously expanded by new
acoustic modules. In doing so, the software quality was less prioritized. Quality assurance is
a vital part of the software development cycle. This is because software quality encompasses
desirable properties of a software that conform to the requirements placed on the software.
It ensures that the software performs its intended functions without failure in a safe and
fault-free manner. Therefore, the subject of this thesis is to improve the software quality
of the tools VIOLIN and CORAL. The research is limited to the quality aspects around
the software user. This includes usability and maintainability. To improve these software
characteristics of VIOLIN and CORAL, the following approach is taken in this thesis:

To establish a theoretical basis, the terms ”software quality”, ”usability” and ”maintain-
ability” are defined. For this purpose, existing definitions and various quality models that
include those quality characteristics in the academic literature are compared and reviewed.
A suitable quality model is chosen. In preparation of the quality improvement, the analyzed
software tools are introduced. Based on the users of both tools, general user requirements
to the software are identified. The user requirements are further specified with respect to
the quality characteristics usability and maintainability as defined in the chosen model.
On the basis of the specified requirements, appropriate modifications are proposed and
implemented to improve the quality characteristics usability and maintainability of both
tools. Lastly, the proposed implementations are evaluated quantitatively using the quality
metrics of the chosen quality model.

2

2. Theoretical framework

This chapter provides an overview of relevant literature and current knowledge on the
subject. It starts with the definition of software quality according to academic literature,
followed by well-established software quality models that propose usability and maintain-
ability as factors of software quality. Furthermore, core concepts of software testing and
documentation are summarized in the following sections. These will be relevant for the
modifications to improve the software quality.

2.1. The meaning of software quality

To consider and analyze specific software quality factors in detail, it is first necessary to
understand what software quality means. Numerous definitions are proposed throughout
the academic literature. In the compendium produced in a Ph. D. course on ”Quality
attributes and trade-offs” [4], various perspectives of different authors and researches on
(software) quality are explored in the first chapter by D. Milicic. Essentially, Milicic points
out two views on the definition of (software) quality:

• Conformance to specification: Quality whose measurable characteristics satisfy fixed
specifications defined in beforehand.

• Meeting customer needs: Quality as the capability to meet customer expectations.

To offer more insight on the two perspectives, Milicic gives six examples:

1. According to Crosby [5], quality must be defined as ”conformance to requirements”.
It is important to define quality to be able to manage the concept of quality. Crosby
is a strong advocate of quality as prevention and not as appraisal or inspection. In
other words, quality assurance to satisfy specified requirements should be part of the
developing process and not assessed in retrospect. Nonconformance is the absence of
quality. This clearly adheres to the quality definition ”conformance to specifications”.

2. In contrast to Crosby, Feigenbaum’s philosophy of quality [6] represents the view
”meeting customer needs”. Quality is based on the customer’s experience with
the product or system. Feigenbaum emphasizes the importance of satisfying the
customer’s actual and expected needs, stated or not stated.

3

2. Theoretical framework

3. Similarly to Feigenbaum, Ishikawa’s definition [7] of quality complies with a ”meeting
customer needs” perspective. Ishikawa further interprets quality as a dynamic
concept as customer needs and expectations change continuously. Consequently,
quality must be defined dynamically. Meeting standards only is insufficient, even if
frequently updated. The standards simply cannot keep up with the pace of customer
needs.

4. A counter example is Deming’s opinion [8] on quality: Quality specifications must
be defined in consideration of future user needs. This is a much wider concept as
Deming combines two perspectives ”conformance to specifications” and ”meeting
customer needs”. Deming points out the difficulty of translating future user needs
into measurable characteristics. In his opinion, this requires a management system
that enables responsibility of one’s own work. For this purpose, he introduces 14
points or steps for management.

5. Also fitting into both philosophies is Shewhart’s definition of quality from the 1920s
[9]. Shewhart, who is referred to as ”the master” by Deming due to his widely-
accepted definition, identifies an objective and subjective aspect of quality: The first
refers to the quality that is independent of the human factor and the latter describes
the resulting thoughts and feelings about the objective quality. Shewhart’s definition
is one of the oldest but still deemed to be the most superior.

6. An alternative view is provided by Juran [10]. He defines quality as ”fitness for use”
and proposes three steps for managing quality: planning, control and improvement.
This involves the identification of customers, requirements etc., the examination or
evaluation of the product against the requirements and lastly the practice of methods
to continuously sustain quality. According to Milicic, Juran’s definition indicates
references to the ”conformance to specification” view, thus characterizing it as such
more than ”meeting a customer needs”.

Within the scope of this thesis, the definition of software quality agrees with that of
Deming’s. In this context, quality also means the conformance to specifications which are
defined in accordance to the user. The goal of this thesis is to improve software quality
in consideration of user needs and typical application scenarios. From these aspects,
requirements and specifications for the software tools are derived as well as necessary steps
to achieve the goal. This clearly follows both definitions ”conformance to specifications”
and ”meeting customer needs” similar to Deming’s view on software quality. In this sense,
it is also important to consider user needs that are relevant in the future as well.

4

2. Theoretical framework

2.2. Usability and maintainability in software Engineering

The terms ”usability” and ”maintainability” within the scope of software engineering are
typically integral aspects of software quality. Many software quality models exist, thus
providing a range of definitions for both terms. In this section, the following popular
models that include usability and maintainability are presented:

• The Boehm model is described in Subsec. 2.2.1.

• The McCall model is described in Subsec. 2.2.2.

• The International Standard ISO/IEC 9126 is described in Subsec. 2.2.3.

• The International Standard ISO/IEC 25010 is described in Subsec. 2.2.4.

In Subsec. 2.2.5, the various definitions of usability and maintainability are reviewed by
comparing their attributes of the presented models to determine the most suitable model
and definition for both terms.

2.2.1. Boehm’s model

In 1976, Boehm et al. [11] first introduced a hierarchical model, later to be known as
”Boehm’s Software Quality Model” (see Fig. 2.1). It is one of the earliest models. In
this model, maintainability is characterized as one of the three so-called ”primary uses”.
The model suggests that the primary uses are necessary conditions for software quality
and therefore considered as high level characteristics. Usability is referred to as ”human-
engineering” [12][13] and is one of the mid level characteristics that are associated with the
three primary uses. These are called ”intermediate constructs”. The primary use maintain-
ability, for example, is decomposed into the characteristics understandability, modifiability
and testability, and, according to Boehm, is aided by human-engineering. Intermedi-
ate constructs are further classified into so-called ”primitive constructs”. For example,
human-engineering is broken down into the lower level characteristics communicativeness,
accessibility and robustness/integrity.

5

2. Theoretical framework

General
Utility

Maintainability

Modifiability

Augmentability

Legibility
Conciseness

Understandability Structuredness

Testability

Self-Descriptiveness
Communicativeness

Accessibility

As-Is
Utility

Human Engineering Device Efficiency

Efficiency

Accountability

Consistency

Robustness/Integrity

Reliability Completeness

Portability

Accuracy
Self-Containedness

Device-Independence

Primitive Constructs
Intermediate
Constructs

Primary Uses

Figure 2.1.: Software Quality Characteristics Tree by Boehm [11]

McCall

Product Operation

Efficiency

Integrity

Usability

Communicativeness

Training

OperabilityReliability

Correctness

Product Transition

Interoperability

Portability

Reusability

Product Revision

Maintainability

Modularity

Self-Descriptiveness
Conciseness

Simplicity

Consistency
Testability

Flexibility

Software Quality
Factors

Product Quality
Factors

Software Quality
Criteria

Figure 2.2.: Truncated software quality model of McCall [14]

6

2. Theoretical framework

2.2.2. McCall’s model

McCall’s model [14] was proposed in 1977 and represents similar to Boehm’s model a
hierarchical software quality model. It is based on three product quality factors:

• Product Operation is the requirement that affects the software operation providing
better user experience.

• Product Revision is the requirement for software testing and maintenance.

• Product Transition is the requirement for software adaptation to new environments.

For each one of these, the model defines different software quality factors. They describe
important external attributes and are considered higher level characteristics. Each quality
factor further contains internal attributes called software quality criteria. In comparison
to quality factors which can be accessed directly, the lower level quality criteria can be
accessed subjectively or objectively. This model classifies maintainability and usability as
quality factors. Figure 2.2 depicts a truncated model that only lists the internal attributes
of usability and maintainability. McCall defines both as follows:

• Usability: ”Effort required to learn, operate, prepare input, and interpret output of
a program” [14]

• Maintainability: ”Effort required to locate and fix an error in an operational program”
[14]

2.2.3. The ISO/IEC 9126-1

The first part of ISO/IEC 9126 [15] describes a software product quality model. It is the
revision of ISO/IEC 9126 (1991) and retains the same software quality characteristics.
Software quality is broken down into the following six characteristics:: functionality,
reliability, usability, efficiency, maintainability and portability. These are further broken
down into normative subcharacteristics with measurable attributes. Appropriate metrics
are proposed in the other parts of ISO/IEC 9126. This standard provides the following
definitions for usability and maintainability:

• Usability: ”The capability of the software product to be understood, learned, used
and attractive to the user, when used under specific conditions.” [15]

• Maintainability: ”The capability of the software product to be modified. Modifica-
tions may include corrections, improvements or adaptation of the software to changes
in environment, and in the requirements and functional specifications.” [15]

7

2. Theoretical framework

2.2.4. The ISO/IEC 25010

The ISO/IEC 25010 [16] revises and replaces ISO/IEC 9126-1, incorporating the same
software quality characteristics with some amendments. It is part of the Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) series of International Standards
and defines system and software quality models. The following definitions apply:

• Usability: ”degree to which a product or system can be used by specified users to
achieve specified goals with effectiveness, efficiency and satisfaction in a specified
context of use” [16]

• Maintainability: ”degree of effectiveness and efficiency with which a product or
system can be modified by the intended maintainers” [16]

2.2.5. Literature review

The presented models offer different definitions of the terms usability and maintainability.
However, when comparing the varying attributes of each quality factor, it becomes clear
that all sources share a similar core concept of the terms. In Tab. 2.1 for usability and
Tab. 2.2 for maintainability, these definitional attributes are summarized respectively.
Each row lists an area of apparent agreement on the respective quality attributes. For
example, all sources except for Boehm’s model define the term ”operability” as an attribute
of usability (see Tab. 2.1). Not all sources use the same exact term for an area. In some
cases, synonymous terms are used. Overall, it becomes noticeable that the ISO/IEC 25010
seemingly consolidates all attributes of the other presented sources in one model. This
observation is examined in the following, starting off with usability.

Table 2.1.: Usability attributes of various quality models
Boehm (1976) McCall (1977) ISO 9126-1 (2001) ISO 25010 (2011)
Communicativeness Communicativeness Understandability Appropriateness

recognizability
Training Learnability Learnability
Operability Operability Operability

Robustness User error
protection

Attractiveness User interface
aesthetics

Accessibility Accessibility
Usability
compliance

8

2. Theoretical framework

The ISO/IEC 25010 is the revision of ISO/IEC 9126. Therefore, it is logical that attributes
of the earlier model are encapsulated in the new one. According to ISO/IEC 25010,
usability was an implicit quality and made explicit. For this purpose, the subcharacteristics
understandability and attractiveness underwent a change of name to be more accurate (see
Tab. 2.1). Two new subcharacteristics are introduced: user error protection (to achieve
freedom of risks) and accessibility. Learnability and operability are adopted as is. Only
the attribute usability compliance was not incorporated. However, it is redundant to
include a requirement of the quality usability for a software product to adhere to standards,
regulations etc. relating to usability. Boehm and McCall list three subcharacteristics
each, sharing the attribute communicativeness. This criterion, as McCall refers to, is
defined as the extent that software provides inputs and outputs that are useful and easy
to assimilate. It can be considered a subset of the attribute appropriate recognizability
and therefore is listed in this area. ISO/IEC 25010 defines this subcharacteristic as the
”degree to which users can recognize whether a product or system is appropriate for their
needs”. Similarly, the criterion training by McCall is subsidiary to the area of learnability.
A short but precise definition of the latter is given by ISO/IEC 9126: Learnability is the
”capability of the software product to enable the user to learn its application”. According
to McCall, training refers to software attributes that provide initial familiarization, thus
aiding the attribute learnability and characterizing it as such. The classification of the
remaining attributes is self-explanatory. Robustness (Boehm) is synonymous with the
subcharacteristic user error protection. The particular terms accessibility (Boehm) and
operability (McCall) are both specified in the ISO/IEC 25010 standard.

In Tab. 2.2, the varying attributes of maintainability are depicted. The subcharacteristics
analyzability and testability from ISO/IEC 9126 are adopted in the ISO/IEC 25010. Mod-
ifiability is a combination of changeability and stability. Both, testability and modifiability,
can be found in Boehm’s model as attributes of maintainability. The subcharacteristic
analyzability, however, is only implied in the two earlier models. According to Boehm,
the premise for any code maintenance is the understanding of the code. In a broader
sense, understandability is also a logical subset of analyzability. McCall lists the criteria
self-descriptiveness and simplicity which inherently describe the term understandability.
Therefore, they can also be considered in the area of analyzability. The subcharacteristic
maintenance compliance of ISO/IEC 9126 is redundant with the same reasoning given for
the attribute usability compliance. Lastly, two new subcharacteristics are introduced in
ISO/IEC 25010: reusability and modularity. The latter is represented in McCall’s model
and defined as the attributes that provide a structure of highly independent modules.
Furthermore, McCall proposes the criterion conciseness which is ”the ability to satisfy
functional requirements with a minimum amount of software” according to himself. In
this sense, conciseness belongs to the subcharacteristic modularity.

9

2. Theoretical framework

Table 2.2.: Maintainability attributes of various quality models
Boehm (1976) McCall (1977) ISO 9126-1 (2001) ISO 25010 (2011)

Modularity,
Conciseness

Modularity

Reusability
Understandability Self-descriptiveness,

Simplicity
Analyzability Analyzability

Modifiability Changeability,
Stability

Modifiability

Testability Testability Testability
Maintenance
compliance

The comparison shows that the quality model as defined by ISO/IEC 25010 is a well-
rounded model, consolidating usability and maintainability attributes of prominent models.
Further inspections also reveal this standard to propose suitable measurement functions
for each characteristic and subcharacteristics. Boehm makes an attempt by defining
a categorical rating scale. McCall essentially proposes a checklist, a binary measure
determining the existence or absence of something, and a relative quantity measure.
Additionally, McCall sets the following rule for the units of the metric: ”The units of
the metric will be chosen as the ratio of actual occurrences to the possible number of
occurrences” [14]. This shows similarities to the measurement functions of the International
Standard. The SQuaRE series provides a detailed set of quality measures for a quantitative
evaluation of the software quality factors defined in the ISO/IEC 25010. These are specified
in the complementary standard ISO/IEC 25023 [17]. Further details are given in Sec. 3.4.

Based on this literature review, the quality model of ISO/IEC 25010 proves to be the
most comprehensive model. Conclusively, the definitions of usability and maintainability
according to this standard apply for the purpose of this thesis.

2.3. Software Testing

An integral step of the software development cycle is software testing. Following the design
plan of a software, the actual implementation has to be tested before deployment. The
software is evaluated and verified to ensure that all defined requirements are met. The
purpose of software testing is to find missing requirements and catch bugs and errors.
Software testing is also an important part of software maintenance. Regular testing ensures
a high software quality and the longevity of a product.

10

2. Theoretical framework

2.3.1. The Testing Pyramid

There are different approaches to (automated) software testing. A popular one is the
so-called ”Testing Pyramid”. The concept is believed to have been introduced by Mike
Cohn in his book [18] published in 2009. The general idea of the pyramid has caught on
since and multiple variants have been proposed. Figure 2.3 depicts the testing pyramid.
The pyramid is a visual metaphor for thinking about software testing in different layers:

1. Unit Tests: The base of the pyramid comprises unit tests. Unit testing is a process
where the smallest testable components of a software are isolated and scrutinized
individually. A unit can be a function/method, a subroutine or a property for
example. For the purpose of isolation, mock, stub or fake objects or so-called ”test
doubles” are used.

2. Service Tests: Service tests are integration tests. In contrast to unit testing, inte-
gration testing appraises the individual components of a software as one combined
entity. The objective is the evaluation of the compliance of a software or system
with specified functional requirements. This is achieved by integrating the various
components and testing the interfaces and interaction between the modules.

3. UI Tests: The top of the pyramid consists of User Interface (UI) tests, also known
as end-to-end (E2E) tests. Unlike the name entails, the tests are entirely automated
and not conducted by human. Every user interaction is simulated.

Unit Tests

Service Tests

UI Tests

co
st

speed

Figure 2.3.: The software testing pyramid

Each level of the pyramid covers a different scope. The integration of software components
increases with each level, starting with the isolation of units at the bottom of the pyramid.
However, more integration also means more time and consequently more expenses. Con-
versely, unit tests are fast and less expensive. For this reason, unit tests constitute the
base of the pyramid, which is the widest part. The visual metaphor of the pyramid also
specifies the amount of testing for each level in relation the other levels.

11

2. Theoretical framework

2.3.2. Golden Master Testing

Golden Master Testing [19] is a software testing method to protect legacy code from
unintended changes via automated testing. It enables and provides a safety net for the
extension and restructuring of code with insufficient or no adequate unit tests. This
method is also known as a characterization test, a term coined by Mike Feathers [20].

In contrast to the typical approach of assertion-based software testing, the complex result
of the tested software is validated against a reference outcome of a previous version of the
software. The reference is referred to as the Golden Master. A golden master can be any
type of output containing a challenging amount of data. For example, the characterization
test can be used to verify an image or some type of data format file. In these cases, the
simple comparison between a current output and a reference is far more cheaper and
appropriate than the usual assertion of each individual value or property. The process
of the Golden Master Testing is visualized in Fig. 2.4. A characterization test passes if
the output and golden master match. Otherwise, the test fails. However, this does not
ultimately mean that the code is wrong. On the contrary, this kind of test serves as a
simple change detector. If a test fails, the developer has to check the results and decide
whether the changes in the code need to be fixed or the golden master needs to be replaced.
The latter is another advantage to this software testing technique. Software changes
continuously. Therefore, the corresponding tests have to be easily adaptable. Golden
Master Testing enables this by just updating the reference with the new acceptable output.
Additionally, due to the fact that this technique is based on existing code, it is possible
to automate the tests. This is an interesting aspect as a measure to uphold the software
quality maintainability. A disadvantage is that characterization tests merely verify an
observed behavior of a software. They cannot determine the correctness of the code. This
is up to the developer who analyzes and evaluates the detected change. Furthermore,
Golden Master Testing depends on repeatability. Characterization tests are not suitable
for volatile or non-deterministic results. In this case, traditional assertion-based software
testing is the better approach.

Extension/
Refactoring

Run golden
master tests

Detect change
Update

golden master

Reject change

Accept change

Figure 2.4.: Process steps of the Golden Master Testing

12

2. Theoretical framework

2.4. Software Documentation

Software documentation is an integral part of a software application. Forward [21] describes
in his master’s thesis: ”Documentation is an abstraction of knowledge about a software
system [...]”. A document or any other artifact forms part of a software’s documentation
as long as it can effectively communicate knowledge. By artifacts, Forward includes, for
example, software models and source code. To determine which attributes contribute to
the effectiveness of a documentation, Forward conducts a survey of software professionals.
On this topic, the results of the survey reveal the following:

• Content is the most important factor as well as the target audience. The target
should be kept in mind to produce effective documentation. Furthermore, the chosen
documentation technology must allow easy creation and maintenance of content-rich
documents.

• Secondly, the degree to which a document is up-to-date is an important factor.
However, it is even more important that up-to-date documentation is readily available
and easily located. Up-to-date documentation that is not available to users is as
useless as outdated documentation. Examples are great methods for effectiveness.

• Lastly, a document’s file format or the quality of spelling and grammar has low
correlation with the documentation’s effectiveness.

Continuing the first revelation, academic literature on software engineering suggest multiple
types of software documentation. They include but are not limited to the following:

• Requirements documentation describe the foundation for the implementation.

• Technical documentation include information on code, algorithms, interfaces etc.

• User documentation include operation manuals for the end-user.

Each type of documentation addresses a different target group. As Forward concludes, the
target audience has to be kept in mind when choosing the type of documentation.

13

3. Methods and materials

For the realization and evaluation of this thesis, a range of different tools and methods is
utilized. They are presented in this chapter as follows:

• In Sec. 3.1, the Requirements-Properties-Matrix is presented.

• In Sec. 3.2, the tool GitLab CI/CD for continuous methodologies is presented.

• In Sec. 3.3, various Python modules, frameworks and tools are presented.

• In Sec. 3.4, the quality measures for the quantitative evaluation are presented.

3.1. The Requirements-Properties Matrix

In an attempt to avoid ambiguity in the software requirements specifications, Boehm
et al. [11] suggest a technique to explicitly analyze implicit quality requirements: the
Requirements-Properties Matrix. The difficulty is, as Deming [8] also points out, the
translation of qualitative user needs into measurable or quantitative characteristics. When
defining the software requirements, the Requirements-Properties Matrix is supposed to help
to identify additional and more feasible specifications in consideration of quality aspects. As
shown in Tab. 3.1, it is a matrix whose rows consist of the desired qualities or properties and
whose columns list the individual requirements. The elements of the matrix contain further
specifications of an overall requirement and are less ambiguous. As an example, Boehm
et al. [11] use this technique on the following requirement: ”Terminate the simulation at an
appropriate shift break”. This specification leaves room for interpretation. It is ambiguous
and non-testable. Table 3.1 depicts the corresponding exemplary Requirements-Properties
Matrix. The resulting specifications define clear instructions and conditions for the initial
software quality requirement, differentiating between the specific quality factors. This way,
it is easy to evaluate if a software requirement is satisfied. In case of the given example, an
appropriate shift break for termination is further specified as a time span of eight hours for
testability. Allowing the user to set the termination time as an input parameter accounts
for modifiability of the software. Lastly, an alternate termination condition in case of an
exception is a requirement for robustness. The Requirements-Properties Matrix shows to
be a reasonable technique to determine precise requirements from qualitative user needs.

14

3. Methods and materials

Table 3.1.: Portion of a Requirements-Properties Matrix adopted from Boehm [11]

Property

Requirement
Terminate the simulation at an appropriate shift break . . .

Testability Terminate the simulation after 8 hours of simulated time . . .

Modifiability Allow user to specify termination time as an input pa-
rameter, with a default value of 8 hours

. . .

Robustness Provide an alternate termination condition in case the
time criterion cannot be reached

. . .

.

3.2. GitLab CI/CD

GitLab is an open-source software development platform. Aside from built-in version
control and issue tracking, GitLab additionally offers a tool for continuous methodolo-
gies. This tool is called GitLab CI/CD [22]. Continuous Integration (CI), Continuous
Delivery (CD) and Continuous Deployment (CD) are popular practices to catch software
bugs and errors early in the development cycle. The fundamental element of the mentioned
methodologies is CI. It is the practice to build and test each submitted change auto-
matically and continuously. In addition to this, Continuous Delivery manually triggers
the deployment of the changes. Continuous Deployment does so automatically. GitLab
CI/CD can automatically build, test, deploy and monitor a software project, complying to
code standards that the user defined.

In the configuration file .gitlab-ci.yml, the user defines the pipeline containing specific
instructions. It is a top-level component of CI/CD. A pipeline comprises jobs and stages.
Jobs define what to do, whereas stages define when to run the jobs. A job must at least
contain the script clause with one command. The open-source application GitLab Runner
works with GitLab CI/CD and executes the jobs automatically. A user can register and
configure own runners or use runners hosted by GitLab. Typically, multiple jobs of the
same stage are executed concurrently if enough runners exist. If all jobs in a stage succeed,
GitLab continues with the next stage. Otherwise, the pipeline is halted and fails. Jobs
can output an archive of files. The output is called job artifact.

15

3. Methods and materials

3.3. Python modules, frameworks and tools

The programming language Python offers a variety of built-in library modules, frameworks
and external tools. Modules contain separate resources with different functionalities. A
module is a package of code and data for reuse including a definition of Python objects like
classes, functions, variables and constants. The term tool is often used synonymously with
the term module. However, in this context, a tool describes a set of utilities or programs
that help a developer with the developing process of a software application. A framework
is a set of libraries providing a program architecture. Unlike a library module, a framework
is not called to access reusable code and included to a software application as a developer
chooses to. Source code is integrated into the framework instead. This is the defining
characteristic of a framework: Inversion of Control (IOC) [23]. Instead of the application
controlling the flow of control and using only standard functions, control of the execution
of certain subroutines is handed over to a framework. The flow of control and data is
managed by the framework.

The following Python frameworks, libraries or tools are relevant to this thesis:

• The logging module is introduced in Subsec. 3.3.1.

• The framework unittest is introduced in Subsec. 3.3.2.

• The tool pdoc is used to auto-generate application programming interface (API)
documentation from inline documentation and is introduced in Subsec. 3.3.3.

• The tool pyreverse is used to auto-generate Unified Modeling Language (UML)
diagrams from source code and is introduced in Subsec. 3.3.4.

3.3.1. The module ”logging”

Logging is a monitoring method for software applications or systems. It allows to under-
stand the behaviour of a software and to find the problems within by simply tracking
events. For this purpose, Python offers the standard library module logging [24]. The
module contains classes and functions to implement a flexible logging system. An event
is described with a descriptive message. Optionally, that message can contain a variable.
Each event is assigned a level or severity of importance. All standard levels and their
applicability are noted in Tab. 3.2. The default severity is WARNING. That means all events
at this level or above will be tracked, unless configured otherwise. In other words, the levels
INFO and DEBUG are not tracked by default. Besides that, it is possible to define custom
levels. Complementary to the standard levels, the library offers a set of homonymous
functions:

16

3. Methods and materials

• debug() to report events in detail for diagnostic purposes.

• info() to report events during normal operation for status monitoring.

• warning() to issue a warning regarding a runtime event.

• error() and critical() to report the suppression of an error without raising an
exception. The functions are not suitable to actually report an event error.

This logging module is also not suitable for mere console output of ordinary usage. For
this purpose, a standard print()-statement is the best option.

Table 3.2.: The standard levels or severity of events and their applicability adopted from [24] (in
increasing order of severity)

Level When it’s used

DEBUG Detailed information, typically of interest only when diagnosing problems.

INFO Confirmation that things are working as expected.

WARNING An indication that something unexpected happened, or indicative of some
problem in the near future (e.g. ’disk space low’). The software is still
working as expected.

ERROR Due to a more serious problem, the software has not been able to perform
some function.

CRITICAL A serious error, indicating that the program itself may be unable to
continue running.

3.3.2. The framework ”unittest”

Python’s unittest [25] is a built-in framework including a test runner to test Python
source code. As explained in Subsec. 2.3.1, the smallest testable components of a software
are scrutinized during unit testing. This is an assertion-based software testing technique.
Logically, unittest offers a range of assert methods (see appendix Tab. B.1). According
to the official documentation, the framework supports ”test automation, sharing of setup
and shutdown code for tests, aggregation of tests into collections, and independence of the
tests from the reporting framework”. It is a convenient built-in framework providing a rich
set of tools for unit testing without using third-party modules.

17

3. Methods and materials

3.3.3. The tool ”pdoc”

The software package pdoc [26] is an external Python tool to auto-generate API docu-
mentation from a Python’s module hierarchy. By means of introspection, pdoc extracts
information from inline source code documentation in form of docstrings. While plain
Markdown docstrings are preferred, pdoc also understands and supports numpydoc, Google-
style and reStructuredText (reST) docstring. The acquired information is rendered and
automatically transformed into HyperText Markup Language (HTML) documentation.
A built-in web server with live reloading is provided for the result. Alternatively, the
documentation can also be saved as a HTML file. The tool pdoc only extracts API
documentation of public code objects like modules, submodules, classes, functions and
all kind of variables. Conversely, objects marked with an underscore are ignored unless
configured otherwise. An example for the command-line application of the tool is given in
Listing 3.1.

1 pdoc [-o DIR] [-d {markdown ,google ,numpy , restructuredtext }]

Listing 3.1: Exemplary usage of pdoc’s command-line application

3.3.4. The tool ”pyreverse”

The Pylint tool suite provides the tool pyreverse [27]. It is an external tool to generate UML
diagrams from Python source code, using the open source graph visualization software
Graphviz as backend. All modules and classes of a user-specified location are analyzed.
The resulting diagrams include:

• Class and instance attributes (if possible with their type) and methods

• Inheritance links between classes

• Association links between classes

• Representation of exceptions and interfaces

Similarly to pdoc, the tool pyreverse only considers public code objects unless configured
otherwise when using the command-line application. An example is given in Listing 3.2.
The optional argument --filter-mode filters attributes and functions according to the
specified mode. Mode ’ALL’ filters nothing, thus including private members.

1 pyreverse [-o FORMAT] [--filter -mode/-f MODE]

Listing 3.2: Exemplary usage of pyreverse’s command-line application

18

3. Methods and materials

3.4. Software product quality measures of the ISO/IEC
25023 standard

The standard ISO/IEC 25023 [17] of the SQuaRE series defines a set of quality measures
for the quality characteristics and subcharacteristics defined in ISO/IEC 25010 (see
Subsec. 2.2.4) and is intended to be used in conjunction with ISO/IEC 25010. However,
the standard does not assign ranges of values of the measures to grades or rated levels of
conformance. The main use of ISO/IEC 25023 is rather quality assurance and improvement
of software products during and after the development process. The majority of the quality
measures produce a result that is relative to a target value that is established as a
requirement. Each is expressed as a measurement function.

This section presents the measures relevant to this thesis and is structured as follows:

• Subsection 3.4.1 depicts an obligatory set of conditions for quality conformance.

• Subsection 3.4.2 depicts the general documenting format of the quality measures.

• Subsection 3.4.3 depicts the quality measures of usability.

• Subsection 3.4.4 depicts the quality measures of maintainability.

3.4.1. Conformance conditions

According to the ISO/IEC 25023 standard [17], any quality requirement specification or
quality evaluation that conforms to this standard ought to follow a specific set of rules.
These are summarized in the following:

1. The quality characteristics or subcharacteristics to be specified or evaluated are
selected as defined in ISO/IEC 25010.

2. A distinction is made between so-called ”Generic (G)” and ”Specific (S)” quality
measures. For each selected characteristic or subcharacteristic, all Generic measures
must be used. If any Generic measures are excluded, a rationale has to be provided.
Specific measures are optional and selected when relevant only. In the scope of this
thesis, the selection is mostly limited to Generic measures due to time constraints.

3. If any quality measure is modified, the reason for changes has to be provided.

4. Additional quality measures and Quality Measure Elements (QMEs) can be defined
if not included in ISO/IEC 25023.

19

3. Methods and materials

3.4.2. Identification code of the quality measures

Each quality measure is given a unique identification (ID) code which consists of the
following information:

• An abbreviated alphabetic code representing the quality characteristics as a capital
letter and the subcharacteristics as one capital letter followed by a lowercase letter

• A serial number of sequential order within a quality subcharacteristic

• A ”G” or ”S” to denote Generic or Specific measures

For example, the ID code ”UOp-7-S” describes the seventh (Specific) measure of the
subcharacteristic ”Operability” for the quality characteristic ”Usability”.

3.4.3. Usability measures

This subsection lists the measures for the quality characteristic ”usability” that are relevant
to this thesis. Usability measures are used to evaluate the ”degree to which a product or
system can be used by specified users to achieve specified goals with effectiveness, efficiency
and satisfaction in a specified context of use” [16]. Usability is composed of six subcharac-
teristics: appropriateness recognizability, learnability, operability, user error protection,
user interface aesthetics and accessibility. However, the last two subcharacteristics are not
relevant to this thesis with the following rationale:

• Firstly, to be able to assess appearance aesthetics, a Grahical User Interface (GUI)
is required. This does not apply to the analyzed software tools of this project.
Besides, the one and only measure of the subcharacteristic user interface aesthetics
is a Specific measure anyway.

• Secondly, the users of the software tools consist of a small, closed group of scientists.
While inclusiveness is and remains an important topic, the consideration of users with
disabilities1 is not necessary for this scale of a project. Therefore, the subcharacteristic
accessibility is excluded as well.

Consequently, four subcharacteristics are considered in this thesis. Table 3.3 lists all
Generic measures of the selected subcharacteristics plus one additional Specific measure.
The measures are grouped by the corresponding subcharacteristics. For each quality
measure, the unique ID and name are given. The respective measurement functions are
depicted in Appendix Sec. A.1.

1 Disabilities include cognitive, physical, hearing/voice and visual disabilities.

20

3. Methods and materials

Table 3.3.: Selection of usability measures proposed in ISO/IEC 25023 [17]

Subcharacteristic ID Name

Appropriateness recognizability UAp-1-G Description completeness

Learnability ULe-1-G User guidance completeness

ULe-3-S Error messages understandability

Operability UOp-1-G Operational consistency

UOp-2-G Message clarity

User error protection UEp-1-G Avoidance of user operation error

The selected measures shown in Tab. 3.3 are defined according to the standard as follows:

• Description completeness is the proportion of usage scenarios described in the product
description or user documents relative to the actual number of usage scenarios.

• User guidance completeness is the proportion of functions explained in sufficient
detail in user documentation and/or help facility1 in relation to the number of
functions implemented that require to be documented.

• Error messages understandability is the proportion of the error messages stating the
cause and a solution in relation to the number of error messages implemented.

• Operational consistency is the extent of interactive tasks with a behavior and
appearance that is consistent both within the task and across similar tasks in relation
to the number of specific interactive tasks that need to be consistent.

• Message clarity is the proportion of messages2 from a system conveying the right out-
come or instructions to the user in relation to the number of messages implemented.

• Avoidance of user operation error is the proportion of user actions and inputs
protected against causing any system malfunction in relation to the number of user
actions and inputs that could be protected from causing any system malfunction.3

1 e.g. on-line help, operational guide video, operational instruction system
2 ”Messages that provide all available information that could help the user, and when possible explain

how to resolve the error.” [17]
3 It is helpful to find erroneous user actions and inputs for a better measurement. Possible measures

against user operation errors include system confirmation requests before carrying out actions with
significant consequences that cannot be undone.

21

3. Methods and materials

3.4.4. Maintainability measures

This subsection lists the measures for the quality characteristic ”maintainability” that
are relevant to this thesis. Maintainability measures are used to evaluate the ”degree
of effectiveness and efficiency with which a product or system can be modified by the
intended maintainers” [16]. Maintainability comprises five subcharacteristics: modularity,
reusability, analyzability, modifiability and testability. In a similar format to Tab. 3.3,
Tab. 3.4 lists all Generic measures for maintainability.

Table 3.4.: Selection of maintainability measures proposed in ISO/IEC 25023 [17]

Subcharacteristic ID Measure

Modularity MMo-1-G Coupling of components

Reusability MRe-1-G Reusability of assets

Analyzability MAn-1-G System log completeness

Modifiability MMd-1-G Modification efficiency

MMd-2-G Modification correctness

Testability MTe-1-G Test function completeness

The measures shown in Tab. 3.4 are defined according to the standard as follows:

• Coupling of components is the degree of independence between between components
and the number of implemented components with no impact from change on others in
relation to the number of specified components which are required to be independent.

• Reusability of assets1 is the number of reusable assets in a system in relation to the
actual number of assets which are designed and implemented.

• System log completeness is the extent of system logs to trace operations in relation
to the number of logs for which audit trails are required during operation.

• Modification efficiency is the required time compared to the expected time.

• Modification correctness is the proportion of correctly implemented modifications in
relation to the number of modifications implemented.

• Test function completeness the number of implemented test functions in relation to
the number of required test functions.

1 e.g. source code modules, testing modules, hardware, requirements documents

22

4. The software process chain

In this thesis, the following software tools are subject to a software quality analysis:

• Virtual Acoustic FLyover Simulation (VIOLIN)

• AirCraft Engine NOise AuRALization (CORAL)

VIOLIN provides a virtual acoustic flyover simulation and noise assessment based on
various noise metrics. CORAL transforms the simulated noise into audible files. This
process of making an artificial spectrogram audible is called auralization. Both tools
establish a consecutive process chain with PropNoise++ (PN) and HEIDI. These are
software tools for the analytical prediction of engine noise and provide the input data for
VIOLIN. The overall process chain is visualized in Fig. 4.1.

Figure 4.1.: Flowchart of the overall process chain

For better insight, the current state of the software tools and the overall process chain
are introduced in this chapter. In Sec. 4.1 the tool VIOLIN is briefly summarized and the
tool CORAL in Sec. 4.2. A more detailed description of both tools is given in this project
report [28].

23

4. The software process chain

4.1. The flyover tool ”VIOLIN”

Virtual Acoustic FLyover Simulation (VIOLIN) is a post-processing and sound immission
tool where the sound field generated at the noise source is virtually propagated to an
observer during a pre-defined flyover event. An illustrative example is given in Fig. 4.2.

Figure 4.2.: 3D-Illustration of an exemplary flyover event in VIOLIN

The generated noise field is provided by one of the emission tools PN or HEIDI. Frequency-
and angle-dependent sound pressure levels (SPLs) or so-called sound directivities are
predicted for several noise sources. VIOLIN processes this information as specified by the
Standards And Recommended Practices (SARPs) of the International Civil Aviation
Organization (ICAO). The ICAO is a specialized agency of the United Nations (UN)
with the goal of promoting the sustainability of the global civil aviation system and
standardizing this system. During the sound propagation, various physical effects are
considered. These include the Doppler effect, the atmospheric absorption and the ground
attenuation or reflection. In Fig. 4.2, the indirect sound wave represents the sound wave
reflected on the ground. In addition, this sound wave might also be attenuated by the
ground. Both types of sound waves, direct and indirect, experience the Doppler frequency
shift and an attenuation due to atmospheric absorption. The resulting frequency- and
time-dependent SPLs reach the observer and represent the received spectrogram. Lastly,
the received spectrogram is assessed by use of various metrics like the annoyance-based
effective perceived noise level (EPNL) or the loudness-based A-weighted decibel (dB(A))1.
Figure 4.3 depicts the described process chain. Next to the input provided by PN or
HEIDI, the user defines the flight path and other settings like the time discretization at
the beginning of the process.

1 unit of measurement of the sound pressure level according to the internationally standardized
frequency weighting curve A

24

4. The software process chain

trajectory

user input

sound directivity

PropNoise / HEIDI

spectrogram at emission time

frequency- and time-dependent sound pressure levels

Doppler shift

atmospheric absorption

ground attenuation

received spectrogram

frequency- and time-dependent sound pressure levels

dB(A)

loudness-based

EPNL

annoyance-based

Figure 4.3.: Calculation steps of the software tool VIOLIN

spectrogram

frequency- and time-dependent sound pressure levels

pre-processing

tonal
synthetization

broadband
synthetization

convert spectrogram to time signal

time signal

time-dependent sound pressures

superposition

normalization

generate audio files

Figure 4.4.: Calculation steps of the software tool CORAL

25

4. The software process chain

4.2. The auralization tool ”CORAL”

AirCraft Engine NOise AuRALization (CORAL) was developed as a post-processing
tool of VIOLIN to make the predicted flyover immission noise audible. For this purpose,
CORAL converts the frequency- and time-dependent SPLs or received spectrogram into a
time signal of sound pressures. Figure 4.4 depicts the overall auralization process.

The auralization process can be divided into three steps:

1. Pre-processing of the input

2. Conversion of the spectrograms to time signals

3. Generation of audio files

The first step is the pre-processing of the spectrogram input. In this part, the spectrograms
are resampled in preparation for the conversion to time signals if necessary. The frequency
and time values are adjusted. Following this step, the resampled spectrograms are converted
into time signals. This is the main part of the auralization process. CORAL distinguishes
between noise sources. Both noise source types provide a different spectrogram input and
thus require differing transformation routines:

• In case of a tonal source, the input is a spectrogram of complex values (unit: Pa)
with phase information. To generate the corresponding time signal, the tonal
spectrogram is simply split into frequency batches. For each frequency chunk, a
signal is synthesized by modulating a sine function. The sum of the individually
synthesized signals equals the overall tonal time signal.

• In case of a broadband source, the input is a spectrogram of real values (unit:
Pa2/Hz) without phase information owed to the stochastic nature of broadband
noise. The broadband time signal is generated by means of the Inverse Short-Time
Fourier Transform (ISTFT). However, due to lack of information about the phase,
the phase relation has to be reconstructed first. The complete process is depicted in
Fig. 4.5. For the reconstruction, it is necessary to generate a random white noise
of the same time domain as the broadband source. In other words, a time signal
of the same length with random values of uniform distribution is to be generated.
By computing the Discrete Fourier Transform (DFT) of the white noise, the phase
relation is attained from the complex spectrum of the white noise. The transformed
white noise is then filtered with the broadband spectrogram. This way, the phase
information which is missing in the input spectrogram is reconstructed. Finally,
the ISTFT of the spectrogram can be computed and the broadband time signal is
synthesized.

26

4. The software process chain

The conversion of a tonal or broadband spectrogram results in a time signal of real values
(unit: Pa). In the next step, the time signal is made audible.

Figure 4.5.: Steps to synthesize a broadband time signal in CORAL

Before writing the resulting time signal to an audio file, the values of the time signal are
normalized in reference to the maximum value. In addition to the time signals derived
from the input, it is interesting to inspect the superposition between the noise sources.
With the superposition, three more time signals are auralized:

• The sum of all tonal time signals

• The sum of all broadband time signals

• The superposition of all noise sources

These are normalized before the generation of respective audio files as well.

27

5. Definition of requirements

Software quality means conformance to user specifications. This requires the definition of
software requirements and is the subject of this chapter:

• Section 5.1 defines the general user needs for the software tools. In this regard, a
user profile is created. The assessment of the user profile enables a more funded
insight into the user needs and requirements.

• Section 5.2 defines the typical application scenarios of both software tools. The
scenarios are relevant to derive specific use cases for the software as well as further
requirements.

• Section 5.3 uses the Requirements-Properties Matrix on the requirements identified
in Sec. 5.1 and Sec. 5.2 and brings everything together in a clear manner.

5.1. User profile and needs

The software tools VIOLIN and CORAL are used by scientists of the group for analytical
and numerical noise prediction of aircraft engine noise. The tools are operated separately
as independent programs or consecutively in a process chain for different research purposes.
However, in addition to purely using the software, the scientists also improve and work on
the software like the software developers. The developers comprise another user group
of the tools. For this reason, the term ”user” is used in a broader sense. The SWEBOK:
Guide to the Software Engineering Body of Knowledge [29] refers to this as the ”software
stakeholder”. Software stakeholders include but are not limited to the following:

• Users: This group comprises those who operate the software.

• Customers: This group comprises those who commissioned the software.

• Developer: This group comprises those who develop the software.

Using this terminology, the scientists of the group represent all three stakeholder groups.
For simplification, the scientists and developers are referred to as users of the software who
operate and develop the software in the scope of this thesis. With these responsibilities in
mind, the following general requirements are identified in consultation with the users:

28

5. Definition of requirements

1. The software offers different (optional) features for the various stakeholders to choose
from aside from the main application. A scientist has different requirements to the
software as a user than as a developer. Additionally, the scientist as a developer
may have slightly different needs than the actual software developer. The different
user requirements to the software have to be considered. A useful strategy is the
implementation of different execution modes accustomed to the various groups of
users. In the scope of this thesis, such will be referred to us application modes or
just modes in short. The term ”mode” is not to be understood as the acoustic mode
in this context.

2. The software tools have to be intuitive for easy operation. This is achieved by
standardization within each tool and among the tools. Standardization is the
foundation for a common knowledge and code base. By using this base, faster
implementation and better collaboration are enabled. Structured methods and
reliable data are greatly beneficial for the innovation process as well as software
operation, development and maintenance.

3. Generally important but especially relevant for maintainability is software testing.
Evaluating and verifying the results of a software application prevents bugs and
assures that the simulation results are correct. Normally, software testing is of no
interest to the classic user and thus only affects the software quality maintainability.
Maintainability, in fact, contains the subcharacteristic testability1. However, as
concluded in the assessment of the user profile, the user in the context of this thesis
refers to a group who operates and develops the software. Therefore, software testing
indirectly becomes of relevance to the software quality usability.

4. All the requirements above imply the operation of execution scripts. Different
application modes require an execution method. An intuitive and easy operation
calls for a simple execution method but also with standardization within and among
the software tools in mind. The same applies to the execution of software testing.
Therefore, execution scripts, preferably Bash scripts for simplicity, are an indirect
requirement.

5. The software tools must implement easily adjustable input parameters for a more
flexible program workflow. In this regard, the following principle must be remembered:
”garbage in, garbage out (GIGO)”. GIGO describes that nonsense input produces
nonsense output. In other words, it is important to determine which input is relevant
and protect such input from user operation errors.

1 according to ISO/IEC 25010 [16]

29

5. Definition of requirements

5.2. Typical application scenarios

An application scenario describes a certain situation or manner a user interacts with
VIOLIN and/or CORAL by means of a realistic example. It represents a use case of the
software tool/s, which is frequently applied by the scientists during research. Application
scenarios can have varying values of input and go through individual program workflows.
Furthermore, the scenarios serve as categories of additional test cases for both tools
individually or in a process chain. The following six application scenarios are defined1:

• Scenario 1: Auralization of a flyover event with PN, presented in Subsec. 5.2.1

• Scenario 2: Auralization of a flyover event with HEIDI, presented in Subsec. 5.2.2

• Scenario 3: Developer, presented in Subsec. 5.2.3

• Scenario 4: Auralization of sound emitted from distributed engines, presented in
Subsec. 5.2.4

• Scenario 5: Certification and community noise, presented in Subsec. 5.2.5

• Scenario 6: Auralization of static engine tests without flyover, presented in Sub-
sec. 5.2.6

Section 5.2.7 presents the varying input options for each test case of a scenario.

5.2.1. Auralization of flyover with PN

This application scenario includes the complete process chain as depicted in Fig. 4.1,
starting with PropNoise++ (PN). The emission tool PN provides sound directivities for
VIOLIN with the following attributes for the different source types:

• Tonal sources produce complex, zero-to-peak scaled sound pressure amplitudes.

• Broadband sources produce real2, RMS3-scaled power spectral density values.

VIOLIN uses this input and performs a virtual acoustic flyover simulation with subsequent
noise assessment. The resulting noise immission is auralized by CORAL. Figure 5.1
visualizes this application scenario.

1 In preparation for this thesis, the application scenarios have been identified in this project report [30].
2 no phase information
3 root mean square (RMS)

30

5. Definition of requirements

Figure 5.1.: Illustration of the application scenario ”Auralization of flyover with PN”

5.2.2. Auralization of flyover with HEIDI

The other version of the complete process chain, as shown in Fig. 4.1 starting with HEIDI,
is covered in this scenario. The emission tool HEIDI provides sound directivities for
VIOLIN with the following attributes for the different source types:

• Tonal sources produce sound pressure levels (SPLs).

• Broadband sources produce SPLs in the third octave band (TOB).

The input from HEIDI goes through the same process as described in Subsec. 5.2.1. Thus,
sound immission from a flyover simulation with HEIDI is auralized. Figure 5.2 visualizes
this application scenario.

Figure 5.2.: Illustration of the application scenario ”Auralization of flyover with HEIDI”

31

5. Definition of requirements

5.2.3. Developer

In this application scenario, the complete process chain is scrutinized during further
development. An application mode, as proposed in Sec. 5.1, dedicated to the developer
would be used in this case. Logically, this scenario addresses the developer group. It is
intended to help developers review new modules or functions for example. The concept of
the corresponding application mode is described in Sec. 6.1.

5.2.4. Auralization of sound immission from distributed engines

A recent addition to VIOLIN is the implementation of multiple distributed engines. Prior
to that, a point source at each aircraft position was considered. For this application
scenario, two test cases with different types of propulsion system are defined: propeller
and fan. Both cases have the following setting:

• Multiple distributed engines (i.e. eight engines)

• Identical operating point for each engine

• Varying operating points along the trajectory (identical for each engine)

• Relatively close-distanced position of observer microphone (i.e. several 100m)

This application scenario is visualized in Fig. 5.3.

Figure 5.3.: Illustration of the application scenario ”Auralization of sound immission from dis-
tributed engines”

32

5. Definition of requirements

5.2.5. Certification and community noise

This application scenario only involves a flyover, meaning the software tool VIOLIN. The
purpose of this scenario is to calculate a noise carpet. Sound is no longer propagated to one
microphone but to several microphones of a structured layout. The result is a noise map
on the ground, also called noise carpet. A typical use case would be for residents in the
vicinity of airports for example. Therefore, the noise carpet should be positioned relatively
far away (i.e. several kilometers). One of the microphones represents the certification point
for the acoustic noise certification. More details on the structure and implementation of
the noise carpet are described in [31]. Figure 5.4 visualizes this application scenario.

Figure 5.4.: Illustration of the application scenario ”Certification and community noise”

5.2.6. Auralization of static engine tests without flyover

In this scenario, a typical engine test is emulated. During an engine test, the observer is
located in a room with the test engine. The observer stands at a certain distance and
angle to the engine and listens to how the engine sounds. In this case, the user defines
the relative position of the observer. There are two possible options to implement this
scenario:

1. In VIOLIN, the trajectory is configured so the starting and end point have the same
coordinates. The time parameter and observer position are adjusted accordingly.
This way, no flyover is performed and the sound propagation of only one position is
generated virtually. In other words, the aircraft does not move during the simulation
to emulate the circumstances of an engine test. The resulting noise immission is
auralized with CORAL as per usual.

2. VIOLIN is not used to simulate an engine test. Instead, a simple dummy case is
directly provided for CORAL, taking sound emission data from PN for example.

33

5. Definition of requirements

This application scenario is visualized in Fig. 5.5.

Figure 5.5.: Illustration of the application scenario ”Auralization of engine tests”

5.2.7. The input options of a test case

Each application scenario represents a testing category. One scenario can have multiple
test cases. The following input options for a test case are available:

• Variable number, position and/or distance of engines

• Constant operating point along the trajectory

• Changing operating point along the trajectory (simultaneously for all engines)

• Varying linear flight sequences (horizontal, climb, descent)1

• One or multiple observer positions

• One noise source, a selection or all sources from input

• Different types of propulsion system (propeller, fan) including buzz saw noise source

• With or without specific physical effects2

1 One flight sequence for each operating point.
2 i.e. ground reflection, atmospheric absorption, Doppler effect

34

5. Definition of requirements

5.3. The software quality requirements

To further specify the requirements with respect to the quality characteristics usability
and maintainability, the Requirements-Properties Matrix introduced in Sec. 3.1 is used
on the requirements identified in Sec. 5.3 and Sec. 5.2. The result is depicted in Tab. 5.1.
Each specification of a requirement is assigned a unique code consisting of a letter for the
requirement, a letter for the characteristics and a number.

Table 5.1.: Overall Requirements-Properties Matrix of the software process chain

Requirement

Property
Usability (U) Maintainability (M)

A: Different
features according
to different needs

• AU1: Implement at least two
application modes with different
outputs, i.e. user mode and de-
veloper mode.
• AU2: Allow user to specify
application mode at execution.

• AM1: Implement a framework
to easily add or remove a mode.
• AM2: Implement modes with-
out interference of other modes.
• AM3: Integrate output of dif-
ferent modes without affecting
the clarity of the code.
• AM4: Generate output files
in each mode for testing.

B: Standardization
within each tool
and among the
tools

• BU1: Standardize code docu-
mentation style.
• BU2: Standardize software
testing.

• BM1: Define documentation
guidelines for automatic render-
ing.
• BM2: Design reusable soft-
ware testing framework.

C: Software testing
(and Integration)

• CU1: Allow user to easily add
and remove test cases.
• CU2: Allow user to manually
execute software testing.

• CM1: Implement a testing
framework including integration
and unit tests.
• CM2: Integrate testing to the
development process.

D: Custom user
input

• DU1: Allow user to easily de-
fine relevant input parameters.
• DU2: Notify user of error.

• DM1: Provide default input in
case of invalid or no user input.

E: Consideration of
application
scenarios

• EU1: Provide each applica-
tion scenario for the user.

• EM1: Implement at least one
test case for each scenario.

35

6. Concept for implementation

Based on the requirements defined in Tab. 5.1, a number of approaches to improve software
quality is determined. In total, five approaches are implemented within the scope of this
thesis. A detailed concept development of each is presented as follows:

• The implementation of the application modes is outlined in Sec. 6.1.

• The implementation of a test suite is outlined in Sec. 6.2.

• The guideline for the documentation style is outlined in Sec. 6.3.

• The continuous integration of testing and documenting is outlined in Sec. 6.4.

• The implementation of a post-processing script is outlined in Sec. 6.5.

6.1. The application modes

Section 5.1 proposes the implementation of application modes that are accustomed to the
various groups of users. The following modes are defined to satisfy AU1:

1. The release mode is the default mode of execution and is based on the software tool
PN. This mode is clean and simple designed for the users who operate the software.
In other words, the user is oblivious to the software process and only interested in
the results of the software. Therefore, only the standard output files containing the
results of the tools are provided. In case of VIOLIN, this includes six HDF51 files.
CORAL produces an audio file for each auralized source. Further details on the
output files are given in [28].

2. The debug mode is an extension to the release mode. In addition to the standard
output, further information is provided for a deeper insight. This mode is useful for
developers to spot errors more easily during the development phase. The output is
extended by the following for easier evaluation of the process:

• Code-intern values like data shape, size or dimension and intermediate results

• Energy calculations with warnings for violation of conservation of energy

1 Hierarchical Data Format (HDF) is used to store large amount of data.

36

6. Concept for implementation

3. The plot mode is another extension to the release mode. In this mode, all kind
of plots are created for post-processing purposes. To avoid clutter in the output,
all generated plots are saved in a respective location and not shown at execution.
This mode is dedicated to the scientist as a developer. The physical and functional
correctness of the results is validated and reviewed. Errors and oddities are spotted
in a visualization more easily than in a matrix of numbers. However, a further
requirement has rendered this mode more useful as a post-processing routine than
an execution mode that is tied to the entire software process. This is requirement D
(Custom user input). The plots are generated using the results stored in the HDF5
files. Therefore, it is more reasonable to separate the plotting from the software
process. In this way, it is not necessary to repeat the entire software process to
adjust the visualization of the results, which saves time. This post-processing script
is introduced in Sec. 6.5.

The implementation of the application modes adheres directly to requirement A (Dif-
ferent features according to different modes). Furthermore, the application modes are
implemented for VIOLIN and CORAL. This indirectly satisfies the requirement B (Stan-
dardization within and among the tools). In this regard, the following two subsections
propose two possible approaches to the implementation of the application modes. Subsec-
tion 6.1.3 evaluates both concepts based on the defined requirements to determine the
more suitable one for this thesis.

6.1.1. Concept using lambda functions

This approach makes use of lambda functions to create an individual print-function for
each application mode that is not the default mode (AM1). Each lambda function is
set at the beginning of the software process. The user chooses the application mode by
means of a unique command-line argument at execution (AU2). The arguments are parsed
within the program and converted to Boolean variables. Listing 6.1 gives an example of
a lambda function for an application mode. If the respective command-line argument
is set, debug_print prints all arguments passed to the function. Otherwise, the function
returns nothing. The individual lambda function is intended to be used like the regular
print()-statement throughout the program. This way, the user only sees the output of the
chosen mode while the developer can edit or ignore the lambda functions as the clarity of
code is preserved (AM3). In comparison, the usage of print()-statements would require a
constant if-clause to check the mode.

1 debug_print = print if args. mode_debug else lambda * output : None

Listing 6.1: Exemplary lambda expression used for an application mode

37

6. Concept for implementation

The lambda functions are easy to use and sustain the code’s readability. However, this
approach has two striking disadvantages:

1. The lambda functions are not global. This means, to use the special print-statements
throughout the program, the functions have to be passed around like variables. In
case of multiple application modes, this can result in code clutter (infringing AM3).

2. A bigger problem is the strict evaluation. As explained in Sec. 6.1, the debug mode
is used to provide intermediate outputs like energy calculations. Ideally, the energy
calculation, a computationally expensive routine, is only executed in the debug mode.
However, due to strict evaluation, an expression as shown in Listing 6.2 is evaluated
regardless of the application mode (infringing AM2). In other words, the energy is
computed either way and simply not printed in the default mode. This renders the
extra print-functions superfluous.

1 debug_print (f’Energy of signal : { Time_Signal_Energy (p,t)}’)

Listing 6.2: Exemplary usage of the debug_print

6.1.2. Concept using the ”logging” module

This approach uses Python’s logging module introduced in Subsec. 3.3.1. In comparison to
the concept approach described in Subsec. 6.1.1, this neither requires the implementation of
new functions nor the passing around. The logging can be used throughout the program by
simply importing the module (AM3). In case of the debug mode, the library already offers
the event level DEBUG and the complementary logging function debug(). The functionalities
for the debug mode are ready for use. Similarly to the other concept, the user chooses
the application mode with command-line arguments (AU2). To track events of the debug
level, the following configuration is set:

1 logging . basicConfig (level=log.DEBUG , filename =’debug.log ’,
2 filemode =’w’, format =’%(filename)s -%(lineno)d: %(message)s’)

Listing 6.3: Configuration of the debug mode using the logging module

Another advantage compared to the lambda function is the option to automatically create a
logging file (AM4). The keyword filename specifies that an instance of the class FileHandler

be created instead of the default class StreamHandler. This way, the specified file is opened
in the specified filemode and used as the stream for logging rather than the output console.
Not only does this reduce clutter in the output but also serves as a suitable testing
opportunity. The console is not spammed with information. The generated file is more
readable and can be used to test the respective application mode.

38

6. Concept for implementation

1 class Lazy(object):
2

3 def __init__ (self , f, *args , ** kwargs):
4 self.f = f
5 self.args = args
6 self. kwargs = kwargs
7

8 def __str__ (self):
9 return str(self.f(* self.args , ** self. kwargs))

Listing 6.4: Source code of class used for lazy evaluation

However, the problem of strict evaluation remains. For this problem, a new class is
introduced. Listing 6.4 presents a class to achieve lazy evaluation. This class takes a
function and its arguments or keyword arguments as parameters. Because the function
is only passed as an object and not called, no expression is evaluated. The function
is only called with the specified arguments when the string representation of the class
Lazy is invoked (AM2). For this to work, it is also important to not use formatted
strings (f-strings) like in Listing 6.1. A f-string would immediately invoke the string
representation of an object and therefore call the function that is not supposed to be
evaluated strictly. Alternatively, the logging module is intended to be used in combination
with lazy evaluation as follows:

1 log.debug(’Energy of signal : %s’, Lazy(Time_Signal_Energy , p, t))

Listing 6.5: Exemplary usage of the logging module

Logically, the Lazy class is designed for the given problem: strict evaluation of string
expressions. Therefore, it is assumed that the class only takes a function with a return
value that can properly be transformed into a string.

6.1.3. Comparison of concepts

The two concepts presented in Subsec. 6.1.1 and Subsec. 6.1.2 were developed consecutively
with the latter fixing the flaws of the first concept. To confirm the improvement, both
concepts are evaluated based on the requirements defined in Tab. 5.1. A simple checklist
containing the relevant requirements is depicted in Tab. 6.1. When comparing both
concepts, it becomes clear that the approach using the logging module with lazy evaluation
is more suitable. This approach satisfies all requirements. Therefore, the concept proposed
in Subsec. 6.1.2 is implemented in the scope of this thesis.

39

6. Concept for implementation

Table 6.1.: Evaluation of concepts for the implementation of application modes

ID Requirement Concept
6.1.1

Concept
6.1.2

AU1 Implement at least two application modes with different
outputs.

X X

AU2 Allow user to specify application mode at execution. X X

AM1 Implement a framework to easily add or remove a mode. X X

AM2 Implement modes without interference of other modes. X1

AM3 Integrate output of different modes without affecting the
clarity of the code.

(X)2 X

AM4 Produce appropriate output files in each mode for testing. X

6.2. The test suite

Regarding software testing, the initial situation of both software tools is the following:

• In VIOLIN, a test suite has been implemented. However, it is inactive and outdated
with minimal test coverage. Therefore, it can be assumed that no test suite exists.

• CORAL has no test suite and only produces audio files as output.

Before introducing a testing framework that is applicable to both software tools, testable
output has to be generated in CORAL. To satisfy BU2, it is reasonable to use VIOLIN
as a reference. VIOLIN writes HDF5 files as output. Accordingly, CORAL can produce
HDF5 output files containing the time signals for the respective audio files. With this in
mind, the content of this section is structured as follows:

• Subsection 6.2.1 presents the structure of the testing framework.

• Subsection 6.2.2 presents the integration tests.

• Subsection 6.2.3 presents the unit tests.

• Subsection 6.2.4 checks the implementation against the requirements.

1 Due to lazy evaluation
2 The lambda functions have to be passed around the program.

40

6. Concept for implementation

6.2.1. Structure of the testing framework

The testing framework follows the concepts introduced in Subsec. 2.3.1 and Subsec. 2.3.2.

testsuite

Integration_Tests

01_Engine_Tests

02_Flyover_with_PN

03_Flyover_with_HEIDI

04_Developer

05_Certification_and_Community_Noise

06_Distributed_Engines

projects.txt

projects_debug.txt

Unit_Tests

Unit_1

...

projects.txt

build_integration_tests.sh

compare_debug.sh

compare_results.sh

create_reference.sh

move_data.sh

run_debug_tests.sh

run_integration_tests.sh

run_unit_tests.sh

test_debug.py

test_units.py

..............This is for VIOLIN only.

.................Build tests for default or debug mode.

..Compare debug.log.

...Compare HDF5 files.

...Update reference files.

..Move output files to output directory.

..Run test cases of 04_Developer.

...Run integration tests.

...Run unit tests.

Figure 6.1.: Directory tree of testing framework

41

6. Concept for implementation

Figure 6.1 depicts the general structure of the testing framework. The test suite includes
unit tests and integration tests (CM1). The highest level of the Testing Pyramid, UI
tests (see Subsec. 2.3.1), is not considered. Neither VIOLIN nor CORAL provide a
fully developed User Interface (UI). Therefore, there is no need for the simulation and
assessment of user interactions. All test cases are located in the directory of their respective
level. The Integration_Tests directory is further categorized by application scenarios. Each
scenario contains at least one test case with the following generalized1 structure (EU1,
EM1):

integration_test_case

input

output

reference

Input.json

run.sh

...Input files for VIOLIN/CORAL.

..Output files of VIOLIN/CORAL.

...Golden master files of VIOLIN/CORAL.

...User input file of VIOLIN/CORAL.

...Execution script of VIOLIN/CORAL.

Figure 6.2.: Generalized directory tree of an integration test case

The Unit_Tests directory has a simpler structure and encompasses of individual test cases
for one software unit each with an equally simple structure:

unit_test_case

output

reference

Unit_input.h5

..Output files of unit test.

...Golden master files of unit test.

...Input file of unit test.

Figure 6.3.: Directory tree of a unit test case

A unit test case essentially is a simplified version of an integration test case. However,
both types of test follow the principle of Golden Master Testing (see Subsec. 2.3.2). The
implementation of this testing method is explained in the following sections. In doing so,
the rest of the files depicted in Fig. 6.1 are discussed.

1 Input and output files are individual to each software tool. However, the general structure is the
same. The focus of this thesis is to provide a solution concept for for the given subject. For this
reason, a more detailed graph is not given. The visualization also remains simpler this way.

42

6. Concept for implementation

6.2.2. The integration tests

The integration tests are composed of two steps: build and compare.

In the first step, all necessary steps for the tests are prepared. The software is run for each
test case to produce outputs of the current software version. This process is automated
by the script build_integration_tests.sh. For this purpose, all test cases are listed in
the file projects.txt with the exception of the developer test cases. Test cases of the
application scenario Developer are run in the debug mode. They are denoted in a separate
file named projects_debug.txt. The script to build integration tests takes the name of the
file as an argument. Depending on the specified file, the test cases are built in the release
mode or the debug mode (BM2). After building the test cases in the respective mode, an
intermediate step is executed. The script move_data.sh moves all testable output files to
the directory output of each test case (BM2). This includes all HDF5 files and, if available,
the debug.log.

When all preparations are completed, the results are compared to the golden master.
The comparison of HDF5 files is executed by the script compare_results.sh using the
command-line tool h5diff (BM2). This tool compares two HDF5 files and reports the
differences. In case of failure, meaning a difference was detected, an error file is generated.
The debug.log is automatically tested with the script compare_debug.sh but uses a different
approach than the comparison of HDF5 files. The logging files are tested assertion-based
using the Python framework unittest introduced in Subsec. 3.3.2. This is implemented in
the file test_debug.py (see Listing B.1). The Python script is automatically run for each
test case of the scenario Developer by the compare_debug.sh script.

The steps above are concatenated in the script run_integration_tests.sh. For test cases of
the scenario Developer, the script run_debug_tests.sh automatically executes the mentioned
steps. Both are intended to be used by the user for manual local testing during the
development phase. The user simply has to specify the relative path to the desired test
cases in the files projects.txt and projects_debug.txt (CU1) and execute the respective
Bash scripts (CU2). No further specifications or arguments are required. The only
condition is that the test cases are prepared with the correct file structure. If this is
satisfied, the user can add and remove test cases.

Lastly, to realize the advantage of Golden Master Testing, the script create_reference.sh

automatically updates the golden files of a specified test case. The output files of a software
test are moved to the reference file to replace the golden master. Logically, it is assumed
that software tests were run. For reference, the testing process should follow the cycle
depicted in Fig. 2.4.

43

6. Concept for implementation

6.2.3. The unit tests

As explained in Subsec. 6.2.1, the structure of unit tests is a simplified version of integration
tests. Both follow the Golden Master Testing technique. However, unit tests do not
require preparations and only consist of the assertion-based testing. Similarly to the
integration tests, the test cases are defined in a file called projects.txt. All specified tests
are automatically run with the script run_unit_tests.sh. The tests are implemented in
separate Python scripts using the framework unittest. An example is given in Listing B.2.
The script create_reference.sh to update the golden master also works for unit tests.

6.2.4. Conformance of the testing framework to the requirements

In Tab. 6.2, the concept of the testing framework is checked against the requirements.

Table 6.2.: Evaluation of the testing framework

ID Requirement

BU2 Standardize software testing. X The testing framework is appli-
cable to VIOLIN and CORAL.

BM2 Design reusable software testing
framework.

X The individual scripts are us-
able for both types of integration
tests.

CM1 Implement a testing framework
including integration and unit tests.

X The testing framework imple-
ments integration and unit tests.

CU1 Allow user to easily add and remove test
cases.

X All active test cases are listed
in the user-definable projects.txt

.

CU2 Allow user to manually execute software
testing.

X All software tests can be run
with the respective run execution
scripts.

EU1
&
EM1

Provide each application scenario for the
user. Implement at least one test case
for each scenario.

X All application scenarios are
represented by at least one inte-
gration test.

1 JavaScript Object Notation (JSON) is a standard lightweight file format.

44

6. Concept for implementation

6.3. Guideline for software documentation

Based on Sec. 2.4 and the user profile created in Sec. 5.1, a technical documentation and
a user documentation are most reasonable (BU1, BM1). The key attributes for effective
documentation presented in Sec. 2.4 are listed in the following as requirements to the
documents:

• The documentation should be up-to-date.

• The documentation should be readily available and easily located.

• The documentation technology must allow easy creation and maintenance.

The documentation guideline in this thesis is limited to two artifacts:

• The user documentation is represented by the README.md file of a project.

• The technical documentation is provided by the source code.

6.3.1. The user documentation

Every GitLab repository of a project contains a README.md. This Markdown file serves as a
manual for the user and specifies how to operate the software tool with all its features.
The file should be structured as follows in a precise and compact manner without leaving
out any relevant details:

1. First and foremost, it is important to note what software and, if known, what
respective software version is required for the application. This way, the user can
prepare the required software like specific versions of Python modules before usage.
Other prerequisites like relevant hardware must be listed as well.

2. The most important part of the manual explains the following aspects:

• How to run the software tool? Provide or refer to an example.

• What input files are required? Where must they be located?

• Which application modes are available? How to choose a mode?

3. The post-processing routine needs to be introduced and explained.

4. Lastly, the structure and functionalities of the test suite are explained. The user
should know how to run the test suite, what test cases are currently active, how to
add or remove a test case and to which degree the test suite is integrated.

45

6. Concept for implementation

6.3.2. The technical documentation

For a clear and structured inline code documentation, the usage of reST or numpydoc is
considered. Both are commonly used in the department of Engine Acoustics and can
be rendered by the tool pdoc (see Subsec. 3.3.3). The inline documentation serves as
an artifact to effectively communicate knowledge to the developer. However, it also is
the base for the documentation tools pdoc and pyreverse (see Subsec. 3.3.4) to provide
additional artifacts for the developer and user (BM1). Therefore, the source code must be
documented thoroughly. The following guideline should be followed:

• The description of a class starts with the phrase ”Class used to/for” and is followed
by the general purpose of that class in a precise manner.

• The description of a function is expressed in the imperative form. In case of a
constructor, the following pattern is used: ”Construct a new ’[name of class]’ object.”.

• The data type of a variable must be denoted.

• All parameters and return parameters are shortly explained. If possible, the unit
of a variable is specified. If relevant to the context comprehension, the shape or
dimensions of a variable are specified, i.e. in case of arrays.

• A class is further described by defining its string representation. The string repre-
sentation should clearly reveal what kind of object this class is.

Listing 6.6 gives a demonstrative example for the guidelines.
1 class Example :
2 """ Class used to demonstrate the guidelines ."""
3

4 def __init__ (first: int):
5 """
6 Construct a new ’Example ’ object .
7 :param first: The first parameter [unit]
8 """
9 self.first: str = str(first)

10 """ The first instance attribute """
11

12 def do_something (self):
13 """
14 Do something for a specific purpose .
15 : return : something
16 """
17 return ’something ’

Listing 6.6: Exemplary code following the guidelines for a technical documentation using reST

46

6. Concept for implementation

Using the documentation tools pdoc and pyreverse as explained in Subsec. 3.3.3 and
Subsec. 3.3.4, additional artifacts are generated from the source code. Figure 6.4 depicts
the overall file structure of a project including the location of the artifacts. This applies
to VIOLIN and CORAL for the sake of standardization (B).

project

documentation

class_diagram

classes.pdf

packages.pdf

html

Class.html
...

example

post

src

testsuite

..Output files of unit test.

..Artifacts generated by pyreverse.

...Artifacts generated by pdoc.

...Examples for the user (see Subsec. 6.3.1).

...Post-processing (see Sec. 6.5).

..Source code of project.

...Test suite (see Sec. 6.2).

Figure 6.4.: General directory tree of a software project with focus on the documentation artifacts

6.4. Continuous integration

To automatically and continuously test changes to the software (CM2), the test suite is
integrated using GitLab CI/CD (see Sec. 3.2). Additionally, the tools pdoc and pyreverse

are used to keep the technical documentation up-to-date (BM1). The following pipeline is
built:

◦ developer-integration-build

Build

◦ integration-build

◦ developer-integration-test

Test

◦ integration-test

◦ unit-test

◦ documentation

Doc

Figure 6.5.: General structure of the GitLab CI/CD pipeline of both software tools

47

6. Concept for implementation

The pipeline basically executes all steps of the test suite as described in Sec. 6.2 extended
by the automatic documentation. For this purpose, three stages are defined:

1. The stage build prepares the integration tests as explained in Subsec. 6.2.2. The
script build_integration_tests.sh is run for normal and Developer integration tests
with the respective arguments. Relevant outputs are moved to the output directory
using the script move_data.sh.

2. The stage test executes the actual software testing. All integration tests and unit
test cases are run by using the scripts compare_results.sh and compare_debug.sh.

3. The stage doc makes sure all changes are documented. All artifacts generated with
pdoc and pyreverse are updated in this stage.

The choice to execute each step separately is made to easily distinguish between runtime
errors and software changes that affected the results. Furthermore, unnecessary process
time is saved. If a job of one stage fails, the pipeline is halted. It is also reasonable to
activate the pipeline for the main branch and develop branches only. To avoid clutter, it
might even be more reasonable to automatically document changes of the main branch
only. An exemplary .gitlab-ci.yml is given in Listing B.3.

6.5. A post-processing script

As explained in Sec. 6.1, the post mode is changed to a post-processing routine due to
requirement DU1: ”Allow user to easily define relevant input parameters.”. In the case of
plots, these are parameters that can change the appearance of a plot. Such parameters
should be arbitrarily adjustable after the software tool is run without requiring the repeated
execution of the tool. This option is relevant for the scientist as a user. For example,
when presenting the results in a paper, the graphics need to be adjusted to fit the style
and format of the document. In context with the requirement, this further means the
following: The scientist can change parameters of the graphs after the execution without
having to know about the details of the plotting implementation. With this in my mind,
the concept of the post-processing script is presented in this section as follows:

• Subsection 6.5.1 depicts the structure of the post-processing routine.

• Subsection 6.5.2 defines the relevant plots.

• Subsection 6.5.3 presents the user-defined parameters.

48

6. Concept for implementation

6.5.1. Structure of the post-routine

The structure of the directory containing the post-processing routine is depicted in Fig. 6.6.
Only the main Python script as well as all settings files are of relevance to the user.
To execute the post-processing routine, the user simple runs the main.py. All adjustable
parameters are defined in the settings files. These files are explained in Subsec. 6.5.3.

post

main.py

parser.py

plots.py

reader.py

settings_global.py

settings_matplotlib.py

settings_plot.py

...Command-line argument(s) parser.

..Implementation of plots.

..Reader for output files.

Figure 6.6.: Directory tree of the post-processing routine

The post-processing routine proceeds as follows:

1. The execution of the main script has the following options:

• An obligatory argument is the specification of the path to the output files. The
validity of the path as well as the existence of all necessary files are checked
before execution. In case of an exception, the user is notified of the error.

• Optionally, the user can choose to save all figures. If no location is provided,
the figures are saved in the working directory.

• Alternatively, the user can specify to not show the figures at all. This option is
useful for the developer working on the implementation of the plots.

The command-line parsing is implemented in the file parser.py.

2. The necessary data for the plots is extracted from the output files of the specified
location. This is implemented in the file reader.py.

3. The plotting routine is implemented in the plots.py file. Here, all plots are created
using the parameters specified by the user.

49

6. Concept for implementation

An important aspect for the implementation is that the individual plotting routines are
completely independent of another. This includes the reading routine. Even if some plots
require the same data, the routine should be implemented, so the data can be accessed
individually and multiple times. This way, the addition or removal of plots is possible
without interfering with unrelated plots. For this sake, redundancies are acceptable.

6.5.2. The relevant plots

In this subsection, the required plots of the post-processing routine are defined.

The software tool VIOLIN should produce the following plots of the results:

1. The flight trajectory is visualized in one 3D line plot including the start and end
position of each operating point. Additionally, the location of the microphone or of
all microphones in case of a noise carpet is highlighted (see Fig. 6.7a).

2. The sound directivities of all noise sources are visualized for each operating point.
For this purpose, a line plot on a polar axis is used respectively (see Fig. 6.7b).
Therefore, each angle-dependent frequency spectrum of a source is summed over the
frequencies to obtain the total angle-dependent total values. In case of noise sources
provided by the emission tool HEIDI, all fan and jet noise sources are respectively
combined to total Fan and JET by means of addition as sound pressures.

3. The resulting spectrograms are visualized as 2D contour plots (see Fig. 6.7c). This
includes the overall emitted spectrogram, the overall received spectrogram and the
overall received spectrogram with dB(A) weighting. In this context, ”overall” refers
to the spectrogram as a total of all noise sources of the complete trajectory. The
overall spectrogram must be calculated carefully and heed the following rules:

• The total of tonal sources is obtained by concatenating all tonal spectrograms.
The frequency-dependent spectra for each point in time are merged together.
The result is one big spectrogram containing all tonal spectra sorted by the
frequencies in increasing order. For spectra of the same frequencies, their sound
pressure values are summed linearly. Likewise, the corresponding time-varying
frequency values are merged and sorted to a matrix of the same shape as the
total spectrogram. Duplicate frequencies are removed. Altogether, this means
that the concatenation never changes the size of the time axis but can increase
the size of the frequency axis.

• The total tonal spectrogram is converted from complex amplitude-scaled pres-
sure values to real RMS-scaled squared pressure values.

50

6. Concept for implementation

• The total broadband spectrogram and corresponding frequency matrix are
obtained in the same manner as of tonal sources. However, the source types are
treated separately because broadband sources already have real RMS-scaled
squared pressure values.

• The total spectrogram is obtained by merging the total tonal spectrogram and
the total broadband spectrogram in the same manner. The same applies to the
total frequency matrix from the matrices of the two source types.

• The total spectrogram is converted to sound pressure level (SPL) values before
visualization.

4. The overall time-dependent received sound pressure levels (SPLs) of each source
are visualized in one 2D line plot (see Fig. 6.7d). In this context, ”overall” refers to
the complete trajectory and ”received” refers to the received spectrograms and the
received spectrograms with dB(A) weighting. For this purpose, each spectrogram is
summed over the frequencies to obtain the time course of the sound pressures for
each source. This step must heed the following steps carefully:

• Tonal spectrograms have to be converted from complex amplitude-scaled pres-
sure values to real RMS-scaled squared pressure values except for fan and jet
noise sources provided by HEIDI.

• Each spectrogram is summed over frequencies as real RMS-scaled squared
pressure values except for fan and jet noise sources provided by HEIDI.

• Fan and jet noise sources of HEIDI are combined to the noise sources Fan and
JET. However, the components can be of different source types. The source
types of each component group are summed over frequencies separately. After
converting the tonal time course of sound pressures to real RMS-scaled squared
pressure values. The components are combined as real RMS-scaled squared
pressure values to total Fan and JET.

• In addition to the resulting time-varying sound pressures of all noise source, an
overall tonal time course of sound pressures is calculated and visualized.

• All resulting time-varying sound pressures are converted to sound pressure
level (SPL) values.

51

6. Concept for implementation

x [m]

2000150010005000 50010001500

y [
m]

0
100

200
300

400

z [
m

]

0
200
400
600
800

[0. 450. 1.2]

0.0
20.0

Plot 1: Flight Trajectory
flight trajectory
microphone

(a) Flight trajectory

0°

30°

60°

90°

120°

150°

180°

[deg]

020406080

SP
L

[d
B]

upstreamdownstream

Plot 2: OP0, Engine 0

COMPRESSOR
COMBUSTOR
TURBINE

Fan
JET

(b) Sound directivities

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
time [s]

0

2000

4000

6000

8000

10000

f [
Hz

]

Plot 3: Received Spectrogram

0

10

20

30

40

50

60

70

80
SP

L
[d

B]

(c) Spectrogram

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
time [s]

0

20

40

60

80

100

SP
L

[d
B]

Plot 4: Time-dependent Sound Levels

COMPRESSOR
COMPRESSOR_dBA
COMBUSTOR
COMBUSTOR_dBA
TURBINE

TURBINE_dBA
Fan
Fan_dBA
JET
JET_dBA

Total
Total_dBA
PNL
PNLT

(d) Time-varying SPL values

Figure 6.7.: Exemplary VIOLIN post-processing of the test case HEIDI_NASA_STCA55_Sideline

The software tool CORAL should produce the following plots:

1. The original spectrogram and the resampled spectrogram of each noise source are
visualized in a 2D contour plot (see Fig. 6.8a). This is an intermediate output. As
explained in Sec. 4.2, the spectrograms are resampled in the pre-processing step.
The two source types are treated differently:

• Tonal sources require no resampling in the pre-processing step.

• Broadband sources are adjusted to fit the randomly generated white noise
spectrogram of uniform distribution by means of interpolation. For this purpose,
the frequency matrix is interpolated to the shape of the white noise with a linear
frequency scale. The resulting frequencies are used to resample the spectrogram.

52

6. Concept for implementation

2. The original spectrogram and the resampled spectrogram of each noise source are
visualized in a 2D contour plot, containing only positive values (see Fig. 6.8b). This
means all SPL values greater than zero.

3. The randomly generated white noise signal of uniform distribution for each broadband
source is visualized in a 2D line plot (see Fig. 6.8c). It is generated using the function
numpy.random.randn(), creating L values of uniform distribution. The variable L equals
the length of time vector.

4. The time signal of each noise source is visualized in a 2D line plot (see Fig. 6.8d).
This output visualizes the results. Each time signal has a corresponding audio file.
All time signals should the same length.

(a) Spectrogram (b) Spectrogram with positive values only

(c) White noise signal (d) Time signal

Figure 6.8.: Exemplary CORAL post-processing of the test case HEIDI_NASA_STCA55_Sideline

53

6. Concept for implementation

6.5.3. The adjustable parameters

The file settings_matplotlib.py contains customizable parameters that apply to all plots.
This includes the following rcParams of matplotlib:

• font.family: The font style

• axes.titlesize: The font size of the plot title

• axes.labelsize: The label size of each axis

• xtick.labelsize: The label size of all ticks on the x-axis

• ytick.labelsize: The label size of all ticks on the y-axis

• legend.fontsize: The font size of the legend

• savefig.bbox: The bounding box in inches of the saved figure

• savefig.dpi: The resolution in dots per inch of the saved figure

• savefig.edgecolor: The edgecolor of the saved figure

• savefig.facecolor: The facecolor of the saved figure

• savefig.format: The file format of the saved figure

• savefig.orientation: The orientation of the saved figure

• savefig.pad_inches: The amount of padding around the saved figure

• savefig.transparent: The transparency of the Axes patches

The parameters of each individual plot are specified in settings_plot.py. A distinction
between the variables is made by using the prefix with the format ”p[plot number]_”. In
general, the following parameters can be adjusted for each plot individually if applicable:

• The size and title of the figure

• The file name of the saved figure

• The label, limits and ticks of the x-axis, y-axis and z-axis

• The color, style and width of the line(s)

• The location and column number of the legend

• The shading, colormap and colorbar of the contour plot

New parameters can be added easily and simply must be used in the plots.py.

54

7. Evaluation of the software quality

In this chapter, the presented implementation concepts are evaluated based on their
software quality using the quality measures introduced and elaborated in Sec. 3.4. The
approach to evaluate the usability and maintainability improvement of VIOLIN and
CORAL is explained in Sec. 7.1. Based on the general approach, the rest of the chapter is
struvtured as follows:

• A score system for the measures is presented in Sec. 7.2.

• The software quality of VIOLIN is evaluated in Sec. 7.3.

• The software quality of CORAL is evaluated in Sec. 7.4.

The implementation and evaluation results are discussed in Ch. 8.

7.1. General approach

To evaluate the software quality, the chosen quality measures of ISO/IEC 25023 presented
and explained in Sec. 3.4 are used. For this purpose, the proposed implementation
described in Ch. 6 is compared to an older version of each software tool. Table 7.1 depicts
which version of each tool is analyzed. The ”Before” version is a software state before the
proposed implementation was integrated. Therefore, it is assumed that an improvement of
software quality is reflected in the evaluation result of the ”After” version which includes
all proposed implementations.

Figure 7.1.: Calendar date of software version used for the evaluation

Before After

VIOLIN 09.12.21 08.08.22

CORAL 21.12.21 08.08.22

Due to the limited time frame, the selected quality measures are further narrowed down.
The measurement functions MMd-1-G (Modification efficiency) and MMd-2-G (Modifica-
tion correctness) of the maintainability subcharacteristic modifiability are excluded. Both

55

7. Evaluation of the software quality

measurement functions include a time variable (see Tab. A.8). This means the application
of the function requires time to obtain evaluation results. Modification efficiency is deter-
mined by comparing the required time to the expected time of modifications. At least two
modifications have to be implemented and timed for each version of the software tool by
at least two different developers for a proper assessment. Modification correctness checks
the failure rate of modifications within a defined period of time after being implemented.
With the limited given time, the measure cannot be properly evaluated. Therefore, it is
reasonable to postpone such time-dependent measurement functions to the future.

The remaining measurement functions can be used without further ado. For a better
understanding of the evaluation approach, the structure of the functions is elaborated.
Each function describes a result that is relative to a unique target value which is established
as a requirement. This proportion can be expressed for each measurement function with
the generalized equation1

X = A/B (7.1)

where X is the resulting score of the measure calculated from the ratio of the achieved
subset A to the specified target value B. Alternatively, the ratio X can be calculated as

X = 1 − Ā/B (7.2)

where Ā is the complement to the value A of Eq. 7.12. For simplification, the result of a
measure in the evaluation is always depicted in the form of Eq. 7.1. The variables A and
B of each function are defined for general use in the ISO/IEC 25023 (see Appendix A). In
the scope of this thesis, the measurement functions are further specified to the software
tools VIOLIN and CORAL. For this purpose, the following questions are answered for
each selected measure:

• What is the definition of the target value as per ISO/IEC 25023?

• How is the target value further defined in regard of the software tool?

Based on this, a score system is developed to determine how a target value is achieved.
The score system is applied in the pre- and post-analysis evaluation of both software tools.
For each version of a tool, the unique target value is described qualitatively and specified
quantitatively according to the system. The result of each measure is depicted as the ratio
of the achieved value A to the defined target value B and as the corresponding value X in
percentage.

1 This generalized equation does not apply to the measure MMd-1-G, which was excluded in the course
of this thesis (see Tab. A.8).

2 In the ISO/IEC 25023 [17], the variable A is used regardless of the type of subset. To distinguish,
the value of A is defined accordingly. An example of both can be found in Tab. A.3.

56

7. Evaluation of the software quality

7.2. Score system of the evaluation

In this section, a score system for the evaluation is established based on the definition of a
target value as per ISO/IEC 25023 (see Appendix A)1:

• The measure UAp-1-G (Description completeness) appraises the usage scenarios in
regard of user documentation. The target value is the number of usage scenarios.
Each documented usage scenario equals one point. The function is defined as

X = Number of documented usage scenarios
Number of existing usage scenarios . (7.3)

In the scope of this thesis, a usage scenario is considered documented when any user
document describes and/or visualizes the usage scenario. The term ”usage scenario”
is understood as follows: ”How can a user utilize the given software tool?”.

• The measure ULe-1-G (User guidance completeness) appraises the software functions.
The target value is the number of implemented functions that require documentation.
Such functions are examined and equal one point if sufficient documentation is
provided. Existing but insufficient documentation of a function results in half a
point. The function is defined as

X = Number of functions described in user documentation as required
Number of implemented functions that require documentation . (7.4)

The term ”function” can mean either of the following: a user functionality of a
software or a code function of the program. On the grounds that this measure
belongs to the quality usability and further the subcharacteristic learnability, the
first definition of function is chosen for the evaluation. In this sense, the available
functions are documented, so a new user can learn how to operate the software. A
new user would not be interested in the source code. The documentation of code
functions would be more of concern to developers. An example is any command-line
option of a usage scenario.

• The measure ULe-3-S (Error messages understandability) appraises the error mes-
sages. The target value is the number of implemented error messages. An error
message should provide the following: the cause and a solution. Each piece of
information equals half a point for an error. The function is defined as

X = Number of error messages stating the reason and a possible solution
Number of implemented error messages . (7.5)

1 The following definitions equations are adapted from ISO/IEC 25023 (see Appendix A). The exact
measurement function as is can be found in Appendix A.

57

7. Evaluation of the software quality

If the solution is given indirectly, one quarter point is assigned. A concrete example
is the following error message: ”Error: The chosen sources do not match the given
input files!”. While the occurred error is clear and the user can infer from that
message to adjust the selection of sources, it does not clearly state how or where to
change the selection of noise sources. Therefore, this would equal 0.75 points.

• The measure UOp-1-G (Operational consistency) appraises the behavior and ap-
pearance of interactive tasks. The target value is the number of interactive tasks
that need to be consistent. Each interactive task that should be consistent and is so
equals one point. The function is defined as1

X = Number of interactive tasks that are performed consistently
Number of interactive tasks that need to be consistent . (7.6)

A counterexample for operational consistency is the following: The individual
application modes are activated in different manners via a command-line argument,
a file input or an edit in the source code. This would be inconsistent.

• The measure UOp-2-G (Message clarity) appraises the system messages. The target
value is the number of implemented messages. Each message equals one point if the
conveyed information is correct. The function is defined as

X = Number of messages that convey the right information
Number of implemented messages . (7.7)

The software tools VIOLIN and CORAL are command-line applications. Therefore,
each message that is printed in the console output except for error messages is
considered for the target value.

• The measure UEp-1-G (Avoidance of user operation) error appraises user actions and
inputs. The target value is the number of user operations that could be protected.
Each protected user action or input equals one point. The function is defined as

X = Number of user operations that are protected
Number of user actions and inputs that could be protected . (7.8)

Besides catching errors caused by wrong or invalid values, this could also include the
implementation of default values. If this is applicable, each preventive measure of
the two equals half a point.

1 In ISO/IEC 25023 [17], the measure UOp-1-G is expressed in form of Eq. 7.2 (see Tab. A.3).

58

7. Evaluation of the software quality

• The measure MMo-1-G (Coupling of components) appraises the software components.
The target value is the number of specified components that are required to be
independent. Such a component equals one point. The function is defined as

X = Number of independent components
Number of implemented components with no impact on others . (7.9)

Modules and components within modules should be independent. If the latter is not
a case, half a point is deducted.

• The measure MRe-1-G (Reusability of assets) appraises the software assets. The
target value is the number of assets. Each asset which is designed and implemented
to be reusable equals one point. The function is defined as

X = Number of reusable assets
Number of existing assets . (7.10)

Examples of assets are source code modules containing code, testing modules, specific
hardware and any documentation artifact. In VIOLIN and CORAL, the assets are
the Python modules1, the testing framework and user/technical documents.

• The measure MAn-1-G (System log completeness) appraises the system logs. The
target value is the number of logs which are required. Each operation that should
be and is recorded equals one point. The function is defined as

X = Number of recorded logs
Number of logs which are required during operation . (7.11)

• The measure MTe-1-G (Test function completeness) appraises the software test func-
tions. The target value is the number of required test functions. Each implemented
test function equals one point. The function is defined as follows:

X = Number of implemented test functions as specified
Number of required test functions (7.12)

The term ”test function” is not further defined in the ISO/IEC 25023. In the scope
of this thesis, the following definition is used: A test function tests a functionality
of the software covering a specific layer of the Testing Pyramid (see Subsec. 2.3.1).
Each tested functionality comprises a test case. In other words, the target value is
the number of required test cases.

1 Python modules are files with the extension .py that can be imported in another Python module.

59

7. Evaluation of the software quality

7.3. Evaluation of the software tool VIOLIN

This section assesses the software quality of VIOLIN. For this purpose, the target values
for each measure are defined for both versions in Tab. 7.1.

Table 7.1.: Target values of the measures for the pre- and post-quality-analysis versions of VIOLIN

Measure Before After

UAp-1-G
(Description
completeness)

• Flyover simulation with PN
• Flyover simulation with HEIDI
Target value B = 2
Achieved value A = 2

• Six application scenarios
• Post-processing routine
Target value B = 7
Achieved value A = 7

ULe-1-G
(User
guidance
completeness)

• Run (default) application
• Run with --no-ground-refl1

• Run with --noise-carpet2

Target value B = 3
Achieved value A = 3

• Run in default mode
• Run in debug mode
• Run with --no-ground-refl

• Run post-processing
• Run post with -s3

• Run post with --hide4

Target value B = 6
Achieved value A = 6

ULe-3-S
(Error
messages
understand-
ability)

• Operating_Point.py l. 52
• Operating_Point.py l. 60
• User_Input.py l. 106
Target value B = 3
Achieved value A = 2.75

• Operating_Point.py l. 61
• Operating_Point.py l. 69
• User_Input.py l. 120
• Reader_H.py l. 64
• Reader_P.py l. 71
Target value B = 5
Achieved value A = 4.75

UOp-1-G
(Operational
consistency)

• Preparation of data input
• Execution of the flyover tool
• Selection of physical modules
Target value B = 3
Achieved value A = 2

• Preparation of data input
• Selection of application mode
• Selection of physical modules
• Execution of post-processing
Target value B = 4
Achieved value A = 3

UOp-2-G
(Message
clarity)

• Warning: Propagation.py l. 45
• Elapsed time
Target value B = 2
Achieved value A = 2

• Warning messages:
Propagation.py l. 134
Reader_P.py l. 82
Third_Octave_Band.py l. 78
Third_Octave_Band.py l. 96
User_Input.py l. 141

60

7. Evaluation of the software quality

• Elapsed time
Target value B = 6
Achieved value A = 6

UEp-1-G
(Avoidance of
user operation
error)

• Input_user.json

• Input_flight_path.xml

• Specification of path to sources
• Command-line arguments
Target value B = 4
Achieved value A = 0.5

• Input_user.json

• Input_flight_path.xml

• Specification of path to sources
• Command-line arguments
• Post-processing arguments
Target value B = 5
Achieved value A = 3.5

MMo-1-G
(Coupling of
components)

• User_Input.py

• Reader classes
• get_p_em_dist()

• get_doppler()

• Atmospheric_Absorption.py

• Ground_Attenuation.py

• Third_Octave_Band.py

• Energy_Calculations.py

Target value B = 8
Achieved value A = 5.5

• User_Input.py

• Reader classes
• get_p_em_dist()

• get_doppler()

• Atmospheric_Absorption.py

• Ground_Attenuation.py

• Third_Octave_Band.py

• Energy_Calculations.py

• Modes_Pre_Processing.py

Target value B = 9
Achieved value A = 6.5

MRe-1-G
(Reusability of
assets)

• User documentation
• Technical documentation
• Testing module
• 25 Python modules
Target value B = 28
Achieved value A = 21

• User documentation
• Technical documentation
• Testing module
• 26 Python modules
• Post-processing routine
Target value B = 30
Achieved value A = 24

MAn-1-G
(System log
completeness)

• debug.log

Target value B = 1
Achieved value A = 0

• debug.log

Target value B = 1
Achieved value A = 1

MTe-1-G
(Test function
completeness)

• Unit: Atmospheric Absorption
• Unit: Ground Attenuation
• Unit: dB(A)-weighting
• Unit: EPNL
• Test: Flyover with PN
• Test: Flyover with HEIDI
Target value B = 6
Achieved value A = 1

• Unit: Atmospheric Absorption
• Unit: Ground Attenuation
• Unit: dB(A)-weighting
• Unit: EPNL
• Test: Six scenarios (Two for
Developer with PN and HEIDI)
Target value B = 11
Achieved value A = 8

61

7. Evaluation of the software quality

Based on the defined target values in Tab. 7.1, the software quality of the pre- and
post-analysis versions is evaluated. The achieved value A relative to the defined target
value B is determined according the score distribution system presented in Sec. 7.2. For a
quick and clean comparison, the pre- and post-analysis results are depicted in Tab. 7.2.
The result is expressed as a percentage and rounded up to the second decimal place.

Table 7.2.: Comparison of pre- and post-quality-analysis results of VIOLIN using measurement
functions proposed in [17]

Measure Before After

ID Name A B X [%] A B X [%]

UAp-1-G Description completeness 2 2 100 7 7 100

ULe-1-G User guidance complete-
ness

3 3 100 6 6 100

ULe-3-S Error messages under-
standability

2.75 3 91.67 4.75 5 95

UOp-1-G Operational consistency 2 3 66.67 3 4 75

UOp-2-G Message clarity 2 2 100 6 6 100

UEp-1-G Avoidance of user opera-
tion error

0.5 4 12.50 3.5 5 70

MMo-1-G Coupling of components 5.5 8 68.75 6.5 9 72.22

MRe-1-G Reusability of assets 21 28 75 24 30 80

MAn-1-G System log completeness 0 1 0 1 1 100

MTe-1-G Test function complete-
ness

1 6 16.67 8 11 72.73

Overall, an improvement of software quality is evident. This conclusion is made based on
the average score of the result X of both versions. The average score increases from 63%
to 87%. That equals a difference of 24%.

1 The option to turn off the ground reflection module of the flyover simulation.
2 The option to activate the noise carpet of the flyover simulation.
3 The option to save all figures of the post-processing routine.
4 The option to hide all figures of the post-processing routine.

62

7. Evaluation of the software quality

7.4. Evaluation of the software tool CORAL

This section assesses the software quality of CORAL. For this purpose, the target values
for each measure are defined for both versions in Tab. 7.3.

Table 7.3.: Target values of the measures for the pre- and post-quality-analysis versions of CORAL

Measure Before After

UAp-1-G
(Description
completeness)

• Auralization of dummy input
• Auralization of VIOLIN input
Target value B = 2
Achieved value A = 0

• Five application scenarios1

Target value B = 5
Achieved value A = 5

ULe-1-G
(User
guidance
completeness)

• Run (default) application
Target value B = 1
Achieved value A = 0

• Run in default mode
• Run in debug mode
• Run in post mode
Target value B = 3
Achieved value A = 3

ULe-3-S
(Error
messages
understand-
ability)

• Func_Read_Input.py l. 20
• Func_Read_Input.py l. 26
Target value B = 2
Achieved value A = 1

• Func_Read_Input.py l. 33
• Func_Read_Input.py l. 39
• Func_Read_Input.py l. 44
• Func_Read_Input.py l. 50
• Settings.py l. 60
Target value B = 5
Achieved value A = 3.75

UOp-1-G
(Operational
consistency)

• Preparation of data input
Target value B = 1
Achieved value A = 1

• Preparation of data input
• Selection of application mode
Target value B = 2
Achieved value A = 2

UOp-2-G
(Message
clarity)

• Introduction message
• Three calculation steps
• Three intermediate values
• Energy calculations
Target value B = 8
Achieved value A = 8

• Introduction message
• Three calculation steps
• Warning: Interpolations.py l.
13
• Elapsed time
Target value B = 6
Achieved value A = 6

UEp-1-G
(Avoidance of
user operation

• Specification of path to sources
Target value B = 1
Achieved value A = 0

• Specification of path to sources
• Command-line arguments
• User_Input.json

63

7. Evaluation of the software quality

error) Target value B = 3
Achieved value A = 1.5

MMo-1-G
(Coupling of
components)

• Calc_Pre_Processing.py

• Calc_Convert_Spectrogram_

Time_Signal.py

• Calc_Generate_Audio.py

• Spectrogram.py

• Time_Signal.py

• Reader classes
Target value B = 6
Achieved value A = 5.5

• Calc_Pre_Processing.py

• Calc_Convert_Spectrogram_

Time_Signal.py

• Calc_Generate_Audio.py

• Spectrogram.py

• Time_Signal.py

• Reader classes
• Func_Read_Input.py

Target value B = 7
Achieved value A = 6.5

MRe-1-G
(Reusability of
assets)

• Technical documentation
• 14 Python modules
Target value B = 15
Achieved value A = 7

• User documentation
• Technical documentation
• Testing module
• 18 Python modules
Target value B = 21
Achieved value A = 13

MAn-1-G
(System log
completeness)

• debug.log

Target value B = 1
Achieved value A = 0

• debug.log

Target value B = 1
Achieved value A = 1

MTe-1-G
(Test function
completeness)

• Unit: Generate time signal from
tonal spectrogram
• Unit: Generate time signal from
broadband spectrogram
• Test: Auralization with dummy
• Test: Auralization with VIOLIN
input
Target value B = 4
Achieved value A = 0

• Unit: Generate time signal from
tonal spectrogram
• Unit: Generate time signal from
broadband spectrogram
• Unit: Six interpolation functions
• Test: Five scenarios (Two for
Developer with PN and HEIDI)
Target value B = 14
Achieved value A = 12

Based on the defined target values in Tab. 7.3, the software quality of the pre- and
post-analysis versions is evaluated. The achieved value A relative to the defined target
value B is determined according the score distribution system presented in Sec. 7.2. For a
quick and clean comparison, the pre- and post-analysis results are depicted in Tab. 7.4.
The result is expressed as a percentage and rounded up to the second decimal place.

1 The application scenario regarding the noise carpet is exclusive to VIOLIN (see Subsec. 5.2.5).

64

7. Evaluation of the software quality

Table 7.4.: Comparison of pre- and post-quality-analysis results of CORAL using measurement
functions proposed in [17]

Measure Before After

ID Name A B X [%] A B X [%]

UAp-1-G Description completeness 0 2 0 5 5 100

ULe-1-G User guidance complete-
ness

0 1 0 3 3 100

ULe-3-S Error messages under-
standability

1 2 50 3.75 5 75

UOp-1-G Operational consistency 1 1 100 2 2 100

UOp-2-G Message clarity 8 8 100 6 6 100

UEp-1-G Avoidance of user opera-
tion error

0 1 0 1.5 3 50

MMo-1-G Coupling of components 5.5 6 91.67 6.5 7 92.86

MRe-1-G Reusability of assets 7 15 46.67 13 21 61.90

MAn-1-G System log completeness 0 1 0 1 1 100

MTe-1-G Test function complete-
ness

0 4 0 12 14 85.71

Overall, an improvement of software quality is noticeable. The average score increases
from 39% to 87%. This is a difference of 48%.

65

8. Summary & Discussion

In this chapter, the results of this thesis are summarized and critically analyzed. The
chapter is structured as follows:

• In Sec. 8.1, the implementations proposed in Ch. 6 are summarized and checked
against the defined requirements.

• In Sec. 8.2, the evaluation results of Ch. 7 are summarized and the key observations
are determined for the discussion.

• In Sec. 8.3, the informative value of the measures is discussed with respect to the
implementation results and the analyzed software tools VIOLIN and CORAL.

8.1. Requirements and implementation results

In Tab. 5.1, the general user needs for the software are further explicated in regard of the
quality characteristics usability and maintainability using the Requirements-Properties-
Matrix. Based on these requirements, five implementation concepts are proposed in Ch. 6.
The implementations are summarized in the following:

1. The implementation of application modes is a direct specification of requirement
A (Different features according to different needs). In the scope of this thesis, two
application modes are defined (see Sec. 6.1):

• The release mode is the default mode and provides a clean and simple execution
of the software tool. This includes the standard output of the tool.

• The debug mode is an extension to the release mode and is intended for
developers to spot errors more easily. In addition to the standard output,
further information is provided for a deeper insight.

To conform to the requirements, the application modes are implemented using
the logging module of Python. This module provides different tracking levels and
complementary functions for each level, enabling easy addition of other application
modes. The level is chosen by the user before the execution via command-line
arguments. By default, the software is run in the release mode, which does not
require any command-line specification.

66

8. Summary & Discussion

2. The testing framework is a direct specification of requirement C (Software testing)
and affected by requirement B (Standardization within and among the tools). In
accordance with the Testing Pyramid principle (see Subsec. 2.3.1), the test suite of
VIOLIN and CORAL comprise of the following (see Sec. 6.2):

• The integration tests appraise the typical application scenario.

• The unit tests appraise individual physical modules.

Both types of tests follow the Golden Master Testing method (see Subsec. 2.3.2).
The testing framework provides execution scripts to automatically run all test cases
of each type of test. The test cases are specified in a file named projects.txt of the
respective directory. This way, test cases can be added or removed easily. If a change
is detected and accepted, the golden files can be updated automatically via another
script.

3. For standardization (requirement B), documentation guidelines are introduced for
the user and technical documentation of the software (see Sec. 6.3):

• The guideline for the user documentation specifies what pieces of information the
user document, the README.md of the repository, must include (see Subsec. 6.3.1).

• The guideline for the technical documentation specifies the documentation style
of the source code with respect to the tools pdoc and pyreverse for automatic
documentation (see Subsec. 6.3.2).

4. The GitLab CI/CD pipeline is designed for automated software testing and auto-
mated, dynamic generation of technical documentation, resulting from requirements
of B and C (see Sec. 6.4). It is divided into the stages containing the software testing
jobs and the stage for dynamic documentation. The technical documents are only
generated, if the jobs of the software testing stages succeeded.

5. A post-processing routine is implemented to plot the software results (see Sec. 6.5).
This implementation originates from the plot mode (see Sec. 6.1). In regard of
requirement DU1, the post-processing routine is designed for the user to easily
adjust the parameters that can change the appearance of a plot. This means the
user can customize the graphs without having to know about the details of the
plotting implementation. Furthermore, the post routine offers the advantage that
the appearance of the plots can be changed without having to run the tool again.

In Tab. 8.1, the results are checked against the requirements defined in Tab. 5.1.

67

8. Summary & Discussion

Table 8.1.: Comparison of the proposed implementations to the defined software requirements

ID Requirement Implementations conforming to requirement

AU1 Implement at least two application
modes with different outputs, i.e.
user mode and developer mode.

The following modes are implemented:
• Release mode
• Debug mode

AU2 Allow user to specify application
mode at execution.

By default, the release mode is run. Other
modes are set via command-line arguments.

AM1 Implement a framework to easily
add or remove a mode.

The logging module provides different track-
ing levels and complementary functions.

AM2 Implement modes without
interference of other modes.

Lazy evaluation enables the evaluation of an
expression of the selected mode only.

AM3 Integrate output of different
modes without affecting the clarity
of the code.

The logging module provides built-in func-
tions for each level. Therefore, if-clauses
can be avoided.

AM4 Generate output files in each
mode for testing.

The logging module automatically generates
a logging file.

BU1 Standardize code documentation
style.

The documentation guideline is applied to
VIOLIN and CORAL.

BU2 Standardize software testing The testing framework is applicable to VIO-
LIN and CORAL.

BM1 Define documentation guidelines
for automatic rendering.

The technical documentation is developed
with regard to the use of pdoc and pyreverse

BM2 Design reusable software testing
framework.

The individual test scripts are usable for
both types of integration tests.

CU1 Allow user to easily add and
remove test cases.

All active test cases are listed in the user-
definable projects.txt.

CU2 Allow user to manually execute
software testing.

All software tests can be run with the re-
spective run execution scripts.

CM1 Implement a testing framework
including integration and unit
tests.

The testing framework implements integra-
tion and unit tests.

CM2 Integrate testing to the
development process.

The software tests are integrated in the Git-
Lab CI/CD pipeline.

68

8. Summary & Discussion

DU1 Allow user to easily define relevant
input parameters.

The post mode is changed into a post-
processing routine in order for the scientists
to easily change parameters of the graphs
after the execution without repetitive execu-
tion of the software.

DU2 Notify user of error. New error messages are implemented in the
scope of this thesis (not included in the pro-
posed implementation concepts).

DM1 Provide default input in case of
invalid or no user input.

Default values are implemented in the scope
of this thesis (not included in the proposed
implementation concepts).

EU1 Provide each application scenario
for the user.

Each application scenario is represented by
a test case.

EM1 Implement at least one test case
for each scenario.

The testing framework includes integration
tests for each scenario.

As mentioned before, the requirements were formulated with respect to the quality
characteristics usability and maintainability. The proposed implementations satisfy all the
defined requirements. Therefore, a great improvement of software quality was expected.
The implementation results are discussed in conjunction with the evaluation results in
Sec. 8.3.

8.2. The evaluation results

The results of the implementations are evaluated using selected measurement functions of
ISO/IEC 25023 (see Ch. 7) and are compared to a pre-analysis version of the software
tool. Based on the average scores, an overall improvement of software quality is evident.
For further insight, the evaluation results are visualized as bar charts as follows:

• The evaluation results of VIOLIN depicted in Tab. 7.2 are illustrated in Fig. 8.1.

• The evaluation results of CORAL depicted in Tab. 7.4 are illustrated in Fig. 8.2.

69

8. Summary & Discussion

UAp
-1-GULe-

1-GULe-
3-S

UOp
-1-G

UOp
-2-GUEp-

1-G
MMo-1-GMRe-1-

G
MAn-1

-G
MTe-1-

G

0

0.2

0.4

0.6

0.8

1 Before
After

Figure 8.1.: Software quality evaluation results of VIOLIN

UAp
-1-GULe-

1-GULe-
3-S

UOp
-1-G

UOp
-2-GUEp-

1-G
MMo-1-GMRe-1-

G
MAn-1

-G
MTe-1-

G

0

0.2

0.4

0.6

0.8

1 Before
After

Figure 8.2.: Software quality evaluation results of CORAL

The following key observations or questions are concluded from Fig. 8.1 and Fig. 8.2:

1. In VIOLIN and CORAL, evident improvement is observed in the measurement
results of UEp-1-G, MAn-1-G and MTe-1-G.

2. Why is an improvement from 0% to a perfect score of a 100% a recurring observation
in the evaluation results?

3. Why is a perfect score achieved so often?

4. Why do some measures indicate little to no change in quality?

5. Why do the pre-analysis versions fare relatively well, even though no thought was
given to usability and maintainability yet?

These questions are addressed and answered in the following section.

70

8. Summary & Discussion

8.3. Interpretation and discussion

In general, the overall result of the evaluation meets the expectation formulated in Sec. 7.1:
The implementation concepts designed in the interest of software quality contribute
favorably to the overall software quality of both tools. This is particularly noticeable
for the measurement functions that are directly affected by the implemented changes as
pointed out in observation Q. 1. The observation is explained as follows:

• For the measure UEp-1-G (Avoidance of user operation error), an absolute im-
provement of 50-60% is observed. This is a direct result of requirement D defined
in the overall Requirements-Properties Matrix (see Tab. 5.1). Not only does this
requirement stipulate the interception of user input errors to notify the user but
also inquires the definition of default values for such a case. While this is mostly
implemented in the scope of this thesis, the pre-analysis software versions do not
consider this at all. Therefore, the evident improvement is perceived in this area.

• An improvement from 0% to 100% is observed for the measure MAn-1-G (System
log completeness). This is simply explained by the transition from no auditing to
the logging of the energy calculations.

• A similar observation is made for the measure MTe-1-G (Test function completeness).
In this case, the evident improvement is owed to the initial situation of the software
testing. Software tests were either outdated or not implemented at all. If the unit
tests were properly realizable, an improvement from 0% to 100% would have been
observed for this measure as well. The problem with the unit tests is discussed later.

The listed observations were made for both software tools. Most of the quality improvement
stems from these measures. Additionally, CORAL is significantly impacted by the intro-
duction of documentation guidelines in Sec. 6.3. This is reflected in the measures UAp-1-G
(Description completeness) and ULe-1-G (User guidance completeness). The obvious
improvement results from the general lack of documentation in the pre-analysis version of
CORAL, while the new version provides a detailed user and technical documentation.
From the observations mentioned so far, question Q. 2 and Q. 3 arise. Improvements from
0% to 100% and/or perfect scores seem to be a trending observation in the evaluation.
Logically, a perfect score is easily achievable if a proportion to a small target value is
calculated, answering question Q. 3. A concrete example is the measure MAn-1-G (System
log completeness). This can happen if the quality aspect is not applicable and the software
consequently requires or contains a small target value of that aspect. Furthermore, this
means that the number of target values is not reflected in the evaluation score as it
describes a proportion. An increase of target values does not show in the score. The
informative value of the measure is arguable. This sparks the following discussion:

71

8. Summary & Discussion

Initially, the complementary detailed set of measures of ISO/IEC 25023 was a determining
factor for the selection of quality model proposed in ISO/IEC 25010, whereas McCall’s
model, for example, was criticized for the choice of a binary measure (see Subsec. 2.2.5). In
retrospect, the evaluation in the scope of this thesis reveals that the measures of ISO/IEC
25023 are not quite exempt from this criticism. While the measures are introduced in
the standard to produce a result that is relative to a target value that is established as
a requirement, this is ultimately equivalent to a checklist on a finer scale in the case of
some measures. This calls the informative value of the measures in question. For example,
the measure UAp-1-G (Description completeness) is defined as the proportion of usage
scenarios described in the user documents relative to the actual number of usage scenarios.
Due to the lack of definition on the degree of description to a usage scenario, this is simply
a checklist of existing documentation for every usage scenario. This is similarly the case
for the measures ULe-1-G, UOp-1-G, UOp-2-G, UEp-1-G, MMo-1-G and MRe-1-G. A
good counterexample is the measure ULe-3-S (Error messages understandability). While
this function does calculate a proportion, a further specification is given to determine the
degree of understandability of an error message. In other words, this measure reflects the
proportion of the error messages that state the reason of occurrence and a way to resolve
this error. The difference to the measure UAp-1-G is the contrast of meaning between
proportion and degree:

• A measure of proportion like UAp-1-G counts the occurrence of a certain aspect
that is generally accountable for (good) software quality like in measure.

• A measure of degree like ULe-3-S determines the actual degree of quality for each
individual occurrence of an aspect.

Contributing to this distinction is the definition of the target value in the measure. For
example, the measures UAp-1-G and ULe-1-G appear to be similar at first glance: Both
seemingly count the occurrence of documentation for certain software aspects. However,
the definition of the target value ultimately decides the type of measure:

• The target value of UAp-1-G is defined as the number of described usage scenarios.

• The target value of ULe-1-G is defined as the number of functions that require to be
documented and are explained in sufficient detail.

The first is a simple case of counting the occurrences of something. The latter is defined
to be individual to each software. This prompts the evaluator to further specify the
target value in order to properly measure the degree of a quality aspect. In this sense,
it is reasonable to propose to further define the target value of all measures before
the evaluation, especially measures of proportion, to raise the informative value of the
measurement functions.

72

8. Summary & Discussion

For example, the following distinctions can be introduced for measures of proportion:

• For measure UAp-1-G (Description completeness), the evaluator can specify what
pieces of information the documentation of a usage scenario must provide. One
achievable point is distributed into the number of information pieces.

• Measure ULe-1-G (User guidance completeness) can be further specified like measure
UAp-1-G.

• For measure UOp-1-G (Operational consistency), the operational consistency of each
interactive task and what has to apply for this to be achieved can be defined.

• Measure UOp-2-G (Message clarity) can be further specified similarly to measure
ULe-3-S. A message is clear if the message states the subject and if the conveyed
content is correct.

• For measure UEp-1-G (Avoidance of user operation error), the required steps to
protect user actions can be specified.

• For measure MMo-1-G (Coupling of components), it can be specified what constitutes
the independence of a component by defining a few scenarios where the component
should not have impact on other components.

• Similarly to measure MMo-1-G, the reusability of an asset can be further specified
for measure MRe-1-G (Reusability of assets).

However, the further definition of measures of proportion is not only important to properly
evaluate the degree of a quality aspect but also would resolve the questions Q. 4 and Q. 5.
This is because the measures of proportion are the cause for the improvements from 0% to
100% as well as for the little to unchanging quality values. A concrete example is found in
the evaluation results of the measures UAp-1-G and ULe-1-G for VIOLIN and CORAL:

• In CORAL, an improvement of quality from 0% to 100% is observed as pointed out
in Q. 2 because of the transition from lacking documentation to providing a detailed
user and technical documentation. The evaluation results of these measures only
reflect if something is documented or not.

• In VIOLIN, little to no change is observed as well as the fact that the pre-analysis
version performs well. The reason remains the same: The evaluation results of these
measures only reflect if something is documented or not. It is not considered whether
the depth of detail and consequently degree of quality increased with the proposed
documentation guidelines. For this reason, the tools score relatively well before and
the proposed implementations designed to improve the assessed characteristics have
less of a impact on the scores than expected, answering Q. 4 and Q. 5.

73

8. Summary & Discussion

The informative value of the selected measures of ISO/IEC 25023 is therefore questionable.
This conclusion is further supported by the overall user feedback to the new implemen-
tations. A greater improvement is noted by the users than the evaluation results based
on measures. This statement has to be further analyzed by means of a user study to
substantially confirm the quality improvement.

Irrespective of the questionable informative value of the measures, the implementations
and evaluation results reveal a general flaw in the software tools VIOLIN and CORAL:
the lacking modularity of the components within a Python module. In Sec. 7.2, this is
noted as a sub-requirement for the measure MMo-1-G (Coupling of components) aside
from the independence between the modules. This specification was added during the
implementation process as it turned out that this aspect was crucial for the unit tests.
Before the consideration of software quality, the focus was on a clean and modular software
structure, especially regarding the physical modules. As a result, these modules are
designed to be independent. However, the individual routines within are linked together.
Therefore, it was not possible to implement most of the unit tests as they assessed such
routines. This problem is reflected in the results of the measure MTe-1-G (Test function
completeness). While a detailed framework exists for the required integration and unit tests,
a majority of the unit tests are not realizable resulting in an incomplete test coverage.

Also related to the software testing, the following issue was observed in the scope of this
thesis: The format of the debug.log file which is produced to test the debug mode is not
practical for assertion-based testing. Aside from the intermediate values, the debug.log

contains the affected source code line. During the implementation and evaluation phase,
this caused wrongful failing unit tests. The reason is the changing number of code line
when the source code was edited. Thus, when comparing the debug.log to the golden
master, the information for debugging is correct but the number of source code line might
be different, resulting in a failed test.

In conclusion, a critical analysis of the implementation and evaluation results of VIOLIN
and CORAL reveals that the proposed implementations developed in interest of usability
and maintainability satisfy the defined requirements but an improvement may not be
properly reflected by the selected measures. This requires further examination by means
of a user study as well as a re-evaluation using the same measures but with further
specifications to assess the degree of software quality.

74

9. Recommendations for future work

The critical analysis of the proposed implementations and of the measures of the ISO/IEC
25023 used in the scope of this thesis have indicated the following points for further work:

• A user study could be conducted to further analyze the evaluation results of the
proposed implementation. The study could include the small group of currently
active users of the analyzed software tools. In the study, the quality aspects assessed
in the measures that are used in this thesis could be rated by the users according to
a specified scale. This would provide a qualitative opinion on the quality aspects of
usability and maintainability and is a great opportunity to compare quantitative
quality measures to a qualitative quality assessments. Furthermore, the user study
could be used to introduce the modifications and guidelines and find out the users’
willingness to adhere to the changes.

• A re-evaluation could be performed using the same measures but with more detailed
specifications regarding the target value completely. For this purpose, a set of specific
characteristics could be defined for each measure before the evaluation that are
required to achieve the target value. In doing so, measures of proportion could be
transformed in to measures of degree. This step could increase the informative value
of the measures on the degree of software quality. To confirm such improvement, the
new results could be compared to the results of this thesis and a user study.

• A re-evaluation could be performed using the applicable measures of the type Specific
(S) in addition to the Generic (G) measures. This way, a quality characteristic could
be assessed more thoroughly, resulting in a different score. The new results could be
compared to the results of this thesis and a user study to determine if the informative
value changed. In this regard, this point could be combined with the previous one
to obtain an even more detailed assessment of the software quality.

• An evaluation using the time-dependent measures MMd-1-G (Modification efficiency)
and MMd-2-G (Modification correctness) that were removed from the evaluation
of this thesis due to the limited time could be performed. For this purpose, the
implementation for the distributed engines and/or the noise carpet in VIOLIN could
be tested. Both modules are highly prone to errors so far. This is because these
implementations are relatively new and require a certain degree of modification to
the software. Therefore, these modules are perfectly suited for the modifications
that are tested by the measures MMd-1-G and MMd-2-G.

75

9. Recommendations for future work

• The measure MAn-1-G (System log completeness) could be used in the future to
assess the computation efficiency of the tool. This could be of relevance when an
optimization is conducted and would require the tracking of computation time of
each routine. As a result, at least one more log exists next to the debug.log. This
could change the evaluation results, especially if the target values is further specified.

• The modularity within the Python modules of both software tools could be improved.
This would enable the implementation of all defined unit tests and more. For this
purpose, the SOLID-principles [32] could be followed to achieve a more flexible and
modular design. Afterwards, a re-evaluation using the same measures could be
conducted and the new results could be compared to the results of this thesis. In
this case, an improvement in the results of the measures MMo-1-G (Coupling of
components) and MTe-1-G (Test function completeness) would be expected.

• The format of the debug.log file could be adjusted to be more suitable for testing
purposes. This would require the removal of the affected code line, however conse-
quently would affect the readability of the log file. Alternatively, the assertion-based
testing functions of this file could be adjusted to ignore the code lines during the
comparison to the golden master. This way, the test case would only fail if the actual
assessed intermediate values have changed and not the number of source code line.

• A different quality model and consequently other quality measures could be applied
and compared to the ISO/IEC 25010 [16] and ISO/IEC 25023 [17]. The other
models presented in this thesis could be considered. These would be the models of
Boehm [11] and McCall [14]. As explained in the literature review (see Subsec. 2.2.5),
both models are included in the model of ISO/IEC 25010. Therefore, it would be
interesting to examine if this is reflected in the respective evaluation results and
confirm that ISO/IEC 25010 consolidates both models. Also interesting would be
the critical analysis of the informative value of those models in comparison to the
model used in this thesis.

• To broaden the software quality assessment, the software tools VIOLIN and CORAL
could be evaluated in regard of the other quality characteristics of the ISO/IEC 25010
model. This includes functional suitability, performance efficiency, compatibility,
reliability, security and portability. Furthermore, modifications to the software could
be designed and proposed to improve these characteristics. As mentioned in an earlier
point, an optimization of the calculation processes could be conducted. To evaluate
this, the characteristic performance efficiency could be inspected. Furthermore,
portability could be assessed and improved because the group of scientist uses the
software tools in different environments.

76

Acknowledgements

At last, I would like to thank everyone who supported me during my bachelor thesis.

Words cannot express my gratitude to my supervisor Stephen Schade for his invaluable
feedback and support. He helped me and was always there for me regarding structure-
and content-related questions. I could not have undertaken this journey without him.

Special thanks go to my supervisor Prof. Dr. Holger Gerhards of the Baden-Wurttemberg
Cooperative State University for his constructive feedback.

I would also like to thank Dr.-Ing. Antoine Moreau for his formal corrections.

Lastly, I would like to express my deepest appreciation to my fellow student Joel Winiecki
who supported me in many situations until the end and kept my spirits high.

I

Bibliography

[1] Das DLR im Überblick. url: https://www.dlr.de/DE/organisation-dlr/das-
dlr/dlr-im-ueberblick.html (visited on 06/07/2022).

[2] Institut für Antriebstechnik. url: https://www.dlr.de/at/desktopdefault.
aspx/tabid-1490/2091_read-3604/ (visited on 06/07/2022).

[3] Abteilung Triebwerksakustik. url: https://www.dlr.de/at/desktopdefault.
aspx/tabid-1521/2269_read-3715/ (visited on 06/07/2022).

[4] Patrik Berander et al. “Software quality attributes and trade-offs”. In: Blekinge
Institute of Technology 97.98 (2005), p. 19.

[5] Philip B Crosby. Quality is free: the art of making quality certain. McGraw-Hill,
1979.

[6] Armand V Feigenbaum. Total quality control. McGraw-Hill, 1983.

[7] Kaoru Ishikawa. What is total quality control?: the Japanese way. Prentice-Hall,
1985.

[8] William E Deming. Out of the crisis: quality, productivity and competitive position.
Cambridge Univ. Press, 1988.

[9] Walter A Shewhart. Economic control of quality of manufactured product. Van
Nostrand, 1931.

[10] Joseph M Juran. Joseph’s Quality Control Handbook. McGraw-Hill, 1988.

[11] Barry W Boehm, John R Brown, and Mlity Lipow. “Quantitative evaluation of
software quality”. In: Proceedings of the 2nd international conference on Software
engineering. 1976, pp. 592–605.

[12] Euler Marinho and Rodolfo Resende. “Quality Factors in Development Best Practices
for Mobile Applications”. In: June 2012, pp. 632–645. isbn: 978-3-642-31127-7. doi:
10.1007/978-3-642-31128-4_47.

[13] Daniyal Farooque. Boehm’s Software Quality Model. url: https://www.geeksforgeeks.
org/boehms-software-quality-model/ (visited on 07/16/2022).

[14] Jim A McCall, Paul K Richards, and Gene F Walters. Factors in software qual-
ity. volume i. concepts and definitions of software quality. Tech. rep. GENERAL
ELECTRIC CO SUNNYVALE CA, 1977.

II

https://www.dlr.de/DE/organisation-dlr/das-dlr/dlr-im-ueberblick.html
https://www.dlr.de/DE/organisation-dlr/das-dlr/dlr-im-ueberblick.html
https://www.dlr.de/at/desktopdefault.aspx/tabid-1490/2091_read-3604/
https://www.dlr.de/at/desktopdefault.aspx/tabid-1490/2091_read-3604/
https://www.dlr.de/at/desktopdefault.aspx/tabid-1521/2269_read-3715/
https://www.dlr.de/at/desktopdefault.aspx/tabid-1521/2269_read-3715/
https://doi.org/10.1007/978-3-642-31128-4_47
https://www.geeksforgeeks.org/boehms-software-quality-model/
https://www.geeksforgeeks.org/boehms-software-quality-model/

Bibliography

[15] ISO/IEC 9126-1. Software engineering — Product quality — Part 1: Quality model.
Standard ISO/IEC 9126:2001(E). Geneva, CH: International Organization for Stan-
dardization, June 2001.

[16] ISO/IEC 25010. Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — System and software quality models.
Standard ISO/IEC 25010:2011(E). Geneva, CH: International Organization for
Standardization, Mar. 2011.

[17] ISO/IEC 25023. Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — Measurement of system and software
product quality. Standard ISO/IEC 25023:2016(E). Geneva, CH: International Orga-
nization for Standardization, June 2016.

[18] Mike Cohn. Succeeding with Agile: Software Development Using Scrum. A Mike
Cohen signature book. 2009.

[19] J B Rainsberger. Surviving Legacy Code with Golden Master and Sampling. url:
https://blog.thecodewhisperer.com/permalink/surviving-legacy-code-
with-golden-master-and-sampling#welc (visited on 07/20/2022).

[20] Mike C Feathers. Working Effectively with Legacy Code: WORK EFFECT LEG
CODE. Robert C. Martin Series. Pearson Education, 2004. isbn: 9780132931755.

[21] Andrew Forward. “Software documentation: Building and maintaining artefacts of
communication”. MA thesis. University of Ottawa (Canada), 2002.

[22] GitLab CICD. url: https://docs.gitlab.com/ee/ci/ (visited on 07/02/2022).

[23] Ritesh Ranjan. What is a Framework in Programming & Why You Should Use One.
url: https://www.netsolutions.com/insights/what-is-a-framework-in-
programming/ (visited on 07/13/2022).

[24] logging — Logging facility for Python. url: https://docs.python.org/3/library/
logging.html (visited on 07/21/2022).

[25] unittest — Unit testing framework. url: https://docs.python.org/3/library/
unittest.html (visited on 07/21/2022).

[26] pdoc. url: https://pdoc.dev/docs/pdoc.html (visited on 07/21/2022).

[27] Pyreverse. url: https://pylint.pycqa.org/en/latest/pyreverse.html (visited
on 07/21/2022).

[28] Maikhanh Dang. Development of two modular Python tools for virtual acoustic
flyover simulation with subsequent auralization of the simulated sound fields. Report
of practical phase 2. 2020.

III

https://blog.thecodewhisperer.com/permalink/surviving-legacy-code-with-golden-master-and-sampling#welc
https://blog.thecodewhisperer.com/permalink/surviving-legacy-code-with-golden-master-and-sampling#welc
https://docs.gitlab.com/ee/ci/
https://www.netsolutions.com/insights/what-is-a-framework-in-programming/
https://www.netsolutions.com/insights/what-is-a-framework-in-programming/
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://pdoc.dev/docs/pdoc.html
https://pylint.pycqa.org/en/latest/pyreverse.html

Bibliography

[29] Pierre Bourque and Richard E Fairley, eds. SWEBOK: Guide to the Software
Engineering Body of Knowledge. Version 3.0. IEEE Computer Society, 2014. url:
http://www.swebok.org/.

[30] Maikhanh Dang. Identification of user needs and definition of typical application sce-
narios for the software tools VIOLIN and CORAL. Tech. rep. Baden-Wuerttemberg
Cooperative State University Mannheim, 2022.

[31] Maikhanh Dang. Umsetzung eines modularen Python-Tools zur Simulation von
Überfluglärm und der Lärmbewertung anhand verschiedener Metriken. Tech. rep.
Baden-Wuerttemberg Cooperative State University Mannheim, 2020.

[32] Robert C Martin. The Principles of OOD. url: http : / / butunclebob . com /
ArticleS.UncleBob.PrinciplesOfOod (visited on 07/26/2022).

IV

http://www.swebok.org/
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

A. Quality measures of the ISO/IEC
25023 standard

This chapter contains a selection of measures proposed in ISO/IEC 25023 including the
respective measures functions.

A.1. Usability measures

A selection of measures for the following usability subcharacteristics are depicted:

• Table A.1 shows selected measures for appropriateness recognizability.

• Table A.2 shows selected measures for learnability.

• Table A.3 shows selected measures for operability.

• Table A.4 shows selected measures for user error protection.

Table A.1.: Selected appropriateness recognizability measures of ISO/IEC 25023 [17]

ID Name Measurement function

UAp-1-G Description
completeness

X = A/B

A = Number of usage scenarios described in the product
description or user documents
B = Number of usage scenarios of the product

V

A. Quality measures of the ISO/IEC 25023 standard

Table A.2.: Selected learnability measures of ISO/IEC 25023 [17]

ID Name Measurement function

ULe-1-G User guidance
completeness

X = A/B

A = Number of functions described in user documen-
tation and/or help facility as required
B = Number of functions implemented that are re-
quired to be documented

ULe-3-S Error messages
understandability

X = A/B

A = Number of error messages which state the reason
of occurrence and suggest the ways of resolution where
this is possible
B = Number of error messages implemented

Table A.3.: Selected operability measures of ISO/IEC 25023 [17]

ID Name Measurement function

UOp-1-G Operational
consistency

X = 1 − A/B

A = Number of specific interactive tasks that are per-
formed inconsistently
B = Number of specific interactive tasks that need to
be consistent

UOp-2-G Message clarity X = A/B

A = Number of messages that convey the right outcome
or instructions to the user
B = Number of messages implemented

Table A.4.: Selected user error protection measures of ISO/IEC 25023 [17]

ID Name Measurement function

UEp-1-G Avoidance of user
operation error

X = A/B

A = Number of user actions and inputs that are pro-
tected from causing any system malfunction
B = Number of user actions and inputs that could be
protected from causing any system malfunction

VI

A. Quality measures of the ISO/IEC 25023 standard

A.2. Maintainability measures

A selection of measures for the following maintainability subcharacteristics are depicted:

• Table A.5 shows selected measures for modularity.

• Table A.6 shows selected measures for reusability.

• Table A.7 shows selected measures for reusability.

• Table A.8 shows selected measures for modifiability.

• Table A.9 shows selected measures for testability.

Table A.5.: Selected modularity measures of ISO/IEC 25023 [17]

ID Name Measurement function

MMo-1-G Coupling of
components

X = A/B

A = Number of components which are implemented
with no impact on others
B = Number of specified components which are re-
quired to be independent

Table A.6.: Selected reusability measures of ISO/IEC 25023 [17]

ID Name Measurement function

MRe-1-G Reusability of
assets

X = A/B

A = Number of assets which are designed and imple-
mented to be reusable
B = Number of assets in a system

Table A.7.: Selected analyzability measures of ISO/IEC 25023 [17]

ID Name Measurement function

MAn-1-G System log
completeness

X = A/B

A = Number of logs that are actually recorded in the
system
B = Number of logs for which audit trails are required
during operation

VII

A. Quality measures of the ISO/IEC 25023 standard

Table A.8.: Selected modifiability measures of ISO/IEC 25023 [17]

ID Name Measurement function

MMd-1-G Modification
efficiency1

X =
∑n

i=1(Ai/Bi)/n

A = Total work time spent for making a specific type
of modification i

B = Expected time for making the specific type of
modification i

n = Number of modifications measured

MMd-2-G Modification
correctness

X = 1 − A/B

A = Number of modifications that caused an incident or
failure within a defined period after being implemented
B = Number of modifications implemented

Table A.9.: Selected testability measures of ISO/IEC 25023 [17]

ID Name Measurement function

MTe-1-G Test function
completeness

X = A/B

A = Number of test functions implemented as specified
B = Number of test functions required

1 X greater than 1 represents inefficient modifications and X less than 1 represents very efficient
modifications

VIII

B. Appendix to software testing

This chapter contains additional data and material regarding the framework unittest

including methods of unittest as well as some implementation snippets of test cases with
unittest. The integration of the test suite is also included.

B.1. Methods of the testing framework

Table B.1 depicts commonly used assert methods of the framework unittest.

Table B.1.: Commonly used assert methods of the framework unittest adapted from [25]

Method Checks that

assertEqual(a, b) a == b

assertNotEqual(a, b) a != b

assertTrue(x) bool(x)is True

assertFalse(x) bool(x)is False

assertIs(a, b) a is b

assertIsNot(a, b) a is not b

assertIsNone(x) x is None

assertIsNotNone(x) x is not None

assertIn(a, b) a in b

assertNotIn(a, b) a not in b

assertIsInstance(a, b) isinstance(a, b)

assertNotIsInstance(a, b) not isinstance(a, b)

IX

B. Appendix to software testing

B.2. Source code of the general test suite

This section contains code excerpts of the test suite:

• Listing B.1 presents the testing class for the debug mode.

• Listing B.2 presents an excert of a VIOLIN unit test.

1 import unittest
2 import filecmp
3 import sys
4

5 path_to_project = sys.argv [1]
6

7 class TestDebug (unittest . TestCase):
8

9 def test_debug (self):
10 is_equal = filecmp .cmp(f’{ path_to_project }/ output /debug.log ’

, f’{ path_to_project }/ reference /debug.log ’)
11 self. assertTrue (is_equal)
12

13 if __name__ == ’__main__ ’:
14 unittest .main(argv =[’first -arg -is - ignored ’], verbosity =0)

Listing B.1: Source code of the testing class used for the debug mode

1 class TestAA (unittest . TestCase):
2 """ Class used to test the atmospheric absorption routine ."""
3

4 def test_tonal (self):
5 p_em_dist , f_doppler , r = self. _read_input (path_unit_aa +

input_aa_tonal)
6 self. _run_routine (p_em_dist , f_doppler , r, result =f’{

path_unit_aa }/ output /tonal.h5’)
7 self. _compare_results (’tonal.h5’)
8

9 def test_broadband (self):
10 p_em_dist , f_doppler , r = self. _read_input (path_unit_aa +

input_aa_bb)
11 self. _run_routine (p_em_dist , f_doppler , r, result =f’{

path_unit_aa }/ output / broadband .h5’)
12 self. _compare_results (’broadband .h5’)
13

14 ...

X

B. Appendix to software testing

Listing B.2: Source code excerpt of a class used for unit tests

B.3. Implementation of the pipeline

Listing B.3 presents an exemplary .gitlab-ci.yml file of the general pipeline.
1 stages :
2 - build
3 - test
4 - doc
5

6 integration -build:
7 stage: build
8 only:
9 refs:

10 - master
11 - develop
12 script :
13 - testsuite / build_integration_tests .sh projects .txt
14 - testsuite / move_data .sh projects .txt
15

16 developer - integration -build:
17 stage: build
18 only:
19 refs:
20 - master
21 - develop
22 script :
23 - testsuite / build_integration_tests .sh projects_debug .txt
24 - testsuite / move_data .sh projects_debug .txt
25

26 integration - testing :
27 stage: test
28 only:
29 refs:
30 - master
31 - develop
32 script : testsuite / compare_results .sh projects .txt
33

34 developer - integration - testing :
35 stage: test
36 only:
37 refs:

XI

B. Appendix to software testing

38 - master
39 - develop
40 script : testsuite / compare_results .sh projects_debug .txt
41 artifacts :
42 paths:
43 - testsuite / Unit_Tests / Unit_AA / output /debug.log
44

45 unit - testing :
46 stage: test
47 only:
48 refs:
49 - master
50 - develop
51 script : testsuite / run_unit_tests .sh
52

53 documentation :
54 stage: doc
55 only:
56 refs:
57 - master
58 script :
59 - cd src/
60 - rm -rf __pycache__ /
61 - pdoc -d restructuredtext *.py -o ../ documentation /html/
62 - cd
63 - cd documentation / class_diagram /
64 - pyreverse -f’ALL ’ -o pdf ../../ src /*
65 - cd
66 artifacts :
67 paths:
68 - documentation /html /*
69 - documentation / class_diagram /*

Listing B.3: The .gitlab-ci.yml file of the pipeline

XII

	Acronyms
	List of Figures
	List of Tables
	Glossary
	1 Introduction
	2 Theoretical framework
	3 Methods and materials
	4 The software process chain
	5 Definition of requirements
	6 Concept for implementation
	7 Evaluation of the software quality
	8 Summary & Discussion
	9 Recommendations for future work
	Acknowledgements
	Bibliography
	A Quality measures of the ISO/IEC 25023 standard
	B Appendix to software testing

