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Abstract

Refugee camps and informal settlements provide accommodation to some of the most

vulnerable populations, with many of them located in Sub-Saharan Africa. Many of these

settlements lack up-to-date geoinformation that we take for granted in developed world.

Having up-to-date maps on their dimension, spatial layout is important. They are es-

sential tools for assisting administration tasks such as crisis intervention, infrastructure

development, and population estimates which encourage economic productivity. In the

OpenStreetMap ecosystem, there is a disparity between built-up being digitised in the

developed and the developing areas. This data inequality are results of multiple reasons

ranging from a lack of commercial interest to knowledge gaps in data contributors and

such disparity can be reduced with the help of assisted mapping technology. Very High

Resolution remote sensing imagery and Machine Learning based methods can exploit

the textural, spectral, and morphological characteristics and are commonly used to ex-

tract information from these complex environments. In particular recent advances in

Deep Learning based Computer Vision have achieved significant results. This study is

connected to a larger initiative to open-source the AI assisted mapping platform in the

current Humanitarian OpenStreetMap Team’s ecosystem, to investigate the capabilities

of applying Deep Learning for building footprint delineation in refugee camps based on

open-data Unmaned Aerial Vehicle (UAV) imagery from partner organisation OpeAeri-

alMap.

The objective of this study is to test the U-Net and several variations of the architec-

tures’ performance for building footprint segmentation, The performance of the different

Deep Learning models on datasets of various complexity were collected. A comparison of

the models’ responses using class-based accuracy assessments metrics allows detail eval-

uation into how the different architectures and experiment setup respond to data quality.



Given the computation and resources constraint of this project, the result suggests

that increase in architectural depths corresponds with increase in precision. Models

that were initialised on pre-trained weights from ImageNet could reduce recall. Lastly,

to our surprise, the transferability of a competition winning network trained on similar

resolution but on formal building performs worse than many models trained from scratch.

This study showcased the ability to use Deep Learning semantic segmentation to

perform building footprint delineation in complex humanitarian applications. Having

increased access to open-data Very High Resolution UAV imagery from the OpenAeri-

alMap initiative is an advantage to building AI-assisted humanitarian mapping. The

study demonstrated a careful and rigourous approach to model evaluation. Yet, the

variation of the study results not only emphasised the complexity of Deep Learning

based methods, but also indicate the direction for further investigation that would be

justifiable when further resources becomes available.
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0.3 Abbreviations

• SDG: Sustainable Development Goals

• MDG: Millenium Development Goals

• OSM: OpenStreetMap

• HOT: Humanitarian OpenStreetMap Team

• UAV: Unmanned Aerial Vehicle

• CV: Computer Vision

• DL: Deep Learning

• CNN: Convolutional Neural Network

• SGD: Stochastic Gradient Descent

• OCC: Open-Cities-AI-Challenge

• OA: Overall Accuracy

• IoU: Intersection-over-Union
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1 Introduction

The world’s population is more urbanised than ever before. As of 2018, approximately

4 billion (55%) (UN DESA., 2018, Taubenöck et al., 2009) reside in urban areas, of

which 60% reside in slums often located at the fringes of the city (Venables A., 2018).

Urbanisation growth is expected to increase by 2.5 billions between 2018 and 2050, most

of which will be in Asia and Africa (UN DESA., 2018). When population growth out-

pace development, informal settlemnt become the supplier of significant housing stocks.

These informal settlements are dynamic and represent a good reflection of cultural prac-

tices, access to resources, financial limitations and other socio-economic conditions. This

means the informal settlement differs significantly between urban and rural settlements

from roof covers, densities, and are subjected to different levels of access to resources

and the types of resources. In particular, refugee camps and their development are of-

ten dependent on international aid and humanitarian efforts, resuting in unique urban

morhopology where parts of older refugee camps resembles the chaotic characteristics of

informal settlement while newer extension received careful planning.

Refugee camps are often the common or only way for displaced people to receive

shelters and assistance. They are often setup in place of proximity to displaced popula-

tion, whether that be from natural disasters, human caused disasters, or other reasons.

Throughout history, refugee sites have provided haven to the world’s most vulnerable

population (UN, 2018, Turner S., 2016, UNHCR, 2021). However, as of 2020, only

around 1.4 million out of 26.4 million refugees have access to third country solution
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CHAPTER 1. INTRODUCTION

between 2016 and 2021 (UNHCR, 2021). Additionally, although officially defined as

temporary settlement, many refugee camps have had longer than expected life cycle,

some of them have even become ”Secondary Cities” and therefore suffer similar prob-

lems of poor governance and rapid urbanisation which consequentially makes them un-

attractive as investment (Cities Alliance & AfDB., 2022). For the many refugee camps

and informal settlements that have lasted well beyond their expected temporary role,

there are generally 3 ways of solving the issue: 1. Voluntary repatriation, 2. Reolcation

to third country, 3. Local integration as outlined by the Global Compact on Refugees

(UN, 2018), although actual implementations are often subjected to the wills of the host

soverign-state. Recent studies have suggested that local integration often have a net

positive economic impact on the surrounding region (Alix-Garcia et al., 2018, Rummery

A., 2019, IFC., 2018).

Since the 2000, the United Nations have codified a set of global development goals

which the member states commited to, development projects are therefore encouraged to

align their goals to achieve such global development goals. The United Nations Depart-

ment of Economic and Social Affairs have published a set of 17 Sustainable Development

Goals (herein SDG) to be achieved by 2030 as a successor to the 2015 Millenium Devel-

opment Goals (herein MDG) (UN, 2015). Special attention are drawn to Goals 1 and

10 that are particularly relevant to this study.

• Goal 1: End poverty in all its forms everywhere

– Target 1.1: By 2030, eradicate extreme poverty for all people everywhere,

currently measured as people living on less than $1.25 a day

– Target 1.4: By 2030, ensure that all men and women, in particular the poor

and the vulnerable, have equal rights to economic resources, as well as access

to basic services, ownership and control over land and other forms of prop-

erty, inheritance, natural resources, appropiriate new technology and financial

8



CHAPTER 1. INTRODUCTION

services, including microfinance

– Target 1.b: Create sound policy frameworks at the national, regional and in-

ternational levels, based on pro-poor and gender-sensitive development strategies,

to support accelerated investment in poverty eradication actions

• Goal 10: Reduce inequality within and among countries

– Target 10.1: By 2030, empower and promote the social, economic and political

inclusion of all, irrespective of age, sex, disability, race, ethnicity, origin,

religion or economic or other status

– Target 10.7: Facilitate orderly, safe, regular and responsible migration and

mobility of people, including through the implementation of planned and well-

managed migration policies

Having up-to-date map is therefore paramount for short and long term humanitarian

projects, from the delivery of essential medicine, spatial and policy planning, to popula-

tion estimation, quality and timely maps are essential to improve future decision making

in both humanitarian and non-humanitian context. Although we have seen an overall

net increase in the amount of buildings mapped on the OpenStreetMap (herein OSM)

platform, contribution is still skewed towards developed cities and countries. Patterns of

episodic contribution maybe observed post disasters, but the contributed data inequality

is not easily reconciled (Herfort et al., 2021) (see figure 1.1).
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Figure 1.1: Data contribution of buildings and highway in all and humanitarian settings

within OSM (Herfort et al., 2021)

Part of the reason for this could be traced to both the knowledge of volunteer con-

tributors and commercial interest, for detailed discussion, see Anderson et al., 2019,

Veselovsky et al., 2021 and Yang et al., 2016. As the topic and data provider of this

project, the Humanitarian OpenStreetMap Team (herein HOT) have been at the fore-

front of using open and crowd sourced mapping data to support humanitarian causes

from shorter term disaster response to longer epidemiology and microfinance campaigns
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CHAPTER 1. INTRODUCTION

(HOT, 2021). HOT would like to make use of the recent advancement of Deep Learning

(herein DL) in the geospatial field (e.g. Herfort et al., 2019, Kuffer et al., 2016, Wurm et

al., 2021, Quinn et al., 2018) to develop an open-sourced, open-data AI-assisted mapping

solution to reduce the geospatial data inequality in the OSM ecosystem. The result of

this work will form part of the pilot study to trial the use of Unmaned Aerial Vehicle

(herein UAV) imagery and existing labelled data in the segmentation of two major

refugee camps of East Africa.
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2 Literature Review

2.1 Remote Sensing of Informal Settlements

The complexity of human built environments often consist of using very different ma-

terials in conjunction to each other in a dense environment. From power-lines, factories,

car-park, to leisure-parks, imaging of urban enviornments therefore requires imagery

high in both spatial and temporal resolution. Urban remote sensing calls for techniques

that extracts geometry, textural, and other physical features as opposed to the more

common spectral based index approach used in ecological or enviornmental remote sens-

ing (Jensen J., 2007, NRC., 1998).

Informal settlement and slum mapping of developing countries require very high res-

olution (VHR) images which was unavailable until the turn of the century. The relatively

new technology thus only began to gain traction within the last 2 decades. Particularly

with the increase in the availability of civilian commercial VHR satellites. Increase in

computational power had enabled novel techniques such as multi-layer machine learning,

textural analysis, and novel geostatistical methods to emerge (Kuffer et al., 2016). The

use of remote sensing derived data for socio-economic proxies have been able to com-

pensate for traditional sources such as temporally infrequent census (e.g. Watmough et

al., 2012, Watmough et al., 2015, Watmough et al., 2019) Census especially conducted

in developing areas also falls short in capturing socio-spatial patterns, potentially over-

looking others socio-economic determinants such as access to amenities and infrastrcture.
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Therefore, adequate pro-poor policy development hinges on the availablity of up-to-date

and good quality analysis (Kuffer et al., 2016, Sliuzas et al., 2017). Remote sensing of

settlements largely falls under 2 categories, rural or urban. Due to the different make-up

of socio-economic context and urban morphology, ssensing of rural and urban settle-

ments require different parameters. Additionally, there’s no “one size fit all” way to

generalise informal and formal settlement across the world, as physical geography, topo-

graphy, cultural, and available resources often dictate the distribution, development, and

settlement clusters pattern. These unique requirements have thus made DL techniques

particularly useful, and many applications of DL in remote sensing have therefore been

in the urban domain (Ma et al., 2019).

2.2 Deep Learning in Urban Remote Sensing

The following section will be divided into 3 parts. The first part reviews the concept of

Computer Vision (herein CV) as a study subject, previous common practices, and the

evolution towards data-driven Deep Learning. The second part will focus on domain

specific review of recent AI-based segmentation practices on building segmentation and

particularly the recent practices in informal settlement segmentation. Lastly, the third

part will explain the mechanism of the Convolutional Neural Network, the class of neural

networks commonly used for CV tasks.

2.2.1 Computer Vision and a brief review of Convolutional Neural Net-

works

Computer Vision is a practice of extracting information from digitised imagery, first

applied in robotics, it has become an interdisciplinary field of study utilised by medi-

cine, biologist, and remote sensing scientists alike (Rosenfeld A., 1988, Szeliski R., 2010).

The field of CV traditionally used mathematical operations that are applied on the
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imagery represented as multi-dimensional arrays. These include point-and-local opera-

tions, statistical computation, geometric operations, transformations, and extraction of

geometric entities, for detail discussion see Rosenfeld A. 1988. The following decades saw

CV operations developed into more specialised applications. For example, edge detect-

ors (e.g. Sobel, Prewitt, Marr-Hildreth) or Grey-Level Co-occurence Matrix kernel (e.g.

Haralick Texture) (e.g. Kuffer et al., 2014, Kuffer et al., 2016, Wurm et al., 2017) (Pal &

Pal, 1993, Blaschke T., 2010, Blaschke et al., 2014). CV based segmentation experienced

an akin to a Kuhnian paradigm shift (Kuhn T., 1962) when AlexNet, a Convolutional

Neural Network trained on a GPU (Krizhevsky et al., 2012) won the preeminent large-

scale ImageNet CV challenge (Deng et al., 2009), the success reinvigorated the use of

multi-layered neural network in CV tasks (LeCun et al., 2015, Bengio et al., 2017). The

timing of the paradigm shift coincided with the increase in computation power provided

by Graphical Processing Unit (GPU) have enabled CNNs to be successfully applicated

across domains ranging from biomedical imaging to remote sensing (Ma et al., 2018, Zhu

et al., 2017, Zhang et al., 2016, Wurm et al., 2019).

In the field of CV, there is generally 4 types of application: 1. Semantic segmentation,

2. Classification and localisation, 3. Object detection, and 4. Instance segmentation

(see figure 2.1) (Stevens et al., 2020). This study will conduct semantic segmentation of

binary classification between built-up and no built-up.

The purpose of semantic segmentation is to assign a named (semantic) classification

to each and every single pixel of the input image (Rosenfeld A., 1988, Szeliski R., 2010).

This is commonly applied in remote sensing of Land Use Land Cover classification where

every single pixel will be assigned and Land Cover or Land Use type. Another applic-

ation is binary segmentation where the model will only be trained to assign a named

classification to a particular clusters of associated pixels. This is more common in single

class segmentation. The difference between mere classication and segmentation is that

the semantic segmentation output a mask over the pixel will be created, where each pixel

14
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Figure 2.1: The four main types of Computer Vision tasks (Stanford University, 2022)

within the mask belongs to the same semantic task; meanwhile, classification only gives

a confidence of semantic of the whole scene without assigning the classification to each

pixel.

2.2.2 Deep Learning and Convolutional Neural Networks

The closest resemblance to modern methods first appeared around the 1960s, with the

first CNNs appearing around 1980s. However, Deep Learning based methodologies went

in and out of popularity driven partly by lack of computaional resources and partly

the non-linearity of the field’s progression (i.e. the parts did not come together at the

right time.). Causing the ”AI winter” between 1970s to 1990s (Schmidhuber J., 2014).

Prior to the resurgence of popularity in DL, the set of methodology now associated with

neural networks was known as a multi-layered perceptron. Initially inspired by a math-

ematical analogy to codify the function of a single neuron by the seminal Psychological

review paper published by Rosenblatt F. 1958. Like a human neuron, the properties of a

perceptron on the most fundamental level takes an information/numerical input, stores

and apply transformation, and create an output, expressed mathematically as equation

2.1. Through stacking of basic perceptrons, a multi-layered perceptrons structure can
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be created. In order for such structure to be computationally useful, it must satisfy the

following criteria:

Figure 2.2: Schematic analogy diagram between a biological neuron and an artificial

perceptron (Fumo D., 2017).

f(
∑
i...n

wixi + b) (2.1)

• Where:

– f = Activation function

–
∑

(i...n) = Summation of i to nth dimension

– wixi = Weights multipled by original input variable (x)

– b = bias

1. Collections of connected perceptrons are capable of plasticity (i.e. changing values)

through training.

2. Perceptrons will form dominant pathways that ”fire” (activate) together.

3. Through training, perceptrons will learn to apply positive or negative reinforcement

to facilitate minimising error (e.g. assigning and changing ”weights”).

The particular group of such perceptron structures used in CVs are known as Con-

volutional Neural Network (herein CNN) The most basics of CNN consist of 3 parts:

1. An input layer, 2. Multiple hidden convolution and pool layers, 3. An output layer
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which provides with the segmentation result and the associated confidence level (see

figure 2.2 2.3). Therefore, a Deep-Learning Neural Network system is string together

by a series of inter-connected layer of which its parameters are adjustable to adapt to

the data provided. Through careful iterative training and adjustment, the system can

generalise well not only to the training and validation data, but to future datasets as well.

Figure 2.3: Schematic diagram of a CNN (Stanford University, 2022).

Convolution and Pooling

The hidden layers of the CNN is where the network performs representation learning,

where with each layer in depth learns more abstract features of the input training image.

While not often the case, it is conventional practice to interleave the convolutional and

the pooling layers (Stevens et al., 2020).

The convolutional layer essentially treats every image pixel as vector in a 3-Dimensional

layout with input of (Batch Size, Channelin, Height,Width), the convolutional kernel

slides and apply the weighting and bias terms to extract deeper features (see figure

2.4) (Stevens et al., 2020), thus, learning deeper features which creates the output

of (BatchSize, Channelout, Height,Width). The full transformation per convolutional

layer transform equation: 2.1 of each pixel into equation: 2.2.2.
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Figure 2.4: 3 x 3 Convolution (Stanford University, 2022).

out(Ni, Coutj) = bias(Coutj) +

Cin−1∑
k=0

weight(Coutj , k) ∗ input(Ni, k)

• Where:

– N = Batch Size

– C = Channels

– k = Kernel Size

(2.2)

The pooling layer reduces the dimension by downsampling by applying convention-

ally, a smaller kernel which extract the desirable value when applied. Maximum Pooling,
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which only return the largest value in the downsampling kernel is common and is used

for the network architecture of this experiment (Stevens et al., 2020). The pooling layer

scale down the image while retaining the most crucial information (see figure 2.5).

Figure 2.5: Max pooling (Stanford University, 2022).

Optimiser and the Binary Cross Entropy Loss function

With each batch of data (aka. a complete pass) ingested through the neural network,

the ouput is then compared against the validation result for error calculation. The

summed average of loss defines the cost function landscape from which the error value is

calculated against. From which the score is penalised when prediction is incorrect and

rewarded if otherwise. The backpropagation finds the sensitivity of the cost function

to each weights and biases through the chain rule. This enables the adjustments of the

weights and biases in the proceeding pass. An aggregation of per-pixel error is done

by the loss function in order for the model to make adjustment and correction. There

are several loss functions that can be applied, such as the Binary Cross Entropy Loss,

Kullback-Leibler divergence Loss. Appropriate loss function should be selected for the

task (Seale et al., 2022), and usually for binary segmentation task, the Binary Cross

Entropy Loss function is commonly used to measure error (see equation: 2.2.2).

l(x, y) = L = {l1...lN}T , ln = −wn[yn × logxn + (1 − yn) ∗ log(1 − xn)]

• Where:
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– N = Batch Size

– l(x, y) = loss(Label, Prediction Probability)

– ln = loss at sample n

(2.3)

The optimiser defines and computes repeatedly the negative gradient of the cost func-

tion, the process is known as gradient descent, and the learning rate hyperparameter

which controls the size of step being taken down the negative gradient of −∇C in the cost

function landscape. A suitable optimiser can prevent gradient descent to be trapped at

a local minimum through iterations. The optimiser of choice for the experiement is the

Adam optimiser, The Adam (Adaptive Momentum Estimator) developed by Kingma &

Ba 2017 extends the Stochastic Gradient Descent (herein SGD) by introducing concepts

of momentum and second moments of gradient (see appendix 6.1). Adam maintains a

separate learning rate for each parameter and have become the standard pick of optim-

iser since.

Backpropagation and the chain rule

In order for a neural network to improve, the weights and biases are changed accord-

ingly to minimise the cost. This is computed as a step-wise function as a negative vector

against the cost landscape. For which each parameter of the weights and biases of each

neuron within the neural network is defined as a chained function against the cost in

equation 2.4. In other words, what is the derivate of the cost function with respect to

the chain of weights and biases derivatives.

δC

δP i
=

δ(wLxi−1 + bi)

δP i

σ[δ(wixi−1 + bi)]

δ(wixi−1 + bi)

δC

σ[δ(wixi−1 + bi)]
(2.4)
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• Where:

– δC = Derivative of Cost Function

– δP i = Derivative of a Parameter, which could be the wi weight or bi bias or

for activation function δ(wixi−1 + bi) at layer i

– x = Input Variable

– σ = Activation Function (e.g. ReLU, Sigmoid)

Where equation 2.4 is summed over all parameters of layer i becomes equation 2.5

∇C =
δC

δP i
=

ni−1∑ δ(wLxi−1 + bi)

δP i

σ[δ(wixi−1 + bi)]

δ(wixi−1 + bi)

δC

σ[δ(wixi−1 + bi)]
(2.5)

Thus, taking the negative gradient −∇C will provide the gradient descent step hope-

fully towards the global minimum.

Essentially, using CNN and DL methods to perform semantic segmentation through

repeated iterations of the above processes have proven to generalise well to complex data-

set. Although the aim of this study is not to produce a deployable model necessarily,

the study will lay the foundational groundwork for a data-drive evaluation of different

CNNs elaborated in section 3.5.
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3 Data and Methodologies

3.1 Study Areas of Interest

Figure 3.1: The Kalobeyei and Dzaleka camps respective location in East Africa,

3.1.1 Kalobeyei, Kakuma, Turkana, Kenya

The Kakuma camp was first established in 1992, located in the rural North-West county

of Turkana, Kenya. The camp was initially established to provide accomdation to the

refugees fleeing the Second Sudanese Civil War as a temporary solution. However, as

the conflict dragged out and followed by subsequent conflicts in the nearby region, the
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Kakuma camp have therefore been running for the past 30 years. As of 2020, Kakuma is

home to 157,718 refugees with increasing number coming from the more recent Somali

and Ethiopian-Eritrean conflict (IFC., 2018, UN-HABITAT, 2021).

The Kakuma refugee camp have fluctuated in population as a response to demand,

however, a dramatic increase in population between 2013 and 2014 has culminated into

the development of Kakuma 4 Camp and the Kalobeyei Settlement and the Kalobeyei In-

tegrated Socio-Economic Development Plan (KISEDP). The settlements benefited from

a much better spatial planning in order to facilitate inclusive socio-economic develop-

ment (UN-HABITAT, 2021, UNHCR & DANIDA, 2019) (see figure 3.2). Both the

Kakuma and Kalobeyei refugee camps have local integration as the targeted solution

(UN-HABITAT, 2021, UNHCR & DANIDA, 2019). A comprehensive study of the formal

and informal economy of Kakuma refugee camp conducted by the International Finan-

cial Corporation (IFC, 2018) suggests that that market catering for the refugees and

surrounding towns is estimated at KES 1.7 billion (USD $16.4 million). The econom-

ical vibrancy of local integration have improved the economy of improverished Turkana

county significantly. However, challenges remain in integration into the wider Kenyan

economy.
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Figure 3.2: The Kakuma-Kalobeyei land use and planning areas (UN-HABITAT, 2018)
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Figure 3.3: RGB UAV imagery of the Kalobeyei settlements in rural Turkana from

OpenAerialMap

3.2 Dzaleka, Dowa, Malawi

Originally an infamous prison camp under the Banda’s Malawi Congree Party regime,

the area was converted to become the Dzaleka Refugee Camp in 1994. Unlike the Kak-

uma and Kalobeyei camps, the Dzaleka Refugee Camp is located in the heart of Malawi,

45 km away from the capital Lilongwe, where it is home to around 52,000 refugees and

receive on average 300 new residents every month. Most coming from the Great Lakes

area, in particular, the Democratic Republic of Congo and Burundi. However, resur-

gence of past conflicts between the Republic of Congo and D.R. Congo have caused an

increased of influx in recent years (UNHCR, 2014, Kavalo E., 2016). Much of the infra-

structure in the Dzaleka camp remain rudimentary at best, and very little resources and

statistics were available via the UNHCR and UNDP portals. The Northern extension

to the Dzaleka main camp is known as the Katubza extension (referred to as Dzaleka

25



3.2. DZALEKA, DOWA,
MALAWI

CHAPTER 3. DATA
AND METHODOLOGIES

North by the rest of this study), it is a well-planned plot of land consisting of 423 shel-

ter shelters and were still inconstruction as of March 2021 (Gross G., 2021 & UNHCR,

2021) (see figure 3.4). For the rest of this report, reference to the datasets of Kalobeyei,

Dzaleka, and Dzaleka North will be denoted as KBY, DZK, and DZKN respectively.

Figure 3.4: The main Dzaleka Refugee Camp and the Katubza extension plan (Dzaleka

North) designed by Urban Design Advisor to the UNHCR Werner Schnellenberg (Gross

G., 2021).
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Figure 3.5: Digitised rooftop of the Dzaleka and Dzaleka North camps by HOT volunteers

Although hosting of refugee camps are often seen as a burden on the surface level, in

reality, many refugees are often more educated than the local population, which brings

with them entrepreneurial ability and provide the local-area with extra labour force

(Alix-Garcia et al., 2018). With constant stakeholder pressure for relocation and clos-

ure, showcasing of the refugee camps local economic impact and the potential of, aiding

the formation of pro-poor policy development (Cities Alliance, 2022).

3.3 Data

Vector pre-processing

Semantic segmentation tasks require very high quality and quantity of data input in

order to successfully perform. The reference dataset must therefore be highly accurate,

otherwise this could cause the model to misclassify. There were two significant issues,
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firstly, due to the centermeter level resolution of the UAV raster data, the abundance of

building polygons from OpenStreetMap and Google Open Buildings V1 Polygon data-

set1 did not spatially align well even after reprojection. Secondly, there were a temporal

mismatch between such vector labels and the UAV in collection, causing some labels

without building and buildings without labels.

Fortunately, prior to this study, the HOT team and volunteers have begun collecting

labels specifically digitised on the UAV imagery of Dzaleka and Dzaleka North camps see

figure 3.5. Although spatially and temporally aligned, these vector labels still did not

have a DL CV tasks in mind, hence, labelling around edges of buildings and in particular

UAV motion artefacts (Smith et al., 2016, Caravick et al., 2016) see figure 3.6 may have

been missed.

With the Kalobeyei camp unlabelled, this study created albeit in less quanitity, a

carefully digitised, pixel-aligned dataset which is suitable for DL tasks. The combina-

tion of datasets provided gave this study a unique opportunitiy to investigate how the

different datasets could influence segmentation results.

1https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_Research_

open-buildings_v1_polygons
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Figure 3.6: Motion artefacts unique to UAV imagery

3.3.1 Raster pre-processing

The UAV imagery from OpenAerialMap were first downloaded from OpenAerialMap and

resampled to 15 cm resolution using cubic-spline interpolation, subsequently reprojected

to EPSG:3857. Normalisation of raster data per colour band (RGB) was performed to

adequately re-scale the raster value to be converted to the PNG file format. This is

perhaps one of the most important pre-processing step, as normalised images enable

easier training and prevents weight explosion (Harrison K., 2020). 2-step normalisation

were performed on each band for each UAV imagery to ensure the distribution of value

is preserved (Gonzalez & Woods., 2002).

First, the z-score normalisation noramlises the images according to the retrieved

standard deviation (see equation 3.1). This scales the every pixel to the global statistics

for each colour band, keeping proportional ratio while reducing the effects of outlier.

The z-score normalised result is then linearly scaled to range of 0 to 255 to be converted

to 8-bit .png type file (see equation 3.2).

pz =
(p− µ)

σ
(3.1)

• Where:
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– pz = z-score normalised pixel value

– p = Original pixel value

– µ = Mean value of pixel

– σ = Standard Deviation of pixel

p8bit =
[pz −min(pz)] ∗ 255

[max(pz) −min(pz)]
(3.2)

• Where:

– p8bit = Pixel output normalised between 0 and 255

– pz = z-score normalised pixel value from 3.1

After per-band normalisation, the imagery bands were stacked with the associated

labels. In order to increase the data quantity, 2
3 overlapping steps cropping was per-

formed. This resulted in the image label pair count of Train n = 2606, Validation, n

= 1303, and Test n = 435 where each set were split at a ratio of 60, 30, and 10 %

respectively. With augemntation applied, this increased the available data to Train n =

18242, Validation n = 3909, and Test n = 435. (see figure 3.8 & see table 3.3.2)

3.3.2 Data Augmentation

Data augmentation one of the most crucial step in training a robust neural-network and

reduce generalisation error (Bengio et al., 2017, Stevens et al., 2020). It is an economical

way of increasing generalisability without increasing model complexity, data augmenta-

tion achieve this through, firstly increasing the quantity of training and validation data,

secondly encompassing a greater range of textural, geometrical, and colour variability

throught the creation of augmented pseudo-data (Shorten & Khoshgoftaar, 2019; Kins-

ley & Kukiela, 2020; Howard & Gugger, 2020; Zoph et al., 2019).
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Data augmentation can generally be split into 3 categories: 1. Geometric/Affine

distortion, 2. Colour distortion, and 3. Noise distortion. The application of which types

of distortion to the Train and Validation dataset is highly dependent on the context of

the semantic task. Therefore, care must be taken as to not introduce mislabelling (see

figure 3.7) (Ng A., 2018).

Augmentation categories:

• Geometric/Affine distortion

– e.g. Fliping, Stretching, Rotation...

• Colour distortion

– e.g. Colour Inversion, Solarise Colour, Greyscale...

• Noise distortion

– e.g. Blurring, Contrasting, Salt & Pepper...

Figure 3.7: Perhaps geometric augmentation of horizontal flipping shall not be applied

on the MNIST number of 5

Thus, the following augmentation were applied to the Train, Validation, and Test

datasets respectively:
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• Train - Inverse RGB, Horizontal Flip, Vertical Flip, Gaussian Blur, Contrast In-

crease, Solarise Colour

• Validation - Horizontal Flip, Vertical Flip

• Test - None

Figure 3.8: An example of Inverse RGB augmentation applied to the Train dataset.

Dataset input with augmentation

Datasets Train Validation Test

KBY 5719 1224 272

KBV + DZK +

DZKN

18242 3909 435

Table 3.1: Resulted image and label pair for each dataset input configuration

Pre-trained weights and transfer-learning

Pre-trained networks are neural networks that were already trained and optimised for a

particular dataset. Therefore, the models’ adjustable parameters have already learnt the

basic features such as edges and shades etc. Training built upon a pre-trained network

therefore could potentially reduce variation in the training results (Bengio et al., 2017),

this process is known as transfer-learning. By comparing architectures initialised ran-

domly and on pre-trained weights, this study investigates the affect of weight-initialised,
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transfer-training of different datasets.

Fortunately for recent DL pracitioner, many of the classical and sometimes novel

architectures have already been trained on the large-scale CV datasets (e.g. ImageNet,

CIFAR) and have been made available to the community. This has made such mod-

els which often require large computational resources available to resources constrained

projects.

3.4 Research Questions and experiment design

To provide HOT with objective, clear results that could provide evidence-based direction

for future research, clear guiding research questions and careful experiment desgins were

required. In order to train a model which performs well on UAV imagery, the motion

artefact was a signficant feature for the models to learn. The combination of data avail-

ability have allowed a unique set of research questions concerning the input data quality

and experiment setup to surface.

Additionally, using pre-trained weights as a strategy is well-documented in literature

to improve performance across many domains (Stevens et al., 2020, Howard & Gugger,

2020). Numerous studies have showcased the success of cross-domain transfer training

from classical CV datasets to remote sensing tasks (e.g. Audebert et al., 2017, Marmanis

et al., 2016), therefore one would expect the transfer training of CNN pre-trained on

any dataset would provide it with an advantage. Thus, it is important that this study

also test the effects of the CNNs response when initialised with weights from ImageNet

and the OCC building segmentation model.

1. RQ1: Do state-of-the-art models allow for accurate detection of buildings from

UAV data in refugee camps?
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2. RQ2: What is the optimal mixture of accurate and less-accurate labels and how

does that affect the segmentation output result?

(a) How does the introduction of complex environment such as heterogeneous

urban morphologies, roofing materials, and UAV drone artefacts affect result?

3. RQ3: How do existing models pre-trained on classical CV datasets’ and/or building

datasets’ response when applied to the setting of refugee camps?

The selection of models will initially be trained on the accurately digitised and less

complex Kalobeyei dataset, this will be then be followed by introducing the higher

quantity but morphologically complex Dzaleka datasets. Figure 3.9 show a snapshot

of the diverse rooftops to be segmented in the available datasets. A comparison of

performance between the U-Net variations (Ronneberger et al., 2015) and the Open-

Cities-AI-Challenge (herein OCC)2 winning model is conducted (see table 3.5.1).

Figure 3.9: Collections of diverse and heterogeneous rooftops from the Kalobeyei, Dza-

leka, and Dzaleka North datasets.

2https://github.com/drivendataorg/open-cities-ai-challenge/tree/master/1st%20Place
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3.5 Architecture and hyperparameter selection

Model architecture and their associated hyperparameters selection is highly dependent

on the computational resources and the task at hand (Ng A., 2018, Howard & Gugger,

2020). As this study aims to output a pixel-based binary segmentation which delineates

building and non-building, and given the computational resources constraint, model

selection were based on tried and tested architectures with relatively low number of

training parameters.

3.5.1 The U-Net and U-Net variants

The U-Net architecture was first developed by Ronneberger et al. 2015 for the task of cell

segmentation in biomedical electronmicroscope images. The architecture feature a sym-

metrical Encoder-Decoder structure (see figure 3.10) and as with many other CNN, the

architecture have transferred successfully well into the remote sensing domains (Höser

& Künzer, 2020, Höser et al., 2020, Xu et al., 2019). This symmetrical encoder-decoder

type architecture with concatenated skipped-connections is able to extract deeper fea-

tures in the encoder layers, then recover and interpolate spatial features in the connected

unsampling decoder layers (Wurm et al., 2019).

Figure 3.10: The Encoder-Decoder U-Net architecture (Ronneberger et al., 2015, Seale

et al., 2022)
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Changing the encoder architecture and the EfficientNet family

The ability to switch out the encoder structure allows the DL practioner to experiment

with more up-to-date architectures without changing the output shape. This drastically

increases the combination of experiments that allow testing the best combinations of

encoder-decoder structure suitable for the dataset. All experiments in this study were

carried out using the high-level PyTorch API Segmentation-Model-PyTorch3 created by

Yakubovyskiyl P. 2021. Who was also the winner of the OCC challenge for UAV building

segmentation. This study will compare and contrast the unchanged 4-layer and 5-layer

U-Nets architectures with the U-Nets with changed encoders. The changed encoders

were based on the EfficientNet family. There are three reasons for this decision. Firstly,

at one of the last stage of the OCC compeition winning network, the EfficeintNet B1 was

used as an encoder. Secondly, the EfficientNet family are a set of network architectures

that are structured and easy to scale up when computational resources become available.

Thirdly, they are perhaps the best represntation of generalised state-of-the-art architec-

tures that have been tested and performed well in classical CV datasets (see figure 3.11)

(Tan & Le, 2020). In essence, these are sets of experiments that mix and match old and

new architectural design.

3https://segmentation-models-pytorch.readthedocs.io/en/latest/quickstart.html
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Figure 3.11: EfficientNet family Top 1% Accuracy Assessment in ImageNet (Tan & Le,

2020).

The EfficientNet family uses compound scaling which increases the height, width,

and depth. The baseline architecture was generated using AutoML Neural Architecture

Search (Elsken et al., 2019) which optimised for computational efficiency and accuracy

(see appendix 6.2). Therefore, the unweighted 4-layer U-Net, 5-layer U-Net, and the

OCC building segmetation weighted EfficientNet B1 U-Net are the key architectures

the rest will compare against.

37



3.6. HYPERPARAMETERS
AND BASELINE MODEL
PERFORAMCE

CHAPTER 3. DATA
AND METHODOLOGIES

Trained Architecture Specification Table

Encoder Decoder Initalised weights Trainable para-

meters

Batch-size (8 GB

GeForce GTX

1070Ti)

4-layer U-Net En-

coder

4-layer U-Net De-

coder

None 776,3041 32

5-layer U-Net En-

coder

5-layer U-Net De-

coder

None 3110,0513 32

EfficientNet-B1 4-layer U-Net De-

coder

None 700,5041 32

EfficientNet-B1 4-layer U-Net De-

coder

ImageNet 700,5041 32

EfficientNet-B1 5-layer U-Net De-

coder

OCC 875,7105 16

EfficientNet-B2 4-layer U-Net De-

coder

None 821,1283 32

EfficientNet-B2 4-layer U-Net De-

coder

ImageNet 821,1283 32

Table 3.2: The U-Nets and the variations thereof selected for this study

3.6 Hyperparameters and baseline model perforamce

The hyperparameters of a neural network are changable parameters which control the

training process (Bengio et al., 2017, Stevens et al., 2020, Howard & Gugger, 2020).

They include the batch size, optimiser, learning rate, weight decay, loss function, and

learning rate scheduler etc. (see table 3.6). One of the most difficult processes in DL

is finding the correct hyperparameters value that cause the model to neither overfit nor

underfit the dataset. The strategies and options are often overwhelming, therefore this

study does not concern itself with changing or tuning the hyperparameters for all the

models but rather withholding them from changes so that a comprehensive controlled

experiment can be performed. This allows for the baseline performance of each archi-

tecture setup (see table 3.5.1) to be identified. This will provide a clear picture of each

feasibility, uncover challenges and potentials, and insight into where further resources

could be justified to scale future experiments.
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3.7 Accuracy Assessment

Detail and scrutable accuracy assessments are fundamental towards any ML based ana-

lysis. This section will introduce and break down the various lower order and higher

order class-based (thematic) accuracy assessment. By explaining the characteristics of

each metric, this will provide a much more granular nature of accuracy assessment in

the findings of section 4.1. In general, accuracy assessment in remote sensing can be

divided into 2 categories: 1. Positional Accuracy & 2. Thematic Accuracy. Of which,

Thematic Accuracy deals with the labels or attributes accuracy (Congalton & Green,

2019 & Bolstad P., 2019) which will be the focus of assessment. Here the study differen-

tiate between 2 groups of class-based accuracy assessments. With binary classification

metrics being more granular, they focus on assessing relevant or irrelevant classifications.

Meanwhile, the statistical metrics are more triturated but generalised, they are often a

statistical combination of the binary classification metrics.

The metrics described in this section form part of the larger family of accuracy as-

sessment metrics that can be constructed from the confusion matrix (see figure 3.12)

Figure 3.12: The Confusion Matrix
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3.7.1 Binary classification metrics

The building blocks of any binary classification and statistical analysis metrics described

in the following section are based upon the counting of segmented pixels. The segment-

ation output will cover the whole imagery with each pixel assigned to be True Positive,

False Positive, True Negative, or False Negative. A schematic theoretical example is

described below:

Figure 3.13: Examples of theoretical binary building classification.
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Precision and Recall, aka. Positivie-Predictive-Value and Sensitivity/True-Positive-

Rate. The two metrics are often used together, another common denomination especially

in remote sensing literature are User’s Accuracy and Producer’s Accuracy (Congalton

& Green, 2019 & Wegmann et al., 2016). To avoid further confusion in nomenclature,

Precision and Recall will be used from hereon.

Precision is the measure of correctly predicted positive class True Positive against

all positive prediction assigned to that class True Positive + False Positive i.e. Given

the predicted results, of those that are predicted as positive, what proportion were True.

It can be expressed mathematically as:

Precision =
True Positive

(True Positive + False Positive)
(3.3)

Meanwhile, Recall measures the correctly predicted positive class True Positive

against both the correct and incorrect predicton on the positive reference class True Positive+

False Negative i.e. Given the predicted results, of those that are referenced as positive,

what proportion of those were True. It can be expressed mathematically as:

Recall =
True Positive

(True Positive + False Negative)
(3.4)

Specificity, aka. True-Negative-Rate measures correctly predicted negative class

True Negative against the correct and incorrect prediction on the negative reference

class False Positive + True Negative i.e. Given the predicted results, of those that

are referenced as negative, what proportion of those were True. It can be expressed

mathematically as:

Specificity =
True Negative

(False Positive + True Negative)
(3.5)

Therefore, higher Recall suggests the model is better at identifying positives and

vice-versa higher Specificity suggests the model is better at identifying negatives. Since

this is an exercise that aim to maximise the positive prediction as a binary building seg-
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mentation classifier, emphasise will be placed on maximising Precision and Recall.

3.7.2 Statistical analysis metrics

The following are statistical accuracy assessment metrics, where they often encompasses

the binary classification accuracy assessment metrics of the above section, Thus, al-

though the statistical analysis metrics provide a more generalised overview, they often

omit detail responses only available with simpler metrics. Hence, such metrics are often

employed as a means to evaluate and rank DL based CV challenges and competitions

(e.g. Kaggle Challenges), but they are less effective in the detailed assessment of seg-

mentation results.

Overall Accuracy =
TP + TN

TP + TN + FP + FN
(3.6)

The Overall Accuracy (herein OA) gives an easy to implement, general but an ag-

gregated answer of how well classification is doing which omit the details. The metrics

suffers when inbalance count of multiple-classes are involved.

Dice Score = 2 ∗ Precision ∗Recall

(Precision + Recall)
(3.7)

The Dice Score aka. the F1 score calculates the harmonic mean of Precision and

Recall, with contribution for both to be of balanced weightings, the Dice Score could

be skewed by classification results with higher performance in either Precision or Recall.

Additionally, the metrics does not take True Negative values into account if such stat-

istics might be of interest.
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Intersection-over-Union

IoU =
A ∩B

A ∪B
=

True Positive

True Positive + False Positive + False Negative
(3.8)

Figure 3.14: Schematic diagram of Intersection-over-Union

One of the most commonly used metrics as an assessment in CV competiton. The

Intersection-over-Union (IoU) aka. Jaccard Index is a geometric based accuraccy assess-

ment. The metrics calculate geometrically the area in common between the prediced

and actual labels, quantifying the similarities between the two sets. It is mathematically

very similar and positively correlates with the Dice Score but place more emphasis to

the false classification. The IoU is a metrics easy to conceptualise and compare against

other ML results due to its established prevalence, a good metrics for comparison against

the OCC competition results.
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3.7.3 Project workflow

Figure 3.15: Project workflow

The workflow for this study consist of 5 main stages: 1. Download and Extraction,

2. Data pre-processing, 3. Data processing for loading, 4. Iterative Model training, 5.
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Inference and Evaluation (see figures 3.15 & 3.16).

Figure 3.16: Simplified 5 steps project workflow with reference to 3.15
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4 Findings and Discussion

4.1 Findings

A total of 5 different architectures with either no initalised weights or initalised weights

pre-trained from ImageNet or OCC building segmentation models have been trained.

For each experiment setup, there were 2 sets of dataset input (KBY and KBY + DZK

+ DZKN), for details (see table 3.5.1). Producing a total of 16 sets of trained CNN

and associated class-based accuracy assessments (see figure 4.2), from which the exper-

imental results where the plot and the following analysis were derived, (see Appendix

6.0.3). On the whole, there were both expected and unexpected results. A reduction

in every metric were observed in every single experiment setup when the more complex

Dzaleka camps datasets were introduced (see table 4.2.2). This was expected as it is

more difficult to train the CNNs on the highly heterogeneous rooftops with similar char-

acteristics to the surrounding environments. The Precision and Recall metrics did not

vary too much between the architectures when trained only on the Kalobeyei dataset,

with the exception to the transfered-untrained EfficientNet B1 U-Net OCC model. In

contrast, the performance in differences is a lot more visible with the introduction of the

Dzaleka (DZK) and Dzaleka North (DZKN) datasets.
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Figure 4.1: Sample of binary segmentation output of various combinations of tested

architecture and experiment setup.
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When comparing the results trained on the Kalobeyei dataset (KBY), the differences

between the unchanged architectures (4-layers & 5-layers U-Net) and the architectures

with novel EfficientNet encoders (EfficientNet B1 & B2 ), the novel encoders achieve bet-

ter performance on the metrics of Precision, Dice Score, and IoU. With the exception

to EfficientNet B1 U-Net initialised on the OCC weights, the Efficient B1 encoder per-

forms better in these metrics than the EfficientNet B2 encoder regardless of initialised

weights. Meanwhile, there were negligible differences between the other metrics. This

suggests that for RQ1 & 2(a), with the introduction of the Dzaleka and Dzaleka North

(DZK + DZKN) datasets, all EfficientNet encoders suffer from larger performance loss

across all accuracy assessment metrics when compared against the unchanged U-Nets.

A conclusion for RQ1 could be drawn that the novel U-Net architectures with encoders

of EfficientNet of B1 and B2 could perform better, but only with accuratly labelled data

and homogeneous roofs and urban morphology. While the unchanged U-Nets could be

more robust when dealing with more complicated, older refugee camps. Further details

will be addressed in the discussion sections of 4.2.1 & 4.2.2.

An interesting observation is that with the EfficientNet B1 U-Net and the symmet-

rical 4-layer & 5-layer U-Net, both Precision and Recall increased when initialised on

pre-trained ImageNet weights (see table 4.2.3), with the exception to EfficientNet B2

U-Net where a decrease in Precision but an increase in Recall was observed when com-

pared to the network with non-initalised weights. This suggests that the increase in

depth does not necessarily correspond to either an increase or decrease in performance

in any particular direction. For the non-weight initialised 4-layer to 5-layer U-Net, there

is a consistent albeit slight improvements in Recall but not Precision. This contrast the

changes in Depth-wise changes discussed in section 4.2.1, where increase in depth shows

improvement mostly in the Precision but not Recall see table 4.2.1.
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4.2 Discission

4.2.1 Depth-wise Precision and Recall change

Depth-wise Precision and Recall change

Architecture Initialised weights Input dataset Precision change Recall change

4 to 5 layer U-Net None KBY +0.011 -0.003

4 to 5 layer U-Net None KBY + DZK +

DZKN

+0.007 -0.002

EfficientNet B1 to

B2 U-Net

None KBY -0.003 -0.012

EfficientNet B1 to

B2 U-Net

ImageNet KBY +0.003 -0.006

EfficientNet B1

to B2 U-Net

None KBY + DZK +

DZKN

+0.023 +0.006

EfficientNet B1 to

B2 U-Net

ImageNet KBY + DZK +

DZKN

-0.006 -0.002

Table 4.1: Changes with architectures that had a depth-wise increased for each setup.

Figure 4.3: Regression plot for Precision and Recall change in relation to architectural

depth-wise change.

There is a common misconception in the DL realm that deeper networks would al-

ways perform better. The comparison in table 4.2.1 in a limited scope tries to address
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this question, the result suggests that improvements in both Precision and Recall only

happened in non-weight initialised depth increase from EfficientNet B1 to B2 U-Net

trained on all datasets, achieving both the highest rate of increase in both metrics. In

comparison to the same architecture change and datset input with initalised weights

from ImageNet, both metrics experienced a decrease. Meanwhile, in other experiment

setup, no significant trends can be drawn and thus the assumption does not hold. Al-

though results might differ drastically with increase of dataset, increase in batch size,

and when experimenting with much deeper architectures which was unfortunately not

available to this study due to computation constraints.

4.2.2 Dataset-wise Precision and Recall change

Dataset-wise (KBY to KBY + DZK + DZKN) Precision and Recall change

Architecture Initialised weights Precision change Recall change

4-layer U-Net None -0.065 -0.016

5 layer U-Net None -0.07 -0.0153

EfficientNet B1

U-Net

None -0.124 -0.044

EfficientNet B1

U-Net

ImageNet -0.119 -0.032

EfficientNet B1

U-Net (OCC)

OCC -0.002 -0.387

EfficientNet B1

U-Net (OCC)

OCC transfer-

trained

-0.125 -0.043

EfficientNet B2

U-Net

None -0.099 -0.026

EfficientNet B2

U-Net

ImageNet -0.128 -0.028

Table 4.2: Changes when the Dzaleka and Dzaleka North datasets were introduced to

each setup.
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Figure 4.4: Detailed strip plot for Precision and Recall change in relation to dataset

input change.

With the Kalobeyei (KBY) dataset as constant, the introduction of the Dzaleka (DZK)

and the Dzaleka North (DZKN) datasets have resulted in the reduction in Precision and

Recall for all architectures with or without pre-trained weights. Table 4.2.2 might sug-

gest that the least reduction in Precision came from the EfficientNet B1 U-Net initalised

on OCC building segmentation weights. However, figures 4.1 and 4.2 informs that with

such poor Dice Score and IoU, it reflects that the OCC competition winning network is

being either very confident at the segmentation or completely missing the complex build-

ings. Thus, the Precision diverge from the Recall results and the statistics (see figure

4.4) suggests prediction results with high False Negative and therefore does not reflect

overall performance. The 5-layer U-Net had a much more corresponding result between

the Precision and Recall which shows the metrics are least affected by the introduction

of the Dzaleka camps datasets. However, it does not seem to be the case that deeper or

shallower version of the architectures cause more or less reduction. This means that for

RQ2(a), conclusion can only be made for the shallow EfficientNet encoders, where they

perform better than the classic U-Nets only in the simple Kalobeyei (KBY) dataset,

however they suffer larger performance loss than the classic U-Nets when complex data

(DZK + DZKN) were introduced.
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4.2.3 Initialised weight Precision and Recall change

Pre-initalised weights Precision and Recall change

Architecture Weights changed Dataset input Precision change Recall change

EfficientNet B1

U-Net

None to Im-

ageNet

KBY +0.003 +0.008

EfficientNet B1

U-Net

None to Im-

ageNet

KBY + DZK +

DZKN

+0.009 +0.0197

EfficientNet B1

U-Net (5-layer)

OCC to OCC

transfer-trained

KBY 0 +0.306

EfficientNet B1

U-Net (5-layer)

OCC to OCC

transfer-trained

KBY + DZK +

DZKN

-0.122 +0.649

EfficientNet B2

U-Net

None to Im-

ageNet

KBY +0.009 +0.014

EfficientNet B2

U-Net

None to Im-

mageNet

KBY + DZK +

DZKN

-0.02 +0.012

Table 4.3: Initalised weight change in available CNNs and their effects on the metrics

Figure 4.5: Regression plot for Precision and Recall change in relation to architectures’

initalised weight change.

In section 3.4, we hypothesised that CNNs trained on pre-initalised weights might have

significant advantages in performance. Therefore, one might expect that although the

OCC model suffers from low Recall and high False Negativity in it’s segmentation out-

put, perhaps further training on the OCC network would result in drastic improvement.
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Table 4.2.3 indicates that this was indeed the result, with EfficientNet B1 U-Net OCC

to OCC transfer-trained achieving the highest Recall change, it however also caused the

highest decrease in Precision, this trend is less sigificant in the version only trained in

the Kalobeyei dataset, but the result reflects the assumption. This suggest that transfer

training from the OCC model compensated for the False Negative issue, the improve-

ment in True Positive segmentation is not as significant. Meanwhile, the EfficientNet

B1 U-Net initalised from ImageNet weights saw both improvement in the metrics but

not the EfficientNet B2 U-Net. The result is inconclusive therefore to address the RQ3.

Few assumptions could be drawn from the above results. Firstly, depth increase in ar-

chitecture tend to favour improvement in Precision meaning that deeper networks would

reduce the classification of False Positive. Meanwhile, ImageNet initalised weights

in most setting tend to favour improvements in Recall which indicates a reduction in

False Negative. These are useful generalisation for future experiment and especially for

when tuning any architectures. In general, introducion of the complex Dzaleka camps

datasets cause all architectures to perform worse, but no significant conclusion can be

drawn whether the introduction of deeper version of the architecture or initalised weights

in tandem with particular dataset introduced would reduce the rate of Precision or Re-

call decrease. Finally, a point of contention remains in the human error in labelling.

Particularly for the Dzaleka (DZK) dataset, there are many instances that could cause

a contribution to a False Positive in the prediction output, which in reality were actu-

ally True Positive see figure 4.6. These ambiguitities often arises at the courtyard of

a particular building or when multiple buildings are interconnected, which is especially

rampant in the complex Dzaleka camp. This might suggest that networks trained on all

datasets (KBY + DZK + DZKN) might be achieving higher Precision than actually

displayed.
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Figure 4.6: Ambiguity which arise from labelling could cause a True Positive prediction

to be classified as False Positive.

A few shortcomings of this study should also be highlighted. While the standardisa-

tion of the batch-size should be in consistency of 32 image and label pairs, the computa-

tional constraint of an 8 GB GPU have dicatated that only 16 pairs per batch could be

fitted for the EfficientNet B1 U-Net (OCC) model. A standardisation of batch-size would

have been ideal. However, the prolonged training time required for 16 pairs batch-size is

around 3 complete days, thus, a compromise was made for 32 pairs. Another shortcom-

ing was that none of the classical 4-layer and 5-layer U-Nets were tested on pre-trained

weights from ImageNet, additional studies will be useful to compare and contrast such

changes with the EfficientNet encoders U-Nets pre-trained on ImageNet weights.
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5 Conclusion

The beginning of a DL project is a momentous task. Errors from the data pre-processing

to architecture selection could be costly in both time and resources, especially in the set-

ting of humanitarian NGOs (Private Communication, 2022). It is important for a pilot

project to therefore uncover the possibilities and challenges with well-designed, small-

scale yet rigourous experiments. This study presented a series of experiments which

tested variations of the U-Nets on the shallow-end of the spectrum, it also explored

the possibility of transfer-training from a previous competition winning neural network

and how they compared against networks trained from scratch and/or pre-trained in

large-scale CV dataset. Initially, there was an assumption that transfer-training from

pre-trained networks and deeper architectures would perform better. However, results

show that the overall picture were a lot more complicated, where the models may ex-

perience drastic improvement in some metrics, but not others. Furthermore, focusing

on the True Positive centric class-based accuracy assessment metrics have shown that

even performance in Precision & Recall does not necessarily corroborate with each other

and that there’s nuance relationship between their improvement, architectural depths,

and pre-trained weights.

Albeit many ambiguitiy and questions remain, there are several key takeaways that

have surfaced as a result. First, transferring a competition winning network which scored

very well in the IoU metric does not necessarily guarantee easy transfer and good per-

formance in new environments. This study hinted that the OCC model may have become
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too customised for its original dataset of mainly formal urban structures. Secondly, it

is worthwhile to carefully and critically evaluate the segmentation output by examin-

ing more granular binary classification metrics. Thirdly, rudimentary conclusion can

be drawn from the depth-wise and weight-wise changes. Unfortunately, the results for

how depth and weight change influence performance when the complex Dzaleka camps

datasets were introduced remained inconclusive. Thus, it is important for future studies

to address this. It is likely that results might scale differently and at a more predictable

way when higher batch-size, much deeper network, and when significantly more data

can be provided.

To narrow down the choices, further investigations will be needed. Scaling from the

experimental framework defined for this study could be a good strategy for succession.

This will allow for a well-constrainted extension of this study. Additionally, baseline

experiments with different hyperparameters, where the parameters of isolation are the

initialised weights and architectures would be very interesting. Nevertheless, scaling will

only be possible with significantly more computational and data resources.

In conclusion, this study provided a pilot diagnostic understanding of how HOT could

begin their open-sourced AI-assisted mapping initiative. The study defined a rigourous

experiment and assessment methods of which are scalable. With increasing data avail-

ability from the OpenAerialMap initiative, this study hope to have made a foundational

contribution to a beginning of a much larger study. Future development should focus

on expanding this study in a pedantic and controlled fashion. It will be interesting

for further research to focus on the inconclusive RQ3 of this study, which concerns the

initlaised weights and their influence on the performance on respective architectures,

how does scaling of the network size change such influencs. This will allow for a data

based approach to justify resources for scaling experiemnts and future AI based products.
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6 Appendix

6.0.1 Adam optimiser

Figure 6.1: The algorithm of Adam (Kingma & Ba., 2017).
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6.0.2 EfficientNet

Figure 6.2: Compound scaling of the EfficientNet (Tan & Le, 2020)
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