
Inducing Sparsity in Deep Neural

Networks through Unstructured

Pruning for Lower Computational

Footprint

Camille Ballas (MSc.)

A dissertation submitted in fulfilment of the requirements for the

award of

Doctor of Philosophy (PhD.)

to the

Dublin City University – School of Computing

Supervisors:

Dr. Suzanne Little and Prof. Noel E. O’Connor

August 2022

Inducing Sparsity in Deep Neural Networks through Unstructured Pruning

2

Declaration

I hereby certify that this material, which I now submit for assessment on the program

of study leading to the award of Doctor of Philosophy is entirely my own work, that

I have exercised reasonable care to ensure that the work is original, and does not

to the best of my knowledge breach any law of copyright, and has not been taken

from the work of others save and to the extent that such work has been cited and

acknowledged within the text of my work.

Signed: Camille Ballas

Id No.: 17213942

Date: 24/08/2022

i

Inducing Sparsity in Deep Neural Networks through Unstructured Pruning

ii

Contents

1 Introduction 1

1.1 Deep learning era . 2

1.2 Towards more efficient Deep Learning 4

1.3 Deep Learning compression . 7

1.4 Hypothesis & Research Questions . 9

1.4.1 Hypothesis . 10

1.4.2 RQ1: Pruning Framework . 11

1.4.3 RQ2: Integrity of unstructured pruning heuristics 11

1.4.4 RQ3: The impact of a sparse neural network on fairness . . . 11

1.5 Thesis Outline . 12

2 Background: Deep Learning fundamentals 15

2.1 Feed forward networks and basic concepts 16

2.1.1 Multi Layers Perceptrons . 17

2.1.2 Training cycle . 18

2.1.3 Running inference . 22

2.2 Deep Learning for image processing 23

2.2.1 Convolutional Neural Networks 24

2.2.2 Over-parameterisation . 31

2.3 Scope of this thesis . 37

2.3.1 Model evolution dynamics . 37

2.3.2 Datasets . 41

2.3.3 Model architectures . 42

2.4 Chapter Summary . 43

2.5 Chapter conclusion . 44

3 Internet-of-Things and Applied AI 47

3.1 Use-case: Crowd monitoring for Smart City 48

3.1.1 Croke Park: Smart Stadium for Smarter living 49

3.1.2 Performance of video-processing at the edge 52

3.1.3 Deploying video-processing in real-world environment 55

3.2 Reducing computational cost . 56

3.2.1 Measuring computational cost 57

3.2.2 Deep learning model compression 60

3.2.3 On Hardware limitations . 62

3.3 Chapter Summary . 68

iii

Inducing Sparsity in Deep Neural Networks through Unstructured Pruning

4 The state of sparsity and network pruning 71
4.1 Pruning methodology . 72

4.1.1 Pruning masks . 73
4.1.2 Pruning criterion and saliency 75
4.1.3 Structured versus Unstructured pruning 75
4.1.4 Pruning ratio and scope . 77
4.1.5 Reducing computation . 78

4.2 A short history of unstructured pruning 80
4.2.1 A way to reduce over-parameterisation 80
4.2.2 Deploying AI in productions 81
4.2.3 Better understanding deep learning training 81
4.2.4 Complexity of pruning research 83

4.3 Pruning Frameworks . 84
4.3.1 One-shot . 84
4.3.2 Iteratively . 85
4.3.3 Multi-stage . 88

4.4 Chapter Summary . 89

5 Pruning Metrics 91
5.1 Pruning criteria families . 93

5.1.1 Magnitude pruning . 93
5.1.2 Loss-modelling . 94
5.1.3 Gradient based . 98

5.2 Locality assumption . 101
5.2.1 Multi-stage pruning . 102
5.2.2 Constraining step-size . 103
5.2.3 Others considerations . 104

5.3 Pruning Integrity . 104
5.3.1 Performance Metrics . 106
5.3.2 Methodology . 108

5.4 Experimental results . 110
5.4.1 Loss-preservation criteria . 110
5.4.2 Gradient-flow preservation . 115
5.4.3 Scaling to ImageNet . 124
5.4.4 Improving GraSP criteria . 124

5.5 Chapter Summary & Discussion . 125
5.5.1 Problem Statement . 125
5.5.2 Discussion & Conclusion . 126

6 Beyond accuracy: evaluating pruning performance 129
6.1 On the impact of parameterisation 130

6.1.1 Methodology: Wide verses Deep network 131
6.1.2 Experimental results & observations 134
6.1.3 Discussion and Limitations . 144

6.2 On Fairness and Robustness . 148
6.2.1 Methodology: Comparing fairness of pruning criteria 149
6.2.2 Experimental results . 151
6.2.3 Discussion and limitations . 156

6.3 Chapter Summary . 158

iv

Inducing Sparsity in Deep Neural Networks through Unstructured Pruning

7 Conclusions 161
7.1 Hypothesis and Research Questions 162

7.1.1 RQ1: Pruning Framework . 162
7.1.2 RQ2: Integrity of unstructured pruning heuristics 163
7.1.3 RQ3: The impact of a sparse neural network on fairness . . . 165

7.2 Contribution . 166
7.3 Limitations . 168
7.4 The future of unstructured pruning 169

7.4.1 Practical Impact . 169
7.4.2 Research implications . 171
7.4.3 Societal Impact . 172

Appendix 173

A 175
A.1 Smart Stadium experimental setups 175

A.1.1 Hardware . 175
A.1.2 Software . 175

A.2 Deep Learning Orchestration (DeepLO) 176
A.2.1 DeepLo testbed hardware specifications 176

B 179
B.1 Details on the Experimental Setup (section 5.4 179

B.1.1 Setups . 179
B.1.2 Experiments . 180
B.1.3 Pruning Framework . 181

C 183
C.1 Supplementary materials for Wide and Deep networks experiments

(Section 6.1) . 183
C.1.1 Training Hyper-parameters . 183
C.1.2 Models accuracy . 185
C.1.3 Fine-tuning . 185
C.1.4 Layer collapsing . 185

C.2 Supplementary materials for fairness in pruned networks (section 6.2) 190
C.2.1 Training Hyper-parameters . 190

List of publications 210

v

Inducing Sparsity in Deep Neural Networks through Unstructured Pruning

vi

List of Figures

1.1 Computation complexity, measured in floating point operations (Flop)

per second per day for different deep learning models over the years.

2012 corresponds to the year GPUs started being used to train deep

learning models. We can observe that from this point there is an

exponential growth in model complexity. Reproduced from Amodei

et al. (2018) . 3

1.2 Number of parameters for different model architectures, for computer

vision applications (left) and natural language processing (right).

From Menghani (2021), Figure 1. 5

1.3 Number of paper published around sparsity over the years. Sourced

from Hoefler et al. (2021), Fig. 1. 10

1.4 High-level organisation of the thesis. 14

2.1 XOR Bolean operation represented in a 2D space (left) for a binary

input x1 (squares) and x2 (triangle). The associated MLP graph

(right) pictures the three different perceptron units h1, h2 and y and

their parameters values. The 1 circle represent the bias for each hid-

den units. Image reproduced from the Probabilitic Machine Learning

book (Murphy, 2022) . 17

2.2 illustration of a neuron unit where xi represent the input data, wi

and b are respectively the weights and biases parameters, and ϕ the

activation function. 19

vii

Inducing Sparsity in Deep Neural Networks through Unstructured Pruning

2.3 Different type of activation functions ϕ. The most common activation

used in practice is the ReLU – ReLU(a) = max(a, 0) for hidden layers

because it is better at propagating the signal through deep networks.

Image issued from the Probabilistic Machine Learning book (Murphy,

2022). 20

2.4 Fully connected layer where xi are the input and si activation. From Good-

fellow et al. (2016) Deep Learning book. 25

2.5 Illustration of convolution operations: (left) numerical operation, and

(right) spatial filtering. Source: Murphy (2022) and (Robles, 2018) . . 26

2.6 Reproduced from Probabilitic Machine Learning book (Murphy, 2022). 28

2.7 VGG16 architecture, where 16 represent the number of layers (convo-

lutional and fully connected). {filter-size} conv, {number-filter}

refers to convolutional layers, and fc {number-neurons} corresponds

to fully connected layers. After each group of conv layers a max-

pooling operation is applied, with sizeXXX indicating the input size

for the layer group. Reproduced from 29

2.8 Illustration of different CNN architectures: ResNet-34 (top), plain-34

(middle) and VGG-19 (bottom). Skip connections allows the deep

neural network to be trained beyond 34 layers, dashed residual con-

nections represent CONV-1x1 from succession of two layers that differ

in size. Source He et al. (2015). 30

2.9 Illustration of a residual blocks with a skip connection: (left) post-

activation ResNet, and (right) pre-activation as in PreAct ResNet

Source: He et al. (2016b) . 30

2.10 Bias-variance trade-off. Reproduce from Belkin et al. (2019) 32

viii

Inducing Sparsity in Deep Neural Networks through Unstructured Pruning

2.11 Illustration of different type of drop-like regularisation for a MLP

network. While removing neurons (b) automatically removes all as-

sociated weights, removing weights does not necessarily shut down

the associated neuron. However, if all the incoming connections (or

weights) are removed as pictured in (c) middle-line, removing all the

connections is equivalent to removing a neuron. 36

2.12 Illustration of the minimisation problem that the gradient descent

algorithm is trying to solve, where f(x) represents the loss function.

Reproduced from the Deep Learning book Goodfellow et al. (2016). . 38

2.13 Momentum update. Taken from Sebastian Ruder’s blog article Opti-

mizing Gradient Descent (https://ruder.io/optimizing-gradient-descent). 40

2.14 Sample images of three different datasets: (a) MNIST, (b) CIFAR10. 41

3.1 Croke Park smart stadium sensors map. 50

3.2 Fog computing paradigm . 51

3.3 Impact on reducing the image input size on the speed. The bigger

the data input size, the higher the number of compute operation will

be and thus the algorithm will require more compute power. 55

3.4 Compute performance evolution over the years of GPUs and CPUs

measured in GFLOPS. Nowadays there exist even more powerful

GPUs with the deep learning standard Nvidia V100 reaching 7 ter-

aFLOPS in double-precision mode. It is a no match compared to

CPUs arithmetical compute power. Reproduced from Karl (2013). . . 58

3.5 DeepLO testbed pipeline. Workloads are deployed on different hard-

ware through docker containers. Different metrics are collected and

stored into a database to run deeper analytics off-line. 63

ix

Inducing Sparsity in Deep Neural Networks through Unstructured Pruning

3.6 Frame per second (fps) ratio for different workloads – levels of com-

pression (colour) – for different model architectures (columns) on the

various hardware tested (rows). The behaviour of different workloads

is not consistent across different hardware, especially for ResNet-20

workloads. We can observe good fps rates on i5nuc and i7nuc, but

on fpr1 and fpr2, the performances are worst than VGG19 while be-

ing less computationally demanding (see Table 3.3). up2 hardware

is not powerful enough to handle any workload, while ResNet-164 is

too complex to be handled efficiently by any hardware. Note that the

sudden drop offs observed on the ResNet20 is due to system issues. . 64

3.7 CPU utilisation (in %) for different compressed workloads for VGG19

(top row) and Resnet20 (bottom row) on different hardware (columns).

We can notice that VGG19 is fairly consistent on all devices whiles

Resnet20 fluctuates especially on frp1. up2 does not have the com-

pute power required to handle any of the different workload properly. 67

4.1 Illustration of pruning methodology where 1
3
of the parameters are

removed per layer. θi represent the weight matrice for parameters

θ at layer i. First, the saliency metric is computed, parameters are

then ranked by order of importance – in this example the higher the

better – and the ones falling below the threshold are removed. A

pruning mask is derived from the previous ranking with 0 values for

parameters to be discarded and 1 for parameters remaining in the

model. An element-wise product between the dense network and the

pruning mask is applied to obtain the sparse network. 74

4.3 Illustration of compressed-sparse-row (CSR) storage requirements to

store sparse representation efficiently. 79

4.4 One-shot pruning. A straightforward way of removing parameters

where the model is pruned and train only once. 84

x

Inducing Sparsity in Deep Neural Networks through Unstructured Pruning

4.5 Iterative pruning. The cycle of pruning-retraining is performed n

times to iteratively remove small chunks of parameters at a time.

By performing the pruning cycle multiple time, the pruning heuristic

adjust itself and we are able to better preserve the network architecture. 86

4.6 Lottery Ticket framework. Similar to iterative pruning presented in

Figure 4.5, pruning is perform multiple times at the exception that

weights are set back to their values at initialisation prior to fine-

tuning, training the sparse network from scratch each pruning cycle. . 87

4.7 Multi-stage pruning. Similar to iterative pruning, the pruning is per-

formed multiple times but we do not retrain the sparse model in-

between each pruning steps. This lower the computations while re-

moving parameters little at a time. 88

5.1 ∥∆θ∥2 for different level of sparsity and multi-stage schedule strate-

gies, oneshot (orange square), linear (blue dots), exponential (green

triangles). 103

5.2 Pruning accuracy for different pruning methods applied at initiali-

sation. We can observe that all pruning criteria lie in close range.

For information a 102 corresponds to 99% pruning ratio. Reproduced

from Tanaka et al. (2020). 105

5.3 ∆L(θ,∆θ) for different number of pruning stages π, as a function of

λ, the step size constraint strength, using either (left) LM, (middle)

QM or (right) OBD criteria. MP, which is invariant to λ and to

the number of pruning stages, is displayed in dashed black. The

curves are the mean and the error bars the standard deviation over

5 random seeds. OBD with π = 1 and λ = 0 diverged for all of the

5 seeds. Increasing the number of pruning stages drastically reduces

∆L(θ,∆θ). A λ > 0 can also help improving performances. 111

xi

Inducing Sparsity in Deep Neural Networks through Unstructured Pruning

5.4 Same as Figure 5.3, but displaying the validation error gap before

fine-tuning. With proper number of pruning stages and step size

regularization, LM and QM can produce pruned networks that are

drastically better than the ones pruned using MP. 114

5.5 Gap of validation error after fine-tuning as a function of ∆L(θ,∆θ).

We can observe a slight correlation on the MLP network architectures,

however this does not translate to larger scale architectures VGG11

and PreActResnet18. 116

5.6 Left: Using the same hyper-parameters for fine-tuning as the ones of

the original training. Right: Performing hyper-parameters optimisa-

tion for the fine-tuning. 117

5.7 ∆∥g(θ,∆θ)∥ for different number of pruning stages π, as a function

of λ. As for the loss-modelling criteria, augmenting the number of π

help to better preserve the gradient flow before/after pruning. λ reg-

ularisation however requires a more careful tuning as the magnitude

of the saliencies issued from the gradient-based criteria can be high. . 118

5.8 Similar to Figure 5.7, but displaying the validation error gap before

fine-tuning instead of ∆∥g(θ,∆θ)∥. 120

5.9 Gap of validation error after fine-tuning as a function of ∆∥g(θ,∆θ)∥.121

5.10 Gap of validation error after fine-tuning as a function of ∆∥g(θ,∆θ)∥.

Zoomed in view of Figure 5.9 (center) for gradient-based criteria on

VGG11. When we ignore points corresponding to pruned-networks

that were unable to be re-trained (validation error

0.9), wedonotobserveanysignificantcorrelations.122

xii

Inducing Sparsity in Deep Neural Networks through Unstructured Pruning

5.11 Same as Figure 5.3 and Figure 5.5, for the ResNet50 on ImageNet,

with a sparsity of 70 %. Increasing the number of pruning stages

and constraining the step size reduce ∆L(θ,∆θ). However, the best-

loss preserving criteria, which maximize the validation accuracy right

after pruning, do not produce better networks after fine-tuning. They

perform similarly if their validation accuracy after pruning is > 20%.

Criteria that outperform MP right after pruning do not achieve better

performance after fine-tuning. 123

5.12 Same as Figure 5.11, but with 90 % sparsity. Increasing the number

of pruning stages and constraining the step size reduces ∆L(θ,∆θ).

However, the best-loss preserving criteria, which maximize the vali-

dation accuracy right after pruning, do not produce better networks

after fine-tuning. 123

5.13 Same at Figure 5.7, ∆∥g(θ,∆θ)∥ for different number of pruning

stages π, as a function of λ for ∥GraSP∥ pruning criteria. We observe

that removing the lowest magnitude of GraSP, in addition to regular-

isation λ and multi stage pruning π lead to better performance than

the original GraSP heuristic. We are able to prevent the gradient

norm to being too large. 125

6.1 Different model architectures considered for studying the impact of

parameterisation over pruning criteria integrity, MLP (left) and Con-

vnet (right). Every layer is followed by ReLU activations, and a

Softmax at the end for the classifier. 133

6.2 Correlation score as a function of the network width (green line) or

depth (blue line). The baseline model (x1) consists of a MLP with

2 layers with 512 neurons on each layer. Numbers displayed indicate

the p-value scores. When a p-value score is >0.01 the associated

measurement is not considered to be statistically significant and can

be ignored . 135

xiii

Inducing Sparsity in Deep Neural Networks through Unstructured Pruning

6.3 Scatter plot displaying the ∆∥g(θ,∆θ)∥ before/after pruning as a

function of the best validation error obtained after fine-tuning (where

α indicates the scaling factor). We can observe that there is a range of

networks for α = 4 (MLP with 8 layers) where the sparse model failed

to retrain accurately leading to high error accuracy for low change in

gradient flow. 136

6.4 Correlation score as a function of the network width (green line) or

depth (blue line). The baseline model (x1) consists of a Convnet

trained on CIFAR-10 with 2 layers with 64 filters on each layer. Num-

bers displayed indicate the p-value scores. When a p-value score is

>0.01 the associated measurement is not considered to be statistically

significant and can be ignored. 137

6.5 Training curves for different baseline model (dense architecture) for

MLP (top) and Convnet on CIFAR-10 (middle) and Convnet on

MNIST (bottom). For each, we display the baseline for different scal-

ing factors α. 138

6.6 Correlation score as a function of the network width (green line) or

depth (blue line). The baseline model (x1) consists of a Convnet

trained on MNIST with 2 layers with 64 filters on each layer. Num-

bers displayed indicate the p-value scores. When a p-value score is

>0.01 the associated measurement is not considered to be statistically

significant and can be ignored. 140

6.7 Fine-tuning curves (classification error) for different model architec-

tures scaled on the depth. (See Figure C.1.3.2 in Appendix C for

model architectures scaled on the width.) 142

6.8 Scatter plot of the average divergence between the training and valida-

tion curves verses the correlation score between best preserving the

original network function (∆L(θ,∆θ) and ∆∥g(θ,∆θ)∥) and end-

accuracy of the pruned model. 143

xiv

Inducing Sparsity in Deep Neural Networks through Unstructured Pruning

6.9 Classification error (plain line) as a function of the sparsity ratio for

a Convnet trained on MNIST. The dense model accuracy is reported

in grey. Dotted line display the average gap between the validation

and training set error. 146

6.10 Ratio of parameters remaining per layer (x axis) for a VGG16 archi-

tecture when pruned before training (top), at the middle of training

(middle) or after training (bottom). Magnitude pruning is applied in

this example. Different colors correspond to different ratio of pruning,

with blue being a small pruning ratio and red high pruning ratio. . . 147

6.11 Per class prediction deviation for different pruning criteria when prun-

ing is applied at the end of training. Classes are represented along

the x-axis. 153

6.12 Number of classes with significant mean-shift class accuracy between

different pruning criteria and the baseline – dense model, where 10

is the maximum number of classes. It can be observed that all the

pruning criteria diverged significantly from the baseline indicating

that pruning does not preserve the original model prediction distri-

bution. Moreover, criteria preserving the original network function

(LM, ∥GraSP∥ and Synflow) observed similar behaviour with only a

little shift in class prediction. 154

6.13 Similar to Figure 6.12 but for pruning at initialisation. Per class

prediction deviation for different pruning criteria when pruning is

applied before training. 155

6.14 Comparison of number of classes with significant mean-shift class ac-

curacy between pruning criteria. Similar to Figure 6.12 but for prun-

ing at initialisation. 156

6.15 Example PIEs images obtained when pruning after training. 157

A.1 Software architecture for crowd monitoring 176

xv

Inducing Sparsity in Deep Neural Networks through Unstructured Pruning

A.2 List of the different hardware metrics monitored to assess the cost of

running deep learning workloads on constrained devices. 177

C.1 Fine-tuning curves (loss) for different model architectures scale on the

width. Each curves is average over 5 seeds, for readability we do not

display the variance. 186

C.2 Fine-tuning curves (classification error) for different model architec-

tures scale on the width. Each curves is average over 5 seeds, for

readability we do not display the variance. 187

C.3 Fine-tuning curves (loss) for different model architectures scale on the

width. Each curves is average over 5 seeds, for readability we do not

display the variance. 188

C.4 Ratio of parameters remaining per layer (x axis) for a VGG19 archi-

tecture when pruned before training (top), at the middle of training

(middle) or after training (bottom). Magnitude pruning is applied in

this example. Different colors correspond to different ratio of pruning,

with blue being a small pruning ratio and red high pruning ratio. . . 189

xvi

List of Tables

2.1 Summary of the complexity of fully-connected and convolutional lay-

ers, where I is the input, O the output, Kw and Kh are respectively

the kernel width and height, C the number of channels, H and W the

height and width of the tensor (input or output), p and s correspond

to the padding and striding of the convolution operation. 27

3.1 Crowd monitoring algorithms tested to assess compute power abilities

at the edge. The complexity is measured as the number of compute

operations required to process one data point and is arbitrarily ex-

pressed to compare the different algorithms with one another. 53

3.2 Performance comparison reported as Frames-per-second (Fps) and

Seconds to process frame (Spf) for both hardware devices tested.

The I5-3210M CPU is between twice to four time more efficient

at running crown monitoring algorithms than the Atom E3825 CPU. 54

3.3 Comparison of the properties of different compressed workload for

VGG19 and Resnet20 models. Resnet20 is much lighter model to

run compare to VGG19. Compression can greatly reduce the number

of parameters and FLOPs to help deploy deep learning workload on

constrained devices. 66

xvii

Inducing Sparsity in Deep Neural Networks through Unstructured Pruning

5.1 Summary of the best ∆L(θ,∆θ) across values of λ for different net-

works and pruning criteria, with π = 140. QM achieves better loss-

preservation than other criteria. OBD performs worse than QM, since

we violate its convergence assumption when pruning in several stages. 112

5.2 Best validation error gap before/after pruning for different net-

works and pruning criteria. 113

5.3 Summary of the best ∆∥g(θ,∆θ)∥ across values of λ for different

networks and pruning criteria. The best performing criteria varies a

lot depending on the network architecture. GraSP and SynFlow are

good at preserving the norm of the gradients. 119

5.4 Best validation error gap before/after pruning for different net-

works and loss-modelling pruning criteria. 119

5.5 Best validation error gap before/after fine-tuning the pruned net-

works (lower is better), for different pruning criteria, across values of

λ and π. GraSP and LM are among the best performing criteria, but

all the criteria validation error gap lie in a close neighborhood after

fine-tuning. 122

6.1 Summary of different pruned model statistics. The 2nd column report

the model accuracy after fine-tuning, the 3rd the number of class that

shifted significantly from the baseline (dense) model, and finally the

4th column corresponds to the number of data points that observed a

change in classifications between the dense and sparse networks out-

come – note that CIFAR10 contains 10k datapoints. As a reference,

the accuracy for the dense model is 90.90% ± 0.31 152

xviii

Inducing Sparsity in Deep Neural Networks through Unstructured Pruning

6.2 Summary of different pruned model statistics. The 2nd column report

the model accuracy after fine-tuning, the 3rd the number of class that

shifted significantly from the baseline (dense) model, and finally the

number of data points that observed a change in classifications – note

that CIFAR10 contains 10k datapoints. As a reference, the accuracy

for the dense model is 90.90% ± 0.31 155

A.1 CPU specification for the Smart Stadium experiments. 175

A.2 Specifications of the different hardware in the DeepLO testbed. Note

that frp2 is a more recent version of the frp1 aquired later in the

project. 178

C.1 Summary of the best validation error across different width scaling for

different pruning criteria. The number following each criterion name

indicates the number of local iteration (π) performed during prun-

ing. We observe that all networks are reaching good performances

indicating no problems encountered during pruning or fine-tuning. . . 184

C.2 Summary of the best validation error across different width scaling for

different pruning criteria. The number following each criterion name

indicates the number of local iteration (π) performed during pruning. 184

xix

Inducing Sparsity in Deep Neural Networks

through Unstructured Pruning for Lower

Computational Footprint

Camille Ballas

Abstract

Deep learning has revolutionised the way we deal with media analytics, opening
up and improving many fields such as machine language translation, autonomous
driver assistant systems, smart cities and medical imaging to only cite a few. But
to handle complex decision making, neural networks are getting bigger and bigger
resulting in heavy compute loads. This has significant implications for universal
accessibility of the technology with high costs, the potential environmental impact
of increasing energy consumption and the inability to use the models on low-power
devices. A simple way to cut down the size of a neural network is to remove parame-
ters that are not useful to the model prediction. In unstructured pruning, the goal is
to remove parameters (ie. set them to 0) based on some importance heuristic while
maintaining good prediction accuracy, resulting in a high-performing network with
a smaller computational footprint. Many pruning methods seek to find the optimal
capacity for which the network is the most compute efficient while reaching better
generalisation. The action of inducing sparsity – setting zero-weights – in a neural
network greatly contributes to reducing over-parametrisation, lowering the cost for
running inference, but also leveraging complexity at training time. Moreover, it can
help us better understand what parts of the network account the most for learning,
to design more efficient architectures and training procedures. This thesis assesses
the integrity of unstructured pruning criteria. After presenting a use-case appli-
cation for the deployment of an AI application in a real-world setting, this thesis
demonstrates that unstructured pruning criteria are ill-defined and not adapted to
large scale networks due to the over-parametrisation regime during training, result-
ing in sparse networks lacking regularisation. Furthermore, beyond solely looking at
the performance accuracy, the fairness of different unstructured pruning networks is
evaluated highlighting the need to rethink how we design unstructured pruning.

xx

Acknowledgements

Doing a PhD has always been a big dream of mine, and now I can proudly say that

I did it! This journey was not without difficulties and I would not have been able

to succeed without the incredible support of the people around me.

First I would like to acknowledge Insight Centre for Data Analytics and Science

Foundation Ireland (SFI) under Grant Number 12/RC/2289 P2 and 16/SP/3804

that have made this thesis possible. To my supervisors, Suzanne and Noel, thank

you for always supported my projects and guiding me throughout my 4 years of

PhD. Especially to Suzanne, you always made sure I was not drowning in my work

and that my comfort was the number one priority during the Covid pandemic that

impacted the final years of this PhD. I also want to thank the jury for their time

and consideration in reading my Thesis and for their useful feedback.

But the ones that made sure I kept a life outside my PhD are my friends and

family, you are the ones that gave me the strength and motivation to pursue this

PhD until the end. To my friends here in Dublin and back in France, Rodrigo,

Ricardo, Elise, Aude, thank you for making sure I took the time to relax and enjoy

life. To my partner, Loris, thank you for always being there for me when I needed

you. Finally, to my family, you have always been me supporting me, and without

your incredible support, I would not have been able to make it.

I would also like to thank my colleagues, Eric, Dian, Kevin, Feiyan, César and

Eva for making most of the days in the lab fun and showing me the road to being a

good researcher. To Eva in particular, you have been an amazing mentor and friend

above all, thank you!

xxi

Inducing Sparsity in Deep Neural Networks through Unstructured Pruning

Finally, I would like to say a huge thanks to my Discord fellow PhD friends that

have made writing a thesis under lockdown much more bearable and even enjoyable.

Catherine, Isabelle and Manon, you have been the real sunshine of those months

and I was happy to work because it meant listening to silly music with you.

But if I had to dedicate this thesis to one person it would be my brother, I cannot

thank you enough for being the amazing brother and mentor you have been during

my PhD, I am truly grateful for it. If I am the researcher I am today it is thanks to

your guidance and support during the hardest time. Thank you!

xxii

Chapter 1

Introduction

Over the last decade advances in Artificial Intelligence, led by the progress in deep

learning research, have transformed the field of media analytics opening up new

possibilities. The rise of deep learning has lead to a paradigm shift from traditional

feature engineering to a data-driven approach. Deep learning research has now

reached a certain maturity and is being used for large-scale, real-world applications.

However, deep learning models are overly parameterised. They possess far more

parameters than training examples, which while providing good knowledge repre-

sentation, might incite a model to memorise the data instead of learning to solve the

task for which it has been trained. As a result, the computational power needed to

train state-of-the-art models often requires multiple high-performing GPU devices,

increasing not only their carbon footprint, but also expanding the disparities be-

tween practitioners who can afford compute cost and those who cannot. Moreover,

over-parameterised models also have greater storage requirements, which hinders

their deployment in real-world applications as the computational power and ca-

pacity of devices may not be sufficient to support the latest neural networks. In

summary, the computational complexity of deep learning algorithms constitutes a

major bottleneck.

To tackle these issues, researchers have explored ways to reduce the number of

parameters in deep learning models. Model compression methods have been devel-

oped to leverage the computational complexity of deep learning models and create

1

Chapter 1

more efficient architectures by either condensing the original model into a smaller

one (Hinton et al., 2015; Han et al., 2015a; Plummer et al., 2021; Howard et al.,

2019; Liu et al., 2017), or inducing sparsity by replacing non important parame-

ters by zero-values (LeCun et al., 1989; Zhu & Gupta, 2017; Lee et al., 2019; Wang

et al., 2020; Tanaka et al., 2020). Sparsity methods in particular are promising due

to their versatility and ability to greatly reduce the number of parameters required

right from training time.

1.1 Deep learning era

The traditional computer approach to solve complex tasks, features would be en-

gineered to extract useful knowledge from the data. For instance, to compare two

images we cannot just compare their RGB values pixel-wise. A small change in

lighting or camera angle, can result in two very different RGB grids pixel-wise. To

tackle this issue, researchers have spent years engineering descriptors such as scale

invariant features transform (SIFT) to capture useful knowledge from images such

as object position or orientation, beyond their specific numerical value. This is

equivalent to data-aggregation with features in other non-vision applications.

The appeal behind deep learning has been motivated by the capacity of deep

neural networks to learn complex features to perform powerful data analytics on

images, videos, texts, without having to design features extracted by hand. Neural

networks are able to learn useful representations across a wide range of applications

from computer vision to natural language processing. Many applications nowadays

rely heavily upon deep learning algorithms. From language translation and gener-

ation (Chan et al.; Brown et al., 2020), to image generation (Radford et al., 2021),

medical applications (Shen et al., 2017), autonomous driving (Grigorescu et al.,

2020), physical system modelling and analysis (Rasp et al., 2018; Hezaveh et al.,

2017), there is a wide variety of domains that benefit from deep neural networks.

The rise of deep learning has been driven by an increase in data-collection and an

improvement in compute power with specialised compute-oriented hardware (GPUs,

2

Chapter 1

Figure 1.1: Computation complexity, measured in floating point operations (Flop)
per second per day for different deep learning models over the years. 2012 corre-
sponds to the year GPUs started being used to train deep learning models. We can
observe that from this point there is an exponential growth in model complexity.
Reproduced from Amodei et al. (2018)

TPUs). In the early years of deep learning, neural networks were limited by the

compute power available – models were exclusively trained and run on CPUs. As

a result, they were limited in capacity and only composed of a few layers with

less than a million internal parameters, limiting their analytical power. For these

reasons they were not widely used outside academia. In 2012, the ImageNet (Deng

et al., 2009; Krizhevsky et al., 2012) revolution created new opportunities when

both data and compute power became available simultaneously. Researchers Alex

Kizhevsky and his colleagues created a deep model architecture with 60M parameters

named Alexnet (Krizhevsky et al., 2012), capable of reaching close to human-level

performance on the ImageNet image classification task. To train their AI they took

advantage of the compute power of GPUs to learn from a huge quantity of training

data, opening up the door to more affordable and efficient training of very deep

networks. Nowadays, training of deep learning models is exclusively done on GPUs

or more specialised hardware subsequently developed (e.g. TPUs).

Following their work, a wide variety of new deep learning models were created

3

Chapter 1

(VGG (Simonyan & Zisserman, 2015), ResNet (He et al., 2015), Inception (Szegedy

et al., 2016), etc.). Slowly deep learning expanded from computer vision application

to other areas like natural language processing, text and image generation, and so on.

Over the past 10 years, researchers have created deeper and bigger network archi-

tectures to continue pushing the boundaries. As a result the algorithm complexity,

including the workload required to train deep learning models, have observed an

exponential growth (see Figure 1.1). The current state-of-the-art model in natural

language processing OpenAI GPT-3 (Brown et al., 2020), used by companies like

Microsoft in their code generation tools GitHub Copilot (Langston, 2021), contains

175 billion parameters, a 174 billions increase over AlexNet in under 10 years.

To tackle more ambitious and real world problems, the number of parameters

in deep network architectures has kept increasing alongside the amount of training

data required to achieve top performances. This constitutes a major drawback to

deploying deep learning applications in production. The cost of training those giant

deep learning models has also widened the gap between practitioners due to com-

pute power accessibility, with the big tech companies Google, Microsoft or Facebook

monopolising the research panorama. An additional important concern is the sus-

tainability of deep learning if compute requirements continue to increase. In an era

where the climate crisis is at the uppermost centre of attention, the carbon footprint

(energy consumption and hardware requirement) of deep learning cannot continue

to be ignored. This raises questions about the necessity for over-parameterisation

in modern deep learning models, when (Denil et al., 2013) showed that sometimes

only 5% of parameters matters for prediction. What role does over-parameterisation

play in model performance? Can we successfully learn without it?

1.2 Towards more efficient Deep Learning

Over-parameterisation hinders the compute requirement of deep neural networks as

it increases the compute capacity required to train and run deep learning models.

But it also involves the use of extensive regularisation techniques to prevent the

4

Chapter 1

model from over-fitting (memorising) the training data. So why do we need over-

parameterised model in the first place? Empirical studies (Advani et al., 2020;

Nakkiran et al., 2021) suggest that over-parameterisation helps facilitate the training

of deep algorithms on complex tasks but it isn’t without shortcomings.

An algorithm’s efficiency can be measured in terms of compute resources required

to execute the program, the objective being to complete the task within a minimal

compute time. The compute requirement of a deep learning model depends on

three main factors: (1) the number of parameters in the model, (2) the amount

of floating point operations (FLOPs), and (3) the data input size. The first two

depend on the model architecture while the last one is derived from the training

data. To understand how to build more efficient deep learning models, we first need

to understand the role each of those factors play on the compute load.

Number of parameters The number of parameters influences the size of the

model, and increases the requirements to store and load the model into memory.

Over the years, the number of parameters within deep learning models has drasti-

cally increased from 100M parameters for early computer-vision models up to 175B

parameters for latest NLP models (see Figure 1.2). Note that parameters are usually

encoded as float32 data, thus each single parameter occupies 8 octets.

Figure 1.2: Number of parameters for different model architectures, for computer
vision applications (left) and natural language processing (right). From Menghani
(2021), Figure 1.

It is also worth noting that a large number of parameters doesn’t always imply

a bigger compute load as larger models can have lesser computational complexity

due to floating point operations.

5

Chapter 1

Floating point operations (Flops) The number of floating point operations

corresponds to the number of simple mathematical operations (multiplication, sub-

traction, addition, or division) required to execute the algorithm and affects the

computational workload (GPU or CPU usage). As presented in Figure 1.1, the

amount of compute load has grown exponentially over the past 10 years.

Data input size Finally, the input size has an impact on both the memory and

compute workload of the algorithm. Large input data may imply more parameters

to process the input, and thus more floating point operations. In this thesis, the

main interest is deep learning model efficiency, therefore the impact of the input on

compute resources is not in the scope of this study and will be not be considered.

There are two scenarios for which one might want to improve efficiency: (1) for

faster training and better generalisation performance to unseen data, or (2) to reduce

the computational requirement of inference and run on low power hardware devices.

Reducing the number of parameters at training time is essential to ensure a

sustainable future for deep learning research. Current deep network architectures

are far from being efficient parameter-wise (Bianco et al., 2018; Hoefler et al., 2021),

but their high parameterisation enables easier optimisation and highly expressible

models. Therefore finding more efficient architectures while preserving their high

potential is of utmost importance. Over-parameterisation is still not well understood

and finding more efficient deep network architectures is an ongoing topic (Cortes

et al., 2017; Cai et al., 2019; Stamoulis et al., 2020). But recent research suggests

that there exists within a deep network a sub-network that can be trained to solve

the task in isolation (Frankle & Carbin, 2018). How to find such sub-network? This

remains an active research question.

When deploying deep learning applications in production, we are mostly inter-

ested in inferences. That is, we only care about the computational performance

for model prediction. In practice, to manage the heavy workload it is common to

rely on a cloud-centric approach to take advantage of unlimited and scalable com-

6

Chapter 1

pute power. However, this has some inconveniences as it required reliance on a

third party agent. Two majors concerns are the network bandwidth limitation and

privacy threats. For certain use cases such as autonomous driver assistance, high

responsiveness is required, and thus latency induced by cloud services is a major

issue. For other use-cases like crowd monitoring or medical imaging, we deal with

extremely sensitive data, thus it is not desirable to allow data to transit through a

third party.

For both cases, the application can directly be deployed on-device, at the edge, to

increase the response time and reinforce privacy. But even with specialised hardware

like neural compute chips (Dinelli et al., 2019), the model may still be too large and

too complex for the device’s computational capabilities. Therefore, it is of interest

to reduce the complexity of deep learning models at the source, for more efficient

and compact models.

1.3 Deep Learning compression

Deep learning compression can benefit from both reducing computational cost at

inference, and decreasing the number of parameters at training time. When com-

pressing a deep neural network we look to reduce the number of parameters, and

thus the computational complexity, while maintaining the performance of the orig-

inal dense network (prediction accuracy). Many compression methods have been

developed over the years: (1) pruning, (2) factorisation or quantisation, (3) distilla-

tion or hardware oriented architectures.

In pruning Han et al. (2015a) the aim is to remove non important parameters

from the model (ie, setting them to zero) based on some importance measures while

maintaining good prediction accuracy, resulting in a high-performing network with

a smaller computational footprint. To do so, we compute a saliency or importance

score for each individual parameter. Parameters can then be ranked in order of im-

portance, and the ones with the smallest saliency scores are pruned (removed) from

7

Chapter 1

the network, while the ones with the largest scores are kept unchanged. The result-

ing pruned model has the property of being sparse, analogous to the mathematical

definition of sparse matrices.

Factorisation, or quantisation tries to reduce the dimensions of the parameter

space by aggregating, or clustering, parameters together (Zhao et al., 2019a; Han

et al., 2015a; Zhang et al., 2018). Some methods are even able to further accelerate

inferences by shifting the model parameter space to a binary or ternary space (Bethge

et al., 2019; He et al., 2019). Factorisation has proven to be very efficient to reduce

the cost of running deep learning applications in production as it directly reduces the

number of mathematical operations alongside reducing memory storage. However,

such methods struggle to leverage the computational complexity at training time.

To further improve efficiency of deep networks, one can directly employ smaller

hardware oriented model architectures specifically designed to be efficient on low-

power devices (Howard et al., 2019). This can be done through Knowledge Distil-

lation (Hinton et al., 2015) or Neural Architecture Search (Stamoulis et al., 2020).

Such models have the advantage of being directly optimised for constrained devices

but they require lots of expertise to develop.

Amongst all compression methods mentioned above, inducing sparsity through

network pruning in a deep neural network is the most versatile method. Due to

its simplicity and flexibility, it can be easily applied before, during or after training

making pruning a popular approach to compress deep learning models. It has proven

to be successful to reducing the size of a model up to 90% without impairing the

performance of the network (Han et al., 2015a; Liu et al., 2017), suggesting that there

exists more efficient and better performing small architectures. For that reason,

pruning methods are very promising. But removing parameters from the original

network is not done without harm. Finding the right parameters to remove can

be laborious and computationally expensive. Removing parameters almost always

results in a loss in accuracy requiring to re-train the compressed model to recover

the original model performance, and despite being of similar accuracy, the pruned

8

Chapter 1

model often encompass greater bias in the model prediction producing less fair

models (Hooker et al., 2021).

In order to provide more efficient and sustainable AI, it is important to better

understand the role of parameterisation and how to reduce it. Sparsity, and more

specially pruning, can help identify what part of the network accounts the most

for the learning, what properties of the network lead to better performance. This

can promote designing better, cost efficient, neural network architectures with as

little parameters as possible. Note that pruning can be applied in a structured way,

where parameters are removed in close groups, or in an unstructured way, where

parameters are removed individually. The latter is a more flexible approach as it

has fewer constraints over any enforced sparsity pattern, and thus can better help

us understand inherent dynamics in deep network training.

1.4 Hypothesis & Research Questions

Neural networks are getting bigger, requiring increased computational resources not

only for training, but also for inference. This has significant implications for the

universal accessibility of the technology with high compute costs, potential environ-

mental impact and difficulty in deploying deep learning application on low-power

devices.

Unstructured pruning compression aims at removing parameters from the model

based on some importance measures that determine their usefulness at predicting

the outcome decision, while maintaining good prediction accuracy. Pruning has

attracted lots of attention recently due to its simplicity and high potential. A wide

variety of pruning heuristics and algorithms have been developed over the span of

the last couple of years (see Figure 1.3). But pruning is also an efficient way to

induce and explore the role of sparsity in a network to help understand how to

reach the optimal capacity – ie, reduced memory footprint with high generalisation

property – from an over-parametrised deep learning model.

9

Chapter 1

Figure 1.3: Number of paper published around sparsity over the years. Sourced
from Hoefler et al. (2021), Fig. 1.

1.4.1 Hypothesis

This thesis analyses the benefits and limitations of unstructured pruning methods

to create sparse neural networks. We concentrate our focus on computer vision

applications as it is where most attention and recent discoveries in pruning have

happened in the last decade due to the maturity of the field. The overall hypothesis

of this work can be expressed as follows:

Deep learning models are over-parametrised. Only a small subset of parameters

account for most of the learning and prediction, and by restricting the training or

inference to this sub-network, we can drastically reduce computational complexity

without losing accuracy. There exists an optimal way to identify parameters impor-

tance in a deep learning model such that accuracy and fairness of the original model

can be preserved.

To explore this hypothesis we review different aspects of the pruning methodology.

We study three main aspects of network pruning: (1) the framework by which we

induce sparsity, (2) the importance measures used to determine which parameters

to discard, and finally, (3) the impact of sparse neural networks on the network

performance. By exploring those components, this intend to provide guidance in

10

Chapter 1

regards to inducing deep learning sparsity through unstructured pruning.

1.4.2 RQ1: Pruning Framework

What pruning framework is the most efficient to reduce the size of a network?

This research question examines the limitations of unstructured pruning and

explores how different pruning strategies impact the performance of the compressed

model. For that, Chapter 4 provides an extensive review of the pruning literature,

highlighting major discoveries and frameworks that have been developed over the

past decade. We investigate the limitations of pruning toward building more efficient

pruning frameworks.

1.4.3 RQ2: Integrity of unstructured pruning heuristics

How good are existing pruning criteria at producing sparse models?

Measuring the importance of a parameter is the most important factor for in-

ducing sparsity, as it directly determines the outcome of the pruned network. If the

wrong parameters are removed, then the pruned network will be useless. In this

research question, we explore the core foundation of pruning criteria and investi-

gate which characteristics of different pruning heuristics lead to better performing

pruned models. In Chapter 5 an empirical study of six major unstructured pruning

criteria is conducted. We demonstrate that despite their wide adoption amongst

the community, pruning criteria fail at consistently producing good sparse models.

Chapter 6.1 further explores the role architecture plays on pruning performance and

offers some insights as of why pruning heuristics fail.

1.4.4 RQ3: The impact of a sparse neural network on fair-

ness

Beyond solely looking at the prediction accuracy, does the fairness of the pruned

model differ following different pruning strategies?

11

Chapter 1

Over-parameterisation is helpful for training deep neural networks, but only a

small subset of parameters are accountable for the learning and can reach similar

performance. This research question explores the cost of removing parameters from

the original model, and its implication for performance beyond prediction accuracy.

Experiments to investigate implicit biases induced by different pruning methods is

conducted in Chapter 6.2.

1.5 Thesis Outline

For understanding the rest of this thesis, Chapter 2 will review the foundation for

training and running inference with a deep learning model. The different components

(optimiser, regularisations, architectures) that contribute to the learning will be

presented. A section will be dedicated to over-parameterisation and measuring the

computational complexity of deep neural networks.

Following to this, a case study for deploying AI applications in a real-world set-

ting will be presented in Chapter 3 to further illustrate how the compute requirement

impair deep learning progress. Practical tools to leverage compute complexity from

a hardware perspective will also be presented.

In Chapter 4 the foundation of sparsity and network pruning will be presented.

Different different frameworks developed over the years will be reviewed and compare

to one another. Through this chapter we will explore and answer RQ1.

Once the core foundations of pruning have been introduced, Chapter 5 is dedi-

cated to the investigation of pruning criteria design. Experimental results are pre-

sented in order to assess the integrity of unstructured pruning metrics for compress-

ing deep neural networks. We address RQ2 and review different types of pruning

criteria motives to study whether they help improve the performance of the pruned

model.

The next chapter, Chapter 6, explores RQ3 and take a look at the impact of

pruning compression and sparsity beyond prediction accuracy. We will investigate

potential bias induced by unstructured sparsity, and study to what extent removing

12

Chapter 1

parameters impacts the model representation.

Finally we will conclude this thesis by offering a guidance with a set of rules to

help practitioners apply unstructured pruning sparsity in deep learning models in

Chapter 7.

The reader can refer to Figure 1.4 for guidance regarding the organisation of this

thesis.

13

Chapter 1

F
ig
u
re

1.
4:

H
ig
h
-l
ev
el

or
ga
n
is
at
io
n
of

th
e
th
es
is
.

14

Chapter 2

Background: Deep Learning

fundamentals

Artificial intelligence has been around for decades. Since the very first moment

programmable computers were created, scientists questioned the potential for such

machines to become intelligent (Lovelace, 1842). What is intelligence? For an

algorithm to be intelligent means it is able to take actions in order to reach a given

goal (Poole & Mackworth, 2017).

There exists many levels of intelligence. Computers can easily solve some com-

plex tasks that are difficult for a human, given a set of rules and a constraint

environment. In 1997, IBM was able to create an algorithm named Deep Blue com-

petent enough to defeat the world chess champion Garry Kasparov (Hsu, 2002).

But chess contains a finite number of actions and solutions, for other tasks where

rules cannot be formulated explicitly, computers struggle. For a human recognising

objects or judging similarity in an image is straightforward, but this has proven to

be a surprisingly challenging problem for computers.

Deep learning has revolutionised the world of artificial intelligence thanks to its

ability to handle complex unstructured data such as text and images. Instead of

giving the algorithm a set of rules, we let the model learn from experience and define

its own representation to solve the problem. To tackle computer vision and natural

15

Chapter 2

language problems, deep neural networks contain a large number of parameters to

maximise knowledge extraction.

The core idea explored in this thesis of reducing the size of a deep learning model

to achieve the best out of a small subset of parameters, inherently relies on the

basic foundations of deep learning. While this can be achieved on any type of deep

network architecture and for diverse applications, this thesis focuses on computer

vision tasks relying on Fully-Connected and Convolutional Neural Networks that

will be presented below in this chapter. I chose to limit the scope of my study to

image classification application due to its simplicity and wide adoption amongst the

pruning community, making it a good candidate for empirical theoretical research.

Indeed, unlike natural language models, or generative adversarial networks, Fully-

Connected and Convolutional Neural Networks used to solve image classification

tasks do not rely on latent space or feedback connections which simplify the training

and analysis of the deep network behaviour.

Thus, this chapter introduces the technical background essential for understand-

ing the research presented in this thesis. Section 2.1.2 introduces the basic concepts

for training and running inference with a deep neural network. In section 2.2 the

reader is familiarised with the concept of parameters and neural network architec-

tures applied to computer vision problems. Finally section 2.3 lists the different

models and datasets that will be considered for investigation in this thesis.

2.1 Feed forward networks and basic concepts

Deep learning is a broad family of machine learning algorithms that rely on differ-

entiable functions organised in a directed acyclic graph that map the input to the

output. In contrast to a majority of machine learning algorithms – e.g., linear re-

gressions, generalised linear models – deep learning models do not assume a linear

relationship between the input and output.

16

Chapter 2

2.1.1 Multi Layers Perceptrons

Feed forward networks, also called Multi-Layer perceptron (MLP) represent the core

mechanism of deep neural networks. A popular case study to illustrate the principle

of perceptron units is the XOR dilemma (Minsky & Papert, 1969). To create a

model that learns to compute the Boolean function exclusive OR, a linear mapping

between the input and output is not possible, as illustrated in Figure 2.1. It is not

possible to draw a single line that can successfully separate the triangles from the

squares (Figure 2.1, left). However it is possible to add multiple perceptron units

to produce intermediate features representation to help computing the XOR output

(Figure 2.1, right).

(a) (b)

Figure 2.1: XOR Bolean operation represented in a 2D space (left) for a binary input
x1 (squares) and x2 (triangle). The associated MLP graph (right) pictures the three
different perceptron units h1, h2 and y and their parameters values. The 1 circle
represent the bias for each hidden units. Image reproduced from the Probabilitic
Machine Learning book (Murphy, 2022)

Given two inputs x1 and x2, the XOR function can be decomposed as follow

y = f(x1, x2) = (x1 AND x2) AND (x1 OR x2). Both the AND and OR operation

can be approximated using a linear thresholding function f(x,θ) = I(wTx+b ≥ 0)

computed through perceptron units:

H(x) = f(x;θ) = WTx+ b ≥ 0 (2.1)

where θ = (W,b) are the parameters of the model. Replacing the formulas in

17

Chapter 2

the context of the XOR problem, this leads to h1 = (x1 AND x2) = H(W1
Tx+ b1),

h2 = (x1 OR x2) = H(W2
Tx+ b2), and finally y = (h1 AND h2) = H(W3

Ta+ b3),

where h1, h2 and y are all peceptron units, x = [x1, x2] and a = [h1, h2].

In order for the output unit y to compute the XOR {0, 1} output, weights W

and biases b need to be carefully tuned such that h1, h2 and y produce the desired

output defined above. Ideal parameters are reported in Figure 2.1 (left). This

example illustrates the core foundation of deep neural networks: multiple perceptron

or compute units organised in multiple layers, such that useful representations, or

features, can be extracted from the input data to produce the desired output. Note

that perceptron units belonging to the intermediate layers are also called hidden

units (hi units in the previous XOR example). Perceptron units can be generalised

to:

H(x) = f(x;θ) = WTϕ(x) + b (2.2)

where ϕ represent the activation function for feature transformation. Deep neural

networks have great potential to encompass complex and high dimensional decision

making. However, it is not feasible to define every single parameter by hand, espe-

cially for neural networks where models easily contain thousands of parameters. For

that reason, the neural network is trained to learn the best values for parameters

from experience (data).

2.1.2 Training cycle

To understand how to reduce the size of a deep neural network, it is important to

understand how different parameters influence the training and prediction of the

model and the role that they play. Training a neural network is similar to training

any linear machine learning model, in the sense that it follows a gradient-based

optimisation procedure. Parameters are optimised to reduce a cost function (or loss

function) L that evaluates the model performance based on some training data. In

other words, the loss function measures how wrong the model prediction is compared

18

Chapter 2

with its true target. If deep learning follows a supervised learning procedure, where

the network is taught to solve a task based on training examples, there exists other

training procedures – semi-supervised (Oliver et al., 2018) and unsupervised (Vos

et al., 2017) – that extend over the training procedure that will be described in

this section but consideration of these training methods is outside the scope of this

thesis.

Training a deep neural network relies on gradient-based learning. It can be

decomposed into three steps: (1) the forward pass during which, given an input, the

model computes the output prediction, (2) the backward pass that estimates how

far the model prediction is from the true ground-truth and computes new values

for the parameters that would better solve the tasks, and, (3) the update pass that

updates the parameters following the optimisation steps.

2.1.2.1 Forward pass

Figure 2.2: illustration of a neuron unit where xi represent the input data, wi and
b are respectively the weights and biases parameters, and ϕ the activation function.

MLPs, and deep neural networks in general, are a succession of hidden layers con-

taining multiple neural units that can be summarised as:

zl = ϕl(al) (2.3)

al = bl +W lzl−1 (2.4)

19

Chapter 2

Figure 2.3: Different type of activation functions ϕ. The most common activation
used in practice is the ReLU – ReLU(a) = max(a, 0) for hidden layers because it
is better at propagating the signal through deep networks. Image issued from the
Probabilistic Machine Learning book (Murphy, 2022).

where θl = [W l; bl] are the parameters of given layers, l, zl the hidden unit, a the

pre-activation that represents the input signal ingested by the neurons, and ϕ the

activation function.

The forward pass simply consists of processing the input data X through the

neural network to compute the output y. The input signal flowing through the

network is altered by the different neuron units, extracting new representations of

the input data. The choice of the activation function ϕ for the hidden and output

layers is of central importance as it defines the behaviour of the deep learning model.

If ϕ is a linear transform I(Wx + b), then the mapping between the input X and

output y would be linear too. However, the choice of activation function does not

impact the structure of the parameters θ in itself as the weightsW and bias b are not

altered by the function ϕ (as illustrated in Figure 2.2 and equation 2.4). The most

common activation function in practice for the hidden layer are ReLU activations,

and softmax activations for the output layer (see Figure 2.3). The reader can refer

to Goodfellow et al. (2016) or Murphy (2022) for more details on the topic.

In practice, the network parameters are represented as matrices N ×M × D,

where every row N corresponds to an entry value from the previous layer ai;l−1 (pre-

activation), and every column M to a neuron unit in the current layer l zi;l, for every

dimension of the input D. Then the forward pass becomes a succession of simple

mathematical operations called floating point operations (FLOPs). This succession

20

Chapter 2

of FLOPs operations can be stored within a computational graph.

2.1.2.2 Backward pass and parameters update

At the beginning of the training the parameters are initialised randomly following

some sort of Gaussian pattern distribution (initialisation of deep neural networks will

be discussed in section 2.2.2.1). For the prediction to be more accurate, parameters

are tuned throughout the training following a gradient-based optimisation scheme.

Similar to classical machine learning algorithms, gradients are derived from a loss

function L(θ) = 1
m

∑
xi;yi

l(ϕ(xi;θi)yi) – also called the cost function, with respect to

the parameters θ = [w; b] at each layers. The idea is to measure how far the current

prediction ŷ = ϕ(x;θ) is from the true prediction y, and update the parameter

values (weights and biases) to reduce this gap. For classification tasks, the common

loss function used in practice is the cross-entropy loss.

The backward pass consists of computing the gradients with respect to the loss

for each parameter through a backpropagation algorithm:

g(θ) =
∂L(θ)
∂θ

(2.5)

The backpropagation algorithm relies upon a directed acyclic graph to compute

the individual parameter’s gradient through a chain of rule of calculus: ∂L(θ)
∂θ

=

∂L(θ)
∂θi

∂θi

∂θi−1
. . . ∂θi−n

∂θ
. In computing this step is called auto-differentiation or auto-

diff and is referred to as such in computing libraries PyTorch (Paszke et al., 2019),

and TensorFlow (Abadi et al., 2015). More details can be found in deep learning

books such as Goodfellow et al. (2016); Murphy (2022).

Once the gradients have been computed, the parameters can be updated follow-

ing the stochastic gradient descent step:

θt
i = θt−1

i − α
∂L(θt−1)

∂θi

(2.6)

where θt
i represents the iith parameter at time t of training, and α the learning

21

Chapter 2

rate. The gradient only indicates the direction for the parameter’s update, it is the

learning rate that defines the step size of the update and it is probably the most

important hyper-parameter in training deep neural networks (Bjorck et al., 2018;

Jastrzebski et al., 2019, 2020).

2.1.2.3 Compute cost

When training a deep neural network, this cycle of forward pass, backward pass and

update is repeated over the training data, until the network has reached convergence

(the loss and gradient are null), or until the training has been stopped (early stop-

ping or fixed number of epochs). In practice, to lessen the cost of computation, a

stochastic approach (SGD) is preferred where the gradient update is computed and

averaged over a small batch of training data (referred to as the mini-batch) instead

of the entire dataset.

Training can be computationally demanding. Beyond the computational cost

related to the structure of the neural network in itself – detailed in section 2.2.1.1,

different components needs to be stored in memory: the mini-batch of data to

be processed, the computational graph, the parameters value and their associated

gradients. To speed up the training of deep neural networks, data within a mini-

batch are processed in parallel. Deep neural networks rely on the processing power of

specialised GPU hardware to handle the compute complexity. Chapter 3, section 3.2

will provide more insight on the matter.

2.1.3 Running inference

2.1.3.1 Compute cost

Once the deep neural network has been trained, it can be used to run inferences.

In inference mode, only the forward pass is active as the gradients do not need to

be computed anymore. Also, images do not need to be processed in mini-batch,

thus the memory footprint compared to training is reduced. However, the compute

complexity is still bound to the neural network architecture – i.e., the number of

22

Chapter 2

parameters that are required to be stored, and the type of data being processed.

Large images will generate more FLOPs operation than smaller ones.

2.1.3.2 Evaluating performance

The difficulty in training deep neural networks, as for any other machine learning

algorithms, is to ensure the model generalises well to unseen data. Due to their

large number of parameters, deep learning models have a tendency to over-fit (i.e.,

to memorise) the training data easily. But they are also tied to the inherent biases

and limitations existing within the training dataset (class imbalance, missing data,

etc.). Deep learning models do not extrapolate concepts but simply learn feature

representations of an existing set of data.

In practice model performance is evaluated over a validation and testing data

set, and computed as the mean prediction score:

accuracy =

∑
i

(yi = ŷi)∑
i

yi
(2.7)

where yi is the model prediction, and ŷi the true prediction. Due to the increasing use

of deep learning models for real world applications, especially sensitive applications

such as face recognition, or autonomous driving, fairness and robustness of deep

learning has become a hot topic. Moving beyond only assessing the performance of

a model based on its prediction accuracy score, researchers have tried to develop

novel approaches to evaluate other aspects of deep neural networks. This topic will

be further discussed in chapter 6.

2.2 Deep Learning for image processing

If processing images is a natural task for humans, it turns out to be very challenging

for a computer. There is no mathematical rule that can describe what a cat looks

like, or how to tell different breeds of dogs apart. One can define some features that

23

Chapter 2

represent a cat’s appearance, but they cannot be translated to pure mathematical

rules. For a long time computer vision relied heavily on hand-crafter and engineered

feature extraction tools to assist computer understanding of images (Lowe, 2004).

Deep learning has now become the dominant approach to computer vision. With

its high flexibility in learning deep feature representation for images, deep learn-

ing has proven to be a powerful tool for image processing tasks. Pioneering work

by Krizhevsky et al. (2012) demonstrated the great potential of deep learning mod-

els in achieving human-level performance on image classification. In over 20 years

of research, computer vision has become a mature area of deep learning research

with many applications in our everyday life. Led by the many industry interests

such as smart cities, or autonomous drivers assistant systems, computer vision has

concentrated most of the discovery around sparsity and deep learning compression.

Computer vision models are also more accessible, they do not require latent mem-

ory management as NLP models do, therefore they constitute a good entry point to

develop and explore strategies to reduce the size of a deep neural network.

2.2.1 Convolutional Neural Networks

MLP architectures do not have a indicative bias suited for images, as they are

not invariant to translation shift.. A slight shift in the input image (translation,

lighting, camera angle etc.) might result in a very different output. To overcome

this issue, Convolutional Neural Networks (CNNS) were introduced with a novel

spatial filtering approach called convolutional layers.

2.2.1.1 Building blocks

Most concepts inherent to CNNs were first introduced in the neocognitron paper

by Fukushima (1980), but it is two decades later that LeCun et al. (1998) proposed

the foundation of CNN with the LENET architecture. A CNN is composed of two

types of building blocks: fully-connected layers, and convolutional layers. In addition

extra processing or pooling, also known as sub-sampling, is usually added in-between

24

Chapter 2

some layers.

Fully-connected layers Fully-connected layers are the core component in MLP

models described in Section 2.1.1. All the inputs, xi, are connected to every activa-

tion unit, si = ϕ(W T
i xi), in the layer as illustrated in Figure 2.4. If the pattern Wi

is present within xi (si is large positive), then the activation (ReLU) is also large.

Because the catalyst of the activation directly derives from the inner product of

W T
i xi, it is easy to imagine that a small change in the input can drastically impact

the output (e.g., the same image with two different size resolutions, a translation of

the subject in the images, etc.).

In practice, fully-connected layers, if used within CNNs, are used at the end of

the neural network to aggregate the input and produce the desired output. For

instance, to transform a N × M input into a 10 × 1 where 10 is the number of

possible objects in the context of an image classification task.

Figure 2.4: Fully connected layer where xi are the input and si activation.
From Goodfellow et al. (2016) Deep Learning book.

Convolutional layers Convolutional layers are an alternative to fully-connected

layers that produce transitionally invariant feature detectors. The input image is

decomposed and processed in small overlapping patches. Every patch of the image

is compared to a small set of filters, also called the kernel (usually of size 3 × 3 or

5 × 5), to detect the presence of spatial features (or parts of objects) in the image

patch. Filters are moved across the image in a sliding-window manner. Figure 2.5

illustrates the convolution operation.

25

Chapter 2

For an input image, H×W×C, a convolution operation is a dot product between

the kernel, k × k, and patches of the input image over C input channels (C = 1

for greyscale images, and C = 3 for RGB images). To ensure that every data

point is considered equally (positioned at the centre of the kernel) when performing

convolution zero-padding can be employed to add zeros on the outside of the matrix

and thus compute the convolution operation for edge values. In a similar way, a

stride value corresponding the step size of the sliding-window can be tuned.

Figure 2.5: Illustration of convolution operations: (left) numerical operation, and
(right) spatial filtering. Source: Murphy (2022) and (Robles, 2018)

Convolutions do not necessarily reduce the input dimension, H×W , but they do

increase the number of dimensions (depth) as each kernel generates a different matrix

output, D, leading to H ×W ×C ×D. For that reason, pooling or sub-sampling is

often use to concatenate the information within a filter.

FLOPs Parameters within a deep neural networks are represented by tensors. Re-

ducing the size of a deep neural network is done through manipulating the dimension

and elements of the different tensors of the neural network. Table 2.1 summarises the

size and compute cost for different building block candidates for pruning available

in a CNN.

26

Chapter 2

P
a
ra

m
e
te
rs

F
L
O
P
s

In
p
u
t
T
e
n
so

r
O
u
tp

u
t
T
e
n
so

r
θl i

F
u
ll
y
co
n
n
ec
te
d
la
ye
rs

(L
in
ea
r)

w
ei
gh

ts
I
∗
O

I
:
(H

in
)

O
:
(H

o
u
t)

[:
,i
]

H
in
=

in
p
u
t
fe
at
u
re
s

H
o
u
t
=

ou
tp
u
t
fe
at
u
re
s

b
ia
s

O
–

–
–

C
on

vo
lu
ti
on

al
la
ye
rs

(C
on

v
2D

)

w
ei
gh

ts
I
∗
O
∗
K

w
∗
K

h

I
:
(C

in
,H

in
,W

in
)

O
:
(C

o
u
t,
H

o
u
t,
W

o
u
t)

[:
,i
,:
,:
]

–
H

o
u
t
=
⌊H

in
−
K

h
+
2
p

s h
+
1⌋

W
o
u
t
=
⌊W

in
−
K

w
+
2
p

s w
+
1⌋

b
ia
s

O
–

–
–

T
ab

le
2.
1:

S
u
m
m
ar
y
of

th
e
co
m
p
le
x
it
y
of

fu
ll
y
-c
on

n
ec
te
d
an

d
co
n
vo
lu
ti
on

al
la
ye
rs
,
w
h
er
e
I
is

th
e
in
p
u
t,

O
th
e
ou

tp
u
t,

K
w
an

d
K

h
ar
e

re
sp
ec
ti
ve
ly

th
e
ke
rn
el

w
id
th

an
d
h
ei
gh

t,
C

th
e
n
u
m
b
er

of
ch
an

n
el
s,

H
an

d
W

th
e
h
ei
gh

t
an

d
w
id
th

of
th
e
te
n
so
r
(i
n
p
u
t
or

ou
tp
u
t)
,
p

an
d
s
co
rr
es
p
on

d
to

th
e
pa
dd

in
g
an

d
st
ri
di
n
g
of

th
e
co
n
vo
lu
ti
on

op
er
at
io
n
.

27

Chapter 2

2.2.1.2 Spotlight architectures: VGG & Resnet

Figure 2.6: Reproduced from Probabilitic Machine Learning book (Murphy, 2022).

A convolutional neural network (CNN) is a succession of convolution layers with a

non-linear activation, followed by pooling of the feature map. A final fully-connected

layers can be added for classification output (see Figure 2.6). One of the earliest

CNN model architectures (LeNet) was proposed by LeCun et al. (1998). It was

composed of five layers: 2 convolution-pooling layers, and 3 fully connected, dense

layers. The model was trained on a simple image classification task called MNIST

(see section 2.3.2). However, its representation capabilities were fairly limited due

to its small size. At that time training of deep neural networks was a particularly

expensive process that required a lot of hand-engineering.

23 years later Krizhevsky et al. (2012) proposed a novel architecture called

AlexNet, capable of achieving groundbreaking results on the ImageNet classifi-

cation task (see section 2.3.2) and driving a renewed interest towards using deep

learning models for computer vision. Their model was slightly deeper (8 layers)

than LeNet with 5 convolution layers instead of 2. In addition AlexNet used ReLU

activation compared to the traditional tanh or sigmoid used previously. Perhaps the

major revolution of AlexNet was the use of GPU hardware to fit and train neural

networks (AlexNet contains 60M parameters).

VGG architecture The compute capacity offered by GPU hardware pushed back

the boundaries for deep neural architectures. Simonyan & Zisserman (2015) pro-

28

Chapter 2

Figure 2.7: VGG16 architecture, where 16 represent the number of layers (con-
volutional and fully connected). {filter-size} conv, {number-filter} refers
to convolutional layers, and fc {number-neurons} corresponds to fully connected
layers. After each group of conv layers a max-pooling operation is applied, with
sizeXXX indicating the input size for the layer group. Reproduced from

posed the first very deep CNN architecture with a range of models with varying

depth from 11 up to 19 layers. They were successful in training them on large image

classification tasks and were considered to be the state of the art. VGG architecture

can be decomposed into four feature size groups (64, 128, 256 and 512) of small

filters (3×3) stacked upon one another separated by pooling layers (see Figure 2.7).

The number of features corresponds to the number of learning channels, or kernel,

within a layer.

VGG architectures are amongst the most over-parameterised CNN architecture.

Because layers are stacked upon each other, training VGG beyond 19 layers is ex-

tremely unlikely to converge because of gradient vanishing or exploding. A vanish-

ing or exploding gradient phenomenon is observed when the gradient isn’t flowing

properly causing it to become zero or very large. This phenomenon is detailed in

section 2.2.2.1). He et al. (2015) also noticed that training deeper networks resulted

in higher training error and that training a plain architecture – stacked convolu-

tions without pooling layers in between – with 34 layers has a higher error than

a plain 18-layer model, even though the 18-layer network is a subset of its deeper

counter-part.

ResNet architecture To train very deep networks beyond 19 layers, He et al.

(2015) proposed adding skip connections to prevent degradation of the signal. A

29

Chapter 2

Figure 2.8: Illustration of different CNN architectures: ResNet-34 (top), plain-34
(middle) and VGG-19 (bottom). Skip connections allows the deep neural network to
be trained beyond 34 layers, dashed residual connections represent CONV-1x1 from
succession of two layers that differ in size. Source He et al. (2015).

skip connection – also called a residual connection – is a simple mapping of the

input signal from the previous layer into the output signal of the current layer

(see Figure 2.9). It enables the gradient to be better propagated throughout the

network (Balduzzi et al., 2018) and helps smooth the optimisation landscape (Li

et al., 2018). Note that the residual connection is a simple identity mapping of the

input, or a 1 × 1 convolution when the size between the input and output signal

differs. Figure 2.8 presents different CNN architectures side-by-side.

Figure 2.9: Illustration of a residual blocks with a skip connection: (left) post-
activation ResNet, and (right) pre-activation as in PreAct ResNet Source: He et al.
(2016b)

30

Chapter 2

There are two ways to connect layers with identity mapping, either after the

non-linearity post-activation as originally designed in He et al. (2015) – after the

block CONV-RELU-BN block –, or before the the activation unit pre-activation as

proposed in He et al. (2016b) – after the block RELU-BN-CONV (see Figure 2.9).

The later is called a PreActivation ResNet (He et al., 2016b) and obtains better

performance than ResNet models.

2.2.2 Over-parameterisation

One of the fundamental when designing machine learning models is to avoid big

models all cost. The challenges of having more parameters than training data points

is to over-fit the training set, meaning that the model will memorise the training

examples instead of learning to solve the task, resulting in poor model generalisation.

This phenomenon is referred to as the variance-bias trade-off (see Figure 2.10a). A

model should incorporate the right amount of parameters, to avoid producing highly

biased predictions (under-fitting, not enough parameters), and being too sensitive

to the variance within training examples (over-fitting, too much parameters). There

should exists an optimal capacity where that the model minimise both type of errors

leading to better prediction over unseen data point (generalisation).

Pruning is a compression approach that reduces the complexity of a machine

learning model by removing the parts that are non-critical to produce the outcome

decision of the algorithm, and thus reduces over-parametrisation. This concept

was first introduced for decision-trees algorithms which are prone to over-fit the

training data due to their high parameterisation, and thus, by pruning part of the

tree, memorisation can be reduced leading to a better balance bias variance trade-

off (Quinlan, 1987).

But if this statement was true for classical machine learning, deep learning has

proven that for modern algorithms, larger models are better. The strength of deep

learning models arise from the particularity of them to be inherently hugely over-

parametrised. Datasets often contain between 60k images for smaller datasets such

31

Chapter 2

(a) Classical regime

(b) Modern regime

Figure 2.10: Bias-variance trade-off. Reproduce from Belkin et al. (2019)

as CIFAR10 (Krizhevsky et al., 2009), up to 1.3M images for larger ones such as Ima-

geNet (Deng et al., 2009). Modern CNN architectures like ResNet50 or VGG11 have

roughly 25.6M and 129M parameters respectively. Note that recent approaches to

computer vision use transformer architecture type, state-of-the-art models CvT (Wu

et al., 2021), ViT (Yuan et al., 2021) and BiT (Kolesnikov et al., 2020) that contain

at most 227M, 307M and 920M parameters respectively.

This phenomenon comes from a double descent that arise from being in an over-

parameterised regime (Belkin et al., 2019; Nakkiran et al., 2021). Because deep

learning models are trained to fit the data (zero training error), called the interpo-

lating regime, the more parameters, the better the performances (see Figure 2.10b).

To understand if and how the number of parameters can be reduced, it is neces-

sary to understand why over-parameterised model do learn better than they smaller

compact counter-part. They are two intuitions to explain why over-parameterisation

helps deep neural networks to learn complex tasks: (1) from an optimisation per-

spective, over-parameterisation helps SGD to find a good minima by smoothing the

optimisation landscape, and (2) the more trainable parameters, the more features

32

Chapter 2

we can learn and extract from the image and thus over-parameterisation allows

greater knowledge representation. However, over-parameterisation comes at the

cost of heavy regularisation techniques to prevent negative impact on generalisation

performance (Zhang et al., 2021). Large models can be tricky to optimise with

risks of vanishing or exploding gradients, on top of requiring extra regularisation to

generalise properly.

2.2.2.1 Vanishing Exploding gradients

When training large, and more especially very deep neural networks, the gradient

may vanish or explode (Hochreiter et al., 2003). Every time the signal passes through

an activation unit the gradient is either diminished or amplified and the deeper the

network the more at risk the gradient is of catastrophic increase or decrease. It goes

without saying that the deep neural networks cannot learn when gradient vanishing

or exploding occurs.

Activation functions can prevent this from happening by bounding the gradient

into a [0, 1] window. A good initialisation strategy is also important as large, and re-

spectively small, initial parameters value will push the gradient towards one extreme

or the other. In practice parameters in a neural network are initialised following a

Gaussian distribution and designed such that the mean activation is zero and the

variance across layers is the same. This ensures the gradient flows properly through

the network and is called the Xavier initialisation scheme (Glorot & Bengio, 2010):

W [l] ∼ N (µ = 0, σ2 =
1

n[l−1]
(2.8)

b[l] = 0 (2.9)

where n[l−1] corresponds to the number of parameters in the previous layer. Xavier

initialisation was developed around sigmoid and tanh activation units, He et al.

(2015) proposed a novel initialisation scheme called Kaiming initialisation that bet-

33

Chapter 2

ter suits ReLU/leaky-ReLU non-linearity activation.

The initialisation of deep neural networks has always been of importance as it

defines the starting point of the SGD optimisation. Ill-conditioning of the network

directly impairs the performance of the model. It is an important point to keep

in mind as parameters can be removed from the network anytime during train-

ing. Thus, when pruning the network it is essential to make sure that the network

structure is well-preserved to ensure good re-trainability.

Another way to prevent the gradient from vanishing or exploding is the use

of residual connections to enable the gradient to flow directly between layers as

discussed previously in section 2.2.1.2.

2.2.2.2 Leveraging over-parameterisation with regularisation

If a good choice of activation function and initialisation scheme can ensure a good

flow of the gradient for the early stage of training, it does not prevent the network

from over-fitting the training data in the long term. The key in training deep neural

networks relies in their heavy use of regularisation techniques to help the network

learn despite being over-parameterised.

Norm penalty and weight decay A straightforward regularisation technique

in machine learning to limit the model capacity is to add a norm penalty to the

objective or loss function to constrain the parameters from deviating too much. In

deep learning, it is common to use a l2 norm regularisation, known as weight decay.

This can be written as:

Ĵ(w) = J(w) +
α

2
wTw (2.10)

where α is an hyper-parameter defining the strength of the regularisation – in prac-

tice, α is of order of magnitude 1e−5. Note that the change in biases only induce

little variance over the model performance, therefore only the weights w are consid-

34

Chapter 2

ered for regularisation (Goodfellow et al., 2016). l2 norm regularisation, or weight

decay, can be interpreted as preserving the parameters alongside the dimension that

contributes to reducing the objective or loss function the most and discarding the

ones that contribute poorly.

Early Stopping Another simple way to prevent the training data from over-fitting

is to apply an early-stopping strategy. The training is stopped when the loss is no

longer decaying after a long period of time, or when the training error starts to rise

up again. This kind of approach enables networks to learn from generic features

that generalise to unseen data (Achille et al., 2020).

Dropout and sparsity Fully-connected layers have a tendency to easily over-

fit the training data due to neurons co-adapting. Srivastava et al. (2014) proposed

a Dropout regularisation method that randomly drops compute units during the

training to prevent over-fitting. Every forward pass a different set of neurons is

randomly masked from the network to force every unit to learn independently from

their neighbours. An extension over Dropout, DropConnect (Wan et al., 2013),

proposed a similar mechanism masking the connections instead of the neuron units

(see Figure 2.11).

More generally, inducing sparsity in a neural network can work as a strong regu-

lariser. When all the parameters in the models are active (Figure 2.11a), the model

is said to be dense. When parts of it are removed, either by groups (Figure 2.11a),

or individually (Figure 2.11a), the model is said to be sparse. In both, Dropout

and DropConnect, the sparsity is only temporary to prevent the network from over-

fitting. In pruning, the goal is to make this sparsity permanent to reduce the size

of the deep neural network. This concept of sparsity is the main subject of study of

this thesis and will be detailed throughout the coming chapters.

Batch normalisation Because the data are processed in mini-batches, deep net-

works suffer from covariate shift induced by the data distribution changes between

35

Chapter 2

(a) Dense network
(b) Dropout

(c) DropConnect

Figure 2.11: Illustration of different type of drop-like regularisation for a MLP
network. While removing neurons (b) automatically removes all associated weights,
removing weights does not necessarily shut down the associated neuron. However, if
all the incoming connections (or weights) are removed as pictured in (c) middle-line,
removing all the connections is equivalent to removing a neuron.

different mini-batches (Shimodaira, 2000). A popular and powerful approach to

overcome this issue is Batch Normalisation (Ioffe & Szegedy, 2015). Batch nor-

malisation is an extra layer that is added to standardise and shift the input signal,

ensuring that across all mini-batches the previous layer has zero mean activation

and unit variance:

zout = γ ⊙ ẑn + β (2.11)

ẑn =
zin − µB√
σ2
B + ϵ

(2.12)

where B is the mini-batch, µB and σ2
B are respectively the mean and variance of the

minibatch, zin the input signal, ẑn the standardised input signal for the mini-batch,

and zout the normalised input signal across all mini-batch scale by a factor γ and

shifted by a factor β, γ and β being learnable parameters. For convolutional layers,

batch normalisation observes a channel-wise (ie. filters-wise) scaling/shifting of the

parameters. When the model is deployed in production, it often processes a single

image at a time, thus mini-batch statistics cannot be computed. During training,

the moving average of all mini-batches, µl and σ2
l , are computed. Those statistics

36

Chapter 2

are then used in equation 2.12 to replace µB and σ2
B when the model is used for

inference.

In CNNs, the spatial filtering and depth of the network diminish greatly the

regularisation effect of Dropout, and DropConnect techniques. The benefits of us-

ing batch normalisation layers in CNN, while not fully understood yet, drastically

improve the model performance reducing its sensibility to learning-rate and accel-

erating training-time (Santurkar et al., 2018; Arora et al., 2018). There exists other

forms of normalisation – layer normalisation (Ba et al., 2016), group normalisa-

tion (Wu & He, 2018), instance normalisation (Ulyanov et al., 2017)— but they are

outside the scope of this study. In practice batch normalisation is the most common

form of regularisation used for computer vision models.

2.3 Scope of this thesis

Deep neural networks are highly over-parameterised resulting in high computational

cost in terms of resources and memory storage, impacting the environmental foot-

print and universal accessibility of deep learning technology (Strubell et al., 2020;

Thompson et al., 2020). Inducing sparsity, ie. removing parameters from the neural

networks, can help reduce the compute requirement required to run deep networks.

This thesis explores unstructured pruning, a compression method that aims to

remove individual parameters (weights) based on their importance upon the dense

network function. The core study focuses on importance measures used to esti-

mate the usefulness of a parameter, and evaluates what characteristics make a good

pruning criteria.

2.3.1 Model evolution dynamics

To understand how to evaluate the importance of a parameter, it is important to

understand how they evolve throughout the training. Trainable parameters are re-

ferred to as θ = {W ; b} – trainable parameters associated with batch normalisation

37

Chapter 2

regularisation are omitted, with θl = {Wl; bl} corresponding to a specific set of

parameters at layer l.

Weights, W , represents how two variables interact with one another and empha-

sises the strength of the connection between two variables. Biases, b, on the other

hand do not induce much variance as they only control one activation unit at a

time. Thus when removing parameters from a neural network, efforts are primarily

concentrated on weights – biases are ignored.

Figure 2.12: Illustration of the minimisation problem that the gradient descent
algorithm is trying to solve, where f(x) represents the loss function. Reproduced
from the Deep Learning book Goodfellow et al. (2016).

Objective function When training a deep neural network, parameters are opti-

mised through gradient descent in order to minimise a loss function L. It can be

interpreted as finding a good local minima within the optimisation landscape, also

called the loss landscape, such that it is not possible to further reduce the loss func-

tion (see Figure 2.12). The underlying properties and geometrical shape of the loss

landscape is unknown, but the loss function provides information about the curva-

ture of the landscape at a specific point, and help finding a suitable local minima

through stochastic gradient descent optimisation.

For classification tasks the common loss used in practice is the cross-entropy

loss, but for any type of loss it can be approximated using a Taylor expansion.

Approximating the loss around θ0 can be written as:

38

Chapter 2

L(θ) = L(θ0) + (θ − θ0)
T▽θL(θ) +

1

2
(θ − θ0)

TH(θ)(θ − θ0) +O((θ − θ0)
3)

(2.13)

where ▽L(θ) is the first order derivative, also known as the Jacobian, andH(θ) is

the second order derivative, also known as the Hessian. The Jacobian, ▽L(θ) = ∂L
∂θ
,

contains the gradient of the different parameters and indicates in which direction

to move to make improvement on the loss function, thus by taking a step in the

negative gradient direction, it decreases the loss.

The Hessian, H(θ) = ∂2L
∂θ2 , can be interpreted as being the Jacobian of the

gradient and provides information about the curvature of the loss function. More

precisely it indicates whether taking a step ϵ in the direction of the gradient is going

to be smaller (positive curvature), equal (no curvature), or bigger (negative curva-

ture), and thus measure the magnitude contribution of a parameter to decreasing

the loss function.

After a step-size update θ becomes θ0 − ϵg, where g = ▽θL(θ) and ϵ is the

learning rate. Replacing θ in equation 2.14, we obtain:

L(θ0 − ϵg) = L(θ0)− ϵgTg︸ ︷︷ ︸
A

+
1

2
ϵ2gTHg︸ ︷︷ ︸

B

+O3 (2.14)

with A being the expected improvement following the slope of the function, and

B the correction to account for the curvature of the slope. Note that for this

approximation to be correct, small update steps are necessary. Also, even for small

MLP, computing the Hessian is intractable. In practice it is common to use a

Gauss-Newton approximation to compute the Hessian (Schraudolph, 2002):

39

Chapter 2

H(θ) =
1

N

N∑
i=1

∂fθ (xi)

∂θ

⊤

∇2
u=fθ(xi)

ℓ (u, ti)
∂fθ (xi)

∂θ︸ ︷︷ ︸
G(θ), the Generalized Gauss-Newton

+
K∑
k

∂ℓ (u, ti)

∂uk

∣∣∣
u=fθ(xi)

∂2fθ (xi)k
∂θ2︸ ︷︷ ︸

≈0

(2.15)

≈ G(θ) (2.16)

Momentum If the region of the loss landscape along which the gradient is trav-

elling is flat, or if it falls in a ravine, optimising through gradient descent can be

very slow as it progresses either slowly or oscillates between the ravine walls. A

simple trick to help with the optimisation is to add momentum, also called Nesterov

momentum after its creator (Nesterov, 1983). Momentum works as an exponential

moving average of the past gradients applied as weight upon the current step (see

Figure 2.13):

υt = γυt−1 + ϵ▽θL(θ)

θt = θt−1 − υt

where υ is the exponential moving average of the past gradient, and γ the weight

factor (in practice γ = 0.9).

Figure 2.13: Momentum update. Taken from Sebastian Ruder’s blog article Opti-
mizing Gradient Descent (https://ruder.io/optimizing-gradient-descent).

40

Chapter 2

(a) MNIST
(b) CIFAR10

Figure 2.14: Sample images of three different datasets: (a) MNIST, (b) CIFAR10.

2.3.2 Datasets

In this thesis we consider the use case of image classification task. Image classifi-

cation has long served as an academic benchmark for empirical theoretical research

and thus most recent research in the pruning literature used similar datasets (Fran-

kle & Carbin, 2018; Lee et al., 2019; He et al., 2016a; LeCun et al., 1989).We use the

same three academic benchmark datasets to assess the performance of the different

pruning methods investigated:

• MNIST (LeCun et al., 1998): MNIST dataset is a handwritten digits dataset

containing grey-scale images of fixed size image 28 × 28. The different digits

have been centred, the dataset contains 10 classes (0 to 9 digit), 60, 000 training

images and 10, 000 test images (see Figure 2.14).

• CIFAR10 (Krizhevsky et al., 2009): CIFAR10 dataset is an image classifi-

cation dataset containing 60, 000 32 × 32 color images (50, 000 images for

training, and 10, 000 for testing) (see Figure 2.14).

• ImageNet (Deng et al., 2009; Russakovsky et al., 2015): The ImageNet

dataset is the most predominant image classification dataset for large scale

and real world applications. It contains 100,000 sets of synonyms, each repre-

sented by 1,000 images.

Because of their small-scale nature, both MNIST and CIFAR10 datasets are

reasonably inexpensive to train to better stress the limitations of pruning methods,

which makes them ideal for conducting empirical research. On the other hand,

41

Chapter 2

ImageNet is used in real-world AI applications and constitutes a good candidate

to assess the scalability of our discovery once the preliminary stage of empirical

exploration is done.

2.3.3 Model architectures

Similarly, different model architectures are tested to assess the robustness of the

results presented across different scales. We picked three model architectures that

are commonly found the in pruning literature as they offer a variety of complexity

in terms of computational operations (FLOPs), with a wide range of different model

capacity (overall number of parameters):

• MLP – small capacity, low complexity – Presented in Section 2.1, MLP is the

simplest form of deep neural network as it is composed of only fully-connected

layers. It has a fairly low number of parameters (over a 100k), allowing to

better compute model statistics.

• VGG – large capacity, medium complexity – presented in Section 2.2.1.2.

Hugely over-parameterised, VGG model architectures are known to be easy

to compress. Despite their high number of parameters (>100M), they remain

fairly simple as convolution blocks are stacked up on top of each other with

no extra compute. They are a deeper version of MLP with convolutional

operations.

• ResNet - PreAct-ResNet: large capacity, high complexity – presented

in Section 2.2.1.2. Despite being less over-parameterised than VGG mod-

els (<100M parameters), ResNet, and respectively PreAct-ResNet, are more

complex to compress due to their skip connections.

Considering those three network architectures offer a variety of use-cases to con-

duct our empirical analysis on. This will allow us to assess whether the size of the

model (capacity) or the number of FLOPs in the architecture (complexity) has an

impact on the pruning outcome. Note that these models would be considered to be

42

Chapter 2

small-scale compared to the most recent architectures used in computer vision, but

if the pruning hypothesis tested do not scale properly across our three models, it is

unlikely they will succeed for larger models.

2.4 Chapter Summary

In this chapter, the foundations of deep neural networks were reviewed. Through

the mainstream XOR examples in Section 2.1.1, I demonstrated how a simple Multi

Layers Perceptron (MLP) could be used to combine neural units to model non-linear

boundaries. This property of deep neural networks to fire non-linear activation

zl = W zl−1 + b based on an input signal has been exploited to solve complex

tasks such as image processing. However, a hand-crafted approach where all the

parameters θ = W ; b would be carefully tuned is not feasible as modern deep

learning architectures far exceed 1M parameters.

To learn those parameters, deep neural networks are trained following a gradi-

ent descent optimisation scheme. The different parts of training – forward pass,

backward pass and update – were presented in Section 2.1.2 introducing the core

elements that comprise a deep neural network architecture: the choice of activation

function to induce non-linearity, the loss function to measure the prediction error,

and the optimiser to find the best set of parameters. Concepts for measuring the

compute cost in deep learning models with Floating Point Operations (FLOPs) were

briefly introduced in Sections 2.1.2.3 and 2.1.3.1, this factor will be further discussed

in Chapter 3.

At the beginning of the deep learning era, computer vision was the predominant

use-case application around which research was concentrated. It nurtured many

great discoveries and has today many application in our everyday life (smartphones,

image retrieval, etc.). In Section 2.2.1 Convolutional Neural Networks (CNNs) were

presented alongside the neural network architectures – VGG and ResNet – studied

in this thesis. CNNs take advantage of the high feature space and non-linearity

of deep neural networks to learn spatially invariant features to detect objects, or

43

Chapter 2

elements in an image. However for them to learn and extract useful knowledge, the

models are hugely over-parameterised

In Section 2.2.2, the implication of over-parameterisation on learning were pre-

sented. On top of potential threats to over-fit the training data, the activation units

put the gradient signal at risk to be either diminished until vanishing or amplified

and exploding, leading to the network being unable to learn anything. Many meth-

ods can be applied to stabilise the learning: careful tuning of the learning rate, early

stopping strategy and adding regularisation (weight decay, dropout, batch normali-

sation).

Over-parameterisation is not only a challenge for optimisation; over-parameterisation

also alters the computational footprint of deep neural networks hindering their de-

ployment on constrained and non-GPU devices. The scope of this thesis explores

how inducing sparsity, ie. removing unimportant weights, can create more efficient

neural networks. In Section 2.3.1 more insights on the evolution of weight’s values

throughout training were provided, presenting more detail behind the optimisation

procedure of deep learning models.

Finally in Section 2.3.2 and Section 2.3.3, a list of the different datasets and

models utilised throughout this thesis were presented.

2.5 Chapter conclusion

Because of the increasing implication of computer vision applications driven by deep

learning in real-world settings (smartphones, video surveillance, photography, etc.),

working towards more efficient AI has been of central importance. Deep learning

models are hugely over-parameterised with repercussions on the computational and

environmental footprint for deploying such models, as well as universal accessibility

of deep learning technologies. To reduce the amount of parameters in deep neural

networks, it is possible to sparsify the network by removing unimportant connection,

or weights. Throughout this thesis, I will present and review unstructured pruning

methods with a focus on how to measure the importance of parameters and what

44

Chapter 2

are the implications for removing parameters in a deep neural network.

45

Chapter 2

46

Chapter 3

Internet-of-Things and Applied AI

Deep learning has emerged as a powerful tool to handle complex decision-making

achieving human-level prediction, especially with media data such as images, videos

and natural language (Bengio, 2009; Krizhevsky et al., 2012). The progress in AI

and the increase in data collection have greatly accelerated the development of

applications in real-world settings such as face recognition or autonomous driver

systems.

Over the last two decades, Internet-of-Things (IoT) has extended computing

capacity beyond traditional desktops and servers, connecting the real and virtual

together through smart devices (Gubbi et al., 2013). Nowadays most people possess

one or more smart devices: smartphones, smart-TVs, etc. This provides a dis-

tributed environment of interconnected devices able to communicate and exchange

data with one another to enable environment awareness and data-driven decision

making. However, the broad adoption of AI applications in the IoT setting has

not yet been realised. The amount of data generated by IoT devices – in 2014 this

number was estimated as 233 exabytes and by 2020 this number was set to exceed

1.600 exabytes (Markkanen, 2015) – can greatly benefit deep learning, but it raises

concern about the environmental and societal impact of smart technologies. Deep

learning models require heavy compute power to run inference, while IoT often cap-

tures highly sensitive data that should be processed as soon as possible to reduce

privacy threats. Therefore, particularly with the additional load of video data, ef-

47

Chapter 3

ficient management of data is critical for successful deployment in smart cities and

smart ecosystems.

In this chapter, we will present a use-case application of video analytics in a

smart city scenario. Different challenges encountered, from computational power

to efficient data management, will be presented and ways to overcome them will

be proposed. We will also briefly review the role hardware capacity plays in the

real-world adoption of AI applications.

3.1 Use-case: Crowd monitoring for Smart City

Section 3.1 has been published in Ballas et al. (2018)

Smarter cities utilising Internet-of-Things (IoT) technologies are required to pro-

vide a sustainable environment to accommodate the needs of the increasingly urban

population of tomorrow and preserve natural resources (United Nations. Depart-

ment of Economic and Social Affairs. Population Division., 2016). Various appli-

cations that rely on image and video processing can highly benefit planning and

logistics around the city. However, because cities are big and public areas, deploy-

ing and testing such technologies at scale represents a big challenge to manage the

quantity and variety of potential sensor data including video. Three major issues

encountered are (1) network bandwidth; (2) real-time responsiveness and (3) pre-

serving personal data privacy.

Crowd monitoring using video analytics can provide excellent real-time informa-

tion on crowd density or abnormal situations, but it requires a fast turnaround of

processing. Moreover, monitoring public spaces also implies potential intrusiveness

of surveillance video systems and, as public awareness is growing, legislation is being

enacted to protect personal data requiring systems to avoid the capture, transmis-

sion and storage of data where individuals are visible. Therefore, it is crucial to

emphasise a security-by-design approach, where only the minimum useful data are

captured, processed and potentially stored. Therefore, processing video images at

the point of capture is crucial for more efficient data management as only numerical

48

Chapter 3

data (the outcome of the prediction) needs to be transferred from the edge to the

centre of control. In the following section, we will see how the challenges of deep

learning applications impact these requirements.

3.1.1 Croke Park: Smart Stadium for Smarter living

Cities are public areas and testing or deploying solutions can be highly challenging.

In a stadium, we encounter similar scenarios as in a city. On match days, a large

crowd is gathered in a stadium requiring precise logistics to manage the huge flow

of people, prevent congestion and provide a quick response in case any incident

occurs. Croke Park stadium in Ireland for instance can host up to 80k people at

maximum capacity, that number can be met during major sports events or open-air

concerts. However, a stadium remains a controlled environment where sensors and

data collection can be easily managed and monitored. For that reason, a stadium

is a perfect place, small enough to try but large enough to stress out smart cities

applications.

Those were the motives that led to the creation of the Smart Stadium for Smarter

Living project initiative. This project was initiated as a collaboration between

Microsoft Ireland, Intel Ireland, Dublin City University and Croke Park Stadium, to

provide within Croke Park stadium a test-bed to try-out smart cities technologies at

scale. Many videos and sound capture sensors were put at disposition, in addition to

low-compute edge devices to mimic a real city environment and test-out deployment

of smart applications (see Figure 3.1).

One of the major security concerns in stadiums is unexpected crowd behaviour

movement. During a matchday, at break time a large flow of people converge to

restoration areas or bathrooms causing congestion, long queuing and increasing the

threat of hazardous crowd behaviour. Monitoring crowd density can help under-

standing specific patterns to ensure people move in a safe, secure and predictable

manner, this has the potential to improve the quality of experience but also, criti-

cally, crowd safety.

49

Chapter 3

Figure 3.1: Croke Park smart stadium sensors map.

Crowd monitoring uses sensitive images that potentially contain personal data

(faces). Outsourcing storage and processing to a third party is not suitable. When

performing crowd analytics only metadata such as the crowd density, activity or the

number of people present is generally of interest. The image in itself is not necessary.

Therefore, video processing at the edge improves responsiveness while also ensuring

better data privacy. But how feasible is it to process deep learning on constrained

devices?

3.1.1.1 Fog computing

When it comes to IoT applications, it is crucial to emphasise a security-by-design

approach, meaning only useful bits of information should be captured and stored.

With the large volume of data generated by smart devices a natural platform to han-

dle analytics for IoT applications is cloud computing. It presents many advantages

as it has a highly scalable compute capacity. However, using cloud services implies

offloading some workload and data to a third party client, which can cause issues in

terms of data privacy and reliability. This is particularly true with sensitive data,

such as video data where people can be easily identified, with new European regu-

lation 2016/679 (REG) preventing improperly anonymised data from being stored.

In that case, performing the analytics at the point of capture, at the edge, and only

50

Chapter 3

extracting meaningful information is recommended.

Figure 3.2: Fog computing paradigm

This paradigm is called fog or edge computing. One of the main drawbacks of

cloud computing is dealing with real-time applications. In Verma et al. (2017) the

authors have surveyed network topologies for real-time application and state that

in their current form, data centres are not suitable for real-time processing due

to network lag and transfer delays. This was also identified in the Smart Stadium

project during an exercise to measure crowd sound on busy match days (Little et al.,

2017).

In Bonomi et al. (2014), the authors presented an alternative to cloud-centric

applications that they named fog computing. The pipeline they proposed uses the

edge of the network to alleviate cloud limitation by carrying out some of the process-

ing on the devices themselves (see Figure 3.2). This enhances more robust real-time

applications and leverages the dependency on cloud computing. Gateways can be

used to carry part of the workload and communicate with other instances. Gateways

are minimal computers, similar to Raspberry Pi, where the emphasis is put on the

connectivity and robustness to poor weather rather than compute power.

51

Chapter 3

3.1.2 Performance of video-processing at the edge

To assess the proficiency of real-time video processing at the edge and understand the

limitations of processing data close to the point of capture, we test three computer

vision algorithms of different complexity. All three algorithms are inspired from a

crowd monitoring use-case scenario and implemented using Python using computer

vision and deep learning libraries (see Table 3.1 and Appendix A.1 for more details

on hardware specifications). The different algorithms tested are:

Crowd density: A simple algorithm to estimate the density of the crowd from

video footage. The frames are ingested and converted to greyscale images to

extract the background of the scene and compute interesting point locations

corresponding to objects in the scene. The crowd density is estimated by

splitting the frame into a grid and computing the percentage of grid cells that

are occupied by one or more tracked points. This algorithm has low complexity.

ResNet50: Object detection is an integral part of image processing and is known

to be computationally demanding. Residual network architecture has been

introduced by He et al. He et al. (2016a) for object recognition. It is among the

best performing state-of-the-art deep learning models for image classification.

We use it as a baseline for deep-learning-based algorithms. It represents a

medium complexity, due to its low-resolution input images.

Crowd Counting: Finally, we test an advanced crowd monitoring algorithm de-

sign to count the number of people. ResnetCrowd was developed by Marsden

et al. (2016) to achieve crowd counting. It is based on a ResNet50 He et al.

(2016a) architecture and uses a heat map approach to estimate the number

of people in a scene. High-resolution images are divided into patches and fed

to the ResnetCrowd to count the number of people. Each individual result is

summed to compute total crowd counting. This model achieves state-of-the-

art results and has high complexity with significant compute requirements.

We assess the responsiveness of the different algorithms on two CPU machines,

52

Chapter 3

Name Description Complexity Deep Learning Data Size

(i) Crowd
Density Esti-
mation

Extract background of
image to estimate the
density of people in the
scene

Low No 1024× 728

(ii) ResNet50
from Keras

ResNet50 default Keras
model application with
ImageNet weights

Medium Yes 224x224

(iii) Crowd
Counting

Crowd counting from
Keras ResNet50
model with custom
weights (Marsden et al.,
2017)

High Yes 1024× 728

Table 3.1: Crowd monitoring algorithms tested to assess compute power abilities at
the edge. The complexity is measured as the number of compute operations required
to process one data point and is arbitrarily expressed to compare the different algo-
rithms with one another.

(1) an Intel Atom E3825, typical for edge gateway devices, and (2) an Intel I5-3210M

CPU. The main differences between the two CPUs are highlighted in Appendix A.1.

The software was implemented in Python using a multi-threaded approach to ingest

raw images from an emulated IP camera. Images are pre-processed frame by frame

and the meta-data – density or crowd number for algorithms (i) and (iii), and the

object class for algorithm (ii) – is sent to the cloud. Note that we do not transfer

or store video images. The run-time was monitored with the timeit library.

The IP camera was emulated with a Python RESTful web service sending images

every second using the HTTP protocol. For the Crowd Density estimation and

Crowd counting algorithms, the data consisted of 10 images with high resolution

(1024 × 728 pixels) extracted from the Shanghaitech Part B dataset Zhang et al.

(2016). The Shanghai street scenes contain between 23 people and 476 people.

For the ResNet50 model, 10 images from the ImageNet dataset Deng et al. (2009);

Russakovsky et al. (2015) with low resolution (224 × 224 pixels) were used. The

results are presented in Table 3.2

53

Chapter 3

I5-3210M CPU Atom E3825 CPU
Algorithm Fps Spf Fps Spf

Crowd Density 12.5 0.08 6.7 0.15
ResNet50 2 0.5 0.25 4
Crowd Counting 0.02 44 0.005 219

Table 3.2: Performance comparison reported as Frames-per-second (Fps) and Sec-
onds to process frame (Spf) for both hardware devices tested. The I5-3210M CPU
is between twice to four time more efficient at running crown monitoring algorithms
than the Atom E3825 CPU.

3.1.2.1 Results

Basic image pre-processing workload can easily be handled by low compute devices

like gateway devices. This is the case for the crowd density algorithm that doesn’t

require advanced computations. However when the complexity of the algorithm

increases there is a significant difference between the two CPU machines. It shifts

from an order of magnitude of ×2 to ×4.

This increased difference in performance can be explained by (1) the increased

complexity, and (2) the memory requirement. More complex algorithms usually

imply more mathematical operations also called FLOPs (floating-point operations).

This has a direct impact on the processing time as it is bound to the device com-

pute power, the CPU in our case. Because CPUs are in charge of sequencing logic

tasks, they have only a limited amount of power dedicated to pure mathematical

computation. That explains the big difference between basic image processing and

deep learning algorithms. Note that the high number of FLOPs induced with deep

neural networks is the reason why GPUs are used for training and inference. There-

fore having only CPU power available at inference time is still a major bottleneck

for executing advanced deep learning applications. The other cause for slowing the

frame-per-second rate is the size of the image we want to process for two reasons.

First, a larger image implies more FLOPs as every pixel needs to be processed.

Second, it will flood the memory which can greatly reduce the speed of processing

images and the algorithm cannot fit into the memory at once. In Figure 3.3 we show

how reducing the input size accelerates the processing time of the crowd counting

54

Chapter 3

Figure 3.3: Impact on reducing the image input size on the speed. The bigger the
data input size, the higher the number of compute operation will be and thus the
algorithm will require more compute power.

algorithm. The bigger the data input size, the higher the number of pixels in the

input image will be and thus the number of mathematical operations required to

process the image will increase. However, some algorithms are bound to process only

a specific size of data input, moreover by decreasing the size of the input data, we

also decrease the quality of the image resulting in a loss in accuracy. Thus reducing

the input size does not constitute a reliable approach to speed up the algorithm.

3.1.3 Deploying video-processing in real-world environment

Video processing at the edge has already been integrated into several smart city

applications such as smart lights systems (Veena et al., 2016). Deployment at

the edge presents many advantages, mainly regarding application responsiveness

and data storage and privacy. Edge computing has an important role to play in

sustainable data management. For many years it was considered infeasible because

of its computational limitations but with the progress of technology, it is now possible

to execute advanced processing at the edge of an IoT network.

Carefully designing the data pipeline, where the processing is balanced between

cloud and edge computing, is a key element for smart applications and several pa-

rameters need to be taken into account. When designing a solution the real-time

requirement and the sensitivity of the data should be carefully considered to choose

55

Chapter 3

the right trade-off.

For example, from a crowd monitoring perspective, most CCTV cameras cap-

ture only one image per second. When computing crowd density or crowd counting

real-time processing (approximately 25 frames per second) is not crucial. Extracting

those features every half minute is sufficient. However, other applications like au-

tonomous driving require extreme responsiveness and therefore the computational

limitation of the edge device along with network latency is an issue.

Regarding data privacy, video analytics at the edge has many benefits. But the

raw images captured by CCTVs potentially contain personal data. However, to

perform data-driven decision making, only high-level representations of the data –

the density of the crowd or the activity of the crowd – is needed. Computing this

information at the edge reduces the cost of using cloud services and ensures better

anonymity of the data.

Therefore, how can we improve upon existing deep learning algorithms to make

them more efficient in an edge scenario? In the next section, we will review different

ways to reduce the computational cost of deep neural networks.

3.2 Reducing computational cost

In their current state, without any adjustment of the model architecture, deploying

deep learning applications in production with limited compute power is challenging.

For that reason, cloud platforms constitute an ideal choice to perform such heavy

compute workloads. But this quickly becomes expensive financially, and despite ac-

tive effort from cloud providers to create carbon-free data-centres, the environmental

footprint of deep learning algorithms keeps increasing and constitutes a major con-

cern (Lacoste et al., 2019) – GPU hardware like the Nvidia V100 GPU or most

recent RTX 3080Ti require respectively 300W and 350W power for the graphical

processing unit alone. This is not only the case for computer vision algorithms as

demonstrated in the previous section, but it also holds true for language models

where state-of-the-art model GPT-3 contains up to 175B parameters and requires

56

Chapter 3

several GPUs not only to train, but to run inferences as well just to store the hun-

dreds of gigabytes for the parameters (Bender et al., 2021). Therefore, there is an

equal need for pruning on large networks to reduce the size of the models.

To understand how to make deep neural networks more efficient, we first need to

understand what causes their high computational cost and what hardware settings

contribute most to the current limitations.

3.2.1 Measuring computational cost

As mentioned previously in Chapter 2 Section 2.1.3.1, two factors that cause bottle-

necks for running deep algorithms are: (1) the number of mathematical operations –

computational cost, and (2) the size of the deep network – memory footprint. Both

are dependant on the neural network architecture and parameterisation, thereby

increasing the computational cost and complexity of AI applications. To make deep

learning more efficient in order to run inference on low power devices, we need to

minimise the use of computational resources by cutting down on the number of

mathematical operations, memory usage, or both.

3.2.1.1 Floating-point Operation (FLOP)

Deep neural networks are a succession of compute units organised in multiple layers

interacting with one another. In Chapter 2 we described the mathematical back-

ground for training or running deep learning models. The computational cost for ex-

ecuting those arithmetic operations can be quantified using FLOPs. Floating-point

operations is a measure to quantify the number of any mathematical operations

(addition, multiplication, etc.) between two float numbers – float being the default

representation for neural networks parameters. Therefore, the speed for executing

a deep learning algorithm will depend on how many FLOPs per second the hard-

ware can execute. This information is usually referred to as FLOPS (FLOPs per

Second)1. This computes power is one of the main distinctions of the performance

1FLOPs - floating-point operations — FLOPS - floating-point operations per seconds

57

Chapter 3

between CPUs and GPUs that makes GPUs more suitable to handle deep learning

operations, as shown in Figure 3.4.

Figure 3.4: Compute performance evolution over the years of GPUs and CPUs mea-
sured in GFLOPS. Nowadays there exist even more powerful GPUs with the deep
learning standard Nvidia V100 reaching 7 teraFLOPS in double-precision mode. It is
a no match compared to CPUs arithmetical compute power. Reproduced from Karl
(2013).

The choice of neural network architecture plays a central role in the overall

number of FLOPs per model. The number of parameters directly influences the

number of mathematical operations but modern architectures often possess custom

blocks that may increase the FLOP complexity (e.g., residual blocks, convolution

operation, see Chapter 2 Section 2.2.1.2). For instance, to account for local spatiality

in computer vision problems, convolutional operations are used. They consist of

filters being applied to small patches of the image and slide upon the entire image.

Because of this redundancy, they increase the number of FLOPs compared to a

simple fully connected layer where the mathematical operations are only computed

once.

Note also that the number of FLOPs will differ depending on whether we are

training or just running inference on the model. The reason is that when training we

have two additional steps to compute the gradients and the update of the parameters,

58

Chapter 3

while in deployment we only care about the forward pass, aka the model prediction.

However, over-parameterisation not only impacts the number of FLOPs, but also

the memory requirement for deep networks.

3.2.1.2 Memory Usage

The memory requirement of deep learning models can be very demanding. During

the training phase, we need to store in memory the directed acyclic graph (com-

putational graph) referencing the value of the different parameters in the network

and their relationship for the gradient descent steps. In addition, we also need to fit

batches of data into the memory for a stochastic optimisation approach (see Chap-

ter 2). For inference, we only need to retain the parameters as the data are usually

processed one at a time, and there is no need to compute the gradients to update

the parameters.

Although we only need to store the model parameter, current state-the-art mod-

els can easily exceed 100 Billion parameters, which is likely to cause issues on low

powered or smart devices where memory is limited. Even when the size of the

model is more reasonable – around 100 million parameters, it still requires approxi-

mately 500MB to store the model. Parameters during training are usually encoded

as float32 bits (full-precision) as it encodes a wider range of number resulting in

more precise calculus. It is possible to lower the bit precision to reduce the mem-

ory requirement and accelerate the compute throughput, for instance one can shift

to 16bits or 8bits to gain some storage space during inference without loss in per-

formances (Vanhoucke et al., 2011). However when training lower precision might

impair the training, especially during the gradient update as it can cause low gradi-

ent values to be zero-out, thus leading to wrong weights update. To overcome this

issue, it is possible to use Automatic Mixed Precision (AMP) where 16-bits (half-

precision) is used during the forward pass, while 32-bits (full-precision) is kept for

the backward pass (Zhao et al., 2019b). Note that some research is even lowering the

bit precision further during training time using binary weights during the forward

59

Chapter 3

pass (Courbariaux et al., 2015)

Furthermore, the memory storage requirement can be a bottleneck to maintain-

ing deep learning applications when pushing updates with a modification of the

model to the device. When deploying AI applications on remote devices like smart-

phones, the large model size (MB) can result in high energy consumption, draining

the device battery but also consuming excessive internet data to keep the model

up-to-date.

3.2.2 Deep learning model compression

Whether for training or inference, over-parameterisation in deep network architec-

tures is a major impediment resulting in high computational requirements. This

causes disquietude about the sustainability and accessibility of deep learning tech-

nology. High compute hardware is expensive, evolves quickly and reinforces dispar-

ities between practitioners who can afford it and those who cannot. This also raises

concerns about the life span of specific hardware that quickly becomes obsolete for

running new state-of-the-art deep learning models. Finally, this also hinders the

deployment of deep learning models in real-world settings in the long run.

Inspired by signal processing research, researchers have thus explored and devel-

oped techniques to reduce the parameterisation overhead of deep learning models,

trying to compress the model architecture so it can fit within the compute limita-

tions of low-power devices. There are three ways one can compress a neural network

architecture, (1) inducing sparsity within the matrix representation of the parame-

ters to remove the less useful parameters; (2) aggregating or clustering parameters

together; or (3) implementing more efficient hardware-oriented architectures.

3.2.2.1 Pruning

Because deep neural networks are over-parameterised, a straightforward way to re-

duce the size of the network is to remove parameters that have little to no impact on

the output prediction. This type of compression approach is called pruning. Pruning

60

Chapter 3

can be applied in an unstructured way, where parameters are considered individu-

ally (Han et al., 2015a), or in a structured way, where parameters are removed in

blocks (Liu et al., 2017; Li et al., 2017; Huang & Wang, 2018). Chapter 4 will be

dedicated to presenting pruning mechanisms in depth.

By removing parameters from the network we induce sparsity in the structure

(matrices with a large proportion of zero values). It is worth noting that if we remove

parameters in an unstructured way, we do not necessarily reduce the compute load of

the deep learning model because we do not modify the architecture and still need to

perform the operation with the zero values and we only reduce the memory storage

requirement. On the other hand, structured pruning is more appropriate to reduce

the computation as it removes entire parts – filters, learning channels – from the

model and can be combined with software optimisation to produce a smaller and

faster compact architecture.

3.2.2.2 Quantisation & Factorisation

Another approach to network compression is to reduce the number of parameters

by aggregating them together. Quantisation, the action of clustering parameters,

can be used to lower the precision of the parameters’ encoding. Weights can be

aggregated together by low-rank factor compression, where the aim is to reduce

the rank of the weight matrices, somewhat similar to what is done in principal

component analysis (Denton et al., 2014; Alvarez & Salzmann, 2017). Or one can

cluster close weights together (Han et al., 2015a). To some extent, this can be

applied to shift the weight representation (real number) to binary [0;1] or ternary

weight [0;1;-1] for even faster inferences (Courbariaux et al., 2015; Alemdar et al.,

2017).

Quantisation or factorisation model compression directly shrinks the model ar-

chitecture as opposed to unstructured pruning. It is a very efficient compression

approach to reduce compute workload on low-power devices. It can also be used in

combination with other compression methods to further reduce the model footprint.

61

Chapter 3

However, this approach is difficult to apply during the training phase.

3.2.2.3 Distillation & NAS

Finally, to compress deep neural networks, one can directly design or employ hardware-

oriented architectures through Neural Architecture Search (NAS) or distilling the

knowledge of a large network into a smaller, more compact network. NAS can

produce a very efficient network. For

instance simple tricks can be used to speed up inferences such as separate con-

volution operations to reduce latency induced by parameter sharing (Howard et al.,

2017, 2019). Nowadays, tools can help find efficient architectures for constrained low-

power devices, such as Mobile AutoML (Stamoulis et al., 2020) or MicroNets (Ban-

bury et al., 2021).

Knowledge distillation offers another promising approach to produce more effi-

cient model architectures, especially for NLP models where the number of parame-

ters easily exceeds 1 billion. For such large models trying to compress the original

model architecture following other approaches can be challenging. We might not

be able to afford to retrain the original model and it is not guaranteed that this

will reduce it enough to be efficient. We can leverage those issues by transferring

the knowledge of the original network into a smaller more compact network through

distillation (Hinton et al., 2015).

3.2.3 On Hardware limitations

Deep learning research is now sufficiently mature for deployment in large scale real-

world applications. However, the computational complexity of deep learning models

requires them to be optimised if they are to be run on constrained devices. There

exists a wide variety of methods to reduce the complexity of deep neural networks,

but is compression enough to run deep learning models efficiently on low-power

devices? In this section we briefly review the state of hardware compute power for

AI applications and the progress made over the recent years.

62

Chapter 3

3.2.3.1 DeepLO: Deep Learning Orchestration

Figure 3.5: DeepLO testbed pipeline. Workloads are deployed on different hardware
through docker containers. Different metrics are collected and stored into a database
to run deeper analytics off-line.

In a smart environment, many low-powered devices are interconnected together

to exchange data and enable monitoring of the environment. When deploying a

deep learning application, we need to consider wisely where we place the analytics

workload as not all devices are capable of handling it compute-wise. The Deep

Learning Orchestration (DeepLO) project run in collaboration with Intel Ireland, is

looking at characterising the behaviour of different Deep Learning workloads with

different levels of complexity, across heterogeneous Intel Architectures to better

anticipate their placement at the edge. Different levels of compression induced by

channel pruning (Liu et al., 2017) were tested on two computer vision architectures:

a ResNet and a VGG architecture. The different workloads were tested over a wide

range of Intel hardware with different CPU compute power – the list of hardware and

their characterisation is detailed in Appendix A.2, Table A.2. The main goal in this

project was to find useful metrics that operate as key indicators for characterising

the workload behaviour and complexity to better anticipate their performance on

low-power devices and thus deploy them on the most appropriate hardware. The

experimental setup is pictured in Figure 3.5.

For each of the two network architectures, VGG19 (Simonyan & Zisserman,

2015) and Resnet20 (He et al., 2016a), the models were compressed with ratios

63

Chapter 3

Figure 3.6: Frame per second (fps) ratio for different workloads – levels of compres-
sion (colour) – for different model architectures (columns) on the various hardware
tested (rows). The behaviour of different workloads is not consistent across different
hardware, especially for ResNet-20 workloads. We can observe good fps rates on
i5nuc and i7nuc, but on fpr1 and fpr2, the performances are worst than VGG19
while being less computationally demanding (see Table 3.3). up2 hardware is not
powerful enough to handle any workload, while ResNet-164 is too complex to be
handled efficiently by any hardware. Note that the sudden drop offs observed on
the ResNet20 is due to system issues.

64

Chapter 3

from 10% to 70%. In addition, we tested a Resnet-164 architecture to assess the

performance of a very deep and complex network. Figure 3.6 displays the frames-

per-second processing rate for the different levels of compression (lines color) for

different architecture (columns) obtain when running experiments on each of the

different devices tested (rows). The experiment consisted on running CIFAR10

image classification task processing one image at a time.

We see that different architectures have very different behaviours. Compression

seems to have a much more significant positive impact on VGG19 architectures

compared to Resnet20 architectures. This can be explained by VGG19 being far

more over-parameterised (39M parameters) than Resnet20 (1.7M parameters), thus

easier to compress. VGG19 also obtains a surprisingly better overall FPS rate on

certain architectures (frp1 and frp2 – 1st and 2nd row) despite its high number of

parameters and FLOPs (see Table 3.3). On very low compute device up2 – last row

– all workloads behave equally bad. The typical behaviour we would expect on a

hardware device is the one from i5nuc and i7nuc, where the lower the complexity

the better the processing performances (fps rate).

To understand what causes such disparate results between VGG19 and Renet20

models on frp1 and frp2, two architectures with a similar number of layers, we

need to investigate further hardware metrics. Table 3.3 summarises the complexity

of each of the deep learning workloads. Resnet20 architecture is far less complex

than VGG19 and thus the difference in behaviour on frp1 and frp2 hardware can-

not solely be reduced to a compute-bound, where the algorithms are limited by

the compute availability from the CPU. Unlike VGG architectures, Resnet archi-

tectures have residual connections. Residual connections were designed to avoid

vanishing/exploding gradient problems that arise when training very deep networks.

For instance, VGG architectures with greater than 19 layers become challenging to

train properly because the gradient signal vanishes and becomes 0, preventing the

network from learning. To overcome this, residual blocks implement a skip connec-

tion to map the layers in between and allow the gradient to flow properly (see 2,

65

Chapter 3

VGG19

Pruning Ratio (%) Best Accuracy (%) total parameters Size (MB) GLOPs

10 92.89 34.3 M 131 0.35
20 92.89 30.3 M 116 0.31
30 92.89 26.9 M 103 0.28
40 92.89 24.1 M 92 0.25
50 92.64 21.8 M 84 0.24
60 84.92 20.6 M 79 0.23
70 10.00 19.6 M 75 0.21

Resnet20

Pruning Ratio (%) Best Accuracy (%) total parameters Size (MB) GLOPs

10 93.94 1.5 M 6 0.22
20 93.66 1.3 M 5 0.20
30 93.66 1.1 M 5 0.18
40 93.74 1 M 4 0.16
50 93.90 0.9 M 4 0.14
60 93.46 0.7 M 3 0.12
70 93.38 0.6 M 3 0.10

Table 3.3: Comparison of the properties of different compressed workload for VGG19
and Resnet20 models. Resnet20 is much lighter model to run compare to VGG19.
Compression can greatly reduce the number of parameters and FLOPs to help deploy
deep learning workload on constrained devices.

Section 2.2.2 for more details). This comes at a low extra compute cost but in-

creased memory requirement as we need to retrieve and connect data from different

layers through residual connections. We can hypothesise that Resnet workloads are

mostly memory bound as their performance is limited by the memory required to

store working data. This could partly explain why Resnet20 models have a slower

FPS rate on certain constrained devices where memory management differ.

frp1 and frp2 hardware unlike i5nuc and i7nuc, have a smart cache memory con-

trary to an l2 cache memory. Intel smart cache technology allocates cache memory

dynamically to the core that is the most active, while l2 cache memory divides the

cache available equally amongst all cores. As a result, Resnet architectures cannot

run efficiently on the different cores as certain cores will be limited in memory.

When monitoring CPU utilisation on a very deep architecture workloads (Resnet164)

verses workloads from a smaller architecture (VGG19) – Figure 3.7 – we can notice

that the overall CPU usage is in close range, between 90% and 95% except on frp1

66

Chapter 3

hardware which suffers from memory management issue.

Figure 3.7: CPU utilisation (in %) for different compressed workloads for VGG19
(top row) and Resnet20 (bottom row) on different hardware (columns). We can
notice that VGG19 is fairly consistent on all devices whiles Resnet20 fluctuates
especially on frp1. up2 does not have the compute power required to handle any of
the different workload properly.

Overall, characterising deep learning workload is not as straightforward as it

seems and the number of parameters and FLOPs are not sufficient to predict the

behaviour on CPU-based devices. Deep learning workload is not only compute-

bound but also memory-bound as proven by Resnet workloads. Better monitoring

of deep learning workload through robust hardware metrics and improvement on

the hardware side (memory cache) is essential to developing more efficient AI appli-

cations.

3.2.3.2 Next Gen hardware

The limited arithmetic compute power in CPUs, and the restricted or dynamic mem-

ory capacity in low-power devices greatly impedes the deployment of AI applications

in IoT settings. Over the recent years, there has been a huge increase in compute

power to accommodate training and development of deeper, better performing deep

learning models. The deep learning era has accelerated and motivated the research

and development of more efficient compute devices like GPUs, and even led to the

deployment of more specialised arithmetic compute devices, Tensor Processing Units

67

Chapter 3

(TPUs). However both types of devices require high energy throughput and cooling

systems, thus they cannot be deployed on low-power edge devices.

To overcome those limitations, researchers have been looking into the develop-

ment of specialised hardware to fit TinyML, that is, the action of running heavy

compute machine learning workloads on tiny low-power devices. Nowadays smart-

phones are equipped with neural processing units dedicated to running deep learning

inference more efficiently. This greatly accelerated the adoption and deployment of

deep learning applications. The emergence of new specialised hardware such as

the Intel Movidius compute stick, Nvidia Jetson, or software libraries such as Ten-

sorRT or PytorchLite contributes toward the adoption of AI in our everyday life

(see Reuther et al. (2020) for an extensive survey).

3.3 Chapter Summary

Deep Learning offers great potential to interpret and extract knowledge from a wide

variety of sensor data. It has proven capable of reaching human-level performance

on computer-vision tasks and has great potential applications in smart IoT environ-

ments such as smart cities.

In this chapter, we presented a use-case application of deep learning in a real-

world environment. We studied how to deploy crowd monitoring analytics in a

smart stadium. Traditionally, such workload would be processed using a cloud-

centric approach. But the benefits of offering unlimited compute resources comes

at the cost of being reliant on a 3rd party and limited by internet connection and

bandwidth. Despite being desirable for managing deep learning workloads, it may

also increase privacy threats as data needs to transit to a third party, and is also a

major drawback for responsiveness.

A middle ground is to balance the analytics between the edge, close to the point

of data capture, and the cloud, where deeper long-term analytics can be performed.

However, at the edge, compute power may not be sufficient for AI algorithms and

running deep learning workloads is highly challenging. As a result, researchers have

68

Chapter 3

developed compression methods to reduce the complexity of deep neural networks

and developed specialised hardware for more sustainable and efficient edge process-

ing.

For Deep Learning models to be run on low power devices we need to reduce

their complexity. For that, there exists a wide variety of approaches to compress

the model architecture and make it less demanding in terms of computational re-

sources. However, compressing the architecture only, may not be sufficient to enable

more efficient AI on low-power devices. More efficient memory management is also

required.

We presented a comparative study of different deep learning workloads with

different levels of complexity and demonstrated that they are not solely compute-

bound but also memory-bound. Architectures with specific memory requirements

such as Resnet architectures, appear to be very sensitive to the type of cache mem-

ory. Dynamic cache memory allocation has the potential to negatively impact deep

learning workloads behaviour as the memory between the different cores is not equal,

inducing disparities between the processing capabilities.

There has been a lot of progress towards reducing the cost of inference for deep

learning models including the development of new hardware and software such as

TPUs or Intel Movidius chip. But what limits the compute complexity in deep

learning in the first place is the overhead caused by parameterisation. The bigger the

model, the better it can learn. However, with this comes an increased requirement

for computation. This is not only harmful to inference, but also for training as

it creates disparities in access to compute resources and raises concern about the

sustainability and carbon footprint of deep learning research.

Inducing sparsity in a neural network through pruning has long been of interest

to tackle over-parameterisation. This not only compresses the model for faster

inference, but also helps us better understand what part of the network accounts

the most for learning, and how can we design more efficient architectures and training

methodologies. The remainder of this thesis will examine how to induce sparsity in

69

Chapter 3

a neural network through unstructured pruning. We will see how to design good

criterion estimators to determine which parameters to be discarded, and study the

impact of heavily sparse networks on the performance.

70

Chapter 4

The state of sparsity and network

pruning

Neural networks are getting bigger, requiring increasing computational resources

not only for training, but also for inference. This has significant implications for

universal accessibility of the technology with high costs, potential environmental

impact of increasing power consumption and inability to use deep learning models

on mobile devices and low-power chips.

Pruning consists of reducing the number of parameters in a neural network by

removing redundant or low-informative parts while preserving the original network

performance. To determine which part of the network can be discarded, the impor-

tance of each individual or group of parameters is measured based on some pruning

objective. Pruning objectives define how the importance of parameters is measured,

it can look at removing the weakest connections – removing parameters with the

lowest absolute magnitude, preserving the loss trajectory between the original and

pruned model – removing parameters that contribute negatively to the loss using a

Taylor approximation, or removing redundant filters by computing similarity score

between filters. The ultimate goal is to reduce considerably the compute load while

preserving the original network accuracy.

Pruning often constitutes a good entry point for compressing large neural net-

71

Chapter 4

works. It is a simple method that greatly reduces the number of parameters which

can be highly beneficial in addition to other compression techniques such as quanti-

sation for better compactness. However, pruning can also be used as a tool to better

understand certain training specificity. Do we need over-parameterised models? To

what extent does increasing the size lead to better results? Indeed, not only does

pruning reduce the complexity of a model, but it can help identify what parts of the

network are getting the most attention during training to build better architecture

or training procedures.

This chapter presents an overview of the state of sparsity in deep neural net-

works, with a focus on unstructured pruning applied to computer vision problems.

Section 4.1 introduces the core methodology to induce sparsity in a network with

pruning, while in Section 4.2 a short history of unstructured sparsity will be pre-

sented highlighting major advancement in the field. Finally, Section 4.3 summarises

the different frameworks developed over the years compared to one another. This

chapter gives the reader a general appreciation for the complexity of pruning re-

search. While the vocabulary present in this chapter was chosen to align with Hoe-

fler et al. (2021) sparsity review paper, the equations and graphs were created by

the candidate as a visual aid for presenting the pruning literature.

4.1 Pruning methodology

Pruning can be interpreted as a mechanism that induces sparsity in a dense network

architecture to reduce the computational overhead while maintaining good prediction

accuracy.

In its original state, a deep neural network is at maximum capacity, ie. all the

nodes and connections are active. This state is referred to as dense network. To

reduce the complexity of the original network, parameters can be removed from the

architecture or deactivated to lessen memory requirement and compute load. This

type of configuration, where lots of parameters have a zero-value, is called sparse

network in analogy to the mathematical definition of sparse and dense matrices.

72

Chapter 4

Recall that in deep neural networks, parameters values are stored under matrices

or tensors. A matrix is said to be sparse when a large majority of its entry have

zero-values: (see Equation 4.1).

dense =


a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

 ; sparse =


0 a1 0 0

0 a5 0 a7

a8 0 0 0

 (4.1)

4.1.1 Pruning masks

In practice, pruning can be seen as finding and applying a binary mask m ∈ {0, 1}

to the parameters θ such that θ+∆θ = θ⊙m, where ⊙ is the element-wise product,

and θ the neural network parameters.

The first step is to compute a saliency score for all the parameters considered

for pruning based on the chosen pruning objective. Then, parameters are ranked

in order of importance and the k% with the smallest saliencies are masked-out,

where k is a hyper-parameters corresponding to the desired compression ratio. To

remove the parameters, a threshold corresponding to the kth most salient value is

computed, the associated mask can then be generated by masking out – set to 0

– the parameters that fall below the threshold value, whereas the ones above are

kept – set to 1. Then the mask is applied to the dense model to obtain the sparse

network. Figure 4.1 summarises the different pruning steps.

Pruning almost always results in a loss in accuracy. To recover good performance

the sparse network is usually fine-tuned a couple of epochs. The choice of hyper-

parameters is crucial during the fine-tuning phase of the pruned network as it can

greatly influence the end performance of the pruned model. We will further discuss

re-training strategies in Section 4.2.

73

Chapter 4

F
ig
u
re

4.
1:

Il
lu
st
ra
ti
on

of
p
ru
n
in
g
m
et
h
o
d
ol
og
y
w
h
er
e

1 3
of

th
e
p
ar
am

et
er
s
ar
e
re
m
ov
ed

p
er

la
ye
r.

θ
i
re
p
re
se
n
t
th
e
w
ei
gh

t
m
at
ri
ce

fo
r

p
ar
am

et
er
s
θ
at

la
ye
r
i.

F
ir
st
,
th
e
sa
li
en
cy

m
et
ri
c
is
co
m
p
u
te
d
,
p
ar
am

et
er
s
ar
e
th
en

ra
n
ke
d
b
y
or
d
er

of
im

p
or
ta
n
ce

–
in

th
is
ex
am

p
le

th
e

h
ig
h
er

th
e
b
et
te
r
–
an

d
th
e
on

es
fa
ll
in
g
b
el
ow

th
e
th
re
sh
ol
d
ar
e
re
m
ov
ed
.
A

p
ru
n
in
g
m
as
k
is

d
er
iv
ed

fr
om

th
e
p
re
v
io
u
s
ra
n
k
in
g
w
it
h
0

va
lu
es

fo
r
p
ar
am

et
er
s
to

b
e
d
is
ca
rd
ed

an
d
1
fo
r
p
ar
am

et
er
s
re
m
ai
n
in
g
in

th
e
m
o
d
el
.
A
n
el
em

en
t-
w
is
e
p
ro
d
u
ct

b
et
w
ee
n
th
e
d
en
se

n
et
w
or
k

an
d
th
e
p
ru
n
in
g
m
as
k
is
ap

p
li
ed

to
ob

ta
in

th
e
sp
ar
se

n
et
w
or
k
.

74

Chapter 4

4.1.2 Pruning criterion and saliency

What ultimately determines which parameters are to be discarded, and thus the

sparse model performance, is the saliency score or pruning criterion. A pruning

criterion computes an importance measure for each element considered for prun-

ing based on some pruning objective. Pruning objectives can be seen as rules or

properties to identify unimportant parameters. This can vary from reducing re-

dundancies by computing cosine similarities between filters, removing unimportant

learning channels by monitoring the γ parameters of the batch normalisation lay-

ers, or simply identifying parameters that contribute poorly to the original network

optimisation through loss preservation.

Despite the central role importance measures play in pruning, the performance of

sparse models is almost always assessed measuring how far a network can be pruned

while preserving good accuracy performance. Only a few little works have tried to

investigate pruning criteria further investigating their core similarity Lubana & Dick

(2021), or their robustness to adversarial attacks Hooker et al. (2021); Liebenwein

et al. (2021), but no work so far has investigated the soundness of pruning objective.

Does better preserving the original network loss or gradient function produces good

sparse models? This question, alongside a detailed presentation of unstructured

pruning criteria, will be studied in Chapter 5.

4.1.3 Structured versus Unstructured pruning

Pruning can be applied in a structured or unstructured way. In the case of a fully-

connected network, two type of elements can be removed: the connections, aka the

weights or the neurons – biases are ignored in this example. Figure 4.2a pictures the

action of pruning neurons, while Figure 4.2b illustrates the action of pruning weights.

What differs between both approaches is the element considered for computing the

importance measure. Note that parameters belonging to the last layer are not

usually considered for pruning as they correspond to the classifier and should not

be altered.

75

Chapter 4

When a neuron is removed an entire row or column of the weight matrix, depend-

ing on whether the neuron belongs to the input or output layer, is set to zero-values.

This type of pruning where parameters are removed in blocks is called structured

pruning, as sparsity follows a structured pattern. On the other hand, when weights

are removed, zero-values are induced sporadically within the weight matrices and

no specific sparsity patterns can be observed. This is called unstructured.

(a) Structured pruning, neurons are removed from the network resulting in row or column
being zero-out in the weight matrix.

(b) Unstructured pruning, weak connections are removed from the network resulting in
associated parameter being zero-out.

Pruning can be applied to a wide range of architectures opening the possibility

of elements that can be considered for pruning. For convolutional architectures

that include convolution operations or batch normalisation regularisation, structured

pruning can be applied to target filters (Li et al., 2017), channels (Liu et al., 2017)

or even entire layers could be considered for pruning. Unstructured pruning however

always concentrates on removing weak connections from the network – weights – no

matter the type of architecture and thus unstructured pruning approaches are more

flexible across diverse architectures.

76

Chapter 4

4.1.4 Pruning ratio and scope

In addition to the pruning criteria that defines how to estimate the importance

of each parameter, two more hyper-parameters are required to proceed to prune

the network: the ratio and the scope of pruning. How many parameters should

be removed for the pruned network to be efficient? Should the same amount of

parameters be removed equally across all layers, or should the sparsity per layer

differ in order to improve the pruning?

4.1.4.1 Ratio

A pruning ratio defines how many parameters are removed. It should be high enough

to efficiently reduce redundancies amongst parameters, but low enough such that

the prediction performance between the original and pruned model is preserved. In

summary, picking the right pruning ratio corresponds to finding a trade-off between

preserving the original network performance and reducing the computational cost,

depending on the pruning motives. The main limitation when defining a pruning

ratio is damaging the architecture beyond recovery, this usually happens when one

or multiple layers collapse (Tanaka et al., 2020). The point of rupture directly

depends on the ratio of parameters remaining in the layer and varies in function of

the neural network architecture, the complexity of the task it is trained to solve, and

the pruning heuristic (Liebenwein et al., 2021; Hoefler et al., 2021). The more we

prune, the more we are at risk of breaking the network architecture. In practice, most

pruning ratios lie between 70% and 90%. Also, not pruning enough would result in

no gain in memory or compute wise, as the network would remain challenging to

run or train efficiently.

Unfortunately, it is not possible to predict the performance of the pruned model

prior to fine-tuning the pruned model and there is little research around that mat-

ter. Finding the right pruning ratio often requires a greedy exploration. Pruning

iteratively – which will be described later in this chapter in Section 4.3 – is a good

framework to explore different levels of compression.

77

Chapter 4

4.1.4.2 Scope

Pruning can either be applied at a layer-wise level, where the same ratio of param-

eters is removed from each layer. Or at a global level, where k% of parameters are

removed across all layers. The difference occurs when we compute the threshold to

determine which parameters are to be discarded, which is done either at the layer

level (only saliency scores of parameters from the same layer are considered), or

global level (all parameters are considered).

Layer-wise pruning has the advantage of controlling the damage resulting from

removing too many parameters from a specific layer of the neural network. As the

pruning ratio is applied uniformly across all layers, we ensure that enough parame-

ters are kept to prevent the layers from collapsing. However, this approach is very

weak in practice as it lacks the flexibility required to achieve better generalisation

and usually result in poor accuracy.

Global pruning is the most common procedure in practice and the one used by

default. Despite being more sensitive to high ratios of pruning, with the risk of

damaging the architecture beyond recovery, it offers better elasticity to modify and

adapt the model architecture. Note that some simple tricks could be enforced to

strengthen the robustness of global pruning by enforcing that a minimum percentage

of parameters are kept per layer. However, little researches have been conducted to

understand the impact of the remaining per-layer sparsity. Recent research indicates

that per-layer sparsity has a key role to play in pruning performance for deep net-

works (Frankle et al., 2021). When pruning is applied before training, the value of

the parameters does not matter but rather the ratio of unmasked parameters across

the different layers.

4.1.5 Reducing computation

The major difference between structured and unstructured pruning comes from their

ability to properly reduce the compute load.

Pruning can either remove low-informative parameters in groups (structured

78

Chapter 4

Figure 4.3: Illustration of compressed-sparse-row (CSR) storage requirements to
store sparse representation efficiently.

pruning) or individually (unstructured pruning). In practice, discarded parame-

ters are replaced by zero-values. If this always reduces storage requirement, it does

not necessarily lead to faster computations as the network still need to perform the

computations with the zero-values as mentioned before in Chapter 3 Section 3.2.2.

When performing pruning in a structured way, however, it is possible to either pro-

duce a smaller and more compact dense network – as chunks of parameters can be

removed at once (eg. learning channels, neurons, filters) – or use software libraries

specialised in sparse calculus to accelerate the computations. This type of approach

can significantly reduce the number of computational operations (FLOPs).

By default, Deep Learning models’ parameters are stored following a BitMap

(BM) scheme, where one bit per parameter is used to store the model parameters.

With sparse parameterisation, only the non-zero parameters are required. There

exists many tricks to store non-zero parameters: amongst the most common ones we

find Compressed-Sparse-Row (CSR) format (see Figure 4.3). It consists of holding

a row-pointer pointing onto any non-zero values and its associated column index in

form of arrays. In that configuration, 3 bits are required to represent one element.

The dense network needs to be compressed by a minimum factor of 3 if we want

to observe any storage benefit as there is a 1-2× overhead in storage for non-zero

values. In practice, this means a certain level of sparsity needs to be reached as more

bits per element is required for storage, usually high levels of compression around

≈ 90%. Other methods include Compressed-Sparse-Column (CSC) – the equivalent

of CSR holding column pointers, or Coordinate Offset (COO) – instead of pointers

79

Chapter 4

vector it simply holds the column and row index for every non-zero value.

If unstructured pruning doesn’t provide any direct gain in computation, recent

research tends to show that wide and sparse networks are better at learning and

generalising than their smaller dense counterpart produced by structured pruning (Li

et al., 2020; Golubeva et al., 2020). Moreover, unstructured pruning is a more flexible

approach that can reach a higher compression ratio in practice without suffering a

significant loss in accuracy. The field of sparsity in deep neural networks is recent

and in the coming years, hardware and software are more likely to be improved to

enable faster computation for sparse networks.

4.2 A short history of unstructured pruning

4.2.1 A way to reduce over-parameterisation

Early pruning work in deep learning can be dated as far as the late 90s (Hassibi &

Stork, 1992; LeCun et al., 1989). At that time, deep learning research was still in

its early stages and real-world applications were fairly limited. However, there were

already concerns about the complexity and size of deep learning models expected

to increase in the future, causing slower training and poor generalisation due to

the large amount of over-parameterisation. Both methods developed at that time,

Optimal Brain Surgeon (Hassibi & Stork, 1992) and Optimal Brain Damage (LeCun

et al., 1989), proposed to estimate the importance of parameters based on a quadratic

model of the loss and remove those that have the least influence on the loss. Those

methods will be presented in further detail in Chapter 5.

Despite promising results, the high computational costs for computing quadratic

approximations of the loss and the emergence of strong regularisation techniques to

tackle over-parameterisation – such as Dropout and Batch Normalisation described

in Chapter 2 – dismissed the need for such pruning approaches. Two decades later

interest in pruning was renewed with the desire to run deep learning applications

on low-power devices. After the ImageNet revolution in 2012 (Krizhevsky et al.,

80

Chapter 4

2012), and the rise of GPU-oriented training, training large models became easier

than ever and was followed by a quick jump in model complexity (see Chapter 1,

Figure 1.1). Deploying AI applications in production became problematic due to

computational constraints with the major drawback being the large number of pa-

rameters in modern deep learning models, thus the need for smaller models.

4.2.2 Deploying AI in productions

In 2015, Han et al. (2015a) proposed one of the first successful compression approach

to reduce significantly the size of deep convolutional neural networks and lessen the

computational cost to improve their efficiency for low-power devices. Their work re-

lied on a three stages compression pipeline involving pruning, to reduce the number

of weights, quantisation, to aggregate weights together and reduce their bits repre-

sentation, and an Huffman encoding on top of that to further reduce computations.

With their method, Han et al. (2015a) were able to reduce by ×49 the size of a

VGG16 model trained on ImageNet with only a 0.33% loss in top-1 accuracy.

Their work inspired many others to explore pruning as a simple tool to compress

deep neural networks with the emergence of structured pruning (He et al., 2017; Liu

et al., 2017) amongst different strategies to apply pruning.

4.2.3 Better understanding deep learning training

A second major breakthrough for pruning research happened in 2018 when an inter-

esting property of deep neural networks was discovered thanks to pruning research.

For a long time, it was believed that dense over-parameterised models were required

in order to train high performing networks, especially at initialisation to reinforce

optimisation procedures. Indeed, very sparse networks by definition could not learn

from scratch and therefore pruning could only be applied during or after training.

However, those two concurrent works showed that sparse neural networks could

actually be trained from scratch.

Liu et al. (2019) demonstrated that it was possible to re-train a pruned network

81

Chapter 4

from initialisation without losing accuracy. They compared the performance of a

pruned network after fine-tuning and when retrained from initial weights values.

They showed that for structured pruning, training from scratch was able to achieve

better results than fine-tuning for a wide range of models and datasets (CIFAR10,

CIFAR100 and ImageNet). For unstructured pruning though, pruned networks ob-

tained through one iteration of pruning (oneshot pruning) succeed to train from

scratch on smaller datasets (CIFAR10, CIFAR100) but failed to scale on larger

datasets (ImageNet).

In parallel, Frankle & Carbin (2018) proposed the following lottery ticket hy-

pothesis: within a deep neural network, there exists a sub-network (winning lottery

ticket) that when trained in isolation can reach similar performance than its origi-

nal dense counterpart. To find such winning lottery tickets, the authors proposed

to cyclic pruning framework that iteratively prunes a small portion of the weights

through magnitude pruning heuristic, and retrains the subsequent sparse model

from scratch until the desired trade-off – sparsity/performance accuracy – is met.

While their methods worked well on small scale datasets (CIFAR10, CIFAR100), it

failed to scale to more complex tasks (ImageNet). To overcome these limitations,

the same authors proposed to rewind the weights to a later epoch – where the sub-

network is more stable to SGD noise – rather than retrain from initialisation and

were successful at training a very sparse network from early training (Frankle et al.,

2019).

Those two works highlighted an important property of sparse networks: it is

possible to train very sparse networks from scratch more efficiently than their dense

counterpart with faster convergence rate and better generalisation. This opened up

new perspectives on training neural networks and attracted a lot of new researchers

to the field eager to better understand and explore deep learning training dynamics.

For a long time if was believed that reducing over-parametrisation would lead to

more robust models better at generalisation, however researcher Sara Hooker (Hooker

et al., 2020, 2021) demonstrated that it was quite the opposite. By removing pa-

82

Chapter 4

rameters from the original dense model, pruning was actually reinforcing existing

bias in the training data, producing models weaker towards adversarial attacks and

less fair. This is an important observation for the limitation of pruning and the

hidden benefits of over-parameterisation. If her research only studied the case of

magnitude pruning approach, in Chapter 6.2 we will explore fairness and pruning

for other unstructured pruning methods.

4.2.4 Complexity of pruning research

Network pruning has proven to be a simple method, easy to implement that can

produce very performing networks with a much lower computation cost. But it

can also be a great method to help understand training dynamics in order to build

performing models with a low compute cost and better generalisation. Because

of this duality, pruning research lies in between application-oriented and empirical

theoretical research, where goals and expectations are not the same.

Whether the model is pruned at initialisation or during/after training, pruning

is always followed by a retraining phase. This step is crucial as it enables the pruned

network to recover from potential loss in accuracy and re-adjust its connections and

learning representations. Originally, fine-tuning was held such that we would retrain

the sparse model from the point of pruning keeping the same hyper-parameters. But

recent researches have shown that hyper-parameters play a crucial role in the pruned

network performance, especially the learning rate (Renda et al., 2020; Le & Hua,

2021). In Chapter 6 we will expand upon the importance of more careful fine-tuning

of the pruned model.

Other researchers motivated by the theoretical aspect of pruning have attempted

to better understand pruning masks, to build stronger sparsity metrics but discov-

ered that masks are quite flexible and it is not yet quite clear what makes a good

pruning mask (Zhou et al., 2019; Paganini & Forde, 2020; Frankle et al., 2021).

But the theoretical aspect of sparse network also explore sparse optimisation (Evci

et al., 2020b,a; ab Tessera et al., 2021), training with sparsity in the data (Paul

83

Chapter 4

et al., 2021), neural architecture search (Stamoulis et al., 2020), etc.

On the other hand, application-oriented research seeks smaller computational

footprints, faster inference, more compactness. Those will be mainly centred around

structured pruning and software optimisation. But compression research lack a clear

benchmark and it is hard to compare pruning methods together (Blalock et al.,

2020).

4.3 Pruning Frameworks

There exists a wide variety of ways one can induce sparsity in a deep neural network

as briefly mentioned before. This section will review different pruning frameworks

developed over the years around unstructured pruning. Note that dynamic pruning

and ephemeral pruning are outside the scope of this study and will not be reviewed.

The reader is invited to check Hoefler et al. (2021) for more information.

4.3.1 One-shot

Figure 4.4: One-shot pruning. A straightforward way of removing parameters where
the model is pruned and train only once.

One-shot pruning is the action of removing parameters in one pass: the pruning

and fine-tuning of the pruned model is performed one time, hence the name one-shot

pruning (see Figure 4.4). This method has the advantage of requiring minimum extra

computations as the pruning cycle is only performed once. Thus, there is no overhead

in computing the importance measure multiple times or retraining the pruned model.

It can be applied any time during or before training but it is preferable to apply it

on a partially or fully trained model.

84

Chapter 4

When working with a high ratio of pruning if a too large portion of parameters

is removed at once, it might hinder the overall performance of the pruning heuristic

as we are more at risk of damaging the architecture. It might result in important

parts of the network – an entire layer or important connections – being deleted that

would not be otherwise. The architecture has a higher chance of being damaged

beyond the point of recovery. For this reason, this type of pruning framework is

not often used in practice when working with a high compression ratio. One-shot

pruning is most favoured in structured pruning when working with a fully trained

network and trying to reduce redundancies across filters for instance, but it has few

practical uses in unstructured pruning approaches.

4.3.2 Iteratively

Pruning large chunks of parameters at once carry the risk of damaging the network

architecture beyond recovery. A connection can be of low importance in presence

of neighbouring parameters, but when all are removed, the remaining connection

might become crucial for the prediction score of the pruned model. By using a high

ratio of pruning in a one-shot setting, there is a possibility that those important

connections are missed and removed from the neural network. A straightforward

solution to it is to remove parameters in small chunks multiple times, instead of

once. This is called an iterative pruning framework.

Parameters can be removed progressively throughout training as illustrated in

Figure 5. When using this type of approach, two hyper-parameters are introduced:

the frequency of pruning (n) and a pruning ratio scheme. The frequency of pruning

corresponds to the different epochs at which we should perform pruning. While

the ratio scheme will determine how many parameters to be removed during each

pruning iteration. Two common schemes are linear pruning, where the same number

of parameters is removed at each iteration, or exponential pruning, where fewer and

fewer parameters are removed. Exponential pruning is usually preferred in practice

as the fewer parameters remaining in the network, the more careful one should

85

Chapter 4

Figure 4.5: Iterative pruning. The cycle of pruning-retraining is performed n times
to iteratively remove small chunks of parameters at a time. By performing the
pruning cycle multiple time, the pruning heuristic adjust itself and we are able to
better preserve the network architecture.

select which parameters are to be discarded as the removal of a parameter can

highly impact the values of others neighbouring parameters (Chapter 5 will present

different pruning schedules in more details).

Iterative pruning prevent overhead in fine-tuning, as retraining of the pruned

model is done in parallel of pruning. It can provide a safety net when exploring high

pruning ratios as it offers the possibility to roll back to a previous pruning instance

to find the optimal trade-off between compression and performance accuracy. But

it requires estimating the importance of parameters multiple times. When simple

criteria that consist of removing the lowest weights magnitude are used to estimate

the importance of a parameter there are no significant additional costs, but for more

complex heuristics it can come at a higher computational cost.

For all those reasons – fine-grained selection of parameters, and safety-net to

high pruning ratio – iterative pruning is the most common one used framework in

practice (Zhu & Gupta, 2017; Frankle & Carbin, 2018).

4.3.2.1 Lottery Ticket Hypothesis

Iterative pruning framework is at the core foundation of the Lottery Ticket Hypoth-

esis briefly mentioned earlier (Frankle & Carbin, 2018). Instead of continuing to

train the sparse network from the point of pruning, the parameters are set back to

86

Chapter 4

their initialisation values and fine-tuned of the pruned network is done from scratch

(see Figure 4.6). By resetting the weights to their original values, or later in training

– rewinding (Frankle et al., 2019), the pruning heuristic is able to better estimate

the importance of parameters as the network can fully recover through a full cycle

of training. This framework was originally developed with computer vision models

(CNNs) using a magnitude heuristic – removing the weights with the lowest magni-

tude |θ|), but this framework has proven to be very flexible to other domain (Morcos

et al., 2019) including natural language processing (Chen et al., 2020), reinforcement

learning (Yu et al., 2020), or even semi-supervised and unsupervised learning (Chen

et al., 2021).

A major drawback of the iterative approach is that it is not cost-efficient. The

network needs to be re-trained from scratch multiple times before obtaining a good

sub-network sparse enough to lower the computational load. For instance, 15 it-

erations of lottery tickets iterations are required to prune the model up to 95.6%,

following an exponential pruning scheme with 20% removed each time as described

in the original paper, meaning the network has to go through 15 training/pruning

cycles. However, the lottery ticket framework constitutes a good baseline for better

understanding training and learning schemes of deep neural networks (Frankle et al.,

2021; Liebenwein et al., 2021).

Figure 4.6: Lottery Ticket framework. Similar to iterative pruning presented in
Figure 4.5, pruning is perform multiple times at the exception that weights are set
back to their values at initialisation prior to fine-tuning, training the sparse network
from scratch each pruning cycle.

87

Chapter 4

4.3.3 Multi-stage

To alleviate the extra computation induced by iterative pruning, pruning can be

performed multiple times without re-training the model in between. With a multi-

stage pruning approach, the importance measure is adjusted to the state of the

neural network and we can remove small chunks of parameters and obtain a fine-

grained pruning mask with only one pass of fine-tuning (see Figure 4.7).

Figure 4.7: Multi-stage pruning. Similar to iterative pruning, the pruning is per-
formed multiple times but we do not retrain the sparse model in-between each
pruning steps. This lower the computations while removing parameters little at a
time.

Magnitude pruning importance measure removes the least salient connections

deduced from the parameters absolute value |θ|. To adjust |θ| heuristic after re-

moving a small portion of the parameters, the pruned model need to be retrained

otherwise the magnitude of individual parameters will remain the same. However,

some other unstructured pruning criteria based on loss or gradient approximation of

the dense neural network can be updated. For these, it is possible to re-estimate the

pruning heuristic without retraining the model by recomputing the loss or gradient

approximation with the sparse model prior to re-training its weights. This produce

more reliable saliency scores and better preserve the network architecture.

The number of pruning stages that one should perform is not properly defined.

In theory, the more the pruning iterations, the better the pruned model should

be. In the literature, researchers usually perform 100 iterations of pruning but

this number is often overlooked (Tanaka et al., 2020). Moreover, some pruning

criteria can be expensive to compute and despite reducing the need for multiple

iterations of training - fine-tuning, this might still hinder the overall compute time

88

Chapter 4

spent pruning. The impact of performing multiple stages of pruning will be further

discussed in Chapter 5.

4.4 Chapter Summary

This chapter presented an overview of the state of sparsity and network pruning.

In Section 4.1 the core methodology for inducing sparsity in a deep neural network

was introduced. Pruning consists of removing the least salient parameters from the

network while preserving the original (dense) network accuracy. The saliency of a

parameter is computed through an importance measure, also called pruning crite-

rion, derived from some pruning objective that determines what properties indicates

the usefulness of a parameter. Parameters to be discarded are then set to zero and

the resulting mapping is called a pruning mask. After obtaining a sparse model,

a fine-tuning or re-training is required for the model to recover any loss in perfor-

mance. Almost any type of parameters can be removed from the network, when

parameters are removed in chunks (neurons, filters, channel) we call it structured

pruning, on the other hand removing individual parameters (weights) is called un-

structured pruning. While structured pruning offers a greater reduction in terms of

computing operation, unstructured pruning is more flexible and can be applied to

any type of architecture.

Following this introduction to sparse networks, Section 4.2 presented a short

history of pruning research, highlighting major advancements in the field that lead

pruning to expand to other research interests, outside solely creating more com-

pute efficient models. Over years of research, pruning shifted from application-

oriented motives (lower computation costs, better generalisation, acceleration on

low-power devices), to consideration towards an empirical and theoretical under-

standing of deep neural networks (sparse training, dynamic training, role of pa-

rameterisation) through unstructured pruning. Nowadays the sparsity community

is scattered around between academia and industry with disparate problems often

sharing the same interest in network sparsity. Despite a growing community large

89

Chapter 4

enough, there is no common ground (lack of benchmark) or venue (audience) to

witness and share cross-cutting research problematics.

In this thesis, we focus on unstructured pruning approaches because of their

flexibility and great potential to help design better training schemes. A variety of

unstructured pruning frameworks were developed presented in Section 4.3. While

iterative pruning approaches prevent pruning from damaging the network architec-

ture beyond recovery contrary to one-shot pruning, it comes at the cost of multiple

pruning-retraining cycles that can quickly become a burden computationally. This

is a major computational drawback that practitioners cannot always afford to spend

in practice. Multi-stage pruning mimics an iterative pruning approach removing the

need for a fine-tuning phase between each iteration of pruning.

Globally there is a lack of understanding of what causes good performances when

pruning a deep neural network. Many factors can influence the performance of the

pruned model: the choice of pruning criteria, the pruning framework, epoch, ratio,

the retraining strategy, the hyper-parameters etc. Only a little research has been

done into understanding the influence of the learning rate (Le & Hua, 2021) or prun-

ing epoch (Frankle et al., 2020) but none has assessed the very foundation of pruning

criteria. The pruning criterion constitutes the first step toward building a sparse

architecture. To build more efficient pruning strategies, we need to understand what

in existing criteria helps build more robust pruned models.

In Chapter 5 we study the integrity of pruning criteria. We assess whether best

preserving the original, dense network functions and properties is a good strategy to

ensure good accuracy performance of the pruned model. In Chapter 6 we evaluate

the impact of parameterisation and sparse architecture beyond solely looking to the

accuracy performance in order to better understand the impact of inducing sparsity

in a deep neural network.

90

Chapter 5

Pruning Metrics

The goal of unstructured pruning is to remove weights from the network such that

the parameters vector representation after pruning is of desired sparsity κ ∈ [0, 1].

To do so, pruning criteria are designed to find a step ∆θ to add to the current

parameters θ, where θ ∈ RD, such that the ratio of parameters remaining after the

pruning step ∥θ+∆θ∥0 is equivalent to 1−κ. This can be interpreted as finding and

applying a binary mask m ∈ {0, 1} to the parameters such that θ +∆θ = θ ⊙m,

where ⊙ is the element-wise product. While doing so, the performance accuracy

between the original and pruned network should be maintained.

To find m, pruning criteria compute a saliency score for each parameter based

on some pruning objective that aims at preserving or improving certain properties

of the original network. For instance, one could wish to preserve the loss function to

maintain the training trajectory, or improve the signal propagation to ensure good

re-trainability of the pruned network. Parameters can then be ranked in order of

importance, and the ones with the smallest saliency scores are pruned – set to zero

(ie masked out from the network) – while the ones with the largest saliency are kept

unchanged.

In early pruning work, Optimal Brain Damage (OBD) (LeCun et al., 1989) and

later Optimal Brain Surgeon (OBS) (Hassibi & Stork, 1992), the importance of

each parameter was estimated by approximating the effect of removing it on the

loss function. This type of approach focuses on preserving the loss function and

91

Chapter 5

is known as loss-preservation criteria. Over the years, various heuristics have been

developed to prune the model more efficiently using different pruning objectives, in

addition to loss-preservation approaches (Lee et al., 2019; Molchanov et al., 2017,

2019), new criteria based on preserving parameters with high magnitude (Han et al.,

2015b,a; Zhu & Gupta, 2017), or looking at preserving the signal propagation of the

network through gradient information (Wang et al., 2020; Tanaka et al., 2020), have

been designed.

Each pruning criterion will remove a different set of parameters from the network.

This chapter is dedicated to reviewing the different unstructured pruning criteria –

magnitude, loss, and signal preservation –, and study the soundness and theoretical

limitation behind the design of each criterion family. How to select which parameters

to be discarded? How to improve current pruning objective and criteria? Does

preserving the original network function actually lead to better performing pruned

model? These questions are an overview of the questions that will be investigated

throughout this chapter.

If we were to design better unstructured pruning strategy, we first need to un-

derstand to which extent are existing pruning criteria good at producing efficient

pruned networks. To identify what characteristics of an importance measure leads

to good performing pruned models, we review and compare the major unstructured

pruning criteria designed over the years. First, all the different unstructured pruning

criteria developed over the years are presented and unified under a same umbrella

and split into three families: (i) magnitude-based, (ii) loss-preservation and (iii)

gradient-flow. Then, in a second time an empirical evaluation is conducted to assess

the integrity of the different approaches listed. Note that the work that appears in

this chapter is the candidate alone or joint work with colleagues at MILA (Univer-

sité de Montréal) that resulted in the following publication (pre-processing) Laurent

et al. (2020).

92

Chapter 5

5.1 Pruning criteria families

In unstructured pruning, there exists three main families of pruning criteria that

implement different pruning objectives: (i) magnitude-based, (ii) loss-modelling and

(iii) gradient-based criteria. The following section presents and describes the theo-

retical foundation behind each family.

Throughout this chapter, importance measures used to determine which param-

eters to discard will be defined by s for saliency. Pruning criteria will be referred to

by their acronyms defined in the header of each criterion section. For the reader’s

clarity, note that model can refer to either the neural network architecture (eg.

pruned model), or the mathematical model used for computing the pruning saliency

(eg. pruning model referring to the loss model or underlying model). In most cases,

model will refer to the second one except if stated otherwise.

5.1.1 Magnitude pruning

5.1.1.1 Pruning Objective

Magnitude pruning objective consists of removing the least salient parameters, or

connections, based on their absolute value. Connections in a neural network are

represented by weights are defined for a given layer l by the weight tensor θl. The

sensitivity of the signal flowing through the neural network is modified by the ac-

tivation units but also by the strength of the connections associated with it (see

Chapter 2, Section 2.1). Weak connections are synonyms of low signal intensity and

usually result in little information carried by these parts of the network, thus they

can be removed. When applied in an unstructured way, magnitude pruning consists

of removing the least salient connections (individual weights), or route, from the

network. Note that original pruning methods used outside deep learning, in graphs

theory or decision trees, generally employ magnitude as a pruning method.

93

Chapter 5

5.1.1.2 Magnitude Pruning (MP)

MP is a popular pruning criterion in which the saliency is simply based on the norm

of the parameter:

sMP
k = θ2

k (5.1)

The idea of removing parameters from the network was first introduced as

a regularisation tool to overcome over-parametrisation in fully-connected layers

(Dropout (Srivastava et al., 2014), Dropconnect (Wan et al., 2013)). Inspired from

the decision tree literature, parameters were randomly dropped during each training

iteration to reduce co-adaptation between neural units leading to more robust mod-

els. However, when convolutions layers were introduced (He et al., 2016a) dropout-

like methods showed their limitations and were not a strong enough regulariser

anymore (see Chapter 2, Section 2.2.2. This led to the creation of Batch Normal-

isation (Ioffe & Szegedy, 2015), a much stronger regulariser that normalises shifts

induced by training in small batches of data and is robust under spacial filtering

operations. It is only in 2015 that Han et al. (2015b) re-introduced the concept

of dropping low informative parameters in the context of pruning under magnitude

pruning.

Nowadays, despite its simplicity, MP has proven to work extremely well in prac-

tice (Han et al., 2015a; Gale et al., 2019), and is used in current state-of-the-art

frameworks (Renda et al., 2020; Frankle et al., 2021). As a result, MP constitutes a

strong baseline for comparison in pruning criteria literature.

5.1.2 Loss-modelling

5.1.2.1 Pruning Objective

Pruning is almost always followed by a fine-tuning phase. To preserve the network

performance after pruning, loss-modelling criteria aim at preserving the network

94

Chapter 5

trajectory dynamics by minimising the change in loss function between the pruned

and original model (Lubana & Dick, 2021) to ensure good retrainability of the pruned

model. In other words, Loss-modelling criteria try to find a step ∆θ such that the

loss in the pruned model L(θ+∆θ) does not differ significantly from the one of the

original model L(θ), leading to the following pruning objective:

minimize
∆θ

∆L(θ,∆θ)
def
= |L(θ +∆θ)− L(θ)| (5.2)

Directly solving this problem would require evaluating L(θ+∆θ) for all possible

values of ∆θ – ie. estimating the impact of removing every single parameter on the

loss individually, and removing the one that changes the loss the least – which is

prohibitively expensive for modern architectures where the number of parameters

easily surpass 100 million. To leverage this issue, the loss function is approximated,

usually using Taylor expansion, to rely on heuristics to find good solutions. In prac-

tice, common loss-modelling pruning criteria use either the first or second order of

the Taylor expansion to model the loss and estimate which parameters can be dis-

carded. For instance, early pruning work, Optimal Brain Damage (OBD) (LeCun

et al., 1989) and later Optimal Brain Surgeon (OBS) (Hassibi & Stork, 1992), pro-

posed to estimate the importance of each parameter by approximating the effect of

removing it, using the second-order term of a Taylor expansion of the loss function.

Later, newer methods based solely on the first-order term were developed (Lee et al.,

2019) to tackle pruning at initialisation. The authors stipulated that preserving the

trajectory minimising the change over the loss function was a more robust approach

when pruning at initialisation, in comparison to their magnitude pruning counter-

part, as parameters are randomly initialised following a Gaussian distribution.

In summary, loss-modelling can be approximate using first order, second-order

methods, or following quadratic models that include both first and second orders.

95

Chapter 5

5.1.2.2 Optimal Brain Damage (OBD)

Second orders loss approximation methods were the very first type of pruning criteria

approaches developed (LeCun et al., 1989; Hassibi & Stork, 1992). Back in the 1990s,

Deep Learning research was in its early stages and there was no need to deploy large

models in real-world production, thus compressing the model. However, before the

wide adoption of regularisation methods, it was believed that over-parametrisation

in deep networks was harming the model, preventing it to learn properly. Hence,

researchers tried to remove unnecessary parameters evaluating their influence on the

training through the loss.

LeCun et al. (1989) proposes to approximate the loss L(θ+∆θ) with a quadratic

model leading to the following approximation of ∆L(θ,∆θ):

∆LQM(θ,∆θ) =

∣∣∣∣∣∂L(θ)∂θ

⊤

∆θ +
1

2
∆θ⊤H(θ)∆θ

∣∣∣∣∣ (5.3)

where H(θ) is the Hessian of L(θ). Having to compute the hessian is an obvious

drawback of quadratic models, as it is intractable even for small neural networks.

It is common to approximate H(θ) using the Generalised Gauss-Newton G(θ) ap-

proximation (Schraudolph, 2002):

H(θ) =
1

N

N∑
i=1

∂fθ (xi)

∂θ

⊤

∇2
u=fθ(xi)

ℓ (u, ti)
∂fθ (xi)

∂θ︸ ︷︷ ︸
G(θ), the Generalized Gauss-Newton

+
K∑
k

∂ℓ (u, ti)

∂uk

∣∣∣
u=fθ(xi)

∂2fθ (xi)k
∂θ2︸ ︷︷ ︸

≈0

(5.4)

≈ G(θ) (5.5)

where K is the number of outputs of the network. G(θ) has the advantage of being

easier to compute and is positive semi-definite by construction. Although LeCun

et al. (1989) uses H(θ) in the equations of OBD, it is actually G(θ) which was used

96

Chapter 5

in practice (LeCun, 2007).

OBD make two more assumptions are made: first, it assumes the training of the

network has converged, thus the gradient of the loss wrt θ is 0, which makes the

linear term – ∂L(θ)
∂θ

⊤
∆θ – vanish. Second, the interactions between parameters are

neglected, which corresponds to a diagonal approximation of G(θ), leading to the

following importance measure to quantify the influence of individual parameters on

the loss:

∆LOBD(θ,∆θk) ≈
1

2
Gkk(θ)∆θ2

k ⇒ sOBD
k =

1

2
Gkk(θ)θ

2
k (5.6)

5.1.2.3 Optimal Brain Surgeon (OBS)

Around the same time as OBD, Hassibi & Stork (1992) also proposed a pruning

method based on the quadratic model of the loss to solve the minimisation problem

given in Equation 5.2 but uses the Lagrangian formulation to include the constraint

to the solution of the minimization problem. Since OBS requires to compute the

inverse of H(θ), several approximations have been explored in the literature, in-

cluding diagonal, as in the original OBS, Kronecker-factored (Martens & Grosse,

2015) as in ML-Prune (Zeng et al., 2021), or diagonal, but in an Kronecker-factored

Eigenbasis (George et al., 2018), as in EigenDamage (Wang et al., 2019).

To pursue our analysis on pruning criteria, OBD is selected for the remaining

in this chapter to represent second-order loss-modelling. Note that everything pre-

sented in the following sections can also be used in OBS-based methods.

5.1.2.4 Linear (LM) and Quadratic (QM) Models

For OBS and OBD to hold true, one major assumption is made: the training has

converged. In addition to the Hessian being positive semi-definite, this assumption

implies that first-order interactions are neglected because the training has converged

thus the gradients should be zero. However, the current training strategies for deep

97

Chapter 5

neural networks involve the use of regularisation techniques such as early stopping,

Batch Normalisation (Ioffe & Szegedy, 2015) or Dropout (Srivastava et al., 2014)

to counteract over-fitting. Therefore there is no reason to assume that the training

has entirely converged, implying that the linear term should not be neglected. This

phenomenon has been explored in the literature for OBS (Singh & Alistarh, 2020),

as well as for structured pruning (Molchanov et al., 2019).

Because the gradient term – ∂L(θ)
∂θ

⊤
∆θ – no longer vanishes, it can be integrated

to the quadratic model (QM), leading to the following saliency:

∆LQM(θ,∆θk) ≈

∣∣∣∣∣∂L(θ)∂θk

⊤

∆θk +
1

2
Gkk(θ)∆θ2

k

∣∣∣∣∣⇒ sQM
k =

∣∣∣∣−∂L(θ)
∂θk

θk +
1

2
Gkk(θ)θ

2
k

∣∣∣∣
(5.7)

To avoid computing the Hessian approximation, one can use a simpler linear

model (LM) to avoid the cost associated with computing second-order information

to approximate ∆L(θ,∆θ).

Only using first-order interactions, as introduced by Single-shot Network Pruning

(Lee et al., 2019) – as demonstrated by Wang et al. (2020), lead to the following

saliency:

∆LLM(θ,∆θ) =

∣∣∣∣∣∂L(θ)∂θ

⊤

∆θ

∣∣∣∣∣ ⇒ sLMk =

∣∣∣∣∂L(θ)∂θk

θk

∣∣∣∣ (5.8)

5.1.3 Gradient based

5.1.3.1 Pruning Objective

Another important aspect of deep neural networks that one might want to preserve

when pruning is signal propagation. Pruning can be applied at different stages of

the training, at initialisation, early-on or mid training, or after training. No matter

when the pruning is applied, it is always followed by a retraining phase. When

parameters are removed from the neural network, a risk is to damage the gradient

98

Chapter 5

propagation preventing the pruned network to retrain properly. Thus to ensure

a good re-trainability of the pruned model, the pruning criterion should preserve

parameters that guarantee a good flow of the gradient signal.

Gradient-based criteria are designed to preserve or improve the flow of the gra-

dient between the original (dense) and pruned (sparse) network. These methods try

to find a step ∆θ such that the flow of the gradient – ∥g(θ)∥ =
∣∣∣∂L(θ)∂θ

⊤ ∂L(θ)
∂θ

∣∣∣ – in

the pruned network is preserved or sometimes improved, leading to the following

pruning objective:

minimize
∆θ

∆∥g(θ,∆θ)∥ def
= |∥g(θ +∆θ)∥ − ∥g(θ)∥| (5.9)

The flow of the gradient signal can be estimated in regards to the training data

(GraSP), or more generally, independently from any data (SynFlow).

5.1.3.2 Gradient signal preservation (GraSP)

Gradient-based pruning criteria were first introduced by Wang et al. (2020) in the

context of pruning at initialisation. Previous methods to prune before training

were solely based on loss-modelling criteria – SNIP (Lee et al., 2019). But the

authors argued that at initialisation the loss is noisy and not very informative, and

monitoring the signal propagation constitutes a more robust candidate to estimate

the importance of parameters.

In their criterion, Wang et al. (2020) proposed to ensure good re-trainability by

maximising the flow of the gradient in the pruned network by preserving parameters

that lead to a greater reduction of the loss, thus accelerating the training. Larger

gradient norm indicates that the contribution of the parameters to reduce the loss

is higher:

∆L(θ) = lim
ϵ→0

L(θ + ϵ∂L(θ)
∂θ

)− L(θ)

ϵ
=

∂L(θ)
∂θ

⊤∂L(θ)
∂θ

(5.10)

99

Chapter 5

Thus, parameters that impact negatively the gradient norm can be removed to

achieve faster training, ie. greater loss reduction. To do so, the authors proposed

the following criteria:

∆L(θ + δ)−∆L(θ) = ∂L(θ + δ)

∂θ

⊤∂L(θ + δ)

∂θ
− ∂L(θ)

∂θ

⊤∂L(θ)
∂θ

(5.11)

= ∥∂L(θ)
∂θ
∥+ 2δ

∂2L(θ)
∂θ

∂L(θ)
∂θ

− ∥∂L(θ)
∂θ
∥+O(∥δ∥22) (5.12)

(5.13)

where δ is an infinitesimal perturbation to the weights. Thus we obtain:

sGraSP
k = −θ ⊙H(θ)g (5.14)

In this configuration, the Hessian H(θ) can be approximated using the Gener-

alised Gauss-Newton G(θ). GraSP was initially designed to be applied at initial-

isation but the criterion can easily be applied anytime during training. However,

the risk of applying GraSP later in training is that some parameters might have

converged resulting in close to zero gradients.

5.1.3.3 Synaptic Flow (SynFlow)

Tanaka et al. (2020) identified a major bottleneck for pruning criteria. When

pruning at initialisation, most criteria appears to be unstable for high pruning ratios

and tend to damage the architecture beyond recovery, a phenomenon known as layer

collapsing and previously discussed in Chapter 4. The authors identified that there

exists a Maximal Critical Compression for which a network can be pruned without

suffering from layer collapse, however most unstructured pruning criteria often fail at

matching the maximal compression removing parameters that should not have been

removed. To mitigate this issue, they proposed a data-agnostic pruning approach

that preserves the synaptic flow by iteratively removing parameters that produce

the least salient synaptic response:

100

Chapter 5

sSynFlowk =
∂Rsf

∂θ
⊙ θ where Rsf = 1⊤

(
L∏
l=1

∣∣∣θ|l|
∣∣∣) 1 (5.15)

where L represent the layers of the network and 1 is an all-ones input vector. Syn-

Flow can reach maximal critical compression and by preserving the global synaptic

strength of a deep neural network, it can be seen as a generalised magnitude ap-

proach that preserves the individual synaptic strength.

5.2 Locality assumption

Whether loss-modelling or gradient-based, pruning criteria are local approximations

of the current network state. Therefore, local loss or gradient approximations are

generally only faithful in a small neighbourhood of the current parameters. Ex-

plicitly showing the terms that are neglected in pruning criteria, we have for loss

modelling criteria:

∆L(θ,∆θ) = ∆LLM(θ,∆θ) +O(∥∆θ∥22) = ∆LQM(θ,∆θ) +O(∥∆θ∥32) (5.16)

∆L(θ,∆θ) = ∆LOBD(θ,∆θ) +O(∥∆θ∥32) (5.17)

and for gradient-based criteria:

∆∥g(θ,∆θ)∥ = ∆gGraSP (θ,∆θ) +O(∥∆θ∥22) (5.18)

∆∥g(θ,∆θ)∥ = ∆gSynF low(θ,∆θ) +O(∥∆θ∥22) (5.19)

Thus, when approximating ∆L with ∆LLM , or ∆∥g∥ with ∆gGraSP or ∆gSynF low,

we neglect the terms in O(∥∆θ∥22), and when approximating ∆L with ∆LQM or

∆LOBD, we neglect the terms in O(∥∆θ∥32). As a consequence, criteria approxima-

tions are only valid in a small neighbourhood of θ, and are extremely likely to be

101

Chapter 5

wrong when ∥∆θ∥2 is large.

To ensure that the saliency scores computed by the pruning criterion are correct,

the locality of the function approximated needs to be preserved for the relevant

parameters to be removed. Many factors can cause a large ∥∆θ∥2 – removing a

large portion of the parameters at once, large magnitude of the parameters – but

some tricks can be applied to prevent ∥∆θ∥2 from being too massive.

5.2.1 Multi-stage pruning

When pruning, ∥∆θ∥2 can be large when a large portion of the parameters is pruned

at once. In practice to reduce the memory and computational footprint of a model

and obtain an efficient pruned network, one needs to apply high ratios of pruning,

usually around 90% for it to be memory efficient (see Chapter 4, Section 4.1.5).

If we were to remove 90% parameters at once – one-shot pruning – the function

approximated by the pruning criterion would likely be wrong.

An easy fix to mitigate this issue discussed in Chapter 4 is to adopt a multi-stage

pruning approach. Under multi-stage pruning framework, only a small number of

parameters is pruned at a time, re-estimating the underlying model between each

stage. A parameter with a low importance score might become important once a

specific set of parameters are removed. By removing parameters in small batches

and re-estimating the model between each pruning phase, we are able to capture

more granularity.

This is similar to what is done in the lottery ticket hypothesis (Frankle & Carbin,

2018) pruning framework, except that we do not retrain the model in between each

pruning stage, we only re-estimate the underlying model of the criterion. However,

without fine-tuning phases in between the different pruning stages, this strategy

violates the convergence assumption behind OBD and OBS, since after the first

stage of pruning the network is no more at convergence. It is also worth noting that

criteria that do not rely on an underlying model such as MP, pruning in one-shot

or multi-stages are equivalent.

102

Chapter 5

The number of stages, which is denoted by π, is typically overlooked in the

literature despite being an important factor when pruning. Both Zeng et al. (2021)

and Wang et al. (2019) use only 6 stages of pruning, Tanaka et al. (2020) uses 100

stages. Multi-stage pruning is a great way to prevent layers collapsing in pruning.

The sparsity at each pruning phase can be increased following either a linear

schedule, where each step prunes the same number of parameters, or an exponential

schedule, where the number of parameters pruned at each stage gets smaller and

smaller (see Figure 5.1). The fewer parameters remaining, the more we should be

careful about which parameters are removed. For that reason, exponential schedul-

ing is typically used in the literature (Zeng et al., 2021; Wang et al., 2019; Frankle

& Carbin, 2018; Renda et al., 2020).

0 20 40 60 80 100
Sparsity (%)

100

101

||
||

Figure 5.1: ∥∆θ∥2 for different level of sparsity and multi-stage schedule strategies,
oneshot (orange square), linear (blue dots), exponential (green triangles).

5.2.2 Constraining step-size

In the optimisation literature, more specifically in trust-region methods (Nocedal &

Wright, 2006), it is common to add a penalty component to a problem to constrain

it into a feasible region where we know the problem has a solution. This can be

extended in the context of pruning to enforce locality in quadratic models. We can

enforce locality by penalising the pruning criterion when it decides to take steps

that are too large by adding a norm penalty ∥θ∥22 constraint, in order to stay in a

region where we can trust the model. This can be done by adding a norm penalty,

λ
2
∥θk∥22, to the saliencies computed by any criterion:

103

Chapter 5

s = sP(θ) +
λ

2
∥θk∥22 (5.20)

where sP is the criterion saliency and λ is a hyper-parameter to control the strength

of the constraint. Note that a small value of λ leaves the saliencies unchanged,

while a large value of λ transforms any pruning criterion into Magnitude Pruning

(Equation 5.1).

5.2.3 Others considerations

Finally, ∥∆θ∥2 can be large if θ is large itself. This is dependent on the training

procedure of the network but can be easily mitigated by constraining the norm of the

weights through regularisation tools. This can be done using either L2 regularisation,

weight decay, or both. Since nowadays weight decay is almost systematically used

by default when training networks (e.g. He et al. (2016b); Xie et al. (2017); Devlin

et al. (2018)), this will not be studied further.

In summary, to ensure that the locality assumption behind the underlying model

used by the pruning criterion is respected, a combination of pruning stages π and

regularisation λ can be applied to the saliency score to better solve the pruning

objective – preserving the loss or gradient flow.

5.3 Pruning Integrity

Despite the wide variety of pruning approaches, a universal method that consistently

achieves state-of-the-art performance has yet to be identified (Frankle et al., 2021).

While currently proposed pruning criteria perform better than random, there is

no single criterion that outperforms all the others, rising interrogations behind the

integrity of pruning criteria design and evaluation. Across a wide range of pruning

ratios, all criteria obtain accuracy performances that lie in a close region after fine-

tuning, and one needs to reach extreme pruning ratios to start seeing significant

104

Chapter 5

differences between pruning criteria (see Figure 5.2). To research how to improve

upon existing heuristics, we first need to assess the integrity of existing criteria and

understand which part of the current pruning criteria design is accountable for good

performance results.

Figure 5.2: Pruning accuracy for different pruning methods applied at initialisation.
We can observe that all pruning criteria lie in close range. For information a 102

corresponds to 99% pruning ratio. Reproduced from Tanaka et al. (2020).

Recent efforts in the pruning literature have started to investigate the relation-

ship between different pruning criteria families (Lubana & Dick, 2021). However, the

link between the pruning objective – ie. what properties of the network the criterion

is trying to preserve – and the performance of the pruned model is often overlooked.

In practice pruning is always followed by a fine-tuning step, thus most papers focus

on the best accuracy after fine-tuning and the highest compression ratio they are ca-

pable to reach to evaluate their criterion performance. Ultimately these two factors

are the ones we care about, but most papers presenting new pruning criteria omit

to assess the quality of a pruning criterion in itself. Fine-tuning plays an important

role in pruning, but it brings all the stochasticity around training deep neural net-

works – hyper-parameters selection, choice of initialisation, training scheme etc. –

that is yet to be fully understood. Therefore both, the foundation of the pruning

criterion and fine-tuning, should be considered and evaluated independently.

There are three major families of pruning criteria: loss-preservation, gradient-

preservation and magnitude. If pruning criteria were to be efficient, it would mean

that pruned models better at minimising the change in loss, or gradient flow, obtain

105

Chapter 5

better performances after fine-tuning the pruned network – better re-training per-

formance. To assess the rightfulness of each criterion design, we reassure locality of

the underlying model needs. For that, pruning is performed in multiple stages π,

and a norm penalty λ is added to the saliency for each pruning criterion to be as

good as possible at minimising the loss or gradient flow.

For better clarity in assessing pruning criteria integrity, each criterion will be

referred by its acronym: MP for Magnitude Pruning (equation 5.1), LM for Lin-

ear Model (equation 5.8), QM for Quadratic Model(equation 5.7), OBD for Opti-

mal Brain Damage (equation 5.6), GraSP for Gradient Signal Preservation (equa-

tion 5.14) and finally, SynFlow for Synaptic Flow (equation 5.15).

5.3.1 Performance Metrics

5.3.1.1 Pruning Objective

The main goal of pruning is to produce a sparse network with an optimal capacity

by shrinking the number of parameters in a dense neural network while maintain-

ing, and ideally improve, overall prediction and generalisation performances. Thus,

practitioners are mainly interested in the trade-off between ratio of compression and

accuracy performance.

A pruning criterion estimates the importance of parameters based on their in-

fluence for solving a particular pruning objective (preserving the original network

loss, or gradient flow). To assess the integrity of a criterion, two factors need to be

checked: (1) whether the criterion is solving the pruning objective, and (2) whether

optimising for that particular pruning objective lead to better performance after

fine-tuning. Thus, pruning criteria will be evaluated regarding their ability to pre-

serve the original network function before/after pruning (equation 5.2, 5.9), and

their accuracy performance after fine-tuning the sparse network.

The preservation of the loss function is measured as follows:

∆L(θ,∆θ) = |L(θ +∆θ)− L(θ)| (5.21)

106

Chapter 5

while,

∆∥g(θ,∆θ)∥ = ∥g(θ +∆θ)∥ − ∥g(θ)∥ (5.22)

is used to quantify the change in gradient flow between the original and pruned

model. To measure the change in performance, the validation error gap both before

and after fine-tuning is used.

∆error = errorsparse − errordense (5.23)

where,

error = (1− accuracy) = 1− corrects

total
= 1− TP + TN

TP + TN + FP + FN
(5.24)

with TP being true positive, TN true negative, FP false positive, FN false neg-

ative. Note that the top-1 accuracy score is measured in our experiments.

5.3.1.2 Correlation with end accuracy

Pruning criteria are designed to remove parameters based on their level of impor-

tance derived from some pruning objective. For a pruning criterion to be efficiently

designed, better solving the pruning objective – in the case of unstructured prun-

ing, preserving the loss or gradient flow – should lead to better performances af-

ter the fine-tuning phase. To assess the relationship between pruning objective

(eq. 5.21,eq. 5.22) and performance accuracy (eq. 5.23), the correlation between

both part is computed using Spearman rank correlation:

ρspearman = 1− 6
∑

i d
2
i

n(n2 − 1)
(5.25)

A non-parametric correlation measure is used to assess the strength of the re-

lationship between the different pruning objectives and the end performance as it

107

Chapter 5

is the ordinal order that is of interest and not the numerical value in themselves.

A correlation close to +1 or −1 would suggest that there is a positive, or nega-

tive, association of ranks, ie. best preserving the original network function transfer

to better accuracy after fine-tuning. On the other hand, a 0 correlation score will

indicate that no meaningful relationship between the two variables can be observed.

5.3.2 Methodology

Pruning can be applied at multiple stages during the training. In Frankle et al.

(2021), the authors provided an extensive investigation and comparison of the per-

formance accuracy of different pruning methods when pruning is applied at initial-

isation and end of training. They observed that, when pruning at initialisation,

the sparsity per layer seemed to be what matters the most, and not the pruning

masks, suggesting that all pruning criteria were equal. For that reason, to assess

the integrity of the different pruning criteria, pruning after training is considered in

this study.

Algorithm 1 presents the pruning framework used in this work. The neural

network is first trained, then pruning is applied. Multiple stages of pruning π ∈

[1, 14, 140] are performed following an exponential schedule (see Figure 5.1), with

different norm regularisation factors λ ∈ [1e−4...1e100] applied to the saliency, the

idea is to obtain a range of pruned model with different values of loss, or gradient

flow, minimisation to compare whether better preserving the original model function

lead to better performance. Finally, fine-tuning is performed in a single phase using

the same hyper-parameters as for the original training with learning rate rewinding.

Global pruning is used for all the criteria. Note that while the fine-tuning phase

would require hyper-parameter optimisation, Renda et al. (2020) showed that using

the same ones as for the original training usually leads to good results. The hyper-

parameters used in this set of experiments are provided in Appendix B.1.

The experiments to assess the integrity of pruning criteria are conducted on

three different network architectures to test a variety of deep learning models with

108

Chapter 5

Algorithm 1 Pruning Framework

Require: Network fθ with θ ∈ RD, dataset D, number of pruning iterations π,
norm regularisation λ and sparsity κ.

1: fθ ← Training(fθ, D)
2: κ0 ← 0
3: m← 1D

4: for i = 1 to π do
5: κi ← κi−1 +

(κ−κ0)
π

or κi ← κi−1 + (κ− κ0)
i/π ▷ Compute sparsity for

iteration i
6: s← Saliencies(fθ⊙m, λ,D) ▷ Compute saliencies (Equation 5.1, 5.6, 5.7,

5.8, 5.14 or 5.15).
7: m[argsort(s)[: κiD]]← 0 ▷ Mask the parameters with smallest saliencies.

8: fθ⊙m ← Training(fθ⊙m, D) ▷ Optional fine-tuning
9: return fθ⊙m,m

good performance for different parameters capacity: an MLP on MNIST, and with

both VGG11 (Simonyan & Zisserman, 2015) without batch normalisation and a pre-

activation residual network 18 (He et al., 2016b) on CIFAR10 (Krizhevsky et al.,

2012). All models architectures are described in chapter 2. As a quick reminder, an

MLP is a fairly small model with just a few hundred thousand parameters, that is

easy to supervise containing only fully connected layers. On the other hand, VGG

architectures introduce convolutional layers and constitute models that are highly

over-parametrised known to be easily prunable. Finally, pre-activation residual net-

works are computationally more complex than VGG with their skip connections,

making unstructured pruning more challenging. More details on the splits, data

augmentation and hyper-parameters can also be found in Appendix B.1. Note that

three to five different random seeds are used, and both mean and standard devia-

tions are reported. ImageNet and Resnet50 architectures are also used to assess the

scalability of the different claims by validating that observations on CIFAR10 hold

on larger network architectures and datasets. Note that due to compute limitations,

this set of experiments was only performed with loss-modelling criteria.

The integrity of different pruning criteria is assessed in two times:

1. Before fine-tuning – just after pruning, how well does a criterion preserve the

original network function – loss or gradient – in the pruned network (pruning

109

Chapter 5

objective)

2. After fine-tuning the pruned network, whether better preserving the original

(dense) network property lead to better performances after fine-tuning (pruning

performance)

Both will be investigated for each pruning family: loss-preservation and gradient-

preservation. Magnitude heuristic will be used as a baseline comparison. Details on

implementations for the different criteria can be found in appendix B.1.

5.4 Experimental results

5.4.1 Loss-preservation criteria

For loss-preservation criteria, the pruning objective is to minimise the change in

loss (equation 5.21) between the original (dense) network and the pruned (sparse)

network. The criteria considered for this section are: LM (equation 5.8), QM (equa-

tion 5.7) and OBD (equation 5.6), in addition to MP (equation 5.1) as baseline.

5.4.1.1 Before Fine-tuning

The first step to investigate how good are pruning criteria is to measure their ca-

pacity at preserving the original network function. The quality of different loss-

modelling pruning methods is evaluated by measuring their preservation capabilities

∆L(θ,∆θ). To obtain the best possible results, the impact of enforcing locality is

studied as a function of λ, for different numbers of pruning stages π, where λ is

our step-size norm regularisation factor. Note that typical usage of these criteria

in a one-shot setting would be with a regularisation strength λ = 0 and a number

of pruning stages π ≈ 1. MP, the baseline which is invariant to both λ and π, is

also reported. For reference, the original dense networks reached a validation error

rate before pruning of 1.47 ± 0.04 % for the MLP, 10.16 ± 0.29 % for VGG11 and

4.87± 0.04 % for the PreActResNet18.

110

Chapter 5

M
P

=
1

=
1
4

=
1
4
0

0
10

5
10

4
10

3
10

2
10

1
10

0
10

1
10

2
123 L(,)

Lin
ea

r M
od

el

0
10

5
10

4
10

3
10

2
10

1
10

0
10

1
10

2
123 L(,)

Qu
ad

ra
tic

 M
od

el

0
10

5
10

4
10

3
10

2
10

1
10

0
10

1
10

2
123 L(,)

Op
tim

al
 B

ra
in

 D
am

ag
e

(a
)
M
L
P

on
M
N
IS
T

w
it
h
98

.8
%

sp
ar
si
ty
.

0
10

4
10

3
10

2
10

1
10

0
10

1
10

2
0.

61234

L(,)

Lin
ea

r M
od

el

0
10

4
10

3
10

2
10

1
10

0
10

1
10

2
0.

61234

L(,)

Qu
ad

ra
tic

 M
od

el

0
10

6
10

5
10

4
10

3
10

2
10

1
10

0
0.

61234

L(,)

Op
tim

al
 B

ra
in

 D
am

ag
e

(b
)
V
G
G
11

on
C
IF
A
R
10

w
it
h
95

.6
%

sp
ar
si
ty
.

0
10

3
10

2
10

1
10

0
10

1
10

2
110 L(,)

Lin
ea

r M
od

el

0
10

3
10

2
10

1
10

0
10

1
10

2
110 L(,)

Qu
ad

ra
tic

 M
od

el

0
10

3
10

2
10

1
10

0
10

1
10

2
110 L(,)

Op
tim

al
 B

ra
in

 D
am

ag
e

(c
)
P
re
A
ct
R
es
N
et
18

on
C
IF
A
R
10

w
it
h
95

.6
%

sp
ar
si
ty
.

F
ig
u
re

5.
3:

∆
L
(θ
,∆

θ
)
fo
r
d
iff
er
en
t
n
u
m
b
er

of
p
ru
n
in
g
st
ag
es

π
,
as

a
fu
n
ct
io
n
of

λ
,
th
e
st
ep

si
ze

co
n
st
ra
in
t
st
re
n
gt
h
,
u
si
n
g
ei
th
er

(l
ef
t)

L
M
,
(m

id
d
le
)
Q
M

or
(r
ig
h
t)

O
B
D

cr
it
er
ia
.
M
P
,
w
h
ic
h
is
in
va
ri
an

t
to

λ
an

d
to

th
e
n
u
m
b
er

of
p
ru
n
in
g
st
ag
es
,
is
d
is
p
la
ye
d
in

d
as
h
ed

b
la
ck
.

T
h
e
cu
rv
es

ar
e
th
e
m
ea
n
an

d
th
e
er
ro
r
b
ar
s
th
e
st
an

d
ar
d
d
ev
ia
ti
on

ov
er

5
ra
n
d
om

se
ed
s.

O
B
D

w
it
h
π
=

1
an

d
λ
=

0
d
iv
er
ge
d
fo
r
al
l
of

th
e
5
se
ed
s.

In
cr
ea
si
n
g
th
e
n
u
m
b
er

of
p
ru
n
in
g
st
ag
es

d
ra
st
ic
al
ly

re
d
u
ce
s
∆
L
(θ
,∆

θ
).

A
λ
>

0
ca
n
al
so

h
el
p
im

p
ro
v
in
g
p
er
fo
rm

an
ce
s.

111

Chapter 5

Enforcing locality Figure 5.3 presents the loss preservation capabilities for differ-

ent pruning criteria (column) as a function of different level of locality enforcement

π and λ. It shows that increasing the number of pruning stages π can drastically

reduce ∆L(θ,∆θ) when using LM, QM and OBD criteria. It demonstrates the im-

portance of applying local steps when pruning. Constraining the step size through

λ
2
∥θk∥22 (λ) can also further reduce ∆L(θ,∆θ), on CIFAR10 in particular. The

trend, however, is less pronounced on MNIST. A possible explanation is that it is

due to the pruning step size: the MLP contains 260k parameters verses 9.7M for

VGG11, so the number of parameters pruned at each stage in VGG11 is still large,

even with π = 140. This translates to a bigger ∥∆θ∥2 that needs to be controlled

by the regularisation constraint.

When performing the pruning in several stages, LM and QM reach better loss

minimisation performances than OBD criterion. Without retraining phases between

pruning stages, the convergence assumption behind OBD is violated. This is however

not the case for LM and QM. Note that OBD still works reasonably well on VGG11.

This could be related to the large number of parameters of the model.

Preservation capabilities Table 5.1 contains the best ∆L(θ,∆θ) obtained for

each of the network architectures and loss-modelling pruning criteria. The best per-

formance observed amongst all the λ and π tested are reported. Criteria that model

the loss, LM and QM in particular, are better at preserving the loss before/after

pruning than MP. For comparison, gradient-based criteria scores at preserving the

loss are also reported in Table 5.1.

Network
∆L(θ,∆θ)

MP OBD LM QM GraSP SynFlow

MLP 2.0 ± 0.1 1.8 ± 0.1 1.2 ± 0.1 1.1 ± 0.1 2.1 ± 1.4 1.8 ± 0.1
VGG11 1.8 ± 0.4 0.9 ± 0.2 0.9 ± 0.2 0.9 ± 0.2 14.8 ± 9.5 1.0 ± 0.1
PreActResNet18 2.2 ± 0.1 2.0 ± 0.5 1.4 ± 0.2 1.2 ± 0.3 6941 ± 9814 2.7 ± 0.1

Table 5.1: Summary of the best ∆L(θ,∆θ) across values of λ for different networks
and pruning criteria, with π = 140. QM achieves better loss-preservation than other
criteria. OBD performs worse than QM, since we violate its convergence assumption
when pruning in several stages.

112

Chapter 5

Network
Gap of Validation Error (%)

MP OBD LM QM

MLP 72.09 ± 3.72 64.89 ± 5.74 16.35 ± 0.77 15.22 ± 0.62
VGG11 56.19 ± 17.9 18.84 ± 5.54 5.89 ± 1.52 5.92 ± 2.14
PreActResNet18 74.13 ± 4.59 49.08 ± 8.18 26.79 ± 8.61 21.48 ± 5.96

Table 5.2: Best validation error gap before/after pruning for different networks
and pruning criteria.

Validation error gap before/after pruning A first step to check the integrity of

loss-modelling pruning criterion is to verify if better preserving the loss between the

dense and sparse model lead to smaller validation error gaps right after pruning, be-

fore any fine-tuning of the pruned network. Mirroring Figure 5.3, Figure 5.4 presents

the validation error gap before/after pruning as a function of different level of locality

enforcement π (number of pruning stages) and λ (norm regularisation). Enforcing

locality and thus better preserving the loss between the original and pruned model,

lead to better performances – smaller validation error gap – right after pruning.

Those results partly confirm the intuition behind loss-modelling pruning objective

that better preserves the loss function, create better-performing pruned models be-

fore/after pruning. Note that the pruned models still suffer from a significant loss

in accuracy compared to the dense network. A retraining (fine-tuning) phase is

required to best recover the original model accuracy. Best gap in validation error

before/after pruning are summarised in Tables 5.2.

5.4.1.2 After Fine-tuning

Having checked that Loss-modelling criteria do well at preserving the loss function

before/after pruning, and that minimising the change in loss lead to smaller valida-

tion error gaps after pruning, the question remaining is whether previously observed

results hold after fine-tuning the pruned model. In other words, if better preserving

the loss lead to better accuracy performance after fine-tuning. For that, the corre-

lation between the pruning objectives ∆L(θ,∆θ) and the gap in validation error is

monitored. Fine-tuning is a mandatory step in pruning deep neural networks, for

113

Chapter 5

M
P

=
1

=
1
4

=
1
4
0

0
10

4
10

3
10

2
10

1
10

0
10

1
10

2
0.6 1 2 3 4

L(,)

Linear M
odel

0
10

5
10

4
10

3
10

2
10

1
10

0
10

1
10

2
0 25 50 75

100

 valid. Error (%)

Quadratic M
odel

0
10

5
10

4
10

3
10

2
10

1
10

0
10

1
10

2
0 25 50 75

100

 valid. Error (%)

Optim
al Brain Dam

age

(a)
M
L
P

on
M
N
IS
T

w
ith

98.8%
sp
arsity.

0
10

4
10

3
10

2
10

1
10

0
10

1
10

2
0 25 50 75

100

 valid. Error (%)

Linear M
odel

0
10

4
10

3
10

2
10

1
10

0
10

1
10

2
0 25 50 75

100

 valid. Error (%)

Quadratic M
odel

0
10

6
10

5
10

4
10

3
10

2
10

1
10

0
0 25 50 75

100

 valid. Error (%)

Optim
al Brain Dam

age

(b
)
V
G
G
11

on
C
IF
A
R
10

w
ith

95.6%
sp
arsity.

0
10

3
10

2
10

1
10

0
10

1
10

2
0 25 50 75

100

 valid. Error (%)

Linear M
odel

0
10

3
10

2
10

1
10

0
10

1
10

2
0 25 50 75

100
 valid. Error (%)

Quadratic M
odel

0
10

3
10

2
10

1
10

0
10

1
10

2
0 25 50 75

100

 valid. Error (%)

Optim
al Brain Dam

age

(c)
P
reA

ctR
esN

et18
on

C
IF
A
R
10

w
ith

95.6%
sp
arsity.

F
igu

re
5.4:

S
am

e
as

F
igu

re
5.3,

b
u
t
d
isp

lay
in
g
th
e
valid

ation
error

gap
b
efore

fi
n
e-tu

n
in
g.

W
ith

p
rop

er
n
u
m
b
er

of
p
ru
n
in
g
stages

an
d

step
size

regu
larization

,
L
M

an
d
Q
M

can
p
ro
d
u
ce

p
ru
n
ed

n
etw

ork
s
th
at

are
d
rastically

b
etter

th
an

th
e
on

es
p
ru
n
ed

u
sin

g
M
P
.

114

Chapter 5

loss-modelling pruning to be efficient, a criterion that best minimises the change in

loss should, in theory, obtain better performances.

Correlation between preservation and performance To assess loss-modelling

criteria integrity, all the different models obtained with various levels of locality en-

forcement are considered to provide a range of models with different loss-preservation

scores. Figure 5.5 displays scatter plots of all the experiments ran, to observe how

well loss-preservation (x-axis) correlates with performance after fine-tuning (y-axis).

Surprisingly, although it is possible to obtain networks with smaller ∆L(θ,∆θ), and

thus better-performing networks right after pruning, the performances after fine-

tuning do not correlate significantly with the gap in validation error. Except for the

MLP on MNIST, whose Spearman’s rank correlation coefficient is ρ = 0.67, there

is only a weak correlation between ∆L(θ,∆θ) and the validation error gap after

fine-tuning (ρ = 0.27 for VGG11 and ρ = 0.20 for PreActResNet18).

Hyper-parameters selection Training can be very sensitive to hyper-parameters.

To verify that these observations are not due to a specific choice of fine-tuning hyper-

parameters, hyper-parameter grid search is performed. Three different learning

rate (0.1, 0.01, 0.03) and three different l2-regularisation (0, 5e-4, 5e-5) are tested

on LM, QM and MP on 5 different random seeds. In this set of experiments,

λ ∈ {0, 0.01, 0.1, 1} and π ∈ {14, 140} are used. Figure 5.6 shows that optimising

hyper-parameters for fine-tuning can lead to better performance after fine-tuning,

but does not increases the correlation between the performances after fine-tuning

and ∆L(θ,∆θ). The lack of correlation can thus not be explained by bad fine-tuning

hyper-parameters. Models unable to re-train are not shown in this figure.

5.4.2 Gradient-flow preservation

No clear correlation can be observed from better preserving the loss function on the

performance of the pruned model after fine-tuning for large deep neural networks. It

seems that loss-modelling pruning criteria are not efficient. Another way to reduce

the size of a model is to discard parameters that impact negatively the gradient

115

Chapter 5

flow of the network. In this section, a similar exploration study is conducted on

gradient-based criteria to evaluate whether preserving the gradient flow constitutes

a better pruning objective, for this GraSP (eq. 5.14) and SynFlow (eq. 5.15) criteria

are considered and compared to MP.

5.4.2.1 Before Fine-tuning

Gradient-based pruning objectives is looking at preserving the signal propagation

between the original and pruned model. This can be evaluate by monitoring the

change over the gradient flow ∆∥g(θ,∆θ)∥ (eq. 5.22). As for loss-modelling criteria,

the impact of enforcing locality (π and λ) is studied to obtain the best possible

pruned network that minimises the change in ∆∥g(θ,∆θ)∥.

1 2 3
L(,) before fine-tuning

1.5

2.0

2.5

3.0

3.5

4.0

 V
al

id
. E

rro
r (

%
) a

fte
r f

.-t
.

MLP on MNIST

= 0.68

0.6 1 2 3 4 5
L(,) before fine-tuning

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

 V
al

id
. E

rro
r (

%
) a

fte
r f

.-t
.

VGG11 on CIFAR10

= 0.27

1 10
L(,) before fine-tuning

0.5

0.0

0.5

1.0

1.5

2.0

2.5

 V
al

id
. E

rro
r (

%
) a

fte
r f

.-t
.

PreActResNet18 on CIFAR10

= 0.20

Figure 5.5: Gap of validation error after fine-tuning as a function of ∆L(θ,∆θ).
We can observe a slight correlation on the MLP network architectures, however this
does not translate to larger scale architectures VGG11 and PreActResnet18.

116

Chapter 5

MP OBD LM QM

0.7 1 2 3 4 5 6
L(,) before fine-tuning

0.25

0.00

0.25

0.50

0.75

1.00

1.25

 V
al

id
. E

rro
r (

%
) a

fte
r f

.-t
.

PreActResNet18 on CIFAR10

= 0.44

0.7 1 2 3 4 5 6
L(,) before fine-tuning

0.25

0.00

0.25

0.50

0.75

1.00

1.25

 V
al

id
. E

rro
r (

%
) a

fte
r f

.-t
.

PreActResNet18 on CIFAR10
= 0.29

Figure 5.6: Left: Using the same hyper-parameters for fine-tuning as the ones of
the original training. Right: Performing hyper-parameters optimisation for the fine-
tuning.

Enforcing locality Figure 5.7 pictures the impact of enforcing locality on gradient-

based pruning metrics. The benefits of adding a norm penalty λ to the criterion,

or performing multiple stages of pruning π are less pronounced on gradient-based

criteria than on loss-modelling criteria (Figure 5.3). On larger network architectures

(VGG11 and PreActResnet18), it appears that small λ have little effect on SynFlow

criterion, and multiple stages of pruning do not contribute to improving GraSP

preservation capabilities.

SynFlow observations are likely due to the fact that the heuristic estimates the

gradient flow in a data-agnostic manner, which might lead to estimated gradients

that have a norm drastically different from the approximate model, making it chal-

lenging to tune λ accordingly. Recall that SynFlow estimates the importance of

each parameter based on their synaptic response by computing the gradient re-

sponse from an all ones input entry vector (see eq. 5.15). Overall, performing the

pruning in multiple steps π helps outperform one-shot pruning (π = 1), re-enforcing

the importance of removing a small number of parameters at a time to better respect

the locality assumption behind these pruning criteria.

However, it is not the case for GraSP criterion where one-shot pruning out-

performs multi-stage pruning. For GraSP, we observe that the λ regularisation is

highly beneficial to help preserving ∆∥g(θ,∆θ)∥. A possible explanation is in the

117

Chapter 5

MP =1 =14 =140

(a) MLP on MNIST with 98.8% sparsity.

(b) VGG11 on CIFAR10 with 95.6% sparsity.

(c) PreActResNet18 on CIFAR10 with 95.6% sparsity.

Figure 5.7: ∆∥g(θ,∆θ)∥ for different number of pruning stages π, as a function of
λ. As for the loss-modelling criteria, augmenting the number of π help to better
preserve the gradient flow before/after pruning. λ regularisation however requires
a more careful tuning as the magnitude of the saliencies issued from the gradient-
based criteria can be high.

way GraSP criterion is designed. GraSP is arranged to remove parameters that im-

pact negatively the gradient flow, hence trying to keep parameters that will improve

∆∥g(θ,∆θ)∥. In this regard, enforcing locality helps better achieve the criterion

original purpose, but augmenting the gradient flow is at risk of producing gradients

that are too large, making it harder to re-train the model from an optimisation

perspective. Adding a norm penalty helps mitigate this issue and keeps the gradient

flow closer to the original network. Section 5.4.4 presented later in this chapter, ex-

plore a variant of GraSP criterion that aims at preserving the gradient flow instead

of maximising it.

Preservation capabilities Similar to Table 5.1, Table 5.3 contains the best ∆∥g(θ,∆θ)∥

obtained right after pruning for each pruning criteria. GraSP, SynFlow, and espe-

cially MP, are good at preserving the gradient flow before/after pruning. This may

partly explain why despite its simplicity, MP obtains really good performance in

practice compared to more complex pruning metrics.

118

Chapter 5

Network
∆∥g(θ,∆θ)∥

MP GraSP SynFlow

MLP 3e-3 ± 4e-4 1e-3 ± 1e-3 1e-5 ± 1e-6
VGG11 2.4 ± 0.4 1e-4 ± 1e-2 8.8 ± 0.2
PreActResNet18 29 ± 7.9 6.6 ± 1.0 13 ± 2.1

Table 5.3: Summary of the best ∆∥g(θ,∆θ)∥ across values of λ for different networks
and pruning criteria. The best performing criteria varies a lot depending on the
network architecture. GraSP and SynFlow are good at preserving the norm of the
gradients.

Network
Gap of Validation Error (%)

MP GraSP SynFlow

MLP 72.09 ± 3.72 60.41 ± 39.78 62.29 ± 4.81
VGG11 56.19 ± 17.9 67.21 ± 18.5 25.77 ± 6.65
PreActResNet18 74.13 ± 4.59 52.43 ± 28.43 84 ± 1.03

Table 5.4: Best validation error gap before/after pruning for different networks
and loss-modelling pruning criteria.

Validation error gap before/after pruning Similar to Table 5.2, Table 5.4

contains a summary of the best gap in validation error obtain for both gradient-based

criteria. Gradient-based pruning metrics are less efficient at minimising the gap in

validation error before/after pruning than loss-modelling criteria (see Table 5.2).

Moreover, best preserving the gradient flow (Table 5.3) doesn’t necessarily lead to

smaller gap in validation error. Note that the observations are also more noisy for

GraSP in particular.

Figure 5.8 presents the validation error gap as a function of π and λ. Again,

gradient-based pruning criteria are very noisy but with a good tuning of π and λ we

are able to obtain good performing networks right after pruning, but still inferior to

the one obtained with loss-modelling pruning criteria (see table5.2).

5.4.2.2 After Fine-tuning

If the benefits from preserving the gradient flow between the original and pruned

model on the performance right after pruning are less pronounced compare to pre-

serving the loss function, preserving the norm of the gradients helps to preserve the

network dynamic evolution (Lubana & Dick, 2021). Thus models that better pre-

119

Chapter 5

MP =1 =14 =140

(a) MLP on MNIST with 98.8% sparsity.

(b) VGG11 on CIFAR10 with 95.6% sparsity.

(c) PreActResNet18 on CIFAR10 with 95.6% sparsity.

Figure 5.8: Similar to Figure 5.7, but displaying the validation error gap before
fine-tuning instead of ∆∥g(θ,∆θ)∥.

serve the gradient flow have the potential to be better candidates to reach greater

performance after fine-tuning.

Correlation between gradient preservation and performance To assess whether

preserving the gradient-flow lead to better performing pruned networks after fine-

tuning, the correlation between the pruning objective ∆∥g(θ,∆θ)∥ and the end-

accuracy is studied. Figure 5.9 displays scatter plots of all the experiments run

using gradient-based criteria. As for loss-modelling criteria, multiple levels of local-

ity enforcement are reported to provide a wide range of gradient-flow with diverse

preservation scores. For the small MLP network architectures (Figure 5.9, left), a

negative correlation score can be observed meaning that the better the gradient-

flow is preserved, the worse the accuracy after fine-tuning (ρ = −0.7). Compare

to larger networks, MLP models are trained to convergence, thus when pruning at

the end of training most parameters have a gradient close to zero. If we try to pre-

serve the gradient norm and remove parameters associated with zero-gradients, we

might remove important connections. Targeting parameters that slightly increase

the gradient flow, ensure good re-trainability of the pruned network.

120

Chapter 5

For larger networks ((Figure 5.9, centre – VGG11, and right – PreActResnet18)

a lot of experiments have a huge ∆ validation error, suggesting that the sparse

architecture was damaged beyond recovery during the pruning phase. In the case of

VGG11, even when ignoring networks that failed to re-train, the correlation does not

improve – from ρ = 0.08 to ρ = 0.2 (see Figure 5.10). There is a weak correlation

on the PreActResnet18 (ρ = 0.46) resulting from very large gradient-flow being

informative of poor network re-trainability.

Figure 5.9: Gap of validation error after fine-tuning as a function of ∆∥g(θ,∆θ)∥.

Performance gap Best preserving the original network function does not help

produce better-pruned networks. Table 5.5 summarises the best validation error

gap between the original networks and the pruned networks after fine-tuning for all

considered criteria, loss-modelling and gradient-based. Amongst all configurations

tested (π and λ), all criteria produce pruned-network that are in close range in

121

Chapter 5

Figure 5.10: Gap of validation error after fine-tuning as a function of ∆∥g(θ,∆θ)∥.
Zoomed in view of Figure 5.9 (center) for gradient-based criteria on VGG11. When
we ignore points corresponding to pruned-networks that were unable to be re-trained
(validation error 0.9), we do not observe any significant correlations.

Network
Gap of Validation Error (%)

MP OBD LM QM GraSP SynFlow

MLP 2.4 ± 0.3 2.0 ± 0.1 1.9 ± 0.3 1.9 ± 0.2 0.1 ± 0.1 2.1 ± 0.2
VGG11 0.2 ± 0.2 -0.1 ± 0.2 -0.3 ± 0.1 -0.1 ± 0.1 -0.5 ± 0.5 0.3 ± 0.3
PreActResNet18 0.2 ± 0.2 0.2 ± 0.2 0.1 ± 0.1 0.2 ± 0.2 0.6 ± 0.2 1.5 ± 0.2

Table 5.5: Best validation error gap before/after fine-tuning the pruned networks
(lower is better), for different pruning criteria, across values of λ and π. GraSP and
LM are among the best performing criteria, but all the criteria validation error gap
lie in a close neighborhood after fine-tuning.

terms of performance accuracy. As a reference, global random pruning resulted in

validation error rate of 47.18 ± 6.8 % for the MLP and resulted in non-retrainable

networks on CIFAR10 (with 90 % error rate). An important observation is that

the hyper-parameters λ and π that give the best performing criteria in terms of

∆L(θ,∆θ) in Table 5.1, or Table 5.3, are not the same as the ones that give the

best performing criteria after fine-tuning in Table 5.5.

Unstructured pruning produces good performing sparse model, however, the

good accuracy of pruned models cannot be linked to the pruning objective alone. As

a result, all pruning criteria are performing equally good despite preserving different

aspects of the dense network.

122

Chapter 5

0 10 3 10 2 10 1 100 101100

101

L(
,

)

Linear Model

0 10 3 10 2 10 1 100 101100

101

L(
,

)

Quadratic Model

0 10 3 10 2 10 1 100 101100

101

L(
,

)

Optimal Brain Damage

MP OBD LM QM

0 20 40
Valid. Accuracy (%) before f.-t.

73.0

73.5

74.0

74.5

75.0

75.5

76.0

Va
lid

. A
cc

ur
ac

y
(%

) a
fte

r f
.-t

.

ResNet50 on ImageNet

Figure 5.11: Same as Figure 5.3 and Figure 5.5, for the ResNet50 on ImageNet, with
a sparsity of 70 %. Increasing the number of pruning stages and constraining the step
size reduce ∆L(θ,∆θ). However, the best-loss preserving criteria, which maximize
the validation accuracy right after pruning, do not produce better networks after
fine-tuning. They perform similarly if their validation accuracy after pruning is
> 20%. Criteria that outperform MP right after pruning do not achieve better
performance after fine-tuning.

0 10 3 10 2 10 1 100 101

101

102

L(
,

)

Linear Model

0 10 3 10 2 10 1 100 101

101

102

L(
,

)

Quadratic Model

0 10 3 10 2 10 1 100 101

101

102

L(
,

)

Optimal Brain Damage

MP OBD LM QM

101 102

L(,) before f.-t.

6

8

10

12

14

16

 V
al

id
. A

cc
ur

ac
y

(%
) a

fte
r f

.-t
.

ResNet50 on ImageNet

Figure 5.12: Same as Figure 5.11, but with 90 % sparsity. Increasing the number of
pruning stages and constraining the step size reduces ∆L(θ,∆θ). However, the best-
loss preserving criteria, which maximize the validation accuracy right after pruning,
do not produce better networks after fine-tuning.

123

Chapter 5

5.4.3 Scaling to ImageNet

To investigate whether previous observations scale to larger datasets, similar exper-

iments are conducted with loss-modelling criteria only due to compute limitations

– LM, QM and OBD – on the ResNet50 on ImageNet. Before pruning, the network

reached 76.41 % validation accuracy. Figure 5.11 presents results at 70 % sparsity,

in a similar fashion as Figure 5.3 and Figure 5.5. Similar trends are observed: The

best loss-preserving models are not necessarily the best models after fine-tuning.

When exploring a higher pruning ratio, the lack of relationship between best

minimising the error gap before/after pruning and before/after fine-tuning is even

more pronounced. Figure 5.12 is the same as Figure 5.11, but with 90 % sparsity.

At that sparsity level, the validation accuracy right after pruning is close to random

for all the pruning criteria. There is however quite a big variation in performances

after fine-tuning: at equal performance before fine-tuning, some models achieve 70 %

validation accuracy after fine-tuning, while others only reach 60 %.

5.4.4 Improving GraSP criteria

Previous experiments have shown some instabilities in GraSP criterion, especially

its tendency to produce pruned networks that do not re-train properly due to high

gradients. In their paper Frankle et al. (2021) showed that removing parameters

with the lowest or highest GraSP saliency was producing very similar results, and

thus proposed to prune weights with the lowest magnitude of GraSP saliency score:

s
∥GraSP∥
k = |θ ⊙H(θ)g|. Figure 5.13 displays the ∆∥g(θ,∆θ)∥ for different regular-

isation π and λ for ∥GraSP∥ pruning variant. The effect of regularisation is much

more visible, as a good tuning of the number of pruning stages π and norm regular-

isation λ is capable to constraint the gradient flow of the pruned network in a much

more reasonable range compare to GraSP (Figure 5.7). Those observations reinforce

the necessity to apply local steps, and more specifically multi-stage pruning when

reducing the size of a deep learning model to better carry out the criterion objective.

124

Chapter 5

MP =1 =14 =140

Figure 5.13: Same at Figure 5.7, ∆∥g(θ,∆θ)∥ for different number of pruning stages
π, as a function of λ for ∥GraSP∥ pruning criteria. We observe that removing the
lowest magnitude of GraSP, in addition to regularisation λ and multi stage pruning
π lead to better performance than the original GraSP heuristic. We are able to
prevent the gradient norm to being too large.

5.5 Chapter Summary & Discussion

5.5.1 Problem Statement

Pruning consists of removing parameters from a deep neural network to reduce the

size of the model. For that, pruning criteria are used to estimate the importance of

every single parameter and decide whether they are to be kept or discarded. The

importance of a parameter is measured based on its influence over some pruning

objective that usually aims at preserving certain properties of the original network.

Three common objectives in unstructured pruning are: preserving the loss of the

original model to preserve the learning trajectory (LM, QM, OBD), monitoring

the signal propagation through gradient flow to ensure good re-trainability (GraSP,

SynFlow), or simply removing the least salient connection preserving the norm of

the weights (MP).

Despite the wide variety of pruning criteria, a criterion that consistently achieves

state-of-the-art performance has yet to be found. But to design the ultimate prun-

ing criterion it is fundamental to first assess and understand what components in

existing pruning criteria and objectives contribute to producing better-pruned mod-

els. Evaluating the integrity of pruning criterion design is the first step toward more

125

Chapter 5

efficient pruning.

When pruning a deep neural network, practitioners ultimately care about the

end accuracy after fine-tuning. In addition to the removal of parameters, pruning

is almost always followed by a fine-tuning phase during which the pruned network

recovers for the loss in performance accuracy. Thus, assessing the efficiency of a

pruning criterion can be done by checking how much does preserving the original

network properties (pruning objective) correlate with producing better networks

(end-accuracy). In summary:

1. Before fine-tuning: evaluating how good are each criterion at solving their

pruning objective. In other words, are LM, QM, OBD criteria good at pre-

serving the loss, and GraSP, SynFlow good at preserving the gradient flow

between the original and pruned network?

2. After fine-tuning: Assessing if better preserving the original network functions

(loss or gradient) actually lead to better performing pruned models.

To obtain the best possible pruned model, two tricks – multi-stage pruning π,

and norm regularisation λ – to enforce various degrees of locality enforcement were

explored. The correlation between preservation performance and prediction accu-

racy was studied in a second time.

5.5.2 Discussion & Conclusion

To a certain extent, pruning criteria are good at preserving the network functions.

On small network architectures, such as MLP models, preserving the loss or gradient

flow is a good indicator of performance after fine-tuning. But on larger network

architecture, VGG11 or PreActResnet18, no significant link between preservation

capabilities and end-goal accuracy were observed. It is worth noting that for these

larger networks, preserving the gradient flow seemed to be a slightly better indicator

than the loss, as monitoring the gradient norm can help better detect damages in

the sparse architecture that would prevent re-training.

126

Chapter 5

The architecture has an important influence on the performance of pruning meth-

ods as results observed on small networks do not scale to larger ones. This chapter

suggests that there are no optimal universal pruning criteria. There is no clear

evidence that better preserving the network function leads to better fine-tuning per-

formance. Even the best-motivated pruning criteria, fail to consistently produce

good pruned networks. Additionally, a simple magnitude heuristic, such as MP,

obtains really good performance in practice despite its simplicity. This raises con-

cerns about the core foundation and adequacy of current pruning criteria design

that aim to provide efficient pruned networks after fine-tuning, but often lack con-

sideration for the correlation between pruning objectives and final performance after

fine-tuning.

To improve upon existing criteria, deeper investigation into pruning criteria

are required to understand what properties of modern architectures make pruning

crtieria to fail at producing reliable sparse models. Is it caused by larger networks

not being trained to convergence? Is it the depth of the architecture inducing too

many non-linearity? Or simply, is the prediction accuracy not representative enough

of the granularity between pruned networks. What are we missing? Those questions

will be explored in the next chapter, Chapter 6.

127

Chapter 5

128

Chapter 6

Beyond accuracy: evaluating

pruning performance

The growing interest behind network pruning has been motivated by the need for

smaller, more compact, deep learning models for real-world applications. But it was

also reinforced by the potential of pruning to help understand the benefits of param-

eterisation in deep neural networks in order to design more efficient architectures

and training procedures from scratch. Over the years, many pruning methods and

frameworks have been developed exploring different aspects of deep neural networks.

In the previous chapter (Chapter 5) different families of unstructured pruning cri-

teria were presented with the intent of creating sparse architecture that preserves

characteristics from the original network (loss or gradient flow) to reach similar per-

formances. Despite the wide variety of pruning approaches, no clear gain could be

observed from best preserving the dense network loss or gradient flow. This re-

search suggests that in their current state pruning criteria are not fully proficient.

A statement supported by other recent works showing the instability of pruning at

initialisation (Bartoldson et al., 2020; Frankle et al., 2021).

Many factors can influence pruning performance outside the pruning criterion:

the network architecture, re-training strategy, complexity of the dataset. For in-

stance, Renda et al. (2020); Blalock et al. (2020) showed the importance of re-

129

Chapter 6

training strategy, especially the choice of hyper-parameters during the fine-tuning

phase of the pruned network. Follow-up research by Le & Hua (2021) confirmed

the importance of the learning rate. Other works have focused on studying the

flexibility of the masks produced by pruning (Morcos et al., 2019; Zhou et al., 2019;

Paganini & Forde, 2020). But in all these studies, it is often the best accuracy after

fine-tuning the pruned model that is used to ultimately measure the performance of

the sparse model.

In this chapter, we conduct exploratory research to study the impact of pruning

beyond solely looking at performance accuracy. Two specific aspects of deep neural

networks are investigated: the role of parameterisation in pruning performances

– the model architecture, and the robustness and fairness in the pruned model

predictions. Section 6.1 present a study on the impact of parameterisation on the

soundness of pruning criteria. We iterate over the results presented in Chapter 5

to explore when does best preserving the original network’s functions (loss and

gradient-flow) stop being a good pruning objective. Section 6.2 will present and

review an interesting property of sparse neural networks at finding implicit biases

from the training data demonstrated by Hooker et al. (2021). We will extend this

work to study the behaviour of the different unstructured pruning criteria presented

in Chapter 5.

6.1 On the impact of parameterisation

In chapter 5, different pruning criteria were analysed to see if better preserving the

original network function (loss and gradient flow) lead to better performance after

fine-tuning. It appeared that architecture plays an important role in the outcome of

the pruning criteria. On smaller architectures (MLP), preserving the loss or gradi-

ent flow was a good indicator for predicting the accuracy performance of the pruned

model after fine-tuning. Best preserving the loss and improving signal propagation

in the sparse model led to higher accuracy performance after fine-tuning. However,

those observations failed to scale to larger models (VGG11 and PreActResNet18)

130

Chapter 6

where no correlation could be observed between better preserving the original net-

work loss or gradient flow, and the performance of the pruned model. Therefore, a

natural question to ask is: what are the differences between the architecture tested

previously?

Modern architectures (VGG - Resnet-like1) have a higher number of parameters

but they are also deeper as they contain many more layers compared to small MLP

architectures. Thus, two factors may cause the correlation between the preservation

abilities and the end-performances of the pruned model to drop: (1) the overall num-

ber of parameters, or (2) the depth of the architecture. Deeper architectures can be

harder to optimise and usually require more regularisation as the signal encounters

more non-linear activation units. While augmenting the number of parameters im-

plies more computations making it more difficult to approximate the loss or gradient

flow, and therefore removing the right set of parameters.

To estimate whether the decrease in pruning proficiency is due to a large number

of parameters or the network architecture in itself (the depth), we conduct a study

to compare the behaviour of wide – parameters added increasing the width of the

network – versus deep – increase in parameters by adding more layer – networks.

Two types of building blocs architecture are tested – fully connected and convolu-

tion – to further investigate how the inner complexity in the network impact the

performances. Note that for the case of this study, a pruning criterion is considered

proficient if better preserving the original network function correlates with good

performances after fine-tuning of the pruned network. We do not care about the

best accuracy after fine-tuning.

6.1.1 Methodology: Wide verses Deep network

Setup The effect of increasing the number of parameters is tested on both a Multi-

Layer Perceptron (MLP) model architecture and a Convolution Network (Convnet)

architecture. The number of parameters is scaled up by increasing the number of

1Resnet-like architecture englobe Resnet and PreActResnet architectures

131

Chapter 6

neurons, or respectively filter for the Convnet, either adding new units on existing

layers (width) or creating new layers (depth). The baseline architecture for both

models consists of 2 layers with 512 units for the MLP, and 64 filters for the Convnet.

The number of neurons is then scaled-up by a factor of α ∈ {2, 4, 6, 8} for the MLP

and α ∈ {2, 4, 6}. Figure 6.1 summarises the different model architectures studied.

It is worth noting that because wider networks share more connections, it results

in a higher overall number of parameters despite having the same number of neurons,

or filters. For fair comparisons of the pruned models, and to ensure that better

performances are not due to a higher number of active parameters, we constrain

the number of parameters remaining after pruning for both networks wide (width

scaling) and deep (depth scaling) to be the same. In practice, this means that

for a given pruning ratio, the wide models will be pruned more aggressively while

maintaining the same number of active parameters than the deep models.

Evaluation Performances are evaluated on both MNIST and CIFAR-10 dataset,

with pruning ratio of 98.8% and respectively 95.6%. More details about the training

hyper-parameters can be found in Appendix C.1.1. Performances are evaluated

computing the Kendall rank correlation between the best validation error after fine-

tuning, and the preservation abilities ∆L(θ,∆θ) (loss), and ∆∥g(θ,∆θ)∥ (gradient

flow).

τ =
nc − nd

1
2
n(n− 1)

(6.1)

where nc and nd are respectively the number of concordant and discordant pairs,

and n the total number of data points. Note that in Chapter 5 the Spearman

rank correlation ρ was used, here Kendall scores τ is preferred as our sample size is

smaller, 30 data points versus 75 to 410 data points in Chapter 5 where many locality

variants were considered for the different pruning criteria. Here the regularisation

factor λ is fixed to 0 and the number of pruning iterations π to {1, 100}. While

the two rank correlation metrics might lead to slightly different measurements, the

overall inference is unchanged. The following pruning methods are considered: LM

132

Chapter 6

(a) Baseline model architectures with 2-layers, MLP (left) and Convnet (right).

(b) Width scaling model architectures, adding neurons on existing layers. MLP (left) and
Convnet (right).

(c) Depth scaling model architectures, adding neurons on new layers. MLP (left) and
Convnet (right).

Figure 6.1: Different model architectures considered for studying the impact of
parameterisation over pruning criteria integrity, MLP (left) and Convnet (right).
Every layer is followed by ReLU activations, and a Softmax at the end for the
classifier.

133

Chapter 6

with π ∈ {1, 100}; QM, GraSP-abs, SynFlow with π = 100; and MP with π = 1,

where π is the number of pruning stages. See Chapter 5 for all the details regarding

the different pruning criteria.

6.1.2 Experimental results & observations

6.1.2.1 Multi Layer Perceptron (MLP)

First, we study the impact of parameterisation over an MLP architecture. In Chap-

ter 5 we saw that on a small MLP architecture2 there was a correlation between best

preserving the network properties and the performance of the pruned model after

fine-tuning. While the correlation was positive for preserving the loss ∆L(θ,∆θ)

(ρ = 0.67), it was negatively correlated for preserving the gradient flow ∆∥g(θ,∆θ)∥

((ρ = −0.7)). Thus we ask two questions:

• Will the correlation drop as the number of parameters in the MLP increase?

• Does the number of layers impacts the performance of pruning objectives?

Figure 6.2 displays the correlation score between the preservation abilities and

the validation accuracy after fine-tuning the pruned model (y-axis) as we increase

the number of neurons in the networks (x-axis). For loss preservation methods

∆L(θ,∆θ), the correlation score remains more or less constant, oscillating between

0.45 and 0.58 as we increase the number of parameters on existing layers. However,

when increasing the number of parameters by adding new layers, the correlation

scores drop significantly (variation of -0.3).

When considering gradient flow preservation abilities, similar tendencies can be

observed. Augmenting the width of the network only cause a little decrease in

correlation score – average deviation of σ = 0.05, while results observed on deeper

networks observe a larger variation (σ = 0.11). On a very deep network (blue line –

α = 8), similar performances as the baseline model (α = 1) are observed. It appears

that sparse networks that augment the most the gradient flow get better performance

2MLP with 3 layers with respectively 300, 300 and 100 units

134

Chapter 6

(a) ∆L(θ,∆θ) correlation

(b) ∆∥g(θ,∆θ)∥ correlation

Figure 6.2: Correlation score as a function of the network width (green line) or
depth (blue line). The baseline model (x1) consists of a MLP with 2 layers with 512
neurons on each layer. Numbers displayed indicate the p-value scores. When a p-
value score is >0.01 the associated measurement is not considered to be statistically
significant and can be ignored

after fine-tuning, thus gradient flow is a good indicator for predicting accuracy

performances. However, the good performance of gradient flow correlation might be

a result of the presence of outliers caused by the pruned networks that failed to re-

train properly. Tables C.1 and C.2 in Appendix C summarise the different accuracy

score obtained for the different wide and deep MLP networks – scaled either adding

new neurons on existing layers or by adding new layers. For network scaled adding

new layers (Table C.2), some pruning methods failed to produce fine-tunable models

(large accuracy errors). Deeper networks are indeed more at risk of layer collapsing

135

Chapter 6

when the architecture is damaged beyond recovery. Such damaged networks result

in outliers that can greatly influence the correlation score (see Figure 6.3).

Figure 6.3: Scatter plot displaying the ∆∥g(θ,∆θ)∥ before/after pruning as a func-
tion of the best validation error obtained after fine-tuning (where α indicates the
scaling factor). We can observe that there is a range of networks for α = 4 (MLP
with 8 layers) where the sparse model failed to retrain accurately leading to high
error accuracy for low change in gradient flow.

Therefore, on MLP architectures the number of parameters in itself is not what

is causing the correlation to drop but rather the depth of the network. A possible

explanation is that adding more layers introduces more non-linearity making the

networks harder to optimise. Thus approximating the loss or gradient flow becomes

harder and less reliable. We further investigate whether those observations hold on

more complex neural networks, for Convnet architectures.

6.1.2.2 Convolutional Neural Networks on CIFAR-10

We first consider a set of Convnet models trained on CIFAR-10 and pruned at a

95.6% ratio. Figure 6.4 displays the correlation scores as a function of the scaling

factor for both loss preservation (top) and gradient-flow preservation (bottom). For

a simple two-layers architecture with 64 filters on each layer (α = 1), best preserving

the original network function, loss or gradient flow, seems to be a good indicator

for the best accuracy of the pruned model (τ = 0.65 and τ = 0.74 respectively).

136

Chapter 6

(a) ∆L(θ,∆θ) correlation

(b) ∆∥g(θ,∆θ)∥ correlation

Figure 6.4: Correlation score as a function of the network width (green line) or depth
(blue line). The baseline model (x1) consists of a Convnet trained on CIFAR-10 with
2 layers with 64 filters on each layer. Numbers displayed indicate the p-value scores.
When a p-value score is >0.01 the associated measurement is not considered to be
statistically significant and can be ignored.

Augmenting the number of parameters by adding more filters either on existing

layers (width) or by adding new layers (depth), does not impact the correlation

much meaning that no matter the number of parameters, best preserving the original

network function is a good indicator for the end performance of the pruned model.

However, for loss-preservation, we can observe a drop in correlation (−0.2) when

increasing the number of parameters, especially for deeper architectures.

The impact of parameterisation on correlation metrics is much less pronounced

on the Convnet architectures than on the MLP architectures. One possible ex-

planation is that the different Convnet models are not solving the task properly.

137

Chapter 6

(a) MLP on MNIST

(b) Convnet on CIFAR-10

(c) Convnet on MNIST

Figure 6.5: Training curves for different baseline model (dense architecture) for MLP
(top) and Convnet on CIFAR-10 (middle) and Convnet on MNIST (bottom). For
each, we display the baseline for different scaling factors α.

138

Chapter 6

Figure 6.5b displays the training classification error curves for the different Convnet

baselines trained on CIFAR10 for the training (dotted) and validation (plain) set.

We can observe that wide networks (green line) slightly under-fit CIFAR-10 dataset

with an average miss-classification error rate between 20 % and 25 %. On the other

hand, the deeper networks (blue line) are better at solving the task – 10 % error for

6 layers and 15 % for 4 layers – but have a tendency to over-fit with the training

and validation curves diverging from one another.

From previous results on MLP and Convnet trained on MNIST and CIFAR-

10, we observed that as the network gets deeper the correlation tend to drop. We

hypothesised that it was due to an increase in non-linearity making the training

harder from an optimisation perspective. Figure 6.5b brings a new insight suggesting

deeper networks are at higher risk of over-fitting. If wider networks under-fit the

dataset, deeper networks over-fit, is best preserving the network function a good

indicator for the accuracy of the pruned network only when the network is not over-

fitting?

6.1.2.3 Convolutional Neural Networks on MNIST

To assess the impact of under and over-fitting on the correlation factor, we now

investigate the behaviour of Convnets on MNIST dataset where both, wide and

deep networks over-fit the training data – (see Figure 6.5c). Two pruning ratio are

considered: pr = 95.6% for consistency with the previous experiments on CIFAR-10,

and pr = 98.85% to prune the model at its best potential as MNIST – a grey-scale

collection of digit numbers – is far less complex than CIFAR-10 – a RGB collection

of 64× 64 images. Results are presented in Figure 6.6.

When trained on MNIST considering a pruning ratio of 95.6% (plain lines),

augmenting the number of parameters can help to improve slightly the correlation

score. We cannot conclude much from increasing the width of the network (green

plain line) as most correlation points observed are not statistically significant (p −

value>0.01). Also, it is worth noting that significant correlation scores observed

139

Chapter 6

(a) ∆L(θ,∆θ) correlation

(b) ∆∥g(θ,∆θ)∥ correlation

Figure 6.6: Correlation score as a function of the network width (green line) or
depth (blue line). The baseline model (x1) consists of a Convnet trained on MNIST
with 2 layers with 64 filters on each layer. Numbers displayed indicate the p-value
scores. When a p-value score is >0.01 the associated measurement is not considered
to be statistically significant and can be ignored.

are far less pronounced than previous experiments on CIFAR-10, with correlation

scores between 0.3 and 0.5 compare to 0.75 observed earlier.

When considering a higher pruning ratio pr = 98.85% (dotted line) we obtain

slightly better results where measurement are significant (p− value<0.01).

Note that compared to MLP, the correlation between gradient-flow preservation

and end accuracy is positive. Convnets are trained for less epochs than the MLP

models and use early stopping meaning that the training is stopped before it has

reached full convergence. Thus, preserving the gradient flow might help reach better

140

Chapter 6

training accuracy compared to a fully converged network – as it is the case with the

MLP – where preserving the gradient flow corresponds to preserving zero-gradient

values.

Overall, results observed on Convnets trained on MNIST are less significant

than previous experiments on Convnets on CIFAR-10 or MLP on MNIST. But

Convnets trained on MNIST over-fit more than their counter-part trained on CIFAR-

10, supporting our hypothesis that over-fitting impair the performance of pruning

criterion.

6.1.2.4 Fine-tunining

When the network over-fit during the initial training phase, as for the MLPs and

Convnets trained on MNIST (see Figure 6.5), best preserving the original network

function do not constitute a consistent good indicator to predict the pruned model

performances with absolute correlation score varying from 0.25 to 0.55 (see Figure 6.2

and Figure 6.6). To investigate whether over-fitting causes optimisation issues when

fine-tuning the model, we investigate the fine-tuning phase.

Figure 6.7 displays the fine-tuning curves (validation and training error) for the

different models’ architectures and datasets tested when scaled up adding new layers

(depth). For network scaled by adding new units on existing layers (width), fine-

tuning curves are presented in Appendix C Figure C.2. Networks over-fitting during

the training phase, tend to produce pruned networks that will over-fit during fine-

tuning. This can be observed on Convnets on MNIST pruned at 95.6% (Figure 6.7c)

and MLP on MNIST (Figure 6.7a). By augmenting the pruning ratio – Convnet

on MNIST pruned at 98.85% (Figure 6.7d) – the gap between the training and

validation curves is shrunken but we observe a loss in accuracy and performance are

not as good as when pruning at 95.6%.

For Convnets trained on CIFAR-10 (Figure 6.7b) pruning the network generate

sparse architectures that do not over-fit when fine-tuning. This could explain the

good correlation score (τ = 0.75) observed in Figure 6.4.

141

Chapter 6

(a) MLPs on MNIST

(b) Convnets on CIFAR-10

(c) Convnets on MNIST with pr=95.6%

(d) Convnets on MNIST with pr=98.85%

Figure 6.7: Fine-tuning curves (classification error) for different model architectures
scaled on the depth. (See Figure C.1.3.2 in Appendix C for model architectures
scaled on the width.)

142

Chapter 6

Similar results can be observed for networks scaled on the width (see Appendix C,

Section C.1.3.2).

To confirm whether over-fitting influences if best preserving the network function

is a good indicator for ensuring good performances of the pruned model, Figure 6.8

displays a scatter plot of the correlation scores (both ∆L(θ,∆θ) and ∆∥g(θ,∆θ)∥)

as a function of the mean divergence between the training and validation curves

averaged over all pruning methods.

(a) During fine-tuning (over-fitting of sparse models)

(b) During initial training (over-fitting of dense models)

Figure 6.8: Scatter plot of the average divergence between the training and validation
curves verses the correlation score between best preserving the original network
function (∆L(θ,∆θ) and ∆∥g(θ,∆θ)∥) and end-accuracy of the pruned model.

When considering the fine-tuning phase, ie. sparse architectures (Figure 6.8a),

143

Chapter 6

for both Convnets models (right) and MLPs models (left), the lesser the diver-

gence between the training and validation curves, the better the correlation score.

However, when only considering the initial training phase, ie. dense architectures,

(Figure 6.8b), the relationship between the correlation score and over-fitting is much

less pronounced.

We can conclude that preserving the original network functions – loss ∆L(θ,∆θ)

or gradient-flow ∆∥g(θ,∆θ)∥ – is a good candidate to select unimportant parame-

ters, but because these statistics (loss and gradient-flow) are computed on the train-

ing set, the more the network over-fit, the lesser those will be relevant to produce

good pruned networks.

6.1.3 Discussion and Limitations

6.1.3.1 Discussion

While the initial motive behind pruning is usually to reduce the number of pa-

rameters and thus the size of a deep neural network, pruning can also be seen as a

mechanism that injects noise in the model to better generalised to unseen data. Bar-

toldson et al. (2020) demonstrated empirically that the more instability a pruning

method injects, the less sensitive it is to data changes, thus the better the generali-

sation performances. By preserving the original network function, we produce more

stable pruning criteria that might have a tendency to be too reliant on the training

data (less noisy). This could explain why despite its simplicity, Magnitude Prun-

ing criterion remains highly competitive and with the right set of hyper-parameters

often outperform other criteria more mathematically grounded. Also by removing

natural noise, pruning criteria (LM, QM, GraSP) might encourage over-fitting. A

possible way of exploring this hypothesis would be to investigate the flatness of the

pruned model by looking at the trace of the Hessian as performed in Bartoldson

et al. (2020).

Over-fitting during fine-tuning can also indicate an optimisation problem where

another choice of hyperparameters might be more appropriate. Hyper-parameters,

144

Chapter 6

especially the choice of the learning rate, plays a crucial role in the performances

in terms of accuracy of the pruned model as demonstrated in Le & Hua (2021)

and Renda et al. (2020). However, because the network is over-fitting during the

training of the dense network, it is unlikely that solely performing hyper-parameters

search will solve this issue. More regularisation is required to enhance training of

sparse architectures.

Lastly, picking the right degree of sparsity within a deep network is often a

question of trade-off between compute time and accuracy performance (see Chapter 4

Section 4.1.4). A higher ratio of pruning can help mitigate the gap between training

and validation but often result in a loss in accuracy as demonstrated with Convnets

trained on MNIST and pruned at 95.6% and 98.85%.

6.1.3.2 Limitations: Drop in accuracy & Layer collapsing

To find the optimal pruning ratio, the one that preserves the best accuracy of the

original model, the best practice is to prune the network gradually while fine-tuning

the pruned network in between each stage. By doing so, if pruning degrades too

much performance we just have to revert to the previous sparse model, and thus it

is easier to find a desirable trade-off between sparsity and accuracy. But such an

approach can be compute-intensive.

Figure 6.9 presents the best accuracy (solid lines) obtained after fine-tuning the

pruned model for different pruning ratios. The divergence between the training and

validation error is also displayed (dotted line). The impact of pruning ratios over

the pruned model performances can be separated into three-phase as described in

the sparsity survey from Hoefler et al. (2021). When the pruning ratio is small –

(Phase I), pr<50%] – there is a small benefit to pruning. Increasing the pruning ratio

slightly improves the accuracy but the benefits compute-wise are often negligible.

By pruning over 50%, we enter the optimal sparsity regime for which a good trade-off

between accuracy and compute complexity can be found. In this stage, the pruned

model first get a boost in accuracy, sometimes outperforming the baseline, before

145

Chapter 6

its performance starts to slowly decrease – (Phase II), pr ∈ [50%, 98%]. But further

increasing the pruning ratio – (Phase III), pr>0.98 – quickly degrades the pruned

model performances, it usually corresponds to a stage where the architecture starts

to be damaged beyond recovery.

Figure 6.9: Classification error (plain line) as a function of the sparsity ratio for a
Convnet trained on MNIST. The dense model accuracy is reported in grey. Dotted
line display the average gap between the validation and training set error.

Also displayed in Figure 6.9 is the over-fitting factor during fine-tuning as a

function of the pruning ratio (dotted line). In this context, over-fitting is measured

as the average divergence between the train and validation curves. We can observe

that pruning does reinforce over-fitting, however, there is a small regime during

phase III where pruning can help mitigate over-fitting. However, this only happens

when the network observes a significant loss in accuracy which is not desirable in

practice.

Under Phase III the accuracy of the sparse models drops abruptly which indicates

that the architecture of the neural network gets damaged beyond recovery. At

high pruning ratios, it is harder to balance the number of remaining parameters

between the different layers, some layers might suffer from a collapsing effect. Layer-

collapsing is considered to be the major obstacle for pruning before training (Tanaka

et al., 2020), but we show that this phenomenon also occurs when pruning during

146

Chapter 6

Figure 6.10: Ratio of parameters remaining per layer (x axis) for a VGG16 architec-
ture when pruned before training (top), at the middle of training (middle) or after
training (bottom). Magnitude pruning is applied in this example. Different colors
correspond to different ratio of pruning, with blue being a small pruning ratio and
red high pruning ratio.

or after training.

Figure 6.10 presents the sparsity per layer for different pruning ratios on VGG16

trained on CIFAR-10 dataset. We can observe that layer-collapsing occurs at differ-

ent times during training.

Global pruning – when the sparsity ratio is applied across all layers rather than

uniformly – is the preferred approach when pruning a deep neural network compare

to layer-wise pruning – where we remove the same ratio of parameters on each layer.

It offers more flexibility but also encourages layer collapsing. A simple trick to

prevent layers from collapsing could be to enforce a minimum number of required

parameters per layer.

The impact and importance of the scope of sparsity – global verses layer-wise –

has not been thoughtfully studied in the literature. However, recent studies by Fran-

kle et al. (2021) demonstrated that in the context of pruning at initialisation, the

parameters’ values did not matter but the layer sparsity did. Thus it would be in-

teresting to study further if preventing layers from collapsing can boost the pruning

147

Chapter 6

performances

Note that all the experiments presented in this section were conducted on MP.

Key pruning ratio that defines the different pruning phase, or layer collapsing, are

not invariant to the pruning method. But similar phenomenons can be observed.

(See Appendix C.1.4)

6.2 On Fairness and Robustness

The main objective in research centred around pruning criteria is to design a heuris-

tic to estimate the importance of parameters in order to reduce considerably the

compute load while preserving the dense network accuracy. The aim is ultimately

to find a criterion that manages to preserve the dense network accuracy under very

high sparsity ratios. Thus, the effectiveness of a pruning criterion is usually assessed

by measuring how far the network can be pruned (pruning ratio) while preserving

a good accuracy, omitting other factors such as robustness to adversarial attacks,

fairness in the pruned model predictions, or soundness of the importance heuristic

in itself.

Despite their ability to reach similar prediction accuracy, dense and sparse models

contain a radically different number of parameters. This raises concerns about the

ability of validation accuracy to assess and evaluate the pruned model performances.

Recent work by Hooker et al. (2021, 2020) demonstrated that while having similar

top-line performance metrics, on a small subset of data, pruned models produce

significant disparate outcomes compared to the original model. Unlike the belief

that by removing parameters we produce more robust models, the authors showed

the opposite: sparse models with high levels of sparsity reinforce existing bias in the

datasets making them less reliable under adversarial attacks.

Whether it is at initialisation or end of training, it is hard to differentiate between

unstructured pruning criteria, no criterion consistently out-perform the others. Fran-

kle et al. (2021) showed that at initialisation all pruning methods are equal, while

in 5 we demonstrated that all unstructured pruning criteria had similar performance.

148

Chapter 6

In this section we explore the following questions:

• Is assessing fairness in prediction a better tool to differentiate between different

unstructured pruning criteria?

• Does pruning at initialisation generate better – fair and robust – sparse models

than when pruning is applied after training as the network has not learned any

prior?

6.2.1 Methodology: Comparing fairness of pruning criteria

Pruning can be seen as a regularisation tool, or a way to reduce noise in the learning

representations. Naively, one could think that by reducing the number of parameters

the sparse model is forced to learn better general features which would lead to a

boost in generalisation performance. If pruning was producing such fair and robust

sparse models, it would:

• preserves similar degrees of per-class accuracy between the dense and sparse

model

• be more robust to adversarial attacks. Small changes in the data points (in-

jecting noise) should not impair the prediction

In this section, we focus on the fairness assessment of pruned algorithms con-

sidering different unstructured pruning criteria. Because pruning criteria rely on

different importance measures, we seek to explore whether removing the parame-

ters based on the loss or gradient-flow information or simply parameters magnitude,

leads to similar induced bias. If we do not observe any benefits in top-1 accuracy,

does best preserving the original network functions lead to better fairness in the

predictions?

Setup The set of experiments conducted for this section extends over Hooker et al.

(2021) work. In our setting, pruning is applied at the end of training and the pruned

model is fine-tuned following the original training hyper-parameters with tuning on

149

Chapter 6

the learning rate. More details on the training hyper-parameters can be found in

Appendix C.2.

The model used is a ResNet-20 (He et al., 2015) trained on CIFAR10 and pruned

at 95.4% . Note that pruning ratios were chosen accordingly to the Lottery Ticket

Hypothesis (LTH) (Frankle & Carbin, 2018) for the sake of comparison. Pruned

models obtained following the LTH framework often constitute a strong baseline

that many papers compare within the pruning literature. Experiments are run

over 6 different seeds and pruning methods considered are MP and random with

one iteration of pruning, and LM, GraSP abs and Synflow with 100 iterations of

pruning following a multi-stage approach (see Chapter 5 for more details on pruning

methods and acronyms).

Evaluation The same metrics as in Hooker et al. (2021) are used to assess the

fairness of the different pruned models. The impact of pruning is considered fair if

the relative change in class accuracy between the dense and sparse models is uniform.

Thus our null hypothesis can be defined as:

H0 :
βc
D

βM
D

=
βc
S

βM
S

(6.2)

where D and S refer to the dense and sparse model, βc to the per-class accu-

racy and βM the overall accuracy. To verify the null hypothesis, a Welch’s test is

performed. The distribution of class accuracy shift is computed as

Sc = {βc − βM} (6.3)

where c is the class index, βc the class accuracy and βM the overall accuracy

equivalent to the mean accuracy over all classes. For each class c, we perform

a Welch’s test between Sc
D – the dense model class shift – and Sc

S – the sparse

model shift – to assess whether the mean between the two distributions diverges. If

the p-value is <0.05, then there is a significant divergence between the dense and

sparse models, which mean that the null hypothesis (Equation 6.2) is invalid and

150

Chapter 6

the pruning criteria do not uniformly impact all the classes.

In addition to the mean divergence in class predictions, we compare the be-

haviour of different pruning methods investigated the Pruning Identified Exemplars

(PIEs) generated. PIEs introduced by Hooker et al. (2021), measure the level of

disagreement between the dense and sparse models. In other words, it is all the

data points i for which the most frequent prediction yi over a population of models,

differ between the sparse and dense architecture:

PIEi =

{
1 if yi,D ̸= yi,S

0 otherwise
(6.4)

Those statistics, PIEs and Welsh’s test, are computed over the test set for which

there is an equal number of 1000 data samples for each class.

6.2.2 Experimental results

6.2.2.1 Pruning at the end of training

The behaviour of different unstructured pruning criteria is investigated under fair-

ness metrics. Table 6.1 presents diverse statistics for different pruning methods

when pruning is applied at the end of training and followed by a fine-tuning phase.

For comparison, the performance of sparse model obtained under the Lottery Ticket

Hypothesis (LTH) framework (see Chapter 4) known to be robust models are re-

ported (Liebenwein et al., 2021).

When looking at the top-1 accuracy (second column) we can notice that most

pruning criteria produce sparse networks that are in close range with performances

oscillating around 80% for a Resnet20 pruned at 95.6%. LTH and MP are the best

performing criteria with respectively 86.11% and 83.87%, while Random pruning

is the worst performing criterion with 76.74%. When computing with a Welsh’s

test the number of classes whose prediction score shifted significantly between the

baseline model and the sparse models (3rd column), we notice that apart from LTH

model, a majority of classes were negatively impacted by pruning – 6-7 classes. By

151

Chapter 6

having this cycle of pruning/fine-tuning, LTH seems to produce more robust models,

but it could also be an effect of fine-tuning the pruned model from initialisation.

A Welsh’s test assumes our class accuracy distribution follows a Gaussian distri-

bution, however in our experimental setting due to the small number of experiments

– 6 per pruning criteria – this assumption might not hold true. To confirm our

initial observations, Figure 6.11 displays per class deviations Sc = {βc − βM} for

different pruning methods, where βc is the per-class accuracy and βM the overall

or mean accuracy. In an ideal fair and non-biased model, each class should have an

equal prediction score resulting in little deviations from the overall (mean) accuracy

illustrated by the dotted line. We can see that the baseline model (blue squares) is

rather balanced as most classes observe only a small 5% accuracy deviation, except

for the class cat for which the prediction is almost 10% off the mean accuracy.

If pruning criteria were to produce sparse models with similar outcomes as the

initial dense network, then the shift in prediction should be equal to the one from

the baseline resulting in all the points in figure 6.11 should overlap. If we can

observe such tendency on the Frog class, for other classes (car, bird, cat, dog, ship)

the impact of pruning is more pronounced, confirming that pruning is not applied

uniformly across classes.

Lastly, we cannot conclude much from the number of PIEs – miss-classified

Resnet20 on CIFAR10 (end of training)

Criterion Accuracy (%) # Class shifted # PIEs

LTH 86.11 ± 0.26 3 1086
MP 83.87 ± 0.32 6 1218

Random 76.74 ± 1.68 6 1800
LM 78.51 ± 0.74 7 1762

∥GraSP∥ 79.84 ± 0.69 7 1508
SynFlow 79.57 ± 0.83 6 1549

Table 6.1: Summary of different pruned model statistics. The 2nd column report
the model accuracy after fine-tuning, the 3rd the number of class that shifted sig-
nificantly from the baseline (dense) model, and finally the 4th column corresponds
to the number of data points that observed a change in classifications between the
dense and sparse networks outcome – note that CIFAR10 contains 10k datapoints.
As a reference, the accuracy for the dense model is 90.90% ± 0.31

152

Chapter 6

examples – reported in Table 6.1. Because there is a significant drop in accuracy

between the dense networks and the different sparse models, the number of PIEs

is quite high. However, 247 data points are consistently miss-classified no matter

the pruning criteria, Figure 6.15 present a snapshot of miss-classified examples. We

can observe that these examples are either high contrasts images or unusual camera

angles, and we could expect those examples to be harder to classify than others.

So far there seem to be little differences between pruning criteria when comparing

them under fairness metrics. When comparing the divergence in class prediction

between pruning criteria (Figure 6.12) we can observe two distinct groups: criteria

preserving the original network function – LM, ∥GraSP∥ and SynFlow – that observe

little divergence between one another with only 2 to 3 classes that resulted in a

significant shift in prediction, and, magnitude heuristics –LTH and MP. Criteria

preserving the original network functions produce models of similar quality with

random pruning with only 0 to 1 classes that diverged significantly. This could

either be an effect of more data points being required to regularise the observations,

or some class or data point being much harder to classify and thus requiring more

expressiveness from the network. By preserving the original network function we

might remove useful noise to help classify harder data points.

Figure 6.11: Per class prediction deviation for different pruning criteria when prun-
ing is applied at the end of training. Classes are represented along the x-axis.

153

Chapter 6

6.2.2.2 Pruning at initialisation

Because pruning was previously applied at the end of training, it is natural to

suspect that biases induced by pruning might be reinforced by prior knowledge

learned by the network. To test this hypothesis, pruning is applied at initialisation

and we assess whether starting from a ”blank” network helps preserving the original

network outcome predictions.

Similar to Table 6.1, Table 6.2 presents a summary of the statistics investigated

under various pruning criteria. Again the different sparse networks reach similar

performances around 81% accuracy. For most of the pruning criteria, applying

pruning at initialisation drastically reduces the number of classes that observe a

significant shift in prediction accuracy. This number is reduced from 6-7 when

pruning was applied after training to 3-4.

When investigating the per class deviation Figure 6.13, we do not observed any

significant change between pruning at initialisation and end of training (Figure 6.11).

Randomly pruning weights do not produce a uniform effect suggesting some ex-

amples are harder to classify than others. However, when comparing the shift in

Figure 6.12: Number of classes with significant mean-shift class accuracy between
different pruning criteria and the baseline – dense model, where 10 is the maximum
number of classes. It can be observed that all the pruning criteria diverged sig-
nificantly from the baseline indicating that pruning does not preserve the original
model prediction distribution. Moreover, criteria preserving the original network
function (LM, ∥GraSP∥ and Synflow) observed similar behaviour with only a little
shift in class prediction.

154

Chapter 6

Resnet20 on CIFAR10 (initialisation)

Criterion Accuracy (%) # Class shifted # PIEs

LTH 86.11 ± 0.26 3 1086
MP 83.06 ± 0.26 5 1307

Random 79.44 ± 1.97 4 2340
LM 81.61 ± 0.43 6 1483

∥GraSP∥ 80.36 ± 0.25 3 1445
SynFlow 81.54 ± 0.36 7 1398

Table 6.2: Summary of different pruned model statistics. The 2nd column report
the model accuracy after fine-tuning, the 3rd the number of class that shifted signif-
icantly from the baseline (dense) model, and finally the number of data points that
observed a change in classifications – note that CIFAR10 contains 10k datapoints.
As a reference, the accuracy for the dense model is 90.90% ± 0.31

Figure 6.13: Similar to Figure 6.12 but for pruning at initialisation. Per class
prediction deviation for different pruning criteria when pruning is applied before
training.

prediction between pruning criteria (Figure 6.14), we notice that most models are

aligned.

If pruning at initialisation produces slightly less biased sparse networks, we can-

not clearly differentiate unstructured pruning criteria, they all produce sparse models

of comparable quality.

155

Chapter 6

Figure 6.14: Comparison of number of classes with significant mean-shift class accu-
racy between pruning criteria. Similar to Figure 6.12 but for pruning at initialisation.

6.2.3 Discussion and limitations

Studying fairness and robustness in sparse models brings on a new perspective on

the impact of removing parameters from the model beyond solely looking at the

performance accuracy. If the accuracy can be preserved, sparse models usually

reinforce biased present in the original dense model. It can become a tool to help

assist practitioners in detecting potential failures of their model (Hooker et al., 2021,

2020).

Because magnitude heuristics – MP and LTH – remove the weakest connections,

they are more prone to preserve the expressiveness of the neural network on difficult

examples. On the other hand, criteria trying to preserve the original network func-

tion – LM, ∥GraSP∥, SynFlow – are more sensitive to the data used to compute

the importance measure. Real world data are noisy, the contribution of a data point

cannot be estimated solely by its contribution to the loss (Hu et al., 2021).Real

world data are noisy, the contribution of a data point cannot be estimated solely by

its contribution to the loss (Hu et al., 2021). Those metrics are usually computed

on the training set and all examples are considered ”equally” when computing the

criterion heuristic. But in practice not all examples are equal and some are harder

to classify than others (see Figure 6.15). These criteria might be inclined to pre-

serve weights related to popular examples leading to non-typical data points being

156

Chapter 6

severely impacted by pruning: a cat in a weird position, an unusual camera angle

picturing a horse from below, or high and low contrasts.

Figure 6.15: Example PIEs images obtained when pruning after training.

But the major factor influencing the fairness and robustness of sparse models

is the pruning epoch. By pruning at initialisation, when the network has no prior

knowledge, we can obtain more reliable pruned models. In particular for gradient-

based criterion ∥GraSP∥ that benefits greatly from pruning at initialisation. This

can be explained by the fact that at initialisation because the neural network has

not learned anything yet, the gradient for every data point has ”equal” importance.

At the end of training, some important parameters might have already reach their

optimal value resulting in a zero-gradient. Also, because the gradient is trying

to minimise the loss function, the optimisation might favour easy examples that

produce stronger gradients and lead to a greater decrease for the cross-entropy score.

To alleviate this issue, a new pruning criterion could be designed trying to empha-

size pruning weights related to easy data points and trying to preserve the weights

related to hard examples. Data plays an important role in supervised learning ap-

proaches, researchers should be more careful with how they are used when computing

importance measures to create more robust and fair sparse models.

6.2.3.1 Limitations

The results presented in this section are preliminary. They would benefit from a

larger scale study with more pruning ratio explored. However, in our context, we

were most interested in whether fairness metrics would constitute a better tool to

differentiate unstructured pruning criteria and we demonstrated that it does not.

This once again highlight the poor reliability of pruning criteria design.

157

Chapter 6

6.3 Chapter Summary

This chapter presented exploratory works investigating the quality of pruning crite-

ria beyond solely looking at the prediction accuracy. Two directions were explored:

1) the impact of parameterisation, to assess whether the lack of correlation between

pruning objectives and pruned models performance was due to the high number of

parameters or the complexity of modern architectures, and 2), the robustness of

sparse model produced with different unstructured pruning criteria at preserving

the original model prediction (fairness), to investigate if other characteristics could

help differentiate between pruning criteria.

In Chapter 5 we demonstrated empirically that on modern architectures – VGG

and PreActResNet – best preserving the original network loss or gradient flow did

not correlate well with pruning performances. In other words, models good at pre-

serving the original network functions were not necessarily reaching good accuracy

after fine-tuning. In Section 6.1 we extended over this observation to explore whether

the sole number of parameters or the complexity of modern architectures was caus-

ing poor correlation scores, studying how parameterisation impacted the correlation

on wide (augmenting size of existing layers) versus deep (adding new layers) models

on two toy models: Multi-Layers Perceptrons and Convolutional Networks. Our

empirical study showed that the parameterisation, either deep or wide, did not im-

pair the pruning performances much. Deeper networks were slightly more sensible

than wider networks due to more non-linearity, but a clear drop in correlation per-

formances could be observed when the pruned models were over-fitting during the

fine-tuning phase. Because statistics computed to preserve the original network

functions – loss ∆L(θ,∆θ) or gradient-flow ∆∥g(θ,∆θ)∥ – are computed on the

training set, the more the divergence between the validation and training sets, the

lesser best preserving those properties will translate to better-performing networks.

Thus pruning objectives reliant upon training data might not be a suitable candi-

date to create pruning criteria due to modern deep learning being in an over-fitting

regime. Also this might suggests that pruning diminish the effect of regularisation

158

Chapter 6

techniques.

One effective way to prevent over-fitting is to apply a high pruning ratio. In

Section 6.1.3 we briefly reviewed the limitation of working with high pruning ratios

presenting two common effects: drop in accuracy and layer collapsing. Another

way to prevent over-fitting is to regularise the network but there is little research

on regularisation methods for sparse training, especially in the context of pruning.

This would constitute a promising direction for future research to improve existing

pruning criteria.

Validation accuracy is not always the best tool to assess the performance of a

pruned model. Recent research (Hooker et al., 2021) demonstrated that while pre-

serving the original model accuracy, sparse models have a tendency to reinforce

inherent biases from the training dataset, and increase weaknesses to adversar-

ial attacks. In Section 6.2 we investigated whether fairness metrics would con-

stitute a better tool to differentiate between different unstructured pruning criteria:

magnitude-based, loss-preservation, or gradient-preservation. Maybe preserving the

loss trajectory or gradient flow prevent diverging from the dense learning represen-

tations. We showed that in the context of pruning at the end of the training, no

matter the criterion, pruning was not applied uniformly across classes and as a re-

sult, the outcome of the sparse model was of poorer quality than the original model,

reinforcing biases (less fair).

However, when pruning was applied at initialisation, before any prior knowledge

of the network, it seemed that preserving the gradient flow was helping reduce biases.

We hypothesise that this was a result of every data point being considered equally

as the network as not learning anything compare to pruning at the end of training

where the network might have converged toward ”easy” examples. In the end, all

pruning criteria were producing sparse models of similar qualities and fairness can

not be used to help identify the best unstructured pruning criterion

An alternate pruning criterion taking into account the disparities between train-

ing data points could become a powerful method to pruned efficiently deep neural

159

Chapter 6

network. Weights related to popular and easy examples should be the ones to be

pruned, while examples linked to complex data points should be preserved. Only

then can we take full advantage of sparse neural networks.

In summary, current unstructured pruning criteria are not exploited to their

full potential due to the over-fitting regime in which we train modern deep learning

architecture. We need to rethink the way we design unstructured pruning criteria to

take into account diverse difficulty of training data points and lack of regularisation

during the fine-tuning phase, as well as take into consideration inherent biases in

the training data.

160

Chapter 7

Conclusions

Deep Learning is a powerful tool to interpret and extract knowledge from a wide

variety of data, from images to natural language. It has proven to be capable of

reaching human-level performance, and has great potential applications in smart

environments, smart cities, health and social welfare, and others. But neural net-

works are getting bigger, requiring ever increasing computational resources not only

for training, but also for inference. This has significant implications for univer-

sal accessibility of AI technology with high costs, potential environmental impact

through high power consumption and inability to use the models on mobile devices

and low-power chips, demanding a constant update for existing hardware.

Unstructured pruning was developed as a tool to induce sparsity in a deep neural

network to reduce the computational cost of running deep learning models. The goal

is to remove parameters (i.e. set them to zero) based on some importance measures

while maintaining good prediction accuracy, resulting in a high-performing network

with a smaller computational footprint. Over the years, unstructured pruning has

demonstrated to be a handy tool to help understand training dynamics in deep

neural networks to design better and less demanding training frameworks.

Pruning has attracted lots of attention recently due to its simplicity and high

potential to reduce the gap between academic research and AI deployment in pro-

duction. This thesis investigated the state of unstructured sparsity for computer

vision models, analysing the benefits and limitations of such an approach. In par-

161

Chapter 7

ticular, a focus was put on the design of importance measures and pruning criteria

to better understand what makes a good pruning criteria.

7.1 Hypothesis and Research Questions

7.1.1 RQ1: Pruning Framework

Pruning has originally been developed as a tool to reduce parameterisation in deep

neural networks in order to produce more compute-efficient neural network archi-

tectures.The size and complexity of deep neural networks have been following an

exponential growth since 2012 and the ImageNet breakthrough. This has greatly

impacted the deployment of AI applications in real-world settings, where the com-

pute is often limited and raised concerns about the sustainability of AI both socially

and environmentally.

To alleviate this issue, many pruning approaches have been developed over the

past decade. A wide variety of pruning frameworks have been proposed ranging

from structured to unstructured pruning, pruning before, during, or after training,

to retraining strategies. However despite the diversity of pruning methods, there

is not a single method that consistently outperform the others. Finding the right

pruning methodology depends on many factors: the level of compression we wish

to achieve, the degree of accuracy we can afford to lose, the budget available to

perform the pruning step, and the complexity of the task. Most methods require

the pruned model to be fine-tuned, thus implying having the training data at hand.

The complexity of the pruning heuristic, and the number of pruning cycles (training

and fine-tuning) also need to be taken into consideration. For instance, the Lottery

Ticket framework (Frankle & Carbin, 2018) achieves state-of-the-art compression

and accuracy trade-off. However, to achieve approximately 95% size reduction by

pruning 20% of the parameters each pruning step following an exponential decay,

15 cycles of training and fine-tuning are required, which has a significant impact for

models that can take weeks to do one training iteration.

162

Chapter 7

In summary, despite great progress pruning research is lacking a common bench-

mark to assess and compare the performance of all these compression approach. To

help practitioners pick the best pruning method suited to their need, Blalock et al.

(2020) proposed an open source PyTorch library to facilitate and standardised the

evaluation of pruned models, but it is little used in the current literature.

Over years of research, pruning also shifted from application-oriented motives

(lower computation costs, better generalisation, acceleration on low-power devices)

to consideration towards empirical and theoretical understanding of deep neural

networks (sparse training, dynamic training, role of over-parameterisation) thanks

to unstructured pruning. When Frankle & Carbin (2018) and Liu et al. (2019) both

demonstrated it was possible to train sparse neural networks from scratch to full

accuracy, it attracted researchers to question what properties of those sparse neural

networks lead to good training performance. Although many works explored and

demonstrated the flexibility of sparsity at initialisation (Zhou et al., 2019; Paganini

& Forde, 2020; Frankle et al., 2021), there is still a lot to learn. Unstructured pruning

is a promising tool to understand what properties or parts of the network cause good

performances, but more research is require in order to build more efficient pruning

criteria and training framework.

7.1.2 RQ2: Integrity of unstructured pruning heuristics

The first step toward understanding how to create a good pruning framework is

to evaluate the performance of existing pruning criteria. Evaluation of the pruned

model performance often focuses on how far the model can be pruned without losing

accuracy, but it does not assess the very foundation of pruning objectives and crite-

ria. There is no clear gain from using one criterion in preference of another. However,

a common problem to all pruning criteria is layer collapsing, when the architecture

of the neural network is damaged beyond recovery by aggressively pruning a layer,

preventing the pruned model from re-training properly. Pruning a small number of

parameters at a time is a good approach to alleviate such a phenomenon.

163

Chapter 7

A pruning criterion ranks parameters based on some importance measure derived

from a specific pruning objective. In unstructured pruning there are three main

pruning objectives: preserving the parameters’ magnitude, preserving the dense

network loss, or preserving the gradient flow from the original network. If such

pruning objectives are efficient then best preserving the original network function

should produce a better performing pruned model and the one objective leading

to the greater accuracy improvement would constitute the most effective pruning

approach.

In chapter 5 a comparison between different pruning criteria was conducted. To

obtain different levels of loss or gradient-flow preservation within a same pruning

criterion, we applied different tricks to enforce locality when approximating the

original network function. We demonstrated that the previous statement was invalid

and that best preserving the original network function (loss or gradient flow) does not

lead to better performance after fine-tuning the pruned model, especially on modern

architectures. This suggests that pruning criteria, and their pruning objective, are

not adapted to work on current state-of-the-art architectures. What causes pruning

objective to fail at producing good sparse models on modern deep neural networks?

Two main factors that differentiate modern architectures from original Multi-

Layers Perceptions architectures are: the number of parameters (a hundred million

against ten million), and the depth of the network inducing more non-linearity.

Further analysis presented in Chapter 6 studied the effect parametrisation had on

pruning objectives. We compared the behaviour of wide versus deep networks when

augmenting the number of parameters adding neurons or filters on either existing

layers or by adding new layers. We demonstrated that the overall number of param-

eters had little effect on pruning objectives. We were able to observe that better

preserving the dense network functions led to better performing pruned models even

on very wide architectures. Deeper networks were slightly more sensible than wider

networks due to more non-linearity, but no clear drop in correlation performances

could be observed. When the pruned models were over-fitting during the fine-tuning

164

Chapter 7

phase, however, the correlation dropped drastically suggesting over-fitting causes

pruning objectives to fail at producing efficient sparse models.

Because statistics computed to preserve the original network functions – loss

∆L(θ,∆θ) or gradient-flow ∆∥g(θ,∆θ)∥ – are computed on the training set, the

greater the divergence between the validation and training sets, the less benefit there

is from best preserving those properties. By preserving the original network function

too much, we remove diversity in the representations learned by the sparse network.

They might be biased towards data points with high loss or gradient signal, with

an impact on generalisation. To prevent such a phenomenon, more regularisation is

required during the fine-tuning of sparse models. But in their current state, pruning

criteria based upon loss or gradient preservation are not suitable candidates to create

a reliable pruning model due to the over-fitting regime in which modern deep learning

are trained.

7.1.3 RQ3: The impact of a sparse neural network on fair-

ness

Despite their ability to achieve similar performance in terms of accuracy, dense and

sparse models contain radically different numbers of parameters. It was initially

believed that by reducing the amount of over-parameterisation, sparse models would

memorise less and learn more generic and robust features. However, a recent study

by Hooker et al. (2021) showed that it was quite the opposite. Sparse models

obtained through unstructured magnitude pruning have a tendency to reinforce

existing bias within the dataset, despite preserving a similar accuracy level.

Restricting the evaluation of a pruned model to a sole accuracy-sparsity trade-off

limits our understanding of the pruned model’s performance. Beyond solely looking

at the best accuracy score after fine-tuning, assessing the fairness and robustness

of the pruned model is crucial if they are to be deployed in real-world situations.

Some natural suppositions when it comes to fairness in pruning could be that pruning

criteria best preserving the gradient flow or loss landscape should be able to preserve

165

Chapter 7

more generic features. While pruning at initialisation, when the network has not

learned anything, should help preserve fairness.

In chapter 6, a study of different unstructured pruning criteria under the fairness

umbrella was presented. If best preserving the original network function does not

lead to better performance, do different pruning criteria produce different quality of

pruned models? If a pruning criterion was to be fair, it should prune uniformly all

classes. There should not be any shift in prediction between the dense and sparse

network.

We demonstrated that similar to magnitude pruning presented in the original

study by Hooker et al. (2021), other unstructured pruning criteria produce sparse

model of lower quality. They do not prune classes uniformly and reinforce bias in the

dataset. Criteria preserving the original network functions (loss or gradient flow) are

the worst performing criteria, especially considering pruning at the end of training.

The pruning epoch has a major influence on the fairness of the pruned model.

Model that are pruned later in training are more at risk of expanding biases in the

existing data set, resulting in imbalanced per-class predictions. Even when pruning

at initialisation, the criterion does not uniformly prune classes equally but it does

improve fairness subsequently compared to pruning at the end of training because

the network has not learned any prior representation of the data.

Criteria trying to preserve the original network function directly rely upon the

data used to compute the importance measure. These criteria might be inclined

to preserve weights related to popular examples, leading to non-typical data points

being severely impacted by pruning. This raises concern about pruning methods

that consider all data samples equally when some data are easier to learn than

others. Thus, pruning might be inclined to favour classes related to easy data.

7.2 Contribution

The contributions of this thesis can be summarised as follow:

166

Chapter 7

• A crowd-monitoring use-case study for the deployment of AI application in

a real-world setting was presented in Chapter 3. Balancing processing be-

tween the edge – at the point of capture of data – and the cloud can help

better preserve privacy and enhance responsiveness in the context of smart

city applications, but deep learning models need to be compressed to be run

on constrained devices where the compute power is limited.

• Chapter 4 presented an overview of the major works that shaped the field of

pruning over the recent years. It highlighted the duality of pruning research

being at the cross over application, where the aim is to lower the computa-

tional footprint, and theoretical research, where pruning is used to understand

the limitation of deep learning training frameworks. If the same tools are

employed, the motives are very different.

• An empirical investigation of the different unstructured pruning heuristics that

can be found in the literature (presented in Chapter 5) demonstrated that

unstructured pruning criteria are ill-defined and not adapted to large scale

networks. Optimising to better preserve the original network functions – loss or

gradient flow – (pruning objective) do not lead to better accuracy in the pruned

model after fine-tuning, especially on modern neural network architectures.

• An experimental study evaluating the influence the network architecture has

on the performance of the pruning criterion was presented in Chapter 6.1.

Modern deep learning architectures are over-fitting even after most param-

eters have been removed (high ratios of pruning). Over-fitting during the

fine-tuning phase of the pruned model causes the pruning objective to fail

at consistently producing good sparse models. More regularisation for sparse

training is required to allow pruning criteria computed on the training data

set – loss or gradient flow approximation – to generalise better and produce

robust sparse models after fine-tuning.

• Removing parameters from a deep neural networks can impair the quality of

167

Chapter 7

the prediction. Beyond solely looking at the accuracy score after fine-tuning, in

Chapter 6.2 we assessed through an empirical study how different unstructured

pruning criteria influence the fairness of the pruned model. prediction. Two

case study were investigated: (i) when the network has learn prior knowledge –

pruning after training, and (ii) when the network has not learn prior knowledge

– pruning before training.

When the dense network has learned prior knowledge, all pruning criteria

where reinforcing existing bias in the dataset equally. To produce fair sparse

models, pruning early in training and subsequently retraining the pruned

model from initialisation or early on training, can help mitigate flaws induced

by pruning.

7.3 Limitations

This thesis explored the foundation of pruning criteria for unstructured pruning

in order to better understand how to build more efficient sparse networks. While

pruning was initially designed to reduce the computational footprint of a deep neural

network, it can also help uncover key structures at play during the training of deep

neural networks.

The minimum number of parameters required in a deep neural network directly

depends on the complexity of the task it is meant to solve. In this work, we mostly

considered the case of small scale models and datasets. By limiting the scope of our

study to smaller problems we were able to explore the inner mechanisms of pruning

criteria without being limited by compute capacity. We demonstrated that the poor

design of pruning criteria was a consequence of the over-fitting regime during the

fine-tuning phase. In modern architectures and large-scale datasets, over-fitting is

pro-eminent. Therefore, the results presented in this thesis are likely to remain valid

in the context of larger-scale analysis.

A key element in the performance of the pruned model is the fine-tuning phase.

168

Chapter 7

Right after pruning, the model suffers from a loss in accuracy that can be recovered

shortly after re-training the sparse model. But fine-tuning, like training, is very

sensitive to hyper-parameters. Hyper-parameters search can be expensive to run.

If better accuracy can be obtained, this question the reliability of pruning criteria:

Are good performance due to the distribution of sparsity (pruning mask)? However,

one key hyper-parameter that need careful tuning is the learning rate. It allows the

pruned model to be more flexible in relearning lost connections to solve the task.

It is the same for other pruning hyper-parameters such as the pruning ratio or

the frequency of pruning. They are many factors that can influence the pruning

performance but despite all, there are no pruning criteria that consistently out-

perform the others suggesting that all criteria are equal. Differences between pruning

criteria can be observed under a specific framework, or when working with very

high pruning ratios where certain criteria are more prone to layer collapsing. But

it will not always be the same criterion performing the best, questioning the very

foundation of pruning criteria and the way we evaluate pruned model performances.

7.4 The future of unstructured pruning

7.4.1 Practical Impact

Pruning has attracted a lot of attention over the past ten years with the promise

of providing more efficient and compact deep neural networks. Its great flexibility

and ease of use have made pruning a handy tool to explore the role and limits of

parameterisation in deep neural networks. Unstructured pruning is not the best-

suited approach when the goal is to compress the model to run on embedded devices.

If it does greatly reduce the number of parameters, hence the required memory,

unstructured pruning does not lead to a meaningful reduction in compute operations

due to a lack of software support. There is still a lot of research to be done to improve

software and hardware to support sparse training and inference, this research is

essential to enable sustainable deployment of AI applications, lower training costs

169

Chapter 7

and lesser carbon footprint. A great study summarising different approaches and

software solutions to induce sparsity, structured and unstructured, can be found

in Hoefler et al. (2021).

However, unstructured pruning has the potential to help understand training

mechanisms to provide more resource-efficient deep neural networks. It demon-

strated that it was possible to train a very sparse network from scratch and that

parametrisation could be reduced prior to or early on training. There is a lot of

flexibility within pruning, despite many pruning approaches and criteria developed

over the years, none consistently out-perform the others. Is it the sparsity preserved

per layer? The geometrical properties of the optimisation landscape? Too often

pruning evaluation has been reduced to a pruning ratio/accuracy trade-off, omit-

ting other factors such as fairness, robustness or consistency of the pruning mask.

To create efficient pruning methods, we need to take a step back and understand

what in the existing methods lead to good performance for sparse models. Because

unstructured pruning drastically reduces the number of parameters, it is easier to

compute network statistics.

This thesis demonstrated that pruning criteria for unstructured pruning are ill-

defined and not adapted to modern deep learning architectures. The very nature of

modern deep neural networks to be over-parameterised brings training in an over-

fitting regime. However, most importance measures related to unstructured pruning

criteria are designed based upon the training data, except for magnitude heuristic

which is derived from the different steps taken during training. They either try

to preserve the loss or gradient flow between the dense and sparse network. Thus

measuring the importance of parameters under the training data, do not necessarily

translate to better-performing pruned models because the training and validation

set differ. This research shed light on the need for more regularisation during the

fine-tuning of sparse models.

This also reminds us of the importance of the dataset. By trying to preserve the

original network function, pruned models are more inclined to remove connections

170

Chapter 7

essential for low-frequency or atypical data point that might represent noise in real-

world data. Real world data are noisy, the contribution of a data point cannot be

estimated solely by its contribution to the loss (Hu et al., 2021). To produce better

and fairer pruned models, pruning criteria should take into account the complexity

of the different data samples. Instead of considering all data point equally, pruning

criteria should favour removing weights linked to easy or abundant data points,

while preserving the weights for harder atypical examples. There is a lot of research

to be done in that direction.

7.4.2 Research implications

Over years of research, pruning shifted from application-oriented motives (lower

computation costs, better generalisation, acceleration on low-power devices), to

consideration towards an empirical and theoretical understanding of deep neural

networks (sparse training, dynamic training, role of over-parameterisation). This

place unstructured pruning at the intersection of theoretical and applied research

where goals and motives differ. For that reason, pruning is not well understood in

a constantly growing community and is often seen as a mere engineering tool rather

than a research domain on its own. Pruning has a great potential to help discern

how to build more efficient neural network architectures, but to do so many sub-

area of need to be explored from optimisation, regularisation, to hyper-parameters

selection, masks flexibility, etc. In a highly competitive field where beating the

state-of-the-art is often a key factor, the sparsity research community has struggled

to gather around a common audience, venue or workshop.

In 2021, the first Sparsity in Neural Network workshop (SNN workshop1) was

organised. After struggling to get the workshop accepted within one of the major

conference venues, the organisers decided to organise the conference independently to

provide a space for the community to exchange and discover the latest advancement

in sparsity research. The event that took place online was very successful and a

1https://sites.google.com/view/sparsity-workshop-2021/

171

Chapter 7

broad diversity of works could be advertised.

Because of its interdisciplinary nature – industry and academia – and dual-

ity – application-oriented and theoretical –, research in pruning is spread around.

In addition to a dedicated workshop, a competition could help gather around lat-

est research advancements and provide a benchmark needed for the comparison of

new researches. This sparsity competition could set the foundation for evaluating

compressed models assessing their reduction in floating-point operations, memory

requirement, sparsity level and end accuracy, but also assessing robustness, fair-

ness, and compute budget required for the pruning approach. It would be a great

addition for the community to help practitioners navigate through the wide diver-

sity of sparsity methods. Competitions are a great way to enhance and stimulate

research as it has been proven with the success of the Imagenet at the initiative

of many modern state-of-the-art architectures, and TrecVid competition for video

captioning (Thornley et al., 2011; Awad et al., 2020).

7.4.3 Societal Impact

Unstructured Pruning is an area of tremendous growth and interest as deep neural

networks continue to increase in ubiquity and ability. Pruning methods allow the

deployment of neural networks requiring less computational resources and model

storage. This may be beneficial in reducing the energy and environmental footprint

required by a given system. They also enable the deployment of neural networks

on embedded systems, facilitating a multitude of real-world applications, ranging

from medical devices to weapon systems. Recent growth in this area has seen the

emergence of pruning at the beginning of training. This could be highly beneficial

for research equity as this would reduce the computational power required and the

financial cost of training state-of-the-art neural networks for small academic and

industry research labs. However, pruning at initialisation is still at the very early

stages and current hardware and software infrastructures are lacking support for

efficiently executing sparse neural networks.

172

Appendix

An important social consequence for neural network models, especially as applied

to the classification of personal data or computer vision, is the tendency towards

bias and the perceived fairness of the systems often influenced by an imbalance in

the training data. Pruned networks are prone to amplify potential bias and outliers

in the data and should be monitored carefully (Hooker et al., 2020, 2021). On the

other hand, they have potential use as a tool to evaluate the fairness of deep learning

models

An important social consequence for neural network models, especially as applied

to the classification of personal data or computer vision, is the tendency towards bias

and the perceived fairness of the systems often influenced by an imbalance in the

training data. The consequences of failure of the system using a pruned network are

the same as the original network. However, pruning methods offer the opportunity

to highlight potential bias, outliers or under-represented classes through analysis

of the resulting network architecture and misclassifications. They, therefore, have

potential use as a tool to evaluate the fairness of deep learning models (Hooker

et al., 2020, 2021). In contrast, more research effort is needed to understand the

implications of pruned models for increased risk of adversarial attack and model

robustness for concept or class drift (especially in online learning situations). Our

work highlights both the risk and the challenge of ensuring the optimum match of

pruning criteria with a loss function that ultimately aims for greater integrity of

unstructured pruning methods.

173

Appendix

174

Appendix A

A.1 Smart Stadium experimental setups

Complementary information on experimental setup presented in Chapter 3 Sec-

tion 3.1 and published in Ballas et al. (2018).

A.1.1 Hardware

The performance of each algorithm was tested on two different machines, a lap-

top and DELL Edge gateway 5000 with respectively an Intel I5-3210M (medium)

and Intel Atom E3825 (low) CPU. The main differences between the two CPUs are

highlighted in Table A.1. We intentionally choose a i5 CPU to have a fair point of

comparison with the Atom CPU. There is no doubt that an i7 or a Xeon CPU would

have outperform the E3825 by far. The gateway runs with Ubuntu Core 16.04 OS.

Model Release date #core #thread CPU cache TDP
Laptop Intel Core i5-3210M Q2 2012 2 4 2.50 GHz 3MB SmartCache 35W
Gateway Intel Atom E3825 Q4 2013 2 2 1.33 GHz 1MB L2 6W

Table A.1: CPU specification for the Smart Stadium experiments.

A.1.2 Software

The software was implemented in Python using a multi-threaded approach to ingest

raw images from the emulated IP camera, pre-process the frame and transfer the

result to the Event Hub service in Azure as shown in figure A.1. The runtime was

monitor with the timeit library. Docker was used to deploy the solution on the

175

Appendix A

gateway. The software was run multiple times on the laptop to ensure consistency

before to be deploy on the gateway.

Figure A.1: Software architecture for crowd monitoring

A.2 Deep Learning Orchestration (DeepLO)

Complementary information on experimental setup presented in Chapter 3 Sec-

tion 3.2.3.1.

A.2.1 DeepLo testbed hardware specifications

Table A.2 display the major hardware specifications for the testbed. Figure A.2

presents a list of the different metrics monitored during the experiments.

176

Appendix A

Figure A.2: List of the different hardware metrics monitored to assess the cost of
running deep learning workloads on constrained devices.

177

Appendix A

T
e
st
b
e
d

H
a
rd

w
a
re

fr
p
1

u
p
2

i5
n
u
c

i7
n
u
c

H
a
rd

w
a
re

In
te
l
X
eo
n
P
ro
ce
ss
or

E
3-
12
75

v
5

In
te
l
P
en
ti
u
m

P
ro
ce
ss
o
r
N
4
20
0

In
te
l
C
o
re

T
M

i5
-7
2
6
0
U

P
ro
ce
ss
o
r

In
te
l
C
o
re

T
M

i7
-7
5
6
7
U

P
ro

c
e
ss
o
r

E
3-
12
75

v
5

N
4
20
0

i5
-7
2
6
0
U

i7
-7
5
6
7
U

Y
e
a
r

Q
4’
20
15

Q
3’
2
01
6

Q
1
’2
0
1
7

Q
1
’2
0
1
7

#
o
f
c
o
re

s
4

4
2

2
#

o
f
th

re
a
d
s

8
4

2
2

B
a
se

F
re

q
u
e
n
c
y

3.
6
G
H
z

1.
1
0
G
H
z

2
.2

G
H
z

3
.4

G
H
z

C
a
ch

e
8
M
B

S
m
ar
tC

ac
h
e

2
M
B

L
2

4
M
B

4
M
B

M
e
m
o
ry

in
se
tt
in
g
s

31
.3

G
B

7.
6
G
B

1
5
.6

G
B

1
5
.6

G
B

T
ab

le
A
.2
:
S
p
ec
ifi
ca
ti
on

s
of

th
e
d
iff
er
en
t
h
ar
d
w
ar
e
in

th
e
D
ee
p
L
O

te
st
b
ed
.
N
ot
e
th
at

fr
p
2
is

a
m
or
e
re
ce
n
t
ve
rs
io
n
of

th
e
fr
p
1
aq

u
ir
ed

la
te
r
in

th
e
p
ro
je
ct
.

178

Appendix B

B.1 Details on the Experimental Setup (section 5.4

)

B.1.1 Setups

Datasets We use the MNIST dataset (LeCun et al., 1998), and hold-out 10000

examples randomly sampled from the training set for validation. We also use CI-

FAR10 (Krizhevsky et al., 2009), where the last 5000 examples of the training set

are used for validation, and we apply standard data augmentation (random cropping

and flipping, as in He et al. (2016b)) during training phases. For ImageNet (Deng

et al., 2009), we follow the experimental setting of Goyal et al. (2017).

Network Architectures On MNIST, we use a MLP of dimensions 784-300-100-

10, with Tanh activation functions. On CIFAR10, we use both: a VGG11 (Simonyan

& Zisserman, 2015), equipped with ReLUs (Nair & Hinton, 2010), but no Batch Nor-

malisation (Ioffe & Szegedy, 2015); and the PreActResNet18, which is the 18-layer

pre-activation variant of residual networks (He et al., 2016b). MLP leverages Glorot

& Bengio (2010) as initialization while the the weights of VGG11 and PreActRes-

Net18 are initialized following He et al. (2015), and the biases are initialized to 0.

On ImageNet (Deng et al., 2009), we use a ResNet-50 (He et al., 2016a) with Batch

Normalization, and follow the initialization strategy described in (Goyal et al., 2017).

179

Appendix B

B.1.2 Experiments

For the MNIST and CIFAR10 experiments, the network is first trained for a fixed

number of epochs, using early stopping on the validation set to select the best

performing network.The hyper-parameters used for training are selected via grid

search (before even considering pruning). Then we prune a large fraction of the

parameters.

For OBD, LM, and QM we randomly select, at each iteration of pruning, 1000

examples (10 mini-batches) from the training set to compute the gradients and

second order terms of the models.1 For SynFlow we also used 1000 examples to

compute SynFlow saliencies following code provided by Tanaka et al. (2020). For

GraSP we used the Grasp dataloader from Wang et al. (2020) code to select which

parameters to discard.

Finally, we retrain the network using exactly the same hyper-parameters as for

the initial training.

For ImageNet, we uses the exact same hyper-parameters than Goyal et al. (2017).

MLP on MNIST We train the network for 400 epochs, using SGD with learning

rate of 0.01, momentum factor of 0.9, l2 regularisation of 0.0005 and a mini-batch

size of 100. We prune 98.85% of the parameters.

VGG11 on CIFAR10 We train the network for 300 epoch, using SGD with a

learning rate of 0.01, momentum factor of 0.9, a l2 regularisation of 0.0005 and a

mini-batch size of 100. The learning rate is divided by 10 every 60 epochs. We

prune 95.6% of the parameters.

PreActResNet18 on CIFAR10 We train the network for 200 epochs, using

SGD with a learning rate of 0.1, momentum factor of 0.9, a l2 regularisation of

0.0005 and a mini-batch size of 100. The learning rate is divided by 10 every 70

1Using 1000 examples or the whole training set made no difference in our experiments. Using
less examples started to degrade the performances, which concord with the observations of Lee
et al. (2019)

180

Appendix B

epochs. We prune 95.6% of the parameters.

ResNet50 on ImageNet For ImageNet, we train a ResNet50 using 8 V100 GPUs.

The total mini-batch size is 256, and we train our baseline network for 90 epochs.

The learning rate schedule is identical to Goyal et al. (2017): a linear warm-up in

the first 5 epochs and decay by a factor of 10 at epochs 30, 60 and 80. We then

prune 70% of the parameters. After pruning, we fine-tune the models for 90 epochs

using a learning rate of 1e−3. For LM, QM, OBD, we investigates the following

hyper-parameter values: π ∈ {1, 100}, λ ∈ {1e−3, 1e−1, 0, 10, }. 1600 examples are

used to compute the first and second order terms of the linear and quadratic models.

B.1.3 Pruning Framework

We apply pruning at the end of training. Pruning is applied globally, we use a prun-

ing ratio of pr=98.85% for MLP and pr=95.6% for VGG11 and PreActResnet18 on

CIFAR10 to align with pruning ratio presented in the lottery ticket framework (Fran-

kle & Carbin, 2018). Each pruning phase is followed by a fine-tuning step. Note that

because of their convergence assumption, OBD and OBS advocate for fine-tuning

after each stage of pruning. Since LM and QM, or gradient-based criteria GraSP

and SynFlow, are not based on this assumption, they should perform well in this

proposed framework. See algorithm 1 for more details about the pruning framework.

181

Appendix B

182

Appendix C

C.1 Supplementary materials for Wide and Deep

networks experiments (Section 6.1)

C.1.1 Training Hyper-parameters

MLP on MNIST We train the network for 100 epochs, using SGD with a learning

rate of 0.01, momentum factor of 0.9, l2 regularisation of 0.0005 and a mini-batch

size of 100. We prune 98.85% of the parameters.

Convnets on CIFAR-10 We train the network for 200 epochs, using SGD with

a learning rate of 0.01, momentum factor of 0.9, an l2 regularisation of 0.0005 and

a mini-batch size of 100. The learning rate is divided by 10 every 80 epochs. We

prune 95.6% of the parameters.

Convnets on MNIST We train the network for 160 epochs, using SGD with a

learning rate of 0.01, momentum factor of 0.9, an l2 regularisation of 0.0005 and

a mini-batch size of 100. The learning rate is divided by 10 every 60 epochs. We

prune 95.6% and 98.85% of the parameters.

183

Appendix C

α
P
e
rf
o
rm

a
n
c
e
a
c
c
u
ra

c
y
(%

)
fo
r
d
iff
e
re

n
t
p
ru

n
in
g
c
ri
te
ri
a
(w

id
th

sc
a
li
n
g
)

ø
M

P
-1

L
M

-1
L
M

-1
0
0

Q
M

-1
0
0

G
ra

S
P
-1
0
0

S
y
n
F
lo
w
-1
0
0

1
1.
53
±

0.
04

2.
86
±

0.
1

6.
22
±

1.
2

2.
94
±

0.
2

2.
87
±

0.
15

3.
82
±

0.
18

2
.8
5
±

0
.1
2

2
1.
51
±

0.
03

3.
02
±

0.
2

12
.4
2
±

5.
9

2.
55
±

0.
2

2.
6
±

0.
09

3.
74
±

0.
19

2
.8
5
±

0
.1
2

3
1.
5
±

0.
05

3.
19
±

0.
2

7.
91
±

1.
5

2.
44
±

0.
2

2.
48
±

0.
16

3.
49
±

0.
11

2
.4
5
±

0
.0
5

4
1.
51
±

0.
04

2.
99
±

0.
2

7.
77
±

3.
4

2.
25
±

0.
1

2.
31
±

0.
03

3.
64
±

0.
25

2
.5
5
±

0
.1
3

T
ab

le
C
.1
:
S
u
m
m
ar
y
of

th
e
b
es
t
va
li
d
at
io
n
er
ro
r
ac
ro
ss

d
iff
er
en
t
w
id
th

sc
al
in
g
fo
r
d
iff
er
en
t
p
ru
n
in
g
cr
it
er
ia
.
T
h
e
n
u
m
b
er

fo
ll
ow

in
g
ea
ch

cr
it
er
io
n
n
am

e
in
d
ic
at
es

th
e
n
u
m
b
er

of
lo
ca
l
it
er
at
io
n
(π
)
p
er
fo
rm

ed
d
u
ri
n
g
p
ru
n
in
g.

W
e
ob

se
rv
e
th
at

al
l
n
et
w
or
k
s
ar
e
re
ac
h
in
g
go

o
d

p
er
fo
rm

an
ce
s
in
d
ic
at
in
g
n
o
p
ro
b
le
m
s
en
co
u
n
te
re
d
d
u
ri
n
g
p
ru
n
in
g
or

fi
n
e-
tu
n
in
g.

α
P
e
rf
o
rm

a
n
c
e
a
c
c
u
ra

c
y
(%

)
fo
r
d
iff
e
re

n
t
p
ru

n
in
g
c
ri
te
ri
a
(d

e
p
th

sc
a
li
n
g
)

ø
M

P
-1

L
M

-1
L
M

-1
0
0

Q
M

-1
0
0

G
ra

S
P
-1
0
0

S
y
n
F
lo
w
-1
0
0

1
1.
53
±

0.
04

2.
86
±

0.
1

6.
22
±

1.
2

2.
88
±

0.
2

2.
87
±

0.
15

4.
08
±

0.
0
3

2
.8
5
±

0
.1
2

2
1.
54
±

0.
1

3.
63
±

0.
8

88
.7
1
±

0.
27

2.
98
±

0.
13

3.
04
±

0.
15

6.
36
±

4.
42

2
.6
5
±

0
.1
2

3
1.
55
±

0.
07

60
.0
2
±

40
.5
5

88
.7
1
±

0.
27

3.
17
±

0.
18

3.
38
±

0.
09

9.
62
±

3.
97

2
.9
3
±

0
.1
9

4
1.
48
±

0.
04

7
88

.7
1
±

0.
27

88
.7
1
±

0.
27

3.
23
±

0.
1

3.
22
±

0.
17

15
.3
0
±

4.
2
6

2
.9
4
±

0
.2

T
ab

le
C
.2
:
S
u
m
m
ar
y
of

th
e
b
es
t
va
li
d
at
io
n
er
ro
r
ac
ro
ss

d
iff
er
en
t
w
id
th

sc
al
in
g
fo
r
d
iff
er
en
t
p
ru
n
in
g
cr
it
er
ia
.
T
h
e
n
u
m
b
er

fo
ll
ow

in
g
ea
ch

cr
it
er
io
n
n
am

e
in
d
ic
at
es

th
e
n
u
m
b
er

of
lo
ca
l
it
er
at
io
n
(π
)
p
er
fo
rm

ed
d
u
ri
n
g
p
ru
n
in
g.

184

Appendix C

C.1.2 Models accuracy

Tables C.1 and Table C.2 reference the different accuracy obtained after fine-tuning

for the MLP networks trained on MNIST. We can observe that some networks (MP-1

and LM-1) failed to retrain properly for deep architectures.

C.1.3 Fine-tuning

C.1.3.1 Depth Fine-tuning

Similar to Figure 6.7 in Chapter 6, Figure C.1 displays the training and validation

loss for fine-tuning curves for deep models scaled by adding new layers.

C.1.3.2 Width Fine-tuning

Similar to Figure 6.7 in Chapter 6, Figure C.2 displays the training and validation

errors fine-tuning curves for wide models scaled on the width – adding new units

on existing layers. Likewise, Figure C.3 displays the training and validation loss

fine-tuning curves for model scaled on the width.

C.1.4 Layer collapsing

Figure C.4 display the percentage of remaining parameters per layer for a VGG16

network pruned following different pruning ratios (colour). Each column corresponds

to a different pruning criterion, while each line corresponds to a different pruning

epoch. We can observe that layer collapsing do not only happen at initialisation

and is even more at risk of happening for smaller pruning ratios when pruning is

applied later during training.

185

Appendix C

(a) MLPs on MNIST

(b) Convnets on CIFAR-10

(c) Convnets on MNIST with pr=95.6%

(d) Convnets on MNIST with pr=98.85%

Figure C.1: Fine-tuning curves (loss) for different model architectures scale on the
width. Each curves is average over 5 seeds, for readability we do not display the
variance.

186

Appendix C

(a) MLPs on MNIST

(b) Convnets on CIFAR-10

(c) Convnets on MNIST with pr=95.6%

(d) Convnets on MNIST with pr=98.85%

Figure C.2: Fine-tuning curves (classification error) for different model architectures
scale on the width. Each curves is average over 5 seeds, for readability we do not
display the variance.

187

Appendix C

(a) MLPs on MNIST

(b) Convnets on CIFAR-10

(c) Convnets on MNIST with pr=95.6%

(d) Convnets on MNIST with pr=98.85%

Figure C.3: Fine-tuning curves (loss) for different model architectures scale on the
width. Each curves is average over 5 seeds, for readability we do not display the
variance.

188

Appendix C

F
ig
u
re

C
.4
:
R
at
io

of
p
ar
am

et
er
s
re
m
ai
n
in
g
p
er

la
ye
r
(x

ax
is
)
fo
r
a
V
G
G
19

ar
ch
it
ec
tu
re

w
h
en

p
ru
n
ed

b
ef
or
e
tr
ai
n
in
g
(t
op

),
at

th
e
m
id
d
le

of
tr
ai
n
in
g
(m

id
d
le
)
or

af
te
r
tr
ai
n
in
g
(b
ot
to
m
).

M
ag
n
it
u
d
e
p
ru
n
in
g
is

ap
p
li
ed

in
th
is

ex
am

p
le
.
D
iff
er
en
t
co
lo
rs

co
rr
es
p
on

d
to

d
iff
er
en
t

ra
ti
o
of

p
ru
n
in
g,

w
it
h
b
lu
e
b
ei
n
g
a
sm

al
l
p
ru
n
in
g
ra
ti
o
an

d
re
d
h
ig
h
p
ru
n
in
g
ra
ti
o.

189

Inducing sparsity in deep neural networks through unstructured pruning

C.2 Supplementary materials for fairness in pruned

networks (section 6.2)

C.2.1 Training Hyper-parameters

ResNet20 on CIFAR-10 We train the network for 160 epochs, using SGD with

a learning rate of 0.1, momentum factor of 0.9, an l2 regularisation of 0.0005 and

a mini-batch size of 100. The learning rate is divided by 10 every 60 epochs. We

prune 95.4% of the parameters.

190

Bibliography

REGULATION (EU) 2016/ 679 OF THE EUROPEAN PARLIAMENT AND OF

THE COUNCIL - of 27 April 2016 - on the protection of natural persons with

regard to the processing of personal data and on the free movement of such data,

and repealing Directive 95/ 46/ EC (General Data Protection Regulation).

Kale ab Tessera, Sara Hooker, and Benjamin Rosman. Keep the gradients flow-

ing: Using gradient flow to study sparse network optimization, arXiv preprint,

2102.01670, 2021.

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-

enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris

Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal

Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,

Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and

Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous

systems. URL https://www.tensorflow.org/, 2015.

Alessandro Achille, Giovanni Paolini, and Stefano Soatto. Where is the information

in a deep neural network?, arXiv preprint, 1905.12213, 2020.

Madhu S Advani, Andrew M Saxe, and Haim Sompolinsky. High-dimensional dy-

191

Inducing sparsity in deep neural networks through unstructured pruning

namics of generalization error in neural networks. Neural Networks, 132:428–446,

2020.

Hande Alemdar, Vincent Leroy, Adrien Prost-Boucle, and Frederic Petrot. Ternary

neural networks for resource-efficient AI applications. In Proceedings of the Inter-

national Joint Conference on Neural Networks, volume 2017-May, pp. 2547–2554.

IEEE, 5 2017. ISBN 9781509061815. doi: 10.1109/IJCNN.2017.7966166.

Jose M Alvarez and Mathieu Salzmann. Compression-aware Training of Deep Net-

works. NIPS, 2017.

Dario Amodei, Danny Hernandez, Girish Sastry, Jack Clark, Greg

Brockman, and Ilya Sutskever. AI and Compute. URL

https://openai.com/blog/ai-and-compute/, 2018.

Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical analysis of auto rate-

tuning by batch normalization, arXiv preprint, 1812.03981, 2018.

George Awad, Asad A Butt, Keith Curtis, Yooyoung Lee, Jonathan Fiscus, Afzal

Godil, Andrew Delgado, Jesse Zhang, Eliot Godard, Lukas Diduch, et al. Trecvid

2019: An evaluation campaign to benchmark video activity detection, video cap-

tioning and matching, and video search & retrieval, arXiv preprint, 2009.09984,

2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization,

arXiv preprint, 1607.06450, 2016.

David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and

Brian McWilliams. The shattered gradients problem: If resnets are the answer,

then what is the question?, arXiv preprint, 1702.08591, 2018.

Camille Ballas, Mark Marsden, Dian Zhang, Noel E. O’Connor, and Suzanne Little.

Performance of video processing at the edge for crowd-monitoring applications.

In 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), pp. 482–487,

2018.

192

Inducing sparsity in deep neural networks through unstructured pruning

Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas, Urmish Thakker,

Dibakar Gope, Vijay Janapa Reddi, Matthew Mattina, and Paul Whatmough.

Micronets: Neural network architectures for deploying tinyml applications on

commodity microcontrollers. Proceedings of Machine Learning and Systems, 3:

517–532, 2021.

Brian Bartoldson, Ari Morcos, Adrian Barbu, and Gordon Erlebacher. The

generalization-stability tradeoff in neural network pruning. Advances in Neural

Information Processing Systems, 33:20852–20864, 2020.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling mod-

ern machine learning practice and the bias-variance trade-off, arXiv preprint,

1812.11118, 2019.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret

Shmitchell. On the dangers of stochastic parrots: Can language models be too big?

. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and

Transparency, FAccT ’21, pp. 610–623, New York, NY, USA, 2021. Association

for Computing Machinery. ISBN 9781450383097. doi: 10.1145/3442188.3445922.

URL https://doi.org/10.1145/3442188.3445922.

Yoshua Bengio. Learning Deep Architectures for AI. Machine Learning, 2(1):1–127,

2009. doi: 10.1561/2200000006.

Joseph Bethge, Haojin Yang, Marvin Bornstein, and Christoph Meinel. Binary-

densenet: Developing an architecture for binary neural networks. 2019 IEEE/CVF

International Conference on Computer Vision Workshop (ICCVW), pp. 1951–

1960, 2019.

Simone Bianco, Remi Cadene, Luigi Celona, and Paolo Napoletano. Benchmark

analysis of representative deep neural network architectures. IEEE Access, 6:

64270–64277, 2018.

193

Inducing sparsity in deep neural networks through unstructured pruning

Johan Bjorck, Carla P. Gomes, and Bart Selman. Understanding batch normaliza-

tion. CoRR, abs/1806.02375, 2018.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag.

What is the state of neural network pruning? Proceedings of machine learning

and systems, 2:129–146, 2020.

Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog computing:

A platform for internet of things and analytics. In Big data and internet of things:

A roadmap for smart environments, pp. 169–186. Springer, 2014.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. Language models are few-shot learners. Advances in neural infor-

mation processing systems, 33:1877–1901, 2020.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search

on target task and hardware, arXiv preprint, 1812.00332, 2019.

William Chan, Mitchell Stern, Jamie Ryan Kiros, and Jakob Uszkoreit. An empirical

study of generation order for machine translation, 1910.13437.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang

Wang, and Michael Carbin. The lottery ticket hypothesis for pre-trained bert

networks. Advances in neural information processing systems, 33:15834–15846,

2020.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael

Carbin, and Zhangyang Wang. The lottery tickets hypothesis for supervised

and self-supervised pre-training in computer vision models. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.

16306–16316, 2021.

Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott

194

Inducing sparsity in deep neural networks through unstructured pruning

Yang. Adanet: Adaptive structural learning of artificial neural networks. In

International conference on machine learning, pp. 874–883. PMLR, 2017.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural

networks with low precision multiplications, arXiv preprint, 1412.7024, 2015.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition. IEEE, 2009.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando

De Freitas. Predicting parameters in deep learning. Advances in neural infor-

mation processing systems, 26, 2013.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus.

Exploiting linear structure within convolutional networks for efficient evaluation.

Advances in neural information processing systems, 27, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding, arXiv

preprint, 1810.04805, 2018.

Gianmarco Dinelli, Gabriele Meoni, Emilio Rapuano, Gionata Benelli, and Luca

Fanucci. An fpga-based hardware accelerator for cnns using on-chip memories

only: Design and benchmarking with intel movidius neural compute stick. Int. J.

Reconfigurable Comput., 2019:7218758:1–7218758:13, 2019.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen.

Rigging the lottery: Making all tickets winners. In International Conference on

Machine Learning, pp. 2943–2952. PMLR, 2020a.

Utku Evci, Yani A. Ioannou, Cem Keskin, and Yann Dauphin. Gradient flow in

sparse neural networks and how lottery tickets win, arXiv preprint, 2010.03533,

2020b.

195

Inducing sparsity in deep neural networks through unstructured pruning

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,

trainable neural networks. CoRR, abs/1803.03635, 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael

Carbin. Linear mode connectivity and the lottery ticket hypothesis. CoRR,

abs/1912.05671, 2019.

Jonathan Frankle, David J. Schwab, and Ari S. Morcos. The early phase of neural

network training, arXiv preprint, 2002.10365, 2020.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin.

Pruning neural networks at initialization: Why are we missing the mark?, arXiv

preprint, 2009.08576, 2021.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for

a mechanism of pattern recognition unaffected by shift in position. Biological

Cybernetics, 36:193–202, 1980.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural

networks, arXiv preprint, 1902.09574, 2019.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vin-

cent. Fast approximate natural gradient descent in a kronecker factored eigenbasis.

Advances in Neural Information Processing Systems, 31, 2018.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Yee Whye Teh and Mike Titterington (eds.),

Proceedings of the Thirteenth International Conference on Artificial Intelligence

and Statistics, volume 9 of Proceedings of Machine Learning Research, pp. 249–

256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

Anna Golubeva, Behnam Neyshabur, and Guy Gur-Ari. Are wider nets better given

the same number of parameters? CoRR, abs/2010.14495, 2020.

196

Inducing sparsity in deep neural networks through unstructured pruning

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,

Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large

minibatch sgd: Training imagenet in 1 hour, arXiv preprint, 1706.02677, 2017.

Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A survey

of deep learning techniques for autonomous driving. Journal of Field Robotics, 37

(3):362–386, 2020.

Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu

Palaniswami. Internet of Things (IoT): A vision, architectural elements, and fu-

ture directions. Future Generation Computer Systems, 29(7):1645–1660, 9 2013.

Song Han, Huizi Mao, and William J Dally. Deep Compression: Compressing

Deep Neural Networks with Pruning, Trained Quantization and Huffman Cod-

ing, arXiv, 1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and

connections for efficient neural network. In NeurIPS. 2015b.

Babak Hassibi and David Stork. Second order derivatives for network pruning:

Optimal brain surgeon. Advances in neural information processing systems, 5,

1992.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rec-

tifiers: Surpassing human-level performance on imagenet classification. In Pro-

ceedings of the IEEE international conference on computer vision, pp. 1026–1034,

2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 770–778, 2016a.

197

Inducing sparsity in deep neural networks through unstructured pruning

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in

deep residual networks. In European conference on computer vision, pp. 630–645.

Springer, 2016b.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very

deep neural networks. In Proceedings of the IEEE international conference on

computer vision, pp. 1389–1397, 2017.

Zhezhi He, Boqing Gong, and Deliang Fan. Optimize deep convolutional neural net-

work with ternarized weights and high accuracy. In 2019 IEEE Winter Conference

on Applications of Computer Vision (WACV), pp. 913–921. IEEE, 2019.

Yashar D Hezaveh, Laurence Perreault Levasseur, and Philip J Marshall. Fast auto-

mated analysis of strong gravitational lenses with convolutional neural networks.

Nature, 548(7669):555–557, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural

network, arXiv preprint, 1503.02531, 2015.

Sepp Hochreiter, Yoshua, Fakultit F/jr Informatik, Yoshua Bengio, Paolo Frasconi,

and Jfirgen Schmidhuber. Gradient flow in recurrent nets: the difficulty of learning

long-term dependencies. A Field Guide to Dynamical Recurrent Neural Networks,

2003.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste.

Sparsity in deep learning: Pruning and growth for efficient inference and training

in neural networks. Journal of Machine Learning Research, 22(241):1–124, 2021.

Sara Hooker, Nyalleng Moorosi, Gregory Clark, Samy Bengio, and Emily Denton.

Characterising bias in compressed models, arXiv preprint, 2010.03058, 2020.

Sara Hooker, Aaron Courville, Gregory Clark, Yann Dauphin, and Andrea Frome.

What do compressed deep neural networks forget?, arXiv preprint, 1911.05248,

2021.

198

Inducing sparsity in deep neural networks through unstructured pruning

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing

Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching

for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pp. 1314–1324, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,

Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. 2017.

F. Hsu. Behind Deep Blue: Building the Computer that Defeated the World Chess

Champion. Princeton paperbacks. Princeton University Press, 2002. ISBN

9780691090658.

Niel Teng Hu, Xinyu Hu, Rosanne Liu, Sara Hooker, and Jason Yosinski. When

does loss-based prioritization fail?, arXiv preprint, 2107.07741, 2021.

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep

neural networks. In Proceedings of the European conference on computer vision

(ECCV), pp. 304–320, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. In International conference on

machine learning, pp. 448–456. PMLR, 2015.

Stanislaw Jastrzebski, Zachary Kenton, Nicolas Ballas, Asja Fischer, Yoshua Bengio,

and Amos Storkey. On the relation between the sharpest directions of dnn loss

and the sgd step length, arXiv preprint, 1807.05031, 2019.

Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Ta-

bor, Kyunghyun Cho, and Krzysztof Geras. The break-even point on optimization

trajectories of deep neural networks, arXiv preprint, 2002.09572, 2020.

Rupp Karl. CPU, GPU and MIC Hardware Characteristics over Time, Blog post,

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-

over-time/, 2013.

199

Inducing sparsity in deep neural networks through unstructured pruning

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung,

Sylvain Gelly, and Neil Houlsby. Big transfer (bit): General visual representation

learning. In European conference on computer vision, pp. 491–507. Springer, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from

tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. Advances in neural information processing

systems, 25, 2012.

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres.

Quantifying the carbon emissions of machine learning, arXiv preprint, 1910.09700,

2019.

Jennifer Langston. From conversation to code: Microsoft introduces its first product

features powered by gpt-3, https://blogs.microsoft.com/ai/from-conversation-

to-code-microsoft-introduces-its-first-product-features-powered-by-gpt-3/, May

2021.

César Laurent, Camille Ballas, Thomas George, Nicolas Ballas, and Pascal Vincent.

Revisiting loss modelling for unstructured pruning, arXiv preprint, 2006.12279,

2020.

Duong H. Le and Binh-Son Hua. Network pruning that matters: A case study on

retraining variants, arXiv preprint, 2105.03193, 2021.

Yann LeCun. Who is afraid of convex optimiza-

tion? NIPS - Workshop on Efficient Learning. URL

https://cs.nyu.edu/ yann/talks/lecun-20071207-nonconvex.pdf, 2007.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in

neural information processing systems, 2, 1989.

200

Inducing sparsity in deep neural networks through unstructured pruning

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the Institute of Radio

Engineers, 86(11):2278–2323, 1998.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Snip: Single-shot

network pruning based on connection sensitivity, arXiv preprint, 1810.02340, 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning

filters for efficient convnets, arXiv preprint, 1608.08710, 2017.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing

the loss landscape of neural nets. Advances in neural information processing

systems, 31, 2018.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and

Joey Gonzalez. Train big, then compress: Rethinking model size for efficient

training and inference of transformers. In Hal Daumé III and Aarti Singh (eds.),

Proceedings of the 37th International Conference on Machine Learning, volume

119 of Proceedings of Machine Learning Research, pp. 5958–5968. PMLR, 2020.

Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and Daniela Rus.

Lost in pruning: The effects of pruning neural networks beyond test accuracy.

Proceedings of Machine Learning and Systems, 3:93–138, 2021.

Suzanne Little, Dian Zhang, Camille Ballas, Noel E O’Connor, David Prendergast,

Keith Nolan, Brian Quinn, Niall Moran, Mike Myers, Clare Dillon, et al. Un-

derstanding packet loss for sound monitoring in a smart stadium iot testbed. In

Proceedings of the First ACM International Workshop on the Engineering of Re-

liable, Robust, and Secure Embedded Wireless Sensing Systems, pp. 40–45, 2017.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui

Zhang. Learning Efficient Convolutional Networks through Network Slimming. In

ICCV 2017, 8 2017.

201

Inducing sparsity in deep neural networks through unstructured pruning

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking

the value of network pruning, arXiv preprint, 1810.05270, 2019.

Ada Lovelace. Notes upon L. F. Menabrea’s ”Sketch of the Analytical Engine in-

vented by Charles Babbage”, 1842.

David G Lowe. Distinctive image features from scale-invariant keypoints. Interna-

tional journal of computer vision, 60(2):91–110, 2004.

Ekdeep Singh Lubana and Robert P. Dick. A gradient flow framework for analyzing

network pruning, arXiv preprint, 2009.11839, 2021.

Aapo Markkanen. Iot analytics today and in 2020. Competitive Edge from Edge

Intelligence. ABI Research, Oyster Bay, NY, 2015.

Mark Marsden, Kevin McGuinness, Suzanne Little, and Noel E. O’Connor. Fully

Convolutional Crowd Counting On Highly Congested Scenes, 1612.00220, 2016.

Mark Marsden, Kevin McGuinness, Suzanne Little, and Noel E O’Connor.

Resnetcrowd: A residual deep learning architecture for crowd counting, violent

behaviour detection and crowd density level classification. In 2017 14th IEEE

international conference on advanced video and signal based surveillance (AVSS),

pp. 1–7. IEEE, 2017.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-

factored approximate curvature. In International conference on machine learning,

pp. 2408–2417. PMLR, 2015.

Gaurav Menghani. Efficient deep learning: A survey on making deep learning models

smaller, faster, and better, arXiv preprint, 2106.08962, 2021.

Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computa-

tional Geometry. MIT Press, Cambridge, MA, USA, 1969.

202

Inducing sparsity in deep neural networks through unstructured pruning

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout spar-

sifies deep neural networks. In International Conference on Machine Learning,

pp. 2498–2507. PMLR, 2017.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Impor-

tance estimation for neural network pruning. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 11264–11272, 2019.

Ari Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. One ticket to win

them all: generalizing lottery ticket initializations across datasets and optimizers.

Advances in neural information processing systems, 32, 2019.

Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press,

2022.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-

mann machines. In Icml, 2010.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and

Ilya Sutskever. Deep double descent: Where bigger models and more data hurt.

Journal of Statistical Mechanics: Theory and Experiment, 2021(12):124003, 2021.

Yurii Nesterov. A method for unconstrained convex minimization problem with the

rate of convergence o (1/kˆ2). In Doklady an ussr, volume 269, pp. 543–547, 1983.

Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science &

Business Media, 2006.

Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus Cubuk, and Ian Good-

fellow. Realistic evaluation of deep semi-supervised learning algorithms. Advances

in neural information processing systems, 31, 2018.

Michela Paganini and Jessica Zosa Forde. Bespoke vs. prêt-à-porter lottery tick-

ets: Exploiting mask similarity for trainable sub-network finding, arXiv preprint,

2007.04091, 2020.

203

Inducing sparsity in deep neural networks through unstructured pruning

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. Pytorch: An imperative style, high-performance deep learning library.

Advances in neural information processing systems, 32, 2019.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on

a data diet: Finding important examples early in training. Advances in Neural

Information Processing Systems, 34, 2021.

Bryan A. Plummer, Nikoli Dryden, Julius Frost, Torsten Hoefler, and Kate Saenko.

Neural parameter allocation search, arXiv preprint, 2006.10598, 2021.

David Poole and Alan Mackworth. Artificial Intelligence: Foundations of Compu-

tational Agents. Cambridge University Press, Cambridge, UK, 2 edition, 2017.

J. Ross Quinlan. Simplifying decision trees. International journal of man-machine

studies, 27(3):221–234, 1987.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-

hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.

Learning transferable visual models from natural language supervision. In Inter-

national Conference on Machine Learning, pp. 8748–8763. PMLR, 2021.

Stephan Rasp, Michael S. Pritchard, and Pierre Gentine. Deep learning to represent

subgrid processes in climate models. Proceedings of the National Academy of

Sciences, 115(39):9684–9689, 2018.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and

fine-tuning in neural network pruning, arXiv preprint, 2003.02389, 2020.

Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi,

and Jeremy Kepner. Survey of machine learning accelerators. 2020 IEEE High

Performance Extreme Computing Conference (HPEC), Sep 2020.

204

Inducing sparsity in deep neural networks through unstructured pruning

Eva Mohedano Robles. Phd thesis: Deep image representations for instance search.

SIGMultimedia Rec., 10(2), August 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-

der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How

does batch normalization help optimization? Advances in neural information

processing systems, 31, 2018.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gra-

dient descent. Neural computation, 2002.

Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep learning in medical image

analysis. Annual review of biomedical engineering, 19:221–248, 2017.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by

weighting the log-likelihood function. Journal of statistical planning and inference,

90(2):227–244, 2000.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition, arXiv preprint, 1409.1556, 2015.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approxima-

tion for neural network compression. Advances in Neural Information Processing

Systems, 33:18098–18109, 2020.

Nitish Srivastava, Geoffrey E. Hinton, A. Krizhevsky, Ilya Sutskever, and

R. Salakhutdinov. Dropout: a simple way to prevent neural networks from over-

fitting. J. Mach. Learn. Res., 15:1929–1958, 2014.

Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi

Priyantha, Jie Liu, and Diana Marculescu. Single-path mobile automl: Efficient

205

Inducing sparsity in deep neural networks through unstructured pruning

convnet design and nas hyperparameter optimization. IEEE Journal of Selected

Topics in Signal Processing, 14(4):609–622, 2020.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy consid-

erations for modern deep learning research. Proceedings of the AAAI Conference

on Artificial Intelligence, 34(09):13693–13696, 2020.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wo-

jna. Rethinking the inception architecture for computer vision. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pp. 2818–2826,

2016.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neu-

ral networks without any data by iteratively conserving synaptic flow. Advances

in Neural Information Processing Systems, 33:6377–6389, 2020.

Neil C. Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso. The

computational limits of deep learning, arXiv preprint, 2007.05558, 2020.

Clare Thornley, Shane Mcloughlin, Andrea Johnson, and Alan Smeaton. A biblio-

metric study of video retrieval evaluation benchmarking (trecvid): A methodolog-

ical analysis. J. Information Science, 37:577–593, 12 2011.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization:

The missing ingredient for fast stylization, arXiv preprint, 1607.08022, 2017.

United Nations. Department of Economic and Social Affairs. Population Division.

The World’s Cities in 2016 : Data Booklet. United Nations, Department of

Economic and Social Affairs, Population Division, [New York NY?], 2016.

Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improving the speed of

neural networks on CPUs. In Deep Learning and Unsupervised Feature Learning

Workshop, NeurIPS 2011, 2011.

206

Inducing sparsity in deep neural networks through unstructured pruning

P C Veena, Paulsy Tharakan, Hima Haridas, K Ramya, Riya Joju, and T S Jyothis.

Smart street light system based on image processing. In 2016 International Con-

ference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1–5. IEEE,

3 2016.

Shikhar Verma, Yuichi Kawamoto, Zubair Fadlullah, Hiroki Nishiyama, and Nei

Kato. A Survey on Network Methodologies for Real-Time Analytics of Massive

IoT Data and Open Research Issues. IEEE Communications Surveys & Tutorials,

(c):1–1, 2017.

Bob D de Vos, Floris F Berendsen, Max A Viergever, Marius Staring, and Ivana

Išgum. End-to-end unsupervised deformable image registration with a convolu-

tional neural network. In Deep learning in medical image analysis and multimodal

learning for clinical decision support, pp. 204–212. Springer, 2017.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization

of neural networks using dropconnect. In International conference on machine

learning, pp. 1058–1066. PMLR, 2013.

Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. Eigendamage:

Structured pruning in the kronecker-factored eigenbasis. In International Confer-

ence on Machine Learning, pp. 6566–6575. PMLR, 2019.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before

training by preserving gradient flow, arXiv preprint, 2002.07376, 2020.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei

Zhang. Cvt: Introducing convolutions to vision transformers. In Proceedings of

the IEEE/CVF International Conference on Computer Vision, pp. 22–31, 2021.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European

conference on computer vision (ECCV), pp. 3–19, 2018.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated

207

Inducing sparsity in deep neural networks through unstructured pruning

residual transformations for deep neural networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 1492–1500, 2017.

Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S. Morcos. Playing the lottery

with rewards and multiple languages: lottery tickets in rl and nlp, arXiv preprint,

1906.02768, 2020.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Fran-

cis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision

transformers from scratch on imagenet. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pp. 558–567, 2021.

Wenyuan Zeng, Yuwen Xiong, and Raquel Urtasun. Network automatic pruning:

Start nap and take a nap, arXiv preprint, 2101.06608, 2021.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

Understanding deep learning (still) requires rethinking generalization. Communi-

cations of the ACM, 64(3):107–115, 2021.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned

quantization for highly accurate and compact deep neural networks. In Proceedings

of the European conference on computer vision (ECCV), pp. 365–382, 2018.

Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao, and Yi Ma. Single-Image

Crowd Counting via Multi-Column Convolutional Neural Network. In 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 589–597.

IEEE, 6 2016.

Qibin Zhao, Masashi Sugiyama, Longhao Yuan, and Andrzej Cichocki. Learning

efficient tensor representations with ring-structured networks. In ICASSP 2019-

2019 IEEE international conference on acoustics, speech and signal processing

(ICASSP), pp. 8608–8612. IEEE, 2019a.

Ruizhe Zhao, Brian Vogel, and Tanvir Ahmed. Adaptive loss scaling

208

Inducing sparsity in deep neural networks through unstructured pruning

for mixed precision training. CoRR, abs/1910.12385, 2019b. URL

http://arxiv.org/abs/1910.12385.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lot-

tery tickets: Zeros, signs, and the supermask. Advances in neural information

processing systems, 32, 2019.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of

pruning for model compression, arXiv preprint, 1710.01878, 2017.

209

Inducing sparsity in deep neural networks through unstructured pruning

210

List of publications

• Suzanne Little, Dian Zhang, Camille Ballas, Noel E. Oćonnor, David Pren-

dergast, Keith Nolan, Brian Quinn, Niall Moran, Mike Myers, Clare Dillon,

and Tomas Meehan. Understanding packet loss for sound monitoring

in a smart stadium IoT testbed. In Proceedings of the First ACM Interna-

tional Workshop on the Engineering of Reliable, Robust, and Secure Embedded

Wireless Sensing Systems (FAILSAFE’17). Association for Computing Ma-

chinery, New York, NY, USA, pp. 40–45.

• Camille Ballas, Mark Marsden, Dian Zhang, Noel E. O’Connor, and Suzanne

Little. Performance of video processing at the edge for crowd-monitoring

applications. In 2018 IEEE 4th World Forum on Internet of Things (WF-

IoT), 2018, pp. 482-487

• César Laurent, Camille Ballas, Thomas George, Nicolas Ballas, and Pascal

Vincent. Revisiting loss modelling for unstructured pruning. In arXiv

preprint, and presented under ”Investigating Loss-modelling pruning criteria

for unstructured pruning” at the ICLR 2021 - SEDL Workshop, 2020.

• Camille Ballas, César Laurent, Thomas George, Nicolas Ballas, Suzanne

Little and Pascal Vincent. Assessing Criteria Integrity for Unstructured

Pruning of Deep Neural Networks. In preprint, 2021

211

