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Human Evaluation and Statistical Analyses on

Machine Reading Comprehension, Question

Generation and Open-domain Dialogue

Tianbo Ji

Abstract

Evaluation is a critical element in the development process of many natural language
based systems. In this thesis, we will present critical analyses of standard evalu-
ation methodologies applied in the following Natural Language Processing (NLP)
domains: machine reading comprehension (MRC), question generation (QG), and
open-domain dialogue. Generally speaking, systems from tasks like MRC are usually
evaluated by comparing the similarity between hand-crafted references and system-
generated outputs using automatic evaluation metrics, thus these metrics are mainly
borrowed from other NLP tasks that have been well-developed, such as machine
translation and text summarization. Meanwhile, the evaluation of QG and dia-
logues is even a known open problem as such tasks do not have the corresponding
references for computing the similarity, and human evaluation is indispensable when
assessing the performance of the systems from these tasks. However, human eval-
uation is unfortunately not always valid because: i) human evaluation may cost
too much and be hard to deploy when experts are involved; ii) human assessors
can lack reliability in the crowd-sourcing environment. To overcome the challenges
from both automatic metrics and human evaluation, we first design specific crowd-
sourcing human evaluation methods for these three target tasks, respectively. We
then show that these human evaluation methods are reproducible, highly reliable,
easy to deploy, and cost-effective. Additionally, with the data collected from our
experiments, we measure the accuracy of existing automatic metrics and analyse the
potential limitations and disadvantages of the direct application of these metrics.
Furthermore, in allusion to the specific features of different tasks, we provide de-
tailed statistical analyses on the collected data to discover their underlying trends,
and further give suggestions about the directions to improving systems on different
aspects.
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Chapter 1

Introduction

Natural Language Processing (NLP) enables computers to perform a wide range of

language-related tasks. Similar to many fields of engineering, evaluation enables to

investigate the strength and weaknesses of NLP technologies and systems (Dušek,

Novikova, and Rieser, 2020), and their development is influenced by the evaluation

methods. Such methods are applied to evaluating their effectiveness at performing

the tasks which they are designed to perform. For example, the improved perfor-

mance of recent neural network based models that are published at top-tier con-

ferences is generally reported as an increase in their evaluation metric scores (Xu

et al., 2021; Zou et al., 2021; Herzig et al., 2021). Machine translation (MT) is

the task of automatically translating text from one natural language into another.

As one of the most widely-researched and challenging topics in NLP, the evaluation

methods used in the assessment of MT have been the focus of much attention. The

methods developed for the evaluation of MT have been well-developed and indicate

ways in which they highly influence it of other NLP domains. For example, BLEU

is a metric proposed for evaluating MT systems (Papineni et al., 2002) that has

become the frequently used methods of evaluating many NLP tasks such as image

captioning and text summarization. Although BLEU is a relatively mature MT

evaluation method, its performance for evaluation of other tasks has been criticised

because of its weak correlation with human judgement (Kilickaya et al., 2017; Elliott
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and Keller, 2013). Despite this criticism of BLEU, its popularity somehow shows no

indication of decline (Sai, Mohankumar, and Khapra, 2022). One possible cause is

the challenge of designing a new metric for a specific task. For example, ROUGE is

a metric proposed for text summarization (C.-Y. Lin, 2004), that is again criticised

due to weakly correlating with human judgement (Novikova, Dušek, Cercas Curry,

et al., 2017). In addition, challenges also exist when improving current evaluation

metrics. For instance, Galley et al. (2015) attempt to improve BLEU’s performance

by adding a greater number of references. Such human-annotated references how-

ever, are generally too costly to be feasible. Therefore, these existing challenges

relating to evaluation of NLP tasks give rise to our interest in investigating into and

overcoming them.

In this thesis, we examine the evaluation of three NLP tasks: machine reading

comprehension (MRC), question generation (QG) and dialogue systems, and inves-

tigate the degree to which the standard evaluation methodologies applied in each

area are sound and dependable for distinct task. The reason for selecting these NLP

tasks is that they either have no established effective evaluation method yet or they

still directly use evaluation methods created for distinct tasks.

Take for example the task of machine reading comprehension (MRC), it is a

sub-task of question answering (QA) that aims to enable a machine to answer spe-

cific questions using documents containing the answers. It requires the use of NLP

methods capable of, in some sense, understanding human language. Next, the ques-

tion generation (QG) task aims at generating meaningful questions according to the

corresponding answers given a context (e.g., a set of related documents). QG can be

utilized for augmenting a MRC dataset by adding more synthetic questions on which

a MRC model can be fine-tuned (Shinoda, Sugawara, and Aizawa, 2021), and to gen-

erate related questions using a given passage for educational purpose (Kurdi et al.,

2020). Finally, dialogue systems enable human users to communicate with machines

and computing applications through natural language. Dialogue can be classified

into two main categories: task-oriented and open-domain. A task-oriented dialogue

2



system focuses on helping a user achieve a specific goal, while an open-domain dia-

logue system aims to enable humans to converse with a machine in natural language

in a similar manner to engaging with a real person.

Passage: SouthPark is a shopping mall named after the affluent SouthPark neighborhood
the mall is located in. The mall is located approximately five miles (8 km) south
of Uptown Charlotte, North Carolina at the corner of Sharon and Fairview Roads.
With 1790000 sqft, SouthPark is the largest mall in Charlotte and the Carolinas,
as well as one of the most profitable malls in the country with sales at over $700 per
square foot. It is the 10th largest on the East Coast and is the 28th largest in the
United States. SouthPark is the most congested shopping area in the United States
during Black Friday weekend. Black Friday is the day following Thanksgiving Day

in the United States (the fourth Thursday of November).

Question: What day in November is Southpark most congested?

Answer: the fourth Thursday

(a) An example of the MRC task where A MRC system takes the passage and question
as the input, and is expected to output the answer.

Passage: Stalybridge Celtic Football Club is an English football club based in Stalybridge,
Greater Manchester. They are currently members of the Northern Premier League
Premier Division and play at Bower Fold. The team traditionally plays in a blue
and white strip. Fred Mace (October quarter 1895 – 5 November 1962) was an
English professional footballer who played as a goalkeeper. Born in Hayfield, Der-
byshire, he began his playing career in local-league football with Godley Athletic
and Copley Celtic. In 1919, he joined Lancashire Combination side Stalybridge
Celtic. The club was one of the founder members of the Football League Third
Division North two years later, and Mace made one league appearance for them.
Stalybridge left the Football League in 1923 to play in the Cheshire County League,

where Mace was described as one of the best goalkeepers in the competition.

Answer: Stalybridge Celtic Football Club

Question: Fred Mace played for which English football club in 1919?

(b) An example of the QG task where A QG system takes the passage and answer as
the input, and is expected to output the question.

History:

A: hello what are doing today?

B: I am good, I just got off work and tired, I have two jobs.
A: I just got done watching a horror movie.
B: I rather read , I’ve read about 20 books this year.

Utterance (A): Wow! I do love a good horror movie.

Response (B): But a good movie is always good.

(c) An example of the open-domain dialogue task where A dialogue system takes the
history and utterance as the input, and is expected to output the response.

Figure 1.1: Examples of the three NLP tasks: MRC, QG and dialogue.

Figure 1.1 gives the examples of these NLP tasks. A MRC system is required to

provide the answer to the given question using the passage, as shown in Figure

1.1a. Figure 1.1b shows an example of QG, where a QG system is expected to

3



generate the question whose corrected answer is the given answer, according to

the given passage. In addition, Figure 1.1c is the example of open-domain dialogue.

A dialogue system is expected to provide an appropriate response to the utterance

from a human according to the conversation history.

During the development of these NLP technologies, evaluation is a crucial step in

understanding how well they perform the task for which they are being developed,

and to identify elements which either must or could be improved. Evaluation can also

have the effect of influencing system development, as results deemed successful by a

given evaluation methodology can naturally steer research in that direction. Despite

the importance of evaluation methodologies for individual NLP tasks, automatic

evaluation metrics originally developed for other text-based tasks, MT most notably,

are commonly employed to evaluate a range of distinct NLP tasks. This is likely

due to the fact that devising a suitable evaluation of new tasks is often challenging,

time consuming and expensive.

For MRC, a key challenge for evaluation arises from the range of different cat-

egories of MRC task. Generally speaking, evaluation of MRC needs to examine

whether a system can read and understand unstructured text and then answer ques-

tions about it. Based on the types of questions given to the system and the form

of answers that a system should provide, the evaluation requirement and methods

for MRC can vary. The evaluation of some MRC tasks, such as cloze test and span

extraction for instance, is straightforward and carried out by exact match (EM)

and F1 score. Evaluation of other MRC tasks, like free answering for example, is

far more challenging. EM, for example, simply gives credit for answers that exactly

match the gold answer and F1 gives a credit for overlapping parts between the words

in system-generated answers and gold references. Since tasks like cloze test expect

a fixed system output, metrics are able to accurately reflect the quality of systems.

However, evaluating a free answering MRC task, namely a system can freely answer

a given question needing no fixed type of outputs, is substantially more challenging,

since the task itself does not provide a specific requirement on the form of the output
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from a corresponding system. Despite its significantly increased complexity, evalua-

tion of the complex task of free answering MRC still employs MT automatic metrics

such as BLEU. However, these metrics mostly rely on lexical overlap, which is not

effective for proper evaluation of this type. For this task, an appropriate answer

to one question could express the same meaning as its ground-truth reference even

without any lexical overlap, rendering word overlap based metrics less accurate in

this task.

Commonly applied evaluation methods in the QG task, such as METEOR (Baner-

jee and Alon Lavie, 2005) and NIST (Doddington, 2002), are again word overlap

based metrics. These measure the word overlap between a system-generated ques-

tion and a ground-truth reference. However, the evaluation of QG should take into

account the fact that there may exist several appropriate questions. For example,

with a passage describing Ireland, the country located in western Europe, two ques-

tions Q1 and Q2, where Q1=“What is the capital of Ireland?” and Q2=“Which

city in the Leinster province has the largest population?”, can share the same an-

swer “Dublin”. In other words, it is fairly appropriate for a QG system to generate

either Q1 or Q2 given the same passage and answer, despite few overlap between

the meanings of Q1 and Q2. We deem it the one-to-many nature of the QG task,

as one passage and answer can lead to many meaningful questions. A word overlap

based metric will however incorrectly assess Q2 with a lower score if it takes Q1

as the reference because of the lack of word overlap between these two questions.

Therefore, it is necessary to accommodate the context and answer for the evaluation

of QG. Word overlap based metrics are generally criticized because they ignore the

corresponding context and answer when evaluating a question. This makes them in-

capable of distinguishing appropriate questions in the QG task due to the failure of

consideration of the one-to-many nature. Additionally, these methods cannot assess

QG systems in different dimensions, for example, metrics like BLEU are incapable

of telling how appropriate the question words (such as what, who, and so on) are.

Furthermore, these metrics thoroughly relies on the ground-truth references, making
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them impossible to evaluate QG systems if there exist no pre-created reference in

practice. For example, a specific application of QG is for educational purpose by

automatically generating exam-style questions (Kurdi et al., 2020) using a passage.

In this instance, reference questions are generally unavailable.

Our focus next moves to evaluating dialogue systems which, in contrast to afore-

mentioned MRC and QG, is quite removed from MT, but the evaluation challenges

facing it are an exacerbated example of those that face MT evaluation. In MT

evaluation, it is possible to automatically compare a system output to a human-

generated translation to get an approximation of the quality of the system output

by a metric like BLEU. Although it does not always produce reliable conclusions

as it has been demonstrated that simply improving the BLEU score is unnecessary

and insufficient to reflect the real improvement of MT systems (Callison-Burch, Os-

borne, and Koehn, 2006), in general such a method appears not to correlate too

weakly with human judgment and consequently can be viewed as steering MT sys-

tem development in a suitable direction (Graham, Baldwin, Moffat, et al., 2014).

The source of errors in MT evaluation metrics, although not substantial, comes from

the fact that many possible ways to adequately translate a sentence into another

language exists, when a system happens to produce good output that does not re-

semble the handcrafted reference, it is unfairly penalised. The source of such errors

in these estimates is much worse in the case of dialogue system evaluation. For such

a conversational task, there really is no “correct ” next statement from the machine

and subsequently no way to automatically compare the output with a ground truth

of some kind. Evaluation is challenging firstly due to the definition of high quality

systems being itself rather challenging to define, and recent research generally lacks

a clear and specified definition of the aspect of quality (Howcroft, Belz, et al., 2020).

Even given a definition of how a high-quality system should respond to a question

appropriately, it is still not clear how to measure “appropriateness”. Meanwhile, the

popular automatic evaluation methods used in dialogue are again usually borrowed

from other domains, including BLEU and METEOR from MT, and ROUGE from
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automatic summarization, with the latter itself being an adaption of BLEU met-

ric. However, these metrics have been proven to have poor correlation with human

judgment when it comes to evaluation of dialogue systems, especially for the task

of open-domain dialogue. Human assessment is therefore more prevalent in recent

studies of dialogue systems since automatic metrics fail to be close to humans (Finch

and Choi, 2020). However, the approach taken by human evaluation is often pro-

hibitively expensive and too time-consuming to be practical. Evaluation of dialogue

systems is in dire need of an accurate, affordable and effective human evaluation

method.

In summary, all of these tasks incorporate the same over-arching evaluation chal-

lenges. In this thesis, we first propose three research questions relating to evaluation

of these NLP tasks in Section 1.1, while each question with respect to a certain task

will be individually answered in corresponding sections. Also, we overview the struc-

ture of this thesis in Section 1.2.

1.1 Research Questions

In general, machine reading comprehension, question generation and dialogue sys-

tems share some automatic evaluation metrics originally designed for other tasks,

like ROUGE and BLEU. Meanwhile, task-specific metrics are also applied, for ex-

ample, Answerability (Nema and Khapra, 2018) is proposed for QG while USR is

for dialogue systems. The employment of different metrics can potentially result

in diverse conclusions for a certain task, where some metrics may even disagree

with each other (Peyrard, 2019; Bhandari et al., 2020). Hence, this raises our first

research question:

RQ 1: Within each domain of interest, how accurately do existing automatic

metrics measure system performance?

Moreover, despite the common practice of adopting metrics from distinct tasks in

a certain task, the choice of evaluation methods may have a negative influence in the
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development of systems in each domain. For example, both BLEU and ROUGE are

frequently applied in MRC, while they are initially proposed for machine translation

and text summarization, respectively. This gives rise to our second research question:

RQ 2 What are the limitations and disadvantages of the direct application of

evaluation metrics from MT and other domains to entirely distinct tasks for system

development in each area?

In addition, since the evaluation of each domain can be challenging because of

the potential limitations and disadvantages of existing evaluation methods, a newly

proposed evaluation approach for each domain is necessary. Thus, we present our

third research question:

RQ 3 Can more appropriate new methods of evaluation be designed that are

feasible given the limited time and resources available in operational settings?

To address these research questions with regard to involved domains, we propose

a new human evaluation method for each domain and conduct relevant experiments.

We additionally conduct a self-replication experiment to verify the reliability by in-

vestigating the consistency at system-level. Such consistency is assessed by corre-

lation between the results of initial and self-replication experiments. Also, we run

statistical significance tests to prevent the system ranking from occurring simply by

chance. After the verification, we can then address these research questions. For RQ

1, we will measure the performance of metrics by the degree of their correlations with

human judgement of which the data is from the experiments of our proposed human

evaluation method. In regards to RQ 2, we further inquire into effects of employed

metrics on the development of systems. For example, we investigate whether the

system ranking is consistent when applying distinct automatic evaluation metrics

in one specific task. In terms of addressing RQ 3, the self-replication experiment

is used to investigate whether a newly proposed method is appropriate as such a

method should be highly reliable. Results shows that our methods can achieve a

nearly perfect correlation, for example, the Pearson correlation coefficient of our

proposed evaluation method for MRC reach as high as r = 0.986. Furthermore,
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we report the details of human evaluation experiments including costs and elapsed

time, to ensure our proposed methods are feasible within a limited budget of time

and resources.

1.2 Thesis Structure

In general, this thesis aims to answer the aforementioned research questions in terms

of three distinct NLP tasks, and the structure of the thesis is described as follows:

Chapter 1 briefly introduce the three tasks: machine reading comprehension,

question generation and dialogue system, as well as the facing challenges of their

evaluation. Section 1.1 describes three relevant research questions, and Section 1.2

introduces the thesis structure.

Chapter 2 firstly provides the information of each task, including the detailed

definition and commonly used datasets. Besides, we introduce their prevailing eval-

uation methods, including both automatic metrics and human evaluation. Section

2.1, Section 2.2 and Section 2.3 are respectively about MRC, QG and dialogue sys-

tems, where the performances of evaluation methods and their existing issues in

each related task are introduced as well.

In Chapter 3, we introduce a newly proposed human evaluation method for

the MRC task which overcomes current problems in MRC evaluation, as well as the

corresponding experiment deployed on the crowd-sourcing platform. We provide the

details of the experiment, including the involved systems and dataset, the statistics

on the data collected from it such as worker pass rates and elapsed time, and the

means of control the quality of human workers. We further compute the metric scores

on the experiment data and analyze metric performances based on their correlation

with the results of our human evaluation methods. In addition, a self-replication

experiment, the system consistency on different applied evaluation methods, and

the agreement among human raters are also included in this chapter.

Chapter 4 follows the structure similar Chapter 3, where we proposed a new
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human evaluation method for the QG task to solve existing issues. According to the

results from the deployed experiment, we compute metric scores and their correla-

tion with human raters. Additional experiments and analysis such as self-replication

experiment, the system consistency and rater agreements are included, while the de-

tails of our experiments are available as well. Moreover, we propose a new automatic

metric after the deployment of our human evaluation in this chapter.

In terms of the evaluation of dialogue systems, we conduct the related experi-

ments of the proposed crowd-sourcing human evaluation method as introduced in

Chapter 5. In general, we provide details of experiments that investigate its capacity

of surmounting challenges which current dialogue evaluation is still facing. Mean-

while, the consequent analysis in this chapter can denote whether our evaluation

method is highly cost-effective and reliable, and whether it can be deployed on a

large scale within an affordable budget.

In regards to MRC, QG and dialogue respectively, the three research questions

raised in Section 1.1 are addressed according to the results and analyses of corre-

sponding experiments in Chapter 3, 4 and 5.

Finally, Chapter 6 provides the conclusions of this thesis, as well as the plans for

the future researches.
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Chapter 2

Current Evaluation Techniques

and Existing Challenges

Since this thesis mainly focuses on the evaluation of three NLP tasks: MRC, QG

and dialogue systems, in this chapter, we firstly provide their specified definitions,

such as what the aim of each task is. We describe what their applications can be

as well. In addition, we briefly introduce some commonly applied datasets in each

task, including the datasets that systems of each task for our evaluation experiments

in this thesis are trained on. Besides, the prevailing methods used in the evaluation

of each task are introduced in detail (Section 2.2 for MRC, Section 2.3 for QG and

Section 2.3 for dialogue systems). We additionally mention challenges which current

evaluations are facing or the known issues that the applied evaluation methods have

for these tasks.

2.1 Machine Reading Comprehension

Generally speaking, the aim of machine reading comprehension (MRC) tasks is to

develop machines with the ability to automatically provide the correct answer to a

question regarding a presented context in the form of natural language. The given

context can have diverse forms, ranging from a few short sentences to a set of long

documents, and the machine should be able to leverage the entire context in order to
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Table 2.1: Commonly applied datasets in each type of the MRC task.

Category Dataset

Cloze Test

Shmoop (Chaudhury et al., 2019)
CliCR (Šuster and Daelemans, 2018)
CLOTH (Xie et al., 2017)
Who Did What (Onishi et al., 2016)
CNN / Daily Mail (Hermann et al., 2015)

Multiple Choice

ReClor (Yu et al., 2020)
CosmosQA (L. Huang et al., 2019)
SocialIQA (Sap et al., 2019)
MCScript (Ostermann, Modi, et al., 2018)
SemEval-2018 Task 11 (Ostermann, Roth, et al., 2018)
RACE (Lai et al., 2017)
MovieQA (Tapaswi et al., 2016)
WikiQA (Y. Yang, Yih, and Meek, 2015)
MCTest (Richardson, Burges, and Renshaw, 2013)

Span Extraction

SubjQA (Bjerva et al., 2020)
DROP (Dua et al., 2019)
Quoref (Dasigi et al., 2019)
ROPES (K. Lin et al., 2019)
DuoRC (Saha et al., 2018)
HotpotQA (Z. Yang et al., 2018)
SQuAD 2.0 (Rajpurkar, R. Jia, and Liang, 2018)
TriviaQA (Joshi et al., 2017)
SQuAD (Rajpurkar, J. Zhang, et al., 2016)

Free Answering

TweetQA (Xiong et al., 2019)
DuReader (He et al., 2018)
NarrativeQA (Kočiský et al., 2018)
MS MARCO (Nguyen et al., 2016)

answer questions that are related to the given information. MRC tasks can be classi-

fied into the following four categories: Cloze Test, Multiple Choice, Span Extraction

and Free Answering (D. Chen, 2018). These categories are principally determined by

the form of the answers required by the system to produce, as described as follows:

• Cloze Tests: Given the context C with one word (or an entity) a(a ∈ C)

removed, cloze tests ask the machine to fill in the blank with the right word

or entity a by maximizing the conditional probability P (a|C − {a})

• Multiple Choice: Given the context C, the question Q and a list of can-

didate answers A = {a1, a2, ..., an}, the multiple choice task is to select the
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right answers ai(ai ∈ A) from A by maximizing the conditional probability

P (ai|C,Q,A).

• Span Extraction: Given the context C, which consists of n tokens, that is

C = {t1, t2, ..., tn}, and the question Q, the span extraction task is to extract

the continuous sub-sequence a = {ti, ti+1, ..., ti+k}(1 ≤ i ≤ i + k ≤ n) from

context C as the right answer to question Q by maximizing the condition

probability P (a|C,Q).

• Free Answering: Given the context C and the question Q, the right answer

a in a free answering task does not have to be a sub-sequence in the original

context C, namely either a ∈ C or a /∈ C. The task is to predict the right

answer a by maximizing the conditional probability P (a|C,Q).

Table 2.1 shows several popular datasets which are proposed for each type of MRC

task. In this thesis, we will further use the results of the systems which are trained

on the free-answering dataset NarrativeQA (Kočiský et al., 2018) in the MRC eval-

uation experiment.

Due to the complexity of MRC, there are a large number of relevant datasets,

and Table 2.1 only lists a certain amount of typical datasets of each type. Dzendzik,

Foster, and Vogel (2021) provided a comprehensive survey on 60 MRC datasets.

According to the survey, Boolean is another type of MRC task where the questions

expect a yes/no answer, including BoolQA (C. Clark et al., 2019) and AmazonYesNo

(Dzendzik, Vogel, and Foster, 2019). PubMedQA (Jin et al., 2019) is also a Boolean

MRC dataset, while it contains questions that can be answered by “maybe”. Mean-

while, some MRC datasets in Table 2.1 contain a proportion of yes/no questions

(e.g., HotpotQA) or questions that cannot be answered (e.g., SQuAD 2.0), and such

datasets are sometimes categorized as Mixed (Dzendzik, Foster, and Vogel, 2021).

In addition to classifying by the format of answers, other taxonomies are ap-

plied in MRC as well (Rogers, Gardner, and Augenstein, 2021). For example, MRC

can be classified into four categories according to the format of questions, including

13



natural language questions, queries, cloze, and story completion. Besides, the for-

mat of context/passages is another indicator of classification, which can be further

characterized in terms of the modality and amount. According to the modality of

context, there are seven types of MRC: unstructured text, semi-structured text, struc-

tured knowledge, image, audio, video and, other combinations. With regard to the

amount of context, MRC can be be classified into: single source, multiple sources,

partial source, and no source.

2.1.1 Evaluation Metrics

Each category of MRC task listed above in Section 2.1 employs a combination of

evaluation metric. With the exception of free answering, the answers in these MRC

tasks are always predefined, whether a sub-sequence from the given context (span

extraction) or a subset of given candidates (cloze tests & multiple choice), meaning

that the correctness of such answers is always binary. Because of the simple form

of answers, accuracy is effective enough for evaluating models from cloze test and

multiple choice, while the performance of a model in a span extraction task can also

be simply assessed by accuracy-based metrics such as exact match (EM) and F1

score.

Among these four kinds of MRC tasks, free answering is somehow the most

challenging as the machine needs to fully reason over the given context and further

generate an answer to the given question in the form of a fluent and natural text.

In addition, since the forms of generated answers have no specific restriction in free

answering, the composition of a correct answer can range from a single word to a

set of sentences in many situations. Due to the difficulty and complexity of the

free answering MRC task, its evaluation is also highly challenging. In this case, a

common practice is to directly employ existing automatic metrics from other related

domains, such as machine translation and text summarization. In the following, we

will introduce these aforementioned common evaluation metrics for all four kinds of

MRC tasks in detail.
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Accuracy

Accuracy of system outputs with respect to the standard references is the most

frequently used evaluation method in cloze tests and multiple choice MRC tasks.

The accuracy of a system can simply be calculated by following:

Accuracy =
n

m
(2.1)

where m is the number of given questions that a model is asked to answer, and n is

the number of generated answers that are correct.

As a variety of Accuracy, Exact match (EM) is often employed in the span

extraction MRC task. Given a question with its corresponding reference answer,

EM can measure whether the system-generated answer exactly matches its standard

reference answer or not. The value of EM for one single question will be 1 if the

predicted answer is 100% the same as the ground-truth answer, and 0 otherwise.

F1 score

F1 score is an evaluation metric used in classification tasks, while it is often utilized

together with EM in the span extraction MRC task. Both system-generated can-

didates and reference answers are treated as a bag of tokens, and the F1 score is

computed by:

P =
TP

TP + FP

R =
TP

TP + FN

F =
2 × P ×R

P + R

(2.2)

where P is Precision, R is Recall, and F is the F1 score, while the values of true

positive (TP), false positive (FP), true negative (TN) and false negative (FN) as

described in Table 2.2. In addition, F1 score is in fact a special case of F-β score
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when β = 1, of which the general equation is:

Fβ = (1 + β2)
P ×R

β2 · P + R
(2.3)

Table 2.2: Definition of TP, FP, TN and FN in MRC evaluation.

tokens in reference tokens not in reference
tokens in candidate TP FP

tokens not in candidate FN TN

BLEU

Bilingual Evaluation Understudy (BLEU) is a method that is originally proposed

for evaluating the quality of MT systems (Papineni et al., 2002), and is widely-used

in free answering MRC tasks. BLEU computes the level of correspondence between

a system-generate answer and the reference answer by calculating the number of

n-gram matching segments. These matching segments are thought to be unrelated

to their positions in the entire context. The more matching segments there are, the

better the quality of the answer is.

In detail, the BLEU score of a predicted answer a and a reference answer r can

be computed by Equation 2.4:

Pn(a, r) =

∑
k∈a

min(Countk, RefCountk)

∑
k∈a

Countk

BP =


1 if la > lr

e(1−lr/la) otherwise

BLEU−N = BP · exp

(
N∑

n=1

wN logPn(a, r)

)
(2.4)

where Pn is the modified precision score between a and r, Counti is the number

of times that a unique n-gram k occurs in the system output a, and RefCountk is
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the number of time that k occurs in the reference r. In addition, BP is the brevity

penalty to penalize outputs that are too short, la and lr are the numbers of words in

a and r, N is the number of n-gram, and wN is the weight for the modified precision

of current n-gram whose common value in application is wN = N−1. Note that the

corpus BLEU score is based on the modified precision score on the corpus rather

than simply averaging the sentence BLEU scores.

In this thesis, the computation of BLEU score depends on the implementa-

tion from the Python module “nltk” (see https://www.nltk.org/_modules/nltk/

translate/bleu_score.html).

GLEU

Since BLEU is initially designed for measuring the corpus performance, GLEU

(Google-BLEU) is then proposed to overcome the drawbacks of evaluating a single

sentence (Y. Wu et al., 2016). As a variety of BLEU, the GLEU scores is reported to

be highly correlated with the BLEU score on a corpus level. GLEU uses the scores

of precision and recall instead of the modified precision. The sentence GLEU score

for the free answering MRC task can be computed by:

P =

N∑
n=1

∑
kn∈a

h(kn, r)

N∑
n=1

∑
kn∈a

h(kn, a)

R =

N∑
n=1

∑
kn∈a

h(kn, r)

N∑
n=1

∑
k′n∈r

h(k′
n, r)

GLEU = min(P,R)

(2.5)

where P and R are respectively Precision and Recall, function h(x, y) returns the

number of times that an n-gram x occurs in a sentence y, a is the predicted answer,

r is the reference answer, kn is the unique n-gram, and 4 is the default value of N
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in practice.

Similar to BLEU, we compute GLEU scores using the “nltk” implementation in

this thesis (see https://www.nltk.org/_modules/nltk/translate/gleu_score.

html).

ROUGE

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is an evaluation met-

ric developed for the assessment of Automatic Text Summarization tasks, but orig-

inally adapted as a recall-adaptation of the MT metric BLEU (C.-Y. Lin, 2004).

ROUGE-L is the most prevailing variant of ROUGE, where L denotes to longest

common subsequence (LCS). The definition of LCS is a sequence of words that

appear in the same order in both sentences. In contrast with sub-strings, such as

n-gram, the positions of words in a sub-sequence are not required to be consecutive

in the original sentence. Equation 2.6 introduces ROUGE-L which uses F-β score

by the LCS between the predicted answer and the reference answer when applied in

the free answering MRC task:

R =
lcs(a, r)

len(r)

P =
lcs(a, r)

len(a)

ROUGE-L = (1 + β2)
P ×R

β2 · P + R

(2.6)

where P is Precision and R is Recall, function lcs(x, y) returns the number of words

the LCS between sentences x and y contains. The function len(x) returns the

number of words in sentence x, and a and r are the predicted and reference answers.

β is a hyper-parameter and a practical value is β = P/R.

Besides ROUGE-L however, ROUGE could have a large number of possible

variations according to varying combinations of its parameters, and thus employing

ROUGE could result in distinct results for a single task (Graham, 2015). It has

eight choices of n-grams/sub-sequences ({1, 2, 3, 4}-gram;L;W;S;SU), three choices

18



of handling the single score (precision, recall or f-score), two choices of sum up

individual scores (mean or median), together with two other binary configurations,

including the application of stop-words and word-stemming. Such choices consist of

8 × 3 × 2 × 2 × 2 = 192 potential variants of ROUGE in total.

ROUGE scores in this thesis are computed by the python module “rouge” (see

https://pypi.org/project/rouge/).

METEOR

Metric for Evaluation of Translation with Explicit ORdering (METEOR) was firstly

proposed to make up for the disadvantages of BLEU, such as lack of Recall and the

inaccuracy of assessing a single sentence (Banerjee and Alon Lavie, 2005). METEOR

involves different stages before the computation, including: exact token matching,

WordNet synonyms, Porter stemmer and paraphrases.

For the free answering MRC task, METEOR will generate a set of mappings

between the predicted answer a and the reference answer r according to a set of

given stages, where a mapping is the connection between two unigrams. With the

set of mappings, the METEOR score can be computed by Equation 2.7:

Fmean =
P ×R

α · P + (1 − α) ·R

Pen = β ·
(chunk

m

)γ
METEOR = Fmean × (1 − Pen)

(2.7)

where Fmean is the weighted harmonic mean of Precision P = m/ua and Recall

R = m/ur as m is the number of unigrams in mappings, and ua/uw is the number of

all unigrams in a/r. Pen is the penalty where chunk is the number of chunks which

consists of a set of abutting unigrams. The default value of hyper-parameters α, β

and γ are α = 0.9, β = 0.5 and γ = 3, respectively (Banerjee and Alon Lavie, 2005),

but they can be tuned to maximally correlate with human judgements (Denkowski

and A. Lavie, 2011).

Since an official JAVA implement of METEOR is available, we compute the
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METEOR score in this thesis by directly invoking corresponding JAVA commands

in our Python script as suggested (see instructions in https://www.cs.cmu.edu/

~alavie/METEOR/README.html).

BERTScore

BERTScore is an automatic metric for evaluating the text generation task (T.

Zhang et al., 2020). Instead of using exact match like the overlap-based metrics,

BERTScore compute a similarity score between tokens in a candidate sentence and

its reference by their contextual embeddings from the pre-trained model BERT (De-

vlin et al., 2019). Given a candidate answer a that has m tokens and a reference

answer r that has n tokens, the BERT model can first generate the representations of

a and r as a = ⟨a1, a2, . . . , am⟩ and r = ⟨r1, r2, . . . , rn⟩, where ai and ri respectively

mean the contextual embeddings of the i-th token in a and r. Then, the BERT

score between the answer and the reference can be computed by Equation 2.8:

PBERT =
1

m

∑
ai∈a

max
rj∈r

a⊤i rj

RBERT =
1

n

∑
ri∈r

max
aj∈a

a⊤j ri

FBERT =
2 · PBERT ·RBERT

PBERT + RBERT

(2.8)

where the final BERT score is the F1 measure FBERT computed by precision PBERT

and recall RBERT.

TER

As a derived form of Word Error Rate (WER) (Nießen et al., 2000) which was

proposed for the automatic speech recognition task, the MT community proposed

the metric Translation Error Rate (TER) by adapting WER for evaluating the

quality of MT systems (Snover et al., 2006). Both WER and TER measure the

number of edits needed to be taken to make a predicted sequence exactly match its

given reference, but the main difference is that, WER uses the classical Levenshtein
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Distance (Levenshtein et al., 1966) whose edit operations includes Replacement,

Insertion and Deletions, while TER has an extra valid operation Shift to catch

phrasal shifts. TER can be applied for the free answering MRC task, as Equation

2.9 represents the formula:

TER =
#R + #I + #D + #S

len(r)
(2.9)

where # denotes the minimal number of an edit operation (R = Replacement,

I = Insertion, D = Deletions and S = Shift) to take to convert the predicted

answer a into the reference answer r, and the function len returns the number

of words in its input sequence. Each operation of TER is treated as equal cost,

and punctuation is isolated and treated in the same way as a word. Unlike other

mentioned metrics however, TER score has two notable differences: i) although the

TER score is practically within the range of 0-1, its theoretical range is actually 0

to infinity rather than 0 to 1; ii) the lower the TER score of a MRC system is, the

higher its quality is.

Human Evaluation

A. Chen et al. (2020) proposed a dataset called MOCHA for evaluating MRC metrics

where the 40, 000 human judgement scores on MRC model outputs are collected

from a crowd-sourcing human evaluation experiment (A. Chen et al., 2020). First,

human workers are asked to read the passage, question, correct answer, and predicted

answer. Then, they should evaluate the answer correctness by giving a score that

can best reflects how closely a predicted answer captures the same information as the

correct answer. A 5-point scale is employed which is interpreted as: 1 – completely

wrong answer, 2 – mostly wrong, 3 – half right, 4 – mostly right, and 5 – perfect

answer.

A. Chen et al. (2019) trained a multi-hop pointer generator model (Bauer, Y.

Wang, and Bansal, 2018) on the training sets of NarrativeQA and SemEval. Then,
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along with the model outputs, they respectively extracted 500 and 300 data points

from the validation sets of NarrativeQA and SemEval for conducting the human

evaluation experiment. This is an expert-based human evaluation, as two authors

annotated all data points in-house. They are asked to rate how closely a model

output captures the same information as a gold answer using a 1-5 scale.

2.2 Question Generation

As a way of learning, humans are capable of asking complex and creative questions

when exposed to a new environment. One of the concerns emerging recently from

the NLP community is whether a machine can also have the ability to ask questions

which are appropriate or pertinent given a wide range of input formats. Such a

concern then leads to the Question Generation (QG) task. In general, QG aims at

generating meaningful questions based on the input information whose format can

vary, for example, textual contexts, images, videos or even database. QG has various

forms of applications, such as dialogue systems, generating educational content and

data augmentation for question answering (Graesser et al., 2005; Shakeri et al., 2020;

Lyu et al., 2021).

QG and MRC are deemed two interdependent and highly related tasks. Both

tasks utilize textual contexts as input, while a QG system aims to generate questions

using given answers and a MRC system can answer the given questions. Interest-

ingly, recent research on QG suggest that the direct employment of MRC datasets

on the QG tasks is theoretically feasible (Y. Kim et al., 2019; L. Wang et al., 2020;

Cho et al., 2021).

Besides MRC datasets, there are a number of datasets that have been proposed

by the QG community as well, with such datasets could have different formats of

inputs. For example, LearningQ (G. Chen et al., 2018) is a dataset to encourage

generation of questions for educational purpose, and requires a QG system to output

a question given a context without the correct answer. Meanwhile, MQR (Multi-
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Table 2.3: The information of commonly applied datasets in the QG task, including
their initial proposed domains and input formats, where C=the context, A=the
answer which is a sub-string of C, A′=the answer which may not be a sub-string of
C, and Q=the question in a wrong format.

Domain Dataset Input
format

MRC

HotpotQA (Z. Yang et al., 2018) C + A
SQuAD (Rajpurkar, J. Zhang, et al., 2016) C + A
MS MARCO (Nguyen et al., 2016) C + A′

QG

MQR (Chu et al., 2020) C + Q
INQUISITIVE (Ko et al., 2020) C + A
LearningQ (G. Chen et al., 2018) C

domain Question Rewriting) is a dataset that aims at converting an ill-formed ques-

tion into a well-formed question according to the given context (Chu et al., 2020).

Table 2.3 introduces the commonly used datasets that are applied in the QG

tasks. The formats of inputs to a QG system can vary when the applied dataset

changes, as described in Table 2.3, where C is the context, A and A′ mean the answer

to the reference question, and Q is the ill-formed question. A means the answer must

be a sub-string in C, while for A′ it is not strictly the case. For example, the SQuAD

dataset requires a QG system to generate a question according to a context and an

answer which is a sub-string of the given context. We subsequently carry out a

number of evaluation experiments on the data of QG systems that are trained on

the HotpotQA dataset.

2.2.1 Evaluation Metrics

Most metrics for MRC tasks, especially free answering, can act as the evaluation

methods for the corresponding QG task, with the exception of accuracy-based met-

rics such as Exact Match and F1 score. In the following, we will introduce

commonly applied evaluation metrics in the QG task.
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Metrics from other NLP domains

Similar to free answering MRC tasks, automatic evaluation metrics in regard to

the n-gram overlap between two textual sequences are also suitable for judging

the quality of a QG system, including BLEU(EQ. 2.4), ROUGE(EQ. 2.6), ME-

TEOR(EQ. 2.7). Meanwhile, BERTScore (EQ. 2.8) can be applied to the QG

evaluation as well. These metric scores can be directly computed by the system-

generated question, q, and the reference question, r, using their original formulae.

Answerability

Aside from the aforementioned evaluation methods - which are borrowed from other

NLP tasks, an automatic metric called Answerability is specifically proposed for the

QG task (Nema and Khapra, 2018). Nema and Khapra (2018) suggest combining it

with other existing metrics since its aim is to measure how answerable a question is,

something not usually targeted by other automatic metrics. For example, given a

reference question r: “What is the address of DCU?” and two generated questions

q1: “address of DCU ” and q2: “What is the address of ”, it is obvious that q1 is

rather answerable since it contains enough information while q2 is very confusing.

However, any similarity-based metric is certainly prone to think that q2 (ROUGE-

L: 90.9; METEOR: 41.4; BLEU-1: 81.9) is closer to r than q1 (ROUGE-L: 66.7;

METEOR: 38.0; BLEU-1: 36.8). Thus, Answerability is proposed to solve such an

issue. In detail, for a system-generated question q and a reference question r, the

Answerability score can be computed as shown in Equation 2.10:

P =
∑
i∈E

wi
hi(q, r)

ki(q)

R =
∑
i∈E

wi
hi(q, r)

ki(r)

Answerability =
2 × P ×R

P + R

(2.10)

where i (i ∈ E) represents a certain type of elements in E = {R,N,Q, F} (R =

Relevant Content Word, N = Named Entity, Q = Question Type, and F = Function
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Word). wi is the weight for type i that
∑

i∈E
wi = 1. Function hi(x, y) returns the

number of i-type words in question x that have matching i-type words in question

y, and ki(x) returns the number of i-type words occurs in question x. The final

Answerability score is the F1 score of Precision P and Recall R.

Along with using Answerability individually, a common practice is to combine

it with other metrics as suggested when evaluating QG systems (Y. Chen, L. Wu,

and Zaki, 2020; P. Lewis et al., 2020):

Metricmod = β · Answerability + (1 − β) ·Metricori (2.11)

where Metricmod is a modified version of an original evaluation metric Metricori

using Answerability, and β is a hyper-parameter. As Nema and Khapra suggested,

the values of wi (i ∈ E) and β can be tuned to obtain a high correlation with human,

and a few examples of choosing wi and β are provided.

In this thesis, we combine it with BLEU to generate the Q-BLEU score using

the default value of β, using the official implementation of Answerability which is

available in https://github.com/PrekshaNema25/Answerability-Metric.

BLEURT

BLEURT is a trained evaluation metric which takes a candidate and its reference as

input and gives a score to indicate how the candidate can cover the meaning of the

reference (Sellam, Das, and Parikh, 2020). It uses a BERT-based regression model

trained on the human rating data from the WMT Metrics Shared Task from 2017

to 2019. Note that BLEURT was proposed for evaluating models on sentence level,

and no formal experiments are available for corpus-level evaluation. Therefore, the

final BLEURT score of a QG system will be simply computed by the arithmetic

mean of all sentence-level BLEURT scores in this QG evaluation experiment, since

this is suggested by the authors of BLEURT (see the discussion available on https:

//github.com/google-research/bleurt/issues/10).
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Human Evaluation

Although these prevailing automatic metrics mentioned above are widely employed

for QG evaluation, criticisms on n-gram overlap-based metrics’ ability of evaluating

the quality accurately and comprehensively are also raised (Yuan et al., 2017). As

a certain answer can potentially have a large number of corresponding plausible

questions, simply computing the overlap rate between an output and a reference to

reflect the real quality of a QG system seems not convincing. A possible solution is to

obtain a larger number of “correct” questions per answer, as n-gram overlap-based

metrics would usually benefit from multiple ground-truth references. However, this

can bring new issues: i) adding more references over the entire corpora is not inferior

to creating a new dataset which could be expensive and time-consuming; ii) it is not

easy to identify the “correctness” of a question.

Hence, human evaluation is also involved when evaluating a newly proposed

QG systems. A common practice is to randomly sample a few system-generated

questions and ask human raters to score these questions on a n-point Likert scale.

We will then introduce some examples of human evaluation in recently proposed

QG models/systems.

X. Jia et al. proposed EQG-RACE to generate examination-type questions for

the educational purpose (X. Jia et al., 2021). 100 outputs of the model are sampled

and three expert raters are required to score these outputs in three aspects: Fluency

– whether a question is grammatical and fluent, Relevancy – whether the question

is semantic relevant to the passage, and Answerability – whether the question can

be answered by the right answer. Each aspect uses a 3-point scale, and aspects are

reported separately without an overall performance.

Knowledge-Driven Distractor Generation (KD-QG) is a framework with a knowl-

edge base for generating various questions as a means of data augmentation (Ren

and Zhu, 2020). For its human evaluation, three proficient experts are individually

assigned 50 randomly-sampled items. They first judge whether an assigned item is

reliable using a binary scale, and any item with a positive reliability score will be
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further assessed on its level of plausibility on a 3-point scale that is construed as:

0 – obviously wrong, 1 – somewhat plausible and 2 – plausible. The two aspects,

reliability and plausibility, are treated separately without reporting any overall con-

clusion.

Answer-Clue-Style-aware Question Generation (ACS-QG) aims to generate ques-

tions together with the answers from unlabeled textual content (B. Liu et al., 2020).

Instead of evaluating the questions alone, a sample is a tuple of (p, q, a) where p =

passage, q = question and a = answer. A total of 500 shuffled samples are assigned

to 10 volunteers, where each volunteer receives 150 samples to ensure an individ-

ual sample is evaluated by 3 different volunteers. A sample is evaluated in three

facets, depending on the degree to it is: Well-formed (yes/understandable/no) – if

the question is well-formed, its Relevancy (yes/no) – if the question is relevant to the

passage, and Correctness (yes/partially/no) – if the answer is correct to the ques-

tion. The result of each facet is reported as a percentage rather than a summarized

score.

Ma et al. proposed a neural QG model consisting of two mechanisms: semantic

matching and position inferring (Ma et al., 2020). The model is evaluated by human

raters in three aspects: Semantic-Matching, Fluency, and Syntactic-Correctness on

a 5-point scale. However, the details about: 1) the number of evaluated samples;

2) the number of involved raters; 3) the type of human raters (crowd-sourcing or

experts) are unfortunately not provided.

QURIOUS is a question generation pre-training method, and QURIOUS-based

models are expected to outperform other non-QURIOUS models (Narayan et al.,

2020). The authors conduct a crowd-sourcing human evaluation experiment to

verify this. 30 passages with answers are randomly selected, and human raters

will compare the questions from two distinct models. For each single compari-

son, three individuals are involved for the sake of fairness. In detail, a human

rater is presented with a passage, an answer and questions A and B from two

models, and is asked which question is better than the other in two aspects: nat-
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ural - the question is fluent and written in well-formed English, and correct - the

question is correct given the passage and the answer. Each comparison can have

three distinct annotations: (A = best, B = worst), (A = equal, B = equal) or

(A = worst, B = best), and the final human score of a system in one aspect is com-

puted by the number of times it is rated as best subtracting the number of times it

is rated as worst following with dividing by the number of times it is evaluated in

total.

Although the application of human evaluation somewhat prevalent in the QG

evaluation, it still involves some considerable concerns:

1. The examples mentioned above individually use disparate evaluation options

with only a few overlaps. Existing human evaluation methods for QG are

generally model-specific, because the lack of a standard approach leaves the

QG community with no criterion to refer to.

2. The vast majority of QG human evaluations are either expert-based or volunteer-

based, while the former are normally expensive and the latter may result in a

shortage of raters. In addition, the inconvenience of deploying human evalu-

ation on a large scale can lead to a small sample size that may influence the

reliability.

3. The details of human evaluation experiments are ambiguous, sometimes the

sample size and number of raters are even unavailable. Although expert-

based human evaluation is generally deemed to have a high level of annotator

agreement, the corresponding information is never reported, making it hard to

guarantee the reliability and validity of the evaluation experiments, especially

crowd-sourcing human evaluation.

2.3 Open-Domain Dialogue Systems

Dialogue systems enable a machine to talk to users similar to a real human conver-

sation partner, with the aim of being capable of generating a reasonable response
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according to the current context of a dialogue system’s ongoing conversation in the

form of natural language. There are two main categories: task-oriented and open-

domain. A task-oriented dialogue system is designed to help a user reach a specific

aim, such as road navigation or reserving a restaurant, and it is generally required

to be completed within a prescribed number of conversation turns. Meanwhile, an

open-domain dialogue system aims at talking to users with no specific goal. The con-

versation can be about a thing, a topic or complete chitchat. Task-oriented dialogue

systems can be simply evaluated by straightforward approaches such as task success

rate and F1 score. However, the focus of evaluation of dialogue systems is purely on

evaluation of open domain dialogue systems, which is substantially more challeng-

ing, comprising one of the most (if not the most) challenging evaluation problems in

NLP (Burtsev et al., 2018; Dinan, Logacheva, et al., 2019). We primarily attribute

the occurrence of such challenges to the fact that there generally are a vast number

of possible appropriate responses in real-world conversations. Additionally, the eval-

uation of dialogue relies on comparison with handcrafted reference dialogues, while

such a means may incur substantial false-negative rates since many appropriate re-

sponses are unfairly penalized simply for not corresponding closely with references.

Furthermore, evaluation further suffers from challenges with respect to the ability

to fully take into account dialogue history.

In regard to automatic evaluation metrics of open-domain dialogue systems, there

are two main approaches: referenced-based and reference-free evaluation. The for-

mer relies on comparison between a system-generated response and a gold reference

and it can be further divided into two categories: word-overlap-based metrics and

word-embedding-based metrics, while the latter assesses a dialogue system solely

by the conversation history. In addition to automatic metrics, human evaluation is

widely applied as well.
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2.3.1 Word-overlap-based Evaluation Metrics

Like previous two NLP tasks, the default means of evaluating the quality of a

dialogue system appears to be comparing a system output with one or a set of

ground-truth references. The details of these metrics are already introduced, in-

cluding BLEU (EQ. 2.4), GLEU (EQ. 2.5), ROUGE (EQ. 2.6), METEOR (EQ.

2.7). For open-domain dialogue task, the score of a word-overlap-based metric can

be computed by a system-generated utterance u and a handcrafted reference r. For

example, PersonaChat (S. Zhang et al., 2018) is a dataset consisting of dialogues

between participants A and B, which are played by two workers when collecting in

the corwd-sourcing platform. A dialogue system trained on the train set can be then

evaluated using the test set. Given the history of a dialogue and the latest response

from A, the system is expected to generate what B will respond. And the metric

score can be computed using the generated response and the real response from B

in the dataset.

2.3.2 Word-embedding-based Metrics

A word-embedding-based metric likewise requires an output and a reference, while

it measures the quality by the similarity using their meanings instead of the word

overlap rate. The metric will first understand each word in a sentence by word

embedding - a method proposed by the information retrieval (IR) community that

can encode a word into a vector (Salton, Wong, and C. S. Yang, 1975). For example,

the aforementioned metric BERTScore (EQ. 2.8) is also a word-embedding-based

metrics which is suitable for evaluating dialogue systems. The most popular means

of word vector is word2vec (Mikolov et al., 2013). It can approximately represent

the meaning of a given word using a vector which is calculated according to its

frequency in the corresponding corpus, and concatenating the vectors of all words in

a sentence can act as the representation of the sentence. A common approach of a

word-embedding-based metric is to calculate the cosine distance between an system

output and a reference using their representations (C.-W. Liu et al., 2016).
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Embedding Average

Embedding Average (EA) is an algorithm that has been widely used in other NLP

tasks such as sentence similarity (Wieting et al., 2015). It first computes a sentence-

level embedding by the following:

Rs =

∑
w∈s

ew

|s|
(2.12)

where Rs means the representation of a sentence s, ew is the embedding vector of a

word w in s and |s| is the number of words in s. For the dialogue task, the EA score

can be subsequently computed using cosine similarity as EA = cos(Rs, Rr) given a

system-generated response s and a ground-truth reference r.

Vector Extrema

Vector Extrema (VE) relies on the computation of sentence-level representation as

well (Forgues et al., 2014). Given all the word vectors in a sentence, VE yields the

i-th element in the sentence vector by Equation 2.13:

Rs(i) = absmax
w∈s

eiw (2.13)

where eiw is the i-th element of the word vector ew and the function absmax returns

the number whose absolute value is the largest among all numbers.

Greedy Matching

Instead of sentence-level representations applied in aforementioned metrics, Greedy

Matching (GM), initially proposed for assessing intelligent tutoring systems (Rus

and Lintean, 2012), uses standalone word embeddings to yield a score. Specifically,

given a response s and a reference r for the dialogue task, the GM score can be
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computed by Equation 2.14:

G(s, r) =

∑
w∈s

max
w′∈r

cos(ew, ew′)

|s|

GM(s, r) =
1

2

(
G(s, r) + G(r, s)

) (2.14)

where ew is the embedding for the word w, and cos is the function for cosine similar-

ity. As the equation of G(s, r) is asymmetric, the final GM score GM(s, r) should

be the average of scores in two directions.

2.3.3 Reference-free Metrics

Evaluating open-domain dialogue systems by referenced-based evaluation is known

to have several known issues however. First, in consideration of the fact that there

exists a vast number of possible appropriate responses in real-world conversations,

such appropriate responses are often unfairly penalized by reference-based metrics

for not corresponding closely with references. In addition, these metrics fail to take

into account dialogue history. Meanwhile, although the direct application of metrics

from other tasks, such as BLEU from MT and ROUGE from text summarization, is

the common practice in the evaluation of open-domain dialogue systems, these pre-

vailing metrics have been criticized for their weak correlation with human judgement

in other NLP tasks (Reiter, 2018; Graham, 2015; Graham and Qun Liu, 2016).

To address such issues, reference-free metrics are therefore proposed. Distinct

from reference-based, reference-free metrics requires no pre-created reference for

comparison. Instead, it can score a response of a conversation according to the

textual context, while the overall quality of a full conversation history can be assessed

by combining all responses in it. Compared to reference-based metrics, reference-free

metrics are deemed to perform better according to their correlation with humans.

Subsequently, two reference-free metrics, FED and USR, will be introduced in the

following.
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FED

FED (Fine-grained Evaluation of Dialog) is a reference-free unsupervised metric

based on pre-trained models (Mehri and Eskenazi, 2020a). Since a pre-trained model

is deemed to have the ability of generating a response according to a given context,

FED can assess the quality of a conversation by how a model will respond. Given

the content of a conversation, c, FED can score c as follows:

FED = Lm(rp|c) − Lm(rn|c) (2.15)

where m is a pre-trained model, rp and rn are predefined positive and negative

responses. In addition, Lm(r|c) computes the likelihood that the model m will

generate a response r given c. We employed medium and large DialoGPT (Y. Zhang

et al., 2020) as FED scorers, where the full list of predefined positive and negative

responses are available in Table A.6 in Appendix A.

USR

The USR (UnSupervised Reference-free) is a supervised evaluation metric that can

assess the quality of a conversation (Mehri and Eskenazi, 2020b). USR consists of

three sub-metrics for the evaluation of different aspects: USR-MLM is to evaluate

the understandability and naturalness, USR-DR(c) and USR-DR(f) are to evaluate

the interestingness and consistency. As USR is a supervised evaluation method, it

first fine-tunes the pre-trained model RoBERTa (Yinhan Liu et al., 2019) on the

training set of the Topical-Chat corpus (Gopalakrishnan et al., 2019) by the open-

sourced implementation (Wolf et al., 2019), acting as the USR-MLM sub-metric.

Then, the fine-tuned RoBERTa is further fine-tuned the retrieval task using the

Ubuntu dialogue dataset (Lowe et al., 2015) that can act as USR-DR(c) and USR-

DR(f) sub-metrics. Given a conversation, the scores of the three sub-metrics are first

computed, and a trained regression model is employed to combine these sub-metric

scores into a final USR score as the overall measurement of the conversation quality.
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2.3.4 Human Evaluation

Apart from automatic metrics, human evaluation is additionally widely applied for

assessing open-domain dialogue. Human evaluation is commonly adopted in compe-

titions regarding dialogue systems (S. Kim, D’Haro, et al., 2017; S. Kim, D’Haro, et

al., 2016; Burtsev et al., 2018), such as Dialog System Technology Challenge (DSTC)

and Conversational Intelligence Challenge (ConvAI) . Unfortunately, a common is-

sue occurs that can potentially impact the validity of results when filtering the set

of systems to be evaluated via automatic metric scores, since human evaluation is

not unfortunately not applied as the initial method of evaluating systems only after

filtering according to metric scores. Among a set of dialogue system candidates, only

the top N (for example, top 10 or top 20) will move to the human evaluation stage,

and others are directly eliminated, depending on the ranking of scores produced by

automatic metrics. Nevertheless, this strategy can raise a problem that the best

system according to human judgements may be inadvertently filtered out without

the chance of participation in human evaluation, since automatic metric scores are

known to be a poor substitute for human assessment.

In addition, challenges exists in the live evaluation as such evaluations are re-

ported to be highly challenging. For example, the ConvAI2 competition allows any

participant to interact with a dialogue system and to evaluate its performance when

the conversation is completed (Dinan, Logacheva, et al., 2019). Unfortunately, the

results of live evaluation are ultimately discarded because a large proportion of the

collected conversations are deemed to be senseless, offensive, or simply not in line

with instructions due to the lack of a means of filtering out invalid data.

On the other hand, competitions that (for one reason or another) do not release

data and evaluation techniques into the public domain have reported relative suc-

cess in terms of human evaluation. However, until such methods can be accessed

and independently verified through replication studies, they will unfortunately have

little impact. The first Amazon Alexa Socialbot Grand Challenge required human

assessors to score how coherent and engaging conversations were on a 1–5 rating
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scale by two distinct groups: volunteer Amazon employees (experts), and general

Alexa users (crowds) (Ram et al., 2018), are reported to achieve a correlation of

overall scores for the two types of human assessors at 0.93. The absolute average

rating across all chatbots was reported to be 20% lower for experts compared to

general users. In an additional effort to evaluate models, conversational user experi-

ence, coherence, engagement, domain coverage, topical diversity, and conversational

depth were assessed (1–5 scale), with combined scores reported to correlate with

those of general users at r = 0.66. In addition to methods and data not being

publicly available, correlations are difficult to interpret since no detail is provided

about the number of judgments on which the correlation is calculated for example.

With the exception of dialogue-related competitions that generally aim to in-

clude human evaluation of systems, the evaluation of newly proposed automatic

evaluation metrics for open-domain dialogue usually involves human evaluation as

well. In other words, these metrics, such as aforementioned USR and FED, require

a human evaluation data set on which to evaluate the results of themselves as the

proving of superiority and validity. However, this often raises new issues because of

the application of inappropriate statistics, and these misuses are introduced in the

following.

When proposing USR, Mehri and Eskenazi (2020b) conduct the human evalu-

ation experiment that can assess the quality of dialog for a range of criteria us-

ing various rating scales: understandable (0–1 rating scale), natural (1–3), main-

tains context (1–3), interesting (1–3), uses knowledge (0–1); overall quality (1–5).

Despite human evaluation being carried out by experts inter-annotator agreement

levels varied depending on criteria being measured, ranging from as low as 0.298.

Additionally, although correlations between human assessments are reported as sig-

nificant at p < 0.01, despite such statistics often being reported for correlations,

they are unfortunately not very meaningful in terms of their impact on correlation

interpretation and can be somewhat misleading. Contrary to common expectations,

even small effect sizes (low r) can produce very low p-values (strong significance) in
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such tests. Aiming to achieve a significant correlation is an extremely low bar to

reach in terms of consistency, since a low p-value in this case simply rejects the null

hypothesis that the correlation is zero.

Furthermore, Pang et al. (2020) deploy a crowd-sourcing human evaluation ex-

periment on Amazon Mechanical Turk using a 1–5 rating scale when proposing

the GPT-2 based holistic metric for the automatic evaluation of dialogues on four

distinct aspects. The inter-rater agreement, reported as r = 0.61, is computed

by averaging the Pearson correlations between pairs of human assessors. However,

mean correlations are unfortunately difficult to interpret, since correlation coeffi-

cients are not additive, averages calculated in the usual way cannot be assumed to

reflect central tendency, and unfortunately, the distribution of correlations is not

reported (Alexander, 1990).

In addition to the aforementioned issues, human evaluation of open-domain dia-

logue systems rarely take into account the fact that differences in performance can

occur simply by chance, significance tests are therefore necessary.

In general, the following challenges still remain in the evaluation of open-domain

dialogue systems, with respect to both automatic metrics and human evaluation:

• Reference-based metrics: 1) may unfairly penalize an appropriate response

because of its lack of conformity with the given reference; 2) cannot consider

the dialogue history; 3) are reported as weakly correlated with humans;

• Human evaluation experiments associated with evaluation metrics in cases

have applied inappropriate statistics, and the necessary significance test are

not included;

• Using automatic metrics prior to human evaluation in conversational competi-

tions can potentially filter out the best system according to human judgement.

• Lacking a quality control method potentially makes live human evaluations

inapplicable;
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• The results of some human evaluations are not reproducible as the accompa-

nying data and detailed evaluation techniques are unavailable to the public.
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Chapter 3

Evaluations on Machine Reading

Comprehension

The evaluation of free-answering MRC is challenging as introduced in Chapter 1,

since it only employs automatic metrics from other NLP tasks and still lacks a

specific evaluation method. The applied metrics generally assess a system output

according to its lexical overlap with the reference. In this chapter, to solve existing

issues of MRC evaluation, we propose a new human evaluation method for the

free-answering MRC task. This method can evaluate the adequacy of a system-

generated according to its reference, and its fluency without the reference. We will

introduce its methodology in detail, including the employed quality control method

to prevent from collecting useless data from unreliable human workers. We will

conduct corresponding human evaluation experiments based on the output of several

MRC systems. A self-replication experiment based on the assessment of adequacy is

deployed as well to ensure the reliability of our proposed method. With the results

of the experiments, we can additionally examine the three research questions (RQs)

which we proposed in Section 1.1, with respect to the MRC task.

To begin with, Section 3.1 provides a brief review of the experiment design,

including the human evaluation method we use and the interface shown to work-

ers. Following that, Section 3.2 introduces details of the quality control method for
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crowd-sourcing human evaluations of MRC as well as the structure of tasks that are

assigned to human workers. Section 3.3 then introduces used in this experiment,

NarrativeQA. We also examine core statistics on the dataset, including distribution

of word lengths of references and question categories. Finally, in this Section, the

systems to be evaluated in the experiment are introduced. The final section of the

chapter, Section 3.4, then provides the results of the experiment. We first report

statistics of the collected data, including the pass rates of workers and assignments,

the average duration and final expenditure. Additionally, we report the human

scores and corresponding automatic metric scores to examine RQ1 and RQ2 ac-

cording to the comparison between them. Additional statistical analyses on the

experiment data show the validity of this method and provide suggestions for the

improvement of MRC systems, with respect to RQ3.

3.1 Experiment Design

In this section, we provide information about the methodology of the proposed eval-

uation method, the details of the corresponding experiment design. We additionally

introduce the means of choosing the sample size of human ratings.

3.1.1 Methodology

To overcome the above previous challenges of evaluating MRC task, we proposed a

new crowd-sourcing human evaluation method by adapting Direct Assessment (DA)

which has been successfully applied in other related fields, such as MT (Graham,

Baldwin, Moffat, et al., 2016), multilingual surface realisation (Mille et al., 2020)

and video captioning (Graham, Awad, and Smeaton, 2018). DA was first employed

in evaluation on large-scale machine translation shared tasks at the Conference on

Machine Translation (WMT) in 2016 and is subsequently the official human evalua-

tion approach for ranking systems (Ondřej Bojar, Chatterjee, Federmann, Graham,

Haddow, Huck, et al., 2016; Ondřej Bojar, Chatterjee, Federmann, Graham, Had-
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dow, S. Huang, et al., 2017; Ondrej Bojar, Federmann, et al., 2018; Loic Barrault

et al., 2019). DA is further adapted to evaluation of other tasks, such as automatic

video captioning and multimodal machine translation (Awad, Butt, Fiscus, et al.,

2017; Awad, Butt, Curtis, et al., 2018).

The following describes the advantages of DA compared to other existing human

evaluation methods:

• Rather than commonly applied n-point scales, DA utilizes a continuous rat-

ing scale which facilitates the further fine-grained analyze of collected human

rating scores.

• Using statistical means, DA can employ quality-controlling mechanisms to

ensure that the data we used for further analysis is valid and reliable.

• DA enables human evaluation to be deployed on a substantially larger scale

at a feasible cost.

Accordingly, we adapt DA to the free-answering MRC task to evaluate MRC

systems in two separate aspects: Adequacy and Fluency, where the former assesses

the adequacy of system-generated answers and the latter is the measurement of how

fluent a human will think an answer is. Amazon’s Mechanical Turk (AMT) is the a

crowd-sourcing platform where we deployed this human evaluation experiment (see

http://www.mturk.com). In AMT, each worker will be assigned a “human intel-

ligence task” (HIT). Figure 3.1 provides two examples of the interface shown to

human assessors when evaluating adequacy and fluency. For the adequacy assess-

ment, human assessors are asked to rate the degree to the agreement on how Answer

B answers the question as adequately as Answer as Figure 3.1a shows, where Answer

A is the human-generated reference answer and Answer B is the answer generated

by the system to be evaluated. Separately, only the question and system-generated

answer are shown to workers when evaluating the textual fluency of answers, with

the instructional Likert statement replaced by The response answers the question

fluently in Figure 3.1b.

40



(a) adequacy assessment

(b) fluency assessment

Figure 3.1: The interface of adequacy and fluency assessment as shown to AMT
assessors separately

Although we collect ratings of adequacy and fluency, our further analyses are

mainly based on the results from adequacy, while the stand-alone fluency will not

be used for judging and ranking system. However, fluency can help to examine a

system’s ability of generating high quality texts from a different angle other than

adequacy, we can thus apply fluency assessment as a secondary evaluation mecha-

nism for our human evaluation, especially for re-ranking systems when systems have

very similar levels of adequacy.

During the evaluation, each assessor is shown a question, a reference answer

(Answer A) and a system-generated answer (Answer B) on a single screen at a time

, meaning that one rater can evaluate only one answer at a time As it can be seen

from Figure 3.1a. This is because multiple outputs on one screen can influence each

other’s scores resulting in a biased conclusion (Ondřej Bojar, Ercegovčević, et al.,

2011). In addition, human assessors are not permitted to review previous answers,
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change previous judgments, or skip to the next answer. Particularly, the questions,

system-generated answers and reference answers are actually rendered as images

rather than real texts in order to prevent submissions from robots.

In this experiment, the passage will not be shown to workers during the evalua-

tion of both adequacy and fluency. For adequacy, the passage is not included because

we think the reference has contains enough information for workers to judge the ad-

equacy of a generated answers, since adequacy measures the degree to which the

information in the reference answer is preserved in the system-generated answer.

Meanwhile, fluency determines whether the generated answer is well-formed in nat-

ural language, and it can be evaluated independently without the passage. However,

passages are necessary when other evaluation criteria are examined. For example, a

worker must refer to the passage if we would like to measure criteria such as correct-

ness - “how correct is the answer to the question according to the given passage”,

or relevancy - “how relevant is the answer is to the given content”. Nevertheless, we

suggest to provide passages to workers when deploying our MRC human experiments

in the future, since the information in the passage can also be useful for evaluating

the adequacy, especially when a candidate answer and its reference share the same

meaning but are expressed in different way. For example, we can allow workers to

read the passage via an external link or a popup window.

3.1.2 Crowd-sourcing versus Experts

Human evaluation of NLP tasks is generally implemented by experts, such as lin-

guists, professionals and relevant researchers. Despite the fact that expert-based hu-

man evaluation is deemed to properly estimate the performance of a NLP model/system,

such evaluation is nonetheless confronted with challenges (Celikyilmaz, E. Clark,

and Gao, 2020). First, the deployment of expert-based human evaluation usually

relies on a traditional laboratory environment which is costly and time-consuming

(Iskender, Polzehl, and Möller, 2020). In addition, experts are prone to injecting

subjective opinions and biases during evaluation (Amidei, Piwek, and Willis, 2018).

42



Meanwhile, crowd-sourcing is proposed as an alternative to the expert which can be

deployed on a large scale within an affordable budget and limited time. Although

the quality of crowd-sourcing evaluation is always the concern since it may suffer

from inaccurate assessment according to the results of experts (Gillick and Yang Liu,

2010; Lloret, Plaza, and Aker, 2013; Fabbri et al., 2020), evidence indicates that

crowd-sourcing has the ability of generating high quality evaluation in NLP tasks

(Snow et al., 2008; Nowak and Rüger, 2010; Graham, Baldwin, Moffat, et al., 2016;

Graham, Awad, and Smeaton, 2018). Therefore, we conduct our experiment in a

crowd-sourcing environment. And we believe this proposed crowd-sourcing human

evaluation method can help to overcome the challenge that current human evalua-

tion lacks a standard procedure which may result in high degree of variation (Lee

et al., 2019).

3.1.3 Selecting the Sample Size

Before deploying the experiment, choosing a suitable sample size is also an indis-

pensable part to ensure the conclusivity of rankings in human evaluation. Experi-

ments with insufficient samples usually have low statistical power, and the conclusion

drawn from such experiments may simply result from false negatives caused by low

powered tests, such as Chinese to English news translation (Hassan et al., 2018).

Therefore, we followed a practical guide regarding sample sizes in machine trans-

lation (Graham, Haddow, and Koehn, 2020), and since we will employ an adaption

of DA and the same significance test to identify differences between systems. Apply-

ing a similar sample size in this experiment should be appropriate for our purpose.

It is however impossible to ascertain the actual sample size required prior to this ex-

periment, since the variance of rating distributions for systems is not yet known. In

future research, we suggest employing appropriate methods to estimate the sample

size of human evaluation experiments via a power simulation (Howcroft and Rieser,

2021).
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3.2 Quality Control In Our Experiment

In this section, we will introduce and motivate the application of quality control to

crowd-sourcing data, the structure of a single HIT that is assigned to a rater as well

as various quality controlling approaches.

3.2.1 Quality Control

Due to the anonymous nature of crowd-sourcing human assessment, evaluation qual-

ity can vary. For example, some workers just randomly rate everything because the

anonymity of crowd-sourcing platform, rendering their ratings as useless. Quality

control mechanisms are thus necessary for filtering out unreliable data generated by

such human assessors.

A common-applied quality control strategy in crowd-sourcing is to include a gold

standard set of items and only accept the data from workers who rate high scores

to such items (J. Le et al., 2010; S.-W. Huang and Fu, 2013). Such a method is not

effective however since human workers can easily “game” this strategy by simply

assigning high scores to every item they are rating.

Instead of only applying a gold-standard quality-controlling method, we will

operate three quality control methods in our research to improve the robustness to

the “gaming turkers”, including bad reference, repeat and reference answers:

• Bad Reference: a set of system-generated answers are randomly selected,

then the degraded versions of them are automatically generated and paired

with the original answers. The scores of such degraded answers are expected

to be significantly lower than those of original answers if the human evaluators

are credible. Such a strategy proposes a means of verifying how reliable a

single individual is without comparing with any another human assessor, and

the agreement with experts is no longer needed as well.

• Repeat: a set of system-generated answers are randomly selected, then they

are directly copied to make a new set of repeated answers. The scores of
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repeated answers should be highly close to the original ones. They will be

subsequently used for analysing the degree to raters’ agreement.

• Reference Answer: a set of system-generated answers are randomly selected,

they are then replaced by their references of according questions. Such answers

are expected to received a extremely high score (≈ 100). Note that this ap-

proach is actually an application of gold-standard quality control as mentioned

above, and we only employ it as an auxiliary method since its stand-alone ap-

plication is at the risk of being gamed by crowd-sourcing workers.

3.2.2 Structure of HIT

With the three above methods, and answers generated by different systems to be

rated, we can now create the HITs for our DA experiment. Figure 3.2 provides

the graphical depiction of the items contained in a single 100-answer HIT, where

each colored circle indicates a different kind of item. The composition of a HIT is

described as follows:

• 10 system-generated answers and 10 “bad reference” versions (comprising a

total of 20 answers)

• 10 system-generated answers and 10 “repeat” versions (comprising another

total of 20 answers)

• 10 system-generated answers and 10 “reference answer” versions (comprising

another 20 answers)

• 40 additional system-generated answers

In other words, a HIT containing 100 items is made up of: (a) 70 ordinary

system-generated answers; (b) 10 bad-reference answers corresponding to 10 of above

70; (c) 10 exact repeats corresponding to 10 of above 70; (d) 10 reference answers

corresponding to 10 of above 70. Although Figure 3.2 seems a hierarchical structure,
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Figure 3.2: The structure of a 100-answer HIT

a HIT will be fully shuffled before assigned to a worker to guarantee an unbiased

assessment.

3.2.3 Detailed Mechanisms of Quality Control

Since we have introduced the structure of HITs, we will now provide the details of

generating quality-controlled versions of answers using the above mechanisms.

Bad Reference: To create a bad reference answer, we took the original system-

generated answer and degraded its level of adequacy and fluency by replacing a

random short sub-sequence s from the original answer with another string s′, where

s′ is a randomly extracted sub-string from the human-generated answer belonging

to another question, and s should have the same number of words as s′.

Given the original answer that consists of n words, the number of words that

string s (and s′) should have is subsequently decided on the following rules:

• for 1 ≤ n ≤ 3, s comprises 1 word.
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Original He made a promise to Lisbeth's mother before she died.

Sample He was unable to control his feeling for her.

Total length: 10

Length of substring to be replaced: 4

Length of replacement string: 4

Bad ref He made a unable to control his before she died.

Yellow block is replaced by Green block

Figure 3.3: The process of generating the degraded version of an answer.

• for 4 ≤ n ≤ 4, s comprises 2 words.

• for 6 ≤ n ≤ 8, s comprises 3 words.

• for 9 ≤ n ≤ 15, s comprises 4 words.

• for 16 ≤ n ≤ 20, s comprises 5 words.

• for n ≥ 21, s comprises ⌊n/5⌋ words.

Figure 3.3 provides the graphical process of degrading an ordinary answer to a

“bad reference”, where the positions of s (yellow block) and s′ (green block) in

their corresponding sentences are also randomly selected. Specially, the first and

final words will never be included when selecting s and s′, unless the original or

candidate sentence has only no more than two words. Note that the rule of deciding

the number of words is retained as the same as DA was initially developed for MT,

but we also adapt the rule of deleting s to replacing s by s′. Compared to the

initial rule, the inserted string s′ itself is in the form of a fluent text from a human-

generated sentence, and human assessors cannot easily identify it without reading

the entire answer.
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Repeat: A repeat answer is generated by simply copying one system-generated

answer with its original question and reference, there will be two exact same answers

for one single question shown to workers during assessment. Although we expect

workers to give similar scores to these two answer, we will not use it as the means

to discard results from workers. Instead, we will take the mean score of repeat and

original as the final rating for an answer to reduce the bias of judgement.

Reference Answer: When creating a reference answer, the system-generated

answer is replaced with the reference answer to its according question, meaning that

the answer to a question is exactly the same as its reference.

3.3 Dataset and Systems

To test our human evaluation method on free-answering MRC task, we employ Nar-

rativeQA dataset which requires machines to reason over the entire books or movie

scripts before generating answers in order to encourage deeper language comprehen-

sion (Kočiský et al., 2018). The whole dataset, including training, validation and

test, contains approximately 46K questions where 10,557 of them belongs to the test

set. Our experiment is thus based on the answers generated by a range of systems

with respect to the NarrativeQA testset.

3.3.1 Core Statistics on NarrativeQA Test Set

Our research mainly relies on the results of test set, however Kočiský et al. (2018)

only reported the statistical information about the training and validation set when

NarrativeQA was proposed. Therefore, we provide analysis the test set as well,

including the distributions of word lengths of the ground-truth references, and the

frequency of question categories. Figure 3.4 provides a bar chart describing numbers

of words in references in the test set and their distribution. We can find that more

than half of the references consist of no more than three tokens (sum up to ≈ 52%),

which implies an unbalanced distribution in the test set. The influence of word
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Figure 3.4: The distribution of ground-truth answers with different word lengths,
where each bar and the number on its right side indicate the proportion and the
real number of that length in the NarrativeQA test set.

lengths of references will be investigated in Section 3.4.6. In addition, we follow the

same step with NarrativeQA to reported the distribution of question categories in

the test set. Table 3.1 shows the results of question categories, where 300 questions

are randomly sampled from the test set and they are manually labelled with their

question categories. As an aside, compared with the values on validation set provided

by NarrativeQA, the diversity of question categories on test set appears to be more

balanced than the validation set.

3.3.2 Systems for Evaluation

Since the NarrativeQA test set provides two separate human-generated answers to

each single question, we extract one of those two in order to establish a set of outputs

from a system called “Human” which we employ to estimate the performance of
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Table 3.1: Question categories on a set of 300 randomly-sampled questions from the
test set, compared to the values counted on validation set (Kočiský et al., 2018).

Category Frequency Frequency (validation)

Person 26.67% 30.54%
Description 19.33% 24.50%
Entity 13.33% 4.03%
Location 10.33% 9.73%
Why 10.00% 9.40%
How 8.00% 8.05%
Object 5.00% 3.36%
Numeric 3.33% 3.02%
Event 2.00% 4.36%
Duration 1.67% 1.68%
Relation 0.33% 1.34%

humans in the free-answering MRC task according to Mturk workers. Meanwhile,

the other human-generated reference answer for each question will act as the ground-

truth reference.

Besides the human system, we also employ seven MRC systems that are trained

on the NarrativeQA train set in order to provide a realistic evaluation of metrics.

We firstly include two variants of the Commonsense system (Bauer, Y. Wang, and

Bansal, 2018), in which grounded multi-hop relational commonsense information is

selected and used to fill in gaps of reasoning between context hops, initially with

different hyperparameters. Additionally, we run two baseline systems proposed in

(Bauer, Y. Wang, and Bansal, 2018), each of which comprised the same multi-hop

pointer-generator model but with different hyperparameters. Further to this, we ran

a simple heuristic system for MRC (Sugawara et al., 2018) with a gated-attention

reader (Dhingra et al., 2017) and a attention-guided answer distillation system,

which transfers knowledge from an ensemble model to a single model by knowledge

distillation (Hu et al., 2018). Finally, we include an example system from the recent

Neural Network for NLP course (available on https://www.phontron.com/class/

nn4nlp2017/).

Each system above will automatically generate answers on the test data, mean-

ing that every system produces a set of 10,557 outputs. In total, we now have 84,456
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Table 3.2: Core statistics on the HITs and workers in our experiment.

(a) Numbers and pass rates of workers and collected ratings before and after quality control
for fluency and two runs of adequacy.

Evaluation Worker Involved Ratings

modality Total Passed Pass Rate Total Passed Pass Rate

Adequacy
Run 1 72 37 51.39% 9,226 6,785 73.54%

Run 2 77 41 53.25% 6,720 3,520 52.38%

Fluency 103 49 47.57% 9,200 4,560 49.57%

(b) Average durations of HITs to complete in minutes, and the average number of HITs
a worker completes.

Evaluation Avg HIT Duration (min) Avg Assigned HITs

modality Passed Failed Overall Passed Failed Overall

Adequacy
Run 1 41.5 30.9 38.7 2.57 1.00 1.82

Run 2 22.8 20.3 21.6 1.07 1.14 1.11

Fluency 33.7 33.2 33.5 1.16 1.07 1.12

(10557× 8) answers from eight various MRC systems for deploying our human eval-

uation experiment, and they are subsequently placed in a pool of system-generated

answers from which the 70 ordinary answers are randomly sampled to create the

basis for generating a 100-answer HIT. We employ sampling without replacement

in this case.

3.4 Experiment Results

3.4.1 HITs and Workers

Table 3.2 provides the core statistics, with 3.2a showing pass rates of workers and

ratings, and 3.2b containing information on the time and number of HITs completed.

Table 3.2a indicates the numbers of individual human assessors who completed

HITs on AMT platform, those who passed quality control, as well as the overall

pass rate. The numbers of ratings before and after applying quality control are also

reported together with the corresponding pass rate. In order to tentatively verify

the quality control mechanism, we ran a preliminary adequacy experiment prior to
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final deployment of this entire experiment. This preliminary experiment consists of

HITs of a smaller size, where a HIT can randomly contains 30 to 80 items. The data

collected from it is also included when reporting the final results of the adequacy

experiment.

Table 3.2b shows the average completion time of passed, failed and all HITs in

minutes for Adequacy, including the first and second runs, and Fluency, along with

the number of HITs that a worker completed on average, showing that as expected

a passed HIT costs a worker more time than a failed one in all three experiments.

Meanwhile, passed workers usually take more than two HITs in the first run of our

Adequacy experiment despite our suggestion that each worker should complete only

a single HIT when experiments are deployed on the AMT platform.

Implement of Quality Control

Since we expect the “bad references” ratings to be lower than their ordinary coun-

terpart answer, a statistical test is applied for comparison between these two paired

groups of ratings. As we cannot directly assume that the ratings are normally dis-

tributed, the non-parametric Wilcoxon signed-rank test with lower-tailed alternative

hypothesis is then applied for the significant test between the ratings of “bad refer-

ences” and those of their according ordinary answers. Additionally, the significance

test will be tested on individuals rather than HITs because our propose is to discard

unqualified workers. Therefore, we extract a set, B, “bad references” ratings and a

set, O, of corresponding ordinary answer ratings (system produced ratings) from all

HITs a worker completed and subsequently apply the significance test to compare

B and O to test the reliability of a given worker. The test with p ≥ α indicates the

failure to reject the null hypothesis H0 that B and O has no significant difference.

Data from workers whose p ≥ α is thus filtered out as these workers do not conform

to our initial expectation. In this case, we use the conventional threshold of α = 0.05

for p-values.

Initially, we likewise plan to employ “reference answers” (gold standard) as our
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secondary approach, where the workers who have passed “bad reference” quality

control with average “reference answer” scores below the threshold will be further

filtered out. However, tentative results show that such a method has no effect on

rankings of systems since their scores barely change applying it. We accordingly

suggest that employing “bad reference” as the stand-alone quality control approach

is sufficient enough for this human evaluation, and this is also the approach in

MT (Graham, Baldwin, Moffat, et al., 2016; Ondřej Bojar, Chatterjee, Federmann,

Graham, Haddow, S. Huang, et al., 2017) and video captioning (Graham, Awad,

and Smeaton, 2018) evaluations.

Cost of the Experiment

The payment strategy in our experiment follows the original DA experiment which

is proposed for MT evaluation (Graham, Baldwin, Moffat, et al., 2016), where each

100-item HIT costs $0.99. In this MRC human evaluation experiment, a worker who

passed the quality control is paid $0.99 per completed HIT, and this entire experi-

ment costs no more than $200. It is notable that the expenditure of experiments for

further relevant research can decrease because we will investigate the validity of our

method via the results of self-replication experiment in Section 3.4.3. The second

run of the adequacy experiment is thus not essential in future applications. Addi-

tionally, since the fluency experiment acts as the secondary ranking method, it is also

not necessary for research which only focus on evaluating systems’ level of adequacy.

Assessing one system with about 850 valid ratings costs less than $12 according to

our first run. Therefore, the new human evaluation is highly cost-efficient.

We provide the following to failed workers when rejecting their work: Due to

the anonymous nature of crowd-sourcing, it is unfortunately necessary to include

quality checks within HITs. The data you submitted did not meet the minimum

required quality level for approval. Note that the rejection is automatically carried

out by the program script, and you can contact us if you think you work is improperly

rejected. For failed workers who contacted us, they may still get paid after manually
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Table 3.3: Human evaluation results for MRC systems in terms of average fluency
and adequacy scores, where n is the number of collected ratings, z is the standardized
mean scores and raw means averaged scores. Systems includes: Human = human
performance estimate, nn4nlp = Neural networks for NLP, Attention-guided AD
= attention-guided answer distillation. Rows above horizontal lines indicate the
systems significantly outperforming all systems in a lower ranking.

System
Adequacy Fluency

n z raw n z raw

Human 831 0.446 81.9 584 0.464 82.5
nn4nlp 842 0.092 66.8 634 0.063 67.6
Attention-guided AD 789 0.055 64.3 557 0.015 66.1
Commonsense 1 849 −0.015 62.1 520 0.057 68.0
Heuristic 892 −0.074 59.6 561 −0.002 65.1
Commonsense 2 851 −0.191 54.0 578 −0.050 63.6
Baseline A 885 −0.194 54.4 538 0.054 68.5
Baseline B 846 −0.199 54.7 588 −0.043 63.0

checking their work as long as no obvious attempt to game the work was found.

However, the data collected from such workers will not be used to compute the

human score even they got paid after contacting us.

3.4.2 Human Scores

After quality-controlling the workers, we can now compute the human evaluation

scores of each system in both Adequacy and Fluency. Since the second run of

Adequacy is special for testing reliability of the proposed method, we henceforth

use the result of the first run when reporting stand-alone Adequacy.

Table 3.3 shows results of the human evaluation in terms of fluency and ade-

quacy, where n denotes the number of collected ratings. If an ordinary answer has

a “repeat” version, the mean value of their ratings will be used as the final score

of that answer. Certainly, “bad references” and “reference answers” are excluded

for computing the human scores. The raw score of each evaluated system Table 3.3

is calculated by the arithmetic mean of all ratings of its ordinary answers, and the

systems in it are ranked by their standardized mean score z in Adequacy experiment

where the z score of a system can be computed by the following method:
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(a) Adequacy

Figure 3.5: The distribution of standardized human scores (z) of MRC systems in
the adequacy (first run) and fluency experiments.

1. For a worker w, we compute the mean µw and the standard deviation σw over

all ratings that were completed by w, including the ordinary answers and three

various quality-control versions;

2. For an ordinary answer a, its standardized score za is computed by za =

(ra − µw)/σw where ra is the rating of a in the continuous scale and w is the

worker who rated the answer a;

3. The final z score of a system can be then computed by z =
1

n

∑n

i=1
zai , where

n is the number of all rated ordinary answers belonging to that system and

zai is the standardized score of the i-th ordinary answer ai.
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(b) Fluency

Figure 3.5: The distribution of standardized human scores (z) of MRC systems in
the adequacy (first run) and fluency experiments.

We also apply Wilcoxon Rank-sum test on system z scores to indicate whether

one evaluated system can significantly outperform all systems in a lower-ranking

cluster, and such systems are depicted via a horizontal line below their row.

Besides the raw and z scores, we also provide the distribution of z scores of the

systems in both Adequacy and Fluency experiments, as shown in Figure 3.5. In

general, systems have very similar third quartiles, and the z scores in Adequacy is

more concentrated than Fluency. Additionally, although the distributions of sys-

tem z scores differs from each other, they are generally negatively skewed. For

both experiments, system Human has the most concentrated distributed z zscores,

meanwhile it has the largest amount of outliers.

3.4.3 System Consistency

To assess the reliability of this newly proposed approach, we carry out a self-

replication experiment where we deploy the adequacy experiment for two separate

runs consisting of distinct HITs. The HITs in both runs are randomly generated
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from the same pool of candidate items, and the workers in both runs are automat-

ically allocated by the AMT platform. Both runs share the same instructions and

user interfaces, while the second run is conducted after the first one is completed.

As indicated in Table 3.2, the two runs of adequacy have different numbers and

pass rates of collected ratings and involved workers, and we can think that run 1&2

as two independent runs. The system rankings from run1&2 show that the sec-

ond ranking correlates almost perfectly with the first run, with Pearson correlation

coefficient r = 0.986, revealing that this human evaluation method is capable of

providing reproducible results.

The rankings between each pair of systems, however, can be possibly a chance

occurrence for such an empirical evaluation, significance tests are therefore essential

to tell avoid drawing conclusions simply to chance. We therefore apply a one-sided

Wilcoxon rank-sum test on individual standardized ratings between each pair of

systems for the two separate runs of adequacy. Figure 3.6 shows the result of the

significance test, where the left and right heatmaps respectively indicate the data

collected from run 1 and run 2 and the order of systems is the same as Table 3.3.

Results draw the exact conclusions from the same distributions of colored cells with

only very minor differences in p-values between two runs at p < 0.1. We additionally

observe that the result with p < 0.05 will remain the same conclusion. Hence, we

can conclude that the result of this human evaluation is valid and reliable.

3.4.4 Automatic Metrics

Taking the human z scores from our experiment as the gold standard, we can now

investigate how accurate the commonly applied automatic metrics are by analysing

the level of correlation between metric scores and human z scores in our human

evaluation.
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Figure 3.6: Significance test results for systems in two distinct runs where a colored
cell means that the system in that row significantly outperformed the system in that
column (p < 0.1).

System Scores

First, we compute the scores of commonly applied automatic metrics as described

in Table 3.4. From left to right, these metrics are ordered by their correlation with

human z scores, where the ranking indicates that ROUGE-L performs best while

the performance of GLEU is the worst with respect to human opinions. For a more

straightforward comparison, we represent the rankings of systems by our human

evaluation scores and automatic metrics in Figure 3.7. It can be observed that,

Human remains the top one, and the rankings of all other systems can fluctuate

with applied metrics when the applied metric changes. Some systems are relatively

stable, for example, the ranking of Attention-guided AD will keep the third for most

metrics, and it only drops from the third to the forth when ROUGE-l is applied.

However, when it comes to other systems, their rankings can significantly fluctuate

according to the changes of metrics. For example, when the current evaluation

method changes from the human evaluation to BLEU-1, the ranking of nn4nlp

system will drop from the second to the seventh, while Baseline B can significantly
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Table 3.4: The system scores of different automatic metrics along with the z
scores,where the automatic metrics are ordered by their values of the correlation
with z scores from left to right.

System z ROUGE-L METEOR BLEU-4 BLEU-1 GLEU

Human 0.446 57.29 25.92 17.69 45.80 22.58
nn4nlp 0.092 45.90 17.29 5.13 17.08 7.05
Attention-guided AD 0.055 41.13 18.90 13.37 31.28 15.96
Commonsense 1 −0.015 45.75 19.45 13.79 36.57 17.19
Heuristic −0.074 34.56 12.23 1.75 6.76 2.67
Commonsense 2 −0.191 37.04 14.38 8.01 24.83 12.75
Baseline A −0.194 37.04 14.91 8.93 26.22 12.95
Baseline B −0.199 36.23 14.58 8.06 27.32 12.46

increase from the last one to the fourth.

Correlation Coefficients and Williams Test

To explore these metrics’ accuracy of measurement in terms of system performance,

we compute three correlation coefficients by comparing metrics scores for our systems

with our human evaluation results. Table 3.5 shows the Pearson, Spearman and

Kendall’s Tau correlations between the system z scores and according metric scores.

It shows that ROUGE-L correlates best with the human evaluation at p = 0.929

while GLEU performs poorly only reaching p = 0.514. Since all these metrics

are not initially designed for MRC, it is interesting that the performances of these

metrics can have such difference. Additionally, although GLEU performs worse

than BLEU-4&1 in terms of Pearson correlation, it correlates higher to human than

BLEU-4&1 according to the Spearman and Kendall’s Tau correlations. Since the

correlations are computed between scores of evaluation methods in the same data

set, we cannot simply assume these correlations are independent. The degree to

the correlation with each pair of automatic metrics should also be calculated, and

Williams test is thus utilized for the assessment of difference in such correlations

(Williams, 1959). The values marked with superscript ∗∗ in Table 3.5 depicts a

metric that can outperform metrics in the lower cluster at p < 0.01 according to

Williams test of differences in dependent correlations Graham and Baldwin, 2014.

We also compute Williams test between ROUGE-L and METEOR, and the result
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Figure 3.7: The ranking of MRC systems according to different evaluation methods
on the collected data from the first run of the adequacy experiment, where these
methods are ordered by their correlation with humans according to the results of
our experiment.

Table 3.5: Correlation of commonly applied automatic metrics with human evalua-
tion of the adequacy of answers; r = Pearson correlation; ρ denotes Spearman cor-
relation; τ denotes Kendall’s Tau correlation; metrics with Pearson correlation that
significantly outperforms BLEU-4&1 and GLEU at p < 0.01 according to Williams
test denoted by ∗∗

ROUGE-L METEOR BLEU-4 BLEU-1 GLEU

r 0.929∗∗ 0.896∗∗ 0.599 0.534 0.514
ρ 0.810 0.690 0.333 0.310 0.381
τ 0.643 0.429 0.214 0.143 0.286

p = 0.2 indicates that we cannot conclude ROUGE-L correlates significantly better

than METEOR with human, although ROUGE-L has a higher Pearson correlation

coefficient than METEOR.

The aforementioned analysis provides insight for answering the RQ 1 which we

proposed in Chapter 1. In terms of this task, RQ 1 can be described as follows:

• RQ 1: How accurately do existing automatic metrics measure the performance

of free-answering MRC systems?

Subsequently, RQ 1 can be answered as: according to the results of our human

evaluation experiments, prevailing automatic metrics generally have different degrees
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Figure 3.8: The relations between ROUGE-L scores and z scores at the sentence-
level.

of accuracy when evaluating the performance of free-answering MRC systems, since

ROUGE-L and METEOR can correlate well with human judgement, where other

metrics fail to achieve high correlation.

Sentence Scores

System scores for automatic metrics are reported by calculating the mean of their

sentence scores using different approaches to averaging depending on the metric. For

example, ROUGE-L, METEOR and BLEU score use the arithmetic mean, harmonic

mean and geometric mean, respectively. Our previous analysis shows that some

metrics like ROUGE-L and METEOR can have a considerably high correlation with

human evaluation according to the system score, and we want to further investigate

the relation between the sentence metric scores and sentences z scores.

Figure 3.8 and Figure 3.9 show two scatter plots with the trend lines that de-

scribe the joint distribution of the z scores and the corresponding metric score at

the sentence-level, where each point represents the z score (y-axis) and the metric
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Figure 3.9: The relations between GLEU scores and z scores at the sentence-level.

score (y-axis) of a sentence. Trend lines are drawn according to locally weighted

scatterplot smoothing (LOWESS) method to provide a clear depiction of the rela-

tionship between metric scores and z scores (Cleveland, 1979). Figure 3.8 is based

on ROUGE-L which correlates best with human evaluation, while Figure 3.9 is the

GLEU metric which has the lowest correlation with human evaluation.

We conjecture that the reason ROUGE-L correlates better than GLEU with

human opinion is that the trend line of ROUGE-L shows a closer relation to a linear

relation, indicating that ROUGE-L can better fit the human ratings compared with

GLEU. In addition, the overall distribution of both ROUGE-L and GLEU is not

concentrated linearly and there are still a large number of sentences scores diverging

from trend lines. However, ROUGE-L scores are relatively centrally distributed

while GLEU scores are mainly on the right bottom. Although the sentence scores

of ROUGE-L can contain a high level of random error, its relatively balanced joint

distribution likely helps to counteract the effects of positive errors (lower z scores

with higher metric scores) and negative errors (higher z scores with lower metric

scores) when the system scores are computed by the averaging of sentence scores.
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Question: To be object for subject is the same as what?
Reference: to be our representation or mental picture is the same thing
Answer: to be a mental picture or our representation

Scores
raw: 100 (z: 0.81)
ROUGE-L: 42.1; METEOR: 59.3

(a) An example where automatic metrics underestimate the generated answer according
to human judgement.

Question: How is Wesley killed?
Reference: he gets shot by sheriff ballard when distracted while watching an

episode of a reason to love
Answer: wesley is distracted by watching an ankle holster and commits a

reason to love

Scores
raw: 0 (z: −1.21)
ROUGE-L: 45.2; METEOR: 44.6

(b) An example where automatic metrics overestimate the generated answer according to
human judgement.

Figure 3.10: Examples of mismatched human scores and automatic metric scores
from the first run of our adequacy human evaluation experiment at the sentence-
level.

This is a potential cause that ROUGE-L can correlate highly with human judgement

at the system-level.

Figure 3.10 provides two examples where human judgements disagree with au-

tomatic metrics when evaluating the performance of MRC systems at the sentence-

level. Figure 3.10a shows an example where human workers think the system output

is perfect (raw score: 100) while ROUGE-L only rate it as 42.1. We find that human

workers can successfully figure out that the system output shares the same meaning

with the reference. However, metrics which rely on the word overlap fail to give a

high score. Figure 3.10b is an example where automatic metrics overestimate the

system output (ROUGE-L: 45.2) according to human judgements (raw score: 0).

The question asks how Wesley is killed, and the correct answer is expected to include

information such as get shot. We find that the system-generated answer contains

no such information, therefore human workers only rate it as low as 0. However,

the answer has a high rate of word overlap with the reference, which misleads the

automatic metrics to give a high score.
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We can thus answer RQ 2 regarding this task, which is described as follows:

• RQ 2 What are the limitations and disadvantages of the direct application of

evaluation metrics from MT and other domains to entirely distinct tasks for

system development in free-answering MRC?

Firstly, according to Figure 3.7, applying different metrics may inconsistently rank

the systems, resulting in a confusion of system ranking when applied metric changes.

In addition, although automatic metrics, such as ROUGE-L, can have a high correla-

tion with human judgement at the system-level, the scores produced by these metrics

are not always capable of reflecting the real quality when evaluating a single sen-

tence. A potential disadvantage of the application of these metrics in free-answering

MRC is that, a system with a high metric score at the system-level may perform

weakly in sentence-level evaluation. In other words, metrics, such as ROUGE-L and

METEOR in this case, are acceptable to employ as the approach of ranking systems,

but it is meanwhile non-negligible that, such metrics lack the ability of accurately

assessing individual system outputs.

3.4.5 Influence of α on Quality Control

As we described in Section 3.4.1, the ratings from workers whose p-value of Wilcoxon

signed-rank test equals or exceeds the threshold α are filtered out, where we empiri-

cally choose α = 0.05 as it is a frequently-used value. Nevertheless, 0.01 and 0.1 are

also typical values, so we apply various values of α to check how it can alter system

z scores.

Figure 3.11 represents z scores of systems when incremental values of α are

applied in the range of 0.01 and 0.1 for the two runs of Adequacy. Figure 3.11a

show that z scores only slightly fluctuate with the changes of α, while the ranking of

systems remains unchanged except the last three systems as it has been described

in Figure 3.6 that these three systems show no significant difference. We can draw

a similar conclusion from Figure 3.11b, but the ranking of Attention-guided AD
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(a) Run 1

Figure 3.11: The changes of system z scores when the threshold α applied for the
quality-control method ranges from 0.01 to 0.1.

and nn4nlp will change when α reaches 0.075 as no significant difference is found

between them.

Since the scores barely change with α, we can conclude that the quality control

mechanism in our human evaluation method is robust to the values of threshold

α as long as it is within a reasonable range. Compared with the other two typical

values, the correlation between run1&2 on α = 0.05 can reach r = 0.986, while r will

slightly drop to 0.950 and 0.976 if α = 0.01 and α = 0.1 are applied, respectively.

Hence, we think the empirical employment of α = 0.05 for quality controlling the

workers in this experiment is valid and acceptable.
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Figure 3.11: The changes of system z scores when the threshold α applied for the
quality-control method ranges from 0.01 to 0.1.

3.4.6 Word Lengths of References

As it has been observed in Section 3.3 that the references in the data set have an

imbalanced distribution of word lengths, we want to investigate whether the number

of words in references can have an influence on the final system z scores. In detail,

the following mechanism is utilized: the ratings to system-generated answer whose

corresponding references have more than n words will be filtered out and a new z

score is then computed on the remaining ratings. The applied mechanism can ensure

that the sample size is still sufficient. With a range of n ( 1 ≤ n ≤ 20 in this case),

we are able to examine the impact of word lengths on our human evaluation.

Figure 3.12 compares z scores of the eight systems when answering questions

with references having no more than n words. Results show that, in general, most

systems performs best on n = 2, while perhaps unsurprisingly the z score of systems

will encounter a decline with the increase of n. In general, it seems that, the increase

of word lengths of references will cause decreasing system z scores. We think this
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Figure 3.12: The system z scores change with the maximal number (n) of words
that ground-truth references have.

is likely to relate to the search space of the decoder, which are employed in neural

generative MRC systems in our experiment for the generation of answers in the form

of natural language. Decoding is nromally identified as a search problem (Zarrieß,

Voigt, and Schüz, 2021), where the length of references indicate the search space

for the decoder to generate the answer. Generally speaking, the more words an

answer has, the larger the search space, resulting in the model being more prone to

producing an answer containing errors.
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3.4.7 Human Assessor Consistency

A human evaluation method is commonly deemed to be empirical and such a method

generally requires to report its rater agreement as a measure of the reliability of the

ranking (Ondrej Bojar, Buck, et al., 2014). We therefore examine the consistency

of individual assessors for the newly proposed human evaluation method. In doing

this, we expect assessor consistency from passed workers to surpass that from failed

workers to demonstrate that our strict quality control mechanism has a positive

impact on our evaluation method. We will calculate the individual assessor con-

sistency in two aspects: intra-annotator agreement and inter-annotator agreement,

where the former is reported as Cohen’s kappa coefficient (Cohen, 1960) and the

later is reported as correlation coefficients.

Intra-annotator Agreement

Cohen’s kappa coefficient (κ) is the conventional means of measuring the agreement

among annotators in previous WMT shared tasks (Callison-Burch, Koehn, Monz,

Post, et al., 2012; Ondřej Bojar, Chatterjee, Federmann, Graham, Haddow, Huck,

et al., 2016). Since κ is only appropriate for the interval-level scale, we first need to

convert a raw score into several categories (called n-cat) by the formula cat(r, n) =

min(⌊r × n

100
+ 1⌋, n), where r is the original value of a raw score which ranges from

0-100 and n is the target number of categories. Cohen’s kappa κ is initially proposed

for the intra-annotator agreement of one rater, the direct application of κ is however

unsuitable for this experiment since a large number of assessors are involved and each

assessor rates different items. Instead, we compute the degree of agreement between

the repeat answers and the paired ordinaries regardless of their actual raters, and

the computed κ can act as the intra-annotator agreement.

For the computation of κ, we first need to generate a confusion matrix using the

converted n-cat scores from repeats and ordinaries, as shown in Table 3.6. Each

cell aij in the table indicates the number of pairs of the repeat answer and its

ordinary answer whose n-cat scores are respectively i and j. In addition, sk and
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Table 3.6: The n-cat confusion matrix for paired repeats and ordinaries.

Repeat (i)
1 2 ... n

1 a11 a21 ... an1 s1
Ordinary 2 a12 a22 ... an2 s2

(j) ... ... ... ... ... ...
n a1n a2n ... ann sn

t1 t2 ... tn

Table 3.7: Cohen’s kappa which indicates the agreement of passed and failed raters
on n categories (n ∈ {2, 4, 5, 10}).

n Passed Failed
category po pe κ po pe κ

10 0.686 0.278 0.565 0.559 0.188 0.456
5 0.775 0.349 0.654 0.665 0.275 0.539
4 0.832 0.393 0.723 0.673 0.316 0.521
2 0.897 0.520 0.786 0.822 0.545 0.609

tk represent the sum of the according row and column, where sk =
∑n

i=1
aik and

tk =
∑n

j=1
akj (k ∈ 1, 2, . . . , n). According to the result of the confusion matrix,

we can use Formula 3.1 to compute the value of κ as follows:

κ =
po − pe
1 − pe

po =
1

N

n∑
k=1

akk

pe =
1

N2

n∑
k=1

(
sk × tk

)
(3.1)

where N is the sum of all cells from Table 3.6 ( N =
∑n

i=1

∑n

j=1
aij), po is the

probability of observed agreement and pe is the probability of random agreement.

Table 3.7 shows results for po, pe and κ in terms of rater agreement of workers

who passed or failed quality control, where n is the number of categories, po denotes

the proportion of ratings that the repeats agree with its ordinaries, pe denotes the

probability of scoring the repeat and ordinary answers in a random manner, and κ is

the intra-annotator agreement. We observe that κ of passed raters can get a rather
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Figure 3.13: The distribution of the Pearson, Spearman and Kendall’s τ correlations
between the ratings of repeat answers and those of paired ordinaries on individual
raters who passed (blue) and failed (orange) the quality control method.

high increase (at least 0.109) compared to failed workers for every kind of n-cat,

especially a significant promotion (0.202) of κ is available on 4-cat. In accordance

with the typical interpretation (Landis and Koch, 1977), we find that, for both 4-cat

and 5-cat, the level of intra-annotator agreement increases from moderate (0.4-0.6)

to substantial (0.6-0.8) when raters changes from the failed to the passed.

As a result, we believe the applied quality control method is capable of improving

the reliability according to the intra-annotator agreement.

Inter-annotator Agreement

Although we can use Cohen’s kappa κ to represent the intra-annotator agreement, it

is inappropriate for assessing the degree of agreement between raters as we mentioned
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previously. Besides, κ has other considerable limitations. First, the continuous

ratings have to be converted into the form of interval scales before the computation.

Meanwhile, the values of converted n-cat ratings are treated independently and their

ordinal nature is somehow neglected. For example, 4 should be expected to correlate

higher with 5 than 1. Hence, we decide to use correlation coefficients rather than

κ. However, we cannot simply use one single numerical value like κ to estimate the

overall level of agreement when using correlation coefficients, because they are not

additive (Alexander, 1990). In other words, it is inconsequential to represent the

rater agreement by computing the average over a set of correlations. Instead, we

use the distribution of correlations to represent the trend and compare between the

results from both passed and failed workers.

As shown in Figure 3.13, we calculate three types of correlations between repeats

and ordinaries for each worker, including Pearson, Spearman and Kendall’s τ , where

the blue and orange boxplots represent the results of workers who passed and failed

the quality control, respectively. We observe that the correlations of passed workers

are significantly higher than failed workers with a more concentrated distribution

for all types of correlations. For the Pearson (Fig 3.13a) and Spearman correlation

(Fig 3.13b), the correlations of passed workers are usually between 0.8 and 1.0 and

those of passed workers can range from 0.0 to 1.0, showing that passed workers are

highly self-consistent while failed workers are more likely to be randomly guessing.

For the Kendall’s τ correlation (Fig 3.13c), passed workers mildly drops to the range

of 0.6-0.9 while failed workers become slightly more concentrated. No matter what

type of correlation is applied however, we can draw the same conclusion: the inter-

annotator agreement of workers who passed the quality control is incontrovertibly

higher than workers who failed.
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3.5 Summary

In this chapter, we present a new human evaluation method adapted from DA

to evaluate free-answering MRC task. A MRC can be evaluated on two aspects:

adequacy and fluency, and the method is robust as two distinct runs of adequacy

experiments shows a extremely high correlation.

We introduced the detailed approaches for quality controlling workers, the dataset

and systems participating in this search. The structure of a HIT and the sample

size are also introduced to provide a clear means for other researchers to reproduce

or modify our approach.

After the experiments are completed on AMT platform, we then compute the

number and pass rate of individuals and ratings and report the raw and z scores

of different systems on our evaluation method. In addition, we compared the re-

sults of commonly applied automatic metrics with z scores in the level of systems

and sentences. The correlation between system scores shows that ROUGE-L and

METEOR have a higher degree of accuracy than BLEU and GLEU in the matter

of ranking systems. Meanwhile the relations between sentence metric scores and z

scores indicate that these automatic metrics lack the ability of authentically evaluat-

ing a single sentence although a metric may correlate highly with human judgements

when ranking systems. Besides, we provide statistical analyses on the collected data

in various aspects, including the influence of α on the quality control and the word

lengths of references to investigate the rationality of our experiment.

In conclusion, we propose a crowd-sourcing human evaluation method which is

cost-effective and highly efficient, and show its reliability and validity. In consider-

ation of the RQ 3 in terms of MRC which is decribed as follows:

• RQ 3: Can more appropriate new methods of evaluation be designed that are

feasible given the limited time and resources available in operational settings?

it can likewise be answered that a more appropriate new human evaluation method

is available for the free-answering MRC task.
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Chapter 4

Evaluations on Question

Generation

In this chapter, we will focus on solving the existing issues involving in the question

generation task, since its evaluation, including automatic metrics and human evalua-

tion, suffer from several known issues yet. As described in Chapter 1 and Chapter 2,

applied automatic metrics generally fail to take into account the one-to-many nature

of QG. Meanwhile, the human evaluation of QG still lack a standard approach. In

this chaper therefore, we propose a new crowd-sourcing human evaluation method

for QG, and deploy the corresponding experiments. We additionally report the

results of our experiments and provide related analysis. Furthermore, we propose

an unsupervised reference-free evaluation metric that can automatically evaluate a

QG system using a pretrained language model. According to our proposed human

evaluation method and automatic metric, we subsequently answer RQs which we

proposed in Section 1.1, in terms of the QG task.

In detail, the essential methodology of the crowd-sourcing human evaluation

method we designed for the QG task will be introduced In Section 4.1. The experi-

ment for the verification of the method is also introduced with its detailed settings,

including the design of interface shown to human raters, mechanisms for guaran-

teeing the quality of evaluation. Section 4.2 introduces the constitution of the as-
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signment for each human rater in our human evaluation experiment, as well as the

detailed implement of the quality control technique. Section 4.3 presents the Hot-

potQA dataset which is employed in this research, as well as the 11 involved QG

systems. Section 4.1 is generally about the experimental results and analysis, such

as statistic data of the experiments, human evaluation scores based on collected

data, and corresponding significance test. In addition, Section 4.5 introduces the

details of a newly proposed automatic evaluation metric that can evaluate system-

generated outputs without any reference. Its performance is reported as well, by

computing the correlation between its scores at the system-level and the results of

our human evaluation experiment. We further answer RQs regarding the QG task

in Section 4.1 and 4.5. Finally, Section 4.6 concludes this chapter.

4.1 Experiment Design

In this section, the essential methodology of the crowd-sourcing human evaluation

method we proposed for the QG task will be introduced. The experiment for the

verification of the method is also introduced with its detailed settings, including the

design of interface shown to human raters, mechanisms for guaranteeing the quality

of evaluation, and the evaluation criteria.

4.1.1 Methodology

QG receives a context with a sentence as the input and generates a textual sequence

as the output, with automatic metrics reporting the computation of word/n-gram

overlap between the generated sequence and the reference question. However, hu-

man evaluation can vary. When evaluating MRC systems via crowd-sourced human

evaluation, raters are asked to judge system-generated answers with reference to

gold standard answers because a correct answer to the given question should be, to

some degree, similar to the reference answer (Ji, Graham, and Jones, 2020).

Whereas, simply applying the same evaluation is not ideal since evaluating a QG
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1. Each time you will see a question together with a passage, and your task is
to rate the questions after reading the given passage.

2. Each HIT contains one certain passage with 20 various questions to rate.
3. The highlighted content in the passage is expected to be the answer to the

presented question.
A passage with no highlighted content means the question should be a “yes-
or-no” question.

4. Chrome is preferred, other browsers may cause some errors.
5. There is a feedback box at the end of the HIT. If you encounter any problems,

please enter them in this box or email our MTurk account.

Figure 4.1: The full instruction shown to a human worker that the worker should
read and then click the “I understand” button before starting the current HIT.

system is more challenging due to its one-to-many nature as described in Section

1, namely a QG system is capable of producing a question that is appropriate but

distinct from the reference. Such evaluation may unfairly underestimate the quality

of a generated question because of its inconformity with the reference. To avoid

this situation in our experiment, we ask a human rater to directly judge the quality

of a system-generated question only according to the passage and answer present,

instead of providing a reference question.

Experiment Interface

Since our crowd-sourced evaluation method can involve workers who have no specific

knowledge of the related field, a minimal level of guidance is necessary to concisely

introduce the evaluation task. Prior to each HIT, a list of instructions followed by

button labelled I understand is provided, with the human rater beginning a HIT by

clicking the button. The full list of instructions is described in Figure 4.1. In terms

of the fourth instruction, we present the HTML element “range control” embedded

with hash marks, but not all browsers can fully support this feature. For example,

this feature is completely unsupported by Firefox. Hence, Chrome is recommended

for ensuring the stability of our experiment.

Within each HIT, a human assessor is required to read a passage and a system-

generated question with the input (correct) answer, then rate the quality of the
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Passage: The Battle of Saint-Mihiel was a major World War I battle fought
from 12–15 September 1918 , involving the American Expeditionary
Force (AEF) and 110,000 French troops under the command of Gen-
eral John J. Pershing of the United States against German positions
. The U.S. Army Air Service ( which later became the U.S. Air Force
) played a significant role in this action . General of the Armies John
Joseph “Black Jack” Pershing ( September 13 , 1860 – July 15 , 1948
) was a senior United States Army officer . His most famous post
was when he served as the commander of the American Expe-
ditionary Force (AEF) on the Western Front in World War I

, 1917–18.

Question: What was the most famous post of the man who commanded Amer-
ican and French troops against German positions during the Battle
of Saint-Mihiel ?

Figure 4.2: The interface shown to human workers, including a passage with high-
lighted contents and a system-generated question. The worker is then asked to rate
the question.

question according to the given passage and the answer. Since the answer is a sub-

sequence of the passage, we directly emphasize the answer within the passage. Figure

4.2 provides an example of the interface employed in experiments, where a worker

is shown a passage whose highlighted contents are expected to be the answer to the

generated question. Meanwhile, workers may see a passage without any highlighted

content since a fraction of the answers are simply “yes-or-no”.

Evaluation Criteria

Human raters assess the system output question in regards to a range of different

aspects, as opposed to directly providing a single overall score. Figure 4.3 provides

an example rating criterion, where a human rater is shown a Likert statement and

asked to indicate the level of agreement with it through a range slider from strongly

disagree (left) to strongly agree (right).

The full list of evaluation criteria we employed in this experiment is available in

Table 4.1, where the labels are in reality not shown to the workers during the eval-

uation. As an empirical evaluation method, these criteria are those most commonly

employed in current research (see Section 2.2.1) but can be substituted for distinct
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Figure 4.3: The example of a Likert statement of an evaluation criterion shown to
a human worker.

Table 4.1: The rating criteria of assessing the quality of a system-generated question,
where only the Likert statements are available for human workers and the labels are
not shown in the experiment.

Label Likert statement
Understandability The question is easy to understand.
Relevancy The question is highly relevant to the content of the pas-

sage.
Answerability The question can be fully answered by the passage
Appropriateness The question word (where, when, how, etc.) is fully ap-

propriate.

criteria if necessary. Since our contribution focuses on proposing a human evaluation

approach that can act as a standard or a framework for judging QG systems, rather

than proposing a fixed combination of evaluation criteria, the criteria we employed

are neither immutable nor hard-coded. And we encourage adjusting, extending and

pruning them if necessary. Additionally, the rating criterion “answerability” in Ta-

ble 4.1 should not be confused with the automatic metric Answerability, while the

former in our experiment will be called Q-BLEU (see Section 2.2.1).

4.2 Quality Control

Similar to human evaluation experiments in other tasks, such as MT (Graham,

Baldwin, Moffat, et al., 2016) and MRC (Chapter 3), quality-controlling the crowd-

sourced workers is likewise necessary for the QG evaluation. Since no ground-truth

reference will be provided for the comparison with system-generated questions, the

quality control methods involve no “reference question”. Two methods - bad refer-

ence and repeat - are employed the means of quality-controlling the crowd to filter

out incompetent results.

The methods of quality controlling the crowd are:
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• Bad Reference: a set of system-generated questions are randomly selected,

and their degraded versions are automatically generated to make a set of “bad

references”. The degradation mechanism is broadly similar to MRC evaluation

(see Section 3.2), while the replacement samples are extracted from the entire

set passages rather than all the references. Note that the initial and final words

are not included for questions with more than two words, and the passage

regarding the current question is also excluded.

• Repeat: a set of system-generated questions are randomly selected, and they

are copied to make a set of “repeats”.

In order to implement quality control, we will apply a significance test between

the paired bad references and their associate ordinary questions on all rating types.

In this case, a non-parametric paired significance test, Wilcoxon signed-rank test,

is utilized as we cannot assume the scores are normally distributed. We use two set

Q = {q1, q2, . . . } and B = {b1, b2, . . . } to represent the ratings of ordinary questions

and bad references, where qi and bi respectively represent the scores of n rating

criteria for an ordinary question and its related bad reference. For this experiment,

we have 4 rating criteria as described in Table 4.1. We then compare the p-value

produced by the significant test between Q and B with a selected threshold α to

test whether the scores of ordinary questions are significantly higher than those of

bad references. We apply the significance test on each worker, and the HITs from a

worker with resulting p < α are kept. We choose α = 0.05 as our threshold as it is

demonstrated to be appropriate in Section 3.4.5.

Structure of HIT

The questions to be evaluated as well as their passages and answers are generated

on the HotpotQA test set by 11 various systems, including one system called “Hu-

man” that can simulate the human performance, and 10 neural-network-based QG

systems, the details of which will be introduced in Section 4.3.
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The passage with highlighted contents

ORD x 1

ORD x 2 ORD x 5 ORD x 3

One ordinary question from the Human system

10 ordinary questions from systems to be evaluated

REPEAT x 2 BADREF x 5

REPEAT x 1 BADREF x 1

Figure 4.4: The structure of a single HIT in the QG evaluation experiment, where a
HIT contains a certain passage, 11 system-generated questions and 9 variant ques-
tions for the purpose of controlling the quality. Meanwhile, ORD, REPEAT and
BADREF respectively represent ordinary, repeat and bad reference questions.

For other tasks involving crowd-sourced human evaluation, a single HIT is made

up of 100 items to rate (see Section 3.2.2). However, HITs with similar size are

inappropriate in this case as a passage containing several sentences should be pro-

vided for workers, and a 100-item HIT means a highly oversized workload for an

individual. The reading quantity in a single HIT is one of concern as our prelimi-

nary experiment shows that a HIT with too many contents to read can significantly

decrease the workers’ efficiency. Instead, we organize the structure of HITs in the

QG evaluation experiment as follows:

• 1 original question, 1 repeat and 1 bad reference from the Human system

(comprising a total of 3 questions);

• 2 original questions and their repeats from 2 of the 10 neural QG systems
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(comprising a total of 4 questions);

• 5 original questions and their bad references from other 5 of the 10 normal

systems (comprising a total of 10 questions);

• 3 original questions from the rest 3 of the 10 normal systems (comprising a

total of 3 questions).

where all these questions in one HIT share the identical passage and the correct

answer. In other words, each HIT in the QG evaluation experiment consists of

20 items to rate, including: (i) 11 ordinary system-generated questions; (ii) 6 bad

reference question corresponding to 6 of these 11; (iii) 3 exact repeats correspond-

ing to 3 of these 11. Figure 4.4 provides the detailed structure of a HIT, where

ORD=ordinary question, REPEAT=repeat question and BADREF=bad reference

question. Although the hierarchical structure in Figure 4.4 organizes the 20 items

in a certain order, they will be fully shuffled before the deployment.

4.3 Dataset and Systems

We conduct the experiment on the HotpotQA dataset (Z. Yang et al., 2018), ini-

tially proposed for the multi-hop question answering task (see https://hotpotqa.

github.io/). The term, multi-hop, means that a machine should have the abil-

ity to answer given questions by extracting useful information from several related

passages. The documents in the dataset are extracted from Wikipedia articles, and

the questions and answers are created by crowd workers. A worker is asked to pro-

vide the questions whose answers requires reasoning over all given documents. Each

question in the dataset is associated with one correct answer and multiple passages,

where the answer is either a sub-sequence from the passage or simply yes-or-no.

These multiple passages are treated as a simple passage to show to human raters

during the experiment. Note that the original HotpotQA test set provides no answer

for each question, and such a set is inappropriate for the QG task as an answer is
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necessary for a QG system to generate a question. Instead, a common practice is to

randomly sample a fraction from the training set as the validation set, and the orig-

inal validation set can act as the test set when training or evaluating a QG system

based on a QA dataset. The test set we used to grab system-generated outputs for

the QG evaluation is in fact the validation set.

Besides, HotpotQA dataset provides two forms of passages: full passages and

supporting facts. For each question, its full passages, on the average, consist of 41

sentences while the average number of sentences in its supporting facts is eight. Since

the reading quantity is one of our concerns, we use the sentences from supporting

facts to constitute the passage to prevent workers from reading too many sentences

per assignment. And this is also the reason we choose HotpotQA, as such supporting

facts are not always available in other datasets.

4.3.1 QG Systems for Evaluation

To analyze the performance of our proposed human evaluation method, 11 systems

will be evaluated, including 10 systems that are trained on the HotpotQA dataset

and the Human system that can represent the performance of humans on generating

questions. The Human system is directly made up of the questions extracted from

the HotpotQA testset. The 10 trained systems are from the following neural network

models:

• T5 (small & base): a model using a text-to-text transfer transformer (T5)

that is pre-trained on a large text corpus (Raffel et al., 2020).

• BART (base & large): a denoising autoencoder using a standard sequence-

to-sequence Transformer architecture (M. Lewis et al., 2020).

• Att-GGNN: an attention-based gated graph neural network (Pan et al.,

2020).

• Att-GGNN (plus): the Att-GGNN model combined with the context switch

mechanism (Ji, Lyu, et al., 2021).
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• H-Seq2seq: a hierarchical encoding-decoding QG model (Ji, Lyu, et al.,

2021).

• H-Seq2seq∗: the H-Seq2seq model using a larger dictionary for the avoidance

of generating the unknown token ⟨UNK⟩.

• GPT-2: A large transformer-based language model whose parameter size

reaches 1.5B (Radford et al., 2019).

• RNN: a vanilla RNN-based seq2seq model.

These systems then generate questions on the HotpotQA testset, and each system

is guaranteed to have at least one question to be evaluated within each HIT.

4.4 Experiment Results

In this section, we design an experiment to investigate of our proposed human eval-

uation method on the AMT platform, and we report the details of experiments. We

also report the human score of QG systems at the system-level based on the collected

data, and apply significance tests on each pair of QG systems. We also compute

the scores of alternative automatic metrics and investigate their performances via

correlation with human judgements according to the results of human evaluation

experiment.

4.4.1 HITs and Workers

Two runs of experiments are deployed on the AMT platform, where the second

run is designed to serve as a self-replication experiment to ensure the reliability of

experimental findings. We then compute the correlation between the human scores

of two runs at the system-level to examine the consistency of our method, which

will be introduced in Section 4.4.3. The HITs in the two experimental runs are

randomly sampled from a HIT pool, which is generated as the outputs from the
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Table 4.2: Statistical information of the collected experiment data.

(a) The numbers of both workers and HITs before and after the quality-controlling mech-
anism as well as their pass rates for two runs.

Experiment
Worker HIT

Passed Total Pass rate Passed Total Pass rate

Run1 123 356 34.55% 334 786 42.49%
Run2 105 283 37.10% 282 598 47.16%

(b) The average elapsed time per HIT needed to be completed in minutes, and the average
number of HITs that a worker is assigned.

Experiment

Elapsed time Assigned HIT
(per HIT in minutes) (per worker)

Passed Failed Total Passed Failed Total

Run1 33.24 26.93 29.61 2.72 1.94 2.21
Run2 38.68 25.79 31.87 2.69 1.78 2.11

aforementioned QG systems. Table 4.2 provides statistical information with regard

to the data of workers and HITs collected from our human evaluation experiments.

Table 4.2a shows the numbers of human raters who participate in the QG eval-

uation experiment on the AMT platform, who passed the quality control and their

pass rate for two distinct runs. The quality control method is as described in Section

4.2. The number of HITs before and after quality control, as well as the pass rate

are also reported. For the first run, we collected 334 passed HITs resulting in a

total of 18, 704 valid ratings. Specifically, a non-human system on average received

1, 603 ratings and the human system received 2, 672 ratings, which is a sufficient

sample size since it exceeds the minimum acceptable number (approximately 385)

according to the related research of statistical power in MT (Graham, Haddow, and

Koehn, 2020).

Table 4.2b shows the average duration of a HIT and how many HITs a worker

takes on the average according to the influence of the quality control method for

both runs. Human raters whose HITs pass the quality control threshold usually

spend a longer time completing a HIT than raters of failed HITs.
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Cost of the Experiment

Similar to previous crowd-sourcing human experiments on the AMT platform, such

as MT (Graham, Baldwin, Moffat, et al., 2016) and our MRC evaluation in Chapter

3, a worker who passed the quality control was paid 0.99 USD per completed HIT.

This entire experiment cost less than 700 USD in total. For research using our

proposed evaluation method in the future, the total cost should be approximately

half of this since we ran the experiment an additional time to investigate reliability,

which generally is not required. The resulting correlation between the system scores

of the two separate data collection runs was r = 0.955, sufficient to ensure reliability

of results. Failed workers were often still paid for their time, where they could claim

to have made an honest attempt at the HIT. Only obvious attempts to game the

HITs are rejected. In general, according to the cost of our first data collection run,

assessing a QG system with nearly 1, 600 valid ratings in fact costed about 30 USD

(total cost 334 USD ÷ 11 models ≈ 30.4 USD). However, the experimental cost in

future research may vary, depending on the sample size of collected data.

4.4.2 Human Scores

Human raters may have different scoring strategies, for example, some strict raters

tend to give a lower score to the same question compared with other raters. There-

fore, we use the average standardized (z) scores instead of the original score, in

order to iron out differences resulting from different strategies. Equation 4.1 is the

computation of the average standardized scores for each evaluation criterion and the

overall score of a QG system:

zcq =
rwq − µw

σw

zc =
1

|Q|
∑
q∈Q

zcq

z =
1

|C|
∑
c∈C

zc

(4.1)
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Table 4.3: Human evaluation standardized z scores of overall and all rating criteria
in the first run, where a bold value indicates the system receives the highest score
among systems except the Human system, and N indicates the number of evaluated
questions of a system; systems (described in Section 4.3) are sorted by the overall
score.

System N O
ve

ra
ll

U
nd

er
st

an
da

bi
lit

y

R
el
ev

an
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A
ns

w
er

ab
ili

ty

A
pp

ro
pr

ia
te

ne
ss

Human 668 0.322 0.164 0.262 0.435 0.429
BARTlarge 400 0.308 0.155 0.255 0.420 0.403
BARTbase 401 0.290 0.135 0.234 0.430 0.360
T5base 395 0.226 0.051 0.241 0.395 0.217
RNN 395 0.147 −0.050 0.128 0.222 0.289
Seq2Seq 404 0.120 −0.030 0.022 0.180 0.309
T5small 405 0.117 −0.108 0.106 0.260 0.210
Baselineplus 408 0.076 −0.133 0.076 0.196 0.165
Seq2Seq∗ 396 0.053 −0.055 −0.039 0.088 0.217
Baseline 396 −0.008 −0.186 −0.032 0.155 0.032
GPT-2 408 −0.052 −0.202 −0.126 0.050 0.068

where the standardized score zcq on the criterion c of a system-generated question

q is computed by its raw score rcq and the mean µw and the standard deviation σw

of its rater w, zc is the system-level standardized score on the criterion c of a QG

system, Q is the set consisting of all rated questions (q) belonging to the QG system,

and the overall average standardized scores z is computed by averaging the zc of all

criteria (C).

Table 4.3 shows the standardized human scores of all systems based on the ratings

from all passed workers in the first run as well as the sample size N , where overall is

the arithmetic mean of the scores of understandability, relevancy, answerability and

appropriateness. A highlighted value indicates the system in the row outperforms

every other system excluding the human Human question for that rating criterion.

For the calculation of standardized z scores, the scores of bad references are not in-

cluded, and for repeat questions the mean score of both evaluations for that question

are combined into the final score.
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As described in Table 4.3, the Human system receives the best z scores among

all evaluation aspects, which is as expected since it consists of human-generated

questions. For all QG systems excluding Human, BARTlarge outperforms all other

systems overall, and individually for understandability, relevancy and appropriate-

ness. We also find that BARTbase somehow performs better than BARTlarge at the

answerability criterion. This is interesting as the performance of a model should

generally increase if it is trained on a larger corpus. We think this implies that

training models on a larger scale may potentially reduce the ability to generate high

quality questions in terms of some aspects, namely answerability in this case. This

is probably because a larger corpus may contain more noise which can negatively

influence some aspects of a model, and it is worth investigating in future work.

4.4.3 System Consistency

To assess the reliability of the proposed human evaluation method, two distinct

runs of the experiment are deployed with different human raters and HITs on the

AMT platform. We think a robust evaluation method should be able to have a high

correlation between the results of two independent experiment runs. Following a

similar setting in the MRC self-replication experiment, the HITs in the two runs of

the QG experiment are randomly generated from the same pool of candidate items

as well, and both runs share the same instructions and user interfaces. We also

conduct the second run after the first is completed, and workers in both runs are

automatically allocated.

Table 4.4 shows the human evaluation results on the second run of our experi-

ment, where the systems follows the order in the first run. We additionally compute

the correlation coefficients between the standardized z scores of both runs as shown

in Table 4.5, where r, ρ and τ represent Pearson, Spearman and Kendall’s tau corre-

lation, respectively. We observe that the overall scores of two distinct experimental

runs can reach r = 0.955, while Person correlation of other evaluation criteria ranges

from 0.865 (Relevancy) to 0.957 (Answerability). We believe such correlation values
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Table 4.4: Human evaluation standardized z scores of overall and all rating criteria in
the second run, where these systems follows the order in Table 4.3, and N indicates
the number of evaluated questions of a system.

System N O
ve

ra
ll
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nd

er
st

an
da

bi
lit

y

R
el
ev

an
cy

A
ns

w
er

ab
ili

ty

A
pp

ro
pr

ia
te

ne
ss

Human 564 0.316 0.188 0.279 0.386 0.410
BARTlarge 342 0.299 0.180 0.277 0.380 0.359
BARTbase 338 0.306 0.181 0.299 0.397 0.347
T5base 329 0.294 0.158 0.298 0.396 0.326
RNN 342 0.060 −0.040 −0.008 0.072 0.217
Seq2Seq 332 0.086 −0.053 0.064 0.115 0.217
T5small 340 0.157 −0.012 0.166 0.248 0.224
Baselineplus 341 0.069 −0.094 0.081 0.134 0.157
Seq2Seq∗ 348 0.083 −0.014 0.077 0.104 0.163
Baseline 329 −0.025 −0.200 −0.023 0.042 0.083
GPT-2 343 −0.047 −0.122 0.000 −0.036 −0.031

Table 4.5: The Pearson (r), Spearman (ρ) and Kendall’s tau (τ) correlations between
the standardized z scores of two runs of the experiment, including overall and four
evaluation criteria.

Overall Understandability Relevancy Answerability Appropriateness

r 0.955 0.953 0.865 0.957 0.884
ρ 0.882 0.891 0.718 0.882 0.845
τ 0.745 0.709 0.527 0.745 0.709

are high enough to ensure the robustness of our proposed human evaluation method.

4.4.4 Significance Tests

We apply the Wilcoxon rank-sum test to each pair of systems based on their human

evaluation z scores of overall. The pairwise results between systems for first and

second runs are shown in Figures 4.5a and Figures 4.5a respectively , where systems

are sorted by the overall z scores and a coloured cell indicates the system in the

row can significantly outperform the system in the column at p < 0.1. We observe

that the heatmaps for two runs overlap at a very high proportion (≈ 84%), which

further indicates the reliability of the proposed method. Furthermore, overlap can
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Figure 4.5: The results of significance test on the Overall z scores for QG systems
in the first and second run, where the systems follows the orders in Table 4.3.

still reach 80% at p < 0.05. In addition, an interesting observation is that both

runs indicates that the Human system, which represents the human performances

on the QG task, cannot significantly outperform BARTlarge and BARTbase. This

could be interpreted as a statistical tie with human performance for the task for

BART within the context of this evaluation setting.

Figure 4.6 provides the results of significance tests on the four individual evalu-

ation criteria: Understandability (Fig. 4.6a), Relevancy (Fig. 4.6b), Answerability

(Fig. 4.6c) and Appropriateness (Fig. 4.6d).

4.4.5 Human Assessor Consistency

We report the distribution of three types of correlation coefficients as the inter-

annotator agreement in the first run of our experiment from both passed and failed

workers. Figure 4.7 is the distributions of correlations, including Pearson (r), Spear-

man (ρ) and Kendall (τ), computed on the ratings of each pair of an ordinary ques-

tion and its repeat, where the results of workers who passed and failed the quality

control methods are respectively marked as blue and orange. As shown in Figure

4.7a, the Pearson correlations of passed workers tend to lie in 0.7–1.0 while those

of failed workers are mostly located around 0.4. Figure 4.7b and Figure 4.7c re-
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Figure 4.6: Significant test on scores in four rating criteria, where the QG systems
follows the orders in Table 4.3.

port the results of the Spearman and Kendall correlations on both types of workers

which show a similar tendency with Pearson. Generally speaking, passed workers,

according to the distributions of all three types of correlation, have a higher level of

rater agreement than failed workers, and our quality control method is capable of

filtering out low-quality workers.

4.4.6 Automatic Metrics

In Section 2.2, we introduced automatic metrics which are commonly applied for the

QG evaluation. In this section, we investigate the accuracy of these metrics when
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Figure 4.7: The distribution of the Pearson (r), Spearman (ρ) and Kendall’s tau
(τ) correlations between the ratings of pairs of repeat and ordinary questions on
individual raters who passed (blue) and failed (orange) the quality control method.

evaluating QG systems in our experiment by calculating the correlation between

these automatic metric scores and our human evaluation z scores.

System Scores

Table 4.6 shows the automatic metric scores, where the metrics are ranked by their

correlations with the Overall z score. Since automatic metrics focus on the simi-

larity between a candidate and a reference, we cannot compute a metric score for

the Human system as its candidates are actually the references in the dataset. We

observe that METEOR performs best among these metrics, while perhaps surpris-

ingly Q-BLEU1, which is proposed for the QG task, has the lowest correlation with

humans.

Figure 4.8 provides further analysis of the ranking of systems by each evaluation

metric, where the automatic metrics are ordered by highest correlation with human

assessment. It can be seen that the rankings of the first systems barely change

across metrics, as BARTlarge and BARTbase only switch when Q-BLEU4 and Q-

BLEU1 are applied. Since Q-BLEU is proposed to assess how likely a question is

able to be answered, we believe that such a change of ranking is reasonable since our

human evaluation also shows that BARTbase has a higher answerability score than

BARTlarge (see Table 4.3). An interesting observation is that all automatic metrics
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Table 4.6: Automatic metric scores of systems as well as the standardized human
evaluation z score of Overall. These metrics are sorted by the values of their Pearson
Correlation (r) with z. The Human system is excluded since its automatic metric
scores are unavailable.

System M
ETEO

R

RO
U
G

E-L

BERTSc
or

e

BLEU
RT

Q
-B

LEU
4

Q
-B

LEU
1

BARTlarge 30.18 47.58 90.85 −0.363 43.77 51.47
BARTbase 29.66 47.13 90.74 −0.381 44.14 51.65
T5base 27.99 41.60 88.44 −0.682 37.78 44.84
RNN 15.46 26.77 84.59 −1.019 9.68 15.92
H-Seq2seq 17.50 29.86 85.49 −0.953 10.51 17.74
T5small 23.62 32.37 86.34 −0.860 26.73 32.92
Att-GGNNplus 21.77 36.31 86.27 −0.784 12.63 19.86
H-Seq2seq∗ 18.23 31.69 85.83 −0.866 11.12 18.36
Att-GGNN 20.02 33.60 86.00 −0.802 11.13 18.67
GPT-2 16.40 29.98 86.44 −0.899 24.83 31.85

consider the RNN system worst, while humans rank it as highly as fourth position

among systems. We think a potential cause is that, the questions produced by RNN

may be appropriate according to humans, but they do not have much overlap with

references, resulting in low metric scores. For other systems, their rankings fluctuate

when the evaluation method changes. We also find that Q-BLEU4 and Q-BLEU1

consistently produce the same ranking.

Correlation Coefficients and Williams Test

Table 4.7 shows correlation of automatic metrics with human evaluation according to

Pearson (r), Spearman (ρ) and Kendall’s tau (τ) correlation coefficients. METEOR

is the only metric with a Pearson correlation reaching 0.8, while other metrics are

only above 0.7. We cannot conclude from the increased correlation of METEOR that

it is statistically significantly better than the other metrics, and a significance test

is necessary (Graham and Baldwin, 2014). We apply the Williams test (Williams,

1959) for the assessment of differences in correlations in this experiment. Since

the correlations are computed between scores of evaluation methods in the same

data set, we cannot assume they are independent, while Williams test is suitable
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Figure 4.8: Ranking of QG models according to the Overall z scores and automatic
metrics for the first run.

for dependent correlations (Steiger, 1980). For each pair of automatic metrics, we

apply Williams test to their correlations with human judgement, p < 0.01 indicates

that the difference in their correlations is statistically significant. However, we

unfortunately find that no automatic metric can outperform metrics in the lower

cluster at p < 0.01, as even the Williams test between the best metric (METEOR)

and the worst metric (Q-BLEU1) is p = 0.248. Therefore, we cannot conclude that

METEOR is significantly better than other metrics in this case, and its increase of

Pearson correlation is likely to occur by chance.

With the aforementioned results, we can therefore answer RQ 1 with regard to

the QG task, which is described as follows:

• RQ 1: How accurately do existing automatic metrics measure QG system

performance?

The answer to RQ 1 is that, automatic metrics generally fail to accurately measure

QG systems since they failed to achieve high correlation with human judgement. In

addition, even METEOR which has the highest correlation with human judgement
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Table 4.7: The Pearson (r), Spearman (ρ) and Kendall’s tau (τ) correlation between
automatic metric scores and the Overall scores in the first run, where the metrics
are sorted by r.

Q
A
Sc

or
e

M
ETEO

R

RO
U
G

E-L

BERTSc
or

e

BLEU
RT

Q
-B

LEU
4

Q
-B

LEU
1

r 0.864 0.801 0.770 0.761 0.739 0.725 0.724
ρ 0.827 0.612 0.503 0.430 0.503 0.467 0.467
τ 0.709 0.511 0.378 0.289 0.378 0.289 0.289

cannot significantly outperform other metrics in this case.

4.5 QAScore - Evaluating QG Systems using Pre-

trained Language Model

In this section, we describe our newly proposed pretrained-model-based unsuper-

vised QG metric. From the results described in Section 4.4, we find that current

automatic metrics fail to achieve a high correlation with human evaluators, whether

overlap-based metrics or trained models. To solve this issue, we propose a new

automatic evaluation for the QG task. It should be taken into account that there

are many possible correct questions for the same answer and passage, meaning that

multiple distinct questions can legitimately share the same answer due to the one-

to-many nature of QG as described in Section 4.1. Additionally, one disadvantage

is that all existing automatic evaluation metrics entirely rely on the comparison be-

tween a candidate and a ground-truth reference, which can additionally answer RQ

2 regarding QG:

• RQ 2: What are the limitations and disadvantages of the direct application of

evaluation metrics from MT and other domains to entirely distinct tasks for

system development in QG?

And we can answer RQ 2 as that, current applied metrics are inappropriate for

the evaluation of QG since a system is able to generate an eligible question with
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few overlap with the reference. Hence, we believe a reference-free metric is more

appropriate since there can be several correct questions for a given pair of an answer

and a passage.

Another drawback is that metrics like BERTScore and BLEURT perform even

worse than classical evaluation metrics since they are initially proposed and trained

for distinct tasks. For example, BLEURT is a BERT-based model and it is further

fine-tuned on the task-specific human ratings to achieve a high correlation with

human in the MT task, while our experiment shows its performance on the QG task

is unsatisfactory. Although a possible way to improve its performance is to fine-

tuning them to achieve a higher correlation with human, it requires extra resources

which are usually expensive and time-consuming. Thus, our proposed metric has

the advantage of being unsupervised. Pretrained language models are demonstrated

to contain plenty of useful knowledge since they are trained on large scale corpus

(Shin et al., 2020a). Therefore, we plan to directly employ a pretrained language

model to act as a evaluation metric without using other training data or supervision,

as introduced in Section 4.5.1.

Hence, we propose a new automatic metric which can directly use a pretrained

model as its scorer in a plug-and-play manner. Compared with previous evaluation

metrics, our approach has three main advantages: i) it can evaluate a standalone

candidate question with no need to compute the similarity with any human-generate

reference; ii) it is easy to deploy as it directly takes a pretrained language model as

the scorer and requires no extra data for further fine-tuning; iii) it correlates better

with human judgement according to the results of our human evaluation experiment.

4.5.1 Methodology

Since QG and QA are two complementary tasks, we can naturally conjecture that

a QG-system-generated question can be evaluated according to the quality of the

answer generated by a QA system. We take the passage and the answer A, “com-

mander of the American Expeditionary Force (AEF) on the Western Front”, in
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Figure 4.2 as an example. We show two distinct question Q1 and Q2, where Q1 is

“What was the most famous post of the man who commanded American and French

troops against German positions during the Battle of Saint-Mihiel?” and Q2 is

“What was the Battle of Saint-Mihiel?”. It can be found that, A is the correct

answer to Q1 rather than Q2. In this case therefore, a QA model is more likely to

generate A when given Q1, and it is expected not to generate A when given Q2. In

other words, the likelihood that a QA model can produce a given q1 is more than

that given Q2, meaning that the proposed metric will score Q1 higher than Q2. The

detailed scoring mechanism will be introduced in Section 4.5.1.

RoBERTa

We chose to employ the masked language model RoBERTa (Yinhan Liu et al., 2019)

in a MRC manner to examine the likelihood of an answer, and its value can act as

the quality of the target question to be evaluated. RoBERTa (Robustly optimized

BERT approach) is a BERT-based approach for pretraining a masked language

model. Compared with the original BERT, RoBERTa is trained on a larger dataset

with a larger batch size and longer elapsed time. It also removes the next sentence

prediction (NSP) step and leverages full-sentences (sentences that reach the maximal

length). For text encoding, RoBERTa employs a smaller BPE (Byte-Pair Encoding)

vocabulary from GPT2 instead of the character-level BPE vocabulary employed in

the original BERT. We believe these approaches enable RoBERTa to determine

improper answers when receiving the passage and the question.

Process of Scoring

Given the passage, the correct answer, and the QG-system-generated question, we

first encode and concatenate the passage and the answer. Figure 4.9 provides a

visualization of the process of scoring a generated question using its passage and

answer using the masked language model RoBERTa. First, the passage and the

question are concatenated by the end-of-sequence token ⟨eos⟩, which represents the
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Figure 4.9: The process of scoring a question by RoBERTa, where the context
(yellow) contains the passage and the question (to be evaluated), the score of a
single word is the likelihood that RoBERTa can predict the real word (cyan) which
is replaced by the mask token ⟨mask⟩ (green) in the original answer, and the final
metric score is the sum of scores of all words in the answer.

context for the masked language model. Next, the masked answer containing one

masked word is concatenated by the context together with the ⟨eos⟩ token as the

input for the model. The model is then asked to predict the real value of the masked

word using the context and the masked answer. The log likelihood that RoBERTa

can generate the true word can act as the score for that masked word. For the

evaluation of a single question, all words in the given answer will be masked in a

one-at-a-time manner. The final metric score of the question q can be computed by

Equation 4.2:

QAScore(p) =
∑
w∈a

LL(w|p, q, aw̃) (4.2)

where p is the passage, a is the answer, w is a word in the answer, aw̃ is the answer

of which the word w is replaced by the mask token, and LL is the function which

returns the log likelihood that RoBERTa can produce the real word w given the

passage p, question q and the answer aw̃ with one word masked.
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4.5.2 Results

Since this proposed metric leverages a means of QA to assess QG-system-generated

questions, we call it QAScore. Table 4.8 shows the metric scores of QG systems

evaluated using QAScore, and Table 4.7 describes how QAScore correlates with

human judgement according to our human evaluation experiment. Since our metric

does not rely on a ground-truth reference, we can include the result of the Human

system unlike other automatic metrics. It can be seen that our metric correlates with

human judgement at 0.864 according to the Pearson correlation coefficient, where

even the best automatic metric METEOR can only reach 0.801 (see Table 4.7).

Also, compared with the other two pretrained-model-based metrics BERTScore and

BLEURT, our metric can outperform them at > 0.1. In terms of Spearman, our

metric achieves ρ ≈ 0.8 where other metrics can only reach at most ρ ≈ 0.6. In

addition, our metric also outperforms other metrics according to Kendall’s tau since

it reach at τ ≈ 0.7 and other metrics merely achieve at most τ ≈ 0.5. We can

conclude that our metric correlates better with human judgements with respect to

all three categories of correlation coefficients. Nevertheless, we did not carry out the

Williams test between QAScore and other metrics because QAScore evaluates 11

systems while other metrics only evaluate 10 systems, while Williams test requires

two metrics has the same number of evaluated systems.

Together with the results of the proposed human evaluation method, we can

therefore provide the answer to RQ 3 in terms of QG:

• RQ 3: Can more appropriate new methods of evaluation be designed that are

feasible given the limited time and resources available in operational settings?

This can be answered from two aspects: i) in consideration of the cost and efficiency,

we successfully propose a new crowding-sourcing human evaluation method which is

appropriate for the QG task within limited time and resources; ii) we also propose

a new reference-free automatic evaluation method which has the best performance

according to the correlation with human and needs no extra resources.
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Table 4.8: The scores of all QG systems based on this proposed evaluation metric
QAScore as well as the overall z score from the first run of our human evaluation
experiment, where systems follow the order in Table 4.3.

System QAScore Overall (z)

Human −0.985 0.322
BARTlarge −1.020 0.308
BARTbase −1.030 0.290
T5base −1.037 0.226
RNN −1.064 0.147
H-Seq2seq −1.076 0.120
T5small −1.049 0.117
Att-GGNNplus −1.065 0.076
H-Seq2seq∗ −1.045 0.053
Att-GGNN −1.068 −0.008
GPT-2 −1.108 −0.052

4.6 Summary

In this chapter, we propose a new crowd-sourcing human evaluation method for

the question generation task. Each candidate question is evaluated on four various

aspects: Understandability, Relevancy, Answerability and Appropriateness. To in-

vestigate the robustness of our method, we deployed a self-replication experiment

that the correlation between the results from two independent runs can reach as

high as r = 0.955. We also provide the means of filtering out unreliable data from

unqualified workers. We introduce the structure of a HIT, the dataset we used and

the involved QG models to encourage the community to repeat our experiment.

With the data we collected from the completed experiment, we first analyse in-

formation of human raters and assigned HITs, including the pass rates and elapsed

time. We report the standardized scores, including the overall score and four indi-

vidual evaluation criteria. Using the standardized scores, we examine significance

test of both runs. We also compute the scores of prevailing automatic metrics

on collected data, and results show that METEOR correlates best with human at

p = 0.801. However, William test shows no automatic metric can significantly out-

perform other metrics.

To overcome the disadvantages of current automatic metrics, we therefore pro-
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pose a new unreferenced pretrained-model-based metric. Compared to existing pre-

vailing evaluation metrics, this proposed metric can achieve the best performance

on the collected data set, according to correlations with the results of our human

evaluation experiment.

In conclusion, we propose a new crowd-sourcing evaluation method for the ques-

tion generation task with high robustness and efficiency. This method can be de-

ployed on a large scale within a limited budge of time and resources. We additionally

propose a reference-free automatic metric which achieves the highest correlation with

human among other automatic metrics.
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Chapter 5

Evaluations on Open-domain

Dialogue Systems

We presented existing challenges in evaluation of open-domain dialogue systems in

Chapter 1 and Chapter 2. For example, there lacks a clear definition of a high-quality

dialogue, and automatic metrics are usually criticized for weakly correlating with

human judgements. In addition, the human evaluation of open-domain dialogue

is generally too expensive and time-consuming to be practical. Therefore, open-

domain dialogue indeed requires an evaluation method which is accurate, affordable

and effective.

To overcome the challenges of open-domain dialogue evaluation, we introduce

a new evaluation method based on human assessment of live conversations with

systems in this chapter. We also conduct corresponding human evaluation experi-

ments. According to the results of our experiments, we can therefore investigate the

proposed RQs in terms of open-domain dialogue.

Section 5.1 focuses on the design of a human evaluation experiment, consisting

of the detailed methodology and according user interfaces in the platform. Section

5.2 introduces a method for quality controlling of the human workers, including a

preliminary method that failed to operate as expected. Section 5.3 describes the

PersonaChat dataset which is used in our investigation, and details of alternative
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dialogue systems. Section 5.4 provides details and analysis of the data we collected

from deployed experiments. Section 5.4.5 investigates influence of preassigned pro-

files, called persona, on system performances. Finally, Section 5.5 concludes this

chapter.

5.1 New Method for Evaluation of Open-domain

Dialogue Systems

Evaluation of open-domain dialogue systems is highly challenging. Importantly ex-

isting automatic metrics do not provide reliable indication of what may or may not

be a high-quality conversation. In this chapter, we propose a new human evaluation

method which seeks to overcome the challenges of evaluation of open-domain dia-

logue systems introduced in Section 2.3. Our methodology is introduced in detail

in this section, including choice of an appropriate evaluation procedure, the mecha-

nism for testing reliability, selection of rating scale for human raters, the design of

a user interface for use when deploying evaluation experiments on crowd-sourcing

platforms, and the evaluation criteria for use in assessment of different aspects of a

conversation.

5.1.1 Methodology

Evaluation Procedure: Static or Live

According to the underlying procedure, human evaluation can be generally divided

into two categories: static and live evaluation. The former is in an offline process

where human assessors are asked to evaluate according to the given dialogue history

which is randomly from a corpus of conversations (Z. Lin et al., 2019; Du and Black,

2019). In live evaluation, human assessors are responsible for participating in both

chatting with a system and evaluating it according to their interaction experience.

Since static evaluation dispenses with interaction between a human worker and
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the dialogue system, the worker only needs to focus on reviewing the content of a

conversation. Accordingly, static evaluation is deemed to have a lower cost with

respect to time and required human labour.

However, static evaluation is regarded as having less validity than live evaluation

(Finch and Choi, 2020). A human rater in static evaluation is absent from the

interaction with the system, and this will influence the accuracy of their evaluation.

Ghandeharioun et al. (2019) think an external assessor, namely an assessor in static

evaluation, can only subjectively estimate the degree of a user’s satisfaction with the

system according to the provided conversation, making it even less accurate. The

open-domain dialogue task itself generally has a less specific objective, resulting

in a lack of an objective indicator, hence the success of a conversation can only

be judged by its participant. Therefore, our proposed method of evaluating open-

domain dialogue systems, seeks to address the weaknesses of static assessment by

using human assessment of live conversations.

Test of Reliability

Although live human evaluation of dialogue systems has the advantage of having

high validity, its reliability unfortunately lacks an efficient means of assessment.

Additionally, developing methods of evaluation for language tasks that achieve high

rater consistency has been challenging, often resulting in low levels of agreement be-

tween annotators (Finch and Choi, 2020; Callison-Burch, Koehn, Monz, and Zaidan,

2011; Callison-Burch, Koehn, Monz, Post, et al., 2012; Ondřej Bojar, Buck, et al.,

2013; Ondrej Bojar, Buck, et al., 2014). Being aware of these challenges, we conduct

a self-replication experiment for our proposed method to examine its reliability. In

detail, we will deploy the same human evaluation experiment for two distinct runs.

The order of dialogue systems in HITs of both runs are random, and the participant

human workers are randomly allocated by the crowd-sourcing platform. When both

runs are completed, the reliability of our evaluation method is assessed by testing

the correlation between the resulting human scores of the systems from those two
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runs.

Human Ratings of Dialogue Quality

Similar to the aforementioned MRC and QG human evaluation methods, a contin-

uous (0–100) rating scale is employed for dialogue systems, with three main moti-

vation points (Graham, Baldwin, Moffat, et al., 2013; Novikova, Dušek, and Rieser,

2018; Li, Weston, and Roller, 2019; Santhanam and Shaikh, 2019; Santhanam, Kar-

duni, and Shaikh, 2020; Mille et al., 2020; Löıc Barrault et al., 2020; Howcroft, Belz,

et al., 2020), as follows:

1. When comparing the performance of competing dialogue systems, the con-

tinuous scale can reduce the potential bias by enabling score standardization.

The score distribution of each human assessor is standardized according to the

overall mean and standard deviation of all ratings provided by that assessor,

thus removing any adverse effects of those employing overly harsh (or indeed

lenient) scoring strategies.

2. The continuous scale allows us to leverage statistical approaches to help de-

termine which systems can significantly outperform the others. Namely, we

can apply standard significance tests on the distributions of human scores of

dialogue systems.

3. The continuous rating scale enables crowd-sourcing human evaluation to facil-

itate highly accurate quality control of anonymous workers so that the evalua-

tion can be deployed on a large scale while still maintaining its validity at a low

cost. This is possibly most important because the results of a live evaluation

can be rendered meaningless due to the lack of an approach to discard invalid

data.
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Table 5.1: The evaluation criteria employed to assess models in our human evalua-
tion in the form of Likert statements; corresponding evaluation labels not shown to
human assessors.

Label Likert statement

Robotic It was obvious that I was talking to a chatbot as opposed to another
human user.

Interesting The conversation with the chatbot was interesting.
Fun The conversation with the chatbot was fun/enjoyable.

Consistent The chatbot was consistent throughout the conversation.
Fluent The chatbot’s English was fluent and natural throughout the conver-

sation.
Repetitive I felt that the chatbot kept being repetitive during the conversation.

Topic The chatbot stays on topic.

5.1.2 Process of Evaluation and User Interface

Similar to previous works, such as MRC in Chapter 3 and QG in Chapter 4, our

evaluation method is deployed on the crowd-sourcing platform AMT as well, where

the assignment for each worker is called a HIT. Before starting a HIT, we present

instructions to each crowd-sourcing worker to introduce the current task and provide

clear guidance. Figure A.1 in Appendix A shows the full list of instructions shown

to workers in detail. In particular, we require the workers to interact with a dialogue

system, which is in fact a “chatbot” from the perspective of workers, in a realistic

and non-repetitive manner. Two examples are provided for the workers to help

avoid generating unnecessary conversations, as such live evaluations can result in

meaningless data (Dinan, Logacheva, et al., 2019). In addition, the minimal required

number of inputs and the total number of systems to be evaluated are shown to

workers.

The static evaluation procedure was employed for human evaluation of MRC

and QG (See Chapter 3 and 4), where all evaluation data can be included in a

comma separated values (CSV) file. However, a single CSV file is not sufficient in

live evaluation of dialogue systems since this needs the ability to respond to requests

from workers. Hence, we deploy all the dialogue systems to be evaluated on a server

that can handle the requests, and a CSV file is used to indicate which system the
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The information for workers about 
the number of completed 
conversations and inputs

Current conversation

Current topic

Button for recording the change of topic

Input box for typing the response Button for sending the response

Button for ending the current conversation

Figure 5.1: The user interface for workers when interacting with a system.

worker should chat with. This relates to instruction 11: The chatbot may take a

few seconds to respond, please be patient, because the communication may takes a

few seconds until the worker receives the response from the server. In addition, we

found that special symbols (for example, &, #) in the input sentence may cause

errors when sending a HTTP request during debugging. Meanwhile, some features

are not fully supported by other browsers. Thus we provide instruction 12: Please

use Chrome and avoid special symbols if possible to prevent our experiment from

potential errors.

Crowd-sourcing workers can click the “I understand” button to start the evalu-

ation, or quit the current assignment by closing the page if needed. If the current

assignment is accepted, each human assessor is asked to carry out a live conversa-

tion with a randomly selected system before rating the quality. When the minimal

requirement is satisfied, namely 10 conversational input sentences as introduced in

Figure A.1, the assessor should manually end the interaction with dialogue system

and start evaluate the quality of the conversation under a number of criteria. We set

this minimal number to prevent the collected dialogues from being too short, and we

believe 10 is an appropriate value. However, this can be adjusted in future research.
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Figure 5.2: The popup window when recording the change of topic by clicking the
Topic button as shown at the bottom left in Figure 5.1.

Table 5.1 shows the evaluation criteria employed in our experiment. These criteria

are not completely immutable, and we encourage to extend, remove and adjust them

for future researches as necessary.

Figure 5.1 shows our user interface for chatting with a system. At the top, the

assessor can see how many systems have been completed, as well as the number

of conversational inputs to the current system. The middle of the interface shows

the conversation history between the assessor (right) and the system (left). At the

bottom, workers can type input sentences and send them by clicking the send button.

In addition, workers can see the current topic, information regarding topics is given

in Section 5.4. Also, workers are required to record it if the topic is changed by

either themselves or the current system, by clicking the Topic button at the bottom

left. A popup window for recording the change then appears, as shown in Figure

5.2. The changes of topic includes: i) the worker find the chatbot changed the topic,

ii) the worker changed the topic in the last input, and iii) the worker want to change

the topic in next input. Workers are additionally record the chatbot’s feeling of the

topic, including like, dislike and ambivalent. Although the topic of a conversation

is not directly related to our proposed research questions, we think this is useful for
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Figure 5.3: Popup warning when a worker clicks the Next Chatbot button without
sufficient conversation turns.

future work, such as investigating the influence of changing topics on the quality

of a conversation. The worker can manually complete the current conversation by

clicking the Next Chatbot button. However, workers are not allowed to end the

interaction with the current chatbot if the minimal requirement of conversation

turns (10 in this case) has not yet been satisfied. A warning window appear as

shown in Figure 5.3.

Subsequently, we ask assessors to rate each completed conversation under the

seven aforementioned measurement criteria (see Table 5.1) according to their expe-

rience of the interaction. Figure 5.4 shows the interface for rating the conversation.

Although a continuous rating scale is advantageous for several reasons as previ-

ously introduced, the employment of such a scale raises the question of how it should

be labeled. In evaluation of language tasks, adjectival scale labels, such as poor, low,

medium, high, perfect/ okay, good, excellent, and so on, are often employed despite

their likely contribution to annotator inconsistency (Loukina et al., 2020; Sorodoc

et al., 2017). This is despite evidence of adjectival scale labels being problematic in

terms of bias resulting from positively and negatively worded items not being true

opposites of one another, and items intended to have neutral intensity in fact prov-
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ing to have specific conceptual meanings. Alexandrov (2010) provides a summary

of issues associated with adjectival labels.

To avoid any such causes of inconsistency, we structure each rating as a simple

Likert declarative statement and ask human assessors to rate the degree to which

they agree with each of these statement, making it possible to keep the rating

scale constant while only changing the statement for each measurement criteria.

Each criterion, along with its corresponding Liker statement, is labeled only at

each extreme with strongly disagree (left) and strongly agree (right). Workers can

evaluate by dragging the slider, but its real value in the continuous scale is invisible

to them.

By clicking the NEXT button, a worker completes the evaluation of the current

conversation and moves to the next system to be evaluated. It is not permitted to

skip the current system, review previous conversations or modify completed ratings.

When all systems have been completed, workers are encouraged to leave their feed-

back for future analyses and improving experiences of interaction and experiment

design before ending their participation in the HIT.

5.2 Quality Control

Human evaluation in dialogue systems has been found to suffer from low-quality or

even meaningless collected data (Dinan, Logacheva, et al., 2019), and low degree of

rater agreement, regardless of either experts or crowd-sourcing workers are employed

(Mehri and Eskenazi, 2020b; Finch and Choi, 2020). In addition, crowd-sourcing

workers may seek to game the work, making no proper attempt at the task due

to the anonymous nature during data collection, sometimes results may even be

created by some automated robotic process (Loic Barrault et al., 2019). Therefore,

an appropriate approach to identify and discard unusable data is necessary.

Many existing approaches to controlling the quality of crowd-sourcing workers

depend on employing pre-created gold-standard items as quality checks (J. Le et al.,
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Figure 5.4: The interface shown to a worker to evaluate the conversation with a
system after clicking the Next Chatbot button in Figure 5.1. Once evaluation of the
current conversation is done, worker clicks the NEXT button to move to the next
system. If all conversations are completed, the worker is redirected to a feedback
page to leave the feedback and finish the HIT, as shown in Figure 5.5.

2010; S.-W. Huang and Fu, 2013; Qiang Liu, Ihler, and Steyvers, 2013; Lasecki, Tee-

van, and Kamar, 2014). This approach filters out the workers who fail to give high

scores to gold-standard items. However, it is highly likely to allow low quality data

to pollute the resulting evaluation, since any worker willing to assign high scores

to all items will undeservedly pass this check. Although we did not employ this

approach, we anecdotally found that many human workers on the crowd-sourcing

platform attempted this strategy, namely they assigned high scores to every conver-

sation in our experiments. The approach also runs in contrast to our aim of the same

individual who took part in a live conversation to also assess its quality, as apply-

ing this approach to our experiments relies on the use of pre-created gold-standard

conversations.
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Figure 5.5: The interface shown to workers when all systems in a single HIT are
completed, where they are welcome to leave their feedback in this page.

Figure 5.6: Workers are asked to take a sub-task of image recognition during the
interaction.

5.2.1 A Failed Preliminary Attempt to Quality Control

Instead of evaluating pre-created conversations that are usually infeasible to achieve

in practice, we initially decided to provide a compulsory sub-task during the in-

teraction with a dialogue system. We employed image recognition as there are

many available public datasets. By checking whether the image recognition sub-

task can be correctly completed, we can approve or reject the work of current

worker. We employed the Caption-Quality dataset (available on https://github.

com/google-research-datasets/Image-Caption-Quality-Dataset), a dataset con-

sisting of images paired with their captions (Levinboim et al., 2019). We extracted

images whose captions belong to a set of certain topics which is expected to be clear

and easy to distinguish, such as coffee, dogs, cats and so on.

Figure 5.6 shows an example of conducting such a quality control method, where

an image describing a cup of coffee is presented and the worker is expected to select

the right answer, coffee, from four different things. First, the worker converse with

110



a chatbot as normal: worker types a sentence and receives the response. During the

interaction, the sub-task will be inserted during a random turn, and the worker is

asked to complete it. When the worker-provided answer is recorded, the conversation

will continue by repeating the response before the sub-task, as shown in Figure 5.7.

Figure 5.7: The chatbot will continue the conversation when the worker complete
the sub-task.

However, such a quality control method fails to perform as expected. We find

that the results of this preliminary experiment using this method showed the pass

rate of workers reach 100%. We then manually checked the ratings of conversations,

and found that workers may incorrectly score a conversation but still passed this

method (for example, a worker may assign high scores to all conversations regardless

of their real quality). It means that this method failed to filter out any unqualified

worker. We think this is probably because the intention of this inserted sub-task is

too obvious that a worker can easily pass it without taking it seriously. This sub-task

based quality method was therefore abandoned because of its ineffectiveness.

5.2.2 Quality Controlling the Crowd

As alternative to the aforementioned sub-task based method, we decided to explore

use of a statistic-based approach to quality-controlling human workers. In detail,

each worker was asked to hold six conversations in a HIT, using a shuffled arrange-

ment of five dialogue systems and a single quality control (qc) model. This was

intended to collect a sufficiently rich score distribution from each individual worker

who participated, where each HIT can collect 6 models × 7 rating criteria = 42
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ratings. This quality control approach is designed to achieve reliable quality control

by deploying dialogue systems in live conversations that have known distinct per-

formance levels instead of asking workers to assess the quality of pre-created known

high quality conversations (gold-standard) or carrying out a sub-task (our previous

failed method).

Within a HIT, the five systems, m, produce some quality level of conversation

and the qc model, l, produces known lower quality dialogues (lower than the five

systems). Meanwhile, the details of HITs, such as the information of the systems

employed, are invisible to workers, meaning that the five dialogue systems and the qc

model should be equally treated as “chatbots” by the workers according to provided

instructions in Figure A.1 in Appendix A.

For a single worker who takes part in conversations with m and l, we then check

how consistently the worker rated the conversations of l lower than m. This results

in a quality control mechanism that does not ask workers to be consistent with

other workers or to correctly rate gold standard dialogues, but only assesses worker

consistency by how consistently they distinguish between known distinct performance

systems and only with respect to their own conversation ratings.

From a practical standpoint, creating a low performance model, namely the qc

model l in this case, is additionally far less challenging and costly than pre-creating

a known set of dialogues that are known to have high quality. Generating low

conversations can operate fully automatically by the qc model, where it produces

outputs via generating random responses which are further degraded by the meaning

distortion operation, which will be introduced in the next paragraph.

In detail, for random response degradation, low quality responses are generated

by randomly sampling responses from conversations in the PersonaChat training set,

which will be introduced in Section 5.3. Since the responses are randomly selected

regardless of the worker inputs, the qc model is likely to be perceived as low quality

since its responses have low relevance. To reduce the quality of conversations further,

we apply meaning distortion: each response, r, is altered to distort its meaning by
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randomly selecting a sequence of words within that response and replacing it with

a sequence of words sampled from another dialogue in the training set, with the

length of the replaced word sequence being determined by the number of words in

r. The following provides specific details for generating a random response:

• for 1 ≤ n ≤ 3: r is 1 word;

• for 4 ≤ n ≤ 5, r is 2 words;

• for 6 ≤ n ≤ 8, r is 3 words;

• for 9 ≤ n ≤ 15, r is 4 words;

• for 16 ≤ n ≤ 29, r is 5 words;

• for n ≥ 30, r is ⌊n/5⌋ words.

where the position of the word sequence to be replaced is additionally random with

the exception of response of length n ≥ 3, the sequence of replaced words does not

include the response initial or final words.

Crowd-sourced workers converse with each chatbot - either a genuine dialogue

system or the qc model - before rating conversation quality, and statistical signif-

icance tests are then applied to score distributions of workers for the ratings they

attributed to ordinary dialogue systems, m, relative to the qc model having a low

quality, l. The resulting p-value is then employed as a means of rating worker consis-

tency. Any worker with p >= 0.05 shows no significant difference between low and

ordinary model quality and is filtered out. Figure 5.8 provides two examples of con-

versations from a human rater’s interaction with (1) a genuine dialogue system (left),

and (2) the qc model (right) which only returns with a degraded random response,

where we expect a qualified worker should be able to score normal conversation

significantly higher than a degraded one.
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Normal Degraded

User: Hello, how are you? User: How are you?
Bot: i am good , a little tired but good ! Bot: I do not have a job. I have broken have

a job.
User: I am tired as well, but good too User: Sorry about that?
Bot: i am tired too , but from being out all

day .
Bot: Thanks. I the love watching old.

User: What do you like doing? User: Tell me about it?
Bot: i enjoy movies , reading books , and

even just doing nothing
Bot: that is cool, do you i supposed to I you

travel?
User: I love reading books User: I do not like travelling
Bot: i enjoy reading too ! what is your fa-

vorite book ?
Bot: I teach meet you, sorry elementary

school.
User: I love the novel ”voice of the heart” User: Okay, do you like to swim?
Bot: i have been wanting to read that , i

love reading too
Bot: do you live sports are u skin am in a

house.
User: You should read too User: I love sports, especially soccer
Bot: i do love to read when i have time Bot: I like but i should go, books
User: What book was the last book you

read?
User: How often do you read?

Bot: the notebook , a reread lol Bot: i are your think u r i am a pilot , so i
do not have much time .

User: I haven’t read that User: I envy you, I would love to be a pilot
Bot: i read it yesterday . what do you do

for fun ?
Bot: I i am 4 felicia!

User: I love going hiking User: I am Ben
Bot: i have not gone hiking a while Bot: Oh, how nice. do you do for you have?
User: I think you should User: I do not understand
Bot: i should Bot: I is your favorite don’t I am sure you

will find out soon.

Figure 5.8: A typical human-system conversation (left) and a conversation between
a human and the qc model (right), where random response and meaning distortion
techniques have been applied to degenerate model responses.

5.3 Dataset and Systems

The dialogue systems involved in our experiments are trained on the open-domain

conversational dataset, PersonaChat (S. Zhang et al., 2018), which was also uti-

lized in the ConvAI2 competition (Dinan, Logacheva, et al., 2019). PersonaChat

was proposed for solving known problems of chit-chat models: lacking specificity,

consistent personality and captivation. It is a crowd-sourced dataset of which each

conversation is paired with a given profile, called a “persona”, each comprised of

no less than five sentences. The data collection follows three stages: (1) a set of

persona were firstly collected whose sentences are generated from human workers,

and (2) another group of workers were asked to rewrite these personas to increase
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the difficulty of the task, and finally (3) two paired workers were asked to chat

with each other according to the revised persona assigned with them, resulting in a

dataset consisting of 1,155 valid personae, and 10,907 dialogues containing 162,064

utterances.

The test dialogue systems in our experiments are from models as follows:

• Poly-Encoder Transformer: a model having an improved architecture of trans-

former (Vaswani et al., 2017) which learns self-attention features in the global,

instead of token, level. (Humeau et al., 2019).

• Bi-Encoder Transformer: a model containing two transformer-based encoders,

one is to independently encode knowledge and dialogue context while the other

is to re-encode the combined information of knowledge and dialogue context

after knowledge selection (Dinan, Roller, et al., 2018).

• Key-Value Memory Networks: a model which enables to encode prior knowl-

edge, such as dialogue history in this experiment, and store in key-value mem-

ories (Miller, Fisch, et al., 2016).

• Sequence to Sequence: a model that follows the vanilla seq2seq architecture

(Sutskever, Vinyals, and Q. V. Le, 2014).

• LSTM-based model: a language model using the LSTM neural network (Hochre-

iter and Schmidhuber, 1997).

Within the evaluation setting of ConvAI2, each dialogue model is given a persona

consisting of approximately five textual statements to emulate a personality. For

each of the five models, we additionally include a version that is assigned no persona,

to increase the diversity of our experiment and to provide an interesting comparison,

resulting in 10 competing dialogue systems. These systems are from the dialogue

research software platform ParlAI (Miller, Feng, et al., 2017), and have been fine-

tuned according to the setting of ConvAI2 (available on https://parl.ai/docs/

zoo.html#convai2-models).
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5.4 Experiment Results

In section, we report the results of our experiments, and provide analysis based on

the collected data, including information about HITs and workers, the human scores

at the system-level, the consistency of our method, significance tests, human rater

consistency and so on.

5.4.1 Meta-Evaluation

HITs were posted on the crowd-sourcing AMT platform, similar to our previous

experiments, such as evaluation of MRC and QG in Chapter 3 and 4. Firstly, and

in order to evaluate the open-domain models in as realistic a setting as possible, we

allow workers to choose the topic of conversation and input their chosen topic in a

text field. The open nature of conversations should be noted however as something

that influences the difficulty of producing consistent results in our self-replication

experiment. The fact that we allow human assessors to freely choose the topic of

conversation means that differences in ratings could result from legitimate differences

in performance when different topics are chosen by human assessors. We nonetheless

test our evaluation allowing the user to choose the topic as this is part of our core

aim for developing evaluation of dialogue truly in the open domain.

Besides choosing a topic, we additionally asked workers to input their opinion

of the topic they chose to discuss with the systems, categorizing the topic as either

liked, ambivalent about it, or disliked. For example, if the topic they chose to discuss

was dogs, we were curious to know if this was motivated by the fact that the worker

liked or disliked dogs or indeed that they had chosen to discuss something they had

no particular feeling about. Figure 5.9 provides the interface when choosing a topic.

In contrast to free topic choice, we further investigate the performance of systems

in a slightly easier setting where the topic under discussion is known to the dialogue

system, by selecting a sentence from its persona statement, which we refer to as

an ice-breaker topic statement. An ice-breaker topic statement is then provided to
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Figure 5.9: The popup window where a worker can freely type a topic and record
the opinion of this topic, before starting the conversation.

Table 5.2: Proportions of freely-chosen (free topic run 1&2) and preassigned (Ice-
breaker) topics that are reported by workers as liking (Like), being ambivalent to-
wards (Ambivalent) or disliking (Dislike), including passed and failed workers.

Opinion
Free Topic (run 1) Free Topic (run 2) Ice-breaker

Passed Failed Passed Failed Passed Failed

Like 83.88% 88.58% 86.35% 93.75% 61.52% 71.43%
Ambivalent 7.44% 3.75% 6.22% 2.34% 18.87% 13.29%
Dislike 8.68% 7.68% 7.43% 3.91% 19.61% 15.28%

human assessors at the beginning of each conversation, and the assessor is instructed

to chat with the system about this topic. The process and user interfaces of ice-

breaker evaluation resemble those of free topic, except the stage when determining a

topic before conversation. Figure A.2 in Appendix A provides relevant user interface

in ice-breaker evaluation statement.

Table 5.2 shows subsequent proportions of workers’ opinions on topics, including

worker-typed topics and given topics. As results of both free runs show that, perhaps

unsurprisingly, the vast majority of workers chose to discuss something they liked.

For instance, in the first run, nearly 84% workers who passed our quality control

117



Figure 5.10: Word cloud of topics chosen by human workers in the first run of free
topic evaluation.

method liked the topic they chose. Nonetheless, 7% of them were ambivalent about

the topic they chose and 9% chose a topic they reported as disliking. In addition,

compared with Free Topic, less workers reported they liked the topics in Ice-breaker

together with the increased proportions of ambivalent and disliking.

Figure 5.10 shows the topics chosen by workers in the first data collection run

in the free topic evaluation statement. We find that the majority of topics are

unsurprisingly common and familiar, such as food and pets. We think these collected

topics together with human opinions are useful for the development of open-domain

dialogue systems. For example, a dialogue system can start with a topic which is

generally liked by human. Although the results of Table 5.2 and Figure 5.10 are

not directly related to our research questions, we believe they can be used for future

research.

5.4.2 HITs and Workers

Table 5.3 provides the information of human workers, assessed dialogues and de-

ployed HITs in this experiments. There are different topic-related statements: free

topic where workers are permitted to freely choose a topic before a conversation
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including the initial run (run 1) and a repeated experiment (run 2), and a set-up

where the topic of a conversation is predetermined by extracting a sentence from

the persona of the current system.

Table 5.3: Statistical information about workers, dialogues and HITs in our ex-
periments, where workers freely chose the topic (free run 1); precisely the same
experiment set-up was repeated (free run 2); and where the topic was prescribed via
selecting directly from the persona of the system (ice-breaker).

(a) Numbers of workers who took part in human evaluation of systems and the total
number of assessed dialogues before (Total) and after (Passed) quality control, together
with according pass rates.

Topic Worker Dialogue

Statement Total Passed Pass rate Total Passed Pass rate

Free Run 1 249 173 69.48% 1525 1075 70.49%
Free Run 2 248 139 56.05% 1480 835 56.42%
Ice-breaker 248 171 68.95% 1450 1030 71.03%

(b) Average time taken per dialogue in minutes (min) and average number of HITs per
worker took, before and after quality control.

Topic Ave. Duration (min) Ave. Taken HIT

Statement Passed Failed Total Passed Failed Total

Free Run 1 6.53 7.04 6.68 1.24 1.18 1.22
Free Run 2 6.87 7.58 7.18 1.21 1.18 1.19
Ice-breaker 6.60 6.70 6.63 1.20 1.09 1.17

Table 5.3a shows the number of workers who participated in three statements,

numbers of dialogues assessed in total before and after quality controlling, and the

proportions of workers and dialogues that passed quality checks. These assessed

dialogues only count in conversations between humans and the 10 genuine systems,

excluding the qc model. The results of free run 1 amounts to 1,525 dialogues ×

7 criteria = 10,675 human ratings, while Table 5.3a indicates equivalent statistics

with respect to free run 2 in which a total of 1,480 dialogues × 7 ratings = 10,360

human ratings were collected in total. In addition, the ice-breaker statement results

in collecting 10,150 human ratings in total.

Table 5.3b reports how long the evaluation of a dialogue averagely takes in

minutes and how many HITs a worker takes on average, where Passed and Total

is the same as Table 5.3a and Failed represents those which are filtered out by
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the quality control method. In general, evaluating a dialogue after the interaction

normally costs 6-7 minutes, in all three experiments, while a failed worker averagely

spends more time than a worker who passed the quality control. Meanwhile, a

worker averagely takes approximately 1.2 HIT, while the number of passed workers

is slightly higher than that of failed workers.

Implementation of Quality Control

In general, we use statistical significance tests to control the quality of crowd-

sourcing workers, as described in Section 5.2.2. Given two sets M and L respec-

tively representing the rating distributions of ordinary dialogue systems m and the

qc model l from all HITs taken by a human worker, we apply the non-parametric

one-sided Wilcoxon rank sum test between L and M , with the alternative hypothesis

that values in L are more likely to be less than those in M . The consequent p-value

then acts as the indication of whether a worker can consistently score l lower than m

during evaluation. Any worker with p ≥ α is therefore rejected since no significant

difference occurs, and α is 0.05 in this case.

However, M and L do not contain the scores under the negative evaluation crite-

ria: robotic and repetitive, because of two main reasons. First, we deployed a small

experiment with a few HITs to preliminarily investigate our quality control method.

We found that workers normally tend to give a terrible score when evaluating how

robotic a dialogue is, regardless of the system. This possibly results from the gap

in existence between performances of existing dialogue systems and humans which

makes workers feel all systems are like a robot. Thus, we think robotic is imprac-

tical for distinguishing qc model from genuine systems. Furthermore, as the qc

model only respond randomly, it is deservedly non-repetitive since it never returns

a duplicated sentence. Hence, repetitive scores are eliminated from quality control.
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Cost of the Experiment

Each worker was paid 0.99 USD for a HIT which consists of 5 valid human-system

dialogues with 35 ratings, excluding the qc model. For example, free topic run 1

costs approximately 220 USD resulting in 1,075 dialogues and 7,525 ratings from

10 genuine systems, meaning that each system with collected ≈107 dialogues (≈750

ratings) costs no more than 22 USD. It is notable that the quality control method we

applied for removing unreliable data is not the only criterion for deciding whether a

human worker can get paid, namely a worker whose data is discarded can still receive

the payment. The entire experiments consisting of three topic-related statements

cost no more than 600 USD. Also, free topic run 2, namely the self-replication

experiment, is primarily utilized to test the repeatability of this newly proposed

method, which can be omitted to reduce the cost in future researches.

5.4.3 Human Scores of Dialogue Systems

This section shows the calculation of average standardized scores of dialogue sys-

tems in this experiment, and results of free topic and ice-breaker (see Section 5.4.1)

experimental runs.

Calculating System-Level Scores

Scores are collected from workers who rate models on a continuous rating scale

ranging from 0 to 100, and we refer to these initial scores as raw scores. In particular,

scores for negative attributes, namely robotic and repetitive in this experiment, are

firstly reversed by 100 subtracting the original rating. This results in revised scores

possessing the same tendency according with positive attributes for ease of further

computation and comparison, and these revised scores will act as the raw scores of

negative attribute. A distribution of scores is extracted for each worker, including

rating scores of qc model, and a raw score is standardized into a z score according to

each worker’s mean (µ) and standard deviation (σ) by z = (raw− µ)/σ in order to

eliminate any differences in worker scoring strategy Average standardized z scores
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for each criteria are firstly calculated, and an overall z score is then calculated as

the average of all measurement criteria.

Evaluating with Freely Chosen Topics

Table 5.4: Average standardized scores for dialogue systems in initial data collec-
tion run; workers were free to choose the topic of conversation (Free run 1); where
A=Bi-Encoder Transformer, B=Poly-Encoder Transformer, C=Key-Value Memory
Network, D=Sequence to Sequence, and E=LSTM-based Model; a system with p
means it holds a persona; scores for robotic and repetitive have been reversed; n is
number of ratings; systems are ordered by overall score; a underlined score means
the highest score of that evaluation criterion.
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A 798 0.534 0.564 0.602 0.711 0.863 0.964 −0.038 0.069
B 798 0.419 0.474 0.481 0.614 0.875 0.994 −0.431 −0.075
Ap 707 0.318 0.399 0.372 0.443 0.821 0.404 −0.330 0.116
C 791 0.262 0.491 0.379 0.028 0.636 −0.066 −0.316 0.680
Cp 714 0.189 0.409 0.373 0.159 0.672 −0.114 −0.521 0.349
Bp 707 0.173 0.230 0.197 0.369 0.673 0.320 −0.395 −0.187
D 707 −0.087 −0.190 −0.208 0.166 0.311 0.401 −0.637 −0.449
Dp 798 −0.201 −0.308 −0.234 0.092 0.312 0.025 −0.625 −0.669
Ep 763 −0.217 −0.181 −0.201 −0.196 0.380 −0.455 −0.605 −0.264
E 742 −0.243 −0.165 −0.160 −0.142 0.329 −0.407 −0.745 −0.411

We firstly compute the scores of competing systems based on collected data

to investigate system performances when topics of conversations are provided by

humans. Table 5.4 shows the average standardized (z) scores of different rating

criteria at the system level, resulting from the initial data collection run of our human

evaluation experiments on AMT (free topic run 1), where systems are ordered by

highest overall score. We can find that system A, the Bi-Encoder Transformer based

system without persona, receives the highest overall score, as well as interesting, fun,

consistent and robotic criteria. In addition, system B outperforms others on fluent

and topic, while system C has the best performance on repetitive.
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Evaluating with Prescribed Topics

In addition to the free topic statement, we subsequently deploy the ice-breaker

statement experiment where a topic which is extracted from the persona is given to

the human assessor before the interaction with a chatbot.

The numbers of workers who participated in the ice-breaker experiment run are

provided in Table 5.3a, while a breakdown of results for each system and overall

average scores are shown in Table 5.5 as well as the correlation between scores for

systems when a topic is freely chosen. System A again, is the best performing system

according to the overall score, together with the highest consistent, fluent and topic

scores. System Ap has the best performances of fun and robotic, while System C

outperforms others on interesting and repetitive. Compared the initial results of

freely chosen topics (Table 5.4), the best chatbot, system A, achieves highest fluent

and topic scores, nonetheless is deemed worse in interesting, fun and robotic when

evaluated in ice-breaker conversations.

Except standardized system scores, raw average scores for systems in the ice-

breaker run are provided in Table A.4 in Appendix A. Interestingly, in terms of

absolute differences in raw scores, system A in the ice-breaker evaluation achieves

higher fluency, consistency but is deemed more robotic, compared with those in free

topic run 1 which are available in Table A.2 in Appendix A.

Relatively speaking, when it comes to system rankings, no meaningful difference

in relative performance is observed when systems are tested in a scenario where the

worker chooses a topic and when one is prescribed with an ice-breaker statement,

as can be seen from the strong correlation (r) between scores at system-level in free

topic run 1 and ice-breaker evaluation as shown in Table 5.5.

5.4.4 System-level Consistency

In order to test whether this proposed method is reliable, we additionally compute

the standardized system scores in the self-replication experiment (introduced in

Section 5.1.1), namely the free topic run 2, where the results are reported in Table
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Table 5.5: Average standardized scores for dialogue systems in the experiment in
which workers were given the topic of conversation (ice-breaker); where the detailed
system names are the same as those in Table 5.4; a system with p means it holds a
persona, and the ice-breaker statement is subsequently unknown to systems without
p; scores for robotic and repetitive have been reversed; n is number of ratings; systems
follow the order in Table 5.4; a underlined score means the highest score of that
evaluation criterion; r is the correlation between current assessment criterion and
that in the first run of free topic (Table 5.4).
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A 721 0.552 0.565 0.527 0.873 1.018 1.011 −0.287 0.156
B 721 0.376 0.379 0.340 0.634 0.769 0.820 −0.221 −0.087
Ap 742 0.422 0.589 0.560 0.518 0.718 0.527 0.009 0.034
C 784 0.322 0.615 0.537 0.190 0.631 0.061 −0.344 0.565
Cp 700 0.222 0.402 0.337 0.089 0.654 −0.068 −0.376 0.514
Bp 658 0.273 0.406 0.340 0.414 0.633 0.423 −0.369 0.063
D 728 −0.139 −0.277 −0.204 0.123 0.349 0.295 −0.638 −0.620
Dp 721 −0.267 −0.426 −0.402 −0.011 0.234 0.000 −0.628 −0.636

Ep 714 −0.198 −0.172 −0.203 −0.054 0.316 −0.343 −0.533 −0.396

E 721 −0.240 −0.125 −0.161 −0.196 0.318 −0.393 −0.631 −0.489

r − 0.984 0.967 0.944 0.958 0.951 0.981 0.715 0.950

A.1 in Appendix A. Meanwhile, Table 5.6 shows the consistency of the evaluation

between each experimental run via the three categories of correlation of scores for

each measurement criteria as well as consistency overall, according to results from

Table 5.4 and Table A.1. Across the board, consistency of Pearson correlation (r)

for example, is very high, exceeding a correlation of r ≥ 0.9 in almost all cases

with the exception of robotic which nonetheless achieved a correlation of around

r = 0.7. With regards to ρ and τ , similar results to r appear. As can be observed

from Table 5.6, the correlation reached in terms of overall scores for systems is

r = 0.969, which is very close to a perfect correlation, showing extremely high levels

of reliability for the evaluation, evidence that the approach overcomes substantial

challenges with respect to evaluating open-domain dialogue systems, where assessors

are legitimately free to choose distinct topics of conversation.

Moreover, the raw scores at system-level in the two runs of free topic experiments
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Table 5.6: Correlations between the system scores from the initial and second runs
of free-topic experiments (free topic run 1&2), including Pearson (r), Spearman (ρ)
and Kendall’s tau (τ) correlation coefficients.
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r 0.969 0.952 0.927 0.899 0.960 0.951 0.646 0.936
ρ 0.903 0.802 0.855 0.806 0.939 0.915 0.673 0.939
τ 0.733 0.674 0.733 0.600 0.822 0.778 0.467 0.822

Table 5.7: Correlation of assessed criteria with others in free topic run 1; correlations
in the upper right half correspond to Pearson (r) while lower left are Spearman
correlations (ρ).
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Overall - 0.959 0.976 0.861 0.966 0.796 0.916 0.674
Interesting 0.927 - 0.992 0.691 0.949 0.599 0.875 0.840
Fun 0.903 0.988 - 0.753 0.961 0.660 0.889 0.783
Consistent 0.842 0.673 0.636 - 0.811 0.969 0.770 0.210
Fluent 0.879 0.939 0.915 0.648 - 0.724 0.857 0.667
Topic 0.745 0.552 0.503 0.915 0.503 - 0.676 0.122
Robotic 0.867 0.830 0.782 0.648 0.867 0.491 - 0.642
Repetitive 0.673 0.770 0.782 0.261 0.770 0.055 0.758 -

are available in Table A.2 and Table A.3 in Appendix A, where the latter also reports

the correlation of raw scores between two runs, again indicating a high reliability

according to r = 0.595 on overall raw score.

Consistency of Evaluation Criteria

We examine how these evaluation criteria correlate with each other. Results are

reported in Table 5.7 based on the data collected from the first run of free topic.

Perhaps expectably, fun and interesting receive extremely high correlation at r =

0.992 and ρ = 0.988 since they somewhat have overlap of meaning. Meanwhile, we

can observe repetitive correlates weakly with both consistent and topic, implying

that system performances can vary when emphasizing different evaluation criterion.
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Figure 5.11: Results of significance tests on overall system scores for two runs of free
topic, where a colored cell means that the system in the row outperforms that in the
column due to the test; A=Bi-Encoder Transformer, B=Poly-Encoder Transformer,
C=Key-Value Memory Network, D=Sequence to Sequence, and E=LSTM-based
Model; systems without p contain no persona; system order follows Table 5.4.

5.4.5 Significance Test

In any empirical evaluation, statistical significance tests should be applied to take

into account the fact that small differences in scores between systems can occur

simply by chance. We employ the standard statistical approach, Wilcoxon rank

sum test, on scores of each pair of competing systems. Such a non-parametric test

is applied because there is no guarantee of the normally distributed scores.

Figure 5.11 shows the results of significance tests on the rating distributions

of pairwise dialogue systems based on the standardized overall scores from two

distinct data collection runs of free topic experiment, where the definitions and

order of systems accords with Table 5.4. A coloured cell in this figure indicates

that the system in the row can significantly outperform it in the column at p < 0.1

resulting from the significance test. Results shows a very high proportion of identical

conclusions, 84%, drawn from the results of both runs of free topic as respectively

shown Figure 5.11a and Figure 5.11b at p < 0.1. The proportion can remain 84%

even when the condition changes to p < 0.05. The results of significance tests in the

ice-breaker run are additionally provided in Figure A.3 in Appendix A.
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Persona Contribution to System Performance

The personas in the PersonaChat dataset are somewhat arbitrary statements about

a hypothetical person. This is still a lack of relevant investigation into whether

such personas in fact enhance the quality of dialogues to any meaningful degree, the

influence of persona on system performance is therefore worthy of examining. Since

we have verified the reliability of the human evaluation at system-level, we take a

closer look at the results of both free topic and ice-breaker experiments, and further

examine whether the employment of a persona influences the system performance.

Results in Table 5.4 show that in general a system in the free topic experiment

is rated more favorably by human assessors when they carry out dialogues without

a persona, excluding system E which achieves a lower score than Ep. Nonetheless,

results of significance test in Figure 5.11a show there exists no significant difference

between system E with and without persona, implying the higher score of Ep may

occur by chance. Similar observation can be made for ice-breaker experiment results

shown in Table 5.5 and Figure A.3 in Appendix A. We can conclude that, although

it seems counterintuitive, a system assigned no persona generally has a better perfor-

mance when conversing with a human. We think this may be because the persona

assigned to a system somehow becomes the noise when chatting with a real per-

son, while a system without persona can focus more on the current conversation,

resulting in a conversation having a higher quality.

5.4.6 Human Assessor Consistency

Although the overall aim of our evaluation is to produce reliable results at the

system level, which we previously tested in Section 5.4.4 by comparison of results

in self-replication experiment, we additionally examine ratings of workers at the

level of individual dialogue ratings. A Pearson correlation coefficient is applied

since standard agreement measures such as the Kappa coefficient are not applicable

according to aforementioned limitations in Section 3.4.7.

The distribution of Pearson correlation (r) for pairs of workers who assessed the
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Figure 5.12: Distribution of agreement between pairs of human assessors as mea-
sured by the Pearson correlation (r) of ratings provided by workers who passed
(blue) and failed (orange) quality control.

same system is depicted in Figure 5.12, including results of passed (blue) and failed

(orange) workers. The total number of pairs of workers who completed the same

system and passed quality control is 680, with a total of 115 pairs who failed. We

can observe that the likelihood of agreement between pairs who failed quality control

is close to random as the distribution is approaching uniformity across almost the

range of possible coefficients. In contrast, for pairs of passed workers, the peak of

agreement r is in the range of 0.6 and 0.7, indicating a high degree of agreement in

general between such annotator pairs.
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Some of the observed disagreements are likely to be the result of legitimate dif-

ferences between scores of two workers who chose distinct topics to discuss with the

same model however, an unavoidable source of inconsistency when testing models

with respect to the open domain. Furthermore, remaining disagreements at the level

of individual ratings are probably not problematic at the level of overall scores in

relation to aggregation of ratings collected on a continuous rating scale. Technically

speaking, the most meaningful reliability measures for continuous ratings scales test

consistency of aggregate (system-level) results because although a high level of ran-

dom error is expected in individual continuous rating scale scores, when aggregates

are calculated for large samples of ratings, positive and negative errors that are truly

random effectively cancels themselves out, and does not negatively impact consis-

tency. In other words, the employed rating scale does not rely on consistency at the

level of individual ratings. The consistency of individual raters is nevertheless ex-

amined since it is the standard approach in practice (Qiang Liu, Ihler, and Steyvers,

2013). However, it is notable that results provided in this part are not crucial when

testing reliability for an evaluation carried out via a continuous rating scale, and

consistency in overall system-level results is more important.

5.4.7 Comparison with Automatic Evaluation Metrics

We examine the performance of the main open-domain dialogue evaluation metrics

in terms of their correlation with human judgements from results of our human eval-

uation experiments. Despite the recurring criticism against automatic metrics due

to their poor correlation with human judgements (Sai, Mohankumar, and Khapra,

2022), it is nevertheless worth reporting corresponding performance, since applying

these automatic metrics is still a common approach in the development of dialogue

systems. Two categories of automatic evaluation metrics are considered in this part

of our investigation: word-overlap-based and reference-free.
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Table 5.8: Correlation between metric scores and the average standardized overall
scores in free topic run 1 at system-level, including Pearson (r), Spearman (ρ) and
Kendall’s tau (τ), where metrics are ordered by r.

METEOR BLEU-1 ROGUE-L GLEU BLEU-4

r −0.321 −0.707 −0.799 −0.816 −0.883
ρ −0.328 −0.705 −0.705 −0.681 −0.766
τ −0.225 −0.494 −0.494 −0.494 −0.584

Word-overlap-based Metrics

In this experiment, we report the scores of systems using four prevailing word-

overlap-based metrics: METOER, BLEU which includes BLEU-4 and BLEU-1,

ROGUE-L and GLEU, resulting in five metric scores for each system. Such metrics,

as previously described in Section 2.3, rely on the overlap between a system output

and a precreated reference to assess the system performance. However, the conver-

sations from our experiments have no ground-truth reference, meaning that these

metrics are infeasible to evaluate the conversations on our collected data. Instead,

we compute scores on the testset of PersonaChat, which is also used in ConVAI2

competition.

Table 5.8 reports the results of different correlation coefficients between system

scores from commonly used word-overlap-based evaluation metrics and the overall

average z scores in the first run of free topic experiment, where the metric scores

are additionally provided in Table A.5 in Appendix A. Unfortunately, instead of

achieving a strong correlation, the results indicate that all these metrics even failed

to correlate positively with human judgement, as shown in Table 5.8. This negative

correlation implies that such evaluation approaches may rank system in reverse

to human assessment, confirming that the common practice of applying human

evaluation on systems after ranking by automatic metrics in current conversational

competitions like ConvAI2 will produce invalid system rankings.

Return to RQ 2 regarding open-domain dialogue:

• RQ 2: What are the limitations and disadvantages of the direct application of

evaluation metrics from MT and other domains to entirely distinct tasks for
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system development in open-domain dialogue?

we can address it as: applying metrics from other domains to dialogue evaluation

suffers from the negative correlation with human judgement, which can result in

improperly filtering out high quality systems according to human judgement since

such metrics are likely to produce reversed system rankings.

Reference-free Metrics

In addition to traditional word-overlap-based metrics which are borrowed from other

NLP tasks, two reference-free automatic metrics, USR and FED, are employed.

They are specifically proposed for dialgoue evaluation, of which the details are avail-

able in Section 2.3. Both metrics utilize pretrained language models and require no

reference, since they have the ability of assessing a dialogue using the conversation

content only. Therefore, we compute the score of unreferenced evaluation metrics

on the data we collect from the initial run of free topic.

In this part, we use pretrained medium and large DialoGPT (Y. Zhang et al.,

2020) as the scorers of FED. Since FED requires a set of predefined positive and

negative responses to compute relevant likelihood of each evaluation attribute, we

also provide the full list of those responses in Table A.6 in Appendix A. Utterances

of some rating attributes, such as interesting, consistent, fluent, topic, and repetitive

in this case, are available in the official implement of FED (see https://github.

com/Shikib/fed) and we use them off-the-shelf. For other criteria including fun

and robotic, we adapt their positive and negative utterances correspondingly.

As shown in Table 5.9, results of reference-free metrics correspond better than

word-overlap-based metrics and are more encouraging in terms of reference-free met-

rics. FED has the ability of distinguishing repetitive models, but for other criteria,

it correlates weakly or even negatively with human. Meanwhile, despite USR only

correlating marginally with human in terms of consistency and topic loyalty, USR-

DR(f) correlates closest to human among the three sub-metrics, while it performs

best on evaluating consistency and topic loyalty. The system scores of FED and USR
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Table 5.9: Pearson correlation (r) between reference-free metric scores and human
evaluation (free topic run 1), where FEDm and FEDl respectively use medium and
large DialoGPT, USR is the overall USR score computed according to the three
sub-metrics; USRm=USR-MLM, USRc=USR-DR(c) and USRf=USR-DR(f).

Criterion FEDm FEDl USR USRm USRc USRf

Overall 0.590 0.530 −0.230 −0.419 0.046 0.205
Interesting 0.028 −0.042 −0.451 −0.235 −0.238 −0.081
Fun −0.339 0.115 −0.378 −0.319 −0.131 0.032
Consistent 0.236 0.227 0.214 −0.620 0.518 0.652
Fluent −0.138 −0.054 −0.227 −0.374 0.028 0.151
Robotic 0.528 0.461 −0.070 −0.290 0.106 0.191
Repetitive 0.841 0.752 −0.713 0.182 −0.690 −0.568
Topic 0.046 0.004 0.222 −0.754 0.606 0.746

computed on data from first run of free topic are respectively provided in Table A.7

and Table A.8 in Appendix A.

According to the performance of both word-overlap-based and reference-free met-

rics, we can therefore address how accurately existing automatic metrics can measure

dialogue system performance, namely RQ 1 regarding dialogue systems:

• RQ 1: How accurately do existing automatic metrics measure open-domain

dialogue system performance?

We find that, current metrics in dialogue evaluation generally fail to achieve a high

degree of evaluation accuracy due to their poor or even stark low correlation with

human judgement.

5.4.8 Comparison with ConvAI2 Live Evaluation

Since data collected from other live evaluation was previously deemed as useless due

to its negative attributes such as senselessness and offensiveness (Dinan, Logacheva,

et al., 2019), we provide comparisons between the data collected from our first

run of free topic experiment and that from the ConvAI2 live evaluation. Figure

5.13 represents the distribution of words in conversations from our experiment and

ConvAI2, where the abscissa means the number of words and ordinate is the number

of conversations. We observe that the distribution in ConvAI2 live evaluation is
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Figure 5.13: Words per conversation from workers who passed (5.13a) and failed
the quality control (5.13b) in our human evaluation (free run 1); as well as workers
from ConvAI2 live evaluation (5.13c).

rather unbalanced in that vast majority of the conversations in it consist of less

than 10 words. We believe this occurs because no minimal number of inputs is

required, which makes raters prone to end a dialogue in advance of generating a full

conversation. In addition, Figure 5.14 shows the distribution of words in utterances

that are input by workers in free topic run 1 and those in ConvAI2. It can be

found that workers who failed our quality control and who participate in ConvAI2

live evaluation tend to respond with only one word. However, such responses should

generally only occur as greetings at the beginning or the end of a conversation, and a

conversation consists of too many are likely to be less meaningful. In contrast, passed

workers will reply longer utterance when conversing with a system. Moreover, Figure

A.4 and Figure A.5 in Appendix A provide the relative information at character level

about conversations and user input utterances, as well as median number of words

and characters for conversations and inputs in Table A.9 in Appendix A.

Together with the experiment results in aforementioned sections, we can finally

address the RQ 3 in terms of dialogue systems:

• RQ 3: Can more appropriate new methods of evaluation be designed that are

feasible given the limited time and resources available in operational settings?

We successfully design a new dialogue evaluation method which is appropriate and

feasible within limited time and resources. This proposed human evaluation method
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Figure 5.14: Words per input utterance from workers who passed (5.14a) and failed
the quality control (5.14b) in our human evaluation (free run 1); as well as workers
from ConvAI2 live evaluation (5.14c).

for dialogue is more appropriate as it is highly reliable with self-replication exper-

iment at r = 0.969, as well as high degree of rater agreement. Also, this method

can be deployed using reasonable resources according to the reported cost in our

experiment.

5.5 Summary

In this chapter, we proposed a new crowd-sourcing human evaluation method for

the open-domain dialogue system task, as the development of reliable evaluation of

this has been highlighted as a known open-problem. For a dialogue, seven various

evaluation criteria are assessed: interesting, fun, consistent, fluent, topic, robotic,

and repetitive, which is adjustable for further research. We also find an appropriate

approach to controlling the quality of crowd. We overcome previous challenges

and provide a new human evaluation methodology shown as highly consistent, with

results for models correlating at r = 0.969 in two separate data collection runs. In

addition, our evaluation has the advantages of differences in scoring strategies to be

ironed out via score standardization, applicability of standard significance testing,

and increasing the reliability of results.

With the data we collected from the completed experiment, we first analyse

information of human raters and assigned HITs, including the pass rates and elapsed
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time. We then report the average standardized scores at system-level, as well as

significance test. Agreement of human annotators are also examined, showing that

our method has a high rater consistency. We also compute the scores of prevailing

automatic metrics and compare them with our human evaluation results, concluding

that word-overlap-based metrics have perishing performances, while reference-free

metrics perform relatively better but still fail to achieve a very high correlation with

humans.

In conclusion, we propose a new crowd-sourcing approach for the evaluation

of open-domain dialogue systems, which is easy to deploy in a large scale within

appropriate costs and resources. In the future, we hope to use this method for

longitudinal evaluation of dialogue systems to measure improvements over time.
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Chapter 6

Conclusion and Future Work

In this thesis, we have investigated existing problems and challenges in the evalua-

tion of three distinct NLP tasks: machine reading comprehension, question gener-

ation (QG), and open-domain dialogue. To address these problems and challenges

for each task, we respectively developed a new human evaluation method that is

demonstrated to be appropriate and highly reliable, together with the capacity of

be deployed in a large scale within a reasonable budget.

We started with introducing how evaluation effects the development of NLP

technologies and the evaluation challenges encountered in current research, where

we took the BLEU metric as an example in Chapter 1. We then briefly introduced

three distinct tasks which we examined in our investigations, as well as the reasons

of selecting these tasks. We provided a review of a number of commonly applied

evaluation metrics in each task and the issues and problems which need to be address

in their evaluation. Based on this analysis, we identified three research questions

relating to the evaluation of NLP tasks, the identified research questions are as

follows:

• RQ 1: Within each domain of interest, how accurately do existing automatic

metrics measure system performance?

• RQ 2 What are the limitations and disadvantages of the direct application of

evaluation metrics from MT and other domains to entirely distinct tasks for
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system development in each area?

• RQ 3 Can more appropriate new methods of evaluation be designed that are

feasible given the limited time and resources available in operational settings?

After giving a comprehensive review of the evaluation methods and correspond-

ing issues for our three NLP tasks in Chapter 2, we then began to address the

research questions raised task by task in Chapter 3, 4 and 5. For the MRC task, we

designed a new human evaluation method based on Direct Assessment, and showed

that this method has high reliability using a self-replication experiment. We then

used the results of our human evaluation method to compare with automatic eval-

uation metric scores in order to address RQ 1. This showed that not all automatic

metrics can accurately evaluate MRC systems at system-level. We also investigated

the difference between the performances of human evaluation and automatic metrics

when evaluating a single MRC to answer RQ 2. The results show that all current

metrics perform weakly in MRC evaluation at the sentence-level. Finally, we exam-

ined the human rater consistency, and the consequent high rater agreement together

with the reported practical costs in experiments thus addressed RQ 3.

We subsequently moved to the QG task in Chapter 4 where we proposed a

human evaluation method and conducted corresponding experiments. Similarly, we

answered RQ 1 about QG by comparing performance of automatic metrics to results

of our proposed method, showing that such metrics cannot achieve high accuracy

in evaluating QG. Furthermore, in terms of RQ 2, we found that these metrics

entirely rely on human-generated references which is unsuitable for evaluating QG

due to the one-to-many nature which is described in Chapter 1. In addition, we

demonstrated that the proposed QG evaluation method is highly reliable which is

feasible for large scale deployment given limited resources, in regard to RQ 3.

Chapter 5 inquired into the three RQs regarding dialogue evaluation. We again

firstly proposed a new human evaluation method for dialogue, and a self-replication

experiment was included to show how consistent the resulting system scores of this

method can be. We then tested the correlation between our human scores and metric
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scores at the system-level. Results showed that all the automatic metrics achieve

a low correlation with human judgements, of which some traditional metrics even

correlate negatively with human judgements. For RQ 1 therefore, current metrics

are generally incapable of accurately assess dialogue systems. On the meantime, we

addressed RQ 2 regarding the application of metrics from other domains to dialogue

evaluation, showing that this can result in inappropriately discarding systems which

are deemed high quality according to human judgement. Like the previous two tasks,

we also reported high consistency and cost-effectiveness of our proposed human

evaluation method to answer RQ 3 with respect to dialogue.

6.1 Contributions

In this thesis, we mainly focus on solving problems and overcoming challenges in

the evaluation of three distinct NLP tasks by proposing a new human evaluation

method for each. In summary, the contributions to these tasks in this thesis can be

described as follows:

• New human evaluation methods were proposed for each of the NLP tasks that

we examined.

• We provided comprehensive analysis of performances of automatic metrics for

each task compared with human judgements via our proposed methods.

• The details of corresponding crowd-sourcing experiments were introduced and

self-replication experiments were conducted to ensure their reproducibility.

• We additionally proposed a new automatic reference-free evaluation metric for

the QG task.

• Collected data and code has been made available as open-source to encourage

future research.

Generally speaking, we designed a new crowd-sourcing evaluation method for

each task to address their existing evaluation limitations described in Chapter 1
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and 2. Instead of a task-specific evaluation, each proposed method rather acts as

an evaluation standard since the evaluation criteria and settings in it can easily be

adjusted. In the meantime, a quality control approach is necessarily involved in each

proposed method to prevent collection of unusable data, by filtering out such data

from workers who failed the quality control method. Besides, each method included

a self-replication experiment. The nearly perfect correlation between results of this

and initial experiment in each case indicated that our proposed method is highly

reliable and reproducible for all these NLP tasks, where the Pearson correlation

(r) in MRC (Chapter 3), QG (Chapter 4) and dialogue (Chapter 5) achieve 0.986,

0.955 and 0.969, respectively. In addition, since human evaluation methods generally

require to report rater agreement (Ondrej Bojar, Buck, et al., 2014), the consistency

between human raters was examined. Results showed that our proposed method

in each case has a high annotator agreement. The details of these methods and

corresponding experiments are provided, including the designed user interface, total

cost and statistic data such as numbers and pass rate of human workers. We open-

sourced the collected data and the processing scripts to enable application in practice

and encourage future research.

We also examined the performance of the automatic evaluation metrics in each

domain by computing their correlation with human judgements according to the

results of the proposed human evaluation methods. For the MRC task, we found that

prevailing metrics are incapable of evaluating performance at the sentence-level. We

also found such metrics may produce different system rankings, resulting in potential

confusion of ranking MRC systems when distinct metrics are applied. In terms of

QG, similar to MRC, we reported that the applied metrics do not correlate highly

with human judgements, and additionally that they failed to produce consistent

system rankings. In the case of dialogue, we found the performance of the automatic

metrics to be worse since most metrics even failed to achieve a positive correlation

with human evaluation. This revealed that a high quality dialogue system may be

incorrectly filtered out before implementing human evaluation when applying such
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metrics as the common practice in dialogue competitions.

In Chapter 3, we comprehensively analyzed how the choice of α can influence the

statistical quality control method, which can be used to instruct the implementation

of quality control in future research. In addition, we investigated the fluctuation of

system performance when the word lengths of references were changed.

In Chapter 4, we found current metrics do not take into account the one-to-many

nature of QG, we therefore proposed a new unsupervised and reference-free metric.

This metric receives a question together with the passage and answer, and assesses

the input question in a QA manner based on a pretrained language model. Our

results indicate that it can achieve higher correlation with human judgements than

other metrics.

In terms of dialogue evaluation in Chapter 5, it had reported in ConvAI2 that live

evaluation suffer in ineffective because the conversations collected was deemed sense-

less or offensive (Dinan, Logacheva, et al., 2019). Hence, we additionally compared

the data collected from our human evaluation experiment to the data in ConvAI2.

Our results showed that live dialogue evaluation is able to avoid such issues via

following our human evaluation method.

6.2 Future Work

Since we have successfully proposed evaluation methods for three NLP tasks that

used to suffer from known issues, we are interested in overcoming the challenges

that are encountered in evaluation of other NLP tasks, such as multimodal machine

translation, text summarization, automatic code generation. For example, text sum-

marization requires a source document to abstractively shortened into a condensed

summary, which has a specific purpose of providing readers with contents of the given

document in a concise and precise manner (Saggion and Lapalme, 2002). However,

evaluation metrics used for the summarization task, such as ROUGE (Gu et al.,

2016; Nallapati, Zhai, and Zhou, 2017) and BLEU (X. Zhang and Lapata, 2017; Pa-
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sunuru, Guo, and Bansal, 2017), merely produce a overall score, resulting in a lack

of interpretability in terms of the performance of task. In detail, a low metric score

does not give enough information to indicate what aspects a condensed summary

may be weak in. For instance, the summary may be too verbose to be concise, or

it may be far away from the original document causing it to be poorly related to

the original document. In future work therefore, we plan to design a method for

evaluation of text summarization which can take into account its task purpose, of

which the criteria should contain at least concision and precision.In the meantime,

proposing new human evaluation methods for different NLP tasks is useful to en-

able measurement of improvements in corresponding NLP technologies over time,

while such longitudinal evaluation of NLP tasks is our concern in our future work,

following that of machine translation (Graham, Baldwin, Moffat, et al., 2014).

Despite the successful deployment of human evaluation experiments in this the-

sis, these methods still have with limitations. The methods are generally task-

specific and researchers should carefully choose the correct method when applying

them to a certain task. Also, the user interfaces of the evaluation experiments

in different NLP tasks can vary when deploying them on a crowd-sourcing plat-

form, making these methods less convenient. Hence, in the future work we plan

to integrate these methods into a more general framework, of which the func-

tions includes generating the HITs for the deployment on AMT platform, pro-

cessing raw data files, and providing the analysis of collected data. This integra-

tion can continue the preliminary Python program using the PySimpleGUI module

(see https://pysimplegui.readthedocs.io/en/latest/), where a demonstration

that we applied in dialogue evaluation is shown in Figure 6.1. We firstly plan to

integrate MRC, QG and dialogue together, so that researchers on these three do-

main can directly generate corresponding files and receive results and analyses in

future research. In the future, more NLP tasks could be included, such as the

aforementioned text summarization.

In addition, we notice that some systems we included in this thesis, such as

141



Figure 6.1: Demonstration of our Python program which is only currently available
for dialogue evaluation.

the answer distillation MRC system in Chapter 3 and the LSTM-based language

model in Chapter 5, are no longer state-of-the-art (SOTA) to some degree, with the

development of NLP technologies. We plan to conduct experiments on the outputs

of more SOTA systems or models in order to test the performance of our proposed

methods. For instance, GPT-3 is a trained language model consisting of 175 billion

parameters and researchers reported that it is somewhat hard for human annotators

to distinguish between GPT-3 generated news articles and human-written articles

(Brown et al., 2020). We think it is well-motivated to investigate whether our

human evaluation method can accurately evaluate the performance of GPT-3 when

it is applied for open-domain dialogue.

Furthermore, we would like to provide fine-grained analyses on QG and dialogue

systems, following those in MRC in Chapter 3. For example, we can test the per-

formance of a dialogue system on a certain topic, such as pets or food as shown in

Figure 5.10 in Chapter 5, to investigate how to improve system performances using

the collected topic data. Also, our collected dialogue data recorded the change of

topics during the interaction with a dialogue system, it would be interesting to know
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whether changing the current topic can affect system performance.

As reported in Chapter 3, current MRC evaluation metrics failed to correlate

well with human judgment at the sentence-level, a metric that can overcome such

an issue is also one of our concerns in the future. Recent research indicates that pre-

trained language models are capable of correlating more highly at the sentence-level

by training on human assessment data. For example, BERTHA is a BERT-based

evaluation metric trained on data of video captioning human assessment via trans-

fer learning, which has been found it can achieve higher correlation with human

judgement at the caption-level (Lebron et al., 2022). We think the transfer learning

is likewise appropriate for the MRC task since we successfully collected the data of

MRC human evaluation data. A potential scheme would be to utilize a language

model to predict a score of a MRC output, with the goal of training to minimize the

distance, or maximize the correlation, between predicted scores and human scores.

Moreover, our analyses in Chapter 5 revealed that dialogue evaluation metrics gen-

erally perform poorly at the system-level, we think such a transfer learning based

scheme would enable to develop a more appropriate metric for evaluating dialogue

at system-level the as well.

Although the proposed QAScore metric has been demonstrated to outperform

other QG evaluation metrics at the system-level, it is again faced with the aforemen-

tioned issue that it only produces an overall score. We are interested in an approach

of improving QAScore to allow assessing QG systems in different aspects. At this

point, a preliminary idea is to utilize the recently prevailing prompting, a paradigm

that converts various downstream tasks into a language model format (Han et al.,

2021). Recent pretrained models are generally trained on large-scale corpus, such as

RoBERTa that is used in our QAScore metric. Prompting can directly elicit knowl-

edge from these models, Shin et al. (2020b) demonstrated that prompting RoBERTa

can improve its performance on tasks such as sentiment analysis and relation ex-

traction. Therefore, we think applying prompting to RoBERTa-based QAScore

is feasible as different evaluation criteria can be regarded as different downstream

143



tasks. A next step would be to seek prompting templates, for example, the Likert

statements provided in Table 4.1 in Chapter 4 are likely to be suitable for each cri-

terion. Together with the collected data in our QG human evaluation experiments,

we can improve QAScore to achieve a high correlation with human judgement on

all criteria.

Due to the failure of the sub-task in dialogue evaluation, we would like to know

whether any other sub-task is available. This sub-task should be more related to

the main task, and the intention should not be too obvious. Since the personae of a

dialogue system are hidden from workers, we can ask workers about persona-related

questions. For example, if a system has the persona “I love dogs”, we can let workers

to answer “What pet do you think is the favorite of the chatbot: dog, cat or rabbit?

” after the conversation is completed.
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Appendix A

Experiment Design and Results

Table A.1: Average standardized scores for dialogue systems in the second data
collection run; workers were free to choose the topic of conversation (Free run 2);
where the detailed system names are the same as those in Table 5.4; a system with

p means it holds a persona; score for robotic and repetitive have been reversed; n is
number of ratings; systems follow the order in Table 5.4.
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A 623 0.455 0.635 0.629 0.728 0.924 0.922 −0.443 −0.212
B 553 0.344 0.464 0.407 0.554 0.763 0.822 −0.338 −0.266
Ap 539 0.423 0.747 0.763 0.555 0.728 0.474 −0.348 0.040
C 539 0.245 0.576 0.492 0.229 0.585 0.043 −0.545 0.337
Cp 609 0.154 0.453 0.390 0.027 0.544 −0.200 −0.515 0.382
Bp 630 0.260 0.464 0.372 0.560 0.581 0.496 −0.412 −0.238
D 595 0.002 0.009 −0.064 0.389 0.282 0.656 −0.720 −0.541
Dp 679 −0.258 −0.285 −0.304 0.033 0.209 −0.226 −0.550 −0.683
E 567 −0.202 −0.063 −0.044 −0.075 0.300 −0.346 −0.646 −0.539
Ep 511 −0.218 −0.152 −0.143 0.043 0.426 −0.352 −0.702 −0.646
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Table A.2: Average raw scores for dialogue systems in the initial data collection
run (free topic run 1); where the detailed system names are the same as those in
Table 5.4; a system with p means it holds a persona; score for robotic and repetitive
have been reversed; n is number of ratings; systems follow the order in Table 5.4; a
underlined score means the highest score of that evaluation criterion.
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A 798 52.49 53.03 54.07 58.12 61.78 65.24 35.73 39.47
B 798 50.41 51.39 51.68 56.37 64.50 67.84 25.63 35.45
Ap 707 45.53 47.38 46.23 48.52 60.17 47.50 28.30 40.62
C 791 43.96 50.50 47.53 35.85 55.73 33.98 27.35 56.76
Cp 714 41.21 47.13 46.26 39.25 55.05 32.07 21.85 46.84
Bp 707 39.93 41.35 40.06 44.93 53.74 43.72 25.25 30.49
D 707 33.71 30.28 29.95 41.72 45.92 49.07 17.30 21.72
Dp 798 29.38 26.19 27.97 37.53 44.19 35.26 17.46 17.06
E 742 28.99 30.75 30.65 31.27 46.42 23.60 15.10 25.13
Ep 763 28.65 29.34 28.50 29.13 47.07 21.30 17.82 27.41

Table A.3: Average raw scores for dialogue systems in the second data collection
run (free topic run 2); where the detailed system names are the same as those in
Table 5.4; a system with p means it holds a persona; score for robotic and repetitive
have been reversed; n is number of ratings; systems follow the order in Table 5.4; r
is the correlation between current assessment criterion and that in the first run of
free topic.
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A 623 51.67 56.62 56.27 59.21 64.69 64.04 27.11 33.74
B 539 49.07 52.42 50.66 54.88 60.86 63.73 29.57 31.38
Ap 553 50.56 59.95 60.23 54.28 60.61 52.06 27.59 39.22
C 630 45.87 55.60 53.02 45.16 54.70 38.72 24.40 49.50
Cp 539 42.27 51.19 49.61 37.90 54.17 30.42 22.74 49.84
Bp 609 46.71 51.92 49.95 54.62 56.01 52.85 28.48 33.10
D 595 38.17 38.31 35.39 50.99 46.38 57.94 16.09 22.08
Dp 567 30.89 31.07 30.37 38.37 44.64 31.47 21.85 18.48
E 679 31.70 35.67 36.32 35.26 46.91 26.79 18.98 21.99
Ep 511 31.66 33.63 33.26 38.77 51.53 26.99 17.63 19.79

r − 0.959 0.947 0.919 0.880 0.951 0.951 0.783 0.945
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1. Your task is to have 6 conversations with a chatbot, and a different chatbot
will talk to you in each conversation.

2. Before each conversation, you should think of a topic to talk about with the
chatbot (your choice of topic). You will be asked to enter this topic before
the conversation starts.

3. The current topic will be displayed to you throughout the conversation.
4. If the chatbot changes the topic to a new one, you should record this by

updating the conversation topic using the Topic button (bottom left).
5. You are also allowed to change the topic, you should use the same button to

do this (bottom left).
6. At the end of each conversation, you should tell us what you think about

the chatbot.
7. In each conversation, you should type in a minimum of 10 inputs/sentences.
8. The purpose of these HITs where you will generate conversations with chat-

bots is to test how realistic their conversations are with users. In order for
your data to be useful to us we require that your half of the conversation is
also realistic. For example, your data will not be useful to us if you do the
following:
User: Hi
Bot: Hi
User: Hi
Bot: Hi
.. and so on.

9. Another example, if you are too repetitive or your responses are not appro-
priate given what the chatbot has just said, this will not be a useful test for
them. For example, the following conversation is not ok:
User: Hi
Bot: Hi
User: wow (not appropriate response)
Bot: I saw a good movie last night
User: wow (repetitive)
Bot: Do you like football?
User: I have two children and one dog. (not appropriate response)
.. and so on.

10. We need realistic conversations, so please do your best to talk to the bot as if
the bot was another person you actually want to talk to. Obvious attempts
to game the process and ones that don’t make a real effort will unfortunately
be rejected.

11. The chatbot may take a few seconds to respond, please be patient.
12. Please use Chrome and avoid special symbols if possible.
13. There is a feedback box at the end of the HIT. If you encounter any problems,

please enter them in this box or email our MTurk account.

Figure A.1: Instructions shown to crowd-sourcing workers before starting the open-
domain dialogue human evaluation.

179



Figure A.2: The popup window where a worker is given a topic and record the
opinion of this topic, before starting the conversation.

Table A.4: Average raw scores for dialogue systems in the ice-breaker experiment;
where the detailed system names are the same as those in Table 5.4; a system with p
means it holds a persona and the ice-breaker statement is subsequently unknown to
systems without p; score for robotic and repetitive have been reversed; n is number
of ratings; systems follow the order in Table 5.4; r is the correlation between current
assessment criterion and that in the first run of free topic; a underlined score means
the highest score of that evaluation criterion.
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A 721 53.43 53.65 52.35 63.24 67.28 66.97 28.17 42.32
Ap 721 50.21 54.53 53.50 52.84 58.83 53.18 38.87 39.70
B 742 49.55 49.23 47.76 57.79 60.64 62.22 32.56 36.65
C 784 47.93 56.18 53.69 43.15 56.88 40.46 29.61 55.54
Bp 700 44.94 48.83 46.70 49.58 55.86 49.21 25.82 38.61
Cp 658 42.41 47.98 45.48 37.66 54.51 32.50 26.00 52.72
D 728 35.14 30.32 33.13 42.90 49.92 48.51 20.11 21.09
Ep 721 31.58 31.73 30.82 35.44 47.12 27.06 21.90 26.97
E 721 30.09 33.17 31.95 31.14 47.12 24.90 19.10 23.23
Dp 714 27.22 22.56 22.53 35.22 41.70 34.98 17.44 16.09

r − 0.970 0.955 0.918 0.949 0.928 0.972 0.738 0.968
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Figure A.3: Results of significance tests on overall system scores in ice-breaker
experiment, where a colored cell means that the system in the row outperforms that
in the column due to the test; systems and their order follows those in Table 5.4.

Table A.5: System scores of word-overlap-based automatic evaluation metric, where
metrics follows the order in Table 5.8.

System METEOR BLEU-4 ROGUE-L GLEU BLEU-4

A 6.50 15.96 12.73 4.30 1.01
B 6.12 14.73 11.96 4.02 0.91
Ap 7.29 16.63 13.72 4.75 1.33
C 5.95 13.32 11.26 3.77 0.80
Cp 6.16 14.31 11.87 3.94 0.90
Bp 7.09 16.75 13.73 4.69 1.34
D 6.50 16.51 15.00 4.71 1.63
Dp 7.27 18.56 16.28 5.89 2.43
Ep 6.68 18.19 14.96 5.63 2.13
E 6.68 18.19 14.96 5.63 2.13
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Figure A.4: Characters per conversation from workers who passed quality control
(A.4a); failed quality control (A.4b) in our human evaluation; ConvAI2 live evalua-
tion (A.4c).
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Table A.6: Positive and negative utterances employed for the FED metric. For
criteria that are available in original FED (interesting, consistent, fluent, topic and
repetitive), we use their utterances off-the-shelf. In addition, we adapt the utterances
for criteria run and robotic.

Criterion Positive Negative

Interesting Wow that is really interesting. That’s not very interesting.
That’s really interesting! That’s really boring.
Cool! That sounds super inter-
esting.

That was a really boring
response.

Fun Wow that is very fun. That’s not very fun.
Chat with you is enjoyable. I am not having fun.
You are fun.

Consistent - That’s not what you said earlier!
Stop contradicting yourself!

Fluent That makes sense! Is that real English?
You have a good point. I’m so confused right now!

That makes no sense!

Topic - Stop changing the topic so much.
Don’t change the topic!

Robotic - You are robot.
You do not sound like a person.

Repetitive - Stop saying the same thing
repeatedly.
Why are you repeating yourself?
Stop repeating yourself!

Table A.7: FED scores of different evaluation criteria at system-level.

Table A.8: USR and its sub-metric scores at system-level.

Table A.9: Median numbers of words and characters in conversations and inputs
provided by workers who passed quality control; failed quality control in our human
evaluation; ConvAI2 live evaluation.

Passed Failed ConvAI2

Characters
Median in an Input 27 22 16
Median in a Conversation 249 188 105

Words
Median in an Input 8 6 4
Median in a Conversation 63 48 28
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Figure A.5: Characters per input utterance from workers who passed quality control
(A.5a); failed quality control (A.5b) in our human evaluation; ConvAI2 live evalua-
tion (A.5c).
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