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Abstract

Deep Learning-based Signal Processing

Approaches for Improved Tracking of Human

Health and Behaviour with Wearable Sensors

Eoin Brophy

This thesis explores two lines of research in the context of sequential data and
machine learning in the remote environment, i.e., outside the lab setting - using data
acquired from wearable devices. Firstly, we explore Generative Adversarial Networks
(GANs) as a reliable tool for time series generation, imputation and forecasting.
Secondly, we investigate the applicability of novel deep learning frameworks to
sequential data processing and their advantages over traditional methods. More
specifically, we use our models to unlock additional insights and biomarkers in
human-centric datasets.

Our first research avenue concerns the generation of sequential physiological data.
Access to physiological data, particularly medical data, has become heavily regulated
in recent years, which has presented bottlenecks in developing computational models
to assist in diagnosing and treating patients. Therefore, we explore GAN models
to generate medical time series data that adhere to privacy-preserving regulations.
We present our novel methods of generating and imputing synthetic, multichannel
sequential medical data while complying with privacy regulations. Addressing these
concerns allows for sharing and disseminating medical data and, in turn, developing
clinical research in the relevant fields.

Secondly, we explore novel deep learning technologies applied to human-centric
sequential data to unlock further insights while addressing the idea of environmentally
sustainable AI. We develop novel deep learning processing methods to estimate human
activity and heart rate through convolutional networks. We also introduce our ‘time
series-to-time series GAN’, which maps photoplethysmograph data to blood pressure
measurements. Importantly, we denoise artefact-laden biosignal data to a competitive
standard using a custom objective function and novel application of GANs. These
deep learning methods help to produce nuanced biomarkers and state-of-the-art
insights from human physiological data.

The work laid out in this thesis provides a foundation for state-of-the-art deep
learning methods for sequential data processing while keeping a keen eye on sustain-
able AI.

xx



Chapter 1

Introduction

This thesis showcases the capability of machine learning (ML) and deep learning (DL)

systems in remote monitoring of human health and performance. Furthermore, the

research presented herein demonstrates the significant advantage that our novel ML

and DL approaches offer over classical signal processing methods. We also benchmark

our techniques against other ML methods from recent literature, which previously

have been compared to classical machine learning with signal processing derived

features. We centre this work around human health monitoring from a medical

perspective. It is essential to set out that these ML techniques aim to augment and

not replace decision-making protocols currently in place.

1.1 Motivation and Contribution

The Organisation for Economic Co-operation and Development (OECD) has indicated

that Ireland (as of 2020) had 3.5 practising doctors per 1000 inhabitants, around the

OECD average. Although the population uses hospitals more efficiently, healthcare

expenditure has risen from €12.7 billion in 2006 to €23.8 billion in 2019 (pre-COVID),

with chronic health accounting for over 75% of spending in 2017 [1].

In most countries, year on year, healthcare spending is increasing as a percentage

of Gross Domestic Product (GDP) [2]. Around the globe, Health Departments

have signalled a need to shift the paradigm of treating ill people from a reactive
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treatment-based model to one where the focus is increasingly on keeping people

healthy, preventing illness and promoting health and wellbeing [3].

Future healthcare will be guided by core principles, including greater emphasis

on patient-centredness and pressures to move toward new payment models, such as

outcomes-based charging. Advances in digital health technologies, including mHealth

and MedTech, can contribute significantly to a transformation in healthcare delivery,

e.g. enabling proactive care through low-cost, low-power monitoring devices and

applications using advanced data analytics that enables greater personalisation of

treatments. These new digital health technologies have the potential to reduce the

burden on the finite and relatively expensive resources of clinical institutions and

care centres whilst providing very cost-effective modes for diagnostics, monitoring

and treatment of larger population sets.

There is a growing public sentiment concerning data privacy and, in particular,

how sensitive data is shared [4], [5]. As a result, privacy has moved to the forefront

of the population’s thinking, and recently individuals want control over how their

information is collected, stored and processed [6], [7].

Data protection regulations exist worldwide to protect individuals’ sensitive

data, such as the General Data Protection Regulation (GDPR) in Europe, the

Health Insurance Portability and Accountability Act (HIPAA) in the USA and

Personal Information Protection Law (PIPL) in China. Medical data is considered

personal sensitive data and generally afforded a higher level of protection under

these regulations. HIPAA is perhaps the looser of the three regulations listed here as

the HIPAA Privacy Rule states: “De-identified health information created following

these methods is no longer protected by the Privacy Rule”. In other words, when

the data is de-identified, it is no longer protected and may be used for secondary

purposes [8]. PIPL and GDPR present a more robust framework for protecting

personal health data. There are many steps required for the dataset processor to

consider when processing sensitive personal information, such as privacy impact

assessment, encryption, consent and notification to the data subjects about secondary
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uses of their data [9], [10].

While adhering to the more stringent data protection regulations ensures we act

in good faith with the principles set out in front of us, Rocher et al. found that

anonymised datasets are unlikely to satisfy the standards set out in the GDPR [11].

This is concerning for medical data records, particularly when discussing physiological

time series data (we often discuss ECG in this thesis). Electrocardiogram (ECG)

characteristics made it suitable for subject identification even with de-identification

methods in place. It is unique to each person and possible to identify subjects using

only the ECG waveform [12].

Recent work has suggested that many patients disapprove of having their health

data shared with anyone, even when the primary identifiers have been removed;

instead, they want control over what can be accessed [13]. Overall this is essential

to the thesis as a significant driver comes from a clinical collaborator who has

access to large digitised datasets of human biomedical signals. These datasets have

massive value to the collaborator in that they can use the data for training and

upskilling clinicians and use the data to train in-house machine learning systems for

the classification and diagnosis of various pathologies. Data like this is precious but

often is constrained in how it may be used and ends up with a lot of unrealised value.

Furthermore, due to privacy regulations, the institutions that collected the datasets

cannot easily share them for secondary research purposes unless they received explicit

consent from participants in the form of an ‘opt-in’ clause in the original data

collection experiment. It is essential to state here that more than just an ‘opt-in’

clause is required to disseminate these personal sensitive datasets; anonymisation is

also one such principle that must be adhered to. However, many of the datasets were

collected before data protection regulations without the foresight of these problems.

These legacy issues begin to create a bottleneck for sharing these datasets and lead to

stagnation in clinical and research progress and form a large part of our motivation

for the work carried out in this thesis. It is necessary to state that other important

factors in modern machine learning, such as bias, inclusion, fairness, transparency
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etc., should be considered when designing a trustworthy AI system. However, these

are not a focus for our clinical driver laid out above.

Our contributions towards the above are twofold. Firstly, our pioneering work

developing recurrent GANs for time series generation addresses the issue surrounding

disseminating sensitive medical data. With appropriate safeguards, this type of

sensitive personal data can be used for further upskilling of clinicians and medical

professionals, along with improved machine learning models for augmenting decision-

making processes in clinical and remote environments. To that end, we contribute

the only review of existing GAN technologies concerned with processing time series

data in the literature. This allows us to firmly place ourselves among the current

state-of-the-art and only further developments in this space. Secondly, we contribute

novel deep learning technologies for discovering new pathological biomarkers. These

improved analytics, combined with our first contribution, allow for the development

of better decision-making systems. Both push state-of-the-art deep learning methods

for human physiological data processing and improve end-user and patient outcomes.

1.2 Research Questions and Hypothesis

This thesis delves into the areas of human physiology, machine learning and, by

extension, deep learning. We investigate the processing of human physiological data

using novel artificial intelligence models to unlock additional insights in the data, be

it pathological biomarkers or otherwise, that would not be available before applying

AI-based methods described in this thesis. We explore machine learning techniques

(i.e., feature extraction and representation learning) that efficiently perform tasks

such as classification on physiological datasets. In terms of deep learning, we ex-

plore the possibility of using physiological signals to synthesise and impute data

with GANs and denoise noisy physiological signals using GANs and convolutional

neural networks (CNNs). We use GANs to structure our hypothesis, given that

GANs are a new development and have been underexplored in the context of biomedi-

cal time series data (compared to image data progress in the computer vision domain).
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Hypothesis: We hypothesise that GANs can be used to give competitive

performance in a range of applications, from data generation to privacy preservation

to data cleaning.

Research questions: Based on our hypothesis, we have set out two research

questions (RQ) that arise in these areas and shape the content of this thesis:

1. Can we provide a foundation for time series generation with Generative Ad-

versarial Networks? This question addresses the effectiveness of GANs as

a generative model and how the technology can be applied to physiological

data in terms of synthesising, imputing and cycling time series modalities.

Chapters 2, 3 and 5 visit these areas.

2. Can we successfully leverage novel deep learning-based models to process

human physiological signals and return state-of-the-art insights from the data?

Chapters 4–6 showcase the capability of our models to do such.

An important aspect of GAN research is that time series signals have not been

given significant attention until relatively recently. As a result, most GAN-related

developments have taken place in the computer vision domain with image and media

data. We are among the initial researchers in the GAN domain focused on time

series developments. With growing focus on data privacy and the introduction

of the GDPR in Europe, studies involving sensitive personal data such as human

physiological signals have become increasingly complex to commence. The study

often requires anonymisation of the data and navigation of complex regulatory

frameworks. By synthesising physiological time series signals, we can facilitate the

sharing and dissemination of synthetic physiological data that adhere to strict privacy

regulations, often a burden for researchers and clinicians alike, which bottlenecks

clinical research and development. In essence, we retain the essential characteristics

of the datasets while side-stepping the associated privacy issues.
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1.3 Deep Learning for Signal Processing

We explore deep learning and machine learning in this thesis and provide a background

to the fundamentals of this technology. The main approaches for solving problems

with AI are supervised and unsupervised learning. The significant difference between

these two approaches is that one uses labels to predict outcomes and the other does

not. Generally, supervised learning is applied to the problems of classification and

regression. On the other hand, unsupervised learning is commonly used for clustering

and dimensionality reduction. This thesis primarily applies supervised learning to

train deep learning architectures. To establish a foundation of the architectures

this thesis uses, we describe feedforward neural networks and the backpropagation

algorithm for supervised learning.

1.3.1 Neural Networks

Neural Networks (NN) are comprised of several layers, with each layer holding a

specified number of neurons. Neurons in machine learning are computational units

designed to be loosely analogous to neurons in our brain. They take an input(s) a(0)

and output a(1) = f(Wa(0) +b), where W is the weight matrix, b the bias and f is the

activation function. The activation function is a function used by the neurons/nodes

in the network to compute a weighted sum on the input and biases and is used to

get an output of the neuron. Some of the more common activation functions are

the rectified linear units, sigmoid, and tanh functions. These are generally referred

to as the non-linear element of the neuron and are computed for the output of it.

Equation (1.1), shows the mathematical expression of the sigmoid function, and

we can observe that it is a non-linear function. It is common for these activation

functions to squash/ transform their outputs; hence choosing activation functions

becomes an important part of NN architecture design.

f =
1

(1 + e−x)
(1.1)
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A neural network then becomes a collection of these neurons where the output of

one neuron in the previous layer is used as the input of another neuron in the next

layer. Figure 1.1 illustrates a simple feedforward Neural Network with two hidden

layers.

Input Layer ∈ ℝ⁸ Hidden Layer ∈ ℝ⁵ Hidden Layer ∈ ℝ⁴ Output Layer ∈ ℝ¹
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Figure 1.1: A simple feedforward Neural Network with two hidden layers and one
neuron in the output layer.

These networks are essentially a highly complex function, often with over tens of

thousands of parameters capable of learning very difficult tasks. For the networks to

become problem solvers, they must be trained using an optimisation algorithm and

a defined cost function.

In simple terms, the cost/loss function’s purpose is to quantify to the network

how far or near its prediction is from the actual value. Some common loss functions

for training NNs are binary cross entropy (commonly used for classification problems)

and mean squared error (commonly used for regression problems). The mean squared

error is the most commonly used cost function for the works in this thesis and is

measured as the average of the sum of squared differences between predicted and

actual values, see equation (1.2).

MSE =

∑n(y − ŷ)2

n
(1.2)
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Where n is the number of samples, y is the actual value and ŷ is the predicted

values. Loss functions are of no practical use to the network without an optimisation

algorithm to minimise their value.

Gradient descent [14] is often the optimisation algorithm chosen for finding the

local minimum of a function, and the algorithm for computing this gradient efficiently

is called backpropagation [15]. The derivative of the function f(x) allows us to find

the slope of the function at point x. Gradient descent uses this derivative, f ′(x),

to minimise a function as it tells us how a small change in the input will result in

an improvement in the output. On the other hand, backpropagation (backprop)

calculates the gradient of the cost function with respect to the weights and biases of

the network by allowing the information from the cost function to flow backwards

through the network. Hence, when we think about a network learning, it can be

simplified to minimising a cost function by calculating the gradients on its information

(backprop), then performing gradient-based optimisation, and finally, updating the

respective parameters (θ) of the network.

We have covered the basics of architecture and learning in neural networks and

will now discuss the deep learning neural architectures used in this thesis. They

provide a foundation for several data processing techniques, but we will look at them

with respect to signal denoising, imputation and synthesis.

1.3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have contributed tremendously to the success

of machine learning since their introduction in the 1990s. They are an example of

neuroscientific principles influencing deep learning [16], in that they can be designed

to mimic the processing of images in the visual cortex of the human brain [17]. Fully

automatic learning of a CNN allows the neural network to extract features that are

salient in the input data across different layers.

CNNs are simply neural networks at their core; however, their name comes from

the fact that they use the convolution operation in place of the matrix multiplication

8
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in at least a single layer. Convolution is an integral that expresses the overlap of

function g with function f as g is shifted [18] and is defined in equation (1.3).

f ∗ g =

∫
f(a)g(t− a)da (1.3)

The motivation behind using convolutional layers is that convolution has the

following mechanisms; sparse interactions, weight sharing and equivariant represen-

tations that serve to improve machine learning systems. CNNs are also invariant

to certain transformations in the input and work with inputs of varying sizes which

makes this choice of network more flexible over other NNs [19]. Figure 1.2 illustrates

a CNN with typical operations found in these networks, such as; max-pooling and

convolution. Max-pooling is one of several operations used to bring features together.

It is a way of downsampling the feature space as well as bringing together information

from different parts of the network. Pooling introduces favourable properties for

tasks such as object classification and detection.

Max-Pool Convolution Max-Pool Dense

8@128x128

8@64x64

24@48x48
24@16x16 1x256

1x128

About

NN-SVG
Publication-ready NN-architecture schematics.
Download SVG

FCNN style LeNet style AlexNet style
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 Color 1
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Border Width 

Spacing Between Filters 

 Show Layer Labels
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+

Op:

" 256
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+

Figure 1.2: Convolutional neural network with max-pooling and convolutional
operations followed by a dense or fully connected layer.

Given the proper training, a CNN provides for implementing high accuracy

classifiers without the need for signal processing or feature engineering knowledge.

In ML architectures, feature learning or representation learning is often used, and

it is a set of techniques that allows a network to automatically discover feature

patterns in the input data. CNNs specialise in data with a grid-like topology. This

has contributed to their success in practical applications, particularly with image

classification, where images can be considered a 2-D grid of pixels. Recently, CNNs
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have been used with time series signals to achieve high-quality signal denoising

performance; we can consider a time series signal as a 1-D grid of data dependent

on time. We apply CNNs to our work and discuss their uses further in Chapters 4

and 6.

1.3.3 Autoencoders

An autoencoder (AE) is an unsupervised learning algorithm that applies backpropa-

gation, setting the target values to be equal to the inputs in an attempt to replicate

the input to its output. It has traditionally been used for dimensionality reduction

or feature learning. The network consists of an encoder and decoder. The encoder

can be represented by the function h = f(x) where h is a compressed hidden layer

that describes a code to represent the input x. Conversely, the decoder is represented

via a reconstruction r = g(h). An autoencoder is visualised in Figure 1.3 in its most

straightforward terms.

x

f

h

g

r

Figure 1.3: Autoencoder Model that maps an input x to an output r through the
embedded representation h. The encoder block is designated here as f and the
decoder as g.

Autoencoders are limited to what they can copy from input to output because

simply learning to set the output of the decoder equal to the input means the model

will not be useful. Therefore, these restrictions on the model enable the AE to learn
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valuable data properties. As mentioned above, AEs have been historically used for

dimensionality and feature learning works [20]. Recently, developments in latent

variable models have permitted autoencoders into the generative modelling space, as

we will look at in more detail in Chapter 2.

1.3.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are neural networks specialised in processing

sequential data whose values take the form of x(1), x(2), ..., x(t). RNNs take ad-

vantage of parameter sharing, making it possible for the model to generalise across

samples of different lengths and share statistical strengths across various positions in

time [16]. Figure 1.4 illustrates a diagram of an RNN.

Yt

ht

Xt

Y0

h0

X0

Y1

h1

X1

Yn

hn

Xn

Output
Layer

Hidden
Layer

Input

Time

Rolled RNN Unrolled RNN

Figure 1.4: Rolled RNN (left) and Unrolled RNN (right). Where Xt is the input, ht
is the hidden state and Yt is the output, all at time t.

The output Y at time t is defined in equation (1.4).

Yt = f(ht, wy) = f(wy · ht + by) (1.4)

Where f is the activation function used, ht is the hidden state at time t, wy are

the weights associated with the hidden to output units/layers, and by is the bias

associated with the feedforward layer.

It is important to note that for training RNNs, the backprop algorithm is edited

to include the unfolding in time to train the parameters of the network, known as
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backpropagation through time (BPTT). This training algorithm is computationally

expensive, O(τ), and cannot be reduced as the forward and backward passes through

the unrolled graph are inherently sequential. Here, τ is the amount of timesteps

present in the signal.

RNNs form the basis of the sequence-based neural networks used in this thesis

for processing physiological time series data. We discuss RNNs and their cell types

in further detail in Chapter 2.

1.3.5 Generative Adversarial Networks

Generative Adversarial Networks (GANs) have been gaining a lot of traction amongst

the deep learning research community since their inception in 2014 [21]. Their ability

to generate and manipulate data across multiple domains has contributed to their

success. While the main focus of GANs to date has been in the computer vision

(CV) domain [24], they have also been successfully applied to others, such as natural

language processing (NLP). In addition, there has also been a movement toward the

use of GANs for time series and sequential data generation and forecasting.

A GAN consists of two neural networks, namely a generator and a discriminator.

The generator G takes latent noise z ∈ Rr and generates synthetic data. The

discriminator D determines if the generated data is real or fake. The generator

attempts to maximise the failure rate of the discriminator while the discriminator

aims to minimise it, see Figure 1.5. The GAN model converges upon reaching the

Nash equilibrium. The two networks are locked in a two-player minimax game

defined by the value function V(G,D) (1.5), where D(x) is the probability that x

comes from the real data rather than the generated data [21].

min
G

max
D

V (G,D) = Ex∼pdata(x)

[
log
(
D(x)

)]
+Ez∼pz(z)

[
log
(

1−D(G(z))
)]

(1.5)

In Equation (1.5), Ex∼P (x)[f(x)] represents the expectation of f(x) with respect
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z xfake
G(z)

generator

pθ(z)

xreal
pdata(x)

x real?
D(x)

discriminator

Figure 1.5: Generative Adversarial Network

to P (x). In probability and statistics, the expected value is a generalisation of the

weighted average that is calculated by multiplying each of the possible outcomes by

its likelihood to occur and summing over all outcomes. E[X] =
∑
xf(x), for discrete

random variables and E[X] =
∫∞
−∞ xf(x)dx, for continuous random variables.

Given the importance of GANs in subsequent work in this thesis, in the next

chapter, we explore this technology in-depth and provide a taxonomy (currently

missing in the literature) to enable researchers to understand the variations and

applicability of variants better.

1.4 Thesis Outline

We approach our research from the following two perspectives:

1) Applying novel machine learning and deep learning techniques, namely GANs,

to synthesise and impute continuous physiological time series data. This line of

work aims to solve the issue of privacy and dissemination of personal sensitive

data, improving the clinical training and development pipeline that is currently

bottlenecked.

2) Use novel AI techniques to unlock further biomarkers from health data collected

using simple, low-power wearable devices. The expected outcome from this line of

work is improved decision-making systems for medical professionals while keeping an

eye on sustainable AI.

The organisation of this thesis is as follows:

• Chapter 2 provides a review on time series GAN-variants from the continuous

and discrete perspectives. We analyse the GAN-variants that deal with common
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problems encountered in the literature towards improved time series generation

and augmentation.

• Chapter 3 showcases our novel deep learning method for generating clean

multichannel physiological data. We present our multichannel GAN architecture

and custom loss function with a novel penalisation term for improved data

generation compared to more standard methods.

• Chapter 4 demonstrates, through using a simple optical measurement, used

conventionally for heart rate detection in wrist-worn sensors, that we can

provide competitive heart rate and human activity recognition simultaneously

at low sampling rates.

• Chapter 5 develops machine learning methods capable of inferring blood

pressure from a single optical photoplethysmogram sensor alone. We trained

our framework across distributed models and data sources to mimic a large-

scale distributed collaborative learning experiment that could be implemented

across low-cost wearables. Our time-series-to-time-series generative adversarial

network is capable of high-quality continuous blood pressure generation from a

single optical signal.

• Chapter 6 presents an overview of two frameworks to denoise physiological

signals. We showcase the first example of a GAN capable of EEG artefact

removal that is generalisable to more than one artefact type. Our model provides

a competitive performance in advancing the state-of-the-art deep learning EEG

denoising techniques. We also propose a custom loss function capable of

denoising electrode motion artefact in ECG data to a higher standard than

other, more common loss functions. We implement our custom loss function

with a convolutional neural network to return high-quality ECG, suitable for

calculating key cardiac metrics from a previously unobtainable state.

• Chapter 7 concludes the thesis. Future directions are also discussed with

respect to the different research areas explored in this thesis.
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Chapter 2

Generative Adversarial Networks

in Time Series: A Survey and

Taxonomy

2.1 Introduction

Generative adversarial network studies have grown exponentially in the past few years.

Their impact has been seen mainly in the computer vision field with realistic image and

video manipulation, especially generation, making significant advancements. While

these computer vision advances have garnered much attention, GAN applications

have diversified across disciplines such as time series and sequence generation. As a

relatively new niche for GANs, fieldwork is ongoing to develop high-quality, diverse

and private time series data. In this chapter, we contribute a review towards GAN

variants designed for time series related applications. This allows us, in later chapters,

to place ourselves at the forefront of the developments with this technology.

We provide a review of current state-of-the-art and novel time series GANs and

their solutions to real-world problems. GANs are a flexible solution to both of our

presented issues in Chapter 1 that may help us address these challenges in everything

from data sharing and signal processing to training downstream signal processing
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models. The applicability of GANs to time series data can solve many issues that

current dataset holders face. Data shortage is often an issue, and GANs can augment

smaller datasets by generating new, previously unseen data. Data can be missing or

corrupted in cases; GANs can impute data, i.e., replace the artefacts with information

representative of clean data. GANs are also capable of denoising signals in the case

of corrupted data. Another issue is that data protection, privacy, and sharing have

become heavily regulated; GANs can ensure an extra layer of data protection by

generating synthetic and differentially private datasets containing no risk of linkage

from source to generated datasets.

Several methods have been used in the past to generate synthetic data. One

such method is the autoencoder which is designed to efficiently learn an informative

representation of an input in a small dimensional space and reconstruct the encoded

data back such that the reconstructed input is similar as possible to the original

one, see Chapter 1 for further details. The AE model is made of an encoder and

decoder neural network, as shown in Figure 2.1. However, other generative models

have emerged as front-runners due to the quality of the generated data and inherent

privacy protection measures.

Encoder Decoder

Input Reconstructed
Output

Compressed
Representation

Figure 2.1: Autoencoder Model

Generative Adversarial Networks have been gaining a lot of traction amongst the

deep learning research community since their inception in 2014 [21]. Their ability

to generate and manipulate data across multiple domains has contributed to their

success. While the main focus of GANs to date has been in the CV domain, they

have also been successfully applied to others, such as NLP. There has also been a

movement towards the use of GANs for time series and sequential data generation,

16



Deep Learning Signal Processing

and forecasting.

A GAN is a generative model consisting of a generator and discriminator, typi-

cally two neural networks models. In recent years GANs have demonstrated their

ability to produce high-quality image and video generation, style-transfer, and image

completion. They have also been successfully used for audio generation, sequence

forecasting, and imputation.

Time series data generation is not a novel concept in that it has long roots seeded

in regression. Furthermore, it initially began as forecasting of timesteps rather than

whole sequence generation. One of the most used time series forecasting methods was

autoregressive (AR) models. Aside from forecasting data points, AR models focus

on preserving the temporal dynamics of a sequence. However, they are inherently

deterministic in that no randomness is involved in the calculation of future states of

the system. This means that AR models are not genuinely generative or probabilistic.

For an AR model, the goal is to produce the next time step (xt+1) in a sequence

as a function of the previous n time steps, where n is the order of the model. The

formula for a classic AR model is given in Equation (2.1).

xt+1 = c+ θ1xt + θ2xt−1 + ε (2.1)

Here, xt is the value of the sequence at time t, θ is the model parameters, c is a

constant, and ε is the error term usually chosen as normally distributed noise.

Autoregression was a step shy of time series synthesis. That ultimately came in

the form of directed generative networks. When using the term directed, we mean a

model where the edges are directed and thus, indicates which variable’s probability

distribution is defined in terms of another. In other words, this is a structured

probabilistic model with conditional probability distributions.

There are several generative models, from Variational Autoencoders (VAEs) and

RNN variants to GANs, which have their pros and cons. For example, VAEs use

learned approximate inference to produce synthetic samples efficiently. An inference

problem is simply using the value of some variables or probability distributions to

17



Deep Learning Signal Processing

predict other values or probability distributions. Approximate inference is when

we seek to approximate a true distribution, say p(y|x), by seeking an approximate

distribution q(y|x). However, this network approximation conducted by VAEs means

that their generated data quality can be degraded compared to samples generated

by GANs. GANs generate much more realistic data and, as such, have emerged as a

front-runner in synthetic data generation. However, they are more complicated to

optimise due to the proceeding challenges.

One of the significant challenges of GANs lies in their inherent instability, which

makes it difficult to train. GAN models suffer from issues such as non-convergence,

diminishing/vanishing gradients, and mode collapse. A non-converging model does

not stabilise and continuously oscillates, causing it to diverge. Diminishing gradients

prevents the generator from learning anything as the discriminator becomes too

successful. Mode collapse is when the generator is trained without updates to

the discriminator and the generator finds optimal data to fool the discriminator,

producing only uniform samples with little-to-no variety.

The second challenge of GANs lies in its evaluation process. With image-based

GANs, researchers have reached a loose consensus [22] surrounding the evaluation

of the generated distribution estimated from the training data distribution. Unfor-

tunately for time series GANs, due to the comparatively low numbers of papers

published, there has not been an agreement reached on the generated data’s evalua-

tion metrics. There have been different approaches put forward, but none established

as a front runner in the metrics space as of yet. Accordingly, we will propose solutions

specifically useful to our tasks.

We define a time series as a sequence of vectors dependant on time (t) and can

be represented as xt = x1, ..., xn for continuous/real-time and discrete-time. The

time series’ values can either be defined as continuous or discrete and, depending

on the number of values recorded, are univariate or multivariate. In most cases, the

time series will take either an integer value or a real value.

As Dorffner states, a time series can be viewed, from a practical perspective, as
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a value sampled at discrete steps in time [23]. This time-step can be as long as

years to as short as milliseconds, for example. We define a continuous time series as

a signal sampled from a continuous process, i.e. the function’s domain is from an

uncountable set. In contrast, a discrete time series has a countable domain.

In this chapter, given the relevance of GANs to subsequent solutions to deep

signal processing for tracking human health and performance, we present the first

complete review and taxonomy of time series GANs, namely discrete and continuous

variants, their applications, architecture, loss functions and how they have improved

on their predecessors in terms of variety and quality of their generated data. We also

contribute by including experiments for the majority of time series GAN architectures

applied to time series synthesis. A list of the reviewed GANs and datasets are available

online 1.

2.2 Related Literature Reviews on GANs

There has been a handful of high-quality GAN review papers published in the past

few years. For example, Wang et al. takes a taxonomic approach to GANs in

Computer Vision [24]. The authors split GANs into architecture variants and loss

variants. While they include applications of GANs and mention their applicability

to sequential data generation, the work is heavily focused on media manipulation

and generation. The authors in [25] breakdown GANs into their constituent parts.

They begin by discussing the algorithms and architecture of various GANs and their

evaluation metrics, then list their surrounding theory and problems such as mode

collapse, amongst others. Finally, they discuss the applications of GANs and provide

a very brief account of GANs used for sequential data. Gonog and Zhou [26] provide a

short introduction to GANs, their theory and explores the variety of plausible models,

again listing their applications in image and video manipulation with a mention of

sequential data (NLP). In another review paper [27], the authors give an overview

of GAN fundamentals, variants, and applications. Sequential data applications are

1https://github.com/sheqi/GAN_Review/tree/master/GAN_TS
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mentioned in the form of music and speech synthesis.

As with most review papers, Yinka-Banjo and Ugot give an introduction and

overview of Generative Adversarial Networks [28]. However, they also review GANs

as adversarial detectors and discuss their limitations applied to cybersecurity. Yi,

Walia, and Babyn [29] give a review of GANs and their applications in medical

imaging, how they can be used in clinical research and potentially deployed to help

practising clinicians. There is no mention of time series data use cases.

A recurring theme in these papers focuses on GAN variants which have mostly

been applied to the computer vision domain. To the best of our knowledge, no review

has been conducted with the main focus on time series GANs. While these reviews

have mentioned the application of these GANs in generating sequential data, they

have scratched the surface of what is becoming a growing body of research.

We contribute to lessening this gap by presenting our work which is concerned with

presenting the latest up-to-date research around time series GANs, their architecture,

loss functions, evaluation metrics, trade-offs and approaches to privacy preservation

of their datasets.

2.3 Generative Adversarial Networks

GANs belong to the family of generative models and are an alternative method of

generating synthetic data that do not require domain expertise. They were conceived

in the paper by Goodfellow in 2014, where a multi-layer perceptron was used for both

the discriminator and the generator [21]. Figure 2.2 shows a simple example of the

GAN architecture and the game that the neural network models play. Radford et al.

(2015) subsequently developed the deep convolutional generative adversarial network

(DCGAN) to generate synthetic images [30]. Since then, researchers have continuously

improved on the early GAN architectures, loss functions, and evaluation metrics

while innovating on their potential contributions to real-world applications. To

appreciate why there has been such concerted activity in the further development of

GAN technologies it is important to understand the limitations of early architectures
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and the challenges these presented. We describe these next, and in so doing, prepare

the reader for the particular manifestation of these challenges in the more specific

context of time series.
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Figure 2.2: Generative Adversarial Network

2.3.1 Challenges

There are three main challenges in the area of time series GANs, i.e., training stability,

evaluation and privacy risk associated with synthetic data created by GANs. We are

going to explain these three challenges as follows.

Training stability. The original work [21] has already proved the global

optimality and the convergence of GANs during training. It still highlights the

instability problem that can arise when training a GAN. Two problems are well-

studied in the literature 1. vanishing gradients and 2. mode collapse. The vanishing

gradient is caused by directly optimising loss presented in equation (1.5). When

D reaches the optimality, optimising the equation (1.5) for G can be converted

to minimising the Jensen-Shannon (JS) divergence (details of derivation can refer

to section 5 in [24]) between the real data distribution pr and the generated data

distribution pg:

LG = 2 · JS(pr‖pg)− 2 · log2 (2.2)
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LG stays constant (log 2 = 0.693) when there is no overlap between pr and pg. The

gradient for G using this loss is near 0 in the situation where the distributions are far

apart. Non-zero gradient for G only exists when pr and pg have substantial overlap.

In practice, the possibility that pr and pg are not intersected or have negligible

overlap is very high [31]. In order to get rid of the vanishing gradient problem for G,

the original GAN work [21] highlights that the minimisation of

LG = −Ex∼pg log[D(x)] (2.3)

for updating G. This strategy is able to avoid the vanishing gradient problem but

leads to the mode collapse issue. A mode is simply an output that contains either

real (pr) or generated (pg) data. A single mode means the generator only produces

a single type of output. Optimising equation (2.3) can be converted to optimising

the reverse Kullback–Leibler (KL) divergence. KL is given in equation (2.4), where

pr is the real data distribution, pg is the generated data distribution and n is the

number of samples in the data. When pr contains multiple modes, pg chooses to

recover a single mode and ignores other modes when optimising the reverse KL

divergence. Considering this case, G trained using equation (2.3) might be only able

to generate few modes from real data. These problems can be amended by changing

the architecture or the loss function, which are reviewed by Wang et al. [24] in detail.

KL(pg||pr) =
n∑
i=0

prlog(
pr
pg

) (2.4)

Evaluation. A wide range of evaluation metrics has been proposed to evaluate

the performance of GANs [22], [32]–[34]. Current evaluations of GANs in computer

vision are normally designed to consider two perspectives i.e., quality and quantity

of generated data. The most representative qualitative metric is to use human

annotation to determine the visual quality of the generated images. Quantitative

metrics compare statistical properties between generated and real images i.e., two-

sample tests such as maximum mean discrepancy (MMD) [35], Inception Score [36]
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and Fréchet Inception Distance (FID) [37]. Contrary to evaluating image-based

GANs, it is difficult to evaluate time series data from human psycho-perceptual sense

qualitatively. In terms of qualitatively evaluating time series based GANs, it normally

conducts t-SNE [38] and PCA [39] analyses to visualize how well the generated

distributions resemble the original distributions [40]. Quantitative evaluation for

time series based GANs can be done by deploying two-sample tests similar to

image-based GANs.

Privacy risk. Apart from evaluating the performance of GANs, a wide range

of methods have been used to asses the privacy risk associated with synthetic data

created by GANs. Choi et al. performed tests for presence disclosure and attribute

disclosure. In contrast, others utilised a three-sample test on the training, test,

and synthetic data to identify if the synthetic data has overfitted to the training

data [41], [42]. It has been shown that common methods of de-identifying data do

not prevent attackers from re-identifying individuals using additional data [43], [44].

Sensitive data is usually de-identified by removing personally identifiable information

(PII). However, work is ongoing to create frameworks to link different sources of

publicly available information together using alternative information to PII. Malin et

al. developed a software program, REID, to connect individuals contained in publicly

available hospital discharge data with their unique DNA records [44]. Culnane et

al. re-identified individuals in a de-identified open dataset of Australian medical

billing records using unencrypted parts of the records and known information about

individuals from other sources [45]. Hejblum et al. developed a probabilistic method

to link de-identified electronic health record (EHR) data of patients with rheumatoid

arthritis [46]. The re-identification of individuals in publicly available datasets can

lead to the exposure of their sensitive health information. Health data has been

categorised as special personal data by GDPR and is subject to a higher level of

protection under the Data Protection Act 2018 (Section36(2)) [10]. Consequently,

concerned researchers must find alternative methods of protecting sensitive health

data to minimise the risk of re-identification. This will be addressed in Section 2.7.
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2.3.2 Popular Datasets

Unlike image-based datasets (CIFAR, MNIST, ImageNet [47]–[49]) there are no

standardised or commonly used benchmarking datasets for time series generation.

However, we have compiled a list of some of the more popular datasets implemented

in the reviewed works, and they are listed in Table 2.1 along with their year of

release/update, data type and how many instances and attributes they contain. What

makes these datasets interesting/applicable to time series GANs is that they are

signals made up of highly complex waveforms (physiological and audio) and contain

important temporal dynamics crucial to preserve when generating new samples.

Furthermore, these signals are the data type that have become highly regulated and

can stand to benefit from being leveraged by GANs to generate further volumes of

this kind of data.

There exist two repositories; the UCR Time Series Classification/Clustering

database [50], and the UCI Machine Learning repository [51] that make available

several time series datasets. Despite this, there is still no consensus on a standardised

dataset used for benchmarking time series GANs, which may be due to the ‘continuous’

nature of the architecture dimensions. GANs designed for continuous time series

generation often differ in the length of their input sequence due to either author

preference or the constraints placed on their architecture for the generated data’s

downstream tasks.
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Table 2.1: Popular Datasets used in the reviewed works.

Name (Year) Data Type Instances Attributes

Oxford-Man Institute “re-
alised library” (Updated
Daily)

Real Multivari-
ate Time Series

>2.6M 5

EEG Motor Move-
ment/Imagery Dataset
(2004)

Real Multivari-
ate Time Series

1,500 64

ECG 200 (2001) Real Univariate
Time Series

200 1

Epileptic Seizure Recognition
Dataset (2001)

Real Multivari-
ate Time Series

11,500 179

TwoLeadECG (2015) Real Multivari-
ate Time Series

1,162 2

MIMIC-III (2016) Real, Integer
& Categorical
Multivariate
Time Series

- -

EPILEPSIAE project
database (2012)

Real Multivari-
ate Time Series

30 -

PhysioNet/CinC (2015) Real Multivari-
ate Time Series

750 4

Wrist PPG During Exercise
(2017)

Real Multivari-
ate Time Series

19 14

MIT-BIH Arrhythmia
Database (2001)

Real Multivari-
ate Time Series

201 2

PhysioNet/CinC (2012) Real, Integer
& Categorical
Multivariate
Time Series

12000 43

KDD Cup Dataset (2018) Real, Integer
& Categorical
Multivariate
Time Series

282 3

PeMS Database (Updated
Daily)

Integer & Cate-
gorical Multivari-
ate Time Series

- 8

Nottingham Music Database
(2003)

Special Text For-
mat Time Series

1000 -
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2.4 Taxonomy of Time Series based GANs

We propose a taxonomy of the following time series based GANs based on two distinct

variant types: discrete variants (discrete time series) and continuous variants

(continuous time series). A discrete time series consists of data points separated by

time intervals. This type of data might have: (1) a data-reporting interval that is

infrequent (e.g., 1 point per minute) or irregular (e.g., whenever a user logs in) and

(2) gaps where values are missing due to reporting interruptions (e.g., intermittent

server or network downtime in a network traffic application). Discrete time series

generation involves generating sequences that may have a temporal dependency but

contain discrete tokens; these can be commonly found in electronic health records

(International Classification of Diseases 9 codes) and text generation.

In the natural, analogue world, a continuous time series has a data value corre-

sponding to every moment in time. However, we cannot have a continuous signal on

a computer as it only works in discrete numbers. Digital electronics convert analogue

signals to their digital equivalent via quantisation, introducing errors into the signal.

To represent these analogue signals in the digital domain, they must be converted

using an analogue-to-digital converter (ADC) which is underpinned by the Nyquist

sampling theorem. Nyquist sampling specifies that a sinusoidal function in time

or distance can be regenerated with no loss of information as long as it is sampled

at a frequency greater than or equal to twice the highest frequency present in the

signal [52]. If the sampling rate is too low, the original signal will be distorted, or

show aliasing effects, when reproduced.

For simplicity, in this thesis, continuous data generation is concerned with

generating a real-valued signal x with temporal dependencies where x ∈ R. See

Figure 2.3 for examples of discrete and continuous time series signals.

Challenges with discrete time series generation. GANs struggle with dis-

crete data generation due to the zero gradient nearly everywhere, i.e., the distribution

on discrete objects are not differentiable with respect to their parameters [53], [54].

This limitation makes the generator untrainable using backpropagation alone. The
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Figure 2.3: Example plots of discrete (left) and continuous time series (right).

generator starts with a random sampling and a deterministic transform guided via

the gradient of the loss from the discriminator with respect to the output produced

by G and the training dataset. This loss leads to a slight change in G’s output,

pushing it closer to the desired output. Making slight changes to continuous numbers

make sense; adding 0.001 to a value of 10 in financial time series data will bring it to

10.001. However, a discrete token such as the word ‘penguin’ cannot simply undergo

the addition of 0.001 as the sum ‘penguin+0.001’ makes no sense. What’s important

here is the impossibility for the generator to jump from one discrete token to the

next because the small change gives the token a new value that does not correspond

to any other token over that limited discrete space [55]. This is because there exists

0 probability in the space between these tokens, unlike with continuous data.

Challenges with continuous time series generation. Modelling continuous

time series data presents a different problem for GANs, which are inherently designed

to model continuous data, albeit most commonly in the form of images. The temporal

nature of continuous data in time series presents an extra layer of difficulty. Complex

correlations exist between the temporal features and their attributes, e.g., if using

multichannel biometric/physiological data, the ECG characteristics will depend on

the individual’s age and/or health. Also, long-term correlations exist in the data,

which are not necessarily fixed in dimension compared to image-based data under

a fixed dimension. Transforming image dimensions may lead to a degradation in

image quality, but it is a recognised practice. This operation becomes more difficult

with continuous time series data as there is no standardised dimension used across

27



Deep Learning Signal Processing

time series GANs architectures, which means that benchmarking their performances

becomes difficult.

Since their inception in 2014, GANs have shown great success in generating

high-quality synthetic images indistinguishable from real images [56]–[58]. While the

focus to date has been on developing GANs for improved media generation, there is

a growing consensus that GANs can be used for more than image generation and

manipulation, which has led to a movement towards generating time series data with

GANs.

Recurrent neural networks (Figure 2.4, left), due to their loop-like structure, are

perfect for sequential data applications but by themselves lack the ability to learn

long-term dependencies that might be crucial in forecasting future values based on

past. Long-short Term Memory networks (LSTM) (Figure 2.4, right) are a specific

kind of RNN that have the ability to remember information for long periods of

time and, in turn, learn these long-term dependencies that the standard RNN is not

capable of doing. In most works reviewed in this chapter, the majority of the RNN

based architectures are utilising the LSTM cell.

tanh

Xt

ht

σ σ σ

Xt

ht

tanh

x
x

tanh
+x

Figure 2.4: Block diagram of (left) a standard RNN and (right) LSTM cell. Here,
xt is the input signal at time t, ht is the hidden state at time t, σ is the sigmoid
operation and tanh is the hyperbolic tangent function.

RNNs can model sequential data such as financial data, medical data, text, and

speech, and they have been the foundational architecture for time series GANs. A

recurrent GAN (RGAN) was first proposed in 2016. The generator contained a

recurrent feedback loop that used both the input and hidden states at each time step
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to generate the final output [59]. Recurrent GANs often utilise Long Short-Term

Memory neural networks in their generative models to avoid the vanishing gradient

problem associated with more traditional recurrent networks [60]. In the section that

follows, we chronologically present time series GANs that have either contributed

significantly to this space or have made some of the most recent novel advancements

in addressing the challenges mentioned above.

2.4.1 Discrete-variant GANs

Sequence GAN (SeqGAN) (Sept. 2016)

Yu et al. proposed a sequential data generation framework [53] that could address

the issues with generating discrete data as previously mentioned in 2.4. This ap-

proach outperformed previous methods for generative modelling on real-world tasks,

including; a maximum likelihood estimation (MLE) trained LSTM, scheduled sam-

pling [61], and Policy Gradient with bilingual evaluation understudy (PG-BLEU) [62].

SeqGAN’s generative model comprises RNNs with LSTM cells, and its discriminative

model is a convolutional neural network. Given a dataset of structured sequences the

authors train G to produce a synthetic sequence Y1:T = (y1..., yt..., yT ), yt ∈ Y where

Y is defined as the vocabulary of candidate tokens. G is updated by a policy gradient

and Monte Carlo (MC) search on the expected reward from D, see Figure 2.5. The

authors used two datasets for their experiments. A Chinese poem dataset [63] and

a Barack Obama Speech dataset [64] with Adam optimisers and a batch size of 64.

Their experiments are available online2.

Although the purpose of SeqGAN is to generate discrete sequential data, it opened

the door to other GANs in generating continuous sequential and time series data.

The authors use a synthetic dataset whose distribution is generated from a randomly

initialised LSTM following a normal distribution. They also compare the generated

data to real-world examples of poems, speech-language and music. SeqGAN showed

competitive performance in generating the sequences and contributed heavily towards

2SeqGAN GitHub: https://github.com/LantaoYu/SeqGAN/
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the further development of the continuous sequential GANs.

G(LSTM)

D(CNN)

x
State

Next
Action

MC
Search

Reward

Reward

Reward

Reward

Policy Gradient

DG

Figure 2.5: SeqGAN: D is trained over real and generated data (left), whereas G
is trained by policy gradient where the final reward signal is provided by D and is
passed back to the intermediate action value via Monte Carlo search (right).

Quant GAN (Jul. 2019)

Quant GAN is a data-driven model that aims to capture long-range dependencies

in financial time series data such as volatility clusters. Both the generator and

discriminator use Temporal Convolutional Networks (TCN) with skip connections [65]

which are essentially dilated causal convolutional networks. They have the advantage

of being suited to model long-range dependencies in continuous sequential data. The

generator function is a novel stochastic volatility NN (SVNN) that consists of a

volatility and drift TCN. Temporal blocks are the modules used in the TCN that

consist of two dilated causal convolutions layers (Figure 2.6) and two Parametric

Rectified Linear Units (PReLU) as activation functions. Data generated by G is

passed to D to produce outputs, which can then be averaged to give an MC estimate

of D’s loss function. The authors used a dataset of daily spot-prices of the S&P 500

from May 2009 until December 2018.

The authors aim to capture long-range dependencies in financial time series;

however, modelling the series in continuous time over these long time frames would

blow up the models’ computational complexity. Therefore, this method models the

time series in discrete time. The authors report that this approach is capable of

outperforming more conventional models from mathematical finance (Constrained

SVNN and generalised autoregressive conditional heteroskedasticity (GARCH) [66])
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Figure 2.6: Dilated causal convolutional layer.

but state that there remain issues that need to be resolved for this approach to

become widely adopted. One such issue concerns the need for a unified metric for

quantifying the performance of these GANs, a point we discuss further in Section 2.6.

2.4.2 Continuous-variant GANs

Continuous RNN-GAN (C-RNN-GAN) (Nov. 2016)

In previous works, RNNs have been applied to modelling music but have generally

used a symbolic representation to model this type of sequential data. Mogren proposed

the C-RNN-GAN (Figure 2.7), one of the first examples of using GANs to generate

continuous sequential data [67]. The generator is an RNN, and the discriminator a

bidirectional RNN, which allows the discriminator to take the sequence context in

both directions. The RNNs used in this work were two stacked LSTM layers, with

each cell containing 350 hidden units. The loss functions can be seen in (2.5, 2.6),

where z(i) is a sequence of uniform random vectors in [0,1]k, and x(i) is a sequence

from the training data. k is the dimensionality of the data in the random sequence

and m is the number of data samples in the batch.

LG =
1

m

m∑
i=1

log
(

1−D(G(z(i)))
)

(2.5)
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Figure 2.7: Structure of C-RNN-GAN’s generator and discriminator.

LD =
1

m

m∑
i=1

[
− log

(
D(x(i))

)
− log

(
1−D(G(z(i)))

)]
(2.6)

The C-RNN-GAN is trained with BPTT and mini-batch stochastic gradient

descent with L2 regularisation on the weights of both G and D. Freezing was applied

to both G and D when one network becomes too strong relative to the other. The

dataset used was 3697 midi files from 160 different composers of classical music

with a batch size of 20. Adam and Gradient Descent Optimisers were used during

training; full implementation details are available online3. Overall the C-RNN-GAN

was capable of learning the characteristics of continuous sequential data and, in turn,

generate music. However, the author stated that their approach still needs work,

particularly in rigorous evaluation of the generated data quality.

Recurrent Conditional GAN (RCGAN) (2017)

RCGAN for continuous data generation [42] differs architecturally from the C-RNN-

GAN. Although the RNN LSTM is used, the discriminator is unidirectional, and the

outputs of G are not fed back as inputs at the next time step. There is also additional

3C-RNN-GAN GitHub: https://github.com/olofmogren/c-rnn-gan/
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information that the model is conditioned on, which makes for a conditional RGAN;

see the layout of the model in Figure 2.8. The purpose of the RCGAN and RGAN in

this work is to generate continuous time series with a focus on medical data intended

for use in downstream tasks, and this was one of the first works in this area. The loss

functions can be seen in Equations (2.7, 2.8) where CE is the average cross-entropy

between two sequences. Xn are samples drawn from the training dataset. yn is the

adversarial ground truth; for real sequences, it is a vector of 1s, and conversely, for

generated or synthetic sequences, it is a vector of 0s. Zn is a sequence of points

sampled from the latent space, and the valid adversarial ground truth is written here

as 1.

G(LSTM)

D(LSTM)

z

Real/Fake

x

G(z)

c

Figure 2.8: RCGAN architecture with conditional input c, input data x and latent
variable z.

LD(Xn, yn) = −CE(D(Xn), yn) (2.7)

LG(Zn) = LD(G(Zn),1) = −CE(D(G(Zn)),1) (2.8)

In the conditional case, the inputs to D and G are concatenated with some

conditional information cn. This variant of an RNN-GAN facilitates the generation

of a synthetic continuous time series dataset with associated labels. Experiments

were carried out on generated sine waves, smooth functions sampled from a Gaussian
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process with a zero-valued mean function, MNIST dataset as a sequence, and the

Philips eICU database [68]. A batch size of 28 with Adam and Gradient Descent

Optimisers were used for training. The authors propose a novel method for evaluating

their model, which is discussed further in Section 2.6. Full experimental details can

be found online4.

Sequentially Coupled GAN (SC-GAN) (Apr. 2019)

SC-GAN aims to generate patient-centric medical data to inform of a patient’s

current state and generate a recommended medication dosage based on the state [69].

It consists of two coupled generators tasked with producing two outcomes, one for the

current state of an individual and the other for a recommended medication dosage

based on the individual’s state. The discriminator is a two-layer bidirectional LSTM,

and the coupled generators are both two-layer unidirectional LSTMs. See Figure 2.9

for further details of the architecture.

G1za

G2zs

s

a
D Real/Fake

Figure 2.9: SC-GAN architecture. Here a is the medical dosage data, s is the
continuous patient state data, zat is the concatenation of st and ẑat which is a random
noise sequence. zst is a concatenation of st−1, at−1 and ẑst that is a random noise
sequence.

G1 generates the recommended medication dosage data (a1, a2, ..., aT ) with a

combined input of the sequential continuous patient state data (s0, s1, ..., sT−1) and

a random noise sequence (ẑa0, ẑ
a
1, ..., ẑ

a
T−1) sampled from a uniform distribution. At

each time step t the input zat of G1 is the concatenation of st and ẑat .

4RCGAN GitHub: https://github.com/ratschlab/RGAN/
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Conversely, G2 is tasked with generating the patient state data st and at each

time step the input zst is the concatenation of st−1, at−1 and ẑst . This means that the

outputs from G1 and G2 are the inputs to one another. Combining the generators

together leads to the following loss function:

LG =
1

N

1

T

N∑
i=1

T∑
t=1

log

(
1−D(G(zi,t))

)
(2.9)

G(zi,t) =

[
G1(zai,t);G2(zsi,t)

]
(2.10)

Where N is the number of patients and T is the time length of the patient

record. The SC-GAN has a supervised pretraining step for the generators to avoid

an excessively strong D that uses the least-squares loss.

The discriminator is tasked with classifying the sequential patient-centric records

as real or synthetic, and the loss function is defined as:

LD = − 1

N

1

T

N∑
i=1

T∑
t=1

(
log

(
(D(xi,t)

)
+ log

(
(1−D(G(zi,t))

))
(2.11)

where xi,t = [st; at]. This model contains novel coupled generators that coordinate

to generate patient state and medication dosage data. It has performance close to real

data for the treatment recommendation task. The dataset used in this experiment is

MIMIC-III [70]. The authors benchmark their SC-GAN against variants of SeqGAN,

C-RNN-GAN, and RCGAN and observe their model to be the best performing for

this specific use case.

Noise Reduction GAN (NR-GAN) (Oct. 2019)

NR-GAN is designed for noise reduction in continuous time series signals but more

specifically has been implemented for noise reduction in mice electroencephalogram

(EEG) signals [71]. This dataset was provided by the International Institute for

Integrative Sleep Medicine (IIIS). EEG is the measure of the brain’s electrical activity,
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and it commonly contains significant noise artefact. NR-GAN’s core idea is to reduce

or remove the noise present in the frequency domain representation of an EEG

signal. The architecture of G is a two-layer 1-D CNN with a fully connected layer

at the output. D contains almost the same two-layer 1-D CNN structure with the

fully-connected layer replaced by a softmax layer to calculate the probability the

input belongs to the training set. The loss functions are defined in (2.12, 2.13) as:

LG =
∑
x∈Sns

[
log

(
1−D(G(x))

)
+ α

∥∥∥∥x−G(x)

∥∥∥∥2
]

(2.12)

LD =
∑
x∈Sns

[
log

(
D(G(x))

)]
+
∑
y∈Scs

[
log

(
1−D(y)

)]
(2.13)

where Sns and Scs are the noisy and clear EEG signals, respectively. α is a

hyperparameter that essentially controls the aggressiveness of noise reduction; the

authors chose a value of α = 0.0001.

For this work, the generator does not sample from a latent space; rather, it

attempts to generate the clear signal from the noisy EEG signal input, see Figure 2.10.

The authors found that the NR-GAN is competitive with classical frequency filters in

terms of noise reduction. They also state that the experimental conditions may favour

the NR-GAN and list some limitations in terms of the amount of noise NR-GAN can

handle and the influence of α. However, this is a novel method for noise reduction in

continuous sequential data using GANs.

Time GAN (Dec. 2019)

TimeGAN provides a framework that utilises both the conventional unsupervised

GAN training method and the more controllable supervised learning approach [40].

By combining an unsupervised GAN network with a supervised autoregressive model,

the network aims to generate time series with preserved temporal dynamics. The

architecture of the TimeGAN framework is illustrated in Figure 2.11. The input

to the framework is considered to consist of two elements, a static feature and a
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G(CNN)

D(CNN)

Sns

Real/Fake

Scs

G(Sns)

Figure 2.10: NR-GAN architecture with noisy EEG input Sns, clean input data Scs.

temporal feature. s represents a vector of static features and x of temporal features

at the input to the encoder. The generator takes a tuple of static and temporal

random feature vectors drawn from a known distribution. The real and synthetic

latent codes h and ĥ are used to calculate the supervised loss element of this network.

The discriminator receives the tuple of real and synthetic latent codes and classifies

them as either real (y) or synthetic (ŷ), the˜operator denotes the sample as either

real or fake.

G(RNN)

D(BiLSTM) Real/Fake

s, x1:T

G(zs, z1:T)

Encoder Decoder

zs, z1:T

Reconstruction Loss

Unsupervised Loss

Supervised Loss

hs, h1:T

hs, h1:T
^ ^

Figure 2.11: TimeGAN architecture.

The three losses used in TimeGAN are calculated as follows:

LR = Es,x1:T∼p
[
‖s− s̃‖2+

∑
t

‖xt − x̃t‖2

]
(2.14)
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LU = Es,x1:T∼p
[
log(ys)+

∑
t

log(yt)

]
+Es,x1:T∼p̂

[
log(1− ŷs)+

∑
t

log(1− ŷt)
]

(2.15)

LS = Es,x1:T∼p
[∑

t

∥∥∥ht − gX(hS, ht−1, zt)
∥∥∥

2

]
(2.16)

Where LR, LU and LS are the reconstruction, unsupervised and supervised losses

respectively. The creators of TimeGAN conducted experiments on generating sine

waves, stocks (daily historical Google stocks data from 2004 to 2019), energy (UCI

Appliances energy prediction dataset) [51], and event (private lung cancer pathways)

datasets. A batch size of 128 and Adam optimiser were used for training, imple-

mentation details are available online5. The authors demonstrated improvements

over other state-of-the-art time series GANs such as RCGAN, C-RNN-GAN and

WaveGAN.

Conditional Sig-Wasserstein GAN (SigCWGAN) (Jun. 2020)

A problem addressed by [72] is that long time series data streams can greatly

increase the dimensionality requirements of generative modelling, which may render

such approaches infeasible. To counter this problem, the authors develop a metric

named Signature Wasserstein-1 (Sig-W1) that captures time series models’ temporal

dependency and uses it as a discriminator in a time series GAN. It provides an

abstract and universal description of complex data streams and does not require

costly computation like the Wasserstein metric. A novel generator is also presented

that is named conditional autoregressive feed-forward neural network (AR-FNN)

that captures the auto-regressive nature of the time series. The generator is capable

of mapping past series and noise into future series. For a rigorous mathematical

description of their method, the interested reader should consult [72].

For the AR-FNN generator the idea is to obtain the step-q estimator X̂
(t)
t+1:t+q.

5TimeGAN GitHub: https://github.com/jsyoon0823/TimeGAN
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The loss function for the network is defined as:

L =
∑
t

∣∣∣∣∣Eµ
[
SM(Xt+1:t+q)

∣∣∣Xt−p+1:t

]
− Ev

[
SM(X̂

(t)
t+1:t+q)

∣∣∣Xt−p+1:t

]∣∣∣∣∣ (2.17)

Where v and µ are the conditional distributions induced by the real data and

synthetic generator, respectively. Xt−p+1:t is the true past path, X̂
(t)
t+1:t+q is the

forecasted next path and Xt+1:t+q is the true forecast value. SM is the truncated

signature of path X of degree M . Further details of the author’s algorithm can be

found in the appendix of the original paper. The authors state that SigCWGAN

eliminates the problem of approximating a costly D and simplifies training. It

is reported to achieve state-of-the-art results on synthetic and empirical datasets

compared to TimeGAN, RCGAN and Generative Moment Matching Networks

(GMMN) [73]. The empirical dataset consists of the S&P 500 index (SPX) and

Dow Jones index (DJI) and their realized volatility, which is retrieved from the

Oxford-Man Institute’s “realised library” [74]. A batch size of 200 with the Adam

optimiser was used for training6.

Decision Aware Time series conditional GAN (DAT-CGAN) (Sept. 2020)

This framework is designed to provide support for end-users decision processes,

specifically in financial portfolio choices. It uses a multi-Wasserstein loss on structured

decision-related quantities [75]. The discriminator loss and generator loss are defined

in Equations (2.18) and (2.19) respectively. For further details on the loss functions,

see Section 3 of the original paper and equations (2.20) to (2.23) .

LD = inf
η

sup
γk,θj,k

K∑
k=1

ωk

(
Erk − EGηk

)
+

K∑
k=1

J∑
j=1

λj,k(Ef,Rj,k − Ef,Gηj,k ) (2.18)

LG = inf
η
−
∑
k

ωkE
Gη
k −

∑
k,j

λj,kE
f,Gη
j,k (2.19)

6SigCWGAN GitHub: https://github.com/SigCGANs/Conditional-Sig-Wasserstein-GANs/
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Erk = Ert+k∼P (rt+k|xt)[Dγk(rt+k, xt)] (2.20)

EGηk = Ezt,k∼P (zt,k)[Dγk(r
′
t,k, xt)] (2.21)

Ef,Rj,k = ERt,k∼P (Rt,k|xt)[Dθj,k(fj,k(Rt,k, xt), xt)] (2.22)

Ef,Gηj,k = EZt,k∼P (Zt,k)[Dθj,k(fj,k(R
′
t,k, xt), xt)] (2.23)

We offer a full description of all terms used in equations (2.18) and (2.19). Dγk

is the discriminator for the data at look ahead period k with respect to parameters

γ. Gη is the generator with parameters η. As this is the conditional case, xt is the

conditioning variable containing relevant information up to time t. r′t,k = Gη(zt,k, xt)

is defined as the synthetic data at look ahead point k where the noise is zt,k. The

discriminator for decision-related quantity j at look ahead period k with respect to

parameters θj,k is defined as Dθj,k . These decision related quantities may include mean

and covariance for example. fj,k(Rt,k, xt) represents the decision related quantity.

Finally, ωk and λj,k are weights and inf and sup are the infimum and supremum or

greatest lower bound and least upper bound of a non-empty subset, respectively.

The generator is a two-layer feed-forward neural network for each input which are

assets in this case. G outputs asset returns that are used to compute decision-related

quantities. These quantities are fed into D, which is also a two-layer feed-forward

NN. Further details about the architecture can be found in the appendix of [75].

The dataset used is daily price data for each of four U.S. Exchange-traded fund

(ETFs), i.e., Material (XLB), Energy (XLE), Financial (XLF) and Industrial (XLI)

ETFs, from 1999 to 2016. The authors found this model capable of high-fidelity time

series generation that supports decision processes by end-users due to incorporating

a decision-aware loss function. However, this approach’s limitation is that the

computational complexity of this model is vast and requires one month of training

time for a single generative model.
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Synthetic biomedical Signals GAN (SynSigGAN) (Dec. 2020)

SynSigGAN is designed to generate different kinds of continuous physiological/biomedical

signal data [76]. It is capable of generating electrocardiogram (ECG), electroen-

cephalogram (EEG), electromyography (EMG), and photoplethysmography (PPG)

from MIT-BIH Arrhythmia database [77], Siena Scalp EEG database [78] and BIDMC

PPG and Respiration dataset [79]. A novel GAN architecture is proposed here that

uses a bidirectional grid long short term memory (BiGridLSTM) for the generator

(Figure 2.12) and a CNN for the discriminator. The BiGridLSTM is a combination

of a double GridLSTM (a version of LSTM that can represent the LSTMs in a mul-

tidimensional grid) with two directions that can combat the gradient phenomenon

from two dimensions and found to work well in time sequence problems. The authors

used the value function defined previously in equation (1.5).
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Figure 2.12: Architecture of BiGridLSTM with LSTM blocks for the time and depth
dimension, ‘ symbol indicates reverse in the figure as in [80].
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SynSigGAN is capable of capturing the different physiological characteristics

associated with each of these signal types and has demonstrated an ability to generate

biomedical time series data with a max sequence length of 191 data points. The

authors also present a preprocessing stage to clean and refine the biomedical signals

in this paper. They compare their architecture to several variants (BiLSTM-GRU,

BiLSTM-CNN GAN, RNN-AE GAN, Bi-RNN, LSTM-AE, BiLSTM-MLP, LSTM-

VAE GAN, and RNN-VAE GAN) and found the BiGrid-LSTM as the best performing

model.

2.5 Applications

We have discussed the two classes of time series GANs and their contribution to

solving the challenges presented in Section 2.3.1. Now we will list the wide ranging

applications of time series GANs and the benefits of such to both research and

industry.

2.5.1 Data Augmentation

It is common knowledge in the deep learning community that GANs are among

the methods of choice when discussing data augmentation. Reasons for augmenting

datasets range from increasing the size/variety of small and imbalanced datasets [81]–

[84] to reproducing restricted datasets for dissemination.

A well-defined solution to the data shortage problem is transfer learning, and

it works well in domain adaptation which has led to advancements in classification

and recognition problems [85]. However, it has been found that augmenting datasets

with GANs can lead to further improvements in certain classification and recognition

tasks [86]. Data synthesised by a GAN can adhere to stricter privacy measures

discussed in Section 2.7. This further demonstrates the advantages of augmenting

your training dataset with GANs over implementing transfer learning with a pre-

trained model from a different domain on a smaller dataset.
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Many researchers find that accessing datasets for their deep learning research

and models to be time-consuming, laborious work, particularly when the research is

concerned with personal sensitive data. Often medical and clinical data are presented

as continuous sequential data that can only be accessed by a small contingent of

researchers who are not at liberty to disseminate their research openly. This, in turn,

may lead to stagnation in the research progress in these domains.

Fortunately, we are beginning to see the uptake of GANs applied to time series with

these types of medical and physiological data [42], [76], [87]–[89]. With [90] showing

dependent multivariate continuous high-fidelity physiological signal generation is

capable via GANs, demonstrating the impressive capability of these networks. See

Figure 2.13 for an example of the real input and synthetic generated data.
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Figure 2.13: An example of dependent multichannel ECG data (left) and generated
ECG from a multivariate GAN (right) [90]. NSR indicates the training dataset which
is the Normal Sinus Rhythm. The generated data is produced by a GAN named by
the authors as LSGAN-DTW.

Of course, this is not comprehensive coverage of the research using time series

GANs for data synthesis and augmentation. GANs have been applied to time series

data for a plethora of use cases.

Audio generation (both music and speech) and text-to-speech (TTS) [91] has been

a popular area for researchers to explore with GANs. The C-RNN-GAN described in

Section 2.4.2 was one of the seminal works to apply GANs to generating continuous

sequential data in the form of music.

In the financial sector, GANs have been implemented to generate data and

predict/forecast values. Wiese et al. implemented a GAN to approximate financial

time series in discrete-time [65]. In [72], the authors designed a decision-aware GAN
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that generates synthetic data and supports decision processes to financial portfolio

selection of end-users.

Other time series generation/prediction methods range from estimating soil

temperature [92] to predicting medicine expenditure based on the current state of

patients [93].

2.5.2 Imputation

In real-world datasets, missing or corrupt data is an all too common problem that

leads to downstream problems. These issues manifest themselves in further analytics

of the dataset and can induce biases in the data. Common methods of dealing

with missing or corrupted data in the past have been the deletion of data streams

containing the missing segments, statistical modelling of the data, or machine learning

imputation approaches. Looking at the latter, we review the work in imputing these

data using GANs. Guo et al. designed a GAN based approach for multivariate time

series imputation [94], see Figure 2.14 for an example of imputed data from a toy

experiment [89].

Incomplete ECG Signal 

Imputed ECG Signal 

Figure 2.14: An example of the incomplete corrupted time series (top) and imputed
signal (bottom).
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2.5.3 Denoising

Artefacts induced in time series data often manifest themselves as noise in the signals.

This has become an ever-present challenge in further processing and analytical

applications. Corrupted data can cause biases in the datasets or lead to degradation

in the performance of critical systems such as those used for health applications.

Common methods for dealing with noise include the use of adaptive linear filtering.

Another approach recently explored in [71] used GANs as a noise-reduction technique

in EEG data. Their experiments showed that their proposed NR-GAN (Section 2.4.2)

was capable of competitive noise reduction performance compared to more traditional

frequency filters.

2.5.4 Anomaly Detection

Detecting outliers or anomalies in time series data is an important part of many real-

world systems and sectors. Whether it is detecting unusual patterns in physiological

data that may be a precursor to some more malicious condition or detecting irregular

trading patterns on the stock exchange, anomaly detecting can be vital to keeping us

informed on important information. Statistical measures of non-stationary time series

signals may achieve good performance on the surface, but they might also miss some

important outliers present in deeper features. They may also struggle in exploiting

large unlabelled datasets; this is where the unsupervised deep learning approaches

can outperform the conventional methods. Zhu et al. designed a GAN algorithm

for anomaly detection in time series data (ECG and taxi dataset) with LSTMs

and GANs, which achieved superior performance compared to conventional, more

shallow approaches. Similar approaches have been applied to detect cardiovascular

diseases [95], in cyber-physical systems to detect nefarious players [96] and even

irregular behaviours such as stock manipulation on the stock markets [97].
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2.5.5 Other Applications

Some works have utilised image-based GANs for time series and sequential data

generation by first converting their sequences to images via some transformation

function and training the GAN on these images. Once the GAN converges, similar

images can be generated; then, a sequence can be retrieved using the inverse of the

original transformation function. For example, this approach has been implemented in

audio generation with waveforms [98]–[100], anomaly detection [101] and physiological

time series generation [89].

2.6 Evaluation Metrics

As mentioned in Section 2.1 GANs can be difficult to evaluate, and researchers

are yet to agree on what metrics reflect the GANs performance best. There have

been plenty of metrics proposed in the literature [22] with most of them suited to

the computer vision domain. Work is still ongoing to suitably evaluate time series

GANs. We can break down evaluation metrics into two categories: qualitative and

quantitative. Qualitative evaluation is another term for human visual assessment

via the inspection of generated samples from the GAN. However, this cannot be

deemed a full evaluation of GAN performance due to the lack of a suitable objective

evaluation metric. The quantitative evaluation includes the use of metrics associated

with statistical measures used for time series analytics and similarity measures such

as; Pearson Correlation Coefficient (PCC), percent root mean square difference

(PRD), (Root) Mean Squared Error (MSE and RMSE), Mean Relative Error (MRE)

and Mean Absolute Error (MAE). These metrics are among the most commonly used

for time series evaluation and, as such, used as a suitable GAN performance metric

as they can reflect the stability between the training data and synthetic generated

data and we show some of these common formulas in equations (2.24) to (2.27).

PCC =

∑N
i=1(xi − x̃)(yi − ỹ)√∑N

i=1(xi − x̃)2
∑N

i=1(yi − ỹ)2

(2.24)
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PRD =

√∑N
i=1(xi − yi)2∑N

i=1(xi)2
(2.25)

RMSE =

√√√√ 1

N

N∑
i=1

(xi − yi)2 (2.26)

MRAE =
1

N

N∑
i=1

∣∣∣∣xi − yixi − fi

∣∣∣∣ (2.27)

Across these formulas xi is the actual value of the time series x at time/sample i,

yi is the generated value of the time series y at time/sample i. x̃ and ỹ represents

the mean values of x and y respectively. fi is used in the MRAE calculation for the

forecast value at time i of a chosen benchmark model. In general fi can be chosen to

be yi−1 for non-seasonal time series and yi−M for seasonal time series, where M is

the seasonal period of x.

Several metrics have become well-established choices in evaluating image-based

GANs, and some of these have permeated through to the sequential and time series

GANs such as Inception Score (IS) [36], Fréchet (Inception) Distance (FD and

FID) [37]. Structural Similarity Index (SSIM) is a measure of similarity between two

images. However, [102] use this with time series data as SSIM does not exclude itself

from comparing aligned sequences of fixed length. Of course, some of these metrics are

measures of similarities/dissimilarities between two probability distributions, suitable

for many types of data, particularly the maximum mean discrepancy (MMD) [103].

In the real world we do not have access to the underlying distributions of data,

therefore we show an empirical estimate of MMD in equation (2.28), which is a very

suitable metric for this task across domains.

MMD[F , X, Y ] =

[
1

m2

m∑
i,j=1

k(xi, xj)−
2

mn

m,n∑
i,j=1

k(xi, yi) +
1

n2

n∑
i,j=1

k(yi, yj)

] 1
2

(2.28)

where F is a class F of smooth functions f : X → R. Two observations X :=
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{x1, x2, ..., xn} and Y := {y1, y2, ..., yn} are drawn from two distributions p and q

with m points sampled from p and n from q. Lastly, k is the kernel function chosen

by the user.

Another metric that generalises well to the sequential data case is the Wasserstein

distance. The Wassterstein-1, or Earth Mover distance, shown in equation (2.29),

describes the cost it takes to move one cumulative distribution function to another

while preserving the shape of the functions, which is done by optimising the transport

plan.

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
XxY

dp(x, y)dγ(x, y)

) 1
p

(2.29)

where Γ(µ, ν) is the set of all transport plans, dp(x, y) is the distance function

and dγ(x, y) is the amount of ‘mass’ to be moved.

The data generated from GANs have been used in downstream classification

tasks. Using the generated data together with the training data has lead to the Train

on Synthetic, Test on Real (TSTR) and Train on Real, Test on Synthetic (TRTS)

evaluation methods, first proposed by Esteban et al. [42]. In scoring downstream

classification applications that use both real and generated data, studies have adopted

the precision, recall, and F1 scores to determine the classifier’s quality and, in turn,

the quality of the generated data. Other accuracy measures of classifier performance

include the weighted accuracy (WA) and unweighted average recall (UAR).

Often used distance and similarity measures in time series data are the Euclidean

Distance (ED) and Dynamic Time Warping (DTW) algorithms. We introduce a new

evaluation metric in the context of generative multivariate time series signals which

is developed in detail in the next chapter, named Multivariate (in)dependent DTW

(MVDTW). This metric can determine similarity measures across both dependent

and independent multichannel time series signals [90].

Other metrics used across different applications include:

• Financial Sector; autocorrelation function (ACF) score, DY metric.
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• Temperature Estimation; Nash-Sutcliffe model efficiency coefficient (NS),

Willmott index of agreement (WI) and the Legates and McCabe index (LMI).

• Audio Generation; Normalised Source-to-Distortion Ratio (NSDR), Source-

to-Interference Ratio (SIR), Source-to-artifact ratio (SAR) and t-SNE [38].

For a full list of GAN architectures reviewed in this work, their applications,

evaluation metrics, and datasets used in their respective experiments, see Table 2.2.

Results for the sine wave and ECG generation using variants of GAN architectures

can be found in Tables 2.3 and 2.4, respectively.

Table 2.2: A list of GAN architectures, their applications, and datasets used in their
experiments and evaluation metrics used to judge the quality of the respective GANs.
For novel approaches, the GAN name is given as they have been covered already in
Section 2.4.

Application GAN Architec-

ture(s)

Dataset(s) Evaluation

Metrics

Medical/Physiological

Generation

LSTM-

LSTM, [42], [81], [82]

LSTM-CNN, [90] [87]

BiLSTM-CNN, [88]

BiGridLSTM-

CNN, [76]

CNN-

CNN, [104], [105]

AE-CNN, [106]

FCNN [107]

EEG, ECG,

EHRs, PPG,

EMG, Speech,

NAF, MNIST,

Synthetic sets

TSTR, MMD,

Reconstruction

error, DTW,

PCC, IS, FID,

ED, S-WD,

RMSE, MAE,

FD, PRD, Aver-

aging Samples,

WA, UAR, MV-

DTW

Continued on next page
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Table 2.2 – continued from previous page

Application GAN Architec-

ture(s)

Dataset(s) Evaluation

Metrics

Financial time

series genera-

tion/prediction

TimeGAN [40]

SigCWGAN [72]

DAT-GAN [75]

QuantGAN [65]

S&P500 index

(SPX), Dow

Jones Index

(DJI), ETFs

Marginal Dis-

tributions,

Dependencies,

TSTR, Wasser-

stein Distance,

EM distance,

DY Metric, ACF

score, leverage

effect score,

discriminative

score, predictive

score

Time series Estima-

tion/Prediction

LSTM-NN [92]

LSTM-CNN [93]

LSTM-MLP [93]

Meteorological

data, Truven

MarketScan

dataset

RMSE, MAE,

NS, WI, LMI

Audio Generation C-RNN-GAN [67]

TGAN(variant) [100]

RNN-FCN [108]

DCGAN(variant) [99]

CNN-CNN [91]

Nottingham

dataset, Midi

music files, MIR-

1K, TheSession,

Speech

Human percep-

tion, Polyphony,

Scale Consis-

tency, Tone

Span, Repeti-

tions, NSDR,

SIR, SAR, FD,

t-SNE, Distribu-

tion of notes

Continued on next page
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Table 2.2 – continued from previous page

Application GAN Architec-

ture(s)

Dataset(s) Evaluation

Metrics

Time series Imputa-

tion/Repairing

MTS-GAN [94]

CNN-CNN [109]

DCGAN(variant) [110]

AE-GRUI [111]

RGAN [112]

FCN-FCN [113]

GRUI-GRUI [114]

TEP, Point

Machine, Wind

Turbin data,

PeMS, Phys-

ioNet Challenge

2012, KDD CUP

2018, Parking lot

data,

Visually, MMD,

MAE, MSE,

RMSE, MRE,

Spatial Similar-

ity, AUC score

Anomaly Detection LSTM-LSTM [97]

LSTM-

(LSTM&CNN) [115]

LSTM-LSTM (MAD-

GAN) [96]

SET50, NYC

Taxi data, ECG,

SWaT, WADI

Manipulated

data used as a

test set, ROC

Curve, Precision,

Recall, F1, Accu-

racy

Other time series gen-

eration

VAE-CNN [102] Fixed length

time series ‘ve-

hicle and engine

speed’

DTW, SSIM

2.7 Privacy

As well as evaluating the quality of the data, a wide range of methods have been

used to evaluate and mitigate the privacy risk associated with synthetic data created

by GANs.
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Table 2.3: Experimental results comparing the performance of time series GANs for
sinewave generation

Architecture Loss Function
Toy Sine Dataset

MMD DTW MSE

LSTM-LSTM
BCE 0.9527 91.1071 0.2308
MSE 0.0078 54.1644 0.1480

BiLSTM-LSTM
BCE 0.1215 428.4310 3.0700
MSE 0.9515 79.5607 0.2362

LSTM-CNN
BCE 0.006 55.3620 0.3154
MSE 0.5757 86.7357 0.5643

BiLSTM-CNN
BCE 1.129E-05 129.9257 0.9193
MSE 0.4891 43.2694 0.1869

GRU-CNN
BCE 0.0244 37.1630 0.2303
MSE 0.3727 42.7348 0.22823

FC-CNN
BCE 0.0039 58.3565 0.3048
MSE 0.0117 43.3611 0.2972

2.7.1 Differential Privacy

The goal of Differential Privacy (DP) is to preserve the underlying privacy of a

database. An algorithm or, more specifically, a GAN achieves differential privacy if,

by looking at the generated samples, we cannot identify whether the samples were

included in the training set. As GANs attempts to model the training dataset, the

problem of privacy lies in capturing and generating useful information about the

training set population without the possibility of linkage from generated sample to

an individual’s data [116].

As we have previously addressed, one of the uses of GANs is to augment existing

under-resourced datasets for use in further downstream applications such as upskilling

of clinicians where healthcare data is involved. These personal sensitive data must

contain privacy guarantees, and the rigorous mathematical definition of DP [117]

offers this assurance.

Work is ongoing to develop machine learning methods with privacy-preserving

mechanisms such as differential privacy. Abadi et al. demonstrate the ability to train

deep neural networks with DP and implement a mechanism for tracking privacy

loss [118]. Xie et al. proposed a differentially private GAN (DPGAN) that achieved
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Table 2.4: Experimental results comparing the performance of time series GANs for
ECG generation on MIT-BIH Dataset

Architecture Loss Function
MIT-BIH Arrhythmia Dataset
MMD DTW MSE

LSTM-LSTM
BCE 0.9931 30.1816 0.0867
MSE 0.8842 44.4553 0.1389

BiLSTM-LSTM
BCE 0.9916 22.8634 0.0699
MSE 0.9737 23.5533 0.0806

LSTM-CNN
BCE 0.5519 13.0158 0.0151
MSE 0.0005 24.7306 0.0457

BiLSTM-CNN
BCE 0.9246 117.3994 0.2272
MSE 0.0687 22.6740 0.0586

GRU-CNN
BCE 0.0055 20.4845 0.0335
MSE 0.7704 108.4124 0.1948

FC-CNN
BCE 0.2068 23.9910 0.0309
MSE 0.3082 18.2340 0.0212

differential privacy by adding noise gradients to the optimiser during the training

phase [119].

2.7.2 Decentralised/Federated Learning

Distributed or decentralised learning is another method for limiting the privacy risk

associated with personal and personal sensitive data in machine learning. Standard

approaches to machine learning require that all training data be kept on one server.

Decentralised/distributed approaches to GAN algorithms require large communi-

cation bandwidth to ensure convergence [120], [121] and are also subject to strict

privacy constraints. A new method that enables communication efficient collaborative

learning on a shared model while keeping all the training data decentralised is known

as Federated learning [122]. Rasouli et al. applied federated learning algorithm to a

GAN for communication efficient distributed learning and proved the convergence of

their federated learning GAN (FedGAN) [123]. However, it should be noted that

they did not experiment with differential privacy in this study but note it as an

avenue of future work.

Combining the above techniques of federated learning and differential privacy in
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developing new GAN algorithms would lead to a fully decentralised private GAN

capable of generating data without leakage of private information to the source data.

This is clearly an open research avenue for the community.

2.7.3 Assessment of Privacy Preservation

We can also assess how well the generative model was able to protect our privacy

through tests known as attribute and presence disclosure [41]. The latter test is

more commonly known in the machine learning space as a membership inference

attack. This has become a quantitative assessment of how machine learning models

leak information about the individual data records on which they were trained [124].

Membership inference attacks attempt to detect the data that was used to train

a target model without the attacker having access to the model’s parameters. A

nefarious actor creates random records for a target machine learning model. The

attacker then feeds each record into the model. The model will return a confidence

score and based on this score the records will be fine tuned until a higher confidence

score is returned. This process will continue until the model returns a very high

score and at this stage the record will be nearly identical to one of the examples used

in the training dataset. These steps will be repeated until enough dataset examples

are generated. The fake records will then be used to train an ensemble of models to

predict whether a data record was used in the training set of the target model.

Hayes et al. carried out membership inference attacks on synthetic images and

concluded that for acceptable levels of privacy in the GAN, the quality of the data

generated is sacrificed [125]. Conversely, others have followed this approach and

found that DP networks can successfully generate data that adheres to differential

privacy and resists membership inference attacks without too much degradation in

the quality of the generated data [42], [87], [90].
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2.8 Discussion

We have presented a survey of time series GAN-variants that have made significant

progress in addressing the primary challenges identified in Section 2.3.1. These

GANs introduced the idea of both discrete and continuous sequential data generation

and have made incremental improvements over one another via an architecture

variant or a modified objective function capable of capturing the spatio-temporal

dependencies present in these data types. The loss functions implemented in these

works for some architectures will not necessarily generalise to others; hence they

become architecture-specific. The architecture choices of the time series GANs affect

both the quality and diversity of the data. However, there remain open problems in

terms of the practical implementation of the generated data and GANs in real-world

applications, particularly in health applications where the performance of these

models can directly affect patients’ quality of care/treatment.

The ‘best’ GAN architecture and objective function is still yet to be determined.

This is because humans have manually designed most architectures. As a result, there

is growing interest in automated neural architecture search (NAS) methods [126]

whereby automating the architecture engineering aspect of machine learning. It is a

growing branch of automatic machine learning (AutoML) and automatic deep learning

(AutoDL) that seeks to optimise the processes around machine learning. Work has

been done in the image domain space with neural architecture search and GANs [127].

This method, named AutoGAN, achieved highly competitive performance compared

to state-of-the-art human-engineered GANs. This is a promising area for time series

GANs; to our knowledge, is yet unexplored.

As it stands, GANs tend to be application-specific; they perform well for their

intended purpose but do not generalise well beyond their original domain. Further-

more, a major limitation of time series GANs is the restrictions placed on the length

of the sequence specified that the architecture can manage; documented experiments

validating how well a time series GAN can adapt to varying data lengths are notably

absent at the time of writing. However, glimpses of work in the NLP literature in
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the form of Transformers [128] have demonstrated some applicability to dealing with

varying sequence lengths that may prove beneficial in addressing this issue and might

emerge in time series generation given time.

2.9 Conclusion

This chapter reviews a niche but growing use of Generative Adversarial Networks

for time series data based mainly around architectural evolution and loss function

variants. We see that each GAN provides application-specific performance and

doesn’t necessarily generalise well to other applications, e.g., a GAN for generating

high-quality physiological time series may not produce high-fidelity audio due to

some limitation imposed by the architecture or loss function. A detailed review

of the applications of time series GANs to real-world problems has been provided,

along with their datasets and the evaluation metrics used for each domain. As stated

in [24], GAN-related research for time series lags that of computer vision both in

terms of performance and defined rules for generalisation of models. In conclusion,

this review has highlighted the open challenges in this area and offers directions for

future work and technological innovation, particularly for those GAN aspects related

to evaluation, privacy, and decentralised learning. We will carry this technology

through the thesis for its capability in generating clinically relevant multivariate

physiological time series data that adheres to differential privacy. This creates the

opportunity for disseminating sensitive medical data for secondary use in further

upskilling of relevant clinical specialists. We also explore GANs for further signal

processing such as denoising physiological time series that seek to make biomarkers

from a noisy signal simpler to uncover.
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Chapter 3

Generating Physiological Time

Series Data using Generative

Adversarial Networks

3.1 Introduction

In this chapter, we demonstrate the ability of Generative Adversarial Networks

to generate synthetic and, more significantly, multichannel physiological signals.

The motivation behind this is as a generative model that samples from a latent

space, GANs theoretically preserve privacy and generate synthetic data similar

to the training dataset. The privacy-preserving nature of GANs is important to

Research Question 1 as sharing and using inherently sensitive medical data is

becoming increasingly complex, with tightening restrictions that lead to significant

challenges in clinical research and development. A result of these regulations means

traditional modes of data sharing have become hindered, and the ML and DL

communities are making efforts to overcome these restrictions in ways that respect

privacy sensitivities. This is a significant challenge because the development of

effective models requires access to extensive datasets. Such data privacy concerns

present researchers and clinicians with an additional set of obstacles in their pursuit
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of AI-enhanced innovations.

Addressing these obstacles raises ethical issues, especially regarding how data

can be used while ensuring privacy is protected, and public trust is maintained. This

poses policy and regulatory challenges for lawmakers and regulators. They must

balance safeguarding personal data while not retarding vital innovation and research

to improve patient outcomes.

Practitioners with access to sought after data often find themselves working

through complex data privacy frameworks and discover that sharing and publishing

the information available via the data is highly challenging. For example, personal

sensitive data such as medical data intended for secondary purposes like clinical

training or research requires anonymisation following its approval for dissemination.

Common methods for the de-identification of data are generalisation, randomisa-

tion, or pseudonymisation [129]. However, it has been shown that the de-identification

of medical data does not guarantee privacy protection of all individuals in the dataset,

and it is possible to re-identify individuals by linkage of data from other sources or

residual information [43]. This may result in the inability to share data with further

research or clinical institutions. In addition, there is often a shortage of available

training data for clinicians and researchers alike, significantly impeding scientific

progress, particularly in developing countries.

The generation of synthetic data is one such solution to the presented problem.

The goal here lies in producing synthetic physiological data representative of real

data gathered during the data collection experiment. However, as stated previously,

it is important to note that substantial amounts of data are required to successfully

train deep learning models for this purpose. Furthermore, protecting the privacy of

the underlying real dataset must also be observed [130], [131].

If these problems can be addressed and overcome, the generated data can be

published without breaching privacy and used in further training and research.

Increasing access to this type of data will encourage scientific studies and facilitate

the upskilling of clinicians, which will in turn aid in preventing or limiting chronic
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illnesses. This can contribute to a shift in the treatment paradigm from reactive to

preventative healthcare.

Capitalising on recent advancements in machine learning and, in particular, deep

learning could pave the way for the future of sharing data and disseminating research.

The work described in this chapter is part of a larger-scoped effort to develop artificial

intelligence for use in clinical training and upskilling of medical professionals.

In this chapter, we demonstrate the contributions of our method in generating

realistic, dependent, multivariate physiological signals while maintaining sufficient

levels of privacy in the training dataset. Using the Multivariate GAN (MVGAN)

architecture developed in our preliminary work [90], we explore novel loss functions

and their effects on generated data quality. We demonstrate our novel GAN, objective

function and evaluation metrics capable of improved multivariate time series data

generation for the first time. Finally, we benchmark our generative model against

other classical generative models.

3.2 Related Work

A variety of methods have been used in the past to generate synthetic data. In

the medical domain, research has mainly focused on the generation of synthetic

Electronic Health Records [130], [132]. Of particular relevance for our research

are those methods which generate synthetic time series data. Previous approaches

include the creation of dynamical models to produce synthetic electrocardiogram

signals [131]. These models consist of three coupled ordinary differential equations

with the user required to specify the characteristics of the heart rate signals to

be generated. Many early methods require expert domain knowledge to generate

synthetic data. More recent developments in the machine learning space remove this

dependency. For example, WaveNet implemented an auto-regressive neural network

that successfully generated synthetic music and speech [133]. In other research,

Dahmen and Cook (2019) developed SynSys to produce realistic home sensor data

using hidden Markov models and regression models [134].
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A significant breakthrough in synthetic data generation was facilitated by the

introduction of Generative Adversarial Networks. GANs do not require input from

domain experts and they can be designed to preserve privacy of the training datasets.

They were first proposed in the seminal paper by Goodfellow in 2014. A multi-layer

perceptron was used for both the discriminator and the generator [21]. Radford et al.

(2015) subsequently developed the deep convolutional generative adversarial network

(DCGAN) to generate synthetic images [30]. A recurrent GAN (RGAN) was first

proposed in 2016. The generator contained a recurrent feedback loop that used

both the input and hidden states at each time step to generate the final output [59].

Recurrent GANs often utilise Long Short-Term Memory neural networks (LSTMs) in

their generative models to avoid the vanishing gradient problem associated with more

traditional recurrent networks [60]. Since their inception in 2014, GANs have shown

great success in generating high-quality synthetic images which are indistinguishable

from the actual images [56]–[58].

While the focus has been on developing GANs for improved image generation,

there has been a movement towards using GANs for time series and sequence

generation [135]. In our exploratory work with GANs for time series generation we

aimed to synthesise time series data by leveraging well established imaged-based

GAN architectures for physiological data generation [89]. Our method segmented the

time series data into suitable windows of fixed length (4096 data points). We then

sampled the amplitude of the signal and mapped the amplitude to an RGB grayscale

value. The array of RGB values were rasterised into an image that can be used

to train an imaged-based GAN. The trained GAN is then capable of synthesising

new rasterised images which can then be transformed back to time series using our

transform, see Figure 3.1 for our developed pipeline.

GAN 

Step 1 Step 2 Step 3 Step 4
Time series data 

to grayscale 
image

Train GAN with
grayscale 
images

Generate new 
images from 

GAN

Map grayscale 
images back to 
time series data

Figure 3.1: Pipeline of GAN model.
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In Figure 3.1 step one involves segmenting the raw time series data into suitable

windows of fixed length, and sampling the amplitude of the signal to map on to

an RGB grayscale value. The RGB grayscale values are rasterised into an image.

Step two involves training the GAN using the rasterised images. Step three uses the

trained GAN to synthesise new images. Step four involves transforming the images

back to their corresponding time series array.

Sequence-based neural networks have also generated synthetic electronic health

records (EHR). While not continuous time series physiological data, it still serves

as an essential foundational block in using GANs to develop a multimodal view of

human health. In our preliminary work, we demonstrate the ability of a GAN with

a fully connected architecture to generate tabular ICD-9 codes that classify diseases

of patients in hospitals. The data was collected from the MIMIC-III database [136]

available on PhysioNet [137]. We demonstrated that the GAN could generate

statistically significant ICD-9 codes that were representative of the patients observed

in the database. Furthermore, the generated data was evaluated by a group of

medical professionals. They found that there was no significant difference between

the three groups of patients regarding how plausible the medical professionals viewed

them, confirming that the synthetic patients closely matched the actual patients,

Figure 3.2. We also implemented Federated Learning for this experiment and found

no significant degradation in performance of the GAN, see Chapter 5 for further

details on Federated Learning.

Novel recurrent neural networks have since been developed for time series and

sequence generation. One such implementation involved the generation of polyphonic

music as real-valued continuous sequential data using an LSTM in both the generator

and discriminator [67]. In contrast, Yu et al. (2017) generated synthetic music

by representing 88 distinct pitches with discrete tokens [53]. This GAN, known as

SeqGAN, contained an LSTM in the generator with a CNN in the discriminator

and outperformed alternative approaches for generating data sequences. GANs were

also used to generate single-channel electroencephalogram (EEG) data for motor

61



Deep Learning Signal Processing

Real Patients Full Source Federated, 2 Source

Implausible

-

Slightly Implausible

-

Slightly Plausible

-

Plausible

-

Highly Plausible

Quality Evaluation

Figure 3.2: Medical professionals’ evaluation of the synthetic EHRs.

movement in both the left and right-hand [104]. We are aware of one work that

implements both a GAN and a conditional GAN (CGAN) to generate real-valued

medical time series data [42]. A CGAN provides additional information to the

generator and the discriminator to aid the creation of synthetic data [138]. More

recent attempts to generate synthetic ECG used bidirectional LSTMs in the generator

and convolutional neural networks in the discriminator [88].

By focusing on deep generative models for single channel physiological data, we

demonstrated that realistic synthetic physiological signals could be generated from a

dataset of real signals [87]. This was one of the earliest examples in literature that

generated continuous physiological time series signals using GANs. An example of

the single channel synthetic data generated is visualised in Figure 3.3.

Figure 3.3: Early examples of real (red) ECG and synthetic (blue) physiological time
series signals generated by a GAN.
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However, our approach above was limited to single channel time series. Therefore,

we extend this by exploring the possibility of generating multivariate, strongly-

coupled physiological time series and investigating using appropriate evaluation

metrics to obtain characteristics in the output present in the training dataset. This

is an essential step as multivariate medical time series is not simply a collection

of independent time series, each of which can be synthesised independently. An

extensive deep coupling between the signals exists and is exemplified in multi-lead

electrocardiography (an electrical measure of cardiac activity), also known as ECG.

A multi-lead ECG involves measuring the heart’s electrical activity via several

projections over the body’s surface via differential bipolar electrode sets. This

produces a tightly coupled time series set that can reconstruct an approximation of

the dipole dynamics associated with current flow in the beating heart. Furthermore,

we improve the quality of our generated multichannel ECG through the development

of novel loss functions. We compare them with other common loss functions that

have been previously explored in the time series GAN literature [135]. This chapter

focuses on the challenge of synthesising such data using our novel objective functions.

3.3 Multivariate Dynamic Time Warping

For a GAN to be considered successful, not only should it converge during training,

but it should also learn the distribution of the training data. Dynamic Time Warping

is used to measure the similarity or distance between two time series sequences

and can be implemented as a univariate sequential data classifier. The single-

dimensional DTW cumulative distance function defined in (3.1) is used to find the

path that minimises the warping cost. Here d(qi, cj) is the squared Euclidean distance

between the ith data point of the univariate time series Q and jth data point of

the univariate time series C. D(i,j) represents the n-by-n matrix constructed by the

squared Euclidean distance between points qi and cj where n is the length of the

sequence.
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D(i, j) = d(qi, cj) + min
{
D(i− 1, j − 1), D(i− 1, j), D(i, j − 1)

}
(3.1)

To adapt to the multivariate Dynamic Time Warping (MVDTW) case we redefine

d(qi, cj) as the cumulative squared Euclidean distances of M data points as in [139].

M is defined as the number of time series that make up the multi-dimensional time

series; for this work, the number of individual time series is two (M=2). Q and C

are two separate multivariate time series, both with M=2. qi,m is the ith data point

in the mth dimension of one multivariate time series Q and cj,m is the jth data point

in the mth dimension of the other multivariate time series C, d(qi, cj) now becomes:

d(qi, cj) =
M∑
m=1

(qi,m − cj,m)2 (3.2)

Therefore we can now define the cumulative distance for MVDTW as in equation

(3.3). This allows us to find the distance that minimises the warping path and

calculate MVDTW. In turn, we can calculate the similarity between our generated

data and training data. This equation can now be used as our novel evaluation

metric for the generated multichannel physiological data.

(3.3)D(i, j) =
M∑
m=1

(qi,m − cj,m)2 + min
{
D(i− 1, j − 1), D(i− 1, j), D(i, j − 1)

}

3.4 Model Design

This section presents our MVGAN model for generating synthetic, dependent, mul-

tivariate physiological time series data. Structurally, our model builds on the

architectures of our previous preliminary work. We increase the limited sequence

length of 187 in [87], [90] to a more realistic length of 500 sample points. This yields

a time series more representative of digitised ECG for the time windows considered

(5 seconds at a realistic sampling rate). This length is arbitrary and can be varied

through the discriminator to produce data sequences of differing sizes. In terms of
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generating multichannel data, we increase the number of features available at the

input and output of our model. This enables the model to generate realistic, coupled

multivariate time series data; this has not been done in previous work. Extending

on the earlier models, we also implement 2-dimensional convolution-pooling layers

and include a minibatch discrimination layer in the discriminator to prevent mode

collapse. The optimiser also has noise introduced to its gradients to create a differen-

tially private GAN model (GAN-DP). Implementation details of the experiments are

available online 1.

3.4.1 Generator

The generator is a two-layer stacked LSTM with 50 hidden units in each layer and a

fully connected layer at the output. With the extra expected features at the input of

the torch.nn.LSTM class, this architecture facilitates generation of multivariate time

series data and can scale to more channels as needed.

3.4.2 Discriminator

The discriminator is a four-layer convolutional neural network, a minibatch dis-

crimination layer, a fully connected layer and a sigmoid activation function. For

differential privacy noise was added to the gradient of the optimiser (GAN-DP model).

Figure 3.4 is a block diagram of the discriminator and Table 3.1 is an example of the

model parameters.

Minibatch
Discrimination Fully Connected OutputInput Conv-Pooling

Pairs

Layers 1-4

Figure 3.4: Diagram of discriminator architecture

1https://github.com/Brophy-E/Multivariate-timeseries-GANs
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Table 3.1: Parameters for the convolution-pooling layers in the discriminator.

Layer Input Size Feature Maps Filter Stride Output Size

C1 2× 187 3× 2 3 1 3× 2× 185
P1 3× 2× 185 3× 2 3 1 3× 2× 183
C2 3× 2× 183 5× 2 3 1 5× 2× 181
P2 5× 2× 181 5× 2 3 2 5× 2× 90
C3 5× 2× 90 8× 2 3 2 8× 2× 44
P3 10× 2× 44 8× 2 3 2 8× 2× 21
C4 10× 2× 21 10× 2 5 2 10× 2× 9
P4 10× 2× 9 10× 2 5 2 10× 2× 3

3.5 Loss Functions

Keeping with the same architecture for the MVGAN, we explore novel loss functions

by implementing the Loss Sensitive GAN’s (LS-GAN) objective function [140] and

tailoring it to our multivariate time series generation problem. When the distance

between a generated and real multivariate sample becomes small, the GAN will

stop increasing the difference L(G(z ))− L(x ) between their losses. The LS-GAN

optimizes L and G alternately to minimise (3.4).

S = Ex∼pdata(x)

[
L(x) + λ

]
+ Ex∼pdata(x),z∼pz(z)

[
∆(x,G(z)) + L(x)− L(G(z))

]
(3.4)

where L is a given loss function, λ is a balancing parameter and ∆(x,G(z)) is

the difference between the real sample x and generated sample G(z).

In exploring other loss functions, we investigate the LSGAN with (3.5) and

without (3.6) an additional penalisation term in the discriminator. This term is the

MVDTW, and it penalises the generator if the distance between the multivariate real

and generated samples is large. This loss term holds if 1 ≤MVDTW (x,G(z)). The

generator’s objective function remains unchanged (3.7). Here, a is the label for the

generated samples, b is the label for the real samples, and c is the hyperparameter

that G wants D to recognise the generated samples as real samples.
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min
D

VLSGAN(D) = 1/2× Ex∼pdata(x)

[
(D(x)− b)2

]
+1/2× Ez∼pz(z)

[
(D(G(z))− a)2

]
(3.5)

min
D

VLSGAN−DTW (D) = 1/2× Ex∼pdata(x)

[
(D(x)− b)2

]
+

1/2× Ez∼pz(z)

[
(D(G(z))− a)2

]
+ Ex∼pdata(x),z∼pz(z)

[
1− 1/log(MVDTW (x,G(z))

]
(3.6)

min
G
VLSGAN(G) = 1/2× Ez∼pz(z)

[
(D(G(z))− c)2

]
(3.7)

The following objective function (3.8, 3.9) takes the MVDTW of the probability

that a sample is either real or fake along with the adversarial ground truth. The

adversarial ground truth is an array of either 0s or 1s. In this case, the MVDTW

computes the distance between the probabilities and ground truth. In essence, this

function computes the squared euclidean distance, and it is retained in this chapter

as it produces both qualitatively plausible and quantitatively competitive samples.

min
D

VDTWGAN(D) = 1/2×MVDTWx∼pdata(x)

[
(D(x), valid)

]
+1/2×MVDTWz∼pz(z)

[
(D(G(z)), fake)

]
(3.8)

min
G
VDTWGAN(G) = 1/2×DTWz∼pz(z)

[
(D(G(z)), valid)

]
(3.9)

Given these loss functions we now have 5 MVGAN variants as follows:

1. Least Squares GAN (LSGAN) (3.5), (3.7)

2. Least Squares GAN with DTW term (LSGAN-DTW) (3.6), (3.7)
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3. GAN with DTW criterion (DTWGAN) (3.8), (3.9)

4. Loss Sensitive GAN (LS-GAN) (3.4)

5. Loss Sensitive GAN with DTW distance measure (LS-GAN-DTW) (3.4)

3.6 Materials and Methods

3.6.1 Datasets

Multichannel ECG records are signals from two or more leads simultaneously and are

frequently used in place of single-channel ECG to give a more complete understanding

of the cardiac state. To demonstrate that this MVGAN architecture effectively

generates multichannel ECG, we have used two datasets in this work. The first

openly available dataset is the MIT-BIH Normal Sinus Rhythm (NSR) Database,

which includes 18 long-term ECG recordings of subjects found to have had no

significant arrhythmia. Recordings were collected at Boston’s Beth Israel Hospital

and digitised at 128 Hz. Subjects include five men aged 26 to 45, and 13 women,

aged 20 to 50.

The second dataset used is the publicly available MIT-BIH Arrhythmia (ARR)

dataset [77]. This database contains 48 half-hour long recordings of two-channel

ambulatory ECG. Both normal ECG and a range of uncommon but clinically

significant ECG irregularities are included in this dataset. The authors of the data

collection experiment digitised the recordings at 360 Hz. Each of the records was

analysed by two cardiologists to provide reference annotations for every beat. For

this dataset, a modified limb lead II (MLII) was used for recording one channel and

a unipolar chest lead, also called precordial, or V lead, was used to measure the

other channel. V1 was the most common chest lead used, but in some cases, V2, V4,

or V5 was used.

In both cases, the datasets are open source and freely available on PhysioNet [137].

Figure 3.5 shows an example trace of a classic ECG expected from the datasets. The
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multichannel lead configuration illustrates the dependencies present in the signals

that we are seeking to replicate.

V

MLII

time (s)MLII Lead

V Lead

Figure 3.5: Lead configuration for the collection of the ARR dataset with corre-
sponding ECG trace

3.6.2 Data Preprocessing

The datasets were pulled from PhysioNet and loaded using Python’s wfdb library.

Before training our GANs, the datasets required preprocessing in R-peak align-

ment, segmentation and downsampling. These steps are detailed in the following

subsections.

R-peak alignment

Successfully generating dependent multivariate time series requires the training data

to retain its inherent dependencies. Fortunately, the ECG channels are already

concurrent before any preprocessing steps. An R-peak detector provided by wfdb’s

processing module was used on each of the ECG records. Aligning an R-peak in

the centre of every training sample ensured a more effective training set as the QRS

complexes occupy similar locations in the sequences. The QRS complex represents

ventricular depolarisation and is a combination of the Q, R and S waves in the

cardiac cycle.

Resampling

The signals were then resampled from their original sampling frequency of 128 Hz

(NSR dataset) and 360 Hz (ARR dataset) to 100 Hz using SciPy’s signal.resample.
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Segmentation

Following resampling, we normalised and segmented the recordings into smaller

samples, each consisting of 5 seconds of data for both leads. Naturally, these samples

will not contain the same QRS complexes as the cardiac cycle has natural variability.

The length of the data was varied from our previous works [87], [90] to demonstrate

the scalability of our GAN architecture. An example of the multichannel input data

is shown below in Figure 3.6 with an artificial offset on the lead two for visualisation

purposes.
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Figure 3.6: Example of preprocessed multichannel ECG from NSR dataset (left) and
ARR dataset (right) used in training.

3.6.3 Training

For every loss function explored, the GAN was trained for 50 epochs. For each

epoch, the entire training set was divided into batches of 50 multivariate samples.

The RMSprop optimiser was used with a learning rate of α = 0.0002 as it is

computationally efficient and works well for this deep learning model. The GAN

variants were trained without minibatch discrimination (MBD), and no mode collapse

was observed. We have shown previously that the inclusion of MBD layers can be

used with this architecture to prevent mode collapse [90]. In addition, noise was

introduced into the gradients of the discriminator optimiser to ensure a differentially

private network [119].
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3.6.4 Evaluation

Quality

Maximum Mean Discrepancy (MMD) and multivariate Dynamic Time Warping were

used to assess generated data quality. MMD is used here to reinforce the DTW

results and to demonstrate that the GAN iteratively learns and generates data from

a distribution more representative of the training data distribution. The MMD

package used for these experiments is available on GitHub 2 [141].

Multivariate, dependent DTW was calculated to determine similarity measures

across the dependent signals in the generated data against the training data. We

have shown in the past that the MVDTW method can be used to evaluate generated

data from time series GANs [90]. Generated data from the trained generator was

compared against the complete training set for evaluation. The evaluation results

were averaged over several runs of the model.

Privacy

Membership inference attacks observe the behaviour of our GAN and attempt to

predict examples that were used to train it. A membership inference attack was run

to assess presence disclosure. Presence disclosure occurs if it is possible to determine

that a particular record was used to train a GAN by observing the generated samples.

The sample size r was varied between [1000,10000] training records while the threshold

ε ranged from [0.05,0.5] of the mean Euclidean distance between all samples. A

synthetic dataset of 1000 generated samples was used for this test. This experiment

was implemented in a Jupyter Notebook 3 and is also available as the python library

package mia [142].

2https://github.com/eugenium/MMD
3https://github.com/Brophy-E/Multivariate-timeseries-GANs/blob/main/Notebooks/

membership_inference_attack.ipynb
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3.6.5 Benchmarking

To further evaluate and demonstrate the advantages of our GAN, we benchmark our

results against current, well-known generative modelling methods. Using the same

training dataset, we implemented a multivariate Variational Autoencoder (VAE) and

LSTM as a means of generating the type of multichannel data that the proposed

GAN is capable of generating. It is important to note that these methods are usually

implemented with single-channel time series data. Here we adopt these methods

from a single time series to the multichannel context for the first time to create a

benchmark comparison.

To compare how closely the distribution and distance of the generated data match

that of the training data, we implemented two time series classifiers alongside our

MVDTW and MMD metrics. Support Vector Classification (SVC) and LSTM were

the two classifiers of choice. We classify the generated and training data using these

models; a classification rate closer to 0.5 demonstrates the classifiers have difficulty

distinguishing actual data from the generated data. The poorer the performance of

the classifier, the closer the generated data is to the training data. We also compare

the data generated from our differentially private GAN to the GAN without DP.

Following this, we run a membership inference attack on the generated data for

the GAN and GAN-DP to observe what difference, if any, the differential privacy

offers. This series of experiments allows us to understand which model generates

realistic multivariate time series signals and which models preserve the underlying

privacy of the training data most effectively.

3.7 Results

In this section, we focus on the data generated by the GAN without differential

privacy unless explicitly stated otherwise. Qualitative examples of high-quality

generated ECG for each GAN can be found from Figure 3.7 to Figure 3.11. It

becomes apparent that the LS-GAN-DTW generates the best qualitative results for
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the NSR and ARR datasets. The other variant models appear to have successfully

generated realistic, multivariate and dependent ECG data. For visualisation purposes,

an offset is again artificially introduced to lead II (orange).
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Figure 3.7: Examples of generated multichannel ECG from LSGAN for NSR dataset
(left) and ARR dataset (right).
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Figure 3.8: Examples of generated multichannel ECG from LSGAN-DTW for NSR
dataset (left) and ARR dataset (right).
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Figure 3.9: Examples of generated multichannel ECG from DTWGAN for NSR
dataset (left) and ARR dataset (right).

The results shown in Figures 3.7 through 3.11 demonstrate that this architecture

can successfully generate realistic ECG samples. Lead I is shown in blue and lead II

in orange with an artificial offset introduced for visualisation purposes. It appears

that for the ARR dataset the GAN models generate noisy ECG, but given the

diverse nature of this dataset, the GANs generate good quality data, as is evident

in the metrics that follow. However, a qualitative evaluation cannot be considered
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Figure 3.10: Examples of generated multichannel ECG from LS-GAN for NSR
dataset (left) and ARR dataset (right).
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Figure 3.11: Examples of generated multichannel ECG from LS-GAN-DTW for NSR
dataset (left) and ARR dataset (right).

a complete evaluation of GAN performance due to the lack of a suitable objective

function to measure data quality. We address this challenge in the following section.

3.7.1 Evaluation

Quality

Visually, and therefore from a qualitative perspective, the multi-lead ECG synthesised

is of high-quality; however, we augment this assessment through the development of

suitable objective quantitative metrics. We demonstrate the results for these metrics

in this section.

Maximum Mean Discrepancy results in Tables 3.2 and 3.3 demonstrate that as the

GAN iterates through the training process, it is generating data from a distribution

that is more representative of the training data distribution.

Results for DTW extended to multivariate time series can be seen in Tables 3.2

and 3.3. The distance measures between the dependent generated signals and the

dependent training signals are reducing throughout the training process, indicating

that the proposed GAN has successfully captured the multivariate training data
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distribution. Although the LSGAN appears to produce the best quantitative results

for the NSR dataset according to the metrics used in this chapter, the DTWGAN

produces an improved MMD for the ARR dataset. The best performing GAN is

shown in Figure 3.12. Over both datasets, normalising DTW and MMD results,

the best performing model is the LSGAN-DTW. The LSGAN-DTW shows a 4.9%

improvement over the LSGAN and 4.5% improvement over the DTWGAN. As a

result of the LSGAN-DTW being the overall best performing GAN, the results that

follow will be reported for this variant unless explicitly stated otherwise.

Table 3.2: Metrics NSR

Modelling Method
Evaluation

MVDTW MMD

LSGAN 3.0598 0.0057
LSGAN-DTW 3.3069 0.0105

DTWGAN 3.5463 0.0181
LS-GAN 6.7879 0.0194

LS-GAN-DTW 3.3229 0.0086

Table 3.3: Metrics ARR

Modelling Method
Evaluation

MVDTW MMD

LSGAN 4.0101 0.0568
LSGAN-DTW 4.3463 0.0195

DTWGAN 4.5918 0.0157
LS-GAN 7.4448 0.1917

LS-GAN-DTW 4.2674 0.0747
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Figure 3.12: Combined, normalised MMD and MVDTW results demonstrate the
best performing GAN across both datasets to be the LSGAN-DTW.

Privacy

In terms of privacy, Figure 3.13 and Figure 3.14 shows the presence disclosure

(averaged over both datasets) for a membership inference attack on the LSGAN-

DTW and LSGAN-DTW-DP, respectively. The number of training records identified

is very low (Recall), with approximately 0% correctly identified for ε ≤ 0.4 × mean
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distance. However, as the threshold ε increases above this boundary, the number

of records correctly identified as training records increases independently of the

sample size r for the GAN without differential privacy. The GAN-DP preserves

the training data privacy with no training records identified for ε ≤ 0.5 × mean

distance. Precision is approximately 100% for all ε and r, which means once an

attacker deems that a sample originates from the training set, it is almost always

correctly attributed to the training set. Overall, this result tells us that for our

generated data, an attacker will have a challenging time correctly identifying if

a sample has originated from the training set. Therefore, this GAN architecture

and loss function can generate data similar in distribution to the training set while

maintaining sufficient privacy of the data.
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Figure 3.13: Presence disclosure of GAN following a membership inference attack
with increasing ε.
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Figure 3.14: Presence disclosure of GAN-DP following a membership inference attack
with increasing ε.
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3.7.2 Benchmarking Results

These experiments offer a benchmark to compare our GAN to other generative

models. Table 3.4 shows the classifier accuracy averaged over both datasets for each

of the generative models introduced in Section 3.6.5. SVC and LSTM were the two

time series classifiers used in these benchmarking tests. A lower classifier accuracy

indicates the classifier had difficulty distinguishing the classes, which in this case

were the real and generated data. The modelling method that generated the most

similar data to the real data was the LSGAN-DTW.

Table 3.4: Classifier accuracy for the generative models averaged over both datasets

Modelling Method
Classifier Accuracy

SVC LSTM Average

VAE 0.9 0.68 0.79
LSTM 0.95 0.62 0.78

LSGAN-DTW 0.4 0.62 0.51
LSGAN-DTW-DP 0.56 0.86 0.71

To complement the results shown in Table 3.4, evaluation metrics were computed

for each of the modelling methods. MVDTW and MMD were calculated as in

Section 3.7.1 and the results for which are shown in Table 3.5 below, averaged over

both datasets. Smaller distances for MVDTW reflect time series that are more similar

to each other and for MMD indicate that the real and generated data distributions

are closer. As can be seen, LSGAN-DTW has lower distances for MVDTW and

MMD, followed by LSGAN-DTWGAN-DP. This quantitatively demonstrates that

the data generated using the GANs are more representative of the real data compared

with that of the other generative and time series modelling methods.

Table 3.5: Evaluation metrics for other generative models averaged over both datasets

Modelling Method
Evaluation Performance
MVDTW MMD

VAE 47.14 0.96
LSTM 27.87 1.09

LSGAN-DTW 3.8266 0.01505
LSGAN-DTW-DP 13.36 0.29
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3.8 Discussion & Conclusions

The multivariate GAN proposed in this work has demonstrated a capability for

generating high-quality, dependent, multichannel ECG signals. Our introduction of

the DTW penalisation term in the GAN objective function leads to a more robust

design that avoids mode collapse without the need for MBD layers and results

in the generation of diverse multichannel time series. We also introduced a new

quantitative method for the assessment of output quality for multichannel time series

GANs, namely MVDTW. These quantitative methods can complement qualitative

evaluation and, in the context of this work, confirm the strong performance of the

proposed GAN. Ideally, rather than solely relying on classical and novel metrics, we

could enlist the help of a trained physician to classify samples of generated data

to determine how accurate the signal traces are, as we have done in our previous

work [143]. This also forms an avenue for our future work. Finally, given the nature

of the data, it would be interesting to implement conditional models to generate

normal and pathological data, which would enable future researchers to generate

ECG based on their needs.

To address the growing privacy concerns with sensitive personal data such as

physiological or medical data, we demonstrated the ability of the LSGAN-DTW, and

in particular, the LSGAN-DTWGAN-DP, to sufficiently conserve the confidentiality

of the underlying training data. Implementation of a membership inference attack

demonstrated promising results for data privacy with these GANs; protecting and

isolating the training set from the generated data ensures that a certain level of

privacy is maintained. With the addition of a differentially private GAN architecture,

we can generate data and ensure that the privacy of the training data is not violated.

We also presented benchmark experimental results for showcasing the advantages

that the LSGAN-DTW holds over other generative time series modelling methods.

Most of these well-known methods are tailored explicitly to univariate signals,

whereas our methods can be scaled up to multivariate use cases, which include

strong coupling between time series. Not only is the proposed method capable of
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generating multivariate medical time series data, but it also generates data from a

closer distribution and distance to that of the training data in comparison to the

other generative modelling methods utilised in this chapter.

Multivariate time series data presents an opportunity for the application of GANs

in tackling the data shortage and sharing problem in medical research, put forward in

Research Question 1. It should be stated here that we only generate ECG waveform

data and no associated metadata. This type of data synthesis ensures that there

is no risk of reidentifying subjects from our generated data, as discussed in detail

in Chapter 1. In terms of our motivating challenge, the successful generation of

both private and diverse samples of multichannel and dependent physiological data

means we have the potential to use this technology for clinical training and research

applications. With that goal in mind, we have shown, for the first time, a GAN

design capable of generating high-quality dependent multichannel physiological time

series with quality similar to that present in clinically relevant data repositories.
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Chapter 4

Human Activity Recognition and

Heart Rate Estimation from Single

Sensor Devices

4.1 Introduction

From Chapter 2 to 3 we have seen the applicability of Generative Adversarial

Networks for generating high-quality time series signals, successfully addressing

Research Question 1. In the proceeding chapters, we switch our focus to DL

architectures and techniques for processing human physiological signals with the idea

of returning state-of-the-art biomarkers and further insights previously undiscovered

in the data as laid out in Research Question 2.

Wrist-worn smart devices are providing increased insights into human health,

behaviour and performance through sophisticated analytics. However, battery life,

device cost and sensor performance in the face of movement-related artefact present

challenges which must be further addressed to see effective applications and wider

adoption through commoditisation of the technology. We address these challenges by

demonstrating, through using a simple optical measurement, photoplethysmography

(PPG) used conventionally for heart rate detection in wrist-worn sensors, that we can
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provide improved heart rate and human activity recognition (HAR) simultaneously

at low sample rates, without an inertial measurement unit.

Photoplethysmography is an optical technique commonly employed in wearables

and other medical devices to measure volume changes of blood in the microvascular

tissue during the cardiac cycle. Light becomes reflected and absorbed at different

rates during this cycle and the reflected light is read by a photo-sensor to detect

these changes. The pulse rate is obtained from analysis of the small alternating

component (which arises from the pulsatile nature of blood flow) superimposed on

the larger base signal caused by the constant absorption of light.

Heart rate can be measured at multiple sites on the body using PPG including,

but not limited to; ear, forehead, fingertip, ankle and wrist. In the context of

personalised health and fitness monitoring using wearables, the wrist is the most

frequently used location for photoplethysmographic heart rate monitoring. Accuracies

of consumer-grade wearables, for the most part, are acceptable but are prone to errors

during daily activities [144]. The difficulties associated with correctly estimating

heart rate arise mostly in obtaining a strong physiological reading from the sensors.

Often the signals read from the PPG modules are heavily corrupted with motion

artefacts and the movement of the limbs is a major contributor to this introduced

artefact. Retrieval of a clean PPG signal from a heavily corrupted signal can be

achieved by applying filtering techniques including adaptive methods based on a

measure of the artefact sourced from an accelerometer-based measurement [145].

Due to the ubiquitous nature of inertial and physiological sensors in phones and fit-

ness trackers, human activity recognition studies have become more widespread [146].

The benefits of HAR include rehabilitation for recovering patients, activity mon-

itoring of the elderly and vulnerable people, and advancements in human-centric

applications [147]. In this chapter we show that HAR can also be performed on

optical signals by taking advantage of the motion artefact present in the signal. For

both heart rate estimation and activity recognition we sought to exploit the motion

artefact to infer the physiological states from the PPG signals collected at the wrist.
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Our hypothesis was that there is sufficient information in the disturbance induced

in the source-detector path to distinguish different activities through the use of a

machine learning approach.

The battery life of smartwatches and fitness trackers vary greatly depending on

the features and functionality available on-board the wearable. The Apple Watch

Series 5, which is more of a lifestyle and fitness tracker, can run for a period of up to

18 hours whereas the Fitbit Charge 3 fitness tracker can go for up to 7 days on a

single charge. Continuous activity and heart rate monitoring speed up the depletion

of the battery of most wearables. Gathering and processing of simultaneous sensor

data can further increase the power consumption of the devices. Without explicitly

stating the sampling frequency, Apple state that their heart rate monitor Light

Emitting Diodes (LEDs) blink “hundreds of times per second” [148].

Capitalising on recent advancements in machine learning could pave the way for

the simplification of wearables, allowing for a reduction in power requirements and

subsequently smaller and lower-cost devices. The work described in this chapter is

part of a larger-scoped effort to develop easily deployed artificial intelligence which

can be used and interpreted by end-users who do not have deep levels of signal

processing expertise.

We demonstrate the contributions of our pipeline, using a standalone optical

sensor for both activity recognition and heart rate monitoring with significantly

reduced sampling frequencies. This novel approach yields not only improved power

efficiency but does so without significantly sacrificing accuracy thus advancing the

development of simpler, more cost-effective wearables.

Although globally people are using hospitals more efficiently, public healthcare

expenditure is rising. For example, in Ireland expenditure has risen from €14.9 billion

in 2009 to an estimated €16.8 billion in 2018 with the increasing prevalence of chronic

illness requiring long-term patient-provider engagement and management, accounting

for roughly 80% of spending [149]–[151]. Frost & Sullivan in 2010 predicted, based

on the then-current trends, that healthcare spending in Western economies would
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almost double (as a proportion of GDP) by 2050, reaching 20%–30% of GDP in some

cases. The report also stated that per capita, healthcare spending is rising faster

than per capita income in most countries [152].

As a response, globally there is a change in how healthcare is managed. For

example, in Ireland, the Department of Health has signalled a major shift in the

paradigm of treating people with illnesses. This signals a change in health policy

from a reactive to proactive treatment-based models where the focus is increasingly

on keeping people healthy [153]. Advancements in digital health technologies, in-

cluding mHealth and MedTech, have the potential to contribute significantly to a

transformation in healthcare delivery, e.g. enabling proactive care through the use

of continuous monitoring devices and application of advanced data analytics that

enable greater personalisation of treatments [151]. Thus the role of data gathered

from wearables is important as part of such a shift in healthcare provision policies.

4.2 Related Work

CNNs have contributed tremendously to the success of machine learning since

their introduction in the 1990s. They are an example of neuroscientific principles

influencing deep learning [16], in that they are designed to mimic the processing

of images in the visual cortex of the human brain [17]. Fully automatic learning

of a CNN allows the neural network to extract features that are salient in the

input data across different layers. Given the correct training, a CNN allows for the

implementation of high accuracy classifiers without the need for signal processing

or feature extraction knowledge. This had contributed to their success in practical

applications, particularly with image classification.

The current state of the art in HAR systems are camera-based which allow for

direct capture of the data but consequently requires significant computer processing

to determine distinct activities. HAR studies are frequently carried out using data

from inertial measurement units (IMU) which measure proper acceleration of a body

or limb. Signal processing and feature extraction for these HAR studies are not
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trivial, including (but not limited to); singular value decomposition (SVD), support

vector machine (SVM) and Random Forest (RF). High accuracy ranging from 80%

to 99% can be achieved with such signal processing techniques but they often require

a combination of sensor modalities [154] and using multiple IMUs located on various

parts of the body which in turn gives rise to scalability and functionality issues in

these studies.

Few studies have employed the use of a PPG sensor only for HAR as they are more

commonly used with heart rate estimation [155], [156]. Biagetti et al. conducted

a study on the same dataset used in this chapter for activity recognition [157].

Using the PPG data only for HAR they achieved 44.7% classification accuracy

using their feature extraction algorithm. Later the authors combined the PPG data

with accelerometer data and achieved 78.0% accuracy using their feature extraction

technique. Mehrang et al. used a combination of PPG and accelerometer with feature

extraction and classification techniques such as RF and SVM, achieving accuracy of

89.2± 4.2% and 85.± 6.8% respectively [158].

It should be noted that leading, modern feature extraction and classification

techniques using multiple IMUs can achieve 80% to 99% classification accuracy,

which may require several sensors located throughout the body [154].

We have found few works that leverage CNN for heart rate estimation. Qui et al.

computed heart rate estimation from facial videos using a CNN [159]. In [160], the

authors proposed a method to estimate heart rate using a CNN trained on a sequence

of facial images. Reiss et al. sought to solve a regression problem by estimating heart

rate from PPG and accelerometer data by computing the Fast Fourier Transform

(FFT) and z-normalisation on the 4 input channels to a CNN [161]. Extending on

this, using a standalone PPG we develop a CNN regression architecture for heart

rate estimation on a single channel time series without any preprocessing.

Junker, Lukowicz and Tröster [162] downsampled wearable accelerometers from

100 Hz in a wearable context recognition system. The authors found that they could

achieve sufficient classification accuracy rates for sampling frequencies as low as
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20 Hz. However, a significant drop in accuracy (below 60%) is observed when the

sampling rate is reduced to 10 Hz.

Finally, in [163] the authors use a developed wrist-worn wearable consisting of

a two-axis accelerometer, microphone, light and temperature sensors for context-

aware wearable computing. They found that a sampling frequency of 6 Hz yields

comparative accuracy compared to much high sampling rates using available time

domain features with machine learning. Following this Krause et al. demonstrated

that this decrease in sampling frequency from 20 Hz to 6 Hz increases the battery

life of their constructed wearable by 85%.

4.3 Methodology

4.3.1 Dataset

A readily available wrist PPG exercise dataset collected by Jarchi and Casson [164]

and publicly available on PhysioNet was used for the experiments in this work [137].

Data was collected during exercise by 8 healthy patients (5 male, 3 female) with a

sampling frequency of 256 Hz. Data was gathered using a wrist-worn PPG sensor on

board the Shimmer 3 GSR+ unit for an average recording time of 4 to 6 minutes with

a maximum time of 10 minutes. Four exercises were performed; two on a stationary

exercise bike and two on a treadmill. The exercises are broken down as follows; walk

on a treadmill, run on a treadmill, high resistance exercise bike and low resistance

exercise bike. Due to the data collection done during exercise, the PPG signals are

heavily corrupted by motion artefacts. No further filtering is applied to the PPG

data for the treadmill exercises other than what the Shimmer unit provides on board.

For the exercise bike recordings, there was high-frequency noise present which was

filtered in MATLAB using a second order IIR Butterworth filter with a 15 Hz cutoff

frequency [164].

To accurately evaluate the unfiltered PPG heart rate performance, we compare

it with a concurrent ECG that was collected by the authors of the data gathering

85



Deep Learning Signal Processing

experiment described above [164]; this provides a ground truth against which to

assess our heart rate estimation. The dataset also contains recordings using a

3-axis low-noise accelerometer, a 3-axis wide-range accelerometer, and a 3-axis

gyroscope; however, we only utilise the PPG and ECG signals in this chapter. Full

implementation details for this chapter can be found online 1.

4.3.2 Downsampling and Segmentation

Prior to segmenting and plotting the PPG signal it was downsampled to a number

of different sampling frequencies. The classifier was trained using the full 256 Hz

sampling frequency, then retrained on the downsampled frequencies of 30 Hz, 15 Hz,

10 Hz, 5 Hz and 1 Hz respectively.

Once the signal had been downsampled it was then segmented into smaller chunks.

A simple rectangular windowing function was used to capture 8 seconds worth of

data and step through the data in increments of 1 second. We selected windows of 8

seconds to match the time windows used in [157].

4.3.3 Human Activity Recognition

We opt for an imaged-based approach for the HAR element as inspired by [165].

This methodology allows us to leverage a very deep pre-trained CNN without the

need to retrain the whole model. A CNN based on the Inception-V3 architecture and

pre-trained on ImageNet [166] was used as the classifier for the HAR experiments.

The deep model was retrained leveraging the technique of transfer learning [167],

the penultimate layer had its weights updated while all other layers remained the

same. This allowed the use of smaller amounts of data to train a model with a

large learning capacity that would normally require a lot of data and time to train

from scratch. The retraining process can be fine-tuned through the optimisation of

hyperparameters. The parameters were set as their defaults in this experiment except

for the number of training steps which were changed from 10,000 to 4,000. This

1https://github.com/Brophy-E/CNNs_HAR_and_HR
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helped minimise overfitting through sufficient convergence of the loss function (cross-

entropy). See Figure 4.2 for a block diagram of the processing pipeline associated

with our methodology.

As a machine vision approach is applied using this classifier, the temporal PPG

signals are saved as images rather than time series vectors to be used as input.

Matplotlib was used to plot the PPG signal as images, which were saved using the

plt.savefig function as 299x299 JPEGs [168] because the default input image size of

Inception-V3 is 299×299. All axis labels, legends, titles and grid ticks were removed.

Python’s wfdb library was used to pull and load the data from PhysioNet [169].

To train the HAR classifier, a total of 6,653 images were stored in four sub-

directories of the possible predicted classes (High, Low, Run and Walk). A train/test

split validation approach was taken in this experiment. 80% of the data was used

for training, 10% for validation and 10% for testing. See Figure 4.1 for examples of

PPG data used during training of the classifier.

Figure 4.1: Example of PPG from each exercise used in CNN training
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Figure 4.2: Block diagram of our processing approach

4.3.4 Estimation of Heart Rate

We designed a CNN with the output layer replaced by a regression layer. We refer

to this model as CNNR (Convolutional Neural Network with Regression). It is a

four-layer 1-D convolutional network with batch normalization and ReLU (Rectified

Linear Units) followed by a fully connected and regression layer respectively. The

model architecture can be seen in Figure 4.3. This model is used to estimate heart

rate from the noisy PPG data. We used a train-test split of 90/10 with 5-fold cross

validation for the CNNR.
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Figure 4.3: Architecture of CNNR

HeartPy, an open-source toolkit for estimating heart rate from the PPG data,

was used in our work as a baseline reference to compare the performance of our

CNNR approach [170]. The HeartPy toolkit is designed to handle clean and noisy

PPG data collected from either PPG or camera sensors. In the case of both our
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CNNR and HeartPy work, the PPG data used was the noisy, raw time series signal.

The estimated heart rate value for a segment of the signal was then compared to

its concurrent ECG time series. The QRS peaks from the ECG were annotated as

part of the data collection experiment. An estimated heart rate obtained using the

CNNR and PPG toolkit on noisy data was then compared to the ECG heart rate

which acted as the ground truth.

4.4 Results

4.4.1 Human Activity Recognition

The results for the HAR experiment are shown in Table 4.1. As expected, the highest

classification accuracy of 90.8% is achieved when the original sampling frequency

of 256 Hz is used. However, we can still achieve a very competitive estimation

performance even after downsampling the original sampling frequency to 5 Hz.

Perhaps what is most surprising is the superior performance of our classifier when

10 Hz is chosen as the sampling frequency compared to the higher frequencies (15

Hz and 30 Hz) tested as part of this project. Due to the higher accuracy of 10 Hz

we also tested 12 Hz, 11 Hz, 9 Hz and 8 Hz as the chosen sampling frequency but

found no anomaly as the surrounding frequencies yield similar accuracies. To further

investigate the 10 Hz performance, we low-pass filtered the PPG with a 4.5 Hz

cut-off frequency to remove possible aliasing but this did not impact the classification

accuracy.

As a sampling frequency of 10 Hz performed the best out of the sampling

frequencies tested, we show the training results for this sampling frequency over

the 4,000 epochs along with the cross-entropy loss function and confusion matrix

for exercise classification in Figures 4.4, 4.5 and 4.6 respectively. We also show the

relevant precision, recall and F1-scores in Table 4.2. F1-Score is often used over

accuracy when there is an imbalance in the dataset classes. In this case, the dataset

contains the following number of samples: 1,263 in High, 1,739 in Low, 1,461 in Run
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Table 4.1: Sampling Frequency vs. Accuracy

Sample Frequency Accuracy

256 Hz 90.8%
30 Hz 82.3%
15 Hz 81.6%
12 Hz 82.1%
11 Hz 81.6%
10 Hz 83.0%
9 Hz 81.2%
8 Hz 80.5%
5 Hz 80.2%
1 Hz 68.5%

and 2,190 in Walk. As a result of this imbalance, we show the F1-Score over the

accuracy as the results can be distorted by predicting false negatives. We can also

get an understanding of what classes the classifier had a more difficult time with,

such as the Low exercise.

Figure 4.4: HAR training results for 10 Hz sampling frequency

Table 4.2: Precision, Recall and F1-score

Exercise Precision Recall F1-Score

High 0.803 0.904 0.851
Low 0.846 0.666 0.745
Run 0.826 0.849 0.837
Walk 0.834 0.899 0.865

90



Deep Learning Signal Processing

4.4.2 Estimation of Heart Rate

Results for estimating heart rate from the motion artefact (MA) corrupted PPG signal

using HeartPy and our CNNR method are displayed below. Figure 4.7 and Figure

4.8 presents the average heart rate error across the various sampling frequencies for

each exercise for the two methods. The Heart Rate Error (HRE) is defined here as

the absolute difference between the estimated heart rate for a given PPG sample

and the heart rate ground truth calculated from the concurrent ECG sample.

For the HeartPy method, exercise specific HRE is similar across all sampling

rates except from the 10 Hz sampling frequency on the walk exercise. Other sampling

frequencies return an error of between 46% and 55% whereas the 10 Hz sampling

frequency reduces the error to 39%. The numerical results for the heart rate

experiments is displayed in Table 4.3 where it can be clearly seen that 10 Hz

sampling frequency performs best for estimating heart rate from the MA corrupted

signal.

Table 4.3: Heart Rate Error using HeartPy

Sampling Frequency
Exercise

High Low Run Walk

256 Hz 11.78 8.14 19.44 54.94
30 Hz 11.80 10.61 20.71 53.69
15 Hz 12.10 11.15 19.94 46.83
10 Hz 10.46 14.05 17.82 39.28
5 Hz 10.94 10.05 19.27 48.85

Figure 4.5: HAR cross entropy for 10 Hz sampling frequency
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Figure 4.6: Confusion matrix of HAR classifier

Figure 4.7: Average heart rate error across all exercises and sampling frequencies
using HeartPy

Our CNNR results can be found in Table 4.4. It can be seen that the HRE is

similar across all exercises and there is not a distinguishable loss in accuracy for any

of the sampling frequencies. For the walk exercise there is a great improvement in

accurately estimating heart rate compared to the HeartPy method. It should be

noted that average HRE across all exercises and sampling frequencies has decreased

using the CNNR method from 22.59% to 20.15%, an increase in over 2 percentage

points.

4.4.3 Optimisation of CNNR

Following on from our results produced in [171], we wanted to further decrease

the heart rate error. Computing a non-exhaustive grid search over some of the
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Figure 4.8: Average heart rate error across all exercises and sampling frequencies
using our CNNR method

Table 4.4: Heart Rate Error using our CNNR method

Sampling Frequency
Exercise

High Low Run Walk

256 Hz 24.55 15.41 24.38 20.94
30 Hz 17.59 16.58 17.68 24.56
15 Hz 19.62 22.47 18.00 20.21
10 Hz 19.30 21.87 18.49 28.41
5 Hz 18.90 22.26 14.61 16.47

hyperparameters for the CNNR returned an average HRE of 13.62%, a decrease

of nearly 7 percentage points from that of the CNNR without optimisation. We

chose, number of epochs, learning rate and the train-test split as some parameters to

optimise. The results for the optimisation process have been graphically presented

in Figure 4.9. To the authors knowledge, this is the best result using CNNs adapted

for regression to estimate heart rate data from raw, noisy PPG sensor data.

Figure 4.9: Heart rate error using our optimised CNNR

93



Deep Learning Signal Processing

4.5 Conclusion

The approaches used in this chapter yield highly competitive results for HAR even

though only the optical signal is used. This demonstrates that more cost and power-

efficient wearables are possible through the exploitation of secondary information

available from a simple optical sensor. This suggests single-sensor based wearables

can achieve much of the functionality and capabilities of more complex multi-modal

wearables.

The sampling rate did not have too much of an adverse effect on the performance

of the algorithms. Interestingly, the CNN performed better at a 10 Hz sampling

frequency compared to 15 Hz and 30 Hz. The reasons behind this have not been

fully investigated, but do form avenues for future exploration.

Perhaps what was the most surprising from the results presented in this work was

the heart rate estimation results. We demonstrate how a CNN regression approach

is capable of robust heart rate estimation even during periods of high artefact.

The performance, particularly during these high artefact scenarios, was superior

to conventional signal processing approaches for such estimation as demonstrated

by the relative performance of the open-source tool kit HeartPy which served as a

baseline here. Furthermore, this heart rate estimation performance was sustained

even at reduced sampling frequencies. Notably sampling the sensor at 5 samples

per second performed just as well as all other sampling frequencies, including the

original 256 Hz.

A pervasive computing approach to wearables is taken here. Using a low power

wearable with a single optical sensor and a sampling frequency of 10 Hz, we can

demonstrate compelling performance both in heart rate estimation and human activity

recognition. This has the potential to reduce costs, improve battery performance and

encourage wider adoption of digital technologies to a larger population and allow

the transition to personalised, patient-centred preventative models of healthcare.

Increasing access and affordability to these technologies will, in turn, lower costs and

the strain on public healthcare expenditure and help improve overall wellness. We
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carry this theme through the following chapter; by exploiting single sensor devices

using novel ML techniques, we seek to uncover biomarkers and state-of-the-art

insights previously unobtainable from classic signal processing methods.
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Chapter 5

Estimation of Continuous Blood

Pressure from PPG via a

Federated Learning Approach

5.1 Introduction

Our work in this chapter addresses Research Questions 1 and 2 in that we are

using novel ML techniques and GANs for physiological data processing. We design

a novel time series GAN architecture to learn mappings from one physiological

signal to another. By applying a distributed learning framework we also adhere to

privacy strategies mentioned previously. This work makes an effort to develop readily

deployable artificial intelligence systems that non-expert consumers and downstream

end-users can easily interpret. Capitalising on recent advancements in machine

learning has the potential to simplify wearable devices, allowing for a reduction in

power requirements and, subsequently, lower-cost devices, as our previous work also

aims to achieve [172].

Chronic heart disease was the number one cause of death from 2000 to 2019,

according to the World Health Organisation (WHO), and was responsible for 16%

of the total worldwide deaths in 2019 [173]. Heart disease has also shown the most
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significant increase in deaths during this period. Obtaining unobtrusive, continuous

measurements of the cardiac state has proven very difficult. The most commonly

used indicator for measuring the state of the heart is blood pressure (BP), which is

often gathered using a sphygmomanometer cuff, a finapres, or an arterial catheter.

Sphygmomanometers provide spot measurements for BP over a very short time

interval, and arterial catheters are an extremely invasive method of continuous BP

measurement. The finapres is an alternative for continuous and unobtrusive BP

measurement. However, these devices’ size, shape, and price mean that they have not

been commoditised for individuals seeking continuous home BP measurement devices.

Regular monitoring of BP can prove vital for people suffering from cardiovascular

diseases (CVDs) who are already vulnerable to BP fluctuations.

Methods for non-invasively measuring continuous arterial blood pressure (ABP)

have been explored, using other physiological signals to infer ABP. One example

uses the pulse transit time (PTT), the time interval taken for a pulse wave to

travel between two arterial sites. PTT varies inversely to BP changes and has been

demonstrated to be a valid and accepted measure of BP [174], [175]. PTT is formally

defined as the time interval between the Q wave of the electrocardiogram signal and

the pulse’s arrival at a peripheral site. As such, this information should also be

available from a PPG signal.

This chapter presents our novel framework for implementing continuous ABP

measurement using a PPG sensor alone. Our methods use proven cutting-edge

machine-learning techniques to capture the characteristics that correlate and link

continuous PPG to continuous ABP measurements. For the first time, we demonstrate

a decentralised learning approach to continuous ABP measurement that is capable of

real-world implementation on a large scale and does not compromise patient privacy.

This novel approach yields a more power-efficient learning framework, thus advancing

the development of simpler, more cost-effective wearables without compromising the

accuracy of ABP measurements and patient privacy.
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5.2 Methodology

We designed a time-series-to-time-series generative adversarial network (T2T-GAN)

(Figure 5.1) based on the popular CycleGAN that is capable of unpaired image-to-

image translation [176]. The T2T-GAN can translate from one time series modality

to another using cycle-consistency losses. More specifically, we implemented the

T2T-GAN for capturing the complex characteristic relationship between ABP and

PPG and trained this model to translate a PPG measurement into an accurate

continuous ABP measurement. We opted for a decentralised learning approach here

and implement federated learning in the interest of data privacy and protection and

real-world implementation. With one central aggregate model and many decentralised

models, we can implement our framework without handling individuals’ personal

sensitive data. Comprehensive details of our method can be found in the section

that follows.

GPA

GAP

DAPPG

ABP

P2A

A2P

DP Real/Fake

Real/Fake

Losses

Figure 5.1: Architecture of the T2T-GAN. P2A represents the generator transform
function from PPG to ABP. Conversely, A2P represents ABP to PPG.

5.2.1 Computing Platform

The experiments for this project were run on an Nvidia Titan Xp with PyTorch and

Google Colaboratory in interest for making the project readily deployable. The code

for these experiments are available online1.

1GitHub Repository: https://github.com/Brophy-E/T2TGAN
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5.2.2 Dataset

Two open-source datasets were used in this experiment. The first dataset, “Cuff-Less

Blood Pressure Estimation”, is freely available on Kaggle and UCI Machine Learning

Repository. It contains preprocessed and validated ECG (electrocardiograms from

channel II), PPG (fingertip) and ABP (invasive arterial blood pressure (mmHg))

signals all sampled at 125 Hz [177], [178]. The raw ECG, PPG, and ABP signals

were originally collected from PhysioNet [137]. This dataset is split into multiple

parts and consists of several records; for our work, we used the first 5 (part1.mat–

part5.mat) records and segmented them into 8-second intervals, which yielded 144,000

training samples (320 h), and the last 2 (part11.mat–part12.mat) records into 55,000

validation samples (122 h). However, as there might be more than one record per

patient (which is not possible to distinguish), we use a second unrelated dataset to

test our framework and observe its generalisability. Therefore, we used a [144,000, 2,

1000] dimensional vector that constituted the training dataset for our framework.

See Figure 5.2 for an example of the real data used in this work.
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Figure 5.2: Example of Real PPG (top, blue) and ABP (bottom, orange). The
signals are both normalised between 0 and 1 with an artificial offset on the ABP
signal for visualisation purposes

The test dataset “University of Queensland vital signs dataset: development of

an accessible repository of anaesthesia patient monitoring data for research” [179]

provides a multitude of vital sign waveform data recorded from patients undergoing
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anaesthesia at the Royal Adelaide Hospital. The physical state of patients under

anaesthesia contains marked changes to cardiovascular variables compared to ICU

patients, presenting a further challenge to our framework. We are only concerned

with the ABP and PPG measurements from this dataset; these are sampled at 100 Hz.

We selected only one patient, namely Case 5, and segmented the data into 10-second

intervals, which yields a [900, 2, 1000] dimensional vector (150 min) that constitutes

the test dataset for our framework. We are only concerned with the PPG and ABP

signals from these datasets.

5.2.3 Model

As previously mentioned, we adopted the learning framework of CycleGAN for time

series data to translate from one time series modality to another. Here we will

explicitly define the Discriminator and Generator architecture of our T2T-GAN.

The Generators GPA and GAP are two-layer stacked LSTMs with 50 hidden units in

each layer and a fully connected layer at the output, with an input size of 1000, see

Figure 5.3. The Discriminators DA and DP are 4-layer 1-dimensional CNN with a

fully connected layer and sigmoid activation function at the output, see Figure 5.3.
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Figure 5.3: Architecture of Generators GPA and GAP (left) which are two-layer
stacked LSTMs with 50 hidden units in each layer and a fully connected layer at
the output, with an input size of 1000. Architecture of Discriminators DA and DP

(right) which are 4-layer 1-dimensional CNNs (ReLU activation and max pooling
functions) with a fully connected layer and sigmoid activation function at the output.
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5.2.4 Federated Learning

To make the model perform closer to a real-world setting and to prevent data sharing

to third-parties we implement the decentralised learning approach of Federated

Learning. Our approach is limited to using one central server so to realise this

learning method we split our dataset into N (where N = 20) equally sized random

smaller data subsets and train N client-GANs on their own data with no cross-over

from their respective subsets. The client-GANs are trained for e (where e = 5)

epochs and their weights are then sent to a global-GAN that aggregates the received

weights from the N clients-GANs. This global-GAN can then operate on unseen data

or update the client-GANs with the aggregated global weights which eliminate the

need for any data centralisation, see Figure 5.4 for a visual example of our method.

Of course in a real-world training and testing environment, the training data will

not come from a centralised repository. The data will instead be generated by the

end-users. Consumers will generate their own PPG data from their smartwatch, in

this case, that will be used to train a local-model and communicate weights to and

from a global-model, see Figure 5.5 for a conceptual example. Each client GAN

requires local training, meaning each GAN will need some form of blood pressure

ground truth available during its training phase.

Client
GAN #1

Client
GAN #2

Client
GAN #3

Client
GAN #4

Client
GAN #5

Client
GAN #6

Global
GANDataset

R
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Weights

D1 D2 D3

D4 D5 D6

Figure 5.4: Federated Learning methodology employed in this chapter (Left). Each
GAN is represented by the model shown previously in Figure 5.1. Federated Learning
methodology that is implemented in the real-world (Right).
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Client
GAN #1

Client
GAN #2

Client
GAN #n

Global
GAN

Updated
Weights

User #1 User #2 User #n

Du1 Du2 Dun

Data for downstream tasks

Figure 5.5: Federated Learning methodology that is implemented in the real-world
(Right). Each GAN is represented by the model shown previously in Figure 5.1.

5.2.5 Training

We chose a total of 20 client models for training as demonstrated in Figure 5.4.

Each used an equal proportion of the dataset. Six random clients were selected from

the total client models in each communication round to be trained. There were

ten communication rounds. Following each round of training on the client device,

the aggregation of weights is computed on the global model. The total number of

training rounds on each client was 5, with a batch size of 32. The total loss function

of our T2T-GAN framework is calculated as in Equation (5.1).

(5.1)
L(P2A,A2P,DP , DA) = LT2T−GAN(P2A,DA, PPG,ABP )

+ LT2T−GAN(A2P,DP , ABP, PPG)
+ λcLcyc(P2A,A2P ) + λiLidentity(P2A,A2P )

where Lcyc and Lidentity are the cycle consistency loss and identity loss, respectively,

and are defined by the L1-norm. LT2T−GAN is defined as the mean squared error loss.

λ controls the relative importance of the two objectives, λc and λi were chosen as 10

and 5, respectively, as we want to emphasise the importance of cycling between the

time series modalities (PPG to ABP). See Algorithm 1 for a full description of the

training procedure.
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Algorithm 1 FedT2TGAN Training Procedure.

Input: Training sample pairs of ABP and PPG Sn = (XABP1,PPG1 + ... +
XABPn,PPGn)
Output: GAN Model T2TGAN
Initialise global-model
Synchronise client-models with global-model
for num clients do

# Communication Round
Select 6 random client-models to train
for each client-model do

# client-model training
for num epochs do

# Calculate identity, cycle and adversarial losses
L = GetGANLosses(XABP,PPG, X̂ ˆABP, ˆPPG)
# Update weights of client-model
W = UpdateClientWeights(L)

end for
Aggregate client-model’s weights with global-model

end for
end for
Generate ABP waveforms from unseen PPG using trained global-model

5.2.6 Evaluation

To successfully evaluate our model, we examine the mean arterial pressure (MAP) of

generated samples. Using a completely independent test dataset from the training

dataset grants us the freedom to implement a leave-one-out strategy and see how well

our model generalises to other ABP-PPG datasets. We take the PPG measurements

from the test dataset and pass them through our trained global deterministic function,

P2A. This function converts our PPG signal to a corresponding ABP signal, and

we then calculate the MAP from the generated signal and compare it with the true

MAP measurements from the real ABP signal. MAP is considered a better indicator

of perfusion to vital organs than systolic blood pressure (SBP) [180]. It is important

to note that we can retrieve the systolic and diastolic blood pressure (DBP) from the

P2A signal, which we use to calculate the MAP (5.2) rather than simply returning

the mean of the continuous signal segment. We also present the Bland–Altman (BA)

plots of the MAP error [181] that allow us to determine to what degree the generated

ABP is a good substitute for the real ABP. The Association for the Advancement of
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Medical Instrumentation (AAMI) standard requires BP measuring methods to have

a mean error (µ) and standard deviation (σ) of less than 5 mmHg and 8 mmHg,

respectively, [182]. Following this, we then select the entire 150-min period of the

test data and perform calibration on these data for the first one-minute period only.

This calibration is designed to remove user bias and provide more accurate results

while mimicking a continuous BP measurement test that can be performed clinically.

Bland–Altman plots are provided for the calibrated and uncalibrated measurements.

(5.2)MAP = [SBP + (2×DBP )]/3

In the interest of providing a comprehensive evaluation of our T2T-GAN, we

implement the dynamic time warping, root-mean-squared error (RMSE) and Pearson

Correlation Coefficient (PCC) algorithms as distance and similarity measures between

the real and generated time series BP sequences for both the federated and un-

federated approaches. These metrics allow us to quantify the similarities in the

structure of the blood pressure waveforms. This is implemented for the entire test

dataset (150 min, 900 samples at 10 s/sample) and a random sample of the validation

dataset of equal size.

5.3 Results

As stated previously in Section 5.2.6, we evaluate our framework based on a qualitative

and quantitative perspective. Visually, and therefore from a subjective qualitative

perspective, we determine that our federated T2T-GAN framework has successfully

modelled ABP from a single optical PPG signal alone. An example of real and

generated data can be seen in Figure 5.6 below.

Observing the Bland–Altman plot in Figure 5.7 our framework achieved a mean

MAP error of −4.02 mmHg and a standard deviation of 22.6 mmHg. We also present

the Bland–Altman plots over the 149-min period with a 1-min calibration period that

achieved a mean MAP error of 2.95 mmHg and a standard deviation of 19.33 mmHg.

This calibration period can prove useful in bringing the mean error to within the

AAMI standards. The BA plots show the 95% range from µ− 1.96σ to µ+ 1.96σ.
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Figure 5.6: Example of Real PPG (top, blue) and the corresponding real ABP
(bottom, dashed-orange) along with the fake ABP (bottom, orange) generated using
the respective PPG. The signals are both normalised between 0 and 1 with an
artificial offset on the ABP signals for visualisation purposes

The MAP range of [25.16 mmHg, −20.08 mmHg] in Figure 5.8 demonstrates that

the one-minute calibration period was successful in reducing the overall bias in the

mean error.
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Figure 5.7: Bland–Altman plots of Mean Arterial Pressure on the unseen, unprocessed
test data with a mean error of −4.02 mmHg standard deviation of 22.6 mmHg.

However, a qualitative evaluation cannot be considered a successful framework

justification due to the lack of a suitable objective measure. Therefore, we compute

DTW, RMSE error, and PCC of the real vs. generated continuous ABP signals from

a quantitative perspective. The time series similarity results on the validation and

test datasets for both the federated and un-federated frameworks are displayed in
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Figure 5.8: Bland–Altman plots of Mean Arterial Pressure on the unseen, unprocessed
test data following a one-minute calibration period with a mean error of 2.95 mmHg
standard deviation of 19.33 mmHg.

Table 5.1 below. It can be seen that, as expected, the federated results are degraded

slightly compared to the non-federated results. However, in both cases, the models

perform seemly equal on the validation dataset as they do on the test dataset.

Table 5.1: Time series similarity metrics

Federated Learning Dataset DTW RMSE PCC

No Test Dataset 56.73 0.19 -0.11
No Validation Dataset 55.18 0.23 -0.33
Yes Test Dataset 62.55 0.24 -0.22
Yes Validation Dataset 62.15 0.25 -0.34

We have implemented an explainable AI (XAI) approach known as t-Distributed

Stochastic Neighbor Embedding (t-SNE) [38] in the interest of trustworthy AI. This

is a well-known technique of dimensionality reduction that is suited well to the

visualisation of high-dimensional datasets. We implement t-SNE on our real ABP

and PPG test datasets, as well as the generated ABP data. Figure 5.9 (a) illustrates

a clustering effect between the real and synthetically generated ABP that is distinctly

different from the t-SNE embedding on the PPG data. This demonstrates that we

can now effectively cycle the time series PPG data from its own modality (Figure 5.9
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(b)) to a distribution that is much more representative of the ABP data.

Real ABP
Fake ABP

Real PPG

Figure 5.9: (a) t-SNE visualisation of real ABP (blue) and generated ABP (orange)
dataset. (b) t-SNE visualisation of the real PPG dataset.

5.4 Discussion and Conclusion

Here, we have presented a novel decentralised learning framework for generating con-

tinuous ABP data and MAP estimates using a single optical sensor alone. Although

our results of a mean error of 2.95 mmHg and a standard deviation of 19.33 mmHg do

not meet the AAMI criterion, it must be stated that for our test dataset, we obtained

a completely separate dataset and carried out no further processing on the retrieved

data other than segmentation. Our framework performs deceptively well due to the

real-world nature of the test dataset and the fact that, as stated before, the physical

state of patients under anaesthesia contains marked changes in their cardiovascular

variables (ABP and PPG in this case) in comparison to patients in the ICU (training

dataset). With further work on cleaning and preprocessing the datasets, we might

observe improved results, such as the results observed in [183]. However, we did not

implement this as part of this work in keeping with noisy real-world data. In the

case of using denoising methods for PPG signals to obtain clean training data, we

can seek to apply the techniques listed in [184]. Furthermore, with the increasing

environmental costs of machine-learning practises worldwide, we are concerned with

model complexity and training time. Our model takes a total time of 5 h to train

compared to the 11–12 days to train the models in [183]. We also add a layer of

interpretability to our results through the use of t-SNE, which demonstrates that the
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T2T-GAN can successfully cycle one time series modality to another. Although this

work did not achieve the competitive performance of fully connected networks, it

should be noted that this work is conceptually quite different from more conventional

approaches and opens up new opportunities for consideration, particularly regarding

federated learning and privacy.

Sustainable AI is an essential practice in the research community to continuously

build quality machine learning systems while consuming smaller amounts of power.

Furthermore, explainable AI is crucial to bridge the gap between human and computer

understanding and build human trust in these AI systems. Overall our framework

lays the foundation for continuous ABP measurements on a large scale for the first

time by providing a sustainable, explainable, and private real-world example of how

our models learn from small subsets of personal data and generalise well to previously

unseen data. Achieving all this while using a sole PPG sensor will subsequently

lead to lower-cost devices and the commoditisation of such. This may be one such

solution for clinicians to remotely and accurately monitor patients’ cardiovascular

states and unlock further biomarkers into the human physiological state as we put

forward in RQ2.
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Chapter 6

Biosignal Denoising using Deep

Learning Signal Processing

6.1 Introduction

The overall theme of Chapters 4 and 5 is centred around the measurement of hu-

man health in real-world settings utilising DL for optimal inference of physiological

parameters. In this chapter we focus on denoising biological signals such as electroen-

cephalography (EEG) and electrocardiography (ECG) signals using a combination

of different ML and DL techniques.

The electrocardiogram is a non-invasive method to measure the heart’s electrical

activity and commonly used to diagnose heart disease. Chronic heart disease was the

number one cause of death from 2000–2019 [173] and has shown the most significant

increase in deaths during this period. Long-term ECG monitoring is currently

the gold standard for diagnosing cardiovascular diseases. Unfortunately, obtaining

reliable, long-term measurements of the cardiac state is a logistical challenge faced

by health care professionals due to the time and resources involved. As a result,

patients are frequently required to collect their ECG data remotely on a wearable

device, indirectly leading to noise manifesting in the ECG signals.

EEG is a method of measuring the electrical activity of the brain. It is a

109



Deep Learning Signal Processing

non-invasive procedure that obtains measurements via several electrodes placed on

the scalp of the patient. EEG has become an essential tool for practitioners in

diagnosing abnormal brain activity and neurological conditions such as epilepsy.

A recurring issue with EEG readings is that they can be heavily corrupted with

artefacts induced from muscle movements, electrical interference or loose electrodes,

to name a few. These artefacts make classification and, consequently, diagnosis of

neurological conditions a bottleneck. As a result, denoising EEG has become an

extensive area of research in the biomedical signal processing domain ([185], [186]).

In both the ECG and EEG case, contaminated signals can suppress essential

pathological biomarkers and, in some cases, will render the biosignals completely

unusable. A clean ECG signal of a typical, healthy patient is shown in Figure 6.1.

The ECG signal contains essential information about the cardiac pathologies affecting

the heart, characterised by five peaks known as fiducial points, represented by the

P-wave, QRS complex, and T-wave. We also present an example of a typical single

channel EEG signal in Figure 6.2.

P

Q

R

S

T

Figure 6.1: Typical ECG traces with fiducial points labelled, generated using
neurokit2 [199].

ECG signals can be contaminated by many types of noise such as: baseline

wander, powerline interference, electromyographic noise, electrode motion artefact

noise [200]. Baseline wander is a low-frequency artefact in electrocardiogram signal

recordings that arises from breathing, electrically charged electrodes, or subject

movement [201]. Muscle artefacts are generated due to skeletal muscle activity [202],

and electrode motion is caused by changes in electrode-skin impedance and changes
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Figure 6.2: Typical example of clean EEG.

in skin potential [203].

Electrooculographic (EOG) and electromyographic (EMG) signals are among the

most common sources of noise in the EEG. EOG originates from eye movements, such

as blinking and rolling, whereas EMG originates from movements of the surrounding

muscles. These artefacts are highly prevalent because it is next to impossible to

prevent blinking of the eye and twitching of surrounding muscle groups. As a result

of artefacts ubiquity in EEG signals, it becomes apparent that there is a need to

estimate these noisy signals accurately and remove them to obtain a high-resolution

EEG signal upon which fast and accurate diagnosis can be performed.

In the remote setting, where clinicians cannot readily inspect signal traces for

artefacts, noise can become prevalent in the data, leading to a poor signal-to-

noise ratio (SNR) and loss of vital information. This may conceal features that

are important for diagnosis. In the ECG example, the interbeat interval (IBI),

calculated using the R-wave, which is valuable for heart rate variability (HRV)

measurements, can become difficult to estimate if the introduced noise heavily

disfigures the R-wave. Therefore, denoising becomes fundamental to downstream

ECG signal processing tasks. Likewise, with the EEG, the presence of artefacts

makes downstream classification and diagnosis of neurological conditions much more

challenging.

Identifying artefacts in the ECG signal can help improve patients diagnosis and

treatment. As more recordings are being conducted in remote settings, this implies

the manifestation of more artefacts in the ECG. Artefact detection approaches have

111



Deep Learning Signal Processing

been implemented in the literature to detect disturbances and help better estimate

the quality of the recorded ECG signals [204]–[206]. Rather than taking an artefact

detection approach, we seek to automatically suppress the artefact and improve the

ECG signal structure essential for HRV analysis.

Similarly, several methods have been used in the past to denoise EEG signals.

For example, Salis et al. implement a comparative study of Empirical Mode Decom-

position (EMD), Discrete Wavelet Transform (DWT) and Kalman Filter (KF) in an

attempt to remove EOG artefacts with different amplitudes from EEG [187]. Perhaps

the most popular approach for denoising EEG signals is Independent Component

Analysis (ICA) [188]. ICA is considered a powerful tool for extracting the EEG

signal of interest, and it is used to filter out artefacts from the signal. The benefits

of using ICA are the most apparent when a multi-channel signal is recorded [189].

However, more recent developments have focused on deep learning to denoise EEG

signals, such as Zhang et al., who denoise EOG and EMG artefacts using a novel

deep learning-based architecture [190].

This chapter proposes a custom loss function capable of denoising electrode

motion artefact in ECG data to a higher standard than other, more common loss

functions. We implement our custom loss function with a convolutional neural

network to return high-quality ECG, suitable for calculating key human health

metrics from a previously unobtainable state.

We also present our EEG denoising pipeline based on a Generative Adversarial

Network. We use two datasets to demonstrate the capability of our system. One

dataset consists of EEG signals collected using the ANT Neuro eego sports. The

other EEG data is the benchmark dataset EEGdenoiseNet presented in [190]. We

show both the power spectral density (PSD) and SNR along with other classical

time series similarity measures for quantitative metrics and compare our framework

to the benchmark in the literature.

Conventional noise reduction methods focus on overall improvement in SNR

but ignore the preservation of essential peaks. These peaks are necessary for heart
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rate, IBI, and HRV measurements for monitoring exercise, stress, and cardiovascular

disease. In this chapter, we demonstrate a convolutional neural network and custom

loss function for ECG signal denoising and R-wave preservation. This novel approach

yields improved SNR and cardiovascular measures while allowing for less complex

deep learning models, thus advancing the development of simpler, more reliable

remote patient monitoring devices.

Furthermore, we showcase our competitive deep learning technique capable of

denoising common artefacts induced in EEG data. Through SNR and other signal

evaluation measures, we show the GAN is capable of high-quality denoising that

outperforms the current deep learning benchmarks. Our experiments illustrate the

potential for use in the brain-computer-interface (BCI) setting. A BCI is a device

that allows a user to communicate with external devices by translating thought

processes into physical signals. These physical signals can then be used to drive

or inform external devices such as a computer. Developments in the BCIs space

have the potential to offer portable, low-cost options for remote monitoring of the

physiological state of the human brain.

6.2 Related Works

6.2.1 ECG Denoising

In the early stage of ECG denoising research, low-pass filters [207], adaptive fil-

ters [208] and filter banks [209] were utilised. Recently, there has been a move

towards data-driven approaches for ECG signal denoising that are more suited to

non-linear and non-stationary time series signals. Chatterjee et al. provide a review of

techniques for noise removal in ECG signals [200]. The authors review six methods of

ECG signal denoising, namely empirical mode decomposition, wavelet-based models,

sparsity-based models, Bayesian-filter-based models, hybrid models and deep learn-

ing models based on autoencoders. In this work, we opt for a deep learning-based

approach to denoising our ECG signals.
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Corneliu et al. review deep learning-based models for removal of noise in ECG

signals [210]. The authors mainly focus on Long short-term memory networks [60] and

Convolution Neural Networks. They find that CNNs outperform LSTMs in the deep

learning models. Given the correct training, a CNN allows for the implementation of

high accuracy classifiers without the need for signal processing or feature extraction

knowledge. This had contributed to their success in practical applications, particularly

with image classification. Here, we implement a CNN-based architecture with a

custom-loss function for denoising our ECG signals.

Loss functions are used in statistical models to define an objective function that

evaluates the model’s performance and enables the model to learn its parameters

by minimising a said loss function. The Mean Squared Error is among the most

popular loss functions used in machine learning problems. Mean squared error is

calculated as the average of the squared differences between the predicted and actual

values. Barton et al. introduce a non-standard loss function in Raman Spectra

denoising by adding another term to the MSE loss to balance between overall signal

denoising and excessive smoothing of spectral peaks [211]. The authors identified

that traditional denoising algorithms, including CNNs with standard loss functions,

successfully remove noise at the expense of smoothing or blurring the sharp spectral

peaks, the heights of which are important in the context of Raman based diagnostics.

Here, we identify the same problem for ECG signals, whereby traditional denoising

methods can adversely distort the underlying heart signal. We extend the work of

Barton et al. through the addition of multiple terms in the standard MSE loss, which

helps improve signal denoising while maintaining the QRS complex structure, and in

turn, the overall signal-to-noise ratio of the ECG.

6.2.2 EEG Denoising

GANs were initially developed for image generation and improved image synthesis.

Although this has gained a lot of traction over recent years, there has been a movement

towards implementing GANs for sequence and time series generation, imputation
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and augmentation [135]. In this work, we employ GANs to denoise common EEG

artefacts experienced in BCIs.

GANs have been used for EEG generation, and augmentation, as in [104], [105],

[191]–[194]. However, few works have explored GANs for denoising time series,

particularly where EEG data is concerned.

Gandhi et al. [195] designed Asymmetric-GANs for denoising EEG time series

data. Their model for denoising time series is trained using unpaired training corpora

and does not need information about the noise source. Sumiya et al. [71] denoise

mice EEG using adversarial training. Their training process requires a set of noisy

signals and clear signals. Although these methods reduce the noise present in the

EEG signals, they do not provide specific artefact removal nor solid quantitative

evidence of the improvement in the SNR. We improve on this by showcasing GANs

as a robust artefact removal/denoising tool via the benchmarking experiments and

demonstrate both strong qualitative and, more importantly, quantitative evidence

that our GAN is a competitive performer in improving the state-of-the-art denoising

methods for EEG artefacts.

Other deep learning methods such as Convolutional Neural Networks and Vari-

ational Autoencoders have been used in the past to effectively denoise EEG sig-

nals [196], [197]. We demonstrate that the GAN developed in this work is competitive

with the state-of-the-art deep learning methods. Many methods proposed in the

literature deal with only one artefact type with each architecture. Our model is

generalisable to each of the three artefacts explored in this work; in other words, the

same architecture can be retrained to remove more than one artefact type effectively.

6.3 Methodology

6.3.1 ECG Datasets

We use two datasets in this work; both datasets are open source and freely available

on PhysioNet [137]. The first and primary dataset we use is the MIT-BIH Arrhythmia
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Database. This dataset contains 48 half-hour recordings of two-channel ambulatory

ECG, including less common but clinically significant arrhythmias. The ECG

recordings were digitised at 360 Hz [77].

The secondary dataset used in this work is the MIT-BIH Noise Stress Test

Database that includes 12 half-hour ECG recordings and three half-hour recordings

of noise typical in ambulatory ECG recordings [212]. We are only concerned with

using the noise recordings from this dataset. The noise recordings were made using

physically active volunteers and standard ECG recorders, leads, and electrodes; the

electrodes were placed on the limbs in positions where the subjects’ ECGs were

not visible. We select the electrode motion artefact and artificially add it to the

MIT-BIH Arrhythmia data. Electrode motion artefact is generally considered the

most troublesome since it can mimic the appearance of ectopic beats and cannot be

removed easily by simple filters, as can noise of other types [212].

6.3.2 EEG Datasets

Two open-source datasets were used in this experiment. The first dataset of EEG

signals was downloaded from PhysioNet [137],[198]. For this dataset, subjects per-

formed different motor/imagery tasks while 64-channel EEG was recorded using the

BCI2000 system 1 and sampled at 160 Hz. Each subject performed 14 experimental

runs: two one-minute baseline runs (one with eyes open, one with eyes closed) and

three two-minute runs of four motor movement and imagery tasks. We used the

baseline eyes open recordings only from this dataset and artificially added mains

noise at 50 Hz. The data preprocessing steps for this experiment are described in

further detail in Section 6.3.4. We refer to this dataset as EEG-50 for the remainder

of this work.

Our second dataset used is the EEGdenoiseNet, a benchmark EEG dataset

designed to be implemented with deep learning-based denoising technologies. We use

this dataset to act as a performance comparison of our GAN to the models tested

1http://www.bci2000.org
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in the data collection paper, and we further benchmark our GAN model against

other deep learning EEG denoising architectures previously used in the literature.

EEGdenoiseNet contains a total of 13512 physiological signal segments. Of that,

4514 records are clean EEG, 3400 are ocular artefact records, and 5598 are muscular

artefact records. This allows the dataset user to synthesise artificial EOG and EMG

artefacts into the clean EEG records, resulting in contaminated EEG segments with

the ground truth clean EEG. The EOG data was sampled at 256 Hz, and the EMG

data was sampled at 512 Hz. The data preprocessing steps are described in detail in

Section 6.3.4. Examples of both EOG and EMG artefacts can be seen in Figure 6.3.
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Figure 6.3: Examples of both EOG and EMG artefacts that have been artificially
added to the dataset.

6.3.3 ECG Preprocessing

For each of the 48 signals in the arrhythmia dataset, the electrode motion noise

signal mixed linearly with the clean ECG record as defined by equation (6.1).

y = x+ λ× n (6.1)

Here x is the clean ECG signals, n is the electrode motion artefact, and λ is a

hyperparameter that controls the SNR levels of the noisy EEG signal y. In addition,

the dataset is divided into 80% of the data for training and 20% testing. We chose

the first 38 records for the training and validation sets the last ten records for testing,

ensuring we have a ‘leave n-subjects’ out approach. Following this, we chose a sliding
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window of 3-seconds over the data with an overlap of 0.5 seconds. Further details

are available online 2.

6.3.4 EEG Preprocessing

Toy Data Processing

This dataset uses only the resting, eyes open EEG records from the eegmmidb

database available on PhysioNet. The dataset is digitised initially at 160 Hz. We

segment each EEG record into four second long intervals with an overlapping sliding

window of two seconds. This yields 12200 EEG records which then have a noisy

sinewave of varying amplitudes centred around 50 Hz added to the clean EEG signal.

As a result of this, we then have the corresponding clean and noisy signal pairs. The

dataset is then normalised before training.

EEGdenoiseNet Data Processing

The EEGdenoiseNet datasets use the same training setup as described in the original

paper [190]. First, the noisy EEG segments are created by linearly mixing the clean

EEG segments with the EOG and EMG artefacts according to equation (6.1). In

this case, x is the clean EEG signals, n is the artefact (either EOG or EMG), and λ

is a hyperparameter that controls the SNR levels of the noisy EEG signal y.

The contaminated signals are from a combination of EEG segments and ocular

or myogenic artefact segments, with 80% for generating the training set and 20%

for generating the test set. Each set was generated by randomly linearly mixing

EEG segments and EMG or EOG artifact segments according equation (6.1), with

SNR ranging from ten different SNR levels (-14 dB, -12 dB, -10 dB, -8 dB, -6 dB,

-4 dB, -2 dB, 0 dB, 2 dB, 4 dB) rather than the 10 levels of (-7 dB, -6 dB, -5 dB,

-4 dB, -3 dB, -2 dB, -1 dB, 0 dB, 1 dB, 2 dB) in [190]. This procedure expanded

each dataset to ten times its original size. The clean EEG records act as ground

truth, and the corresponding mixed records are the noisy EEG. Full experimental

2https://github.com/Brophy-E/ECG_Denoise_Custom-Loss
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details are available online 3.

6.3.5 ECG Denoising Model and Custom Loss Function

We designed a four-layer 1-D convolutional network with batch normalisation and

ReLU (Rectified Linear Units) followed by a fully connected layer. The model

architecture can be seen in Figure 6.4. We chose our CNN model as it has successfully

estimated heart rate in previous works [171], [172]. In addition, CNNs are pervasive in

embedded devices and have achieved high performance in many real-world problems.

However, their implementation often requires high-performance hardware [213].

Therefore, designing a CNN model also allows us to demonstrate the benefits of our

custom loss function that can reduce the complexity of such systems.
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input
BatchNorm1d

ReLU

Layer1

AvgPool1d

Layer2
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BatchNorm1d

ReLU

Layer3

output

conv1d
BatchNorm1d

ReLU
AvgPool1d

conv1d
BatchNorm1d

ReLU
Dropout

FullyConnected
Regression

Layer4 Layer5

Figure 6.4: Architecture of CNN

The input size of the network is 1080 samples (3 s long signal). The noisy data is

input to the model, and the denoised data is the output.

ECG Custom Loss Function

We design a custom loss function to prioritise overall signal improvement and

preservation of important signal peaks. The loss function plays a critical role in

training deep learning models. The Mean Square Error is commonly implemented as

the loss function in signal denoising tasks. However, one problem that may occur

when using it is that equal priority is given to areas of limited signal information.

3https://github.com/Brophy-E/DenoiseEEG-GAN
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While removing noise throughout the signal is essential, it is important that signal

features should not be mistaken for noise and smoothed. Hence, we utilised a

more practical solution by designing a loss function with two MSE components; the

first is the global MSE, which is the typical loss function, and the second is the

MSE pertaining only to regions where the QRS wave features exist. In addition, a

weighting parameter, α, is applied to the second MSE term, effectively enabling us to

control the weighting given to important signal features, as opposed to ‘flat’ regions

in the signal. Unlike previous studies, our loss function considers all QRS complexes

in the signal; see equation (6.2). The average QRS complex range is 100 ms in

healthy individuals; therefore, we select 100 ms on either side of the R-peak, which is

easily identifiable by an automated routine based on an intense local maximum. This

ensures we capture the regular QRS complexes and the complexes with clinically

significant arrhythmias present. The value α is a hyperparameter that is used to

determine the level of importance placed on the QRS complexes by the loss function

relative to the ECG signal as a whole. The idea behind the loss function needing the

location of QRS holds for training. When denoising the noisy test data, we use no

labels, only the noisy ECG time series signal. So the intention here is that during

training, the loss function allows the model parameters to learn to emphasise the

QRS part of the signal.

L = MSE(y, x) + α×
n∑
i=1

MSE(Ryi, Rxi) (6.2)

Where y represents the noisy signal, x is the clean ground truth signal, n is the

total number of QRS complexes in the 3-second signal segment, Rxi is the ith QRS

complex in signal x.

6.3.6 EEG Denoising Model and Objective Function

The GAN model maps from a noisy time series to a denoised time series, and in this

use case, we use it to learn the noise model of the artefact and denoise the EEG

signal. We define the generators and discriminators of our GAN as follows. The
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generator is a two-layer stacked long short-term memory network with 50 hidden

units in each layer and a fully connected layer at the output, see Figure 6.5 (left). The

input size is 640 sample points for the EEG-50, 512 sample points for the EEG-EOG

and 1024 sample points for the EEG-EMG datasets. The discriminator is a 4-layer

1-dimensional CNN with a fully connected layer and sigmoid activation function at

the output, see Figure 6.5 (right).
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Figure 6.5: Detailed architecture of generator (left) which is a two-layer stacked LSTM
with 50 hidden units in each layer and a fully connected layer at the output, with an
input size varied to match the segment length for the chosen dataset. Architecture
of discriminator (right) which is a 4-layer 1-dimensional CNN (ReLU activation and
max pooling functions) with a fully connected layer and sigmoid activation function
at the output.

EEG Objective Function

The loss function of our GAN framework is calculated as in equation (6.3) and (6.4).

Here, a is the label for the generated samples, b is the label for the real samples, and

c is the hyperparameter that G wants D to recognise the generated samples as real

samples.

min
D

VLSGAN(D) = 1/2×Ex∼pdata(x)[(D(x)− b)2]+1/2×Ez∼pz(z)[(D(G(z))−a)2]

(6.3)

min
G
VLSGAN(G) = 1/2× Ez∼pz(z)[(D(G(z))− c)2] (6.4)
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6.3.7 ECG Evaluation

To quantitatively evaluate our denoised data, we look at the SNR improvement in

the ECG signal, heart rate error prediction, IBI and HRV of the denoised vs. noisy

ECG signals. We also qualitatively evaluate our results through a visual inspection

in both the time series domain of the ECG.

SNR is defined as the ratio of signal power to noise power, often expressed in

decibels. A ratio higher than 1:1 (greater than 0 dB) indicates more signal than

noise. The formula for SNR is given as in equation (6.5), again, where x is the ECG

signal of interest, n is the artefact, and λ is the hyperparameter that controls the

SNR.

SNR = 10× log10

(
RMS(x)

RMS(λ× n)

)
(6.5)

The Root Mean Square (RMS) of a signal is given in equation (6.6). N is defined

as the number of samples in the ECG signal segment, and ai denotes the ith sample

in the ECG signal. N = 1080.

RMS(x) =

√√√√ 1

N

N∑
i=1

a2
i (6.6)

Interbeat interval (IBI)

Heart rate in physiological studies is mostly derived from measurements taken from

the electrocardiogram. First, the number of R-waves per unit time, or the time

between these waves (interbeat interval), is measured. This time can be translated

to the rate of the heart for any collection of beats. Such detailed measurements

permit how the heart reacts beat by beat to environmental and physiological stimuli.

Unfortunately, while the interbeat interval is essential for clinical diagnosis, it is

easily corrupted by noise. For the IBI, we calculate the location of the R-peaks using

scipy.signal.find peaks [214] and return the R-peak differences in milliseconds.
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Heart rate variability (HRV)

Informative cardiac metrics rely not just on the heart rate but also on how the

heart rate varies. Thus, another vital feature of measuring the cardiac state is heart

rate variation. HRV is the temporal variation between consecutive heartbeats (RR

intervals). A higher heart rate variability is associated with good health. On the

other hand, a low HRV is associated with ill health — it becomes a significant

predictor of mortality from several diseases. In this experiment, we will use the R

peaks in calculating the HRV.

To reliably measure HRV and low-frequency cardiac components, long-term ECG

records of at least 24 hours are necessary. However, short recordings can effectively

capture the higher-frequency cardiac components. Recordings as short as 5 minutes

are adequate for HRV [215]–[217]. Therefore, we compute HRV for the ECG signals

over 1 hour broken down into 5 minute epochs. The HRV analysis is computed using

the neurokit2 package [199].

6.3.8 EEG Evaluation

To quantitatively evaluate our denoised EEG data, we look at the SNR vs. relative

root mean squared error (RRMSE), Pearson’s correlation coefficient (CC) and the

power ratios of the associated EEG bands across the signals. We also qualitatively

evaluate our results through a visual inspection in both the time series domain and

the frequency domain via the PSD of the EEG.

We use SNR to compare the level of the desired EEG signal to the level of

noise/artefact present in the signal. The formula for SNR is given as in equa-

tion (6.5), again, where x is the EEG signal of interest, n is the artefact, and λ is

the hyperparameter that controls the SNR.

The Root Mean Square (RMS) of a signal is given in equation (6.6). N is defined

as the number of samples in the EEG signal segment a, and ai denotes the ith sample

in the EEG signal. N = 512 and 1024 for the EOG and EMG signals respectively.

RRMSE is given in equation (6.7) for the temporal/time domain and in equa-
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tion (6.8) for the frequency/spectral domain. f(y) is the noisy signal passed through

our model; in our case, it becomes the denoised signal generated by the GAN. We

calculate the PSD using the FFT-length equal to the total length of the EEG input

segment with a Hanning window.

RRMSEtemporal =
RMS(f(y)− x)

RMS(x)
(6.7)

RRMSEspectral =
RMS(PSD(f(y))− PSD(x))

RMS(PSD(x))
(6.8)

Pearson’s correlation coefficient is shown in equation (6.9), where Cov is the

covariance and V ar is the variance of the signals f(y) and x.

CC =
Cov(f(y), x)√
V ar(f(y))V ar(x)

(6.9)

6.4 ECG Results

The following section details the denoising results of the electrode motion artefact

on the ECG dataset at differing noise and α levels. Figures 6.6 to 6.8 illustrate the

clean, ground-truth signal, the noisy ECG signal corrupted with electrode motion

artefact and the denoised ECG signal. We show qualitative results for the same noisy

input signal at 3 dB, 6 dB and 12 dB SNR levels. It becomes readily apparent that

the model denoises the heavily corrupted ECG signals. We provide further results of

the 6 dB ECG with differing noisy input signals in Appendix B, Section B.1.

We demonstrate our metrics for the 12, 6 and 3 dB noisy input signal at varying

α levels to evaluate the model and custom loss function quantitatively. Firstly, we

compare the SNR at the input to SNR at the output and compare the input and

output signals’ heart rate error (HRE). Again, as in Chapter 4, the HRE is defined

as the absolute difference between the estimated heart rate for a given ECG sample

and the heart rate calculated from its corresponding ground-truth ECG sample. The

results for these metrics can be found in Table 6.1.
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Figure 6.6: ECG signals before and after denoising with an artificial offset present
in the noisy signal for visualisation purposes. The initial SNR of the noisy signal is
3 dB.
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Figure 6.7: ECG signals before and after denoising with an artificial offset present
in the noisy signal for visualisation purposes. The initial SNR of the noisy signal is
6 dB.

As can be seen in the SNR and HRE metrics in Table 6.1, the custom loss function

outperforms the standard MSE loss function for medium-to-high noise levels. With

increasing noise levels, the higher α values perform better. Furthermore, for the

6 dB signal, the custom loss function improves the SNR levels by 0.5 dB and the

HRE by eight beats per minute or 25%. However, we consider this a good but not

comprehensive evaluation of the models as the purpose of the custom loss function is

to preserve the importance of QRS complexes. Therefore, we further analyse the IBI

and HRV of the denoised ECG signals below as they are concerned with the R-peaks

of the signals. The results of which can be found from Figures 6.9 to 6.11.
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Figure 6.8: ECG signals before and after denoising with an artificial offset present
in the noisy signal for visualisation purposes. The initial SNR of the noisy signal is
12 dB.

For the remainder of this section, we show results for the 6 dB signals at α = 2.

Figure 6.9 illustrates the R-R intervals in the ground-truth signal. Figure 6.10

illustrates the R-R intervals for the denoised signals and Figure 6.11 for the noisy

signal. The denoised version shows an R-R variation similar to the clean ground-truth,

whereas the noisy ECG signals lie far outside the ground-truth range. The HRV

values for the ECG signals are as presented in Table 6.2. HRV Mean is the mean of

the R-R intervals, and HRV SDNN is the standard deviation of the R-R intervals.

From the denoised HRV, we can see that many outliers have been denoised. A clean,

distinct HRV can provide considerable reference to practitioners for the diagnosis

of patients. Overall, more accurate cardiac health can be deduced from the cleaner

HRV/IBI information following the denoising of the ECG signals.
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Figure 6.9: Distribution of R-R intervals in the clean (ground-truth) signal.
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Table 6.1: SNR metrics of 12, 6 and 3 dB signals with custom loss function. α = 0
indicates standard MSE loss function and std is the standard deviation of the HRE
over the entire test set.

SNR Input Alpha (α) SNR
Output

HRE
(Noisy)

HRE
(Denoised)

HRE-
Denoised

(std)

12 dB 0 15.07 dB 6 2.0 6.0
2 13.47 dB 6 5.0 18.84
20 14.83 dB 6 1.0 4.35
50 13.87 dB 6 15.0 17.74

6 dB 0 14.6 dB 32 10.0 16.12
2 15.1 dB 32 2.0 6.0
20 14.7 dB 32 3.0 14.52
50 14.5 dB 32 18.0 25.22

3 dB 0 13.80 dB 40 28.0 19.39
2 14.06 dB 40 27.0 23.04
20 14.09 dB 40 28.0 20.39
50 14.24 dB 40 19.0 14.79

Table 6.2: HRV of the ECG signals for α = 2.

Ground-truth Denoised Noisy

HRV Mean 631 ms 645 ms 594 ms
HRV SDNN 62 ms 96 ms 195 ms
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Figure 6.10: Distribution of R-R intervals in the denoised signal with some outliers
present.

6.5 EEG Results

6.5.1 Benchmark EEGdenoiseNet Experiment

In this section, we showcase our model’s performance on the EEGdenoiseNet dataset.

We present both quantitative and qualitative evidence of our methods competitive
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Figure 6.11: Distribution of R-R intervals in the noisy signal.

performance against the benchmark established in the original paper. A qualitative

example of high-fidelity denoised EEG for our GAN model is presented in Figure 6.12.

For visualisation purposes, an offset is artificially introduced to the ground truth and

denoised EEG signals. Further examples of denoised EEG with the corresponding

noisy EEG and ground truth can be found in Appendix A, Section A.1.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
7ime (Vec)

−3

−2

−1

0

1

2

3

Am
SO
itu
Ge
 (u
V)

((G DenoiVing

SignDO with ArtefDct
2riginDO cOeDn SignDO
DenoiVeG VignDO

A
m

pl
itu

de
 (µ

V
)

time (sec)
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

7ime (Vec)

−3

−2

−1

0

1

2

3

4

Am
SO
itu
Ge
 (u
V)

((G DenoiVing

SignDO with ArtefDct
2riginDO cOeDn SignDO
DenoiVeG VignDO

A
m

pl
itu

de
 (µ

V
)

time (sec)

Figure 6.12: Example of denoised time series EEG corrupted with (left) EOG artefact
and (right) EMG artefact. The signals contain an artificial offset for visualisation
purposes.

In keeping with the benchmark evaluation metrics we present the RRMSEtemporal,

RRMSEspectral and CC graphs at all our SNR levels. It should be noted that the

performance of our model outperforms the other models in the benchmark experiment,

we also provide results from deep learning models that have been implemented in

the literature as a comparison to our GAN. For all SNR levels, our GAN performs

extremely well, see Section 6.5.1 for further details. The graphs in Figure 6.13

correspond to the denoised EEG signal in Figure 6.12 (left). Similarly, the graphs

in Figure 6.14 correspond to the denoised EEG signal in Figure 6.12 (right). For

both EOG and EMG our model outperforms the benchmarks across RRMSEtemporal,
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RRMSEspectral and CC. In general, the denoising capability of our model improves as

the SNR improves. The CC for the EEG-EMG experiment does increase as the SNR

improves, however, this is one of the few metrics that needs further experimentation

on to improve.
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Figure 6.13: Metrics of the EEG-EOG signals shown in Figure 6.12 (left).
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Figure 6.14: Metrics of the EEG-EMG signals shown in Figure 6.12 (right).

We present a final metric to evaluate our denoising model quantitatively, and it

is the power present in the different EEG bands. Figure 6.15 and Table 6.3 are the

corresponding PSD and power band ratios for the EEG signals shown in Figure 6.12

(left), respectively. It can be seen that the high power low-frequency components

in the delta band are present in the EOG contaminated signal are removed from

the denoised signal. We present results for the noisy EEG at −14 dB as this can be

considered the worst-case scenario for the denoising GAN model. As can be observed,

the model effectively removes the EOG artefacts in the contaminated data.

Likewise, Figure 6.16 and Table 6.4 are the PSD and power band ratios that

corresponds to the EEG signals in Figure 6.12 (right). Again, it is apparent that the

high-frequency noise in the beta and gamma bands present in the EMG contaminated
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EEG is suppressed in the denoised signal. For both EOG and EMG datasets, the

power across the denoised EEG frequency bands is recovered in the denoised signal.
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Figure 6.15: PSD of the EEG-EOG signals shown in Figure 6.12 (left) with corre-
sponding EEG bands.

Table 6.3: Power ratios of different frequency bands before and after EOG artifact
removal.

Denoising Method Delta Theta Alpha Beta Gamma

GAN (-14 dB) 0.3020 0.4091 0.1647 0.1023 0.0217
Ground Truth 0.2769 0.4299 0.1349 0.1158 0.0424

Contaminated Signal (-14 dB) 0.7999 0.1280 0.0319 0.0289 0.0113
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Figure 6.16: PSD of the EEG-EMG signals shown in Figure 6.12 (right) with
corresponding EEG bands.

Table 6.4: Power ratios of different frequency bands before and after EMG artifact
removal.

Denoising Method Delta Theta Alpha Beta Gamma

GAN (-14 dB) 0.6528 0.2243 0.0299 0.0908 0.0023
Ground Truth 0.6458 0.2213 0.0658 0.0671 1.19e-10

Contaminated Signal (-14 dB) 0.0612 0.0471 0.0796 0.2981 0.5140
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Benchmarking Deep Learning Models

It is important to frame our model in the context of other deep learning frameworks,

and as such, we benchmark our model against neural networks that have been used

successfully in the past to denoise EEG data. We implemented various CNNs, VAEs

and Convolutional Autoencoders (CAEs) with the same training process as the GAN

and 5-fold cross-validation. As GANs are not intuitive, the training and validation

losses can be misleading. Still, it is worth monitoring the losses for convergence

between the discriminator and generator as the original concept is a zero-sum game

between the two NNs. Rather than observing a validation loss, it is better practice

to quantitatively and qualitatively evaluate the data generated by the GAN.

We compare each NN models’ denoised signals to the ground truth. The compar-

ison we present is the ability of each model to preserve the power ratios across the

various EEG frequency bands. We compute the cosine similarity of the power ratio

across the frequency bands between the denoised and ground truth at the -14 dB

level, as can be seen in Table 6.5.

Table 6.5: Cosine similarity score of the different frequency bands after artifact
removal (to ground truth).

Denoising Model EOG-Score EMG-Score

GAN 0.995 0.998
SimpleCNN 0.985 0.9766

C-VAE 0.982 0.9916
CAE 0.819 0.9202

Novel-CNN 0.793 0.9914

Ranking the DL-models in terms of the EEG frequency preservation across bands

shows that the GAN outperforms the other models.

To truly demonstrate the usefulness of deep learning models, it should be shown

that the denoising method can improve downstream tasks. However, we cannot

readily apply this to a classification task with this dataset. Instead, to demonstrate

the effectiveness of the denoised data, we trained a classifier to distinguish between

the original ground truth data and noisy data. Following this, we test the trained

classifier on the ground truth vs. noisy data and then again on the denoised data vs.
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noisy data. Finally, we compare the F1-score of both classifiers. The F1-score of the

original ground truth data is 0.8987, with an accuracy of 88.75%. Whereas when

using the denoised data, the F1-score reduces to 0.7799 and accuracy of 77.94%.
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6.5.2 Toy Experiment

Here we present brief examples of the GAN’s performance on the toy EEG-50 dataset.

Further examples of the results from this experiment can be found in Appendix

A, Section A.1. Examples of the denoised time series EEG signal can be seen in

Figure 6.17.
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Figure 6.17: Example of denoised time series EEG corrupted with 50 Hz mains
noise. The signals contain an artificial offset for visualisation purposes. Note the
appearance of an ocular artefact in both examples.

Similar to the EEGdenoiseNet example, we demonstrate the performance of our

model at removing the 50 Hz noise through the use of metrics. As this dataset

was not divided into SNR levels we return one set of values for the metrics and

they are as follows; RRMSEtemporal = 0.05, RRMSEspectral = 0.1 and CC = 0.89.

These metrics show that our model is more than capable of learning the noise model

between our signal pairs.

Again, to quantitatively evaluate our denoising model, we illustrate the power

present in the different EEG bands of our signals. Figure 6.18 and Table 6.6 are the

corresponding PSD and power band ratios for the EEG signals shown in Figure 6.17

(left), respectively. It can be seen that the high power high-frequency components,

centred around 50 Hz in the gamma band, is present in the contaminated signal

and is heavily suppressed in the denoised signal. Once again, the model effectively

reduces the mains noise artefacts in the contaminated data.
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Figure 6.18: PSD of the EEG-50 signals shown in Figure 6.17 (right) with corre-
sponding EEG bands.

Table 6.6: Power ratios of different frequency bands before and after 50 Hz noise
removal.

Denoising Method Delta Theta Alpha Beta Gamma

GAN 0.6528 0.2243 0.0299 0.0908 0.0023
Ground Truth 0.6046 0.2212 0.0658 0.0671 1.19e-10

Contaminated Signal 0.0612 0.0472 0.0796 0.2981 0.5140

6.6 Discussion

In this work, we have introduced novel deep learning frameworks capable of denoising

and evaluating human physiological signal data.

For our ECG denoising, we have found that the proposed loss function outperforms

the standard mean squared error loss function based on the experimental results.

Specifically, the QRS complexes are better preserved by the custom loss function,

leading to the preservation of important, relevant ECG information. This allows us

to calculate IBI and HRV values more accurately as the QRS complexes now have

more importance placed on them by the loss function.

Building on this, we also completed a short experiment to demonstrate that

the proposed loss function further allows for less complex and faster models for

denoising the ECG signals. Figures 6.19 and 6.20 presents qualitative evidence of

the denoising capabilities of a simple CNN model without and with the custom loss

function, respectively. The less computationally complex CNN model is made of 4

convolutional layers and one output layer. The original model presented in Figure 6.4

contains 2,322,180 trainable parameters, whereas the reduced complexity model
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discussed here contains only 1,562 trainable parameters. A reduction of almost 1,500

times the number of parameters, hence lower computational complexity is possible

through the use of our proposed loss function.

It is clear that the reduced complexity CNN model using the standard MSE loss

function does not converge nor learn any characteristics of the ECG. In contrast, the

same model with the custom loss function learns to denoise the ECG adequately

well and achieves better performance with the same volume of training data and

training epochs.
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Figure 6.19: Standard loss function — ECG signals before and after denoising
with a less-complex CNN and standard MSE loss. An artificial offset present in the
noisy signal for visualisation purposes. The initial SNR of the noisy signal is 12 dB.
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Figure 6.20: Custom loss function — ECG signals before and after denoising with
a less-complex CNN and custom loss function. An artificial offset present in the
noisy signal for visualisation purposes. The initial SNR of the noisy signal is 12 dB.

For our EEG denoising, we have presented our qualitative and quantitative

analysis that demonstrated that our model outperforms the benchmarks on many of
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the metrics provided in the original paper [190]. Thus, we build on and contribute

to the initial experiments and show that our model is currently state-of-the-art in

this deep learning-based EEG denoising experiment.

To demonstrate the full capability of these models and that they have not

overfitted to their respective datasets, we pass a signal with both 50 Hz noise and

EOG artefact through our models. This signal is taken from the eegmidb dataset that

has a natural ocular artefact introduced from the subject [198]. We then artificially

introduce 50 Hz noise to the signal. This corrupted EEG signal is then denoised

using the EEG-50 model, the output of which is then resampled and passed through

the EEG-EOG model. Two examples of EEG signals at each stage of the denoising

process are shown below in Figure 6.21.
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Figure 6.21: Denoised EEG signals following 50 Hz and EOG artefact removals.

6.7 Conclusion

This work proposes two DL frameworks for denoising human physiological signal

data. Our first contribution is a convolution network with a novel loss function

to more effectively preserve the QRS complex structure of ECG and improve the

denoising of noisy ECG signals. The proposed model and custom loss function

computes a weighted combination of global and local Mean Square Errors and

improves the denoising performance of the ECG in terms of the SNR and heart rate.

This demonstrates the capability of the algorithm to balance between denoising the

signal and preserving the peaks effectively. Our second contribution is a novel GAN

architecture that can effectively denoise single channel EEG data that is corrupted
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with a collection of various artefacts. This work is the first example of a GAN

for denoising human physiological signals, and it demonstrates that GANs can be

implemented as effective denoising architectures, making them ideal for portable

physiological monitoring systems.

With high noise reduction and low signal distortion, the practicality and superi-

ority of the proposed methods becomes evident and move DL architectures towards

being more suitable for clinical prognosis. Observing our additional experiments, we

show that our custom loss function can reduce the computational cost associated with

CNNs. Furthermore, with the integration of AI systems into wearable technologies,

our framework lays the foundation for continuous, portable and remote ECG and

EEG monitoring devices with less noisy and more stable physiological signals. Using

these methods to produce high fidelity and reliable physiological data may be a

solution for clinicians to remotely and accurately monitor patients’ heart and brain

health states. This remote monitoring of patient state data will open the doors for

improving treatment and diagnosis, contributing to the shift from reactive-based

measures to proactive ones and further improving the lives of individuals experiencing

issues with the current reactive, costly treatment model. Work such as this can assist

in revolutionising this treatment paradigm.
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Chapter 7

Conclusion

7.1 Summary

This thesis discussed both theoretical aspects and practical applications of machine

learning and deep learning techniques for in the wild physiological signal processing.

To prepare for our discussion, we presented the motivation and background knowledge

in Chapter 1 from two related areas: (1) Human health and analytics, where we

introduce the deep learning architectures that unlock further insights into human

health and pathologies using previously unseen biomarkers and (2) Privacy-preserving

machine learning methods to allow for rapid development and deployment of human-

centric DL models.

Two research questions have been proposed related to the work presented in

this thesis. The contents in Chapters 2 and 3 addressed Research Question 1: Can

we provide a foundation for time series generation with Generative Adversarial

Networks? Chapters 4 to 6 addressed Research Question 2: Can we successfully

leverage novel deep learning-based models to process human physiological signals

and return state-of-the-art insights from the data?

Our first contribution lies in forwarding the field in time series generation using

recurrent Generative Adversarial Networks. In Chapter 3 we developed a custom

architecture and loss function towards improved physiological data generation and,

more significantly, provided continuous multichannel time series generation using
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GANs for the first time. This advancement is important, and as stated previously, it

means we can use this technology in further clinical training and research applications.

The second contribution put forward by our work explores novel deep learning

technologies applied to continuous physiological time series data and unlocks further

insights from these datasets. In Chapter 4 we used CNNs for human activity

recognition and heart rate estimation using a sole PPG sensor that achieves state-of-

the-art performance and competes with more energy-intense, complex multimodal

devices. Using similar data in Chapter 5 we demonstrate that we can cycle time series

modalities, inferring one physiological signal from another, which can give further

understanding of the human physiological state. Finally, Chapter 6 presented our

work on developing novel loss functions and deep learning architectures for denoising

physiological data to a better standard than more classical methods in the literature.

Once again, we developed novel applications of existing architectures and pioneering

loss functions to improve model performance. Both approaches push the envelope

for state-of-the-art deep learning methods for human physiological data processing.

7.2 Future Work

Improved Classification Metrics for Healthcare data

To complement the classical and novel metrics, we could enlist the help of a suitably

qualified physician to assist with the validation and classification of generated data

samples to determine how accurate the signal traces are, as we have done in our

previous work [143] and briefly discussed in Chapter 3. This forms an avenue for our

future work with time series GANs.

Sharing and Dissemination of Synthetic Healthcare data

We have shown in Chapter 3 that GANs are capable of generating synthetic human

healthcare data that maintains differential privacy of the training dataset. Having a

high-quality synthetic dataset that conforms to GDPR standards not only allows for

easier dissemination of the data but will help in the upskilling of clinical professionals,

particularly in less developed countries where access to this kind and quality of data
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can be problematic. Building a database of synthetic physiological data that contains

important and clinically relevant biomarkers remains an area of future work.

Sustainable and Robust AI

In the interest of environmentally sustainable AI, we have presented methods in

Chapter 4 and 5 that proposes low-power, low-cost wearables capable of successfully

calculating human activity recognition, heart rate estimation and continuous blood

pressure measurements, all from a single optical PPG sensor. Given the state-of-

the-art performance of such methods, these devices hold the potential to become

ubiquitous in the remote-sensing environment. As a result, these tools may take

some of the burdens off the public healthcare systems.

As ML models in production are subject to concept drift, given the accumulation

or streaming of new data, it is essential to keep models up-to-date and robust to

changing times. Approaches such as CRISP-ML(Q) [218] developed state-of-the-art

procedures for monitoring and maintenance of machine learning applications to

mitigate the risk of model degradation. As we advance and AI-assisted devices

become pervasive in our society, it is vital to establish a set of principles to ensure the

quality and simplify the management process of ML models. These will allow us to

automate the deployment of robust models in large-scale production environments.
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Appendix A

Denoising EEG Signals

A.1 Supplementary Material EEG Denoising

A.1.1 Figures
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Figure A.1: Example of denoised time series EEG corrupted with (left) EOG artefact
and (right) EMG artefact. The signals contain an artificial offset for visualisation
purposes.
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Figure A.2: Example of denoised time series EEG corrupted with (left) EOG artefact
and (right) EMG artefact. The signals contain an artificial offset for visualisation
purposes.
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Figure A.3: Example of denoised time series EEG corrupted with (left) EOG artefact
and (right) EMG artefact. The signals contain an artificial offset for visualisation
purposes.
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Figure A.4: Example of denoised time series EEG corrupted with (left) EOG artefact
and (right) EMG artefact. The signals contain an artificial offset for visualisation
purposes.
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Figure A.5: Example of denoised time series EEG corrupted with (left) EOG artefact
and (right) EMG artefact. The signals contain an artificial offset for visualisation
purposes.
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Figure A.6: Example of denoised time series EEG corrupted with 50 Hz mains noise.
The signals contain an artificial offset for visualisation purposes.
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Figure A.7: Example of denoised time series EEG corrupted with 50 Hz mains noise.
The signals contain an artificial offset for visualisation purposes.
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Denoising ECG Signals

B.1 Supplementary Material ECG Denoising

B.1.1 Figures
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Figure B.1: Further results of ECG denoising with differing noisy input signals.
Signals are shown before and after denoising with CNN and custom loss function.
An artificial offset is present in the noisy signal for visualisation purposes. The initial
SNR of the noisy signal is 6 dB.
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