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Abstract

Education as a Complex System:

An investigation of students’ learning behaviours in

Programming Education using Complexity approaches.

Tai Tan Mai

As a result of the COVID19 pandemic, more higher-level education courses have
moved to online channels, raising challenges among educators in monitoring stu-
dents’ learning progress. Thanks to the development of learning technologies, learn-
ing behaviours can be recorded at a more fine-grain level of detail, which can then
be further analysed. Inspired by the premise of approaching education as a complex
system, this research aims to develop a novel approach to analyse students’ learning
behavioural data in programming education, utilising complexity methods. First,
essential learning behavioural features are extracted. Second, a novel method based
on Random Matrix Theory is developed to remove the noise and trend effect in the
data in order to better highlight the differences in students’ learning behaviours.
Third, Community Detection is applied to cluster the students into groups with
similar learning behavioural characteristics. In the thesis also, motivated by a need
to determine likely outcomes of students, a range of machine learning classification
techniques have also been applied to predict the student learning outcomes based
on behavioural data which has been cleaned of the noise and trend.

The proposed approaches have been applied to datasets collected from a bespoke
online learning platform in an Irish University. The datasets contain information
from 566 students in different programming-related modules over a range of years
encompassing pre and during the COVID19 pandemic. This gives us a unique op-
portunity to test our methods for the effects of the pandemic on learning. Results
indicate the similarities and deviation in learning behaviours between student co-
horts.

Overall, we found that students interacted similarly with all course resources
during the semester. However, while higher-performing students seem to be more
active in practical tasks (e.g. programming exercises on labs), lower-performing
students have been found to focus overmuch on lecture notes and lose their focus
at the later phase of the semester. Additionally, students’ learning behaviours in a
conventional university setting tend to differ significantly to those students in a fully
online setting during the pandemic. We have also attempted to reduce the noise
component in the data and the experimental results further demonstrate the better
prediction performance of models which are trained based on the cleaned dataset,
in comparison with the original dataset. Recommendations for current educational
practice are made, including the continuous analysis of learning behaviours by the
proposed methods and suggestions for the prompt interventions to in order to max-
imise student supports.

xii



Chapter 1

Introduction

1.1 Background and Motivation

Education in Computer Programming with related domains has received increasing

attention due to the growth in demand for Information Technology (IT)-related job

markets. Furthermore, in recent years, STEM fields (Science, Technology, Engineer-

ing and Mathematics) also have the demand for essential IT skills and knowledge.

This makes these types of skills an integral part of many STEM sub-disciplines such

as Artificial Intelligence, Bio-informatics, Statistics. One of the pivotal and essential

elements in any IT-related degree is a suite of programming courses so. As a result,

understanding and improving students’ engagement and process of learning on the

learning materials are of key importance for the best practice in pedagogy [110].

However, despite the growing demand for these type of professionals, there have

been relatively high dropout rates in introductory programming courses reported

from many studies [23]. The failure rates in introductory programming modules has

been reported to be 28% on average, with a huge variation from 0% to 91% [23],

according to a recent study using data from 161 universities around the world.

Online learning environments (e.g. online programmes, Massive Open Online

Courses - MOOCs), which are usually supported by Learning Management Systems

(LMS), have been commonly used in higher education. While online learning has

1
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shown its benefits [65], it still contains drawbacks for higher education [74]. Students

often participate in online educational programmes mainly as solitary learners with

a private account and complete learning tasks on an individual basis. Hence, the

ability to engage in self-directed learning plays an important role in the success

of the students [191], especially in an online learning setting. A student needs to

be aware of how to use learning tools and materials properly to achieve learning

outcomes, which are usually determined through performance on both formative

and summative assessment tasks. Such formative assessment tasks are often used

to reflect the mastery of the course materials [73]. However, getting negative results

in assessment can further impact student’s performance as it can affect students’

confidence, which may lead to their disengagement [157]. Therefore, monitoring

and predicting students’ performance could provide an opportunity for developing

an adaptive learning environment which is responsive to students’ academic progress,

i.e. providing students with recommendations and feedback based on their learning

behaviours to maximise the likelihood of student success in the learning process.

Typically, lecturers can monitor student progress and, if necessary, conduct in-

terventions to ensure the quality of learning and progress of programming students

[164]. In addition to practical exercises and formal assessments, interaction in con-

ventional face-to-face classes can help educators understand students’ performance.

However, restrictions in face-to-face classes, e.g. in online or hybrid courses, can re-

strict the potential for direct communication between educators and students [107].

These difficulties may create additional challenges for lecturers in monitoring how

students are performing during the courses. For example, a fully online or open-

book/open-note exam could negatively influence the monitoring of cheating [12].

Additionally, more higher education programmes have moved to online and hybrid

channels due to the pandemic, further exacerbating the lack of direct communi-

cation. Hence, it is necessary to develop novel methods to support educators in

monitoring and understanding students’ learning behaviour during their online ses-

sions.

2



Educational behaviours as a complex system

The development of Learning Management Systems (LMS)1 and Learning Con-

tent Management Systems (LCMS)2 have enabled the capturing of learning data

generated by participants of the courses [166]. These systems provide the ability

to automatically record a large amount of interaction data at fine-grained levels,

e.g. at the level of mouse and keyboard events on a screen. Such log data can be

used by educators to improve the pedagogical value of teaching and learning [145].

Analysing the massive amount of educational data thus collected during the learning

process also has the potential to help instructors and students to obtain a compre-

hensive view of a student’s learning progress. As a result, these data could provide

valuable insights into individual students’ ongoing learning progress and thus im-

prove the learning environment, as has been suggested in [16]. Data mining can help

to identify a group of emerging patterns - e.g. discovering a set of study patterns

of different student cohorts and the correlation between the patterns and students’

learning performance. These characteristics can be used to estimate the possibilities

of success or failure of students in the courses. Such insights enable evidence-based

interventions and recommendations [90], which can lead to significant improvement

in students’ learning outcomes [60].

1.2 Research problems and questions

In relation to behavioural log data, there is the potential for the effect of noise and

trend to be present in the automatically collected data. This arises from students

working flexibly when completing their learning paths in the online learning system.

For example, they can carry out various learning activities such as reading lecture

notes, coding, navigating among course documents in any order, resulting in noise

in the logged data, i.e. data heterogeneity and complexity [72]. In addition, we have

1An LMS is software that automates the training process and function and includes registration
and administration tools, skills and records management, courseware access, and programming
interfaces to packaged applications ([70]).

2An LCMS is an integrated set of technology that manages all aspects of learning content. This
includes authoring or acquisition, content history, auditing, replacement, and deletion. An LCMS
generally works in conjunction with an LMS ([70]).

3
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noticed from the data gathered that students are likely given the same instructions

and learning pathway in the same class. As a consequence, this may create a trend

effect, i.e. students’ learning behaviours can be similarly and highly positively cor-

related with other learners’ behaviours in the same course. Hence, as an initial task

it is important to process the data, i.e., to filter noise and clean the trend effect in

the event log data before applying further analysis.

This research aims to investigate the relationship between students’ learning

behaviours on course material items and their performance in the formative assess-

ments while taking programming-related courses. Specifically, the research objective

is to answer the following research questions:

Research question: Is there a relationship between student learning behaviours

and student learning performance in programming education?

• Sub RQ1: How can learning behaviours be captured and processed to support

further, more detailed, analysis?

• Sub RQ2: Do students from different groups, corresponding to different pat-

terns of learning behaviours, perform differently in the exams? If this is the

case, how the use of course material items might differ among the student

groups?

• Sub RQ3: Do student learning behaviours differ before and during the COVID19

pandemic in terms of interacting with course material items?

• Sub RQ4: Could students’ learning behavioural data be used to predict learn-

ing outcomes (Pass or Fail) in the early stages of the study period using results

from formative assessments?

In this work we adopt the terminology from [167] for the terms programme and

course. In particular, a programme refers to a series of courses that a student needs

to complete to obtain a university degree. A course is a building block or subject of

a programme, containing a set of learning components, such as lectures, tutorials,

lab practice sessions and assessments.
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To address the research questions in this thesis, we utilise the dataset which con-

tains the data for 566 university students participating over the two programming-

related courses, namely Course#1 and Course#2, during the three academic years

before and during the COVID19 pandemic, i.e. the pre-COVID19 data 2018 and

2019, and the during COVID19 dataset in 2020. The pre-COVID19 courses have

been delivered to students in a combination of conventional and online formats. In

particular, students have physically attended the lecture sessions in lecture halls and

have conducted all learning activities on a bespoke online system. The learning data

were logged and these serve as input datasets for our further analysis. Behavioural

data captured automatically from the system is stored in the format of event log.

During the pandemic closure, students have studied at home, and all were expected

to have the same accessibility to the system. From the input event logs, the con-

cept of a student-event data matrix and a transition-student data matrix (described

below) have been developed to represent the students’ learning behaviours. To deal

with the problem of noise and trend effect in the datasets, we utilise a cleaning

method based on Random Matrix Theory (RMT), followed by the construction of

Minimum Spanning Trees (MST) to reflect the difference in learning behaviours of

all students. Community Detection algorithms and statistical tests have also been

applied to investigate the students’ behaviours on course material items. For the

prediction of student learning outcomes, a set of machine learning algorithms have

been applied on every week’s original as well as cleaned data and the predictability

has been validated by cross-validation technique.

The following chapters of this thesis are structured as follows. Chapter 2 dis-

cusses the existing approaches in learning behavioural analytics. Chapter 3 in-

troduces the context of the study through the collected datasets and explanatory

analysis. Chapter 4 describes the research methodology, including data collection

and processing as well as data analysis methods. In this thesis, we utilise com-

plex systems methods, i.e, Random Matrix Theory and Community Detection, in

combination with other data mining techniques, consisting of Principal Component

Analysis and classification techniques. Chapter 5 shows the experimental results of
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the analysis, followed by Chapter 6 which discusses the implications and limitations

of the research results, as well as concludes the thesis and briefly introduces the

possible future work in line with this research.
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Chapter 2

Literature Review

2.1 Introduction

With the availability of educational data, the use of data mining techniques has

opened up a great potential to find solutions for many specific problems in higher

education institutions [173]. Learning Analytics (LA) and Educational Data Mining

(EDM) can be seen as the two specific domains which refer to the applications of data

mining in education. It has been shown that they can help to create more adaptive

and interactive educational environments, and can therefore improve teaching and

learning quality both for educators and students alike [124]. Applications of data

mining tools and techniques in education have various different aims, from student

behaviour modelling to prediction of performance and enhancement of assessment

feedback as well as improvement in student learning outcomes[130].

Similar to any data mining application, an EDM/LA project is generally carried

out through three major phases: data preparation, analysis and post-processing [42],

as can be seen in the diagram in Figure 2.1.

• Data preparation: Data preparation includes data collection and pre-processing,

which is the first step of any EDM/LA process [82]. This step plays an im-

portant role in the success of an EDM/LA project. Where the collected data

is not yet ready for further analysis, a number of data pre-processing tasks
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Figure 2.1: Phases of a EDM/LA process [42]

Figure 2.2: Example of main steps/tasks in pre-processing of educational data [147]

need to be conducted in this phase, for instance, data cleaning, data filtering

and data transformation [147]. Figure 2.2 shows a diagram of pre-processing

phases for educational data.

• Analysis: Using the collected and pre-processed educational data, various

data analytics techniques can be applied to discover underlying insights and

valuable patterns from the learning and teaching experiences. The selection of

the data mining techniques is subject to the research objectives (e.g. prediction

of students’ learning outcomes, identifying “at-risk” students) and character-

istics of collected data (e.g. categorical, time series, continuous data) [42].

• Post-processing and improvement: If necessary, the results of the analysis

phases may need to be continuously improved due to practical demands. This

phase, therefore, can involve collecting new data, selecting new attributes,
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using new metrics and applying additional analysis algorithms. Generally,

one can see an EDM/LA application as an iteration of data collection, pre-

processing and analysis on educational data [42].

This chapter covers two key aspects of EDM/LA research: First, we summarise

the aspect of data, focusing on how existing research in EDM/LA collect and pre-

process different type of educational data; Second, we discuss various approaches

for the data analysis of learning behaviours, consisting of traditional data mining

approaches and educational process mining. In addition, the main applications

related to learning behavioural analytics have also been investigated.

2.2 Data in Educational Data Mining

2.2.1 Data formats for Educational Data Mining

Students’ learning behaviours refer to the learning activities that students have

participated in or are involved with during the period of the course. The learning

behaviours of the learners in a course can be captured in different ways, subject

to the course’s educational setting. For example, such behaviours can be reflected

through educators’ records on students’ activities such as attendance, reading lecture

notes and homework exercises completion, which are also called “engagement levels”

[60]. The level of detail of such records varies, depending on which type of data the

supported system can log into the database. The main types of data for this domain

can be listed as follows [147]:

Transaction/tabular data:

A transaction dataset refers to a table where each column represents an attribute/variable

and each record/row includes a list of data values associated with their attributes.

Data attributes can also refer to data features that need to be determined before the

analysis step [82]. The selection of data features is also subject to analysis purposes.

In the context of EDM, each data row can represent the feature values of a student.
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Data feature values can be automatically recorded or derived/aggregated from other

data sources. For example, in [48], the authors use the Moodle administration func-

tions to extract data related to each student such as ‘number of messages read’,

‘number of active days’ and ‘number of assignments handed via the platform’. Tab-

ular data can be seen as one of the most commonly used data type as it is necessary

input for a large number of data mining methods, such as classification and clus-

tering [147], for example, Supported Vector Machine, Random Forest and K-means

clustering.

Relational data:

A relational database is a collection of tables that link to each other through a

data relationship (e.g. one to many, one to one). Each table is made up of a set

of attributes (columns or fields) and typically stores a large number of records (or

rows) [149]. Data in a relational database can be extracted by database queries that

are written in a query language such as Structured Query Language (SQL) or with

the support of designated user interfaces. Although there are relational data mining

techniques, in practice, relational data are normally transformed into transaction

data to reduce complexity [149].

Temporal data:

A temporal dataset can be seen as a special tabular dataset, with sequences of events

over time [82]. The data features may involve the name of the learning event (e.g.

students’ action on an activity such as open lecture notes, upload assignment etc.),

time-related attributes (e.g. timestamp, starting time, ending time), or identities

(e.g. IP, student number, location). This type of data is also a common option and

requires special data mining techniques which are specifically designed to discover

sequential patterns, such as time series, sequential data mining and process mining

methods. Additionally, temporal data can be transformed into tabular data to suit

for other common data mining algorithms. For example, temporal data can be

10



Educational behaviours as a complex system

stored in form of an event log which is designed for process mining algorithms [174,

151].

Text data:

Text data consists of a large volume of documents, which can be collected from

various sources. Text data can be highly unstructured, e.g., essays, chat messages

and web pages, or semi-structured e.g., e-mail messages and forum posts. Some

courses may contain special documents, e.g. student submitted code in a program-

ming course. Mining unstructured text data may refer to the domains such as “Text

Analytics” [121] and “Natural language processing” [47]. Such text data mining ap-

plications have demonstrated their usefulness in educational contexts, e.g. assessing

the students’ usage of asynchronous discussion forum [59], which can be used for

predicting students’ academic performance [182].

2.2.2 Static and Dynamic data in learning management sys-

tem

In general, input data in relation to educational prediction can be classified into two

categories: static and dynamic data [60]. Student demographic information and

historical educational records can be classified as static data because these variables

and values do not update or change frequently over the study period. On the other

hand, online behaviours, textual data and other multi-modal data can be considered

as dynamic data because they can be continuously generated when students interact

with the system. In terms of the prediction of learning outcomes from the static

data, one can rely on features such as personal attributes and cumulative grade

point average (CGPA) from previous years [10]. For instance, using learning grades

from previous courses, e.g. programming or mathematics, can help in predicting the

drop-out probabilities of computing students [64]. However, the use of static data

to predict learning outcomes has been shown to cause some problems [60], i.e. the

student’s actual efforts during the learning process can be ignored. It has also been
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found that previous student results (e.g. the CGPA) are not sufficient to predict

tendency to drop-out, and that engagement variables also need to be included (e.g.,

number of accesses to the platform) to achieve good accuracy results [5]. The static

data can also be difficult to collect as they may need to be merged from various data

sources, which might affect data quality and cause ethical issues.

On the other hand, dynamic features, such as behavioural data, can be collected

easily due to their availability in advanced learning platforms. In this way, it is

possible for one to take advantage of dynamic data [53] to predict student learning

outcomes. For example, learning log data from the Moodle1 platform has been

used for predicting learners’ performance [71], using common features in a Learning

Management System such as Assignment, Feedback, Course login and Chat. More

fine-grained data can be used as predictors such as mouse interactions (e.g. click and

drag) [176]. Multi-modal features (e.g. eye-tracking, face-video and wristband) have

also demonstrated the potential for predicting learning performance [161]. Generally,

according to the recent surveys, most of the current approaches have a focus on

either combining new features collected from learning platforms or new strategies

with different machine learning predictive models [115, 60].

2.2.3 Data pre-processing in EDM/LA

Data pre-processing relates to a set of activities that may need to be carried out to

ensure that the input data is appropriate with the analysis methods. These activities

may include data gathering, data cleaning, data filtering, data transformation and

data format conversion [147].

Data Cleaning

Data cleaning refers to the process of detecting unwanted phenomena in the dataset

and discarding irrelevant data before further analysis [82]. The common types of

1Moodle is an open-source learning management system (LMS) and distributed under the GNU
General Public License. Moodle is developed in PHP and can be seen to be one of the most
commonly-used LMS platforms
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such errors in EDA/LA have been shown to be missing data and inconsistent data

[86]. Inconsistent data occur when data values have been found to be inconsistent

with other relevant values. On the other hand, missing data refers to the phe-

nomenon where there is no value stored for the attribute(s) in certain records [101].

In educational data, missing data values may occur due to several reasons, such as

students not completing all required learning tasks or being absent in some learning

sessions as well as technical errors during the data collection progress. Inconsistent

and missing data issues can be solved by mean of different strategies, e.g. impu-

tation methods which aim to replace missing values with substituted values (e.g.

mean or median) as well as more sophisticated approaches such as regressions [123]

or association rules [7]. In some cases, one can completely remove observations that

contain missing values, e.g. the data for students who only attended the first session

but never showed up again can be removed.

In addition, one of the most difficult issues in data pre-processing is dealing

with noisy data [86, 147]. Existing research efforts in EDM/LA have considered

removing noisy data from the dataset, for the simple reason that noisy data have

been generally seen as outliers, i.e. samples in a larger dataset that do not comply

with the general behaviour of the data [147, 93]. The outliers are significantly

different from the remaining of the data distribution, which may be caused by the

error of data collection, unexpected or unlikely behaviours within the system. To

overcome such issues, data mining techniques can be used, e.g. one may use median

instead of mean values [19], to minimise the effect of outliers in the constructed

models. However, in education, noise in the data can also have true observations.

For example, a few students in the class can achieve outstanding final grades with

little effort, i.e. they may be recorded to have only a few interactions with exercise

items in comparison with most of the average successful students. One may require

domain knowledge and analysis purposes to detect such outliers or noise data [139].

In our work, rather than removing the noise, we concentrate on extracting useful

information from noise.
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Data Filtering

This process aims to select a subset of data from the original dataset so that the

input data can be manageable within the constraints related to computational power

and analysis method [82]. This process can help to significantly reduce the amount

of data and unnecessary information. For example, the whole original dataset may

contain a hundred features and many of them may be irrelevant to the analysis

purposes. A simple approach to data filtering is that the researchers define the

inclusive conditions and exclude all data that violate them [120], e.g. data can

be filtered by academic years, courses, semesters, activities. More sophisticated

methods can also be applied to filter the data, such as was used in [165] where the

authors proposed the use of activity theory to map the original educational data to

a higher-level representation.

On the other hand, fine-grained data collected from a learning management sys-

tem can show different levels of granularity, such as keystroke and mouse click level,

session-level, student level, classroom level etc [15]. Students’ learning behaviours

can be reflected by excessively detailed learning logs which contain students’ inter-

actions with course material items at the level of mouse clicks on every relevant

web page of the course [58, 72]. For example, when a student clicks on a keyword

in an online lecture note of the course, the action of clicking will be stored in the

database, along with relevant attributes e.g. student identity, timestamps, the key-

word etc. Working with such a behavioural dataset, one may define different levels

of abstractions depending on the scope of the analysis [147]:

• Event: a single action or interaction event (e.g mouse clicking and scrolling,

key pressing);

• Activity: a sequence of one or many events to achieve a particular outcome;

• Session: a sequence of events generated by a user since his/her login until

the last interaction;

• Task: a sequence of events of a user within a single course resource item.
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Higher grained data may include a smaller volume of data and vice-versa. There-

fore, it would be important to identify the level of granularity from the collected

data.

Data transformation

Data transformation refers to the activity of constructing secondary attributes from

available attributes [82], which can provide better interpretability of information.

Several commonly-used transformation techniques namely normalisation, discreti-

sation, and derivation are described as follows:

• Normalisation is a technique where the attribute values are re-scaled within a

specific value range, e.g. from -1.0 to 1.0 or from 0 to 1. Usually, normalisation

can be used when we want to re-scale the magnitudes of data values to low

values, which may improve the accuracy and efficiency of mining algorithms

by involving distance measurements [82] such as clustering techniques [102].

• Discretisation splits the numerical data values of an attribute into categor-

ical values that may be more comprehensible than the original ranges and

magnitudes due to the lower number of possible values. This technique would

be helpful when the selected analysis method does not work effectively with

continuous data, e.g. association rule. Discretisation needs the rule to classify

original values. For example, with the “equal-width binning” technique, the

range of possible new values will be automatically divided into N sub-range

of the same size, where N bins is a pre-defined parameter. The division can

also be done manually where users directly specify the cut-off points for each

categorical value. It can be seen in the educational context, for instance, with

the classification of students’ overall results based on marks or grades.

• Derivation refers to the activity of generating new features from the cur-

rent attributes. A new attribute can be derived from one or more attributes

available in the dataset through some kind of aggregation or mathematical

transformation.
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2.3 Methods for the analysis and prediction of

learning behaviours

A diversity of data mining techniques has been applied to historical educational data

to discover valuable insights in students’ learning progress [16, 148, 147, 28]. The

sections below summarise some of the most commonly applied techniques that have

been reported in the recent reviews [8, 143].

2.3.1 Data Mining techniques in Education

Classification, which aims to divide observations into different pre-defined categories

based on data attributes, can be seen as one of the most commonly-used data

mining techniques in higher education [8]. In the context of education, classification

techniques can be used for several targets such as predicting students’ learning

performance/achievements and detecting problematic behaviours, to help in the

enhancement of teaching and learning quality. For example, among existing studies,

a Decision Tree approach was used to accurately predict students’ final grades in

a C programming module [136]. Student skills in the Java programming language

were also modelled by the Additive Factors algorithm in [190]. Here, the authors

of the latter study built a model that has been reported to be accurate for both

modelling student knowledge and suggesting the concepts that students can address

in their code. In a similar study, Bayesian algorithms were applied to model students’

knowledge over time based on historical quiz responses [126]. The author reported

the possibility of predicting, with good accuracy, whether a student has acquired

the relevant knowledge during the course, i.e., the prediction of the students’ correct

answers in the quizzes.

Clustering refers to the set of techniques aiming to identify groups/clusters/patterns

of data that show similarities in their features and establish useful inferences [146].

For example, one may find groups of students who appear to have similar learning

characteristics based on visiting content on the webpages of the LMS, which can be
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used to recommend preferred learning activities and resources to students [13, 81].

Additionally, behaviour-related attributes, e.g. total time spent on theoretical and

practical contents and forums, can be used to detect clusters of procrastination and

thus to focus students, e.g. by setting intermediate time goals [41]. The authors in

[68, 141] created a network structure of undergraduate courses and applied Commu-

nity Detection algorithms to identify the contributions of the courses to students’

learning pathways. Such findings can support the understanding of students’ be-

haviours in various learning situations [163] and the identification potential dropouts

at the early stage of the academic year [41].

Neural networks have also been demonstrated as an effective tool for prediction of

students’ performance [104]. One can, for instance, use Recurrent Neural Networks

(RNNs) to model students’ knowledge based on their performance on previously

answered quizzes [132]. When a student begins a quiz, the authors predict whether

the quiz would be answered correctly. Historic sequences of (correct and incorrect)

quiz responses determine the acquisition of knowledge for that student. Then, the

authors create a graph of conditional influence between quiz concepts that can be

used for curriculum design. For example, concepts that are highly connected can

be grouped in the same module section. On top of that, the effectiveness of using

RNNs in the prediction of learning outcomes was confirmed in a later study. The

authors utilised an RNN for students with different learning abilities separately [114].

In general, these approaches focus on modelling students purely based on content

learned. Beyond the learning content and past performance, it would be also critical

for students to adopt good learning behaviours, i.e. skills in accessing and working

with relevant content in an appropriate order. In terms of the effect of the learning

pattern to predict the learner outcome, one of the most recent pieces of research has

indicated the effect of learning activities on the prediction of students’ outcomes in

MOOCs using Multi-layer Neural Network (MNN) and Long Short-Term Memory

Neural Network (LSTM) models [106]. However, the authors merely see the learning

behaviours as a single sequence of activities rather than a process that contain an

ordered set of sequences, i.e. process cases or traces.
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On the other hand, there is a scarcity of research on analysis between the pre-

dictability of students’ learning patterns using cognitive and behavioural factors and

their exam performance [159]. Such analysis can be helpful to provide students with

up-to-date suggestions to maximise the likelihood of their learning success.

2.3.2 Educational Process Mining and its applications in

Education

Complementing the works in Education Data Mining mentioned above, the emer-

gence of Educational Process Mining (EPM) has expanded the literature on the

analysis of massive learning behavioural log datasets, alongside the application of

process mining [174] techniques and algorithms in educational event log data [151].

Process mining aims to discover, monitor and enhance processes by extracting infor-

mation from input data (the so-called “event-log”) [4]. Process discovery is one of

the most popular techniques in process mining [3]. Process discovery techniques are

used to mine an event log to produce a process model. Several algorithms have been

developed to discover the process model. Some of the most popular algorithms that

have been used in Educational Process Mining (EPM) are Heuristic miner[178, 177],

Fuzzy miner[79], Alpha Miner [2], and Genetic mining [109]. The basic idea of the

state-of-the-art process discovery techniques is to detect the real process based on

behaviours recorded in event logs. Then, the discovered process can be visualised

by popular notations for process modelling such as Petri-net[1], Business Process

Modelling Notation (BPMN) [122], Fuzzy net, Heuristic nets [79], amongst others.

Recently, EPM has proved to be an effective tool in analysing educational data

and delivering new insights into the learning and teaching processes. Many of the

process mining applications in education have been developed and implemented in

various aspects of education [140, 58]. The prevalence of Massive Open Online

Courses (MOOCs) and LMSs have attracted the majority of researchers due to the

availability of input log data [72]. The majority of applications in EPM aim to dis-

cover learning patterns from the event log, resulting in learning process models. The
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process models can then be compared according to characteristics of a model such as

the number of nodes, edges, split and join points, and transitions. For example, by

comparing the learning patterns between the higher and lower performing student

groups in practical learning sessions, deviations between those two groups have been

revealed [156]. However, there may be challenges related to the construction of pro-

cess models when there are many complicated and noisy event logs. In such cases,

the process mining techniques would likely produce ‘spaghetti-like’ process models

where there is a high density of connections between the model’s nodes, which can

be incomprehensible [29] and difficult to interpret the models’ characteristics [36].

2.3.3 Random Matrix Theory

Random Matrix Theory (RMT) aims to provide an understanding into the charac-

teristics (e.g., statistics of matrix eigenvalues) of matrices whose entries are drawn

randomly. RMT was first applied to study the energy levels of complex quantum

systems [180, 62]. Deviations from the universal predictions of RMT were then

used to identify system-specific, non-random properties of the system under con-

sideration, providing findings of the underlying interactions [111]. RMT has also

been applied in many other fields, including wireless communications [172], number

theory [113], financial and other large dimensional data analysis [50] financial time

series analysis [49], as well as in multivariate statistical analysis and principal com-

ponents analysis [46]. Recently, RMT has been applied to analyse the price changes

of different cryptocurrencies [43].

In general, applications using the Random Matrix Theory approach analyse the

properties of the correlation matrix C of a dataset, to investigate if a large propor-

tion of eigenvalues of C agrees with RMT predictions. For example, in the context

of educational data, the correlation matrix may refer to the similarities between the

interactions of students in a course. This finding indicates a considerable degree of

randomness in the measured correlations. In addition, deviations from RMT pre-

dictions are also used to find the main characteristics, or “information part”, of the
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dataset. To the best of our knowledge, there have been, to date, no applications of

RMT in either Process Mining or educational domains. In this thesis, we investigate

the use of RMT applied to a cross-correlation matrix C [30], i.e. the correlation be-

tween the frequency of transitions in students’ learning processes on LMS, to detect

details on students’ behavioural patterns based on learning event log data.

Details of Random Matrix Theory and its application in this research will be

further introduced and discussed in Section 4.3.

2.4 Application types in EDA/LA

In terms of their application, approaches using EDM and LA subdivide into four

major categories: computer-supported behavioural analytics (CSBA), computer-

supported predictive analytics (CSPA), computer-supported learning analytics (CSLA)

and computer-supported visualisation analytics (CSVA) [8]. Such types of applica-

tions have also been investigated in previous reviews [148, 14, 131]. With respect

to the scope of this research, we mainly focus on the first two categories, i.e. CSBA

and CSPA. While CSBA refers to the efforts of discovering insights and patterns in

students’ learning behaviours, CSPA applications aim to predict students’ academic

performance based on learning attributes such as grades and participation.

2.4.1 Computer-supported Behavioral Analytics

Computer-supported Behavioral Analytics refer to EDM/LA applications which can

uncover significant patterns and reveal valuable insights into students’ learning be-

haviours [85]. Most EDM/LA applications in CSBA focus on using real-time data

to monitor the progress of learning new knowledge [8]. Usage behaviours and en-

gagements can be found based on user interactions on an LMS system, to provide

educators with deep insights regarding learners [54]. For example, one may detect

less common student behaviours by considering the connection between the stu-

dents’ online activities and their final grades [152]. It has been also reported that
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log data, which reflect learners’ interactions with the LMS, can be utilised to detect

successful learners using data mining techniques [108].

The relationship between the learning behaviours and performance of students

was investigated by other researchers [39, 38]. A very basic example of this [91]

uses a small number size of students. The authors set up a web programming class

with 13 participants, using the ‘web-based programming assisted system for coop-

eration’. Although this pilot research merely used data from an experimental class,

some evidence for the relationship between learning behaviour style (e.g. completely

independent, imitating, self-improving using assistance) and learning outcomes in

programming education has been detected and, as such, the topic is worth further

investigation. The effect of the diversity of learning behaviour styles on learning

scores and satisfaction has also been tested, using data from an online forum and

survey data from 144 students [162]. While these efforts consider a wide range of

learning activities, they have been carried out with small sample sizes so survey data

was still required for the analysis.

Regarding particular learning activities in programming education, Practice has

been shown to be essential for improving students’ programming skills and students

should be given opportunities to practice and receive constructive feedback [21].

In [26], the authors have developed metrics for use as formative assessment tools

to analyse (exam passed and failed) students’ learning patterns. These approaches

have focused mostly on practical activities such as coding and solving program-

ming tasks. Such research can be improved by considering more learning activities

in programming study progress along with coding, e.g. reading lecture notes and

labsheets. For example, the authors in [40] also included time students spent on

lecture slides along with lab programming activities to identify “at-risk” students in

an Assembly Language Programming class.

The COVID19 pandemic has been found to have a significant impact on higher

education students in terms of their learning behaviours and satisfaction [11, 9].

There have been a number of studies on students’ learning behaviours under the cir-

cumstances of the COVID19. It has been remarked, for example, that the pandemic
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has transformed teaching and learning approaches [100]. While studying from home,

students may have more time to get involved in new activities (e.g. writing poetry,

doing exercises or exploring third-party training materials). Therefore, they may

require a certain degree of self-regulation skills to manage their learning process [6].

The relationship between the viewing duration of lecture videos and learner com-

pletion rates in teaching and learning has also been observed [187]. While the study

was carried out on students in a prosthodontic programme, the results are inter-

esting nonetheless given the prevailing pandemic circumstances. The authors found

that students typically demonstrate a negative perception of online learning [144],

causing psychological distress [83]. In the context of autonomous learning, studying

in the COVID19 lockdown has been found to change students’ learning strategies to

a more continuous habit, rather than merely studying on certain weekdays [77]. To

broaden the analysis of the change in learning behaviour due to the pandemic effect,

in this thesis, we investigate the usage of course resources, delivered throughout the

year in the context of programming education.

2.4.2 Computer-supported Predictive Analytics

Prediction of student performance has been one of the most popular topics in Learn-

ing Analytics in recent years [145, 115]. Data mining techniques have been shown

to have potential to help discover knowledge and hidden patterns underlying a large

volume of data and make predictions for learning outcomes [103]. In these works,

the authors conclude that EDM and LA predictive applications can contribute to

the enhancement of the current learning and teaching experiences. Three primary

objectives that have been shown to be significant in the literature are evaluation of

course material items, monitoring students’ learning and dropout detection.

Monitoring students’ learning progress

One of the essential aspects in higher education is evaluation and monitoring stu-

dents’ learning progress [57] which is expected to provide valuable insights that help
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educators and learners to make decisions in higher institutions. Data mining tools

and techniques can be used to uncover hidden information and detect unexpected

behaviours from students’ learning data [125]. In addition to the above, the rela-

tionship between cognitive skills and reading acquisition has been verified by using

data mining [127]. A common application of monitoring students’ learning progress

using EDM/LA is to predict, as early as possible, the possibilities of student fail-

ure before the course ends [22]. In [150], the authors improved the prediction of

students’ final grades based on the level of engagement of students in online dis-

cussion forums. A similar application has been implemented in [184], where the

author utilised students’ activity log data collected from a computer-supported col-

laborative learning environment to predict students’ learning performance. In [154],

using K-means algorithm, the authors identified clusters of students based on their

learning behaviours and performance in answering questions in science subjects.

The learning characteristics of the clusters were then investigated, supporting the

process of determining strategies to strengthen students’ competence in science.

Evaluation of Course Material using Data Mining Approaches

Evaluating and enhancing learning materials can also be supported by educational

data mining applications. EDM/LA techniques can identify the main characteristics

that may affect students’ learning outcomes based on the data about their usage and

interaction with the learning material items in the courses [35]. Based on the analysis

of such data, coursework, study plans and classes schedules can be constructed

[148] so that they can best fit the knowledge and current ability of learners. For

example, the understanding of how students react to the course materials can help to

adjust the complexity of learning exercises and lecture notes [129], as well as provide

supportive feedback to the learners [142], which ultimately can lead to optimise

overall students’ learning performance [112].

23



Educational behaviours as a complex system

Detection of students’ dropout possibilities

To deal with the issue of students dropping out from higher education courses,

researchers have used many approaches to uncover factors that inhibit college stu-

dents’ overall performance at various academic levels. Despite such efforts, there has

been no agreement in terms of the best way to understand the drop-out intention of

students regarding pedagogical style or course activities. For example, in [57], the

authors predicted the dropout rate of students in two academic institutions after

the first semester of their studies, using students’ learning attributes (e.g. historical

grades, personal details) as tabular data derived from the local LMS. This research

found that early failure predictions can be useful for identifying “at-risk” students

and making interventions. The learning attributes data can further be enriched,

for use in dropout predictions, by taking into account students’ social behaviour

(e.g. communication via emails) for dropout predictions [18]. Another way to de-

tect possible dropout is by analysing critical factors influencing students’ academic

performance [134]. Additionally, the authors of [37] use a set of pedagogical actions

to estimate students’ dropout status, offering the potential of such actions to be

used as inputs in such studies (i.e. detecting dropout students).

2.5 Summary

In this Chapter, we have briefly reviewed the key aspects in EDM/LA, consisting

of the data, the analysis method and some EDM/LA applications which focus on

learning behaviours. In terms of educational data, we have introduced the main

data storage formats (e.g. tabular, temporal data) and feature types (i.e. static

and dynamic data) that can be collected from learning management systems. Addi-

tionally, commonly-used analysis and prediction techniques in EDM/LA have been

reviewed, along with their applications in behavioural and predictive analytics.

In this thesis, we aim to address some existing gaps identified from the literature

discussed above. First, we extend the research in the EDM/LA domain, i.e., investi-
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gating the relationship between student learning behaviours and learning outcomes

in programming education, using a large volume of learning log data automatically

collected during the study from our bespoke online learning platform over three

academic years. The datasets have been recorded from real university programming

classes. During the data collection phase, students did not need to follow any ad-

ditional tasks other than ordinary learning activities in the courses. It is expected

that this can help to avoid any sources of experimental setup bias in the collected

datasets. The data contain not only student testing results, but the learning be-

haviours have also been tracked in the form of a temporal dataset, i.e. learning

activity logs that store students’ interactions with the online learning system. This

research also adopts the notion of the “event-log” [174, 151] in EPM as a storage

format of the collected dataset.

Regarding data pre-processing, this research deals with the issues of noise and

trend in educational data as stated in Section 1.3. One of the most common methods

to pre-process data is Principal Component Analysis (PCA) which has been applied

in different areas such as education [186], medical [69] and network security [25].

Although PCA supports the selection of the most relevant features, which may

help to unintentionally eliminate noise in the data, the trend effect remains. To

the best of our knowledge, none of the existing research directly deals with the

issues of noise and trend in educational data, which, we feel, may have a negative-

biased influence on prediction models. Our approach, based on Random Matrix

Theory, aims to identify and separate the key information part from the noise. We

expect to enhance the performance of the prediction models with cleaned datasets

in comparison with original and PCA-based processed datasets. Our work is also

one of the first attempts to apply the concept of Random Matrix Theory in order

to deal with the problems of noise and trend in the data, which are expected to

improve the quality of analysis and prediction.

In terms of analysis methods, instead of using process discovery techniques, which

may end up with ‘spaghetti-like’ and complex process models, we implement Com-

munity Detection using extracted behavioural features from the logs i.e. construct-
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ing a network structure based on students’ learning behavioural data to produce

more logical and coherent communities in terms of their learning performance, as

well as to generate better predictive models of learning outcomes. The network struc-

ture of undergraduate courses and their contributions to students’ learning pathways

have been investigated using Community Detection approach and Minimum Span-

ning Tree [68, 141], which are similar to the approach of this research. However,

the authors of both studies merely considered the courses’ grades from a relatively

small number of students. We would argue that more aspects of student learning,

e.g., student learning behaviours, can be included to deliver more insightful results.

Regarding prediction of students’ learning outcomes using learning behavioural fea-

tures, the authors of [60] also note that from a survey for literature, the evaluation

of the predictability of the behavioural data at early stages also remains limited.

This study also combines learning behavioural data and other attributes related

to students’ academic progress into a single manner for prediction. By merging

the process data, i.e. event logs of students, and other learning profile data, the

prediction of students learning output can be implemented with the support of a

range of machine learning approaches. It will provide recommendations on students’

learning behaviours. Detail on the methods will be described in Chapter 4.
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Chapter 3

Context of the study and Dataset

3.1 Context of the study

This research has been carried out based on four datasets representing the learning

behaviour of students and their performance in two programming-related courses in

the Computer Science (CS) domain in a Medium-sized Metropolitan University in

Ireland. The first course is a first-year introductory programming module delivered

to students in the Software Engineering programme. These students generally have

the aim of targeting programming-related jobs such as software development. The

second course is a programming module taken by first-year Business Computing

students who are usually looking for less technical positions (e.g. noncoding roles)

in an IT-related field. We denote the two courses as Course#1 and Course#2,

respectively.

In both courses, learning material items are provided to the students on a weekly

basis. Course items include general course information, lecture notes, labsheets,

and programming tasks. Students are expected to read the lecture notes during a

lecturing session. In a lab session, students should follow instructions and examples

in labsheets and do given programming tasks. The students’ solutions to the tasks

are uploaded and tested automatically by the system. The course items are delivered

in the form of web pages on the bespoke online learning system.
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There are three formative assessments in Course#1, which take place in weeks 4,

8 and 12 where 12 is the final week of the semester, while Course#2 students have to

take two assessments in the form of two lab exams in weeks 6 and 12. All lab exams

are mandatory and carry the same weight in the overall assessment mark. Students

are therefore required to take the exams seriously by doing all given programming

tasks as much as they can. Students are likely to find the last assessment in each

module to be the most challenging, requiring a comprehensive understanding of the

course knowledge to solve the given problems and also carrying the most marks.

Therefore, the results of the last exam will be used as a basis for further analysis in

this research.

The two courses are expected to provide students with fundamental knowledge

and skills in Python programming. Since they are prerequisites for their specific

programmes, both modules are mandatory and key to their overall programme out-

come goals. The motivation for students to take both courses is the same, as they

cannot follow the curriculum of the programme without deep understanding of these

modules. Hence, we assume that students are likely to take these modules seriously

and fully participate in learning activities to maximise their learning benefits, al-

though Software Engineering students might be expected to pay more attention on

programming modules than Business Computing students.

The differences between the two modules is related to the level of knowledge

and the requirement of the tasks, e.g. the tasks of Course#1 may require stu-

dents to apply more advanced algorithms to solve the given problems. In fact, in

Course#1, students are taught more advanced concepts in programming and given

more challenging exercises, compared to students in Course#2. As a result, students

in Course#1 generally have more activities in learning than Course#2 students. In

other words, while Course#1 can be seen as a typical programming course for Soft-

ware Engineer students, Course#2 represents a programming course for learners

whose objectives may be toward business but still need programming skills at a

certain level. It is important to note that both courses have the same coordinator

and there were no major changes in the curriculum over the two academic years.
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Table 3.1: Datasets information.

Dataset Number of Number of Average events
students events per student

Course#1-2018 112 1,054,394 9,414
Course#1-2019 151 1,484,297 9,829
Course#1-2020 128 1,589,216 12,415
Course#2-2018 62 211,855 3,417
Course#2-2019 48 200,006 4,166
Course#2-2020 65 216,148 3,325

Therefore, the learning motivation of students is not expected to significantly vary.

However, their behaviours can be distinct due to the differences in the level of course

requirements. As a result, these datasets can reflect the diversity of learning char-

acteristics of students’ learning behaviours, giving a good quality of data.

The collection and usage of the data has been approved by the Research Ethics

Committee of Dublin City University (REC Reference number DCUREC/2019/156).

3.2 Dataset and Learning Event logs

We formalise the course material items in this context as material type (i.e., General,

Lecture, Labsheet and Practice) combined with the corresponding week, for example

Labsheet 1 means the labsheet used in week 1. For the general documents, e.g.

course information and technical instructions notes, we denote them as General.

Students’ interactions with the items (e.g. mouse clicking or scrolling, highlight

a piece of text or switching between two items) are logged automatically into the

database. Brief information about the collected data can be seen in Table 3.1.

We can consider a real-life scenario of students learning programming on the

online learning system as follow: On a day in Week 5, student s1 read a labsheet

for a task instruction. While reading a labsheet, the student also switched between

lecture notes and the labsheet two times, and another two mouse events on the

lecture page were logged; The student could then write the code to solve a given

task and upload it to the system via the submission portal. All these learning events
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Table 3.2: Example of event log of student s1 on two days in week 5 in Course#1
module.

Event Item Timestamps Student id
1 Labsheet 5 2018-08-12 14:30:00 s1
1 Labsheet 5 2018-08-12 14:35:00 s1
1 Lecture 5 2018-08-12 14:36:00 s1
1 Labsheet 5 2018-08-12 14:45:00 s1
1 Lecture 5 2018-08-12 14:49:00 s1
1 Labsheet 5 2018-08-12 14:50:00 s1
2 Practice 5 2018-08-13 11:59:00 s1
2 ... ... s1

of the student s1 were recorded and stored as the event data structure called the

event log which can be seen in Table 3.2 as an example.

We adopt the format of event log in Process Mining [174] to store the students’

learning behaviour. An event log includes a collection of events implemented in

chronological order. Each event belongs to a learning trace which refers to the se-

quence of events of a student within session. Event logs may contain other attributes

such as timestamps, participants, and results. In the context of this research, a stu-

dent’s learning event log comprises the following information:

• Trace id : A trace refers to a sequence of learning events of a student over a

day (i.e., within 24 hours). For example, Table 3.2 illustrates two learning

traces associated with 12 August and 13 August 2018 of the student s1.

• Event Item: An event item refers to an item of course material of the corre-

sponding week where students’ interaction with the system are logged. For

example, the first row in Table 2 indicates that there was an event on the Lab-

sheet 5 course material item generated by student s1 at 14.30 on 12 August

2018.

• Timestamp: Timestamps refer to the date and time when the corresponding

event occurred recorded by the system. The timestamp is essential informa-

tion, as it will be used for ordering events and reflecting the behaviour of

students.
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• Student id : This refers to the unique identity of students. Please note that in

practice, we merge many students’ event logs into a single event log dataset

(or combined event log) which is convenient for further analysis. Hence, the

student id field is important for further calculation later on.

3.3 Exploratory Analysis

This section explores some general characteristics of the collected datasets for Course#1

and Course#2 over the three academic years (2018, 2019 and 2020) mentioned above.

For each course’s dataset, we describe how students interacted with the University’s

bespoke learning systems, i.e., the total number of learning events made by students

over the study period in the semester, separated by weekdays. We also investigate

the students’ interactions with different types of learning item in the courses. The

difference behaviours between the higher and lower performing cohorts of students

are also highlighted.

3.3.1 Course#1 datasets

Figure 3.1, 3.2 and 3.3 illustrate the total number of activities in each week day

recorded from students in Course#1 over the three academic years of 2018, 2019,

and 2020, respectively. The data for Course#1-2020 represents students’ learning

activities during the lockdown of COVID19 when the University’s courses were de-

livered completely online and students were not allowed to physically go to college.

Although it was a remote setting, students were still expected to attend lectures

and lab sessions synchronously on certain days in a week.

In all figures of Course#1 datasets, one can notice the days in a week where

lecture and lab sessions were scheduled, when showing the most significant number

of activities. In 2018 and 2019, students had a similar schedule with lectures on

Thursday and lab sessions on Tuesday while in 2020 when during the lockdown,

the schedule was slightly changed, i.e., lectures on Thursday but lab sessions on
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Wednesday. In addition, the length of the Course#1-2020 was 10 weeks only due to

a change in timetable format, instead of 12 weeks as usual in the two former academic

years. On the other hand, on the days of the week when there were no lectures or

lab sessions, a significantly smaller number of activities can be observed. These

figures indicate that students generally did not use the learning system beyond the

scheduled learning time. We can also notice the week in the semester where students

needed to take a lab exam based on the unusually high number of activities on a

non-lecturing weekday. In 2018 and 2019, students had lab exams on Wednesday of

week 4, 8 and 12, while in 2020, lab exams were conducted on Tuesday of weeks 4,

7, and 10. It can be said that, other than on the lecturing and practice day, most

of the students were only active on the pre-assessment days.

Furthermore, the number of students’ activities also decreased from the begin-

ning to the end of the semester in all courses. This observation may imply that

students appear to be less focused over time during the study period. They might

be absent from the class and skip doing given programming exercises, and hence did

not interact with the learning system.

The usage of course material items (i.e., Lecture, Practice, Labsheet and General

items) in Course#1 by higher and lower performing students can been seen in the

boxplots in Figures 3.4, 3.5 and 3.6 below. In this research, the higher and lower

performing cohorts of students in a course are defined based on students’ perfor-

mance in the final lab assessment of the course. On finishing a programming lab

examination task, students submit their codes to the system and receive the results

as “correct” or “incorrect” submission. A submission is considered “correct” if it

passes all test cases which are predefined by the instructor. Each task is given the

same proportion of marks, and the overall mark is given to students after the exam

is finished. A student whose grade is less than 40 out of 100 is labelled as “lower

performing’, otherwise, that student is considered as “higher performing”. In this

research, the overall marks of the students have been used for behavioural analysis

while labelling is used as a target variable, i.e., “higher performing = 1” and “lower

performing = 0” for the evaluation of the predictability of the behavioural data for
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Figure 3.1: All student activities in Course#1-2018 (pre-COVID19)

Figure 3.2: All student activities in Course#1-2019 (pre-COVID19)
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Figure 3.3: All student activities in Course#1-2020 (during COVID19)

the students’ learning outcomes.

In general, over the three years of Course#1 recorded, students had the most

number of interactions on Practice and Labsheet items. This is an expected result

due to the large volume of exercises given in such programming courses in a third-

level institution, and students had to read the requirements and instructions in

labsheet items for practise. Furthermore, the higher performing students have shown

more interest than the rest of the class in interacting with Practice and Labsheet

items in Course#1 over the three academic years.

On the other hand, Lecture items are also an important learning material that

students had to go through during, and possibly after, the lecturing sessions. Stu-

dents might also need to read lecture notes while doing programming tasks in prac-

tical sessions. Interestingly, in contrast to Practice and Labsheet items, lower per-

forming students appear to be more active in Lecture items. In both academic years

before COVID19, lower performing students were likely to carry out more learning
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Figure 3.4: Students’ learning activities by learning material item types in
Course#1-2018 (pre-COVID19)

Figure 3.5: Students’ learning activities by learning material item types in
Course#1-2019 (pre-COVID19)
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Figure 3.6: Students’ learning activities by learning material item types in
Course#1-2020 (during COVID19)

activities on Lecture items in comparison with higher performing students (Figures

3.4 and 3.5). However, the difference is not significant in Course#1-2020 which was

during the pandemic (Figure 3.6). It is possible that before COVID19, students

could physically attend the class where they had a chance to directly interact with

the lecturer, e.g., students could see the examples on screen and ask questions imme-

diately. As a result, higher performing students could understand the new knowledge

and may not have needed to spend much time on lecture note items after the class

while the lower performing cohort had to re-visit the lessons and therefore had more

activities in Lecture items. In contrast, during COVID19, studying online might

have restricted communication between students and lecturers and neither student

cohorts had many options other than to rely on the provided learning materials.

Meanwhile, students had shown the least attention to General items, as shown by

the absence of much difference between the higher and lower performing cohorts of

students in the interaction with these items. This is understandable because general

items merely contain course information, such as the timetable and exam schedule,
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and therefore may not have much contribution in students’ learning success, al-

though students still need to follow those items to ensure that they will perform all

required tasks and lessons correctly.

3.3.2 Course#2 datasets

As with sub-section 3.3.1, this sub section provides a birds’-eye view of the Course#2-

2018, 2019 and 2020 datasets. Figures 3.7 and 3.8 show the data for all student

activities in Course#2-2018 and Course#2-2019 that occurred before the COVID19

pandemic. Based on the figures, it can be seen that both roll-outs of the course have

the same learning schedule and activities. In general, students in both courses were

mainly active on Thursdays, which were scheduled for both lecture and lab practice

sessions. In addition, students had more logged learning activities on Thursday of

the first half weeks of the semester in comparison with the ending weeks.

On the other hand, there are only a small number of learning activities recorded

on the other days of the studying weeks. This phenomenon might indicate that most

students in Course#2 only studied, i.e., in terms of activity on the learning system,

on lectures and lab days. However, an exception can be witnessed on Wednesday of

Week 6 and 12 in both Figures 3.7 and 3.8, when students had a lab exam so that

they needed to complete the exam tasks and submit the solutions to the system.

In comparison with the above, Figure 3.9 illustrates the students’ learning activ-

ities in Course#2 in the 2020 academic year when a lockdown was imposed due to

the effect of the COVID19 pandemic. The course was delivered completely online

and the students mainly interacted with the lecturer and other students through

online meeting tools. The lab exams were also conducted at home instead of in the

laboratory rooms at the University. Overall, we can observe the similar learning

behaviours with that of students in the previous years. In particular, students were

most active on lecturing or practise days, i.e., on Friday and Tuesday in Course

#2-2020. Students had also been being less active over the semester and only had

more interactions with the learning system for the preparation of the exams.
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With respect to the comparison between Course#2 and Course#1, it seems that

Software Engineering students in Course#1 were more active in checking learning

material items during weekend (see Figures 3.1, 3.2 and 3.3) while Course#2 stu-

dents, who were studying in the Business Informatics domain, had almost no activity

on these days. This may reflect the fact that Course#1 is more challenging than

Course#2 in terms of the level of knowledge delivered and difficulties of exercises,

requiring the students to spend more time on studying. It may also be due to the

fact that the Software Engineering students see this as a really important course

and it is also worth double the number of credits.

Figure 3.7: All student activities in Course#2-2018

Regarding the difference in learning behaviours between the two cohorts (i.e.,

higher and lower performing), it can be seen in Figures B.6, 3.11 and 3.12 that the

data for Course#2 are roughly similar to that for Course#1. In particular, students

in Course#2 were also active the most in practical-related items. Higher performing

students in Course#2 also appeared to have more learning activities in practical-
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Figure 3.8: All student activities in Course#2-2019

Figure 3.9: All student activities in Course#2-2020
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Figure 3.10: Students’ learning activities by learning material item types in
Course#2-2018

Figure 3.11: Students’ learning activities by learning material item types in
Course#2-2019
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Figure 3.12: Students’ learning activities by learning material item types in
Course#2-2020

related items (Practice and Labsheet) than lower performing students. On the other

hand, the difference in the number of interactions in Lecture items between the two

cohorts of students is not significant during the three academic years of Course#2.

In other words, it is hard to detect any deviation in the level of reading lecture

notes between the higher and lower performing cohorts in Course#2 based on such

an exploratory analysis.

3.4 Conclusion

The exploratory analysis of the collected datasets reveals several large patterns in

students’ learning activities. Students have been shown to be gradually less active

during the semester. They were also only active on the days when lecturing and

practice sessions were took place and gradually paid less attention on other days of

the week.

In terms of the difference in learning behaviours between cohorts of students,

we notice that higher performing students are likely to be more active than lower
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performing students in doing programming tasks, represented by a higher num-

ber of interactions with practical-related items (i.e. Practice and Labsheet) in all

courses over the years. Regarding Lecture items, there were also no noticeable gaps

in reading lecture note items between the two cohorts of students in Course#2

while learning behaviours of student cohorts in Course#1 are different. Before the

COVID19 pandemic, lower performing students in Course#1 appear to have had

more interactions with Lecture items than higher performing students in Course#1.

However, this difference was not significant during the COVID19 confinement.

Generally, it can be said that the data exploration process has revealed the rela-

tionship between learning patterns and learning outcomes of students. Results from

previous research efforts have also concluded that learning behaviours are correlated

with learning performance [158, 39]. Students at risk in study progress will show

signs of this risk in their learning behaviours [116]. Learning behaviours typically

refer to participation frequencies in learning activities such as login frequency [89]

or mouse clicks [66]. Yet, the role of course material items or learning documents

has not been commonly investigated. For example, it is possible that students with

a difficulty in learning programming can be more active in reading lecture notes

because they do not fully understand the abstract concepts. In this case, although

a student has a high number of times logging in and interacting with the system, it

is not guaranteed that the student will achieve a high result in the exam due to the

difficulty in understanding.

However, there are several problems noticeable in the data due to the nature of

educational contexts, which require further data processing and analysis to verify the

identified learning patterns. The Figures 3.4, 3.5, 3.6, B.6, 3.11, and 3.12 generally

do not show a great difference between higher and lower performing students in the

learning activities with various learning items. This means that there are still a

number of students in this cohort (e.g., lower performing), who have shown learning

behaviours that are similar to the characteristics of the other cohort (e.g. higher

performing). For example, there were also students who completed many practical

exercises, but still failed the exam. We argue that the effects of noise and trend in the
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collected data contributed to this complexity of the analysis. In other words, simple

statistical methods cannot fully explain the learning patterns, and the analysis would

need to be enriched with more thorough methods.

In the next Chapter, we propose our approach to extract relevant features of

learning behaviours with regards to the use of course material items as well as

showcase how the noise and trend effect could be removed from the extracted data.

More sophisticated methods will also be applied, e.g. using Community Detection

algorithms to identify better representative communities.
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Chapter 4

Learning behavioural features and

Analysis methods

4.1 Introduction

In this chapter, we describe the methods used in this research. Generally, our

methodology can be seen in Figure 4.1. Firstly, we collect student log data from the

two programming courses namely Course#1 and Course#2 over the three academic

years, i.e., 2018 (2018/2019), 2019 (2019/2020) and 2020 (2020/2021). The collected

data will be stored as learning event logs, followed by the extraction of learning

behavioural features (see Section 4.2). Secondly, the extracted datasets will be

cleaned using our proposed method which is built based on the assumptions of

Random Matrix Theory (see Section 4.3 and 4.4). These methods are expected

to contribute to answering Sub RQ1 in this thesis. Then, after being cleaned, the

datasets will be ready for further analysis and prediction. In particular, Community

Detection techniques will be used to analyse the relationship between groups of

learning patterns and students’ academic outputs. The method is described in

Section 4.5 and aims to answer Sub RQ2 and Sub RQ3. Additionally, we investigate

the predictability of the students’ learning outcomes using the learning behavioural

datasets based on the approach in Section 4.6, answering Sub RQ4.
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Figure 4.1: Research methods: Steps to be conducted in this thesis
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Table 4.1: Example of student-event item data matrix.

StudentId Lecture1 Labsheet1 Practice2 ...
s1 5 7 6 ...
s2 24 14 34 ...
s3 12 54 0 ...
... ... ... ... ...

4.2 Learning event log and behavioural features

4.2.1 Single Event Frequency features

We use two types of features to reflect the learning behaviour of students. The first

type is the single event frequency features, i.e. the number of events that occurred in

each course material item. Single event frequency features extracted from the event

log can be arranged as a student-event data matrix where each column refers to the

number of events on a material item generated by students and each row is the data

for each student. An example of a student-event data matrix can be seen in Table

4.1.

4.2.2 Transition Frequency features

The second type of students’ learning behaviour features is transition frequency fea-

tures, i.e., the number of occurrences that a student moves from an event on a course

item to another event. Please note that the two events can be on the same item or

two different items. We use the term transition to denote this phenomenon of mov-

ing between consecutive events. The transition frequency features can be arranged

as transition-student data matrix where the rows refer to transition frequency fea-

tures and the columns are the data for the students. An example of a transition data

matrix of an event log can be seen in Table 4.2. The value of Lecture1-Labsheet1

for student s2 equals to 14 indicates that student s2 performed an event 14 times

on Lecture1 directly before the next event on Labsheet1. Please note that if the two

materials are the same, e.g., Lecture1-Lecture1, the transition reflects a loop in the

learning process, i.e. the student keeps working on the same course item Lecture1.
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Table 4.2: Example of transition-student data matrix.

Transition s1 s2 s3 s4 ...
Lecture1-Lecture1 4 5 10 23 ...
Lecture1-Labsheet1 0 14 9 12 ...
Labsheet1-Practice1 12 6 0 21 ...
Labsheet1-Lecture1 16 25 0 5 ...
... ... ... ... ... ...

In this work, the student-event item data matrix has been used for the learn-

ing outcome predictions and the transition-student data matrix has been used for

analysing the relationship between students’ learning behaviour and their assessment

performances.

With this noisy data collected, we pass into description of how it is processed and

cleaned to better support our further analysis and prediction. The detailed method

to clean the effect of noise and trend in the data is discussed in the next sections.

4.3 Random Matrix Theory and Principal Com-

ponent Analysis

Given a m × n data matrix G extracted from an event log, we can normalise the

matrix G as G(n) as follows [160]:

G(n)j =
Gj −Gj

σj

(4.1)

where G(n)j is the jth column of the matrix G(n); Gj is the jth column of the

matrix G. In the case where G is a transition-student data matrix, Gj denotes the

frequency of all occurred transitions of a student j. For example, in Table 4.2, Gj

refers to column s1, s2 etc. On the other hand, if G is the student-event item data

matrix, Gj denote the frequency of learning events associated to the learning item j

of all students. For example, in Table 4.1, Gj refers to column Lecture1, Labsheet1,

Practice2 etc. Gj is the mean value of Gj and σj is the standard deviation of Gj.

In other words, Gj and G(n)j reflect the learning behaviour of the student j.
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The correlation matrix C can be expressed in terms of the inner product of G(n)i

and G(n)j as follows:

Cij =
〈
G(n)i,G(n)j

〉
(4.2)

We note that Cij ∈ [−1; 1]. It may be noticed that the correlation Cij can

reflect how similarly two students i and j interacted with course material items.

If Cij > 0, the transitions of the two students i and j increased together and the

students behaved similarly in the course. Conversely, if Cij < 0, the two students

tend to behave differently on the learning system.

The eigen-decomposition of C can be shown (e.g. see [160]) to be given by:

CV = ΛV (4.3)

where Λ is a diagonal matrix n x n of eigenvalues λi and V is a matrix whose

columns refer to the corresponding eigenvectors vi of C.

Given a random matrix A where A is a matrix m×n with randomly distributed

elements with zero mean and unit variance, it has been shown that [181] the prop-

erties of C can be compared to the correlation matrix R of the random matrix A

as

R =
1

m
AAT (4.4)

where AT is the transposed matrix of A.

According to RMT, the statistical properties of such a matrix R are known [61].

In particular, when the sample size m → ∞ and the number of features n → ∞,

provided that Q-factor = m
n

≥ 1 is fixed, the distribution of eigenvalues λ of the

random matrix R is given by the Marchenko-Pastur probability density function

[135]:

PR(λ) =
Q

2πσ2

√
(λ+ − λ)(λ− λ−)

λ
(4.5)

where λ− ≤ λ ≤ λ+, λ− and λ+ are the lower and upper limits, the eigenvalues
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of R, respectively, given by:

λ± = σ2
(
1 ±

√
1

Q

)2
(4.6)

where σ = 1 due to A having unit variance.

We note that λ± are the upper / lower limits of the theoretical eigenvalue distri-

bution. Eigenvalues that fall outside of this range are assumed to deviate from the

expected values of the Random Matrix Theory [98]. As a result, by comparing this

theoretical distribution with the empirical data, we can identify key eigenvalues con-

taining specific information on the data. This characteristic of the RMT supports

the need to clean the effect of noise and trend in the data [135].

The Inverse Participation Ratio (IPR) is additionally used to assess the con-

tribution of eigenvector elements to the corresponding principal component where

each element is associated with a column in the original dataset. The IPR of the

eigenvector Uk is given by

IPRk =
n∑

l=1

(
uk
l

)4
(4.7)

where uk
l is a component of the eigenvector Uk. We focus on the value of 1/IPRk

which implies the number of eigenvector elements significantly contributing to the

PCs. Eigenvector elements can be investigated to observe the common trend in

students’ behaviours as well as the difference in the behaviours between student

cohorts. There are two limiting cases for the IPR:

• When the eigenvector has identical components uk
l = 1/

√
N , then IPR = 1/N

• If one component uk
l = 1 and all others are zero, then IPR = 1.

The IPR quantifies the reciprocal of the number of eigenvector components that

contribute significantly to each principal component/eigenvalue.

In addition, based on PCA theory, the new n variables xi, forming a new data

matrix X = [x1,x2, ...,xn] can be obtained after Principal Component Analysis of
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G(n) as follows:

xi = vi1G(n)1 + vi2G(n)2 + ... + vinG(n)n = vT
i G(n) (4.8)

where 1 ≤ i ≤ n, xi refers to the scores and vi refers to the loadings (eigenvectors)

of the associated principal component (eigenvalue) i. In other words, each principal

component has its own eigenvalue and eigenvector.

We can also reconstruct the original normalised data G(n) from X as follows:

G(n) =
n∑

i=1

vixi (4.9)

4.4 Noise and trend effect cleaning

We have noticed that, in the practical usage of the online learning system, students

may interact flexibly with course material items. Although the students can be given

the same instructions and learning pathway, they are free to use learning resources in

their own way. This phenomenon appears to create noise in the event log data. On

the other hand, as all students attended the same lectures, the learning instructions

given to them are the same. As a consequence, all students may interact similarly

with course material items which were released sequentially and gradually. We can

observe this trend effect in Figure 4.2, for correlations matrix of student transitions

for Course#1-2018. Most transitions among students are highly correlated. This

issue may limit the chance of detecting differences in learning behaviours among

groups of students. Therefore, it is necessary to clean the effect of noise and trend

in the dataset before doing any analysis [135].

In this thesis, we adopt, from financial references such as [95, 133], the concept of

a “Market Component”. This corresponds to the largest eigenvalue of a correlation

matrix and represents a cross-market effect (e.g., rise or fall) affecting all stocks.

Similarly, the trend effect in a classroom can be reflected by the largest eigenvalue

of the correlation matrix of students’ learning behaviours.

50



Educational behaviours as a complex system

Figure 4.2: Uncleaned correlation matrix of students’ transitions in Course#1-2018
dataset. The scale on the right side of the two figures indicates the range value of
the correlation coefficients.

Figure 4.3: Cleaned correlation matrix of students’ transitions in Course#1-2018
dataset. The scale on the right side of the two figures indicates the range value of
the correlation coefficients.

51



Educational behaviours as a complex system

In the following subsections, we discuss methods for cleaning the correlation

matrix of a dataset as well as propose a method for cleaning the dataset based on

Random Matrix Theory.

4.4.1 Cleaning the correlation matrix

Having reviewed a number of correlation cleaning methods (e.g eigenvalue clipping

[98, 133] and linear shrinkage [80]), we adopt the eigenvalue clipping because it was

found to be the best in terms of its ability of removing the noise while preserving the

information part, i.e. as represented by the trace of the original correlation matrix.

This approach simply utilises the results of the Marchenko-Pastur equation [33]

instead of choosing a parameter during the cleaning process such as linear shrinkage

and Rotationally invariant, optimal shrinkage [34]. The eigenvalue clipping provides

robust out-of-sample performance [30] which has been widely adopted [160, 50].

Let λ1, ..., λN be the set of all eigenvalues of C and λ1 > ... > λN , and i be the

position of the eigenvalue such that λi > λ+ and λi+1 ⩽ λ+.

Then we set

λj = 1/(N − i)
N∑

k=i+1

λk, (4.10)

where j = i + 1, ..., N . In other words, we keep all upper bound eigenvalues, i.e.

those with information, and replace all lower bound eigenvalues, i.e. those within

the bounds predicted by RMT, with their average value. Hence, we believe, this

method can best preserve the trace of the original correlation matrix. The new

set of eigenvalues can be used to construct a denoised eigenvalue and the spectrum

associated with correlation matrix Cdenoised. [135].

The effect of the first eigenvalue and eigenvector can be removed from the de-

noised correlation matrix as follows [135], forming a cleaned correlation matrix as

follows:

Ccleaned = Cdenoised −W1V1W
T
1 (4.11)

52



Educational behaviours as a complex system

where W1 and V1 are the first eigenvector and eigenvalue of C, and W1
T is

the transposed matrix of W1. An example of the effect of the cleaned correlation

matrix can be seen in Figure 4.2 and Figure 4.3. The two figures illustrate the

correlation coefficients of the transition-student data matrix in the Course#1-2018

dataset, that is, each dot in the figures refers to the correlation of one student

with another student. The scale on the right side of the two figures indicates the

range value of the correlation coefficients. We also note that the diagonal of the

matrix refer to the correlation of transition data of a student with her/himself (i.e.

correlation value = 1).

It may be seen in Figure 4.2 that the majority of the dots are in different shades

of green. This phenomenon may reflect a “trend effect”, i.e. students’ learning

behaviours can be similar and highly positively correlated with other learners’ be-

haviours in the same class. However, these issues may negatively influence the

construction of prediction models. After cleaning the data, there are more neutral

and dot shades of orange visible in Figure 4.3, indicating the negative correlation

values. That is to say, the Ccleaned correlation matrix may show better differences in

student learning behaviours, creating the higher chances to better cluster the stu-

dents. Similar results are observed in all other datasets for Course#1 and Course#2.

The use of the cleaned correlation matrix in Community Detection is discussed more

in Section 4.5.

4.4.2 Cleaning the Dataset

While the cleaned correlation matrix is expected to be useful in Community Detec-

tion, the prediction of learning outcomes, however, requires a tabular dataset, as

tabular data are necessary inputs for a large number of data mining methods, such

as classification and clustering [147]. As a result, it would be necessary to clean the

original data matrix instead of the correlation matrix to improve prediction models.

In this section, we propose a method to clean the original data matrix based on

Random Matrix Theory.
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In terms of the eigenspectrum of the correlation matrix C, let λ1, ..., λN be

the set of all eigenvalues of C and λ1 ≥ ... ≥ λN , and k be the position of the

eigenvalue such that λk > λ+ and λk+1 < λ+. In other word, λ1, ..., λk are outside

the random matrix bands and λk+1, ..., λN are inside. We note that λ1 refers to the

largest eigenvalues and the first principal component. The cleaned dataset Ĝ can

be constructed as follows:

Ĝ =
n∑

i=1

vixi − α

n∑
i=k

vixi − βv1x1 (4.12)

where
∑n

i=k vixi refers to the noisy part of the dataset based on RMT, and

v1x1 refers to the first principal component of data. The parameters α ∈ [0, 1] and

β ∈ [0, 1] control how much we want to remove the noise and trend parts from the

original data, respectively. If α and β are equal to zero, Equation 4.12 is similar

to Equation 4.9, and Ĝ reverts to G(n) , i.e. the reconstruction of full original

data from the principal component score dataset. If α and β have a unit value,

we have a fully cleaned dataset. Otherwise, we have a partly cleaned dataset where

both α and β are between 0 and 1. The cleaned dataset Ĝ can then be used as an

input for machine learning predictive models. We expect that the performance of

the predicting models using Ĝ, either fully or partly cleaning will be improved in

comparison with the use of the original dataset and simply PCA-based datasets.

4.5 Community Detection

This section briefly introduces the topic of Community Detection, followed by the

details of the Community Detection methods used in this research.

4.5.1 Brief of Community Detection

Given a graph that contains a set of nodes and edges where each edge represents

a connection between two nodes in the graph, the two following concepts can be

defined:
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• Degree of a node: the number of edges that connect the node to other nodes

in the graph.

• Community: A set of nodes that are connected more densely to each other

than to the rest of the graph [137]. Communities may or may not overlap with

each other, depending on their definitions in specific applications.

• Community structure: The phenomenon of a graph whose nodes are or-

ganised into groups, called communities or clusters [137, 76]. A graph has

a community structure if the nodes of the graph can be easily grouped into

(potentially overlapping) sets of nodes such that each set of nodes is densely

connected internally. In non-overlapping communities, the network divides

naturally into groups of nodes with dense connections internally and sparser

connections between groups. That said, the pairs of nodes are more likely to

be connected if they are both members of the same community(ies), and less

likely to be connected if they do not share communities.

• Modularity: A metric that is a commonly used function to measure the

strength of the division of a graph into communities. The value range is

normalised between -1 to 1. Modularity Q is defined as [119]:

Q =
n∑

c=1

[
Lc

m
−
(

kc
2m

)2
]

(4.13)

where:

– the sum iterates over every community c in the graph;

– Lc is the number of within-community edges for the community c, i.e.,

the edges that do not cross the border between communities;

– m is the total number of edges;

– kc is the sum of degrees of the nodes in community c;
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Graphs with high modularity have dense connections between the nodes within

communities and sparse connections between nodes belonging to different com-

munities.

• Community Detection: It refers to the procedure of detecting groups of

interacting nodes in a graph based on its structural properties [137, 185, 94].

In other words, Community Detection can be considered as a clustering tech-

nique that can be applied to the graph to detect the communities with similar

properties and behaviours so that they can be grouped. Many algorithms for

Community Detection have been developed [99], which have been applied into

the variety of disciplines such as biology and healthcare [188], Social Networks

[20] and Economics [183]. With respect to the educational domain, the appli-

cation of Community Detection has been limited and usually in the form of

social network analysis. For example, a graph can be constructed based on

the data about communications between students, e.g., asking questions and

giving answers under each topic of the study [189], or discussions via learn-

ing forums [168] in online learning platforms, where students within the same

community show a higher level of communication with each other than with

students outside their community.

In the context of this research, we propose a novel approach based on the assump-

tion that students with the same level of performance in study could show similarities

in the learning behaviours. To verify whether students with similar behaviours, and

vice versa, perform similarly on lab exams, we choose to adopt a graph-based ap-

proach. Generally, a graph is constructed based on the concept of a distance matrix

discussed below. In the graph, each node represents a student and the edge weights

between two nodes indicate the distance between learning behaviours of the two

students. Then, Community Detection can be applied to the graph to detect the

communities where students who have similar learning behaviours are grouped. The

detected communities can be used for further analysis in terms of the relationship

between their learning behaviours and outcomes.
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Figure 4.4: Learning Behavioural Distance matrix of students in Course#1 dataset.

4.5.2 Distance matrix of students learning behaviours

Although the correlation values appear to be useful in reflecting the similarity and

difference in students’ learning behaviours as mentioned in Section 4.3, they are not

appropriate metrics as they do not satisfy the non-negativity and triangle inequality

conditions [135]. For example, the difference between the correlations (0.8, 1.0) is

the same as (0.1, 0.3), but the former tuple illustrates a higher difference regarding

codependence. Fortunately, it is possible to translate the correlation matrix into a

distance matrix D as follows [135]:

Dij =
√

0.5 ∗ (1 −Cij) (4.14)

with Dij ∈ [0, 1] where Dij is a distance value of learning behaviours between

the two students i and j. The value closer to unity refers to two students interacting

completely differently with the course material items, while the value closer to zero

indicates that two students behave similarly. Figure 4.4 indicates an example of

the learning behavioural distance matrix of students in Course#1-2018 dataset.
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The diagonal comprises of zero values, illustrating the behavioural distance between

each student and him/herself. The other distance values range from zero to more

than 0.6. The distance matrix can be used to construct a community graph which

is discussed in the next section.

4.5.3 Constructing a graph from the distance matrix

A graph can be constructed directly using the distance matrix values Dij as edge

weights. Unfortunately, such a network is hardly a readable weighted complete

graph as each node (student) has a connection to all other nodes in the graph.

Additionally, we note that the time complexity of community detection algorithms

is proportional to the number of edges and nodes in the graph [192]. For example,

the time complexity of the Girvan-Newman algorithm [76], which is one of the

most commonly used Community Detection techniques (see more details of Girvan-

Newman algorithm in Section 4.5.4), is O(m2n) where m is the number of edges

and n is the number of nodes (or students). For such a fully connected graph, the

number of edges is m = n(n− 1)/2, which, in the worst case, may lead to the time

complexity of the algorithm of O(n5). To overcome this issue, one possible solution

is to reduce the number of edges in such a fully-connected graph. It is important to

minimise the number of edges in the constructed graph while preserving the purpose

of grouping students having similar behaviours.

In the context of our research, all the values of the distance matrix of each

dataset are different to each other. In other words, all edge weights of the fully

connected graph constructed from the corresponding distance matrix are unique.

Taking advantage of this characteristic, we adopt the notion of Minimum Spanning

Tree (MST) [179], i.e. an MST is constructed for each graph and it connects all

students in a course without having any loops. With the distance matrix D as the

adjacency matrix of a graph, an associated MST is constructed such that the sum

of all edges in the graph is minimal for all possible spanning trees. For example, an

MST can be constructed using the Kruskal’s algorithm [97] as follows:
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• Step 1. Sort all edges in the graph in ascending order of their edge weights.

• Step 2. Select the smallest edge from the unselected edges

• Step 3. Check if the new selected edge forms a cycle or loop in a spanning

tree. If the edge does not form a loop/cycle, then include that edge in the

MST. Otherwise, discard the edge.

• Step 4. Repeat Steps 2 and 3 until all nodes are connected.

We note that if all edge weights of a graph are unique, then the graph has only

one corresponding MST. Hence, in our case, each course dataset can be used to

produce a single associated MST. It can be seen that the MST of a set of n students

is a graph with n − 1 edges, reducing the time complexity of the Girvan-Newman

algorithm to O((n − 1)2n) = O(n3), see [155] for more detail. Furthermore, in a

MST constructed from learning behavioural datasets, each student can be connected

to one or more other students who have the most similar learning behaviours with

that student, which is based on the premise that the distance matrix measures the

similarities in learning behaviours between students. In this way, the clustering

purpose is preserved.

4.5.4 Community detection on MST graph

Based on the MST constructed from the distance matrix, it is possible to advance to

the next step by clustering communities whose elements have similar characteristics,

i.e. students having shorter distances of learning behaviours are clustered into a

community. This process can be supported by several community detection methods

[27, 76]. In this research, we utilise the popular detection algorithm from Girvan-

Newman [76]. We also compare the results produced by Girvan-Newman with those

of the Louvain algorithm [27] to ensure the stability of the community analysis.

Both algorithms are explained below.
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Figure 4.5: An example of an MST constructed from a distance matrix of the
Course#1-2018. Purple nodes refer to the higher performing students while Blue
nodes refer to the lower performing students. Each edge corresponds to the distance
of learning behaviours between two students, as per 4.14
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Background of the Girvan-Newman algorithm

In this thesis, we utilise Girvan-Newman algorithm, which has been applied in var-

ious domains such as biology [188], finance and cryptocurrencies [43], as a demon-

stration of using community detection in analysing students’ learning behaviours.

The main idea of the Girvan-Newman algorithm is to find the edges in a network

that occur most frequently between other pairs of nodes by finding edge between-

ness. Edge betweenness is the number of the shortest paths between pairs of nodes

that pass through the edge of the original network [76]. It is expected that the

edges joining communities have a high edge betweenness. The detected community

structure of the network will be much more dense when the highest betweenness

edges are eliminated. Therefore, the nodes in the detected community are more

separate from the other nodes in the network. In other words, the algorithm aims

to divide the whole network into smaller communities or groups by progressively

removing the edges with the highest edge betweenness until no edges remain. The

Girvan-Newman algorithm can be divided into four steps as follows [76]:

• Step 1. Compute the edge betweenness centrality for every edge in the graph.

• Step 2. Eliminate the edge with the highest betweenness centrality found.

• Step 3. Compute the betweenness centrality for every remaining edge in the

graph.

• Step 4. Repeat Steps 2 and 3 until there are no more edges left to be eliminated.

It should be noted that we take into account the weight of edges when calculating

the edge betweenness. The nodes, (i.e., students) in a smaller community are more

connected to each other than the students outside the community. Figure 4.5 illus-

trates an example of the MST constructed from the data for Course#1-2018. The

detected groups can be used for further investigation regarding their performance in

lab exams. In particular, we can use statistical tests to verify if the lab exam grades

are significantly different between the communities. As it is not guaranteed that the
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data of students in each community will be distributed normally, a nonparametric

test is preferred in this case, i.e. Mann-Whitney U Test [117] has been used. It is

also possible to verify if the two communities interacted differently with each course

material item in the learning system. Further research is discussed in Section 5.3.

Background of the Louvain algorithm

Louvain algorithm was proposed for the extraction of the community structure from

large networks in [27] and can be seen as one of the most commonly used Community

Detection techniques [170].

The algorithm is developed based on the concept of modularity optimisation and

follows a heuristic approach. In particular, the algorithm is implemented as follows:

Step 1. Each node is assigned to a different community. As a result, the number

of communities is equal to the number of nodes.

Step 2. For each node i, the node is assigned to the community of its neighbour

j. The gain in modularity ∆Q is calculated using the following formula:

∆Q =

[∑
in +ki,in
2m

−
(∑

tot +ki
2m

)2
]
−

[∑
in

2m
−

(∑
tot

2m

)2

−
(

ki
2m

)2
]

(4.15)

where:

•
∑

in is the sum of the weights of the edges within the community C;

•
∑

tot is the sum of the weights of the incoming edges of the nodes in the

community C;

• ki is the sum of the weights of the incoming edges of node i;

• ki,in is the sum of the weights of the outgoing edges of node i that point to

the community C;

• m is the sum of the weights of all edges in the network;
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If the gain of modularity ∆Q is positive, node i is moved to the community of

its neighbour j. Otherwise node i will stay in its own community. The first step

stops when there is no further gain of modularity ∆Q by moving any nodes in the

network.

Step 3. New nodes, called super-nodes, will be formed from identified communi-

ties, i.e., all nodes from a community are merged into a super-node. The edge weights

between the new super-nodes are calculated by summing the edge weights between

the nodes of the two identified communities. In addition, each super-node can have

a self-loop with a weight equivalent to the sum of the edges’ weights between the

nodes of this community.

Step 4. Repeat Steps 2 and 3 until no further gains in modularity ∆Q are

detected.

Although we mainly focus on the Girvan-Newman algorithm, in the scope of

this work, the Louvain algorithm [27] is also used as a benchmark to verify if the

two algorithms produce significantly different results. Particularly, we utilise the

v-measure score [153], a widely-used clustering metric to measure the agreement of

two independent community detection strategies produced by the two algorithms

(i.e., Girvan Newman and Louvain) for each dataset. The value of the v-measure

score falls between 0 and 1. The higher the value is, the higher level of agreement

between the results produced by the two community detection algorithms is. The

calculation of v-measure score is also supported by the sklearn library [128].

Furthermore, we also investigate whether our cleaning method can support the

Louvain method to generate better communities with lower mixed community rates

for the cleaned data compared to the original data. The concept of mixed community

rates is introduced below.

Selecting the number of detected communities

We observe that the Girvan-Newman algorithm can be seen as a hierarchical method,

i.e., it constructs a dendrogram that shows a hierarchical clustering structure. The

number of detected communities can, therefore, range from unity to the number
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of nodes in the graph where each community contains only one node. When using

Girvan-Newman, it is necessary to determine the criteria to decide the cut-off level

in the dendrogram to create the resulting communities.

In this research, we define the concept of a mixed community rate as follows:

Let C = (c1, c2, ..., cn) be a community structure, ci = (hi, li, ni) be a detected

community where hi is the number of higher performing students, li be the number

of lower performing students in the community ci. The label ni of the community

ci is identified as Equation 4.16 below:

ni =


higher-performing, if hi/(hi + li) ≥ k

lower-performing, if li/(hi + li) ≥ k

mixed, otherwise

(4.16)

The parameter k can be configured depending on the purpose of the analysis.

In the ideal case of k = 1, a community will only be labelled as higher or lower

performing if it contains only higher or lower performing students. However, we

expect the similarity in learning behaviours between students in practice, and it

could be difficult to detect such a homogeneous community. Instead, we set k = 0.7,

i.e., a community is labelled “higher-performing” if there are greater than or equal

to 70% of higher performing students in the community and similarly for “lower-

performing” communities. Otherwise, if the number of higher performing students

is in between 30% and 70%, the communities are labelled as “mixed”. The mixed

community rate of a community structure can be computed as follows.

mixed community rate =
No. of mixed communities

total no. of communities
(4.17)

Higher/lower performing communities may include key features about student

success, while mixed communities may contain less information. As a result, we ex-

pect a good community structure to contain fewer mixed communities. Based on the
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mixed community rate indicator, it is possible to investigate each possible community

in the resulting dendrogram from the Girvan-Newman algorithm and identify the

number of detected communities by considering their mixed community rates. We

have also made a comparison between the original dataset and the cleaned dataset

in terms of the community structures detected from them. If cleaned datasets can

be used to produce a community structure with lower mixed community rates, the

cleaning method can highlight its effectiveness in community analysis.

4.6 Machine Learning Prediction techniques

One of the objectives in this research is to investigate the predictability of learning

behaviour data of students for their learning outcomes. A number of classification

techniques have been applied to build predictive models that can detect whether a

student is likely to belong to the higher or lower performing cohort. This section

gives a brief introduction about the machine learning classification tools used in this

research, along with the metrics to evaluate the quality of the trained models.

4.6.1 Classification algorithms and tools

In terms of prediction algorithms, Support Vector Machine (SVM) has been reported

to be the most effective general technique for the data captured from MOOCs in

many contexts [52, 158]. In addition to SVM, for reference and comparison pur-

poses, we also choose four additional classification techniques including XGBoost

[45], Logistic Regression [32], Gradient Boosting [67] and K Nearest Neighbours [55]

due to their widely applications in Learning Analytics domain [115].

A summary of classification techniques and tools which are used in this thesis is

given below:

• Support Vector Machine (SVM) aims to form a hyperplane with the maximum

margin from both classes of data [51]. In this study, the hyperplane is expected
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to separate the ‘higher performing‘ and ‘lower performing‘ student cohorts

based on their frequency of interactions with course learning items.

• Boosting [67] is a supervised machine learning algorithm used for classification

and regression problems. It is an ensemble technique with the main objective

to minimise the loss function by adding weak learners using a gradient descent

optimisation algorithm. In other words, Gradient Boosting uses multiple weak

learners to produce a strong model for classification.

• XGBoost [45] stands for “Extreme Gradient Boosting”, and can be seen as an

optimisation of other Gradient Boosting techniques. XGBoost was to focus

on the improvement of speed and performance of the training process of the

models. In this research, we use the XGBoost library in [44].

• Logistic Regression [32] can be seen as a commonly-used and reliable prediction

method in educational scenarios [63, 31]. It estimates the probability of a

categorical variable from a number of features [118].

• K Nearest Neighbours (KNN) [55] is a predicting method which aims to build

a non-parametric classifier. KNN algorithm uses data with several classes to

predict the category of the new sample point.

These methods can be used by educators to predict student outcomes, i.e. clas-

sify whether a student is likely to fall into the higher or lower performing class. This

could help to identify “at-risk” students during the study period. In terms of devel-

opment tools, we use sklearn libraries [128] and Python as the main programming

language.

4.6.2 Evaluation of predicting models

In this research, we aim to build binary classification models where there are only

two possible output classes, i.e., a higher and a lower performing student. In order

to evaluate the predictive power, as well as, to compare the performance between
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Figure 4.6: Confusion Matrix

the models, a number of evaluation metrics have been used. In particular, we utilise

Accuracy, F1-Score and ROC-AUC [87].

When a binary classifier is used to predict the class of each data point in a test

set, the result falls into one of the following four categories:

• True Positive (TP) is the result where the classifier correctly predicts the

positive class;

• True Negative (TN) is the result where the classifier correctly predicts the

negative class;

• False Positive (FP) is the result where the classifier incorrectly predicts a

sample as positive, but it actually belongs to the negative class;

• False Negative (FN) is the result where the classifier incorrectly predicts a

sample as negative, but it actually belongs to the positive class;

The Confusion Matrix can be considered as a performance measurement for the

classification in machine learning models where the output can be two or more

classes. It forms a table with the combinations of actual and predicted values, with

the values of TP, FP, FN and TN delivered by a classifier. Figure 4.6 illustrates
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a confusion matrix for binary classification. This is important to calculate the

evaluation metrics below:

• Accuracy [87] aims to calculate the proportion of cases that are predicted

correctly by the classifier. Accuracy metric is calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.18)

A limitation of the Accuracy metric is that if the training set is unbalanced,

the model is likely to return the dominant class and Accuracy may, therefore,

give a misleading sense of the quality of the model.

• Precision [87] aims to calculate the proportion of the correctly predicted cases

that are actually positive, which can be calculated as follows:

Precision =
TP

TP + FP
(4.19)

• Recall [87] aims to calculate the proportion of the actual positive cases that

the model can predict correctly, which can be calculated as follows:

Precision =
TP

TP + FN
(4.20)

• F1-score [87] can be seen as the combination between Precision and Recall

metrics:

F1-score = 2 × Precision×Recall

Precision + Recall
(4.21)

• ROC-AUC : The ROC-AUC curve is a performance measurement for classifica-

tion. It explains how much the model can distinguish between classes. Details

of ROC-AUC metric can be found in [88]. In our research, the higher the value

of ROC-AUC is, the better the model can predict an actual higher performing

student as higher performing and an actual lower performing student as lower

performing.

68



Educational behaviours as a complex system

The value range of the metrics Accuracy, F1-score, and ROC-AUC is between 0

and 1. The higher value is, the better the model can predict the data.

4.7 Conclusion

In this chapter, we have introduced the methods and techniques that have been used

in this thesis. The experiments have been carried out using the learning event logs

collected from our bespoke learning system for students in the two programming

courses (namely Course#1 and Course#2) over the three academic years, i.e., 2018,

2019 (pre-COVID19) and 2020 (during COVID19), forming six datasets for each

course in each year. From the log data, the features for students’ learning behaviours

are extracted, generating behavioural datasets. Students are also classified into two

groups, that is, higher-performing and lower-performing cohorts based on grades on

the final lab exam of each course.

We have proposed a novel approach to clean the effect of noise and trend in

the extracted behavioural datasets, utilising the characteristics of Random Matrix

Theory. Then Community Detection techniques (i.e., Girvan Newman and Lou-

vain algorithms) have been implemented on the extracted behavioural datasets to

identify the communities of students with similar behaviours and to verify if their

learning outcomes are the same. The ability to use learning behavioural data to pre-

dict students’ learning outcomes has also been tested with commonly-used machine

learning classification methods.

Experimental results of the applications of these methods on the datasets are

reported and discussed in the following Chapters.
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Chapter 5

Experimental Results

5.1 Introduction

The solution for Sub RQ1 has been proposed in Chapter 4 - Section 4.2 regarding

the storage and extraction of students’ behavioural data as well as Section 4.2 and

4.3 with respect to the processing of the data, i.e. cleaning the effect of noise and

trend. Accordingly, this chapter shows the experimental results of the analysis of

the collected learning behavioural log data using our research approaches. The

results are expected to address the research questions outlined Chapter 1. Section

5.2 and 5.3 are expected to provide answers for Sub RQ2 and Sub RQ3 in terms

of the relationship between the groups of students who have similarities in their

learning behaviours and academic performances. Section 5.4 indicates experimental

results on the predictability of the models constructed from the behavioural datasets,

addressing Sub RQ4. In each section, we describe which datasets are going to be

used and which methods are applied in the analysis, followed by the analysis results.

Evaluation of the research methods is also discussed in the sections below.
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Table 5.1: Detail of the datasets for Principal Component Analysis (PCA)

Dataset Number of No. of learning Number of Number of
students material items Higher performing Lower performing

students students
Course#1-2018 112 37 54 58
Course#1-2019 151 37 87 64
Course#1-2020 128 31 69 59
Course#2-2018 62 28 44 18
Course#2-2019 48 29 33 15
Course#2-2020 65 34 52 13

5.2 PCA for Students’ Learning Behaviours using

single event frequency features

5.2.1 Data and method

In this section, we extract the single event frequency features from the event logs

of Course#1 and Course#2 over the three academic years (ie. 2018, 2019 and

2020). This forms six datasets for the Principal Component Analysis, namely

Course#1-2018, Course#1-2019, Course#1-2020 and Course#2-2018, Course#2-

2019 and Course#2-2020. In each dataset, students are classified into two cohorts

based on their exam results, i.e., “Higher-performing” and “Lower-performing”. A

summary of the extracted datasets can be seen in Table 5.1.

For each dataset, we calculate its correlation matrix, eigenvalues and the corre-

sponding eigenvectors, as well as estimating the principal components. Briefly, from

a m x n dataset where m is the number of rows and n is the number of columns,

n eigenvalues can be computed, corresponding to n principal components. Each

eigenvalue/principal component is pair associated with an eigenvector of size n, i.e.,

a vector that contains n elements. From this, the data values, eigenvalues and eigen-

vectors can be used to calculate the scores of the principal components. Details of

the PCA method are described in Section 4.3. The summary of results is discussed

in Section 5.2.2 below.
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(a) Course#1-2018 (b) Course#1-2019 (c) Course#1-2020

Figure 5.1: Distribution of empirical eigenvalues and theoretical eigenvalues pre-
dicted by RMT for the datasets of Course#1

(a) Course#2-2018 (b) Course#2-2019 (c) Course#2-2020

Figure 5.2: Distribution of empirical eigenvalues and theoretical eigenvalues pre-
dicted by RMT for the datasets of Course#2

5.2.2 Selecting the key information part from the dataset

Figures 5.1 and 5.2 illustrate the probability distribution of empirical eigenvalues

based on the six extracted datasets mentioned in Subsection 5.2.1. The figures

also compare the empirical eigenvalues with the theoretical eigenvalues predicted

by RMT for the random matrix that has the same Q-factor ratio, i.e., the Q-factor

ratio between the number of rows and columns, with each dataset (see Sections 2.3.3

and 4.3 for more detail about Random Matrix Theory). In general, for all datasets,

the majority of empirical eigenvalues fall within the range between the largest (λ+)

and smallest eigenvalues (λ−), which are distributed within the black curve in all

figures. For example, in Course#1-2018, 34/37 (91.9%) empirical eigenvalues are

within the range [λ− = 0.18, λ+ = 2.47], as represented in Sub-figure 5.1a. Similar
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(a) Course#1-2018 (b) Course#1-2019 (c) Course#1-2020

Figure 5.3: Inverse Participation Ratio of the empirical eigenvalues for the datasets
of Course#1

results can be found in the remaining subfigures in Figure 5.1 and 5.2c. This is

in agreement with previous studies which have found that a large proportion of

empirical eigenvalues were predicted by RMT [56].

These observations indicate that there is a measure of randomness in the Eigen

spectrum of each dataset. That is to say, the majority of eigenvalues would appear

to merely follow a random pattern. The remaining eigenvalues, which are higher

than the upper limit λ+, are outside the noise area and have the potential to contain

key information about the dataset, i.e., information on the learning behaviours of

the students in the corresponding Course. As a result, these eigenvalues, which are

associated with principal components, can be selected and used for further analysis

as they are expected to reveal insights about the dataset. In particular, based on

Figure 5.1, the first three principal components in each Course#1 dataset can be

selected. On the other hand, in Course#2, only the first principal component can be

selected for both Course#2-2018 and Course#2-2019 datasets, while Course#2-2020

yields three principal components (Figure 5.2c). We refer to all selected principal

components as significant principal components.

In addition, we can measure the contribution of each data column to the prin-

cipal components by using the Inverse Participation Ratio, which is described in

Section 4.3. Figures 5.3 and 5.4 show the IPR values for the eigenvalues of the cor-

relation matrix of each dataset. In each sub-figure, the x-axis refers to the empirical

eigenvalues for the corresponding dataset, and the y-axis refers to the IPR values.

Based on the IPR values, it is possible to calculate the value 1/IPR for each
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(a) Course#2-2018 (b) Course#2-2019 (c) Course#2-2020

Figure 5.4: Inverse Participation Ratio of the empirical eigenvalues for the datasets
of Course#2

eigenvalue. The higher the value of 1/IPR is, the greater the number of eigenvector

elements contribute to explaining the variance of the associating principal compo-

nent. Hence, both Figures 5.3 and 5.4 indicate a pattern where the first few principal

components, i.e., the PCs with eigenvalues are greater than λ+, in each dataset are

explained by the majority of the data columns. For example, in Sub-Figure 5.3a,

the number of eigenvector elements that significantly contribute to the 1st, 2nd

and 3rd components are 30, 23 and 23 out of 37, respectively. We note that each

eigenvector element refers to a course learning item (e.g., Labsheet 1, Lecture 2,

Practice 3 etc.), indicating how much the learning item contributes to the Principal

Component. With the high number of learning items contributing to the principal

components, this finding implies that the students appear to access and use most of

the course material items delivered during the courses.

5.2.3 Student’s Learning Behaviour before the COVID19

pandemic

Firstly, we focus on the loadings of the selected principal components, (i.e., eigenvec-

tor elements of the dominant eigenvalues), of the datasets for Course#1 that were

delivered before the COVID19 pandemic (2018 and 2019). The result is represented

in Figure 5.5.

With respect to the first principal component (PC1), all component loading

values are positive in both datasets (Figure 5.5a-PC1 and 5.5b-PC2). Such a positive
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value of a component indicates that the component is positively correlated with

the corresponding principal component scores. It is possible to say that students

generally used almost all learning material items provided throughout the study.

Furthermore, when we take into account the scores of PC1, there is no statistical

difference between the PC1 scores for the higher and lower-performing cohorts (t-

test p-value = 0.3 for Course#1-2018 and 0.46 for Course#2-2019, which are both

more than 0.05). The statistical testing illustrates the similarity in the learning

behaviours of students in the class. This indicates that almost all students have

similar behaviours with the course material items during most of the semester. They

participated in learning activities and followed the instructions and requirements

given by the lecturers. Hence, we would argue that the first principal component

in both datasets for Course#1-2018 and 2019 may indicate the trend effect on the

students’ learning behaviours in both courses. We, therefore, label PC1 as the

“trend dimension”. This finding reflects the fact that students were participating in

a structured module, i.e., they mostly followed a designated timetable and a similar

learning pathway in the classes.

On the other hand, the loadings of PC2 in both years of Course#1 indicate the

difference between the students’ learning behaviours in different types of learning

material items. Particularly, from PC2 in both years of Course#1, the loadings for

Lecture items show positive values while the sign of the values for practice-related

items (i.e., Practice and Labsheet) are negative. In other words, there is a contrast

between learning item types, i.e., lecturing and practice-related learning items in

terms of students’ interactions. This observation indicates that different students

might interact differently with the learning item types. Students who focus more

on solving programming exercises seem to have fewer activities on reading lecture

notes and vice-versa. For this reason, we label PC2 as the “learning material item

dimension”.

In addition, PC3 in both years of Course#1 shows evidence of the difference in

the students’ interactions with learning material items at different times during the

semester. Particularly, the sign of the values for learning material items that were
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(a) Course#1-2018

(b) Course#1-2019

Figure 5.5: The loadings (eigenvector components) of the PC1, PC2 and PC3 ex-
tracted from the Course#1 datasets for the year of 2018 and 2019 (before COVID19).
The blues refer to positive values and the oranges refer to negative values

76



Educational behaviours as a complex system

delivered at the beginning of the semester tend to be different from that for the

items delivered at the end of the semester. This result may refer to the fact that

students could be more or less focused on using learning material items in the first

few weeks in comparison with the rest of the semester. Due to the difference, we

label the PC3 as “time dimension”.

In contrast to PC1 which merely shows the “trend effect” or the similarity in

students’ learning behaviours, PC2 and PC3 also appear to illustrate the dissimi-

larity between the behaviours of the two cohorts (higher and lower performing) of

the students. In order to detect the dissimilarity, we analyse the combination be-

tween principal components’ loadings and scores by creating biplots, a visualisation

technique displaying information on both samples and variables in the data matrix

[78]. The biplots represent the second and third principal components (PC2 and

PC3) loadings and scores of both years (2018 and 2019) of Course#1 and can be

seen in Figures 5.6. Each green or red dot refers to the PC scores of a student in

the dataset. The green dots represent lower performing students while the red dots

represent higher performing students. Additionally, the blue lines demonstrate the

loadings of the PC2 and PC3, where each loading line implies how much the corre-

sponding learning item contributes to the PC2 and PC3 scores. If a dot is located

on the same side with a loading line along a principal component in the graphs,

(i.e., the sign of the score and loading values are the same), it implies that there is a

positive correlation between the corresponding student’s data and feature (learning

material item), and vice versa if a dot is located on an opposite to a loading line.

Both subfigures in Figures 5.6 show a common pattern in both PC2 and PC3.

Regarding PC2, it can be seen that the data for most students in the lower per-

forming cohort (green dots) are located on the same side as the loadings of the

Lecture items, which indicates a positive correlation. Meanwhile, the majority of

students in the higher performing cohort (red dots) show a positive correlation with

practice-related items. That is to say, in both years of Course#1, higher perform-

ing students show a correspondingly high interest in doing programming exercises,

which is expected. Higher performing students are able to adopt the new concepts
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(a) Course#1-2018

(b) Course#1-2019

Figure 5.6: The biplot of the PC2 and PC3 extracted from the Course#1 datasets
for the year of 2018 and 2019 (before COVID19).
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in the lecture notes faster which allows them to focus on practice rather than to

constantly revise lecture notes. Good students could also try to solve a problem

in various ways, which increases their interactions with practice-related items. In

contrast, lower performing students were likely to stick to reading lecturing docu-

ments. One reason for this could be that it was more difficult for these students to

understand the theory delivered in the lecture, which led to the students go back

to revise the lecture notes. This can be demotivating for students when they are

trying to solve given programming exercises and labsheets.

Regarding Course#2 datasets, only the first principal component is significant

and selected in both years (Course#2-2018 and 2019). All loadings of these compo-

nents have positive values, which is similar to the result for Course#1. Therefore,

it is possible to say that the “trend effect” is also represented in Course#2. How-

ever, there is not enough evidence to detect any difference in students’ learning

behaviours due to the insignificance of the other principal components (e.g. PC2

and PC3). As a result, we conclude that the students show similar study patterns

when interacting with learning material items during the semester in Course#2 be-

fore the COVID19 pandemic. The dataset could be influenced by the fact that

Course#2-2018 and 2019 were given to business informatics students who may have

less motivation for programming. The content and exams of Course#2 were also

less challenging comparing to Course#1 which is designed for Software Engineering

students with a higher level of difficulty expectation. Therefore, it would be easier

for Course#2 students to achieve desirable grades regardless of the level of their

programming skills and learning, leading to no difference in the learning behaviours

of the student cohorts.

5.2.4 Student’s Learning Behaviour during the COVID19

pandemic

During the COVID19 pandemic, students have experienced all their learning ac-

tivities in an online setting. All lectures and interactions between students and
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lecturers were conducted through an online meeting software and learning manage-

ment systems and there was no any physical learning setting possible. With respect

to the PCA analysis for the learning behavioural data collected during the COVID19

pandemic (i.e., Course#1-2020 and Course#2-2020), we also consider loadings and

scores of the principal components for student cohorts. In Course#1-2020, the first

three principal components were found to be significant based on RMT (see Section

5.2.2 and Figure 5.1c), which is similar to the data for 2018 and 2019. Regarding

Course#2, unlike the pre-COVID19 data, Course#2-2020 also shows three signifi-

cant principal components (see Figure 5.2c).

The loadings of selected principal components (i.e., PC1, PC2 and PC3) for

Course#1 and Course#2 data are illustrated in Figure 5.7. The “trend effect” in the

students’ learning behaviours is also represented in the PC1 as all the loadings of the

PC1 of both Course#1 and 2 in 2020 have positive values. This result indicates that

all learning material items positively correlate with PC1. Hence, students during

the COVID19 pandemic also tend to interact similarly with all given learning items

during the semester.

Regarding PC2, in both Course#1-2020 and Course#2-2020, most of the load-

ings for Practice items have the opposite sign to the loadings for Lecture and Lab-

sheet items. PC2 still reflects the “learning material item dimension”, which is

similar to the data before the pandemic. However, there is a slight difference in

value sign of the PC2 loadings’ between the data during and before the pandemic.

In particular, in Course#1-2018 and Course#1-2019, the loadings of Practice and

Labsheet are generally located on the same side (see Figure 5.5). However, most

of the loadings of Practice items have opposite value signs with the Labsheet and

Lecture items in the 2020 data. In other words, students appeared to have similar

behaviours in using Lecture and Labsheet items during the lockdown while before

the COVID19, the similarity between Labsheet and Practice has been shown. Possi-

bly, when students had to study in a completely online setting, the chance for them

to communicate with the instructors and other students while doing programming

exercises is limited, so they mostly relied on reading lecture notes. On the other
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(a) Course#1-2020

(b) Course#2-2020

Figure 5.7: The loadings (eigenvector components) of the PC1, PC2 and PC3 ex-
tracted from the Course#1 and Course#2 datasets for the year of 2020 (during
COVID19). The blues refer to positive values and the oranges refer to negative
values 81
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hand, the PC3 of Course#1-2020 and Course#2-2020 show a similar pattern to the

PC3 of the pre-COVID19 data, reflecting the “time dimension” of the students’

learning behaviours. There could be a deviation in students’ interaction with the

learning items at the beginning and end of the semester. In order to have more

insights into the learning behaviours between student cohorts (i.e., higher and lower

performing), we consider the role of the PC scores through biplots.

Figure 5.8 contains biplots of the PC2 and PC3 of Course#1-2020 (Figure 5.8a)

and Course#2-2020 (Figure 5.8b), showing the combination between the scores and

loadings of the principal components. In Course#1-2020 (Figure 5.8a), we can ob-

serve that most red dots are located on the left side of the graph, i.e., the same

side with Practice items. Nevertheless, most green dots are plotted on the right

side of the graph along with Lecture and Labsheet learning items. This observa-

tion shows evidence for the pattern that while higher performing students tend to

focus more on working with given exercises, while lower performing students are

likely to put more effort into reading lecture notes. Additionally, we notice that,

when studying in the lockdown, a large number of lower performing students are

observed to be more active in working with Labsheet items, which is not seen in the

courses before the lockdown (see Section 5.2.3 and Figure 5.6). This behaviour may

not be expected as typically students need to read instructions and requirements

in labsheets before solving programming questions, which makes Practice and Lab-

sheet items likely to go along with each other (as can be seen in the pattern for the

pre-COVID19 datasets). In this context, it is possible that these lower performing

students actually tried to do programming exercises at first, as they opened and

navigated through labsheet items. However, these students might quit practising

when facing challenging problems and not readily having someone to ask or commu-

nicate with during the lockdown. Some other students also might face other issues

such as mental health or losing learning motivation to complete the tasks. This

phenomenon appears to be more obvious in Course#2-2020 where almost all green

dots, i.e., lower performing students, are located on the left side of the Figure 5.8b

along with Labsheet and Lecture items.
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(a) Course#1-2020

(b) Course#2-2020

Figure 5.8: The biplot of the PC2 and PC3 extracted from the datasets for Course#1
and Course#2 in year of 2020 (during the COVID19).
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5.3 Community Detection for Students’ Learn-

ing Behaviours using transition frequency fea-

tures

In Section 5.2 above, we have conducted a PCA analysis with the support of RMT,

and the patterns of learning behaviours of students in Course#1 and Course#2

have been revealed. However, the PCA above may contain limitations. The analysis

focuses only on the top principal components and ignores the remaining components

despite the fact that these components may still contain some information. In

addition, the PCA analysis uses grade-based cohorts of students when in fact, many

students with contradictory learning outcomes still show similar behaviours. Hence,

we expect to find representative communities, i.e., groups of students, for higher

and lower performing students. To this end, we follow the Community Detection

approach (See Section 4.5). Furthermore, we also consider the sequential aspect of

students’ learning behaviours, i.e. the sequential order in the use of the learning

items by using the transition frequency features (see Section 4.2.2). The details of

the analysis are discussed below:

5.3.1 Data extraction and method

In this section, the transition frequency features from the event logs of Course#1

and Course#2 over the three academic years (ie. 2018, 2019 and 2020) have been ex-

tracted. The concept of transition refers to the phenomenon that a student switches

from an action on a learning material item to the next action on the same or other

learning material item when interacting with the learning system. For example,

when the student s1 scrolls down the page Lecture 1, then clicks on the link to

open the page Labsheet 1, the following transitions can be recorded, i.e., Lecture 1-

Lecture 1 and Lecture 1-Labsheet 1. Further detail of the transition frequency fea-

tures can be found in Section 4.2.2.

Six datasets are extracted from the event logs, namely Course#1-2018, Course#1-
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Table 5.2: Detail of the datasets for Community Detection Analysis

Dataset Number of Number of Number of Number of
students transitions Higher performing Lower performing

students students
(columns) (rows)

Course#1-2018 112 825 54 58
Course#1-2019 151 878 87 64
Course#1-2020 128 602 69 59
Course#2-2018 62 406 44 18
Course#2-2019 48 423 33 15
Course#2-2020 65 501 52 13

2019, Course#1-2020 and Course#2-2018, Course#2-2019 and Course#2-2020. Please

note that these six datasets are extracted based on the transition frequency features

and different to the datasets used in Section 5.2. A summary of the extracted

datasets can be seen in Table 5.2.

For each dataset, we calculate its correlation matrix. Next, in order to remove the

effect of noise and trend in the data, we make use of the method outlined in Section

4.4.1, i.e., cleaning the correlation matrix. Then, the cleaned correlation matrix

is used to calculate a distance matrix of students’ learning behaviours. A graph

is constructed from the distance matrix using the Minimum Spanning Tree (MST)

algorithm (see Section 4.5.3), which reflects the connection between a student and

other students in terms of the similarity between their learning behaviours. In other

words, for the dataset for each course, we construct a graph as an MST to display the

similarity and dissimilarity of the students’ learning behaviours. In the next step,

community detection algorithms (i.e. the Girvan-Newman and Louvain algorithms)

have been applied to the constructed graph, detecting communities of students who

have the most similar learning behaviours. Students in each module can be divided

into a smaller number of communities based on the distance between their learning

behaviours and other learners’ behaviours. For evaluation purposes, we also compare

the ability to detect better communities between the cleaned and original datasets.

Finally, we investigate the relationship between the detected communities and their

learning outcomes.
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Table 5.3: Community detection summary for Course#1. Groups are order in de-
scending order based on the average grades of their members.

Group Course#1-2018 Course#1-2019 Course#1-2020
Number of Average Number of Average Number of Average
students grade students grade students grade

Group 1 18 0.79 12 0.89 19 0.71
Group 2 11 0.52 16 0.64 18 0.59
Group 3 15 0.5 21 0.61 19 0.56
Group 4 17 0.42 25 0.57 15 0.43
Group 5 11 0.25 17 0.32 19 0.42
Group 6 13 0.21 14 0.32 11 0.38
Group 7 13 0.17 20 0.31 15 0.36
Group 8 14 0.05 26 0.25 12 0.08

5.3.2 Selecting community structure

We note that the number of communities to be detected by the Girvan-Newman

algorithm can be configurable depending on analysis purposes, forming a community

structure. In this research, we use the concept of mixed community rates, i.e. a good

community structure should contain fewer mixed community rate and higher number

of higher or lower performing communities. Details of the mixed community rates

are described in Section 4.5.4.

Figure 5.9 and Figure 5.10 show the investigation of mixed community rate for

each possible community structure detected by the algorithm in Course#1 and

Course#2 over the three academic years. Indeed, the number of detected com-

munities can go up to the total number of students in the whole graph. However,

we do not want a fragmented community structure where each community contains

only a few students. Hence, we merely show a part of the possible community

structures in both figures.

Both Figures 5.9 and 5.10 show that the cleaned dataset has a better support for

community detection in comparison with the original dataset with the lower mixed

community rates. Overall, the mixed community rate in the community structures

detected using the cleaned datasets is lower than the figures for the original datasets

for Course#1. We also observed a similar phenomenon for the Course#2 datasets,
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Table 5.4: Community detection summary for Course#2.

Group Course#2-2018 Course#2-2019 Course#2-2020
Number of Average Number of Average Number of Average
students grade students grade students grade

Group 1 05 0.75 05 0.95 08 0.84
Group 2 05 0.60 07 0.92 09 0.80
Group 3 05 0.60 05 0.80 10 0.77
Group 4 09 0.58 06 0.79 08 0.71
Group 5 09 0.44 06 0.66 08 0.65
Group 6 04 0.43 05 0.65 08 0.59
Group 7 04 0.43 05 0.60 08 0.59
Group 8 08 0.43 09 0.55 06 0.50
Group 9 07 0.39 NA NA NA NA
Group 10 05 0.33 NA NA NA NA

although the gap seems to be not as clear as Course#1. This may be due to the fact

that Course#2 is generally less challenging in terms of the amount of knowledge

and the level of difficulty in exercises. Hence, the difference in learning behaviours

among students can be blurred.

In addition, based on these figures, it is possible to determine the size of the

community structures. In particular, we can choose an option among the low points

of the mixed community rate line to determine how many communities are to be

detected, subject to analysis purposes. The detected results can be seen in Table 5.3

for Course#1 and Table 5.4 for Course#2. In Table 5.3, for each year, eight groups

have been detected with the number of students in each group and the average grades

of all students in the group for the final lab exam in week 12. Similarly, Table 5.4

displays ten detected groups for Course#2-2018 and eight groups for Course#2-

2019 and Course#2-2020. All groups are ordered from the highest to the lowest

average grades in the tables. We notice from the detected communities that some

groups mostly include higher performing students (based on their grades), while

other groups also mostly contain lower performing students. Further visualisation

of the detected results can be seen as MST graphs in Appendix A and dendrograms

in Appendix B. Given those students in a detected group/community have simi-

lar learning behaviours, we conclude that there is a relationship between students’
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(a) Course#1-2018

(b) Course#1-2019

(c) Course#1-2020

Figure 5.9: Mixed community rates in community structures for Course#1 over
three academic years.
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(a) Course#2-2018

(b) Course#2-2019

(c) Course#2-2020

Figure 5.10: Mixed community rates in community structures for Course#2 over
three academic years.
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learning behaviours and learning outcomes. Once the communities are detected, we

can focus more on representative communities to figure out the study pattern of

students. For example, we can pick up the two communities with the highest and

lowest average grades to see if the students’ learning behaviours in those groups are

different. The analysis results of this is described in the next subsection.

5.3.3 Difference between the highest vs lowest performing

communities

The higher and lower performing communities in Tables 5.3 and 5.4 can be selected

for further investigation of the difference in interactions with course material items

among the student cohorts. For example, we combined the top four groups in Table

5.3 (i.e., Group 1,2,3,4 with higher average grades) to form a higher performing de-

tected community in Course#1 and the bottom four groups (i.e, Group 5,6,7,8 with

lower average grades) to form a lower performing detected community. The similar

action has been done for Course#2. These detected communities have been used in

the comparison with the grade-based cohorts in terms of detecting the difference of

learning behaviours between higher and lower performing student cohorts.

The comparative results between the higher and lower performing student co-

horts of Course#1 are presented in Figure 5.11 while Figure 5.12 shows the results

for Course#2. Particularly, each figure contains a set of subfigures that represent the

number of interactions on different types of learning material items between higher

and lower performing student cohorts. Please note that the subfigures on the left

side represent the result for grade-based cohorts in which students are classified into

higher/lower performing cohorts based on their grades. These figures are, therefore,

similar to the figures discussed in Chapter 3 - Section 3.3 which gives an exploratory

analysis of the collected data. On the other hand, the subfigures on the right side

of Figures 5.11 and 5.12 illustrate the data for the communities with the higher and

lower performing detected communities for Course#1 and Course#2.

In general, we notice that the detected communities appear to show a more
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distinct difference between the higher/lower performing students than the figures

for grade-based cohorts. For example, in Figure 5.11a - using grade-based cohorts

- while the higher performing students tend to have a higher number of learning

events on Practice items than lower performing students, the two boxplots seem to

“overlap” with the T-test p-value = 0.22 > 0.05. This indicates that much lower

performing students still have a number of practice activities that are comparable

with higher performing students. This phenomenon may refer to the effect of the

noise and trend in the datasets. Nevertheless, the study pattern appears to be

more clear in Figure 5.11b. Higher performing communities have a significantly

higher number of practice events than lower performing communities (T-test p-

value = 0.0019 < 0.05). This observation is consistent with the PCA analysis result

reported in Section 5.2, which claims that higher performing students are likely to

be more active in doing programming exercises. A similar pattern is also noticeable

to the use of Labsheet items. The results in Figures 5.11d and 5.11f also show a

similar finding.

Regarding Lecture items, in Course#1, the result for the pre-COVID19 datasets

shows that lower performing students tend to be far more active in reading lecture

notes than higher performing students. Nevertheless, during the COVID19 pan-

demic, there is no difference between the two communities in using Lecture items.

This observation is also consistent with the finding in PCA analysis, that when

studying from home under lockdown, students might have limited opportunities to

interact with the instructors and other classmates. Hence, they tend to merely rely

on the given online learning materials. A similar phenomenon has been also seen

in Course#2 where higher and lower performing communities show the same level

of interaction with Lecture items during the COVID19 pandemic. However, even

before the lockdown, Cohort#2 students also appear to show not much difference

in using Lecture items, which was not witnessed in Course#1. This could be due to

the fact that Business Informatics students in Course#2 might not have solid pre-

requisite and pre-knowledge for studying programming in comparison with Software

Engineering students in Course#1. Hence, Course#2 students might need to rely
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(a) Course#1-2018 - grade-based cohort (b) Course#1-2018 - detected community

(c) Course#1-2019 - grade-based cohort (d) Course#1-2019 - detected community

(e) Course#1-2020 - grade-based cohort (f) Course#1-2020 - detected community

Figure 5.11: Learning behaviours of detected communities vs grade-based cohorts
for Course#1 over three academic years.
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(a) Course#2-2018 - grade-based cohort (b) Course#2-2018 - detected community

(c) Course#2-2019 - grade-based cohort (d) Course#2-2019 - detected community

(e) Course#2-2020 - grade-based cohort (f) Course#2-2020 - detected community

Figure 5.12: Learning behaviours of detected communities vs grade-based cohorts
for Course#2 over three academic years.
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more on lecture notes.

On the other hand, in all cases, there is no difference in using General items,

i.e., the documents that contain general information about the courses such as the

timetable, marking scheme etc., between student cohorts over the years. This is

understandable as almost all students may need to visit those documents a few

times during the study period, and thus the behaviours on those learning items

generally could not explain the learning performance of students.

We can go further with the analysis between the two communities by having

a close look at the students’ interaction for each learning item each week. For

example, Table 5.5 demonstrates the difference in the number of learning activities in

using learning material items in Course#1-2018 and Course#1-2019 between the two

communities, i.e., higher and lower performing, while the results for the Course#2-

2018 and Course#2-2019 can be seen in Table 5.6. For each item, non-parametric

statistical tests (i.e. Mann-Whitney U Test [117]) have been used to verify if there

is a significant difference between the highest and lowest performing communities in

terms of using the item during the courses. The course material items in which the

highest and the lowest performing communities have a significant difference in the

number of events (p-value < 0.05) are highlighted.

Table 5.5: Highest vs Lowest performing communities in Course#1 for 2018 and
2019. The cell values refer to the average number of interactions with learning items
in a community. The asterisks indicate the learning items where there is a significant
difference between the two communities (p− value < 0.05). In particular, * if there
is only a significant difference in Course#1-2018 only, ** if there is only a significant
difference in Course#1-2019 only and *** if there are significant differences in both
academic years.

Items Course#1-2018 Course#1-2019

Highest Lowest Highest Lowest

performing performing performing performing

community community community community

General 160.0 159.0 403.0 355.0

Continued on next page
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Items Course#1-2018 Course#1-2019

Highest Lowest Highest Lowest

performing performing performing performing

community community community community

Lecture1** 43.0 56.0 57.0 70.0

Lecture2* 53.0 129.0 121.0 110.0

Lecture3* 15.0 157.0 129.0 112.0

Lecture4* 33.0 72.0 50.0 47.0

Lecture5*** 53.0 98.0 76.0 79.0

Lecture6*** 36.0 122.0 148.0 150.0

Lecture7*** 31.0 87.0 82.0 104.0

Lecture8** 32.0 38.0 48.0 59.0

Lecture9** 128.0 167.0 140.0 134.0

Lecture10* 91.0 102.0 91.0 76.0

Lecture11*** 15.0 42.0 81.0 138.0

Lecture12** 25.0 2.0 61.0 106.0

Labsheet1*** 167.0 245.0 164.0 66.0

Labsheet2** 283.0 352.0 440.0 235.0

Labsheet3*** 199.0 263.0 313.0 116.0

Labsheet4 95.0 100.0 206.0 121.0

Labsheet5** 325.0 223.0 442.0 208.0

Labsheet6 244.0 213.0 410.0 225.0

Labsheet7*** 245.0 139.0 384.0 194.0

Labsheet8 85.0 85.0 162.0 107.0

Labsheet9** 204.0 132.0 451.0 194.0

Labsheet10** 256.0 140.0 345.0 137.0

Labsheet11*** 163.0 100.0 159.0 104.0

Labsheet12* 80.0 27.0 120.0 133.0

Continued on next page
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Items Course#1-2018 Course#1-2019

Highest Lowest Highest Lowest

performing performing performing performing

community community community community

Practice1 286.0 379.0 223.0 52.0

Practice2*** 427.0 613.0 417.0 190.0

Practice3 266.0 348.0 355.0 168.0

Practice4* 173.0 308.0 387.0 222.0

Practice5** 254.0 185.0 382.0 217.0

Practice6*** 277.0 185.0 346.0 206.0

Practice7*** 246.0 88.0 490.0 390.0

Practice8** 251.0 263.0 607.0 232.0

Practice9*** 360.0 138.0 493.0 215.0

Practice10*** 291.0 89.0 492.0 315.0

Practice11*** 328.0 102.0 502.0 426.0

Practice12*** 234.0 163.0 639.0 367.0

Table 5.6: Highest vs Lowest performing communities in Course#2. The cell values
refer to the average number of interactions with learning items in a community.
Statistical tests were not conducted for this result because there are merely a small
number of students in the two communities(i.e. 5 and 6 students).

Items Course#2-2018 Course#2-2019

Highest Lowest Highest Lowest

performing performing performing performing

community community community community

General 211.0 231.0 93.0 107.0

Lecture1 37.0 100.0 93.0 19.0

Lecture3 54.0 86.0 32.0 30.0

Lecture5 42.0 43.0 29.0 31.0

Continued on next page
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Items Course#2-2018 Course#2-2019

Highest Lowest Highest Lowest

performing performing performing performing

community community community community

Lecture9 65.0 19.0 59.0 5.0

Labsheet1 168.0 128.0 269.0 163.0

Labsheet2 127.0 56.0 228.0 98.0

Labsheet3 183.0 68.0 256.0 104.0

Labsheet4 203.0 68.0 315.0 123.0

Labsheet5 169.0 60.0 227.0 60.0

Labsheet7 247.0 144.0 151.0 59.0

Labsheet8 196.0 63.0 104.0 8.0

Labsheet9 29.0 9.0 203.0 18.0

Labsheet10 91.0 15.0 145.0 29.0

Labsheet11 40.0 4.0 96.0 12.0

Practice1 54.0 20.0 112.0 60.0

Practice2 115.0 52.0 335.0 35.0

Practice3 180.0 22.0 452.0 43.0

Practice4 171.0 24.0 400.0 57.0

Practice5 129.0 138.0 453.0 281.0

Practice6 109.0 66.0 161.0 31.0

Practice7 675.0 94.0 500.0 1.0

Practice8 247.0 26.0 382.0 20.0

Practice9 67.0 22.0 345.0 4.0

Practice10 81.0 0.0 427.0 0.0

Practice11 84.0 65.0 274.0 440.0

In addition, as seen both in both Tables 5.5 and 5.6, students in the highest

performing community appeared to be more active than the lowest-performing com-

munity, with a higher average number of learning events in all Practice and Labsheet
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items. These gaps are likely to increase over time during the semester of the both

courses in 2018 and 2019. For example, in Course#1-2018, the average number

of events in Practice 11 (i.e. practice items in week 11) of the highest performing

community is 328, which is about three times higher than the result for the lowest

performing community (102). A similar phenomenon can be observed in the data

of other cohorts. Nevertheless, students in the lowest performing community are

recorded to create a higher number of events in Lecture items for both classes of

Course#1 and Course#2-2018. For example, the number of events in lecture notes

in weeks 2-7 created by the lowest performing community is about two to three

times higher than the figures for the highest performing community in Course#1.

5.3.4 Girvan Newman vs Louvain methods

We compare the Girvan Newman community detection results selected above (Table

5.3 and 5.4) and the corresponding results produced by the Louvain method in the

six datasets of the two courses (Course#1 and #2) over the three academic years.

Table 5.8 illustrates an investigation of the possible difference between the Louvain

and Girvan Newman method when both algorithms are applied to the cleaned data

and original data for the four datasets, using v-measure (see Section 4.5.4). Overall,

the results from the Louvain and Girvan Newman method appear to be broadly

similar. There are strong agreements between the community detection results of

both algorithms with v-measure scores being greater than or equal to 0.82 in all

cases with either cleaned or original data. It can also be seen that the v-measure

scores for the cleaned data tend to be higher than those of the original data. It is

possible that the proposed cleaning method could support the reduction of variation

between the two algorithms when they are applied to the same dataset. However,

we note that this finding needs to be verified with more datasets.

Additionally, the results in Table 5.7 indicate the values for mixed community

rates of the community structure detected by the Louvain method. The rates for the

cleaned data are likely to be lower than those for the original data. This is consistent
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Table 5.7: Comparison of mixed community rate of community structure produced
by Louvain method between Cleaned and Original data. The cell values refer to
the mixed community rate of the community structure for each orginal and cleaned
dataset.

Dataset Cleaned data Original data
Course#1-2018 0.25 0.55
Course#1-2019 0.33 0.42
Course#1-2020 0.4 0.6
Course#2-2018 0.25 0.5
Course#2-2019 0.12 0.43
Course#2-2020 0.0 0.28

Table 5.8: v-measure score of the clustering results detected by the Louvain and
Girvan-Newman algorithms for Cleaned and Original data.

Dataset Cleaned data Original data
Course#1-2018 0.86 0.86
Course#1-2019 0.84 0.82
Course#1-2020 0.85 0.84
Course#2-2018 0.84 0.82
Course#2-2019 0.87 0.89
Course#2-2020 0.82 0.82

with the application of the Girvan-Newman method, i.e. the cleaned data can also

support the Louvain method to deliver better community detection results with the

lower number of mixed communities.

5.4 Learning behaviours and outcome prediction

In this section, we conducted experiments to verify the ability to predict students’

learning outcomes using learning behavioural features. This could bring an oppor-

tunity to build a classifier to identify “at-risk” students, for this classifier we only

need data automatically collected from the learning management system during the

study period rather than historical data.
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5.4.1 Data and method

To evaluate the predictability of the students’ interaction with course material items

for learning outcomes, we use the student-event item data matrix as the input vari-

able. In particular, we combine the student-event item data matrix of the datasets

for Course#1-2018 and Course#1-2019 into a single tabular dataset. The reason for

this selection and combination is that Course#1 in the 2018 and 2019 had similar

setting in terms of the instructor, lecture material items and timetable. Meanwhile,

the Course#1-2020 was delivered in 10 weeks instead of 12 weeks. Therefore, the

weekly lectures had to be changed accordingly. In addition, the dataset for Course#1

in both years of 2018 and 2019 contain greater sample size with 263 students in total,

which is far greater than Course#2 with 110 students (see Table 5.1).

Next, we conduct the Cleaning the Dataset method, forming fully cleaned data

and partly cleaned data. In particular, for fully cleaned data, the values of α and β

are all set to 1, i.e., the components for noise and trend are completely removed.

On the other hand, for the construction of partly cleaned data, we set α = 0.5 and

β = 0.8 with the assumption that the noise and trend components still contain

some useful information for the building of the prediction models. The detail about

cleaning the Dataset method has been described in Section 4.4.2.

For comparison purposes, we also use the original and PCA-transformed datasets

as predictors. In the original dataset, no pre-processing actions have been conducted.

With respect to PCA-transformed datasets, we select a number of principal com-

ponents such that they can explain a relatively large proportion of variance in the

datasets, i.e. 70% and 80%, labelled as PCA at 70% variance and PCA at 80%

variance, respectively.

The target variable is defined based on the student’s scores on each formative

assessment. There are three formative assessments for Course#1 on Week 4, 8 and

12. As stated above, we classify students who achieved more than 40% in a lab exam

as higher-performing students and the remaining as lower-performing students.

For each week, a student-event data matrix has been extracted from the corre-
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sponding weekly event log. The data collected in a certain week contain recorded

learning events from the beginning of the course to that week. Then, the weekly

data was used to predict the student results for the next assessment. For example,

in Course#1, the data collected in weeks 1, 2, 3, 4 are used to predict the results of

the lab exam 1; the data in weeks 5, 6, 7 and 8 are used for predicting lab exam 2

results and the remaining weekly data are used to forecast the last exam result.

Each dataset serves as input data for all algorithms with the same parameter

configuration in each technique. In addition, since the main target of this experi-

ment is to evaluate the performance of classification algorithms on the pre-processed

datasets, the 10-fold cross-validation technique has been applied [84]. We also use

ROC AUC, Accuracy, and F1 scores, to evaluate the prediction performance of each

model.

5.4.2 Comparison of Dataset pre-processing strategies

Figures 5.14, 5.15 and 5.13 demonstrate the ROC AUC, Accuracy, and F1 scores

from different models and input datasets, respectively. It can be seen that the

three figures illustrate a similar pattern in the difference of the evaluation metrics

among the models. Overall, fully and partly cleaned datasets appear to have better-

predicting performances in comparison with other data preparation strategies. In

particular, regarding the partly cleaned dataset, the Gradient Boosting outperforms

other models in all three metrics (i.e. Accuracy: 0.79, F1 score: 0.75 and ROC AUC:

0.81), along with XGBoost. In terms of the fully cleaned dataset, the models have

shown that they have been well-performing in Gradient Boosting, KNN, Logistic

Regression and SVM algorithms with relatively high scores in all the three metrics.

Conversely, models using the original and PCA datasets appear to have lower

performances across all predicting algorithms with the scores roughly around 0.60

and 0.70. Meanwhile, although the PCA dataset at 80% variance has the lowest

performance in Gradient Boosting and KNN, the dataset has shown its predictability

with the Logistic Regression algorithm with the highest accuracy and f1 scores. It
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Figure 5.13: Comparison of the ROC AUC scores of predicting models using differ-
ent data pre-processing strategies.

Figure 5.14: Comparison of the accuracy scores of predicting models using different
data pre-processing strategies.
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Figure 5.15: Comparison of the f1 scores of predicting models using different data
pre-processing strategies.

is possible that when only top principal components were kept in the dataset, the

noise part has been eliminated.

5.4.3 Early prediction investigation

Figure 5.16 illustrates the mean of the cross-validation on ROC AUC score of the

models using fully cleaned dataset over 12 weeks during the course while Figure 5.17

shows the results for the partly cleaned dataset. In general, most of the models can

produce good predictions for the datasets after week 4. The ability of the models

produced to classify students in the first four weeks is relatively poor, which is to be

expected, probably due to the imbalance of the number of passed and failed students

in lab exam 1. In fact, lab exam 1 usually comprises the easiest tasks which merely

require the understanding of simple concepts in programming, e.g. using variables,

operators and inputs. As a result, the majority of students usually pass the first

exam. However, the difficulty level increases over lab exams 2 and 3, causing the

target variable to become more balanced. Hence, the models can better predict the

pass or failure of a student in lab exams 2 and 3.

Although the performance of the models increases over time with the growth of
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Figure 5.16: The 10-fold cross validation on ROC AUC score of the models with
fully cleaned data.

Figure 5.17: The 10-fold cross validation on ROC AUC score of the models with
partly cleaned data.
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the data collected, early data can support relatively good prediction. For example,

in Figure 5.16 the XGBoost model for week 5 data, which predicts the students’

results of lab exam 2, achieves the ROC AUC score of 0.78. The SVM model in

week 9, which predicts the final exam in week 12, also achieves the acceptable

result with a score of 0.80. While it is difficult to compare the two any more than

qualitatively, we can say that our models seem to produce comparable if not better

performance performance than a recent prediction model in a similar computing

educational context [64] where the author achieved the ROC AUC score of 0.73

with the SVM model for the prediction of the student learning outcome in the Data

Structure course. Therefore, early learning behavioural data may contain signs of

students’ learning outcomes [116] and can be good predictors, holding the potential

to be a “leading indicator” of “at-risk” students.

5.5 Conclusion

Until this point, it has been shown that the experimental results are able to answer

all proposed research questions. The students’ learning behaviours can be captured

in the form of event log data and the behavioural features can be extracted to

serve further analysis. In addition, it is possible to argue that there is a connection

between the learning outcomes of students and their learning behaviours. Differences

between the behaviours of higher and lower performing student cohorts have been

observed. Of equal importance, the behavioural data acquired from the system can

be used as a leading indicator in the prediction of students’ success and failure in

programming study.

Chapter 6 will give a further discussion about the impact of the results of this

thesis on the wider context of the programming education and learning analytics

methods.
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Chapter 6

Discussion and Conclusions

6.1 Introduction

It is always important to emphasise the impact of research results in either an aca-

demic or a practical context. We would hope that this research can contribute to

the improvement of the pedagogical value of programming education in higher edu-

cation institutions. At the same time, our novel approaches in using a real students’

learning behaviours are expected to pave the way for more insightful research being

implemented in the future. These impacts are discussed in this chapter, along with

the limitations of our research within the scope of this thesis.

6.2 Implications: Revisiting research questions

In this thesis, we have shown that students’ learning behaviours can be captured

and stored as learning event logs on a learning management system. The learning

behaviour features can be extracted in the form of a student-event data matrix and a

transition-student data matrix. We also propose a novel method to process the data,

i.e., to remove the effects of noise and trend in the students’ learning behavioural

datasets. The benefits of the cleaned data have shown with better results delivered

in the implementation of the Community Detection and learning outcome prediction

in the context of Programming Education.
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Based on the experimental results, we also believe that it is possible to say

that there is a relationship between students’ learning behaviours and their learning

outcomes. We have found evidence of distinct communities of students in the dataset

and that students who are grouped in the same community were likely to achieve

similar exam results. In other words, students having similar learning behaviours

tend to perform similarly in the exam. This finding is in agreement with [175, 96]

where the authors have defined and analysed various learning behaviour styles with

different learners’ behaviours in perceiving and responding to learning environments.

This is because the learning styles may have an effect on students’ satisfaction and

can also be a useful indicator of learning success [162].

Overall, the learning behaviours of students in Course#1 and Course#2 in both

academic years tend to be similar from one year to the next. In both modules, we

have found what seem to be differences between lower and higher performing com-

munities. In particular, higher performing students were found to be more active in

practising related items such as navigating lab sheets and doing exercise. In addition,

the higher performing students consistently interacted with course material items

and exercises during the courses. The lower performing students, however, appeared

to lose their focus and motivation to practice, i.e. to actually to do programming

practice exercises, towards the later stages of the study. This result is consistent

with the initial investigation of programming [105] that practice is essential for

improving students’ programming skills. These findings, available so early in the

semester, are essential for such core courses especially since it has been found that

students should be given opportunities to practice and receive constructive feedback

[21]. In [171], the authors indicated that programming skills may be improved if

students practice frequently with the support from an interactive web-based environ-

ment for teaching programming. However, in the context of this research, students

from the lower performing group might face challenges during their study progress

at the later stage of the module, e.g. as the knowledge was becoming more difficult

to understand. As a consequence, they might lose their confidence and motivation

to actively participate in practical sessions, additionally highlighting the need for
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early intervention and encouragement. This could be a reason why lower-performing

students seem to be more active in reading lecture notes than higher performing stu-

dents, as observed in the research. This could be due to the fact that, along with

course books, higher-performing students tend to use alternative references from ex-

ternal sources such as consulting senior students and tutorials from the Internet to

support their understanding [138]. It is possible to conclude that lower-performing

students might face difficulties in understanding new concepts, and, as a result, they

merely keep reading lecture notes while becoming discouraged and unmotivated to

study and practice, especially in the later phase of the semester when the knowledge

becomes more difficult to acquire effectively.

Additionally, we noticed that the lower performing students tend only to attempt

their programming tasks according conventional common methods rather than cre-

atively trying different approaches based our observation. As a result, they usually

upload solutions once and move to other tasks. In contrast, the higher performing

students tend to try various approaches for a given programming task and then usu-

ally submit them all at once, leading to a higher number of events in practical items

logged on the system, in comparison with the practical activities of lower performing

communities.

In both Course#1 and Course#2, higher performing students are more likely

to be more active on Practice items, i.e., solving programming tasks. However, we

also found that there seems to be a distinction between the learning behaviours of

the Course#1 and Course#2 cohorts. In Course#1, the lower performing students

appear to focus more on reading lecture notes than higher performing students.

However, this phenomenon is not observed in Course#2. In particular, in Course#2,

there is almost no difference in reading lecture notes between the two types of

students. In fact, the higher performing students in Course#2 seem to become

more active in reading lecture notes during the study period. Possibly, this is due to

the fact that the level of knowledge in Course#2 tended to be less challenging than

Course#1 and had less advanced concepts and examples. We speculate students’

learning behaviours may change subject to the difficulty level of the study. We note
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that Course#1 was designed for Software Engineering students and has a higher level

of requirements for acquired knowledge and skills. Perhaps, the lower performing

students in Course#1 might be struggling with acquiring new advanced concepts,

which would keep them engaged longer with lecture notes instead of focusing on

programming tasks.

With respect to the effect of the COVID19 pandemic, the learning behaviours

of students were generally similar to the behaviours before the lockdown. The en-

gagement of students in using learning material items tends to decrease over the

semester, which is the same in all other cases in both courses. Furthermore, be-

ing highly active in practice-related items could be a signal of higher performing

students. However, there is also a slight deviation in students’ learning behaviours

between the pre-COVID19 and during-COVID19 period due to the nature of study-

ing from home during the lockdown. While lower performing students tend to read

lecture notes more than higher performance students before the pandemic, this level

of usage of lecture notes appears to be the same between the two cohorts during the

pandemic. This observation may reflect that students might have limited communi-

cation opportunities and tend to merely rely on the given online learning materials.

In terms of the learning outcome prediction, using log data collected from on-

line learning systems to predict students’ success has been highly developed in the

literature. There have been many scientific reports on building an early predict-

ing system in various application contexts, from flagging “at-risk” students [24], to

recommending next courses [169] and learning strategies [92, 17]. In our research,

we provide a pre-processing data method that has been proven to be effective in

improving the performance of widely used machine learning models in our context,

i.e. programming education. This method can also be extended to different appli-

cation contexts as shown above as long as the data satisfies one of the assumptions

of Random Matrix Theory, e.g. the Q-factor is ensured. In addition, we have shown

evidence that data features from learning behaviours could be good predictors to

detect “at-risk” students in the early stage of the study period.

We recommend instructors to keep implementing community detection and pre-
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diction as students’ results come in. Other performance indicators can also be used

in addition to lab exam grades, such as weekly exercise results. In practice, commu-

nity detection can be implemented at any point during the study. Once communities

are detected, the instructors can promptly implement interventions. For example,

the higher performing groups can be given harder exercises to keep them focused

and avoid getting bored with their studies. On the other hand, the lower performing

groups should be given more basic tasks along with instructions or small-group tutor

sessions. Furthermore, the instructors can provide lower performing communities

with additional supporting materials or easier tasks with solutions. This would fill

the knowledge gap and build up the confidence and motivation for the students as

well as re-engage them in their studies.

6.3 Limitations

Although the proposed method appears to be successful in reflecting the relationship

between students’ learning behaviours and learning performance, there are limita-

tions due to the assumptions of Random Matrix Theory - which might restrict the

method from being applicable to all kinds of learning behavioural data. The dis-

tribution of eigenvalues is given by Equation 6 when the sample size (matrix rows)

m → ∞ and number of features (matrix column) n → ∞, provided that the ratio of

rows and columns is greater than or equal to 1. Hence, in the context of this thesis,

the number of transitions extracted from event log data needs to be greater than

the number of students.

There is also a concern in terms of using MST to reduce the size of the graph.

When a distance matrix contains duplicate values, the associated graph will have

duplicated edges. Consequently, it is possible for more than MST to be generated

from the graph and thus the results of the analysis may not be stable. In such

cases, other graph size reduction techniques can be considered to obtain a single

reduced graph, ensuring the stability of results in further analysis. For example, the

network sparsification technique can sparsifies the network while preserving network
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structures and community properties [75]. The comparison between such techniques

is out of the scope of this thesis and will be the target for future works in line with

this research.

6.4 Conclusions

This thesis proposes a novel approach to analyse students’ learning behaviour data

in the context of programming education, using collected from an online learning

system. The research is one of the first attempts to apply RMT and Community

Detection in the educational domain. The analysis is based on a range of steps and

techniques: (1) we extract a transition-student data matrix from the event log data;

(2) we clean the effect of noise and trend in the correlation matrix of the transition-

student data matrix, which is based on the Random Matrix Theory. This cleaning

process can help to reveal the underlying meaning of the data; (3) the cleaned cor-

relation matrix is used to construct a distance matrix and the Minimum Spanning

Tree. The MST can represent the relationships of students’ learning behaviours in

using course material items in the form of an MST graph. Students having simi-

lar behaviours are found to be closer to each other in the constructed MST graph;

(4) the Community Detection algorithms, i.e. Girvan Newman and Louvain, have

been applied to detect the smaller student communities from the MST. Further ed-

ucational contexts have also been considered, including the influence of COVID19

pandemic; (5) the student-event data matrix is also cleaned and used as input vari-

ables to predict the learning outcome of students in the lab exams, using a range

of machine learning classification techniques. The findings from the above methods

have been used to analyse the learning behaviours of students with different learning

abilities in programming. The proposed approach in cleaning learning behavioural

data also shows its effectiveness in Community Detection and building early predic-

tion models. Insights from students’ learning behaviours and recommendations are

also discussed in this thesis.

In future work, we will also focus on changing the community structure (cur-
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rently represented as an MST) of the students during the course. For example,

a student may change their group in a different week, which may reveal that his

or her learning behaviour also changes accordingly. This analysis could help to

understand thoroughly how students study and to provide to better support for ed-

ucators to improve the curriculum. However, this requires more advanced research

approaches to be developed to process more complex data. The time duration on

course material items will also be considered on top of the number of events in future

works. Additionally, while it has been found that the community analysis results,

using either the Girvan-Newman or Louvain method, do not vary significantly, the

relationship between community detection techniques and analysis results is also

worth further investigation, we believe. Regarding the processing of the learning

behavioural dataset to remove the effect of noise and trend, more strategies to op-

timise the values of α and β will be investigated, which can help to improve the

training of the predictive models. We will target these in future works for further

deliver the insights of learning behaviours among student communities.
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Appendix A

Community Detection by Girvan

Newman algorithm represented as

Minimum Spanning Tree graphs
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Figure A.1: Detected communities in Course#1-2018 represented as a Minumum
Spanning Tree graph. Blue dots refer to higher performing students; Red dots refer
to lower performing students.
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Figure A.2: Detected communities in Course#1-2019 represented as a Minumum
Spanning Tree graph. Blue dots refer to higher performing students; Red dots refer
to lower performing students.
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Figure A.3: Detected communities in Course#1-2020 represented as a Minumum
Spanning Tree graph. Blue dots refer to higher performing students; Red dots refer
to lower performing students.
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Appendix B

Community Detection by Girvan

Newman algorithm represented as

dendrograms
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Figure B.1: Detected communities in Course#1-2018 represented as a dendrogram.
Blue labels refer to higher performing students; Red labels refer to lower performing
students.
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Figure B.2: Detected communities in Course#1-2019 represented as a dendrogram.
Blue labels refer to higher performing students; Red labels refer to lower performing
students.
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Figure B.3: Detected communities in Course#1-2020 represented as a dendrogram.
Blue labels refer to higher performing students; Red labels refer to lower performing
students.
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Figure B.4: Detected communities in Course#2-2018 represented as a dendrogram.
Blue labels refer to higher performing students; Red labels refer to lower performing
students.
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Figure B.5: Detected communities in Course#2-2019 represented as a dendrogram.
Blue labels refer to higher performing students; Red labels refer to lower performing
students.
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Figure B.6: Detected communities in Course#2-2020 represented as a dendrogram.
Blue labels refer to higher performing students; Red labels refer to lower performing
students.
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