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Abstract—Three-dimensional (3D) beamforming is a potential
technique to enhance communication security of new generation
networks such as 5G and beyond. However, it is difficult to
achieve optimal beamforming due to the challenges of non-
convex optimization problem and imperfect channel state infor-
mation (CSI). To tackle this problem, this paper proposes a novel
deep learning-based 3D beamforming scheme, where a deep
neural network (DNN) is trained to optimize the beamforming
design for wireless signals in order to guard against eavesdropper
under the imperfect CSI. With our approach, the system is
capable of training the DNN model offline, and the trained
model can then be adopted to instantaneously select the 3D
secure beamforming matrix for achieving the maximum secrecy
rate of the system, which is measured by the signal received by
eavesdroppers outside the path of the beam. Simulation results
demonstrate that the proposed solution outperforms the classical
deep learning algorithm and 2D beamforming solution in terms
of the secrecy rate and robust performance.

Index Terms—3D beamforming, physical layer security, wire-
less security, deep learning, secrecy rate maximization.

I. INTRODUCTION

Three-dimensional (3D) beamforming is one of the promis-
ing techniques to realize communication performance en-
hancement for fifth generation (5G) and beyond wireless
networks [1]-[3]. In communication systems, compared with
classical two-dimensional (2D) beamforming towards the
ground only, 3D beamforming based on massive multiple-
input multiple-output (MIMO) can provide the radiation pat-
terns to desired directions in both vertical and horizontal
space, which provides more signal power at the desired re-
ceivers and mitigate interference in cellular networks [2], [4].
Recently, 3D beamforming has been applied to improve the

secure transmission in the physical layer security perspective
[5]-[17]. In detail, due to the 3D nature of wireless channel
between MIMO transmitters and receivers, 3D beamforming
technique combines both the horizontal and vertical dimen-
sions to enhance desired signal strength at legitimate device
locations as well as minimize the information power leakage
to nearby eavesdroppers, so that the high average spectral
efficiency and secrecy data rate can be achieved.

In [5] and [6], the authors proposed advanced security
model-based opportunistic non-orthogonal multiple access
(NOMA) methods for 3D secure beamforming design in
MIMO systems, and multicast interference reduction was also
considered to improve the system throughput and secrecy
capacity. Yaacoub et al. [7] studied a 3D beamforming
approach based on massive MIMO antenna arrays to mitigate
eavesdropping by sending a jamming signal under the location
estimation error of the eavesdropper. 3D beamforming-
based physical layer security in millimeter wave (mmWave)
MIMO systems was studied to evaluate the secrecy rate
performance [8] [9], and the exact secrecy rate was derived
without any approximation. In addition, 3D beamforming
based on mmWave was applied in dynamic 5G-based vehicle-
to-everything communications to guarantee secure stable com-
munications and quality-of-service (QoS) performance [10].
Liu et al. [11] studied the resource management optimization
problem of joint power allocation and spectrum selection
with the goal to maximize the sum secrecy rate in cellular
mmWave networks, while imperfect channel state information
(CSI) was considered in the study. Moreover, a location-
based 3D beamforming method was presented to improve
the secure communication performance for MIMO unmanned
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aerial vehicle (UAV)-enabled communication systems [12].
Both the two studies [11], [12] divided the optimization
problem into two subproblems, and an effective iterative
method was used to optimize the secrecy rate performance.
However, the above works [5]-[12] mainly used traditional
optimization techniques, e.g., Karush–Kuhn–Tucker condi-
tions, Lagrange optimization algorithms to solve the 3D beam-
forming problem in secure communication systems, which is
ineffective in dynamic and complex 5G and beyond wireless
networks. In addition, these classical algorithms may converge
a suboptimal point and get the greedy-search like performance
as they ignore the historical information of wireless networks
and the long term benefit.

In this case, machine learning techniques were used to
optimize the secure beamforming matrix in MIMO systems
[13]-[18]. Our previous work [13], [14] have demonstrated
that machine learning based beamforming can significantly
improve the commutation performance in dynamic and com-
plex wireless networks. In [15], a multi-agent deep reinforce-
ment learning was presented to optimize the 3D beamforming
strategy to improve the UAV-enabled secure communications,
and trajectory of UAVs and transmit power were also jointly
optimized. Bao et al. [16] studied the secrecy outage per-
formance under multiple UAV eavesdroppers, and a deep
learning based beamforming model was presented to predict
the secrecy rate performance. Considering the partial CSI in
practical MIMO systems, a 3D robust beamforming scheme
for UAV commutation systems was proposed [17], where
a precisely designed deep learning was trained to optimize
the beamformer. However, the literature [17] only considered
one legitimate user and one eavesdropper, and the inter-used
interference is not studied in this work.

In order to better optimize the beamformer for secure
communications in large-scale MIMO systems, this paper
proposes an advanced deep learning-based 3D beamforming
in the physical layer security perspective. In detail, aiming
at achieving the maximum secrecy rate of the system against
an eavesdropper, a precisely designed deep neural network
(DNN) is trained to optimize the beamforming strategy for
confidential signal with considering outdated channel infor-
mation of legitimate mobile devices. This design can train
the DNN model offline, and use the trained learning model
to select secure beamforming matrix in real-time, which is
measured by the signal received by eavesdroppers outside the
path of the beam. Simulation results show that the proposed
solution outperforms the classical deep learning algorithm and
2D beamforming.

The paper is organized as follows: Section II provides the
system model and problem formulation. The deep learning
based 3D secure beamforming scheme is presented in Section
III. Section IV shows the simulation results and analysis.
Conclusion is offered in Section V.

Fig. 1. 3D beamforming for secure communication systems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a downlink MIMO wireless system, as illus-
trated in Fig. 1, where a base station (BS) is equipped with
Mt (Mt = Mx×My uniform planar array (UPA)) directional
transmission antennas to server legitimate mobile devices,
and each device is equipped with Nr receive antennas. The
mobile device set is denoted by K = {1, 2, ...,K}. In addition,
we assume that one eavesdropper equipped with N e

r receive
antennas aims to eavesdrop any of the data streams of the
legitimate devices.

According to the aforementioned standard [1], the resultant
3D channel between the BS antenna port s and one mobile
device’s or eavesdropper’s antenna port u at time t is given
by

hl,u,s(t) =
N∑
n=1

[
Γrx,u,θrx(Φl,n)

Γrx,u,φrx(Φl,n)

]T
×
[

al,n,θrx,θrx al,n,θtx,φrx

al,n,φrx,θtx al,n,φtx,φtx

] [
Γtx,u,θrx(Ωl,n)

Γtx,s,φtx
(Ωl,n)

]
× exp(j2πλ−1

0 (Φl,nrrx,u)) exp(j2πλ−1
0 (Φl,nrtx,u))

× exp(j2πλ−1
0 fd,l,nt)

,

(1)

where φtx and φrx are the azimuth angle of departure and
azimuth angle of arrival , θtx and θrx represent the elevation
angle of departure and elevation angle of arrival for the
each multipath component. The parameter λ0 denotes the
wavelength carrier frequency. Let l and n denote the number
of paths and subpaths, respectively. Γrx,u and Γtx,u denote
the field pattern of the receive and the transmit antennas.
rrx,u is a vector between the u − th receive antenna and
the first antenna. For transmit antenna elements, rtx,u holds
the same meaning as rrx,u. fd,l,n, Φl = {θrx,l, φrx,l} and
Ωl = {θtx,l, φtx,l} denote the Doppler shift, the angle of
departure and the angle of arrival of the (l, n)-th propagation
subpath. The polarization matrix of the (l, n)-th subpath
from the p1 polarization component to the p2 polarization
component is defined by al,n,p1,p2 .

In the practical situation, due to the transmission and
processing latency, it is difficult to achieve the perfect CSI.
Thus, the outdated CSI needs to be considered in the system
model. The delay between the outdated channel matrix and
the accurate channel matrix is denoted by td. In this case,
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the relationship between the outdated matrix H(t) and the
accurate channel matrix H(t+ td) is given by [14]

H(t+ td) = µH(t) +
√

1− µ2
_

H(t+ td), (2)

In (2),
_

H(t+ td) is independent identically distributed with
H(t) and H(t + td), µ denotes the outdated CSI coefficient
of the channel matrix H(t) and 0 ≤ µ ≤ 1. Note that µ = 1

means that the outdated CSI effect is eliminated, while µ = 0

shows that no accurate CSI.
The received signal at the k-th device is expressed as

yk = Hkvksk + Hk

∑K

i6=k
visi︸ ︷︷ ︸

inter−userinterference

+nk,
(3)

where Hk denotes the channel matrix from the BS to the k-th
device, vk is the beamforming matrix for the k-th device, and
nk denotes its additive complex Gaussian noise vector with
the with zero mean and variance .

The received signal at the eavesdropper is given by

ye = He
∑K

k=1
vksk + ne, (4)

where He is the channel matrix from the BS to the eaves-
dropper.

The achievable rate at the k-th device is expressed as

Rk = log2

(
1 +

|Hkvksk|2∑K
i6=k |Hkvisi|2 + δ2

k

)
. (5)

If the eavesdropper aims to eavesdrop the legitimate signal
of the k-th device, its achievable data rate is given by

Re
k = log2

(
1 +

|Hevksk|2∑K
i6=k |Hivisi|2 + δ2

e

)
. (6)

B. Problem Formulation

In this paper, our objective is to maximize the achievable
secrecy rate of each legitimate device by optimizing the
beamforming matrix V = [v1,v2, . . . ,vK ] at the BS while
guaranteeing the minimum data rate of each device, then the
optimization problem can be formulated by

max
V

min
k∈K

{
Rsk

∆
= [Rk −Re

k]
+
}

s.t. Tr
(
VVH

)
≤ Pmax,

, (7)

where Pmax is the maximum transmit power at the BS, and
Rmin
k denotes the minimum data rate requirement of the k-th

device. Constraint in (7) is used to satisfy the BS’s maximum
transmit power. It is easy to observe that the optimization
problem in (7) is difficult to be solved directly as the objective
function is non-convex with respect to V.

Fig. 2. Architecture of the DNN-based secure beamforming.

III. PROPOSED DEEP LEARNING DRIVEN 3D SECURE

BEAMFORMING DESIGN

This section introduces an application of deep learning
for the secure beamforming design in downlink multi-user
MIMO systems. Although the iterative algorithm can obtain
the local optimal solution of the non-convex optimization
problem, the iterative algorithm has a relatively high process
complexity and the iterative calculation delay is long, and the
beamforming matrix cannot be obtained in real time. There-
fore, we can apply deep learning technology to address the
secure beamforming optimization problem with the objective
to maximize the secrecy data rate.

The learning model can be trained on a large number of
channel information sets to make the neural network automat-
ically analyze the internal characteristics of the channel, and
then generate effective solutions to complex problems with
relatively low complexity. Therefore, it is considered to com-
bine the deep learning technology with the 3D beamforming
optimization problem for maximum spectrum efficiency, and
transfer the complexity of the problem to the stage of offline
training of the neural network, so that the complexity of the
online training is greatly reduced.

A. Offline Training Phase

The considered DNN architecture is composed of one input
layer, multiple hidden layers, and one output layer, as shown
in Fig. 2. Three hidden layers are applied to extract channel
characteristic from the input channel information, where each
hidden layer contains multiple neurons and neural elements
between different layers are connected by weights. All hidden
layers are fully connected layers, and activation functions are
added after the hidden layer nodes, where the function of the
activation function is to introduce non-linear transformations.

Input layer: Each input data in DNN is channel matrices
(Hk and He) with multiple elements, as DNN currently does
not support the use of complex channel coefficients as the
input data of the neural network module, and thus each
channel matrix should be divided into real-valued vectors
without losing the imaginary-part information, and the input
vector match has a large number of elements. In this context,
the real part and the imaginary part of the channel matrix are
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separated and rearranged to obtain a new channel information
vector, which is used as the input of the first input layer.

Hidden layer: The DNN hidden layer includes three stages:
convolution, nonlinear transformation, and down-sampling.
The structure is shown in Fig. 2, the input of a single hidden
layer is a feature map composed of a group of vectors, and the
input signal of the first convolution stage can be regarded as a
high-dimensional feature map with high sparsity. The output
part of a single hidden layer is also a feature map composed
of a set of vectors, and each output feature map corresponds
to a specific feature extracted from the input feature map.

Output layer: The objective of the learning model is to
solve the optimization problem (7) to achieve the maximum
achievable secrecy rate, thus the model training process tries
to minimize a loss function that measures the quality of the
model predictions, which is expressed as

L (Vi) = −1

I

I∑
i=1

min
k∈K

{
Rsk

∆
= [Rk −Re

k]
+
}
i
, (8)

where I denotes the training batch size, Vi is the beam-
forming matrix at the BS for the i-th input Hk and He,{
Rsk

∆
= [Rk −Re

k]
+
}
i

is the secrecy rate of the i-th input
information. The available beamforming matrix V can be
updated during the training process.

B. Online Prediction Phase

After the DNN-based secure beamforming model is trained,
it can be applied for beamforming matrix selection. Specifi-
cally, once the channel matrices information is received from
MIMO systems, it is firstly divided into the real and imaginary
parts to get the real-value vector before putting it into the
DNN model, and finally the output of the network is the
estimation of the beamforming matrix V. However, due to
the negative effect of channel information feedback delay, the
DNN output and the accurate beamforming matrix still have
a certain deviation. Thus, in order to improve the prediction
accuracy, we use the output of the DNN model as the initial
value of the final beamformer estimation, and then apply the
robust learning model to perform an search in a very small
set near the initial value to achieve the final prediction, which
is shown in Algorithm 1.

C. Computational Complexity Analysis

Here, we provided the computational complexity analysis of
both the offline training and online prediction in this section.

Offline training complexity: Let G, X0 and Xg denote
the number of the training layers, the size of the input layer
(the channel matrix size), and the number of neurons in
the g-th layer, respectively. The computational complexity at
the i-th batch is O(X0X1 +

∑G−1
g=1 XgXg+1). Assume that

the training process has N epi episodes with each episode
being with I batch size, and the DNN model is completed

Algorithm 1 Proposed Deep Learning Based 3D Secure
Beamforming
Phase 1: Offline training
1: Input: Training data set {Hk,H

e}k∈K and DNN architec-
ture.
2: Initialize DNN model.
3: for each epoch do
4: for i=1 to I (batch size) do
5: Sample i-th training data (channel matrix information).
6: Calculate loss function by (8) and update DNN param-
eters.
7: end for
8: end for
9: Output: The trained DNN-based 3D secure beamforming
model.
Phase 2: Online prediction
10: Download the trained DNN model.
11: for time slot t=1 to T do
12: Observe the channel information {Hk(t),He(t)}k∈K
from MIMO system at the t-th slot.
13: Put {Hk(t),He(t)}k∈K into the trained model, and
predict the initial beamforming matrix V′(t).
14: Interface with dynamic system and estimate the feedback
delay by (2).
15: Put the outdated CSI

_

Hk(t) into the offline training
phase.
16: Calculate the secrecy rate Rsk(t): Rsk

∆
= [Rk −Re

k]+.
17: end for

iteratively until convergence. Thus, the total computational
complexity in our considered DNN-based 3D beamforming
model is O

(
N epiI(X0X1 +

∑G−1
g=1 XgXg+1)

)
[14]. The

computational complexity of deep learning in the training
process is generally high, but it can be completed offline at
the BS after a finite number of episodes.

Online prediction complexity: Similar to the study [17],
here we apply the floating point operations to analyze the
computational complexity of the proposed DNN-based beam-
forming model in online perdition state. As the model has
been trained with a function, the complexity is mianly related
to both the input and output dimensions. Let X0 and XG

denote the dimensions of the input and output, then the
number of computational operations of the DNN model is
given by (2X0 − 1)XG [17].

IV. SIMULATION RESULTS AND ANALYSIS

This section provides simulation results to evaluate the
performance of the proposed deep learning-based 3D secure
beamforming scheme and compare it with other existing
schemes. We set that the center frequency of carrier wave
is 3.5 GHz, and the background noise power at the legitimate
mobile devices and eavesdropper is equal to -90 dBm. Both
the legitimate devices and the eavesdropper are equipped 4
antennas, and the number of transmit antennas at the BS
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Fig. 3. The achievable secrecy rates of both the proposed deep learning
solution and the upper bound (exhaustive search method).

uniform planar array varies from 16 to 32 for different
simulation settings. The number of legitimate mobile devices
K is set to 2. In the MIMO system, 8×104 samples are
applied for training and 2×104 samples are used for the
3D secure beamforming performance evaluation. The neural
network architecture consists of there fully-connected hidden
layers of 512, 256, and 256 nodes (neurons), respectively, and
the learning rate of DNN is 0.0002.

The performance of the following beamforming schemes
or algorithms are evaluated in this section: 1) our proposed
robust 3D secure beamforming scheme based on deep learning
with considering outdated CSI (denoted by Robust 3D DL);
2) the robust 2D secure beamforming scheme based on deep
learning with considering outdated CSI (denoted by Robust
2D DL); 3) the 3D secure beamforming scheme based on
deep learning without considering outdated CSI (denoted by
classical 3D DL).

Fig. 3 shows the average secrecy rate per device of the
proposed deep learning algorithm and the exhaustive method
when the number of transmit antennas is 4×6. As illustrated,
as the increased number of training samples, the secrecy rate
performance of the proposed learning algorithm tends to be
near the exhaustive search method. We can conclude that the
proposed learning algorithm in this study not only is close
to the performance of the exhaustive search algorithm, but
also significantly reduces the complexity, and it is suitable for
different channel scenarios. The above simulation result also
shows that the more channel matrix information collected dur-
ing learning and training process, the better the performance
of the 3D secure beamforming based on deep learning.

Fig. 4 illustrates the average secrecy rate per device varying
with the number of transmit antennas. The simulation result
shows that as the number of transmit antennas increases, the
performance of all algorithms monotonically enhances, with
the benefit being brought by multiple antennas, and our

Fig. 4. Secrecy rate comparison with different BS transmit antenna numbers.

Fig. 5. Secrecy rate comparison with different SNR values.

proposed learning scheme achieves the highest secrecy rate.
When the number of antennas at the BS is small, the per-
formance difference among the three algorithms is small,
but the advantage between our proposed scheme and other
two schemes becomes more obviously during this process. It
is important to note that the performance of the 3D secure
beamforming scheme is significantly higher than that of the
2D secure beamforming. For example, when the number
of transmit antennas is 24, the average secrecy rate of 3D
and 2D beamforming schemes are 3.504 and 2.387 bit/s/Hz
respectively, having 46.80% enhancement.

Fig. 5 represents the comparisons of the average secrecy
rate per device among the three solutions with different signal-
to-noise ratio (SNR) values. It can be seen that when the SNR
is low, the performance of the three solutions cannot achieve
considerable satisfaction. However, as the increase of SNR
level, the performance gap between each other becomes more
obviously, and the performance advantage of our proposed
solution becomes more significant.
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Fig. 6. Secrecy rate comparison versus outdated CSI coefficient.

We further analyze the effect of the outdated CSI coef-
ficient µ on the system secrecy rate, when the number of
transmit antennas is 4×6. As the illustrated from Fig. 6, the
performance of all scheme declines as the decrease of the
outdated CSI coefficient (CSI becomes more outdated), as
the feedback delay increases and channel estimation error
becomes more serious. However, we can observe that the
classical DL algorithm without considering outdated CSI is
more sensitive to the coefficient µ, and its secrecy rate drops
more faster than that of our proposed leaning algorithm. The
result also indicates that our presented learning algorithm
obtains the best secure communication performance among
three schemes against imperfect CSI in mobile wireless com-
munication networks.

V. CONCLUSION

In this paper, in order to better optimize the beamforming
matrix in large-scale 3D MIMO systems, we have proposed a
3D secure beamforming scheme based on deep learning. The
custom Lamda layer and loss function are designed to deal
with the MIMO system design with outdated CSI challenges.
The proposed robust 3D secure beamforming achieved the bet-
ter security performance than that of 2D secure beamforming.
The simulation results indicated that, compared with existing
deep learning algorithm, the proposed solution achieves high
secrecy data rate, especially in the large number of transmit
antennas and high SNR domain. In addition, the proposed
learning model is more robust against the outdated CSI in
dynamic scenarios.
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