
Jumping Dynamics of Animals and Robots

A thesis submitted to the University of Manchester for the degree of
Doctor of Philosophy

in the Faculty of Science and Engineering

2021

Conor Zachary Andrew Marsh
Department of Mechanical, Aerospace and Civil Engineering

Contents

Contents 2

List of figures 6

List of tables 13

Abstract 15

Declaration of originality 16

Copyright statement 17

Acknowledgements 18

1 Introduction 19
1.1 Research Problem and Questions . 21
1.2 Thesis Aim and Objectives . 21
1.3 Thesis Outline . 21
1.4 Research Methods in Jumping Dynamics 22
1.5 Predictive Modelling . 23
1.6 Definitions and Assumptions . 24

1.6.1 Planar Jumping System . 25
1.6.2 Defining a Jump . 26
1.6.3 Stability and Balance . 29
1.6.4 Redundancy in Models . 29

1.7 Kinematics of Jumping Systems . 30
1.8 Dynamic Equations of Motion for Jumping Models 31
1.9 Computer Algebra Systems . 32
1.10 A Note on Model Complexity . 33
1.11 Models used in this work . 34

1.11.1 One Degree of Freedom Model . 34
1.11.2 Two Degree of Freedom Model . 35
1.11.3 Four Degree of Freedom Model . 36

1.12 Summary . 36

2 Literature Review 37
2.1 Jumping Models . 37

2.1.1 Single Degree of Freedom Models 38

2

2.1.2 Low Complexity Models . 39
2.1.3 High Complexity Models . 39

2.2 Analysis of Model Equations . 40
2.2.1 Discussion of Assessment Criteria 42

2.3 Static Optimisation . 42
2.3.1 Discussion of Assessment Criteria 43

2.4 Dynamic Optimisation . 43
2.4.1 Discussion of Assessment Criteria 45

2.5 Reinforcement Learning . 45
2.5.1 Discussion of Assessment Criteria 47

2.6 Thoughts and Conclusions . 47

3 Model Analysis Methods 49
3.1 Computational Cost and Computer Algebra Systems 49
3.2 State Space Analysis . 50

3.2.1 1 Degree of Freedom Model . 51
3.2.2 Multiple Degree of Freedom Model 53
3.2.3 Method . 55
3.2.4 Stuck to the Ground . 57
3.2.5 Discussion . 58

3.3 Dynamic Balance Ellipsoid . 60
3.3.1 Velocity Ellipsoid . 60
3.3.2 Acceleration Ellipsoid . 61
3.3.3 Balance Plane . 63
3.3.4 Balance Ellipsoid . 64
3.3.5 Discussion . 68

3.4 Conclusions . 69

4 Static Optimisation 71
4.1 Kinematic Redundancy in Jumping Systems 72
4.2 Second Order Kinematic Redundancy Resolution 73

4.2.1 Moore-Penrose and Least Squares Optimisation 74
4.2.2 Weighted Pseudo-Inverse . 75
4.2.3 The Null Space of the Jacobian . 76
4.2.4 Minimum Torque Optimisation . 76
4.2.5 Enforcing Unactuated Degrees of Freedom 77

4.3 Static Optimisation Method . 79
4.3.1 Determination of Heel-off Event . 81

4.4 Results . 83
4.4.1 Minimum Norm Acceleration . 84
4.4.2 Minimum Norm Inertia Weighted Acceleration 86
4.4.3 Minimum Norm Torque . 89

4.5 Discussion . 91

3

4.6 Conclusions . 92

5 Dynamic Optimisation 93
5.1 Summary of Dynamic Optimisation . 93
5.2 Candidate Constraint and Objective Functions 96
5.3 Method . 100

5.3.1 Undesirable Solutions from Dynamic Optimisations 101
5.4 Results . 104

5.4.1 Joint Angle Trajectories and Sample Poses 105
5.4.2 Torques . 113
5.4.3 Ground reaction forces . 117

5.5 Discussion . 121
5.6 Conclusions . 122

6 Reinforcement Learning 124
6.1 Why DDPG? . 124
6.2 Pitfalls . 125

6.2.1 Catastrophic Failure in Jumping Problems 125
6.2.2 Point Mass Example . 126
6.2.3 Frame Skipping . 127
6.2.4 Reward Shaping . 128

6.3 Method . 130
6.4 Results . 132

6.4.1 Computational Cost . 133
6.4.2 Joint Angle Trajectories and Poses 134
6.4.3 Joint Torques . 138

6.5 Discussion . 140
6.6 Conclusions . 141

7 Conclusions 142
7.1 Research Aims . 142
7.2 Research questions . 142

7.2.1 Research Question 1. 143
7.2.2 Research Question 2. 143

7.3 Future Work . 144

References 147

Appendices 157

A Equations for Model Analysis Chapter 158

B Model Equations of Motion 160

C DDPG Hyper-parameters 163

4

Word Count: 53,313

5

List of figures

1.1 Video frames of a jumping toad (Rhinella marina) taken from work published
by Reilly et al. [1]. The frames show the progression of jumping stages from
flight (left) to landing (left-centre) to push-off (right-centre) to flight again
(right). 19

1.2 Example planar jumping model of Numida meleagris. Each segment is treated
as a rigid body with mass and inertia. Segments are connected by revolute
joints (orange). The diagram is for illustrative purposes only and is not drawn
to scale. Centre of mass indications are drawn smaller for leg segments than
the body but are not indicative of relative mass or inertia. 25

1.3 (Left) The joint angles and segment lengths for an example 3 degree of free-
dom model and (right) the body pose of an example 3 degree of freedom
model. 26

1.4 Diagram of a planar jumping model standing on flat ground with gravity act-
ing down, perpendicular to the ground. The vertical ground reaction force,
Fv, is labelled. 27

1.5 Diagram demonstrating the different motions which occur upon breaking con-
tact with the ground. The coloured circle around the system’s centre of mass
represents the direction of the velocity of the centre of mass. Any motion
involving velocity with some component opposite to the gravitational field
direction is considered a jump. 28

1.6 The number of terms in the equations of motion for planar articulated leg
models. The models consider each segment as a rigid body with mass and
rotational inertia. Joint angles are defined relative to the inertial frame to
minimise the number of terms in each set of equations. 33

1.7 The single model variations. (Left) The point mass on a massless link, only
considers the rotational inertia of the system about the joint between the link
and the ground. (Centre) The inertial rod considers both the rotational inertia
of the system about the joint and the centre of mass of the system. (Right)
The inertial body is an extension of the inertial rod which does not assume
the body to have the inertia of a thin rod. 34

1.8 The two degree of freedom system, treating the second link as the body of
the system. The first segment is treated as an inertial rod while the second
segment is considered as a massless link connecting a rigid body to the first
segment. 35

6

1.9 The four degree of freedom system, considering either the foot, shank and
thigh or the tarsometatarsus, tibiotarsus and thigh as the first three segments.
The fourth segment generally comprises the head arms and torso. 36

2.1 Jumping models found in the literature (a) A single degree of freedom model
represents the entire system as either a point mass or a rigid body. Motion
is typically modelled using traditional ballistic motion equations. (b) Low
complexity models include ≤ 2 degrees of freedom and often include actua-
tor models, such as muscles or tendons. The state space of a low complexity
model is generally possible to present in graphs. (c) High complexity mod-
els include > 2 degrees of freedom and are generally beyond the limits of
graphing representation. 38

3.1 Time taken to derive the equations of motion for increasing degree of free-
dom planar jumping models. Derivations were performed using the symbolic
toolbox in MatLab. Reasonable effort was made to optimise the code. . . . 50

3.2 Regions of state space for 1 degree of freedom model defined by Fv ≤ 0.
In region (A) the system will break contact immediately with the ground no
matter what torque is applied (within the limits of τmax). In region (B) the
system is able to jump by applying a smaller than maximum torque. In region
(C) the system is unable to break contact with the ground. Model parameters
used: l = 0.45m; m = 1.5 kg; g = 9.81ms−2; τmax = 1Nm. 52

3.3 Purely demonstrative example frames from a recording of a lollipop falling
from an almost vertical position. The frames show the lollipop fall, slip and
then break contact with the ground. It is to be noted that the rough surface
played a big part in the “success” of this experiment as the bumps in the
surface likely prevented significant horizontal motion when slipping occurred. 53

3.4 Jumping motion of the constrained system starting from q1 = 1
8
π. The an-

gle q2 is constrained to be q2 = −q1 + π. Both links have length 0.225m.
The values of the constraint parameters were selected to produce a plausible
vertical jumping motion. 55

3.5 The regions of the constrained 2 degree of freedom system which define the
system’s capability to break contact with the ground. The second joint angle
of the system is constrained to move relative to the first as: q2 = −q1 +

π. The regions are: (A) the system will break contact with the ground no
matter what, (B) the system may break contact with the ground by applying
sufficient torque within the limits of the system, (C) the system has no means
of breaking contact with the ground. For this system, both boundaries have
the asymptote q = 0. 56

3.6 Jumping motion of the constrained system starting from q1 = 0. The angle q2
is constrained to be q2 = −q1 + 0.8π. Both links have length 0.225m. This
configuration of the constrained motion has no means of breaking contact
with the ground in the range 0 ≤ q1 ≤ 0.45. 57

7

3.7 The regions of the constrained 2 degree of freedom system which define the
system’s capability to break contact with the ground. The second joint angle
of the system is constrained to move relative to the first as: q2 = −q1 +

0.8π. The regions are: (A) the system will break contact with the ground no
matter what, (B) the system may break contact with the ground by applying
sufficient torque within the limits of the system, (C) the system has no means
of breaking contact with the ground. For this system the boundaries have an
asymptote at q = 0.45 meaning that the system has no means of breaking
contact with the ground for q ≤ 0.45. 58

3.8 Spherical set of joint acceleration vectors with r = 1, each vector in the set
is plotted as a point in joint space. 62

3.9 Example ellipsoid of body accelerations produced by the spherical set of joint
angular accelerations. 62

3.10 Example balance planes for zero moment point locations at the back, centre
and front of the foot. The body of the system may move with any acceleration
on the plane while maintaining the prescribed zero moment point. In this
example xb = 0, yb = 1, mb = 1 and Ib = 1 64

3.11 Nominal 3 degree of freedom model used to verify the dynamic balance el-
lipsoid derivation. 65

3.12 Intersection between the acceleration ellipsoid and the balance plane for the
given model parameters. The numerically determined points of intersection
are shown in orange. 66

3.13 The analytically determined balance ellipsoid and the numerically determined
balance values. 66

3.14 The analytically determined balance ellipsoids for xp = −0.25, 0, 0.25 m. . 67
3.15 Leaning model used to demonstrate variation of the dynamic balance ellip-

soid with zero moment point location and leg configuration. 67
3.16 The analytically determined balance ellipsoids for xp = −0.25, 0, 0.25 for

the leaning model. Notice that the system is able to accelerate the body in a
greater range of values when the zero moment point is at the front of the foot,
closer to the body. 68

4.1 Diagram showing various ways in which a redundant, 4 degree of freedom leg
can produce the same body pose, (xb, yb, φb). Notice that the final segment
of the leg can only be in one position as the orientation of the body is fixed. 72

4.2 Diagram showing various ways in which a redundant, 4 degree of freedom
leg can produce the same body position, (xb, yb), where orientation is not a
constraint. Notice that the final segment of the leg moves freely. 73

4.3 Diagram showing the existence of an unactuated degree of freedom at the end
of the foot during a jumping motion . 78

8

4.4 The 4 degree of freedom model used to represent Numida meleagris. Each
segment is treated as a rigid rod with mass and inertia. Segment inertias
are approximated by 1

12
ml2, where m and l are the segment mass and length

respectively. The inertia of the body was approximated by treating the body
as a solid sphere of radius 0.2 m. 80

4.5 4th order polynomial fit to the body accelerations measured by Henry et al. [6]. 80
4.6 Diagrams of the 4 degree of freedom, without foot model (left) and the 5

degree of freedom, with foot model (right). The additional joint at the end of
the foot is indexed with 0 (e.g. q0) to keep the joint indices consistent between
the two models. 82

4.7 Diagram showing the ground reaction force and the external torque, τ0, acting
at the end of the foot. Positive moments are defined as acting anti-clockwise,
thus a positive value of Fv which acts to the left hand side of joint 0 will
produce a negative torque at joint 0. 83

4.8 Poses of Numida meleagris for the minimum norm acceleration motion. Seg-
ment inertias are not labelled for clarity. 84

4.9 Minimum norm acceleration pseudo-inverse joint angle trajectories. With
experimentally measured angles of Numida meleagris jumps from [6]. The
toe, ankle and hip joints follow the general trajectory as the experimentally
measured data whereas the knee joint deviates from the experimental results,
reaching a difference of 2 radians at the end of the trajectory. 85

4.10 Ground reaction forces of the motion produced by static optimisation, com-
pared with the force plate measurements presented by Henry et al. Both reac-
tion forces change rapidly in the optimisation results due to the leg reaching
near full extension. This is close to the point at which the heel of the foot
would lift off the ground in the actual jumping motion. 85

4.11 Joint torques produced by static optimisation. No comparable data was mea-
sured by Henry et al. The torque applied at the hip is significantly greater than
the torques at other joints. The sharp changes at the end of the trajectory for
all torques are due to the leg reaching near full extension, requiring relatively
greater torque magnitudes for a given body acceleration. 86

4.12 Poses of Numida meleagris for the minimum norm weighted acceleration mo-
tion. The tarsometatarsus and tibiotarsus segments penetrate the ground dur-
ing the motion. 86

4.13 Inertia weighted pseudo-inverse joint angle trajectories. With experimentally
measured angles of Numida meleagris jumps from [6]. The body centre of
mass remains below the hip joint throughout the motion. 87

4.14 Ground reaction forces of the motion produced by static optimisation, com-
pared with the force plate measurements presented by Henry et al. The sharp
changes in reaction force correspond to the point in the trajectory when the
toe joint angular velocity changes direction. 87

9

4.15 Joint torques produced by static optimisation. No comparable data was mea-
sured by Henry et al. The magnitudes of the torques are similar for much of
the motion. Large changes in torque correspond to the point in the trajectory
when the toe joint angular velocity changes direction. 88

4.16 Poses of Numida meleagris for the minimum torque motion. The tarsometatar-
sus and tibiotarsus penetrate the ground. The knee is fully extended at the
point of take-off. The hip joint remains above the centre of mass of the body
throughout the motion. 89

4.17 Minimum norm torque joint angle trajectories. With experimentally mea-
sured angles of Numida meleagris jumps from [6]. These results demonstrate
significant variation in the joint angles. 89

4.18 Ground reaction forces of the static optimisation results, compared with the
force plate measurements presented by Henry et al. Both the vertical and
horizontal reaction forces vary considerably throughout the motion. Both
forces invert multiple times in quick succession at 0.083 s, this is taken as
the point of take-off for the trajectory. Previous points at which Fv becomes
negative are neglected as they may be related to stutter-jumping. 90

4.19 Joint torques produced by static optimisation. No comparable data was mea-
sured by Henry et al. For periods of the motion the torques are small in mag-
nitude, however, points at which the joint angular velocities change result in
spikes in torque magnitudes. 90

5.1 Example motion in which the body moves with velocity in the direction of
the leg alignment. As the the segments are all aligned, the body reaches the
maximum extension and the revolute joint constraint forces prevent further
motion. This results in a large acceleration of the body in the opposite direc-
tion, similar to the crack of a whip. 103

5.2 Example of joint angles defined relative to the previous adjacent segment.
Note that q1 is still defined relative to the inertial frame of reference. 103

5.3 Example joint angle trajectory optimisation result using 3 nodes. The result-
ing duration of the optimised trajectories vary from each other and the exper-
imentally measured data. The final node represents the end of the trajectory
and the point of take-off. 104

5.4 Example ground reaction force from optimisation result using 3 nodes. The
reaction forces change abruptly due to the step change in torque. However,
the step change at the end of the trajectory occurs over a longer duration and
is not due to a step change in torque; the change in reaction force at the end
of the trajectory is due to the leg of the system approaching full extension. . 105

5.5 Dynamic optimisation joint angle trajectories with 2 nodes. The optimisation
failed to converge. The time parameter td was removed in testing but the
optimisation still failed to find a feasible solution. 106

5.6 Poses of the system at equal intervals throughout the resulting trajectory for
the 3 node optimisation. 106

10

5.7 Dynamic optimisation joint angle trajectories with 3 nodes. 107
5.8 Poses of the system at equal intervals throughout the resulting trajectory for

the 4 node optimisation. 108
5.9 Dynamic optimisation joint angle trajectories with 4 nodes. 108
5.10 Poses of the system at equal intervals throughout the resulting trajectory for

the 5 node optimisation. The poses show the segments almost overlapping. . 109
5.11 Dynamic optimisation joint angle trajectories with 5 nodes. 109
5.12 Poses of the system at equal intervals throughout the resulting trajectory for

the 10 node optimisation. With 10 nodes the segments are seen to overlap,
this occurs in the time between nodes. 110

5.13 Dynamic optimisation joint angle trajectories with 10 nodes. 110
5.14 Poses of the system at equal intervals throughout the resulting trajectory for

the 25 node optimisation. The system compresses much more in the prepa-
ration stage than in results from fewer node optimisations. 111

5.15 Dynamic optimisation joint angle trajectories with 25 nodes. 111
5.16 Poses of the system at equal intervals throughout the resulting trajectory for

the 50 node optimisation. The resulting motion involves significant compres-
sion of the system throughout the motion. 112

5.17 Dynamic optimisation joint angle trajectories with 50 nodes. 112
5.18 Dynamic optimisation control signal with 2 nodes. As the optimisation failed,

no meaningful torques were produced. 113
5.19 Dynamic optimisation control signal with 3 nodes. The hip joint is used most

in the initial half of the motion with the remaining joints activating in the
second half of the motion. 114

5.20 Dynamic optimisation control signal with 4 nodes. The toe, ankle and knee
joints are not significantly used in the initial stage of the motion. 114

5.21 Dynamic optimisation control signal with 5 nodes. Little torque is applied at
the toe joint throughout the motion. The knee and ankle are not used in the
initial stage of the motion. 115

5.22 Dynamic optimisation control signal with 10 nodes. The toe and knee joint
torques are not used a lot in the initial stage of the motion. 115

5.23 Dynamic optimisation control signal with 25 nodes. With more nodes the
finer adjustments in the applied torques become more clear. 116

5.24 Dynamic optimisation control signal with 50 nodes. Large oscillations in the
torque applied occur in these results. Especially in the knee and ankle joints. 116

5.25 Dynamic optimisation ground reaction forces with 2 nodes. 117
5.26 Dynamic optimisation ground reaction forces with 3 nodes. 117
5.27 Dynamic optimisation ground reaction forces with 4 nodes. 118
5.28 Dynamic optimisation ground reaction forces with 5 nodes. 118
5.29 Dynamic optimisation ground reaction forces with 10 nodes. 119
5.30 Dynamic optimisation ground reaction forces with 25 nodes. 119
5.31 Dynamic optimisation ground reaction forces with 50 nodes. 120

11

6.1 The point mass system in its starting state (left) and after a successful take-off
(right). a represents the acceleration due to the applied control action. . . . 126

6.2 Plot of the effect of frame skipping on the probability of a successful attempt
at the point mass jumping problem. Steps on the plot are due to the duration
of the episode not dividing perfectly into each action, e.g. 30 frames skipped
and 40 frames skipped will both require 2 actions to be chosen. 128

6.3 The rewards scored by the optimised policies during hyper-parameter selec-
tion. Sets of hyper-parameters were tested 25 times each with a total of 125
test runs. The purple bin on the left of the plot represents failed jumping
attempts. 132

6.4 The rewards scored by the optimised policy for each random seed run. The
purple bin on the left of the plot represents failed jumping attempts. 133

6.5 Joint angle trajectory for the DDPG optimisation run which obtained a reward
of 82.0265, the highest reward. 134

6.6 Poses of the system at equal intervals throughout the resulting trajectory for
the DDPG optimisation run which obtained a reward of 82.0265, the highest
reward. 134

6.7 Joint angle trajectory for the DDPG optimisation run which obtained a reward
of 78.8027, the second highest reward. 135

6.8 Poses of the system at equal intervals throughout the resulting trajectory for
the DDPG optimisation run which obtained a reward of 78.8027, the second
highest reward. 135

6.9 Joint angle trajectory for a randomly selected DDPG optimisation run which
obtained a reward of 48.5575. 136

6.10 Poses of the system at equal intervals throughout the resulting trajectory for a
randomly selected DDPG optimisation run which obtained a reward of 48.5575.136

6.11 Joint angle trajectory for a randomly selected DDPG optimisation run which
obtained a reward of 32.2711. 137

6.12 Poses of the system at equal intervals throughout the resulting trajectory for a
randomly selected DDPG optimisation run which obtained a reward of 32.2711.137

6.13 Torque trajectory for the DDPG optimisation run which obtained a reward of
82.0265, the highest reward. 138

6.14 Torque trajectory for the DDPG optimisation run which obtained a reward of
78.8027, the second highest reward. 138

6.15 Torque trajectory trajectory for a randomly selected DDPG optimisation run
which obtained a reward of 48.5575. 139

6.16 Torque trajectory trajectory for a randomly selected DDPG optimisation run
which obtained a reward of 32.2711. 139

12

List of tables

4.1 Distribution of mass in the body and leg segments as fractions of the total
system mass. 79

4.2 The average time taken to integrate the jumping motion trajectory using static
optimisation to determine the joint acceleration vector from a prescribed body
acceleration while meeting the objectives shown. 84

5.1 Multiple Shooting parameters and their relevance to the trajectory’s duration.
t1 corresponds to the start time of the trajectory and each index thereafter
represents the time at that node. “x” denotes the absence of a parameter at a
given node in the trajectory. 100

5.2 The final objective function scores and computation times for each optimi-
sation run. Note that the objective function represents a cost and so lower
values are considered to be better. 105

C.1 Hyper-parameters used for the DDPG method 163

13

Nomenclature

The units used in this work are all S.I. units, e.g. metres, seconds, kilograms, radians etc.

Algebraic Notation

ä Double dot denotes the second derivative of a with respect to time

ȧ Dot denotes the derivative of a with respect to time

∂x
∂y

Denotes the partial derivative of x with respect to y

det(A) The determinant of the matrixA

N(A) The null space of the matrixA

projba Projection of the vector a onto b

A Bold upper case letter denotes a matrix

A+ The Moore-Penrose inverse (pseudo-inverse) of the matrixA

A−1 The inverse of the matrixA

AT The transpose of the matrixA

‖a‖ Euclidean norm (length or magnitude) of the vector a

a Bold lower case letter denotes a vector

Symbols

J Jacobian matrix of a system

π Decision making policy

q Vector of generalised joint angles

x Vector of Cartesian body position and orientation

F Force

g Acceleration due to gravity, 9.81 ms−2

I Inertia

l Length

m Mass

14

Abstract

Jumping is useful as a precursor for flight and arboreal locomotion, as well as locomotion
through intermittent terrain. This thesis aims to answer the questions: What insights can be
gained through the application of predictive modelling methods to novel contexts in jumping
dynamics problems, and how should the fitness of different predictive modelling techniques
be assessed?

This thesis uses the metrics: predictive power, computational cost, and intellectual invest-
ment, to assess predictive modelling methods for use in jumping research.

Analysis of model equations is rarely found applied to multiple degree of freedom jumping
models in the literature. This work explores such applications of analysis and determines that
the method is capable of providing insights into low and high complexity models.

The work identifies static optimisation for the resolution of second order kinematic redun-
dancy and reinforcement learning as predictive modelling methods which are not currently
used in jumping research. The results of this work imply that static optimisation could be
made viable for providing insights into jumping dynamics problems. However, the static op-
timisation method is demonstrated to produce results which are comparable to experimentally
measured data found in the literature and may be a useful method in jumping applications.
The method is limited in that it does not accommodate the physical constraints of jumping
systems.

Deep Deterministic Policy Gradients, a reinforcement learning method, is shown to also vi-
olate physical constraints. The method is demonstrated to be unreliable when applied to
jumping dynamics problems with 32% of optimisation runs failing to achieve any positive
rewards.

Dynamic optimisation is assessed on its predictive power, computational cost, and intellectual
investment and is deemed to require considerable intellectual investment to use.

As well as insights into the methods used to solve jumping problems, this work provides
technical contributions of: 1) demonstration of a novel method used to determine the dynamic
balancing capability of a jumping system and 2) empirical demonstration of a second order
kinematic simulation method with results comparable to those found in the literature.

15

Declaration of originality

I hereby confirm that no portion of the work referred to in the thesis has been submitted in
support of an application for another degree or qualification of this or any other university or
other institute of learning.

16

Copyright statement

i The author of this thesis (including any appendices and/or schedules to this thesis) owns
certain copyright or related rights in it (the “Copyright”) and s/he has given The Uni-
versity of Manchester certain rights to use such Copyright, including for administrative
purposes.

ii Copies of this thesis, either in full or in extracts and whether in hard or electronic copy,
may be made only in accordance with the Copyright, Designs and Patents Act 1988
(as amended) and regulations issued under it or, where appropriate, in accordance with
licensing agreements which the University has from time to time. This page must form
part of any such copies made.

iii The ownership of certain Copyright, patents, designs, trademarks and other intellectual
property (the “Intellectual Property”) and any reproductions of copyright works in the
thesis, for example graphs and tables (“Reproductions”), which may be described in
this thesis, may not be owned by the author and may be owned by third parties. Such
Intellectual Property and Reproductions cannot and must not be made available for use
without the prior written permission of the owner(s) of the relevant Intellectual Property
and/or Reproductions.

iv Further information on the conditions under which disclosure, publication and com-
mercialisation of this thesis, the Copyright and any Intellectual Property and/or Re-
productions described in it may take place is available in the University IP Policy (see
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420), in any
relevant Thesis restriction declarations deposited in the University Library, The Univer-
sity Library’s regulations (see
http://www.library.manchester.ac.uk/about/regulations/) and in The
University’s policy on Presentation of Theses.

17

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/

Acknowledgements

I would like to thank my supervisors Prof. Bill Crowther and Dr. Ben Parslew for all of the
support and guidance they have provided, both academically and in life. The patience they
both had for me was phenomenal and greatly appreciated.

I am grateful for the support and encouragement of my parents, Judy Forrister and Andrew
Marsh. They always made me feel like I could achieve anything.

I would also like to thank Prof. Mike Barnes for his help and guidance early in the work while
I found my footing in the world of research.

Thank you to all the researchers in the F46 and D46 labs in Sackville St. building for all the
talks, support and the lunch time gaming.

18

Chapter 1

Introduction

Legged systems are able to walk, run, and jump, enabling them to traverse terrains of varying
heights and gaps. Such capabilities are particularly desirable for search and rescue robots,
as well as systems designed to explore harsh terrains including caves and extra-terrestrial
lava tubes. The ability to jump can provide a system with means to cross gaps in terrain
as well as providing sufficient velocity for a flight take-off in the case of birds. Research
into jumping systems and the motions they produce may also provide insight to the field of
athletics, aiding with physiotherapy, performance, and prosthetics. A jump may be divided

Figure 1.1: Video frames of a jumping toad (Rhinella marina) taken from work published
by Reilly et al. [1]. The frames show the progression of jumping stages from flight (left) to
landing (left-centre) to push-off (right-centre) to flight again (right).

into sequential stages, which are: preparation, push-off, flight, and landing. The take-off
event is defined between push-off and flight as the moment the system breaks contact with
the substrate it is jumping from. Similarly, the touch-down event occurs after the flight stage,
when the system makes contact with a surface. The scope of this work is concerned with the
push-off stage and the take-off event. The flight stage may consist of ballistic motion of the
system, or may be extended by aerodynamic features such as wings, in which case it may be
considered as a separate motion from the preceding jump. A system’s ability to withstand
touch-down and landing may impose requirements on push-off and take-off. When landing,
a jumping system may use elastic storage mechanisms to reuse some of the energy from the
previous jump to perform another jump. This case of continuous hopping generally ties better
to running than one-off jumping and is modelled using the spring-loaded inverted pendulum
[2]. Such intricacies of jumping are not considered here.

With peak forces that are often many times greater than the weight of the system, jumping sys-
tems require effective structural and mechanical design to both produce and withstand such
forces. Biological systems with articulated legs, such as humans and birds, have rich and
complex configuration spaces; often too rich to exhaustively search when determining ideal

19

motions for the system. Yet many of these systems demonstrate a mastery of balance and con-
trol when executing dynamic jumping motions. As such, some researchers study the exem-
plary motions produced by biological systems [3]–[10]. To properly measure the motions of
living subjects generally requires an extensive experimental process [11]. Other researchers
use predictive modelling methods, such as dynamic optimisation, to determine motions using
models of jumping systems [12]–[19]. While the kinematic and dynamic models used in both
of these approaches are generally similar, the methods used and insights gained vary. This
work investigates the use of predictive modelling methods in solving jumping problems using
planar, segmented models of jumping systems ranging from 1 to 5 degrees of freedom. The
investigated methods include: analysis of model equations, static optimisation of kinematics,
dynamic optimisation (aka trajectory optimisation), and reinforcement learning. Model-free
methods from reinforcement learning are identified in this work as potentially useful methods
for jumping motion data procurement which are rarely found in jumping literature.

Predictive modelling involves the use models of a system to produce data for that system. This
provides an alternative to measurement of data directly from a system of interest. Methods of
predictive modelling, such as optimisation, have the potential to reveal high performance be-
haviours for jumping systems. These methods The implementation and use of predictive mod-
elling methods may be hindered by the intellectual investment or potentially large amounts
of computational resources required in their use. Other reasons for their infrequent use may
be that their predictions are brittle, or dependent on the models used rather than the system
itself. The following predictive modelling methods are investigated:

1. analysis of model equations,

2. static optimisation,

3. dynamic optimisation,

4. reinforcement learning.

The methods are assessed in the context of jumping dynamics problems using the following
criteria:

• Predictive Power - How flexible the method is, the range and utility of the results it
provides, and the limits in model complexity for the method.

• Computational Cost - The time it takes for a commercial, high spec desktop computer
to carry out the method.

• Intellectual Investment - The domain knowledge required from the user of the method,
in both the problem and the method.

20

1.1 Research Problem and Questions

The use of predictive modelling techniques for solving jumping dynamics problems is well
established, yet some predictive modelling methods are not used in jumping literature. Many
predictive modelling methods are complex and difficult to apply without expert knowledge,
and it is difficult for non-experts to make rational choices on what methods to apply.

The questions which arise from this problem are:

1. What insights can be gained through the application of predictive modelling methods to
novel contexts in jumping dynamics problems?

2. How should the fitness of different predictive modelling techniques be assessed?

1.2 Thesis Aim and Objectives

The aim of this thesis is to provide a critical assessment of the use of predictive modelling
methods in jumping dynamics research.

The objectives of this work are to:

1. investigate the application of predictive modelling methods, which are not already used
in jumping literature, to jumping problems

2. assess the predictive power, computational cost, and intellectual investment of predictive
modelling methods

3. facilitate the decision making process of researchers wanting to use predictive modelling
methods through the comparison of common methods

4. demonstrate best practice for using a variety of predictive modelling methods through a
series of case studies from biomechanics and robotics

1.3 Thesis Outline

Literature from jumping research which utilised predictive modelling methods is reviewed.
The predictive power, computational cost, and intellectual investment of the methods are
discussed. Patterns in the usage of the methods are also identified. The literature review
reveals uncommon usages for some predictive modelling methods which this thesis intends
to investigate.

Chapter 3 provides formalisation of an analysis of model equations method found in the lit-
erature [17], [20] and demonstrates the novel application of the method to jumping systems
models with multiple degrees of freedom. The chapter also uses analysis of model equations
to derive the novel concept of a dynamic balance ellipsoid.

21

Following this, Chapter 4 investigates the use of static optimisation for the resolution of kine-
matic redundancy in the novel application of jumping, which was found to be unused in
jumping research in the literature review. The work uses a model of the guinea fowl (Numida
meleagris) found in the literature [6]. Chapter 5 explores the use of dynamic optimisation for
predictive modelling using the case study model used in Chapter 4. Chapter 6 investigates
the application of reinforcement learning for predictive modelling of jumping systems.

The methods studied in each of the technical chapters are also assessed on their predictive
power, computational cost, and intellectual investment.

1.4 Research Methods in Jumping Dynamics

Jumping is a behaviour studied in the fields of biomechanics, robotics, and optimal control.
Each field of study typically seeks to obtain different insights into jumping and so use different
methods. This section provides a brief overview of the methods used in each field.

Biomechanics research primarily focuses on explanatory modelling of existing biological sys-
tems [11]. This generally involves collection of experimentally measured data from biolog-
ical systems. The data are then used alongside models of the system to explain how those
behaviours might be achieved. For example, studies seek to determine whether a jumping
motion is possible to achieve using only muscles, or whether additional features, such as elas-
tic storage, are required [6]. Explanatory modelling is a strong focus of biomechanics. Such
an endeavour requires collection or synthesis of motion data and may benefit from predictive
modelling methods, providing the data they produce can be validated.

Robotics and optimal control studies typically use optimisation to produce desirable motions
of systems through open or closed loop control [21]. These fields often use detailed mathe-
matical notation which can be time consuming to interpret. Closed loop control is the general
focus in robotics and optimal control as this enables adaption of the system to errors and noise.
In the endeavour of robust control, many methods are designed to consider various eventu-
alities of a system and may prove excessive in dynamic motion studies, unless the system’s
control strategy is of particular interest. Another focus of robotics includes design, often re-
lated to manipulators and the space in which they are fixed during operation. Manipulators
are usually articulated robotic systems, similar in topology to arms and legs. Their dynamic
equations of motion are often very similar to those used in jumping studies and methods used
in manipulator design may also be applied in jumping research.

Some research in biomechanics is tending towards “model-free” methods, which do not re-
quire knowledge of the model equations. Model-free methods may require less intellectual
investment as the researcher is not required to derive or understand the equations of motion
for models of the systems they are studying. Reinforcement learning contains a set of model-
free optimisation methods which may be suitable in such applications [22]. While most rein-
forcement learning methods are limited to discrete decision processes, some state of the art
applications of reinforcement learning have been demonstrated in continuous control appli-

22

cations [23]. Reinforcement learning uses the Markov Decision Process framework, in which
state transitions are defined as probabilities rather than the rates of change used in dynamics.
Accommodation to these probabilistic transitions often leads to a probabilistic solution, i.e.
the resulting controller samples its control actions from an optimised probability distribution.
Examples of state of the art stochastic policy methods include Trust Region Policy Optimisa-
tion [24], Proximal Policy Optimisation [25], and Soft Actor-Critic [26]. This work considers
the Deep Deterministic Policy Gradient method [23] which is derived from the deterministic
policy gradient proposed by Silver [27] as it is one of the few reinforcement learning methods
which produces a deterministic policy while also accommodating continuous control actions.

1.5 Predictive Modelling

Predictive modelling methods use models of a system to determine possible behaviours or
performances of the system. The ability to accurately predict behaviours of a system can
allow for research of animals without the need to experimentally measure their behaviours.
Predictive modelling also enables research into systems which do not exist, including extinct
animals and hypothetical systems. There is a catch: validation of predictions generally in-
volves comparison with a ground truth, which, in the case of animals, means experimentally
measuring behaviours to compare the predicted behaviours against. In some contexts, it may
be sufficient to validate the steps which lead to a prediction and trust that those steps combine
to also create a valid prediction.

It is common practice to obtain example motions of a model from experimentally measured
data and to then use optimisation on an inverse dynamics model to predict actuation efforts
used by the system [3], [4], [6]–[8], [11]. When experimental data are unavailable, the gen-
eration of jumping motion data is typically done using dynamic optimisation methods from
optimal control theory on forward dynamics models. Dynamic optimisation uses a scalar
objective, such as jump height, to determine the optimal motion of the model [9], [12], [15],
[16], [28]. These two methods of data collection, experimental and predictive, may be con-
sidered as alternate methods for obtaining ideal jumping motions of a given system [11].

In robotics, predictive modelling is typically used to design systems and in development (and
implementation) of controllers. In design, parameters of the model are optimised to maximise
metrics such as the dexterity, working space, or maximum acceleration of a manipulator [29];
or the agility of a jumping robot [30]. Dynamic optimisation generally uses a forward dynam-
ics model of the system and attempts to find control (force and torque) inputs which shape the
dynamics into desirable behaviours. Model predictive control is a controller implementation
which performs dynamic optimisation to select the next control action for the system over reg-
ular intervals during operation. At each interval the optimised control is applied and another
optimisation is performed in a sliding window fashion. The optimised trajectory typically
looks further ahead in time than the optimisation intervals occur.

The methods described above require models of the system. Model-free methods, such as

23

reinforcement learning or genetic algorithms, work with data collected from a system in-
stead of the model equations. This is significant as model-free methods may be applied to
real-world systems which may be too complex to model and simulate. Similarly, model-free
methods may be applied to simulations without the user being required to be aware of the
model and equations used in the simulation, this includes dynamic simulation applications
such as GaitSym [31] and OpenSim [32].

Predicting how a system might behave does not directly provide an explanation for the be-
haviour and gives no notion of how the system’s performance may be improved. However,
the predicted behaviour may be used as data in explanatory modelling, which seeks to find
such relationships between a system parameters and its performance. In this work, predic-
tive modelling methods are considered for finding feasible, or optimal, motions of jumping
systems. The following methods are investigated:

1. Analysis of model equations,

2. Static optimisation,

3. Dynamic optimisation,

4. Reinforcement learning.

When deciding which of the above methods to use, one must take multiple factors into con-
sideration. Predictive modelling methods vary in the models they may be applied to. It is
uncommon to find analysis of model equations for systems with many degrees of freedom; be-
haviours of such systems are generally obtained by experimentally measuring data or through
optimisations which require significant computational resources. Some methods of predic-
tive modelling are flexible in the sense that they may be used to determine many factors of a
system’s behaviour, while others, such as static optimisation, are limited to a smaller subset
of behaviours.

Jumping, dynamics, biology, algebra, and optimisation are all different subjects. While ex-
perts may have diverse pools of knowledge and experience to draw from, the time and re-
sources required to study all of these subjects should be considered when deciding to pursue
research into jumping dynamics using predictive modelling methods. Each of the methods
require different levels of domain knowledge, both for the implementation and use of the
method. For example, model-free methods, such as reinforcement learning, are feasible to
apply to a black box system or simulation, requiring no knowledge about the workings of the
system (although such knowledge may still be beneficial in practice).

1.6 Definitions and Assumptions

This section intends to clarify the terminology and assumptions used in this work.

24

1.6.1 Planar Jumping System

The complexity of model necessary for a problem depends on many factors. It is preferable to
select the minimum order model while maintaining a suitable level of precision and accuracy
in replicating the system. A considerable reduction in the order of jumping models can be
made by looking at only planar motion of the system. A good approximation of bipedal
locomotion can be made by looking at movement in the sagittal plane as most systems move
both their bodies and legs predominantly in this plane during jumping [33], the same strategy
may be applied to jumping systems.

Tarsometatarsus

Tibiotarsus

Femur

Head, Arms and Torso

Toes

Hip

Knee

Ankle

Toe

Figure 1.2: Example planar jumping model of Numida meleagris. Each segment is treated as
a rigid body with mass and inertia. Segments are connected by revolute joints (orange). The
diagram is for illustrative purposes only and is not drawn to scale. Centre of mass indications
are drawn smaller for leg segments than the body but are not indicative of relative mass or
inertia.

The planar models in this work consist of segments connected by revolute joints. Each joint
represents a degree of freedom in the model as shown in figures 1.2 and 1.3. The inertial frame
of reference for all models is aligned such that gravity acts in the negative vertical, y, direction.
The ground is assumed to be flat and aligned with the horizontal, x, direction. The origin for
all models is set to the point at which the leg, or foot, meets the ground coinciding with the
position of the first revolute joint as shown in figure 1.3. Each degree of freedom in a model
is described by the angle made by the segment attached to the joint and the horizontal ground
plane. The angles of each joint are defined relative to the horizontal inertial axis i.e. the
ground angular displacement. Many examples in manipulator literature define angles using
the angular displacement of a segment relative to the previous adjacent segment, meaning
that, when the angle is zero (or an integer multiple of π), the two segments are aligned. The
use of angles which are relative to the inertial frame produces a simplified set of equations of
motion compared to the use of relative joint angles used in robotics as no fictitious forces need

25

to be included in the equations. The definition of angles using adjacent segments is necessary
when angles are measured by sensors inside the robot, such as encoders. In biomechanics,
the measurement of angles in motion capture is usually performed by a set of cameras in the
inertial frame, thus allowing an inertial angle to be defined relative to the ground.

q1

q2

q3

l3

l2

l1

(0,0)

y

x

ϕb

(0,0)

y

x

(xb,yb)

Figure 1.3: (Left) The joint angles and segment lengths for an example 3 degree of freedom
model and (right) the body pose of an example 3 degree of freedom model.

The joints in a model are numbered in ascending order, starting with the joint connecting the
leg to the ground and working along the leg towards the final joint connecting to the body as
shown in figure 1.3. The angles of the joints are given by the vector q while q̇ and q̈ represent
the joint velocities and accelerations respectively. The lengths of each segment are given by
the vector l. The generalised coordinates of a model are the minimal set of coordinates which
fully describe the model’s pose. For all models in this work the generalised coordinates are
the vector of joint angles, q. The complete configuration, or state, of the model is given by the
joint angles and velocities, q and q̇. While the generalised coordinates describe the pose of
the entire model, they are not easily understood and quickly become intractable when plotted
as time series, especially for systems with many degrees of freedom. It is more intuitive to
look at the motion of the body, which is attached to the open end of the chain, or leg. The pose
of the body, x, provides the body’s horizontal and vertical position, xb and yb and orientation
φb as shown in figure 1.3. The segment lengths, joint angles and body pose for a model with
n degrees of freedom are:

l =

l1

l2
...
ln

 , q =

q1

q2
...
qn

 , x =

xb

yb

φb

 . (1.1)

1.6.2 Defining a Jump

This section provides a definition of a jump. Jumping is an atypical method of locomotion as
it is not a cyclic motion like walking, running or flying. Note that this work is not concerned

26

with cyclic jumping motions, also known as hopping. As previously mentioned, this work
considers the push-off stage and take-off event of a jump. For this explanation, consider
a jumping system standing on flat ground with gravity acting down, perpendicular to the
ground as shown in figure 1.4. The preparation stage involves the system moving into an ideal
state from which to begin the high effort push-off stage, this typically entails a crouching
motion. The push-off stage is when the system applies a force greater than its weight to
the ground, receiving a reaction force which accelerates the system’s centre of mass. As
previously mentioned, the jump concludes with the system breaking contact with the ground.
While jumps may be performed from many surfaces, it is discussed in this work with reference
to the ground. It is assumed that the ground is solid and does not deform during the jumping
motion. Many sources in the literature define the point of take-off in a jumping motion as the
moment when the foot breaks contact with the ground [12], [17], [20], [34]. By assuming

g

Fv

Figure 1.4: Diagram of a planar jumping model standing on flat ground with gravity acting
down, perpendicular to the ground. The vertical ground reaction force, Fv, is labelled.

that the system is unable to grip or hold onto the ground, the breaking of contact is defined
by the vertical ground reaction force, Fv. Without means of pulling on the ground, if Fv ≤ 0

then the system must break contact with the ground and take-off occurs. This may also be
considered in terms of the accelerations, ÿ, and masses, m, of each segment in the model:

Fv =
n∑

i=1

mi(ÿi + g) (1.2)

where n is the number of segments in the model and g is the acceleration due to gravity (9.81
ms−2). Breaking contact with the ground does not guarantee the motion to be a jump; it is
possible for the leg to be contracted with sufficient force that the foot is pulled towards the
body. Should this occur while the body of the system is stationary or moving towards the
ground, then the system would proceed to fall instead of jump. To differentiate these motions
from jumps, a further criteria is proposed: the centre of mass of the system must have some
velocity in the opposite direction to gravity at the point of take-off, as shown in figure 1.5.
This is included to exclude motions such as diving from the definition of a jump.

27

g

jump

dive

Figure 1.5: Diagram demonstrating the different motions which occur upon breaking con-
tact with the ground. The coloured circle around the system’s centre of mass represents the
direction of the velocity of the centre of mass. Any motion involving velocity with some
component opposite to the gravitational field direction is considered a jump.

The ground reaction force is a notoriously difficult aspect to model for any ground-based
locomotion problem. In jumping the ground reaction force could be modelled using a spring-
damper or as the constraint force in a revolute joint. The spring-damper model requires tuning
for the specific model and motion exhibited, but allows the simulation to proceed after contact
with the ground is broken. Whereas the revolute joint model will apply a negative ground
reaction force, allowing the system to pull on the ground. This means that the revolute joint
model must measure the ground reaction force and halt the simulation when the vertical force
becomes ≤ 0. In this work it is considered sufficient to model contact with the ground using
a revolute joint as this requires no additional steps in deriving the model.

The horizontal constraint force of the revolute joint connecting the system to the ground may
be used to evaluate the friction forces acting in the system. In order to consider realistic
motions, the horizontal ground reaction force must not exceed the limits of friction. Some
jumping studies do not consider friction [12], [17], [20]. This is likely because friction de-
pends on the normal force, which in jumping is the vertical ground reaction force. As the
system approaches the point of take-off, the vertical ground reaction force approaches zero
and thus the friction force will also. Therefore it may suffice to only consider the vertical
ground reaction force in such applications.

Take-off and flight are typically considered separately from the jumping motion. In this work,
and many others [12], [14]–[17], [20], [34], [35], jump height is considered as the height
gained by the centre of mass of the system during the flight state. This is generally modelled
by assuming ballistic motion of the system with no effects of air resistance, thus the velocity

28

of the system at take-off defines jump height as:

h =
v2TO

2g
. (1.3)

Where h is the jump height, vTO is the velocity at take-off and g is the acceleration due to
gravity (9.81ms−2).

1.6.3 Stability and Balance

The term “stability” used in reference to dynamic systems in the context of optimal control
generally refers to Lyapunov’s definition of stability which is that an equilibrium state of a
system is stable if the system, when started within a certain distance from the equilibrium, will
not move greater than a finite distance from the equilibrium at any time in the future [36].
“Stability” is often used to describe a structure’s resistance to falling over, which follows
the definition given by Lyapunov. However, these definitions are not applicable to systems
undergoing acceleration, as the definition of an equilibrium point is that the rate of change of
the state of the system is equal to zero. Some works discuss stability of jumping systems as the
ability of the system to jump without falling over [34], however, in a context where optimal
control theory is used often, it is important to ensure that the terms used are unambiguous.
Thus, in this work the system’s resistance to falling over is referred to as the “balance” of the
system. A system may be in static balance if the system does not fall over while remaining
stationary and dynamic balance describes a system which is moving while not falling over
[37].

1.6.4 Redundancy in Models

This section looks to clarify the definitions of redundancy in jumping systems. A common
notion of redundancy relates to the muscles of a system; in models there are generally more
muscles actuating a jumping system than there are degrees of freedom and thus the muscles
are redundant. This redundancy means that there are an infinitely many combinations of mus-
cle forces which may produce a given motion of the model. This work considers a separate
form of redundancy in jumping systems: the kinematics of the body and leg’s motions. For
a planar model, the body has 3 degrees of freedom. Any model which includes a leg having
more than 3 joints will therefore be redundant in moving the body. This redundancy of the
leg allows for “self motion” in which the leg may control the body while also meeting other
objectives at the same time.

The forward kinematics of a model define the relationship from joint properties to body prop-

29

erties:

x = f(q)

ẋ = f(q, q̇)

ẍ = f(q, q̇, q̈).

Inverse kinematics describe the reverse:

q = f(x)

q̇ = f(x, ẋ)

q̈ = f(x, ẋ, ẍ).

This kinematic redundancy may be taken advantage of during jumping motions, this is dis-
cussed further in Chapter 4.

1.7 Kinematics of Jumping Systems

The kinematics of a jumping system are used in Chapter 4. This section provides clarification
of the necessary terms.

Kinematics describe the motion of a system without consideration of the forces and torques
which cause such motion. In the planar jumping models of this work kinematics are used to
relate the positions, velocities and accelerations of the degrees of freedom, typically relating
the motion of joints to the motion of the body of the system. Kinematics are straightforward to
derive and provide a useful tool for synthesis of jumping motions, whereas dynamic models
require an additional step in determining the forces and torques required to produce desired
accelerations. In this work, static optimisation is applied to kinematic models of jumping
systems to produce jumping motions. This process uses the mapping from joint angular
accelerations to the acceleration of the body which is defined by the Jacobian matrix of the
system and the time rate of change of the Jacobian matrix. Both entities are derived in this
section along with general kinematic definitions used in this work.

The Jacobian matrix, J (hereon referred to as the “Jacobian”), relates the joint angular ve-
locities to the body velocity:

ẋ = Jq̇ (1.4)

where J , a m× n matrix, is defined as:

J =

−l1 sin(q1) −l2 sin(q2) . . . −ln sin(qn)
l1 cos(q1) l2 cos(q2) . . . ln cos(qn)

0 0 . . . 1

 . (1.5)

30

For the planar models in this work, the Jacobian has m rows, corresponding to the m degrees
of freedom of the body: horizontal and vertical translation and rotation about the normal of
the plane. When considering only the translation of the body, the Jacobian will have 2 rows.
The n columns of the Jacobian correspond to the n degrees of freedom, or joints, in the leg.

The kinematic accelerations, or second order kinematics, are found by taking the derivative
of the velocities with respect to time:

ẍ = Jq̈ + J̇ q̇. (1.6)

The time rate of change of the Jacobian, J̇ , is defined as:

J̇ =

−l1q̇1 cos(q1) −l2q̇2 cos(q2) . . . −lnq̇n cos(qn)
−l1q̇1 sin(q1) −l2q̇2 sin(q2) . . . −lnq̇n sin(qn)

0 0 . . . 0

 . (1.7)

The product J̇ q̇ represents the centripetal acceleration of the body due to rotational velocities
of the leg segments. Note that equation (1.6) is a kinematic relation between joint and body
accelerations. The equations contain no information about the torques causing the accelera-
tions.

1.8 Dynamic Equations of Motion for Jumping Models

The generalised dynamics of an articulated system are presented in different forms depending
on the school of research. This section provides clarification of the general form of equations
of motion used in this work. All derivations of equations of motion use Lagrangian mechan-
ics, examples of which may be found in various engineering mechanics text books or lecture
series. Lagrangian mechanics is chosen over Newtonian mechanics as its algorithmic nature
makes it more easily applied to systems with multiple degrees of freedom as well as being
especially suitable for use in computer algebra system implementations. The equations of
motion for the models used in this work are provided in B.

The equations of motion for a dynamic system are presented in their general matrix form by
collecting the joint angle, velocity, and acceleration terms. It is common practice to present
the equations of motion in their inverse dynamic form, where the net forces at each degree of
freedom are found from the positions, velocities and accelerations. The following equations
show some of the conventions used to represent the dynamics in their general form.

Hq̈ +Cq̇ + τg = τ (1.8a)

M (q)q̈ +C(q, q̇)q̇ + τg(q) = τ (1.8b)

A(q)q̈ +B(q)q̇2 +C(q) = τ (q, q̇) (1.8c)

The inertia matrix is represented by either A, H or M . The centripetal and Coriolis terms

31

are represented by Cq̇, C(q, q̇)q̇ or B(q)q̇2, where q̇2 represents the element-wise product
of q̇ with itself. τg, τg(q) and C(q) are the vectors of torques acting at each joint due to
gravity. τ is the vector of externally applied torques at each joint. τ may be considered as
the torques provided by motors at each joint, as it often is in manipulator work. τ (q, q̇) is
used as shorthand to represent the various torques at joints due to muscle or tendon models
included in some biomechanics work. τ and τ (q, q̇) are interchangeable.

Equations (1.8a) and (1.8b) are generally found in robotics literature [21] with (1.8b) only
being used when the joint angle dependencies are relevant to show in the equations. Equation
(1.8c) is found in older biomechanics work (1990s) [12], [15], it is unclear what notation
is used in recent studies as dynamic models are typically constructed in software and their
equations are not explicitly presented in published papers.

This work uses equation (1.8a) for its conciseness. A further condensed form of the dynamics
will be used when equations become long:

Hq̈ + b = τ (1.9)

where
b = Cq̇ + τg. (1.10)

All forms of equation (1.8) provide the inverse dynamics of the model. The forward dynamics
are found by inverting the inertia matrix of the model:

q̈ =H−1

(
τ −Cq̇ − τg

)
. (1.11)

In a well defined model, the inertia matrix is symmetric and positive definite and therefore
always invertible. If the model is not properly defined, then the inertia matrix will not be
invertible. Examples of ill-defined models are provided in the following sections where rel-
evant.

1.9 Computer Algebra Systems

The process of deriving the equations of motion for a model can be automated and completed
by a computer algebra system, such as MatLab’s symbolic toolbox [38]. (Similar systems
such as Wolfram Alpha and SymPy are also available). This work makes use of the symbolic
toolbox in MatLab for derivations of equations of motion, kinematic equations and constraint
equations for various models. A computer algebra system can be used to compute the time
derivatives of the segment positions to obtain the full set of kinematic equations for a model.
Using the kinematics, the equations for kinetic and potential energies are trivial to obtain.
Finally, the partial derivatives which comprise the Lagrangian may also be computed using
a computer algebra system.

32

Figure 1.6: The number of terms in the equations of motion for planar articulated leg models.
The models consider each segment as a rigid body with mass and rotational inertia. Joint
angles are defined relative to the inertial frame to minimise the number of terms in each set
of equations.

1.10 A Note on Model Complexity

The “complexity” of a model may refer to many aspects of the model. In this work, complex-
ity is considered to be dependent on the number of internal interactions of the model. Internal
interactions influence one another, leading to non-linear behaviours. Adding degrees of free-
dom to jumping models increases the number of interactions and therefore the complexity of
the models. Such models quickly reach levels of complexity which are time consuming for
researchers to comprehend. Thus, complex models generally require a change in the scope
of research objectives from general system behaviours to specific trajectories and motions;
features which are agnostic of parameters in the system to features which are parameter de-
pendant.

To demonstrate this dilemma, the symbolic toolbox in MatLab [38] was used to derive the
equations of motion for a range of planar leg models. All angles in the models are defined
relative to the inertial frame to ensure no fictitious forces are included in the equations. The
number of terms in the equations were counted in MatLab and the results presented in figure
1.6. Each term may be approximately related to an interaction within the model, such as cen-
tripetal acceleration, thus, more terms in the equations of a model means more components
to comprehend for the researcher. The derived equations are presented in B.

33

1.11 Models used in this work

This section will discuss the 1, 2, and 4 degree of freedom planar jumping models used in this
work. The following chapters of this thesis will refer to this section for context of the mod-
els used. The dynamic equations of motion for each model were derived using Lagrangian
mechanics implemented in MatLab’s symbolic toolbox. The equations of each model are
included in B.

A common model found in biomechanical jumping literature comprises 4 segments: foot,
shank, thigh and HAT (Head Arms and Trunk/Torso) [6], [12], [14], [16]. Each segment in
the model is considered as a rigid body with uniform density and rotational inertia. The 4
degree of freedom model is generally considered sufficient to capture the main motions of a
jumping system, however, it does not consider contributions from the torso, arms/wings, or
the head of the system. Models with fewer degrees of freedom are considered here as they
provide insights into the general motion of the system’s centre of mass with the 2 degree of
freedom model incorporating the non-linearity of an articulated leg.

1.11.1 One Degree of Freedom Model

The 1 degree of freedom models in this work, as shown in figure 1.7, consider a single ro-
tational degree of freedom between the system and the ground. The model is equivalent to
an inverted pendulum. The system may be abstracted as either: an inertial rod as in [17] and
[20], a point mass body [34], or a rigid body with rotational inertia which is not based on a
rod shape. Examples of the inertial body case for single degree of freedom models are rare
as it is not necessary. However, 4 degree of freedom models which use the inertial body case
include [12], [15], [16]. In the case of the point mass and rigid bodies, the body is attached to
the ground via a massless, rigid link. In each case the system is connected to the ground by a
revolute joint located where the foot of the system would be. The system is parameterised by
its mass m, inertia I , and the length of the link l. The configuration of the model is defined
by the angle, q, between the rod/link and the ground, and the angular velocity q̇.

The inertial rod model considers the system’s inertia about the joint connecting the leg to the
ground. This is unlikely to be a readily obtained value, one is more likely to find the inertias

q

Inertial Body

Massless Link

q

Point Mass

Massless Link

q

Inertial Rod

Figure 1.7: The single model variations. (Left) The point mass on a massless link, only
considers the rotational inertia of the system about the joint between the link and the ground.
(Centre) The inertial rod considers both the rotational inertia of the system about the joint
and the centre of mass of the system. (Right) The inertial body is an extension of the inertial
rod which does not assume the body to have the inertia of a thin rod.

34

of each body segment about their respective centres of mass [39] (note: the source cited here
contains graphic images and may be unsettling for some readers). The rigid body model has
rotational inertia about the point where the link connects to the body at the centre of mass, this
is considered as the body’s inertia, Ib. The inertia of the system about the joint connecting
the link to the ground, Ij , is then obtained using the parallel axis theorem:

Ij = Ib +ml2

where m is the mass of the system and l is the length of the link. The benefit of considering
the system as an inertial body connected to a massless link is that the inertia of the system
remains the inertia of the body, whereas treating the system as an inertial rod imposes an
abstraction on the system’s inertia. While this abstraction may be trivial, the resulting model
and equations are not immediately related to properties of the system.

The system is actuated by a torque applied to the rod. With no foot, the source of the torque
may be considered as two thrusters attached to the free end of the rod which point perpendic-
ularly to the rod. With a foot, the torque might be applied by a motor at the joint connecting
the rod to the foot.

1.11.2 Two Degree of Freedom Model

Adding a second rotational degree of freedom to a jumping model doubles the number of
parameters required to fully describe the system. Additionally, the second degree of freedom
introduces internal interactions to the system wherein the motion of the two segments are
coupled. The 2 degree of freedom model comprises two rigid segments with lengths l1 and
l2, masses m1 and m2, and inertias I1 and I2. The segments are connected together by a
revolute joint with angle q2 and externally applied torque τ2. The lower segment is attached
to the ground by a second revolute joint with angle q1 and externally applied torque τ1. This is
dynamically equivalent to an inverted double pendulum and is a classic example of a system
capable of chaotic motion.

q1

q2

l2

l1

(0,0)

y

x
τ1

τ2
m1, I1

m2, I2

Figure 1.8: The two degree of freedom system, treating the second link as the body of the
system. The first segment is treated as an inertial rod while the second segment is considered
as a massless link connecting a rigid body to the first segment.

35

1.11.3 Four Degree of Freedom Model

The model used most often in jumping applications is the 4 degree of freedom model. In
this work, the first three segments are treated as inertial rods while the final segment of the
model, which represents the head arms and torso of the system, is considered as a rigid body
connected to the third segment by a massless link. This gives more design control over the
body’s inertia. 4 degree of freedom models of humans consider the foot, shank, thigh as the
first three segments. 4 degree of freedom models of birds consider the tarsometatarsus, tibio-
tarsus and the thigh as the first three segments. Most 4 degree of freedom models consider
the head, arms, and torso as the fourth segment.

l1

l2

l3

l4

q1

q2

q3

q4

m1, I1

m2, I2

m3, I3

m4, I4

Figure 1.9: The four degree of freedom system, considering either the foot, shank and thigh
or the tarsometatarsus, tibiotarsus and thigh as the first three segments. The fourth segment
generally comprises the head arms and torso.

1.12 Summary

This chapter introduced the context of this work using predictive modelling methods in the
study of dynamic jumping systems. The aims and objectives of the work were stated and
discussed. The chapter also provided clarifications and definitions relevant to the thesis in-
cluding the presentation of diagrams for the models used.

36

Chapter 2

Literature Review

This work considers the application of predictive modelling methods to jumping systems for
motion data procurement. This literature review first presents the planar, articulated models
used in jumping research for context. Next, the review explores the application of predictive
modelling methods to such models in the jumping literature, as well as predictive modelling
methods which are not found in the jumping literature. Each method is discussed in relation
to the metrics described in Chapter 1:

• Predictive Power - How flexible the method is, the range and utility of the results it
provides, and the limits in model complexity for the method.

• Computational Cost - The time it takes for a commercial, high spec desktop computer
to carry out the method.

• Intellectual Investment - The domain knowledge required from the user of the method,
in both the problem and the method.

Predictive modelling methods found in robotics and optimal control literature that are not
commonly found in jumping literature are presented and discussed regarding their potential
application to jumping problems.

2.1 Jumping Models

This section categorises jumping models found in the literature by the number of degrees
of freedom they have. Degrees of freedom may be considered as an indication of model
complexity; the more degrees of freedom a model has, the more complex it may be considered
to be. A method’s predictive power depends in part on the range of model complexities that
method is applicable to. The methods applied to the models are discussed briefly in this
section with more detailed discussion in the following sections.

The models used to describe jumping systems in the literature often share the same equations.
For example, a 4 degree of freedom planar model is used by Henry et al. to model the jumping
motions of Numida meleagris [6] and by Pandy to model the jumping motions of humans
[12]. The two models differ considerably in the size and mass of the links used. The size of
a system correlates to the speed at which its muscles move, with smaller animals tending to

37

have faster moving muscles [40]. Due to this complex relationship between speed and size,
it can be difficult to use the results from a particular set of model parameters with another set
of parameters of a different scale.

v

(a) Single Degree of Freedom
Model

F

(b) Low Degree of Freedom
Model

τ

(c) High Degree of Freedom
Model

Figure 2.1: Jumping models found in the literature (a) A single degree of freedom model
represents the entire system as either a point mass or a rigid body. Motion is typically mod-
elled using traditional ballistic motion equations. (b) Low complexity models include ≤ 2
degrees of freedom and often include actuator models, such as muscles or tendons. The state
space of a low complexity model is generally possible to present in graphs. (c) High complex-
ity models include > 2 degrees of freedom and are generally beyond the limits of graphing
representation.

2.1.1 Single Degree of Freedom Models

Single degree of freedom point mass and rigid body models are typically used in energet-
ics studies of jumping systems and in modelling the flight stage of jumping systems. Many
jumping studies consider jumping systems as rigid bodies during the flight stage of the jump,
using ballistic equations of motion to determine the path of the system [12], [14]–[17], [20],
[34], [35].

In their book, “Principles of Animal Locomotion” [33], Alexander considered the kinetic
energy of point mass systems to determine the energetic requirements of motions, including
jumping. The models used minimal descriptors and degrees of freedom, allowing Alexan-
der to find the energetic cost of transport for a jumping system through analysis of model
equations.

Parslew et al. [34] considered a jumping system as single rigid body with a massless leg
connecting the body to the ground, and used analysis of the model equations to determine
regions of dynamic balance for jumping systems in general.

Roberts et al. [17], [20], considered a single, torque actuated rigid rod as representing a jump-
ing system. The rod was assumed to be connected to the ground at one end by a revolute joint.
The torque propelled baton is a single degree of freedom system. However, the relationship
between the linear ground reaction forces and the rotational motion of the system is non-linear
and can become challenging to conceive. This issue is exasperated when further degrees of
freedom are included in jumping models used in other studies [12], [14]–[16]. Roberts et al.

38

analyse the model equations and derive the boundaries for regions in state space for which
the optimal control strategy is readily deducible.

2.1.2 Low Complexity Models

Low complexity models have up to 2 degrees of freedom and may include models of actuators,
such as muscles or motors. A common model of muscles is the Hill type model [41]. The
modelling of actuators is not directly considered in the scope of this work.

Alexander derived a two degree of freedom jumping model to investigate the ideal take-off
conditions for athletes performing high and long jumps [42]. The system is treated as a single
rigid body with revolute joints at the knee and at the point of contact between the leg and the
ground. The model also included a muscle acting as an actuator at the knee joint.

Roberts and Marsh [43] investigated jumping in bullfrogs using a low complexity muscle
model. Roberts and Marsh assessed the performance of a single muscle with various char-
acterisations of a series elastic element and variable mechanical advantage of the lever arm
representing the leg of the system. Their comparison demonstrated that jumping performance
can be enhanced by inclusion of a series elastic element and by variation of the leg’s mechan-
ical advantage.

The spring loaded, inverted pendulum [2] is a widely adopted model in locomotive studies.
It is however, much more prevalent in running and continuous hopping studies [19] than it is
in jumping studies. The jumping robot SALTO is an example of an implementation which
uses the spring loaded, inverted pendulum model for continuous hopping control in a jumping
robot [30], [44]. SALTO’s leg is a linkage system designed to apply a force through the centre
of the mass of the robot [45], ensuring that minimal moments are produced on the body during
the push-off stage. This method of jumping requires additional control of the orientation of
the system in order to direct a single jump, which has recently been implemented using a
reaction wheel on the robot [46].

Aguilar et al. demonstrate a similar model of a linearly actuated jumping robot with a spring
attached to the foot [47]. Aguilar et al. use a comprehensive method of numerical analysis in
their work to demonstrate two distinct jumping strategies: a stutter jump, involving a small
jump before performing the maximum height jump, and a single jump involving a counter-
movement and maximum height jump in a single motion. The stutter jump result lies in a
grey area between continuous hopping and single jumping and is not a method considered in
this work.

2.1.3 High Complexity Models

High complexity models consist of > 2 degrees of freedom and may include models of ac-
tuators. A particularly common planar model of jumping systems comprises 4 degrees of
freedom and is used in the simulation of human jumping motions [12]–[14], [16], primates

39

[35], and birds [6], [34]. It is a common assumption that the legs of a jumping system are
the primary driver of jumping motions, leading to the popular decision that the Head, Arms
and Torso (HAT) may be lumped together and treated as a single rigid body in the model
[12]–[16], [48].

High complexity models are also frequently used in inverse dynamics applications [3], [4],
[6]–[8], in which experimentally measured motion data are used to determine muscle forces
acting throughout the motion [11]. Other studies use experimentally measured data to provide
target motions for dynamic optimisations [5], [9], [10]. This is particularly useful when the
data are incomplete or when data were obtained with reference to a different model of the
system, making inverse dynamics difficult.

Kargo and Rome [49] investigated the effects of degrees of freedom in jumping frog models by
simulating jumping motions with models of increasing degrees of freedom. Their predictive
modelling method used 1000 forward dynamic simulations with randomly generated torque
vectors held constant for each jump.

2.2 Analysis of Model Equations

Analysis of model equations is typically applied to single degree of freedom models, such as
[13], [17], [20], [33], [34]. The number of parameters required to completely describe the
model’s configuration, referred to as the “state space”, increases as the degrees of freedom and
number of actuators increase. The increase in the number of parameters leads to an increase
in the “volume” of the state space. This dilemma was termed “the curse of dimensionality”
by Bellman [50] and is a hindrance to many methods of study.

Results of analysis of model equations in the literature are generally applicable to a range
of systems. For example, Alexander demonstrates the energetic cost of transport associated
with a massive foot through analysis of a two body jumping system [33]. This result applies
to any jumping system with feet and gives a relationship between the cost of transport and
the fraction of system mass belonging to the foot. Such analysis requires the derivation of
a suitable model which requires intellectual investment both in the derivation process and
in the background knowledge of algebra, calculus, and mechanics required to perform the
derivations. The result of the analysis has implications for general jumping systems as it
provides an equation into which specific parameters may be input.

Alexander moves from analysis to numerical methods with the introduction of a second degree
of freedom in their high and long jump work [42]. The increased complexity of multiple
degree of freedom models makes their analysis difficult and time consuming to perform, even
for computer algebra systems. The results of such analysis are difficult to communicate due
to their high dimensionality and multiple internal interactions. A similar method was used by
Roberts and Marsh [43] in their investigation using a low complexity muscle model. Roberts
and Marsh used a brute force optimisation to assessed the performance of their model. A
range of configurations were tested and the best were selected for discussion. This approach

40

arguably requires less intellectual investment to solve the problem than an analytical approach
would, however, the brute force method requires more computation than analysis of model
equations. It also remains uncertain whether the results apply to jumping systems in general
or are only relevant to the parameters used in the study.

Parslew et al. [34] derived the constraints of body accelerations required to maintain dynamic
balance during jumping by analysing the equations of motion for a single degree of freedom
model. The derived constraints are applicable to any jumping system which intends to keep
its foot flat on the ground; the result is not specific to a given parameterisation of the model.
The notion that the foot cannot grip the ground is a common consideration and is often used
to determine the point at which a jumping system takes off [17], [20], [34]. The analysis
performed by Parslew et al. provides a reusable set of equations which may be applied to
different parameterisations of jumping systems.

The analysis performed by Roberts et al. [17], [20] seems to require some prescience of the
system’s dynamic behaviour as some boundaries are derived using statements and notions of
system properties and behaviours. For example, one boundary line in the work describes the
point at which the system is no longer able to pull itself backwards towards the ground and is
forced to fall forwards. This method of derivation is likely not applicable to multiple degree
of freedom models with non-linear dynamics as the number of internal interactions increases
and the behaviours of the system become difficult to anticipate.

The number of parameters required to completely describe a model’s configuration increases
as the degrees of freedom and number of actuators increase, meaning that the “volume” of the
configuration space grows exponentially as the model’s fidelity is increased. This dilemma
was termed “the curse of dimensionality” by Bellman [50]. A common response to this
dilemma is demonstrated in the different methods used by Alexander with their walking [13]
and jumping models [42]. The two models are similar in that they both treat the system as a
single rigid body, however, the leg of the walking model is represented by a single massless
link while the jumping model includes a second degree of freedom at the knee as well as a
muscle actuator model. With the increase in model complexity, Alexander turns to the use
of numerical methods to study the jumping model as opposed to the algebraic analysis they
used for the walking model.

The numerical analysis performed by Aguilar et al. [47] involved a sweep of the parameters
describing the behaviour of the actuator. The system was started from a fixed state and max-
imum jump heights for each set of parameters were recorded. This use of numerical analysis
to investigate a range of parameters and determine their optimal values is common with low
complexity and high complexity models [16], [42], [43], [47].

The work done by Kargo and Rome [49] used a random search in the external torque space,
selecting a random torque vector which was then applied to the system for the duration of
the jump. While the probability of randomly selecting an exact value when choosing ran-
dom continuous numbers is zero, choosing a vector of 5 values where each value is accurate
to within 10% of a given range has a probability of 0.25 = 0.00032. Thus, 1000 samples

41

may be insufficient in choosing an accurate torque vector. This probability would be much
smaller for the models with additional degrees of freedom. A different predictive modelling
method may have been better suited to the study by Kargo and Rome. The use of constant
torques, as opposed to varied torques, applied throughout the jump may have also hindered
the performance of each of the models.

2.2.1 Discussion of Assessment Criteria

The quality of results produced through analysis of model equations is high. Such studies
often demonstrate the process applied to a case study and provide results for a particular
system of interest, however, the studies also provide equations which other researchers may
use in studies with different systems. Thus, the range and utility of results for analysis of
model equations are considered to be excellent. It is identified that analysis is typically only
used with single degree of freedom systems.

Computational cost is generally not presented for studies which utilise analysis of model
equations. This is likely because the derivations and equation manipulations are often carried
out by the author without the use of a computer algebra system. Because of this, it is assumed
that analysis of model equations may be conducted with minimal computational cost.

It is difficult to assess the intellectual investment put into the analysis found in the literature
as there are generally multiple authors involved in each study, each of whom will have their
own domain knowledge and skill set. Instead, this work uses case studies to assess the general
domain knowledge required to complete studies using each of the methods of interest.

2.3 Static Optimisation

This work investigates the use of static optimisation for the resolution of kinematic redun-
dancy, specifically using the acceleration of the system. Kinematic optimisation of this style
was originally proposed for control of robotic systems [51] in 1980, and later developed for
use with redundant manipulators [52] (1983). The method uses the second order kinematic
equations of a model to simulate its motion. Kinematic methods are generally much lower in
computational requirement than dynamic methods [53].

The use of kinematics in robotic control is not a new concept; it was explored throughout
the 1980s for manipulator control [52], [54]. An articulated leg and a manipulator are very
similar systems; both consist of segments connected by rotary joints and are generally used
to transport an object attached to the end of the segment chain. In manipulation this object
is termed the “end effector” while in jumping this is typically the “body” of the system. The
major differences between the two applications are that manipulators are usually fixed to the
ground and perform repetitive tasks in the same work space, while jumping systems seek to
break contact with the ground and transport themselves to a different space. Despite these
differences, the motions of interest of jumping systems tend to occur while the system is in

42

contact with the ground and so methods which are useful for manipulator applications may
also be useful in the context of jumping.

Kinematic optimisation for redundancy resolution in manipulator control seems to be rarely
used. This is likely due to the fact that the method does not exhibit “cyclicity”, meaning that
the method does not provide a direct relationship between the system’s joint configuration
and the body position [21], [52]. Motions which follow a closed path for the end effector
are not guaranteed to follow a closed path in joint space. This is not necessarily an issue in
locomotion, particularly jumping problems, where the motion of the system is typically not
cyclic.

A numerical implementation of kinematic control was performed by Sellers [35] to transfer
data from one jumping model to another. Sellers interpolated joint angles from a starting state
to a desired end state and adjusted the joint angle trajectories to ensure the body followed a
straight path. This required sampling to determine the appropriate joint motions and may
prove difficult to scale to systems with more degrees of freedom.

Richards and Porro [55] used kinematic models and quaternion interpolation to simulate
jumping motions in frogs using high complexity models. Richards and Porro claim their
method to be novel because to their knowledge “it provides one of the simplest sets of mathe-
matical rules that predict realistic limb motion in the absence of detailed physical, anatomical
and physiological constraints”. Static optimisation for second order kinematic redundancy
resolution may provide a similar method in terms of simple mathematical rules for predicting
limb motions in the absence of the aforementioned constraints.

2.3.1 Discussion of Assessment Criteria

Static optimisation as a tool for predictive modelling is not common in the literature for jump-
ing dynamics. As such, this work intends to assess the predictive power of the method in this
application.

The computational cost of static optimisation is considered to be low as the optimisation
requires a matrix inversion as opposed to iterative gradient descent.

The intellectual investment of static optimisation for the resolution of kinematic redundancy
will be investigated in this work. Existing works in the literature, which derive and use the
method, make heavy use of complex mathematical notation. This may make the method
difficult to adopt for researchers not already experienced in the field of robotics or optimal
control.

2.4 Dynamic Optimisation

Dynamic optimisation is used in a variety of ways, including optimisation of joint torque
trajectories [16] or muscle excitations [15]. Some studies also use experimentally measured

43

data to provide target motions for dynamic optimisations [5], [9], [10], which is particularly
useful when existing data is incomplete or when data was obtained with reference to a different
model of the system, making inverse dynamics difficult.

The fact that not all biomechanical studies utilise simulated models and dynamic optimisation
in particular may be due to a few factors, including:

• Empirical results demonstrated that dynamic and static optimisation yield the same re-
sults when determining muscle forces acting in a system [56]

• The impossibility of perfectly reproducing a real world system using a simulated model

• An intimate knowledge of both dynamics and optimal control is required to implement
dynamic optimisation, tools which facilitate the process are scarce [57]

• Other, “model-free” optimisation methods require only state information about a dy-
namic system in order to work, they do not require thorough knowledge of the equations
of motion to implement, and dynamic simulation software are common [31], [32]

Anderson and Pandy’s work demonstrating that static and dynamic optimisation may ulti-
mately provide the same information for a given model can be seen as an argument in favour
of using dynamic optimisation, however, for researchers already using static optimisation it
is clarification that the intellectual investment required to change their optimisation method
to dynamic optimisation would bring no improvement to results.

Selbie and Caldwell [16] used dynamic optimisation to determine the onset times of the
torques acting at each joint in a 4 degree of freedom human leg model, with the objective
to maximise jump height. Their study looked at the torque trajectories for a variety of start-
ing configurations of the system. The maximum obtained jump heights were relatively close
for all starting positions, however, the onset times varied considerably. The variation in torque
onset times implies variation of actuator co-ordinations, as proposed by Selbie and Caldwell,
but it also implies variation in the amount of work done by the actuators of the system. This is
reflected in the variation of horizontal displacement in the optimal jumps with some attempts
travelling further than others. Angular displacement of the system is not reported, so actual
variations in the system’s kinetic energy at take-off cannot be properly determined. Selbie
and Caldwell’s work is in contrast with most other works involving 4 degree of freedom mod-
els for maximum jump height studies as they directly consider the external torques applied to
the model, whereas most works consider a muscle-based actuator [9], [12], [15], [28].

The current state of the art in dynamic optimisation for jumping was demonstrated by Bishop
et al. [58]. Bishop et al. demonstrated their optimisation using a musculoskeletal model of
the elegant-crested tinamou, Eudromia elegans, comprising 9 segments and 26 degrees of
freedom [59]. Bishop et al. assumed that many of the degrees of freedom were not necessary
in producing the jumping motions under investigation, and so constrained the model includ-
ing the assumption that the two legs moved with bilateral symmetry. After constraints and
assumptions, the model was reduced to 9 degrees of freedom. Direct collocation was used as

44

the dynamic optimisation method, seeking the optimal time derivatives of muscle activations
and tendon forces, with a nominal solution obtained in a reported 29 minutes. The work goes
on to present the results of 18 more optimisations for a sensitivity analysis, leading to an esti-
mated 551 minutes (9 hr 11 min) of computing time for the study (not counting optimisations
which were may have been run during development and testing). This is significantly less
computation time than was reported by Anderson and Pandy, 22 years prior, in their opti-
misation study which used similar fidelity models [15]. Anderson and Pandy reported 1800
hours (2.5 months) of CPU time to obtain a single set of results. It is noted here that the pro-
cessor used by Bishop et al. was a 2.4 GHz CPU while Anderson and Pandy’s CPU was 0.18
GHz. Adjusting for the different computation rates, Anderson and Pandy’s optimisation may
be approximated as taking 15.5 hours on a 2.4 GHz CPU. This comparison is not strictly fair
and is only a rough figure, but it demonstrates that modern computing power enables the use
of complex optimisation methods which were previously limited to researchers with access
to supercomputers.

2.4.1 Discussion of Assessment Criteria

The implications of the results produced by dynamic optimisation are limited to the system
parameterisation used in the optimisations. This limitation is a trade off for the increase in
model complexity which the method is applicable to; dynamic optimisation is most often
found in the literature applied to high complexity models.

The computational cost of iterative optimisation methods such as dynamic optimisation is
generally high. Two examples in the literature [15], [58] reported using between 9 and 16
hours of CPU time with a 2.4 GHz processor. On the other hand, the work by Bishop et al.
[58] mentions that a single optimisation took 29 minutes which is a reasonable amount of
computational time. However, for the early stages of a study, where rapid prototyping may
be a requirement, 29 minutes may become a significant cost to using the method.

The intellectual investment for dynamic optimisation is generally large. Research papers
which include dynamic optimisation typically introduce multiple mathematical notations and
concepts. The methods work over an entire trajectory instead of at a single step, this requires
consideration of more factors during their implementation and use than a static optimisation
method would require.

2.5 Reinforcement Learning

New reinforcement learning algorithms are typically published by means of benchmark com-
parison with existing algorithms. One popular set of benchmark problems is OpenAI Gym
[60], which includes a set of dynamic control problems implemented in the MuJoCo simu-
lation environment [61], including rigid body models of an articulated leg and a humanoid.
Many efforts have shown apparent success on these, and similar, problems [23]–[26], [62]–

45

[65].

At first glance, many reinforcement learning benchmarks demonstrate clear improvements to
the performance of the new algorithm over previous iterations. Upon closer investigation,
the use of 3 trials for such stochastic optimisation methods [25] raises questions about the
accuracy of representation provided in the work. Reinforcement learning algorithms com-
prise many different parameters and sub-methods within which may contribute to a given
performance on a given task. Such parameters are difficult to compared due to the stymieing
computational expense of executing a single trial of a reinforcement learning algorithm.

Reinforcement learning methods are not commonly applied in research of jumping systems.
However, reinforcement learning has been used to optimise controllers for quadrupedal robots
using data collected from simulated models of the robots [66], [67]. The practice of optimis-
ing a controller, or policy, is much more involved than a dynamic optimisation; a controller
should behave optimally in any state that the system can enter, whereas a dynamic optimisa-
tion is generally only concerned with a specific trajectory through the state space. The benefit
of optimising a controller is that the system’s behaviour is then defined for many scenarios
and can be used to gain insights about many behaviours of the system. The difference in the
scope of the methods becomes apparent in differing convergence times for dynamic optimi-
sation and reinforcement learning methods, with the latter often taking months to converge
[68].

Some jumping motions are found in benchmark tests, such as OpenAI Gym [60]. However,
the motions and models of these benchmarks are not extensively validated and so are not
considered in this work.

Similar to the biomechanical methods of collecting experimental data and fitting models to
the data, Peng et al. [10] and Peng et al. [69] demonstrate the use of reinforcement learn-
ing methods to control dynamic models of various systems, including humans, robots and
dragons. The controllers are optimised to follow experimentally measured motions includ-
ing back flips, front flips and jump kicks. The models used range from 30-79 degrees of
freedom. The motions provided in [10] are provided as motion capture data, describing the
motions of segments. Whereas the motions provided in [69] are video frames. A table de-
scribing the number of samples required per motion is presented in [10]. Required samples
range from 44-191 million. Supposing the forward dynamics take 0.1 ms [70] to compute,
that is a minimum of 1 hour and 10 minutes of computation time to simulate the dynamics
while generating the samples. The actual run time of the methods will be much greater than
this as a feed forward of the neural network representing the control policy must be performed
to determine the control signal for each sample generation to ensure the data collected is on-
policy. Then, gradient descent must be performed on the policy every so many samples to
iteratively improve the policy. This implies that the methods are likely to take considerable
computational time to complete and may not be effective tools for researchers with access to
limited computational power.

46

2.5.1 Discussion of Assessment Criteria

Reinforcement learning methods optimise a policy instead of a trajectory. This means that
the results they provide have greater utility and re-usability than methods such as dynamic
optimisation as a policy may be used to generate behaviours from a range of starting states. A
policy also provides a mapping from state to control action which could provide insights into
how the controller operates, i.e. which states are most influential to the selection of actions.
While the policy does provide more information than a trajectory would, the policy is still
dependent on the parameterisation of the system which was used during the optimisation;
a different system would likely use a different policy. Reinforcement learning methods are
generally applicable to high complexity models with many degrees of freedom and they are
model free methods. The predictive power of reinforcement learning methods is good but
limited to the parameters used.

The computational cost of reinforcement learning methods is significantly high. Reinforce-
ment learning methods typically use random sampling to explore the problem. This process
of interaction with the system means that reinforcement learning methods often require thou-
sands and even millions of samples to achieve sufficient performance. Most reinforcement
learning methods are on policy and so require samples to be collected by the current iteration
of the policy being optimised. This prevents the re-use of collected data and means that every
optimisation run must collect new samples from the simulation during optimisation.

The intellectual investment of reinforcement learning methods varies. Implementations of
many state of the art reinforcement learning methods are available to use in environments such
as Python and MatLab. As tools, the methods are not dissimilar from dynamic optimisation in
their implementation for a user. However, the complexity of reinforcement learning becomes
an issue if the tools require tuning or fail to provide adequate results. Hyper-parameters of
reinforcement learning methods are complex and not always intuitive to tune. The algorithms
often have multiple components working together which may need to be tuned as well. Re-
inforcement learning and optimal control share many features and are derived from the same
background, however, they often use different notation and jargon and can seem very different
at a surface level.

2.6 Thoughts and Conclusions

Analysis of model equations has the best predictive power of the results investigated in this
literature review. The process of analysis produces equations which can be used by other
researchers to test systems with different parameters to any case studies used in the initial
analysis study. It was observed that analysis is generally applied to single degree of freedom
models and is rarely seen applied to low or high complexity models. As such, this work
intends to investigate and assess the application of analysis to low complexity models to de-
termine the issues related to such practice.

47

This review found no work in the jumping literature which used static optimisation to re-
solve second order kinematic redundancy in jumping systems. Work in robotics was found
which used the method to study similar models to those used in the jumping dynamics liter-
ature. In light of these findings, this work will explore the application of static optimisation
to a jumping problem and assess the method in its predictive power, computational cost, and
intellectual investment.

Dynamic optimisation was identified as a commonly used method in jumping research. The
application of dynamic optimisation to jumping problems will not be a novel contribution
of this thesis. However, the assessment of the method’s application is included here so that
the method may be properly compared with the other methods considered in this work as no
literature was found which described the method’s predictive power or intellectual investment.

In a similar case to static optimisation, reinforcement learning was not found to be applied
in jumping research. Some case studies were found where jumping motions were included
in benchmarking tests yet little focus was made into their validation. Reinforcement learning
provides a set of model free methods which are applicable to high dimensional, continuous
dynamics problems. Because of this, a state of the art reinforcement learning method, namely
Deep Deterministic Policy Gradients (DDPG), is investigated in this work through a case
study. The method is assessed on its predictive power, computational cost, and intellectual
investment.

48

Chapter 3

Model Analysis Methods

Applications of model analysis to single degree of freedom models in the literature demon-
strate the method’s utility in obtaining general insights into a system and its behaviours, as
opposed to insights which are specific to a given set of model parameters. For example,
Alexander [33] uses analysis of model equations to show that an increase in foot mass in-
creases the energetic cost of transport for a jumping system. While the algebraic equations
which result from analysis methods may be applied to a broad range of parameterisations,
their application is generally limited to low complexity models, often to single degree of
freedom models. This chapter investigates the application of analysis of model equations
to models which have multiple degrees of freedom, by using a computer algebra system to
alleviate the algebra and calculus involved in the analysis.

Analysis of the equations of low and high complexity models was not found in jumping liter-
ature. As such, the work in this chapter work explores the application of analysis methods to
low complexity models to determine what insights may be obtained. The analysis builds on
existing work done by Roberts et al. [17], [20]. This work was selected due to the practically
algorithmic nature of the method described. This allowed for the method to be automated
and applied in a more general way. Another objective of the work in this chapter is to assess
the predictive power, computational cost, and intellectual investment of analytical methods
for jumping dynamics studies.

This chapter also provides a novel technical contribution with the concept of the dynamic
balance ellipsoid, which may be used to determine the feasible accelerations of a jumping
system during dynamic jumping motions. The dynamic balance ellipsoid is applicable to
systems of arbitrary degrees of freedom and is limited by the intellectual investment induced
by the numerous concepts required in its derivation.

3.1 Computational Cost and Computer Algebra Systems

Computer algebra systems provide the means to manipulate mathematical equations, includ-
ing algebraic and calculus operations. In this work, the symbolic toolbox of MatLab [38]
was used to carry out model derivations following a popular branch of analytical mechanics:
Lagrangian mechanics. This use of a computer algebra system transfers some of the intel-
lectual effort of the analysis method to computational cost. While it is difficult to measure

49

Figure 3.1: Time taken to derive the equations of motion for increasing degree of freedom
planar jumping models. Derivations were performed using the symbolic toolbox in MatLab.
Reasonable effort was made to optimise the code.

the time it takes for a person to learn and apply the mathematical techniques required to de-
rive dynamic models using analytical mechanics, it is possible to measure the time taken for
a computer algebra system to carry out the computations. Figure 3.1 shows the time taken
for such derivations to be completed. With the derivations all taking less than 10 seconds
to complete, it is clear that the computational cost of such analysis is minimal for low com-
plexity models, however, the intellectual investment is not entirely diminished as the user of
a computer algebra system must understand enough mathematics to program the system and
validate the results. Furthermore, the user must invest time into learning to program the sys-
tem. Figure 3.1 shows an exponential increase in the computational cost with the number of
degrees of freedom in the model. The trend is approximated as:

tc = 0.22e0.38n. (3.1)

Where tc is the computation time of the derivation for a model with n degrees of freedom.

3.2 State Space Analysis

The state space of a system (known as phase space in some optimal control literature) is the
set of all configurations which the system may have. The dynamics of a system may be used to
describe how the state of the system changes depending on the system’s state and the applied
control action. By analysing a system’s state space, one may gain insights into the behaviours
of that system in a generally applicable sense. Providing a description of a system’s behaviour

50

which applies to the entire state space generally requires the system to have linear dynamics.
The articulated leg models considered in this work do not exhibit linear dynamics. This
section presents an example of state space analysis applied to a 1 degree of freedom model
from the literature, and then applies the methodology to a 2 degree of freedom model.

3.2.1 1 Degree of Freedom Model

In order to describe the behaviour and control requirements of a 1 degree of freedom jumping
system, Roberts et al. divide the state space of the system into regions, with each region
having a concise description of the optimal controls required to produce a maximum height
jump of the system. In this work, potential alterations to the method used by Roberts et al. are
identified which enable the method to be applied to models with multiple degrees of freedom.

The equation of motion for the 1 degree of freedom model used by Roberts et al. is:

ml2q̈ +mgl cos(q) = τ. (3.2)

The forward dynamics form is:

q̈ =
τ

ml2
− g

l
cos(q). (3.3)

Roberts et al. divide the state space of the system into regions which can be concisely ex-
plained. Properties of a system which can be defined relative to the state and control inputs
of the system, such as the vertical ground reaction force, or vertical velocity of the body, may
be used to define regions in the system’s state space. Regions may reduce the “size” of the
state space by neglecting irrelevant states, or may reduce the dimensions of the considered
states by effectively removing degrees of freedom from the model. Roberts et al. define a
region in the state space within which the system is guaranteed to take-off, breaking contact
with the ground instantly. This region is defined by the vertical ground reaction force falling
below zero:

Fv ≤ 0. (3.4)

This definition requires the assumption that the system cannot grip the ground to pull itself
down. The vertical ground reaction force of the 1 degree of freedom model is defined as:

Fv = m

(
−lq̇2 sin(q) +

cos(q)
ml

τ + g sin2(q)

)
. (3.5)

Roberts et al. point out that a positive torque will always act to increase Fv in the range
0 < q ≤ π

2
. They do not explicitly explain that this observation is made by looking at the

derivative of Fv with respect to τ :

∂Fv

∂τ
=

cos(q)
l

. (3.6)

51

A

A

B

C

B

Figure 3.2: Regions of state space for 1 degree of freedom model defined by Fv ≤ 0. In
region (A) the system will break contact immediately with the ground no matter what torque
is applied (within the limits of τmax). In region (B) the system is able to jump by applying a
smaller than maximum torque. In region (C) the system is unable to break contact with the
ground. Model parameters used: l = 0.45m; m = 1.5 kg; g = 9.81ms−2; τmax = 1Nm.

Derivatives in models are useful in determining the effects of control inputs on a given metric
or property. In this case, if ∂Fv

∂τ
≥ 0 then an increase in applied torque would increase the

ground reaction force and allow the system to maintain contact with the ground at higher
angular velocities.

In order to successfully jump, the system must enter a region of the state space in which the
ground contact force becomes zero. Upon entering the region, the system will break contact
with the ground causing the dynamics of the system to change, thus, only the boundary of
this region is of particular interest. Assuming that the system starts outside of the region and
is able to produce a positive vertical ground reaction force, the boundary is defined by:

Fv = 0. (3.7)

Roberts et al. find the boundary of the region by substituting equation (3.7) into (3.5) to
eliminate q̈, the result is solved to make q̇ the subject:

q̇ = ±

√
cos(q)

ml2 sin(q)
τ +

g

l
sin(q) (3.8)

Figure 3.2 shows the regions for negative angular velocity which Roberts et al. do not include.
Roberts et al. propose that one optimal control strategy for the system is to fall to the ground
and then apply maximum torque from there. However, while falling towards the ground,
the system may break contact with the ground and thus must use control torque to prevent
this. This is a technicality as breaking contact with the ground while falling to the ground
may not be an issue, however, it is reported here for completeness. The remaining boundary

52

derivations by Roberts et al. are neglected in this work as they represent specific behaviours of
the 1 degree of freedom model which are not obviously relevant to higher degree of freedom
models.

Lollipop Experiment

An empirical demonstration of a single degree of freedom system breaking contact with the
ground as it falls is presented here. A real-world system which is comparable to the single
degree of freedom model is a lollipop. The mass of a lolly stick is much smaller than the head
of the lolly and so the lollipop may be approximated as a point mass on the end of a massless
rigid rod. The experiment cannot perfectly replicate the torque controlled baton model as the
no-slip assumption is not easily replicated in reality. The horizontal friction force, Fh, acting
between the ground and the lolly stick depends on the vertical reaction force:

Fh = µFv (3.9)

where µ is the coefficient of static friction between the stick and the ground. As the vertical
reaction force approaches zero, the horizontal friction force also approaches zero. This causes
the lollipop to slip before it breaks contact with the ground.

Figure 3.3: Purely demonstrative example frames from a recording of a lollipop falling from
an almost vertical position. The frames show the lollipop fall, slip and then break contact
with the ground. It is to be noted that the rough surface played a big part in the “success”
of this experiment as the bumps in the surface likely prevented significant horizontal motion
when slipping occurred.

3.2.2 Multiple Degree of Freedom Model

This section demonstrates the application of state space analysis to a 2 degree of freedom
planar jumping model. The model, as described in Section 1.11.2, comprises two links with
masses m1 and m2 and inertias I1 and I2. All derivations and mathematical manipulations
were performed using the symbolic toolbox in MatLab [38]. The equations of motion, for-
ward dynamics, and vertical ground reaction force are provided in Appendix A. The partial
derivative of the vertical ground reaction force with respect to the external torque applied at
joint 1 is:

∂Fv

∂τ1
=

P

Q
(3.10)

53

where

P = 2 l1

(
l2

2m2
2 cos(q1) + I2m1 cos(q1) + 2 I2m2 cos(q1)

− l2
2m2

2 cos(q1 − 2 q2) + l2
2m1m2 cos(q1)

)

Q = 4 l1
2 l2

2m2
2 sin2(q1 − q2) +m1 l1

2 l2
2m2

+ 4 I2 l1
2m2 + I2m1 l1

2 + 4 I1 l2
2m2 + 4 I1 I2.

The partial derivative of the vertical ground reaction force with respect to the external torque
applied at joint 2 is:

∂Fv

∂τ2
=

R

S
(3.11)

where

R = l2m2

(
4 I1 cos(q2) + 2 l1

2m2 cos(q2)− l1
2m1 cos(2 q1 − q2)

− 2 l1
2m2 cos(2 q1 − q2)

)

S = 4 l1
2 l2

2m2
2 sin2(q1 − q2) +m1 l1

2 l2
2m2

+ 4 I2 l1
2m2 + I2m1 l1

2 + 4 I1 l2
2m2 + 4 I1 I2.

The denominators, Q and S, of equations (3.10) and (3.11) are strictly positive given that all
of their terms comprise mass, inertia and link length parameters with the exception being a
squared sin function, which is also strictly positive. The numerators of equations (3.10) and
(3.11) do not hold such properties; they depend on the joint angles, q1 and q2. Thus, a general
relationship between the applied torque and the ground reaction force cannot be deduced here.
To overcome this, the second segment in the model is constrained to move relative to the first,
this effectively reduces the model to a single degree of freedom and means that the system’s
configuration is defined by only the first joint. The application of this constraint reduces the
dimension of the state space of the model to the same as the state space for a 1 degree of
freedom model. However, the behaviours and properties of the model are a hybrid of the
two models; the inertia of the constrained 2 degree of freedom system changes with state as
the two links move relative to each other, capturing the inertial effects of the leg’s motion.
This use of constraints also affects the information obtainable through the model: an external
torque is only applicable at the first joint, the external torque applied at the second joint is
defined by the constraints and cannot be varied independently of the torque at the first joint.

54

The second joint in the system is constrained to move relative to the first by:

q2 = aq1 + c. (3.12)

The velocity and acceleration of the second joint become:

q̇2 = aq̇1 and q̈2 = aq̈1. (3.13)

The constraint parameters a and c describe the motion of joint 2 relative to joint 1. This fully
defines the kinematic motion of the system and so the parameters may be selected to produce
a desired motion in the system. This could be done by defining a start and final state of the
system, qs and qf , and finding the values of a and c which produce those states:

a =
q2f − q1f
q2s − q1s

(3.14)

c = q2s − aq1s. (3.15)

Alternatively, the values may be selected through inspection by plotting the pose of the model
and adjusting a and c as needed.

3.2.3 Method

To demonstrate the constraint method, the values for a and c were chosen as:

a = −1 and c = π.

This gives a reasonable looking motion of the system in the range of 1
8
π ≤ q1 ≤ 1

2
π as

demonstrated in figure 3.4. The actual parameters selected for the model in this process will
not change the method’s application, the resulting description of the system is likely to vary
based on the chosen parameters, however, the means of determining such a description would
remain the same. After the method has been implemented, it is a case of inputting a different
set of parameters into the resulting equations to determine the characteristics of the different
system.

q1

q2

Figure 3.4: Jumping motion of the constrained system starting from q1 =
1
8
π. The angle q2 is

constrained to be q2 = −q1+π. Both links have length 0.225m. The values of the constraint
parameters were selected to produce a plausible vertical jumping motion.

55

The remaining model parameters were selected arbitrarily as: l1 = 0.225m; l2 = 0.225m;
m1 = 0.75 kg; m2 = 1 kg. Any parameter values could be selected at this stage as the
equations for the ground reaction force of the model was derived and is available in Appendix
A. The equation of motion for the system was derived using Lagrangian mechanics and the
regions in which the system breaks contact with the ground were identified using equation
(3.7). For the given system parameters, the ground reaction force becomes:

Fv =

0.534 cos(q)
(
0.101 sin(2q)q̇2 + τ − 5.24 cos(q)

)
0.101 cos(2q) + 0.113

− 0.534q̇2 sin(q) + 17.2 (3.16)

The derivative of Fv with respect to the applied torque, τ , is:

∂Fv

∂τ
=

0.534 cos(q)
0.101 cos(2q) + 0.113

. (3.17)

Equation (3.17) is positive for all values of q and so the method of Roberts et al. may be ap-
plied in deriving the boundaries of this parameterised system. For any value of q, an increase
in τ will lead to an increase in Fv, thus the minimum and maximum torques may be used to
define the ground contact breaking capabilities of the system. For this example, the torque is
bounded as 0 ≤ τ ≤ 1.

A

C

B

B
A

Figure 3.5: The regions of the constrained 2 degree of freedom system which define the
system’s capability to break contact with the ground. The second joint angle of the system is
constrained to move relative to the first as: q2 = −q1 + π. The regions are: (A) the system
will break contact with the ground no matter what, (B) the system may break contact with
the ground by applying sufficient torque within the limits of the system, (C) the system has
no means of breaking contact with the ground. For this system, both boundaries have the
asymptote q = 0.

56

3.2.4 Stuck to the Ground

The boundary plot 3.2 shows that the 1 degree of freedom system is able to break contact
with the ground from an arbitrary joint angle q1 > 0. This is not the case for the constrained
2 degree of freedom system. Due to the way the motion of the second segment is constrained
to the first, it is possible for some sets of constraint parameters to render the system unable to
produce a ground reaction force Fv ≤ 0 for certain joint angles. A second set of constraint
parameters were used to demonstrate this effect more clearly:

a = −1 and c = 0.8π.

The motion of this system is shown in figure 3.6. The system is constrained to move in a
similar way to the vertical jumping system.

Figure 3.6: Jumping motion of the constrained system starting from q1 = 0. The angle q2
is constrained to be q2 = −q1 + 0.8π. Both links have length 0.225m. This configuration
of the constrained motion has no means of breaking contact with the ground in the range
0 ≤ q1 ≤ 0.45.

Following the same derivations as described above, the regions for this model are shown to
change, leaving a region in the range 0 ≤ q1 ≤ 0.45 in which the system cannot produce a
negative ground reaction force for any joint velocity, in the limits of 0 ≤ τ ≤ 1. This means
the system is entirely unable to jump under the aforementioned constraints.

57

A

C

B

B

A

Figure 3.7: The regions of the constrained 2 degree of freedom system which define the
system’s capability to break contact with the ground. The second joint angle of the system
is constrained to move relative to the first as: q2 = −q1 + 0.8π. The regions are: (A) the
system will break contact with the ground no matter what, (B) the system may break contact
with the ground by applying sufficient torque within the limits of the system, (C) the system
has no means of breaking contact with the ground. For this system the boundaries have an
asymptote at q = 0.45 meaning that the system has no means of breaking contact with the
ground for q ≤ 0.45.

3.2.5 Discussion

This section demonstrated the analysis of model equations for a model with multiple degrees
of freedom. A computer algebra system was leveraged to derive and manipulate the complex
equations of the 2 degree of freedom model. This novel application demonstrated that analysis
of model equations has more flexibility than the lack applications found in the literature might
suggest.

Analysis of the 2 degree of freedom system revealed insights into the jumping capabilities
of the system. Particularly, how performing certain motions can result in a jumping system
being unable to break contact with the ground, regardless of the amount of torque is applied
to one of the system’s joints.

The derivation of algebraic equations for a system model is a widely useful result for a pre-
dictive modelling method as any parameterisation of the system may be plugged into the
equations and insights quickly gained from them. However, the complexity of the equations
produced by this work limits their utility to other researchers. In consideration of this com-
plexity, constraints were applied to the model to simplify the resulting equations. The use
of constraints allowed for plotting of state space boundaries and meaningful insights to be
obtained for the system, such as the system’s inability to break contact with the ground under
specific circumstances. The combined complexity of the model, and of the constraints used
to simplify the model, mean that the insights gained through this method require considerable
intellectual investment both to present and interpret.

58

It is to be noted that the intellectual investment cost mentioned here does not imply that the
user must be more intelligent; the intellectual investment cost incurred is an increase in the
mental load on the user. The user must hold an increased number of concepts in their mind
when working with the method and presenting, or interpreting, the results.

Equation 3.1 implies there exists an exponential increase in the computation cost of derivation
with increasing degrees of freedom for planar jumping dynamics models. This implies that
the use of computer algebra systems to derive algebraic equations of motion for dynamic
jumping systems may become infeasible at higher levels of model complexity. For example,
equation 3.1 predicts a time of 455 days to derive the equations of motion for a 50 degree of
freedom model. Many works in the literature skip the algebraic derivation of equations and
use numerical methods to determine the inertia, Coriolis, and gravity matrices to construct
the dynamic equations of motion for a particular system [21]. Such methods are limited to the
parameterisation of the model used, and are not feasible for use in analytical methods such
as the one presented in this work.

Implementation of this method required knowledge in mechanics, dynamics, multivariate
calculus, and programming. Anecdotally, the most difficult aspect of using the method was
in programming the computer algebra system to perform the derivations of the equations of
motion. At the time of writing, MatLab’s symbolic toolbox does not facilitate tasks such as
performing derivatives with respect to multiple variables. Instead, the symbolic toolbox was
used to compute partial derivatives and their products to manually obtain derivatives with
respect to multiple variables. This is a limitation of the use of the tool as it requires the user
to understand the workings of multivariate calculus at an implementation level.

It is difficult to quantify the intellectual investment of a method as though it were compu-
tational cost. Concerning the chronological order of work done in this thesis, this chapter
was completed after the other technical works had been completed. Anecdotally, the analy-
sis required little intellectual investment to perform. It is noted that many of the tools used
in this chapter were practiced in the other technical chapters. It is also observed that some
researchers may be unlikely to openly admit they had difficulty learning some concepts.

The intellectual investment required in learning a concept or method is difficult to assess
retrospectively as it can be difficult to empathise with oneself being ignorant to a concept
which one now knows. It may be interesting to survey undergraduate students on the time they
invest into learning various concepts to determine a more quantifiable cost for the intellectual
investment of these methods.

This study could be extended through the derivation of additional equations for low complex-
ity jumping systems. A repository of algebraic equations, implemented in various program-
ming languages, for jumping dynamics models may be useful for future researchers who do
not have the intellectual or computational resources available to quickly produce them.

59

3.3 Dynamic Balance Ellipsoid

Dynamic balance in jumping requires the zero moment point of the ground reaction force
to remain inside of the foot-ground contact area. The zero moment point is a common met-
ric which is used in the control of walking robots to ensure that the foot remains flat on the
ground and the system does not fall over [37]. This section presents the “Balance Ellipsoid”,
a novel method for establishing the bounds of the feasible acceleration space for dynamically
balanced jumping. The method is inspired by the velocity ellipsoid, a common description
of manipulability in robotics [21], and the work done by Parslew et al. to describe the dy-
namic balance of single degree of freedom jumping systems. An acceleration ellipsoid is
constructed using the system’s Jacobian matrix and a spherical set of joint angular acceler-
ations, a static variation of this method was used by Khatib and Burdick for optimising the
structure of a manipulator [29]. The relationship between the accelerations of the body dur-
ing balanced motion is linear, meaning that a given zero moment point location on the foot
will produce a plane in the body acceleration space. The intersection of such a plane with
the acceleration ellipsoid may produce an ellipsoid which represents the bounds of the set of
feasible accelerations. No intersection implies that the system is unable to maintain balance
given the zero moment point location constraint and the radius of the spherical set of joint
angular accelerations.

The following sections present the inspiration for the work, the components required for the
derivation and then the derivation of the dynamic balance ellipsoid.

3.3.1 Velocity Ellipsoid

The velocity ellipsoid is a tool used in manipulator design and control. It represents the
transformation from joint angular velocities, q̇, to body velocity, ẋ. This transformation
is shown geometrically by a spherical input of joint angular velocities being squashed, or
stretched, into an ellipsoid of body velocities. The transformation is based on the Jacobian
matrix of the system and so singular value decomposition of the Jacobian can be used to
determine the directions and magnitudes of the velocity ellipsoid’s axes. The velocity ellipse
is derived using a spherical set of joint angular velocities with radius r:

q̇T q̇ = r2. (3.18)

The inverse of the Jacobian relationship, given by:

q̇ = J−1ẋ, (3.19)

is substituted into (3.18) to arrive at:

ẋT (JJT)−1ẋ = r2. (3.20)

60

While the inverse of the Jacobian is only defined when the Jacobian is a square matrix, i.e.
the number of degrees of freedom of the body and the leg are equal, in equation (3.20) it is
the product JJT which is inverted. The product of a matrix and its transpose will always
produce a square matrix, which has a well defined inverse, and thus equation (3.20) is valid
even for redundant systems.

3.3.2 Acceleration Ellipsoid

The acceleration ellipsoid builds on the work done by Khatib and Burdick [29], in which they
optimise a manipulator based on its acceleration capabilities within a working space. Khatib
and Burdwick assume the manipulator to have no velocity and thus work with an identical
entity to the velocity ellipsoid as ẍ = Jq̈ in the static case. The dynamic acceleration ellip-
soid includes the accelerations induced in the body by the angular velocities of the joints. The
acceleration ellipsoid is derived using the kinematic relationship defined in equation (1.6):

q̈ = J−1(ẍ− J̇ q̇). (3.21)

Note that the acceleration ellipsoid is not the same as the static wrench transmission which is
given by

τ = JTf ,

where τ is the vector of torques applied to each joint in the leg and f is the vector of forces
and torques applied at the body. A sphere of joint accelerations, with radius r, is used as
input:

q̈T q̈ = r2. (3.22)

Substituting equation (3.21) into (3.22) gives the acceleration ellipsoid equation:

(ẍ− J̇ q̇)T (JJT)−1(ẍ− J̇ q̇) = r2. (3.23)

The acceleration ellipsoid is equivalent to the velocity ellipsoid in size, eccentricity and
orientation, however, the acceleration ellipsoid is offset from the origin by the acceleration
produced on the body by the centripetal accelerations of each segment in the leg, denoted by
the J̇ q̇ term. When treating the system as static, the product J̇ q̇ = 0 and the acceleration
ellipsoid will centre about the origin, becoming identical to the velocity ellipsoid.

The relation between joint accelerations and body accelerations may not be useful in control
applications as the accelerations do not directly relate to the work being done to the system
and thus is not a clear indication of the required or available actuation effort. It would be
preferable to show the relationship between the externally applied torques at each joint in the
leg, and the resulting forces and torques on the body - in a dynamic setting. This is a potential
point of further work for this method.

61

Figure 3.8: Spherical set of joint acceleration vectors with r = 1, each vector in the set is
plotted as a point in joint space.

Figure 3.9: Example ellipsoid of body accelerations produced by the spherical set of joint
angular accelerations.

62

3.3.3 Balance Plane

The balance plane is the set of angular and linear accelerations of the body which result in a
prescribed zero moment point location. A common metric of balance in legged locomotion
is the zero moment point. A review of applications of the zero moment point can be found at
[37]. A legged system accelerates its body by pushing against the substrate it stands on. The
substrate provides a reaction pressure which acts over the area of contact between the foot
and the substrate. This pressure may be resolved into a reaction force and a reaction moment
acting at a single position on the ground. There exists a position where the reaction force
may be resolved such that the reaction moment is zero, hence “zero moment point”. If this
point lies within the contacting area of the foot, then the system is considered balanced and
the foot will not rotate or tip. If the zero moment point lies outside of the contact area of the
foot then the zero moment point is not physically realisable and the substrate will produce
both a reaction force and reaction moment on the foot, causing it to rotate.

Parslew et. al derive the location of the zero moment point, xp, by considering the system
as having only an inertial body; the mass and rotational inertia of the leg are assumed to be
negligible:

xp = xb −
yb

tan(θ)
+

τb
‖rp‖ sin(θ)

(3.24)

where θ is the angle made by the horizontal and vertical accelerations of the body. Thus

tan(θ) =
ÿb − g

ẍb

and sin(θ) =
m(ÿb − g)

‖rp‖
. (3.25)

The net reaction force, rp, is defined as:

rp = m
√

ẍ2
b + ÿ2b −mg. (3.26)

The torque applied to the body is defined as:

τb = Iφ̈b. (3.27)

By substituting equations (3.25), (3.26) and (3.27) into equation (3.24), the zero moment
point may be represented in terms of the body accelerations ẍb, ÿb and φ̈b.

−mybẍb +m(xb − xp)ÿb + Iφ̈b −mg(xb − xp) = 0 (3.28)

Equation (3.28) is the equation of a plane in the body acceleration space. Both the offset from
the origin and the normal of the plane depend on the zero moment point position, xp. The
balance plane represents the feasible sets of linear and angular accelerations of the body for
a given value of xp. The body acceleration space may be constrained by considering only
values of xp which are inside the contact area of the foot.

63

xp location

Figure 3.10: Example balance planes for zero moment point locations at the back, centre and
front of the foot. The body of the system may move with any acceleration on the plane while
maintaining the prescribed zero moment point. In this example xb = 0, yb = 1, mb = 1 and
Ib = 1

3.3.4 Balance Ellipsoid

The balancing capabilities of a jumping system may be determined by considering the inter-
section of the acceleration ellipsoid and the balance plane. If the two shapes do not intersect,
then the system is unable to achieve dynamically balanced motion given the constraints of the
zero moment point, xp, and the limit of the joint angular acceleration vector norm, r.

The intersection of the acceleration ellipsoid and the balance plane is found by equating equa-
tions (3.23) and (3.28).

P ẍ−mg(xb − xp) = (ẍ− J̇ q̇)T (JJT)−1(ẍ− J̇ q̇)− r2 (3.29)

The matrix P is the collection of acceleration coefficients:

P =

−myb 0 0

0 m(xb − xp) 0

0 0 I

 . (3.30)

To simplify the solution to the intersection, equation (3.28) was solved for the angular acceler-
ation and substituted into equation (3.29) to project the ellipsoid onto the linear acceleration,
(ẍb, ÿb), plane. The ellipsoid may be projected into any plane in the body acceleration space
or may be used directly in the 3D or 4D space, the projection was used here to simplify the
presentation of results. The projection ignores the angular acceleration of the body in the re-
sults and may be suited to the study of jumping systems where the angular velocity at take-off
is not a concern. However, the body still undergoes angular acceleration and each vector of
body acceleration will have an angular acceleration associated to it.

64

A nominal, 3 degree of freedom model was used to verify the results. The point foot of the
model, i.e. the location of the first joint, was set as the origin of the Cartesian coordinate
system. The parameters of which were:

l =

 1

1.5

1

 , q =

3π
4
π
4
3π
4

 , xp = 0.

Figure 3.11: Nominal 3 degree of freedom model used to verify the dynamic balance ellipsoid
derivation.

The mathematical solution for the balance ellipsoid was verified numerically by calculating
the body acceleration and the resulting value of xp for a discrete set of joint acceleration
values which satisfied:

q̈T q̈ = 1. (3.31)

The joint accelerations and body accelerations which produced a zero moment point ε ≤
xp ≤ ε, where ε was a small tolerance value, were recorded and compared to values predicted
by the analytical solution. These verification results are shown in figures 3.12 and 3.13.

65

Figure 3.12: Intersection between the acceleration ellipsoid and the balance plane for the
given model parameters. The numerically determined points of intersection are shown in
orange.

Figure 3.13: The analytically determined balance ellipsoid and the numerically determined
balance values.

The numeric values deviate slightly from the analytic solution. This is to be expected as
the grid search required a tolerance to find values close to the answer due to the practical
impossibility of a grid search finding exact values. The same derivation may be applied to
a range of values for the zero moment point. Figure 3.14 shows the balance ellipsoid for

66

xp = −0.25, 0, 0.25 m.

Figure 3.14: The analytically determined balance ellipsoids for xp = −0.25, 0, 0.25 m.

The variation in the ellipsoid is more extreme when the body has greater horizontal distance
from the foot. To demonstrate this effect, the model configuration was changed such that:

q =

3π
5
π
10
7π
20

 .

This produced a leaning system with the body far ahead of the foot as shown in figure 3.15.

Figure 3.15: Leaning model used to demonstrate variation of the dynamic balance ellipsoid
with zero moment point location and leg configuration.

This produced significantly greater variation in the balance ellipsoids for the given range of

67

zero moment point locations, as shown in figure 3.16.

Figure 3.16: The analytically determined balance ellipsoids for xp = −0.25, 0, 0.25 for the
leaning model. Notice that the system is able to accelerate the body in a greater range of
values when the zero moment point is at the front of the foot, closer to the body.

3.3.5 Discussion

The dynamic balance ellipsoid concept is a novel technical contribution of this work. The
ellipsoid provides a tool to aid the investigation of the feasible accelerations for a jumping
system. The tool is flexible as it may be used in relation to any subset of the body accelera-
tions.

The derivation of the dynamic balance ellipsoid makes use of multiple conceptual compo-
nents which gives the tool a considerable intellectual investment cost to use.

Due to the assumption of a massless leg, the tool will only provide an approximate solution
to balance problems and may be inappropriate for control applications if margins for error
are not allowed or the legs of a system constitute a significant fraction of the total mass of
the system. As with work done using similar methods [29], the dynamic balance ellipsoid
may be used to provide metrics for the optimisation of jumping system structures. The tool
is limited by the requirement of a state for the system, this means that the user must provide
a trajectory or set of configurations of the system for analysis.

The ellipse shown in figure 3.13 represents all of the linear accelerations which may be pro-
duced in the body of the system, given that the norm of the joint angular acceleration vector
satisfies ‖q̈‖ = 1 and that the zero moment point of the ground reaction force is at xp = 0. The
size of the ellipse scales in proportion to ‖q̈‖, thus any point inside of the ellipse constitutes

68

a feasible motion if the joint accelerations are allowed to be decreased. In other words, the
ellipse represents the maximum attainable body accelerations for a given joint acceleration
magnitude.

For a system with a foot that may be considered as a point, such as SALTO [30], this ellipse
represents the set of linear accelerations which may be produced on the body. As the ellipse
was projected onto the XY plane, the required angular acceleration is not shown. However,
each point on the projected ellipse will have an accompanying angular acceleration which is
required to maintain the dynamic balance of the system. For systems with a foot segment, the
ellipse would be derived for zero moment point values ranging from the front to the back of
the foot.

The dynamic balance ellipsoid is derived using the kinematic equations for a jumping sys-
tem. As such, the tool does not properly consider the externally applied torques produced by
actuators of the system. Limits in accelerations are connected to limits in forces and torques,
however, they are not directly related and may prove to be misleading in this regard.

The results presented in this section demonstrate the use of the dynamic balance ellipsoid to
investigate the feasible accelerations for a 3 degree of freedom model. The tool was used to
explore the effects of varying the pose and desired centre of pressure location on the feasible
body accelerations of the system. This work provides additional functionality to the work
done by Parslew et al. [34] by showing the variation in acceleration vector magnitudes and
allowing for easy comparison of different location for the system’s centre of pressure.

The results in Section 3.3.4 show that the example jumping system is unable to accelerate
its body in the positive x direction given the constraints to joint accelerations and centre of
pressure location.

The range and utility of the results in this section would be improved by the inclusion of
jumping systems in motion, i.e. with joint velocities not equal to zero. The dynamic balance
ellipsoid could be used to explore the set of feasible body accelerations throughout a nominal
jumping motion, providing insight into the dexterity of the system in terms of its ability to
accelerate in different directions.

3.4 Conclusions

The work in this chapter demonstrated the application of algebraic analysis to models of low
complexity, despite the lack of applications found in the jumping literature. Analysis of low
complexity models had higher requirements in intellectual investment and computational cost
than analysis of single degree of freedom models seen in the literature.

Analysis of the 2 degree of freedom model revealed insights into the capabilities of the jump-
ing system, including the limitations on the system’s ability to break contact with the ground
when the segments of the system moved in particular ways relative to each other.

69

The algebraic equations which resulted from the analysis of low complexity models were
found to be too complex to easily plot or concisely derive insight from. While this work
demonstrated the feasibility of deriving such systems of equations, additional work is re-
quired from the user of the method to distill the results into meaningful insights into jumping
systems.

The constraints used in Section 3.2.2 reduced the complexity of the results of the analysis
while also limiting their implication to the constrained, and parameterised, variation of the
model, instead of the general 2 degree of freedom jumping model.

The trend of computation time described by equation 3.1 implies that the utility provided by
computer algebra systems has a limit in model complexity, with the example case of a 50
degree of freedom model requiring an estimated 455 days of computation time to derive the
equations of motion.

The intellectual investment required for analysis was difficult to quantify as this chapter was
completed after the previous works and the author was well practiced in many of the compo-
nents required for the method. It is also noted that anecdotal experience may not be an ideal
measure for a method’s intellectual investment cost.

This chapter presented a novel technical contribution: the concept of the dynamic balance
ellipsoid. The dynamic balance ellipsoid builds on existing work by [34] and provides an
effective tool for investigation of the feasible body accelerations throughout dynamic jumping
motions.

Empirical results using the dynamic balance ellipsoid demonstrate that the tool can be used
to gain insights into the abilities of jumping systems given their configurations and joint ac-
celeration limits.

The dynamic balance ellipsoid is limited by its use of joint acceleration limits; it would be
better suited to robotics and biomechanics applications if the tool used torque limits instead.
The tool is also limited by the assumption of a massless leg and by the requirement of the
user to provide the current state of the system as opposed to a trajectory.

70

Chapter 4

Static Optimisation

Static optimisation is often used in biomechanics to overcome redundancy in models of mus-
culoskeletal systems to determine the likely muscle forces responsible for the motion of the
bones in the skeleton. Redundancy in musculoskeletal systems arises when multiple muscles
are used to control a single degree of freedom in the system. This means that the muscle forces
are under-determined in relation to the skeletal motion and there are infinite combinations of
muscle forces which could produce an observed motion. Static optimisation is typically used
to select the combinations of muscle forces which meet selected criteria, such as minimum
force or minimum power. Despite the name, static optimisation does not require the system to
be stationary. Static optimisation considers the state of the system independently of time and
does not consider the entire trajectory that the system takes through state space. This makes
the optimisation simple and fast to carry out compared to dynamic optimisation. However,
due to the time independence of static optimisation, the results may not be smooth through-
out the trajectory; the optimal solution at one moment in time may be vastly different to the
solution at another time.

The described use of static optimisation is in an inverse dynamics application, i.e. the opti-
misation is used to determine redundant forces which are responsible for observed motions.
In this work, static optimisation is investigated in an inverse kinematics application. This ap-
plication was not found in the literature and has been identified as a novel use for the existing
method. This chapter explores the application of static optimisation to resolve the kinematic
redundancy of jumping models, using the resolved second order kinematics to predict jump-
ing motions for Numida meleagris.

The second order kinematics of a jumping model can be used to procure motion of the system
without the need to determine torques or forces acting in the system. By neglecting the system
trajectory, static optimisation is unable to directly account for temporal features of jumping
motions, such as countermovements. While this may prove to be a limitation of the method,
the benefits and low computational cost of the method may be compensatory in contexts
where an optimal trajectory is not the focus. The equations of kinematic models are much
faster to compute than dynamics in simulations and optimisations [53]. This means that
iterative optimisation methods may also be better suited to kinematic models than dynamic
models.

As this is a novel application of a predictive modelling method, this chapter explores the

71

insights gained into jumping systems using static optimisation for second order kinematic
redundancy resolution. The chapter also assesses the method on its predictive power, com-
putational cost, and intellectual investment.

These research outcomes are realised through a case study using a parameterised model of
Numida meleagris from [6]. To assess the predictive power of the method, the results of the
case study are compared with experimentally measured data found in the literature. Com-
putational cost is assessed by timing the method’s execution. The intellectual investment is
discussed where relevant knowledge and ability requirements become relevant.

4.1 Kinematic Redundancy in Jumping Systems

Articulated models of jumping systems typically comprise more degrees of freedom in the
leg than the body has in planar Cartesian space. In a planar model, the body has 3 degrees of
freedom: horizontal and vertical position, and orientation (xb, yb, φb) while the leg comprises
4 degrees of freedom. This kinematic redundancy means that the leg is able to produce
an arbitrary body pose, velocity, or acceleration with infinitely many different combinations
of joint angle positions, velocities or accelerations respectively. In some applications, the
orientation of the body is not a concern and so there are only 2 constrained degrees of freedom
of the body. This renders a leg with ≥ 3 degrees of freedom kinematically redundant. Note
that rotation of the body still occurs in this application, it is just not a consideration when
finding the joint accelerations necessary to produce the linear accelerations of the body. In
such an application, the third row of the Jacobian, which represents the body’s orientation, is
ignored and the Jacobian is used as a 2 × n matrix. Kinematic models of jumping systems
consider the motion of the body with no regards to the forces or torques acting on the leg.
Some studies use kinematic models in conjunction with simple dynamics models in which
the body is treated as a point mass and the work done by the leg is assumed to be the work
done to the body [34]. This approach may underestimate the energetic cost of a jumping
motion. The leg comprises multiple actuators, some of which may do negative work to the
system, decelerating segments to control the direction of the body’s acceleration, while others

Figure 4.1: Diagram showing various ways in which a redundant, 4 degree of freedom leg
can produce the same body pose, (xb, yb, φb). Notice that the final segment of the leg can only
be in one position as the orientation of the body is fixed.

72

Figure 4.2: Diagram showing various ways in which a redundant, 4 degree of freedom leg
can produce the same body position, (xb, yb), where orientation is not a constraint. Notice
that the final segment of the leg moves freely.

compensate to achieve the desired magnitude of acceleration of the body. This means that
there is a difference between the work put into the system by the actuators, Win, and the net
work done to the body, Wout. This gives an overall efficiency for a given jumping motion:

η =
Wout

Win

< 1.

Note that the work done by the actuators and the work done to the body both depend on the
dynamics of the leg and so may vary greatly depending on the nature of the jumping motion
produced by the leg. The potential for a difference in the work done by the actuators and the
work done to the body implies that the leg dynamics, structure and starting position affect the
energetic capability of a jumping system.

4.2 Second Order Kinematic Redundancy Resolution

This chapter considers the use of static optimisation for synthesis of motion data by optimising
the joint accelerations based on desired body accelerations. The redundancy of the leg in
accelerating the body may be utilised to meet optimisation objectives such as: minimising
external torque or ensuring no external torque is applied at certain degrees of freedom. This
section presents the derivations and utilities of second order kinematic redundancy resolution
using the Moore-Penrose inverse, as found in [21], [51], [54], [71].

The methods described here were proposed in the 1980s for use in manipulator control. The
methods were often criticised because they do not posses a cyclic property. For a method
to be cyclic, a closed path motion of the body must begin and end with the same overall
system configuration. The methods described here do not exhibit this behaviour; the body
may return to a starting position with the leg in a different configuration to when the motion
started. This is a problem in manipulator control as typical applications involve repetitive
motions which may be rendered unpredictable or impractical by these methods. However,

73

in jumping motions the body does not typically return to the starting position and so cyclic
properties of predictive modelling methods are not generally required.

The kinematic acceleration in a jumping trajectory, as defined in equation (1.6) of Section
1.7, is a set of linear equations of the form:

Jq̈ = (ẍ− J̇ q̇) (4.1)

where the terms J , J̇ and q̇ depend on the state of the jumping system, q̈ is the vector of joint
accelerations to be determined and ẍ is the body acceleration which must be provided prior.
In a defined system, where the degrees of freedom of the body and leg are equal, the solution
is found by inverting the matrix J as in equation (4.2). However, a redundant system will
have a non-square Jacobian matrix and there will be infinitely many valid solutions for q̈.

q̈ = J−1(ẍ− J̇ q̇) (4.2)

The Moore-Penrose inverse may be used to invert the non-square matrix, J , and obtain a least
squares solution to the redundant acceleration problem. The null space of J is then used to
adjust the initial result to meet an additional optimisation objective or to impose constraints
on the system, such as ensuring no external torque is applied at an unactuated joint.

4.2.1 Moore-Penrose and Least Squares Optimisation

This section presents the Moore-Penrose inverse and its use in providing a least squares opti-
misation solution to the inverse kinematics [21]. The Moore-Penrose, or “pseudo-”, inverse is
used in this work to obtain a least squares solution to the second order, redundant kinematics
of a jumping system. In this work the pseudo-inverse is denoted with a superscript + e.g.
A+, although in some literature a superscript † is used e.g. A†. Given that A is an m × n

matrix, thenA+ is an n×m matrix. Thus, the nominal solution for q̈ becomes:

q̈ = J+(ẍ− J̇ q̇). (4.3)

The Jacobian for a deficient system, which are not considered in this work, has more rows
than columns, m > n, and the pseudo-inverse is defined as:

J+ = (JTJ)−1JT . (4.4)

For a deficient system, the pseudo-inverse is a left inverse, meaning that

J+J = In

where In is the n× n identity matrix.

The Jacobian of a redundant system, which are considered in this work, has more columns

74

than rows, n > m, and the pseudo-inverse of the Jacobian is defined as:

J+ = JT (JJT)−1. (4.5)

For a redundant system, the pseudo-inverse is a right inverse, meaning that

JJ+ = Im

where Im is the m×m identity matrix.

The pseudo-inverse is used to obtain the least squares solution to equation (4.2) as:

q̈ = J+(ẍ− J̇ q̇). (4.6)

The pseudo-inverse has the convenient property that the solution it provides has the minimum
Euclidean length. I.e.

min
q̈

√
q̈21 + q̈22 + . . .+ q̈2n

subject to Jq̈ + J̇ q̇ = ẍ

This minimisation is convenient for producing smooth motions with minimal overall accel-
erations. However, it is not guaranteed to provide the minimum torque solution. To find the
minimum torque solution, the null space of the Jacobian is used as demonstrated by Holler-
bach and Suh [54] and is described in this thesis in Sections 4.2.3 and 4.2.4.

4.2.2 Weighted Pseudo-Inverse

Whitney [72] used a weighted variation of the Jacobian matrix Jw for the optimisation to
encourage minimisation of specific joint accelerations, or combinations of joint accelerations:

Jw =W−1JT (JW−1JT)−1. (4.7)

Using the weighted Jacobian in place of the standard Jacobian in equation (4.3), the pseudo-
inverse will minimise the weighted criteria:

min
q̈
q̈TWq̈

In first order kinematics, this method is typically used by setting the weighting matrixW to
be the inertia matrixH , thus minimising the instantaneous kinetic energy of the system [72]:

min
q̇
q̇THq̇

The inertia weighted Jacobian is applied here, based on the work done by Khatib [51], to the

75

second order kinematics to minimise the instantaneous value of:

min
q̈
q̈THq̈

4.2.3 The Null Space of the Jacobian

The null space of the Jacobian is the set of joint acceleration vectors which would have no
effect on the body’s acceleration. Such a vector can be used to alter another joint acceleration
vector which produces a desirable body acceleration to have the leg perform “self motion” to
achieve an additional objective. For example, Hollerbach and Suh use the null space of the
Jacobian to minimise the torque required to produce the body acceleration [54]. This section
presents the null space of the Jacobian matrix and explains how the null space is used to adjust
joint acceleration solutions found using the pseudo-inverse.

Consider the m × n Jacobian matrix, J . The null space of J , denoted N(J), is the set of
vectors whose product with J result in a zero vector:

N(J) = {x ∈ Rn |Jx = 0}

A vector in the null space of J may be added to another vector, which is not in the null space,
with no impact on the vector’s product with J . For example, consider a vector, b, which is
not a member of the null space of J , and a second vector, c, which is a member of the null
space of J , thus Jc = 0. Then the products J(b) and J(b+ c) are equivalent:

J(b+ c) = Jb+ Jc = Jb+ 0 = Jb

An arbitrary vector, ψ̈, may be projected into the null space of the Jacobian using:

projN(J)ψ̈ = (I − J+J)ψ̈. (4.8)

Where I is the identity matrix. Thus, the set of all joint accelerations which produce a given
body acceleration, ẍ, are defined by:

q̈ = J+(ẍ− J̇ q̇) + (I − J+J)ψ̈ (4.9)

Where the vector ψ̈ ∈ Rn may be selected to alter a nominal joint acceleration vector to have
the leg meet another criteria, such as minimising torque or setting the acceleration/torque of
a chosen joint to zero.

4.2.4 Minimum Torque Optimisation

Hollerbach and Suh [54] demonstrate the use of static optimisation to find minimum torque
solutions for redundant manipulators. Their method uses the null space of the Jacobian matrix

76

to adjust the joint accelerations to find the minimum torque solution while meeting a target
acceleration of the end effector of a manipulator, which is equivalent to the body of a jumping
system. The following is a walkthrough of the derivation performed by Hollerbach and Suh
[54]. The dynamics of the system are defined in Section 1.8 with their general form given in
equation (1.8a):

τ =Hq̈ +Cq̇ + τg.

As the equations in this section become quite large, the condensed form of the dynamics is
used:

τ =Hq̈ + b (4.10)

Substituting equation (4.9) into (4.10) gives the externally applied torques based on the de-
sired body acceleration, the state of the system and the choice of ψ̈.

τ =HJ+(ẍ− J̇ q̇) +H(I − J+J)ψ̈ + b (4.11)

The minimum torque solution would be τ = 0 which would require:

H(I − J+J)ψ̈ = −HJ+(ẍ− J̇ q̇)− b.

The pseudo-inverse is then used to find the minimum norm solution to the zero torque case:

ψ̈ =

[
H(I − J+J)

]+(
−HJ+(ẍ− J̇ q̇)− b

)
. (4.12)

ψ̈ may then be projected into the null space of the Jacobian and added to the nominal solution
for q̈ as in equation (4.9):

q̈ = J+(ẍ− J̇ q̇) + (I − J+J)

[
H(I − J+J)

]+(
−HJ+(ẍ− J̇ q̇)− b

)
(4.13)

The solution of equation (4.2.4) is the joint angular accelerations having minimum norm
torques which also produce the desired body acceleration vector, ẍ.

4.2.5 Enforcing Unactuated Degrees of Freedom

This section presents a novel derivation in which the null space of the Jacobian may be used
to enforce zero acceleration constraints at a given degree of freedom. During the preparation
stage and the initial part of the push-off stage of a jump, the foot will remain flat on the ground.

77

Unactuated
degree of freedom

Figure 4.3: Diagram showing the existence of an unactuated degree of freedom at the end of
the foot during a jumping motion

However, in the later parts of the push-off stage, the foot may rotate up onto the tip of the toe.
Assuming that the foot is rigid and does not bend or flex to accommodate this motion, a model
of the system will gain an extra rotational degree of freedom at the tip of the toe when the heel
breaks contact with the ground. The extra degree of freedom is generally considered to be
unactuated and is modelled using a revolute joint. This event is demonstrated in figure 4.3, in
which a 2 degree of freedom system transitions into a 3 degree of freedom system by rotating
the foot. There are no connections between the toe’s tip and the ground and so the system
cannot apply a torque to the degree of freedom as it can to the other degrees of freedom.
Instead, the system must induce acceleration indirectly by controlling the other degrees of
freedom.

The ability to generate motions in this way may also be beneficial in finding motions for
systems which are unable to actuate certain joints. This may be for a failure case in a robotic
system or for a person having an injury. The use of kinematics to simulate models having
unactuated joints is not appropriate as a kinematic solution may require an externally applied
torque at the unactauted degree of freedom. This is an issue with using models which do not
consider dynamics. To accommodate the unactuated degree of freedom, ψ̈may be selected to
ensure that the joint angular accelerations require an external torque of zero at the unactuated
degree of freedom.

Consider the condensed form of the dynamics:

τ =Hq̈ + b

where b is the sum of the non-acceleration related terms:

b = Cq̇ + τg.

The torque at the ith degree of freedom is given by:

τi =Hi∗q̈ + bi (4.14)

where the subscript i represents the ith element of a vector and the subscript i∗ represents the

78

ith row of a matrix. Equation (4.15) is obtained by substituting equation (4.9) into (4.14).

τi =Hi∗J
+(ẍ− J̇ q̇) +Hi∗(I − J+J)ψ̈ + bi (4.15)

By setting the external torque at joint i, τi, to zero and using the pseudo-inverse, a solution
for ψ̈ is obtained.

ψ̈ =

[
Hi∗(I − J+J)

]+(
−Hi∗J

+(ẍ− J̇ q̇)− bi

)
(4.16)

The vector ψ̈ found in equation (4.16) may then be used in equation (4.9) to obtain a set joint
accelerations which produce the desired body acceleration, ẍ, while ensuring the external
torque at joint i is zero:

q̈ = J+(ẍ− J̇ q̇) + (I − J+J)

[
Hi∗(I − J+J)

]+(
−Hi∗J

+(ẍ− J̇ q̇)− bi

)
(4.17)

4.3 Static Optimisation Method

A case study is presented in which static optimisation is used to resolve the kinematic re-
dundancy of a 4 degree of freedom leg and simulate the leg of Numida meleagris during a
jumping motion. Motion capture data of Numida meleagris jumping motions from [6] were
used to provide a reference acceleration trajectory for the body of the system. The simula-
tion results include joint angle trajectories, ground reaction forces and the torques applied
at the joints. The joint angle trajectories and ground reaction forces are compared with ex-
perimentally measured motion data for a representative jump [6]. The simulated joint angle
trajectories and ground reaction forces were then compared with the experimentally measured
motion of the bird.

A 4 degree of freedom planar linkage system was used to model Numida meleagris with the
head, arms and torso treated as a single rigid body as shown in figure 4.4. The total system
mass was 1.4 kg and distribution of the mass was approximated according to the muscle
masses reported in [6], as shown in table 4.1. The leg segment lengths were taken from [73].

The experimentally measured body accelerations, ah and av, from [6], were digitised and

Table 4.1: Distribution of mass in the body and leg segments as fractions of the total system
mass.

Segment Head Arms Torso Femur Tibiotarsus Tarsometatarsus Toe Digits
Fraction of system mass 0.75 0.1250 0.0750 0.0250 0.0250

modelled using 4th order time polynomials. 4th order was sufficient to capture the general
changes in acceleration without over fitting to the experimentally measured data which may
be subject to noise and errors. The angular acceleration of the body was neglected as no data
was available. The polynomials provided the linear accelerations of the body as continuous

79

q1

q2

q3

q4

Figure 4.4: The 4 degree of freedom model used to represent Numida meleagris. Each seg-
ment is treated as a rigid rod with mass and inertia. Segment inertias are approximated by
1
12
ml2, where m and l are the segment mass and length respectively. The inertia of the body

was approximated by treating the body as a solid sphere of radius 0.2 m.

Figure 4.5: 4th order polynomial fit to the body accelerations measured by Henry et al. [6].

functions of time which were used in kinematic simulation of the system:

ah(t) = b1 + b2t+ b3t
2 + b4t

3 + b5t
4 (4.18)

av(t) = c1 + c2t+ c3t
2 + c4t

3 + c5t
4 (4.19)

The joint angular accelerations at time t were obtained using three variations of static optimi-
sation as described in the previous sections. The objectives of optimisation were as follows.

80

Minimum Norm Acceleration

The instantaneous minimum norm of the joint accelerations was obtained using the pseudo-
inverse according to equation (4.6):

q̈ = J+(a− J̇ q̇) (4.20)

where the target acceleration of the body, a is

a =

[
ah(t)

av(t)

]
.

The time dependencies of the terms in the above equations are dropped for clarity.

Inertia Weighted Pseudo-Inverse

The inertia weighted Jacobian, Jh, is derived by Nakamura et al. [74] by substituting the
inertia matrixH into equation (4.7):

Jh =H−1JT (JH−1JT)−1. (4.21)

Replacing the Jacobian, J , in equation (4.20) with the inertia weighted Jacobian provides a
weighted acceleration minimisation objective:

q̈ = J+
h (a− J̇ q̇) (4.22)

Minimum Norm Torque

The instantaneous minimum norm of the applied torques was obtained using equation (4.2.4).

The kinematic model was simulated using the variable step integration scheme “ode45” in
MatLab. As the orientation of the body was not considered, the Jacobian matrix used in the
optimisations consisted of the first 2 rows of the system’s complete Jacobian, as did the time
rate of change of the Jacobian, J̇ :

J =

[
−l1 sin(q1) −l2 sin(q2) −l3 sin(q3) −l4 sin(q4)
l1 cos(q1) l2 cos(q2) l3 cos(q3) l4 cos(q4)

]

J̇ =

[
−l1q̇1 cos(q1) −l2q̇2 cos(q2) −l3q̇3 cos(q3) −l4q̇4 cos(q4)
−l1q̇1 sin(q1) −l2q̇2 sin(q2) −l3q̇3 sin(q3) −l4q̇4 sin(q4)

]
.

4.3.1 Determination of Heel-off Event

In this work, joint angles were defined relative to the ground, whereas the joint angle trajec-
tories reported by Henry et al. were defined relative to one of the front digits of the foot. This

81

Figure 4.6: Diagrams of the 4 degree of freedom, without foot model (left) and the 5 degree
of freedom, with foot model (right). The additional joint at the end of the foot is indexed with
0 (e.g. q0) to keep the joint indices consistent between the two models.

means that towards the end of the jump, when the rear digit of the foot breaks contact with the
ground, the angles are not sufficient to describe the system’s position relative to the ground
and they are no longer useful for comparison. The point at which the rear digits break contact
with the ground is not specified in Henry et al.’s work. An approximate time of the event was
determined using a hybrid modelling approach.

To determine the motion of the foot during the jumping motion and the point in time at which
the heel of the foot lifts off the ground, two models were used: one to simulate the motion of
the leg and another to determine the motion of the foot given the motion of the leg. The two
models are shown in figure 4.6.

A 4 degree of freedom, “without foot” model was used in the optimisations to simulate the
kinematic motion of the system throughout the jumping motion. This model treated the leg
as being joined directly to the ground. The without foot model accounted for the degrees
of freedom in the system at which the bird was able to produce external torques using its
muscles.

The second model, “with foot” represented by subscript f , included an extra degree of free-
dom at the end of the foot which the bird was not able to directly actuate as no muscle crosses
from the tip of the toe to the ground. The bird is able to influence acceleration at the degree of
freedom, but not apply an external torque to the degree of freedom. The with foot model was
used to verify that the motion data produced by the without foot model was physically possi-
ble. Given the assumption that the bird had no means of gripping and pulling itself towards
the ground, the ground reaction force must be Fv >= 0 throughout the jumping motion.
With the foot stationary and flat on the ground, i.e. q0 = π, q̇0 = 0 and q̈0 = 0, the with foot
model was used to verify that the required ground reaction force was positive and the motion
was possible without requiring the foot to pull on the ground. This was done using inverse
dynamics of the model to determine the accelerations of each segment as in equation (1.8a).

By definition of the model, the only means of an external torque being applied at joint 0 is

82

Fv

+τ0

Figure 4.7: Diagram showing the ground reaction force and the external torque, τ0, acting
at the end of the foot. Positive moments are defined as acting anti-clockwise, thus a positive
value of Fv which acts to the left hand side of joint 0 will produce a negative torque at joint
0.

through the ground reaction force acting on the foot and producing a moment about the joint.
As joint 0 is at the end of the foot, and the ground reaction force can only act in the positive
(upwards) direction, the external torque acting at the toe joint must be

τ0 <= 0,

as demonstrated in figure 4.7. When τ0 becomes greater than zero, the system can no longer
be modelled using the without foot model and so simulation must be performed using the
with foot model. This requires the use of equation (4.17), or similar, to ensure the motion
proceeds with τ0 = 0. However, in this work the simulation was stopped after detection of
the heel off event.

qf =

[
π

q

]
, q̇f =

[
0

q̇

]
, q̈f =

[
0

q̈

]
.

4.4 Results

This section presents the results of static optimisation for resolution of kinematic redundancy
with the three objectives described previously. Diagrams showing the pose of the leg at 5
points in time throughout the resulting trajectories are presented. The joint angle trajectory
and ground reaction force results are presented alongside the experimentally measured data
from [6]. Each set of results is grouped by the objective used to produce them.

The static optimisations for each objective were timed over 5 runs each. The average run time
for each objective are presented in the following table. Note that this time does not include
the derivation time for the model as it is not necessary to the method.

83

Optimisation Objective Average Compute Time (s)

Minimum Norm Acceleration 0.019

Minimum Norm Inertia Weighted Acceleration 0.049

Minimum Norm Torque 0.536

Table 4.2: The average time taken to integrate the jumping motion trajectory using static
optimisation to determine the joint acceleration vector from a prescribed body acceleration
while meeting the objectives shown.

4.4.1 Minimum Norm Acceleration

The following results are the time independent optimisation solutions for q̈ which minimise
‖q̈‖.

Figure 4.8: Poses of Numida meleagris for the minimum norm acceleration motion. Segment
inertias are not labelled for clarity.

84

Figure 4.9: Minimum norm acceleration pseudo-inverse joint angle trajectories. With ex-
perimentally measured angles of Numida meleagris jumps from [6]. The toe, ankle and hip
joints follow the general trajectory as the experimentally measured data whereas the knee
joint deviates from the experimental results, reaching a difference of 2 radians at the end of
the trajectory.

Figure 4.10: Ground reaction forces of the motion produced by static optimisation, compared
with the force plate measurements presented by Henry et al. Both reaction forces change
rapidly in the optimisation results due to the leg reaching near full extension. This is close to
the point at which the heel of the foot would lift off the ground in the actual jumping motion.

85

Figure 4.11: Joint torques produced by static optimisation. No comparable data was measured
by Henry et al. The torque applied at the hip is significantly greater than the torques at
other joints. The sharp changes at the end of the trajectory for all torques are due to the leg
reaching near full extension, requiring relatively greater torque magnitudes for a given body
acceleration.

4.4.2 Minimum Norm Inertia Weighted Acceleration

The following results are the time independent optimisation solutions for q̈ which minimise
the instantaneous value of q̈THq̈.

Figure 4.12: Poses of Numida meleagris for the minimum norm weighted acceleration mo-
tion. The tarsometatarsus and tibiotarsus segments penetrate the ground during the motion.

86

Figure 4.13: Inertia weighted pseudo-inverse joint angle trajectories. With experimentally
measured angles of Numida meleagris jumps from [6]. The body centre of mass remains
below the hip joint throughout the motion.

Figure 4.14: Ground reaction forces of the motion produced by static optimisation, compared
with the force plate measurements presented by Henry et al. The sharp changes in reaction
force correspond to the point in the trajectory when the toe joint angular velocity changes
direction.

87

Figure 4.15: Joint torques produced by static optimisation. No comparable data was measured
by Henry et al. The magnitudes of the torques are similar for much of the motion. Large
changes in torque correspond to the point in the trajectory when the toe joint angular velocity
changes direction.

88

4.4.3 Minimum Norm Torque

The following results are the time independent optimisation solutions for q̈ which minimise
‖τ‖ using the null space of J . The motion of the system following the minimum torque
objective did not produce a feasible motion; the vertical ground reaction force frequently fell
below zero. To circumvent this, the ground reaction force was ignored during simulation. A
significant change in the vertical ground reaction force is seen at 0.083 s, this time is assumed
to coincide with the take-off of the jumping motion.

Figure 4.16: Poses of Numida meleagris for the minimum torque motion. The tarsometatarsus
and tibiotarsus penetrate the ground. The knee is fully extended at the point of take-off. The
hip joint remains above the centre of mass of the body throughout the motion.

Figure 4.17: Minimum norm torque joint angle trajectories. With experimentally measured
angles of Numida meleagris jumps from [6]. These results demonstrate significant variation
in the joint angles.

89

Figure 4.18: Ground reaction forces of the static optimisation results, compared with the
force plate measurements presented by Henry et al. Both the vertical and horizontal reaction
forces vary considerably throughout the motion. Both forces invert multiple times in quick
succession at 0.083 s, this is taken as the point of take-off for the trajectory. Previous points
at which Fv becomes negative are neglected as they may be related to stutter-jumping.

Figure 4.19: Joint torques produced by static optimisation. No comparable data was measured
by Henry et al. For periods of the motion the torques are small in magnitude, however, points
at which the joint angular velocities change result in spikes in torque magnitudes.

90

4.5 Discussion

The implementations of static optimisation in this work showed computation times ranging
from approximately 20 ms to 500 ms. This is a significantly small computation time for
synthesis of jumping motion data. With such a small computational cost, static optimisation
would be an ideal candidate method for the early prototyping stages of research or design.

Static optimisation was applied to a high complexity model. The method is applicable to
low complexity and single degree of freedom models as well. However, the null space of
the Jacobian matrix is only relevant when the system is redundant. Low complexity and
single degree of freedom models are likely to be deficient, in which case static optimisation
would be used to find motions which match the prescribed body acceleration as closely as
possible based on the least squares metric. As such, static optimisation may be considered
a moderately rigid method due to the fact that it is not universally applicable to models of
jumping systems.

The minimum norm acceleration solution of the static optimisation produced a jumping mo-
tion which was close to the experimentally measured motion data found in the literature. The
toe, ankle, and hip joints followed the general paths of the experimentally measured data
while the knee joint began to deviate in the final quarter of the trajectory. This shows promise
for the method’s application to jumping problems. However, the minimum norm results also
included an inversion of the hip joint near the end of the jumping motion. While this may
be attributed to flex in the spine of a real bird, it demonstrates an issue with the method
which was seen in all sets of results in this work: physical constraints cannot be applied to
the optimisation.

The other variations of static optimisation in this work (minimum norm inertia weighted
acceleration and minimum norm torque) produced unrealistic motions. The results deviated
from the experimentally measured data significantly. The minimum norm torque method per-
formed especially poorly, producing large oscillations in the joint angle trajectories, ground
reaction forces, and externally applied torques. The two variations also produced motions
which pushed the tarsometatarsus and tibiotarsus segments through the ground, which is in-
feasible for jumping motions.

As the results were demonstrated to be generally infeasible for a biological jumping system
to produce, static optimisation may be considered as unsuitable for gaining insights into the
motions of jumping systems at this level of implementation. However, it may be possible
to enforce constraints in a similar approach to the use of degree of freedom constraints in
equation (4.16). Another potential work around would be to use a weighting matrix, as in
equation (4.7), to penalise the accelerations of joints which are found to violate physical
constraints. By penalising the accelerations of problem joints, the displacement of those
joints should also be reduced. This may be enough to keep the joint angles within the bounds
of the physical constraints.

A similar kinematic method, proposed by Richards et al. [55], which is based on quaternion

91

interpolation, is unlikely to violate joint angle constraints as the method uses the joint angles
as input for both the start and end configurations. Should static optimisation prove to be
problematic in regard to physical constraints, the method proposed by Richards et al. may be
a suitable alternative.

For all implementations of the static optimisation method in this chapter, the starting config-
uration of the system and trajectory for the acceleration of the body were required as inputs.
These factors are likely to have implications on the results produced by the method and would
be worth investigating in future studies.

While this chapter utilised the dynamics of the system, including mass and inertia approxima-
tions for the segments in the model, this was not necessary to carry out the static optimisations.
The dynamics were included in this study to aid in the validation of the results against data
from the literature [6].

4.6 Conclusions

The results in Figures 4.9, 4.10 and 4.11 are comparable to the experimentally measure data
for the jumping system. This demonstrates the potential for static optimisation to be used as
a predictive modelling method for jumping problems.

The results in Sections 4.4.2 and 4.4.3 imply that the use of additional objectives in static
optimisation may be inappropriate for the synthesis of jumping motions.

All of the results in this chapter violated physical constraints of the biological system which
was modelled. Further work would be required to explore applications of static optimisation
which can accommodate the physical constraints of jumping systems, either through inclu-
sion of constraints in the optimisation or as additional objectives to discourage constraint
violations in the results. Without this work, static optimisation is unlikely to be a suitable
method for gaining insight into the motions of jumping systems.

The computational cost of static optimisation is in the order of 10s and 100s of milliseconds,
which means that the method may be well suited to support experiments which use large
parameter sweeps or iterative optimisation methods. The method may also be particularly
useful for real-time computer animation applications, such as video games.

This study did not investigate the effects of starting configurations on the performance of
static optimisation. It is anticipated that changing the starting configuration of the system
will have a significant impact on the jumping motion produced by the optimisation.

This work demonstrated the application of a predictive modelling technique which is novel
in the context of jumping problems. While the work failed to derive insights into jumping
systems using the method, a good case has been made in favour of using the method in future
studies of jumping systems.

92

Chapter 5

Dynamic Optimisation

Dynamic optimisation (or trajectory optimisation) is generally used in biomechanics to find
the muscle excitation signals which produce an optimal jumping motion. This work considers
segmented models with no muscles, thus the muscle excitations are replaced by the external
torques acting at each joint. With multiple muscles affecting each degree of freedom in an
articulated model, there are an infinite combination of muscle forces which may produce a
given set of torques at each degree of freedom. The muscle forces may be recovered using
static optimisation, however, static optimisation does not consider previous and future forces
in the model, leading to potential of discontinuous muscle force solutions. By considering
the entire trajectory, dynamic optimisation is able to account for the time dependencies of
muscle forces and find continuous results.

The literature review identified many applications of dynamic optimisation to jumping prob-
lems. As such, this chapter will assess the predictive power, computational cost, and intellec-
tual investment of dynamic optimisation in the context of jumping dynamics problems.

5.1 Summary of Dynamic Optimisation

Dynamic optimisation requires a scalar objective function to describe the optimality of a
given solution. While static optimisation looks at the current state of a system independent
of the trajectory being followed, dynamic optimisation includes the dynamics of the model
to find an optimal trajectory through the state space. Dynamic optimisation may be used to
find the following in the state space of a given model:

• A trajectory between two given states

• An optimal starting point and trajectory which lead to a given end state

• An optimal end point and trajectory from a given start state

In the case of jumping, it is practical to prescribe a single, fixed starting state which is usually
based on the natural, static standing pose of the system. Pre-determination of an end state
for the jump is a difficult task as an articulated leg may produce the same take-off velocity
from infinitely many configurations, and the optimal trajectories which lead to such states
may vary considerably. Thus the final state is not constrained in jumping optimisations. It

93

is typical to optimise for the maximum jump height (or equivalently the maximum take-off
velocity) of a system as this is a simple metric to use in a scalar objective function.

In dynamic optimisation, the problem is transcribed into a finite set of parameters which form
a non-linear program. These parameters are often referred to as decision variables. The pa-
rameters typically represent the controls and states of the system throughout the trajectory.
Those parameters are then optimised using a non-linear program solver such as MatLab’s
“fmincon” (other solvers include SNOPT [75], SciPy’s “optimize” [76] and IPOPT [77]).
Direct transcription methods are applied in this work as they are straightforward and trans-
parent to implement. Indirect methods are potentially more accurate, but are beyond the scope
of this work.

Transcription of the dynamics is the derivation of constraint functions which are applied to
the decision variables, enforcing that the variables describe a motion which obeys the dynam-
ics of the problem. These constraints are specifically referred to as continuity constraints or
continuity conditions [78]. Constraints may also be used to limit the controls used or to pre-
vent the system from entering undesirable states. Adding more constraints to an optimisation
problem leads to an increase in the the number of gradients which must be computed. Sim-
ilarly, increasing the complexity of a constraint function increases the computational effort
for the gradient of the constraint. Both of these will lead to an increase in the computation
time required per step of the optimisation. However, constraints may reduce the search space
which may potentially lead to the solution being found in fewer steps. From experience, al-
though it may seem counter intuitive, if an undesirable outcome is anticipated, such as two
segments intersecting during a motion, it is best to include the constraint proactively. While
additional constraints may increase the computation time of the optimisation, the time saved
by not producing undesirable results will outweigh this. This relates to a common dilemma
seen in many programming implementations where the code’s efficiency is optimised without
consideration to the time it takes to optimise the code itself. Spending a day refactoring code
to reduce the execution time from 1 hour to 55 minutes is unlikely to be worthwhile, unless
the code is being executed many times.

A non-linear program, the result of transcription, typically comes in the form:

min
x

J(x)

s.t. Ax ≤ b

Aeqx = beq

c(x) ≤ 0

ceq(x) = 0

lb ≤ x ≤ ub

(5.1)

The decision variables, x, are the parameters which are to be optimised and generally repre-
sent the state and control of the system at each node. The decision variables may also include
the duration of nodes as well. The objective function, J(x), is a function which produces a
scalar value and is used to score the performance of the system based on the decision vari-

94

ables. In optimal control, and in this work, the objective is thought of as a cost and so the
objective is minimised, whereas reinforcement learning consider the objective as a reward and
seek to maximise the objective function. The matrixA and vector b are used to apply linear
inequality constraints to the decision variables, whileAeq and beq provide linear equality con-
straints. No linear constraints were used in this work; the relationship between the state and
Cartesian positions in jumping models are non-linear sine and cosine functions. The function
ceq(x) is a non-linear equality constraint function used to constrain aspects of the system to
zero. Similarly, c(x) is a non-linear inequality constraint function used to constrain aspects
to zero or below. ceq is typically used to constrain the decision variables of x which represent
the states of the system at the nodes to the numerical solution for the dynamic integration. lb
and ub represent the lower and upper bounds on the decision variables respectively.

This work considers direct transcription methods as they are straightforward and transpar-
ent to implement. Indirect methods while potentially more accurate, are beyond the scope
of this work. The two main methods of transcription are multiple shooting and direct col-
location. Multiple shooting derives the constraints by explicit integration of the dynamics
between nodes. Using the decision variables at node i, a numerical solution is found for the
system’s configuration at node i+1 according to the dynamics. This solution then forms the
constraint for the decision variables at node i+1, and so on. Direct collocation uses implicit
integration of the dynamics and produces a piece-wise polynomial representing the trajectory
of the system based on the decision variables. The gradient of the polynomial represents the
dynamics of the system and is constrained to match the rate of change of state defined by the
dynamics for a given node. Maintaining the straightforwardness of methods, this work uses
multiple shooting for its clear implementation.

Gradient based optimisation generally finds a local minimum. By changing the starting values
of the decision variables, the optimiser may obtain different gradients and find a different
local minimum. Using a range of starting values can help in finding various minima of the
problem, one of which may be the global minimum of the problem. In reality, the decision
variables comprise many parameters and performing a search in this manner may require a
significant amount of time if the optimisation itself takes a long time to run. Instead, the
starting values may be chosen based on an estimate of a solution, it is common practice to
either use experimentally measured motion data where available, or to linearly interpolate the
trajectory of the system and control signal, to produce a starting set of decision variables. For
example, if the system starts in state s and the objective is maximise jump height, a plausible
solution may be for the system to increase the height of the body over the duration, thus a
starting point of the optimisation would be to set the decision variables such that the state s
follows this motion. Note that the solver handles constraints and the objective so it is possible
to start the optimisation with an infeasible motion.

95

5.2 Candidate Constraint and Objective Functions

In this work, dynamic optimisation was used to find the external torque trajectories which pro-
duced an optimal jumping motion for the Numida meleagris model described in Section 4.3.
The increased complexity of dynamic optimisation compared to static optimisation brings
about a different set of questions about the optimality of the motion. In static optimisation,
the trajectory of the system is defined by the prescribed body acceleration which was obtained
from experimental work and may in the future be generated using polynomial functions. Dy-
namic optimisation requires an objective function for the trajectory followed by the system.
This requirement of the user to produce a scalar function to describe how “good” a jumping
motion was is notoriously difficult for many dynamic problems [79]. Constraint functions are
used both to ensure that the solution obeys the dynamics of the model, and to limit aspects of
the solution such as the maximum power requirements. It is possible that any of the following
may need to be considered by a jumping system or its designer:

• No slipping

• Limit angular momentum at take-off

• Exceed a minimum take-off velocity or maximise take-off velocity

• Control the direction of take-off velocity

• Minimise the time to take-off

• Maximise energy efficiency or move within the limits of actuators

Components of an objective function generally do not share units and so weighting parameters
are also included to ensure the correct trade off between objectives is made. This may be done
using trial and error or as a means of scaling the objectives to the same unit size. Here, c is
used to denote a weighting parameter.

The following sub-sections describe constraints and objectives which may be used to ensure
or encourage such goals in jumping for the benefit of readers wishing to implement dynamic
optimisation. Some of these functions are used in the case study which follows this section.

No Slipping

As the system pushes against the ground it receives a reaction force parallel to the ground
due to friction. Should the system push against the ground with horizontal force greater than
the available friction force the foot would slide along the ground, potentially leading to the
system falling to the ground. As such, it may be necessary to keep the horizontal ground
reaction force within the limits of the available friction. Such a constraint may be defined as:

Fh ≤ µFv

96

where Fh is the horizontal reaction force from the ground to the foot and Fv is the vertical
reaction force. This constraint may need to be relaxed close to the point of take-off as the
vertical reaction force approaches zero.

Angular Momentum Limit

During the push off stage the system generates momentum, some of which may be angular
momentum about the centre of mass of the system. Rotation of the system during the flight
stage of a jump may lead to the system landing with an unfavourable orientation. Some
jumping systems, such as insects, accept such conditions, sacrificing the ability to land in a
controlled manner for more explosive, catapult-like jumps. Such jumps are generally favoured
by small systems as their terminal velocity is low enough that a landing will not result in
significant damage, whereas larger systems tend to limit their angular momentum to ensure
they land safely. Thus, the angular momentum of the system should be constrained within
limits which ensure the safe landing of the system. For large systems where constraining the
angular momentum on take-off is a likely requirement, it has been shown that consideration
of angular momentum negatively impacts the maximum jump height attainable in athletic
high jumping [80]. Wilson et al. propose that angular momentum constraints are considered
in jumping optimisations because of this effect. The angular momentum of the system, Iω,
may be constrained according to:

I‖ω‖ ≤ Iωmax

where Iωmax represents an absolute maximum angular momentum of the system. Similarly,
the objective function may include a penalty to deter solutions with high angular momentum
without the need to determine a hard constraint for the problem:

J(x) = c I‖ω‖.

Minimum Take-off Velocity

A low airspeed in flight will lead to stalling. when jumping is used to take off for flight, the
system needs to surpass this minimum airspeed velocity to ensure sufficient lift is generated
for flight. Any velocity above this value is not wasted, it is generally the case that generating
velocity by pushing from solid ground is more efficient than pushing from air, thus the system
saves effort in the flight stage by producing more velocity in the push off stage. This minimum
take-off velocity may be included as a lower bound constraint on the take-off velocity, vTO:

‖vTO‖ > vstall

where vstall is the stall speed of the system.

97

Maximise Take-off Velocity

The most common objective in jumping optimisation, maximising take-off velocity is a demon-
stration of the system’s maximum capabilities. For a point mass system this is an objective
function of:

J(x) = −c ‖vTO‖

For a system with rigid segments, the take-off velocity is not the velocity of the body at take-
off. The momentum of the system must be considered as much of the leg’s momentum will
not be directed the same way as the body. Thus, the objective function becomes:

J(x) = − c

m

n∑
i=1

mivi

where m is the total mass of the system, mi is the mass of the ith segment and vi is the
velocity of the centre of mass of the ith segment. Note that this does not account for the
angular velocities of each segment about their centre of mass.

Directed Jumping

In a prey-seeking jump, an element of path planning must be involved to ensure the predator
doesn’t miss its target. For example, jumping spiders exhibit time minimal, directed jumps
to a target location [81]. It is common practice to ignore the effects of control actions during
flight and to treat the system as having ballistic motion throughout the flight stage. The path
taken by the system under this assumption is well defined and so constraining the jump to pass
through a desired point is a case of integrating the ballistic motion of the system and checking
that it intersects the desired point. To achieve this, the dot product of a desired direction and
the take-off velocity may be used as a hard constraint:

vTO

‖vTO‖
· d̂ = 1

where the take-off velocity must be normalised to a unit length and d̂ is the unit vector which
represents the desired take-off direction. Alternatively, the direction of the jump may be set
as part of the objective:

J(x) = −c
vTO

‖vTO‖
· d̂.

This objective may be adjusted to also have the system maximise take-off velocity by using
the original vector of vTO:

J(x) = −cvTO · d̂.

Minimum Time to Take-off

Evading a predator may require a system to take-off in as little time as possible. The jump
may also require a minimum velocity to ensure sufficient distance from the predator is gained.

98

Minimum time trajectories can be set up by including the duration of the trajectory in the
parameters under optimisation. When doing this, the time between nodes is calculated at each
iteration based on the current duration parameter. This method may be taken one step further
by using parameters for each node’s duration, this is used when some regions of the trajectory
require fine controls while others suit coarse controls. The system may be constrained in that
it must take-off after a maximum of tmax seconds:

tTO ≤ tmax

where tTO is the time until take-off. Or the system may be encouraged to minimise the time
until take-off as part of the objective:

J(x) = c tTO.

Efficiency and Actuator Limits

Systems which use jumping as their main method of locomotion are likely to aim to minimise
the energetic cost of jumping. Such jumps may include an objective function which seeks to
minimise the total work, W , or the maximum power, Pmax, required for the motion:

J(x) = c
ET

W
or J(x) = c Pmax.

Where ET is the total energy of the system at take-off. The total work may be approximated
using the angular displacements and the applied torques at each joint. Similarly, power may
be determined using angular velocities and applied torques at each joint. Both of these come
from the decision variables, however, a more accurate approximation of the work done may
be found using trajectories generated by numerical integration between nodes, though this
may incur a large computational load on the optimisation. Energetic objectives are not useful
without constraints or further objectives to enforce motion, as the solution to a minimisation
of total work is to do absolutely nothing. A constraint such as a minimum take-off velocity
should ensure the solution found reaches such a velocity. Perhaps the most common objective
function is to penalise the sum of squared torques applied to the system:

J(x) = c
n∑

i=1

τ 2i .

While the objective has no clear physical meaning, it works to smooth the applied torques
and reduce large spikes while also encourage the spreading of torques across all degrees of
freedom rather than a single one. The objective also somewhat relates to work but does not
consider the motion of the system. Without using integration, a power minimising objective
may be more desirable:

J(x) = c

n∑
i=1

abs(τ T
i)abs(q̇i).

99

The absolute value is used to ensure torques which extract energy from the system are not
encouraged by the objective function.

5.3 Method

This section demonstrates the application of dynamic optimisation to the Numida meleagris
model described in Chapter 4. Optimisations were performed using a range of node counts
between 2 and 50. The addition of nodes increases the number of decision variables and
continuity constraints which must be evaluated at every iteration, resulting in increased com-
putation times. In this study, the quality of optimisation results decreased with increasing
number of nodes until the nodes become close enough together that the dynamics of the sys-
tem were effectively linearised at which point the optimisation produced better results.

The optimisation assumes that the starting state of the system is given. Using the direct
multiple shooting method, the optimisation problem was transcribed using n nodes. The
transcribed parameters included n−1 states, n−1 control inputs and a single value, td which
represented the duration of the trajectory. Nodes were equally spaced from the start to end
of the trajectory according to td. Parameter values aligned to the times of the trajectory as
shown in Table 5.1.

Table 5.1: Multiple Shooting parameters and their relevance to the trajectory’s duration. t1
corresponds to the start time of the trajectory and each index thereafter represents the time at
that node. “x” denotes the absence of a parameter at a given node in the trajectory.

Node 1 2 … n− 1 n
Time t1 t2 … tn−1 tn
State x s2 … sn−1 sn

Control u1 u2 … un−1 x

Controls were treated as step inputs with the torque at a node applied as a constant value
until the next node, this provided the simplest representation of the control input while pro-
ducing plausible results. The parameterised torques were bounded according to the torques
produced by the static optimisation model in Chapter 4. The starting state was not parame-
terised as this was fixed for the problem. The control at the final time of the trajectory was
not necessary as no further integration would occur. An additional control parameter at the
end of the trajectory would have allowed the system to quickly end the jump by changing the
applied torques to pull the foot from the ground, however, the results produced without the
additional control parameter were deemed sufficient. The end state of the trajectory was in-
cluded to provide the solver with information about the objective function as take-off velocity
was the main objective for optimisation. The dynamics of the system were integrated using
the explicit Runge-Kutta 4,5 method implemented in MatLab’s ode45 function. The opti-
misation was used to find the external torques, and resulting trajectory through state space,

100

which minimise the following objective function:

J(x) = −vd · ρn + c
1

n

n−1∑
i=1

uT
i ui. (5.2)

ρn is the momentum of the system at the end of the trajectory:

ρn =
n∑

i=1

mivi.

vd is a unit length vector which represents the desired take-off velocity direction extracted
from the experimentally measured data presented by Henry et al. [6]

vt =

[
0.3846

0.9231

]
. (5.3)

. The weighting parameter, c, was set to 0.01. ui is the vector of external torques applied for
the duration of node i. Momentum was used to account for the motion of the leg segments
as well as the motion of the body, considering that the leg mass constitutes around 25-35%
of the total system mass [6], [39]. If only the velocity of the body were considered, then
motions with a large hip angular velocity, which result in a large velocity of the body, may be
selected. Such a motion would result in a lower take-off velocity than anticipated as the leg’s
momentum would reduce the overall momentum of the system.

5.3.1 Undesirable Solutions from Dynamic Optimisations

This section will discuss some of the dynamic optimisation solutions obtained which were
not anticipated, nor desirable. The methods used to ensure such results were not obtained
are presented and the effects they have on the solution are discussed. In this work constraints
were included in response to undesirable solutions. The solutions and the constraints which
fixed them are presented here so that they might help researchers experiencing similar issues.

Solution moves below the ground

A common result of the optimisation was for the system to fall under gravity and then use an
exceptionally large stroke length to jump from under ground. As the dynamics ignore ground
reaction forces this was a feasible solution albeit unrealistic. To prevent such motions, state
parameters were constrained such that each segment remained above the ground. The vertical
position of the ith segment’s end point, yi is given by:

yi =
[
J2,1 J2,2 . . . J2,i

]
q. (5.4)

The negative of the vertical positions were then used as inequality constraints, forcing the
solution to keep segments above the ground. The tarsometatarsus position was constrained

101

separately by bounding the toe angle to be between 0 ≤ q1 ≤ π. The drawback to this method
is that the constraints are only enforced at the nodes, the system may pass through the ground
in between nodes and the constraints while satisfying the constraints at the nodes. This might
be remedied by increasing the number of nodes in the transcription, at the cost of increased
computation time, or by adding the position constraints at times in between nodes as well as
at the nodes themselves.

Studies found in the literature use collision detection and ground contact models, typically
based on spring-damper systems, within the system model to prevent ground penetration [12],
[15], [16], [34]. Such practice removes the need to include optimisation constraints and thus
eliminates the issue of constraint violation between nodes. The problem with such methods
is that they require careful tuning of contact force models to ensure the system is not able
to take advantage of contact forces in producing unrealistic results, akin to jumping from a
trampoline instead of solid ground. By rejecting solutions which penetrate the ground via the
optimisation constraints, tuning of the model is avoided.

Solution violates the no pulling assumption

In order to use the vertical ground reaction force to determine the take-off of the system, the
rest of the jumping motion must not involve any pulling on the ground, i.e. Fv ≥ 0 must hold
true for the entire motion except the moment of take-off. This was enforced by constraining
the vertical ground reaction force to be Fv > 0 for all nodes excluding the final node, at which
point the reaction force was constrained to be Fv ≤ 0 as the system breaks contact with the
ground and successfully jumps. Note this excludes stutter jump motions although they may be
beneficial according to Aguilar et al. [47], but it does not exclude countermovements where
the body is lowered with a positive vertical ground reaction force which is less than the weight
of the system.

Solution uses joint constraint forces to its advantage

The constraint forces of a revolute joint prevent linear motion between joined segments. These
forces are especially large when two segments align and the system is moving along the di-
rection of alignment. An optimisation may use a whip-like motion to gain significant acceler-
ation during the motion. In reality this is an undesirable effect as the ligaments and supports
in the joint are responsible for producing such forces with large forces potentially leading to
damage in the joint. Sellers et al. constrain the stress in bone structures to be below a given
limit in determining the running gait of Tyrannosaurus rex [82]. Their method was not imple-
mented in this work. A similar solution may be to constrain the joint angular accelerations at
nodes to be within certain limits, this would discourage the large accelerations of a whip-like
motion, however, the constraints may require some amount of trial and error to determine the
acceleration limits necessary to prevent the use of joint constraint forces without preventing
plausible jumping motions.

102

vb

vb
Constraint
Forces

Figure 5.1: Example motion in which the body moves with velocity in the direction of the leg
alignment. As the the segments are all aligned, the body reaches the maximum extension and
the revolute joint constraint forces prevent further motion. This results in a large acceleration
of the body in the opposite direction, similar to the crack of a whip.

Solution includes segment intersections

Some optimisation results involved the intersection of segments as no collision dynamics
were included in the model. This problem has a straightforward solution if the intersect-
ing segments are adjacent as the angle of one segment relative to the other segment may be
constrained to −π < q̂n < π. However, if the intersecting segments have an intermediate

q1

q2

q3

q4

Figure 5.2: Example of joint angles defined relative to the previous adjacent segment. Note
that q1 is still defined relative to the inertial frame of reference.

segment between them, the segments must be treated as line segments in Cartesian space to
determine if an intersection occurs. The method proposed by Antonio [83] provides an ef-
fective means of determining whether two line segments intersect or not. The difficulty with
this solution is that the segments either intersect, or they do not. This means that a constraint
function for intersection will be discontinuous and therefore problematic for a gradient de-
scent method, such as fmincon. For this reason, the intersections of non-adjacent segments
was not included in the constraints. The end point position of the ith segment, (xi, yi) is
defined as: [

xi

yi

]
=

[
J1,1 J1,2 . . . J1,i

J2,1 J2,2 . . . J2,i

]
q. (5.5)

Intersections between non-adjacent segments may occur between the following segments in
the Numida meleagris model:

103

• Tarsometatarsus - Femur

• Tarsometatarsus - HAT

• Tibiotarsus - HAT

The position of the tarsometatarsus which is joined to the ground is defined as (0, 0). The
intersection point is not a requirement as no intersection of segments should occur.

An alternative solution would be to include constraint forces directly in the model. Anderson
and Pandy use spring-like ligament torques to prevent the segments from reaching physically
impossible angles [15]. One issue with such models is that the optimisation may find solu-
tions which use the constraint forces to their advantage. Another issue with using spring-like
constraint forces is that the appropriate force model for the constraint depends on the motion
and inertia of the system to which they are applied. This means that the constraints must be
tuned to the model to ensure their effect is appropriate. Interestingly, Anderson and Pandy
also include a penalty in the objective function to prevent joint hyper-extension, implying that
the constraint forces may have been insufficient for preventing such motions.

5.4 Results

The optimisation results are presented for the following range of node counts:

n = {2, 3, 4, 5, 10, 25, 50}.

This is done to show the variation in results with the coarseness of the trajectory discretisation.
The results are presented along side the motion capture data obtained by Henry et al. [6]. The
objective score for each result is presented in table 5.2. The resulting joint angle trajectories,
joint torques and finally the ground reaction forces are presented in this section.

The following graphs are representative of the results presented in this section. Each of these
graphs are labelled to show how the results will be presented.

nodes

Optimisation Result
Experimental Measurement

Figure 5.3: Example joint angle trajectory optimisation result using 3 nodes. The resulting
duration of the optimised trajectories vary from each other and the experimentally measured
data. The final node represents the end of the trajectory and the point of take-off.

104

Optimisation Result
Experimental Measurement

nodes

Figure 5.4: Example ground reaction force from optimisation result using 3 nodes. The
reaction forces change abruptly due to the step change in torque. However, the step change
at the end of the trajectory occurs over a longer duration and is not due to a step change in
torque; the change in reaction force at the end of the trajectory is due to the leg of the system
approaching full extension.

Table 5.2: The final objective function scores and computation times for each optimisation
run. Note that the objective function represents a cost and so lower values are considered to
be better.

Number of Nodes 2 3 4 5 10 25 50
Objective Score 0.41 -6.14 -5.43 -3.99 -6.55 -6.74 -7.04

Computation Time (s) 2.00 25.8 41.6 56.7 219 1990 32500

5.4.1 Joint Angle Trajectories and Sample Poses

The resulting joint angle trajectories are presented here with the experimentally measured
data from Numida meleagris [6]. Poses of the system sampled at equal intervals in time
throughout the trajectory are presented to demonstrate the resulting motions. No example
poses are presented for the 2 node optimisation as the motion was infeasible.

105

Figure 5.5: Dynamic optimisation joint angle trajectories with 2 nodes. The optimisation
failed to converge. The time parameter td was removed in testing but the optimisation still
failed to find a feasible solution.

Figure 5.6: Poses of the system at equal intervals throughout the resulting trajectory for the
3 node optimisation.

106

Figure 5.7: Dynamic optimisation joint angle trajectories with 3 nodes.

107

Figure 5.8: Poses of the system at equal intervals throughout the resulting trajectory for the
4 node optimisation.

Figure 5.9: Dynamic optimisation joint angle trajectories with 4 nodes.

108

Figure 5.10: Poses of the system at equal intervals throughout the resulting trajectory for the
5 node optimisation. The poses show the segments almost overlapping.

Figure 5.11: Dynamic optimisation joint angle trajectories with 5 nodes.

109

Figure 5.12: Poses of the system at equal intervals throughout the resulting trajectory for the
10 node optimisation. With 10 nodes the segments are seen to overlap, this occurs in the time
between nodes.

Figure 5.13: Dynamic optimisation joint angle trajectories with 10 nodes.

110

Figure 5.14: Poses of the system at equal intervals throughout the resulting trajectory for the
25 node optimisation. The system compresses much more in the preparation stage than in
results from fewer node optimisations.

Figure 5.15: Dynamic optimisation joint angle trajectories with 25 nodes.

111

Figure 5.16: Poses of the system at equal intervals throughout the resulting trajectory for the
50 node optimisation. The resulting motion involves significant compression of the system
throughout the motion.

Figure 5.17: Dynamic optimisation joint angle trajectories with 50 nodes.

112

5.4.2 Torques

This section presents the resulting torque trajectories of the optimisations.

Figure 5.18: Dynamic optimisation control signal with 2 nodes. As the optimisation failed,
no meaningful torques were produced.

113

Figure 5.19: Dynamic optimisation control signal with 3 nodes. The hip joint is used most
in the initial half of the motion with the remaining joints activating in the second half of the
motion.

Figure 5.20: Dynamic optimisation control signal with 4 nodes. The toe, ankle and knee
joints are not significantly used in the initial stage of the motion.

114

Figure 5.21: Dynamic optimisation control signal with 5 nodes. Little torque is applied at
the toe joint throughout the motion. The knee and ankle are not used in the initial stage of
the motion.

Figure 5.22: Dynamic optimisation control signal with 10 nodes. The toe and knee joint
torques are not used a lot in the initial stage of the motion.

115

Figure 5.23: Dynamic optimisation control signal with 25 nodes. With more nodes the finer
adjustments in the applied torques become more clear.

Figure 5.24: Dynamic optimisation control signal with 50 nodes. Large oscillations in the
torque applied occur in these results. Especially in the knee and ankle joints.

116

5.4.3 Ground reaction forces

The horizontal and vertical ground reaction forces, Fh and Fv are presented here. Due to the
ability of the system to incur step changes in the applied torques, the reaction forces exhibit
significant discontinuities which is not realistic to a biological jumping system. However, this
may be similar to the ground reaction forces of manipulators or legged jumping robots.

Figure 5.25: Dynamic optimisation ground reaction forces with 2 nodes.

Figure 5.26: Dynamic optimisation ground reaction forces with 3 nodes.

117

Figure 5.27: Dynamic optimisation ground reaction forces with 4 nodes.

Figure 5.28: Dynamic optimisation ground reaction forces with 5 nodes.

118

Figure 5.29: Dynamic optimisation ground reaction forces with 10 nodes.

Figure 5.30: Dynamic optimisation ground reaction forces with 25 nodes.

119

Figure 5.31: Dynamic optimisation ground reaction forces with 50 nodes.

120

5.5 Discussion

The number of nodes used in the optimisation appears to follow the principals of function
fitting. The more nodes that were used in the optimisation, the more the solution became
over fit to the problem and the information between nodes became noisy. The single shooting
implementation, with 2 nodes, did not find a meaningful solution. Constraining the duration
of the trajectory for the single shooting implementation to be 0.2 s resulted in an infeasible
solution as well. With 3 and 4 nodes, the control signal had enough freedom to produce a
meaningful jumping motion. As the number of nodes was increased further, solutions were
found which violated the constraints between nodes and the trajectories became less smooth.
Between 25 and 50 nodes, the system dynamics were split into small enough sections that
changes in state were mostly linear. At this point, the solutions more reliably adhered to the
constraints and the solutions became meaningful.

Under the assumption that a jumping system cannot hold onto the ground and pull itself
with a negative vertical force, the take-off event is defined by the vertical ground reaction
force becoming less than zero. This occurs in the 5, 10 and 25 node solution between nodes,
meaning that the trajectory would be invalid in practice even though no constraints were
violated at the nodes during optimisation.

The torque bounded dynamic optimisation is not representative of a biological system as there
were no constraints on actuator powers or modelling of muscle force response times. Because
of this, the results differ from the experimentally measured data. This is especially noticeable
in the ground reaction forces, with the vertical reaction force being generally larger in the
optimisation results than in the experimentally measured data.

The control signals produced by the optimisation vary considerably and their variation in-
creases with the number of nodes as more opportunities for change are introduced. These
instantaneous changes in control input lead to discontinuities in the ground reaction force.
This implies that a step function for the control input is not suitable for biomechanics appli-
cations. However, in a robotics setting, where motor response is virtually instantaneous, this
may be a representative result.

There is no step change in the control input at the final node of the trajectory, yet all of the
solutions show a sharp change in the vertical ground reaction force at the end. This is due
to the configuration reached by the system at this stage in the jump. The joint angles are all
close to π

2
, meaning that the segments in the leg are becoming aligned in the vertical direction.

In this configuration, the ground reaction force supporting the applied torques is horizontal.
This is seen in the sharp increase in the horizontal reaction force in the solutions.

The intellectual investment required to implement a dynamic optimisation is significant. Pa-
pers and books describing the methods [84], [85] often use a lot of mathematical notation.
Dynamic optimisation methods make use of algebra, calculus, dynamic programming, non-
linear programs, and computer programming. A good quality dynamic optimisation imple-
mentation would alleviate many of these intellectual requirements. However, such tools are

121

not readily available at the time of writing. Programs such as fmincon, [38], SNOPT [75],
SciPy’s “optimize” [76], and IPOPT [77] provide non-linear program solvers. It is required
of the user of such methods to transcribe their dynamics problem into a non-linear program
to then be solved. Thus, the user must still be versed in algebra, calculus, the formulation of
non-linear programs, and computer programming.

The computation time for the dynamic optimisation method increases non-linearly with the
number of nodes. The trend is not exponential. However, 9 hours to complete the optimisation
with 50 nodes is a significant amount of compuational cost. This is also similar to the times
reported by Anderson and Pandy [15] after compensatory adjustment for CPU differences.
The computation time was much larger than the time reported by Bishop et al. [58], for a
single optimisation run in their work. This discrepancy in computation time is likely due to
the difference between the direct collocation method used by Bishop et al. and the multiple
shooting method used in this work. Multiple shooting integrates the dynamics of the model
between nodes whereas direct collocation approximates the dynamics using a given order
spline between nodes. Direct collocation is much faster to compute while multiple shooting
generally provides better accuracy in its results.

Learning to use a method which takes a long time to produce results, such as dynamic op-
timisation, requires the student to have a strong understanding of what will happen when
they make changes to any part of the transcription method, objective function, constraints
functions etc which is not always possible, especially when the problems are non-linear and
potentially chaotic.

The phenomenon described in Section 5.3.1 was seen in the results of the dynamic optimisa-
tions, particularly in the 50 node optimisation. This lead to unrealistic motions being found by
the method. The unrealistic motions also corresponded to torque trajectories featuring large,
sudden changes in the applied torques. It could be the case that the ability of the optimisation
to vary torque so drastically enabled the realisation of these unrealistic results. A future study
may consider constraining the applied torques either by inclusion of a muscle model or by
enforcing limits to the gradients of the torque signals.

5.6 Conclusions

Dynamic optimisation not only enables its user to consider multiple aspects of a jumping
problem, it forces them to. Without proper constraints, the methods can converge to results
which are undesirable and unpredictable.

The intellectual investment required to use dynamic optimisation is made significant by the
large computational cost of the method. A user of the method cannot easily employ a trial
and error approach with the methods as they can take a long time to produce results.

Unnatural motions produced by the dynamic optimisation may be due to poor selection of
constraints for the optimisation, or due to poor selection of the model being optimised. Future

122

work may consider optimising bounded gradients for the applied torques or constraining the
gradients of the optimised torque signals.

The results of this study imply the existence of a “sweet spot” in the complexity of a dynamic
optimisation’s transcription. With sufficiently few nodes in the trajectory the results obtained
may be sensible and close to realistic. The inclusion of additional nodes seems to lead to a
decline in the quality of results, with constraint violations occurring more frequently between
nodes. With a sufficiently large number of nodes, the optimisation is forced to satisfy con-
straints between nodes as the dynamics are essentially linearised, producing more realistic
results.

123

Chapter 6

Reinforcement Learning

Reinforcement learning methods pose an interesting prospect for biomechanics research as
they are model-free optimisation methods. This is particularly useful in high complexity
applications, as researchers often look to dynamic simulation software packages [31], [32]
which simulate dynamic systems without exposing the model equations. Reinforcement
learning has been popularised by demonstrations from research companies such as Deep-
Mind and OpenAI [86], [87]. However, these headline-making successes are generally backed
by significant computational resources which may not be available to some academic re-
searchers.

Other model-free optimisation methods include evolutionary algorithms, however, these are
not included in the scope of this work. Evolutionary algorithms may be used to optimise
a parameterised policy or a trajectory and their implementation is generally similar to rein-
forcement learning with both methods having the potential to find global optima to complex
problems. It is claimed that “[Reinforcement learning] methods able to take advantage of
the details of individual behavioral interactions can be much more efficient than evolutionary
methods in many cases” [22]. Thus, evolutionary algorithms are left out of the scope of this
work.

The work in this chapter assesses the application of Deep Deterministic Policy Gradients
(DDPG) [23] for predictive modelling of planar jumping systems. As the method is novel in
its application to jumping dynamics problems, this work seeks to evaluate what insights may
be gained through its application.

DDPG is a state of the art reinforcement learning method which was anticipated to be suitable
for jumping dynamics problems. The DDPG algorithm was applied to the Numida meleagris
jumping model used in previous chapters of this thesis. The method and results were assessed
on predictive power, computational cost, and intellectual investment.

6.1 Why DDPG?

One of the factors which influenced the selection of DDPG was that the method produces a
deterministic, continuous policy. In the context of jumping, the result of the DDPG algorithm
may be the deterministic function:

τ = π(q). (6.1)

124

Note that the output of the policy could be used as any aspect of the model e.g. q̈ or target
joint angles for a PID controller. A deterministic policy is an important feature for studying
the motions produced by the policy. Many reinforcement learning algorithms optimise a
stochastic policy, which outputs a probability distribution for actions to take in a given state.
This output of probability distributions from the policy is essential to the derivation of the
policy gradient method [88] which is used in state of the art methods such as Trust Region
Policy Optimisation [24] and Proximal Policy Optimisation [25]. This is also a requirement
in some Actor Critic methods, such as the Soft Actor Critic algorithm [26].

The policy used in DDPG also outputs continuous actions, this is especially useful for fine
motor control using torques. For different jumping models such as those controlled by ac-
tivation signals, a discrete policy may be suitable. An example of a reinforcement learning
algorithm which provides a discrete policy is Deep Q-Network [89].

An important distinction between reinforcement learning methods and the other optimisation
methods considered in this work is that reinforcement learning methods seek to produce a
globally optimal policy whereas static and dynamic optimisation methods produce optimal
trajectories, taking the system from an initial state to a desired state. Producing a policy, or
controller, instead of a trajectory may allow the researcher to evaluate optimised system be-
haviours from various starting configurations. The parameterisation of the optimised policy
may also provide insight into the decision making behaviours, i.e. what state information
most influences the actions output by the policy. For the case of producing a single trajec-
tory, the reinforcement learning method may be used by starting each episode form the same
state. This practice would not work with dynamic programming, or off-policy, methods of
reinforcement learning such as value iteration.

6.2 Pitfalls

This section identifies some of the difficulties, and their potential workarounds, which arose
when applying reinforcement learning methods to jumping dynamics problems.

6.2.1 Catastrophic Failure in Jumping Problems

Sampling data from a high dimensional problem is a considerable hindrance to the use of re-
inforcement learning methods in dynamics problems. Jumping problems in particular exhibit
a “catastrophic failure case” (not to be confused with catastrophic forgetting). Catastrophic
failure occurs when the system enters a state from which the system cannot feasibly recover.
In jumping, this typically involves the system falling over and is an especially easy case to
produce.

The random exploration strategies used in most reinforcement learning methods are likely to
result in the system falling over during exploration and being unable to progress. Reinforce-
ment learning methods are capable of overcoming failure cases as the optimisation penalises

125

the system falling to the ground. Any actions which lead to negative rewards, i.e. the system
falling over, are filtered out of the policy and what remains are actions which do not lead to
the system falling over. However, in jumping, falling over is a large possibility and ruling out
all the actions which lead to falling over is no small task. Learning all the ways not to perform
a task before learning the correct way is not an efficient process.

The difficulty with jumping is that it is considerably easier for an attempt to fail than it is
to succeed. Sampling may be insufficient for finding solutions to jumping problems and
so further measures may need to be taken when applying reinforcement learning methods
to problems which exhibit such catastrophic failure cases. The following subsections will
describe two potential means of overcoming this problem.

6.2.2 Point Mass Example

The following sections will provide examples based on the following simplified system. Con-
sider a point mass jumping system which is at rest on the ground. The mass is actuated by a
vertical thruster which produces a discrete acceleration on the mass of either a = -1, 0 or 1
ms−2. The mass is attached to a frictionless, massless rod of length 0.5 m with a stopper at
the top, and the only way the system can jump is by reaching the top of the rod and pulling the
rod off the ground. The state of the system, x, represents the vertical height above ground and
the vertical velocity of the mass. If the thruster accelerates the mass upwards continuously it
would take 1 s for the system to take-off with a velocity of 1 ms−1. This is considered as the
only feasible jumping motion for this example model. While it is possible for this system to
take-off with a lower velocity than 1 ms−1, a system with increased complexity would have a
significantly smaller set of feasible motions compared to non-feasible ones than this simple
system. Thus, for illustrative purposes, the margin of success in this problem is decreased.

1 m a

Figure 6.1: The point mass system in its starting state (left) and after a successful take-off
(right). a represents the acceleration due to the applied control action.

126

6.2.3 Frame Skipping

Episodes are typically limited in their duration to ensure the method interacts with each stage
of a task often. During an episode, the method will have a number of opportunities to select
a control action. The period of these decisions is defined by the “frame skipping” parameter
of the algorithm [23], [24], [89], [90]. Frame skipping defines the number of frames, or time
steps, that a chosen action is applied for. Problems with high frequency responses will require
a low frame skipping value while slowly changing systems lend themselves to higher frame
skipping values.

Frame skipping is often used in dynamics problems as simulations tend to use small time
steps; if reinforcement learning methods selected a pseudo-random action at every time step
of the simulation the chances of any meaningful trajectories being generated would be slim.
However, a high frame skipping value may lead to the actions being selected too infrequently
leading to oscillations, overshooting or generally insufficient control resolution to complete
the task.

To demonstrate the significance of frame skipping, consider the point mass system described
in section 6.2.2. For example’s sake, consider that the system is simulated at a time step of
0.02 s, thus a 1 s attempt includes 50 steps of simulation. A controller operating with no
frame skipping would be required to provide a set of 50 consecutive decisions. Under the
assumption that the only feasible jumping motion requires continuous positive acceleration,
the controller has a probability of 1

3
of choosing the correct action at any given step in the

simulation. Without frame skipping, the controller would have to correctly choose an action
50 times in a row which is a probability of (1

3
)50 = 1.4e − 24, significantly lower than the

probability of winning the lottery.

Frame skipping holds a chosen action for a set number of frames, reducing the number of
decisions required from the controller and thus increasing the probability of a successful at-
tempt. This effect is shown in figure 6.2. Note that this is an extremely simplified illustrative
example, in reality the probability of success is not so clearly defined and the number of
frames skipped may have a very different relationship with this probability. Furthermore, in
jumping it is common to measure success using the velocity of the system at take-off and
so any attempt which achieves take-off may contribute to the optimisation and increase the
policy’s probability of selecting the correct action at each step. While this is the case, this
example system does not include a catastrophic failure case; one wrong action will not cause
the system to fall over and the attempt can easily recover from a mistake. Non-linear dynam-
ics problems with high dimensional state spaces and multiple control actions are difficult to
reduce to a small number of decisions due to the dimensionality of the action space. As such,
frame skipping may only increase the probability of success slightly, meaning that further
methods are required to ensure sampling finds success.

127

Figure 6.2: Plot of the effect of frame skipping on the probability of a successful attempt at
the point mass jumping problem. Steps on the plot are due to the duration of the episode not
dividing perfectly into each action, e.g. 30 frames skipped and 40 frames skipped will both
require 2 actions to be chosen.

6.2.4 Reward Shaping

Another practice used in reinforcement learning to improve the chance of success is reward
shaping. Reward shaping is the act of adding incentives to a reward function which encourage
desirable algorithm behaviours, such as guiding the exploration of the reinforcement learning
method. Reward shaping can be used to guide the algorithm’s exploration of the problem by
continuously providing information on how good each action was.

Using the point mass jumping problem mentioned previously, the objective is to maximise
take-off velocity, which in turn requires the system to take-off. Assuming that take-off only
occurs when the system has accelerated upwards through the entire attempt the reward would
be:

r =

1, if x = xgoal

0, otherwise
(6.2)

Where r is the reward received andxgoal is the goal state of the system which in this simplified
example would be (0.5m, 1ms−1).

This reward will not be discovered by a sampling method unless a successful take-off attempt
is performed. Until the reward is sampled, the optimisation algorithm will have no gradient
information to follow and will effectively continue behaving randomly. One method of reward
shaping in this scenario would be to providing a reward which is inversely proportional to the
distance between the current state and the goal state, thus encouraging any actions which

128

move the system closer to the goal.

r =

100, if x = xgoal

(xgoal − x)−1, otherwise
(6.3)

As the reinforcement learning method collects samples it is highly likely to experience the
shaped rewards leading to the policy being optimised to encourage actions which move the
system towards the goal state.

This introduction of additional reward signals can become problematic as the task description
has been made more complicated. In this simple example it may not be a significant issue,
however, if the jump required a countermovement of the mass (i.e. the mass needed to be
moved down first and then up) then this shaping would discourage the mass from moving
down and cause the reinforcement learning method to fail. Another potential failure case
with this example of reward shaping would be for the policy to move the mass as close to
the goal state as possible without completing the attempt, collecting the shaped reward signal
and ignoring the overall objective of the task.

Shaping a reward function may be non-intuitive for complex tasks such as jumping, during
which the intermediate objectives of the motion may be unclear. Shaped reward functions
add complexity to the optimisation and make it difficult to anticipate the optimal behaviour
for the shaped reward function. This can lead to undesirable results in which the optimised
policy focuses on parts of the reward function which are not directly related to the overall
task objective. For example, a running model may frequently fall over during training and
so it may seem reasonable to shape the reward function by including an incentive to keep
the body at a fixed height above the ground. A good policy for the shaped reward function
may be to stand still and collect rewards for the body being at the correct height. It may be
argued that such qualities exist for any optimisation algorithm and that it is the responsibility
of the user to anticipate or correct such discrepancies. The problem is that describing a task
with a scalar function is already considered difficult [79] without the requirement to add
exploratory guidance to the description as well. Optimal control allows communication of
task objectives and constraints via both the objective function and constraint functions. In
reinforcement learning, the only means of communication is through the reward function.

By including incentives for exploration in the reward function, the function’s use in describing
an optimal motion is compromised. Often in optimisation, the objective forms part of the
hypothesis by mathematically stating how the task is best carried out. With terms included
in the reward function specifically to guide exploration, the optimisation is forced to balance
desirable optimal behaviours with those that improve the exploration of the problem.

One possible workaround to the problems related to reward shaping is to gradually remove
the shaping from reward functions based on the performance of the current policy. This is
known as a “curriculum”. A curriculum is difficult to implement as performance is based on a
scalar value comprising potentially many shaping components. Knowing when such a value is
sufficient to change the curriculum may become a complex task in itself, potentially requiring

129

examination of policies at multiple stages and reward scores throughout the optimisation.

6.3 Method

An implementation of DDPG provided in the MatLab Reinforcement Learning Toolbox [38]
was used to optimise a policy which output torque values to control the Numedia jumping
model. Training episodes were initialised from a single starting state:

s0 = [2.769, 0.596, 2.583,−0.0705, 1.5474,−1.9000,−1.8751,−1.8947]T . (6.4)

Episodes were run until a termination criteria was met, or the episode reached 500 steps in
simulation (0.5 s in real time for the jumping motion). Training was run for a maximum of
20,000 episodes, or between potentially 20,000 and 10,000,000 simulation steps depending
on the policy performance. The reward function to be maximised was:

rt = max(0, 10v · ρt). (6.5)

Where the vector v represents the target take-off velocity described in equation (5.3). The
vector ρt represents the total momentum of the jumping system at time t. This reward uses
shaping at every step to guide the optimisation into maximising the system’s momentum in
the desired take-off direction, as opposed to including a single reward based on the take-off
velocity of the system.

Many optimisations include a penalty on the control action to encourage energy efficient
motions or to discourage excessive actuator forces. In this study, no such penalties were
included as they produced a local minimum in the optimisation wherein the jumping system
moved to terminate the episode immediately so as to not accumulate the negative rewards. A
reward of -1 was given for a step which was terminated for either of the following criteria:

• intersection of adjacent segments

• segments touching the ground (other than the foot).

An episode was also terminated if the ground reaction force reached zero or less as this would
imply the system has broken contact with the ground, however, this termination was not dis-
couraged with a penalty as it is a requirement of jumping.

The following components of DDPG were considered when collecting results with the method:

• actor,

• critic,

• hyper-parameters.

130

The actor is used to select actions based on the state of the system and the critic is used to
predict the expected return of such actions in their context. Both the actor and critic may be
parameterised by any differentiable function, however, they are generally represented using
deep neural networks. DDPG uses a target actor and target critic to update the actor and critic.
The target actor and critic are equivalent parameterisations to the actor and critic, which are
updated using the deterministic policy gradient. The actor and critic are then updated using
their respective targets in order to smooth the updates and improve the stability of the method.
Factors to consider about the actor and critic include:

• optimisation method used to update the policy and critic, e.g. Adam,

• step size of the optimisation updates for both the policy and critic,

• structure of the neural network, including number of layers and hidden units

The hyper-parameters are features of the DDPG algorithm which include:

• frequency and size of target updates,

• discount factor, which weights the influence of future rewards on current decisions,

• mini-batch size for stochastic gradient descent updates

• size of the experience buffer

• parameters of the noise model used to generate exploratory actions

Often in reinforcement learning works, the algorithms use different noise models for their
exploration strategies. Given more time, this would be a point of further study as the method
of sampling may have a significant impact on the success and stability of reinforcement learn-
ing methods. In the MatLab implementation of DDPG the exploration strategy is limited to
the Ornstein-Uhlenbeck noise model, it would be interesting to compare the performance of
DDPG when using different exploration strategies.

The parameters of the actor and critic are initialised to random values. Exploratory actions
are created by adding stochastic values from the noise model. The experience batches used
to update the target actor and critic neural networks are selected at random. These stochastic
components of DDPG, and many reinforcement learning methods, mean that the results pro-
duced by the method may vary considerably depending on the seed used to create the system’s
random number generator.

While the hyper-parameters and parameters of the actor and critic have clear meanings, the
selection of ideal values is not a well defined process. Many studies will perform a grid
search of hyper-parameters [65] to obtain the best performance on the particular problem.
Due to the variation in results, multiple seeds were also tested for each set of hyper-parameters
investigated in this study. Reinforcement learning methods generally require a large number
of samples to produce meaningful results. All of these factors contribute to a considerably
large computational cost for reinforcement learning methods.

131

6.4 Results

125 optimisation runs were recorded during the hyper-parameter tuning process. The follow-
ing chart shows the distribution of performances for those 125 optimisation runs. 44.8% of
the runs resulted in a policy which was unable to jump.

Figure 6.3: The rewards scored by the optimised policies during hyper-parameter selection.
Sets of hyper-parameters were tested 25 times each with a total of 125 test runs. The purple
bin on the left of the plot represents failed jumping attempts.

Hyper-parameters were selected based on the set of results containing the best performing run.
25 runs were performed using the hyper-parameters provided in appendix C. Four sample runs
were taken from the collection and are presented in detail here.

132

Figure 6.4: The rewards scored by the optimised policy for each random seed run. The purple
bin on the left of the plot represents failed jumping attempts.

The highest scoring run achieved a total reward of 82.0265. The results presented in this
section are the runs which obtained rewards of:

r1 = 82.0265,

r2 = 78.8027,

r3 = 48.5575,

r4 = 32.2711.

6.4.1 Computational Cost

The computation times for the final 25 runs were collected. The average time for the 25 runs
was 1005 seconds and the standard deviation was 292 seconds. The computation times ranged
from 357 s to 1605 s. The variation in these computation times is due to the performance of
the policies for each run. As each run was limited to a maximum number of episodes, a
policy which fails every episode immediately does not require as many simulation steps to be
computed as a policy which does not fail on the first step.

133

6.4.2 Joint Angle Trajectories and Poses

Figure 6.5: Joint angle trajectory for the DDPG optimisation run which obtained a reward of
82.0265, the highest reward.

Figure 6.6: Poses of the system at equal intervals throughout the resulting trajectory for the
DDPG optimisation run which obtained a reward of 82.0265, the highest reward.

134

Figure 6.7: Joint angle trajectory for the DDPG optimisation run which obtained a reward of
78.8027, the second highest reward.

Figure 6.8: Poses of the system at equal intervals throughout the resulting trajectory for the
DDPG optimisation run which obtained a reward of 78.8027, the second highest reward.

135

Figure 6.9: Joint angle trajectory for a randomly selected DDPG optimisation run which
obtained a reward of 48.5575.

Figure 6.10: Poses of the system at equal intervals throughout the resulting trajectory for a
randomly selected DDPG optimisation run which obtained a reward of 48.5575.

136

Figure 6.11: Joint angle trajectory for a randomly selected DDPG optimisation run which
obtained a reward of 32.2711.

Figure 6.12: Poses of the system at equal intervals throughout the resulting trajectory for a
randomly selected DDPG optimisation run which obtained a reward of 32.2711.

137

6.4.3 Joint Torques

Figure 6.13: Torque trajectory for the DDPG optimisation run which obtained a reward of
82.0265, the highest reward.

Figure 6.14: Torque trajectory for the DDPG optimisation run which obtained a reward of
78.8027, the second highest reward.

138

Figure 6.15: Torque trajectory trajectory for a randomly selected DDPG optimisation run
which obtained a reward of 48.5575.

Figure 6.16: Torque trajectory trajectory for a randomly selected DDPG optimisation run
which obtained a reward of 32.2711.

139

6.5 Discussion

The highest scoring result depicts a jumping motion in which the knee joint of the system
is inverted towards the end of the motion. Further constraints could have been included as
termination criteria for the training episodes although it is anticipated that these additional
termination criteria may result in a greater portion of the optimisation runs failing.

The second highest scoring result depicts a realistic jumping motion. The torque trajectory for
the second result is very similar to the first. The torque signal for the ankle joint includes a few
rapid changes in the middle of the second jumping trajectory. Note that the policy optimised
by the DDPG algorithm outputs continuous actions, the bang-bang behaviours seen in the
results are an outcome of the optimisation, not the constraints or model.

Both of the top scoring results have a longer duration than the experimentally measured jump-
ing motion. This is likely due to the use of reward shaping, which may have encouraged a
long duration which would collect more shaped rewards than a shorter duration jump would
have.

The quality of the results produced by DDPG were mixed. The second highest scoring result is
reasonably realistic. However, it lasts considerably longer than the jump which was measured
by Henry et al. [6] for the same system.

While optimal control and reinforcement learning share many features, such as their deriva-
tions from Bellman’s principle of optimality, the two groups of methods are often kept sep-
arate from each other. The different notation and terminology of optimal control and rein-
forcement learning may hinder the transfer of intellectual knowledge in one subject area to
the other despite the two method groups sharing transferable skills, such as experience with
dynamic systems, objective functions, gradient descent, and optimisation of trajectories.

Reinforcement learning methods are becoming more widely adopted by commercial research
packages, such as MatLab [38]. However, the methods are not quite at the stage to be used
as tools in the way other methods might be. Using a reinforcement learning method requires
a considerable level of knowledge regarding the workings of the method. This is because
current methods use hyper-parameters which do not yet have universal rules for their tuning
process. For example, the step size of an optimisation method may be universally tuned:
increase the step size to speed up the optimisation process and decrease the step size if the
optimisation diverges. This applies to the learning rate of reinforcement learning methods
as well. Hyper-parameters which are specific to reinforcement learning methods are not so
general. For example, the discount factor determines how the return of an action is calcu-
lated and affects the weighting of immediate to long term rewards in the optimisation; the
selection of the discount factor affects the period of time used to determine how valuable a
given action was. For a user to select an appropriate discount factor they must understand
this concept and apply it to their specific problem, considering factors such as how far into
the future consequences will occur for a given action. The discount factor encapsulates a
complex interaction between the algorithm and problem and does not have a general rule for

140

its selection. Increasing the discount factor can lead to high variance in the return if actions
do not have lasting effects on the system, or it may lead to the algorithm correctly accounting
for the long term effects of actions.

Reinforcement learning methods use random selection in multiple areas of their implemen-
tation. While the random sampling used in many reinforcement learning methods enables
their global optimisation abilities, it also leads to variety in their results and can render them
unreliable. This effect was demonstrated in the results of the hyper-parameter search 6.3 dur-
ing which 44.8% of the runs failed to obtain any positive rewards and in the final runs during
which 32% of the runs failed to obtain any positive rewards. This variability in performance
means that the method can be unreliable and may become time consuming to use as multiple
runs are generally required to filter out failed attempts.

The issue of unreliability is exacerbated by the computational cost of the method. All 25 of
the final runs took around 7 hours to complete. The runs used to select the hyper-parameters
used in this study were not timed. However, it may be estimated that the 125 runs took 5× as
long, approximately 35 hours in total.

This chapter set out to assess the application of DDPG to jumping problems. The method
did not provide insights into jumping systems as the results were unrealistic and unreliably
produced. Although the work was unable to produce realistic results using the method, the
work has shown some potential for DDPG to synthesise jumping motions. However, the
potential of the method is arguably outweighed by the costs involved in using the method.

6.6 Conclusions

DDPG may not be an appropriate method for jumping research in its current state due to
its unreliability and significant computational cost. Researchers looking to make use of re-
inforcement learning methods may have to consider methods which produce a probabilistic
policy as deterministic policy methods are uncommon in the literature.

The sampling strategies used by reinforcement learning methods to explore and collect data
were shown to run into problems when applied to jumping problems. This is because it is
very easy for a catastrophic failure to occur during an attempt at jumping. After the failure
occurs, the attempt must be abandoned as the system is unable to recover. Jumping motions
exhibit extremely high potential for failure throughout their duration, making it difficult for
sample-based methods to find success.

Practices such as frame skipping and reward shaping can be used to improve the performance
and likelihood of success for reinforcement learning methods applied to jumping problems.
However, reward shaping can lead to undesirable results, as the reward function may become
too complex to anticipate what optimal behaviours according to the function would be. Fur-
thermore, the inclusion of exploration incentives in a reward function reduces the utility of
the reward function in describing the task objective.

141

Chapter 7

Conclusions

This chapter provides the concluding remarks of the thesis as well as highlighting the novel
contributions of the work. The aim of this work was to provide a critical assessment of the
use of predictive modelling methods in jumping research. To achieve this aim, work was
carried out to explore the use of predictive modelling in jumping literature before investiga-
tion of predictive modelling methods was completed using various case studies. The work
also set out to assess the predictive power, computational cost, and intellectual investment of
predictive modelling methods. Finally, the potential of future work facilitated by this work is
outlined.

7.1 Research Aims

The literature review of this thesis found two predictive modelling methods which are not
applied to jumping dynamics problems: static optimisation for the resolution of second order
kinematic redundancy, and reinforcement learning. The review also identified that analysis
is generally applied to models with a single degree of freedom. To be able to provide a
critical assessment of the use of predictive modelling methods, this work contributed the
novel application of static optimisation and reinforcement learning to jumping problems using
a case study with experimentally measured data found in the literature. The application of
algebraic analysis to low complexity jumping models is also a contribution of the work as it
demonstrates a formalisation of an analysis method which was found in the literature applied
to a single degree of freedom model. The work then assessed the application of these methods.
Dynamic optimisation was also included as a case study due to its prolific use throughout the
jumping literature.

7.2 Research questions

This section provides details of how the research questions have been answered by the work.
The research questions are provided here for convenience:

1. What insights can be gained through the application of predictive modelling methods to
novel contexts in jumping dynamics problems?

142

2. How should the fitness of different predictive modelling techniques be assessed?

7.2.1 Research Question 1.

It was demonstrated in Chapter 3 that analysis of model equations can be used to provide
insights into the capabilities of low complexity jumping systems through the results in Section
3.2.4.

Analysis of a high complexity model produced insights into the accelerations of the system’s
body which will maintain dynamic balance of the system during a jumping motion. This
analysis also produced the novel dynamic balance ellipsoid, a tool which may be used to
investigate the acceleration capabilities of a jumping system while maintaining its balance.

The results of Chapter 4 imply that static optimisation may not be suitable for obtaining
insights into biological jumping systems as the results violated the physical constraints of
such systems. However, the considerably low computational cost of the method as well as its
simplicity are good arguments in favour of further investigation into the method’s application
in jumping research. It is also noted that while the results in Section 4.4.1 did violate the
physical constraints of the system, the results were considerably close to the experimentally
measure motion data for the system.

This work failed to produce realistic motions using the multiple shooting method of dynamic
optimisation in Chapter 5. However, as many studies in the literature have previously found
success with the method, it is considered suitable for obtaining insights into the dynamic
motions of jumping systems.

The results of Chapter 6 demonstrate that DDPG is unsuitable for use in jumping research.
The method was unreliable, with 32% of optimisations failing to obtain any positive rewards.
The high computational cost of the method means that this unreliability is difficult to over-
come as performing multiple optimisations is a time consuming endeavour.

7.2.2 Research Question 2.

This work investigated the use of predictive power, computational cost, and intellectual in-
vestment as metrics for assessing predictive modelling methods.

The intellectual investment of a method was defined as “The domain knowledge required
from the user of the method, in both the problem and the method”. This metric was not found
discussed in the literature and yet it is a significant consideration for researchers selecting
methods for research. This work found intellectual investment to be difficult to quantify, es-
pecially when concepts from the different methods overlapped and the learning requirements
of new methods diminished. Despite this, it was deemed that analytic methods carry a low
intellectual investment compared to the other methods assessed in this work. The intellectual
investment of analytic methods is not fixed; it increases as the model complexity is increased.

143

Static optimisation was determined to require a moderately low intellectual investment as the
method may be used as a tool providing the user is given derivations of the system’s kine-
matics. With the introduction of temporal effects and gradient descent optimisation, dynamic
optimisation requires a significant amount of intellectual investment. Reinforcement learning
methods require the greatest intellectual investment of the methods assessed in this work as
they are not usable as tools without strong knowledge of their workings. The hyper-parameter
tuning process is not suited to a trial and error approach and requires the user to understand
the effects of each parameter in order to properly tune.

The predictive power of a method was defined as “How flexible the method is, the range
and utility of the results it provides, and the limits in model complexity for the method”.
This metric was suitable for this study as it was quantifiable. The results of each study were
compared with experimentally measured data to determine the utility of the results. Analysis
was found to be limited in its application to systems with many degrees of freedom as the
computational cost of derivations using a computer algebra system increase exponentially;
derivation of the equations of motion for a system with 50 degrees of freedom was estimated to
take 455 days of computation time. Static optimisation was found to be rigid in the sense that
it cannot be used to investigate deficient systems. Dynamic optimisation and reinforcement
learning are both flexibly applied to any jumping system.

The computational cost of a method was defined as “The time it takes for a commercial, high
spec desktop computer to carry out the method”. This work recorded the times taken to carry
out each method. Analysis of model equations operated in the order of 1 - 10 seconds. Static
optimisation operated in the order of 0.01 - 1 seconds. Dynamic optimisation operated in
the order of 1 - 10,000 seconds. Reinforcement learning operated in the order of 100 - 1000
seconds. This metric is easy to interpret and provides a good basis for comparison between
predictive modelling methods.

This work did not succeed in assessing the intellectual investment of predictive modelling
methods. It is proposed that this metric be investigated by means of a survey or similar
method. The computational cost and predictive power metrics were useful and appropriate for
the study and should provide useful information for researchers looking to select a predictive
modelling method for their own use.

7.3 Future Work

Future work inspired by this thesis may seek to investigate the intellectual investment of pre-
dictive modelling methods by surveying researchers who use such methods, asking questions
related to the educational backgrounds of the researchers and the time they spent studying the
methods they use. Undergraduate students would also be an interesting source of data for the
intellectual investment of predictive modelling methods.

Both the gear constrained models and the static optimisation method provide a method of pro-
ducing jumping trajectories using a set of parameters which describe the desired motion of

144

the body of the system. The parameters could be optimised by evaluating properties of the re-
sulting trajectories, such as total work done by joint actuators. As the parameters describe the
body motion directly, constraint criteria, such as take-off velocity, may be efficiently obtained
from the parameters themselves. The difficulty of this may be similar to the single shooting
problem in that the path taken by the system may not be smooth in relation to the parameters
describing it, although it is not anticipated that this would be an issue as the parameters de-
scribe a significant portion of the trajectory by constraining the motion of the body, thus the
leg has limited reasonable response especially when static optimisation is used to minimise
the joint accelerations.

It would be useful for a body of work to produce the algebraic equations of motion for a variety
of jumping systems and provide them in a repository, preferably in multiple programming
languages, such as MatLab and Python.

The dynamic balance ellipsoid provides multiple metrics for a jumping system which may be
considered in objective functions during optimisation of either a trajectory, or the structure
of a jumping system. This work has been done for manipulators already [29]. An example of
this would involve optimising the structure of a jumping system over a set of configurations
which describe typical jumping motions of the system, with the objective that the direction
of the major axis of the dynamic balance ellipsoid aligns with the required acceleration of the
body during the jumping motion. The objective function might also include the maximisation
of the major axis to ensure the system has a mechanical advantage when using the leg joints
to accelerate the body.

Further study using the dynamic balance ellipsoid could investigate the variation of feasible
body accelerations throughout nominal jumping trajectories. This may provide insights into
the acceleration dexterity of jumping systems and answer questions pertaining to the capa-
bilities of jumping systems.

Optimisation using kinematic models is considered to be much faster than optimisations using
dynamic models [53]. The methods described by Geoffroy et al. in [53] and [91] would be
interesting to investigate in their application to the jumping models used in this work.

The initial results of static optimisation in Chapter 4 show promise for the method’s success.
Further work may investigate the limits of the method to a greater extent. The use of static
optimisation in this work was limited by the requirement of a starting state for the system
as well as the need for an acceleration trajectory for the body of the system. Experiments
with static optimisation could be used to explore sets of feasible starting states and body
acceleration trajectories and potentially characterise these features for jumping systems.

The violation of physical constraints is a significant limitation of static optimisation. Future
work may investigate the use of a weighting matrix or a reformulation of the objective equa-
tion to enforce physical constraints in the system. This work would improve the predictive
power of static optimisation and set it up as a valid predictive modelling method for jumping
research.

145

Reinforcement learning methods often include a noise model for their exploration strategy.
Different algorithms often use different models or at least present benchmark results with
different parameters for their exploration noise. A study which normalises the exploration
strategies across multiple reinforcement learning methods would be very useful as it would
separate the learning and exploration and provide a useful comparison of the algorithms.
In the current literature, it is unclear what contributes to the success of new reinforcement
learning algorithms due to the convolution of hyper-parameters, neural network structures,
and noise models used for benchmarking.

146

References

[1] S. M. Reilly, S. J. Montuelle, A. Schmidt, E. Naylor, M. E. Jorgensen, L. G. Halsey,

and R. L. Essner, “Conquering the world in leaps and bounds: Hopping locomotion in

toads is actually bounding,” Functional Ecology, vol. 29, no. 10, pp. 1308–1316, Oct.

2015, issn: 13652435. doi: 10.1111/1365-2435.12414.

[2] R. Blickhan, “The spring-mass model for running and hopping,” Journal of Biome-

chanics, vol. 22, no. 11-12, pp. 1217–1227, Jan. 1989, issn: 00219290. doi: 10.1016

/0021-9290(89)90224-8. [Online]. Available: https://www.sciencedirect.co

m/science/article/pii/0021929089902248/pdf?md5=fca3689e0d2c827db20

db1cc789bda3b&pid=1-s2.0-0021929089902248-main.pdf.

[3] C. F. Ong, J. L. Hicks, and S. L. Delp, “Simulation-Based Design for Wearable Robotic

Systems: An Optimization Framework for Enhancing a Standing Long Jump,” IEEE

Transactions on Biomedical Engineering, vol. 63, no. 5, pp. 894–903, May 2016, issn:

0018-9294. doi: 10.1109/TBME.2015.2463077. [Online]. Available: http://ieee

xplore.ieee.org/document/7173005/.

[4] M. Lindner, A. Kotschwar, R. R. Zsoldos, M. Groesel, and C. Peham, “The jump shot -

A biomechanical analysis focused on lateral ankle ligaments,” Journal of Biomechan-

ics, vol. 45, no. 1, pp. 202–206, Jan. 2012, issn: 00219290. doi: 10.1016/j.jbiome

ch.2011.09.012.

[5] R. Bakker, S. Tomescu, E. Brenneman, G. Hangalur, A. Laing, and N. Chandrashekar,

“Effect of sagittal plane mechanics on ACL strain during jump landing,” J Orthop Res,

vol. 34, pp. 1636–1644, 2016. doi: 10.1002/jor.23164.

[6] H. T. Henry, D. J. Ellerby, and R. L. Marsh, “Performance of guinea fowl Numida

meleagris during jumping requires storage and release of elastic energy,” Journal of

Experimental Biology, vol. 208, no. 17, pp. 3293–3302, 2005, issn: 00220949. doi:

10.1242/jeb.01764. [Online]. Available: https://jeb.biologists.org/conte

nt/jexbio/208/17/3293.full.pdf.

[7] C. T. Richards, L. B. Porro, and A. J. Collings, “Kinematic control of extreme jump

angles in the red-legged running frog, Kassina maculata,” 2017. doi: 10.1242/jeb.1

44279.

147

https://doi.org/10.1111/1365-2435.12414
https://doi.org/10.1016/0021-9290(89)90224-8
https://doi.org/10.1016/0021-9290(89)90224-8
https://www.sciencedirect.com/science/article/pii/0021929089902248/pdf?md5=fca3689e0d2c827db20db1cc789bda3b&pid=1-s2.0-0021929089902248-main.pdf
https://www.sciencedirect.com/science/article/pii/0021929089902248/pdf?md5=fca3689e0d2c827db20db1cc789bda3b&pid=1-s2.0-0021929089902248-main.pdf
https://www.sciencedirect.com/science/article/pii/0021929089902248/pdf?md5=fca3689e0d2c827db20db1cc789bda3b&pid=1-s2.0-0021929089902248-main.pdf
https://doi.org/10.1109/TBME.2015.2463077
http://ieeexplore.ieee.org/document/7173005/
http://ieeexplore.ieee.org/document/7173005/
https://doi.org/10.1016/j.jbiomech.2011.09.012
https://doi.org/10.1016/j.jbiomech.2011.09.012
https://doi.org/10.1002/jor.23164
https://doi.org/10.1242/jeb.01764
https://jeb.biologists.org/content/jexbio/208/17/3293.full.pdf
https://jeb.biologists.org/content/jexbio/208/17/3293.full.pdf
https://doi.org/10.1242/jeb.144279
https://doi.org/10.1242/jeb.144279

[8] L. B. Porro, A. J. Collings, E. A. Eberhard, K. P. Chadwick, and C. T. Richards, “In-

verse dynamic modelling of jumping in the red-legged running frog, Kassina macu-

lata,” 2017. doi: 10.1242/jeb.155416.

[9] Y. C. Lin and M. G. Pandy, “Three-dimensional data-tracking dynamic optimization

simulations of human locomotion generated by direct collocation,” Journal of Biome-

chanics, vol. 59, pp. 1–8, 2017, issn: 18732380. doi: 10.1016/j.jbiomech.2017.0

4.038. [Online]. Available: http://dx.doi.org/10.1016/j.jbiomech.2017.04

.038.

[10] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “DeepMimic: Example-Guided

Deep Reinforcement Learning of Physics-Based Character Skills,” ACM Trans. Graph,

vol. 37, no. 143, p. 18, 2018, issn: 0730-0301. doi: 10.1145/3197517.3201311.

[Online]. Available: http://arxiv.org/abs/1804.02717%0Ahttp://dx.doi.or

g/10.1145/3197517.3201311.

[11] D. G. E. Robertson, G. E. Caldwell, J. Hamill, G. Kamen, and S. N. Whittlesey, Re-

search Methods in Biomechanics. 2014. doi: 10.5040/9781492595809.

[12] M. G. Pandy, F. E. Zajac, E. Sim, and W. S. Levine, “An optimal control model for

maximum-height human jumping,” Journal of Biomechanics, vol. 23, no. 12, pp. 1185–

1198, 1990, issn: 00219290. doi: 10.1016/0021-9290(90)90376-E.

[13] R. M. N. Alexander, “Simple models of walking and jumping,” Human Movement Sci-

ence, vol. 11, no. 1-2, pp. 3–9, 1992, issn: 01679457. doi: 10.1016/0167-9457(92

)90045-D.

[14] F. C. Anderson and M. G. Pandy, “Storage and utilization of elastic strain energy dur-

ing jumping,” Journal of Biomechanics, vol. 26, no. 12, pp. 1413–1427, 1993, issn:

00219290. doi: 10.1016/0021-9290(93)90092-S.

[15] ——, “A dynamic optimization solution for vertical jumping in three dimensions,”

Computer Methods in Biomechanics and Biomedical Engineering, vol. 2, no. 3, pp. 201–

231, 1999, issn: 10255842. doi: 10.1080/10255849908907988. [Online]. Available:

https://www.tandfonline.com/action/journalInformation?journalCode

=gcmb20.

[16] W. S. Selbie and G. E. Caldwell, “A simulation study of vertical jumping from different

starting postures,” Journal of Biomechanics, vol. 29, no. 9, pp. 1137–1146, 1996, issn:

00219290. doi: 10.1016/0021-9290(96)00030-9.

[17] W. Roberts, W. Levine, and F. Zajac, “Propelling a torque controlled baton to a max-

imum height,” IEEE Transactions on Automatic Control, vol. 24, no. 5, pp. 779–782,

Oct. 1979, issn: 0018-9286. doi: 10.1109/TAC.1979.1102148. [Online]. Available:

148

https://doi.org/10.1242/jeb.155416
https://doi.org/10.1016/j.jbiomech.2017.04.038
https://doi.org/10.1016/j.jbiomech.2017.04.038
http://dx.doi.org/10.1016/j.jbiomech.2017.04.038
http://dx.doi.org/10.1016/j.jbiomech.2017.04.038
https://doi.org/10.1145/3197517.3201311
http://arxiv.org/abs/1804.02717%0Ahttp://dx.doi.org/10.1145/3197517.3201311
http://arxiv.org/abs/1804.02717%0Ahttp://dx.doi.org/10.1145/3197517.3201311
https://doi.org/10.5040/9781492595809
https://doi.org/10.1016/0021-9290(90)90376-E
https://doi.org/10.1016/0167-9457(92)90045-D
https://doi.org/10.1016/0167-9457(92)90045-D
https://doi.org/10.1016/0021-9290(93)90092-S
https://doi.org/10.1080/10255849908907988
https://www.tandfonline.com/action/journalInformation?journalCode=gcmb20
https://www.tandfonline.com/action/journalInformation?journalCode=gcmb20
https://doi.org/10.1016/0021-9290(96)00030-9
https://doi.org/10.1109/TAC.1979.1102148

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1102148%2

0http://ieeexplore.ieee.org/document/1102148/.

[18] W. Li, E. Todorov, and D. Liu, “Inverse optimality design for biological movement

systems,” IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 44, no. 1 PART 1,

pp. 9662–9667, 2011, issn: 14746670. doi: 10.3182/20110828-6-IT-1002.00877.

[19] C. M. Hubicki, “From running birds to walking robots: optimization as a unifying

framework for dynamic bipedal locomotion,” Ph.D. dissertation, Oregon State Uni-

versity, 2015. [Online]. Available: http://ir.library.oregonstate.edu/xmlui

/handle/1957/54820.

[20] W. S. Levine, M. Christodoulou, and F. E. Zajac, “On propelling a rod to a maximum

vertical or horizontal distance,” Automatica, vol. 19, no. 3, pp. 321–324, 1983, issn:

00051098. doi: 10.1016/0005-1098(83)90111-5.

[21] B. Siciliano and O. Khatib, Springer Handbook of Robotics, B. Siciliano and O. Khatib,

Eds. 2008, isbn: 9783540239574. [Online]. Available: http://library1.nida.ac

.th/termpaper6/sd/2554/19755.pdf.

[22] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. 2017, vol. 2.

doi: 10.1016/s1364-6613(99)01331-5.

[23] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D.

Wierstra, “Continuous Control With Deep Reinforcement Learning,” Tech. Rep., 2016.

[Online]. Available: https://goo.gl/J4PIAz.

[24] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, “Trust region policy opti-

mization,” in 32nd International Conference on Machine Learning, ICML 2015, vol. 3,

2017, pp. 1889–1897, isbn: 9781510810587.

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy

Optimization Algorithms,” pp. 1–12, 2017. [Online]. Available: http://arxiv.org

/abs/1707.06347.

[26] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu,

A. Gupta, P. Abbeel, and S. Levine, “Soft Actor-Critic Algorithms and Applications,”

arXiv, 2018, issn: 23318422. [Online]. Available: http://arxiv.org/abs/1812.0

5905.

[27] D. Silver, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic Policy

Gradient Algorithms,” Tech. Rep., 2014.

149

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1102148%20http://ieeexplore.ieee.org/document/1102148/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1102148%20http://ieeexplore.ieee.org/document/1102148/
https://doi.org/10.3182/20110828-6-IT-1002.00877
http://ir.library.oregonstate.edu/xmlui/handle/1957/54820
http://ir.library.oregonstate.edu/xmlui/handle/1957/54820
https://doi.org/10.1016/0005-1098(83)90111-5
http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf
http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf
https://doi.org/10.1016/s1364-6613(99)01331-5
https://goo.gl/J4PIAz
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905

[28] Y.-C. Lin, J. P. Walter, and M. G. Pandy, “Predictive Simulations of Neuromuscular

Coordination and Joint-Contact Loading in Human Gait,” Annals of Biomedical En-

gineering, vol. 46, 2018. doi: 10.1007/s10439-018-2026-6. [Online]. Available:

https://doi.org/10.1007/s10439-018-2026-6.

[29] O. Khatib and J. Burdick, Dynamic Optimization in Manipulator Design: the Opera-

tional Space Formulation, 1987.

[30] D. W. Haldane, M. M. Plecnik, J. K. Yim, and R. S. Fearing, “Robotic vertical jumping

agility via Series-Elastic power modulation,” Science Robotics, vol. 1, no. 1, 2016, issn:

24709476. doi: 10.1126/scirobotics.aag2048.

[31] W. I. Sellers, GaitSym, Manchester, 2019. [Online]. Available: https://github.com

/wol101/GaitSym2019.

[32] S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman,

and D. G. Thelen, “OpenSim: Open-Source Software to Create and Analyze Dynamic

Simulations of Movement,” IEEE Transactions on Biomedical Engineering, vol. 54,

no. 11, pp. 1940–1950, Nov. 2007, issn: 0018-9294. doi: 10.1109/TBME.2007.901

024. [Online]. Available: http://ieeexplore.ieee.org/document/4352056/.

[33] R. M. Alexander, Principles of Animal Locomotion. Princeton University Press, 2002,

isbn: 9781400849512. doi: 10.1515/9781400849512.

[34] B. Parslew, G. Sivalingam, and W. Crowther, “A dynamics and stability framework for

avian jumping take-off,” Royal Society Open Science, vol. 5, no. 10, p. 17, 2018, issn:

20545703. doi: 10.1098/rsos.181544. [Online]. Available: http://rsos.royals

ocietypublishing.org/content/royopensci/5/10/181544.full.pdf.

[35] W. I. Sellers, “A biomechanical investigation into the absence of leaping in the loco-

motor repertoire of the slender loris (loris tardigradus),” Folia Primatologica, vol. 67,

no. 1, pp. 1–14, 1996, issn: 00155713. doi: 10.1159/000157202.

[36] A. M. Lyapunov, “The general problem of the stability of motion,” International Jour-

nal of Control, vol. 55, no. 3, pp. 531–534, 1892, issn: 1366-5820. doi: 10.1080/00

207179208934253. [Online]. Available: https://www.tandfonline.com/action

/journalInformation?journalCode=tcon20.

[37] M. VUKOBRATOVIĆ and B. BOROVAC, “Zero-Moment Point — Thirty Five Years

of Its Life,” International Journal of Humanoid Robotics, vol. 01, no. 01, pp. 157–173,

2004, issn: 0219-8436. doi: 10.1142/s0219843604000083.

[38] Mathworks, Pretrained Convolutional Neural Networks, 2018. [Online]. Available: ht

tps://uk.mathworks.com/help/deeplearning/ug/pretrained-convolution

al-neural-networks.html.

150

https://doi.org/10.1007/s10439-018-2026-6
https://doi.org/10.1007/s10439-018-2026-6
https://doi.org/10.1126/scirobotics.aag2048
https://github.com/wol101/GaitSym2019
https://github.com/wol101/GaitSym2019
https://doi.org/10.1109/TBME.2007.901024
https://doi.org/10.1109/TBME.2007.901024
http://ieeexplore.ieee.org/document/4352056/
https://doi.org/10.1515/9781400849512
https://doi.org/10.1098/rsos.181544
http://rsos.royalsocietypublishing.org/content/royopensci/5/10/181544.full.pdf
http://rsos.royalsocietypublishing.org/content/royopensci/5/10/181544.full.pdf
https://doi.org/10.1159/000157202
https://doi.org/10.1080/00207179208934253
https://doi.org/10.1080/00207179208934253
https://www.tandfonline.com/action/journalInformation?journalCode=tcon20
https://www.tandfonline.com/action/journalInformation?journalCode=tcon20
https://doi.org/10.1142/s0219843604000083
https://uk.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html
https://uk.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html
https://uk.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html

[39] W. T. Dempster and G. R. Gaughran, “Properties of body segments based on size

and weight,” American Journal of Anatomy, vol. 120, no. 1, pp. 33–54, 1967, issn:

15530795. doi: 10.1002/aja.1001200104.

[40] A. V. Hill, “The Dimensions of Animals and their Muscular Dynamics,” Tech. Rep.

150, 1933, pp. 209–230.

[41] ——, “The Heat of Shortening and the Dynamic Constants of Muscle,” Proceedings of

the Royal Society of London. Series B - Biological Sciences, vol. 126, no. 843, pp. 136–

195, Oct. 1938, issn: 2053-9193. doi: 10.1098/rspb.1938.0050. [Online]. Avail-

able: https://royalsocietypublishing.org/doi/10.1098/rspb.1938.0050.

[42] R. M. Alexander, “Optimum take-off techniques for high and long jumps,” Tech. Rep.

[Online]. Available: https://royalsocietypublishing.org/.

[43] T. J. Roberts and R. L. Marsh, “Probing the limits to muscle-powered accelerations:

Lessons from jumping bullfrogs,” Journal of Experimental Biology, vol. 206, no. 15,

pp. 2567–2580, 2003, issn: 00220949. doi: 10.1242/jeb.00452. [Online]. Available:

https://jeb.biologists.org/content/jexbio/206/15/2567.full.pdf.

[44] D. W. Haldane, J. K. Yim, and R. S. Fearing, “Repetitive extreme-acceleration (14-g)

spatial jumping with Salto-1P,” in International Conference on Intelligent Robots and

Systems (IROS), Vancouver, 2017. [Online]. Available: https://ieeexplore.ieee

.org/stamp/stamp.jsp?tp=&arnumber=8206172.

[45] D. W. Haldane, M. Plecnik, J. K. Yim, and R. S. Fearing, “A power modulating leg

mechanism for monopedal hopping,” in IEEE International Conference on Intelligent

Robots and Systems, vol. 2016-Novem, Daejeon, 2016, pp. 4757–4764, isbn: 9781509037629.

doi: 10.1109/IROS.2016.7759699. [Online]. Available: https://ieeexplore.ie

ee.org/stamp/stamp.jsp?arnumber=7759699.

[46] J. K. Yim, B. R. P. Singh, E. K. Wang, R. Featherstone, and R. S. Fearing, “Preci-

sion Robotic Leaping and Landing Using Stance-Phase Balance,” IEEE Robotics and

Automation Letters, vol. 5, no. 2, pp. 3422–3429, Apr. 2020, issn: 2377-3766. doi:

10.1109/LRA.2020.2976597. [Online]. Available: https://ieeexplore.ieee.o

rg/document/9016133/.

[47] J. Aguilar, A. Lesov, K. Wiesenfeld, and D. I. Goldman, “Lift-off dynamics in a simple

jumping robot,” Physical Review Letters, vol. 109, no. 17, 2012, issn: 10797114. doi:

10.1103/PhysRevLett.109.174301.

[48] S. Onyshko and D. A. Winter, “A mathematical model for the dynamics of human

locomotion,” Journal of Biomechanics, vol. 13, no. 4, pp. 361–368, Jan. 1980, issn:

00219290. doi: 10.1016/0021-9290(80)90016-0.

151

https://doi.org/10.1002/aja.1001200104
https://doi.org/10.1098/rspb.1938.0050
https://royalsocietypublishing.org/doi/10.1098/rspb.1938.0050
https://royalsocietypublishing.org/
https://doi.org/10.1242/jeb.00452
https://jeb.biologists.org/content/jexbio/206/15/2567.full.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8206172
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8206172
https://doi.org/10.1109/IROS.2016.7759699
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7759699
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7759699
https://doi.org/10.1109/LRA.2020.2976597
https://ieeexplore.ieee.org/document/9016133/
https://ieeexplore.ieee.org/document/9016133/
https://doi.org/10.1103/PhysRevLett.109.174301
https://doi.org/10.1016/0021-9290(80)90016-0

[49] W. J. Kargo, F. Nelson, and L. C. Rome, “Jumping in frogs: Assessing the design of

the skeletal system by anatomically realistic modeling and forward dynamic simula-

tion,” Journal of Experimental Biology, vol. 205, no. 12, pp. 1683–1702, 2002, issn:

00220949.

[50] R. E. Bellman, Dynamic Programming. Princeton University Press, 1957, p. 342.

[51] O. Khatib, “Commande Dynamique dans l’Espace Operationnel des Robots Manip-

ulateurs en Presence d’Obstacles,” Ph.D. dissertation, l’ecole nationale superieure de

l’aeronautique et de l’espace, 1980.

[52] C. A. Klein and C.-H. Huang, “Review of pseudoinverse control for use with kinemat-

ically redundant manipulators,” IEEE Transactions on Systems, Man, and Cybernetics,

vol. SMC-13, no. 2, pp. 245–250, Mar. 1983, issn: 0018-9472. doi: 10.1109/TSMC.1

983.6313123. [Online]. Available: http://ieeexplore.ieee.org/document/63

13123/.

[53] P. Geoffroy, N. Mansard, M. Raison, S. Achiche, and E. Todorov, “From Inverse Kine-

matics to Optimal Control,” Advances in Robot Kinematics, pp. 409–418, 2014. doi:

10.1007/978-3-319-06698-1{_}42.

[54] J. Hollerbach and Ki Suh, “Redundancy resolution of manipulators through torque op-

timization,” IEEE Journal on Robotics and Automation, vol. 3, no. 4, pp. 308–316,

Aug. 1987, issn: 0882-4967. doi: 10.1109/JRA.1987.1087111. [Online]. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1087111%2

0http://ieeexplore.ieee.org/document/1087111/.

[55] C. T. Richards and L. B. Porro, “A novel kinematics analysis method using quaternion

interpolation–a case study in frog jumping,” Journal of Theoretical Biology, vol. 454,

pp. 410–424, Oct. 2018, issn: 10958541. doi: 10.1016/j.jtbi.2018.06.010.

[56] F. C. Anderson and M. G. Pandy, “Static and dynamic optimization solutions for gait

are practically equivalent,” Journal of Biomechanics, vol. 34, no. 2, pp. 153–161, Feb.

2001, issn: 00219290. doi: 10.1016/S0021-9290(00)00155-X.

[57] M. Kelly, OptimTraj, 2016. [Online]. Available: https://github.com/MatthewPet

erKelly/OptimTraj.

[58] P. J. Bishop, A. Falisse, F. De Groote, and J. R. Hutchinson, “Predictive simulations of

musculoskeletal function and jumping performance in a generalized bird,” Integrative

Organismal Biology, 2021. doi: 10.1093/iob/obab006/6226705. [Online]. Avail-

able: https://academic.oup.com/iob/advance-article/doi/10.1093/iob/o

bab006/6226705.

152

https://doi.org/10.1109/TSMC.1983.6313123
https://doi.org/10.1109/TSMC.1983.6313123
http://ieeexplore.ieee.org/document/6313123/
http://ieeexplore.ieee.org/document/6313123/
https://doi.org/10.1007/978-3-319-06698-1{_}42
https://doi.org/10.1109/JRA.1987.1087111
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1087111%20http://ieeexplore.ieee.org/document/1087111/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1087111%20http://ieeexplore.ieee.org/document/1087111/
https://doi.org/10.1016/j.jtbi.2018.06.010
https://doi.org/10.1016/S0021-9290(00)00155-X
https://github.com/MatthewPeterKelly/OptimTraj
https://github.com/MatthewPeterKelly/OptimTraj
https://doi.org/10.1093/iob/obab006/6226705
https://academic.oup.com/iob/advance-article/doi/10.1093/iob/obab006/6226705
https://academic.oup.com/iob/advance-article/doi/10.1093/iob/obab006/6226705

[59] P. J. Bishop, K. B. Michel, A. Falisse, A. R. Cuff, V. R. Allen, F. de Groote, and J. R.

Hutchinson, Computational modelling of muscle fibre operating ranges in the hindlimb

of a small ground bird (Eudromia elegans), with implications for modelling locomotion

in extinct species, 4. 2021, vol. 17, pp. 1–46, isbn: 1111111111. doi: 10.1371/JOUR

NAL.PCBI.1008843. [Online]. Available: http://dx.doi.org/10.1371/journal

.pcbi.1008843.

[60] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Z.

Openai, “OpenAI Gym,” Tech. Rep., 2016.

[61] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-based con-

trol,” Tech. Rep., 2012.

[62] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking deep

reinforcement learning for continuous control,” in 33rd International Conference on

Machine Learning, ICML 2016, vol. 3, 2016, pp. 2001–2014, isbn: 9781510829008.

[Online]. Available: https://github.com/.

[63] N. Heess, T. B. Dhruva, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez,

Z. Wang, S. M. Ali Eslami, M. Riedmiller, and D. Silver, Emergence of locomotion

behaviours in rich environments, 2017.

[64] Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba, “Scalable trust-region method for

deep reinforcement learning using Kronecker-factored approximation,” in Advances

in Neural Information Processing Systems, vol. 2017-Decem, 2017, pp. 5280–5289.

[Online]. Available: https://github.com/openai/baselines..

[65] S. Gu, T. Lillicrap, Z. Ghahramani, R. E. Turner, and S. Levine, “Q-PrOP: Sample-

efficient policy gradient with an off-policy critic,” in 5th International Conference on

Learning Representations, ICLR 2017 - Conference Track Proceedings, 2017. doi: 10

.17863/CAM.21294.

[66] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke,

“Sim-to-Real: Learning Agile Locomotion For Quadruped Robots,” 2018. doi: 10.15

607/RSS.2018.XIV.010. [Online]. Available: https://arxiv.org/pdf/1804.10

332.pdf%20http://arxiv.org/abs/1804.10332.

[67] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hut-

ter, “Learning agile and dynamic motor skills for legged robots,” Science Robotics,

vol. 4, no. 26, 2019, issn: 24709476. doi: 10.1126/scirobotics.aau5872. [On-

line]. Available: http://robotics.sciencemag.org/.

153

https://doi.org/10.1371/JOURNAL.PCBI.1008843
https://doi.org/10.1371/JOURNAL.PCBI.1008843
http://dx.doi.org/10.1371/journal.pcbi.1008843
http://dx.doi.org/10.1371/journal.pcbi.1008843
https://github.com/
https://github.com/openai/baselines.
https://doi.org/10.17863/CAM.21294
https://doi.org/10.17863/CAM.21294
https://doi.org/10.15607/RSS.2018.XIV.010
https://doi.org/10.15607/RSS.2018.XIV.010
https://arxiv.org/pdf/1804.10332.pdf%20http://arxiv.org/abs/1804.10332
https://arxiv.org/pdf/1804.10332.pdf%20http://arxiv.org/abs/1804.10332
https://doi.org/10.1126/scirobotics.aau5872
http://robotics.sciencemag.org/

[68] D. Amodei, D. Hernandez, G. Sastry, J. Clark, G. Brockman, and I. Sutskever, AI and

Compute, 2018. [Online]. Available: https://openai.com/blog/ai-and-comput

e/#modern.

[69] A. Kanazawa, J. Malik, P. Abbeel, and S. Levine, “SFV: Reinforcement Learning of

Physical Skills from Videos,” ACM Trans. Graph, vol. 37, p. 17, 2018. doi: 10.1145

/3272127.3275014. [Online]. Available: https://xbpeng.github.io/projects

/SFV/index.html.

[70] E. Todorov, “Convex and analytically-invertible dynamics with contacts and constraints:

Theory and implementation in MuJoCo,” Tech. Rep., 2014.

[71] K. Kazerounian and Z. Wang, “Global versus Local Optimization in Redundancy Res-

olution of Robotic,” Tech. Rep.

[72] D. E. Whitney, “Resolved Motion Rate Control of Manipulators and Human Prosthe-

ses,” IEEE Transactions on Man-Machine Systems, vol. 10, no. 2, pp. 47–53, 1969,

issn: 21682860. doi: 10.1109/TMMS.1969.299896.

[73] S. M. Gatesy and A. A. Biewener, “Bipedal locomotion: effects of speed, size and limb

posture in birds and humans,” Journal of Zoology, vol. 224, no. 1, pp. 127–147, 1991,

issn: 14697998. doi: 10.1111/j.1469-7998.1991.tb04794.x.

[74] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-Priority Based Redundancy Con-

trol of Robot Manipulators,” Tech. Rep.

[75] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP Algorithm for Large-

Scale Constrained Optimization *,” Society for Industrial and Applied Mathematics,

vol. 47, no. 1, pp. 99–131, 2005. doi: 10.1137/S0036144504446096. [Online]. Avail-

able: http://www.siam.org/journals/sirev/47-1/44609.html.

[76] Many, Optimization (scipy.optimize) — SciPy v1.6.1 Reference Guide, 2021. [Online].

Available: https://docs.scipy.org/doc/scipy-1.6.1/reference/tutorial

/optimize.html.

[77] A. Wächter, ·. Lorenz, and T. Biegler, “Digital Object Identifier (On the implementation

of an interior-point filter line-search algorithm for large-scale nonlinear programming,”

Math. Program., Ser. A, vol. 106, pp. 25–57, 2006. doi: 10.1007/s10107-004-0559

-y.

[78] M. Diehl, H. G. Bock, H. Diedam, and P.-b. Wieber, “Fast Direct Multiple Shooting

Algorithms for Optimal Robot Control,” Fast Motions in Biomechanics and Robotics,

p. 28, 2005.

[79] E. Todorov, “Optimality principles in sensorimotor control,” Nature Neuroscience, vol. 7,

no. 9, pp. 907–915, 2004, issn: 10976256. doi: 10.1038/nn1309.

154

https://openai.com/blog/ai-and-compute/#modern
https://openai.com/blog/ai-and-compute/#modern
https://doi.org/10.1145/3272127.3275014
https://doi.org/10.1145/3272127.3275014
https://xbpeng.github.io/projects/SFV/index.html
https://xbpeng.github.io/projects/SFV/index.html
https://doi.org/10.1109/TMMS.1969.299896
https://doi.org/10.1111/j.1469-7998.1991.tb04794.x
https://doi.org/10.1137/S0036144504446096
http://www.siam.org/journals/sirev/47-1/44609.html
https://docs.scipy.org/doc/scipy-1.6.1/reference/tutorial/optimize.html
https://docs.scipy.org/doc/scipy-1.6.1/reference/tutorial/optimize.html
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1038/nn1309

[80] C. Wilson, M. R. Yeadon, and M. A. King, “Considerations that affect optimised simu-

lation in a running jump for height,” Journal of Biomechanics, vol. 40, no. 14, pp. 3155–

3161, 2007, issn: 00219290. doi: 10.1016/j.jbiomech.2007.03.030.

[81] M. R. A. Nabawy, G. Sivalingam, R. J. Garwood, W. J. Crowther, and W. I. Sellers,

“Energy and time optimal trajectories in exploratory jumps of the spider Phidippus

regius OPEN,” doi: 10.1038/s41598-018-25227-9. [Online]. Available: www.natu

re.com/scientificreports.

[82] W. I. Sellers, S. B. Pond, C. A. Brassey, P. L. Manning, and K. T. Bates, “Investigating

the running abilities of Tyrannosaurus rex using stress-constrained multibody dynamic

analysis,” PeerJ, vol. 2017, no. 7, pp. 1–19, 2017, issn: 21678359. doi: 10.7717/pee

rj.3420.

[83] F. Antonio, “FASTER LINE SEGMENT INTERSECTION,” in Graphics Gems III

(IBM Version), Elsevier, 1992, pp. 199–202. doi: 10.1016/b978-0-08-050755-2.5

0045-2.

[84] E. Todorov, Emo Todorov (University of Washington): ”Acceleration-based methods”

- YouTube, Jun. 2019. [Online]. Available: https://www.youtube.com/watch?v=u

WADBSmHebA.

[85] J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear

Programming. Society for Industrial and Applied Mathematics, Jan. 2010. doi: 10.11

37/1.9780898718577.

[86] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-

bert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. Van Den

Driessche, T. Graepel, and D. Hassabis, “Mastering the game of Go without human

knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, Oct. 2017, issn: 14764687. doi:

10.1038/nature24270.

[87] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,

M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder, L.

Weng, Q. Yuan, W. Zaremba, and L. Zhang, Solving Rubik’s cube with a robot hand,

2019. [Online]. Available: https://openai.com/bibtex/openai2019rubiks.bi

b.

[88] R. J. Williams, “Simple Statistical Gradient-Following Algorithms for Connectionist

Reinforcement Learning,” Machine Learning, vol. 8, no. 3, pp. 229–256, 1992, issn:

15730565. doi: 10.1023/A:1022672621406.

155

https://doi.org/10.1016/j.jbiomech.2007.03.030
https://doi.org/10.1038/s41598-018-25227-9
www.nature.com/scientificreports
www.nature.com/scientificreports
https://doi.org/10.7717/peerj.3420
https://doi.org/10.7717/peerj.3420
https://doi.org/10.1016/b978-0-08-050755-2.50045-2
https://doi.org/10.1016/b978-0-08-050755-2.50045-2
https://www.youtube.com/watch?v=uWADBSmHebA
https://www.youtube.com/watch?v=uWADBSmHebA
https://doi.org/10.1137/1.9780898718577
https://doi.org/10.1137/1.9780898718577
https://doi.org/10.1038/nature24270
https://openai.com/bibtex/openai2019rubiks.bib
https://openai.com/bibtex/openai2019rubiks.bib
https://doi.org/10.1023/A:1022672621406

[89] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M.

Riedmiller, “Playing Atari with Deep Reinforcement Learning,” 2013. [Online]. Avail-

able: http://arxiv.org/abs/1312.5602.

[90] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.

Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,

I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-

level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–

533, 2015, issn: 14764687. doi: 10.1038/nature14236.

[91] E. Todorov, “Goal Directed Dynamics,” IEEE International Conference on Robotics

and Automation (ICRA), pp. 2994–3000, 2018. doi: 10.1109/ICRA.2018.8462904.

156

http://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/ICRA.2018.8462904

Appendices

157

Appendix A

Equations for Model Analysis Chapter

The equations of motion for the 2 degree of freedom model are:

τ1 = l1 l2m2 sin(q1 − q2) q̇
2
2 +

(
I1 +

l1
2m1

4
+ l1

2m2

)
q̈1

+
g l1m1 cos(q1)

2
+ g l1m2 cos(q1) + l1 l2m2 q̈2 cos(q1 − q2)

τ2 = −l1 l2m2 sin(q1 − q2) q̇
2
1 +

(
m2 l2

2 + I2
)
q̈2

+ g l2m2 cos(q2) + l1 l2m2 q̈1 cos(q1 − q2) (A.1)

The forward dynamics are long equations. The acceleration of the first joint, q1, is given by:

q̈1 =
A

B
(A.2)

where

A = 4 l1 l2m2 τ2 cos(q1 − q2)− 4 l2
2m2 τ1 − 4 I2 τ1 + 4 l1 l2

3m2
2 q̇22 sin(q1 − q2)

+ 4 g l1 l2
2m2

2 cos(q1) + 2 I2 g l1m1 cos(q1) + 4 I2 g l1m2 cos(q1)

− 4 g l1 l2
2m2

2 cos(q1 − q2) cos(q2) + 2 g l1 l2
2m1m2 cos(q1)

+ 4 l1
2 l2

2m2
2 q̇21 cos(q1 − q2) sin(q1 − q2) + 4 I2 l1 l2m2 q̇

2
2 sin(q1 − q2)

B = 4 l1
2 l2

2m2
2 cos2(q1 − q2)− 4 l1

2 l2
2m2

2 −m1 l1
2 l2

2m2

− 4 I2 l1
2m2 − I2m1 l1

2 − 4 I1 l2
2m2 − 4 I1 I2.

The equation for the acceleration of the second joint, q2, is given by:

q̈2 =
C

D
(A.3)

where

C = 4 I1 τ2+l1
2m1 τ2+4 l1

2m2 τ2−4 l1 l2m2 τ1 cos(q1 − q2)+4 l1
3 l2m2

2 q̇21 sin(q1 − q2)

158

− 4 g l1
2 l2m2

2 cos(q2)− 4 I1 g l2m2 cos(q2) + l1
3 l2m1m2 q̇

2
1 sin(q1 − q2)

+ 4 g l1
2 l2m2

2 cos(q1 − q2) cos(q1)− g l1
2 l2m1m2 cos(q2)

+ 4 l1
2 l2

2m2
2 q̇22 cos(q1 − q2) sin(q1 − q2) + 4 I1 l1 l2m2 q̇

2
1 sin(q1 − q2)

+ 2 g l1
2 l2m1m2 cos(q1 − q2) cos(q1)

D = −4 l1
2 l2

2m2
2 cos2(q1 − q2) + 4 l1

2 l2
2m2

2 +m1 l1
2 l2

2m2 + 4 I2 l1
2m2

+ I2m1 l1
2 + 4 I1 l2

2m2 + 4 I1 I2.

The ground reaction force acting at the foot is given by:

Fv =
G

H
(A.4)

where

G = 8 I1 I2 g m1 + 8 I1 I2 g m2 − 4 l1 l2
2m2

2 τ1 − 4 l1
2 l2m2

2 τ2

+ 8 l1
2 l2m2

2 τ2 sin2
(
q1 −

q2
2

)
+ 8 l1 l2

2m2
2 τ1 sin2

(q1
2
− q2

)
+ 4 l1 l2

2m2
2 τ1 cos(q1)

+ 4 l1
2 l2m2

2 τ2 cos(q2) + 8 I1 g l2
2m1m2 + 2 I2 g l1

2m1m2 + 4 I2 l1m1 τ1 cos(q1)

+ 8 I2 l1m2 τ1 cos(q1) + 8 I1 l2m2 τ2 cos(q2)− 2 l1
2 l2m1m2 τ2 + 2 I2 g l1

2m1
2 sin2(q1)

+ 8 I2 g l1
2m2

2 sin2(q1) + 8 I1 g l2
2m2

2 sin2(q2)− I2 l1
3m1

2 q̇21 sin(q1)

− 8 I2 l1
3m2

2 q̇21 sin(q1)− 8 I1 l2
3m2

2 q̇22 sin(q2)− 6 I2 l1
3m1m2 q̇

2
1 sin(q1)

+ 4 g l1
2 l2

2m1m2
2 sin2(q1 − q2)− l1

3 l2
2m1m2

2 q̇21 sin(q1 − 2 q2)

+ 4 l1
2 l2m1m2 τ2 sin2

(
q1 −

q2
2

)
− 4 I1 l1 l2

2m2
2 q̇21 sin(q1)− 4 I2 l1

2 l2m2
2 q̇22 sin(q2)

− 2 l1
2 l2

3m1m2
2 q̇22 sin(2 q1 − q2)− 4 I1 I2 l1m1 q̇

2
1 sin(q1)− 8 I1 I2 l1m2 q̇

2
1 sin(q1)

− 8 I1 I2 l2m2 q̇
2
2 sin(q2) + 4 I1 l1 l2

2m2
2 q̇21 sin(q1 − 2 q2) + 4 l1 l2

2m1m2 τ1 cos(q1)

+ 4 g l1
2 l2

2m1m2
2 sin2(q1) + 2 g l1

2 l2
2m1

2m2 sin2(q1)− 2 g l1
2 l2

2m1m2
2 sin2(q2)

− 3 l1
3 l2

2m1m2
2 q̇21 sin(q1)− l1

3 l2
2m1

2m2 q̇
2
1 sin(q1)− 4 I2 l1

2 l2m2
2 q̇22 sin(2 q1 − q2)

+8 I2 g l1
2m1m2 sin2(q1)−2 I2 l1

2 l2m1m2 q̇
2
2 sin(2 q1 − q2)−4 I1 l1 l2

2m1m2 q̇
2
1 sin(q1)

H = 8 l1
2 l2

2m2
2 sin2(q1 − q2) + 2m1 l1

2 l2
2m2

+ 8 I2 l1
2m2 + 2 I2m1 l1

2 + 8 I1 l2
2m2 + 8 I1 I2

159

Appendix B

Model Equations of Motion

Subscripts are used to denote common expressions to compress the equations into a more
readable form. Trigonometric functions are shortened such that sin becomes s and cos be-
comes c. Joint angles used in the trigonometric functions are included in subscripts. A single
value in the subscript, cm, represents the joint angle used cos(qm). Subscripts containing two
values are used to represent angle differences: cnm represents cos(qn − qm) and snm repre-
sents sin(qn − qm). The products of segment lengths are shortened using subscripts as: lm·n

represents lmln.

Equations are presented in the form as described in 1.8a:

Hq̈ +Cq̇ + τg = τ

B.1 1 Degree of Freedom

The equation of motion for the 1 degree of freedom model is:

H = m1 l1
2 + Ib (B.1)

C = 0 (B.2)

τg = m1 g l1 c1 (B.3)

B.2 2 Degree of Freedom

The equations of motion for the 2 degree of freedom model are:

160

H =

[
I1 +

1
4
m1 l1

2 +m2 l1
2 m2 l1·2 c12

m2 l1·2 c12 m2 l2
2 + Ib

]
(B.4)

C =

[
m2 l1·2 s12 q̇2

−m2 l1·2 s12 q̇1

]
(B.5)

τg =

[
1
2
m1 g l1 c1 +m2 g l1 c1

m2 g l2 c2

]
(B.6)

161

B.
3

4
D

eg
re

e
of

Fr
ee

do
m

Th
e

eq
ua

tio
ns

of
m

ot
io

n
fo

rt
he

4
de

gr
ee

of
fr

ee
do

m
m

od
el

ar
e:

H
=

 I 1
+

1 4
l 1

2
m

1
+
l 1

2
m

2
+
l 1

2
m

3
+
l 1

2
m

4
1 2
l 1
·2
c 1

2
m

2
+
2
m

3
+
2
m

4
1 2
l 1
·3
c 1

3
m

3
+
2
m

4
l 1
·4
m

4
c 1

4

1 2
l 1
·2
c 1

2
m

2
+
2
m

3
+
2
m

4
I 2

+
1 4
l 2

2
m

2
+
l 2

2
m

3
+
l 2

2
m

4
1 2
l 2
·3
c 2

3
m

3
+
2
m

4
l 2
·4
m

4
c 2

4

1 2
l 1
·3
c 1

3
m

3
+
2
m

4
1 2
l 2
·3
c 2

3
m

3
+
2
m

4
I 3

+
1 4
l 3

2
m

3
+
l 3

2
m

4
l 3
·4
m

4
c 3

4

l 1
·4
m

4
c 1

4
l 2
·4
m

4
c 2

4
l 3
·4
m

4
c 3

4
m

4
l 4

2
+
I b

(B

.7
)

C
=

 1 2
l 1
·2
m

2
q̇ 2
s 1

2
+
l 1
·2
m

3
q̇ 2
s 1

2
+
l 1
·2
m

4
q̇ 2
s 1

2
+

1 2
l 1
·3
m

3
q̇ 3
s 1

3
+
l 1
·3
m

4
q̇ 3
s 1

3
+
l 1
·4
m

4
q̇ 4
s 1

4

−
1 2
l 1
·2
m

2
q̇ 1
s 1

2
−

l 1
·2
m

3
q̇ 1
s 1

2
−
l 1
·2
m

4
q̇ 1
s 1

2
+

1 2
l 2
·3
m

3
q̇ 3
s 2

3
+
l 2
·3
m

4
q̇ 3
s 2

3
+
l 2
·4
m

4
q̇ 4
s 2

4

−
1 2
l 1
·3
m

3
q̇ 1
s 1

3
−

l 1
·3
m

4
q̇ 1
s 1

3
−

1 2
l 2
·3
m

3
q̇ 2
s 2

3
−

l 2
·3
m

4
q̇ 2
s 2

3
+
l 3
·4
m

4
q̇ 4
s 3

4

−
l 1
·4
m

4
s 1

4
q̇ 1

−
l 2
·4
m

4
s 2

4
q̇ 2

−
l 3
·4
m

4
s 3

4
q̇ 3

(B

.8
)

τ
g
=

 1 2
g
l 1
m

1
c 1

+
g
l 1
m

2
c 1

+
g
l 1
m

3
c 1

+
g
l 1
m

4
c 1

1 2
g
l 2
m

2
c 2

+
g
l 2
m

3
c 2

+
g
l 2
m

4
c 2

1 2
g
l 3
m

3
c 3

+
g
l 3
m

4
c 3

g
l 4
m

4
c 4

(B

.9
)

162

Appendix C

DDPG Hyper-parameters

The hyper-parameters used in the final 25 runs of DDPG were as follows.

Parameter Value

Actor Neural Network Hidden Layers 2

Actor Neural Network Hidden Units (per layer) 15

Critic Neural Network Hidden Layers 2

Critic Neural Network Hidden Units (per layer) 15

Learning Rate 0.01

Discount Factor 1.0

Noise Standard Deviation 0.3

Mean Attraction Constant 0.1

Training Steps 20,000

Table C.1: Hyper-parameters used for the DDPG method

163

	Front matter
	Title page
	Contents
	List of figures
	List of tables
	Abstract
	Declaration of originality
	Copyright statement

	Acknowledgements
	1 Introduction
	1.1 Research Problem and Questions
	1.2 Thesis Aim and Objectives
	1.3 Thesis Outline
	1.4 Research Methods in Jumping Dynamics
	1.5 Predictive Modelling
	1.6 Definitions and Assumptions
	1.6.1 Planar Jumping System
	1.6.2 Defining a Jump
	1.6.3 Stability and Balance
	1.6.4 Redundancy in Models

	1.7 Kinematics of Jumping Systems
	1.8 Dynamic Equations of Motion for Jumping Models
	1.9 Computer Algebra Systems
	1.10 A Note on Model Complexity
	1.11 Models used in this work
	1.11.1 One Degree of Freedom Model
	1.11.2 Two Degree of Freedom Model
	1.11.3 Four Degree of Freedom Model

	1.12 Summary

	2 Literature Review
	2.1 Jumping Models
	2.1.1 Single Degree of Freedom Models
	2.1.2 Low Complexity Models
	2.1.3 High Complexity Models

	2.2 Analysis of Model Equations
	2.2.1 Discussion of Assessment Criteria

	2.3 Static Optimisation
	2.3.1 Discussion of Assessment Criteria

	2.4 Dynamic Optimisation
	2.4.1 Discussion of Assessment Criteria

	2.5 Reinforcement Learning
	2.5.1 Discussion of Assessment Criteria

	2.6 Thoughts and Conclusions

	3 Model Analysis Methods
	3.1 Computational Cost and Computer Algebra Systems
	3.2 State Space Analysis
	3.2.1 1 Degree of Freedom Model
	3.2.2 Multiple Degree of Freedom Model
	3.2.3 Method
	3.2.4 Stuck to the Ground
	3.2.5 Discussion

	3.3 Dynamic Balance Ellipsoid
	3.3.1 Velocity Ellipsoid
	3.3.2 Acceleration Ellipsoid
	3.3.3 Balance Plane
	3.3.4 Balance Ellipsoid
	3.3.5 Discussion

	3.4 Conclusions

	4 Static Optimisation
	4.1 Kinematic Redundancy in Jumping Systems
	4.2 Second Order Kinematic Redundancy Resolution
	4.2.1 Moore-Penrose and Least Squares Optimisation
	4.2.2 Weighted Pseudo-Inverse
	4.2.3 The Null Space of the Jacobian
	4.2.4 Minimum Torque Optimisation
	4.2.5 Enforcing Unactuated Degrees of Freedom

	4.3 Static Optimisation Method
	4.3.1 Determination of Heel-off Event

	4.4 Results
	4.4.1 Minimum Norm Acceleration
	4.4.2 Minimum Norm Inertia Weighted Acceleration
	4.4.3 Minimum Norm Torque

	4.5 Discussion
	4.6 Conclusions

	5 Dynamic Optimisation
	5.1 Summary of Dynamic Optimisation
	5.2 Candidate Constraint and Objective Functions
	5.3 Method
	5.3.1 Undesirable Solutions from Dynamic Optimisations

	5.4 Results
	5.4.1 Joint Angle Trajectories and Sample Poses
	5.4.2 Torques
	5.4.3 Ground reaction forces

	5.5 Discussion
	5.6 Conclusions

	6 Reinforcement Learning
	6.1 Why DDPG?
	6.2 Pitfalls
	6.2.1 Catastrophic Failure in Jumping Problems
	6.2.2 Point Mass Example
	6.2.3 Frame Skipping
	6.2.4 Reward Shaping

	6.3 Method
	6.4 Results
	6.4.1 Computational Cost
	6.4.2 Joint Angle Trajectories and Poses
	6.4.3 Joint Torques

	6.5 Discussion
	6.6 Conclusions

	7 Conclusions
	7.1 Research Aims
	7.2 Research questions
	7.2.1 Research Question 1.
	7.2.2 Research Question 2.

	7.3 Future Work

	References
	Appendices
	A Equations for Model Analysis Chapter
	B Model Equations of Motion
	B.1 1 Degree of Freedom
	B.2 2 Degree of Freedom
	B.3 4 Degree of Freedom

	C DDPG Hyper-parameters

