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Abstract 

Fracture mechanics is concerned with the response of defect ridden components, 

which under scaling suffer a phenomenon known as size effect, where the response of 

a material is influenced by its size. It can be observed that a component can fail before 

the limiting loads indicated by a smaller version of the same material. The difference 

can be explained by the more significant defects in the larger model, leading to failure 

at a lower load. An affliction of current scaling theories founded on dimensional 

analysis is that they can only accommodate scale/size effects ad hoc. Dimensional 

analysis ignores them completely and is one of the principal reasons why scaling is 

not presently a fundamental approach for fracture investigations. To overcome this 

limitation, a new method of scaling called finite similitude, involving additional 

experiments at scale, is examined as a possible alternative approach. It is shown in the 

thesis how two scaled experiments, as opposed to one, can better represent the 

response of cracked components. The finite similitude theory provides the means to 

link information from the scaled experiments. The theory provides the means to 

couple fields like stress, strain, and displacement in fracture mechanics. Although 

initially tested in quasistatic fracture, its scope is expanded to different fields in 

dynamic fracture and impact processes. This research presented in the thesis presents 

evidence of the efficacy of the finite similitude theory in fracture mechanics. Several 

standard specimens, with crack propagation, under different loading scenarios are 

examined for different ductile metals. Dynamic fracture mechanics is also 

investigated by applying the theory to the Charpy impact test, which serves to select 

different materials in physical modelling for more practical studies. An example of 

this is presented with a dynamic impact study of a thin-walled pressure vessel further 

to confirm the approach's relevance to an industrial setting. Through different tests, 

loading conditions, materials, boundary conditions and investigations, it is 

demonstrated in the thesis how the two-experiment approach to fracture mechanics 

provides higher accuracy than a single-scaled experiment.  
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Nomenclature 

𝛼0
𝛹 Scalar for transport equation for field 𝛹 in 0𝑡ℎ-order theory 

𝛼1
𝛹 Scalar for transport equation for field 𝛹 in 1𝑠𝑡-order theory 

𝛼𝑘
𝛹 Scalar for transport equation for field 𝛹 in 𝑘𝑡ℎ-order theory 

𝛼0
𝛹𝛵0

𝛹   Scaled transport equation for field 𝛹 in 0𝑡ℎ-order theory 

𝛼1
𝛹𝛵1

𝛹 Scaled transport equation for field 𝛹 in 1𝑠𝑡-order theory 

𝛼𝑘
𝛹𝛵𝑘

𝛹 Scaled transport equation for field 𝛹 in 𝑘𝑡ℎ-order theory 

a Crack length 

𝑎0
  Initial crack length  

A Static yield stress  

𝐴0  Cross section area of rod 

𝐴𝑝𝑙  Area under the load-displacement curve 

𝛽  Length scalar 

b Remain ligament length of model (Chapter 4) 

b Crack depth of semi-elliptical crack (Chapter 3) 

𝑏0
  Initial remain ligament length 

𝒃 
𝛹 Source term in transport equation for field 𝛹 

𝒃𝑡𝑠
𝑣  Source term in transport equation of momentum (body force) in trial 

space 

𝑩𝑝𝑠(𝒃1 ) Body force of physical space 

B Thickness of the ASTM specimen (Chapter 4) 

B Hardening coefficient (Chapter 5) 

C Strain rate coefficient  

𝐷1 − 𝐷5 Damage parameters of J-C damage model 

𝒆𝑖  Direction vector of crack travel 

E Young’s modulus 

𝐹  Coefficient of invariant 

𝑔 Time scalar 

𝐺𝑐  Fracture energy per unit area (critical energy for fracture) 

 𝑱 
𝛹 Flux term in transport equation for field 𝛹 

 𝐽 
∗ Extended J-integral 
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𝐽𝑐 Critical J-integral at failure 

𝐽𝑒𝑙  Elastic J-integral  

𝐽𝑝𝑙  Plastic J-integral 

𝐽𝐼𝐶  Fracture toughness in J-integral 

𝐾𝐼 Stress intensity factor (Mode I crack) 

𝐾𝐼𝐶  Fracture toughness in stress intensity factor 

ℓ Length of the rod 

m Thermal softening coefficient  

M Mass of projectile 

𝑀𝐽 Slope of the construction line in J-R curve 

n Hardening exponent  

𝐧 
∗ Outward pointing normal 

𝒏 Unit normal vector  

𝑃  Load 

𝑃𝑄 Critical load for stress intensity factor calculation. 

Q The near-tip stress triaxiality 

𝑅1
𝛹  Differential scaling parameter in 1st order for field 𝛹 

S Span of the TPB model (distance between the support pin) 

t Time 

𝜏  Surface traction vector 

T The T-stress in J-T theory 

T Thickness of the pressure vessel 

𝑇𝑡𝑟 Transition temperature 

𝑇𝑚 Melting temperature 

𝛵𝑝𝑠
𝛹  Transport equation of physical space for field 𝛹 

𝛵𝑘+1
𝛹  Transport equation for field 𝛹 in (𝑘 + 1)𝑡ℎ-order theory 

u Displacement field 

𝒖𝛽  Scaled displacement 

u Displacement 

𝑼𝑝𝑠  Displacement field of physical space 

V Volume 

𝒗 
∗ Velocity field 
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𝒗𝛽1 Reversed velocity from trial space to physical space (virtual data) 

𝑽𝑝𝑠(𝒗1) Velocity field of physical space 

𝜈 Poisson’s ratio 

𝑊 Width of the test specimen 

𝒙 Function of coordinate points in affine map 

𝝌 Coordinate point in reference control volume 

�̅�𝑑 Mean yield stress 

𝜌  Material density 

𝜎𝑐 Maximum principal stress 

𝜎𝑑 Dynamic yield stress 

𝜎𝑌 Yield stress 

𝜎𝑇𝑆  Tensile strength 

𝝈  Stress field 

𝝈𝛽  Scaled stress 

𝜎 
∗ Stress triaxiality  

Σ̅𝑑 Mean dynamic yield stress  

𝚺𝑝𝑠
 (𝝈1 ) Stress field of physical space 

휀  Strain 

휀𝑌 Yield strain 

휀𝑈𝑇𝑆  Strain at tensile strength 

𝜺𝛽  Scaled strain 

휀 
𝑝 Plastic strain  

휀̇ Strain rate 

휀 ̇
0 Reference strain rate 

�̇� Equivalent strain rate 

휀𝑓 Failure strain 

�̅�𝑓 Mean failure strain  

𝛿𝑗
𝑗

 
 Kronecker delta symbol 

𝛿 Separation value in load-displacement curve of CZM 

𝛿𝑐 Critical separation in load-displacement curve of CZM 

𝒅𝚪  Elemental surface-area vector 
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𝛤 
∗ Orientable boundary 

𝜳 Physical field 

𝜔  Strain-energy density 

𝛺 
∗ Control volume 

ℵ Algebra of parameters used in Table 1 

 



Chapter 1 Introduction 

Chapter 1 Introduction 

1.1. Background of the research project 

Large engineering structures, for example, aeroplanes, ships, trains, bridges, and 

buildings, are consistently among the essential parts of human life. These structures 

must be tested and simulated for the failure and damage criteria for the safety 

conditions. Considering the financial cost and detailly investigation of the test and 

simulation, scaling of models is always used for predicting the performance of large-

scale industries, where scaling in physical engineering is carried out with two 

different-scale models that need to be studied.  

Research of the scaling theory has a long history. It was firstly aware by Leonardo da 

Vinci in the 15th century [1], who discovered the mathematical relationships for the 

modes of behaviour between similar geometrical models. Leonardo da Vinci designed 

an experiment to find the load-bearing capacity of iron wires, from where it was 

declared that 'Among cords of equal thickness, the longest is the least strong', and the 

phenomenon is called 'scale effect'. In the 18th century, Galileo [2] then extended this 

study. It was founded and stated that the strength of the structure will not decrease 

with its size; however, if the dimension decrease, the 'strength' will increase. Then the 

first scientific work was presented by Rayleigh's paper [3] in 1915, followed by 

Goodier and Thomson's report [4], which discussed the applicability of similitude in 

structural systems [5]. The research applies dimension analysis to several structural 

problems, including complex and straightforward, buckling and plastic behaviour, and 

materials with no linear stress and strain relationship. After many works based on 

dimensional analysis were presented, approaching to recent time, Singer et al. (1997), 

Baker et al. (1991) and Sonin (2001) published books [6-8] mainly focusing on the 

application of dimensional analysis with different scaling models, and scaling 

methods. The approaches of scaling theory are most successful when applied; 
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however, due to some limitations and disadvantages, the scaling theory keeps 

studying and developed till today. 

On the other hand, fatigue and fracture were founded on a phenomenon for over a 

century. Griffith [9] first found the failure load in brittle materials and then postulated 

that the high stress at the locality of defects can lead to failure, which initiates the 

crack propagation. It was also concluded that an invisible crack inside the structure 

appeared during the work, and damage occurred by the crack, which cannot be 

directly seen. After that, the concept of fracture mechanics is produced with the case 

of ductile material, where Irwin (1958) [10] and Miller (1968) [11] investigated the 

plastic behaviour around the crack. The linear-elastic fracture mechanics (LEFM) and 

elastic-plastic fracture mechanics (EPFM) are then concluded and distinguished by 

the plastic zone. Based on that, several physical quantities of fracture mechanics are 

created systematically, like stress intensity factor, and J-integral are proposed by Irwin 

[12] and Rice [13], which quantify the intensity of elastic and plastic crack-tip fields. 

Other quantities like crack-tip opening distance (CTOD) and crack-tip opening angle 

(CTOA) are proposed to describe crack propagation behaviour. These quantities are 

generally applied in laboratory tests and engineering design, which involves fracture 

mechanics; typically, they could be founded on the technical standard of ASTM 

international (American Society for Testing and Materials). 

It is appreciated that the fracture properties are commonly affected by specimen size. 

This is due to the relative size of the fracture process zone compared to the size of the 

specimen. This also influences the application of LEFM and EPFM and indicates the 

importance of size-dependent fracture properties for structural design and analysis. 

The importance of scale related fracture phenomenon was studied by Bažant [14-15], 

involving dimensional analysis, fracture, and size effects. His size-effect studies 

started with notched concrete specimens to characterise the transition from failure to 

the LEFM criterion in all geometrical similar models. His proposed size-effect law 

modifies experimental parameters to fit results from scaled experiments to reveal the 

influence of physical size on those geometrical similar specimens.  
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Subsequently, further size effect models have been presented and include for example 

the multi-fractal size-effect law by Carpinteri and Chiaia [16-17], which accounts for 

size-effects related to crack length. All size-effect studies aim to investigate the 

material behaviour with changes in specimen size and describe how these size-

dependence parameters work in scaling studies and typically involve dimensional 

analysis. In forming dimensionless groups in dimensional analysis any size-dependent 

parameters should be treated with caution since by default (under scaling) 

dimensional analysis cannot accommodate size effects. A size effect is a scale effect 

that occurs with a material and a scale effect exists when the governing dimensionless 

equations change with scale.  Typical studies involving dimensional analysis and size-

effect laws in fracture mechanics focus on the critical characteristics of specimens 

[14-17].  They focus in on properties that change with the size to substantiate that 

differences that appear with scaling are explainable but also to provide redress as 

necessary. It is appreciated however that size-effect laws do not constitute a scaling 

theory being developed to characterise scaled experiments.  They are ad hoc and 

empirical in scope and consequently must be used with caution and in limited 

circumstances [18].  This is one of the main reasons for this research to provide an 

alternative scaling theory that can provide a robust and wide-ranging description for 

scale effects in fracture mechanics. 

It is appreciated that a new scaling theory and deeper understanding of scale and size 

effects can provide significant benefits for the engineering community.  Scaling and 

fracture mechanics could be considered as a twin track approach for the assessment of 

some industrial problem where both safety and financial considerations feature. A new 

scaling theory implemented through scaled experiments could become an essential 

approach in engineering.  Over and above any financial savings, the new approach 

could facilitate the building and study of models at convenient scales to understand 

the response of hard-to-study problems possibly because of their size. Moreover, 

repeat trials can be performed relatively cheaply and alternative boundary conditions 

can be assessed and applied conveniently with more flexible arrangements. In 
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addition, the number of samples for tests, requiring specimens of appropriate sizes, 

can be built more easily.  Presently, scaled experimentation is not the primary choice 

for simulation but it is recognised that this view is informed by the lack of a suitable 

scaling theory. The preferred choice at the present time is the adoption of constitutive 

laws informed by material tests for the use in advanced numerical tools.  Numerical 

simulation does have limitations however particularly for complex processes 

involving uncertain boundary conditions and material properties.   

This research proposes to make scaled experimentation more attractive with the 

development and application of a new scaling theory to fracture mechanics.  It is 

shown in the work how one of the similitude rules from the theory called finite 

similitude can be applied to fracture mechanics.  The first-order finite-similitude rule 

is explored and confirmed to be the correct rule for fracture characterisation.  An 

extraordinary new feature is explored in the proposed work with the possibility of 

investigating problems with physical models.  This aspect is unseen in fracture studies 

simply because dimensional analysis does not apply to problems where size effects 

feature.  The work presented here aims to push forward both the finite similitude 

theory and the exploration of scaling in fracture mechanics.  
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1.2. Research Aim and Objectives 

The research aims to investigate the efficacy of the finite similitude theory in fracture 

problems and show how the two-experiment theory can affect and improve the 

simulation based on the one-experiment theory. Therefore, the overall focus is on 

understanding the necessary physical quantities of crack propagation at scale, 

intending to relate the results from large-scale models to those obtained by small-scale 

models. Different types of cracked models are to be considered, including a variety of 

loading and boundary conditions, materials, and investigations, to demonstrate the 

practical value of the approach. 

For these aims, the objectives of the study are listed below: 

1. Employ analytical calculations for linear elastic fracture mechanics and evaluate 

how physical quantities can be connected across the scales through the finite 

similitude scaling theory equations. 

2. Using numerical studies applying finite similitude theory in elastic plastic fracture 

mechanics, build ABAQUS models to form a full-scale virtual material model. The 

creation of a virtual model is to be achieved using the properties of small-scale 

models and the scaling theory. Comparing the results between zeroth-order theory 

(single scaled experiment) and first-order theory (two scaled experiments) with the 

prototype should assess the approach.  

3. Test standard cracked specimens at different scales with identical materials to 

obtain and calculate different physical quantities salient to elastic-plastic fracture 

mechanics. The tests should lead to the precise quantification of size effects as 

revealed by the output of the ABAQUS models. 

4. Associate the results at different scales with the first-order theory (two scaled 

experiments) to discover if scale effects present under a single scaled experiment are 

removed under two scaled experiments. 

5. Build a dynamic impact fracture model for the Charpy impact test and apply the 

finite similitude theory to the output of different models to ascertain the optimum 

conditions for scaling (e.g., scaling factors and material selection). 
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6. Apply the conditions found in the Charpy impact test to other dynamic impact tests 

with damaged models to discover if good accuracy is returned.  

In this way, materials and settings for physical models can be predetermined from 

standard tests, which is of practical importance. 

1.3. Research Methodology 

1.3.1. Fracture Mechanics Method 

Fracture mechanics is based on the finding that structures contain an initial defect, 

where this defect will initial crack with critical load applied, and finally occur failure. 

The fracture mechanics method is proposed to estimate the relationship between the 

safety factor and the crack length and then identify the load criteria of material which 

will make the crack start propagating. 

It was founded that the stress field becomes different around the crack tip of a 

structure, and regularly field equations of stress for complete structure cannot evaluate 

the stress around the crack. In this case, Irwin [12] introduced a new physical quantity 

stress intensity factor, which defines the intensity of elastic crack-tip based on the 

stress 𝜎 and the certain crack length 𝑎. It could be founded in Eq. (1.1)  

 𝐾𝐼 = 𝜎√𝜋𝑎 (1.1) 

Moreover, it is stated that when the value of stress intensity factor (𝐾𝐼) reaches its 

critical value, fracture toughness (𝐾𝐼𝐶), the crack starts propagating. Therefore, the 

critical condition of stress could be determined by fracture toughness. 

Furthermore, the initiation and behaviour of crack propagation could also be 

evaluated by the energy method, which was firstly introduced by Griffith’s study [9]. 

In this study, linear elastic fracture of brittle material is considered in energy rather 

than stress only, released by a uniformly extended plate of unit thickness. When a  2𝑎   

length of the crack is formed, and the displacement remains constant in an infinity 

plate, the elastic strain energy is shown as 

 𝑊𝑒 =
𝜋𝑎2𝜎2

𝐸
 (1.2) 
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After this, Rice [13] developed the concept of J-integral, which shows the release of 

total potential energy along the extension crack. J-integral is available for linear or no-

linear elastic cases, and it is now an essential and widely used parameter in fracture 

mechanics studies. The J-integral can define both initiation and extension of crack by 

determining the critical value 𝐽𝐼𝐶 and evaluating the path integral surrounding the 

crack path. 

1.3.2. Contour integral analysis 

ABAQUS evaluates the parameters for fracture mechanics studies, for example, J-

integral, stress intensity factor and T-stress, based on the J-integral application in the 

finite element method and the boundary element method which can express the 

behaviour of crack in different ways. These can be evaluated by contour integral 

evaluations, which could be the motion of blocks or elements around the crack tip (in 

2D) or surrounding the node on the crack path (in 3D). These blocks are defined by 

contours, where the contour is a ring of elements surrounding the crack tip, which is 

then recursively surrounded by other contours. In the finite element analysis, the 

definition of crack can be founded on the element from rings from the region, and 

each contour evaluation the contour integral in this way. 

1.3.3. Extend Finite Element Method 

Belytschko and Black [19] firstly introduced the extended finite element method 

(XFEM). This method is based on the concept of partition of unity [20] and could be 

regarded as an extension or enrichment of the standard FE method, with benefit in 

modelling crack growth. The enrichment functions with an additional degree of 

freedom are added in the approximation of finite elements by the concept of partition 

of unity, which could handle the discontinuities, for example, cracks and interfaces.  

For the fracture analysis with XFEM, the enrichment function includes the crack-tip 

asymptotic function and discontinuous function. One is for stress singularity around 

the crack tip, and the other is for displacement and jump along the crack surface. The 
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mathematic function to approximate the displacement of a gauss point [x] could be 

written as 

 

𝑢(𝑥) =∑𝑁𝑗(𝑥)𝑢𝑗

𝑛

𝑗=1

+∑𝑁ℎ(𝑥)(𝐻(𝑥) − 𝐻(𝑥ℎ))𝒂ℎ

𝑚ℎ

ℎ=1

+∑𝑁𝑘(𝑥)

𝑚𝑡

𝑘=1

[∑(𝐹𝑙(𝑥) − 𝐹𝑙(𝑥𝑘))𝒃𝑘
𝑙

4

𝑙=1

] 

(1.3) 

Here n is the number of standard finite element nodal, 𝑁𝑖, 𝑁𝑗 , 𝑁𝑘(𝑥) are continuous 

shape functions, 𝑢𝑗 is the freedom vector of standard finite element nodal,  𝐻(𝑥) is 

the Heaviside function of gauss point x and 𝐻(𝑥ℎ)  is the Heaviside function of 

enrichment nodal h, 𝒂ℎ is the freedom vector of sides around the crack, mh and mt are 

nodal number of Heaviside enrichment and crack-tip enrichment respectively, 𝐹𝑙(𝑥) 

and 𝐹𝑙(𝑥𝑘) are the crack-tip enrichment function at gauss point x and enrichment 

nodal k, and 𝒃𝑘
𝑙  is the freedom vector of crack-tip enrichment nodal. The Heaviside 

function is jumped from 1 to -1 from one side to the other side, and the crack-tip 

asymptotic function could be written with  

 

{𝐹𝑙(𝑟, 𝜃)}𝑙=1
4

= {√𝑟 sin
𝜃

2
, √𝑟 cos

𝜃

2
, √𝑟 sin 𝜃 sin

𝜃

2
, √𝑟 sin 𝜃 cos

𝜃

2
} 

(1.4) 

where (𝑟, 𝜃) is the polar coordinate at point x, and 𝜃 = 0 for the tangent direction of 

crack. Here for example a crack propagation with enrichment nodal could be shown in 

Fig. 1.1, where the nodes highlighted are enriched with the functions. 
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Figure 1.1 Enrichment nodes by XFEM functions. 

In XFEM, the traction-separation cohesive behaviour is generally applied in 

Abaqus/Standard to simulate the crack initiation and propagation. In this case, the 

XFEM crack growth is based on the linear elastic traction-separation model, damage 

initiation criteria and damage evolution laws. Here the damage initiation criteria are 

applied with maximum principal stress [21], which could be the core property 

controlling the initiation and direction of crack propagation [22]. It follows the theory 

of maximum principal stress that material failure will occur when the maximum value 

of principal stress reaches the yield criterion. Damage evolution applies according to 

the descending linear part of the bilinear traction-separation law, representing the 

material softening behaviour and stiffness degradation; the input of damage evolution 

would be the failure displacement 𝛿𝑐, which shows the displacement of nodes when 

the element fails. 

1.3.4. Finite Similitude Theory 

The scaling theory applied to fracture mechanics in this research is finite similitude 

theory, a new theory founded on the metaphysical concept of space scaling. The 

theory proposes that space can be expanded or contracted during the scaling 

experiment. It could be imagined that a large space is contracted to a small space 
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during the scaling experiment, and things in the large space are also contracted and 

located in the corresponding place in the small space. The movements of these things 

could be investigated by linking them as two points in the control volume, and the 

equations between points in different scales and the moving process can be set, which 

is then used to synchronize the scaling experiment. Though it is not valid for practical 

and individual scale experiments, it is possible to assess the physical impact or change 

of the metaphysical process on the underpinning physics dictating the behaviour of an 

experiment. 

The basis of finite similitude consists of several theories. Where one is the space 

scaling theory, which considers the affine map related to the points between physical 

space (large scale) and trial space (small scale), and the selected points in their frame 

are assumed to be temporally invariant. Then it would be the control volume concept, 

which evaluates the effect of different physical values in the scaling experiment, 

which regards the scaling as a movement or deformation in the finite region, and then 

synchronizes the movement somehow. It proposes the projected transport equations 

based on the synchronization of movement in the control volume. The transport 

equation is built in the integral form by the material density and velocity field, based 

on the finite boundary and control volume, with the selected physical field and source. 

The relationship of the selected physical field between physical space and trial space 

can be relatively deduced from the transport equation. These theories around finite 

similitude will be introduced detailly in the main text. 

Evaluating the efficacy of the theory can be done with a numerical test. A virtual 

material can be created with real physical and trial model materials. This virtual 

object can be tested numerically and compared with the numerical result of the real 

physical model. Then the application of finite similitude theory can be concluded with 

several steps. For the determined materials and scaled sizes, the trial model's scaling 

factors and boundary conditions can be calculated by the material properties and sizes; 

based on the result of the trial model (under the determined boundary conditions), the 

scaling factors can calculate the analytical result. According to this, it can find that the 
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theory aims to predict the result of large scale-model from the tests of small-scale 

models with the same or different materials.  
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1.4. Thesis outline 

It has introduced the comprehensive information in this first Chapter about the 

historical background, research aim and methodology. Following this, the structure of 

the thesis will be shown below: 

In Chapter 2, reviews of detailed knowledge and related work in the literature are 

listed to identify how this research works and what is the pros and cons of the existing 

research. Especially for how fracture mechanics is studied with scaling theory and 

what are the limitations that need or can be overcome by finite similitude. 

Chapter 3, which corresponds to paper 1, introduces the basis of finite similitude 

theory and proves its efficacy in fracture mechanics in two ways. One is an analytical 

calculation of facture energy and J-integral in LEFM between different scales with 

different materials. And the other is considering no-linear evaluation, which generates 

numerical study for J-integral in EPFM. 

Chapter 4 shows the research of paper 2, which proposed a new two-experiment 

theory for fracture mechanics based on scale invariance. It designs several scale 

experiments to express the size effect in identical material and vanish the error caused 

by the size effect with the scaling theory and scale invariance. The experiments are 

around the standard test of material in fracture mechanics, which designs the 

procedure of ASTM E399 in finite element method with the elastic-plastic behaviour. 

The view moves from quasi-static loading to dynamic loading in Chapter 5, which 

concerns the dynamic fracture mechanics study with the Charpy impact test. The 

Charpy impact test determines the scaling parameters and conditions and applies to 

other dynamic impact studies with damaged models. It relates to the topic in paper 3, 

which shows the extended range of finite similitude application and investigates the 

different behaviour in another close engineering model. 

It will finally end in Chapter 6 with a summary and conclusion of the works, the 

improvement and jobs in the future will also be raised in this section. 
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Chapter 2 Literature Review 

2.1. Introduction 

As defined in the historical background, fracture mechanics and scaling theory play 

an essential role in human life. They are primarily founded in the works of large 

industries for safety and financial purpose. The evaluation of fracture mechanics 

around the crack propagation is mature and includes the criteria of fracture initiation 

and physical behaviour during the crack propagation. As for scaling theory, 

dimensional analysis can be regarded as the most well-known and widely used 

method in this field. There is some research around scaling fracture mechanics using 

dimensional analysis, and then some new dimensionless numbers are derived in this 

area. Furthermore, the size effect is presented during this period, which must be 

considered when generating scale experiments in fracture mechanics. 

2.2. Fracture mechanics 

Failure of a solid is displayed as a body separation. In an atomistic-scale view, the 

strength of the atomic bond can decide the failure strength of the 'perfect' material. 

For example, Figure 2.1 depicts two arrays of atoms located in a perfect crystal in 

static equilibrium, where the distance between arrays can increase when the stress  𝜎 

increases.  The breaking of the atomic bond will start when the stress reaches a critical 

value 𝜎𝑐, resulting in the separation of the solid body. 

 

Figure 2.1 Atomic plane separation in a perfect crystal. 
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2.2.1. Linear Elastic Fracture Mechanics 

Fracture mechanics is a critical theory for improving the performance of solid 

structures and components by describing the behaviour of materials theoretically. It is 

a part of mechanics that focuses on crack propagation in materials, which considers 

force and crack extension and uses the theory of solid mechanics to express fracture 

resistance. The fundamentals of fracture mechanics were developed by Irwin [12] 

when investigating the stress field around the crack tip. Irwin proposed two new 

physical quantities, stress intensity factor and fracture toughness for linear elastic 

fracture mechanics (LEFM), which describe a significantly small plastic zone 

surrounding the crack tip compared to crack length (small-scale yielding). The 

geometry of a solid body and the boundary conditions will affect the crack tip singular 

field through the stress intensity factor K. The initiation of crack growth occurs when 

the stress intensity factor reaches the value of fracture toughness 𝐾𝐼𝐶 . The fracture 

criterion function in Eq. (1.1) assumes linear elasticity with the existence of an 

inverse square root singular stress, which represents the near-tip stress field K-

dominance zone. In this case, any complex nonlinear deformation around the crack tip 

can be ignored in principle. As shown in Fig. 2.2, the condition of the fracture 

criterion assumes that nonlinear deformation and the fracture process zone should be 

small and well contained inside the K-dominance zone around the crack tip. 

 

Figure 2.2 K-dominance zone and fracture process zone. 

Moreover, a criterion of crack initiation is determined to be 𝐾𝐼 = 𝐾𝐼𝐶 , where the 
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fracture toughness 𝐾𝐼𝐶  is hence determined to be a material property which defines the 

material’s ability to resist failure. It is worth emphasising that this criterion is founded 

on linear elasticity, which assumes no limits to the strength of materials. Therefore, 

within the confines of the theory, the stress intensity factor is well defined. 

Another approach for establishing a fracture criterion is based on a global energy 

balance during crack propagation. When the crack length of a two-dimension elastic 

body is 𝑎, then the total potential energy per unit thickness in the crack growth could 

be written to be Π = 𝛱(𝑎), so that the energy release of the structure could be 𝑑𝛱 

when there is a small crack extension (𝑑𝑎 ). Thus, for the linear material under 

constant load, the energy release can be described by the proportion of the potential 

energy decrease per unit crack extension 𝐺 = −
𝑑𝛱

𝑑𝑎
 proposed by Irwin’s other work 

[23]. The found energy release per unit area confirms Griffith’s study [9] but is not 

confined to brittle material behaviour. Irwin then created a similar process as fracture 

toughness that 𝐺 = 𝐺𝐶 , where 𝐺𝐶  is the critical value of energy release, plays the 

same role as fracture toughness. The energy release rate refers to Griffith’s energy law 

shown in Eq. (1.2), divided by two times the unit surface area along the crack path; 

hence it was written like 𝐺 =
𝜋𝑎𝜎2

2𝐸
 (the equations are for plane stress). Stress intensity 

factor and energy release rate are two new concepts arising from fracture mechanics 

and distinguish fracture mechanics from classical failure criteria. For the method 

based on the stress intensity factor, the stress intensity factor needs to be calculated 

with the known applied load and crack geometry, and the fracture toughness should be 

measured as well. With these parameters, the maximum load or, for a given load, the 

maximum crack extension the structure can withstand without crack propagation can 

be calculated. Compared to the approach based on the stress intensity factor, the 

energy release rate is more readily extended to cases that involve nonlinear effects. 

This is because energy is universal and fundamental to all thermos-mechanics.  

2.2.2. J-integral 

The energy-based method, a path integral around the crack, J-integral, was first 
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proposed by Cherepanov [24] in 1967 and independently by Rice [13] in 1968. Rice’s 

1968 paper aimed to find a way to analyse the stress-concentration problem and deal 

with the mathematically challenging concentrated-strain field near a notch or a crack. 

The J-integral has the effect of transforming the stress concentration into a boundary-

value problem. The J-integral is a path-independent line integral around the crack in a 

two-dimensional field, which applies to linear and nonlinear elastic materials. The 

integral can be applied to the contour around the crack tip, starting from the lower 

surface and ending at the upper surface of the crack. For the determined path 𝛤 of the 

crack and the stress field that all stresses  𝜎𝑖𝑗  depend only on two Cartesian 

coordinates, since the homogenous body of linear and nonlinear elastic material free 

of body force and subjected to a two-dimensional deformation field, the J-integral can 

be written like the energy dissipation as  

 𝐽 = ∫(𝑊𝑑𝑦 − 𝑇
𝑑𝑢

𝑑𝑥
𝑑𝑠

 

𝛤

) (2.1) 

where 𝑊 is the strain energy density that can be represented by 

 𝑊 = 𝑊(𝑥, 𝑦) = 𝑊(휀) = ∫ 𝜎𝑖𝑗𝑑𝜖𝑖𝑗

𝜀

0

 (2.2) 

And 𝑇 is the traction vector defined by the outward normal, which could be expressed 

by 𝑇𝑖 = 𝜎𝑖𝑗𝑛𝑖, 𝑑𝑠 is an element of arc length along the path, 𝑢 is displacement vector. 

Furthermore, Rice then proved the path independent of J-integral with the sum of two 

path integrals equal to zero. It could be imagined that two boundaries 𝛤1 and 𝛤2 from 

an enclosed ring with crack surfaces, the energy is dissipated clockwise through 𝛤1 

and then dissipated anticlockwise through 𝛤2; for the enclosed ring there is  

 

(𝑎𝑛𝑡𝑖) ∫ 𝑊𝑑𝑦 − 𝑇𝑖
𝜕𝑢𝑖
𝜕𝑥

𝑑𝑠
 

𝛤1

+ (clockwise)∫ 𝑊𝑑𝑦 − 𝑇𝑖
𝜕𝑢𝑖
𝜕𝑥

𝑑𝑠
 

𝛤2

= 0 

∫ 𝑊𝑑𝑦 − 𝑇𝑖
𝜕𝑢𝑖
𝜕𝑥

𝑑𝑠
 

𝛤1

= ∫ 𝑊𝑑𝑦 − 𝑇𝑖
𝜕𝑢𝑖
𝜕𝑥

𝑑𝑠
 

𝛤2

 

(2.3) 

Furtherly, Rice developed the consideration of J-integral in a small-scale yielding 

model; with the boundary layer and polar coordinate introduced in Irwin’s stress 
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intensity factor theory, it was founded that for small-scale yielding, J-integral is 

represented by stress intensity factor as the fracture energy, for example in Mode I 

crack under the plane strain, 

 𝐽 =
1 − 𝑣2

𝐸
𝐾𝐼
2 (2.4) 

When J-integral was proposed in 1968, it was estimated to evaluate the stress and 

strain field around a crack tip of a non-linear elastic-plastic material with path 

independence by Rice, Rosengren [25] and Hutchinson [26], who considered plane 

stress and plane strain conditions. It is now known as the Hutchinson-Rice-Rosengren 

field, or HRR solution. It shows from their study about J-integral that the stress and 

strain distribution vary with the radius around the crack tip, and the HRR field 

presents for solving the stress and strain field, which develops that 

 
휀

휀𝑦
=
𝜎

𝜎𝑦
+ 𝛼 (

𝜎

𝜎𝑦
)

𝑛

 (2.5) 

 𝜎𝑖𝑗 = 𝜎0 (
𝐽

𝛼𝜎0휀0𝐼𝑛𝑟
)

1
𝑛+1

�̃�𝑖𝑗(𝑛, 𝜃) (2.6) 

 휀𝑖𝑗 = 𝛼휀0 (
𝐽

𝛼𝜎0휀0𝐼𝑛𝑟
)

𝑛
𝑛+1

휀�̃�𝑗(𝑛, 𝜃) (2.7) 

where 𝛼 is geometry parameter, physical (half) crack length, 𝑟, 𝜃 is radial coordinate 

and angular coordinate of polar field,  𝐼𝑛 is a constant value of integral which relates 

to 𝑛, the strain hardening exponent; and �̃�𝑖𝑗 , 휀�̃�𝑗 are functions of polar coordinates. The 

J-integral can work for isotropic, perfectly-brittle, linear-elastic materials related to 

the fracture toughness, as shown in Eq. (2.4), with crack extending straightforward. In 

addition, the HRR field-based J-integral is used to describe the singularity intensity of 

the crack-tip stress-strain field for elastic-plastic materials and plays a similar role to 

stress intensity factor in a linear elastic stress field. According to Eq. (2.7) the stress 

field in terms of elastic-plastic crack-tip zone varies as 𝑟−
1

𝑛+1 and consequently the 

HRR field dominates a small plastic zone around the crack tip. Note that when 𝑟 is 

too small, the irrelevant finite geometry change at the crack-tip makes the HRR 

solution invalid [27]. The HRR solution is accurate in an annular contour within the 
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elastic-plastic deformation zone. It replicates the characteristic of HRR based J-

integral, which develops a fundamental criterion of EPFM, and is not valid when the 

radius of FPZ is too small. Hence the HRR field J-integral should apply in EPFM 

theory for the elastic-plastic hardening materials. Rice also proposed that the path-

independent J-integral is not valid for irregular Mode I and II loading for elastic-

plastic material. So, except for some exceptional unloading cases, path-independent J-

integral is only available with proportional load, and only contours close to the crack-

tip give accurate energy release rate value. 

Similar to the stress and strain function in linear elastic fracture mechanics with stress 

intensity factor, these equations evaluate the singular stress and strain field around the 

crack tip of elastic-plastic material. In addition, the value of path integral 𝐽 would also 

be used to define fracture criteria, 𝐽 = 𝐽𝐶; the J-integral represents the energy release 

rate along the given path. 𝐽 has a similar meaning to G, and Rice proves that 𝐽 and G 

could be the same because they have the same relation formula between stress 

intensity factors. Moreover, the critical J-integral value is a kind of material parameter. 

It could be measured on the crack initialization by testing several specimens with 

crack and applying the energy theory to it. Begley and Landes [28] did a successful 

measurement first in 1972. The critical J-integral was determined by the load-

displacement graph of specimens with different crack lengths when the specimens 

fully absorbed energy, and the crack started growth. Kobayashi [29] first proposed 

investigating the link between finite element analysis and J-integral by simulating the 

centre-cracked steel plate with different load and heat conditions. After that, the 

critical J-integral can be measured as a material parameter, which makes J-integral a 

new important fracture criterion in fracture mechanics. Then it is developed to 

estimate the resistance of crack extension in nonlinearly elastic materials. 

2.3. Fracture toughness testing  

Fracture toughness evaluation is the crucial test to obtain the fracture toughness value 

of materials for LEFM and EPFM. These values include the K-based fracture 
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toughness (𝐾𝐼𝐶) and J-based fracture toughness (𝐽𝐶) which are mentioned above, and 

the crack-tip opening displacement (CTOD) and crack-tip opening angle (CTOA). 

These parameters describe the metallic material in three main aspects: the fracture 

behaviour, strength and deformation during fracture, and the constraint effect of the 

geometry. Since the 1950s, when the concepts of fracture mechanics fracture 

toughness were proposed, analytical, numerical, and experimental tests of fracture 

toughness never stopped. Most of the experimental techniques and procedures were 

developed and maintained by ASTM. 

The first fracture toughness standard test for plane strain fracture toughness (𝐾𝐼𝐶) is 

developed in ASTM E399 [30], which is concluded from Srawley and Brown’s 

studies [31-32]. These establish the standard for fracture toughness testing, including 

the specimens’ size, pre-cracking, specimen fixturing, loading applier, gage of crack 

opening, test procedure and data calculation. The recommended and frequently used 

specimens for 𝐾𝐼𝐶  testing are compact tension specimen (CT), three-point bending 

specimen (TPB or SE(B)), and disk-shape compact tension specimen (DCT). It needs 

a pre-crack from 0.45 to 0.55 length of specimen width. The load and crack mouth 

opening displacement are recorded in the test, and 𝑃𝑄  for calculating the fracture 

toughness is obtained in the load-displacement curve by the 5% secant method [33]. It 

calculates the conditional fracture toughness𝐾𝑄by 

 𝐾𝑄 =
𝑃𝑄

√𝑊𝐵𝐵𝑁
𝑓(
𝑎

𝑊
) (2.8) 

where 𝑊 is specimen width, 𝐵 is thickness, 𝐵𝑁 = 𝐵 for non-grove model and 𝑎 is the 

distance from centre of loading to the end of pre-crack. 𝑓(
𝑎

𝑊
) is the geometry function 

which is different with test specimen, the conditional fracture toughness 𝐾𝑄 can be 

regarded as plane strain fracture toughness under the conditions  

 𝐵, 𝑎 ≥ 2.5 (
𝐾𝑄
𝜎𝑌
)
2

 (2.9a) 

 𝑃𝑚𝑎𝑥 ≤ 1.1𝑃𝑄 (2.9b) 

𝜎𝑌is yield stress and 𝑃𝑚𝑎𝑥 is the maximum load in the load-displacement curve. The 

conditions are proposed by Brown and Srawley [32] and Srawley et al. [34]. It always 
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needs an extensive test program for the available criteria to ensure a consistent 

outcome of the test standard, and it was tested in CT specimen [35] and TPB 

specimen [36]. Wallin improved the test standard [37] and suggested determining the 

conditional fracture toughness 𝐾𝑄, with a fixed amount of crack growth to eliminate 

the size effect. Furthermore, Eq. (2.9) is not necessary if the suggestion is available. 

Additionally, Joyce [38-39] also stated that applying the standard specimens of J-

integral from ASTM 1820 [40] can evaluate the crack initiation of stress intensity 

factor (𝐾𝐼𝐶) in an accurate and size independent way, which will also improve solving 

the restriction of 𝐾𝐼𝐶  test. 

For the J-based fracture toughness, after Rice proposed the similarity between J and G, 

where J-integral is more general for nonlinear elastic energy release rate, it was 

determined that 𝐽𝑒𝑙 =
𝐾𝐼
2

𝐸
= 𝐺 . It is then estimated that J can be the total energy 

absorbing over the surface area, which is  

 𝐽 =
2𝐴𝑡𝑜𝑡𝑎𝑙
𝐵 𝑏 

 (2.10) 

where 𝐴𝑡𝑜𝑡𝑎𝑙  is the total area under the load-displacement curve, 𝑏  is the remain 

ligament that 𝑏 = 𝑊 − 𝑎. It was tested in CT specimens by Merkle and Corten [41], 

who found that the elastic J-integral in this method is slightly smaller than the G value. 

Then, it was suggested to consider the tensile component of load on the specimen 

with an additional multiplier. The total displacement and J-integral are separated into 

two parts by elastic and plastic with  

 𝐽 = 𝐽𝑒𝑙 + 𝐽𝑝𝑙  (2.11) 

The equation is defined by Sumpter and Tuner [42] in a general way with 𝜂-factor 

method 

 𝐽 =
𝐾𝐼
2

𝐸′
+
𝜂𝐴𝑝𝑙
𝐵 𝑏 

 (2.12) 

It was proved that J-based fracture toughness calculation could work with 𝜂-factor, 

and Clarke [43] obtained the approximate fitted function of 𝜂 for CT specimen, which 

is  

 𝜂 = 2 + 0.522𝑏 𝑊⁄  (2.13) 
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And for TPB or SE(B) specimen, 𝜂 = 2 when 𝑎/𝑊 > 0.282. The uses of Eq. (2.12) 

simplified tasks of J-integral calculation for numerical and experimental evaluation of 

J-integral for specimens with the load-displacement record. It was then taken as the 

basic procedure of 𝐽𝐼𝐶  evaluation in ASTM 1820, which can be noticed as the 

maximum load-based 𝐽𝐼𝐶  evaluation.  

2.4. Fracture constraint (J-T and J-Q) theories 

As reviewed in previous sections, stress and strain fields are fundamental to fracture 

mechanics providing K-factors and J-integral for LEFM and EPFM, respectively, 

within the crack-tip field. According to the theories, both K and J are intensity 

parameters of the singular crack-tip stress fields. However, when a significant 

difference is made in the test conditions, for example, crack depth, crack geometry, 

loading mode and temperature, the non-singular terms will affect the result of 

adequate fracture toughness. A good example of the crack-tip constraint effect caused 

by specimen geometry and load mode is provided in the study by McClintock [44], 

who showed the effect of different stress and strain fields around the crack-tip for 

bending and centre-cracked tension specimens.  Extensive research has been 

undertaken to define a second parameter related to the non-singular stress function 

and quantify the effect of constraint. The purpose of this research is the correction 

of  K and J to account for crack-tip constraints in LEFM and EPFM. 

Initial work in LFEM involved the inclusion of the second term in the K-based stress 

field function of Williams [45], which is 

 𝜎𝑖𝑗 =
𝐾𝐼

√2𝜋𝑟
𝑓�̅�𝑗(𝜃) + 𝑇𝛿1𝑖𝛿𝑖𝑗 

 
(2.14) 

where 𝛿𝑖𝑗 is the Kronecker delta, 𝑇 is the new parameter introduced in the T-stress 

theory, since 𝑇 represents the tensile stress parallel to the crack surface.  

It is shown to be significantly effective in the plastic zone under small-scale yielding 

and even permitted by ASTM limits for the fracture toughness of K.  In dimensionless 

terms Eq. (.14) can be represented by 
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 𝜎𝑖𝑗 = 𝜎𝑌𝑓�̅�𝑗 (
𝑟

𝐽/𝜎0
, 𝜃; 𝑇/𝜎𝑌) (2.15) 

where the biaxiality ratio T/𝜎𝑌 accounts for the specimen geometry effect of near-tip 

crack triaxialities.  

In this case, the biaxiality ratio corresponds to the observed experimental trend [46]. 

For example, in ASTM for CT specimen there is a permitted range 0.45 ≤ 𝑎/𝑊 ≤

0.7, with biaxiality ratio  0.5 ≤ 𝑇/𝜎0 ≤ 0.6; in SE(B) specimen, the biaxiality ratio 

varies between -0.1 and 0.5 linearly with the range of 𝑎/𝑊, even over the limitation 

of ASTM. It presents that the positive value of the biaxiality ratio represents a high 

level of constraint, and the negative value gives a low level.  

As T-stress is a linear elastic parameter, it is less meaningful with the expansion of the 

plastic zone. To overcome the problem of plasticity, O’Dowd and Shih provided a 

new parameter Q by using the finite element model, the near-tip stress triaxiality. It 

was proposed for the elastic-plastic crack in both small-scale and large-scale yielding, 

which is known as the J-Q theory. Here O’Dowd and Shih [47] considered the 

difference between small-scaled yielding plane strain solution and HRR field solution 

and hence produced it to be 

 (𝜎𝑖𝑗)𝑑𝑖𝑓𝑓 = (𝜎𝑖𝑗)𝑆𝑆𝑌 − (𝜎𝑖𝑗)𝐻𝑅𝑅 (2.16a) 

 (𝜎𝑖𝑗)𝑑𝑖𝑓𝑓 = 𝑄𝜎𝑌�̂�𝑖𝑗(𝜃) (2.16b) 

The formulation based on J-Q theory could be founded with a modified boundary 

layer, which is similar to Eq. (2.15), i.e., 

 𝜎𝑖𝑗 = 𝜎𝑌𝑓𝑖𝑗 (
𝑟

𝐽/𝜎0
, 𝜃; 𝑄) (2.17) 

where 𝑄 is the near-tip stress triaxiality created in J-Q theory, used to represent the 

function of the difference stress.  

Compared to the single parameter fracture criteria, which is applicable for small-

scaled yielding, the J-Q theory, which adds a Q-family, can also consider the effect of 

geometry as an extra field.  According to studies by O’Dowd and Shih [47], the J-Q 

solution is determined by a plane strain solution. The load-displacement curve of 

specimens evaluates J, and the corresponding Q would be taken by the figure in the 
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case of well-constrained yielding. An example of J-Q theory application by Sumpter 

and Forbes [48], took a test of -50 °C mild steel and the fracture occurs by cleavage 

with no prior stable crack growth. Figure 2.3, created by Krik [49], shows the dashed 

line that divides areas of fracture and safety using the J-Q theory. On the other hand, a 

study by Sumpter and Forbes [48] also shows that the result could not consist of a J-T 

toughness curve for a fully yielded centre-crack specimen, which means that the J-T 

theory is not valid for EPFM. 

 

Figure 2.3 Cleavage data for edge crack bending bars in different thickness, the 

dashed line shows toughness data predicted by J-Q theory. [49] 

2.5. Dimensional Analysis 

Dimensional analysis is a method for changing a complex problem into the most 

straightforward form before obtaining a quantitative answer. [50] In physical terms, 

similarity refers to some equivalence between two things or different phenomena; for 

example, in a very particular situation, there is a direct relationship between the forces 

acting on a full-size aircraft and those on a small-scale model of it. To sort out this 

situation, the condition of this particular situation should be founded, and the 

relationship between forces also needs to be calculated. Mathematically, similarity 
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refers to a transformation of variables that reduces the number of independent 

variables that specify the problem. Here, the dimensional analysis addresses both 

these questions. Its primary utility derives from its ability to contract, or make more 

succinct, the functional form of physical relationships. A problem that at first looks 

formidable may sometimes be solved with little effort after dimensional analysis.  

In applying dimensional analysis, Buckingham’s pi theory is the most used method in 

recent years. The premise of dimensional analysis is that the form of any physically 

significant equation must be such that the relationship between the actual physical 

quantities remains valid, independent of the magnitudes of the base units. The 

dimensional analysis derives the logical consequences of this premise. Generally, it 

could be divided into eight steps: 

⚫ Step 1: List all the variables that are involved in the problem. 

⚫ Step 2: Express each variable in terms of the essential dimensions. 

⚫ Step 3: Determine the required number of pi terms by variables. 

⚫ Step 4: Select several repeating variables, where the number required is equal to 

the number of reference dimensions. 

⚫ Step 5: Form a pi term by multiplying one of the non-repeating variables by the 

product of the repeating variables, each raised to an exponent that will make the 

combination dimensionless. 

⚫ Step 6: Repeat Step 5 for each remaining non-repeating variable. 

⚫ Step 7: Check all the resulting pi terms to ensure they are dimensionless. 

⚫ Step 8: Express the final form as a relationship among the pi terms and think 

about the means. 

Mathematically, it could be expressed in combinations between variables functions. It 

identifies a complete set of independent quantities, for example 𝑄1, 𝑄2 …𝑄𝑛which 

will determine a target value like 𝑄0. And it could be written as the function like 

 𝑄0 = 𝑓(𝑄1, 𝑄2…𝑄𝑛) (2.18) 
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Here each independent quantity (𝑄 )will not influence others, and the target value 

could only be adequate by those parameters. Moreover, the target value could be 

founded when the independent quantities change function. Refer to Norman [51], 

Buckingham’s Pi- theorem is the most important and generally used theory in 

dimensional analysis. It said that when a complete relationship between dimensional 

physical quantities is expressed in dimensionless form, the number of independent 

quantities is reduced from the original n to n-k, where k is the maximum number of 

the original n that are dimensionally independent. For example, as the independent 

parameters in the previous function, are based on basic dimensions, it could be 

described to be  

 𝑄𝑖 = 𝐿
𝑙𝑖𝑀𝑚𝑖𝐹𝑓𝑖𝑇𝑡𝑖 (2.19) 

where 𝐿,𝑀, 𝐹, 𝑇 are basic parameters in physics, and here 𝑙𝑖 , 𝑚𝑖 , 𝑓𝑖  𝑎𝑛𝑑 𝑡𝑖  are 

dimensionless numbers that follow from each quantity’s definition. It now defines 

dimensionless forms of the 𝑛 − 𝑘 remaining independent variables by dividing each 

one with the product of powers of 𝑄1, 𝑄2…𝑄𝑘which has the same dimension, and 

thus it will get 

 Π𝑖 =
𝑄𝑘+𝑖

 𝑄1
𝑁(𝑘+𝑖)1𝑄2

𝑁(𝑘+𝑖)2 …𝑄
𝑘

𝑁(𝑘+𝑖)𝑘
 (2.20) 

where 𝑖 = 1,2,… , 𝑛 − 𝑘 and for the dependent variable  

 Π0 =
𝑄0

𝑄1
𝑁01𝑄2

𝑁02 …𝑄𝑘
𝑁0𝑘

 (2.21) 

All of the varieties are involved here, which makes the number of quantities lower, 

which could be written as  

 Π0 = 𝑓(Π1, Π2…Π𝑛−𝑘) (2.22) 

where Π includes different dimensionless varies. It would simplify the relationship 

and reduce the considered parameters by using Buckingham’s Pi- Theorem. 

2.6. Dimensional Analysis in Fracture Mechanics 
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Dimensional analysis is a wide-used theory of scaling, which is then frequently 

applied in fracture mechanics. According to Buckingham-Pi theory [50], it is crucial 

to obtain the dimensionless parameters in fracture. There are few parameters in the 

situation, so the dimensionless parameter should be able to reflect the fundamental 

effect directly. In previous studies, Cherepanov [52] defined the brittleness number as 

γ =
1

2

𝐾𝐼𝐶
2

𝜎𝑦
2𝑙

 in plane stress, 𝑙 is the characteristic dimension of model. It is known that 

the size of the plastic zone area would relate to r~
𝐾𝐼𝐶
2

𝜎𝑦
2 , so the brittleness number could 

be regarded as the order of the ratio of the plastic zone size to the cracked body size. 

Then Carpinteri’s stress brittleness number [53] is defined by s =
𝐾𝐼𝐶

𝜎𝑢√𝑙
, where 𝜎𝑢 

means the ultimate stress of material. It can find that their brittleness numbers are 

similar, but Carpinteri’s is the order of square root of the ratio between plastic zone 

size and model size. After that, Carpinteri [54] raised the energy brittleness number in 

the linear elastic material that is 𝑠𝐸 =
𝐺𝐼𝐶

𝜎𝑢𝑙
, where 𝐺𝐼𝐶  is energy release rate. 

Additionally, the energy brittleness number in the case of Ramberg-Osgood material 

could be written as s𝐸
∗ =

𝐽

𝜎𝑦𝑙
 where J here is J-integral. The J-integral could be 

considered as function of yield stress and crack-tip opening displacement (𝐽 = 𝜎𝑦𝛿), 

thus the s𝐸
∗  can be regarded as the order of ratio between CTOD and dimension of 

cracked model. The Irwin number is defined by Barenblatt [55, 56] that Ir =
𝜎𝑦√𝑙

𝐾𝐼𝐶
, 

which has a same order as Carpinteri’s stress brittleness number. It can find that there 

is some relationship between those dimensionless numbers, and they respectively 

represent to one order of the ratio between a distance and dimension of crack structure, 

it could be written like 
𝑙

𝐷
= 𝑓(𝛾(𝑠, 𝑠𝐸 , 𝑠𝐸

∗ , 𝐼𝑟), 𝑣),v here is passion ratio. Zhao’s study 

[57] proved that Irwin number can be used to predict ductile-brittle transition, which 

is achieved by dimensional analysis. From this Zhao also studied about other 

functions of the dimensionless numbers shown above [58] and suggested another 

dimensionless number [59] which is 𝑍 =
𝐸√𝑙

𝐾𝐼𝐶
, where l is the characteristic dimension 

of cracked body. With the dimensionless number and a given displacement boundary 
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condition, a general dimensional function relationship could be ∆= 𝑓(𝑙, 𝐸, 𝐾𝐼𝐶 , 𝑣), 

where ∆ is the given displacement boundary condition. According to Buckingham-Pi 

theory, the dimensionless function could be expressed by 
∆

𝑙
= 𝑓(𝑍, 𝑣). Then Zhao [60] 

focus on the scaling law for fracture mechanics. Apart from these, the topic of scaling, 

similitude and dimensional analysis are extensively studied [61-64] and are also 

widely applied in fracture mechanics and related field [65-70].  

2.7. Size effect of Fracture studies 

Scaling is the leading theory in this project, which uses two different materials in 

different sizes. So that size effect is necessary to be considered when applying scaling 

theory. In solid mechanics, for example, elastic or plastic structures, nominal stress is 

always independent of the size of the material. However, the size effect would cause 

the difference in nominal stress between different sizes of structures. 

2.7.1. Statistical size effect 

The theory of the statistical size effect is based on random strength in material, which 

Weibull proposed in 1939 [71-73]. The theory is successfully applied in metal 

structure failure. According to Weibull’s theory, the structure could be regarded as 

several small elements, and it will fail when the strength limit is reached in one 

element. It means a large structure has more probability of failure because it has more 

small elements that may cause failure. It relates the probability of elements failure to 

material failure, called the statistic size effect. Weibull then created the model 

consisting of many small elements, which fail when some of these elements fail. As 

shown in Fig. 2.4, the failure elements distribute on the crack. According to the 

concept shown in Fig. 2.4, the failure probability of material (𝑃𝑓) can be represented 

by the probability of element failure (𝑃1) under the given stress, which is  

 1 − 𝑃𝑓 =∏[1 − 𝑃1(𝜎𝑘)]

𝑁

𝑘=1

 (2.22) 

where 𝑁  is the number of small elements which may cause the failure, which 
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increases with the FPZ. 

 

Figure 2.4 Fracture process zone with distributed small cracks. [71] 

It is known that higher stress can cause higher probability of failure. With constant 

stress applied, the increasingly number of the elements will make the failure 

probability higher. Weibull also discovered a power law of the size effect that 

considers the relationship between nominal stress and structure size and volume. It is 

inferred from the probability integral, which further proves larger structure increases 

the probability of failure in stress field. 

 𝜎𝑁 ∝ 𝑘0𝑉
−1/𝑚 = 𝑘0𝐷

−𝑛/𝑚 (2.22) 

where 𝑘0  is the constant of characterising the structure shape, 𝑚  is the shape 

parameter, and 𝑛 is the number of spatial dimensions of the structure, 𝑉 and 𝐷 are 

structure volume and size, respectively.  

However, it was then shown that the statistical size effect could not apply to quasi-

brittle and concrete materials, which fail with larger cracks. Weibull’s theory is a 

power law without characteristic material length. It is not available for a structure 

whose material is highly heterogeneous, with the material length which cannot be 

neglected. Bazant and Chen’s study [74] declared that the statistical size effect is not 

valid when the structures are relatively large. It was pointed out that Weibull’s theory 

is significantly dominated by the FPZ, which is a significant limitation. For example, 

when the FPZ is small and negligible compared to the structural size, it will keep 

constant with increasing structural size; in this case, the failure probability will not 

change with size. 
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2.7.2. Energetic size effect 

Unlike the statistic size effect, Bazant [75] proposed the energetic size effect, which is 

a formula using deterministic energetic cause of size effect. In other words, it mainly 

considers the relationship between nominal stress and the characteristic size of the 

material. Bazant [76] introduced a scaling law and applied it in continuum mechanics, 

then focused on how the size will affect the fracture criterion in the different scaled 

models. For example, Bazant first proposed a formula of maximum stress at fatigue 

for a concrete beam, which is  

 𝑓𝑟 =
6𝑀𝑢

𝑏𝐷2
= 𝜎𝑁 (2.23) 

where 𝑓𝑟  is the maximum stress which will cause failure, 𝑀𝑢 is the maximum bending 

moment, 𝑏 is the width of the beam and 𝐷 is the characteristic size.  

For a structure that fails at crack initiation, its fracture process zone, representing the 

boundary layer of distributed cracking, is not negligible. The thickness is determined 

to be 𝑙𝑓, and would be assumed to develop at the tensile face of the beam before the 

maximum stress is reached. Then Bažant [76] calculated the stress distribution in this 

assumption 

 𝑓𝑟 = 𝑓𝑡
′(1 +

2𝑙𝑓
𝑑
) (2.24a) 

 𝑓𝑟 =
2𝑑

3𝐿
𝑓𝑡
′(1 +

𝑟𝑙𝑓
𝑑
)1/𝑟  (2.24b) 

where 𝑓𝑡
′ means standard direct tensile strength, 𝑑 is the beam depth, 𝐿 is the length of 

beam and 𝑟 is an arbitrary positive constant, which has different value for different 

structure. Eqs. (2.24) can only work if the thickness of FPZ 𝑙𝑓 is significantly smaller 

than the depth of beam 𝑑.  

Bazant introduced a scaling law of size effect, which depends on the scaling ratio of 

models, and is independent of a specific length. Thus, the scaling law could be 

determined as a power law if and only if the characteristic dimension is absent, for 

example, plasticity, continuum damage mechanics and LEFM. In his study, when the 

fracture criterion is only stress or strain, or the fracture energy in LEFM, there is no 
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size effect between the small and large scaled model for the failure condition. 

Furthermore, when the fracture criterion includes both stress (strain) and energy, the 

scaling law represents a gradual transition from strength theory for small size to 

LEFM for large size. Bazant gave a simple scaling law that tries to compare the 

failure condition between two different size models. However, the scaling law has 

several limitations. For example, to create a consistent power law between parameters, 

materials’ properties are set to be equal (which means the two materials must be the 

same).  In the theorem of scaling, it is supposed to have for a value Ω, there is 𝛺(𝑥) =

𝜇𝛺(𝛽𝑥), and the solution which is a simple power law that 𝛺(𝑥) = 𝐶𝑥𝛼, 𝛼 = −
𝑙𝑜𝑔𝜇

𝑙𝑜𝑔𝛽
. 

And the ration of scale-invariance Ω is 𝛺(𝛽𝑥)/𝛺(𝑥) = 𝛽𝛼 which depends on the ratio 

between characteristic dimensions but not the size. This is proved to be a fundamental 

statute that associates power laws to scale invariance and self-similarity to criticality 

[77]. At the same time, for the cracked structure, Bazant [74,78] also applied the 

scaling law between the size effect and the nominal strength, which was gradually 

developed in LEFM like  

 𝜎𝑁 = 𝑓𝑟 = 𝑓𝑟,∞ (1 +
𝑟𝑙𝑓
𝑑
)

1/𝑟

𝑙𝑓 𝑑⁄  (2.25a) 

 𝑓𝑟,∞ = √
𝐸𝐺𝑐

𝑎𝑒𝑓𝑓𝑔′(
𝑎0
𝑑
)
, 𝑙𝑓 = |−

𝑎𝑒𝑓𝑓𝑔
′′(
𝑎0
𝑑 )

4𝑔′(
𝑎0
𝑑
)
| (2.25b) 

where 𝑎0  and 𝑎𝑒𝑓𝑓  are initial (half) crack length and effective (half) crack length 

respectively, 𝑔′and 𝑔′′ are the function of 
𝑎0

𝑑
 and 𝑎𝑒𝑓𝑓 .  

The equations above describe the relationship between failure stress, the crack length, 

the crack thickness, and the specimen thickness. It can investigate the size effect over 

the size or relative size like 𝑎0 and 𝑑, 𝑙𝑓. The fundamental relation curves in LFEM 

can be plotted as Fig 2.5. 
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Figure 2.5 Relation curves between nominal stress and size, modulus of rupture 

𝑓𝑟/𝑓𝑟,∞ versus relative size 𝑙𝑓 𝑑⁄ . 

However, in these studies, they focused on comparing different scaled models to show 

how the size affects the material behaviour. Then Bazant [75] applied different scaling 

laws in quasi-brittle structure failure in many different cases, where many kinds of 

relationship functions between nominal stresses are displayed, which are discovered 

from the fundamental scaling law (power law) in different situations. Moreover, the 

size effect is widely used to investigate fracture and continuum mechanics [79-82]. To 

conclude, Bazant’s studies give good examples of scaling laws. It raises some 

functions between stress and energy release rate in different sizes; in the journal, most 

properties between different models are fixed to compare the parameters like nominal 

strength and energy, which means there is the same material in the comparison, which 

could view the size effect obviously. 

2.8. Summary  

From the parameters involved in these dimensionless numbers of fracture, it could 

find that they are mostly considered with LEFM or represent the plastic behaviour 

with linear elasticity, which limits the application in complex ductile metals. In 

addition, the dimensionless numbers are proposed with the point-to-point similarity, 

which intends to express the scaling of one critical point rather than the forming 

process. It can be founded that the number of studies of dimensional analysis with 

metal forming is limited [69-70]. However, fracture mechanics investigation is 
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supposed to be the forming process of materials, with both LEFM and EPFM 

involved. 

On the other hand, the dimensionless numbers are all based on dimensional 

homogeneity, which can explain that the terms in a physical equation should be in the 

same dimension. Application of these dimensionless numbers represented by the 

dimensional parameters, for the full-scale and small-scale process, requires the scale 

invariance of the parameters, which causes the restriction due to the size effect of 

most factors in realistic.  

Size effect causes the limitations of dimensional analysis in fracture mechanics, which 

cannot be ignored due to the scale invariance for dimensionless components. Studies 

around the size effect and dimensional analysis mainly focus on investigating the size 

effect and how to resolve that. The alternative scaling approach finite similitude is 

introduced here, which aims to describe the forming of ductile materials and deal with 

the feature of size effect in fracture mechanics. 
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Chapter 3 Finite Similitude in Fracture Mechanics 

3.1 Introduction 

Product and component testing is an important practice in many industries and is 

required to assure in-service reliability and performance.  Scaled experimentation has 

an important role to play in many testing systems but care must be taken to ensure that 

any results from a scaled experiment are carefully scrutinised.  The principal concern 

with scaling is scale effects where the scaled system behaves in a manner that can be 

markedly different from the full-size system.  It might well be contended that if scale 

effects were not a feature of scaling, then scaled experimentation would play a far 

greater role than it presently does.  The absence of scale effects would enable complex 

systems to be more readily analysed at a fraction of the cost of a full-scale trial.  

Observed phenomena at scale would then replicate that at full size and large-scale 

reductions would pose no concern; however, the reality is somewhat different. 

Despite the presence of scale effects, scaled experiments are performed in industry.  

There are several reasons for this, but these are largely related to cost and/or the 

impracticability of full-scale trials.  The ever-increasing accuracy and effectiveness of 

computational modelling has undoubtedly impacted on the type and nature of 

experiments performed.  Scaling is widely applied in different areas of engineering, 

for example in structural failure and fracture [83], structural impact [84-87], explosion 

engineering [88-89] and thermofluids [90].  A reliable computational model can often 

replace experiments altogether but in addition it can supplement scaled 

experimentation.  Numerical analysis at scale and at full size can be used to identify 

and gauge the importance of scale effects [74]. For more complex systems involving 

significant uncertainties, placing too much reliance on computation is not sensible and 

experimentation is therefore needed; for instance, the scaling of fluid mechanics [91] 

or simulation in complex conditions [92]. 

One of earliest works in structural mechanics on similitude followed some 30 years 
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after Rayleigh’s 1915 paper [3] in a US aeronautical advisory committee report by 

Goodier and Thomson [4].  This was followed by Goodier’s book in 1950 [5] 

covering the applicability of similitude to structural systems.  Goodier and Thomson 

presented the first application of dimensional analysis to relatively simple and more 

complex structural problems. They examined aspects of large deformation, buckling 

and plastic behaviour covering aspects of materials with nonlinear stress-strain 

characteristics.  A good review of the many works based on dimensional analysis up 

to 2000 is provided by Simitses et al. in reference [93].  

Despite the wide application of dimensional analysis, it has been shown to suffer 

some limitations in many studies all stemming from scale effects.  Particularly 

renown for such effects is indentation [94], which is of relevance to instrumentation 

for the measurement of hardness.  Even in the early work of Brinell [95] it was 

observed that the hardness value is sensitive to ball diameter.  In this case the 

difference can be predominantly attributed to size effects arising with the size of the 

deformation zone and the change in material response because of this.  However other 

scale effects have been identified and these include surface contamination, energy, 

and roughness along with indenter tip rounding and friction [15].  

The behaviour of concrete in fracture is a material that has notoriety for size effects; 

see for example the work of Bažant [15]. Since scale effects are characterized by the 

failure of dimensional analysis in the sense that the invariance of the dimensionless 

governing equations breaks down with scale, it is often used in investigations of scale 

effects.  An example of this is a recent study concerned with scaling and its effects on 

fatigue and lifetime [78], where dimensional analysis is applied to qualify whether 

scale effects are present or not.  Other studies concerned with fatigue, size effect and 

the application of dimensional analysis [96,97] again highlight the presence of scale 

effects through change to the dominant governing dimensionless equation with scale. 

This paper is concerned with a new approach to scaled experimentation applied to 

fracture.  The finite-similitude theory [98-100] is founded on the metaphysical 

concept of space scaling, where it is imagined that space is contracted and all things in 
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the space suffer scaling therefore.  Although patently such scaling cannot be achieved 

practically, what is possible is an examination of the effect that this metaphysical 

process has on the governing equations constraining the behavior of the phenomena of 

study.  The metaphysics of space scaling is introduced in Section 3.2 along with its 

effects on a moving control volume in the space being considered.  The immediacy of 

the effect of space scaling on a control volume, which is simply a region of space, is 

one of the underlying reasons for describing the equations of interest is an integral 

transport form.  A generic form of transport equation is therefore introduced in 

Section 3.3 and the effect space scaling has on it is examined. Critical to the finite 

similitude approach is the representation of trial-space physics on the full-scale space.  

It is through this representation that scale dependencies are revealed in either an 

explicit or implicit form.  Moreover, the representation provides a mechanism for the 

contrasting of behaviors at different scales and in fact defines what is algebraically 

allowable.  This aspect is examined in greater detail in Section 3.4 under the title of 

projected continuum mechanics, where trial-space conserved and non-conserved 

transport equations are examined in their projected form in the full-scale physical 

space.  The proportional relationships typical to dimensional analysis are revealed in 

this section on application of the simple assumption that the projected transport 

equations do not change with scale.  This is equivalent to the condition that the 

differentiation of the projected equations with respect to the length scalar (𝛽 in this 

chapter) is identically zero.  The realization that this is just one possibility and other 

possibilities exist is examined in Section 3.5.  Introduced is high-order finite 

similitude but focus of this paper is on first order only, where an identity involving 

two nested derivatives with respect to 𝛽 is involved.  Two derivatives signify two 

scaled experiments but more fundamentally, scale effects as previously defined using 

dimensional analysis can cease to be scale effects under the new definition.  

Analytical applications are examined in Section 3.6 for the J-integral and the cohesive 

zone model since both concepts play important roles in fracture mechanics.  

Numerical studies are presented in Sections 3.7, 3.8 and 3.9 to demonstrate the 
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practical benefit of the new scaling approach to fracture mechanics where scale 

effects (as previously defined) are prevalent. The chapter concludes with a list of 

conclusions in 3.8. 

3.2 Background concepts 

Finite similitude is a new scaling theory founded on the metaphysical concept of 

space scaling.  The idea that space can be expanded or contracted for the purpose of 

scaled experimentation is evidently not feasible but what is possible is the ability to 

assess the impact of this metaphysical process on the underpinning physics dictating 

the behaviour of an experiment.  In this way it is possible to assess what changes take 

place as space deforms and design experiments accordingly. 

3.2.1. Space scaling 

To enact the space-scaling concept consider the affine map 𝒙𝑝𝑠 ↦ 𝒙𝑡𝑠 which relates 

coordinate points in the inertial frame in the physical space (full size) to those in the 

trial space (scaled size).  Points in each inertial frame are placed in one-to-one 

correspondence and the map is assumed to be affine and temporally invariant.  In 

differential terms the map provides 𝒅𝒙𝑡𝑠 = 𝐹𝒅𝒙𝑝𝑠  where F is both spatially and 

temporally invariant and in coefficient form is 𝑑𝑥𝑡𝑠
𝑖 = 𝐹𝑖𝑗𝑑𝑥𝑝𝑠

𝑗
, where 𝐹𝑖𝑗 =

𝜕𝑥𝑡𝑠
𝑖 𝜕𝑥𝑝𝑠

𝑗⁄ , where 𝑥𝑡𝑠
𝑖  and 𝑥𝑝𝑠

𝑖  are coordinate functions.  The matrix F dictates the 

manner in which space distorts, where anisotropic scaling is possible but focus here is 

on isotropic scaling, where F takes on the relatively simple form 𝐹 = 𝛽𝐼 or 𝐹𝑖𝑗 = 𝛽𝛿𝑗
𝑗
, 

where 𝛿𝑗
𝑗
 is the well-known Kronecker delta symbol and takes the value of either zero 

or one.  The scalar 𝛽 is a positive real parameter that quantifies the extent of the 

scaling involved.  For 0 < 𝛽 < 1 the space is contracted, for 𝛽 = 1 no scaling takes 

place and for 𝛽 > 1 the space is expanded. The space scaling concept is illustrated in 

in Fig. 3.1, where contraction and expansion are depicted. 

With the assumed existence of the differential map 𝒅𝒙𝑡𝑠 = 𝛽𝒅𝒙𝑝𝑠 it is now possible 
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to relate differential volumes and areas in the two spaces.  This is achieved readily by 

means of Nanson’s identities, which take the form 𝑑𝑉𝑡𝑠 = 𝛽
3𝑑𝑉𝑝𝑠  and 𝒅𝚪𝑡𝑠 = 𝛽2𝒅𝚪𝑝𝑠, 

where 𝒅𝚪𝑡𝑠 = 𝒏𝑡𝑠  𝑑Γ𝑡𝑠 , and 𝒅𝚪𝑝𝑠 = 𝒏𝑝𝑠 𝑑Γ𝑝𝑠 , and 𝒏𝑡𝑠  and 𝒏𝑝𝑠  are unit normal 

vectors in the respective spaces.  The quantities 𝑑𝑉𝑡𝑠  and 𝑑𝑉𝑝𝑠  along with 𝑑Γ𝑡𝑠  and 

𝑑Γ𝑝𝑠 are differential measures of volume and area respectively in the two spaces. 

 

Figure 3.1 Depiction of space scaling and mapping between inertial 

physical and trial-space frames. 

 

The adoption of a Newtonian framework means the assumed existence of absolute 

time, labelled 𝑡𝑡𝑠  and 𝑡𝑝𝑠 in the respective spaces.  These are assumed to be related by 

the differential identity 𝑑𝑡𝑡𝑠 = 𝑔𝑑𝑡𝑝𝑠 , where 𝑔 is a positive scalar and measures the 

extent of the difference in rate at which processes proceed in the two spaces. 

3.2.2. Control volume movement 

With the establishment of space scaling, it expedient here to examine what affect this 

has on the behaviour of the underpinning pertinent physics in a continuum mechanics 

framework.  The physical description adopted here is founded on the control-volume 

concept as this approach immediately brings into play the effects of the differential 

measures of volume, area and length arising from space scaling.  A control volume is 
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a finite region of space and takes the form of a continuous open domain 𝛺𝑡𝑠
∗  (in the 

trial space) whose closure contains the orientable boundary 𝛤𝑡𝑠
∗  with outward pointing 

unit normal 𝒏𝑡𝑠 .  The exact same apparatus applies to the physical space, and it should 

be recognised that both 𝛺𝑝𝑠
∗  and 𝛺𝑡𝑠

∗  are free to deform and move but in the context of 

scaled experimentation it can be anticipated that their movement must be 

synchronised in some manner.  The movement of 𝛺𝑡𝑠
∗  can be related to the velocity 

field 𝒗𝑡𝑠
∗  using the identity 𝒗𝑡𝑠

∗ = 𝐷∗𝒙𝑡𝑠
∗ /𝐷∗𝑡𝑡𝑠

∗ , where the temporal derivative 

𝐷∗/𝐷∗𝑡𝑡𝑠
∗  is a partial derivative that holds constant points in a reference control 

volume 𝛺𝑡𝑠
∗𝑟𝑒𝑓

, i.e. 𝐷∗/𝐷∗𝑡𝑡𝑠
∗ ≡ 𝜕/𝜕𝑡𝑡𝑠

∗ |
𝝌𝑡𝑠

, where 𝝌𝑡𝑠 ∈ 𝛺𝑡𝑠
∗𝑟𝑒𝑓

.  In this manner the 

movement of a coordinate point is precisely described by the solution of the 

differential equation 𝒗𝑡𝑠
∗ = 𝐷∗𝒙𝑡𝑠

∗ /𝐷∗𝑡𝑡𝑠
∗  (with 𝒗𝑡𝑠

∗  known) or the map 𝛺𝑡𝑠
∗𝑟𝑒𝑓

→ 𝛺𝑡𝑠
∗  

(i.e. 𝝌𝑡𝑠 ↦ 𝒙𝑡𝑠
∗ ).   

 

Figure 3.2 Moving control volume in the trial space and mapping from 

a reference control volume. 

The concept is illustrated in Fig. 3.2, where a moving control volume of arbitrary 

shape facilitates the focus on a particular region of space, allowing for changing shape 

and movement, as necessary.  Needless to say the exact same apparatus applies in the 

physical space with the identity 𝒗𝑝𝑠
∗ = 𝐷∗𝒙𝑝𝑠

∗ /𝐷∗𝑡𝑝𝑠
∗ .  The assumed relationship 

between 𝒙𝑡𝑠
∗  and 𝒙𝑝𝑠

∗  suggests a map of the form 𝒙𝑝𝑠
∗ ↦ 𝒙𝑡𝑠

∗ .  This map transpires to be 

identical in form to the space-scaling map, i.e. 𝒅𝒙𝑡𝑠
∗ = 𝛽𝒅𝒙𝑝𝑠

∗ , and in view of the 
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temporal relationship 𝑑𝑡𝑡𝑠 = 𝑔𝑑𝑡𝑝𝑠 , the velocities 𝒗𝑡𝑠
∗  and 𝒗𝑝𝑠

∗  are related by 𝒗𝑡𝑠
∗ =

𝛽𝑔−1𝒗𝑝𝑠
∗  and further details on this can be found in reference [98].  The ability to 

relate control-volume movement without reference to the physical processes in the 

two spaces is important as it provides for a generic approach. 

3.3 The projected transport equations  

Due to the relative dominance of variational methods, control-volume approaches 

involving transport equations in their integral form for applications in solid mechanics 

are somewhat neglected (see Davey & Darvizeh [101]).  In the field of fracture 

mechanics in particular the theory of configurational forces [102] does make 

reference to control-volume ideas although in a material-reference frame and also 

their use is required in shock physics [103] to capture discontinuous behaviour.  The 

ability to capture all the physical laws relating to continuum physics using the control 

volume approach is its principal advantage in scaling theory.  Moreover, it is made 

apparent here that all scale dependencies are revealed, and different forms of scale 

effects arise depending on the how similitude is defined.  Transport equations in their 

most generic form in the physical space can be represented by [101] 

 

𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝜌𝑝𝑠𝜳𝑝𝑠
𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗ +∫ 𝜌𝑝𝑠𝜳𝑝𝑠(𝒗𝑝𝑠 − 𝒗𝑝𝑠

∗ ) ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

= −∫ 𝑱𝑝𝑠
𝛹

Г𝑝𝑠
∗

∙ 𝒏𝑝𝑠𝑑Г𝑝𝑠
∗ +∫ 𝜌𝑝𝑠𝒃𝑝𝑠

𝛹 𝑑𝑉𝑝𝑠
∗

𝛺𝑝𝑠
∗

 

(3.1) 

where 𝜌𝑝𝑠 , 𝜳𝑝𝑠 , 𝒗𝑝𝑠 , 𝑱𝑝𝑠
𝛹 , 𝒃𝑝𝑠

𝛹 , 𝒏𝑝𝑠  signify material density, physical field, material 

velocity field, flux, source and unit normal to boundary Гps
∗ of the control volume 𝛺𝑝𝑠

∗ .  

Similarly, and somewhat more importantly the trial-space transport equations take the 

identical form 

 

𝐷∗

𝐷∗𝑡𝑡𝑠
∫ 𝜌𝑡𝑠𝜳𝑡𝑠
𝛺𝑡𝑠
∗

𝑑𝑉𝑡𝑠
∗ +∫ 𝜌𝑡𝑠𝜳𝑝𝑡𝑠(𝒗𝑡𝑠 − 𝒗𝑡𝑠

∗ ) ∙ 𝒏𝑡𝑠
Г𝑝𝑠
∗

𝑑Г𝑡𝑠
∗

= −∫ 𝑱𝑡𝑠
𝛹

Г𝑡𝑠
∗

∙ 𝒏𝑡𝑠𝑑Г𝑡𝑠
∗ +∫ 𝜌𝑡𝑠𝒃𝑡𝑠

𝛹𝑑𝑉𝑡𝑠
∗

𝛺𝑡𝑠
∗

 

(3.2) 
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where on substitution of the identities 𝑑𝑉𝑡𝑠
∗ = 𝛽3𝑑𝑉𝑝𝑠

∗ , 𝒅𝚪𝑡𝑠
∗ = 𝛽2𝒅𝚪𝑝𝑠

∗ , 𝑑𝑡𝑡𝑠 = 𝑔𝑑𝑡𝑝𝑠, 

and on multiplication throughout by g and a scalar 𝛼0
𝛹, gives rise to the critically 

important equation 

𝛼0
𝛹𝛵0

𝛹(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝛼0

𝛹𝜌𝑡𝑠𝛽
3𝜳𝑡𝑠

𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗

+∫ 𝛼0
𝛹𝜌𝑡𝑠𝛽

3𝜳𝑡𝑠(𝛽
−1𝑔𝒗𝑡𝑠 − 𝛽

−1𝑔𝒗𝑡𝑠
∗ ) ∙ 𝒏𝑝𝑠

Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

+∫ 𝛼0
𝛹𝛽2𝑔𝑱𝑡𝑠

𝛹

Г𝑝𝑠
∗

∙ 𝒏𝑝𝑠𝑑Г𝑝𝑠
∗ − ∫ 𝛼0

𝛹𝜌𝑡𝑠𝛽
3𝑔𝒃𝑡𝑠

𝛹𝑑𝑉𝑝𝑠
∗

𝛺𝑡𝑠
∗

= 0 

(3.3) 

which is essentially Eq. (3.2) but represented now on the physical space, where the 

scalar 𝛼0
𝛹 along with 𝑔 are assumed to be functions of 𝛽. 

The explanation to why Eq. (3.2) is critical to finite-similitude theory is that all scale 

dependencies are captured by it.  A requirement of this equation is that for 𝛽 = 1 it 

matches the exact same equation expected for the physical space, i.e., 𝛼0
𝛹𝛵0

𝛹(1) =

𝛵𝑝𝑠
𝛹 and a direct consequence is 𝛼0

𝛹(1) = 1.  In addition the following identities must 

apply: 𝜌𝑡𝑠(1) = 𝜌𝑝𝑠 , 𝒗𝑡𝑠(1) = 𝒗𝑝𝑠 , 𝜳𝑡𝑠(1) = 𝜳𝑝𝑠 , 𝑱𝑡𝑠(1) = 𝑱𝑝𝑠 , 𝒃𝑡𝑠(1) = 𝒃𝑝𝑠  and 

𝑔(1) = 1.  Note that all geometric dependencies are explicit (i.e., 𝛽3 and 𝛽2 terms) 

yet the fields 𝜌𝑡𝑠(𝛽),  𝒗𝑡𝑠(𝛽),  𝜳𝑡𝑠(𝛽),  𝑱𝑡𝑠(𝛽)  and 𝒃𝑡𝑠(𝛽)  are implicit.  The 

significance of Eq. (3.2) (i.e., 𝛼0
𝛹𝛵0

𝛹(𝛽) = 0) is that it provides an exact description 

of trial-space physics but projected onto the physical space.  This projection reveals 

all 𝛽 − dependencies in either an explicit or implicit form and effectively transforms 

the scaling problem in one where the objective is to reveal the hidden dependencies.  

The advantage this approach has over dimensional analysis is that it is not restricted to 

a single invariance (i.e., dimensionless equations are invariant).  It transpires and is 

revealed below for fracture mechanics that a particular invariance applies.  Thus, by 

means of the generalisation of scaled experimentation a new theory for fracture 

mechanics is shown below to be possible. 
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3.4 Projected continuum mechanics 

Fracture mechanics predominantly makes use of Newtonian mechanics (i.e. three 

equations) but in scaling theory eight transport equations are to be considered, i.e. two 

scalar equations for volume and mass conservation, and two vector equations 

momentum and movement.  Although movement is a feature of fracture mechanics it 

is seldom considered in transport form and was first introduced by Davey and 

Darvizeh [101] in order to bring the displacement field 𝒖𝑝𝑠  into the family of 

transport equations for continuum mechanics.  In summary the eight equations are: 

𝛼0
1𝛵0

1(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝛼0

1𝛽3

𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗ − ∫ 𝛼0

1𝛽3(𝛽−1𝑔𝒗𝑡𝑠
∗ ∙ 𝒏𝑝𝑠)

Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗ = 0 (3.4a) 

𝛼0
𝜌
𝛵0
𝜌(𝛽) =

𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝛼0

𝜌
𝜌𝑡𝑠𝛽

3

𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗

+∫ 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3(𝛽−1𝑔𝒗𝑡𝑠 − 𝛽
−1𝑔𝒗𝑡𝑠

∗ ) ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗ = 0 

(3.4b) 

𝛼0
𝑣𝛵0

𝑣(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ [𝛼0

𝑣𝑔−1𝛽𝜌𝑡𝑠𝛽
3](𝛽−1𝑔𝒗𝑡𝑠)

𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗

+∫ [𝛼0
𝑣𝑔−1𝛽𝜌𝑡𝑠𝛽

3](𝛽−1𝑔𝒗𝑡𝑠)(𝛽
−1𝑔𝒗𝑡𝑠 − 𝛽

−1𝑔𝒗𝑡𝑠
∗ ) ∙ 𝒏𝑝𝑠

Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

+∫ 𝛼0
𝑣𝛽2𝑔𝝈𝑡𝑠

Г𝑝𝑠
∗

∙ 𝒏𝑝𝑠𝑑Г𝑝𝑠
∗ −∫ 𝛼0

𝑣𝜌𝑡𝑠𝛽
3𝑔𝒃𝑡𝑠

𝑣 𝑑𝑉𝑝𝑠
∗

𝛺𝑡𝑠
∗

= 0 

(3.4c) 

𝛼0
𝑢𝛵0

𝑢(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝛼0

𝑢𝛽𝜌𝑡𝑠𝛽
3(𝛽−1𝒖𝑡𝑠)𝛺𝑝𝑠

∗ 𝑑𝑉𝑝𝑠
∗ + ∫ 𝛼0

𝑢𝛽𝜌𝑡𝑠𝛽
3(𝛽−1𝒖𝑡𝑠)(𝛽

−1𝑔𝒗𝑡𝑠 −Г𝑝𝑠
∗

𝛽−1𝑔𝒗𝑡𝑠
∗ ) ∙ 𝒏𝑝𝑠 𝑑Г𝑝𝑠

∗ − ∫ 𝛼0
𝑢𝛽𝜌𝑡𝑠𝛽

3(𝛽−1𝑔𝒗𝑡𝑠)𝑑𝑉𝑝𝑠
∗

𝛺𝑡𝑠
∗ = 0  

(3.4d) 

where to satisfy the zeroth-order identity 

𝑑

𝑑𝛽
(𝛼0

𝛹𝛵0
𝛹) ≡ 0 (3.5) 

the necessary and sufficient identities arising from these equations are presented in 

Table 3.1. 

Table 3.1 Necessary and sufficient zeroth-order scaling identities. 
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Eq. 

No. 

Field Scalars Flux Source Duplicate 

(3.4a) 𝒗𝑡𝑠
∗ = 𝛽𝑔−1𝒗𝑝𝑠

∗  𝛼0
1 = 𝛽−3 - - - 

(3.4b) 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3 = 𝜌𝑝𝑠 𝛼0
𝜌(1) = 1 

𝑔(1) = 1 

  𝒗𝑡𝑠 = 𝛽𝑔−1𝒗𝑝𝑠 

𝒗𝑡𝑠
∗ = 𝛽𝑔−1𝒗𝑝𝑠

∗  

(3.4c) 𝒗𝑡𝑠 = 𝛽𝑔−1𝒗𝑝𝑠 𝛼0
𝑣 = 𝛼0

𝜌
𝑔𝛽−1 𝛼0

𝑣𝛽2𝑔𝝈𝑡𝑠

= 𝝈𝑝𝑠 

𝛼0
𝑣𝜌𝑡𝑠𝛽

3𝑔𝒃𝑡𝑠
𝑣

= 𝜌𝑡𝑠𝒃𝑝𝑠
𝑣  

𝒗𝑡𝑠
∗ = 𝛽𝑔−1𝒗𝑝𝑠

∗  

(3.4d) 𝒖𝑡𝑠 = 𝛽𝒖𝑝𝑠  𝛼0
𝑢 = 𝛼0

𝜌
𝛽−1  𝒗𝑡𝑠

= 𝛽𝑔−1𝒗𝑝𝑠 

 

𝒗𝑡𝑠
∗ = 𝛽𝑔−1𝒗𝑝𝑠

∗  

Table 3.1 presents those identities arising from Eqs. (3.4) because of Eq. (3.5), which 

is the situation where scale effects are absent.  An additional “Duplicate” column is 

included in Table 3.1 to capture those field identities that appear in more than one 

equation.  Observe that the role of Eq. (3.4a) is the determination of the identity 𝒗𝑡𝑠
∗ =

𝛽𝑔−1𝒗𝑝𝑠
∗ , which is required so that control-volume movement in the trial space at any 

scale can be described in the physical space.  In this sense the behaviour of the trial-

space system is played out on the physical space enabling differences to be gauged.  

In order to satisfy Eq. (3.5) for Eq. (3.4b) it is necessary and sufficient to set 

𝛼0
𝜌
𝜌𝑡𝑠𝛽

3 = 𝜌𝑝𝑠 and 𝒗𝑡𝑠 = 𝛽𝑔
−1𝒗𝑝𝑠 (along with 𝒗𝑡𝑠

∗ = 𝛽𝑔−1𝒗𝑝𝑠
∗ ) with 𝛼0

𝜌(1) = 1 and 

𝒗𝑡𝑠(1) = 𝒗𝑝𝑠 .   Although continuity plays little part in fracture mechanics it is needed 

for similitude to establish a relationship for density with scale (i.e. 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3 = 𝜌𝑝𝑠), 

which opens up the possibility of selecting alternative materials for a scaled 

experiment.  The velocity relationship 𝒗𝑡𝑠 = 𝛽𝑔−1𝒗𝑝𝑠 is particularly constraining and 

it is effectively restricting all scaled experiments to the same pattern of deformation, 

which is unrealistic in practice.  The momentum transport Eq. (3.4c) has a critical role 
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to place in fracture mechanics and to satisfy Eq. (3.5) with 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3 = 𝜌𝑝𝑠  it is 

necessary and sufficient to set 𝛼0
𝑣 = 𝛼0

𝜌
𝑔𝛽−1  (as above 𝒗𝑡𝑠 = 𝛽𝑔

−1𝒗𝑝𝑠  and 𝒗𝑡𝑠
∗ =

𝛽𝑔−1𝒗𝑝𝑠
∗ ), 𝛼0

𝑣𝛽2𝑔𝝈𝑡𝑠 = 𝝈𝑝𝑠 and 𝛼0
𝑣𝜌𝑡𝑠𝛽

3𝑔𝒃𝑡𝑠
𝑣 = 𝜌𝑡𝑠𝒃𝑝𝑠

𝑣 ; note that 𝛼0
𝑣(1) = 1.  Again 

in view of the relationship 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3 = 𝜌𝑝𝑠  it is necessary and sufficient in the 

movement equation, Eq. (3.4d) to set 𝛼0
𝑢 = 𝛼0

𝜌
𝛽−1  (as above 𝒗𝑡𝑠 = 𝛽𝑔

−1𝒗𝑝𝑠  and 

𝒗𝑡𝑠
∗ = 𝛽𝑔−1𝒗𝑝𝑠

∗ ) and 𝒖𝑡𝑠 = 𝛽𝒖𝑝𝑠; note also that 𝛼0
𝑢(1) = 1 and 𝒖𝑡𝑠(1) = 𝒖𝑝𝑠 .  The 

relationship for displacement is not too unexpected since differentiation of 𝒖𝑡𝑠 =

𝛽𝒖𝑝𝑠  with respect to time (given the identity 𝑑𝑡𝑡𝑠 = 𝑔𝑑𝑡𝑝𝑠 ) provides as required 

𝒗𝑡𝑠 = 𝛽𝑔−1𝒗𝑝𝑠 .  Note also that the two identities 𝒖𝑡𝑠 = 𝛽𝒖𝑝𝑠  and 𝒅𝒙𝑡𝑠 = 𝛽𝒅𝒙𝑝𝑠 

provide the small-strain tensor identity 𝜺𝑡𝑠 = 𝜺𝑝𝑠, which immediately infers that the 

strain tensor 𝜺𝑡𝑠 is independent of 𝛽. 

Overall, it is fairly evident that identity Eq. (3.5) is very restrictive on the behaviour 

of the trial-space systems and unlikely to be satisfied for realistic problems.  See 

previous studies on the practical application of zeroth-order finite similitude theory in 

references [104-106].  The reality in practice therefore is the inequality 

𝑑

𝑑𝛽
(𝛼0

𝛹𝛵0
𝛹) ≢ 0 (3.6) 

which of course provides scale effects, and these can be expected to change with scale, 

i.e. be dependent on 𝛽. 

3.5 First-order finite similitude  

Eq. (3.3) provides the framework for the analysis of scale dependence but contains 

hidden dependencies that require information on such things such as material 

behaviour (e.g. size dependence) and boundary conditions (e.g. surface conditions) to 

uncover them.  However, an alternative (and the approach adopted here) is to simply 

enforce a global 𝛽 − invariant condition and apply this in the design of experiments.  

First-order finite similitude [107] examines an alternative to Eq. (3.5) that involves an 

additional scaled experiment to shed additional light on changes that are taking place 
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and to add extra flexibility.  Consider then the following definition: 

3.5.1. Definition (High-order finite similitude) 

The concept of kth-order finite similitude is identified by the lowest derivative that 

satisfies 

𝛵𝑘+1
𝛹 =

𝑑

𝑑𝛽
(𝛼𝑘

𝛹𝛵𝑘
𝛹) ≡ 0 (3.7) 

∀𝛽 > 0, with 𝛼0
𝛹𝛵0

𝛹 defined by Eq. (3.3) and non-zero scalars 𝛼𝑘
𝛹 are functions of 𝛽 

with 𝛼𝑘
𝛹(1) = 1, where the sign “≡” means identically zero in Eq. (3.7). 

The corresponding scaling theory is termed kth-order finite similitude but the focus in 

this paper is on first-order finite similitude only, i.e. 

𝛵2
𝛹 =

𝑑

𝑑𝛽
(𝛼1

𝛹𝛵1
𝛹) =

𝑑

𝑑𝛽
(𝛼1

𝛹
𝑑

𝑑𝛽
(𝛼0

𝛹𝛵0
𝛹)) ≡ 0 (3.8) 

where 𝛼1
𝛹 is required to play a role similar to that of 𝛼0

𝛹 in the annihilation of 𝛽 terms 

to facilitate the satisfaction of this identity. 

To apply this identity to Eqs. (3.4) it is convenient first to insert the established 

zeroth-order conditions to give 

𝛼0
𝜌
𝛵0
𝜌(𝛽) =

𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝜌𝑝𝑠
𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗ +∫ 𝜌𝑝𝑠(𝑽𝑝𝑠 − 𝒗𝑝𝑠

∗ ) ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗ = 0 (3.9a) 

𝛼0
𝑣𝛵0

𝑣(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝜌𝑝𝑠𝑽𝑝𝑠
𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗ +∫ 𝜌𝑝𝑠𝑽𝑝𝑠(𝒗𝑝𝑠 − 𝒗𝑝𝑠

∗ ) ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

+∫ 𝚺𝑝𝑠
Г𝑝𝑠
∗

∙ 𝒏𝑝𝑠𝑑Г𝑝𝑠
∗ −∫ 𝑩𝑝𝑠𝑑𝑉𝑝𝑠

∗

𝛺𝑝𝑠
∗

= 0 

(3.9b) 

𝛼0
𝑢𝛵0

𝑢(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝜌𝑝𝑠𝑼𝑝𝑠
𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗ +∫ 𝜌𝑝𝑠𝑼𝑝𝑠(𝒗𝑝𝑠 − 𝒗𝑝𝑠

∗ ) ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

−∫ 𝜌𝑝𝑠𝑽𝑝𝑠𝑑𝑉𝑝𝑠
∗

𝛺𝑝𝑠
∗

= 0 

(3.9c) 

where 𝑽𝑝𝑠 = 𝛽
−1𝑔𝒗𝑡𝑠, 𝚺𝑝𝑠

 = 𝛼0
𝑣𝛽2𝑔𝝈𝑡𝑠

 , 𝑩𝑝𝑠
 = 𝛼0

𝑣𝜌𝑡𝑠𝛽
3𝑔𝒃𝑡𝑠

𝑣 , 𝑼𝑝𝑠 = 𝛽
−1𝒖𝑡𝑠  and Eq. 

(3.4a) is not included here since it satisfies the zeroth-order condition Eq. (3.5) and 

evidently automatically satisfies Eq. (3.8). 
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Note also that the terms 𝑽𝑝𝑠(𝑽𝑝𝑠 − 𝒗𝑝𝑠
∗ )  and 𝑼𝑝𝑠(𝑽𝑝𝑠 − 𝒗𝑝𝑠

∗ )  have been 

approximated by 𝑽𝑝𝑠(𝒗𝑝𝑠 − 𝒗𝑝𝑠
∗ )  and 𝑼𝑝𝑠(𝒗𝑝𝑠 − 𝒗𝑝𝑠

∗ )  in Eqs. (3.9b) and (3.9c) in 

recognition that convective terms are negligible in fracture mechanics but also to 

avoid the need for higher order similitude terms.  In first-order finite similitude the 

transport equations of interest are obtained on differentiation of Eqs. (3.9) with 

respect to 𝛽 and on multiplication by 𝛼1
𝜓

 to give 

𝛼1
𝜌
𝛵1
𝜌(𝛽) = ∫ 𝛼1

𝜌
𝜌𝑝𝑠𝑽𝑝𝑠

′ ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗ = 0 (3.10a) 

𝛼1
𝑣𝛵1

𝑣(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝛼1

𝑣𝜌𝑝𝑠𝑽𝑝𝑠
′

𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗ +∫ 𝛼1

𝑣𝜌𝑝𝑠𝑽𝑝𝑠
′ (𝒗𝑝𝑠 − 𝒗𝑝𝑠

∗ ) ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

+∫ 𝛼1
𝑣𝚺𝑝𝑠

′

Г𝑝𝑠
∗

∙ 𝒏𝑝𝑠𝑑Г𝑝𝑠
∗ −∫ 𝛼1

𝑣𝑩𝑝𝑠
′ 𝑑𝑉𝑝𝑠

∗

𝛺𝑝𝑠
∗

= 0 

(3.10b) 

𝛼1
𝑢𝛵1

𝑢(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝛼1

𝑢𝜌𝑝𝑠𝑼𝑝𝑠
′

𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗ +∫ 𝛼1

𝑢𝜌𝑝𝑠𝑼𝑝𝑠
′ (𝒗𝑝𝑠 − 𝒗𝑝𝑠

∗ ) ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

−∫ 𝛼1
𝑢𝜌𝑝𝑠𝑽𝑝𝑠

′ 𝑑𝑉𝑝𝑠
∗

𝛺𝑝𝑠
∗

= 0 

(3.10c) 

where the dash “ ′ ” signifies derivative with respect to 𝛽 and note that these equations 

have a similar appearance to their corresponding counterparts in Eqs. (3.9).   

Zeroth-order finite similitude requires that the integrands in Eqs. (3.9) do not vary 

with 𝛽 and similarly for first order the integrands in Eqs. (3.10) are required to be 

invariant of 𝛽.  An alternative but equivalent approach is the direct integration of 

identity Eq. (3.8). 

Under the new definition zeroth-order finite similitude as discussed in Section 3.4 is 

identified by the identity 𝛵1
𝛹 ≡ 0.  Recognising the reality of practical testing is scale 

effects and the inequality 𝛵1
𝛹 ≢ 0 and recognising the dependence 𝛵1

𝛹(𝛽) motivates 

the need for something more suitable.  Definition is designed to provide a pragmatic 

way forward in a situation where specific information on scale effects is absent.  

Since it is necessary to integrate the similitude identity to link experiments the 
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definition involving nested derivatives is particularly convenient.  A desirable feature 

of the definition is the nesting of similitude orders, so if zeroth-order finite similitude 

(𝛵1
𝛹 ≡ 0) applies, then first order (𝛵2

𝛹 ≡ 0) immediately follows from Eq. (3.8).  Yet 

another feature is apparent on examination of Eq. (3.8) arising from its foundation on 

transport equations in the trial space in the form 𝛼0
𝛹𝛵0

𝛹 = 0, which immediately infers 

that 𝛼1
𝛹𝛵1

𝛹 = 0 and consequently a different set of transport equations arise.  The 

fields associated with this new set of transport equations are the derivatives of the 

fields in 𝛼0
𝛹𝛵0

𝛹 = 0 with respect to 𝛽.  This aspect is not pursued here as integration 

of Eq. (3.8) is ultimately required to relate experiments at different scales.  The 

overall idea for three scales 𝛽2 , 𝛽1  and 𝛽0 = 1 is depicted in Fig. 3.3., where trial 

space behaviour is played out on the physical space at each scale.  In the following 

section it is shown how projected equations are combined to provide a virtual replica 

of the full-scale process. 

 

Figure 3.3.  Projected trial-space behaviour described on a control volume at scale 𝛽𝑖 

by transport equations 𝛼0
𝛹𝛵0

𝛹(𝛽𝑖) = 0 and combined to provide a full-scale virtual 

model. 

3.5.2. Integrated similitude conditions 
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The reality of fracture-mechanics experimentation is discrete experiments at different 

scales, which invariably means that derivatives with respect to 𝛽 are required to be 

evaluated by means of finite differences.  There exist many forms finite differences 

can take but for down scaling with 0 < 𝛽 ≤ 1 and considering that predicting the 

behaviour of systems at 𝛽 = 1  is of prime importance, backward difference 

formulations naturally emerge.  First-order finite similitude involves three scales 𝛽2, 

𝛽1 and 𝛽0 = 1, and the identity 𝛵2
𝛹 = 𝑑 (𝛼1

𝛹𝛵1
𝛹) 𝑑𝛽⁄ ≡ 0.  In order to evaluate this 

expression consider then the divided-difference table for 𝛼0
𝛹𝛵0

𝛹 with three data points 

{𝛽2, 𝛽1, 𝛽0}, where the first-divided difference and important mean-value identities 

(mean-value theorem for derivatives) are: 

𝛼1
𝛹|�̂�21

𝛼0
𝛹𝛵0

𝛹(𝛽1) − 𝛼0
𝛹𝛵0

𝛹(𝛽2)

𝛽1 − 𝛽2
= 𝛼1

𝛹|�̂�21𝛵1
𝛹(�̂�2

1) (3.11a) 

𝛼1
𝛹|�̂�1𝑜

𝛼0
𝛹𝛵0

𝛹(𝛽0) − 𝛼0
𝛹𝛵0

𝛹(𝛽1)

𝛽0 − 𝛽1
= 𝛼1

𝛹|�̂�1𝑜𝛵1
𝛹(�̂�1

𝑜) (3.11b) 

where 𝛽𝑖 ≤ �̂�𝑖
𝑖−1 ≤ 𝛽𝑖−1 and bearing in mind that the next divided difference is  

𝛼1
𝛹|�̂�1𝑜𝛵1

𝛹(�̂�1
𝑜) − 𝛼1

𝛹|�̂�21𝛵1
𝛹(�̂�2

1)

�̂�1
𝑜 − �̂�2

1
≡ 0 (3.12) 

which for first-order finite similitude is identically zero and on substitution of Eqs. 

(3.9) provides 

 𝛼0
𝛹𝛵0

𝛹(𝛽0) ≡ 𝛼0
𝛹𝛵0

𝛹(𝛽1) + 𝑅1
𝛹(𝛼0

𝛹𝛵0
𝛹(𝛽1) − 𝛼0

𝛹𝛵0
𝛹(𝛽2)) (3.13) 

where the scaling parameter 𝑅1
𝛹 in this equation is 

 𝑅1
𝛹 = (

𝛼1
𝛹|�̂�21

𝛼1
𝛹|�̂�1𝑜

) (
𝛽0 − 𝛽1
𝛽1 − 𝛽2

) (3.14) 

Examination of Eq. (3.13) reveals several important aspects. First, first-order finite 

similitude is about proportional relationships between the differences in the transport 

equations at different scales.  Second, since 𝛼0
𝛹𝛵0

𝛹(𝛽1) = 0  and 𝛼0
𝛹𝛵0

𝛹(𝛽2) = 0  it 

immediately follows from Eq. (3.13) that 𝛼0
𝛹𝛵0

𝛹(𝛽0) = 0 , i.e. a set of transport 

equations for the physical space is obtained.  Note additionally if zeroth-order 

similitude applies, then Eq. (3.13) reduces to  
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 𝛼0
𝛹𝛵0

𝛹(𝛽0) ≡ 𝛼0
𝛹𝛵0

𝛹(𝛽1) (3.15) 

which is the expected form being the integrated form of Eq. (3.5). 

3.5.3. First-order identities 

Eq. (3.13) gives rise to a set of first order identities on application to Eqs. (3.4a) to 

(3.4c), which are: 

𝒗𝑝𝑠 = 𝛽1
−1𝑔1𝒗𝑡𝑠1 + 𝑅1

𝜌(𝛽1
−1𝑔1𝒗𝑡𝑠1 − 𝛽2

−1𝑔2𝒗𝑡𝑠2)   (3.16a) 

𝒗𝑝𝑠 = 𝛽1
−1𝑔1𝒗𝑡𝑠1 + 𝑅1

𝑣(𝛽1
−1𝑔1𝒗𝑡𝑠1 − 𝛽2

−1𝑔2𝒗𝑡𝑠2) (3.16b) 

𝝈𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1 + 𝑅1
𝑣(𝛼01

𝑣 𝑔1𝛽1
2𝝈𝑡𝑠1 − 𝛼02

𝑣 𝑔2𝛽2
2𝝈𝑡𝑠2) (3.16c) 

𝒃𝑝𝑠
𝑣 = 𝑔1

2𝛽1
−1𝒃𝑡𝑠1

𝑣 + 𝑅1
𝑣(𝑔1

2𝛽1
−1𝒃𝑡𝑠1

𝑣 − 𝑔2
2𝛽2

−1𝒃𝑡𝑠2
𝑣 ) (3.16d) 

𝒖𝑝𝑠 = 𝛽1
−1𝒖𝑡𝑠1 + 𝑅1

𝑢(𝛽1
−1𝒖𝑡𝑠1 − 𝛽2

−1𝒖𝑡𝑠2) (3.16e) 

𝒗𝑝𝑠 = 𝛽1
−1𝑔1𝒗𝑡𝑠1 + 𝑅1

𝑢(𝛽1
−1𝑔1𝒗𝑡𝑠1 − 𝛽2

−1𝑔2𝒗𝑡𝑠2) (3.16f) 

and where 𝝈𝑡𝑠1 = 𝝈𝑡𝑠(𝛽1), 𝒗𝑡𝑠2 = 𝒗𝑡𝑠(𝛽2) etc. and a consistent velocity field requires 

𝑅1
𝑢 = 𝑅1

𝑣 = 𝑅1
𝜌
 and set to be 𝑅1  henceforth. 

Note that Eq. (3.16e) along with the identities 𝒅𝒙𝑡𝑠1 = 𝛽1𝒅𝒙𝑝𝑠 and 𝒅𝒙𝑡𝑠2 = 𝛽2𝒅𝒙𝑝𝑠 

yield the small strain relationship 

𝜺𝑝𝑠 = 𝜺𝑡𝑠1 + 𝑅1
𝑢(𝜺𝑡𝑠1 − 𝜺𝑡𝑠2) (3.17) 

which confirms that to a limited degree, strain is permitted to be unequal in the trial 

and physical spaces, which is the reality in most physical experiments. 

The identities pertaining to first-order finite similitude theory are summarised in Table 

3.2 and revealed is that despite the initial complexity of the theory, relatively 

straightforward relationships are its product. 

Table 3.2 Necessary and sufficient first-order scaling identities. 
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Eq. 

No. 

Field Scalars Flux Source 

(3.4a) 𝒗𝑡𝑠
∗ = 𝛽𝑔−1𝒗𝑝𝑠

∗  𝛼0
1 = 𝛽−3 - - 

(3.4b) 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3 = 𝜌𝑝𝑠 𝛼0
𝜌(1) = 1 

𝑔(1) = 1 

  

(3.4c) 𝒗𝑝𝑠

= 𝛽1
−1𝑔1𝒗𝑡𝑠1

+ 𝑅1 (𝛽1
−1𝑔1𝒗𝑡𝑠1

− 𝛽2
−1𝑔2𝒗𝑡𝑠2) 

𝛼0
𝑣 = 𝛼0

𝜌
𝑔𝛽−1 𝝈𝑝𝑠

= 𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1

+ 𝑅1 (𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1

− 𝛼02
𝑣 𝑔2𝛽2

2𝝈𝑡𝑠2) 

𝒃𝑝𝑠
𝑣

= 𝑔1
2𝛽1

−1𝒃𝑡𝑠1
𝑣

+ 𝑅1 (𝑔1
2𝛽1

−1𝒃𝑡𝑠
𝑣

− 𝑔2
2𝛽2

−1𝒃𝑡𝑠2
𝑣 ) 

(3.4d) 𝒖𝑝𝑠

= 𝛽1
−1𝒖𝑡𝑠1

+ 𝑅1 (𝛽1
−1𝒖𝑡𝑠1

− 𝛽2
−1𝒖𝑡𝑠2) 

𝛼0
𝑢 = 𝛼0

𝜌
𝛽−1  𝒗𝑝𝑠

= 𝛽1
−1𝑔1𝒗𝑡𝑠1

+ 𝑅1 (𝛽1
−1𝑔1𝒗𝑡𝑠1

− 𝛽2
−1𝑔2𝒗𝑡𝑠2) 

3.6 Analytical fracture studies 

This section is concerned with applying the new scaling concepts to two critical 

methods in fracture mechanics, i.e., the J-integral and the cohesive zone model.  

Depicted in Fig. 3.4 is the compact tension (CT) test, one of the most commonly used 

specimens in J-integral fracture mechanics, and forms the main focus of this section. 
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Figure 3.4. Typical testing arrangement for a compact tesion (CT) specimen. 

3.6.1. The J-Integral 

The J-integral on a moving control volume traversing a loaded body in equilibrium (in 

a trial space) with velocity 𝒗𝑡𝑠
∗  is provided by Davey and Darvizeh in reference [101] 

in an extended form 

𝐽𝑡𝑠
∗ = ∫ 𝜔𝑡𝑠𝒗𝑡𝑠

∗ ∙ 𝒏𝑡𝑠
Г𝑡𝑠
∗

𝑑Г𝑝𝑠
∗ −∫ (𝒗𝑡𝑠

∗ ∙ ∇𝑡𝑠𝒖𝑡𝑠) ∙ 𝝉𝑡𝑠
Г𝑡𝑠
∗

𝑑Г𝑡𝑠
∗  (3.18) 

where 𝜔𝑡𝑠  is strain-energy density and 𝝉𝑡𝑠  is traction (i.e. 𝝉𝑡𝑠 = 𝝈𝑡𝑠 ∙ 𝒏𝑡𝑠 ), which 

yields the standard J-integral form [13] on setting 𝒗𝑡𝑠
∗ = 𝑣𝑡𝑠

∗ 𝒆𝑖  with 𝒆𝑖 indicating the 

direction of crack travel and 𝑣𝑡𝑠
∗  is a uniformly invariant speed. 

Substitution of the identities 𝑑𝑉𝑡𝑠
∗ = 𝛽2𝑑𝑉𝑝𝑠

∗  and 𝒅𝚪𝑡𝑠
∗ = 𝛽𝒅𝚪𝑝𝑠

∗  (note 2-D here) and on 

multiplication throughout by g, 𝛽−1 and a scalar 𝛼0
𝜔, gives rise to 

𝛼0
𝜔𝑔𝛽−1𝐽𝑡𝑠

∗ =  ∫ 𝛼0
𝜔𝜔𝑡𝑠𝛽(𝑔𝛽

−1𝒗𝑡𝑠
∗ ) ∙ 𝒏𝑝𝑠

Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

−∫ 𝛼0
𝜔(𝛼0

𝑣)−1𝑔−1𝛽−1 ((𝑔𝛽−1𝒗𝑡𝑠
∗ ) ∙ ∇𝑝𝑠𝛽

−1𝒖𝑡𝑠)
Г𝑝𝑠
∗

∙ (𝛼0
𝑣𝛽2𝑔𝝈𝑡𝑠 ∙ 𝒏𝑝𝑠)𝑑Г𝑝𝑠

∗  

 

(3.19) 

from which is can be deduced that 𝛼0
𝜔 = 𝛼0

𝑣𝑔𝛽 = 𝛼0
𝜌
𝑔2 and consequently invariance 
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of 𝛼0
𝜔𝑔𝛽−1𝐽𝑡𝑠

∗  with respect to 𝛽  (i.e. i.e. 𝛼0
𝜔𝑔𝛽−1𝐽𝑡𝑠

∗ = 𝐽𝑝𝑠
∗ ) requires 𝛼0

𝜔𝛽𝜔𝑡𝑠 =

𝛼0
𝑣𝑔𝛽2𝜔𝑡𝑠 = 𝜔𝑝𝑠 . 

The standard J-integral 𝐽𝑡𝑠  satisfies the relationship 𝐽𝑡𝑠
∗ = 𝑣𝑡𝑠

∗ 𝐽𝑡𝑠  and if invariant with 

respect to 𝛽 , then 𝛼0
𝜔𝐽𝑡𝑠 = 𝐽𝑝𝑠  with 𝛼0

𝜔 = 𝛼0
𝑣𝑔𝛽 .  It is of interest to examine a 

relatively simple analytical example at this stage to demonstrate the scaling concepts 

on familiar material.  Consider then a crack of length 2𝑎𝑡𝑠 in an infinite plate, where 

in this case the J-integral in the absence of plasticity has a simple analytical solution, 

which is 

𝐽𝑡𝑠 = 
𝐾𝐼 𝑡𝑠
2

𝐸𝑡𝑠
′ = 𝜋𝑎𝑡𝑠

𝜎𝑡𝑠
2

𝐸𝑡𝑠
′  (3.20) 

where stress intensity 𝐾𝐼 𝑡𝑠 = 𝜎𝑡𝑠√𝜋𝑎𝑡𝑠  and 𝐸𝑡𝑠
′  represent Young’s modulus 𝐸𝑡𝑠  or 

𝐸𝑡𝑠 (1 − 𝜈𝑡𝑠
2 )⁄ , and where 𝜈𝑡𝑠 is Poisson’s ratio. 

Consider then 𝛼0
𝜔𝐽𝑡𝑠 , which provides 

𝛼0
𝜔𝐽𝑡𝑠 = 𝛼0

𝑣𝑔𝛽𝐽𝑡𝑠 =  𝜋(𝛽
−1𝑎𝑡𝑠)

(𝛼0
𝑣𝛽2𝑔𝜎𝑡𝑠 )

2

𝛼0
𝑣𝛽2𝑔𝐸𝑡𝑠

′  (3.21) 

where for zeroth-order conditions (e.g. 𝛼0
𝑣𝛽2𝑔𝐸𝑡𝑠

′ = 𝐸𝑝𝑠
′ ) it is evident that 

𝛼01
𝜔 𝐽𝑡𝑠 (𝛽1) = 𝐽𝑝𝑠 and consequently a single trial-space experiment is sufficient. 

However, observe that 𝛼0
𝜔√𝛽𝐾𝐼 𝑡𝑠 = (𝛼0

𝑣𝛽2𝑔𝜎𝑡𝑠 )√𝜋𝛽
−1𝑎𝑡𝑠  and should zeroth-order 

apply, then 𝛼0
𝜔√𝛽𝐾𝐼 𝑡𝑠 = 𝐾𝐼 𝑝𝑠 but it is relatively easy to break zeroth-order conditions.  

Using the same material for a single-scaled experiment would be suffice since 𝛼0
𝑣 is 

insufficient for the matching of the three material properties, i.e. 𝐾𝐼𝑐 𝑡𝑠 = 𝐾𝐼𝑐 𝑝𝑠 

(fracture toughness), 𝐸𝑡𝑠 = 𝐸𝑝𝑠  and 𝜈𝑡𝑠 = 𝜈𝑝𝑠  (and additionally yield stress if 

plasticity is involved).  Additional flexibility is required, and first-order finite 

similitude provides greater scope for capturing the full-scale physical behaviour. 

3.6.2. Analytical calculation of J 
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It is of interest to examine the situation of two scale experiments where the objective 

is the prediction of the onset of crack propagation in an infinite full-scale plate.  The 

situation is depicted in Fig. 3.5 where the possibility of using three different materials 

is considered for the scale choices of 𝛽1 = 1

2
 and 𝛽2 = 1

4
, and the full-scale plate.  

The general concept presented in Fig. 3.3 is recreated in Fig. 3.5 for the specific case 

of a single crack subjected to a uniform stress field, where it is assumed here that the 

analytical result in Eq. (3.20) applies to the real scaled experiments.  The test for 

success is how close the virtual model matches the full-scale real result, which again 

is assumed to comply with Eq. (3.20).  Observe from Eq. (3.16c) and Fig. 3.5 that the 

products 𝛼01
𝑣 𝑔1 and 𝛼02

𝑣 𝑔2 appear, which confirms that 𝑔1 and 𝑔2 have no part to play 

in what is after all a quasi-static analysis.  Changing 𝑔2  (say) can be negated by 

changing 𝛼02
𝑣  so that the product 𝛼02

𝑣 𝑔2 remains unchanged.  As far as the selection of 

𝛼01
𝑣  and 𝛼02

𝑣  is concerned, these are set to satisfy zeroth-order conditions for fracture 

toughness being zeroth-order scalars and consequently satisfy 

𝝈𝑝𝑠
𝑐𝑟𝑖𝑡 =

𝐾𝐼𝑐 𝑝𝑠

√𝜋𝑎𝑝𝑠
= 𝛼01

𝑣 𝑔1𝛽1
2𝝈𝑡𝑠

𝑐𝑟𝑖𝑡(𝛽1) = 𝛼01
𝑣 𝑔1𝛽1

2
𝐾𝐼𝑐 𝑡𝑠(𝛽1)

√𝜋𝑎𝑡𝑠1

= 𝛼02
𝑣 𝑔2𝛽2

2𝝈𝑡𝑠
𝑐𝑟𝑖𝑡(𝛽2) = 𝛼02

𝑣 𝑔2𝛽2
2
𝐾𝐼𝑐 𝑡𝑠(𝛽2)

√𝜋𝑎𝑡𝑠2
 

 

 

(3.22) 

with  𝑎𝑡𝑠1 = 𝑎𝑡𝑠(𝛽1) = 𝛽1𝑎𝑝𝑠 and 𝑎𝑡𝑠2 = 𝑎𝑡𝑠(𝛽2) = 𝛽2𝑎𝑝𝑠 and consequently 

𝛼01
𝑣 𝑔1 =

√𝛽1
𝛽1
2

𝐾𝐼𝑐 𝑝𝑠

𝐾𝐼𝑐 𝑡𝑠(𝛽1)
 (3.23a) 

𝛼02
𝑣 𝑔2 =

√𝛽2
𝛽2
2

𝐾𝐼𝑐 𝑝𝑠

𝐾𝐼𝑐 𝑡𝑠(𝛽2)
 (3.23b) 
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Figure 3.5. Portrayal of a side crack in an infinite plate subjected to a uniform stress 

field. 

Note here that the zeroth-order conditions 𝛼01
𝜌
𝜌𝑡𝑠1𝛽1

3 = 𝜌𝑝𝑠  and 𝛼02
𝜌
𝜌𝑡𝑠2𝛽2

3 = 𝜌𝑝𝑠  

along with 𝛼01
𝑣 = 𝛼01

𝜌
𝑔1𝛽1

−1 and 𝛼02
𝑣 = 𝛼02

𝜌
𝑔2𝛽2

−1 in Table 3.1 are not applied since 

density is not a feature of this simple problem.  However, their inclusion has the not 

too unexpected consequence that time plays a part in the analysis.  This follows 

because their incorporation constrains the values of 𝛼01
𝑣  and 𝛼02

𝑣  but Eq. (3.23) can 

still be satisfied provided 𝑔1  and 𝑔2  are free to be set. Observe that 𝛼01
𝑣 𝑔1 =

𝛼01
𝜌
𝑔1
2𝛽1

−1 and 𝛼02
𝑣 𝑔1 = 𝛼02

𝜌
𝑔2
2𝛽2

−1 and consequently on setting 𝑔1 and 𝑔2 equal to 

𝑔1 = √
𝛽1
2√𝛽1

𝛼01
𝜌
𝛽1
3

𝐾𝐼𝑐 𝑝𝑠

𝐾𝐼𝑐 𝑡𝑠1
= 𝛽1 √√𝛽1

𝜌𝑡𝑠1
𝜌𝑝𝑠

𝐾𝐼𝑐 𝑝𝑠

𝐾𝐼𝑐 𝑡𝑠1
 (3.24a) 

𝑔2 = √
𝛽2
2√𝛽2
𝛼02
𝑣 𝛽2

3

𝐾𝐼𝑐 𝑝𝑠

𝐾𝐼𝑐 𝑡𝑠2
= 𝛽2 √√𝛽2

𝜌𝑡𝑠2
𝜌𝑝𝑠

𝐾𝐼𝑐 𝑝𝑠

𝐾𝐼𝑐 𝑡𝑠2
 (3.24b) 
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ensures that Eqs. (3.23) are satisfied. 

It is understood that although time is not a feature of quasi-static processes, it is of 

course a feature of real experiments.  Here 𝑔1 and 𝑔2 informs on how the information 

from the two experiments are combined.  Although inertia is not a feature of the 

quasi-static process and consequently material density is not involved necessarily it 

can still be incorporated on imagining the loading process to occur over a specified 

period.  This period can be different at the two scales as indicated by 𝑔1 ≠ 𝑔2. 

It is evident from Eq. (3.20) that in order to be able to predict the J-integral at full 

scale by means of scaled experimentation it is necessary to say something about 

deformation and strain energy, reflected by the presence of Young’s modulus in this 

equation.  One approach is depicted in Fig. 3.6, which is essentially the situation in 

Fig. 3.5, with the cracks removed and the scales 𝛽1 and 𝛽2 assumed free.   

 

Figure 3.6 Imagined stress loading in the absence of a crack. 

In this case at 𝝈𝑝𝑠 = 𝝈𝑝𝑠
𝑐𝑟𝑖𝑡 the following zeroth-order conditions are assumed to apply 
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𝝈𝑝𝑠
𝑐𝑟𝑖𝑡 = 𝐸 𝑝𝑠

′ 휀𝑝𝑠
𝑐𝑟𝑖𝑡 = 𝛼01

𝑣 𝑔1𝛽1
2𝝈𝑡𝑠1

𝑐𝑟𝑖𝑡 = 𝛼01
𝑣 𝑔1𝛽1

2𝐸 𝑡𝑠1
′ 휀𝑡𝑠1

𝑐𝑟𝑖𝑡 = 𝛼02
𝑣 𝑔2𝛽2

2𝝈𝑡𝑠2
𝑐𝑟𝑖𝑡 =

𝛼02
𝑣 𝑔2𝛽2

2𝐸 𝑝𝑠2
′ 휀𝑡𝑠2

𝑐𝑟𝑖𝑡  
(3.25) 

where it is assumed further that 휀𝑝𝑠
𝑐𝑟𝑖𝑡 = 휀𝑡𝑠1

𝑐𝑟𝑖𝑡 = 휀𝑡𝑠2
𝑐𝑟𝑖𝑡 and given that the conditions in 

Eqs. (3.23) apply it follows that 

𝛼01
𝑣 𝑔1 =

√𝛽1
𝛽1
2

𝐾𝐼𝑐 𝑝𝑠

𝐾𝐼𝑐 𝑡𝑠1
=
1

𝛽1
2

𝐸 𝑝𝑠
′

𝐸 𝑡𝑠1
′  (3.26a) 

𝛼02
𝑣 𝑔2 =

√𝛽2
𝛽2
2

𝐾𝐼𝑐 𝑝𝑠

𝐾𝐼𝑐 𝑡𝑠1
=
1

𝛽2
2

𝐸 𝑝𝑠
′

𝐸 𝑡𝑠2
′  (3.26b) 

which leads to specific values of 𝛽1 and 𝛽2 depending on the material chosen, i.e. it 

provides 

𝛽1 = (
𝐾𝐼𝑐 𝑡𝑠1

 𝐾𝐼𝑐 𝑝𝑠

𝐸 𝑝𝑠
′

𝐸 𝑡𝑠1
′ )

2

 (3.27a) 

𝛽2 = (
𝐾𝐼𝑐 𝑡𝑠2

 𝐾𝐼𝑐 𝑝𝑠

𝐸 𝑝𝑠
′

𝐸 𝑡𝑠2
′ )

2

 (3.27b) 

and since 𝛽2 ≤ 𝛽1 these relationships require materials that satisfy 𝐾𝐼𝑐 𝑡𝑠1
𝐸 𝑡𝑠1
′ ≤ 𝐾𝐼𝑐 𝑡𝑠2

𝐸 𝑡𝑠2
′ . 

Thus, with the extra flexibility afforded the approach by allowing 𝛽1 and 𝛽2 to vary, 

zeroth-order matching is possible. Therefore, it is of interest to test a simple example 

consisting of three materials to represent the two trial and full-scale experiments.  

The material properties for all the materials applied in this paper are tabulated in 

Table 3. Specifically, the materials considered are titanium (Ti6Al4V) [108-110], 

stainless steel (AISI 201), tungsten [111], steel (EN3B), copper (C101) and 

aluminium (6082). The material selection includes some generally used materials, rare 

and expensive materials, and strong and weak materials. This provided an opportunity 

for unusual comparisons as well as highlighting the practical value of the approach 

through the comparison of cheap and expensive materials. 

The three materials selected here are given in Table 4 and consist of titanium, stainless 

and tungsten for physical and trial space at scales at 𝛽1 and 𝛽2, respectively. These 

three materials are stronger than the other three, which is supposed to have a better 

result in zeroth-order theory in the beginning. To identify the materials in the virtual 
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models the notation Ti-Ti, Ti-SS, Ti-Tung and Ti-SS-Tung is employed to signify that 

the full-scale material is titanium and the scaled materials are titanium, stainless or 

tungsten with Ti-SS-Tung signifying that first-order theory is employed with two trial-

space experiments.  Eq. (3.20) is applied to determine the J-integral for the virtual 

model, with length scales set by Eqs. (3.27) and 𝛼01
𝑣 𝑔1 and 𝛼02

𝑣 𝑔2 are calculated using 

Eqs. (3.26).  As alluded to above however, this arrangement ensures that zeroth-order 

theory is sufficient and consequently 𝐽𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1 𝐽𝑡𝑠1  and 𝛼01

𝑣 𝑔1𝛽1 𝐽𝑡𝑠1 =

𝛼02
𝑣 𝑔2𝛽2 𝐽𝑡𝑠2.  The objective here is to predict the J-integral (at its critical value) at 

full scale which is known to satisfy Eq. (3.20).  Examination of Table 4 confirms that 

the three combinations Ti-Ti, Ti-SS, Ti-Tung gives as expected the exact prediction 

for both 𝐸𝑝𝑠  and 𝐽𝑐 𝑝𝑠 , i.e. 120 GPa and 100.8 kJ/m2, respectively, as tabulated for 

titanium in the first row of Table 3.3. 

 

Table 3.3 Materials properties used in the paper. 

Material 𝐸 

(GPa) 

𝜎𝑌 

(MPa) 

𝜎𝑇𝑆 

(MPa) 

𝐾𝐼𝐶  

(GPa m
1
2) 

𝐺𝑐  

(kJ/m2) 

𝑣  

(Poisson 

ratio) 

Titanium 120 812 1077 110 100.8 0.36 

Stainless 200 881 1206 100 50.0 0.30 

Steel 190 324 491 50 13.2 0.29 

Tungsten 410 1123 1255 150 54.9 0.28 

Copper 130 92 243 30 11.7 0.34 

Aluminium 70 98 370 30 12.9 0.35 

Table 3.4 Virtual material properties for three material combination. 

i Material 𝛽𝑖  
𝐽𝑐 =

𝐾𝐼𝑐
2

𝐸
 

(kJ/m2) 

𝛼0𝑖
𝑣 𝑔𝑖  Virtual Properties 

𝐸𝑝𝑠  

(GPa) 

𝐽𝑐 𝑝𝑠 

(kJ/m2) 

Mat. 

type 

0 Titanium 

(ps) 

1 100.8 1 120 100.8 Ti-Ti 

1 Stainless (ts) 0.2975 50.0 6.78 120 100.8 Ti-SS 

2 Tungsten 0.1593 54.9 11.53 120 100.8 Ti-Tung 
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(ts) 

As a further check on the analytical study each of the three CT specimens at the 

length scales and materials specified in Table. 3.2 are re-evaluated numerically with 

the commercial code Abaqus. This involved meshing three CT specimens that are 

scaled versions of the model depicted in Fig. 3.4.  The top circle depicted in Fig. 3.4 is 

displacement by 0.25 mm in the physical space (to ensure elasticity) with the bottom 

circle is fixed in all directions.  The J-integrals in this instance were determined using 

the facility within Abaqus and the results are provided in Table 3.5. 

Table 3.5 Numerical J-integral comparison between the virtual and numerical models. 

i Material 𝛽𝑖  𝐽𝑡𝑠(𝛽𝑖) 
(kJ/m2) 

𝛼0𝑖
𝑣 𝑔𝑖  Virtual 

𝐸𝑝𝑠  

(GPa) 

𝐽 𝑝𝑠 

(kJ/m2) 

Mat. 

type 

0 Titanium 

(ps) 

1 13.1 1 120 13.1 Ti-Ti 

1 Stainless (ts) 0.2975 6.2 6.78 120 13.1 Ti-SS 

2 Tungsten 

(ts) 

0.1593 6.2 11.53 120 13.1 Ti-Tung 

The results confirm the veracity of the theory for predicting J-integrals with scaled 

tests for the CT specimens, although the analysis is limited here to linear elastic 

fracture mechanics. Further details on the numerical simulation are provided in 

subsequent sections, where elastic-plastic fracture mechanics is considered. 

3.6.3. Cohesive zone model 

The cohesive zone model represents damage that results in fracture by means of a 

single failure usually along a predefined path or along element edges in any finite 

element analysis.  The most rudimentary cohesive model is identified by a traction-

separation curve consisting of three properties, which are critical stress 𝜎𝑐 , critical 

separation 𝛿𝑐 and the area under the curve 𝐺𝑐 , which is the cohesive fracture energy.  

In the simplest linear case 𝐺𝑐 = 0.5𝜎𝑐𝛿𝑐 and it is evident that the three properties are 

related.  The J-integral property 𝐽𝑐 = 𝐺𝑐  suggests that 𝛼0
𝜔𝐺𝑡𝑠  should be considered for 

the purpose of scaling.  Note that  
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𝛼0
𝜔𝐺𝑐 𝑡𝑠 = 𝛼0

𝑣𝑔𝛽𝐺𝑐 𝑡𝑠 =  
1

2
(𝛼0

𝑣𝛽2𝑔𝜎𝑐 𝑡𝑠)(𝛽
−1𝛿𝑐 𝑡𝑠) (3.28) 

where it is apparent that for zeroth-order scaling to apply, critical material properties 

must be changed.  

However, theoretically the critical separation 𝛿𝑐  would be affected by 𝛽 , and 

ultimately stress 𝜎𝑐 will not changed with 𝛽 for the same material, which makes 𝐺𝑐  

affected by 𝛽 but it should not be.  This provides a conflict in zeroth-order theory and 

leads to the need of high-order theories.  

In order to gain some insight into the response of a cohesive element under scaling it 

is of interest to consider 1-D rod (see ref. [112]) represented by a linear spring and 

linear cohesive model as depicted in Fig. 3.7. 

 

Figure 3.7 Scaling of rod presented by a spring and cohesive element. 

Consider then a rod of length ℓ0  and area 𝐴0  that is subjected a displacement 𝛿 at the 

free end with its lower end fixed.  The behaviour of all the real experiments in Fig. 3.7 

is linear extension followed by linear unloading once the critical stress 𝜎𝑐 is attained.  

The total extension of the rod is  𝛿 = 𝛿𝑒𝑙 + 𝛿𝑐𝑜ℎ  with uniaxial applied stress 𝜎 =
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𝜎𝑒𝑙 = 𝜎𝑐𝑜ℎ, with 𝛿𝑒𝑙 =
𝜎𝑒𝑙ℓ0

𝐸
 and when meaningful 𝜎𝑐𝑜ℎ = 𝜎𝑐 (1 −

𝛿𝑐𝑜ℎ

𝛿𝑐
), where 𝐸 is 

Young’s modulus, 𝛿𝑒𝑙  and 𝛿𝑐𝑜ℎ  are the extensions arising from the spring and 

cohesive element, respectively.  Note that the equilibrium condition 𝜎𝑒𝑙 = 𝜎𝑐𝑜ℎ 

provides the expression: 

𝜎

𝜎𝑐
=

{
 
 

 
  𝛿

𝛿𝑐
𝑒𝑙

if     0 ≤ 𝛿 ≤ 𝛿𝑐
𝑒𝑙

(1 −
𝛿𝑐
𝑒𝑙

𝛿𝑐
)

−1

(1 −
𝛿

𝛿𝑐
) if    𝛿𝑐

𝑒𝑙 < 𝛿 ≤ 𝛿𝑐

 (3.29) 

where 𝛿𝑐
𝑒𝑙 = 𝜎𝑐 ℓ0

𝐸
 and it is assumed that this equation applies to each of the real 

experiments in Fig. 3.7; in particular ℓ0  takes up the values ℓ𝑝𝑠, 𝛽1ℓ𝑝𝑠, and 𝛽2ℓ𝑝𝑠 for 

each of the lengths of the rods. 

The focus of interest is the behaviour of the full-scale virtual model depicted in Fig. 8.  

The scaling theory does not provide explicit function relationships of the type in Eq. 

(3.29) as it supplies both the stress 𝜎𝑝𝑠 and the displacement 𝑢𝑝𝑠 = 𝛿𝑝𝑠 by means of 

Eqs. (3.16c) and (3.16e), respectively.  The issue alluded to above with regards to 𝐺𝑐  

being dependent on 𝛽 is made explicit here since with 𝜎𝑐  and 𝐸 fixed for the same 

material, then 𝛿𝑐
𝑒𝑙 = 𝜎𝑐

𝐸
ℓ0  will scale with the specimen size and consequently, so 

must 𝛿 and 𝛿𝑐  for Eq. (3.29) to remain unchanged.  Unfortunately, this provides a 

contradiction since 𝐺𝑐 = 0.5𝜎𝑐𝛿𝑐, which means 𝐺𝑐  scales with length also.  As this is 

not the case 𝜎𝑐 and 𝛿𝑐  must be allowed to vary (for zeroth-order finite similitude) and 

this aspect in many respects highlights the problem faced in the literature with setting 

𝜎𝑐  (or 𝛿𝑐 ) with these types of element. Thus for zeroth-order scaling with 𝜎𝑝𝑠 =

𝛼01
𝑣 𝑔1𝛽1

2𝜎𝑡𝑠1 and 𝑢𝑝𝑠 = 𝛽1
−1𝑢𝑡𝑠1 it is clear that with all displacement and stress terms 

in Eq. (3.29) behaving like 𝛿𝑝𝑠 = 𝛽1
−1𝛿𝑡𝑠1 and 𝜎𝑝𝑠 = 𝛽1 𝜎𝑡𝑠1 (i.e. 𝛼01

𝑣 𝑔1 = 𝛽1
−1), then 

𝐺𝑐 𝑡𝑠 = 𝐺𝑐 𝑝𝑠 and successful zeroth-order scaling is possible. 

It is interest to examine two different materials for trial space models and two cases 
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are considered (i) 𝐺𝑐 𝑡𝑠1 = 𝐺𝑐 𝑡𝑠2, 𝛽1 𝐸𝑐 𝑡𝑠1 = 𝛽2 𝐸𝑐 𝑡𝑠2 and (ii) 𝛽1
−1𝐺𝑐 𝑡𝑠1 = 𝛽2

−1𝐺𝑐 𝑡𝑠2 , 

𝐸𝑐 𝑡𝑠1 = 𝐸𝑐 𝑡𝑠2 ; in both cases it is assumed 𝛽1 =
1

2
 and 𝛽2 =

1

4
.  The zeroth-order 

condition 𝛼01
𝑣 𝑔1𝛽1

2𝐸𝑡𝑠1 = 𝛼02
𝑣 𝑔2𝛽2

2𝐸𝑡𝑠2  is satisfied in (i) with 𝛼01
𝑣 𝑔1 = 𝛽1

−1  and 

𝛼02
𝑣 𝑔2 = 𝛽2

−1 and (ii) with 𝛼01
𝑣 𝑔1 = 𝛽1

−2 and 𝛼02
𝑣 𝑔2 = 𝛽2

−2.  The parameters for the 

two cases are tabulated in Table 6 in dimensionless form and the arrangements are 

depicted in Fig. 3.8.  Examination of the figure reveals how the real behaviours are 

projected and then combined to form virtual models.  In this case, to keep things 

reasonably simple, the arrangement is confined to zeroth-order constructs with more 

complex problems (involving plasticity) being presented in the following section. 

Table 3.6 Test parameters for scaled cohesive elements  

Test Case 𝐺𝑐 𝑡𝑠1
𝐺𝑐 𝑡𝑠2

 
𝐸𝑡𝑠1
𝐸𝑡𝑠2

 
𝜎𝑐 𝑡𝑠1

𝜎𝑐 𝑡𝑠2
 

𝛿𝑐 𝑡𝑠1

𝛿𝑐 𝑡𝑠2
 

ℓ𝑡𝑠1

ℓ𝑡𝑠2
 

𝛿𝑐 𝑡𝑠1
𝑒𝑙

𝛿𝑐 𝑡𝑠2
𝑒𝑙  

(i) 1 0.5 0.5 2 2 2 

(ii) 2 1 1 2 2 2 

 

Figure 3.8 The construction of virtual cohesive models for two test-case materials 
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3.7 Non-linear material selection 

All the examples considered above are for linear materials and it is of interest to 

involve plasticity for physical modelling and examine how scaling parameters are set.  

Stress and strain are the principal focus here and the solution of 

𝝈𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1 + 𝑅1 (𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1 − 𝛼02
𝑣 𝑔2𝛽2

2𝝈𝑡𝑠2) (3.30a) 

𝜺𝑝𝑠 = 𝜺𝑡𝑠1 + 𝑅1 (𝜺𝑡𝑠1 − 𝜺𝑡𝑠2) (3.30b) 

which are Eqs. (3.14c) and (3.15) reproduced here for readability sake. 

The scaling parameters 𝛼01
𝑣  and 𝛼02

𝑣  are set here based on zeroth-order conditions 

followed subsequently with the setting of 𝑅1 .  The way this is achieved is to target 

critical material properties in the physical space and consider a scenario where Eqs. 

(3.30) can be set.  To aid in this analysis it is useful first to reduce Eqs. (3.30), which 

are tensorial relationships, into scalar equations. This is achieved here with a 

proportional-fields concept, where the following relationships are assumed: 

𝝈𝑡𝑠1 = �̂�1𝝈𝑝𝑠 (3.31a) 

𝝈𝑡𝑠2 = �̂�2𝝈𝑝𝑠 (3.31b) 

𝜺𝑡𝑠1 = �̂�1𝜺𝑝𝑠 (3.31c) 

𝜺𝑡𝑠2 = �̂�2𝜺𝑝𝑠 (3.31d) 

which on substitution into Eqs. (3.30) provide 

1 = 𝛼01
𝑣 𝑔1𝛽1

2�̂�1 + 𝑅1 (𝛼01
𝑣 𝑔1𝛽1

2�̂�1 − 𝛼02
𝑣 𝑔2𝛽2

2�̂�2) (3.32a) 

1 = �̂�1 + 𝑅1 (�̂�1 − �̂�2) (3.32b) 

which are the sought scalar equations, where �̂�1 , �̂�2 , �̂�1  and �̂�2  are dimensionless 

parameters. 

It is important to appreciate here that the assumed proportional form of Eqs. (3.31) 

does not constrain the governing fields to be proportional since the purpose of Eqs. 
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(3.32) is limited to the determination of scaling parameters.  The determination of 

these dimensional parameters transpires to be relatively straightforward.  In the case 

of zeroth-order theory with one trial experiment a simple process would be to 

consider synchronised uniaxial tests in both the trial space and physical space.  At the 

point when both bars reach yield stresses 𝑌𝑡𝑠1, 𝑌𝑝𝑠  and yield strains 휀𝑡𝑠1
𝑌 = 𝑌𝑡𝑠1 

𝐸𝑡𝑠1 
, 휀𝑝𝑠

𝑌 =

𝑌𝑝𝑠 

𝐸𝑝𝑠 
, then Eqs. (3.32) reduce to 1 = 𝛼01

𝑣 𝑔1𝛽1
2�̂�1  and 1 = �̂�1  with �̂�1 =

𝑌𝑡𝑠1

𝑌𝑝𝑠
 and �̂�1 =

𝑡𝑠1
𝑌 .  

𝑝𝑠
𝑌 , which provides the means to set 𝛼01

𝑣 𝑔1, ie 𝛼01
𝑣 𝑔1𝛽1

2 =
1

�̂�1
=  

𝑌𝑝𝑠

𝑌𝑡𝑠1

.  Strains match, 

for zeroth-order finite similitude, which is precisely what is inferred by the equation 

�̂�1 = 1  or equivalently 휀𝑡𝑠1
𝑌 = 휀𝑝𝑠

𝑌 , which gives 
𝑌𝑡𝑠1  

𝐸𝑡𝑠1  
=

𝑌𝑝𝑠 

𝐸𝑝𝑠 
 or 𝐸𝑝𝑠  = 𝐸𝑡𝑠1

𝑌𝑝𝑠 

𝑌𝑡𝑠1

.  As 

regards first order, the zeroth-order conditions �̂�1 =
𝑌𝑡𝑠1

𝑌𝑝𝑠
, �̂�2 =

𝑌𝑡𝑠2

𝑌𝑝𝑠
, 1 = 𝛼01

𝑣 𝑔1𝛽1
2�̂�1 

and 1 = 𝛼02
𝑣 𝑔2𝛽2

2�̂�2 are assumed to apply making 𝛼02
𝑣 𝑔2𝛽2

2 and 𝛼01
𝑣 𝑔1𝛽1

2 known.  To 

determine 𝑅1 , Eq. (3.32a) is reused, where in this case mean values for stress are 

utilised.  This approach enables the effect of material work hardening to be 

accommodated and the method was first introduced in reference [106] although 

limited to zeroth-order problems in that case.  The mean-value is defined to be 

�̅� =
1

휀𝑚𝑎𝑥
∫ 𝜎𝑑휀
𝜀𝑚𝑎𝑥

0

 (3.33) 

where 휀𝑚𝑎𝑥 is taken from the material stress-strain curves used in the experiments; 

these are depicted in Fig. 3.9 with is 휀𝑚𝑎𝑥 indicated for the materials introduced in 

Table 3.3.  Note from the figure that 휀𝑚𝑎𝑥 is limited to 0.1 for materials with strain 

ranges greater than that for titanium. 
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Figure 3.9 Strain-hardening curves for materials listed in Table 1. 

With the application of Eq. (3.33) it follows that Eq. (3.32a) can be rearranged to give 

𝑅1 =
1 − 𝛼01

𝑣 𝑔1𝛽1
2�̂�1

𝛼01
𝑣 𝑔1𝛽1

2�̂�1 − 𝛼02
𝑣 𝑔2𝛽2

2�̂�2
 (3.34) 

where in this case �̂�1 =
�̅�𝑡𝑠1

�̅�𝑝𝑠
, �̂�2 =

�̅�𝑡𝑠2

�̅�𝑝𝑠
, and where it is appreciated that this approach 

for the determination of the scaling parameters is one of many possibilities; no 

attempt is made here to determine the length scales 𝛽1  and 𝛽2 , which are set here to 

be 𝛽1 = 1

2
 and 𝛽2 = 1

4
. 

3.7.1. Zeroth-order material selection 

The materials presented in Table 3 are utilised as trial materials with titanium being 

the material chosen for the physical model.  The objective here is to examine how 

well material choices for the trial space capture the uniaxial behaviour of titanium. 

Table 3.7 Zeroth-order virtual material properties with yield-stress targeting and 

𝛽1 = 1

2
. 

Material Yield 

stress 

(MPa) 

𝛼01
𝑣 𝑔1 Virtual 

Material 

Virtual material properties 

Yield stress 

(MPa) 

Young’s 

Modulus E 

(GPa) 
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Titanium (PS) 812 4 Ti-Ti 812 120 

Stainless steel 

(TS) 

881 3.69 Ti-SS 812 120 

Steel (TS) 324 10.04 Ti-S 812 120 

Tungsten (TS) 1123 2.89 Ti-Tung 812 120 

Copper (TS) 92 35.25 Ti-C 812 120 

Aluminium (TS) 98 30.03 Ti-Al 812 120 

Recall that a virtual-material model is produced by targeting selected materials 

properties (e.g. yield stress) of titanium where in the case stainless steel as the trial 

material it is noted as Ti-SS.  The scaling parameters 𝛼01
𝑣 𝑔1 for each of the material 

combinations are presented in Table 3.7, where it is apparent that the virtual materials 

match both the yield stress and Young’s modulus of titanium. As the objective is J-

integral simulation, when the LEFM parts are matched after material synchronization, 

the main factor that affects the elastic-plastic J-integral should be the strain-hardening 

curves between physical and virtual materials. The non-linear J-integral cannot be 

directly synchronized in the output. For this reason, materials properties are first 

synchronized, which aims to produce virtual materials with a close strain-energy 

density to the physical material (the area under the strain-hardening curves). 

The stress strain curves for titanium and the virtual material can be found in Fig. 3.10, 

where large deviations are apparent for some combinations. The virtual material 

model Ti-SS gives the closest match with Ti-Al providing the worst. The issue here is 

that although yield stress and Young’s modulus match, there is mismatch in strain 

hardening and with zeroth-order theory there is no practical solution to this dilemma.  



Chapter 3 Finite Similitude in Fracture Mechanics 

 80 / 205 

 

 

Figure 3.10 Stress-hardening curves for virtual models targeting titanium yield stress. 

Table 3.8 First-order virtual material properties with 𝛽1 = 1

2
. and 𝛽2 = 1

4
. 

Material 휀𝑚𝑎𝑥 Mean 

stress 

(MPa) 

𝛼01
𝑣 𝑔1 

(𝛽1 = 1

2
) 

𝛼02
𝑣 𝑔2 

(𝛽2 = 1

4
) 

Virtual 

Material 
𝑅1 Virtual properties 

Mean 

stress 

(MPa) 

Yield 

stress 

(MPa) 

Titanium 

(PS) 
0.09 1026 4 16 Ti-SS-S -0.386 1022 812 

Stainless 

steel (TS) 
0.10 1051 3.69 14.76 Ti-SS-C -0.647 1013 812 

Steel (TS) 0.07 445 10.04 40.16 Ti-SS-

Tung 
0.539 1023 812 

Tungsten 

(TS) 
0.10 1194 2.89 11.56 Ti-S-C 0.124 1039 812 

Copper (TS) 0.06 210 35.25 141.0 Ti-C-

Tung 
-0.835 1010 812 

Aluminium 

(TS) 
0.10 312 30.03 120.12 Ti-SS-Al -0.035 1014 812 

Considering the results presented in Fig. 3.10 it is of interest to examine what 

improvement can be made on the application of first-order theory to the materials in 

Table 3.8. 
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3.7.2. First-order material selection 

Following the procedure outlined above, both 𝛼01
𝑣 𝑔1  and 𝛼02

𝑣 𝑔2  are determined on 

targeting the yield stress and are tabulated in Table 3.8.  Additionally, 𝑅1 is evaluated 

based on Eq. (3.34) with the objective of matching the mean stress for titanium.  The 

properties of real and virtual materials are provided in Table 6 and stress-strain curves 

over the strain range for titanium are depicted in Fig. 3.11.  On contrasting Figs. (3.10) 

and (3.11) it is apparent just how marked the improvements are with significantly 

reduced disparity between the titanium and all other curves.  A perfect match is not 

revealed but the improvement brought about by an additional trial experiment is 

demonstrable. 

 

Figure 3.11 Strain-hardening curves for virtual materials over the strain range for 

titanium. 

3.8  Test specimen analysis (numerical) 

The virtual materials of Section 3.7 are tested numerically using the commercial finite 

element package Abaqus. The context of the study is physical modelling with a view 
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used to predict the behaviour of a full-scale model. Practical experimental trials would 

replace the numerical models, but the focus here is on confirming the validity of the 

finite similitude approach, and numerical simulation is sufficient for that purpose. For 

this purpose, the virtual materials are applied to finite element models with contour 

integral, where the J-integral value can be directly read. As the outputs of the models 

can represent the material behaviour, the comparison in J-integral production between 

physical and virtual models can prove the applicability of the finite similitude process. 

Two relatively simple classical elastic-plastic fracture mechanics problems are 

considered; these are the quasi-statically loaded 2D compact-tension (CT) specimen 

along with the 3D three-point bending (TPB) problem.  The evaluation of the J-

integral is the focus using the inbuilt facility within the Abaqus software and the 

evaluation of the zeroth and first-order theories.  

3.8.1. Compact tension and bending models 

The compact tension specimen depicted in Fig. 3.4 is meshed and loaded in the 

manner depicted in Fig. 3.12, where a displacement of 2mm is applied to initiate 

plastic behaviour.  The mesh consists of 4-noded continuum plane-stress elements 

(CPS4R). 
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Figure 3.12 CT and TPB specimens used in finite similitude analysis. 

Similarly, a three-point bending model specimen consisting of a beam with 

dimensions 10mm height, 120mm length (between loading points) and 20mm 

depth is depicted in Fig. 3.12(a) along with the Abaqus model highlighting the 

mesh used in the analysis.  In this case the loading pin is displaced 5mm to 

induce plastic behaviour, and 8-noded continuum 3D stress elements (C3D8R) 

form the mesh.  The results of the Abaqus simulation for the CT and TPB 

specimens for titanium are depicted in Fig. 3.12(b), where not unexpectedly high 

stress levels are apparent at the crack tip. 

3.8.2. Virtual material models 

The finite similitude theory does not require the formulation of constitutive models as 

the stress and strain fields are directly provided by Eqs. (3.28).  It is of interest 

(a) Meshed CT and TPB specimens. 

(b) Stress levels for deformed CT and TPB full-scale titanium models. 
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nonetheless in view of the uniaxial data in Fig. 3.11 and the ease at which Abaqus 

accepts discrete data to form a multi-axial constitutive law based on equivalent stress 

and strain.  Incorporation of the data in Fig. 3.11 and the running of Abaqus readily 

facilitates the determination of J-integrals. In the case of the CT and TPB specimens 

depicted in Fig. 3.12, fifteen contours are located around each of the plastic zones and 

the results on the averaging fourteen of these are provided in Table 3.9 for both zeroth 

and first-order material models. Each model is aiming to capture the full-scale J-

integral values for titanium (i.e. CT (570.4 kJ/m2), TPB (746.9 kJ/m2)) and as 

revealed in the table the virtual material Ti-S-C provides the closest result. 

The first purpose of the numerical tests is to show the validity of finite similitude 

theory by exploring the prediction of outputs with synchronised inputs. When input 

synchronisation is available, it can also work for outputs. The criterion for validation 

of the scaling experiments is determined, by the average error between different 

materials in elastic-plastic stress. Results are deemed acceptable if the output errors 

are lower than 5%. Under this condition, the first-order results are all acceptable, 

showing the scaling theory's efficacy. It is evident on examination of Table 3.9 that 

first-order provides a significant improvement on the zeroth-order predictions. For 

zeroth-order, most results are not acceptable, especially copper and aluminium. It can 

be explained that these two materials are significantly weaker than others, as also 

shown in Fig.3.10 with the curves of Ti-C and Ti-Al. Considering the results of 

stainless steel, which is closest to titanium from the beginning, the scaling experiment 

between different materials should have two materials with relative strength. 

Furthermore, comparing the curves and data in Figs. 3.10 and 3.11 and Table 3.9 can 

find an expected behaviour between inputs and outputs, which shows the rationality 

of the test.  

Table 3.9 Results of numerical simulations of J-integral. 

 Material J-integral 

for CT 

(kJ/m2) 

Error in CT 

test 

J-integral 

for TPB 

(kJ/m2) 

Error in 

TPB test 

Physical 

(real) 

Titanium 570.4 - 746.9 - 
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Zeroth order 

(virtual) 

Ti-SS 584.4 2.5% 824.2 10.3% 

Ti-S 606.2 6.3% 780.8 4.5% 

Ti-C 714.4 25.2% 952.8 27.6% 

Ti-Tung 533.3 6.5% 693.8 7.1% 

Ti-Al 758.1 32.9% 994.3 33.1% 

First order 

(virtual) 

Ti-SS-S 547.0 4.1% 712.8 4.2% 

Ti-SS-C 548.7 3.8% 713.2 4.1% 

Ti-SS-

Tung 

548.0 3.9% 710.4 4.5% 

Ti-S-C 574.4 0.7% 734.6 1.6% 

Ti-C-Tung 556.2 2.5% 707.7 4.9% 

Ti-SS-Al 549.0 3.8% 713.3 4.1% 

Overall, the results of the study have confirmed the improvement that can be achieved 

by the adding of an additional trial-space experiment. It should note that the criterion 

of validation of the scaling experiment needs to consider numerical and practical 

results, where the criterion can be an error between them in the physical model [107]. 

As for the entire numerical simulation, the criterion should be lower since only 

acceptable errors like different plastic behaviour are considered. 

3.9 A practical demonstration in Ansys 

To demonstrate that the approach presented has practicality and additionally is not 

reliant on a particular package a semi-elliptical crack located on the outer wall of a 

cylindrical pressure vessel is examined in this section using the commercial software 

package ANSYS [113].  The problem is slightly more nuanced than those described 

above being truly 3D in nature with focus on calculating stress intensity factors (SIFs) 

and J-integrals.  The details of the crack and the pressure vessel are presented in 

Fig.3.13 along with the finite element mesh employed.  The pressure vessel is 

pressurised internally but constrained laterally to impose plane strain conditions on 

the crack.  The cross-section view of the crack presented Fig. 3.13 (b) shows crack 

depth (minor radius) b, half crack length (major radius) a, and thickness T of the 

cylindrical pressure vessel.  The pressure vessel dimensions are outer radius 𝑅𝑜 =

1.5 m, inner radius 𝑅𝑖 = 1.4 m, length 𝐿 = 8 m and the following ratios apply: 
𝑅𝑖

𝑇
=

14, 
𝑏

𝑇
=

𝑏

𝑎
= 0.5. 
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(a) Mesh and overall dimensions 

 

(b) Cross section of the semi-elliptical crack 

Figure 3.13 Mesh and crack details for an internally pressurized pressure vessel 

The FE mesh for the pressure vessel depicted in Fig. 3.13(a) is made up of 52283 

solid tetrahedron elements (element size ~ 0.1m) and a total of 100234 nodes.  The 

overall dimensions of the semi-elliptical (SE) crack are provided in Fig. 3.13(b) and 

conform to the relationship 
𝑏

𝑎
= 0.5.  The ANSYS software evaluates SIFs using a 

contour integration procedure with the facility to set the number contours.  In this 

study the number of contours around the crack tip is set equal to be 3 with the largest 
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contour radius equalling 0.05m. Unlike the case studies above, here, the SIF value is 

the target for comparison, which can be directly synchronised between different 

materials. It makes the process possible to apply in practical cases, that the outputs of 

trial specimens can predict the output of physical specimens. 

3.9.1. Linear elastic analysis 

Zeroth-order theory is sufficient for a linear-elastic analysis and since the SIF 𝐾 ∝

𝜎√𝜋𝑎 and 𝐽 =
𝐾2

𝐸′
 the analysis in Section 3.6.1 applies, which for an identical material 

(i.e. titanium) at full size and scale, Eq. (3.26) provides 𝛼01
𝑣 𝑔1 =

1

𝛽1
2

𝐸 𝑝𝑠
′

𝐸 𝑡𝑠1
′ =

1

𝛽1
2.  The 

precise relationship for the SIF for the SE crack is 

 𝐾 = 𝜎√𝜋𝑎 ∙ 𝑓(𝑎′) (3.35) 

where 𝑓(𝑎′) is a shape function and takes the form, 

 𝑓(𝑎′) = √1 + 0.52𝑎 + 1.29𝑎2 − 0.07𝑎3  (3.36) 

and where 𝑎′ =
𝑎

√𝑅𝑖𝑇
, which is a dimensionless parameter unaffected by scale and 

consequently 𝑎′𝑝𝑠 = 𝑎′𝑡𝑠. 

It follows therefore that 𝝈𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1 = 𝝈𝑡𝑠1 , 𝐾𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

3/2
𝐾𝑡𝑠1 =

𝛽1
−1/2

𝐾𝑡𝑠1  and 𝐽𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

 𝐽𝑡𝑠1 = 𝛽1
−1𝐽𝑡𝑠1 , which are relationships that are 

confirmed on comparison of virtual and real results presented Fig. 3.17 (i.e. Ti-Ti and 

Ti curves), with 5MPa internal uniform pressure and 𝛽1 = 1

2
 and 1

4
.  Note that the 

measure used along the abscissas in Fig. 3.14(b) and (c) is the length along the middle 

contour (of the 3 contours) starting from point 1 in Fig 3.14(a) and ending at point 2.  

In the situation where a different material is used at scale, then Eq. (3.26) provides 

𝛼01
𝑣 𝑔1 =

1

𝛽1
2

𝐸 𝑝𝑠
′

𝐸 𝑡𝑠1
′  and consequently 𝝈𝑝𝑠 = 𝛼01

𝑣 𝑔1𝛽1
2𝝈𝑡𝑠1 =

𝐸 𝑝𝑠
′

𝐸 𝑡𝑠1
′ 𝝈𝑡𝑠1 , which means the 

pressure in the scaled model must change as shown in Table. 3.10 for a selection of 

materials.  Note also in this case 𝐾𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

3/2
𝐾𝑡𝑠1 =

𝐸 𝑝𝑠
′

𝐸 𝑡𝑠1
′ 𝛽1

−1/2
𝐾𝑡𝑠1  and 𝐽𝑝𝑠 =

𝛼01
𝑣 𝑔1𝛽1

 𝐽𝑡𝑠1 =
𝐸 𝑝𝑠
′

𝐸 𝑡𝑠1
′ 𝛽1

−1𝐽𝑡𝑠1, which are confirmed to reasonable accuracy by the results 
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presented in Fig. 3.14. 

Table 3.10 Applied pressure for scaled material models 

Materials Titanium Stainless steel Steel Copper Aluminium 

Young’s modulus 

(GPa) 

120 200 190 130 70 

Pressure (MPa) 5 8.3333 7.9167 5.4167 2.9167 

 

 
(a) Contour at crack front used by ANSYS 

 

 

(b) SIFs along contour 
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(c) J-integral along contour 

Figure 3.14 J-integrals and SIFs along contour shown in (a) 

3.9.2. Plastic analysis 

Things are slightly more involved in the situation where the pressure loading is 

sufficient to initiate plastic behaviour. The approach outlined in Section 3.7 is applied 

here with the targeting of yield stress for zeroth order and both yield and mean stress 

(i.e. Eq. (3.33)) first order.  The SIF in this situation can again be estimated using Eq. 

(3.35) but requires a plastic correction, according to Marie and Nédélec [114], which 

for a pressure vessel takes the form 

 𝐾𝑝𝑙 = 𝐾𝑒𝑙

[
 
 
 

1 +
1

2(1 − 𝑣2)
√1 − (

1

1 + 2
𝑟𝑦
𝑎

)

2

]
 
 
 

√

𝑎
2 + 𝑟𝑦
𝑎
2

 (3.37) 

where 𝑟𝑦  is a measure of the extent of the plastic zone at the crack tip, and one 

possible estimate is Irwin’s formula 𝑟𝑦 =
1

6𝜋
(
𝐾𝑒𝑙

𝑌
)
2

 with yield stress 𝑌. 

The presence of 𝐾𝑒𝑙 in 𝑟𝑦 means that 𝐾𝑝𝑙 is nonlinearly related to 𝐾𝑒𝑙 and hence to the 

shape function and the ratio between applied stress and yield stress (see Shlyannikov 

[115]).  The applied stress between physical and trial space still obeys 𝝈𝑝𝑠 =

𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠 , thus, in order to negate differences in plastic correction at scale it is 
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necessary to set 𝛼01
𝑣 𝑔1𝛽1

2 =  
𝑌𝑝𝑠

𝑌𝑡𝑠1

.  This again provides different pressures at scale for 

different materials as tabulated in Table 3.11. 

Table 3.11 Applied pressure for each material in plastic model 

Materials Titanium Stainless steel Steel Copper Aluminium 

Yield stress (MPa) 812 881 323.5 92.2 98.4 

Pressure (MPa) 50 54.25 19.99 5.68 6.06 

Note that the relationship between stress intensity factors for first-order theory is  

𝐾𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

3/2
𝐾𝑡𝑠1 + 𝑅1 (𝛼01

𝑣 𝑔1𝛽1

3
2𝐾𝑡𝑠1 − 𝛼02

𝑣 𝑔2𝛽2

3
2𝐾𝑡𝑠2) (3.38) 

with zeroth order returned on setting 𝑅1 = 0. 

The results of the trial are provided in Fig. 3.15 with reasonable accuracy returned for 

both zeroth and first order except for Ti-Al. The errors are listed after the material-

combination, which is calculated by the average value of the corresponding points.  

Finally, Fig. 3.16 highlights the vast improvement possible for J-integrals using the 

first order theory with the J-integrals determined using the in-built facility in ANSYS.  

The accuracies visible in the figures reflect to a large extent the closeness of the 

curves to titanium in Figs. 3.10 and 3.11. 
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Figure 3.15 SIF predictions with (a) zeroth-order and (b) first-order using the in-built 

facility in ANSYS and Eq. (36). 
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Figure 3.16 J-integral predictions for (a) zeroth-order and (b) first-order using the in-

built facility within ANSYS. 

It can find that both the zeroth-order and first-order theories can produce acceptable 

(lower than 5%) results in the SIF simulation, except for aluminium. Because of SIF's 

linearity, even the model becomes plastic in the process, and errors are further 

reduced by first-order theory. As for the J-integral comparison, the errors are higher, 

especially for copper and aluminium, which have the same performance as contour 

integral models. Though the J-integral is still investigated in virtual models, it proves 

the first-order theory's efficacy by comparing the curves in Fig. 3.16. 

3.10 Conclusion 

The chapter examines a new scaling theory for the creation of physical models for the 

representation of full-scale cracked specimens.  A particularly novel feature is the 

employment of two scaled fracture-mechanics experiments at distinct scales and the 

application of a theory founded on the metaphysical concept of space scaling.  The 

following conclusions can be drawn from the investigation outlined in the chapter: 
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1. The finite similitude theory has been further developed so that it captures all 

scale dependencies that arise in the fields describing fracture mechanics. 

2. A new differential form of similarity has been established, which when 

integrated links information across two scaled-fracture experiments to the full-

scale behaviour. 

3. The new theory has been shown to be equally applicable to analytical and 

numerical fracture models and provides improvements in accuracy, which on 

occasions can be markedly superior to those obtained from a single-scale trial 

experiment. 

4. Scale effects as previously defined by dimensional analysis can up to a limited 

extent be accommodated and cease to be scale effects in the new theory (e.g. 

proportional field differences are now possible). 

5. The efficient determination of scaling parameters has been shown possible by 

the application of a proportional-fields assumption. 

More specifically for the trial experiments performed it has been shown that: 

1. Linear elastic fracture mechanics was captured exactly for the CT specimen by 

allowing the length scale for the trial experiments to be determined as part of 

the analysis. A pure-mathematical analytical simulation is first produced in 

Section 3.6.2. It shows the most straightforward situation and approach to 

applying finite similitude theory in LEFM, which is successful as the 

foundation of the theory. It is not complex since all the transported processes 

are linear, making the results match perfectly.  

2. Zeroth-order theory involving one single trial experiment proved to be 

insufficient for elastoplastic fracture mechanics, but significant improvement 

was shown possible with two trial scale experiments. The elastic-plastic J-

integral tests in Sections 3.7 to 3.8 shows the efficacy of finite similitude 

theory in fracture mechanics. It offers a standard of material selection that 

materials with different strengths will occur significant errors. Then it 

produces results with errors lower than 5% with first-order theory, which uses 
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an inexact similitude (mean value) when the properties are non-linear. It 

provides the direction for applying the scaling theory, though the test is not 

applicable in practice. 

3. Section 3.9 applies the theory in the cracked-cylindrical tube with internal 

pressure. It directly calculates the SIF results by trial models and compares 

them to the physical model, providing practical application evidence. However, 

the J-integral simulations in this Chapter are in the virtual models, which 

cannot apply in reality. This is because of the higher order and non-linearity of 

J-integral. Hence, the next step aims to transfer the J-integral to other outputs, 

which can be directly calculated in the scaling process, and then return them to 

the value of J for comparison.  
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Chapter 4 Two-experiment Method for Standard Tests 

4.1 Introduction 

Fracture mechanics is a field of solid mechanics concerned with the propagation of 

cracks through materials.  It is founded on the twin pillars of analytical mechanics for 

the quantification of crack-driving forces and experimental mechanics to characterise 

the resistance offered to crack propagation by the material.  In essence, fracture 

mechanics is a methodology for the prediction of failure for loaded parts housing 

existing flaws and provides the correct description for categorising cracks into those 

that grow and those that do not.  However, the dependence on defect size, orientation 

and location has profound influence on both analytical and experimental approaches.  

It in effect necessitates bespoke methodologies to be applied for the consideration, 

analysis, and assessment of the vast array of possible flawed structural configurations.  

The now seminal work of Griffith in 1921 [9] postulated that it was the presence of 

defects in solids that gave rise to unexpectedly lower failure loads in brittle materials 

(e.g., glass and ceramics).  He postulated that the mechanism leading to failure under 

loading is the generation of high stresses at the locality of defects, which have the 

potential to initiate crack propagation.  In the case of ductile parts, loading leads to 

plastic behaviour in the vicinity of the crack (Irwin, 1958 [10] and Miller,1968 [11]) 

and the size of the plastic zone at the tip of a crack can dictate the fracture-mechanics 

theory most suited to its analysis.  In the case of a diminishingly small plastic zone, 

linear-elastic fracture mechanics (LEFM) is applicable and for larger zones elastic-

plastic fracture mechanics (EPFM) may be required.   

There are several physical quantities important to fracture mechanics and one is the 

stress intensity factor K proposed by Irwin in 1957 [12], which characterizes the 

intensity of elastic crack-tip fields.  Likewise, the J-integral proposed by Rice in 1968 

[13] quantifies the intensity of elastic-plastic crack-tip fields.  Other commonly used 

fracture measures are the crack-tip opening distance (CTOD) and crack-tip opening 
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angle (CTOA), to describe the crack extension behaviour.  These quantities along with 

others underpin fracture mechanics, which has grown into a robust combination of 

analytical and experimental approaches for the analysis of practical crack-related 

problems [116-118].  Many of testing procedures and terminology can be found in the 

technical standards of ASTM International (formerly the American Society for Testing 

and Materials).  Important examples are, technical standards ASTM E399 and E1823 

[30,119] for fracture toughness 𝐾𝐼𝐶  and energy release rate at crack initiation 𝐺𝐶  along 

with ASTM E561 [120] for K-R curves, where the R-curve is a crack-extension, 

resistance-curve for macro-ductile tearing.  The standard ASTM E1820 [40] describes 

the measurement of elastic-plastic initiation point 𝐽𝐼𝐶  and its related fields and ASTM 

E1290 and E2472 [121-122] are concerned with CTOD and CTOA testing, 

respectively.  New and old methods and concepts are under continuous review and 

development [123-127] and typically ASTM standards are reappraised every five 

years.  This basic infrastructure provides a means to ensure common standards along 

with the continued development of fracture properties for the application of fracture 

mechanics from laboratory testing to engineering design. 

The focus in this paper is on scaling for the purpose of mechanical testing which is a 

feature not covered by the ASTM standards relating to fracture mechanics.  The 

objective here is to gauge the response of a specimen at any scale from the results 

obtained from two scaled experiments at selected scales. It is well appreciated that 

scaling is widely used in continuum mechanics (e.g., structural failure [83,128] and 

impact [86-87], and thermal-fluids [90]) and underpinned by dimensional analysis. 

Dimensional analysis is presently the only ubiquitous scaling method that could in 

principle be applied in fracture mechanics [94-97] but the presence of size effects 

means it has limited applicability.  It offers no solution to scale effects, which are 

invariably present in all non-trivial processes.  The works of Bažant [74-76] for 

example sheds light on the problem, where size effects in materials effectively negates 

the efficacy of dimensional analysis in fracture mechanics. 

A new scaling theory [107] has recently appeared in the open literature, where 
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dimensional analysis corresponds to just one similitude identity out of a countable 

infinite number of alternative possibilities realised by the new scaling theory.  The 

new theory describes all scale dependencies for all physical systems and involves no 

approximation in doing so.  Many of the dependencies are hidden yet can be revealed 

by the application of a similitude identity.  Depending on the identity chosen more 

than one scaled experiment may be required yet the theory provides the means to 

communicate across the scales to make sense of the information recorded.  The 

application of what is termed first-order finite similitude, which is a particular 

invariance involving two experiments (which is particularly pertinent in this paper) 

has just appeared the open literature [107].  The foundation of the scaling theory is 

somewhat surprising as it brings together two seemingly disparate concepts of scaled 

experimentation and space scaling.  It is recognised of course that experimental 

research lies at the very heart of the scientific method and has an established history 

and underpins current practice and technological development (Popper. K, 1977) 

[129].  An altogether newer concept however is the premise that space scaling 

[104,130] can provide the means to examine the behaviour of physical phenomena, 

where a laboratory, a piece of equipment, a process or a prototype can be scaled by 

means of space expansion or contraction.  This somewhat surprising view of things 

transpires to be the correct approach and leads to the theory of scaling [104].   The 

approach is being rolled out in the open literature being applied to different fields 

including: cohesive zone models [112], structural impact [129-130], metal forming 

[104] and biomechanics tests [105,131]. 

Although fairly evident how a scaling theory might help in the creation of scaled 

models for processes and structures, its role in mechanical testing in fracture 

mechanics requires some explanation.  It is shown in the paper how the similitude 

condition termed first-order finite similitude provides a new way of thinking about 

fracture mechanics.  The condition provides additional fields over and above those 

provided by Newtonian mechanics and constitutive laws, which are in fact derivatives 

with respect to length scaling of those fields.  Field derivatives quantify how things 
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change with scale and for fracture mechanics with size effects present these changes 

can be stipulated.  This provides a definitive theory for fracture mechanics, which 

happens to coincide with that provided by the first-order finite similitude identity; this 

is the principal hypothesis of the work presented here. 

The developed two-experiment theory will be introduced in Section 4.2, which uses 

the scale invariance of identical material during the scaling process. In Section 4.3 a 

new definitive method for fracture mechanics is introduced founded on the first-order 

finite similitude identity.  It is shown how under quasistatic loading the first-order 

similitude rule can be identically satisfied leading to a two-experiment theory for 

fracture mechanics.  The theory is applied to relatively simple well-known analytical 

examples in Section 4.4, where it is revealed how exact matches are possible with two 

scaled models.  The theory is also applied to standard tests in Section 4.5, for 𝐾𝐼𝐶  and 

𝐽𝐶  in accordance with ASTM E399 and E1820. This confirms how scaled experiments 

can be related to standard tests performed under conditions pertaining to LEFM and 

EPFM.  All the tests are analysed numerically using the FE method (see references 

[132-135] for precedents) and with the use of extended finite elements (i.e., XFEM).  

The tests provide good supporting evidence for the new theory revealing high levels 

of conformity for a wide range of specimen sizes.  The chapter finishes with a set of 

conclusions. 

4.2 Two experiment theory for fracture mechanics 

To establish a definitive theory for fracture mechanics it is necessary to confirm that 

Eqs. (3.16) can be solved under conditions that are germane to quasistatic fracture.  

Prior to examining the solution of these equations in detail however it is revealing to 

examine the integrated equations (i.e., Eqs. (3.16)) first to observe the impact of two 

important scale invariances in fracture mechanics. 

4.2.1. Scale invariance in fracture mechanics 

The first consideration is the stress field under scaling and the contention that local to 
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a crack tip near-identical stress fields can be anticipated in each of the scaled fracture 

specimens.  This requirement leads to the scale invariance 𝛔𝑝𝑠 = 𝝈𝑡𝑠1 = 𝝈𝑡𝑠2 should 

be captured by the theory and consequently Eq. (3.16c) reduces to  

1 = 𝛼01
𝑣 𝑔1𝛽1

2 + 𝑅1 (𝛼01
𝑣 𝑔1𝛽1

2 − 𝛼02
𝑣 𝑔2𝛽2

2) (4.1a) 

or equivalently in differential terms 𝛼1
𝑣(𝛼0

𝑣𝑔 𝛽2 )
′
=const., which is a condition that 

arises from Eq. (3.10b) and condition Eq. (3.8), where “const” here means 

independent of 𝛽. 

The idea that stress fields are nearly identical (under scaling) local to a crack tip can 

be readily accepted on consideration of the yield zones and the expectation that these 

will take on a similar form in any scaled specimen.  There exists an additional 

desirable scale invariance that at first sight might appear somewhat unexpected but 

nonetheless happens to be a feature of cohesive elements, which is the fixing of 

displacement (separation in cohesive elements), i.e., 𝐮𝑝𝑠 = 𝒖𝑡𝑠1 = 𝒖𝑡𝑠2 , which on 

application to Eq. (3.16e) provides, 

1 = 𝛽1
−1 + 𝑅1 (𝛽1

−1 − 𝛽2
−1) (4.1b) 

or equivalently in differential terms 𝛼1
𝑢(𝛽−1)

′
=const., which is a condition that arises 

from Eq. (3.10c) and condition Eq. (3.8); note that it can be deduced that 𝛼1
𝑣 = 𝛼1

𝑢 =

𝛽2 (recall the requirement 𝛼1
𝑣(1) = 𝛼1

𝑢(1) = 1) and 𝑅1  is obtained from Eq. (4.1b) 

once the scales 𝛽1  and 𝛽2  are set. 

An argument for a displacement-scale invariance arises on consideration of the 

cohesive element, where separation can be defined to be 𝛿 = ⟦𝒖 ∙ 𝒏⟧ , where the 

notation ⟦ ⟧ signifies a jump, and 𝒏  identifies the outward pointing unit normal at 

either side of the jump.  A lot more about this can be found in reference [101], where 

Davey & Darvizeh examine the application of transport equations to fracture.  It is 

sufficient to observe here however that separation scales in the same manner as 

displacement but peculiarly in cohesive elements there exists a critical value of 

separation 𝛿𝑐 that does not scale.  The contention here is that if cohesive elements 
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provide a good model for fracture, then it is necessary to have displacement as a scale 

invariance in any two-experiment theory on fracture. 

Another point of consideration is strain, in small deflection theory of the type 

considered here.  Note that the similitude theory does not produce a constitutive 

equation in the physical space as is evident from the existence of Eqs. (3.16c) and 

(3.17); in essence any constitutive rule is implicit.  However, elastic behaviour is very 

much anticipated to be accurately described by identical constitutive rules in all 

spaces.  Consider then the substitution of a constitutive law of the type 𝝈 = 𝑪𝜺 into 

Eq. (3.16c) to provide the identity, 

𝜺𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

2𝜺𝑡𝑠1 + 𝑅1 (𝛼01
𝑣 𝑔1𝛽1

2𝜺𝑡𝑠1 − 𝛼02
𝑣 𝑔2𝛽2

2𝜺𝑡𝑠2) (4.1c) 

which can be contrasted with Eq. (3.17). 

This provides the requirement that 𝛼01
𝑣 𝑔1𝛽1

2 = 𝛼02
𝑣 𝑔2𝛽2

2 = 1  or 𝛼01
𝑣 𝑔1 = 𝛽1

−2  and 

𝛼02
𝑣 𝑔2 = 𝛽2

−2 ; note that 𝑔1  and 𝑔2  have no role to play in a quasistatic analysis. 

Observe that Eq. (4.1a) is not too unexpectedly satisfied by this selection for 𝛼01
𝑣 𝑔1 

and 𝛼02
𝑣 𝑔2 and what has emerged is a definitive two-experiment theory for fracture 

mechanics with freedoms limited only to the selection of the scales 𝛽1  and 𝛽2 .  Note 

the condition 𝛼1
𝑣(𝛼0

𝑣𝑔 𝛽2 )
′
=const. with 𝛼1

𝑣 = 𝛽2 is satisfied by the two possibilities 

𝛼0
𝑣𝑔 = 𝛽−3 and 𝛼0

𝑣𝑔 = 𝛽−2, with the latter condition providing “const” identically 

equal to zero; more on this in the next section. 

It is worth noting in passing that the zeroth-order conditions 𝜌𝑝𝑠 = 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3 , 

𝛼0
𝑣𝑔−1𝛽 = 𝛼0

𝜌
 and 𝛼0

𝑢𝛽 = 𝛼0
𝜌

 (or 𝛼0
𝑢 = 𝛼0

𝑣𝑔−1 ) provide 𝛼0
𝜌
= 𝛽−3  and 𝛼0

𝑢 =

𝛼0
𝑣𝑔−1 = 𝛽−4.  This can be reconciled with the condition 𝛼0

𝑣𝑔 = 𝛽−2 (and 𝛼0
𝑣𝑔 =

𝛽−3 ) by matching 𝛼0
𝑣 = 𝑔−1𝛽−2 = 𝑔𝛽−4  (and 𝛼0

𝑣 = 𝑔−1𝛽−3 = 𝑔𝛽−4 ), which 

provides 𝑔 = 𝛽  (and 𝑔 = 𝛽
1
2).  It is important to recognise that the inclusion of the 

condition 𝜌𝑝𝑠 = 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3 provides a signal to the theory that inertia is involved and 

consequently time is a feature leading to the explicit specification of 𝑔.  Although the 

focus here is quasistatic testing it is reassuring nonetheless to note that dynamics can 
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(at least in principle) feature as required. 

4.2.2. A new differential theory for fracture mechanics 

To confirm that the application of the scale invariances 𝝈𝑡𝑠
′ ≡ 0 and 𝒖𝑡𝑠

′ ≡ 0 provide a 

new description for fracture mechanics under quasistatic loading and under first-order 

similitude it is required to show that Eqs. (3.9) and (3.10) are satisfied.  Eqs. (3.9) are 

effectively the governing transport equations on the trial space and simplify 

considerably for quasistatic conditions.  It is of interest however to keep things 

general at this stage and bring these simplifications in at the point of necessity as this 

approach reveals the scope and limitations of the new approach.  Consider first the 

impact of the displacement invariance 𝒖𝑡𝑠
′ ≡ 0  and note that 𝑼𝑝𝑠

′ = (𝛽−1𝒖𝑡𝑠)
′ =

(𝛽−1)′𝒖𝑡𝑠 = (𝛽
−1)′𝛽𝑼𝑝𝑠 .  In view of the relationship between velocity and 

displacement it can be anticipated that this result must impact on 𝑽𝑝𝑠
′ = (𝛽−1𝑔𝒗𝑡𝑠)

′.  

The outcome is revealed by the following equation: 

𝑽𝑝𝑠
′ = (𝛽−1𝑔𝒗𝑡𝑠)

′ = (𝛽−1𝑔
𝑑𝒖𝑡𝑠

𝑑𝑡𝑡𝑠
)

′

= (𝛽−1
𝑑𝒖𝑡𝑠

𝑑𝑡𝑝𝑠
)

′

=
𝑑

𝑑𝑡𝑝𝑠
(𝛽−1𝒖𝑡𝑠)

′

= (𝛽−1)′
𝑑𝒖𝑡𝑠

𝑑𝑡𝑝𝑠
= (𝛽−1)′𝑔𝒗𝑡𝑠 = (𝛽

−1)′𝛽𝑽𝑝𝑠 

(4.2) 

which is a result that relies on the ability to interchange the temporal derivative 𝑑

𝑑𝑡𝑝𝑠
 

(being independent of 𝛽) and the scale derivative 𝑑
𝑑𝛽

. 

Substitution of Eq. (4.2) and 𝑼𝑝𝑠
′ = (𝛽−1)′𝛽𝑼𝑝𝑠  into Eq. (3.10c) provides, 

𝛼1
𝑢𝛵1

𝑢(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝛽2𝜌𝑝𝑠(𝛽

−1)′𝛽𝑼𝑝𝑠
𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗

+∫ 𝛽2𝜌𝑝𝑠(𝛽
−1)′𝛽𝑼𝑝𝑠(𝒗𝑝𝑠 − 𝒗𝑝𝑠

∗ ) ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

−∫ 𝛽2𝜌𝑝𝑠(𝛽
−1)′𝛽𝑽𝑝𝑠𝑑𝑉𝑝𝑠

∗

𝛺𝑝𝑠
∗

= 0 

(4.3) 

where 𝛼1
𝑢 = 𝛽2, which ensures that this equation is invariant of 𝛽 but observe also 

that this equation is no more than 𝛽2(𝛽−1)′𝛽 times Eq. (4.8c). 
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Thus, the identity 𝒖𝑡𝑠
′ ≡ 0  provides the relationship 𝛼1

𝑢𝛵1
𝑢(𝛽) =

𝛽2(𝛽−1)′𝛽𝛼0
𝑢𝛵0

𝑢(𝛽) = 0, which confirms that Eq. (3.10c) is satisfied and equally 

important satisfies the similitude identity Eq. (3.8).  Turning attention now to Eq. 

(3.10a), which on substitution of 𝑽𝑝𝑠
′ = (𝛽−1)′𝛽𝑽𝑝𝑠  and on setting 𝛼1

𝜌
= 𝛽2 provides 

𝛼1
𝜌
𝛵1
𝜌(𝛽) = ∫ 𝛽2𝜌𝑝𝑠(𝛽

−1)′𝛽𝑽𝑝𝑠 ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗ = 0 

(4.4) 

which is proportional to Eq. (3.9a) under the restriction that material density does not 

change. 

It is seldom common practice to include the continuity equation for fracture 

mechanics since density is set to a constant for the material under consideration. 

Setting 𝜌𝑝𝑠  to a constant in Eq. (3.9a) simplifies it so that the identity 𝛼1
𝜌
𝛵1
𝜌(𝛽) =

𝛽2(𝛽−1)′𝛽𝛼0
𝜌
𝛵0
𝜌(𝛽) = 0 applies confirming that Eq. (3.10a) is satisfied along with 

the first-order similitude identity Eq. (3.8).  The final consideration is Eq. (3.10b) 

under the invariance 𝝈𝑡𝑠
′ ≡ 0 and note that 𝚺𝑝𝑠

′ = (𝛼0
𝑣𝛽2𝑔𝝈𝑡𝑠)

′
= (𝛼0

𝑣𝛽2𝑔)′𝝈𝑡𝑠  and 

the requirement to satisfy Eq. (3.8) raises two possibilities brought about by the 

invariance of 𝛽2(𝛼0
𝑣𝛽2𝑔)′ , which as mentioned above raises two possibilities, i.e. 

𝛼0
𝑣𝑔 = 𝛽−3 and 𝛼0

𝑣𝑔 = 𝛽−2.  With the objective in mind of relating Eq. (3.9b) to 

(3.9b) the former of these conditions appears the most likely and substitution of 

𝚺𝑝𝑠
′ = (𝛽−1)′𝛽𝚺𝑝𝑠  in Eq. (3.10b) along with 𝑽𝑝𝑠

′ = (𝛽−1)′𝛽𝑽𝑝𝑠   provides 

𝛼1
𝑣𝛵1

𝑣(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝛽2𝜌𝑝𝑠(𝛽

−1)′𝛽𝑽𝑝𝑠
𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗

+∫ 𝛽2𝜌𝑝𝑠(𝛽
−1)′𝛽𝑽𝑝𝑠(𝒗𝑝𝑠 − 𝒗𝑝𝑠

∗ ) ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

+∫ 𝛽2(𝛽−1)′𝛽𝚺𝑝𝑠
Г𝑝𝑠
∗

∙ 𝒏𝑝𝑠𝑑Г𝑝𝑠
∗ −∫ 𝛽2𝑩𝑡𝑠

′ 𝑑𝑉𝑝𝑠
∗

𝛺𝑝𝑠
∗

= 0 

(4.5) 

  

where 𝛼1
𝑣 = 𝛽2 and observe that requirement for body force, i.e. 𝐁𝑝𝑠

′ = (𝛽−1)′𝛽𝐁𝑝𝑠 
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with scale invariance of 𝛽𝐁𝑝𝑠
  and note for this case that  𝑩𝑝𝑠 = 𝛼0

𝑣𝜌𝑡𝑠𝛽
3𝑔𝒃𝑡𝑠

𝑣 =

𝜌𝑡𝑠𝒃𝑡𝑠
𝑣 . 

Thus, the conditions 𝝈𝑡𝑠
′ ≡ 0 and 𝒖𝑡𝑠

′ ≡ 0 and the choice 𝛼0
𝑣𝑔 = 𝛽−3  leads to the 

relationship 𝛼1
𝑣𝛵1

𝑣(𝛽) = 𝛽2(𝛽−1)′𝛽𝛼0
𝑣𝛵0

𝑣(𝛽) = 0  confirming the solution of Eq. 

(3.10b) as required.  In quite general terms therefore it has been established that Eqs. 

(3.9) and (3.10) are solvable and at this stage quasistatic conditions have not been 

imposed. A problem remains however arising from the critical importance of elasticity 

in fracture mechanics and strain relationships Eqs. (3.17) and (4.1a).  Finite similitude 

is not concerned with constitutive relationships and consequently in satisfying Eqs. 

(3.9) and (3.10) no recourse to them is required.  The alternative way to satisfy Eq. 

(3.10b) is to simply set all the terms to zero and this can be achieved for quasistatic 

loading as velocity terms disappear and on setting 𝛼0
𝑣𝑔 = 𝛽−2  the stress term 

disappears but also on setting 𝐁𝑝𝑠
′ ≡ 0 to remove the body force.   

4.2.3. The constraining effect of constitutive laws 

The theory presented thus far does not take into consideration constitutive behaviour 

and as such the assumed desirable behaviour of stress and displacement are decoupled 

at this stage but are constricted in practice.  However, the theory caters for other 

behaviours and an important feature arises from the zeroth-order condition.  In 

particular, and critical to elasticity, is the zeroth-order displacement condition 𝒖𝑡𝑠 =

𝛽𝒖𝑝𝑠, which provides 𝑼𝑝𝑠
′ ≡ 𝟎 and for quasistatic conditions Eqs. (4.3) to (4.5) are 

again satisfied.  The satisfaction of these equations is no coincidence and is a feature 

of the nesting of similitude rules with lower-order rules contained within higher-order 

ones.  Thus, a zeroth-order relationship will automatically satisfy the first-order 

similitude rule and in particular 𝒖𝑡𝑠 = 𝛽𝒖𝑝𝑠 satisfies Eq. (3.16c). 

In conclusion a definitive theory for fracture mechanics has emerged from the first-

order finite-similitude identity Eq. (3.8) being described in transport form by six 

equations (effectively fourteen equations since two are vector equations), which are 
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Eqs. (3.9) and (3.10).  Shown here are how the equations are satisfied exactly under 

the invariances 𝝈𝑡𝑠
′ ≡ 0 and 𝒖𝑡𝑠

′ ≡ 𝟎, and additionally 𝒖𝑡𝑠
′ ≡ 𝒖𝑝𝑠 , but note that no 

recourse is made to plasticity.  Considered in the sections that follow are various test 

cases of increasing complexity that confirm the viability of the new theory even in the 

presence of plasticity. 

4.3 Analytical fracture mechanics 

To illustrate the new theory, it is of interest to consider a couple of well-known 

analytical examples where the bulk material response is assumed elastic. 

4.3.1. J-Integral example 

Consider then the classic problem of a crack of length 2𝑎𝑡𝑠 in an infinite plate, where 

in the absence of plasticity, the J-integral has the simple analytical solution, 

𝐽𝑡𝑠 = 
𝐾𝐼 𝑡𝑠
2

𝐸𝑡𝑠
′ = 𝜋𝑎𝑡𝑠

𝜎𝑡𝑠
2

𝐸𝑡𝑠
′  (4.6) 

with stress intensity defined by 𝐾𝐼 𝑡𝑠 = 𝜎𝑡𝑠√𝜋𝑎𝑡𝑠 , where 𝐸𝑡𝑠
′  is either Young’s 

modulus 𝐸𝑡𝑠  (for plane stress) or 𝐸𝑡𝑠 (1 − 𝜈𝑡𝑠
2 )⁄  (for plane strain), and where 𝜈𝑡𝑠  is 

Poisson’s ratio. 

The objective here is to confirm how 𝐽𝑡𝑠1 and 𝐽𝑡𝑠2, which are the J-integrals at 𝛽1  and 

𝛽2 , respectively can return 𝐽𝑝𝑠 the J-integral at 𝛽0 = 1 by means of Eqs. (3.16).  It 

should be appreciated that first-order finite similitude does not provide an identity (of 

the form Eqs. (3.16)) for J-integrals.  The quadratic form of the J-integral excludes 

such a possibility, but the alternative route is Eqs. (3.16c) and (3.16e) provide 

𝜎𝑝𝑠 = σ𝑡𝑠1 + 𝑅1 (σ𝑡𝑠1 − σ𝑡𝑠2) (4.7a) 

𝒖𝑝𝑠 = 𝛽1
−1 𝒖𝑡𝑠1 + 𝑅1 (𝛽1

−1 𝒖𝑡𝑠1 − 𝛽2
−1 𝒖𝑡𝑠2) (4.7b) 

with crack lengths 𝑎𝑡𝑠1 = 𝛽1𝑎𝑝𝑠  and 𝑎𝑡𝑠2 = 𝛽2𝑎𝑝𝑠 , and 𝑅1 = (1 − 𝛽1
−1)(𝛽1

−1 −

𝛽2
−1)−1. 
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It is readily evident for this relatively simply example that by design σ𝑡𝑠1 = σ𝑡𝑠2 and 

consequently from Eq. (4.7a) it follows that σ𝑝𝑠 = σ𝑡𝑠1 = σ𝑡𝑠2.  Since Eq. (4.6) does 

not require knowledge of deformation, it immediately follows that 𝐽𝑡𝑠  is determinable 

from σ𝑝𝑠  alone with 𝐸𝑝𝑠
′ = 𝐸𝑡𝑠1

′ = 𝐸𝑡𝑠1
′  assumed.  A depiction of the scaled 

experiments and the use of space scaling to produce a full-scale virtual model is 

depicted in Fig. 4.1.  The two-experiment theory provides the means for combining 

results from each of the two scaled experiments. 

 

Figure 4.1 Depiction of how space scaling provides the means to predict full-scale 

behaviour in fracture mechanics. 

4.3.2. One-dimensional cohesive element example 

A cohesive zone model provides an attractive approach for the analysis of ductile 

tearing since it combines the many mechanisms involved in fracture into the single 

mechanism of material separation.  A cohesive model in its simplest form involves a 

traction-separation curve featuring only three material properties, which are: critical 

stress 𝜎𝑐 , critical separation 𝛿𝑐 , and the area under the curve known as cohesive 
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fracture energy 𝐺𝑐 .  The most rudimentary cohesive zone model (termed here linear 

cohesive zone model (LCZM)) satisfies the relationship 𝐺𝑐 = 0.5𝜎𝑐𝛿𝑐 confirming the 

dependence of 𝐺𝑐  on 𝜎𝑐 and 𝛿𝑐.  Note the identity, 

1

2
Σ𝑐 𝑡𝑠Δ𝑐 𝑡𝑠 = 

1

2
(𝛼0

𝑣𝛽2𝑔𝜎𝑐 𝑡𝑠)(𝛽
−1𝛿𝑐 𝑡𝑠) =

1

2
𝛼0
𝑣𝑔𝛽𝐺𝑐 𝑡𝑠  (4.8) 

where Δ𝑐 𝑡𝑠 = 𝛽
−1𝛿𝑐 𝑡𝑠 , confirms that zeroth-order scaling does not apply, since it is 

impossible to fix the three critical material properties under a scaling transformation.  

To illustrate the application of the two-experiment theory it is convenient to consider 

here a one-dimensional model consisting of an elastic prismatic rod of length ℓ0  and 

cross-sectional area 𝐴0  with linear cohesive zone model (LCZM) embedded within it 

as depicted in Fig. 4.2. 

 

Figure 4.2 Elastic prismatic rod subjected to a uniform stress or displacement. 

Subjecting the prismatic rod in Fig. 4.2 to a displacement 𝛿 at its free end (with its 

lower end fixed) raises the possibility that the stress level in the rod reaches the 

critical stress 𝜎𝑐 .  The failure behaviour of the of the rod is modelled with a linear 

cohesive zone model (LCZM). The total extension therefore consists of two parts, i.e. 

 𝛿 = 𝛿𝑒𝑙 + 𝛿𝑐𝑜ℎ  with stress 𝜎 = 𝜎𝑒𝑙 = 𝜎𝑐𝑜ℎ , where 𝜎𝑒𝑙 =
𝐸𝛿𝑒𝑙

ℓ0

 and 𝜎𝑐𝑜ℎ =

𝜎𝑐 (1 −
𝛿𝑐𝑜ℎ

𝛿𝑐
).  Here 𝐸 is Young’s modulus of the bulk rod material, and 𝛿𝑒𝑙 and 𝛿𝑐𝑜ℎ 

are spring and cohesive extensions, respectively.  The equilibrium condition 𝜎𝑒𝑙 =
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𝜎𝑐𝑜ℎ provides the displacement-loading response, 

𝜎

𝜎𝑐
=

{
 
 

 
  𝛿

𝛿𝑐
𝑒𝑙

if     0 ≤ 𝛿 ≤ 𝛿𝑐
𝑒𝑙

(1 −
𝛿𝑐
𝑒𝑙

𝛿𝑐
)

−1

(1 −
𝛿

𝛿𝑐
) if    𝛿𝑐

𝑒𝑙 < 𝛿 ≤ 𝛿𝑐

 (4.9) 

which describes a bilinear behaviour with 𝛿𝑐
𝑒𝑙 = 𝜎𝑐 ℓ0

𝐸
.   

Shown in Fig. 4.3 is the application of the two-experiment theory to the prismatic rod 

with ℓ0  taking on lengths ℓ𝑝𝑠 , 𝛽1ℓ𝑝𝑠 , and 𝛽2ℓ𝑝𝑠 .  Note how the two scaled 

experiments are projected to the size of the full-scale system and observe the effect of 

this on length and stress. 

 

Figure 4.3 Uniaxial loading of prismatic rod with cracking captured by an embedded 

cohesive element. 

Eqs. (4.7) also apply in this case, where it can be deduced that the fixed-point identity 

𝜎𝑐 = 𝜎𝑐 𝑝𝑠 = 𝜎𝑐 𝑡𝑠1 = 𝜎𝑐 𝑡𝑠2 (satisfied by Eq. (4.3a)) applies and 

𝛿𝑝𝑠 = 𝛽1
−1 𝛿𝑡𝑠1 + 𝑅1 (𝛽1

−1 𝛿𝑡𝑠1 − 𝛽2
−1 𝛿𝑡𝑠2) (4.10) 
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arising from Eq. (4.7b) for which the fixed point 𝛿𝑐 = 𝛿𝑐 𝑝𝑠 = 𝛿𝑐 𝑡𝑠1 =  𝛿𝑐 𝑡𝑠2 applies 

with 𝑅1 = (1 − 𝛽1
−1)(𝛽1

−1 − 𝛽2
−1)−1. 

It is a simple matter to confirm that the theory provides a virtual model in Fig. 4.3 that 

is an exact replica of the real full-scale model as described by Eq. (4.9).  For example, 

under assumption that both scaled models (at 𝛽1  and 𝛽2 ) are displaced by 𝛿𝑡𝑠1 =

𝛿𝑐 𝑡𝑠1
𝑒𝑙 = 𝛽1

𝜎𝑐 ℓ𝑝𝑠

𝐸
 and 𝛿𝑡𝑠2 = 𝛿𝑐 𝑡𝑠2

𝑒𝑙 = 𝛽2
𝜎𝑐 ℓ𝑝𝑠

𝐸
, respectively, then substitution into Eq. 

(4.10) provides 𝛿𝑐 𝑝𝑠
𝑒𝑙 = 𝛿𝑝𝑠 =

𝜎𝑐 ℓ𝑝𝑠

𝐸
 as required.  In addition, stress is provided by Eq. 

(4.7a), which confirms the expected result that 𝜎𝑐 = 𝜎𝑐 𝑝𝑠 = 𝜎𝑐 𝑡𝑠1 = 𝜎𝑐 𝑡𝑠2 .  

Likewise, under the assumption that 𝛿𝑡𝑠1 = 𝛿𝑡𝑠2 = 𝛿𝑐 , then 𝛿𝑝𝑠 = 𝛿𝑐  (from Eq. 

(4.10)) and stress is 0 = 𝜎𝑝𝑠 = 𝜎𝑡𝑠1 = 𝜎𝑡𝑠2 (from Eq. (4.7a)) as required.  The overall 

behaviour of the real projected real and the virtual models are depicted in Fig. 4.4, 

where it is confirmed how expected behaviour is returned from the results of two 

scaled experiments. 

 

Figure 4.4 Depiction of the combined behaviour of a uniaxially-loaded rod with 

failure described by a linear cohesive zone model. 
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4.4 Application of the two-experiment theory 

The two-experiment theory introduced in Section 4.3 is tested on classical problems 

in fracture mechanics to showcase its potential.  Although the analysis is performed 

by means of the finite element method the aim here is to show that scaled testing has 

the advantage of providing results absent of size effects.  This is achieved by 

combining information from two scaled tests of any size to reconstruct the behaviour 

of a test of fixed size.  The theory provides the rules by which results from the scaled 

experiments should be interpreted.  The finite element method in these studies simply 

serves to replace results that under normal circumstance would be returned by 

experiments. This does mean that certain types of behaviour are not fully 

representable as revealed in the open literature for similar tests comparing simulation 

with the experimental response [135].  In particular, the pre-crack tends to open 

earlier in Abaqus models compared to experiment, which means slight differences in 

deformational response.  Despite this difference, peak loads tend to have good 

agreement [133, 135], which legitimises to some degree fracture toughness 

investigations with FE methods. 

The case studies considered here examine the behaviour of specimens that would 

normally be used in the evaluation of toughness values 𝐾𝐼𝐶 and 𝐽𝐶 based on procedures 

from ASTM E399 [25] and E1820 [40], respectively, where 𝐽𝐶 is the critical J value   

at the failure point. The tests considered are compact tension (CT), three-point 

bending (TPB) and disk-shape compact tension (DCT), which are analysed by means 

of XFEM.  The extended finite element method (XFEM) [136] has the facility for a 

crack to traverse elements facilitated by the partition of unity concept [137] along 

with the application of enrichment functions with additional degrees of freedom.  The 

tests involved consider both stationary and propagating cracks with the use of scaled 

models, and consequently produce behaviours that do and do not change with scale.  

In particular, the procedure for estimating fracture toughness for a stationary crack 

readily scales yet propagating cracks can suffer changes with scale.  In this way the 

tests assess the ability of the new theory to capture the different types of behaviours 
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under a single unified approach.  The analysis approaches presented in this study 

replicate similar studies in the open literature; see for example, CT tests in references 

[135] and [138], TPB tests in references [132] and [135], and DCT tests in reference 

[133].  All the analysis presented below is quasistatic and all models are created in the 

commercial finite element software ABAQUS, the models are applied for an identical 

material, aluminium with material properties listed in Table 4.1.  The displacement of 

failure of traction and separation law is fixed to be 0.2mm for all specimens, which 

should generally vary between 0.12mm to 0.3mm according to the structure size. It is 

set to be a fixed median value here for the scale invariance of the scaling theory. In a 

general scaling experiment with the same material, numerical simulation cannot 

detect the size effect, where the geometry and boundary conditions are restricted by 

size, and the input material properties are identical. So, the fixed failure displacement 

also aims to simulate the size effect in the numerical tests, which is the other primary 

purpose of the test. The value can make the model easier to fail on a large scale 

(failure displacement from 0.3mm to 0.2mm), and the opposite in a small-scale model 

(failure displacement from 0.12mm to 0.2mm). This operation cannot be regarded as 

the actual size effect, but it will display the material behaviour in different sizes close 

to the size effect. Obviously, the errors will appear in the simulation, which is even 

more significant than the real size effect. As it uses identical material numerically, the 

first-order theory is supposed to vanish the error caused by the ‘size effect’, that the 

criterion of the simulation should be Error < 1%. (It leaves some space for non-

linearity and element distribution difference in scaled models) 

Table 4.1 Material properties of Aluminum used in the tests 

Material properties 
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Young’s Modulus, E (MPa) 

Poisson’s ratio, v 

Maximum Principal stress, 𝜎𝑐 (MPa) 

Displacement at failure, 𝛿𝑐 (mm) 

Yield stress, 𝜎𝑌 (MPa) 

Plastic strain (yield stress), 휀𝑌 

Tensile strength 𝜎𝑇𝑆 (MPa) 

Plastic strain (tensile strength), 휀𝑇𝑆 

70000 

0.33 

310 

0.2 

276 

0 

310 

0.06 

Note that the maximum principal tensile stress 𝜎𝑐 [139] in Table 4.1 is utilized by the 

XFEM feature within Abaqus to control the initiation and direction of crack 

propagation [140].  It is founded on the assumption that material failure results when 

the maximum value of principle tensile stress reaches 𝜎𝑐, which in this study is set to 

the tensile strength 𝜎𝑇𝑆  in accordance with previous studies [141, 142]. The test 

specimens employed conform to ASTM code recommendations for geometric 

constraints, e.g.,  0.45 < 𝑎

𝑊
< 0.55, 2 ≤ 𝑊

𝐵
≤ 4, the size of the notch ≤ 𝑊

10
, pre-crack 

length > 0.025𝑊, along with other constraints, where the initial crack length is 𝑎, the 

specimen width is 𝑊 and the specimen thickness is 𝐵. 

4.4.1. Compact tension specimen 

Although, as mentioned above, one objective is the evaluation of toughness values 𝐾𝐼𝐶 

and 𝐽𝐼𝐶 following the procedures set out in ASTM E399 and E1820, all specimens are 

loaded well beyond critical loads.  Loading of the specimens in this way ensures that 

more challenging behaviours emerge with crack propagation.  All simulation is 

performed using the commercial finite element software package Abaqus. The 

compact tension model analysed is presented in Fig. 4.5, detailing mesh and the pre-

crack plane inserted along the notch.  All dimensions are in accordance with ASTM 

E399 and input properties for the model are provided in Table 4.1. The element type is 

C3D8R and to ensure representative fracture toughness testing the specimen is 

divided into three meshed partitions around the crack. The element size in the crack-
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tip, crack and global partitions is 0.5, 1 and 2mm, respectively.  

 

Figure 4.5 Overall dimensions and mesh for the compact tension model. 

Depicted in Fig. 4.6 is the von Mises stress field at three instances during loading with 

the right-hand figure corresponding to a 1mm displacement of the loading point.  This 

loading ensures that the crack has propagated beyond peak loading and the crack has 

advanced a good distance along the specimen.  Note that in addition to plastic 

dissipation in the bulk material, localised energy dissipation through tearing at the 

crack tip is accommodated indirectly in XFEM by the absorption of cohesive energy 

as the crack propagates. 

 

Figure 4.6 Von-Mises stresses for the deformed full-size CT specimen at three crack lengths. 

The maximum principal stresses for all the scales considered at peak loading are 

shown in Fig. 4.7.  It is of interest to observe that the cracks follow different paths in 
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the scaled specimens, which is something expected in real tests and influenced here 

by differences in the stress fields.  Also shown are the stress levels for the virtual 

model on combination of the results from two scales, which provides a good match 

with the physical-space model.  The stress allocation in the virtual model in Fig. 4.7 is 

governed by the relationship 

𝝈𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1 + 𝑅1 (𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1 − 𝛼02
𝑣 𝑔2𝛽2

2𝝈𝑡𝑠2) (4.11) 

for the situation where 𝛽1 = 0.7 and 𝛽2 = 0.2 and is identified under the contour 

scale headed “analytical”, with the numerical scale provided by Abaqus. 

Under quasistatic loading the combination of results from scaled experiments suffers 

some flexibility since time does not feature.  However, for consistency, an artificial 

time scale is applied to all experiments varying from zero to one with data recorded at 

every 0.04 units of time. 
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Figure 4.7 The deformed compact tension model in different scales. 

• Determination of toughness value 𝐾𝐼𝐶  

According to the procedure outlined in ASTM E399, the toughness value 𝐾𝐼𝐶 can be 

calculated from the load-crack mouth opening displacement curve (CMOD). The 

CMOD is shown in Fig. 4.5 and is directly determinable through the vertical 

displacement of a point on the crack mouth in this Mode I fracture test. The properties 

and dimensions pertaining to the physical-space (full-size) and trial-space (scaled) 

specimens are listed in Table 4.2.  The load-displacement data for all the specimens is 

obtained on noting the reaction force and applied displacement at the loading point; 

the data retrieved from the finite element models is presented in Fig. 4.8. 

Table 4.2 Specimen dimensions for CT models at different scale. 

 𝛽  Initial 

crack 

size 

𝑎  

(mm) 

Specimen 

width 

𝑊 

(mm) 

Specimen 

thickness 

𝐵 

(mm) 

Ligament 

length 

𝑏

= 𝑊 − 𝑎 

(mm) 

Specimen 

height  

 

(mm) 

Pre-

crack 

length  

(mm) 

Critical 

displacement 

at peak load  

 

(mm) 

Physical 1.0 25.0 50 25.0 25.0 60 5.0 0.60 

 

 

Trial 

0.9 22.5 45 22.5 22.5 54 4.5 0.552 

0.8 20.0 40 20.0 20.0 48 4.0 0.504 

0.7 17.5 35 17.5 17.5 42 3.5 0.456 

0.5 12.5 25 12.5 12.5 30 2.5 0.36 

0.4 10.0 20 10.0 10.0 24 2.0 0.312 

0.2 5.0 10 5.0 5.0 12 1.0 0.216 

As the failure displacement of the element is fixed, the load-displacement curves 

display different shapes between different scales. Same appearance is shown in Fig. 

4.7 and Table 4.2, the remain ligament length and critical displacement are not 

proportional with size. It becomes hard to fail when 𝛽 decreases, and the individual 

experiment method (zeroth order) cannot return the scaled results to physical result 

accurately. The load-displacement curves show linearity at the beginning, where the 

crack does not start to propagate, as the first step in Fig. 4.6 showed. Then it displays 

yielding and blunting and drops with crack growth. 
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Figure 4.8 Load-displacement results for the CT specimens returned from Abaqus 

finite element models. 

The calculation of the 𝐾𝐼𝐶 is predominantly related to the force 𝑃𝑄 identified by the 

curves presented in Fig. 4.9 [30].  The 95% secant line is the line that passes through 

the zero and has a gradient equal to 95% of the tangent line for the load-CMOD curve.  

The tangent line is determined automatically in this study on recording the deviation 

of the gradient of the load-CMOD curve as depicted in Fig. 4.9(b).  As indicated in 

the figure, 𝑃𝑄 is the point located on load-CMOD curve and the 95% secant line but 

satisfying the condition that 𝑃𝑚𝑎𝑥/𝑃𝑄 ≤ 1.1.  The toughness value 𝐾𝐼𝐶  is calculated 

from the simple relationship, 

 𝐾𝐼𝐶 =
𝑃𝑄

√𝑊𝐵𝐵𝑁
𝑓(
𝑎

𝑊
) (4.12a) 

where 𝐵𝑁 = 𝐵 for the non-groove models and the shape function 𝑓 for the CT model 

depicted in Fig. 4.5 is given by 
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𝑓 (
𝑎

𝑊
)

=
(2 +

𝑎
𝑊
) [0.886 + 4.64

𝑎
𝑊
− 13.32(

𝑎
𝑊
)
2

+ 14.72(
𝑎
𝑊
)
3

− 5.6 (
𝑎
𝑊
)
4

]

(1 −
𝑎
𝑊)

3/2  
(4.12b) 

and where for 𝑎
𝑊
= 1

2
 the shape function equates to 𝑓( 𝑎

𝑊
) = 9.66. 

 

Figure 4.9 Principal types of load-CMOD records [30]. 

Note that although Eq. (4.12) can be applied at any scale, possessing a feature that 

does not change with scale (i.e., the function 𝑓) and one that is easily predicted (i.e., 

√𝑊𝐵𝐵𝑁), it does however feature a term that possesses some degree of uncertainly 

(a) 

(b) 
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(i.e., 𝑃𝑄) and hence the need for experimentation (or modelling).  Although the value 

of 𝑃𝑄  can reasonably be expected to scale the two-experiment scaling theory is 

nevertheless applied here to accommodate 𝑃𝑄 on setting the scaling factor 𝛼0
𝑣𝑔  to 

𝛽−2 as discussed in Sec. 4.3, with 𝑅1 obtained from Eq. (4.1b).  The values of 𝛼0
𝑣𝑔  

and 𝑅1 for the selected values of 𝛽1 and 𝛽2 used for the scaled models are recorded in 

Table 4.3.  

Table 4.3 Scaling factors 𝛼0
𝑣𝑔  and 𝑅1 for different combinations of 𝛽𝑖. 

Case 𝛽1 𝛽2 𝛼01
𝑣 𝑔1 𝛼02

𝑣 𝑔2 𝑅1 

Case1 0.9 0.5 1.234568 4.00 0.125000 

Case2 0.9 0.4 1.234568 6.25 0.080000 

Case3 0.9 0.2 1.234568 25.00 0.028571 

Case4 0.8 0.5 1.562500 4.00 0.333333 

Case5 0.8 0.4 1.562500 6.25 0.200000 

Case6 0.8 0.2 1.562500 25.00 0.066667 

Case7 0.7 0.5 2.040816 4.00 0.750000 

Case8 0.7 0.4 2.040816 6.25 0.400000 

Case9 0.7 0.2 2.040816 25.00 0.120000 

With loads suitably synchronised the appropriate relationship connecting 𝑃𝑄  values 

across the scales is 

 𝑃𝑄𝑝𝑠 = 𝛼01
𝑣 𝑔1𝑃𝑄𝑡𝑠1 + 𝑅1 (𝛼01

𝑣 𝑔1𝑃𝑄𝑡𝑠1 − 𝛼02
𝑣 𝑔2𝑃𝑄𝑡𝑠2) (4.13) 

where 𝑃𝑄𝑝𝑠  corresponds to the full-scale virtual model and consequently can be 

contrasted with results obtained directly at full scale. 

There are two methods for obtaining 𝑃𝑄 , one is with Eq. (4.13), and the other is 

directly by applying the method in Fig. 9 to the virtual curve formed using the 

relationships 

 𝑃𝑝𝑠 = 𝛼01
𝑣 𝑔1𝑃𝑡𝑠1 + 𝑅1(𝛼01

𝑣 𝑔1𝑃𝑡𝑠1 − 𝛼02
𝑣 𝑔2𝑃𝑡𝑠2) (4.14a) 

 𝑢𝑝𝑠 = 𝛽1
−1𝑢𝑡𝑠1 + 𝑅1(𝛽1

−1𝑢𝑡𝑠1 − 𝛽2
−1𝑢𝑡𝑠2) (4.14b) 

which combines the trial-space results according to the new theory. 

Results from both approaches are tabulated in Table 4.4, where not too unexpectedly, 

obtaining values from the virtual curve provides the greatest accuracy as this matches 

the procedure in the physical space.  
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Table 4.4 𝑃𝑄 and 𝐾𝐼𝐶  values for different cases for the CT specimen. 

Case 𝑃𝑄  in trial spaces 𝑃𝑄   

Eq. (28) 

(𝑁) 

Error 

% 

𝑃𝑄   

(Virtual 

curve) 

(𝑁) 

Error 

% 

𝐾𝐼𝐶 

(𝑀𝑃𝑎 𝑚
1
2) 

Eq. (27) 

𝑃𝑄𝑡𝑠1 

(𝑁) 

𝑃𝑄𝑡𝑠2 

(𝑁) 

ps   19000.00  
19000.00  32.83 

Case 1 15400 4800 18988.89 -0.06 
19000.00 0.00 32.83 

Case 2 15400 3100 18983.33 -0.09 
19000.00 0.00 32.83 

Case 3 15400 775 19001.98 0.01 
19000.00 0.00 32.83 

Case 4 12200 4800 19016.67 0.09 
19000.00 0.00 32.83 

Case 5 12200 3100 19000.00 0.00 
19000.00 0.00 32.83 

Case 6 12200 775 19041.67 0.22 
19000.00 0.00 32.83 

Case 7 9400 4800 19171.43 0.90 
19000.00 0.00 32.83 

Case 8 9400 3100 19107.14 0.56 
19000.00 0.00 32.83 

Case 9 9400 775 19160.71 0.85 
19000.00 0.00 32.83 

 

The value of toughness 𝐾𝐼𝐶  listed in Table 4 is determined using Eq. (4.15) with the 

virtual 𝑃𝑄 value (i.e., 19𝑘𝑁) but equally Eq. (4.13) can be used, but additionally the 

following relationship also applies 

 

𝐾𝐼𝐶𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

3/2
𝐾𝐼𝐶𝑡𝑠1

+ 𝑅1 (𝛼01
𝑣 𝑔1𝛽1

3
2𝐾𝐼𝐶𝑡𝑠1 − 𝛼02

𝑣 𝑔2𝛽2

3
2𝐾𝐼𝐶𝑡𝑠2) 

(4.15) 

which provides an alternative (to Eq. (4.28)) but identical means to determine the 

virtual 𝐾𝐼𝐶  values. 

 

• Determination of the critical value 𝐽𝐶  

According to the procedure outlined in ASTM E1820 [40], 𝐽  can be assumed to 

consist of an elastic and plastic component and takes the form 𝐽 = 𝐽𝑒𝑙 + 𝐽𝑝𝑙 . The 
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elastic component 𝐽𝑒𝑙  can be determined directly from the 𝐾𝐼  value and is related 

through the identity 

 𝐽𝑒𝑙 =
𝐾𝐼
2(1 − 𝑣2)

𝐸
 (4.16a) 

where 𝐸 is Young’s modulus and 𝑣 is Poisson ratio, and similarly 𝐽𝑝𝑙 is obtained from 

 𝐽𝑝𝑙 =
𝜂𝐴𝑝𝑙
𝐵𝑁𝑏0

 (4.16b) 

where for the CT specimen 𝜂 = 2 + 0.522𝑏0 𝑊⁄  and 𝑏0 is the ligament length, 𝐵𝑁 =

𝐵 and 𝐴𝑝𝑙 is the enclosed area shown in Fig. 9; 𝐽𝐶  is returned on setting 𝐾𝐼 = 𝐾𝐼𝐶  and 

for 𝐴𝑝𝑙 taking the value for 𝑃 = 𝑃𝑚𝑎𝑥  as depicted in the figure. 

 

Figure 4.10 Definition of area 𝐴𝑝𝑙 for 𝐽𝐼𝐶  determination. 

The load-displacement data presented in Fig. 4.8 is combined using Eqs. (4.14) to 

provide the full-scale (virtual) load-displacement curve depicted in Fig. 4.11.  The 

data presented in Fig. 4.11 is for scales  𝛽1 = 0.8 and 𝛽2 = 0.5 with the displacements 

synchronised by means of identical time intervals (as mentioned above) applied over 

the displacement range of interest.  The load-displacement curves for virtual models 

are provided in Fig. 4.12 for the scaled model combinations presented in Table 4.4.  
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These load curves provide the means for the determination of 𝐽𝐶  with Eq. (4.16) and 

the results are presented in Table 4.5. 

 

Figure 4.11 Procedure for combination of trial models to form a virtual model. 

 

Figure 4.12 Load-displacement curve for the physical and virtual models. 
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Table 4.5 𝐽𝐼𝐶  values for different virtual models for the CT test. 

Case 𝛽1 𝛽2 𝐽𝑒𝑙 

(𝑘𝐽 𝑚2⁄ ) 

𝐽𝑝𝑙 

(𝑘𝐽 𝑚2⁄ ) 

𝐽𝑐 = 𝐽𝑒𝑙 + 𝐽𝑝𝑙 

(𝑘𝐽 𝑚2⁄ ) 

Error  

% 

ps   13.62 16.16 29.78  

Case 1 0.9 0.5 13.62 16.03 29.65 -0.42 

Case 2 0.9 0.4 13.62 16.05 29.67 -0.38 

Case 3 0.9 0.2 13.62 16.07 29.69 -0.31 

Case 4 0.8 0.5 13.62 15.99 29.61 -0.58 

Case 5 0.8 0.4 13.62 16.03 29.65 -0.45 

Case 6 0.8 0.2 13.62 16.07 29.69 -0.30 

Case 7 0.7 0.5 13.62 15.91 29.53 -0.83 

Case 8 0.7 0.4 13.62 16.00 29.62 -0.52 

Case 9 0.7 0.2 13.62 16.09 29.71 -0.23 

It is evident on examination of Fig. 4.12 that good replication is returned in the linear 

and early non-linear parts of the load-displacement curves with deviation appearing 

during tearing as cracks take slightly different paths in the scaled specimens.  Note 

that an accurate prediction of 𝐽𝐶  is associated with the accurate determination of the 

peak loads and 𝑃𝑄 as noted above.  It is possible and of interest to examine the change 

in value of the 𝐽 with crack extension.  This can be investigated using the ABAQUS 

output (for crack length) rather than the procedure stated in ASTM E399 since for 

quasistatic loading 𝐽 can again be evaluated using Eqs. (4.16) for different values of 

crack extension, which is measured from the instance that material tearing initiates. 

The results of this study are presented in Fig. 4.13(a), showing the change in 𝐽 over 

the full loading range up to 1mm load-displacement. As anticipated the 𝐽-value grows 

rapidly to the critical value 𝐽𝐼𝑐 followed by a decreasing then constant rate of growth. 

The toughness value 𝐽𝐼𝑐 can be defined by a 0.2mm offset construction line and the J-

R curve, as shown in Fig. 4.13(b). This is a typical procedure to evaluate 𝐽𝐼𝑐 according 
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to ASTM1820. A blunting construction line is first developed by the function 𝐽 =

𝑀𝐽𝜎𝑌∆𝑎, where 𝑀𝐽 = 2 is generally applied here. Then draw a line parallel to the 

construction line at an offset value of 0.2mm, and the 𝐽-value at the intersection point 

is 𝐽𝑄. It is normally regarded as  𝐽𝐼𝑐 when the qualification of criteria is met [40]. In 

this case study, the comparison is between 𝐽𝐶  at failure rather than 𝐽𝐼𝑐 since the former 

can be calculated with load-displacement data and the equations of J, which has a 

precise calculation procedure during scaling and simulation with finite similitude. The 

curves and value of 𝐽𝐶  and  𝐽𝐼𝑐all follow a similar trend and provide good supporting 

evidence for the insensitivity of scale in the prediction. 
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Figure 4.13 (a) 𝐽 -values with crack length for different combinations of scaled CT 

models. (b) 𝐽𝐼𝑐 evaluation and comparison with 𝐽𝐶  

4.4.2. Three-point bending specimen 

The testing of the three-point bending (TPB) specimen follows the exact same 

procedure applied to the CT specimen.  The main differences all stem from the 

geometry of the TPB model, changing the form of some of the equations applied.  

Outline model details and meshes used for the physical specimen are presented in Fig. 

4.14 with further details tabulated in Table 4.6.  The mesh-partitioning approach 

adopted for the TPB model is slightly different to that applied to the CT specimen.  A 

mesh sensitivity investigation for the physical model revealed that a converged mesh 

consisting of elements of 0.4 × 0.5𝑚𝑚 along the notch and crack propagation path, 

and 2mm lengths as depicted in Fig. 4.5.  The deformed physical model for selected 

load displacements is shown in Fig. 4.15, where the last subfigure corresponds to a 

maximum load displacement of 2mm. The deformed scaled specimens at maximum 

load are presented in Fig 4.16, where stress levels and ligament lengths are shown.  

(b) 
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The load-deflection data for the physical and trial TPB specimens returned by the 

Abaqus models is presented in Fig. 4.17. 

 

Figure 4.14 Overall dimensions and mesh for the three-point bending model. 

Table 4.6 Specimen dimensions for TPB models at different scale. 

 𝛽  Initia

l 

crack 

size 

𝑎 

(mm) 

Specime

n width 

𝑊 

(mm) 

Specime

n 

thicknes

s 

𝐵 

(mm) 

Ligamen

t length 

𝑏

= 𝑊

− 𝑎 

(mm) 

Specime

n Length 

(mm) 

Span 

of the 

mode

l 

𝑆 

(mm) 

Pre-

crack 

lengt

h 

(mm) 

Critical 

displaceme

nt at peak 

load 

(mm) 

Physica

l 

1.

0 

12.5

0 

25.0 12.50 12.5 110.0 100.

0 

5.0 0.56 

 

 

Trial 

0.

9 

11.2

5 

22.5 11.25 11.25 99.0 90.0 4.5 0.51 

0.

8 

10.0

0 

20.0 10.00 10.00 88.0 80.0 4.0 0.56 

0.

7 

8.75 17.5 8.75 8.75 77.0 70.0 3.5 0.41 
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0.

5 

6.25 12.5 6.25 6.25 55.0 50.0 2.5 0.31 

0.

4 

5.00 10.0 5.00 5.00 44.0 40.0 2.0 0.26 

0.

2 

2.50 5.0 2.50 2.50 22.0 20.0 1.0 0.17 

 

 

Figure 4.15 Von Mises stress levels for the loaded physical TPB model at different 

crack lengths. 
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Figure 4.16 Principal stress levels in the loaded TPB models at the crack tip at 

different scales. 

 

Figure 4.17 Load-displacement results for the TPB specimens returned from Abaqus 

finite element models. 

• Determination of toughness value 𝐾𝐼𝐶  

For the TPB model the toughness value 𝐾𝐼𝐶 is determined using the relationships 
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 𝐾𝐼𝐶 =
𝑃𝑄𝑆

𝐵𝑊3/2
𝑓(
𝑎

𝑊
) (4.17a) 

 

𝑓 (
𝑎

𝑊
)

=

3√
𝑎
𝑊
[1.99 −

𝑎
𝑊 (1 −

𝑎
𝑊) [2.15 − 3.93

𝑎
𝑊 + 2.7 (

𝑎
𝑊)

2

]]

2 (1 + 2
𝑎
𝑊) (1 −

𝑎
𝑊)

3/2  

(4.17b) 

where 𝑆 is span (see Fig. 4.14) and 𝑓( 𝑎
𝑊
) = 2.66 for 𝑎

𝑊
= 0.5, and the obtained values 

of 𝑃𝑄 and 𝐾𝐼𝐶  are listed in Table 7 for various values of β. 

Presented in Table 4.7 are the 𝑃𝑄 and 𝐾𝐼𝐶  values for the virtual models with values 

obtained using Eqs. (4.13) and (4.17), and from Fig. 4.18, where the values for 𝛼0
𝑣𝑔  

and 𝑅1 are precisely those presented in Table 4.2 for the CT specimen. 

Table 4.7 𝐾𝐼𝐶  and 𝑃𝑄 values for TPB specimens in physical and virtual models. 

Case 𝑃𝑄  in the trial space 𝑃𝑄   

Eq. (28) 

(𝑁) 

Error % 𝑃𝑄  

(Virtual 

curve) 

(𝑁) 

Error % 𝐾𝐼𝐶 

(𝑀𝑃𝑎 𝑚
1
2) 𝑃𝑄𝑡𝑠1(𝑁) 𝑃𝑄𝑡𝑠2(𝑁) 

ps   5200.00  5200 
 

27.99 

Case1 4200 1250 5208.33 0.16 5200 0.00 27.99 

Case2 4200 800 5200.00 0.00 5200 0.00 27.99 

Case3 4200 200 5190.48 -0.18 5200 0.00 27.99 

Case4 3300 1250 5208.33 0.16 5200 0.00 27.99 

Case5 3300 800 5187.50 -0.24 5200 0.00 27.99 

Case6 3300 200 5166.67 -0.64 5200 0.00 27.99 

Case7 2500 1250 5178.57 -0.41 5200 0.00 27.99 

Case8 2500 800 5142.86 -1.10 5200 0.00 27.99 

Case9 2500 200 5114.29 -1.65 5200 0.00 27.99 

• Determination of toughness value 𝐽𝐼𝐶  

As above, the toughness value 𝐽𝐼𝐶  is determined using the relationship 𝐽 = 𝐽𝑒𝑙 + 𝐽𝑝𝑙  
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but here 𝜂 = 1.9.  The value of 𝐴𝑝𝑙 is calculated in the exact same manner as depicted 

in Fig. 10.  Similarly, the virtual load-displacement curves are presented following the 

same procedure depicted in Fig. 4.11, with applied scaling factors listed in Table 4.3. 

The 𝐽𝐶  values corresponding to the peak load of the curves shown Fig. 18, are 

tabulated in Table 4.8.  The curves in Fig. 4.18 all follow a similar trend with earlier 

parts of the curves well matched and greatest deviation in the latter parts associated 

with crack propagation and with cracks taking different paths in the scaled specimens.  

The corresponding 𝐽 values with crack extension are presented in Fig. 4.19, which 

like the CT specimen are absent of significant scale effects despite some apparent 

deviations in the latter parts of the curves. 

 

Figure 4.18 Load-displacement curves for physical and virtual models. 

Table 4.8  𝐽𝐶  values for different virtual models in TPB test. 

Case 𝛽1 𝛽2 𝐽𝑒𝑙 

(𝑘𝐽 𝑚2⁄ ) 

𝐽𝑝𝑙 

(𝑘𝐽 𝑚2⁄ ) 

𝐽𝑐 = 𝐽𝑒𝑙 + 𝐽𝑝𝑙 

(𝑘𝐽 𝑚2⁄ ) 
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% 

0

1000

2000

3000

4000

5000

6000

0 0.5 1 1.5 2 2.5

Lo
a
d

 (
N

)

Load-line Displacement (mm)

ps

Case1 (0.9 0.5)

Case2 (0.9 0.4)

Case3 (0.9 0.2)

Case4 (0.8 0.5)

Case5 (0.8 0.4)

Case6 (0.8 0.2)

Case7 (0.7 0.5)

Case8 (0.7 0.4)

Case9 (0.7 0.2)



Chapter 4 Two-experiment Method for Standard Tests 

 129 / 205 

 

PS   10.19 21.83 32.01  

Case1 0.9 0.5 10.19 21.74 31.93 -0.26 

Case2 0.9 0.4 10.19 21.71 31.90 -0.37 

Case3 0.9 0.2 10.19 21.74 31.93 -0.25 

Case4 0.8 0.5 10.19 21.30 31.49 -1.64 

Case5 0.8 0.4 10.19 21.26 31.45 -1.77 

Case6 0.8 0.2 10.19 21.19 31.38 -1.99 

Case7 0.7 0.5 10.19 21.55 31.74 -0.87 

Case8 0.7 0.4 10.19 21.41 31.60 -1.28 

Case9 0.7 0.2 10.19 21.25 31.44 -1.78 

 

 

Figure 4.19 𝐽 -values for different values of crack length for the physical and virtual 

TPB models. 

4.4.3. Disk-shape compact tension specimen 

The disc shape CT (DCT) specimen provides another test described in ASTM E399 

and E1820. The geometry of the DCT specimen is similar to the CT specimen with 

overall dimensions and mesh shown in Fig. 4.20.  The dimensions of the scaled trial 

models are listed in Table 4.9 for convenience.  The response of the physical-space 

specimen under loading is presented in Fig. 4.21, where crack propagation and von 

Mises stress levels are shown, and where the most deformed state corresponds to a 
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loading point displacement of 1mm.  Similarly at peak load, stress levels for the 

scaled specimens are shown in Fig. 4.22 along with results for the virtual model 

formed by means of Eq. (4.26) from the scaled models at 𝛽1 = 0.7 and 𝛽2 = 0.2 for 

the case depicted.  Also note in Fig. 4.22 are ligament lengths, which follow similar 

trends to those observed in the CT and TPB specimens.  Similarly, the load-deflection 

data for the physical and trial DCT specimens retuned by the Abaqus models is 

presented in Fig. 4.23. 

 

Figure 4.20 Overall dimensions and mesh details for the DCT model. 

Table 4.9 Specimen dimensions for TPB models at different scales. 

 𝛽  Initial 

crack 

size 

𝑎  

(mm) 

Specimen 

width 

𝑊 

(mm) 

Specimen 

thickness 

𝐵 

(mm) 

Ligament 

length 

𝑏

= 𝑊 − 𝑎 

(mm) 

Specimen 

height  

 

(mm) 

Critical 

displacement 

at peak load  

(mm) 

Physical 1 25.0 50 25.0 25.0 67.5 0.48 

 

 

Trial 

0.9 22.5 45 22.5 22.5 60.75 0.44 

0.8 20.0 40 20.0 20.0 54.00 0.40 

0.7 17.5 35 17.5 17.5 47.25 0.36 

0.5 12.5 25 12.5 12.5 3.75 0.29 

0.4 10.0 20 10.0 10.0 27.00 0.25 

0.2 5.0 10 5.0 5.0 13.50 0.17 
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The mesh used in the analysis, arrived at following a sensitivity study, is similar to 

that used for the CT specimen with a fine mesh along the crack propagation path (the 

crack partition).  The global mesh size is set to be 2mm and the crack partition 

consisted of 0.5mm× 0.5mm elements. The properties of the model are listed in 

Table 4.1, which apply to all the trial models, since identical materials are used 

throughout.   

 

Figure 4.21 Von Mises stress levels for the physical DCT model at various loading 

stages. 
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Figure 4.22 Principal stress levels for the DCT model at different scales. 

 

Figure 4.23 Load-displacement results for the DCT specimens returned from the 

Abaqus finite element models. 

• Determination of toughness value 𝐾𝐼𝐶  
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The determination of 𝐾𝐼𝐶  for DCT specimen is identical to the CT specimen involving 

Eq. (4.12) but the shape factor 

 

𝑓 (
𝑎

𝑊
)

=
(2 +

𝑎
𝑊) [0.76 + 4.8

𝑎
𝑊 − 11.58(

𝑎
𝑊)

2

+ 11.43(
𝑎
𝑊)

3

− 4.08(
𝑎
𝑊)

4

]

(1 −
𝑎
𝑊)

3/2  
(4.18) 

where 𝑓( 𝑎
𝑊
) = 10.17 with 𝑎

𝑊
= 1

2
, and presented in Table 4.10 are the corresponding 

critical loads  𝑃𝑄 and stress intensity factors 𝐾𝐼𝐶  for the different models.  

Note that 𝛼0
𝑣𝑔 = 𝛽−2 applies and consequently scaling factors presented in Table 

4.3 are pertinent here also.  The values returned for  𝑃𝑄 in Table 4.3 are returned with 

high accuracy with highest accuracy attributable to readings obtained from the virtual 

curves recovered via Eqs. (4.14). 

Table 4.10 𝐾𝐼𝐶  and 𝑃𝑄 values for DCT specimens. 

Case 𝑃𝑄  in the trial space 𝑃𝑄  

Eq. (27a) 

(𝑁) 

Error 

% 

𝑃𝑄  

(Virtual 

curve) 

(𝑁) 

Error 

% 

𝐾𝐼𝐶 

(𝑀𝑃𝑎 𝑚
1
2) 𝑃𝑄𝑡𝑠1 

(𝑁) 

𝑃𝑄𝑡𝑠2 

(𝑁) 

ps   16000.00  16000  29.11 

Case 1 13000 4000 16055.56 0.35 16050 0.32 29.20 

Case 2 13000 2600 16033.33 0.21 16050 0.32 29.20 

Case 3 13000 640 16050.79 0.32 16050 0.32 29.20 

Case 4 10250 4000 16020.83 0.13 16000 0 29.11 

Case 5 10250 2600 15968.75 -0.20 16000 0 29.11 

Case 6 10250 640 16016.67 0.10 16000 0 29.11 

Case 7 7850 4000 16035.71 0.22 16000 0 29.11 

Case 8 7850 2600 15928.57 -0.45 16000 0 29.11 

Case 9 7850 640 16022.86 0.14 16000 0 29.11 

• Determination of toughness value 𝐽𝐶  

The determination of 𝐽𝐶 is identical to that presented for the CT specimen involving 
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Eqs. (4.16).  The virtual load-displacement curves determined with Eqs. (4.14) and 

data from Fig. (4.23) (as shown in Fig. 4.11), are presented in Fig. 4.24.  The 

corresponding 𝐽𝐶 values for the physical and virtual models are tabulated in Table 4.11, 

where values are returned with good accuracy.  In addition, 𝐽  values with crack 

extension are provided in Fig. 4.25, and overall, the results follow a similar trend to 

those presented with other specimens.  Although some deviation is apparent in the 

latter parts of the curves, arising primarily from deviations in crack paths in the scaled 

specimens, scale effects are essentially absent. 

 

Figure 4.24 Load-displacement curves for physical and virtual models. 

Table 4.11 𝐽𝐶  values for different virtual models in the DCT test. 

Case 𝛽1 𝛽2 𝐽𝑒𝑙 

(𝑘𝐽 𝑚2⁄ ) 

𝐽𝑝𝑙 

(𝑘𝐽 𝑚2⁄ ) 

𝐽𝐶 = 𝐽𝑒𝑙 + 𝐽𝑝𝑙 

(𝑘𝐽 𝑚2⁄ ) 

Error  

% 

ps   11.01 20.00 31.01  

Case 1 0.9 0.5 11.08 19.82 30.90 -0.37 

Case 2 0.9 0.4 11.08 19.79 30.87 -0.46 

Case 3 0.9 0.2 11.08 19.77 30.85 -0.53 
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Case 4 0.8 0.5 11.01 19.89 30.90 -0.35 

Case 5 0.8 0.4 11.01 19.74 30.75 -0.83 

Case 6 0.8 0.2 11.01 19.68 30.69 -1.02 

Case 7 0.7 0.5 11.01 19.89 30.90 -0.35 

Case 8 0.7 0.4 11.01 19.74 30.75 -0.83 

Case 9 0.7 0.2 11.01 19.68 30.69 -1.02 

 

 

Figure 4.25 𝐽 -values for different values of crack lengths for physical and virtual DCT 

models. 

4.5 Conclusions 

The chapter examines a new description for fracture mechanics founded on the first-

order finite similitude rule arising out of the recently discovered finite similitude 

theory.  The new two-experiment description hypothesises how stress, displacement 

and strain fields change with scale.  A feature of the theory is use of two scaled 

fracture-mechanics experiments at distinct scales to account for the size effect typical 

to fracture mechanics.  The following conclusions can be drawn from the 

investigation outlined in the chapter: 
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• The first-order finite similitude rule has been confirmed to be satisfied for 

quasistatic loading under the assumption that stress field is scale independent 

and displacement field is either scale independent or linearly dependent. 

• New differential governing equations for fracture mechanics have been 

established which can be integrated to link information across two scaled-

fracture experiments. 

• Analytical studies confirm that exact replication is possible with results from 

two scaled experiments, which when combined provide a perfect match with 

those obtained at full scale.  

• Numerical studies provided results which are supportive of the new theory 

although small errors (typically less than 1%) were returned for propagating 

cracks arising principally from deviations in crack paths in the scaled 

experiments.  

• The theory introduced in the work although at an early stage of development 

provides an alternative view of fracture mechanics with the inclusion of field 

differences and gradients with respect to scale.  The direct analysis of fracture 

mechanics using Eq. (4.9) and Eq. (4.10) provides a new and interesting area 

for possible future research. 

More specifically, from the trial experiments performed, the following statements 

can be made: 

• Both LEFM and EPFM was shown to be reasonably well represented by the 

theory by means of numerical tests on CT, TPB and DCT specimens.  A range 

or errors were returned although typically less than 1% and associated with 

crack propagation. 

• The main hypothesis that the first-order theory effectively counters size effects 

in fracture mechanics is starkly revealed on comparison of the raw data 

presented in Figs. (4.8), (4.17) and (4.23) with the virtual curves presented in 

Figs. (4.12), (4.18) and (4.24), respectively.  Despite the presence of small 
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errors, the virtual curves provide strong supporting evidence for the general 

contention.  

• The two-experiment approach provides good outcomes for standard ASTM 

tests, but such tests are not necessarily optimum for the two-experiment 

approach.  The investigation, design and recommendation of new two-

experiment tests is an interesting area of possible future study. 

• It shows high-accuracy results in Figs. (4.12), (4.13), (4.18), (4.19), (4.24) and 

(4.25), which are highly matched in LEFM and gradually occur larger errors 

with crack extension. Target results of toughness and critical values are 

matched (<1% error) since they are most related to the LEFM part. At the end 

of these curves, the increasing error shows the in-stability of material 

behaviour when specimen occurs significant damage, which makes the outputs 

vary with size. 
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Chapter 5 Finite similitude to damage and failure under 

high-rate loading 

5.1 Introduction 

Performing a full-scale experiment is possibly the surest way to accurately capture 

and assess the behaviour of a system or prototype.  However, practical considerations 

including prohibitive costs, lack of available facilities and equipment can make this 

approach unfeasible.  For this and other reasons alternative approaches are often 

pursued instead, which can include numerical simulation with the aid of advanced 

analysis software and/or testing with the aid of geometrical similar small-scale 

replicas.  The use of scaled models falls under the theory of similitude, which is 

concerned with those conditions necessary and sufficient to achieve similarity 

required for good replication. Artefacts of interest and of particular focus in this paper 

are pressure vessels which are produced in a vast array of configurations and sizes but 

have the sole principal function to hold fluids at pressure.  The range of sizes 

available makes them attractive for scaled experimentation and in view of the high 

pressures involved, pressure vessels must comply with stringent regulations and 

survive accidental occurrences. 

Such incidents can be at high rate as with impact or blast loading, which itself is an 

area of study that makes good use of scaled experimentation [51].  Scaled high-

loading rate studies are themselves not without difficulties as similarity can be lost 

arising from the non-scalability of strain rate effects and fracture toughness [51,143-

145].  To resolve these difficulties, researchers have proposed tests designed with 

alternative dimensionless numbers formed from the dimensioned-physical quantities 

of impact velocity, impact mass and dynamic yield stress [85,146-148].  In refs 

[85,146] for example correction factors for impact velocity and impact mass are 

shown to provide good agreement with results from scaled experiments.  A particular 
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drawback however is that the strain rate is required to be known a priori to determine 

the correction factors, which somewhat limits the general applicability of the 

approach.  In a similar fashion, by means of the correct determination of the initial 

impact velocity, for a perfectly plastic, cylindrical shell, subjected to axial impact, it 

has been shown that a scaled experiment is able to predict reasonably accurately full-

scale behaviour [147].  Unfortunately, this method works with the mean value of 

strain rate for the correction factor, which is not available in more complex scenarios.  

Success has been reported with the Norton-Hoff constitutive law [148] with its 

exponent featuring in the impact velocity correction factor.  An exact match is 

recorded for rigid viscoplastic case studies but generalising the result to more 

complex situations is not obvious. 

Replica scaling features in all the papers mentioned above (i.e., refs. [143-148]) with 

scaling restricted to space and time only with matching materials employed in the full 

and small-scale experiments.  This restriction has a limiting effect on the types of 

response that can be captured since physical modelling involving different materials 

provides for additional flexibility.  This flexibility is not only limited to the extended 

range of material behaviours possible, but also features in practical considerations 

including the cost and feasibility of an experiment given the apparatus available [149].  

The examination and analysis of physical models in impact studies has appeared in 

the open literature [86,149-152].  These studies like those above involve the 

adjustment of conditions for mass and impact velocity but in this case contingent on 

the materials used.  It should be mentioned however that these studies involve only 

moderate strain-hardening and strain-rate effects. Additionally, the overall constraint 

imposed by dimensional analysis remains limiting despite physical models being used. 

It is evident and recognised that even with physical modelling that replication of 

behaviours by a scaled model is heavily constricted by the material properties 

available in standard materials.  The correct combination of properties is invariably 

difficult to arrange; however, an alternative approach has recently appeared in the 

open literature [98].  The arrival of new similitude rules now makes it possible to 
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consider new forms of physical modelling but now involving more than one scaled 

model at distinct scales. The open question being answered in this paper is whether 

two scaled models with materials different from each other, and that at full scale, 

provides the flexibility needed to accurately capture the response of a pressure vessel 

when subject to localised impact and global blast loading conditions.  The new scaling 

theory [98] has been applied to the high-rate loading tests [99,107,130] but the 

advantages of physical modelling have yet to be fully realised.  To assess the efficacy 

of the new approach case studies are chosen involving the Charpy impact test, 

projectiles, and penetration to examine localised stress distributions around the 

damaged area.  In addition, blast loading is applied using a Conwep model in finite 

element analysis, where reactive loads and displacements of the pressure vessel are 

the focus with the objective being to reproduce behaviours using a two-experiment 

physical model.  

A feature of the new finite similitude theory is that it is based on the metaphysical 

concept of space scaling where “metaphysical” in this context means that although 

space scaling is not physically realizable it can be imagined and mathematically 

defined. The scaling theory does not involve constitutive laws but nevertheless these 

are very much needed and are introduced in Section 5.2.  The focus is on the Johnson-

cook constitutive and damage laws to capture the high-strain rate material response 

and any damage as it manifests.  The effect of settings and different material choices 

is assessed in this section for the well-known test procedure the Charpy impact test.  

In Section 5.3 the theory is applied to a penetration test to assess the impact of 

projectiles on the pressure vessel model, where it is shown how a two-experiment 

physical model can reproduce the full-scale response to high accuracy.  Attention 

turns next to the internal blast loading of the pressure vessel simulated by the Conwep 

model and again the flexibility provided by the two-experiment approach is 

showcased.  The case studies considered in the paper are based on previously 

validated Abaqus studies for the Charpy impact test [153-155], the pressure vessel 

penetration test [156-158], and the pressure vessel under internal blast loading [159-
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160].  The chapter ends with a set of conclusions. 

5.2 Finite similitude for physical modelling 

For the problem under scrutiny, the finite similitude theory requires the inclusion of 

those transport equations that contain the fields involved.  For impact mechanics, 

transport equations for volume, mass, momentum, and movement are of interest.  The 

equation for volume brings into play the velocity field 𝒗𝑡𝑠
∗  dictating control volume 

movement, the continuity equation introduces density 𝜌𝑡𝑠 and material velocity 𝒗𝑡𝑠 , 

momentum contributes the tensor field 𝝈𝑡𝑠  and specific body force 𝒃𝑡𝑠
𝑣 , and lastly 

movement introduces displacement field 𝒖𝑡𝑠 . The additional first-order identities 

returned by this procedure are tabulated in Table 5.1 in compact and expanded 

formats. 

Table 5.1 First-order finite similitude identities 

Fields Compact representation Expanded representation 

Displacement 𝒖1 = 𝒖𝛽1 +𝑅1 (𝒖𝛽1 −𝒖𝛽2) 𝒖1 = 𝛽1
−1𝒖𝑡𝑠1 + 𝑅1 (𝛽1

−1𝒖𝑡𝑠1 − 𝛽2
−1𝒖𝑡𝑠2) 

Velocity 𝒗1 = 𝒗𝛽1 +𝑅1 (𝒗𝛽1 − 𝒗𝛽2) 𝒗1 = 𝑔1𝛽1
−1𝒗𝑡𝑠1 + 𝑅1 (𝑔1𝛽1

−1𝒗𝑡𝑠1

− 𝑔2𝛽2
−1𝒗𝑡𝑠2) 

Acceleration 𝒂1 = 𝒂𝛽1 +𝑅1 (𝒂𝛽1 − 𝒂𝛽2) 𝒂1 = 𝑔1
2𝛽1

−1𝒂𝑡𝑠1 +𝑅1 (𝑔1
2𝛽1

−1𝒂𝑡𝑠2

− 𝑔1
2𝛽1

−1𝒂𝑡𝑠2) 

Body force 𝒃1 = 𝒃𝛽1 +𝑅1 (𝒃𝛽1 − 𝒃𝛽2) 𝜌1𝒃1
𝑣 = 𝛼01

𝑣 𝜌𝑡𝑠1𝑔1 𝛽1
3𝒃𝑡𝑠1

𝑣

+𝑅1 (𝛼01
𝑣 𝜌𝑡𝑠1𝑔1 𝛽1

3𝒃𝑡𝑠1
𝑣

− 𝛼02
𝑣 𝜌𝑡𝑠2𝑔2 𝛽2

3𝒃𝑡𝑠2
𝑣 ) 

Stress 𝝈1 = 𝝈𝛽1 + 𝑅1 (𝝈𝛽1 − 𝝈𝛽2) 𝝈1 = 𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1

+𝑅1 (𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1

− 𝛼02
𝑣 𝑔2𝛽2

2𝝈𝑡𝑠2) 

Strain 𝜺1 = 𝜺𝛽1 + 𝑅1 (𝜺𝛽1 − 𝜺𝛽2) 𝜺1 = 𝜺𝑡𝑠1 +𝑅1 (𝜺𝑡𝑠1 − 𝜺𝑡𝑠2) 
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Strain rate �̇�1 = �̇�𝛽1 + 𝑅1 (�̇�𝛽1 − �̇�𝛽2) �̇�1 = 𝑔1�̇�𝑡𝑠1 + 𝑅1 (𝑔1�̇�𝑡𝑠1 − 𝑔2�̇�𝑡𝑠2) 

Note that additional fields have been inserted into Table 5.1 over and above those 

obtained directly from transport equations defined in Chapter 3.  This is a feature of 

the finite similitude theory and although constitutive equations are absent from the 

theory all fields needed are readily derived.  For example, for strain (small deflection 

theory) application of the identities 𝒅𝒙𝑡𝑠1 = 𝛽1𝒅𝒙𝑝𝑠  and 𝒅𝒙𝑡𝑠2 = 𝛽2𝒅𝒙𝑝𝑠  to the 

identity for displacement provides the strain identity in Table 5.1 and similarly for 

strain rate and acceleration.  

5.2.1. First-order physical models for impact  

Although constitutive equations do not arise out of the fundamentals of the finite-

similitude approach they are needed nonetheless in physical modelling as they bring 

into play important material properties.  To capture the response of full-scale 

behaviours in impact mechanics, two principal aspects are critical, which are inertia 

and material response.  Four fields are central to a good representation, and these are 

mass density 𝜌𝛽 = 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3 , stress 𝝈𝛽 = 𝛼0
𝑣𝛽2𝑔𝝈𝑡𝑠 , strain rate �̇�𝛽

𝑝
= 𝑔�̇�𝑡𝑠

𝑝
 and 

effective strain 휀𝛽
𝑝
= 휀𝑡𝑠

𝑝
, with this latter quantity related to effective strain rate via the 

identity 𝑑휀𝛽
𝑝
= 휀�̇�

𝑝
𝑑𝑡𝛽, where 𝑑𝑡𝛽 = 𝑔

−1𝑑𝑡𝑡𝑠.  Although density is restricted to be a 

zeroth-order relationship here this is not of major obstacle since the expression 𝜌1 =

𝜌𝛽  is generally satisfiable at arbitrary 𝛽 .  Since 𝜌𝛽 = 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3  and under the 

assumption that 𝜌𝑝𝑠 , 𝜌𝑡𝑠1 , and 𝜌𝑡𝑠2  are known material densities (since density in 

solids is usually fixed), then setting the function 𝛼0
𝜌
 to equal 𝛼0

𝜌(𝛽) = 𝛽−3
𝜌𝑝𝑠

𝜌𝑡𝑠
 ensures 

that 𝜌𝑝𝑠 = 𝜌𝛽1 = 𝜌𝛽2 as required.  Things are a little more involved when it comes to 

material response as there is invariably insufficient scope for similitude rules to match 

all the material properties involved despite first-order finite similitude having the 

advantage of two scaled material models. To examine this aspect for impact 

mechanics it is beneficial to examine a commonly used constitutive law and the focus 
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here is on the Johnson-Cook (J-C) viscoplastic law, which represents the dynamic-

yield stress as a function of strain hardening and strain rate [161], and takes the form 

 𝜎𝑑 = (𝐴 + 𝐵(휀
𝑝 )

𝑛
) (1 + 𝐶 ln (

휀̇𝑝

휀̇0
)) (5.1) 

where 𝜎𝑑  is the dynamic yield stress, 𝐴  is static yield stress, 𝐵  is a hardening 

coefficient, 휀
𝑝

 is plastic strain, 𝑛 is a hardening exponent, 𝐶 is a strain rate coefficient 

and 휀̇𝑝, 휀̇0  are strain rate and reference strain rate, respectively. 

Similarly, a J-C law exists for damage, which assumes failure strain [161] is a 

function of stress triaxiality, strain rate and takes the form  

 휀𝑓 = [𝐷1 + 𝐷2 exp(𝐷3𝜎
∗ )] (1 + 𝐷4 ln (

휀̇𝑝

휀̇0
)) (5.2) 

where 휀𝑓  is the failure strain and should plastic strain 휀
𝑝

 reach this value, then 

damage is initiated, 𝜎∗  is stress triaxiality, and 𝐷1  to 𝐷4  are damage parameters, 

which are experimentally determined. 

Eq. (5.1) and (5.2) are also assumed to apply in the physical space, and in the trial 

spaces at scales 𝛽1 and 𝛽2, where the freedom to select the materials involved exists.  

It should be appreciated that there exists only a limited number of freedoms with the 

similitude theory, which are the functions 𝛼0
𝜌
 and 𝑔, and parameters 𝛽 and 𝑅1.  Once 

the scales 𝛽1  and 𝛽2  are decided upon, and since 𝛼0
𝜌

 is effectively dictated my 

material density, this leaves only the time scalars 𝑔1 and 𝑔2, and the parameter 𝑅1.  In 

view of the numbers of material properties involved in the J-C constitutive laws it is 

pretty evident that perfect replication of full-scale behaviours is difficult to achieve in 

practice.  In this situation rather than target specific material properties it is best to 

target aspects that are important to the physics of the process under scrutiny.  An 

approach that was applied in ref. [99] is to form weaker relationships from the 

constitutive laws, achieved through integration.  Important measures are identified 

that are relatable across the scales using the similitude rules.  Note that the form of the 

compact identities (in Table 5.1) is identical because each satisfies the exact same 
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second-order differential equation, i.e., 
𝑑

𝑑𝛽
(𝛼1

𝑑ℵ𝛽

𝑑𝛽
) = 0, where ℵ𝛽 is any of the fields 

in Table 5.1.  Ideally therefore any identified measure should also be a solution to this 

differential equation so that the difference identities in Table 1 apply.  The first issue 

to address is functional dependence, as apparent in Eq. (5.1) and Eq. (5.2), which are 

functions of the form 𝜎𝑑(휀
𝑝
, 휀̇𝑝) and 휀𝑓(𝜎

∗ , 휀̇𝑝), respectively.  This dependence is 

weakened by means of integration and on definition of the measures 

 Σ̅𝑑 =
1

�̅�𝑓휀̇𝑚𝑎𝑥
∫ ∫ 𝜎𝑑(휀 

𝑝, 휀̇𝑝)𝑑휀̇𝑝𝑑휀 
𝑝 

�̇�𝑚𝑎𝑥

0

𝐸𝑓

0

 (5.3a) 

 �̅�𝑓 =
1

(𝜎∗𝑚𝑎𝑥 − 𝜎∗𝑚𝑖𝑛)휀̇𝑚𝑎𝑥
∫ ∫ 휀𝑓(𝜎∗, 휀̇𝑝)𝑑휀̇𝑝𝑑𝜎∗

�̇�𝑚𝑎𝑥

0

𝜎∗𝑚𝑎𝑥

𝜎∗𝑚𝑖𝑛

 (5.3b) 

which are assumed to apply in the trial and physical spaces, and where 𝜎∗𝑚𝑎𝑥 and 

𝜎∗𝑚𝑖𝑛 are maximum and minimum stress triaxiality, 휀̇𝑚𝑎𝑥 is the maximum strain rate 

and note that �̅�𝑓 appears in the limits of Eq. (5.3a). 

To keep things reasonably simple the integration limits in the physical space are set in 

accordance with ref. [99] to be 𝜎∗𝑚𝑖𝑛 = −2, 𝜎∗𝑚𝑎𝑥 = 2, 휀̇𝑚𝑎𝑥 = 10/𝑚𝑠, which are 

values that can be improved upon as necessary through simulations with ABAQUS 

models, and �̅�𝑓𝑚𝑎𝑥 = 1.  Additionally, for integration purposes only, the following 

proportional measure relationships are assumed to apply 

*max *min

* *
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1 1
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−
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−
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(5.4e) 

max

2max

2

psp p

ps ts

ts

d d


 


=  
(5.4f) 

and with the help of Table 5.1 provides the measure relationships 
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(5.5b) 

where integration of these expressions provides very convenient first-order 

relationships of the form 

( )2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2

d v d v d v d

ps ts ts tsg R g g      =  +  −   (5.6a) 

( )1 1 1 2

f f f f

ps ts ts tsE E R E E= + −  (5.6b) 

which connect mean values of dynamic stress and failure strain across the scales, 

where it is recognised that a mix of zeroth and first-order relationships have been 

utilised to arrive at these expressions.  

Note that Eqs. (5.6) provided the identities Σ̅𝛽
𝑑 = 𝛼0

𝑣𝛽2𝑔Σ̅𝑡𝑠
𝑑  and 

f f

tsE E = , which can 

be contrasted with the identities 𝝈𝛽 = 𝛼0
𝑣𝛽2𝑔𝝈𝑡𝑠  and �̅�𝛽 = �̅�𝑡𝑠 , and consequently 

satisfy the differential equation 
𝑑

𝑑𝛽
(𝛼1

𝑑ℵ𝛽

𝑑𝛽
) = 0 as required.  Note additionally that 

Eqs (5.6) can be compactly represented by Σ̅1 = Σ̅𝛽1
𝑑 + 𝑅1(Σ̅𝛽1

𝑑 − Σ̅𝛽2
𝑑 )  and �̅�1

𝑓
=

E̅𝛽1
𝑓
+ 𝑅1 (E̅𝛽1

𝑓
− E̅𝛽2

𝑓
) .  There are three unknows (𝑔1 , 𝑔2  and 𝑅1 ) in these two 

equations which suggests that either another equation or assumption is required.  The 

simplest solution to Eq. (5.6) is to use zeroth order to set 𝑔1 and 𝑔2, which requires 
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substitution of 𝛼0
𝑣 = 𝑔𝛽−1𝛼0

𝜌
 into Eq. (5.6a) give 

( )2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2

d d d d

ps ts ts tsg R g g        =  +  −   (5.7) 

which is solved on setting 
2 2

01 1 1 1 02 2 2 2

d d d

ps ts tsg g     =  =   and yields 

1
1 1
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(5.8a) 
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2 2
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1
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(5.8b) 

on substitution of 𝛼0
𝜌(𝛽) = 𝛽−3

𝜌𝑝𝑠

𝜌𝑡𝑠
, which transpires to give to give pretty good 

answers (see next section) with 𝑅1  determined using Eq. (5.6b), i.e.,  

1

1

1 2

f f

ps ts

f f

ts ts

E E
R

E E

−
=

−
 

(5.9) 

An alternative approach is to target another feature of the constitutive law and one 

possibility is the mean yield stress defined by 

 �̅�𝑑 =
1

휀̇𝑚𝑎𝑥
∫ 𝜎𝑑(0, 휀̇𝑝)𝑑휀̇𝑝 

�̇�𝑚𝑎𝑥

0

 (5.10a) 

which on following the approach above, yields the equation 

( )2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2

d v d v d v d

ps ts ts tsY g Y R g Y g Y     = + −  (5.11) 

and consequently, provides a third equation if required. 

5.2.2. Physical modelling test case 

Prior to examining practical case studies, it is instructive at this point to explore how 

the different choices for the determination of 𝑔1, 𝑔2 and 𝑅1 influence the outcomes 

for a standard test (e.g., the Charpy test).  Such an investigation involving a selection 

of readily accessible materials for scaled models is shown to provide evidence for the 

likely success of a particular two-experiment physical modelling approach. 

⚫ Charpy impact test 

The Charpy impact test [162] is designed to investigate the fracture toughness of 

materials through the absorbed energy following the impact of a specimen with a 



Chapter 5 Finite similitude to damage and failure under high-rate loading 

 147 / 205 

 

striker.  The test is performed under controlled laboratory conditions for specimens at 

temperature subjected to a striker mass at velocity, and equates the energy absorbed to 

the fracture toughness for the material.  The Charpy V-notch dynamic impact test was 

investigated in ref [163], where changes in material strength and strain rate were 

shown to be the main factors influencing the energy absorbed.  Simulation of the V-

notch test [155] in Abaqus with application of the Johnson-Cook (J-C) damage model, 

for various striker impact velocities, confirmed that an increase in striker velocity 

produces lower absorbed energy.  Also reaffirmed in ref. [155] is the suitability of the 

J-C constitute model in determining strain rate sensitivity of metallic materials, and its 

application to sudden impact [164-166]. 

 

 

 

Figure 5.1 Dimensions of the Charpy impact test specimens and the meshed model in 

finite element analysis. 
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The specimens examined here in the physical (𝛽0 = 1) and trial (𝛽1 = 0.5) spaces are 

shown in Fig 5.1, which are modelled by Abaqus Explicit software. The J-C 

constitutive model described in Section 5.2.1 is applied to capture the constitutive 

response of the specimens, and the striker is modelled as a discrete rigid body.  The 

elements selected (see Fig. 5.1) for the 3D analysis are available in Abaqus are 

C3D8R explicit with enhanced hourglass control. For the physical model, a finer 

mesh is applied in the middle region (80 mm around the centre line) of the specimen 

with the mesh size set to 0.4 mm; a global mesh size of 1.6 mm is applied to other 

parts providing a total of 205050 elements. The striker is furnished with a fine mesh 

in the triangular region (around its tip) with 0.6 mm mesh size, and 1.6 mm global 

size elsewhere; and is positioned 2 mm distance above the notched specimen in the 

physical space.  Note that all these sizes are scaled by 𝛽  for the trial models.  The 

span length of the model in the physical space is 80 mm (see Fig. 5.1), where the 

fixed supports (nodes on the line) are not allowed to move in y-direction; the striker is 

constrained to move in y-direction. Material selection is based on the physical 

material Steel300. According to the finding in Chapter 3, it is recommended to apply a 

group of materials whose properties do not have large deviation with physical 

material. The material properties in J-C model are listed in Table 5.2. 

Table 5.2 Properties of the materials involved. 

 Steel 

300 

[155] 

Ti6Al4V 

[167] 

Aluminium 

Alloy 6061-

T6 [168] 

Aluminium 

Alloy 7075-

T6 [169] 

304L 

Stainless 

steel 

[170] 

Steel 
Armox 

500T 

[171] 

Density 

(𝑘𝑔/𝑚𝑚3) 
× 10−6 

7.99 4.43 2.7 2.7 7.8 7.99 

Elastic 

Modulus 

(𝐺𝑃𝑎) 

192 110 69 70 164.5 207 

Poisson 

ratio 

0.283 0.33 0.3 0.3 0.3 0.33 

𝐴 (𝐺𝑃𝑎) 0.758 1.098 0.324 0.546 0.345 1 

𝐵 (𝐺𝑃𝑎) 0.172 1.092 0.114 0.678 0.31 0.461 

C 0.0522 0.014 0.002 0.024 0.24 0.02 

n 0.2258 0.93 0.42 0.71 0.3 0.45 
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m 0.7799 1.10 1.34 0.81 1.03 2.31 

𝑇𝑡𝑟  (𝐾) 293 298 298 293 294 293 

𝑇𝑚 (𝐾) 1685 1903 928 893 1693 1800 

𝐷1 -0.09 -0.09 -0.77 -0.068 0.1 0.1055 

𝐷2 0.27 0.25 1.45 0.451 0.76 2.7824 

𝐷3 0.48 0.5 0.47 0.952 1.57 3.3863 

𝐷4 0.014 0.014 0 0.036 0.005 -0.0509 

𝐷5 3.87 0.0387 1.6 0.697 -0.84 0 

휀̇0(𝑚𝑠−1) 0.001 0.001 0.001 5 × 10−7 0.001 0.001 

The length scaling factors for the two trial models are selected to be 𝛽1 = 0.5 and 

𝛽2 = 0.25, respectively with different materials applied. The time scalars 𝑔1 and 𝑔2 

are determined using Eqs. (5.8a) and (5.8b), so are affected by the range of stress 

triaxiality, strain rate and failure strain.  For ductile metals the range of stress 

triaxiality is reasonably set to be from -2 to 2.  Similarly, the maximum strain rate and 

failure strain is set at 10/ms and 1, respectively for the high-rate impact test in 

accordance with ref. [99].  Setting 𝑔1  and 𝑔2  to satisfy Eq. (5.8) provides two 

approaches for the determination of 𝑅1 , i.e., either using the mean failure strain, Eq. 

(5.9), or the mean yield stress, Eq. (5.11).  Presented in Table 5.3 are the material 

combinations considered along with determined scaling parameters. It transpires that 

in all cases apart from one, determination of  𝑅1  using Eq. (5.11) provides better 

outcomes than Eq. (5.9).  The 𝑅1  values listed in Table 5.1 pertain to Eq. (5.11) with 

the exception being Case 1.7, which pertains to Eq. (5.9).  Note that 𝑅1 = 0 and 

𝑅1 = −1 return zeroth order results, which is a feature of Cases 1.1, 1.2 and 1.3 

when the steel used in the full-scale model is involved in the trial models.  Additional 

parameters are listed in Table 5.4, where striker mass and initial velocity for the trial 

models are calculated with zeroth-order relationships 𝑀𝑡𝑠 = 𝑀𝑝𝑠 𝛼
𝜌⁄  and 𝑣𝑡𝑠 =

(𝛽 𝑔⁄ )𝑣𝑝𝑠, respectively. 

Table 5.3 Scaling parameters for trial models. 

Case Trial 

material 1 

(𝛽1 = 0.5) 

Trial 

material 2 
(𝛽2 = 0.25) 

𝑔1 𝑔2 𝛼1
𝜌
 𝛼2

𝜌
 𝑅1 
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1.1 Steel300 Steel300 0.4937 0.2438 8 64 - 

1.2 Steel300 304LSS 0.4937 0.2 8 65.56 0.0008 

1.3 Al7075 Steel300 0.2857 0.2438 23.67 64 -1.005 

1.4 Steel500T 304LSS 0.4542 0.2 8 65.56 0.4 

1.5 Ti6Al4V AL6061 0.3074 0.2562 14.43 188.69 -1.3 

1.6 Ti6Al4V 304LSS 0.3074 0.2 14.43 65.56 0.55 

1.7 Al7075 304LSS 0.2857 0.2 23.67 65.56 0.53 

1.8 Al7075 AL6061 0.2857 0.2562 23.67 188.69 -1.17 

 

 

 

Table 5.4 Input conditions for the physical and trial models in Charpy impact test. 

Scale Material Mass of striker 

𝑀 (𝑘𝑔) 
Initial velocity 

of striker 

𝑣𝑖 (𝑚/𝑠) 

Period of the 

impact process 

(10−3𝑠) 
Physical Steel300 80 5 2 

Trial 1 

(𝛽1 = 0.5) 

Steel300 10 5.06 0.9874 

Ti6Al4V 5.544 8.133 0.6148 

Al7075 3.38 8.7513 0.5714 

Steel500T 10 5.504 0.9084 

Trial 2 

(𝛽2 = 0.25) 

Steel300 1.25 5.127 0.4876 

Al6061 0.424 4.878 0.5124 

304LSS 1.22 6.25 0.4 
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Figure 5.2 Charpy impact deformation for the physical model (a-d) along with a 

selection of trial models (e-h) displaying von-mises stress contours. 

⚫ Preliminary findings 

Simulation results returned by Abaqus for the physical and a selection of trial models 

are presented in Fig. 5.2.  The propagation of the crack through the specimen is shown 

in this figure for the physical model with trial models limited to an instant prior to 

specimen separation. A feature of the Charpy test is that its relative simplicity means 

that zeroth-order model with the same material provides good representative 

behaviour.  Note that for zeroth order the first-order relationships in Table 1 for 

displacement, stress and strain rate (for example) simplify to 𝒖1 = 𝛽1
−1𝒖𝑡𝑠1 , 𝝈1 =

𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1 , and �̇�1 = 𝑔1�̇�𝑡𝑠1  (or 𝒖1 = 𝛽2
−1𝒖𝑡𝑠2 , 𝝈1 = 𝛼02

𝑣 𝑔2𝛽2
2𝝈𝑡𝑠2 , and �̇�1 =

𝑔2�̇�𝑡𝑠2) which provides the means to relate quantities in the physical and trial spaces.  

Results as viewed in the physical space with identical materials throughout are 

provided in Fig. 5.3, which show a high level of conformity. 
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Figure 5.3 Trial and physical space results are viewed in the physical space with 

Steel300 used in all models. 

The results of Fig. 5.3 confirm that there is little need to involve first-order theory for 

this case when identical materials are involved.  However, the purpose of the study 

here is to examine whether different trial materials can be used to achieve similar 

outcomes as this is of practical importance. Referred to the references of the Charpy 

Impact test [153-155], the Charpy impact test evaluations should be representative of 

the material’s behaviour. It needs to consider the unit of outputs, ensuring outputs 

with totally different units are tested in finite similitude theory. Hence, one is selected 

to be the load that the bending model affords versus the displacement of the impactor. 

Then there is the stress behaviour of an element during the deformed process. Finally, 

the energy dissipation over the process is the primary data to evaluate in the Charpy 

impact test. It investigates the EPFM issue between different materials, so the 

accuracy of the simulation is supposed to be close to the studies in Chapter 3, which is 
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'error < 5%'. Errors of outputs will be calculated with their maximum values, 

representing the strength of materials. The x-axis values like time and displacement 

are identical since the scaling theory controls the initial velocity and time. The results 

returned under zeroth-order theory involving different material are presented in Fig. 

5.4, where large deviations are apparent. Also depicted is the element selected for 

detailed comparison between the physical model and the similitude method. However, 

the question of concern is whether it possible by means of the first-order theory to 

reduce some of the errors involved. 
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Figure 5.4 Trial and physical space results are viewed in the physical space for a 

selection of trial materials. 
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Figure 5.5 Striker velocity returned by first-order theory in comparison with full-scale 

result. 

First-order results are presented in Fig. 5.5 based on the identities listed in Table 5.1, 

with errors listed in Table 5.5, where the differences between zeroth and first order are 

exposed. For the criterion of the error is 5%, not all combinations provide good 

outcomes as might be anticipated. Results of the zeroth-order theory are most not 

acceptable, except with Steel500T. However, it shows a particular case that material 

performs well in zeroth-order theory but cannot produce better results in the first order. 

It is because Steel500T’s properties significantly differ from both physical material 

and the other trial material, but it can still be acceptable in zeroth-order simulation. 

Al6061 provides nearly acceptable results, which can be generally improved with 

other materials in first-order theory. Note the response of the non-steel combination 

Al7075-Al6061. The good accuracy returned by this combination indicates that it is a 

potential candidate for practical studies. Although the first-order theory does not 

provide an expression for energy (being of higher order) the energy absorbed by the 

specimen can nevertheless be obtained from the striker velocity, as indicated in Fig. 

5.5. According to the results in the figures, steel500T and Al6061 are selected for 

zeroth-order and first-order simulation, respectively. 
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Table 5.5 Result comparison at critical point of curves presented in Fig. 5. 

Physical Peak load  
(kN) 

Displacement 
(mm) 

Maximum von 
mises stress 

(GPa) 

Maximum 
strain 

Final 
Velocity 

(mm/ms) 

Steel300 0.98 7.79 1.16 0.189 4.71 

Trial 

mat. 1 

(𝛽1 =
0.5 

Trial 

mat. 2 

𝛽2
= 0.25 

Peak load 

(kN) 

(Error%) 

Displacement 

(mm) 

(Error%) 

Maximum von 

mises stress 

(GPa) 
(Error%) 

Maximum 

strain 

(Error%) 

Final 

Velocity 

(m/s) 
(Error%) 

Steel500

T 

- 0.92 (6%) 7.77 (0.3%) 1.13 (2.6%) 0.204 (7.9%) 4.69 (0.4%) 

Ti6Al4V - 0.72 (27%) 7.85 (7.7%) 0.88 (24.1%) 0.198 (4.8%) 4.76 (1.1%) 

Al7075 - 0.7 (29%) 7.79 (0%) 0.85 (26.7%) 0.182 (3.7%) 4.73 (0.4%) 

- 304LSS 0.56 (37%) 7.91 (1.5%) 1.06 (8.6%) 0.189 (0%) 4.82 (2.3%) 

- AL6061 0.87 (11%) 7.99 (2.6%) 1.08 (6.9%) 0.196 (3.7%) 4.73 (0.4%) 

Steel500

T 

304L 

SS 

1.07 (9.2%) 7.72 (0.9%) 1.33 (14.7%) 0.209 (10.6%) 4.77 (1.3%) 

Ti6Al4V Al6061 1.01 (3.1%) 7.97 (1%) 1.27 (7.8%) 0.199 (5.3%) 4.73 (0.4%) 

Ti6Al4V 304LSS 0.98 (0%) 7.81 (0.3%) 0.94 (19.0%) 0.202 (6.9%) 4.73 (0.4%) 

Al7075 304LSS 0.94 (4.1%) 7.74 (0.6%) 0.97 (15.5%) 0.178 (5.8%) 4.69 (0.4%) 

Al7075 Al6061 0.95 (3.1%) 7.93 (1.8%) 1.18 (1.7%) 0.194 (2.6%) 4.72 (0.2%) 

 

5.3 Application in external impact processes 

Armed with the preliminary findings of Section 5.3 for a selection of material 

combinations, and the favoured parameter selection procedure, it is of interest to 

explore a practical case study involving impact on a pressure vessel.  The analysis is 

performed with the commercial finite element software package Abaqus explicit, 

which is particularly well suited to impact studies. 

5.3.1. Pressure vessel and the test process 
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Figure 5.6 Cross-section view and dimensions for a pressure vessel residing in the 

physical space. 

 

The pressure vessel of interest is depicted in Fig. 5.6 and is thin-walled and designed 

in accordance with the pressure vessel design manual [172]. The pressure vessel 

dimensions in the physical space are presented in Fig. 5.6 and is furnished with a 

tetrahedral mesh in preparation for finite element analysis as depicted in Fig. 5.7.  A 

global element size of 20mm is applied with a finer mesh of 1mm at 10mm*10mm 

area around the target point of the projectile detailed in Fig. 5.7.  A total of 89890 

C3D10M elements are utilised with the bullet (projectile) and supports for the 

pressure vessel set to be rigid but nonetheless meshed with 2mm sized elements. The 

simulation of a high-velocity impact on the pressure vessel follows that presented in 

ref [173], with identical parameters and bullet velocity applied in the physical space.  

The setting for the projectile penetration test is shown in Fig. 5.7(b) with the pressure 

vessel bonded to two supports, which are fixed on the floor, and the projectile is 

targeted at the middle of the vessel. Dimensions of the projectile as applied in the 

physical space is detailed in Fig. 5.7(c).  Note however, these features are expected to 

change in the trial space models with bullet mass, size and velocity adjusted according 

to the similitude rules.  The initial bullet velocity is defined to be the velocity at that 

instant when the bullet touches the pressure vessel.  For the Abaqus simulation the 

change in bullet velocity is of principal concern along with stress and equivalent 

strain at the damaged site. 
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Figure 5.7 Impact loading of a pressure vessel with (a) meshed details of the vessel, (b) 

setting of the high-rate impact test, and (c) dimensions of the projectile in the physical 

space. [173] 
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Table 5.6 Parameters of projectiles for different scales and materials. 

Scale Material Mass of 

projectile 

𝑀 (𝑔) 

Initial velocity 

of projectile 

𝑣𝑖  (𝑚𝑚/𝑚𝑠) 

Period of 

the impact 

process 

(10−4𝑠) 

Internal 

pressure of 

vessel 

(𝑀𝑃𝑎) 
Physical Steel300 54.2 950 1 20 

Trial 1 

(𝛽1 = 0.5) 

Steel300 6.8 962.17 0.4937 20.5 

Ti6Al4V 4.0 1545.2 0.3074 29.3 

Al7075 2.3 1662.7 0.2857 20.7 

Steel500T 6.8 1045.8 0.4542 24.2 

Trial 2 

(𝛽2 = 0.25) 

Steel300 0.85 974.19 0.2438 21 

Al6061 0.29 926.88 0.2562 6.5 

 

5.3.2. Application of first-order theory 

To make use of the data presented in Table 5.3 the length scale factors 𝛽1 and 𝛽2 are 

once again set to 0.5 and 0.25, respectively for trial models.  The materials identified 

in Section 5.3 are applied here also with the important information recoded in Table 

5.6.  Note that the internal pressure for the pressure vessel in the physical space is set 

to 20MPa and the period of penetration is 0.1ms, which is the time taken for the bullet 

to completely pass through the front shell.  The process of penetration is depicted in 

Fig. 5.8 along with corresponding projectile velocities and times.  The exact same 

analysis is repeated for the trial models with the initial velocity satisfying the zeroth 

order condition 𝒗1 = 𝑔𝛽
−1𝒗𝑡𝑠 as logged in Table 5.6.  For the different models the 

bullet velocity is plotted against displacement as show in Fig. 5.9 to provide a means 

to contrast the different responses.  

The impact test selects materials based on the results in the Charpy impact test for 

accurate and acceptable results, which makes the criterion of validation in this test 
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different and specific. Referring to the results in Fig 5.5, the criterion of velocity 

change should be less than 1%, and for the stress field result, it can be 7.8%. 

 

Figure 5.8 Penetrating process of the physical model. 

 

Figure 5.9 Velocity changes through displacement for all models. 

Application of the zeroth order relationship condition 𝒗𝑝𝑠 = 𝑔𝛽
−1𝒗𝑡𝑠  and condition 

𝑡𝑝𝑠 = 𝑔
−1𝑡𝑡𝑠  and viewing of the results in the physical space provide the graphs in 

Fig. 5.10.  Zeroth order provides a reasonable approximation in most cases with 

Ti6Al4V performing worst, so accordingly this material is taken forward (along with 

Al5075) for improvement with the first-order theory.  Cases 1.5 and 1.8 shown in 

Table 5.3 are considered with velocity satisfying the first-order relationship in Table 

5.1.  The results for two first-order models are depicted in Fig. 5.11, where the 

increase in accuracy returned by a two-experiment material model is revealed.  The 
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errors in the prediction of the final velocity of the bullet are recorded in Table 5.7, 

where an 8-fold improvement in accuracy is reported for Ti6Al4V. 

 

Figure 5.10 Temporal response of bullet velocity as viewed by all models in the 

physical space. 

 

Figure 5.11 Temporal response of bullet velocity as viewed in the physical space for 

two first-order models. 
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Table 5.7 Final bullet velocity with errors recorded for zeroth and first-order models. 

Physical material  Final Velocity (𝑚𝑚/𝑚𝑠) 

Steel300 886.89 

Trial material 1 

(𝛽1 = 0.5) 

Trial material 2 

(𝛽2 = 0.25) 

Final velocity 

(𝑚𝑚/𝑚𝑠) 

Error  

Steel300 - 887.89 0.11% 

- Steel300 887.25 0.07% 

Steel500T - 890.79 0.44% 

Al7075 - 890.21 0.37% 

Ti6Al4V - 896.18 1.04% 

- Al6061 888.13 0.14% 

Al7075 Al6061 887.57 0.08% 

Ti6Al4V Al6061 885.71 0.13% 

 

It is of interest to explore other physical fields to ascertain whether the first-order 

theory can reproduce other behaviours.   The von mises stress field in the vicinity of 

the localised damage zone is recognised to be complex and therefore challenging to 

capture exactly.  A path and the von mises stress are recorded along this path are 

presented in Fig. 5.12. The stresses shown are residual stresses remaining at the 

damaged site following full penetration by the projectile. The path is located at the 

edge of the finer mesh zone and sufficiently far away from the hole to avoid 

obliteration by the bullet.  Although not every feature of the curve for Steel300 is 

captured, nevertheless, the two first-order models Ti6Al4V-Al6061 and Al7075-

Al6061 provide a reasonable account and give significantly better results than models 

based on Ti6Al4V and Al7075 alone. 
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Figure 5.12 Von mises stress in the vicinity of localised damage along the path.  

The change in bullet velocity is captured reasonably well by the zeroth-order theory 

although improved upon with first order.  This is not too unexpected since the 

cylindrical-vessel wall is relatively thin and consequently the bullet passes through 

relatively quickly providing little scope for large deviations.  Greater complexity is 

apparent in the vessel stress field local to the damage zone being influenced more by 

material response and type. The errors presented in Fig. 12 are average errors and it is 

evident from the undulations present in the curves that perfect replication of Steel300 

is not achieved.  However, despite the complexity involved the two first-order models 

Ti6Al4V-Al6061 and Al7075-Al6061 provide a good account and give significantly 

better results than models based on Ti6Al4V and Al7075 alone. 

 

5.3.3. Practical constraints 

Zeroth-order similitude rules have been applied in the study above to specify the mass 

and initial velocity of the bullet, but practical considerations impinge on this freedom.  

Available bullet types and mass necessitate the introduction of alternative dimensional 

scaling factors.  Listed in Table 5.8 are a selection of available rifle cartridges, which 
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are to be contrasted against a 12.7mm NATO bullet [174] used in the physical space.  

In selecting a bullet for a trial model, the zeroth-order rules applied to the NATO 

bullet provide the desired dimensions and mass.  Representative dimensions are given 

priority with mass dictated by availability. The initial bullet velocity is arranged to be 

higher than 920 m/s for all trial models and is set equal to 920 m/s for the tests. The 

geometric features of the bullet types listed in Table 8 are presented in Fig. 5.13 and 

are also referred to in ref [175]. 

 

Table 5.8 Bullets used in the different models. 

𝛽𝑖 Supposed 
Mass of 

projectile 

(𝑔) 

Supposed 
initial 

velocity 

(𝑚/𝑠) 

Type of 
bullet 

applied 

(𝑚𝑚) 

Applied 
Mass of 

projectile 

(𝑔) 

Applied 
initial 

velocity 

(𝑚/𝑠) 

Period 
of the 

process 

(10−4𝑠) 

Internal 
pressure 

of 

vessel 

(𝑀𝑃𝑎) 
1 50 908 12.7  45 908 1 20 

0.6 10.8 916 8.0 12 920 0.6 20 

0.5 6.25 920 6.5 7 920 0.5 20 

0.4 3.2 923 5.0 3.4 920 0.4 21 

0.3 1.35 928 4.0 1.8 920 0.3 21 
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Figure 5.13 Bullet configurations with classifications 12.7mm, 8.0mm, 6.5mm, 5mm 

and 4mm respectively presented from top to bottom. 

The setup in Fig 5.7 again applies, and scaling factors are calculated as outlined above 

although 𝑔1 and 𝑔2 are not critically set exactly equal to the values provided by Eqs. 

(5.8).  An additional consideration is the velocity synchronization of the initial 

velocity between trial and physical models. However, since the applied velocity and 

the required velocity are close any change in 𝑔1 and 𝑔2  will have limited impact.  

Repeating the analysis above, identical materials are applied to all models and zeroth-

order results are presented in Fig 5.14.  Examination of this figure reveals significant 

disparities in the results due to mismatch in bullet mass.  The mass is generally higher 

than the desired value (as indicated in Table 5.8) and consequently provides greater 

momentum and higher final velocities as indicated in Fig 5.14.  Although there exist 

bullets with the correct mass, these possess smaller dimensions, which allows them to 

penetrate the pressure vessel shell wall much more easily. 

Table 5.9 Scaling factor in Case study 2. 

Case 𝛽1 𝛽2 𝑔1 𝑔2 𝛼1
𝜌

 𝛼2
𝜌

 𝑅1 

3.1 0.5 0.3 0.4935 0.2961 8 37.037 1.42 
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3.2 0.5 0.4 0.4935 0.3948 8 15.625 3.2 

3.3 0.6 0.3 0.5922 0.2961 14.1761 37.037 0.77 

3.4 0.6 0.4 0.5922 0.3948 14.1761 15.625 1.31 

 

Figure 5.14 Trial and physical space results are viewed in the physical space with 

Steel300 used in all models. 

To improve on the results presented in Fig. 5.14 the first-order theory is next 

considered applying the velocity expression in Table 5.1, with results returned in Fig. 

5.15.  A significant improvement in the results is apparent, which are quantified 

explicitly in Table 5.10 for the final velocity for both zeroth and first-order predictions.  

Taking into consideration the data in Table 5.8, it is apparent that lower 𝛽 values 

produce larger errors with zeroth-order scaling. results, Although the initial velocities 

are identical the errors are due to the difference between the required mass and the 

actual mass of the bullets, and additionally smaller models are invariably more 

sensitive to this difference.  The mass error for trial model 𝛽 = 0.4 is lower than trial 

model  𝛽 = 0.5 (6% to 12% respectively) yet the error associated with the smaller 

projectile is larger.  The application of two-experiment physical modelling provides 

the flexibility to counter such errors as revealed by the improvement recorded in Fig. 

5.15.  
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Figure 5.15 Trial and physical space first-order results are viewed in the physical 

space for replica scaling. 

Table 5.10 Final velocity and the error of all models in case study 2. 

𝛽1 (Steel300) 𝛽2 (Steel300) Final velocity 

(𝑚𝑚/𝑚𝑠) 

Error (%) 

1 - 857.89 0 

0.6 - 866.82 1.04 

0.5 - 869.61 1.37 

0.4 - 871.57 1.59 

0.3 - 874.16 1.90 

0.5 0.3 863.15 0.61 

0.5 0.4 863.35 0.64 

0.6 0.3 861.16 0.38 

0.6 0.4 860.59 0.31 

 

 

 

5.4 Application in internal explosive loading test 
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An alternative loading type important for of pressure vessels is shock loading arising 

from an internal blast, which is a commonly used test and safety measure for testing 

resistance to overpressure.  A respected approach for the simulation of explosive blast 

loading using the finite element method is the conventional weapons effect program 

(Conwep) first developed for military purposes.  This approach can be used to 

simulate several types of explosions involving the production of a shock wave by the 

sudden release of energy from an explosive core.  The critical parameters in a Conwep 

model are converted to mass of Trinitrotoluene (TNT), type of blast, location of 

detonation, and the applied surfaces.  

5.4.1. Model and the input parameters. 

 

Figure 5.16 Pressure vessel model subjected to the internal blast. 

The details of the pressure vessel and model can be found in Fig. 5.16 and is based on 

the analysis performed by Barsoum et al. [176] in that it involves the same pressure 

vessel, penetration test, and two fixing rings at the ends of vessel.  The rings feature to 

ensure that the vessel does not split and is able to withstand the internal blast both 

statically and dynamically. The explosive loading acts over all the inner surfaces of 

the pressure vessel making it unnecessary for a targeted fine meshed so a global mesh 

size of 10mm is applied to the physical model. A shell model consisting of 60600 S4R 
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shell elements is adopted in this study as opposed to a solid model.  A shell model is 

selected here because it better suited to capture the nonlocalized loading and response 

of the pressure vessel model and consequently provides for greater stability and 

accuracy.  The source of the explosion (TNT) is located at the middle of the pressure 

vessel 20mm from the bottom surface as shown in Fig. 5.16.  A 1kg mass of TNT is 

used as the source of the Conwep blast in the physical model; this is sufficient to 

ensure that the shell is damaged under explosive loading.  Identified points of interest 

in this study are points 1 and 2 labelled in Fig. 5.16.  The materials considered in this 

study are titanium for the physical model, along with aluminium, steel and stainless 

steel for the trial models. Here the material order is changed due to the engineering 

practice, which can also prove that the material order in finite similitude theory will 

hardly affect the results. The scaling parameters for the new material combinations are 

shown in Table 5.11. For the tests to comply with the analysis performed in Section 

5.3 the dimensional scaling factors are once again set to be equal to 𝛽1 = 0.5 and 

𝛽2 = 0.25.  The pertinent parameters for the models are logged in Table 5.12, where 

the mass of TNT in each model is determined on scaling of the explosive mass with 

size.  Note that internal blast loading differs from the previous loading case (i.e., 

external impact with an impactor) in the sense that the source mass is most critical as 

opposed to the loading rate.  Consequently, the mass of TNT and the period of the 

loading process in the trial space are not dictated by the time scalar 𝑔 per se, but by 

the scale of the model.  

Table 5.11 Scaling parameters for materials in the internal explosion study. 

Case Trial 

material 1 

(𝛽1 = 0.5) 

Trial 

material 2 
(𝛽2 = 0.25) 

𝑔1 𝑔2 𝛼1
𝜌

 𝛼2
𝜌

 𝑅1 

3.1 Ti-6Al-4V Ti-6Al-4V 0.4978 0.2478 8 64 1 

3.2 Steel300 SS 304L 0.8041 0.3287 4.4355 36.3487 -0.5482 

3.3 AL7075 AL6061 0.4632 0.4140 13.1259 104.6199 -0.6215 

Table 5.12 Input parameters for the explosive loading model. 
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Scale Material Mass of TNT 

𝑀 (𝑔) 
Period of the 

impact process 

(𝑚𝑠) 

Distance from 
explosion to 

the surface 

(𝑚𝑚) 

Physical Steel300 1000 2 20 

Trial 1 

(𝛽1 = 0.5) 

Steel300 125 1 10 

Ti-6Al-4V 125 0.96 10 

AL7075 125 0.94 10 

Trial 2 

(𝛽2 = 0.25) 

Steel300 15.625 0.5 5 

AL6061 15.625 0.48 5 

 

Figure 5.17 Von mises stress levels of the models for different materials. 

5.4.2. Application of first-order theory 

Von mises stress levels returned on performing a Abaqus analysis are presented in Fig. 
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5.17 for a steel physical model, and aluminium and titanium alloy trial models.  The 

damaged area local to the charge is similar in each model but stress levels are 

significantly different.  However, the temporal variation of pressure on the inner 

surface of the vessel at the damage site as viewed in the physical space (see Fig. 5.18), 

confirm that the TNT masses are appropriate in the zeroth-order models.  Note how 

the pressure both rises and falls rapidly in accordance with the expected behaviour of 

a Conwep blast and damaged model. 

 

 

Figure 5.18 Temporal variation of pressure on the inner surface of the pressure vessel 

for the trial and physical spaces as viewed in the physical space. 
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Figure 5.19 Trial and physical space zeroth-order results as viewed in the physical 

space for identical material showing (a) the reaction force at point 2, (b) the 

displacement in y direction at point 1 (see Fig. 5.16). 

Zeroth-order results for replica scaling (i.e., using the same material throughout) are 

presented in Fig. 5.19. The close conformity of the results rules out the need for the 

application of the first-order theory.  However, the focus here is on physical modelling 

and the ability of the first-order theory to rectify the differences in the individual 

models produced with different materials.  Presented in Figs. 5.20 and 5.21 are results 
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returned on application of the first-order theory plotted alongside those returned with 

zeroth order. The percentage errors recorded are based on the areas under the curves, 

as the same criterion of error will be used here. Examination of Figs 5.20 and 5.21 

reveal significant differences with greatest deviation resulting in the single experiment 

models.  The first-order models although not providing perfect replication improve 

the predictions markedly.  The frequency of vibration is represented to good accuracy, 

but amplitudes deviate at certain instances.  Overall, however the first-order approach 

has been confirmed to significantly enhance the prediction even when in the presence 

of widely deviating zeroth-order results. 

 

(a) 
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Figure 5.20 Zeroth order results as viewed in the physical space for explosive impact 

test, showing (a) the reaction force at point 2, (b) the displacement in y direction at 

point 1(see Fig. 16). 

 

 

(b) 

(a) 
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Figure 5.21 First-order results as viewed in the physical space for explosive impact 

test, showing (a) the reaction force at point 2, (b) the displacement in y direction at 

point 1(see Fig. 16). 

The study provided a significant challenge with internal pressure and the load rate 

being related nonlinearly to that mass of the TNT and distance between the explosion 

source and shell [177].  This meant that a single scaled model was unable to replicate 

full-scale behaviour as is readily revealed in Fig. 5.18.  The added flexibility provided 

by the first-order theory although insufficient to achieve perfect replication returned 

acceptable results as presented in Fig. 5.21. 

5.5  Conclusion 

The Chapter introduces and re-examines the place of physical modelling for practical 

impact studies in the light of a new two-experiment scaling theory.  It is shown in the 

chapter how two-experiment studies can be initiated through the analysis of a standard 

impact test (the Charpy impact test was considered) to assess material suitability 

before moving on to practical investigations.  Pressure-vessel related studies were 

trialled to assess the practical value of the new approach with loading through impact 

and explosion testing.  Models founded on the Johnson-Cook constitutive and damage 

(b) 
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laws were applied in the finite element models and a procedure was established to set 

the free parameters that appear in the scaling theory.  This was achieved by capturing 

key features of the Johnson-Cook laws through integration over the process-parameter 

window pertinent to the studies.  The theory developed is applied to the practical test 

cases, and the following conclusions can be drawn from the results obtained: 

• Zeroth order, involving one scaled experiment, and first order involving two, 

have roles to play in physical modelling in impact studies.  If zeroth order proves 

sufficient, then first order is not required but inaccuracy in zeroth order can 

generally be improved with application of the first-order theory. 

• The first-order theory provides significant scope for combining unlikely material 

behaviours at scale to capture to good accuracy full-scale behaviours. Materials 

ruled out as unsuited by zeroth-order theory (single experiment study) now have 

the potential to play a part in a two-experiment analysis. 

• It was confirmed that a standard test and specifically the Charpy impact test can 

be used to assess the suitability of materials for physical modelling in single and 

two experiment impact studies. The optimum choices for material combinations 

remained the best choices for the practical studies. 

• The benefit of two scaled experiments were revealed in both the penetration and 

internal blast test with the application of dissimilar materials to capture to good 

accuracy full-scale behaviours, providing significant enhancement over a single 

experiment using a dissimilar material. 

Specifically, to the case studies: 

• Scaling experiments of the Charpy impact test are not entirely acceptable since 

some errors are higher than expected, especially stress change. Unlike other data, 

the stress is evaluated from an individual element rather than a whole model, 

which presents that this kind of result is more variable and challenging to 

synchronize. On the other hand, it again strengthens the importance of material 

selection for finite similitude theory. This is a criterion or limitation of applying 

finite similitude with different materials. 
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• Based on the material selection in the Charpy impact test, the projectile 

penetration test produces better results. It proves that the scaling of rate through 

finite similitude theory is correct in the dynamic process. Moreover, results in 

Figs. 5.14 and 5.15 present that the scaling experiment's boundary condition can 

be flexible, though it still needs to obey a common law.  

• The internal explosive test produces more challenges to the scaling theory. A 

particular point of the test is that both load and loading rate are controlled by one 

factor, the mass of the explosion source. It is hard to decide the load and its rate 

by the transport equations since they have different non-linear relationships with 

the mass. It scales the mass by size for all models to ensure the same frequency 

between different materials. It makes the shape of curves similar, but the results 

are not quite matched, though the first-order theory can improve the accuracy. 

(See in Fig. 5.21) In this case, it is recommended to use identical material in the 

scaling experiment when the boundary conditions cannot be regularly controlled.  
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Chapter 6 Conclusion and Future work 

The purpose of the work presented in the thesis is to assess the feasibility and efficacy 

of the finite similitude scaling theory for application in fracture mechanics.  The finite 

similitude theory provides a systematic approach for the representation of scale effects, 

and it was envisaged at the start of the work that this would provide tangible benefits 

in fracture mechanics with improved accuracy from scaled experimentation. The 

following conclusions can be drawn from the body of work presented in the thesis: 

6.1 Overall Conclusion 

⚫ The results presented provide strong evidence that the finite similitude theory can 

offer real benefits to fracture-mechanics studies. It is applicable to both LEFM 

and EPFM and can be applied to investigate critical values or fracture processes. 

For LEFM the theory has been confirmed correct by both analytical and 

numerical evaluation of stress intensity factors. For EPFM, it has been confirmed 

through numerical case studies, with representative virtual models, that standard 

ASTM tests can be accurately represented by scaled models over a range of 

scales, confirming the absence of scale effects. 

⚫ Apart from the simulations of LEFM, which can be done by finite similitude 

theory in different ways, EPFM should be the main objective to assess the 

efficacy of finite similitude, especially the first-order theory. As it could be 

founded during the process of research, errors of scaling for zeroth-order theory 

always appear between different materials, or in plastic behaviour of identical 

material. It is shown that these errors can be solved by the application of first-

order theory, by associating the results in zeroth order. In fact, first-order theory 

cannot completely vanish these errors, even when dealing with the errors of 

plasticity by size effect, it could be explained by the no-linearity in plastic section, 

and the application of the transport equations are finally linear with the outputs. 
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⚫ Though the results of plasticity or different are not perfectly matched in scaling, it 

still provides an accurate agreement of the predictions under first-order theory. 

The key factor would be the synchronization of material properties and size scale 

before analysis, it could be founded in the test of numerical study, with virtual 

material. The scaling factors are developed by the transport equations based on 

space scaling, which aims to synchronize different material and scales, From the 

matched results between virtual material and the real physical material, it proves 

that the scaling theory can successfully transfer the material or size in a virtual 

case, though it cannot be used in practical experiment.  

⚫ As for the application in real test, for example the ASTM tests or dynamic impact 

test, the results are also matched as supposed, which can be concluded by the 

performance of material in virtual cases. As the outputs of specimens reflecting 

the material behaviour, which has a same meaning of ‘material properties’, the 

behaviour can be consequently synchronized as the properties. The finite 

similitude theory can be regarded as a transfer system between scale experiments, 

that inputs (material properties) are used to obtain the scaling factors and 

transport equations, and then these will be used to predict the outputs (material 

behaviours), and it can also be applied oppositely.  

⚫ Identical material applied in different scale experiments can clearly show the size 

effect, in this case, stress field and displacement field are scale independent, 

which causes the errors in zeroth-order prediction. It was previous matched with 

linearly dependency of displacement field. The error can be regarded as the scale 

effect, which is then improved by applying first-order theory. The error is caused 

by the invariance properties reversing from trial space to physical space 

(displacement field), and solved with the first-order transformation of the 

properties (see Fig 4.4), which again returns to the properties-to-behaviours 

reflection in finite similitude theory. 

⚫ It could find that first-order theory can minimize the error caused by zeroth-order 

theory, by associating two distinct scale experiments. In this case, many 
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limitations by zeroth-order theory can be freed, which leads to more choice of 

scaling experimentation, for example size independent and property independent. 

It then gives encouragement when applying scaling theory that results with error 

can be synchronized to get a more accurate result with higher-order finite 

similitude theory. 

⚫ Based on the encouragement of first-order theory, it starts to try more choices and 

unknowns by applying finite similitude theory in dynamic impact model, with 

Johnson-Cook damage model. The dynamic loading tests are different with quasi-

static experiment, here time scale needs to be considered which will also affect 

the result significantly. Synchronization of J-C material models and strain 

hardening curves are similar because they are both from the stress-strain 

behaviour of tensile test. From these experiences it can conclude that to 

synchronize the plastic material behaviour, which is not linear, determining the 

scaling factors with mean component is an effective approach.  

⚫ For the application in the practical study, from the study in Section 3.6, zeroth-

order theory can obtain a good prediction in LEFM. In EPFM, it is necessary to 

use first-order theory. Solutions for size effect, different material, and inexact 

boundary conditions are provided in the first-order theory. Compared with other 

scaling theories, it can consider the constraint effects in fracture mechanics. 

However, the restrictive condition of the scaling experiment is a crucial limitation 

in reality.  With one scaled experiment it should be possible to control most 

parameters like temperature, velocity, pressure, load, size, and geometry.  These 

must of course be controlled and correctly synchronized when two scaled 

experiments are involved. 

6.2 Conclusion based on case studies 

⚫ There is an analytical simulation with pure mathematical calculation in Section 

3.6, which proves that in LEFM, the theory can transfer the outputs between 

different materials. The process shows that the calculation links several linear 
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equations, where the critical material properties obtain the scaling parameters to 

simulate output in the same order. The perfectly matched results show that the 

transported equations are applicable. However, this test displays a restriction on 

the size scale 𝛽𝑖 for the selected material. Though it can control the influence of 

size-dependent factors, the critical value of structure size is always a significant 

limitation of a scaling theory. 

⚫ Elastic-plastic J-integral tests are developed in Sections 3.7 to 3.8. The finite 

similitude theory is applied to the material properties. Then it shows its 

applicability by comparing the outputs numerically since the J-integral value 

cannot be directly synchronised with the scaling theory. It provides a good trend 

between input and output, showing the theory's rationality and availability. The 

first-order theory first makes significant improvements by adding a trial 

experiment. The test proves the efficacy of finite similitude theory in fracture 

mechanics, and offers a standard of material selection, but it is not very 

meaningful, especially for practical experiments. It ignores the size effect since 

the comparison is between the same model between physical and virtual materials. 

Furthermore, for a scaling experiment, it is intended that physically measurable 

outputs are compared. 

⚫ In Section 4.4, a new approach of finite similitude theory is applied, using scale 

invariance with identical material. The figures of synchronised load-displacement, 

J-∆𝑎 shows high-accuracy simulation as intended, which means the size effect 

can be solved in this approach. It proves that the two-experiment theory can 

minimise the influence of the size effect during scaling experiments; it is also 

available for practical problems with the complex scale variance parameters, and 

the tests with different materials. 

⚫ Apart from the problem of individual element evaluation, dynamic fracture 

mechanics study must consider additional parameters like time, loading rate and 

strain rate and synchronise them to be identical between different models. Load 

and energy results in Fig.5.4 show the timing error between different materials 
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(different displacement or time of the peak load/energy).  It can further restrict 

material selection in dynamic and practical experiments. 

⚫ From the projectile penetration test (Chapter 5) and the fracture toughness test 

(Chapter 4), an incorrect input is not forbidden in the scaling theory. However, 

the two-experiment theory is necessary to vanish the error in the one-experiment 

theory. Investigating Figs. (4.8) and (5.14) can find that the scaled models have a 

common trend compared to the physical model. For example, in Fig (4.8), all the 

scaled specimens appear harder to fail with decreasing size; in Fig (5.14), the 

velocity resistance is less with 𝛽𝑖  since they have heavier projectiles than 

expected. To conclude, an additional experiment in first-order theory can solve 

the identical and regular error trend. 

⚫ Finally, the procedure of finite similitude theory applying to a practical 

experiment can be: 

1. Clarify the objective's detail, including diameters, geometry, material, 

boundary conditions like applied load, stress or velocity, and the required 

outputs.  

2. Create the scaled specimens with satisfied diameters and materials. The 

shape/geometry of the scaled specimens should be the same as the prototype. 

It is best to use the same material if possible, or materials close to the original 

material are recommended. 

3. Calculate the necessary scaling parameters by the 𝛽 and material properties, 

including 𝑔, 𝛼 
𝜌, 𝛼 

𝑣 and 𝑅1
 . For the study involving plasticity, the mean value 

of material properties should be considered to calculate these parameters. 

Then define the transported equations that will be used for the required 

outputs. 

4. Determine the boundary conditions of the scaling experiments by their scaling 

parameters and the original boundary conditions.  

5. Generate the experiment with the scaled specimens and collect the results 

individually. 
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6. Take two-specimen combinations and synchronise their results with the 

transport equations, and then the analytical results of each group are obtained. 

7. Create a numerical study with the given diameter and material for the 

prototype, then compare the analytical results and numerical results to see if 

they have good agreement. 

6.3  Future works recommendations 

⚫ Firstly, some of the case studies already done in the thesis can be improved with 

additional jobs. The numerical study with virtual material in EPFM can be 

simulated again with actual materials, and synchronize the outputs then compare 

the results of, for example, load-displacement or J-integral (which needs to be 

calculated indirectly) between the calculated one and physical one. 

Some typical tests, for example, ASTM E1820 tests and Charpy impact test, are 

suggested to be tested experimentally. These tests are not too complex but can be 

more direct to view the performance of specimens and make the research more 

convincible, which is not done due to some condition factors. It is better to 

generate the scaling experiment with one of the specimens and synchronize the 

results, then compare them to the numerical results. Considering the strain rate 

and time-scale effect in fracture mechanics studies is also essential. As the 

loading rate in ASTM E399 and E1820 tests is already suggested, scaling the 

loading rate should be considered as the study in the dynamic process.   

It has been introduced another way to determine 𝑔1and 𝑔2 by the functions of 

stress and displacement, which will finally get 𝛼0
𝑣𝑔 = 𝛽−3. Stress is dominantly 

related to strain for the material modes involved in this thesis, so this approach 

has not been tested. It can be assumed that 𝑔1and 𝑔2 determined by stress and 

displacement fields is available for the model or method related between them, 

which would be cohesive zone model, with traction separation method. So 

furtherly, the scaling test of fracture mechanics with CZM can be evaluated with 

this method. 
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⚫ Singular fracture value like fracture toughness and critical J-integral have been 

investigated in this thesis. The two-parameter fracture mechanics should also be 

tested with finite similitude theory, which was introduced in ref [48-49]. It can 

use the original specimens of J-value evaluation in this thesis, such as CT and 

TPB models. The J-Q theory will be further considered for the critical value, 

which can be represented by 𝐽𝑐 = 𝐽0(1 −
𝑄𝜎𝑌

𝜎𝑐
)𝑛+1, as 𝐽0 is the J value of singular 

fracture mechanics. In this case study, two different parameters should be 

synchronised respectively for the results, where 𝐽0 can follow the same procedure 

in a singular fracture test. Q value is related to the stress field, which be 

calculated by stress of small-scale yield and hoop stress. Essentially, this 

experiment aims to obtain accurate prediction for both load-displacement data 

and different stress fields around the crack. 

⚫ It can see that applying finite similitude theory in different fields gives more 

experience to the scaling theory. The suggestion will continue this way. The 

application method and ability of finite similitude can become more mature with 

further scale experiments. The expanded study can consist of two directions; one 

is evaluating the theory in different kinds of experiments—for example, the 

penetration test of the solid model (see ref [178]). Compared to the thin-wall 

penetration test, it provides a broader range of strain rate and markedly rate 

change of the impactor. In addition, the influence of material properties of the 

penetrated target will be more significant, which can test finite similitude theory 

more effectively. The investigation outputs will be the velocity change, reaction 

force change over time and displacement. As the test uses a solid or thick-wall 

objective, the duration of the change will be extended until the kinetic energy 

drops to zero. In this process, the results will be more mature and different 

materials will make higher differences, which needs the synchronisation of first-

order theory, so it is a good choice for the test or improvement of the theory. In 

detail, the experiments can prepare several solids in different materials, which are 

penetration targets. These solids do not need to be scaled since they are always 
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significantly larger than the projectile. In the beginning, the test can be done with 

the same-size projectile and different materials of the solids. The material of the 

target solid should determine the mass and initial velocity. Then the size of 

projectiles can be scaled by 𝛽. The primary objective of this experiment is not for 

the scaling test but for the synchronisation of material behaviour between 

different materials. 

⚫ The dynamic internal blast test on cracked pressure vessels is also exciting and 

worth trying (see ref [159]), combining two practical tests and displaying another 

way of dynamic fracture mechanics. This test will include predicting fracture 

mechanics (stress intensity factor and J-integral) under vibration caused by an 

explosion. As the results of the explosive loading test in this thesis, the 

synchronisation of vibration from the explosion is not perfectly matched between 

different materials. This test can firstly do with identical material to investigate 

the effect of fracture parameters due to the vibration and whether the first-order 

theory can resolve that. According to ref [159], it evaluates the crack propagation 

under the sudden impact caused by the explosion, for example, crack growth and 

cracks growth rate over time, which is different from the smooth and constant 

internal pressure. As it could find that internal blast loading is a particular case for 

scaling, it can be a new challenge for finite similitude theory to predict the 

material behaviour under the blast. In detail, thin-wall pressure vessels of 

different sizes and the same material will be used, with the scale-mass TNT as an 

explosion source. A pre-crack should be located far from the TNT, which is 

intended to propagate after the explosion. The investigation outputs should 

include the elastic-plastic J-integral, the crack extension rate and the J-R curve 

under explosion.  

⚫ Finite similitude is a scaling theory which is not only the method for material 

evaluation for reducing finical cost. The theory can also apply in the scale 

experiment to some industrial products. For example, a failure assessment for a 

pressure vessel is necessary for safety factors [179]. It can test the scaling of 
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maximum allowed pressure, failure assessment diagram, and the S-N curve. Here 

the practical test can do with the vessels under internal pressure. In a practical test, 

pressure vessels can be designed to have different sizes and materials and then 

evaluate the critical value of pressure causing damage. The finite similitude 

theory can use here to synchronise the pressure between different models.  

It was mentioned in the review that structures will still fail even if it never 

reaches any failure criterion after working for a long time, which is known as 

fatigue. So, a scale experiment of a product under a low cyclic load is necessary. 

For some simple components, for example, a beam or a bar, the investigation of 

these components can focus on the scaling of fatigue life. It can test between 

different materials, which can make the application of theory more flexible. The 

test can design to have compact tension models or bending models of different 

sizes and materials subjected to cyclic loads, which are determined by the 

material. It can investigate the scaling theory for the fracture process, for example, 

stress intensity factor along with the cycles, crack initiation point, and the S-N 

curve. 
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