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ABSTRACT 

Agriculture is the main sectoral user of water globally. Increasing pressures on freshwater 

resources, coupled with population growth and climate change, mean there is a need to 

improve agricultural water productivity to tackle water scarcity and food insecurity. 

Improving irrigation scheduling practices is a key solution to these challenges, in particular 

in high-productivity agricultural regions where potential gains from improving irrigation 

application technologies have largely been exhausted.  

This thesis consists of four journal articles (two published, one in review and one work in 

progress) that together form a body of research focused on identifying and evaluating 

solutions for improving agricultural water productivity through improved irrigation 

scheduling practices. Work presented in the thesis focuses primarily on case studies in the 

central United States, where agriculture is the main sectoral user of water, and where there 

are growing issues of water scarcity related to intensive abstractions for irrigation. Analyses 

with the thesis leverage novel crop-water modelling tools, including AquaCrop-OSPy that 

was developed directly as part of this thesis (Chapter 2)  

The first empirical paper of the thesis (Chapter 3) examines how uncertainty in the 

knowledge of soil texture and local weather conditions impacts the water productivity of 

irrigation decisions made by farmers. This analysis demonstrates that a farmer’s choice of 

irrigation management rules has a much greater impact on productivity and profitability of 

water use than uncertainty in soil-moisture monitoring. A key conclusion from this paper is 

that perfect soil-moisture information is not required to make near-optimal irrigation 

decisions, and that greater benefits can be obtained by improving baseline irrigation 

management rules and heuristics. 

Building off of this finding, the second empirical paper of the thesis (Chapter 4) then 

examines how scheduling rules can be best adapted to improve the productivity and 

profitability of irrigation decisions under weather uncertainty. By comparing optimised 

irrigation heuristics that are applied in every year, to heuristics that are re-optimised during 

the season, an assessment of the added value of the adaptive in-season irrigation 

scheduling approaches was conducted. Results demonstrate that robustly optimised fixed 

management rules can achieve the vast majority of the profits obtainable with perfect 
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foresight, and that the value of within-season adaptation is generally marginal unless 

perfect weekly weather forecasts are available to support in-season scheduling adaptation.   

Finally, the last empirical paper of the thesis (Chapter 5) explores the potential for AI 

approaches such as Deep Reinforcement Learning to enhance value of adaptive in-season 

irrigation scheduling in complex decision-making environments. An assessment is made of 

the added value of using Deep Reinforcement Learning for irrigation scheduling compared 

to optimised soil-moisture thresholds. These results show that only under restrictive water 

caps and minimised weather variability does Deep Reinforcement Learning increase profits 

compared to optimised soil-moisture thresholds.  

 



17 
 

DECLARATION 

No portion of the work referred to this Thesis has been submitted in support of an 

application for another degree or qualification of this or any other university or other 

institute of learning 



18 
 

COPYRIGHT STATEMENT 

 
 

i. The author of this thesis (including any appendices and/or schedules to this thesis) 
owns certain copyright or related rights in it (the “Copyright”) and s/he has given The 
University of Manchester certain rights to use such Copyright, including for 
administrative purposes.  

 

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic 
copy, may be made only in accordance with the Copyright, Designs and Patents Act 
1988 (as amended) and regulations issued under it or, where appropriate, in 
accordance with licensing agreements which the University has from time to time. 
This page must form part of any such copies made.  

 

iii. The ownership of certain Copyright, patents, designs, trademark and other 
intellectual property (the “Intellectual Property”) and any reproductions of copyright 
works in the thesis, for example graphs and tables (“Reproductions”), which may be 
described in this thesis, may not be owned by the author and may be owned by third 
parties. Such Intellectual Property and Reproductions cannot and must not be made 
available for use without the prior written permission of the owner(s) of the relevant 
Intellectual Property and/or Reproductions.  

 

iv. Further information on the conditions under which disclosure, publication and 
commercialisation of this thesis, the Copyright and any Intellectual Property and/or 
Reproductions described in it may take place is available in the University IP Policy 
(see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any relevant 
Thesis restriction declarations deposited in the University Library, The University 
Library’s regulations (see 
http://www.manchester.ac.uk/library/aboutus/regulations) and in The University’s 
policy on presentation of Theses 



19 
 

ACKNOWLEDGMENTS 

First and foremost I have to thank Tim Foster. I truly could not have asked for a better 

supervisor and it is because of you that I now consider myself to be a scientist. You gave me 

the encouragement and confidence to go off in interesting directions, but also knew how 

bring me back and turn that into publishable research. Your knowledge, patience, and 

constant support is very much appreciated. None of this would be possible without you. 

Next I have to say a massive thank you to David Schultz. You will forever be the gold 

standard for scientific communication, whether that be writing papers, talks or posters. 

Your expertise and infectious positivity towards these areas has improved my work 

immensely.  

I am also incredibly grateful to my parents and grandparents for the constant support 

throughout this process, and for every sacrifice they have made in helping me get to this 

point. 

Thank you to all of the DTP guys for making the past 3.5 years a fun and enjoyable 

experience. It really wouldn’t have been the same without all of the trips to Revs, away 

days, activities and of course 5-a-side Football.  

A big thank you also to my brother, sister, home friends and uni friends for all their support 

and all the great times we have had. 

I also have to thank Cliff and Scragg for being the best friends and housemates I could have 

asked for. Every pint, game of fifa, and hot fuzz quote has made the past 9 years in 

Manchester truly great.  

Thank you also to Steve, Rachel and Ollie for welcoming me into your family 3 years ago and 

for all the kindness and support you have shown me. 

And finally, the biggest possible thank you to Emily. A week into this PhD I met my soulmate 

and now my fiancé. You have made not just the past three and a half years incredible, but 

also all the years to come. Every long walk, activity, day trip, and holiday has created 

unforgettable memories. I wish you the best of luck finishing your PhD, and hope I can 

replicate the love and support you have shown me since the day we met. 



20 
 

1 INTRODUCTION 

This chapter will start by giving a brief overview of the importance of irrigation for 

agriculture (Section 1.1), followed then by a summary of different options for improving 

agricultural water productivity as a response to water scarcity and insecurity (Section 1.2). 

Key gaps within this research, in particular around solutions for improving irrigation 

scheduling, will then be highlighted (Section 1.3). Finally, specific research aims for each 

Chapter will be outlined along with the structure of the thesis (Section 1.4).  

1.1 MOTIVATION 

Water is a critical input for agricultural production and food security. Globally, insufficient or 

variable rainfall is considered to be the biggest constraint to crop production (Vadez et al., 

2013; Salman et al., 2021). Over 40% of global croplands experience green water scarcity 

(i.e., local rainfall is not enough to meet crop requirements) for at least 5 months of the year 

(Rosa et al., 2020). By acting as a buffer against this rainfall variability, irrigation enables 

farmers to achieve larger and more consistent crop yields, while also enabling land to be 

cultivated for longer periods of the year in some regions (Howell, 2001). The importance of 

irrigation for agriculture is illustrated by the fact that irrigated croplands make up only 23% 

of all global cropland, yet produce 40% of global food supplies (Rosa et al., 2020).  

The substantial difference in the productivity of rainfed and irrigated food production makes 

irrigation an essential tool for combating global food insecurity. However, it also means that 

agriculture is frequently at the heart of issues of water insecurity and conflict in many parts 

of the world (Mekonnen & Hoekstra, 2016). Globally, agriculture accounts for over 60% of 

water withdrawals and over 80% of global consumptive freshwater use (Siebert et al., 2015; 

Rosa et al., 2020), meaning agriculture is both a driver and a victim of water scarcity issues. 

Two examples of this driver–victim relationship come from Spain (Expósito & Berbel, 2019; 

Julio Berbel et al., 2019) and the central United States (Scanlon et al., 2012; Foster et al., 

2015; Butler et al., 2020), where excessive groundwater abstraction resulting from irrigation 

expansion has caused declines in aquifer water storage, which in turn threaten sustainability 

of agricultural production systems and rural economies. As a consequence of this growing 
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water scarcity, local policy makers have imposed policy restrictions on irrigation water use, 

forcing farmers to adopt more water efficient practises, technologies or crop choices.  

In parallel with these challenges, it is also widely recognised that food production must 

increase substantially in the coming decades to meet the demands of growing populations 

(Howell, 2001; Foley et al., 2011). However, given the ecosystem damage caused by 

previous agricultural expansion, this increase must take place without further increasing 

existing pressures on land and water resources (Foley et al., 2011; Zheng et al., 2018). 

Needing to produce more food with less water has resulted in a shift from optimizing yield 

and expanding cropping area, towards optimizing productivity on existing agricultural land 

while minimising use of limited freshwater resources (Howell, 2001; García-Vila et al., 2009; 

Adeyemi et al., 2017). Achieving these goals is challenging, in particular in the context of 

increasing crop water requirements (Turral et al., 2010; Kahil et al., 2015) and more volatile 

rainfall patterns caused by climate change (IPCC, 2022). Increased water productivity via 

rising carbon dioxide (CO2) concentrations is unlikely to mitigate these negative impacts due 

to declines in food nutrient density (Zhu et al., 2018; Dong et al., 2018). 

It must also be noted that increasing field-level water productivity (i.e., minimizing water 

losses from deep percolation and surface runoff), can have unintended consequences when 

viewed at a basin scale (Van der Kooij et al., 2013; Berbel & Mateos, 2014; Grafton et al., 

2018). Losses through runoff and deep percolation are not necessarily lost when taking this 

wider view of the system as these losses contribute to streamflow and aquifer recharge. 

Losses through evapotranspiration (ET) on the other hand are generally considered lost to 

the local hydrological system – though they are beneficial losses to the farmers as ET drives 

crop growth. Examples from Spain, Chile, China and the United States have found farmers 

have used their water productivity improvements to expand irrigated area or switch to 

more water intensive crops (Scott et al., 2014; García et al., 2014; Berbel et al., 2019;  Zhang 

et al., 2020). This behaviour maintains or even increasing their total water abstractions, 

whilst now decreasing streamflow or return flows to the aquifer. This effect is often referred 

to as the irrigation efficiency paradox, and highlights that improvements to irrigation water 

productivity alone may not solve water scarcity issues without also being paired with local 

government policies such as caps on water abstractions (Scott et al., 2014; Grafton et al., 

2018). 
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1.2 PATHWAYS TO INCREASING AGRICULTURAL WATER PRODUCTIVITY 

Efforts to increase food production while minimising use of limited freshwater resources are 

fundamentally focused on enhancing agricultural water productivity – i.e. the amount of 

crop yield produced per unit of water applied through rainfall or irrigation. Multiple 

pathways exist through which agricultural water productivity can be improved. For example, 

changes to irrigation technologies can enhance the efficiency of water delivery to crops, 

minimising non-beneficial losses of water, and hence increasing water productivity (Camp, 

1998). Alternatively, scheduling practices and rules can be adapted to ensure that water is 

only delivered at the times and locations where it is needed, avoiding excessive water losses 

or yield declines through water stress (Adeyemi et al., 2017). Additional pathways to 

improving water productivity include changes to land management practises (Bossio et al., 

2010), as well as the development and adoption of new drought-tolerant crop varieties 

(Nuccio et al., 2018). 

Improving irrigation technologies (e.g., switching from gravity systems to pressurised 

sprinklers or drip irrigation), has been shown to deliver large improvements to water 

productivity (Sammis, 1980; Camp, 1998; Al-Jamal et al., 2001; Maisiri et al., 2005; 

Woltering et al., 2011; Gonçalves et al., 2020). However, the potential gains in water 

productivity by these improvements reside in agricultural regions with low levels of 

mechanization, and also entail large upfront costs and training to encourage farmers to 

adopt new technologies (Koundouri et al., 2006; Mwangi & Kariuki, 2015). In contrast, more 

developed agricultural regions (e.g., United States) have largely made the switch to more 

efficient irrigation systems. For example, over 67% of irrigated land in the United States is 

already irrigated using pressurised sprinkler or drip irrigation systems (USDA-NASS, 2018). 

As a result, in these regions, there are diminishing returns from further increases in 

application efficiency through technological change.  

In contrast, for mechanised farming systems in high-income countries, the biggest gains in 

water productivity are likely to be found through improving the way irrigation is scheduled 

and managed at field levels (Zhang et al., 2021). In the United States, the most common 

pieces of information reported by farmers to schedule irrigation is personal inspection of 

the crop (77%) and soil (40%). High-tech solutions such as soil-moisture or plant sensors are 

only used by 12% and 2% of US irrigating farmers respectively. Indeed, in Nebraska, the 
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state with the largest number of irrigated acres in the United States, use of soil-moisture 

sensors is still only approximately 30%. These data show that farmers’ current irrigation 

scheduling practises make little use of new data-driven methods and technologies 

developed to improve water productivity (Adeyemi et al., 2017; Abioye et al., 2020), 

indicating there are still large potential increases in water productivity and profitability that 

can be realised by improving irrigation management practises. 

Approaches proposed by researchers to improve irrigation scheduling and management 

take several forms. Assessing the potential benefits of sensor-based irrigation scheduling, 

researchers have found that water savings of 15-20% – without reducing crop yields – could 

be achieved by scheduling irrigation with soil-moisture sensors (Kang et al., 2000; Blonquist 

et al., 2006; Fereres & Soriano, 2006; Zotarelli et al., 2009). Irrigation can also be scheduled 

according to the current needs of the crop by calculating reference evapotranspiration 

(Allen et al., 1998; Najafi & Tabatabaei, 2007; Davis & Dukes, 2010; Adeyemi et al., 2017), 

which estimates the amount of water consumed/lost through crop transpiration and soil-

surface evaporation. Irrigation can also be triggered according to visual or measured crop 

stress indicators supported by in-field sensing (Jones, 2004; Ihuoma & Madramootoo, 2017; 

Parkash & Singh, 2020), which will provide farmers with direct feedback on when current 

soil-water content does not meet crop-water demands. 

As well as directly incorporating real-time sensor data into irrigation decisions, crop-

simulation models can be used to develop and compare optimal irrigation strategies (Jones 

et al., 2003; Steduto et al., 2009). Using this approach, previous researchers have optimised 

irrigation schedules or heuristics (e.g., soil-water content thresholds) within crop-simulation 

models to maximise water productivity (García-Vila et al., 2009; Schütze et al., 2012; Kloss et 

al., 2014; Linker & Kisekka, 2017). To improve upon these optimised schedules or heuristics, 

researchers have also developed frameworks where these irrigation strategies are adapted 

within the season to account for the unfolding weather or future forecasts (Wang & Cai, 

2009; Cai et al., 2011; Hejazi et al., 2014; Jamal et al., 2018, 2019; Linker, 2021). Moving 

beyond optimizing schedules and simple heuristics, AI-based approaches such as Deep 

Reinforcement Learning (DRL) (Sutton et al., 1998) have been proposed as solution that can 

automatically adjust decisions based on new information (e.g., weather forecasts), without 

needing to be re-optimised. Recent studies have found that DRL can be used to learn 
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complex irrigation strategies, achieving higher profits compared to rule based strategies 

(Yang et al., 2020; Chen et al., 2021; Alibabaei et al., 2022) 

1.3 RESEARCH GAPS 

A key premise of existing research focused on improving irrigation scheduling is that 

providing farmers with more accurate information about crop, soil, and weather conditions 

will translate into better water management decisions and hence increased crop water 

productivity (e.g., Soulis et al., 2015; Adeyemi et al., 2017). However, within this body of 

research, there has been little focus on quantifying how uncertainty in this information 

impacts water productivity and farm profits. Further, there has been little focus on assessing 

the relative contributions of improved information accuracy in comparison with improved 

scheduling strategies and heuristics. The distinction is important, as it determines whether 

efforts of researchers and policy makers should be towards simply providing farmers with 

accurate information, or advising them on improved management practises that perform 

well even in the presence of information uncertainty. The first of these options could be 

problematic given the large additional costs of investing in variable-rate irrigation systems, 

multiple sensors, and field mapping (Hedley et al., 2013; Daccache et al., 2015; Haghverdi et 

al., 2015). Specifically, is this more accurate information worth the investment? Or can near-

optimal irrigation decisions be made with less accurate information (e.g., from a low-cost 

sensor or soil-water balance model)? 

A further key obstacle to developing and operationalising improved irrigation scheduling 

practices is climate variability. Optimal irrigation scheduling and management rules will vary 

for each year depending on the quantity and distribution of rainfall during the season. 

Weather conditions are not known with certainty a priori, and therefore, farmers must 

make irrigation scheduling decisions under weather uncertainty. A potential solution to this 

issue is to adapt or re-optimise irrigation strategies within the growing season to account for 

both the weather experienced so far and future forecasts if available (Wang & Cai, 2009; Cai 

et al., 2011; Hejazi et al., 2014; Jamal et al., 2018, 2019; Linker, 2021). However, there has 

been only limited research to date that has evaluated how effective and robust such 

approaches are in improving agricultural water productivity, given realistic assumptions 

about farmers’ foresight of weather conditions. For example, if strategies were simply 
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optimised at the start of the season and were based on historic weather data, how would 

returns compare to more complex re-optimization strategies that may be more costly or 

time consuming for farmers to operationalise? Addressing this question is critical to improve 

understanding about the extent to which adaptive irrigation scheduling can improve 

productivity and profitability of water use, and how robust such approaches are to 

uncertainty in weather and climate variability.  

Finally, to date, much of the work on irrigation scheduling has focused on optimizing a fixed 

schedule or set of simple heuristics such as soil-moisture target levels aligned with major 

crop growth stages (Wang & Cai, 2009; Cai et al., 2011; Hejazi et al., 2014; Jamal et al., 2018, 

2019; Linker, 2021). However, incorporating the increasing amounts of data available to 

farmers into simple heuristics will require large numbers of complex rules that will be 

difficult to design and then optimise. A possible solution comes from AI-based approaches 

to optimization, such as Deep Reinforcement Learning (DRL), whose success within other 

complex decision-making environments has motivated its potential for irrigation scheduling 

(Silver et al., 2018; Vinyals et al., 2019; OpenAI et al., 2019; Badia et al., 2020). Recent work 

has hinted towards additional value of DRL compared to heuristic approaches (Yang et al., 

2020; Chen et al., 2021; Alibabaei et al., 2022). However, these studies have not evaluated 

rigorously how DRL scheduling approaches perform across different weather conditions and 

production constraints faced by farmers. For example, under high levels of seasonal 

weather variability and restrictive limits on water use, how much added value is there in 

using Deep Reinforcement Learning compared to a set of simple optimised heuristics? 

1.4 RESEARCH OBJECTIVES AND THESIS STRUCTURE 

This thesis presents four articles (two published, one in review and one work in progress) 

that address key gaps in the research literature on scheduling-based solutions to improving 

agricultural water productivity described in Section 1.3. The thesis focuses primarily on case 

studies in the central United States, where agriculture is the main sectoral user of water and 

where there are growing issues of water scarcity related to intensive abstractions for 

irrigation (Scanlon et al., 2012; McGuire, 2014; Young et al., 2021).  

To support the analysis in Chapters 4 and 5, an open source Python implementation of the 

crop-simulation model AquaCrop (Steduto et al., 2009) – AquaCrop-OSPy – was developed 
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to facilitate the development and evaluation of complex and adaptive irrigation strategies. 

This ability to define any custom irrigation strategy (e.g., customised heuristics or Deep 

Reinforcement Learning) is not supported in previous AquaCrop implementations or other 

crop models. This feature, as well as a user friendly interface, straightforward integration 

with other python libraries, and the capability of running the model in the browser without 

local installation, have led to over 84k downloads of the model since its release. An 

accompanying journal article was published to highlight some of the important features and 

use cases of the AquaCrop-OSPy model, and this article is presented as Chapter 2 of the 

thesis.  

Comparisons between crop, soil, and weather monitoring approaches (e.g., soil-moisture 

sensors) has often focused on the accuracy of these techniques, with the underlying 

assumption that more accurate information leads to better decisions. However, an explicit 

assessment of how the accuracy of such measurements impacts agricultural water 

productivity or farm profits has not been performed. In response to this gap in the 

literature, Chapter 3 of this thesis aims to answer the following questions: 

1. How does uncertainty in the knowledge of soil texture and local weather conditions 

impact irrigation water use and farm profits? And hence what is the value of 

improving the quality of this knowledge? 

2. How does that value of improved information compare to the value of improved 

irrigation strategies? 

Even with perfect monitoring of the crop, soil, and current weather, irrigation strategies will 

always have to be made under uncertainty of future weather conditions. Researchers have 

often dealt with the issue by re-optimizing irrigation strategies in-season, to account for the 

unfolding climate or forecasts (Wang & Cai, 2009; Cai et al., 2011; Hejazi et al., 2014; Jamal 

et al., 2018, 2019; Linker, 2021). Missing from previous works, is a comparison between 

these adaptive scheduling frameworks with similarly optimised but fixed irrigation heuristics 

that are optimised to be robust across a range of plausible weather scenarios. To address 

this gap in the literature, Chapter 4 aims to answer the following questions: 

3. What is the economic value of adapting irrigation strategies within the season in 

response to the unfolding weather? 
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4. Does this value change depending on adaptation frequency, water-use restrictions, 

and the presence of perfect short term weather forecasts? 

Despite the high performance of optimised heuristics for irrigation scheduling, farmers’ real-

world decisions must incorporate more information, uncertainty estimation, and general 

complexity than simple heuristics can represent. Recent successes in Deep Reinforcement 

Learning in other complex decision-making scenarios has motivated its use for optimizing 

irrigation strategies (Silver et al., 2018; Vinyals et al., 2019; OpenAI et al., 2019; Badia et al., 

2020). Recent publications have suggested this approach can lead to increases in profits 

compared to heuristic approaches such as single soil-moisture thresholds or fixed schedules 

(Yang et al., 2020; Chen et al., 2021; Alibabaei et al., 2022). However, as these previous 

studies evaluated their trained DRL agent against fewer than 3 test seasons, it is unclear 

how well DRL performs in locations with high year-to-year weather variability. Responding 

to this gap in the literature, Chapter 5 aims to answer the following questions: 

5. Can DRL algorithms learn near-optimal irrigation strategies in the presence of 

climate variability over a large number of unseen test years? 

6. What is the added value of DRL-based irrigation scheduling compared with 

conventionally optimised heuristics such as soil-moisture thresholds? 

Finally, Chapter 6 concludes the thesis, highlighting the main findings from the articles 

presented, and discusses their implications for researchers, produces, water managers and 

industry stakeholders. Areas of future work are also identified, as well as indicating how the 

tools developed in this thesis can assist future research. 
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2 AQUACROP-OSPY: BRIDGING THE GAP BETWEEN RESEARCH AND 

PRACTISE IN CROP-WATER MODELLING 

 

This Chapter presents the article: 

Kelly, T. D., & Foster, T. (2021). AquaCrop-OSPy: Bridging the gap between research and 

practice in crop-water modeling. Agricultural Water Management, 254, 106976. 

https://doi.org/10.1016/j.agwat.2021.106976 

The minor changes from the published version include: (1) Figure and Table numbers to 

match the structure of the thesis. (2) Changes in spelling from US style to UK. (3) Minor 

change to the final paragraph of 2.3.1 to improve readability. 

My contribution to this article was as follows: (1) leading the design of how users would 

interact with the AquaCrop-OSPy model. (2) All python programming and library 

development, including converting the model source code from MATLAB into python. (3) 

Developing the tutorial notebooks and producing the visualizations presented in the article. 

(4) Writing the content of the article including literature reviews. 
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ABSTRACT 

Crop-growth models are powerful tools for supporting optimal planning and management 

of agricultural water use globally. However, use of crop models for this purpose often 

requires advanced programming expertise and computational resources, limiting the 

potential uptake in integrated water management research by practitioners such as water 

managers, policymakers, and irrigation service providers. In this article, we present 

AquaCrop-OSPy (ACOSP), an open source, Python implementation of the crop-water 

productivity model AquaCrop. The model provides a user friendly, flexible and 

computationally efficient solution to support agricultural water management, which can be 

readily integrated with other Python modules or code bases and run instantly via a web 

browser using the cloud computing platform Google Colab without the need for local 

installation. This article describes how to run basic simulations using AquaCrop-OSPy, along 

with more advanced analyses such as optimizing irrigation schedules and evaluating climate 

change impacts. Each use case is paired with a Jupyter Notebook, which offer an interactive 

learning environment for users and can be readily adapted to address a range of common 

irrigation planning and management challenges faced by researcher, policymakers and 

businesses in both developed and developing countries 

(https://github.com/aquacropos/aquacrop). 
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2.1 INTRODUCTION 

Agriculture is the largest sectoral user of water globally, and thus at the heart of debates 

about how to efficiently and sustainably manage use of limited freshwater resources 

(Molden & FAO, 2020). Satisfying growing demands for irrigation water as a result of 

population growth and climate change, while simultaneously ensuring sufficient water 

remains available to support other human and environmental needs, will require significant 

improvements in the water use efficiency of food production over the coming decades 

(Morison et al., 2008; Evans & Sadler, 2008; Adeyemi et al., 2017).  

Crop-water models are powerful tools, which can be used to help design and identify 

strategies to enhance the productivity of water use in crop production and address 

increasing competition over scarce freshwater resources. Applications include the 

prediction of climate change impacts on agricultural yields and crop-water demands 

(Semenov, 2009; Lehmann et al., 2013; Rosenzweig et al., 2014), evaluating the potential 

effects of irrigation management strategies such as deficit irrigation on production risks 

(Geerts et al., 2010; Attia et al., 2016), as well as the optimization of irrigation strategies in 

order to maximise yields or profit while minimizing demands on water supplies from surface 

and groundwater sources (Wisser et al., 2008; Linker et al., 2018; Foster et al., 2019; Li et al., 

2019; Jamal et al., 2019).  

While applications of crop-water models in the agricultural water management and 

planning research are now widespread, the ability of practitioners in government, policy or 

business to leverage these approaches for real-world irrigation planning and management is 

limited by a number of factors. For example, implementing more advanced applications of 

crop-water models, such as optimization of irrigation scheduling rules or heuristics, often 

requires a high level of programming and data analytics expertise that may not be readily 

available in end user organizations. This issue is compounded by the tendency of many 

novel research applications of crop-water models to not provide transparent access to 

source code necessary to reproduce the specific applications of these models (Kloss et al., 

2014; Linker et al., 2018), which themselves are commonly released only as closed-source 

software packages (Jones et al., 2003; Steduto et al., 2009), further limiting bespoke 

applications to real-world challenges around panning and management of irrigation water 

use. Many of the intended users (e.g., irrigation planners, agronomists, farmers, etc.) of crop 
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models such as AquaCrop cannot be expected to be expert programmers or computer 

scientists which would be required to reproduce complex coding routines integrating GUI’s 

and optimization algorithms in languages they are unfamiliar with.  

In this paper, we present AquaCrop-OSPy (ACOSP), a fully open source Python 

implementation of the U.N Food and Agriculture Organization’s (FAO) widely utilised crop-

water productivity model known as AquaCrop (Raes et al., 2009). ACOSP builds on existing 

implementations of AquaCrop in Matlab/Octave (Foster et al., 2017) and R (Rodriguez & 

Ober, 2019). ACOSP includes several novel features that address key end user application 

challenges outlined above, and is up to date with the most recent version of AquaCrop 

(v6.1) released by FAO (one example comparison is shown in Appendix A, with others 

available on the ACOSP documentation). Specifically, ACOSP provides an environment to 

enable a user with even basic Python programming experience to rapidly conduct advanced 

crop-water management and policy analyses. The growing popularity of Python – fuelled by 

its flexibility, interoperability, extensive ecosystem and learning resources – has led to 

Python becoming one of the most popular programming languages globally for 

environmental simulation, including modelling of agro-hydrological systems. The model is 

fully self-contained, with a modular design and interactive environment that enables users 

to flexibly adjust model inputs and integrate with other Python modules (e.g., optimization 

algorithms). ACOSP source code is accompanied by a series of Jupyter Notebooks (Kluyver et 

al., 2016) to enable users to learn and develop new applications of the model for different 

aspects of agricultural water management and planning. The source code –  developed 

using the nbdev framework (https://nbdev.fast.ai) – and notebook tutorials leverage the 

cloud computing platform Google Colab (https://colab.research.google.com) to enable users to 

run the model in a web browser without the need to locally install, including via mobile 

devices that are increasingly being used to support agricultural and irrigation decision-

making in both developed and developing countries (Vaishali et al., 2018; Bartlett et al., 

2015; Adeyemi et al., 2017). In doing so, ACOSP greatly expands the potential user base and 

applications of the already widely adopted AquaCrop model, enabling users to flexibly test, 

adapt and extend the model to address diverse agricultural water management problems 

globally while still maintaining an interactive learning and application environment through 

https://nbdev.fast.ai/
https://colab.research.google.com/
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use of Jupyter notebooks. Users can also freely implement AquaCrop source code and 

packages outside of the notebook environment in any Python IDE should that be preferred. 

In the following sections, we demonstrate a series of key use cases of ACOSP in the context 

of agricultural water planning and management. First, we summarise how a user can run a 

model simulation for a selected crop-soil-climate system. Next, we demonstrate a number 

of important applications of the model, including how a user can apply the model 

interactively to: (i) evaluate crop-water requirements for a number of irrigation 

management strategies, (ii) identify optimal (yield maximizing) irrigation strategies given 

different water use constraints through linkage to Python optimization libraries, and (iii) 

assessing impacts of climate change scenarios on irrigation water demands and crop yields. 

Use cases are accompanied by a series of Jupyter Notebooks (available at 

https://github.com/thomasdkelly/aquacrop), containing more explicit tutorials on how to 

use the model to reproduce the analysis presented in this article. The reader is encouraged 

to run these notebooks in combination with this article to better understand the application 

of ACOSP as a tool for irrigation management and policy. These notebooks can also be used 

as a basis for development of further customised applications of the code to address local, 

regional and global agricultural challenges. 

2.2 GETTING STARTED: RUNNING YOUR FIRST SIMULATION WITH AQUACROP-OSPY (NOTEBOOK 

1) 

In order to setup and run a simulation using ACOSP, the user must first define a range of 

parameters and inputs to characterise the cropping system being simulated. These include 

daily weather time-series, along with parameters specifying the crop, soil, management 

practices and initial conditions for the simulation. For the vast majority of crop simulation 

models, these inputs and parameters are defined either interactively through graphical user 

interfaces (GUIs) or through externally modified input files (Ragab, 2002; Jones et al., 2003; 

Raes et al., 2009; Foster et al., 2017; Rodriguez & Ober, 2019). However, this approach 

makes it difficult for models to be integrated into larger code bases or optimization 

packages. This approach also limits flexibility to conduct large batch simulations of field-

scale crop models where many different combinations of input files must be considered 
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(e.g., to reflect spatial heterogeneity in cropping practices across an agricultural landscape 

or changes in climate variability over time).  

The approach for setting up and running simulations in ACOSP has been designed to 

overcome these issues, and make it easier to simply and flexibly execute simulations for 

complex and heterogeneous agricultural production systems. After importing ACOSP into a 

python editor or notebook, the user is able to interactively define each of the main input 

types of the model (climate, soil, crop, management practices, and initial soil water and 

groundwater conditions). In each case, defaults have been predefined such that the number 

of required user inputs are minimised, but at the same time allowing any of them to be 

edited by the user as needed. All of these component defaults are specified in the class 

definitions and can be inspected in the source code. For notebook environments, functions 

exist that enable the user to directly inspect the source code from the notebook, further 

streamlining the experience for the user and enabling them to quickly customise simulations 

without the need for a GUI interface that constrains wider model uses.  

Modifying each of these default components is done when creating the component object 

and full details are shown in Notebook 1. As an example the user could create the default 

Maize crop by running maize = CropClass(‘Maize’, PlantingDate=’05/01’), or create a Maize 

crop with an adjusted Canopy Growth Coefficient by running maize2 = CropClass(‘Maize’, 

PlantingDate=’05/01’, CGC=0.001). Similarly for the other model components, users are able 

to modify the default input classes and develop new customised classes. Figure 2.1 shows 

an example of the initial setup of crop and soil classes along with initial soil moisture 

conditions in Notebook 1. The user is able to specify climate input data – the other key 

requirement by AquaCrop – by either selecting one of the predefined inbuilt climate time 

series, or by importing external data files using custom helper functions such as 

prepare_weather (Figure 2.1). 
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Figure 2.1. The creation of a SoilClass, CropClass and InitWCClass object using built-in soil 
and crop types, and the initial water content in layer 1 set to Field Capacity. These 
components are then passed into an AquaCropModel which is initialised and run till the end 
of the simulation, after which, model outputs can then be inspected.  
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Once the user has defined all input classes and data, these components along with user 

specified start date and end date for the simulation, are passed into the AquaCropModel 

object (Figure 2.1). The model is then initialised using model.initialize(), following which the 

user can choose to execute the model to run forwards N days using model.step(N), or until 

the end of the specified simulation period using model.step(till_termination=True). These 

two options provide flexibility to users, allowing planting, harvesting or irrigation decisions 

to be made dynamically based on either internal model variables or external data. As an 

example, irrigation decisions can be made on each day from a separate code base which 

could include groundwater information, weather forecasts, or machine learning models 

(Sun et al., 2017; Linker & Sylaios, 2016; Adeyemi et al., 2018). This feature enables users to 

define their own custom irrigation  strategies (incorporating any external code or data or 

management rules), which is either extremely difficult or impossible in other crop-water 

models that incorporate only a fixed set of pre-defined irrigation management heuristics.  

Once the simulation has finished, four different output files will be produced comparable 

with outputs provided by the original AquaCrop model. The Flux output shows daily water 

flux variables simulated by or inputted to the model, such as total water storage in the crop 

root zone and precipitation. The WaterContent output file provides more granular 

information about the water storage in each compartment on each day of the simulation 

period. The Growth output reports daily simulated crop growth state variables such as 

canopy cover and rooting depth. The Final output lists the final yield and total irrigation 

applied for each simulated season. Full details on the output files can be found in Notebook 

1, which can also be further customised by users if additional outputs from the model are 

required.  
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2.3 IRRIGATION PLANNING AND MANAGEMENT USE CASES 

2.3.1 Estimating irrigation water demands under different irrigation strategies (Notebook 2) 

A common use case for crop-water models such as ACOSP is estimating irrigation water 

demands in order to support on-farm and regional scale planning and allocation of limited 

freshwater resources (Jiang et al., 2016; Araya et al., 2017). One of the main strengths of 

ACOSP is the ability to rapidly evaluate and compare both simple and complex irrigation 

strategies, which the user can run as batch simulations specified interactively via the 

IrrMngtClass during model setup. 

ACOSP can be used to simulate a range of irrigation strategies such as soil-moisture 

thresholds, set time intervals, pre-defined calendars and net irrigation that are common to 

many other crop-water models. ACOSP also contains two features that enables arbitrarily 

complex irrigation strategies to be defined. First, the model can be run on a daily timestep, 

and second, any model variables can be extracted or edited before the next day is run. This 

means that irrigation application decisions can be determined outside the model, using 

information from weather forecasts, water availability (e.g., hydrological model), or other 

external databases or models. The chosen depth can then be passed back into the model 

and applied on the next day. This ability to represent the complex rules, heuristics and 

behavioural norms that are used by farmers in a given region is not typically available in 

other crop-water models, and is essential to the accurate estimation of plot-level and 

regional irrigation water demands to support sustainable and efficient agricultural water 

management. An example of this feature is shown in Appendix A of Notebook 2 which also 

showcases examples of more traditional irrigation strategies such as set time intervals and 

pre-defined irrigation calendars. 

To demonstrate the use of ACOSP in this context, we apply the model to evaluate crop 

yields and irrigation water use over multiple irrigation scheduling strategies. This analysis is 

done for a case study setup of Maize production in western Nebraska in the United States 

for the period 1982-2018 summarised in Foster et al., (2015). The strategies contrasted 

include seasonal soil-moisture thresholds which determine the proportion of total soil water 

holding capacity at which irrigation is triggered, ranging from 0% to 100%. Constant 

thresholds such as these are commonly used in modelling studies of irrigation management, 
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as part of irrigation advisories provided by soil-moisture sensor manufacturers, and by 

farmers themselves (Blonquist et al., 2006; Gutierrez et al., 2014). This test therefore 

provides a realistic example of the capabilities of ACOSP to support evaluation of crop yield 

responses to variable irrigation management decisions. 

The results show that in the absence of irrigation, yields are highly variable and often fail 

completely (Figure 2.2). This dramatic impact of added irrigation illustrates why Nebraska 

has the largest number of irrigated acres in the United States (USDA-NASS, 2018), reflecting 

the significant drought risks experienced by many farmers within the state (Wilhelmi & 

Wilhite, 2002; Hoerling et al., 2014). However, the relationship between soil moisture target 

strategy, irrigation and crop yields is non-linear, demonstrating a typical pattern of 

diminishing returns to water beyond approximately a soil moisture target of 40%. These 

results – and those in Appendix A of Notebook 2 – also show the significant differences in 

yield and total irrigation between strategies. These differences mean that correctly 

specifying how farmers make irrigation decisions is essential for accurately estimating 

irrigation water demands – a challenge given the lack of baseline data on water use in many 

farming regions worldwide (Montginoul et al., 2016; Closas & Molle, 2018; Foster et al., 

2019, 2020).  
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Figure 2.2. A comparison of seasonal (a) yield [tonne/ha], (b) irrigation [ha-mm], for a range 
of constant soil-moisture thresholds (expressed as a percentage of total soil water holding 
capacity) over 37 seasons for a maize crop grown in SW Nebraska, United States.  
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2.3.2 Developing and optimizing irrigation strategies (Notebook 3) 

In the previous section, we demonstrated how ACOSP could be used to compare yields and 

water use for different pre-specified irrigation thresholds. However, it is often the case that 

farmers and water managers lack information apriori about which irrigation strategy will 

produce the maximum yield for a given level of water use (Adeyemi et al., 2017). 

Determining these optimal strategies in practice would require considerable time and 

investment and so crop-water models are often used in their place. Often this 

determination is done via brute force search over possible strategies or leveraging 

optimization algorithms which can be either time consuming or difficult when using a GUI or 

input file based crop-water models (García-Vila & Fereres, 2012; Araya et al., 2017; Foster & 

Brozović, 2018; Linker et al., 2018; Jamal et al., 2019).  

In this example use case, we show how optimal irrigation schedules can be identified by 

linking ACOSP with one of the many optimization modules available in the Python 

ecosystem. Specifically, using the implementation of the model described in Section 2.3.1, 

we show how ACOSP can be linked to the optimization library scipy.optimize (Virtanen et al., 

2020) to identify optimal yield-maximizing soil moisture target thresholds over three 

seasons (2016-2018) for different seasonal water supply constraints (i.e. the maximum 

amount of water that can be applied in a given season).  

The results highlight again the non-linear relationships between crop yields and irrigation 

water use, along with changes in the distribution of water use within seasons characterised 

by variations in the optimised soil moisture thresholds (Figure 2.3). In response to increasing 

water availability the optimal thresholds generally increase (i.e. it becomes optimal to 

irrigate at lower levels of soil moisture depletion), with water prioritised to mid- and late-

season growth stages when overall supply is scarce, as these are the most sensitive periods 

of crop development for Maize (the example crop used in this Notebook). It should be noted 

that these optimal thresholds have been found with a local optimiser and so re-running the 

analysis in Notebook 3 may produce slightly different results than those presented in Figure 

2.3.  

This example analysis shows how ACOSP can be used to support optimization of irrigation 

scheduling and water allocation in the context of rising constraints over freshwater 

availability facing farmers in many regions worldwide (Mekonnen & Hoekstra, 2016). For 
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example, outputs from this type of analysis can be used to provide advice to farmers about 

how to effectively optimise water use in the context of hydrologic, technical or regulatory 

supply constraints, including selection of efficient and profitable intraseasonal irrigation 

management rules and heuristics. Data can also be used to automate and simplify the 

development of crop-water production functions such as shown in Figure 2.3, which can be 

used by policymakers to evaluate expected crop yield responses to different levels of 

irrigation water supply and make decisions about efficient allocation of water within the 

agricultural sector and between agriculture and other water users (Igbadun et al., 2007; 

Foster & Brozović, 2018; Martínez-Romero et al., 2019). 

Users could expand this analysis in a number of ways. Our example of ACOSP’s optimization 

integration capabilities was performed for the simple case of a single cropped field with a 

uniform soil type and uniform weather, however this does not reflect the reality for a 

farmer irrigating larger and more diverse farms and plots. The example code provided in 

Notebook 3 could be easily adapted by users to consider more complex optimization 

problems such as this, treating each individual plot (or sub-plot if considering sub-field level 

decision making) as an individual instance of ACOSP and optimizing over all plot instances 

simultaneously. Moreover, as the season unfolds there may be a desire to re-optimise the 

irrigation thresholds for a given plot or location to better reflect the current climate 

condition. This again can be implemented in ACOSP simply by saving the current state of the 

model at day D, and optimizing yield starting from that point using historical data or 

forecasts. This ability to customise irrigation scheduling rules to accurately reflect real-world 

decisions, as well as expand the space of potential optimal irrigation strategies, is a key 

benefit of ACOSP compared to previous crop-water models.   
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Figure 2.3. Crop water production function showing total maize yield as a function of 
irrigation water use for an example application in SW Nebraska, United States. The 
optimization process found irrigation thresholds that maximise yield given a maximum 
seasonal irrigation limits of [0, 50,…,400, 450 mm]. Optimal irrigation thresholds (expressed 
as a percentage of total soil water holding capacity) for each water use constraint are also 
displayed, where each point has four soil moisture target values corresponding each of the 
main crop growth stages in ACOSP. 
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2.3.3 Irrigation demands under different climate change scenarios (Notebook 4) 

Irrigation is used by farmers to buffer crops against drought and rainfall variability. Climate 

change is therefore likely to affect irrigation water demands in many regions, and the ability 

to predict these changes is essential to support sustainable management of agricultural 

water use and crop production risks (Molden & FAO, 2020). Climate change impact 

assessments are a common use case for crop-water models as they allow researchers and 

policy makers to estimate the potential vulnerabilities or future problems for a producing 

region (Semenov, 2009; Lehmann et al., 2013; Rosenzweig et al., 2014; Dale et al., 2017). 

These can focus more directly on how climate changes will impact rainfed production, as 

well as secondary effects such as water use changes for irrigated production. These 

secondary factors will also impact wider issues such as groundwater depletion (McGuire, 

2017) and so it is essential that policy makers and researchers can easily conduct climate 

change impact assessments using crop-water models like ACOSP. 

Building on this need, Notebook 4 guides users through the process of applying ACOSP for a 

simple analysis of irrigation water demands and crop yields under a range of future climate 

change scenarios. ACOSP includes inbuilt functionality to directly read and format weather 

time series for future climate scenarios generated externally using the LARS-WG stochastic 

weather generator (https://sites.google.com/view/lars-wg) – a widely applied weather 

generator for agricultural climate impact assessments (Qian et al., 2005; Semenov, 2009; 

Sha et al., 2019). Conversion of weather data is achieved using the prepare_lars_weather 

function, which includes functionality to calculate reference evapotranspiration inputs 

required by AquaCrop. Important to note is that as long as the final weather DataFrame 

passed into the AquaCropModel object is in the correct format, the source of the generated 

data, or the equations used to calculate reference evapotranspiration are arbitrary. This 

flexibility allows users to generate weather time series offline using alternative weather 

generators to LARS-WG or other climate datasets/models.   

To demonstrate this model application, we use ACOSP to simulate crop yields and irrigation 

water demands for the same case study of Maize production in western Nebraska 

considered in the previous notebooks. Our analysis uses weather time series generated by 

LARS-WG for different future climate time periods (2030, 2050, 2070) and emissions 

scenario (RCP4.5, RCP8.5) from the EC-Earth climate model (Hazeleger et al., 2012). This 

https://sites.google.com/view/lars-wg
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analysis assumes that farmers maintain to the same planting calendar and the same Maize 

variety, as well as a constant irrigation threshold of 70% total available water throughout all 

years. These simplifications are made for illustrative purposes of batch climate runs with the 

model, but could be easily relaxed to consider additional variations in management 

practices, crop characteristics, etc. to support comprehensive analyses of climate impacts 

and adaptations on crop yields and irrigation water demands. The results show that yields 

increase under these future climate scenarios as a result of higher CO2 concentrations, 

which translate into higher water productivity within ACOSP (Figure 2.4). Irrigation water 

use decreases slightly in the climate change scenarios compared to the baseline years, a 

result that can be explained by the predicted increase in seasonal (i.e. summer) 

precipitation in Nebraska and the central United States under most future climate change 

scenarios (Notebook 4). 

Users could extend this analysis in many ways, for example by performing a batch analysis 

over a wide range of climate scenarios, or running ACOSP over a gridded domain to capture 

spatial heterogeneities or uncertainties (Dale et al., 2017). By linking these gridded model 

outputs directly to one of Python’s many geospatial visualization libraries (e.g. cartopy, 

geopandas), regional to global climate change impacts on agricultural production and water 

use can now be easily performed inside a single Jupyter Notebook. Computation efficiency 

of such analysis can be further improved by parallelizing over multiple processers, with 

users able to install and run ACOSP on any cloud computing service (e.g. Google Colab). An 

example of how ACOSP simulations can be run in parallel is shown in Notebook 3. 
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Figure 2.4. Comparison of (a) yields and (b) total irrigation for maize crop in SW Nebraska, 
United States for baseline climate conditions (1982-2018) and a range of future climate 
scenarios. Analysis assumes farmers follow a fixed soil moisture target strategy (irrigate 
once soil water depletion exceeds 30% of soil water holding capacity) in all years and 
climate scenarios. 
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2.4 OUTLOOK 

AquaCrop-OSPy (ACOSP) is a free and fully open-source tool that allows researchers, 

industry and policy makers to rapidly leverage crop-water simulation to support irrigation 

planning and management at farm to regional scales. The model features a user friendly 

interactive code design, and provides an interface to platforms such as Google Colab to 

enable a user to quickly conduct simulations via their web browser and leverage cloud 

computing resources. The extensive Python ecosystem means ACOSP can be easily 

integrated with the latest machine learning, web development, statistical and data analysis 

libraries, as well as any other python code base. ACOSP also enables users to bypass the 

licensing and operating system constrains associated with previous widely used versions of 

AquaCrop.  

Uptake of the model by users conducting applied research and teaching on agricultural 

water management and policy is supported through development of extensive 

documentation, including a series of Jupypter Notebooks 

(https://github.com/thomasdkelly/aquacrop) containing tutorials for a range of common 

use cases of the model related to irrigation planning, management and climate adaptation. 

These notebooks are also accompanied by an online forum for users 

(https://forum.aquacroposforum.com), which will provide a space for the user community 

to discuss bugs, share example applications and contribute to future development of 

AquaCrop. For example, opportunity exists for users to contribute to refinement of internal 

model routines (e.g. more advanced soil moisture flow or nutrient cycle algorithms) or novel 

applications of the model (e.g. satellite data assimilation and automated parameter 

calibration) that would be impossible to implement in a scalable or efficient manner with 

closed-source software. 

Through these innovations, we expect that ACOSP will help address a number of the issues 

that have constrained the use of crop-water models in both policy, practise and applied 

research surrounding agricultural water management at field, catchment and global scales. 

Future work will support the maintenance of core model source code in line with future 

AquaCrop developments, while spurring and enabling new innovations and adaptations to 

help address global challenges of food and water security facing the agricultural sector.   
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APPENDIX A: EXAMPLE COMPARISON OF AQUACROP-OSPY WITH FAO GUI AND MATLAB 

VERSIONS  

 

Figure 2.A1. Comparison of yields between AquaCrop-OSPy (python – blue), AquaCrop-OS 
v6.0 (Matlab – green) and AquaCrop v6.0 (Windows GUI – red dotted) for rainfed Wheat 
production in Tunis. Also presented is the mean-absolute-error (MAE) in seasonal yields 
between these versions demonstrating the extremely close agreement between simulated 
yield outputs from the Python and original FAO (MAE of 0.02 tonne/ha) and Matlab (MAE of 
0.003 tonne/ha) model versions. Example taken from AquaCrop reference manual. Other 
example comparisons can be found on the AquaCrop-OSPy documentation 
(https://aquacropos.github.io/aquacrop/notebooks/05_comparison) 
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3 THE EFFECT OF SOIL-MOISTURE UNCERTAINTY ON IRRIGATION WATER 

USE AND FARM PROFITS 

 

This Chapter presents the article: 

Kelly, T. D., Foster, T., Schultz, D. M., & Mieno, T. (2021). The effect of soil-moisture 

uncertainty on irrigation water use and farm profits. Advances in Water Resources, 154, 

103982. https://doi.org/10.1016/j.advwatres.2021.103982 

The changes from the published version include: (1) Figure and Table numbers to match the 

structure of the thesis. (2) Changes in spelling from US style to UK. (3) Additional text at the 

end of 3.2.4 to clearly summarise the number of experiments as well as computational 

requirements of the analysis. (4) Minor change to the final paragraph of 3.3.3 and the 

second paragraph of 3.4.2 to improve readability. 

My contribution to the article was as follows: (1) Development of the research questions 

and methodology. (2) All programming required to run the framework and analyse results. 

(3) Analysing results and producing tables and figures. (4) Writing the contents of the article 

including literature reviews. 
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ABSTRACT 

Technologies that increase the accuracy of soil-moisture monitoring, such as in-situ sensors, 

have been proposed as a key solution for increasing agricultural water productivity. 

However, quantifying how uncertainty in soil-moisture estimates lead to irrigation 

inefficiencies or economic losses has not been explicitly studied. We develop a framework 

that combines a crop simulation model with a rule-based irrigation decision-making 

algorithm to assess the impact of soil-moisture uncertainty on irrigation use and farm 

profits. We apply this modelling framework to a case study of irrigated maize production in 

Nebraska, United States, a region where improvements in agricultural water productivity 

are at the forefront of water-policy debates. We consider two main sources of uncertainty 

that result in a divergence between the farmers’ perception of soil-water content and the 

true water status, namely errors in the knowledge of soil texture and measurement of daily 

soil-water flux inflows and outflows. Even for very large errors in both soil-texture and 

water-flux measurements, impacts on water use and profits were marginal (11 ha-mm 

increase and $27 ha–1 decrease, respectively). In contrast, farmers’ choice of irrigation 

strategy had a much larger impact on water use and profits than uncertainty in soil-moisture 

information used to implement that strategy. Our findings show that near-optimal irrigation 

decisions can be made without perfect soil-moisture information. This conclusion suggests 

that providing farmers with improved irrigation scheduling recommendations – utilizing 

crop-water models and optimization techniques – would have a larger impact on water-use 

efficiency than simply providing farmers with technologies to more accurately monitor soil-

moisture conditions.  

3.1 INTRODUCTION 

Increases in irrigation water demand driven by climate change and population growth are 

expected to exacerbate water scarcity and conflict over limited freshwater resources in 

many regions around the world (e.g., Molden, 2013). To manage these challenges, there is a 

need to identify ways to improve the productivity of agricultural water use – commonly 

referred to as generating “more crop per drop”. One key pathway for raising agricultural 

water productivity is through improvements to irrigation scheduling, which enables farmers 

to target limited water supply to when the crop is most sensitive to water stress and thus 
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maximise yield returns to limited freshwater inputs (Morison et al., 2008; Evans & Sadler, 

2008; Adeyemi et al., 2017). 

The majority of the developments in irrigation scheduling come under the label of precision 

irrigation, which broadly encapsulates solutions that aim to vary the temporal and spatial 

distribution of irrigation to match crop-water demands (Adeyemi et al., 2017). Associated 

technologies to support implementation of these strategies include sensors to monitor soil-

water content or crop growth (Jones, 2004; Dobriyal et al., 2012; Ihuoma & Madramootoo, 

2017), field mapping that highlights heterogeneities in soil texture and other properties 

(Daccache et al., 2015), and decision-support tools that aid in the timing of irrigation events 

(McCarthy et al., 2010). The common goal that links these methods is the precise 

monitoring and management of soil-water content and crop-water needs. Currently, the 

uptake of precision-irrigation methods and technologies remains low, with most farmers 

even in developed agricultural systems such as the United States relying on proxies, such as 

the visual condition of the crop and soil, as well as simple water-balance calculations to 

determine when to irrigate (Figure 3.1). Much like soil-moisture sensors, these traditional 

techniques aim to monitor and manage soil-water content in the crop root zone, and hence, 

the amount of water available for crop uptake. The difference between farmers with and 

without soil-moisture sensors, therefore, is the accuracy of this monitoring along with the 

associated rules and heuristics by which this information is used to make irrigation 

decisions.  

  



53 
 

Figure 3.1. Reported methods used by farmers who irrigate in the United States to schedule 
their irrigation events. Data is from the four most recent 5-yearly (2003–2018) Irrigation and 
Water Management Surveys conducted across the United States by the Department of 
Agriculture (USDA-NASS, 2018).  
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Sources of uncertainty in soil-moisture monitoring and estimation are similar for both 

traditional and precision-irrigation methods. One important source of uncertainty is 

heterogeneity in soil textural composition, which affects estimates of current and potential 

soil-water storage both laterally and vertically within a field (Nielsen et al., 1973; Brocca et 

al., 2007; Feki et al., 2018). Heterogeneity in soil texture means that point measurements of 

soil-moisture status are only valid for a specific location and depth, potentially leading to 

errors when this information is used in water-balance calculations across large areas (e.g., 

field or farm). Additional uncertainty in soil-moisture estimation also results from errors in 

climatological (rainfall, evapotranspiration, etc.) and irrigation data characterising inflows 

and outflows from soil-water storage. Differences in infiltration rates due to differences in 

soil texture and topography, as well as large distances between the measurement 

instruments and cropping area, are major contributors to this uncertainty (Chaubey et al., 

1999). Moreover, the accuracy of evapotranspiration estimates are greatly affected by the 

amount of site-specific information used in its calculation (Sentelhas et al., 2010), including 

in the calculations of reference and actual evapotranspiration (Allen et al., 1998). The result 

of either soil-texture or water-flux errors is that a farmer may miscalculate the amount of 

water stored in the soil on any given day, leading to inaccurate estimates of when or how 

much irrigation should be applied. As a result, a farmer may apply insufficient or excessive 

amounts of water, with resulting negative impacts on crop yields and/or farm profits. 

Precision-irrigation research has focused on developing tools and techniques to reduce the 

magnitude of soil-moisture error (Soulis et al., 2015; Adeyemi et al., 2017; Kukal et al., 

2019). Alongside this, when farmers invest in more accurate soil-water monitoring 

technology such as sensors or weather stations, they will often also receive advice about the 

best trigger levels and irrigation management strategies to maximise yields, profits or water 

efficiency (UNL, 2019). The relative contribution of improved scheduling rules versus 

improved soil-moisture information to farmers’ irrigation water use practices has not been 

explicitly studied. However, this distinction has important implications for farmers and 

water managers seeking to understand which interventions and technologies will be most 

effective for delivering desired improvements in the productivity and value of irrigation 

water use.  
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In response to these gaps in the literature, this article presents a framework for studying the 

impact of varying levels of soil-moisture uncertainty on irrigation water use decisions and 

farm profits. The framework consists of an optimization module to generate irrigation 

strategies, a crop-growth model to assess impacts of these irrigation strategies on water use 

and crop yields, and a mechanism for applying variable soil-moisture measurement errors 

within model simulations. We apply this framework to a case study of irrigated maize 

production in Nebraska, United States, using the AquaCrop-OS crop-water model to assess 

how assumptions about irrigation management practices, and the accuracy of soil moisture 

information on which these strategies are implemented, affect irrigation decisions and farm 

profits. Our findings provide insights on the response of irrigation water productivity to soil-

moisture measurement uncertainty, showing that the impact of inaccurate soil-water 

monitoring on crop yields, profits and water use efficiency is low relative to the impacts of 

using sub-optimal irrigation scheduling heuristics. We discuss the implications of these 

results for local policy makers, industry and producers, and provide recommendations for 

how our results can be used to make improvements in agricultural water productivity at 

field to catchment scales.  

3.2 METHODS 

In this section, we describe our proposed framework for modelling farmer irrigation 

decision-making under varying levels of soil-moisture measurement uncertainty, and for 

assessing the resulting impacts of this measurement uncertainty on water use, crop yields 

and economic returns. We first present our generalised assessment framework in three 

main subsections: determination of farmers’ irrigation scheduling rules (Section 3.2.1), 

assessment of the performance of these strategies under different sources and magnitudes 

of measurement error (Sections 3.2.2), and the incorporation of a feedback mechanism to 

represent realistic farmer behaviour (Section 3.2.3). We then describe the specific case 

study application of this framework, including details of model parameters and choice of 

crop-growth model, optimization algorithm, crop type, and location used as an illustrative 

example in this study (Section 3.2.4). 

3.2.1 Determining farmers’ rules in scheduling irrigation 
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Despite a large variation in the methods used by farmers to schedule irrigation (Figure 3.1), 

the goal of most methods is to maintain soil-moisture levels above a pre-specified threshold 

chosen to meet crop-water needs and balance trade-offs between costs and yield benefits 

of water use. In line with these assumptions and past research (Linker et al., 2016; Foster & 

Brozović, 2018; Linker et al., 2018), we assume that a farmer’s irrigation decision-making 

can be characterised by the choice of four soil-moisture thresholds throughout the growing 

season, one for each major crop-growth stage (emergence, early-season canopy 

development, mid-season crop growth and yield formation, late-season canopy 

senescence). These four soil-moisture thresholds determine the allowable root-zone soil-

moisture content (expressed as a percentage of total soil-water holding capacity) which 

water contents must fall below before irrigation is triggered. At the point irrigation is 

triggered, we assume that water will be applied to refill the soil profile back to field capacity, 

subject to a maximum application rate which is determined by the type of irrigation system 

and water source used by a farmer.  

The choice of soil-moisture thresholds – which we refer to as the irrigation strategy – can 

have a major impact on water use and crop growth. Setting these thresholds too high (i.e., 

irrigating at low levels of soil-moisture depletion) will result in over-irrigation, whereas 

setting thresholds too low (i.e., irrigating only at high levels of soil-moisture depletion) will 

result in under-irrigation and thus production losses. In line with past research showing that 

farmers’ input use decisions may be influenced by their risk preferences (Abdulkadri, 2003; 

Menapace et al., 2013), we define the optimal set of soil-moisture thresholds as those that 

maximise a farmers’ certainty equivalent (CE). The CE is defined as the amount of economic 

return that would have to be guaranteed in order for an individual to be indifferent towards 

a higher but less certain return. The CE has been used in previous agro-economic models of 

farmer input use decision-making (Lehmann et al., 2013; Foster et al., 2014). In the context 

of irrigation optimization, the CE for a given irrigation strategy 𝑠 is defined as 

 

 
𝐶𝐸(𝑠) = 𝐸[𝑃(𝑠)] − 0.5 ∗ 𝑟 ∗

𝑉𝑎𝑟[𝑃(𝑠)]

𝐸[𝑃(𝑠)]
, 

(3.1) 
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where strategy 𝑠 = [𝑡1, 𝑡2, 𝑡3, 𝑡4] is made up of four soil-moisture thresholds; the expected 

profits 𝐸[𝑃(𝑠)] and variance 𝑉𝑎𝑟[𝑃(𝑠)] will be calculated over a given set of seasons that 

characterise farmers’ expectations of potential inter-annual weather variability; and r is the 

risk coefficient representing farmer’s risk preferences. For risk-averse behaviour (r > 0), 

more weight will be placed on reducing year-to-year variability in profits (Equation 3.1), 

whereas risk-neutral behaviour (r = 0) reduces the right-hand side of Equation 3.1 to 

expected seasonal profits. For a given irrigation strategy 𝑠, the seasonal profit P(s) is 

calculated as  

 

 𝑃(𝑠) = 𝑀 ∗ 𝑌(𝑠) − 𝐶 ∗ 𝐼(𝑠) − 𝐹, (3.2) 

 

where M is a constant crop market price [$ per tonne], Y(s) is crop yield [tonne per ha], C is 

a constant irrigation cost [$ per ha-mm], I(s) is total seasonal irrigation applied [ha-mm], and 

𝐹 is fixed production costs [$ per ha].  

Finding a set of soil-moisture thresholds that maximise CE is a difficult task due to large 

number of potential soil-moisture threshold combinations and interdependencies between 

the choice of threshold for each individual growth stage. For example, irrigating more in the 

early part of the season will affect the optimal irrigation threshold for the rest of the season. 

As a result, the search space of possible threshold combinations and their resulting 

outcomes is non-linear and discontinuous. For these types of search spaces, swarm 

intelligence algorithms have become popular in recent decades (Mavrovouniotis et al., 

2017) and have been used previously for the purpose of optimal irrigation planning and 

management (De Paly & Zell, 2009; Noory et al., 2012). These algorithms operate on the 

principle that a group of agents scattered across the search space can search locally for 

solutions while communicating with the other agents. This combination ensures that the 

solutions found are close to the global optimum.  

 

For this analysis, we determine farmers’ optimal (i.e., CE-maximizing) soil-moisture 

thresholds using the particle-swarm optimization algorithm (Eberhart & Kennedy, 1995; 
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Freitas et al., 2020), although in principle any optimization method could be used within our 

framework. This method starts by initializing a population of particles (i.e., possible soil-

moisture threshold combinations) across the search space. Each particle is then evaluated 

and updated using the best combinations found by both the particle and the population as a 

whole. This evaluate–update process repeats until a stopping criteria has been met 

(Mathworks, n.d.). Particle-swarm optimization has been successfully applied in a diverse 

array of research areas, such as control problems, biomedical research, robotics and 

distribution networks (Poli, 2008).  

3.2.2 Quantifying the impact of uncertainty on irrigation decisions and profits 

As shown in Figure 3.1 and discussed earlier, many farmers do not measure soil moisture 

directly using sensors. Instead, most rely on proxy measures of soil-water content, such as 

visual inspection of the soil and simplified checkbook-style water-balance models. Each of 

these approaches carry uncertainties and errors in the measurement of soil moisture, which 

may influence the performance of selected irrigation scheduling strategies. In this study, we 

focus on two main sources of error: (1) the specification of soil textural characteristics that 

cause a persistent seasonal bias to water-balance estimation and (2) measurements of daily 

precipitation, irrigation, and evapotranspiration fluxes that cause daily unbiased errors in 

soil-moisture content. Our analysis does not consider structural model errors such as 

simplifications in the water-balance equations inherent in traditional soil-moisture 

monitoring approaches used by farmers, and our analysis assumes that the underlying soil-

water balance model is a ‘perfect’ model of the chosen system. Focusing on these two 

sources of error allows us to examine the effects of measurement uncertainty on farmers’ 

irrigation decision-making. 

The framework created to study the effect of soil-moisture uncertainty consists of two 

identical crop-model simulations running in parallel. Simulation 1 represents the farmers’ 

expectations about soil-moisture conditions, which will be impacted by any errors in soil-

texture and water-flux measurements. The sources of uncertainty considered are errors in 

soil-texture inputs added at the beginning of each season and water-flux inputs added on 

each day of the simulation. Simulation 2 represents the true status of soil-moisture 

conditions based on the actual soil-textural properties and water fluxes. Irrigation decisions 

are determined based on the soil-moisture content given by Simulation 1, as well as the 
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farmers' CE-maximizing irrigation strategy that determines the level of soil moisture at 

which they intend to trigger irrigation. Irrigation events estimated in Simulation 1 are then 

applied in Simulation 2 to determine resulting impacts on water use and crop yields. Under 

perfect information (zero errors in soil texture and water flux), the farmers’ perception of 

soil-moisture conditions match the true state, and both simulations are identical such that 

the farmer is able to implement perfectly the CE-maximizing irrigation strategy. When the 

magnitudes of soil-texture errors, water-flux errors, or both are greater than zero, the 

difference between the farmer’s expectations of soil-moisture conditions and reality 

diverge. This difference potentially results in sub-optimal irrigation scheduling, with 

negative impacts on crop yields or profits. For example, if the farmer triggers irrigation at a 

lower level of soil-moisture than the intended CE-maximizing threshold (i.e., because their 

estimated soil-moisture levels in Simulation 1 over-estimate true soil-moisture levels given 

in Simulation 2), then the crop may experience unintended water stress and a reduction in 

yields. Alternatively, if the farmer triggers irrigation at a higher soil-moisture level than the 

intended CE-maximizing threshold (i.e., because their estimated soil-moisture levels in 

Simulation 1 under-estimate true soil moisture levels given in Simulation 2), then irrigation 

water may be wasted and profits reduced.   
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Two examples of how the added soil-moisture uncertainty causes the two simulations to 

diverge are shown in Figure 3.2 (where percentage errors drawn from a normal distribution 

with zero mean and a standard deviation of 30% have been added to the soil-texture and 

daily water-flux inputs in Simulation 1). The soil-texture errors result in seasonal biases 

towards either over or under-estimation of drainage and therefore soil-moisture storage, 

whereas the water-flux error results in random daily errors in the farmer’s estimate of the 

true daily change in water content. When this calculated soil-moisture content (Simulation 

1) drops below the pre-defined threshold, irrigation is triggered. This irrigation depth is 

applied to both fields regardless of whether the true moisture content (Simulation 2) has 

crossed the intended irrigation threshold. Figure 3.2a shows an example of irrigation being 

triggered several days after the true water content in Simulation 2 had dropped below the 

threshold, resulting in water stress and yield losses. In the alternative case, irrigation may be 

triggered too early, causing profit losses from excess water application and potentially 

leading to crop damage from temporary waterlogging (Figure 3.2b). 
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Figure 3.2. Soil-moisture content (% total available water) during an example season where 
(a) the farmer is overestimating the water content, (b) the farmer is underestimating the 
water content. A soil-water content of 0% indicates wilting point whereas 100% indicates 
field capacity. Irrigation events (blue circles) occur when the farmers’ perception of soil-
moisture content (blue solid line) drops below the irrigation threshold (green dotted line). 
This irrigation event is applied to both simulations regardless of the true soil-moisture 
content (orange dashed line). In Figure 3.2b, the added soil-texture and water-flux errors 
have resulted in an underestimation of the true soil-water content, leading to excess 
irrigation application and economic losses. This example adds a 30% standard error 
(meaning percentage errors are drawn from a normal distribution with a mean of zero and a 
standard deviation of 30%) to the water-flux and soil-texture measurements, which can 
cause unrealistically high measurement errors such as the irrigation depth error on day 70 
of Figure 3.2a. 
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3.2.3 System Feedback  

When incorporating error in farmers’ estimation of soil-moisture content, the potential 

exists for unrealistic irrigation behaviour to occur during simulations that may overstate the 

true effects of measurement error on farmer irrigation decision-making, crop yields, and 

profits in reality. For example, the calculated moisture content (Simulation 1) may 

recommend no irrigation despite the true water content (Simulation 2) being sufficiently 

low that the crop would be showing visible signs of water stress (e.g., wilting or early 

senescence). Alternatively, the calculated water content may recommend irrigation despite 

the true soil profile being visibly saturated or water logged. In these instances, a farmer 

would likely adjust their irrigation application in response to these clear visual feedbacks 

from the true field, which would be readily observable through day to day crop 

management activities even if the farmer was no longer personally measuring the soil-

moisture content in the field. This assumption is further supported by the fact that visible 

inspection of the crop and soil are by far the most common information sources when 

deciding to schedule irrigation (Figure 3.1). 

To capture these behavioural feedbacks, an additional rule is added to our parallel 

simulation approach to override the daily irrigation recommendation from the farmers’ 

calculation (Simulation 1). This override occurs if, on the previous day, the soil-moisture 

conditions in the true field (Simulation 2) were either (i) low enough to trigger early canopy 

senescence, which is an indication of severe crop water stress, or (ii) higher than the soil’s 

true field capacity, which is indicative of visibly moist soil conditions. In these instances, an 

irrigation event within our assessment framework would be triggered or blocked, 

respectively. The altered irrigation depth is applied to both fields (Simulations 1 and 2), and 

the parallel simulations subsequently continue as described in Section 3.2.2. The added 

feedbacks have the effect of stopping excessive irrigation in the early season, while also 

preventing unrealistically large water stress in the late season (Figure 3.S1). We hypothesise 

that incorporating these behavioural feedbacks will minimise the effects of large 

measurement errors, leading to less importance being placed on the quality of improved soil 

moisture information – a hypothesis we test in subsequent sections as part of our 

illustrative case study application.  
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3.2.4 Illustrative Application 

To illustrate our modelling framework, we apply the methods described in Section 3.2.2 and 

3.2.3 to the example of centre-pivot irrigated maize production in Nebraska, United States. 

Maize is the dominant irrigated crop type in Nebraska, which has the largest number of 

irrigated acres by state in the United States (USDA-NASS, 2018). Irrigation water is sourced 

primarily from the underlying High Plains Aquifer, and improving productivity of water use is 

a key priority for policymakers to address growing issues of aquifer depletion (McGuire, 

2017), streamflow depletion (Szilagyi, 2000), and degradation of freshwater ecosystems 

(Palazzo & Brozović, 2014; Perkin et al., 2019). Financial incentives to farmers to encourage 

adoption of soil-moisture sensors are seen as a key mechanism to improve water 

productivity and irrigation efficiencies (CropWatch, 2019b), making maize production in 

Nebraska a logical choice for examining the impact of soil-moisture uncertainty on water 

use and farm profits. 

As the basis for soil-water balance and crop-growth simulations in our illustrative analysis, 

we use the crop-water model AquaCrop-OS (Foster et al., 2017). AquaCrop-OS is an open-

source version of the original AquaCrop (Raes et al., 2009) developed by the Food and 

Agriculture Organization of the United Nations to simulate crop response to water stress. 

The model has been successfully applied and calibrated for maize production in a wide 

variety of environments (Hsiao et al., 2009; Abedinpour et al., 2012), including in our study 

area in the central United States (Foster et al., 2015) and within the United States and 

globally (Heng et al., 2009; Foster et al., 2015; Sandhu & Irmak, 2019). AquaCrop-OS 

captures the impacts of water stress on multiple aspects of crop development (expansion 

and senescence), transpiration, and yield formation through a series of water-stress 

thresholds and coefficients that have been calibrated for maize in our study areas as part of 

previous studies (Forster et al., 2015). These determine the level of soil moisture depletion 

at which each process becomes constrained by water stress, along with how resulting 

deficiencies in crop development or transpiration impact on end-of-season biomass 

production and crop yields. Further details about the simulation of water stress on crop 

growth and yields in AquaCrop are given in Steduto et al. (2009) and Raes et al. (2009).  
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The first step in our analysis is to identify CE-maximizing soil-moisture thresholds using 

particle-swarm optimization as described in Section 3.2.1. Given the non-linear and 

discontinuous nature of the search space of possible thresholds, the same optimization 

procedure did not always produce the same set of thresholds. Multiple optimization 

repetitions were therefore required to capture the full distribution of CE-maximizing 

strategies. The number of repetitions was set to 50 after observing that the variance 

between optimal threshold combinations stabilised for more repetitions than 50 (Figure 

3.S2). Each of these 50 sets of thresholds can now be thought of as a separate farmer with 

their own, slightly different, CE-maximizing irrigation strategy. Table 3.1 shows the top five 

strategies in terms of the resulting 30-year CE.  

Subsequently, to evaluate the impact of information uncertainty, each CE-maximizing 

irrigation strategy was then applied as described in Sections 3.2.2 and 3.2.3. For each of the 

50 CE-maximizing irrigation strategies, we conducted a 30-year simulation using our 

framework’s two parallel-model approach. The first model, representing the farmer’s 

expectation of soil-moisture status, perturbs soil-texture properties (% sand and clay 

content) at the start of the simulation by a normally distributed percentage error (Figure 

3.S3). The soil hydraulic properties are then estimated from this soil texture inside 

AquaCrop via pedotransfer functions (Saxton & Rawls, 2006). The true soil texture was 

defined as a silt loam (25% sand, 25% clay), which is among the common soil types for maize 

production in Nebraska (CropWatch, 2018). On each day of the simulation, water-flux inputs 

(rainfall, irrigation, and evapotranspiration) used to simulate farmer’s expectations (i.e., 

Simulation 1) were also perturbed by normally distributed percentage errors (Figure 3.S4). 

The distributions chosen were unbiased (mean = 0) with standard deviations of increasing 

magnitude from 0 to 30% for both water-flux and soil-texture measurements. In the real 

world, measurement errors in these quantities may be on the lower end of this range, in 

particular in the context of quantities such as irrigation depths in more controlled 

application systems (e.g., centre-pivot or drip). However, we explore variations in errors up 

to 30% to provide an estimate of how measurement errors affect resulting irrigation water 

use and crop yields for a diversity of error levels ranging from perfect information (0% error) 

to very large uncertainty (30% error). Given that the added errors were randomly drawn, 

the process was repeated 1000 times for each combination of irrigation strategy, water-flux 
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error, and soil-texture error. This number was chosen by finding how many repetitions were 

required before average CE results stabilised (Figure 3.S5).  

Simulations were conducted over a 30-year (1989–2018) period using weather data 

observed at a monitoring station in Champion, southwest Nebraska (HPRCC, 2016), where 

the number of years was chosen to capture the range of potential growing weather 

conditions experienced by farmers in the region. For each 30-year simulation, we determine 

the effects of soil-moisture uncertainty by comparing average annual profits and total 

irrigation water use for simulations with and without water-flux and soil-texture errors. 

Simulations consider a constant crop price used in Equation 3.2 of $180 per tonne ($4.57 

per bushel) based on a 10-year average of US maize grain prices (USDA, 2019) and an 

irrigation cost of $2 per ha-mm ($20.55 per acre-inch) based on typical costs associated with 

pumping and application of water (UNL, 2017). Fixed production costs were set to $1728 

based on typical average non-water production costs for centre pivot irrigated maize 

production in the 2019 Nebraska Crop Budget Report (CropWatch, 2019a). These costs 

include field operation costs including labour, materials and services, taxes, etc. for non-

irrigation activities, and are not likely to change significantly if the irrigation strategy is 

altered. Baseline simulations consider a risk-neutral farmer (i.e., r = 0 in Equation 3.1). 

To evaluate the sensitivity of our results to model parameter choices, we conducted a range 

of sensitivity tests. The first sensitivity analysis was for irrigation cost, whereby the same 

analysis was conducted for two alternative costs of irrigation ($1, $3 per ha-mm), as this 

cost can vary greatly due to differences in water source, energy price and tariffs, and labour 

costs (Wichelns, 2010). Higher irrigation costs will amplify the economic impacts of over-

irrigation, potentially resulting in a corresponding increase in the value a farmer may place 

on accurate soil-moisture information. On the other hand, when irrigation is cheap to apply, 

there is less incentive to conserve water and risk any reductions in yield that may occur due 

to delayed irrigation. In these circumstances, the value of soil-moisture information 

therefore is expected to be lower.  

Subsequently, we conducted a second sensitivity analysis to evaluate the effects of risk-

aversion on the value of more accurate soil-moisture information to a farmer. Risk-averse 

farmers were represented by varying the risk coefficient in Equation 3.1 (r = 0, 2.5, 5) to 

reflect the fact that existing literature shows farmers often exhibit risk-averse behaviour 
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(Abdulkadri, 2003; Menapace et al., 2013). As more weight is placed on reducing the year-

to-year variance in profits, the optimal strategy should aim to apply more water than the 

risk-neutral case, in order to reduce water stress in the driest years. The desire to reduce 

year-to-year variation should also increase the value the farmer places on accurate soil-

moisture information, as greater information accuracy would be expected to result in lower 

risks of crop failure all else being equal. As well as isolating the effects of changing irrigation 

cost or risk preference on our chosen case study, the joint effects of changing both these 

parameters at the same time was also examined. The full sensitivity analysis is therefore 

made up of nine scenarios, representing three choices of irrigation cost and three choices of 

risk preference. A summary of key model parameters is shown in Table 3.2. 

The experiments were performed on The University of Manchester’s High Performance 

Computing (HPC) cluster. Up to 20 jobs could be ran in parallel with each job representing 

one full experiment (e.g., 1 strategy x 30 years x 8 flux errors x 8 texture errors x 1000 

repetitions). Each job was computed on a 2×8-core Intel Xeon E5-2650 v2 @ 2.60GHz + 

64GB RAM compute node. The time to complete all jobs for 50 optimized strategies, 3 

irrigation costs and 3 risk preferences was approximately 1 week. 
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Table 3.1. Top five soil-moisture threshold strategies for baseline analysis (Risk coefficient r 
= 0; Irrigation cost C = $2 per ha-mm.). 

 

Table 3.2. Overview of key model parameters. 

PARAMETER VALUE 

Simulation years 1989–2018 (30 seasons) 

Crop Maize 

Crop market price M $180 per tonne ($4.57 per bushel) 

Irrigation cost C $ [1, 2, 3] per ha-mm ($ [10.28, 20.55, 

30.83] per acre-inch) 

Fixed costs F $1728 per ha (CropWatch, 2019a) 

Soil-texture error 0–30% standard error 

Water-flux error 0–30% standard error 

Optimization repetitions 50 

Simulation repetitions 1000 

Risk preference r [0, 2.5, 5] 

Maximum daily irrigation depth 25 mm 

 

  

THRESHOLD 

1 (%TAW) 

THRESHOLD 

2 (%TAW) 

THRESHOLD 

3 (%TAW) 

THRESHOLD 

4 (%TAW) 

CERTAINTY 

EQUIVALENT 

($/HA) 

48 46.3 31.8 11.6 191.9 

44.8 46 33.7 0 191.8 

44.9 48.4 33.6 5.9 191.5 

44.1 49.3 32.7 0 189.7 

42.8 47.4 33.8 8.7 189.1 
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3.3 RESULTS 

3.3.1 The effect of soil-moisture uncertainty on water use and profits 

Each combination of water-flux and soil-texture errors (averaged over all strategies and 

repetitions), and their resulting impacts on water use and profits, is shown in Figure 3.3 (for 

a risk-neutral farmer and implementing behavioural feedbacks described in Section 3.2.2). 

The responsiveness of modelled outputs is variable depending on the underlying source of 

soil-moisture error, with water use (Figure 3.3a) and profits (Figure 3.3b) showing greater 

sensitivity to water-flux errors than soil-texture errors. Increasing magnitude of soil-

moisture errors (from both sources) results in only marginal changes in irrigation water use 

and profits. For example, each contour line in Figures 3.3a and 3.3b represents a 1% 

increase and 1% decrease, respectively, from the case of perfect information. These results 

indicate that a nearly 30% assumed standard error in the water-flux and soil-texture inputs 

causes only around a 4% increase in total water use (Figure 3.3a) and 14% decline in profits 

(Figure 3.3b). Figure 3.S6 shows that almost no change in crop yields is observed, even for 

extreme levels of error of up to 30%, indicating that the primary driver of profit losses is 

through this excess water application through inefficient irrigation scheduling as a result of 

soil-moisture estimation uncertainty. The results presented in this section and following 

sections are averaged over the 50 CE-maximizing strategies, as well as 1000 repetitions of 

the 30-year case study simulation. Thus, the impact of the stochastic measurement 

uncertainty may deviate from the overall trend in any given simulation (Figure 3.S7).  
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Figure 3.3. The effect of increasing water-flux and soil-texture errors on (a) total irrigation 
[ha-mm], and (b) profits [$ ha–1]. The percentage errors are drawn from a normal 
distribution of mean = 0 and standard deviation increasing from 0–30%. The contour lines 
represent a 1% change from the case of zero added error. The effect of added uncertainty in 
water-flux and soil-texture measurements is almost no change in yields despite marginal 
increases in irrigation. This contrast implies irrigation is applied sub-optimally, leading to 
profit losses from wasted water application. (Risk coefficient r = 0; Irrigation cost C = $2 per 
ha-mm.) 
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Figure 3.4 also illustrates the effect of adding the additional behavioural-feedback 

mechanisms described in Section 3.2.3. Behavioural feedbacks were designed to prevent 

unrealistic irrigation behaviour caused by measurement error, effectively ensuring that 

irrigation events were triggered when true soil-moisture levels were sufficiently low to 

cause visible plant stress and were not triggered when true soil-moisture levels were 

sufficiently high to cause visible soil saturation. Introducing the feedback mechanism leads 

to greater increases in water use as soil-moisture errors become larger (Figure 3.4a), but 

results in a reduction in the economic losses caused by larger measurement errors (Figure 

3.4b). This result reflects the fact that the behavioural feedbacks most commonly act to 

trigger irrigation when the farmer has underestimated soil-moisture depletion, leading to 

more frequent irrigation events but also reducing the duration and severity of crop water 

stress relative to simulations without behavioural feedbacks. In contrast, triggering of 

behavioural feedbacks for excess irrigation is relatively uncommon as the whole root-zone 

would have to have exceeded field capacity.  

Introducing behavioural feedbacks also results in small changes in water use and reductions 

in CE and profits even under perfect information (i.e., for errors equal to 0). Because CE-

maximizing strategies are designed under the assumption of perfect information without 

consideration of additional behavioural feedbacks, introducing these feedbacks leads to 

permutations to these CE-maximizing strategies that trigger slight adjustments to final 

simulated outputs at the end of each season. These changes, however, are small, 

representing as little as 0.5% and 0.3% changes in average annual water use and CE, 

respectively.  
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Figure 3.4. The effect of increasing water-flux and soil-texture error on (a) total irrigation 
[ha-mm] and (b) profits [$ ha–1] when the magnitude of both sources are equal (i.e., plotting 
the bottom-left to top-right diagonal of Figures 3.3a, 3.3b). The shaded area represents the 
95% confidence interval over all 50 strategies. The comparison with and without the 
feedback mechanism is also presented to show the effect that simple farmer behaviour 
adjustments can have on the value of soil-moisture information. (Risk coefficient r = 0; 
Irrigation cost C = $2 per ha-mm.) 
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3.3.2 Sensitivity analysis  

To assess the impact of our choice of risk preference and irrigation cost (r = 0 and C = $2 per 

ha-mm) on the estimated impacts of soil-moisture uncertainty on irrigation water use and 

farm profits, we repeat the analyses described in Sections 3.2.2 and 3.2.3 for combinations 

of three alternative risk coefficients (0, 2.5, 5) and irrigation costs ($1, 2, 3 per ha-mm). In 

the absence of soil-moisture uncertainty, higher irrigation costs lead to reductions in 

average water use as expected (Figure 3.5a). The magnitude of this reduction is also much 

larger than increases resulting from risk preferences or soil-moisture uncertainty (Figure 

3.5b), suggesting that irrigation-water costs or prices have a larger effect on water-use 

decisions than risk aversion or uncertainties in underlying data used to determine soil-

moisture conditions for irrigation scheduling.   

This relationship between irrigation cost and water use is commonly analysed in the 

literature via the price elasticity of water use (also known as the price elasticity of demand), 

which is the percentage change in a farmer’s irrigation water use for a percentage change in 

irrigation cost. Previous studies have placed the price elasticity within a wide range 0.001–

1.97 (Scheierling et al., 2006). Calculating the price elasticity of water use using our results 

in the absence of soil-moisture uncertainty yields a mean price elasticity of 0.23 ± 0.12 

(calculated from the results presented in Figure 3.5a). This result is comparable with past 

estimates that consider only water-use adjustments on the intensive margin (i.e., estimates 

that consider changes to per-area irrigation water use, but not changes in demand caused 

by adjustments to irrigated area or crop type). Similarly, calculating the percentage change 

in water use for a percentage change in soil-moisture error or risk coefficient yielded an 

information elasticity of 0.015 ± 0.016 and a risk elasticity of 0.012 ± 0.016. This comparison 

further reinforces our finding that water use appears to be much more sensitive to changes 

in cost than either risk preference or soil-moisture error.  

The choice of irrigation cost and risk preference can also alter how soil-moisture uncertainty 

affects water use and profits in the case of farmers with an imperfect ability to estimate or 

monitor soil-moisture conditions. High irrigation costs will reduce the optimal amount of 

irrigation used over the season, meaning that farmers have less scope to mistime events 

while still avoiding damaging water stress or that farmers must apply extra irrigation at 
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significant economic cost. A high degree of risk aversion (represented by a larger positive 

value of r) will similarly penalise large year-to-year fluctuations in profit, meaning the 

negative economic impacts of soil-moisture errors (and hence the value of improved 

information accuracy) may be enhanced due to the increase in the variance in annual 

profits. When both high risk preferences (r = 5) and high irrigation costs (C = $3 per ha-mm) 

are combined, the economic losses resulting from uncertainty are almost doubled 

compared to the case presented throughout this analysis (r = 0 and C = $2 per ha-mm) 

(Figure 3.5c).  
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Figure 3.5. The effect of increasing irrigation costs [$/ha-mm] on water use in the absence 
of water-flux and soil-texture error (a). The effect of increasing water-flux and soil-texture 
error on (b) seasonal irrigation and (c) certainty equivalent for varying irrigation costs and 
risk coefficients when the magnitude of both sources are equal.   
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3.3.3 Comparing the impacts of uncertainty with choice of irrigation strategy  

Our analysis in the previous sections has shown that a 30% water-flux and soil-texture error 

results in only a 4% increase in water use (Figure 3.3a), whereas the standard deviation in 

water use between 50 different ‘optimal’ strategies was 5.7% (Figure 3.4a). This comparison 

indicates that the choice of irrigation management strategy (represented in this study by a 

combination of four soil-moisture thresholds) could be more important in determining 

irrigation-water use than uncertainty in underlying soil-moisture estimates used to 

implement irrigation strategies. Since all strategies evaluated so far can be considered 

‘optimal’, one would expect a ‘sub-optimal’ strategy to have a significantly different level of 

water use and profits if that were the case.  

To explore further the impacts of the choice of irrigation strategy relative to the effects of 

soil-moisture uncertainty, we repeated the analysis for our case study, allowing the farmer 

to select only a single optimised soil-moisture threshold throughout each season (e.g., the 

green line in Figure 3.2 would be one straight line) as opposed to a set of four optimised 

thresholds disaggregated by growth stage. The top five single-threshold strategies in terms 

of 30-year average CE are displayed in Table 3.3. Single thresholds have been applied in past 

studies of farmer irrigation decision-making and is often recommended by extension and 

agronomic advisories (Blonquist et al., 2006; Gutierrez et al., 2014). However, since they do 

not consider the variable sensitivity of crop growth to water deficits over the growing 

season, they are sub-optimal compared to the four-threshold strategies used in the baseline 

analysis.    

Figure 3.6 illustrates that the choice of irrigation management strategy (i.e., one versus four 

soil-moisture thresholds per season) has a much larger impact on water use (Figure 3.6a) 

and profits (Figure 3.6b) than added soil-moisture uncertainty. Under perfect information 

(zero added soil-moisture error), the sub-optimal strategy (one irrigation threshold) uses 35 

ha-mm more water on average and reduces profits by $117 ha–1 compared with the optimal 

strategy (four irrigation thresholds). Conversely, adding 30% water-flux and soil-texture 

errors to the optimal strategy results in only 11 ha-mm more water being applied and a $27 

ha–1 reduction in profits. This means that the accuracy of soil-moisture information appears 

to be much less important to the water-use efficiency and profitability of irrigation decision-

making than the choices of heuristics for irrigation scheduling. Indeed, Figure 3.6 suggests 
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that adding a 30% standard error onto an optimal strategy can still outperform a sub-

optimal strategy with perfect information.    

 

Table 3.3. Top five soil-moisture threshold strategies for a single seasonal threshold (Risk 
coefficient r = 0; Irrigation cost C = $2 per ha-mm.). 

 

THRESHOLD 

1 (%TAW) 

THRESHOLD 

2 (%TAW) 

THRESHOLD 

3 (%TAW) 

THRESHOLD 

4 (%TAW) 

CERTAINTY 

EQUIVALENT 

($/HA) 

38.2 38.2 38.2 38.2 65.2 

35.9 35.9 35.9 35.9 64.2 

35.1 35.1 35.1 35.1 64.1 

35.1 35.1 35.1 35.1 63.7 

40.1 40.1 40.1 40.1 63.4 
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Figure 3.6. Comparison of (a) water use and (b) profits under increased uncertainty for two 
different types of irrigation strategy. The first strategy consists of four irrigation thresholds 
corresponding to the allowable level of soil moisture during four major growth stages. The 
second strategy is for one constant irrigation threshold that does not vary over the season. 
Particle-swarm optimization found both strategies to be CE maximizing (Risk coefficient r = 
0; Irrigation cost C = $2 per ha-mm.) 
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3.4 DISCUSSION 

Our findings demonstrate that the response of irrigation-water use and farm profits to soil-

moisture uncertainty is non-linear, with soil-moisture uncertainty leading to reductions in 

both efficiency of irrigation water use and farm profits. However, we show that, with the 

addition of realistic farmer behaviour (in the form of our feedback mechanism), the 

magnitude of these changes is much smaller than commonly assumed in policy and practice 

(Soulis et al., 2015; Adeyemi et al., 2017). In fact, our analysis suggests that near-optimal 

irrigation decisions can be made without perfect soil-moisture information. In contrast, we 

find the choice of irrigation management strategy – in this study given by a set of four soil-

moisture thresholds – was a far more important determinant of water efficiency, 

productivity, and profitability than the accuracy of soil-moisture information used to 

implement a selected irrigation management strategy.  

To explain this counterintuitive result, it is necessary to consider how the choice of irrigation 

management strategy and the accuracy of the information used to implement that strategy, 

combine to influence risks of crop water stress and resulting yield losses. For our baseline 

analysis, the highest performing (in terms of CE) soil-moisture target strategy consisted of 

irrigation being triggered when soil-moisture levels were assumed to be 48, 46, 38 and 12% 

of soil-water holding capacity in each of the crop’s four main growth stages (Table 3.1). 

These assumptions compare with calibrated thresholds for the initiation of crop water stress 

affecting canopy expansion (86%), plant transpiration (31%), canopy senescence (31%), or 

pollination (20%). Thus, the optimal soil-moisture targets, apart from that in the final 

growth stage (canopy senescence) are above thresholds needed to trigger more severe crop 

stress effects (stomatal closure, early canopy senescence, pollination failure). These 

thresholds have been optimised to maximise profit over 30 years of climate data, meaning 

that they must incorporate a degree of headroom in order to cope with unexpected year-to-

year weather variability, with exact weather conditions being unknown to farmers apriori in 

any given season. Therefore, errors in estimates of soil-moisture conditions have to be large 

and persist for multiple days to result in unintended water stress, reducing the risks posed 

by inaccurate soil-water monitoring. In contrast, the highest performing single threshold 

(i.e., sub-optimal) irrigation strategy was 38% of soil-water holding capacity (Table 3.3). This 

sub-optimal threshold is closer to the crop water stress thresholds – in particular in earlier 
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stages of crop development – and so can result in greater increases in both the frequency 

and magnitude of water-stress occurrence. This single seasonal threshold also has the effect 

of triggering excess water use in the late season, explaining how the choice of irrigation 

strategy has a large impact on water-use efficiency and farm profits even in the absence of 

soil-moisture uncertainty.  

This intuition underlying our findings is also critical to understanding how consideration of 

behavioural feedbacks (Section 3.3.1) and variability in irrigation costs (Section 3.3.2) 

influence the impacts of soil-moisture uncertainty on water use and farm profits in our 

analysis. When considering the potential for rational behavioural feedbacks made by 

farmers (e.g., to respond to visible signs of severe water deficits), it is logical that this 

feedback mitigates the effect of measurement uncertainties as these feedbacks further 

minimise any risks of erroneously falling below the intended irrigation trigger threshold. 

Similarly, the moderate increase in the sensitivity of water use and profits to soil moisture-

uncertainty at higher water prices can be explained by the fact that farmers faced by higher 

water prices will irrigate at lower soil-moisture levels independent of any uncertainty in soil-

moisture measurement (in order to reduce total irrigation applied over the season). Indeed, 

optimal soil-moisture targets for higher water price of $3 per ha-mm were 0, 46, 30, 2% soil-

water holding capacity. As such, farmers operating in regions with higher water prices – 

whatever their cause – will have greater risks of triggering unintended water stress for a 

given level of soil-moisture measurement, suggesting that the value of improved soil-

moisture information accuracy will depend in part on local water prices and costs of 

irrigation access.  

3.4.1 Policy Implications  

Our main finding that perfect soil-moisture information is not required to make near-

optimal irrigation decisions is broadly consistent with wider literature assessing the value of 

soil and climate information for farmers (Bosch & Eidman, 1987; Botes et al., 1996; 

Fafchamps & Minten, 2012). For example, previous research found that using historical 

weather data to determine optimal irrigation strategies results in relatively minor irrigation 

increases and profit losses compared with using perfect weather forecasts (Linker et al., 

2018; Jamal et al., 2019). Moreover, Linker & Kisekka (2017) used a similar parallel-model 
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approach to the present study to show that perfect real-time soil-moisture measurements 

may not be required to implement a deficit irrigation strategy. 

These studies, along with our findings, show that the value of improved soil-moisture 

measurement data alone may have been overstated by technology providers and water 

managers. Instead, a meaningful proportion of potential gains in profit or water efficiency 

may actually be the result of improved advice or guidance about optimal irrigation 

management practices, which are commonly provided by technology providers or extension 

agents when seeking to introduce new technologies for farm-level decision support 

(whether that be a soil-moisture sensor or crop-water model). When compared with 

estimated profitability gains observed in our analysis, this result suggests that the benefits 

of improved soil-moisture data – which can cost hundreds of dollars (Kukal et al., 2019) – 

may vary substantially depending on farmers’ baseline soil-moisture uncertainty or 

irrigation scheduling practices and heuristics, with much of the gains in water-use 

productivity potentially achievable through improving irrigation management practices, 

even if soil-moisture monitoring remains imperfect. 

The greater impact of irrigation-strategy choice over information accuracy identified in our 

study has important implications for efforts to improve irrigation-management decision-

making. For example, deficit irrigation – whereby irrigation is reduced below full crop-water 

needs while minimizing stress at sensitive growth stages – has been widely proposed as a 

key tool for improving agricultural water productivity (Kang et al., 2000; Blonquist et al., 

2006; Fereres & Soriano, 2006; Dukes et al., 2010). Our findings highlight the importance of 

these efforts, demonstrating that it may be more cost effective to refine irrigation-

management strategies, for example through optimization methods, in particular where 

costs of reducing soil-moisture monitoring errors are large (e.g., if multiple sensors need to 

be installed within a single field). A focus on improving irrigation strategies over monitoring 

data could lead to potentially faster improvements in agricultural water productivity. Where 

improvements in monitoring are considered, the focus should be on low cost and more 

scalable solutions as opposed to expensive sensor network arrays that aim for high levels of 

accuracy and precision in soil-moisture monitoring. For example, a farmer might choose to 

use a smaller network of low-cost sensors to monitor soil moisture or instead rely on 

remotely observed proxies for soil moisture such as from Earth observation satellites. Our 
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results, and those of  Linker & Kisekka (2017), indicate that the lower monitoring accuracy of 

such approaches would not necessarily be detrimental to water-use efficiency or 

productivity, and in some cases may be an economically optimal solution for farmers. 

Further research, however, is required to evaluate the cost-effectiveness of different 

monitoring and sensing approaches that vary in terms of their adoption costs and accuracy 

in different types of agricultural production systems. 

Finally, our results contribute to the wider literature on the use of crop-water models to 

estimate irrigation water demand in the context of agricultural water management and 

planning. Such studies typically assume the farmer has access to perfect soil-moisture 

information (García-Vila & Fereres, 2012; Foster et al., 2014; Zellner et al., 2020). Our results 

suggest that this assumption does not have a major impact on results other than marginal 

underestimations in water use. However, our results do highlight that incorrectly 

parameterizing farmers’ irrigation strategies is potentially a significant source of uncertainty 

in irrigation demand projections. Previous studies have highlighted a large variability in 

irrigation behaviour, even after controlling for key inputs to crop models such as crop type, 

soil type, and irrigation technology (Foster et al., 2019). Our findings thus highlight that the 

lack of information on the rules that govern farmers’ irrigation decisions is potentially a 

major source of uncertainty in irrigation water demand estimation and projection. This 

uncertainty may greatly exceed those introduced by uncertainty in soil, climate, or crop 

input parameter data that are more commonly the focus of parameter uncertainty studies.  

3.4.2 Limitations and Future Work 

The analysis presented in this study contains a number of limitations and simplifications that 

warrant discussion here and consideration in future extensions to this paper. In our analysis, 

we have assumed a perfect model that accurately represents both the movement of water 

in soil and corresponding crop growth. This assumption has enabled us to focus on 

quantifying the effect of measurement errors, such as the water flux and soil texture, 

making the results independent of the choice of crop-growth model. If this assumption does 

not hold, there would be a larger deviation between the farmer’s perception and the true 

soil-water conditions, potentially placing more importance on having accurate soil-moisture 

information. However, the inclusion of the feedback mechanism in this study places limits 

on how wrong these perceptions of soil-water conditions can be, meaning that the main 
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conclusions of this study should hold even under an imperfect model. Moreover, in reality, 

adoption of sensors is unlikely to guarantee perfect information about soil-moisture 

conditions. Sensors may give imprecise readings due to faults, inaccurate calibration, or 

where extrapolating point measurements to field scales (Sharma et al., 2021), meaning that 

our comparison with perfect information may be exaggerating the true benefits of 

technology adoption.  

The major consequences of over-irrigating in our framework have been through the excess 

cost of water applied. However, in reality, an additional impact of over-irrigation is 

waterlogging and associated damage to crops through aeration stress, pests/diseases and 

mechanical damage such as lodging. Recent research has shown that process-based crop 

models poorly capture the occurrence of waterlogging due to assumptions in soil-moisture 

drainage routines, and thus underestimate the negative impacts of excess water supply on 

crop growth and yields (Li et al., 2019). Neglecting these negative consequences of over-

irrigation may mean that our analysis has understated the effects of uncertainty on crop 

yields and profits, in particular for crops that are sensitive to effects of waterlogging and 

excess irrigation (e.g., enhanced lodging risks for crops such as wheat). Nonetheless, the 

more severe cases of over-irrigation would have been prevented via the behavioural 

feedback mechanisms used in this analysis. and This point of intervention, where a farmer 

feels that further irrigation would be detrimental to the crop (chosen to be field capacity in 

this case study), would likely change and reflect the risks of their specific crop based on their 

own experience. This feedback addition means that impacts of model simplifications of 

over-irrigation effects should be minimised under the assumption of rational farmer 

behaviour. Conversely, for systems that apply significant amounts of water in one event 

(e.g. flood irrigation), the potential for crop stress caused by over-irrigation is increased 

compared to our study of pivot production. 

Our analysis does not explicitly consider the effects technical or regulatory constraints to 

irrigation water use on the value of more accurate soil-moisture information. In reality, 

policies constraining seasonal or intraseasonal rates of water use (Ifft et al., 2018) or 

physical limits on water use (e.g., due to declining well yields) (Foster et al., 2015) may both 

increase incentives for farmers to avoid over-irrigation and thus increase the value of 

implementing optimal irrigation strategies. Combined with these limits, characteristics of 
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the delivery system will impact which days and how much water can be applied in each 

event beyond the simple maximum daily limit considered in our analysis (O'Brien et al., 

1998). Such restrictions and extraneous variables (e.g., a seasonal cap on irrigation) may 

increase the value of information as there is an additional cost of exceeding this cap. On the 

other hand, if irrigation events are largely determined by well yields, water delivery systems, 

energy regulators, and weather forecasts, then the number of mistimed irrigation events 

due solely to inaccurate soil-moisture measurements will be low. In either case, we expect 

the value of improved irrigation strategies to move in the same direction as the value of soil-

moisture information, as more freedom over the timing and quantity of water applied 

allows the farmer to better adjust irrigation to match crop-water needs. 

The results of our illustrative example are predicated on the ability of the underlying crop-

water model (AquaCrop-OS) to accurately simulate crop responses to soil water deficits. The 

model has been calibrated and extensively applied to simulate irrigated and rainfed maize 

production in our study area and wider North American farming systems (Heng et al., 2009; 

Foster et al., 2015; Sandhu & Irmak, 2019). However, to ensure that our results are not 

being driven by any remaining uncertainty in either water-stress thresholds or response 

parameters, a sensitivity analysis was therefore performed. In this sensitivity analysis, we 

artificially altered the stress-response parameters in AquaCrop-OS, setting each value to 1 

to maximise impacts of any short-duration periods of water stress on crop growth and 

yields. We then repeated our analysis described in Section 3.3.1 following methods outlined 

in Section 3.2. Water use and profits from this analysis showed the same non-linear 

response to water flux and soil-texture uncertainty as reported earlier in Section 3.3. A 10% 

standard error in both soil-texture and water-flux inputs led to less than 1% change in water 

use and less than 5% change in profits (Figure 3.S8). This sensitivity analysis demonstrates 

that the results presented in this article are highly unlikely to be an artefact of any inability 

within AquaCrop to simulate the severity of short-duration water-stress impacts, and we 

expect that qualitatively identical results would therefore be obtained with alternative more 

biophysically complex crop models [e.g., Hybrid Maize (Yang et al., 2004)]. A key reason for 

this result is that while the model now responds more strongly to water stress, optimal soil-

moisture targets are also adjusted to 64, 73, 39, 0% soil-water holding capacity and thereby 

greatly increasing the headroom above the critical crop-stress thresholds.  
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Finally, our results are specific to the particular illustrative application chosen in this study: 

irrigated maize production in the central United States. Nonetheless, we expect that our 

general qualitative finding – that choice of irrigation scheduling rules is more important than 

the accuracy of data these rules are implemented based on – will apply more generally to 

other crops and regions. In particular, our sensitivity analysis (described above) suggests 

that, even for more drought-sensitive crops (e.g., soft fruits), perfect information may not 

be necessary to achieve near-optimal water efficiency and profits so long as farmers’ 

baseline irrigation heuristics are effectively representative of crop sensitivity to water 

deficits. Conversely, higher crop prices are likely to enhance the value of improved soil-

moisture information as any yield losses will have a larger economic impact for farmers. The 

limited sensitivity of crop yields to measurement errors shown in Sections 3.3.1 and 3.3.2 

suggest that changes in crop price would have minimal impact on economic losses caused 

by soil-moisture uncertainty. This is in contrast with the larger effects of water prices and 

risk aversion that are directly affected by the greater magnitude of change in irrigation 

water use with measurement error.  Nonetheless, we acknowledge that variations in crop 

yields may have a larger influence on the value of improved soil-moisture information, for 

example where a farmer's baseline irrigation strategy is sub-optimal or for crops that 

respond strongly to either soil water deficits or saturation. Analysing such alternate 

production environments is beyond the scope of this paper, but will be an important area 

for future research building on the results presented here. 

3.5 CONCLUSIONS 

Effective irrigation scheduling is essential for improving agricultural water productivity and 

managing the negative impacts of agricultural water abstractions on other water users and 

the environment. Therefore, technology companies and researchers have focused on 

developing technologies such as soil-moisture sensors that improve the quality of farmers’ 

soil-moisture information. Implicit to this approach is an assumption that more accurate 

information is essential to enable efficient near-optimal irrigation decisions. However, this 

assumption neglects the contribution of farmers’ choice of irrigation strategy, which may 

have an equally significant or greater impact on overall efficiency and profitability of 

agricultural water use. 
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In this article, we have developed a framework to assess the impacts of increasing 

uncertainty on water use and farm profits. Measurement errors in water fluxes and soil 

texture lead to a divergence between the farmers’ perception of soil moisture and the true 

soil-water status, resulting in sub-optimal irrigation decisions and reduced profitability. 

However, our results show that the magnitude of these impacts are small, with a 30% 

standard error in water-flux and soil-texture measurements – which is much larger than the 

likely real-world measurement uncertainty in these quantities, particularly precipitation and 

irrigation depth – resulting in only a 4% increase in average water use, meaning that near-

optimal irrigation decisions can be made without perfect information.  Contrastingly, we 

demonstrate that the choice of irrigation scheduling strategy has a larger impact on water 

use and profits than soil-moisture uncertainty.  

Our analysis suggests that efforts to improve irrigation water efficiency should therefore 

focus primarily on helping farmers to evaluate and develop improved irrigation scheduling 

strategies for their specific production settings. Where existing irrigation management 

strategies are poorly aligned with local agronomic and biophysical conditions, the potential 

gains in water-use productivity and profitability may be large and further enhance the 

potential benefits from complementary efforts to improve quality of soil-moisture 

information using new forms of low-cost and scalable sensing technologies. 
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SUPPORTING INFORMATION 

This supporting information includes Figures 3.S1 through 3.S7. Figure 3.S1 illustrates how 

the feedback mechanism is triggered in an example season. Figures 3.S2 and 3.S5 provide 

insight into the choice of total optimizations and repetitions. Figures 3.S3 and 3.S4 illustrate 

how the added errors impact the soil-texture and water-flux measurements. Figure 3.S6 

shows the effect of measurement uncertainty on yields. Figure 3.S7 shows the sensitivity of 

various irrigation strategies to the addition of measurement uncertainty. Figure 3.S8 shows 

the effect of measurement uncertainty on water use and profits for a highly drought-

sensitive maize crop. 
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Figure 3.S1. Soil-moisture content (% total available water) during an example simulation, 
incorporating feedback elements to farmer irrigation decisions. Each day, irrigation is 
triggered (blue dots) when the farmers’ perception (blue solid line) drops below the pre-
defined threshold (green dotted line). The system feedback prevents these irrigation events 
occurring if the previous days’ true water content (orange dashed line) was above field 
capacity (purple dot-dashed line), as it is assumed a farmer would be able to see if the soil 
were visibly wet, and hence choose not to irrigate (green downward triangles). The 
feedback mechanism also triggers irrigation if the true water content is low enough to 
trigger early senescence of the crop canopy (orange upward triangles). This trigger is based 
on the assumption that the crop would be showing visible signs of water stress (e.g., wilting 
of leaves), causing the farmer to irrigate unless they seek to allow water stress at this stage 
of the season (e.g., due to limited total water supply). 
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Figure 3.S2. The certainty equivalent in the absence of soil-moisture uncertainty averaged 
over all optimizations.  
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Figure 3.S3. The soil-texture composition after adding various magnitudes of percentage 
errors. The true soil composition is 25% sand, 25% clay, 47.5% silt and 2.5% organic matter 
(this figure ignores the organic matter content and combines it with silt content).    
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Figure 3.S4. The estimated (a) daily precipitation, (b) evapotranspiration, (c) irrigation depth 
after adding various magnitudes of percentage errors. For this example day, the true 
precipitation, evapotranspiration and irrigation applied were 10 mm, 5 mm and 25 mm 
respectively. The distributions are over 1000 repetitions for each magnitude of error. 
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Figure 3.S5. The certainty equivalent for a given irrigation strategy (set of thresholds) 
averaged over all repetitions.  
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Figure 3.S6. The effect of different magnitudes of water flux and soil texture error on 
average yields. Each contour line represents a 0.01% change from the case of zero errors. 
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Figure 3.S7. Change in yields, water use and profits when a 30% standard error is added to 
water-flux and soil-texture measurements for a range of soil-moisture threshold irrigation 
strategies.  The shaded area represents the standard deviation over 1000 30-year 
simulations with the solid line representing the mean over these simulations. 
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Figure 3.S8. The effect of different magnitudes of water flux and soil texture error on 
average total irrigation (a) and profits (b) when the crop response to water stress is turned 
to maximum. Each contour line represents a 1% and 5% change respectively from the case 
of zero added errors. 
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4 ASSESSING THE VALUE OF ADAPTING IRRIGATION STRATEGIES WITHIN 

THE SEASON 

 

This Chapter presents the article submitted for review in May 2022: 

Kelly, T. D., Foster, T., Schultz, D. M. (2022). Assessing the value of adapting irrigation 

strategies within the season. Agricultural Water Management (in review) 

My contribution to the article was as follows: (1) Development of the research questions 

and methodology. (2) All programming required to run the framework and analyse results. 

(3) Analysing results and producing tables and figures. (4) Writing the contents of the article 

including literature reviews. 
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ABSTRACT 

Optimization of irrigation scheduling is a widely proposed solution to enhance agricultural 

water productivity and mitigate water scarcity. However, there is currently a lack of 

knowledge about how to most effectively optimise and adapt irrigation decisions under 

weather and climate uncertainty, or about how the benefits of adaptive irrigation 

scheduling compare to fixed heuristics commonly used by farmers. In this article, we assess 

the added value of in-season adaptation of irrigation strategies in comparison to a fixed 

irrigation strategy that maximises average profits over a range of plausible weather 

outcomes, but is not adjusted year-to-year. For a case study of irrigated maize production in 

a water scarce region in the central United States, our analysis finds that fixed irrigation 

heuristics on average achieve over 90% of potential profits attained with perfect seasonal 

foresight. In-season adaptation marginally increased agricultural profitability, with greater 

benefits found when re-optimization occurs more frequently or is accompanied by reliable 

forecasts of weather for the week ahead. However, the overall magnitude of these 

additional benefits was small (<5% further increase in average profits), highlighting that 

fixed irrigation scheduling rules can be near-optimal when making realistic assumptions 

about farmers’ potential knowledge of future weather. Since fixed irrigation strategies are 

easier to design, communicate and implement than data-driven adaptive management 

strategies, we suggest that implementing these fixed strategies be prioritised over the 

development of more complex adaptive strategies. 
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4.1 INTRODUCTION 

Increasing pressures on global freshwater resources are a concern for policy-makers 

worldwide (Molden & FAO, 2020). As irrigation accounts for over 70% of this global 

freshwater use, many regions are exploring ways to reduce agricultural water use in order 

to mitigate current and future water scarcity and conflicts. Given the simultaneous need to 

increase food production to meet needs of growing populations and their changing dietary 

preferences, reducing or stabilizing agricultural water demands requires a focus on 

improving agricultural water productivity (i.e., generating more crop output per unit of 

water input or consumption). Strategies to achieve this goal come in the form of explicit 

policy restrictions on abstractions such as quotas (e.g., Leathes et al., 2008; López-Morales 

& Duchin, 2011; FAO, 2020; Loch et al., 2020; Young et al., 2021), as well as efforts to 

incentivise greater water use efficiency and productivity by improving how irrigation is 

scheduled and applied during the growing season (e.g., Adeyemi et al., 2017; Berbel et al., 

2019; Kukal et al., 2019; Taghvaeian et al., 2020; FAO, 2020).  

An extensive body of research exists that focuses on developing optimal irrigation 

scheduling strategies and rules to enable farmers to maximise profits or water productivity 

(e.g., Schütze et al., 2012; Kloss et al., 2014; Linker et al., 2016; Linker & Kisekka, 2017; Kelly 

& Foster, 2021). An issue faced when seeking to develop optimal irrigation management 

strategies is that optimal rules or decisions must hedge across multiple potential weather 

scenarios as farmers have at best only partial foresight of weather conditions in the 

upcoming growing season. A common approach in research and practice to address this 

uncertainty is to optimise a single irrigation management strategy that maximises the 

average profit over a range of potential weather outcomes such as observed in a historical 

record (Linker & Kisekka, 2017; Kelly et al., 2021). Alternatively, other studies have focused 

on selecting a single ‘average’ year from a collection of years (e.g., in terms of total rainfall), 

and optimizing irrigation management rules for that specific average year (Kloss et al., 

2014).  

One potential means of increasing productivity and profitability of agricultural water use 

would be to identify mechanisms to adapt average irrigation strategies during the season as 

more information is gained about weather patterns in a specific year. In this context, several 

studies have used adaptive simulation-optimization frameworks to evaluate potential 
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benefits of using weather forecasts to adapt irrigation schedules intraseasonally, concluding 

that such approaches can generate substantial increases in profits for producers (Wang & 

Cai, 2009; Cai et al., 2011; Jamal et al., 2019). Similarly, Linker (2021) also used an adaptive 

simulation-optimization framework to evaluate benefits of in-season re-optimization of 

irrigation decision rules, showing that this approach yielded irrigation schedules that were 

close to those that would be achievable with perfect seasonal weather foresight. However, 

a common limitation of these studies is that they do not assess or quantify the benefits of 

adaptive irrigation strategies in comparison with fixed irrigation heuristics that are 

commonly used by farmers and have been widely developed by researchers. As a result, 

these studies provide insufficient insights about the potential benefits and costs of adaptive 

irrigation scheduling, including potential risks of maladaptation. Better understanding of 

these trade-offs is critical to support improved agricultural water management decisions, in 

particular given the extensive data requirements and associated costs that adaptive 

scheduling may entail relative to use of fixed or average irrigation rules. For example, re-

optimizing irrigation schedules may require additional knowledge of the current state of the 

crop (e.g., rooting depth, plant height, leaf-area index), which may be costly to collect 

alongside the time and resources required to setup and implement optimization approaches 

during the season.  

In this study, we address the abovementioned gaps in understanding about the benefits of 

adaptive intraseasonal scheduling as a means of improving agricultural water use 

productivity and profitability under weather and climate uncertainty. We develop a 

simulation-optimization approach to evaluate the economic benefits of adaptive irrigation 

scheduling compared with fixed irrigation decision heuristics, focusing on a case study of 

irrigated maize production in the central United States where there are significant pressures 

to improve crop water productivity in response to aquifer drawdown and streamflow 

depletion (Scanlon et al., 2012; McGuire, 2017). Our analysis explores how the value of 

adapting irrigation scheduling rules within the season varies as a function of factors that 

have been largely neglected in past studies, including different weather scenarios, 

regulatory water abstraction rules, adaptation frequency and short-term weather forecasts. 

Our findings provide guidance to researchers, producers, and water management 

stakeholders on how and when adaptive irrigation scheduling impacts agricultural water use 
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and farm profits, and what role such approaches can play in addressing water scarcity 

challenges in regions experiencing chronic or growing water scarcity pressures.  

4.2 METHOD  

In this section, we first describe how we link a crop-growth model, AquaCrop-OSPy, to an 

optimization algorithm to determine a profit-maximizing irrigation strategy over a set of 

climate years. We then discuss how we adapt this approach to allow irrigation strategies to 

be re-optimised within the season to assess the added value of adaptive irrigation 

scheduling. We present our methods in five subsections that describe the choice of crop 

simulation model (Section 4.2.1), approach for identifying profit maximizing irrigation 

strategies (Sections 4.2.2), re-optimization of these irrigation strategies within the season 

(Section 4.2.3), details of the specific case study chosen (e.g., location, crop choice and 

model parameters) (Section 4.2.4), and an outline of sensitivity analyses performed to 

assess the influence of key model assumptions and production characteristics (Section 

4.2.5). 

4.2.1 Crop simulation model 

Crop simulation models are powerful tools that simulate crop growth using biophysical 

equations (Jones et al., 2003; Steduto et al., 2009; Adeyemi et al., 2017). These models can 

be used to help design and identify strategies to enhance the productivity of water use in 

crop production at a much lower time and monetary cost than field experiments (Jiang et 

al., 2016; Araya et al., 2016; Goosheh et al., 2018). As well as the ability to compare more 

combinations of climate, management and irrigation scenarios, these models can be linked 

to optimization algorithms to more effectively discover potential scheduling strategies 

(Kloss et al., 2014; Linker et al., 2016; Linker & Kisekka, 2017; Kelly et al., 2021).  

A wide variety of crop simulation models exist, each designed with specific use cases in 

mind and thus with their own strengths and weaknesses. Most come in the form of a 

Graphical User Interface, allowing users to alter crop, soil and management parameters and 

then run simulations for a given weather time series and production environment (Ragab, 

2002; Jones et al., 2003; Steduto et al., 2009). AquaCrop, developed by the Food and 

Agriculture Organization of the United Nations (UN-FAO), is a water-driven model that aims 

to quantify the response of crops to water stress (Steduto et al., 2009). It contains relatively 



101 
 

few parameters compared with other models, allowing it to be used in data-scarce 

environments. Due to its popularity, AquaCrop has been successfully implemented in 

Matlab/Octave (Foster, Brozović, Butler, et al., 2017), R (Rodriguez & Ober, 2019), and 

Python (Kelly & Foster, 2021). Given the flexibility of both the model implementation 

(allowing us to easily integrate the model with optimization libraries) and of the Python 

language itself, the Python version of the model – AquaCrop-OSPy – was selected for use in 

this analysis.  

4.2.2 Identifying optimal non-adaptive strategies 

The goal of optimal irrigation management is to manage the water content in the soil to 

facilitate maximum crop growth with minimal water application. If the amount of soil-water 

available for uptake by the roots drops low enough, the crop will start to experience water 

stress (Ihuoma & Madramootoo, 2017). Farmers who do not use sensors or models to 

monitor soil-water content or crop stress precisely will still have internal heuristics about 

whether this ‘threshold’ has been reached, and therefore irrigation is required (USDA-NASS, 

2018). AquaCrop-OSPy mimics this process by defining calibrated crop-water stress 

parameters which specify the exact level of soil-moisture that will engage the models water 

stress routine – reducing canopy expansion, transpiration and yields. AquaCrop-OSPy allows 

users to directly specify the soil-water content thresholds at which irrigation will be 

triggered. If the soil-moisture content drops below this threshold on a given day, irrigation 

will be applied to fill the soil-water content back to Field Capacity (subject to a maximum 

daily irrigation limit). Alternative scheduling methods to this are possible, such as specifying 

a regular time interval (e.g., 7 days) and depth (e.g., 10mm), irrigating to meet calculated 

daily evapotranspiration losses, or irrigating only once crop-water stress has been triggered. 

However, scheduling irrigation using direct measurements of the soil-water content – and 

comparing these measurements to a set of irrigation thresholds – most closely matches 

farmers’ current practises, as well as past research (Linker et al., 2016; Foster & Brozović, 

2018; Linker et al., 2018).  

Given that crop-water requirements vary with growth stage (Çakir, 2004), separate soil-

moisture thresholds are often defined for each stage. AquaCrop-OSPy defines four such soil-

moisture thresholds corresponding to emergence, early-season canopy development, mid-

season crop growth, and late-season canopy senescence. The optimal set of thresholds will 
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be those that maximise a particular value (e.g., profits or water productivity) for a given 

production environment (e.g., combination of crop type, soil type, climate conditions). This 

approach is similar to previous research that found profit-maximizing soil-moisture 

thresholds in AquaCrop either by optimization or direct search (Linker et al., 2016; Young et 

al., 2021; Kelly et al., 2021). For our analysis, the seasonal profit 𝑃(𝑠) is calculated at the 

end of each season via  

 

where M is a crop market price [$ per tonne], 𝑌(𝑠) is crop yield [tonne per ha], C is a 

constant irrigation cost [$ per ha-mm], I(s) is total seasonal irrigation applied [ha-mm], and 

𝐹 is fixed production costs [$ per ha].  

The first stage of the analysis is to define the irrigation scheduling strategy 𝑠𝑦 (set of four 

soil-moisture thresholds) that maximises seasonal profit (Equation 4.1) for each weather 

year considered for a given case study. This process produces an optimal set of soil-moisture 

thresholds for each year, which we will refer to as the potential strategy. The resulting 

profits and water use from the potential strategy provides an estimate of what the farmer 

could achieve if they knew the weather perfectly in advance in all years, and adjusted their 

irrigation strategy accordingly based on this information. These potential profits therefore 

represent an estimated upper limit for the benefits of adapting irrigation scheduling during 

the season, comparable to prior studies that have optimised irrigation scheduling under 

perfect weather foresight (e.g., Schütze et al., 2012; Linker et al., 2016). 

In reality, farmers do not know the seasons’ weather with perfect foresight and irrigation 

scheduling decisions therefore have to be made under climate uncertainty. One way to deal 

with this uncertainty is to define a single strategy (i.e., a set of thresholds) that maximises 

the average profit across all possible years (e.g., as observed in the historic weather record). 

In the second part of the analysis, we identify this single average-profit maximizing strategy 

for our climate years by maximizing the expected (i.e., average) value of P over a set of 𝑁 

weather years. The resulting optimal soil-moisture target strategy will be referred to as the 

fixed strategy. Applying this same fixed strategy across all years provides a baseline for the 

profits that can be achieved without adapting irrigation strategies during the season. The 

 𝑃(𝑠) = 𝑀 ∗ 𝑌(𝑠) − 𝐶 ∗ 𝐼(𝑠) − 𝐹, (4.1) 
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difference between the potential profits and fixed profits thus gives an estimated upper 

bound on the value of adaptive irrigation strategies. 

For both the single fixed strategy and the multi-year potential strategy, the differential 

evolution global optimiser within the scipy.optimize python package (Virtanen et al., 2020) 

will be used to find the optimal set of soil-moisture thresholds. Although any algorithm can 

be used in principle, differential evolution was chosen due to its superior performance 

during initial tests against other optimisers within the scipy.optimize package.  

4.2.3 Re-optimizing irrigation strategies within the season 

The goal of adaptive intraseasonal irrigation scheduling is to close the gap between fixed 

(same strategy used for all years) and potential (perfect adjustment to each year’s weather) 

management strategies. To assess the value of adapting irrigation strategies within season, 

we define an adaptive simulation-optimization framework (Figure 4.1) similar to that used in 

previous research (Cai et al., 2011; Jamal et al., 2019; Linker, 2021). In this framework, the 

simulation is paused at various points within the season, and the irrigation strategy is re-

optimised from this starting point. Weather up to the current date is known with certainty 

as it has already been observed by the farmer, and expectations of future weather for the 

remainder of the season are specified based on the full ensemble of historic weather years.  

We assume that irrigation decisions are re-optimised at the start of each growth stage to 

match the temporal disaggregation of decision heuristics commonly used by farmers and 

agronomists. Therefore, we first simulate crop development from planting to the end of the 

first crop growth stage implementing the fixed irrigation strategy for each weather year. At 

the start of the next growth stage, a new profit maximizing irrigation strategy is then found 

for the remainder of the season using the optimization procedure described in Section 4.2.2. 

The resulting strategy 𝑠 is implemented over the second growth stage, after which the 

optimization is performed again. This process is repeated until the end of the season is 

reached, at which point the final profit is calculated using Equation 4.1.  
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Figure 4.1. Outline of the adaptation and re-optimization framework. For each climate year, 
the first growth stage is simulated using the fixed strategy. The model’s current state is then 
saved, and a new irrigation strategy is defined using an optimization algorithm. This 
optimiser finds the soil-moisture target strategy that results in the highest average profits 
over all the climate years, assuming the model starts at its current starting point. After 
finding the strategy that maximises average profit, this new strategy will be implemented 
for the next growth stage and the process is repeated again. 
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4.2.4 Case study 

We apply the framework presented above to the case study of centre-pivot irrigated maize 

production in Nebraska, United States. Nebraska has the largest number of irrigated acres in 

the United States, with maize being the most dominant crop cultivated in the state (USDA-

NASS, 2018). Irrigation water in the region primarily comes from the High Plains Aquifer, 

which has experienced drawdown over recent decades (McGuire, 2017). Associated 

environmental externalities, such as streamflow depletion (Szilagyi, 2000) and damage to 

freshwater ecosystems (Palazzo & Brozović, 2014; Perkin et al., 2019), along with concerns 

about long-term sustainability of groundwater-dependent rural economies (Foster, 

Brozović, & Butler, 2017; Deines et al., 2020; Butler et al., 2020) mean improving agricultural 

water productivity is a key priority for policymakers and water managers. These local 

characteristics make this case study an ideal choice to examine the value of adaptive 

irrigation decisions. 

As described in Section 4.2.2, we first use the differential evolution optimization algorithm 

to find the set of soil-moisture thresholds that maximise average profit over a set of climate 

years. For this analysis, we use 37 years (1982–2018) of historical weather data recorded at 

a monitoring station in Champion, southwest Nebraska (HPRCC, 2016). The resulting optimal 

strategy (i.e., a set of thresholds) will be referred to as the fixed strategy. For each of the 37 

years, the optimal irrigation strategy for each individual year (referred to as potential 

strategy) will also be calculated to provide an upper limit on what profits could be achieved 

in a given year with perfect seasonal foresight of weather conditions. By taking the 

difference between the profits achieved by the potential and fixed strategy, we can evaluate 

how well the fixed strategy performs in each year as well as the possible increases that can 

be made by re-optimizing within the season.   

To ensure the fixed and potential strategies were as close to the global optimum as possible, 

50 repetitions of each optimization were performed, and we selected the strategy achieving 

maximum profits across all repeat optimizations (Table 4.S1). The number of repetitions was 

selected to balance computational burden with optimization convergence (Figure 4.S1). 

During initial tests, we found that use of irrigation was never optimal during the final growth 

stage (i.e., crop senescence) for our case study crop and climate. To simplify the solution 

space for the optimization problem, this final soil-moisture threshold was therefore set to 
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zero for fixed, potential and adaptive irrigation strategies. As a result, only two re-

optimizations were performed in the season (at the start of growth-stage two and three) 

when re-optimizing on a growth stage basis. The adaptation framework (Figure 4.1) for each 

climate year was repeated 25 times to ensure that a single sub-optimal optimization did not 

affect results. However, we still included the results from all of these adaption repetitions as 

it captures the reality that a producer will never know ahead of time what the true optimum 

strategy is.  

AquaCrop-OSPy crop-growth parameters for maize are summarised in Foster et al. (2015), 

and the soil was chosen to be a clay loam, a dominant soil type in the region (CropWatch, 

2018) with soil hydraulic parameters taken from the AquaCrop-OSPy default parameters. 

When calculating profits with Equation 4.1, a constant crop price of $180 per tonne was 

used based on a 10-year average of US maize grain prices (USDA, 2019). Irrigation costs 

were set at $1 per ha-mm ($10.28 per acre-inch) based on estimates from the 2019 

Nebraska Crop Budget Report (CropWatch, 2019a). This report also provides estimates for 

non-irrigation production costs (e.g., labour, materials, taxes), which allows us to set the 

fixed production cost in Equation 4.1 to $1728 ha-1. The maximum daily irrigation depth is 

set to be 25 ha-mm/day, which is typical for this region and production system (Young et al., 

2021). Further details on model parameters can be found by viewing the full source code 

available at (https://github.com/thomasdkelly/adaptive-irrigation). 

4.2.5 Sensitivity analysis 

The value of adapting irrigation decisions within the growing season may be influenced by 

several factors. First, in regions experiencing water scarcity for regulatory restrictions, the 

amount of water farmers are able to extract for irrigation purposes is increasingly being 

restricted as part of water conservation and sustainability initiatives and policies. These 

restrictions pose issues for producers globally including our case study region. For example, 

the Upper Republican Natural Resource District (where our case study location resides) has 

imposed a five-year (2018–2022) groundwater allocation of 65 acre-inches per hectare 

(URNRD, 2019). These sorts of restrictions could reduce the value of adaptive irrigation 

strategies as producers will be less able to flexibly react to the unfolding season. We 

therefore repeated the main analysis (growth-stage adaptation) including a cap on the 

amount of irrigation that can be applied in a given season. This cap was applied in all years, 
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preventing any further irrigation events if the total application within the current season 

reached the cap. This additional analysis was performed over a range of seasonal caps from 

75–550 mm ha-1. For each cap, new optimal fixed strategies were determined, and then 

these were used to assess the value of adapting the strategies within the season (Table 

4.S2).  

Another factor that may influence the value of adaptive irrigation scheduling is the 

frequency with which farmers are able to re-optimise decisions. As stated in Section 4.2.4, 

there are only three opportunities – two when considering no irrigation is allowed in the 

final stage for our case study system – to re-optimise the strategy during the season within 

our growth-stage adaptation framework. We hypothesise that being able to adapt at more 

frequent intervals would lead to further increases in profits compared to the few 

opportunities allowed by our framework. We therefore conducted an additional analysis 

where our simulation-optimization framework was adjusted to allow re-optimizations to 

occur every seven days. Although other frequencies could also be evaluated, seven days was 

chosen to balance the complexity of the strategy with additional computational demand, as 

well as matching previous work that used similar simulation-optimization frameworks (Cai 

et al., 2011; Jamal et al., 2019). The first re-optimization will therefore occur on day 7 of 

each season and re-optimizations will stop after day 120, resulting in 17 different sets of 

thresholds being implemented throughout the season. Note that the choice of day 120 of 

the season as the final date for re-optimization was because this day falls after the start of 

the final growth stage (when irrigation is always zero), but this date could be varied to any 

other value in alternative model case studies or applications.  

Finally, as noted earlier, the ability to effectively update irrigation decisions may also be 

influenced by the quality of information available to a farmer about weather conditions in 

the days or weeks ahead. In our main analysis, re-optimization is performed over the same 

set of weather years used in the fixed strategy. Producers must therefore hedge the 

irrigation strategy against all 37 potential weather scenarios for the remainder of the 

season. In reality, some of these years will be more probable than others given weather so 

far and available forecasts. The seven-day adaptation framework described above was 

therefore further adjusted to include a seven-day perfect forecast. Beyond those seven 

days, the producer must again hedge across all 37 weather years. The seven-day lead time 



108 
 

for the perfect forecast was chosen to match previous work (Jamal et al., 2019). We 

hypothesise that including the seven-day perfect forecast will increase profits compared to 

the standard seven-day adaptation due to the greater ability to tune irrigation decisions to 

the weather ahead for a given season.  

The experiments were performed on The University of Manchester’s High Performance 

Computing (HPC) cluster with each job being computed on a 2×8-core Intel Xeon E5-2650 v2 

@ 2.60GHz + 64GB RAM compute node. Up to 20 compute nodes could be used 

simultaneously, each running a separate years simulation. To run growth stage optimisation 

on all 37 years could be completed in approximately one day, and hence up to a week to 

perform the analysis for all irrigation caps. Running seven-day re-optimization experiments 

would take approximately three days to complete. 

 

4.3 RESULTS 

4.3.1 Differences between fixed and potential strategies 

The first part of this analysis used the differential evolution optimization algorithm to find a 

set of soil-moisture thresholds that maximised average profits over 37 climate years, with 

the resulting set of thresholds being referred to as the fixed strategy. The potential 

strategies (i.e., profit-maximizing strategies for each individual year) were also calculated to 

give an estimated upper limit for what profits could be achieved with perfect seasonal 

information (Table 4.S1). A comparison between the average profits achieved by the fixed 

($426 ha-1) and potential ($459 ha-1) strategies finds that the fixed strategy achieved 92.7% 

of the average potential profit (Figure 4.2a). In other words, having perfect foresight of 

weather conditions in each year results in a 7.9% increase in farm profits.  

Looking more closely at each individual climate year, there is only one year (2012) in which 

the fixed strategy does not achieve at least 80% of the potential profits (Figure 4.2a). This 

year was one of extreme drought (less than 43 mm of rainfall during the growing season) 

and so appears to be sacrificed by the optimiser in favour of maximizing average profits 

across all remaining years. Focusing instead on the other 36 non-drought years, regression 

analysis indicates that 40% of the variation in the performance of the fixed strategy can be 
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explained by the total seasonal rainfall (Figure 4.2b). The fixed strategy performs better (in 

terms of percentage of potential profits) in the wetter years than the drier years. Using the 

fixed strategy as a starting point, the framework described in Section 4.2.3 aims to assess 

whether adapting the strategy within the season will increase these fixed profits towards 

the potential profits.  
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Figure 4.2. (a) Seasonal profits achieved but the fixed strategy for each climate year 
expressed as a percentage of the potential profits for that year. (b) Seasonal profits (% 
potential profits) for each climate year (excluding the year 2012) as a function of total 
rainfall during that growing season. Comparable results (not shown) were also obtained 
when using the seasonal water balance (precipitation minus crop evapotranspiration) as a 
predictor.  
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4.3.2 The value of within-season adaptation 

To assess the value of re-optimizing irrigation strategies within the season, the fixed 

irrigation strategy (set of soil-moisture thresholds) was re-optimised at the start of each 

growth stage following the re-optimization approach described in Section 4.2.3. After 

running this framework for all 37 climate years, the profits from this adaptive strategy can 

be compared to the fixed profits to determine the added value of this adaptive approach to 

scheduling.  

On average, our analysis found a $4.87 ha-1 increase in profits with adaptation, which 

translates to a 1% increase in average profit compared to the fixed strategy that does not 

incorporate any adaptation of irrigation management rules during the growing season. 

However, we also observe that growth-stage adaptation also increased the minimum profits 

by 106% and decreased the standard deviation in profits by 2.95%. The large increase in 

minimum profits can be attributed to the drought year 2012, where in-season adaptation 

increases the soil-moisture thresholds, causing additional irrigation events and profit 

increases. By inspecting the irrigation schedule time series for this year, we see the impact 

of this change in soil-moisture thresholds on the soil-water content and the timing of 

irrigation events (Figure 4.3). Changes to the minimum profits and profit variance may have 

important implications for some farmers, in particular where there is a need to minimise 

risks associated with extremely low yields in individual years as opposed to simply looking to 

maximise average profits over multiple years. These implications will be further discussed 

later in Section 4.4.1.  



112 
 

 

Figure 4.3. Soil-moisture content and irrigation thresholds across the 2012 growing season 
for (a) fixed strategy, (b) potential strategy, (c) growth-stage adaptation strategy. When the 
soil-moisture content drops below the irrigation threshold, irrigation is triggered. The depth 
of irrigation and rainfall events are shown in purple and brown bars respectively. This 
season represents one of the 25 repetitions. 



113 
 

 

Several factors are important drivers of the value added from in-season adaptation of 

irrigation scheduling rules. First, we find that the quality of the starting strategy – defined as 

how close the fixed strategy mean profit is to the potential strategy in a given year – 

explains 39% of the variation in adaptation value (Figure 4.3a). This relationship shows that 

adaptation value is lower in years where the fixed strategy is already close to the potential 

optimal for that year. In addition, by assessing the relationship between seasonal rainfall 

and adaptation value, we find that adaptation value is inversely proportional to the total 

seasonal rainfall. However, our analysis indicates that seasonal rainfall only explains 14% of 

the variation in adaptation value (Figure 4.3b). As well as total rainfall, how the rainfall is 

distributed over the season is also shown to impact optimal irrigation strategies. Specifically, 

we find that the coefficient of variation (CV) in daily rainfall (i.e., standard deviation in daily 

rainfall / mean daily rainfall) explains 19% of the variation in adaptation value (Figure 4.3c). 

Both of these relationships indicate that when rainfall is scarce or more variable, the value 

of within-season adaptation is greater.  
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Figure 4.4. The relationship between: (a) adaptation value and quality of starting strategy, 
(b) adaptation value and total seasonal rainfall, (c) adaptation value and CV in daily rainfall. 
Each point represents one of the 37 climate years, and adaptation value is averaged over 25 
repetitions of the analysis framework. Shaded areas represent the 95% confidence interval 
for the linear regression.  
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Inspecting irrigation schedule time series for specific individual years also provides 

additional insights about why in-season adaption is beneficial in some years and not in 

others. For example, Figure 4.5 compares the irrigation events triggered by the fixed (Figure 

4.5a), potential (Figure 4.5b) and growth-stage adaptation (Figure 4.5c) strategies during the 

1999 growing-season simulation, where adaptation decreased seasonal profits by $30 ha-1 

(the largest decrease for any year). Overall, during both the second and third growth stage, 

the adaptive strategy made minor adjustments to the soil-moisture threshold towards the 

potential threshold. One would expect that such an adjustment (towards the perfect 

information strategy) would increase profits – as it does for the year 2012 – however this 

does not occur in the year 1999. This slightly counterintuitive result can likely be attributed 

to having to optimise decisions under future weather uncertainty, as one can never know 

what the exact optimal set of thresholds are until the entire season has passed. Changes to 

the soil moisture thresholds are unable to perfectly replicate irrigation schedules under the 

potential strategy with perfect foresight, with two extra irrigation events being triggered on 

days 89 and 90 for the adaptive strategy. This reduces overall profits for the season, 

demonstrating that, without perfect knowledge of the full seasons’ weather beforehand, 

there will always be the possibility for maladaptive behaviour (e.g., the adjustments made in 

1999) during some years. 
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Figure 4.5. Soil-moisture content and irrigation thresholds across the 1999 growing season 
for (a) fixed strategy, (b) potential strategy, (c) growth-stage adaptation strategy. When the 
soil-moisture content drops below the irrigation threshold, irrigation is triggered. The depth 
of irrigation and rainfall events are shown in purple and brown bars respectively.  

4.3.3 The impact of adaptation frequency and forecast information on adaptation value 

As described in Section 4.2.5, two further analyses were conducted to test whether 

adaptation frequency and quality of forecast information impacted the value of re-

optimization. Allowing re-optimization of irrigation strategies every seven days lead to a 

$2.25 ha-1 increase in profits compared to growth-stage re-optimization, achieving 93.69% 
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of the potential profits over the 37 climate years (Figure 4.6a). By including a perfect seven-

day weather forecast within this seven-day re-optimization framework, average profits were 

increased by a further $13.4 ha-1 compared to the standard seven-day re-optimization, 

achieving 97.28% of potential profits.  

These analyses confirmed our hypothesis that re-optimizing more frequently, in particular 

when combined with better information about weather conditions in the days ahead, 

increases the benefits that can be derived from in-season adaptation. As well as changes to 

average profits, we also see changes in profit variance with adaptation. Switching from the 

growth-stage adaptation to seven-day adaptation increases the minimum profits by 15.8% 

and reduces the standard deviation in profits by 2.56% compared to growth-stage 

adaptation (Figure 4.6b). Adding a perfect seven-day weather forecast to the seven-day 

adaptation strategy further increases the minimum profits by 29.2% compared to the seven-

day adaptation strategy without perfect weekly forecasts. 

An additional notable effect of introducing perfect weekly forecasts to the seven-day 

adaptation strategy is that there are eight years where the seven-day adaptation with 

perfect weekly forecast outperforms the potential strategy. This result indicates the 

limitations of how we have chosen to define the potential strategy, which – despite having 

perfect seasonal weather information – still only contains one fixed set of thresholds for the 

season. In comparison, the seven-day adaptation strategy contains 17 sets of thresholds 

that are calculated as the season progresses. The ability to vary soil moisture targets within 

– rather than just between – growth stages allows for more complex irrigation management 

strategies to emerge, sometimes resulting in higher profits despite the farmer not having 

access to perfect information about weather for the entire season.  
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Figure 4.6. (a) Seasonal profits averaged over 37 climate years for each adaptation strategy. 
This quantity is also displayed as a percentage of average potential profits. (b) Seasonal 
profits for each climate year expressed as a percentage of the potential profits for each 
adaptation strategy.  
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To demonstrate an example of when the seven-day strategy with perfect weekly forecast 

outperformed the potential strategy, we compare the individual irrigation events triggered 

by the fixed (Figure 4.7a), potential (Figure 4.7b) and seven-day adaptation with perfect 

weekly forecast (Figure 4.7c) strategies for the climate year 1992. The flexibility enabled by 

the seven-day adaptation period initially allows an increase in the first growth-stage 

threshold (Figure 4.7c), meaning that irrigation events for the potential and adaptive 

strategies were identical for the first 45 days (Figure 4.7b, 4.7c). After this initial period, the 

two strategies diverge as the adaptive strategy sticks closer to the fixed strategy (with the 

flexibility to adjust as required), whereas the potential thresholds diverge massively during 

the second growth stage in particular. 

Although the seven-day adaptation strategy with perfect weekly forecast occasionally 

outperformed the potential strategy, there are still a handful of years where it also 

performed worse than the fixed strategy (Figure 4.S2). As stated in the previous section, this 

effect is the result of having to optimise irrigation strategies under uncertainty about 

weather beyond the seven-day forecast, and is not the result of the optimization approach 

or choice of strategy. However, switching from the growth-stage adaptation to the seven-

day adaptation increased does profits in these years. This result implies that more complex 

irrigation strategies that also incorporate more accurate weather information can help 

reduce the risk of profit losses from these maladaptive events, even when knowledge of 

weather conditions for the remainder of the season remains unknown or uncertain.  
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Figure 4.7. Soil-moisture content and irrigation thresholds across the 1992 growing season 
for (a) fixed strategy, (b) potential strategy, (c) seven-day adaptation strategy with perfect 
weekly forecast. When the soil-moisture content drops below the irrigation threshold, 
irrigation is triggered. The depth of irrigation and rainfall events are shown in purple and 
brown bars respectively. 
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4.3.4 The impact of water constraints on adaptation value 

Regulatory or hydrologic restrictions on irrigation water supply are a common consequence 

of water scarcity and conflict in many regions, including our study area in the central United 

States. We therefore explored how the value of adaptation was affected by the introduction 

of annual caps on total seasonal irrigation that, once reached, would prevent any further 

irrigation being applied during the season.  

By introducing a seasonal irrigation cap of 300 mm ha-1, average seasonal profits achieved 

by the fixed strategy decrease by $82 ha-1 in comparison to the $426 ha-1 achieved when 

water use was unrestricted. As annual water quotas increase, profits increase towards the 

unrestricted fixed profits. For the 300 mm ha-1 limit, the average value of adaptation was 

$1.49 ha-1 (0.4% increase from fixed strategy). This value increases linearly with seasonal 

water allocation reaching a benefit of $4.87 ha-1 (1% increase from fixed strategy) achieved 

when water use is unrestricted (Figure 4.8a). These results imply that restrictions on yearly 

water use actually decrease the value of adaption. A possible intuition for this result is that 

having more water available during the season allows greater flexibility for the re-

optimization process to adapt within the season.  

For more severe restrictions on water use (i.e., quotas less than 300 mm ha-1), impacts of 

adaptation begin to vary significantly from year to year as well on average, with large 

benefits in some years and large costs in others (Figure 4.8b). These results show that while 

some benefits may still be derived from adaptation under highly restrictive water use limits, 

the variation in outcomes and potential for maladaptive responses is large. In contrast to 

the analyses without water use restrictions presented previously (Figure 4.4), we find no 

relationship between adaptation value and weather conditions under severe water use 

restrictions. Specifically, the r2 between adaptation value and total rainfall for the most 

restrictive caps (75, 100, 125 mm ha-1) were all found to be less than 0.02. Similarly, the r2 

between adaptation value and CV in daily rainfall for these caps were also found to be less 

than 0.02. Therefore, whether or not adaptation leads to extreme benefits or costs appears 

to be mostly down to luck for these extreme water use limits.  
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Figure 4.8. (a) Change in mean seasonal profits with adaptation (i.e., adaption value) over 
the 37 climate years for irrigation caps ranging from 75 mm ha-1 to unconstrained irrigation. 
Blue shaded area indicates standard deviation between years. (b) Distribution of adaption 
value between years for each irrigation cap. Each point represents a single year averaged 
over multiple simulation repetitions. 
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4.4 DISCUSSION 

Optimization of irrigation scheduling, including through in-season adaptation of scheduling 

rules based on weather forecasts and other data, have been widely proposed as a means of 

improving agricultural water productivity in water-scarce regions globally (e.g., Wang & Cai, 

2009; Cai et al., 2011; Hejazi et al., 2014; Jamal et al., 2018, 2019; Linker, 2021). By linking a 

crop model to our re-optimization framework, this article aimed to assess the value of 

adapting irrigation strategies within the season, and how this value is affected by typical 

information constraints (e.g., in-season weather) and management constraints (e.g., 

abstraction restrictions) commonly faced by farmers but not adequately considered in past 

research (e.g., Wang & Cai, 2009; Cai et al., 2011; Jamal et al., 2019).  

For a case study of maize production in a water stressed region of south-west Nebraska in 

the United States, our analysis demonstrated that a farmer adopting a fixed irrigation 

strategy (i.e., where rules are the same for each year) was able to achieve 92.7% of the 

average potential profit achievable with perfect seasonal weather foresight. In-season re-

optimization of fixed irrigation strategies based on information gained about weather 

conditions as the seasonal unfolds was able to marginally increase average profits to 93.8% 

or 94.3% of potential profits depending on how frequently farmers choose, or are able to, 

adapt irrigation strategies within the season.  

We demonstrate that value of in-season adaptive re-optimization of irrigation heuristics is 

enhanced when farmers have access to perfect weather forecasts for the week ahead, for 

which the producer is able to achieve 97.2% of potential profits. Adaptive scheduling also 

universally reduced risks of crop loss or failure events (e.g., during extreme drought years 

such as 2012 in our study area), but with greatest risk reduction benefits found when re-

optimization is supported by in-season forecasts. By introducing seasonal water quotas, our 

analysis showed that the variability in adaptation value between years increased 

dramatically for extremely restrictive water quotas. 
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4.4.1 Implications for research, producers and industry 

Our results build upon previous work that aimed to optimise irrigation strategies within crop 

models using adaptive re-optimization during the growing season (e.g., Wang & Cai, 2009; 

Cai et al., 2011; Hejazi et al., 2014; Jamal et al., 2018, 2019; Linker, 2021). These works did 

not include an optimised fixed strategy with which to compare the value of adaptive 

irrigation strategies. As a result, these studies are likely to have overstated the true 

potential benefits of adaptive in-season irrigation scheduling, with our results 

demonstrating that the majority of potential profits can be achieved with simpler optimal 

average irrigation heuristics. Our findings are also consistent with other evidence about the 

value of adaptive agricultural decision making in the literature. For example, Jones et al. 

(2000) showed that optimization of crop management practices for maize (e.g., planting 

date, crop density, nitrogen application) based on seasonal climate forecasts increased 

average seasonal profits by only $16–26 ha-1 (3–4%) depending on the case-study region 

when compared with fixed management rules based on a range of historic weather years. 

Our findings thus highlight the importance of comparing adaptive strategies to similarly 

optimised fixed strategies, which may provide a more efficient means of scheduling 

irrigation when technological, logistical and cognitive costs associated with implementing 

more complex data-driven adaptive scheduling practices are taken into account. 

A key finding of our analysis is that there is likely to be substantial heterogeneity in the 

economic benefits of adaptive irrigation scheduling across years, with some years 

potentially experiencing declines in profits when strategies are re-optimised within the 

season. This type of maladaptation was also found in Hejazi et al. (2014) and occurs as a 

result of underlying uncertainty about future weather, along with the complex non-linear 

responses of crop growth and yield development to soil-moisture patterns during the 

season. Unless the entire season’s weather is known with a high degree of certainty in 

advance, it is extremely challenging for a farmer to determine which irrigation strategy will 

reliably lead to the largest profits. Even if one strategy is superior on average, there will be 

some years where an alternative strategy results in higher profits. The season-to-season 

variability in profits also highlights that instead of evaluating irrigation strategies on as few 

as 5 climate years – as is common in previous work (Wang & Cai, 2009; Cai et al., 2011; 

Hejazi et al., 2014; Jamal et al., 2018, 2019) – researchers must use quantities approaching 
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30 in order to fully capture local weather characteristics and thus accurately evaluate 

outcomes of adaptive decision-making or the value of data (e.g., forecasts). 

Our analysis found that some of the year-to-year variability in benefits from adaptive 

irrigation scheduling could be explained by the quality of the starting strategy, total rainfall 

during the season, and the coefficient of variation of daily rainfall during the season. These 

relationships suggested that in years with less rainfall, or where rainfall is unevenly 

distributed during the season, the economic value of adaptive scheduling will be higher. This 

is particularly relevant given climate change is predicted to increase the frequency of 

weather extremes in many regions (IPCC, 2022). Our analysis also found that adaptive 

strategies did cause an increase in minimum profits and decrease in profit variance over the 

37 years. For more risk-averse farmers who cannot simply seek to maximise average profits, 

this reduction may provide enough motivation to invest in adaptive strategies. However, the 

presence of other safety nets, for example crop insurance schemes, could decrease the 

value of adaptive scheduling practices as farmers will be financially protected against some 

of the consequences in the driest years. 

The strong performance of both fixed and adaptive irrigation strategies relative to 

theoretical potential profits is in part due to specifying a strategy made up of four soil-

moisture thresholds, one for each major growth stage. Kelly et al. (2021) found that 

choosing a simpler strategy made up of just one soil-moisture threshold for the entire 

growing season led to a $120 ha-1 decrease in profits compared to the four soil-moisture 

threshold strategy as done in our analysis. This decrease is three times larger than the profit 

difference found between the fixed and potential strategies in our analysis. Crop models and 

simulation-optimization frameworks such as that used in the present article are vital for 

designing and optimizing these irrigation strategies, which can also be replicated for many 

crops and production environments. Over time, however, these optimal strategies will need 

to be updated to ensure the historical weather years used to optimise the strategy reflect 

changes in the likely range of weather scenarios that will occur in the upcoming season. For 

example, changes in the variability of expected weather outcomes due to climate change 

will likely reduce the performance of fixed strategies and enhance benefits of adaptive 

scheduling if these shifts in climate variability are not accounted for when designing fixed 

irrigation management rules.  
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4.4.2 Framework Limitations and Future Directions 

While our analysis provides valuable insights about the potential value of adaptive in-season 

irrigation scheduling for improving agricultural productivity and profitability, it is important 

to highlight several key simplifications in our analysis.  

First, an assumption made in our analysis is that the re-optimization framework considers 

the hypothetical farmer to have perfect knowledge of the current state of the soil water 

balance and crop growth (e.g., yield, canopy cover, rooting depth). However, in the real 

world, farmers may not have perfect information about current field conditions, or be able 

to predict with certainty how crop development will be affected by different potential 

weather scenarios. As a result, the real-world value of within-season adaptation is likely to 

be even lower than found in our analysis, as the re-optimization of irrigation strategies will 

be influenced by additional factors. These factors include the uncertainty in weather 

conditions for the days and weeks ahead, as well as uncertainties in the current status of 

crop growth and soil moisture. These additional uncertainties are likely to increase the 

potential for maladaptive irrigation scheduling responses to occur, in particular where 

capacity for irrigation water use is limited by regulatory, hydrologic, or socio-economic 

constraints. However, further research is needed to quantify the magnitude of this effect, as 

previous research (e.g., Kelly et al. 2021) has found that perfect knowledge of the field and 

climate conditions is not required for near-optimal irrigation scheduling. 
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To balance computational time and resources, our analysis focused on a selection of key 

factors (adaptation frequency, foresight of near-future weather, abstraction restrictions) 

that we hypothesised may be important determinants of the value of adaptive irrigation 

scheduling approaches. Nonetheless, other factors not analysed in the present paper may 

also influence the value of adaptive scheduling. For example, if the baseline fixed irrigation 

strategy is sub-optimal or poorly defined (Kelly et al. 2021), there may be greater value in 

updating this strategy throughout the season. The presence of multi-year quotas, rather 

than the single-year quotas considered in the present article, may also affect the value of 

adaptation as in-season decisions have implications for water availability in later years and 

thus make the optimization process both an intra- and inter-seasonal problem (Young et al., 

2021). Furthermore, the presence of financial safety nets such as crop insurance (USDA, 

2022; Suchato et al., 2022) may reduce the value of adaptation as outlier drought years, in 

which the largest benefits of adaptation are observed in this study, will result in profit losses 

that are less severe for farmers.  

Finally, it is important to acknowledge that results presented in this study are dependent on 

the ability of the underlying crop-water model to accurately represent real-world crop 

responses to soil moisture deficits, weather conditions, and irrigation management 

practices. AquaCrop has been shown to adequately capture maize yield responses to water 

stress within our study area and the United States generally (Heng et al., 2009; Sandhu & 

Irmak, 2019). Further research should extend the analysis presented here to consider how 

the value of adaptive irrigation scheduling is influenced by the choice of underlying crop 

model and parameterization, including to consider potentially important differences that 

may exist across different crop varieties (e.g., more/less drought tolerant), soil types (e.g., 

higher/lower water holding capacity), or climatic regimes (e.g., greater/lesser rainfall 

variability). 

4.5 CONCLUSIONS 

The aim of this manuscript was to assess the potential added value of in-season adaptation 

of irrigation scheduling practices for improving productivity and profitability of agricultural 

water use under climate uncertainty. For a case study of maize production in Nebraska, our 

analysis demonstrates the vast majority of the potential profits can be achieved by adopting 
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a fixed irrigation strategy that is optimised pre-season to account for expected variability in 

weather outcomes but which is not adjusted within each year. Increases in average profit, as 

well as decreases in profit variance, are possible by re-optimizing this strategy within the 

season, with the size of this increase dependent on the potential frequency of adaptation 

and foresight of weather for the days ahead. However, the overall magnitude of these 

increased returns are small, even in the presence of restrictions on total seasonal water use 

by farmers. As a result, our findings suggest that farmers and water managers may be better 

to prioritise the adoption of simpler average irrigation scheduling heuristics that are well 

optimised to local production conditions and constraints. In doing so, farmers are likely to 

achieve the majority of the potential gains in crop yields and water use savings, while also 

minimizing costs associated with implementing more complex adaptive scheduling 

approaches and avoiding potential risks of maladaptive outcomes. 
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SUPPORTING INFORMATION 

This supporting information includes Figures S1 through S3 and Tables S1 and S2. Figure S1 

provides insight into the choice of the number of optimization repetitions. Figure S2 shows 

how the regression relationships change with the seven-day perfect weekly forecast 

framework. Table S1 displays all the optimised fixed and potential thresholds. Table S2 

displays all the optimised fixed thresholds for each irrigation cap.  
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Figure 4.S1. The average profit over all repetitions achieved by the optimiser as a function 
of the number of repetitions. The shaded area represents the 95% confidence interval for 
the mean value across the number of repetitions specified.  
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Figure 4.S2. The relationship between: (a) adaptation value and quality of starting strategy, 
(b) adaptation value and total seasonal rainfall, (c) adaptation value and CV in daily rainfall. 
Results are displayed for the 7-day adaptation strategy with perfect weekly forecast. Each 
point represents one of the 37 climate years, and adaptation value is averaged over 25 
repetitions of the analysis framework. Shaded areas represent the 95% confidence interval 
for the linear regression.  
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Table 4.S1. Fixed and potential strategies (and resulting profits) for each climate year. 
Strategies consist of a set of soil-moisture thresholds. 

Year 
Rainfall 

(mm/ha) 

SMT1 

(%TAW) 

SMT2 

(%TAW) 

SMT3 

(%TAW) 

Fixed profit 

($/ha) 

Potential 

profit 

($/ha) 

1982 397.42 43.42 83.38 32.54 587.83 593.22 

1983 152.57 38.72 69.74 34.22 191 222.69 

1984 92.92 44.93 87.31 36.5 209.49 239.58 

1985 146.18 59.57 64.84 35.78 309.61 352.77 

1986 381 26.81 61.43 32.11 470.54 515.92 

1987 359.27 55.27 63.17 35.16 555.14 560.45 

1988 345.38 41.9 70.94 38.59 366.29 409.93 

1989 272.48 24.89 70.61 35.43 465.3 489.73 

1990 217 40.69 67.82 40.73 277.73 324.64 

1991 384 22.32 71.44 34.15 442.65 484.38 

1992 419 57.05 18.94 43.73 755.7 798.21 

1993 420 42.41 43.86 42.18 738.45 751.77 

1994 219 62.58 50.27 35.82 347.52 406.19 

1995 357 37.76 62.41 36.05 468.65 472.66 

1996 520.77 31.61 19.48 21.42 696.82 744.98 

1997 248 22.34 56.11 34.05 373.14 419.25 

1998 283.36 52.09 64.45 55 356.07 383.37 

1999 345.78 45.62 57.6 30.6 466.47 476.79 

2000 100 35.74 62.9 34.03 192.31 235.58 

2001 245 55.65 72.99 34.94 312.96 322.1 

2002 132.49 70.51 75.34 35.47 164.75 204.81 

2003 160 54.37 59.09 35.82 241.93 267.12 

2004 397.88 68.78 62.01 33.36 640.19 681.93 

2005 312.63 35.87 65.9 51.66 439.86 476.75 

2006 226.07 61.33 51.04 30.36 357.79 411.3 

2007 286.23 50.15 55.59 33.86 400.82 411.1 

2008 336.29 36.17 72.59 34.79 567.55 603.54 

2009 431.56 50.66 69.74 37.11 699.33 706.98 

2010 309.57 56.21 50.74 37.59 410.89 464.68 

2011 359.62 13.75 63.34 37.19 419.88 446.13 

2012 42.65 27.26 77.68 39.12 35.18 115.88 
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2013 239.01 21.93 60.81 35.1 364.37 376.33 

2014 386.33 27.17 75.4 35.56 589.6 632.38 

2015 384.24 43.29 56.83 40.83 459.13 529.49 

2016 247.43 26.33 84.75 33.92 428.88 460.15 

2017 247.32 26.49 68.25 40.93 417.45 450.45 

2018 338.46 2.78 62.85 36.33 539.81 557.48 

Fixed  50.47 61.43 36.22 425.975135  
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Table 4.S2. Optimal fixed strategies for different levels of irrigation cap.  

Irrigation Cap 

(mm/ha) 

SMT1 

(%TAW) 

SMT2 

(%TAW) 

SMT3 

(%TAW) 

Fixed Profit 

($/ha) 

75 12.52 16.89 33.18 -347.41 

100 13.51 7.85 81.46 -215.97 

125 5.13 3.72 80.04 -101.17 

150 3.13 27.3 70.47 -5.55 

175 1.88 33.51 78.61 67.4 

200 40.57 18.27 79.37 133.69 

250 49.35 44.28 34.53 261.99 

300 49.57 40.31 37.51 339.08 

350 46.9 44.28 37.42 374.58 

400 50.56 48.61 39.18 395.6 

450 50.46 61.64 36.22 413.04 

500 50.41 61.62 36.22 418.16 

550 50.46 61.45 36.22 419.62 

No cap 50.47 61.43 36.22 
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5 ASSESSING THE VALUE OF DEEP REINFORCEMENT LEARNING FOR 

IRRIGATION SCHEDULING 

 

This Chapter presents the article: Assessing the value of deep reinforcement learning for 

irrigation scheduling. This article is targeted for submission to Computers and Electronics in 

Agriculture in Summer 2022. 

My contribution to the article was as follows: (1) Development of the research questions 

and methodology. (2) All programming required to run the framework and analyse results. 

(3) Analysing results and producing tables and figures. (4) Writing the contents of the article 

including literature reviews. 
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ABSTRACT 

Due to increasing global water scarcity pressure, researchers, policy makers and industry are 

looking for innovative solutions to increasing agricultural water productivity. Motivated by 

recent success within complex decision making environments, Deep Reinforcement Learning 

(DRL) is being proposed as a method for optimizing irrigation strategies. Early research has 

hinted towards increased profits with DRL compared to heuristic approaches such as single 

soil-moisture thresholds or fixed schedules. However, an assessment of the value of DRL for 

irrigation scheduling that incorporates local climate variability and water-use restrictions 

has yet to be performed. To address this gap in the literature, we created aquacrop-gym, an 

open-source Python framework for researchers to train and evaluate customised irrigation 

strategies within the crop-water model AquaCrop-OSPy. In this analysis, aquacrop-gym was 

used to simulate irrigated maize production in the central United States. The DRL and 

heuristic approaches were both trained on 70 years of weather data produced from the 

weather generator LARS-WG, and evaluated on 30 unseen validation years of generated 

weather data. Findings from this analysis show that in the presence of high rainfall 

variability, DRL does not outperform the optimised heuristic. However, in the scenario 

where rainfall is set to zero, DRL approaches achieve higher profits on the unseen validation 

years. Similarly, DRL approaches also outperform optimised heuristics when severe water-

use restrictions are introduced. Our analysis demonstrates that DRL approaches are a 

promising method of irrigation scheduling, but have not yet been shown to be an 

overwhelming improvement compared with optimised heuristics.  

5.1 INTRODUCTION 

Agriculture is the main consumptive user of freshwater in many water-scarce regions, and 

thus a sector that is a both a cause and a victim of water scarcity. Improving agricultural 

water productivity is therefore an essential component of efforts to address water scarcity 

worldwide, as well as meeting food insecurity challenges (Howell, 2001; Fereres & Soriano, 

2006).  

Efforts to improve agricultural water productivity are fundamentally focused on tailoring 

irrigation to the crop-water needs as well as minimizing non-beneficial losses of water. 

Effective scheduling of irrigation during the growing season, alongside other interventions 
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such as improved irrigation technologies or land management practices, are critical to 

achieving improvements in agricultural water productivity. Commonly, farmers schedule 

irrigation based on rules or heuristics, such as soil-moisture levels or crop conditions (USDA-

NASS, 2018; Blonquist et al., 2006; Linker & Sylaios, 2016; Foster & Brozović, 2018; Kelly et 

al., 2021), which may be constant throughout the season or vary depending on crop growth 

stage. However, while irrigation strategies based on simple rules and heuristics are an 

intuitive and agronomically logically way to schedule irrigation, they may lead to sub-

optimal irrigation decisions if the underlying assumptions on which the heuristic is designed 

change or vary unexpectedly. For example, an unexpected rainstorm or longer than usual 

period of drought may render the current heuristic sub-optimal in a given year. Similarly, an 

unanticipated change in water availability (e.g., due to equipment failure, emergency 

drought measures) may render a farmers irrigation heuristics sub-optimal given altered 

water supply risks. 

One solution to this challenge is to adapt irrigation scheduling heuristics by re-optimizing 

decision rules and triggers at various points within the season. Research has demonstrated 

that combining crop simulation models with field monitoring, weather forecast, and other 

data can be used to support adaptation of irrigation scheduling and improve yields, water 

productivity, and profitability (Wang & Cai, 2009b; Cai et al., 2011; Jamal et al., 2019; Linker, 

2021). However, this approach adds additional computational overhead during the season, 

especially if re-optimizing frequently throughout the season, thereby increasing costs for 

producers or irrigation scheduling service providers. In the case of service providers, re-

optimizing strategies for tens of thousands of different cropping systems in near real-time 

may not be economically or technically feasible. Furthermore, as well as these issues with 

in-season adaptation, incorporating the increasing amounts of data available to farmers into 

heuristics will require large numbers of complex, interconnected rules that will be difficult 

to design and optimise. 

Addressing these issues, artificial intelligence based approaches such as Deep 

Reinforcement Learning (DRL) (Sutton et al., 1998) has been suggested as way to 

automatically and flexibly adjust and adapt decisions during the season in response to any 

relevant information. DRL approaches have successfully surpassed the best human 

benchmarks in other complex decision making environments such as video and board games 
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(Silver et al., 2018; Vinyals et al., 2019; OpenAI et al., 2019; Badia et al., 2020). Recent 

research has explored the viability of using DRL for irrigation scheduling (Yang et al., 2020; 

Chen et al., 2021; Alibabaei et al., 2022). In comparison with non-optimised schedules and 

heuristics, DRL methods were found to deliver improvements in water productivity and 

profits, highlighting their potential value as a tool for real-world irrigation management. 

However, in all of these works the DRL agent was evaluated on a limited number of unseen 

test seasons (less than 3 for all of these analyses), which is insufficient to assess 

performance across diverse and uncertain weather scenarios faced by farmers in real-world 

production environments. Additionally, trained DRL agents were compared only to 

handpicked schedules (i.e., a set of dates and depths chosen by researchers), fixed time 

intervals (i.e., irrigate 25 mm every N days), or single value heuristics (i.e., irrigate if the soil-

water content drops a specified value), where this value was chosen by researchers rather 

than optimised for the specific production environment. These choices of benchmark 

irrigation strategy limit our understanding of the added value of using DRL compared to the 

optimised heuristics commonly used in irrigation scheduling research (Linker et al., 2016; 

Linker & Kisekka, 2017; Kelly & Foster, 2021). 

In this article, we conduct a more systematic assessment of the value of DRL approaches to 

irrigation scheduling in comparison to conventional optimised heuristics, across a range of 

climate conditions. We assess how design choices, such as when and how often the DRL 

agent makes irrigation decisions, as well as assumptions about water use restrictions, 

impacts estimates of productivity and profitability gains from DRL. Through these analyses, 

we provide new insights into how best to evaluate the benefits of DRL for irrigation 

scheduling, as well as discussions about the conditions under which DRL may be a powerful 

tool in improving irrigation water productivity.  

5.2 METHOD  

In this section we describe the framework used to train and evaluate DRL agents for 

irrigation scheduling. First, we give a brief overview of DRL (Section 5.2.1), then describe 

how we apply DRL to irrigation scheduling within a crop-simulation model (Section 5.2.2). 

The chosen case study, as well as experimental details are then described (Section 5.2.3), 

followed by a discussion on overfitting and how to report DRL performance (Section 5.2.4). 
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Finally, we describe the optimised heuristic that we will use to assess the added value of 

DRL (Section 5.2.5). 

5.2.1 Deep Reinforcement Learning 

A typical reinforcement learning problem is framed as the interaction between an agent and 

an environment (Figure 5.1). At each timestep, the agent receives some observation of the 

environment O, and makes action A in response. This action has some impact on the 

environment which then returns a reward R along with the next observation O. This loop 

continues until a terminal state of the environment is reached, after which point the episode 

has finished. The goal of the reinforcement learning agent is to learn a mapping of 

observation to action that maximises the sum of future rewards (Sutton et al., 1998).  

In Deep Reinforcement Learning (DRL), the mapping of observation to action is an artificial 

neural network, with the weights of that neural network being continually updated in 

response to the rewards received by the agent. In this analysis we use Proximal Policy 

Optimization (PPO) (Schulman et al., 2017), which is one of the most popular DRL algorithms 

and has been used in a wide variety of environments such as robotics (Andrychowicz et al., 

2019), video games (OpenAI et al., 2019) and flow control (Rabault et al., 2019). PPO also 

has the advantage that it can be easily used for both continuous and discreet action spaces, 

allowing us to define many different types of irrigation strategies. Early experimentation 

found PPO provided the fastest and most stable training performance for this analysis 

compared to other algorithms tested. The code implementation of PPO that we use is from 

the DRL Python library ray-rllib (Liang et al., 2017). This library is an actively maintained, 

production-ready framework that is currently used within several industries 

(https://docs.ray.io/en/latest/rllib/index.html). 

 

https://docs.ray.io/en/latest/rllib/index.html
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Figure 5.1. Typical framing for a reinforcement learning problem, where a DRL agent aims to 
maximise the sum of future rewards. 

5.2.2 Applying DRL to irrigation scheduling 

To train DRL agents to make irrigation decisions, a crop-simulation environment is needed 

to rapidly test different irrigation strategies. Moreover, this environment needs to follow 

the Observation, Action, Reward, next Observation (O–A–R–O) framework outlined in the 

previous section. For this analysis, we use AquaCrop-OSPy (Kelly & Foster, 2021) to 

represent the cropping system, and serve as the environment with which the DRL agent can 

interact with, make irrigation decisions, and receive feedback on how these decisions 

impact seasonal profits. AquaCrop-OSPy is an open source Python implementation of the 

crop-water productivity model AquaCrop (Steduto et al., 2009). Developed by the UN-FAO, 

AquaCrop is one of the most widely used crop simulation models available, featuring in over 

334 peer reviewed publications in the ten years since its launch (Salman et al., 2021). 

AquaCrop aims to accurately represent crop response to water stress, whilst also reducing 

complexity and input data requirements, enabling it to be used in data scarce environments. 

AquaCrop-OSPy has been designed to allow flexible and complex irrigation decisions to be 

made outside of the model, allowing straightforward integration with DRL Python libraries 

or optimization algorithms. To facilitate this interaction between DRL agent and AquaCrop-

OSPy, we created the aquacrop-gym open-source Python library 

(https://github.com/aquacropos/aquacrop-gym). 

To train a DRL agent within aquacrop-gym, a DRL agent is first initiated with random neural 

network weights. To gather information with which to learn from, the agent then performs 
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a number of training rollouts (Figure 5.2). For each training rollout a weather year is 

randomly sampled from the training set and an AquaCrop-OSPy simulation is initialised. 

Every N number of days within the simulation, AquaCrop-OSPy will pass to the agent a set of 

observations (e.g., current soil-moisture content). These observations are then processed by 

the agent and an action is recommended (e.g., irrigation depth). The simulation then runs 

for another N days after which the agent will output another action based on the latest 

observation. At the end of the season, the final reward (e.g., seasonal profits) is calculated 

and sent back to the agent.  

After the training rollout is complete, all of the saved (O–A–R–O) transitions are used to 

update the weights of the agent’s internal neural network. Once the agent’s strategy has 

been updated, a validation rollout (Figure 5.2) is performed. The validation rollout evaluates 

the agent against all of the unseen validation years and calculates the mean profit achieved 

by the agent. Since none of the (O–A–R–O) transitions are saved during this validation 

rollout, no learning occurs and only the mean reward is saved to track the learning progress 

of the agent. This loop of: collect training data, update strategy, validate strategy will 

continue for a specified number of iterations or until manually stopped. 
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Figure 5.2. Flow diagram detailing how training data is collected by the DRL agent, then 
used to update the agent’s decision making. After updating the new strategy is evaluated on 
the validation set. 

 

5.2.3 Case study, DRL design choices and experimental details 

For the case study for this analysis, we use AquaCrop-OSPy to simulate irrigated maize 

production in southwest Nebraska. Maize is the most commonly grown and irrigated crop 

within Nebraska, which itself contains more irrigated acres than any other state in the 

United States (USDA-NASS, 2018). Irrigation water in Nebraska is primarily sourced from the 

High Plains aquifer, which has experienced severe declines in aquifer storage as a result of 

over abstraction (Scanlon et al., 2012; McGuire, 2017). In response to water scarcity issues, 

water policy makers within Nebraska have imposed water allocations on producers, to limit 

their abstractions for irrigation (Young et al., 2021).  

To train and validate our model, we utilise historic weather data for southwest Nebraska 

from a monitoring station in Champion, Nebraska (HPRCC, 2016). This weather station 

provides 37 years (1982-2018) of observational data (daily minimum and maximum 

temperature, precipitation, and solar radiation), which we subsequently input to the 
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weather generator LARS-WG (Semenov & Barrow, 1997) to generate a longer 100-year 

synthetic time series for our analysis. This weather generator determines the statistical 

characteristics of a given daily weather time series and uses these characteristics to 

generate new time series of daily weather data. LARS-WG has been shown in multiple 

recent studies to successfully represent the weather characteristics (e.g., monthly mean and 

variance of temperature or precipitation) of the input time-series (Agarwal et al., 2014; Awal 

et al., 2016). Using this method, we greatly increase the number of weather years for 

training (70 years) and validating (30 years) whilst still adequately representing the 

observed historical weather conditions (Figure 5.S1). Other inputs, including crop and soil 

parameters, for AquaCrop simulations are drawn from the literature, specifically from 

previous studies that use the model to simulate maize production in the central United 

States (Foster et al., 2015; Linker & Kisekka, 2017; Sandhu & Irmak, 2019), For calculation of 

seasonal profits at the end of each simulation (Equation 4.1), we assume a crop price of 

$180 per tonne (USDA, 2019), irrigation costs of $1 per ha-mm (CropWatch, 2019a), and 

fixed non-irrigation production costs of $1728 ha-1 (CropWatch, 2019a). Main DRL 

hyperparamaters are specified in Table 5.S1, and full details of source code, model and DRL 

parameters are all available at (https://github.com/aquacropos/aquacrop-gym). 

Determining what observations the agent should receive, which actions it is allowed to take, 

and what reward it will maximise are critical design choices that will depend on the cropping 

system being simulated. Examining all possible combinations of observation and action sets 

is out of the scope of this analysis. However, our aim is to test several of the most common 

and likely combinations that are applicable for our study area in the central United States. 

The range of action sets chosen for our analysis are displayed in Table 5.1. For depth 

discreet, the agent choses an irrigation depth to apply on the following day from a set of 

choices (0, 2.5, 5, …, 22.5, 25 mm ha-1). For depth continuous, the agent can chose any depth 

to apply the following day within the specified bounds [0, 25 mm ha-1]. For binary, the agent 

decides whether or not to apply 25 mm of irrigation the following day. For soil-moisture 

threshold, the agent decides the soil-moisture threshold to use until the next decision step. 

If the soil-moisture content ever drops below this threshold, irrigation is triggered to fill the 

soil back to field capacity (subject to the maximum irrigation application of 25 mm ha-1). 
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Finally, for all of these action sets, we compare four different decision intervals (i.e., the 

number of days between actions) 1, 3, 5 and 7 days.  

In each case, observations provided to the agent before each irrigation decision are as 

follows: mean daily reference evapotranspiration and precipitation for the season so far; 

and for the past 7 days only, current root-zone soil-moisture content, canopy cover, biomass 

growth, cumulative irrigation, water supply remaining, crop growth stage, and the total 

number of days since the season began. These variables are either obtained through the 

input weather time series or outputted by the AquaCrop-OSPy model. This choice of 

variables represents a range of weather, soil, and crop condition information that could 

plausibly be monitored or collected by farmers to support a DRL based scheduling approach, 

and could be extended or reduced depending on the monitoring capabilities of the 

individual production system being modelled. 

 

Table 5.1 The action sets this case study compares. 

Action set Bounds Example action 

discreet depth [0,25] mm ha-1 0, 2.5, … 22.5, 25 mm 

ha-1 

continuous depth [0,25] mm ha-1 8.43 mm ha-1 

binary [0,25] mm ha-1 0, 25 mm ha-1 

soil moisture threshold [0,100] % TAW 63.2%TAW 

 

As discussed in the previous section, DRL agents will be trained on 70 years of training data, 

and evaluated on 30 years of validation data. The mean and standard deviation in seasonal 

rainfall (May–September) for the training and validation sets were closely comparable, 

equal to 309.6±93.7 and 306±93.2 mm ha-1 respectively. Although both the training and 

validation sets were drawn from the same statistical distribution, the individual time series 

will be different, and thus provides a way for us to assess how well the agent might perform 

if deployed in the real world under uncertain weather conditions. For a similar case study of 

irrigated maize production in Nebraska, Chapter 4 of this thesis found the rainfall variability 

in this region resulted in large heterogeneity in seasonal profits. To assess the impact of this 

local variability on DRL performance, an additional experiment was therefore conducted 
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where the rainfall was removed completely from the training and validation sets. We 

hypothesise that by removing this important source of weather variability, and hence 

reduce the difference between the training and validation time series, the performance of 

DRL should improve compared to when rainfall is present.  

Previous assessments of DRL for irrigation scheduling have assumed unrestricted irrigation, 

whereby the DRL agent can irrigate as much as required. However, this assumption is not 

realistic to our case study region of Nebraska, or even other regions globally where water 

use may be restricted due to regulatory policies such as yearly or multi-yearly quotas and 

allocations (Berbel et al., 2019; Young et al., 2021). Given that the marginal gains from 

applying additional water are greatest in times of water scarcity, we hypothesise that more 

complex strategies such as DRL may be more valuable when water resources are limited. To 

assess the impact of water use restrictions on the value of DRL, the framework presented so 

far is repeated and water use limits of 75, 100, 125 mm ha-1 are imposed on all simulation 

years. This restriction will prevent any further irrigation once the cap has been reached in 

any given growing season.  

To summarise, four DRL agents will be trained initially to compare the action sets described 

in Table 5.1. The best performing action set will be used to train an additional four DRL 

agents to compare the four decision intervals 1, 3, 5 and 7 days. With this chosen DRL 

configuration (i.e., action set and decision interval), two more experiments will be 

conducted – one with no change to local rainfall and one with rainfall set to zero. Finally, 

with the same DRL configuration, three experiments will be conducted for each seasonal 

water use limit 75, 100, 125 mm ha-1. In total this will result in 13 experiments. 

5.2.4 Learning curves, evaluation criteria and overfitting 

One of the downsides of using an artificial neural network based irrigation strategy is that 

neural networks, if trained for long enough, will often overfit to training data. When 

overfitting occurs, the training set performance continues to increase but the performance 

on the unseen validation set begins to decrease. This divergence occurs as the neural 

network begins to find patterns that apply only to the training set, rather than general 

patterns that apply also to the validation set. As a result of this overfitting, it is often 

desirable to stop training before reaching an optimum score on the training set – by which 
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point the model has very likely overfit. To track learning process, throughout training the 

DRL agent will be continually evaluated on both the training and validation years, allowing 

us to monitor when and if overfitting occurs. 

Figure 5.3 displays these evaluation results for a DRL agent that makes discreet depth 

decisions every 7 days. Figure 5.3a is generally referred to as the learning curve and tracks 

the agent’s performance as a function of training steps (i.e., number of irrigation decisions 

made and learned from). Performance on the training set continues to increase throughout. 

However, the validation set performance declines after approximately 500,000 training 

steps. The divergence between training and validation performance highlights an important 

decision that needs to be made regarding how to report the final DRL performance, with 

which to compare against other irrigation strategies. Once choice is to report the highest 

validation profits achieved by the agent, which would give an indication of the potential of 

DRL if training is stopped at the right moment. However, this choice would overestimate the 

performance of DRL as it assume knowledge of the validation years, which would not be 

available to a farmer as the validation set represents future unknown weather. Another 

choice is to use the final validation set profit after training has stopped, which would not 

assume any knowledge of the validation years. However, as shown in Figure 5.3a, there can 

be large variation in validation profits between learning updates, and so choosing just one 

evaluation result may be misleading. Therefore, we instead calculate the rolling mean across 

the previous 10 validation set evaluations (Figure 5.3b). When comparing the performance 

of DRL on the validation set, we will report the highest 10-evaluation average.  
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Figure 5.3 (a) Average training profits and testing profits as a function of training steps. (b) 
Average training profits and testing profits as a function of training steps, as well as a rolling 
average of validation profits over 10 evaluations. The highest point on this rolling average 
calculation will be reported as the validation profit. 

 

5.2.5 Optimizing heuristic benchmark 

Previous assessments of DRL for irrigation scheduling have only compared DRL agents with 

handpicked schedules or one-value non-optimised heuristics (Yang et al., 2020; Chen et al., 

2021; Alibabaei et al., 2022). Chapter 4 of this thesis found that fixed optimised heuristics 
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trained on historical weather data can achieve over 90% of the potential profits (i.e., those 

achieved with perfect seasonal weather foresight) for a similar production system to the 

central United States case study used in the analysis presented in this chapter. The irrigation 

heuristic used in analyses in Chapter 4 was composed of a set of four soil-moisture 

thresholds, corresponding to the four main crop growth stages within AquaCrop. If the daily 

soil-water content drops below the current threshold at any point, irrigation is triggered. 

Within aquacrop-gym it is also possible to define this same four-soil-moisture threshold 

strategy and link this to an optimization algorithm. We use this approach to define a set of 

four soil-moisture thresholds that maximise average profit over the 70 training years. This 

set of thresholds will then be evaluated against the unseen 30 validation years and thus 

provide the benchmark against which to assess the added value of DRL. This benchmark 

achieves $513 ha-1 on the training years and $521 ha-1 on the validation years. The 

benchmark also achieves $503 ha-1 when evaluated on the 37 years of historical data that 

was originally imputed into LARS-WG. By comparing these profits to those that could be 

achieved by directly optimizing the heuristic on those 37 historical years ($506 ha-1), we can 

be confident that our approach of using generated data to train and optimise strategies – as 

well as the choice of weather generator – produces robust strategies for the case study 

region. 

Optimising the heuristic benchmark as well as running DRL training experiments were all 

conducted on a single AMD Ryzen 7 3700X, 3.60GHz, 8 core computer, with a GeForce RTX 

3070 GPU. Training 1 million DRL training steps on this machine took approximately 4 hours, 

whereas optimizing a set of four soil-moisture thresholds took approximately 20 minutes. 

5.3 RESULTS 

This section begins by assessing how the performance of DRL varies depending on choices of 

action sets and decision frequencies (Section 5.3.1). Next, the effect of climate variability on 

DRL performance will be assessed (Section 5.3.2), followed by the introduction of restrictive 

caps on irrigation water use (Sections 5.3.3). 

5.3.1 Comparing DRL configurations 

Table 5.2 shows the mean seasonal profits achieved by different irrigation scheduling 

methods after 1 million training steps. DRL approaches, independent of these choices for 
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how irrigation could be triggered, achieved higher profits on the training set than the fixed 

optimised irrigation scheduling heuristic. However, the fixed heuristic achieved marginally 

higher profits than the DRL approaches over the validation set. This result illustrates that 

deep learning algorithms are able to learn complex irrigation strategies (as evidenced by the 

superior training set performance), but may not be able to transfer those superior strategies 

into improved performance in out-of-sample production scenarios (i.e., the validation set). 

The differences in profit between all strategies is extremely marginal and so these results 

alone cannot be used to definitively rule out any approach as a viable method of scheduling 

irrigation. The discreet depth action set achieved the highest validation profit of all DRL 

scheduling strategies, and so will be used as the basis for comparison with fixed soil-

moisture threshold (SMT) heuristics for the rest of the analysis presented.  
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Table 5.2 Reported seasonal profits (highest mean profits over 10 evaluations) for different 

action sets. 

Scheduling method Training set 

profits $ ha-1 

Validation set 

profits $ ha-1 

DRL – discreet depth  518.9 520.1 

DRL – continuous depth 520.2 512.6 

DRL – binary  515.3 517.8 

DRL – soil-moisture threshold 517.5 515.7 

Fixed Optimised SMT 513.1 521.4 

 

The second DRL design choice we examined was the decision interval (i.e., how often the 

DRL agent makes irrigation decisions). For the best performing action set (discreet depth), 

we train the DRL agent with decision intervals (1, 3, 5, 7 days) for 1 million training steps and 

compare the validation set performance. This comparison showed that a decision interval of 

3 days resulted in the highest profits over both the training and validation set (Table 5.3). 

The variation in profits between different decision intervals was greater than the profit 

variations found between different action sets (Table 5.2). This result could indicate that 

how often the DRL agent makes decisions is more important than how the depth is 

specified, at least for our specific crop model environment and case study.  
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Table 5.3 Reported seasonal profits (highest mean profits over 10 evaluations) for different 
decision intervals using the discreet depth action set defined in Section 5.2.3. 

Decision Interval Training set profits $ 

ha-1 

Validation set profits $ 

ha-1 

1 day 492.2 497.6 

3 days 518.9 520.1 

5 days 515.1 511.0 

7 days 510.4 504.0 

 

5.3.2 Climate variability 

Despite the range and distribution of weather scenarios in model training and validation 

being comparable, the results presented in Section 5.3.1 show that complex DRL scheduling 

algorithms have thus far only been able outperform simpler optimised soil-moisture 

thresholds on the training set. One reason for this underperformance is that specific 

weather scenarios encountered in the validation period are inherently different (e.g., in 

terms of specific sequencing of rainfall events), despite still having same overall statistical 

distribution (e.g., in terms of total seasonal rainfall). By setting the rainfall to zero, and 

hence reduce the difference between the training and validation time series, we expect the 

performance of DRL to improve on the validation set. To test this hypothesis, we removed 

the rainfall from both the training and validation weather dataset used within AquaCrop-

OSPy, and retrained the DRL agent as well as re-optimised the fixed heuristic benchmark. 

Table 5.4 shows the difference in profits between the DRL agent and the optimised soil-

moisture thresholds when rainfall is included or removed. When rainfall was removed, 

optimised fixed soil-moisture thresholds achieved a profit of $300.6 ha-1 on the validation 

set, with reduced profit relative to that found in Section 5.3.1 due to larger irrigation 

amounts needed to meet crop water requirements across all years. In contrast, the DRL 

agent taking discreet depth actions every 3 days achieved $307 ha-1. This result indicates 

that removing the biggest source of climate variability altered the added value of DRL 

scheduling relative to fixed SMT heuristics from a reduction of $1.27 ha-1 to an increase of 

$6.38 ha-1, the latter a 2.1% increase in profits compared to the optimised heuristic.  
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Table 5.4 Increase in seasonal profits compared to optimised soil-moisture thresholds with 
and without rainfall. 

Weather data Increase in 

training set 

profits $ ha-1 

Increase in 

validation set 

profits $ ha-1 

Percentage increase 

in validation set 

profits 

With rainfall 5.87 -1.27  – 0.2% 

Without rainfall 4.07 6.38 + 2.1% 

 

 

5.3.3 Water use restrictions 

The DRL and heuristic strategies evaluated so far have operated under unrestricted 

irrigation, whereby the DRL agent can irrigate as much as required. However, this 

assumption is not realistic to our case study region of Nebraska, which imposes yearly or 

multi-year restrictions on irrigation water abstractions. Given that the marginal gains from 

applying additional water are greatest in times of water scarcity, we hypothesise that more 

complex strategies such as DRL may be more valuable when water resources are limited. To 

assess the impact of water use restrictions on the value of DRL, the framework presented so 

far was repeated and water use limits of 75, 100, 125 mm ha-1 were imposed on all 

simulation years. This restriction will prevent any further irrigation once the cap has been 

reached in any given growing season. Table 5.5 shows the difference in profits between the 

DRL agent and the optimised soil-moisture thresholds for these different water use 

restrictions. Despite only small profit increase, DRL does provided added value in these 

water restricted scenarios compared to optimised heuristics. By introducing the most 

restrictive cap evaluated (75 mm ha-1), the value of DRL increased from -$1.3 ha-1 to +$12.2 

ha-1, which equates to a 5.6% increase in profits compared to the optimised heuristic. 
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Table 5.5 The effect of water use restrictions on validation set profits and added value of 
DRL compared to optimised heuristics.  

Irrigation cap 

mm ha-1 

DRL validation 

set profits $ ha-1 

Increase in 

validation set 

profits $ ha-1 

Percentage Increase 

in validation set 

profits 

75 228 12.2 5.6% 

100 286.5 7.1 2.5% 

125 332 4.3 1.3% 

No cap 520.1 -1.3 – 0.2% 

 

5.4 DISCUSSION 

Despite the success of optimised heuristics within irrigation scheduling, incorporating the 

increasing amounts of data available to farmers into heuristics will require large numbers of 

complex, interconnected rules that will be difficult to design and optimise. Addressing these 

issues, artificial intelligence based approaches such as Deep Reinforcement Learning (DRL) 

(Sutton et al., 1998) has been suggested as way to automatically and flexibly adjust and 

adapt decisions during the season in response to any relevant information. Recent 

publications have found Deep Reinforcement Learning (DRL) can be used to learn irrigation 

strategies within crop-simulation frameworks (Yang et al., 2020; Chen et al., 2021; Alibabaei 

et al., 2022).  

In this article we assessed the added value of using DRL for irrigation scheduling in 

comparison to optimised soil-moisture thresholds. The first part of the analysis found that 

allowing the DRL agent to choose between a range of discreet irrigation depths (i.e., 0, 2.5, 

… 22.5, 25 mm) lead to the best performance over the validation years. Despite performing 

the best compared to other DRL design choices, this was still not enough to surpass the 

validation profits achieved by the optimised soil-moisture thresholds. When rainfall was 

removed from the weather data, thereby decreasing the difference in weather time series 

between training and validation sets, the DRL agent was now able to increase validation 

year profits by 2.1% compared to optimised heuristics. Finally, when restrictive irrigation 
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caps were introduced (e.g., 75 mm ha-1), the DRL agent was able to increase validation year 

profits by 5.6% compared to the optimised heuristics. 

Our analysis found that under normal climate variability for the case study region and 

unrestricted water use, optimised soil-moisture thresholds achieved a higher average profit 

over the validation years than the DRL agent. This result broadly agrees with Alibabaei et al., 

(2022), who found that even a non-optimised fixed heuristic achieved higher profits than 

their DRL agent during one of their two test years. This marginal difference in validation year 

profits found between DRL and optimised heuristic (– $1.3 ha-1) cannot be taken as an exact 

quantitative comparison on its own, as another set of validation years could cause this value 

to vary slightly. Differences between how DRL performance is reported – i.e., when training 

is stopped, how validation set profits are calculated, and how many training repetitions are 

performed – can also lead to this difference in profits to vary slightly. However, the 

qualitative result that DRL agents struggle to surpass optimised thresholds is likely to 

remain, and was largely neglected in previous DRL assessments (Yang et al., 2020; Chen et 

al., 2021; Alibabaei et al., 2022). This finding also broadly agrees with Chapter 4 of this 

thesis, which found that fixed soil-moisture heuristics performed well compared to adaptive 

heuristics, which – given the simplicity and intuitive nature of these heuristics – should be 

seen as a good first step towards increasing productivity that producers would be more 

likely to adopt and implement. 
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Our finding that the value of DRL increases with the introduction of restrictive water use 

caps does provide interesting insights about where DRL is best implemented in real world 

cropping systems. As water resources become scarce and demands over them increase 

(Rosa et al., 2020; D’Odorico et al., 2020), water managers and policy makers may introduce 

restrictions on total water use – as some regions already do (Julio Berbel et al., 2019; Young 

et al., 2021). Our analysis indicates that DRL may perform well as water restrictions become 

more stringent and variable, with producers potentially being able to use these intelligent 

methods to mitigate impacts of increasing water insecurity. Our other finding that increased 

value in DRL for no-rain scenarios implies that DRL may also be better placed in arid areas 

where there is very little rainfall, and thus very little difference from year to year. By 

reducing the potential for unexpected weather scenarios, DRL agents will be free to overfit 

to the training data, as the validation data will be near identical.  

Although we have been able to evaluate different action sets, decision frequencies, water 

use restrictions and climate variability, we have neglected comparing other important 

design choices such as different DRL algorithms, hyperparamaters, neural network 

architectures and input observations. For example, using larger neural networks or 

expanding the number of input observations will lead to more complex irrigation strategies, 

and hence potentially increased profits, though at the expense of longer training times and 

higher risk of overfitting. Investigating the effect of these and other DRL design choices in 

the value of DRL will be an important area of future work. 

Applying DRL to irrigation scheduling, as we have done in this analysis, producers a number 

of issues for DRL that are not seen to the same extent in the typical environments DRL has 

been previously applied in. Assuming deployment within a real-world field, the agent will 

have to make decisions for several months before receiving a reward signal (e.g., profits 

calculated after harvesting). This issue is partly circumvented by training the agent within 

crop-simulation environments, which can simulate whole seasons within seconds. However, 

the costly and time consuming work of field trials will still have to be conducted eventually 

to test if model-optimised strategies will work as intended. This challenge of transferring 

simulated learning to real-world systems is receiving attention within robotics research 

(Zhao et al., 2020). However, the months needed to evaluate a single irrigation strategy is 

unique to irrigation scheduling. Another inherent difficulty of applying DRL to irrigation 
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scheduling is that there are an arbitrarily large number of environment configurations (e.g., 

crop, soil, climate, management constrains) that dramatically impact optimal decision-

making. This issue either requires separate DRL agents to be trained on each configuration – 

which may be too computationally expensive or time consuming, as with optimised 

heuristics – or instead training one agent to make decisions for all configurations – which 

may be too difficult to learn good strategies. Moreover, for farmers to adopt a DRL irrigation 

strategy, the added value will have to be demonstrated for their particular configuration, 

the value of DRL may have be demonstrated in the field for many configurations in order for 

producers to adopt this new scheduling approach. Therefore this issue of configuration 

agnostic DRL irrigation strategies will be an essential area of future work. 

Similarly, the irrigation scheduling problem specified in this work, and much of the previous 

literature (Cai et al., 2011; Linker et al., 2018; Jamal et al., 2019; Yang et al., 2020; Chen et 

al., 2021; Alibabaei et al., 2022), centres around scheduling irrigation for a single 

homogenous field over a number of seasons. This specification, although simple to 

implement, does favour an optimised heuristic approach (i.e., optimization algorithms can 

comfortably find a set of values that maximise average profits in one field over a set of N 

seasons). However, heuristics do not scale well with increasing complexity, for example, if 

the seasonal water limit changes during the season, the fixed heuristics would have to 

remain sub-optimal or be re-optimised each time the situation changes. Another example is 

in the case of multiple fields or crops, where decisions may have to be made about which 

field or crop to prioritise with the limited water supply available. Finally, an example from 

our case study region is dealing with a 5-year allocation of irrigation water supply, meaning 

decisions have to be made in the knowledge of how much water needs to be kept for future 

years. In these more complex – and more realistic – modelling scenarios, it is possible that 

DRL will demonstrate increased additional value.  

To support research into these areas of future work, we have created aquacrop-gym, an 

open source python library that supports the training of DRL agents and comparisons 

between irrigation strategies within AquaCrop-OSPy.  Training materials have been 

developed that guide the user to training their own DRL agents and duplicate the analysis 

presented in this work. The intention of this library is to be an actively developed framework 

that future researchers can test new irrigation strategies, and compare them to the current 
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best approaches. This framework will accelerate progress in optimised and intelligent 

irrigation scheduling research, as well as how rapidly this research can be converted to 

production. 

5.5 CONCLUSIONS  

Due to the increase in water scarcity issues globally, researchers are looking for innovative 

solutions to increasing agricultural water productivity. One of the methods being 

investigated is Deep Reinforcement Learning (DRL) which has had recent success inside 

complex decision making environments. In this article we assess the value of DRL for 

irrigation scheduling in comparison to optimised heuristics for a case study of irrigated 

maize production in southwest Nebraska. By designing a framework for DRL agents to 

interact with the AquaCrop-OSPy crop-simulation model, DRL agents were trained and 

evaluated over separate sets of climate data. Under normal climate variability and 

unrestricted irrigation, DRL failed to increase profits on the validation years compared to 

optimised soil-moisture thresholds. When rainfall was removed, and hence the biggest 

source of climate variability, DRL was able to surpass the performance soil-moisture 

thresholds. With the addition of restrictive irrigation caps, DRL was also able to achieve 

higher profits on the validation years than optimised thresholds. Our work firstly highlights 

that DRL is a promising avenue for improving irrigation scheduling, but DRL’s additional 

value over optimised heuristics has yet to be demonstrated for all cases, especially given 

their increased complexity and data requirements. Conversely, optimised heuristics – given 

their relative simplicity – should be seen as an important first step to improving water 

productivity, before making large investments in AI based approaches.  
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SUPPORTING INFORMATION 

This supporting information includes Figure S1 and Table S1. Figure S1 compares historical 

and generated weather variables. Table S1 displays some of the important DRL 

hyperparameters. 
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Figure 5.S1. The average daily (a) maximum temperature, (b) minimum temperature, (c) 
reference evapotranspiration, and (d) average monthly rainfall grouped by month. All 
figures compare the distribution of these weather variables between 100 years of LARS-WG 
generated data, and the local historical data that was originally imputed into LARS-WG. 
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Table 5.S1. Overview of DRL hyperparameters. 

PARAMETER VALUE 

Network size 4 fully-connected layers (128 size) 

Learning rate 5e-5 

Training batch size 2056 

Discount factor 1. 

Number of CPU workers 8 
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6 CONCLUSIONS 

As the largest sectoral user of freshwater globally, improving the productivity of agricultural 

water use (i.e., more crop per drop) is at the heart of efforts to address water scarcity, 

insecurity, and conflict. Improving irrigation scheduling practices is a key solution to 

improving water productivity, especially in currently high-productivity agricultural regions in 

developed countries where the potential gains from improving irrigation application 

technologies have largely been exhausted. Contributing toward this area of research, this 

thesis has assessed the value of improved information and management strategies for 

optimal irrigation scheduling. The first article presented AquaCrop-OSPy, which was 

developed to support the analysis within the thesis. The second article assessed the 

importance of reducing soil-moisture uncertainty in terms of reducing water use and 

increasing profits. The third article then assessed the value of adapting irrigation strategies 

in-season. Finally, the fourth article assessed the value of using Deep Reinforcement 

Learning for irrigation scheduling. This section will discuss the main findings and implications 

from these articles (Section 6.1), as well as areas for future work (Section 6.2). 

6.1 KEY FINDINGS 

One of the assumptions underpinning precision irrigation research is that providing farmers 

with more accurate information will lead to substantial increases in water productivity. 

However, an assessment of how information uncertainty impacts water use and farm profits 

– assuming realistic farmer behaviour – has not been previously performed. In response, 

Chapter 3 found that near-optimal irrigation scheduling decisions can be made without 

perfect information about soil moisture during the growing season. Results showed that it 

was the optimality of farmers’ irrigation scheduling heuristics – rather than the accuracy of 

the information these heuristics are implemented based upon – that had the largest impact 

on water use and profits. These results are broadly consistent with previous research on the 

value of providing farmers with accurate soil and weather information (Bosch & Eidman, 

1987; Botes et al., 1996; Fafchamps & Minten, 2012), as well as research by Linker & Kisekka 

(2017), who used a similar modelling approach to show that perfect real-time soil-moisture 

measurements may not be required to implement deficit irrigation strategies. The minimal 

increase in water use found in Chapter 3 is lower than that found in El Chami et al. (2019), 
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who found that realistic levels of soil-texture error lead to a 23% increase in water use for 

their case study of onion production in England. Differences such as their soil-moisture 

uncertainty purposefully being biased towards under-estimation of soil moisture – whereas 

the error in Chapter 3 was mean-zero – could partially explain those differences. Assuming 

the findings of Chapter 3 hold for other production environments, they suggest that efforts 

to improve irrigation water productivity should focus primarily on providing farmers with 

better advice on optimal irrigation scheduling, or designing tools to enable them to develop 

and test improved irrigation strategies for their specific cropping system.  

Having to optimise irrigation strategies under future weather uncertainty will likely be a 

continual issue of producers globally, in particular given increasingly erratic rainfall in many 

regions caused by climate change (Turral et al., 2010; IPCC, 2022). Adaptive irrigation 

scheduling, whereby strategies are re-optimised within the season to account for the 

unfolding weather and future forecasts, has therefore been proposed as a key solution to 

improving the productivity and profitability of irrigation. However, it is unclear whether such 

adaptive irrigation strategies can significantly outperform simpler optimised fixed 

management heuristics (i.e., where scheduling rules do not change each year). Addressing 

this research gap, Chapter 4 found that in-season adaptation of irrigation scheduling rules 

was able to increase both average and minimum seasonal profits. However, this increase in 

average profit was marginal despite the additional computational and data requirements 

associated with implementing adaptive scheduling. The marginal effect of adaptation was 

due, in part, to the potential for maladaptive decisions to occur given uncertainty about 

future weather events. These results firstly agree with part of the current literature, finding 

irrigation strategies based on in-season stochastic re-optimization results in profits close to 

the maximum achievable (e.g., Wang & Cai, 2009; Cai et al., 2011; Hejazi et al., 2014; Jamal 

et al., 2018, 2019; Linker, 2021). The additional insights provided beyond these previous 

studies are that if irrigation strategies were not adjusted in-season, there would be only 

marginal decreases in profit. These findings imply that making near-optimal irrigation 

decisions under weather uncertainty can be achieved without the additional computational 

and data requirements of adaptive scheduling methods, assuming the fixed irrigation 

strategy is optimised for the expected variability in weather conditions. 
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Finally, the thesis explored the potential opportunities for emerging AI-driven approaches to 

improving irrigation scheduling practices beyond simpler optimised heuristics currently used 

by researchers and farmers. The potential advantage of AI approaches compared to simple 

rule-based heuristics is that AI scheduling can incorporate almost any available information 

(e.g., numerical, images, remote sensing) into complex strategies that can automatically 

adapt during the season. Chapter 5 aimed to compare one of these approaches (Deep 

Reinforcement Learning) to an optimised heuristic and found that Deep Reinforcement 

Learning performed best when irrigation was the dominant source of water for crop growth 

(i.e., when rainfall and its variability were limited), or when farmers faced restrictive limits 

on irrigation water use during the season. The results of this analysis firstly agree with 

previous work that DRL can learn complex irrigation strategies, and thus is a promising 

future method of irrigation scheduling (Yang et al., 2020; Chen et al., 2021; Alibabaei et al., 

2022). However, by not evaluating DRL across the full climate variability, and against 

optimised heuristics, this previous literature may have overstated the value of DRL. The 

findings presented in Chapter 5 imply that for regions with significant year-to-year rainfall 

variability, new scheduling methods such as DRL may not provide much additional value 

compared with optimised heuristics. However, with increasing restrictions on irrigation 

water use (Young et al., 2021), farmers may turn to methods such as DRL to extract the 

maximum value from that limited water supply.  

One common theme throughout the thesis has been the strong performance of scheduling 

irrigation using simple rule-based soil-moisture thresholds, which have been optimised to 

maximise profits over a range of historic weather years. This method of irrigation scheduling 

has been shown in the thesis to be robust to information uncertainty and generate 

comparable returns (in terms of productivity and profitability) compared with more complex 

adaptive and AI based irrigation scheduling. This conclusion is a significant contribution to 

the literature as it shows that large improvements in water productivity can be achieved 

without extensive investment in equipment, software and monitoring technologies required 

by advanced data-driven precision irrigation approaches. Specifically, the findings presented 

in this thesis suggest that improving agricultural water productivity is as much, if not more, 

dependent on incentivising change in how technologies are operationalised by farmers, 

rather than introducing new technologies or tools that have previously been the primary 
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focus of precision irrigation farming interventions (Adeyemi et al., 2017). As additional costs 

are one of the main barriers to adoption of water-saving technologies (USDA-NASS, 2018), 

improved irrigation management advice provides a low-cost pathway to improving water 

productivity and hence is likely to have greater traction with farmers. As previous research 

has found large heterogeneity in irrigation water use across farmers operating in similar 

production systems and using similar irrigation delivery systems (Foster et al., 2019; 

Gonçalves et al., 2020), improved scheduling advice may have the potential to close the gap 

between the less efficient and more efficient farmers. 

6.2 FUTURE WORK 

The findings presented within this thesis have highlighted a number of interesting and 

promising areas of future work. Firstly, field trials are required to evaluate model-optimised 

strategies (Section 6.2.1). Secondly, further research is required to gain a better 

understanding of how farmers currently make irrigation decisions (Section 6.2.2). Third, 

analysis needs to be extended beyond our case study of Nebraska maize, as well as to more 

complex modelling scenarios (Section 6.2.3). Finally, the tools developed within the thesis 

can be used to investigate more than field-level irrigation scheduling (Section 6.2.4). 

6.2.1 Assessing performance in real-field conditions 

Taghvaeian et al. (2020) highlighted the importance of demonstrating the effectiveness of 

scientific irrigation scheduling for researchers seeking to improve real-world agricultural 

water productivity. In this context, incentivising farmers to adopt the types of monitoring 

tools or optimised strategies used in this thesis will require farmer engagement to 

demonstrate these approaches are superior to the famers’ current practises under real-field 

conditions, as opposed to in an idealised model environment. For example, the dual-

simulation framework developed in Chapter 3 could be used to make irrigation scheduling 

decisions for real farmers’ fields, with assimilation of in situ soil-moisture measurements to 

re-calibrate the model during the season to ensure the model accurately represents the 

current soil-moisture conditions (e.g., Linker & Ioslovich, 2017). Comparing this model-

based scheduling to adjacent fields that have been irrigated according to the farmers’ 

current practises would provide insights into the value of optimised scheduling methods in 

real production environments. Experiments such as this may find that optimised scheduling 
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leads to improvements in water productivity and profits, or conversely that farmers’ current 

scheduling practises are already near-optimal, when technical, regulatory and 

environmental constraints and uncertainties they face are taken into account.  

6.2.2 Improving understanding of farmer decision-making 

Alongside real-world tests, there is also a need to improve scientific understanding of how 

farmers currently schedule irrigation and how scheduling choices are influenced by factors 

such as future weather forecasts (short term or seasonal), feedbacks from soil and crop 

monitoring, in-season changes in the water availability or irrigation costs, changes in crop 

market prices and information from neighbouring fields and farmers. Information on 

scheduling practices for the study areas in this thesis is largely derived from national surveys 

which only indicate the sources of information used by farmers (USDA-NASS, 2018), rather 

than how exactly this information influences decisions, as well as the relative importance 

placed on each of the different sources. This missing information could be gathered via 

surveys that are specifically targeted to asking how farmers schedule irrigation, or by 

collecting remote sensing data on variables already known to be important to decision 

making such as soil-moisture (Yinglan et al., 2022), or crop development (Tenreiro et al., 

2021). By also estimating when irrigation is likely to have occurred (Le Page et al., 2020; 

Foster et al., 2020), decision tree algorithms can be used to predict the timing of irrigation 

events based on the remote sensing inputs (Perea et al., 2019). Potentially just as valuable 

as the predictive model, would be the knowledge gained from inspecting the resulting 

decision tree, giving insights into the relative importance of each of the input variables. 

Improved understanding of farmers’ current irrigation strategies will enable researchers to 

more accurately represent current practises and hence more accurately evaluate the 

additional value of new scientific scheduling methods, such as optimised heuristics or DRL.  

6.2.3 Testing performance in complex production environments 

Analyses presented in this thesis focused primarily on case studies of field crop production 

in the central United States. However, the value of accurate monitoring or improved 

strategies may differ in another case study environments. For example, Chapter 5 found 

that the value of DRL increased when rainfall quantity and variability were reduced. This 

result motivates the expansion of the analysis presented in that chapter to other important 

agricultural case studies, to evaluate if that relationship holds, for example, in arid regions 
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with very little rainfall. Similarly, the optimised strategies developed in this thesis are 

optimal only for the weather variability seen during optimization or training. Climate shifts 

and changes necessitate that strategies be re-optimised periodically to maintain that future 

weather does not differ radically from expected. Therefore, future research should be 

explored that assesses how well optimised strategies perform under changing or 

nonstationary climate conditions, including how often strategies may need to be re-

optimised between seasons as well as how many historic weather years should be used to 

best approximate the upcoming year. 

Much of the work within the thesis has centred on irrigating a single crop on a single 

homogenous field. By increasing the complexity of the environment (e.g., by increasing the 

number of fields and/or crops), it is possible that optimised heuristics will no longer be able 

to achieve near-optimal performance, as adding further rules about which field or crop to 

prioritise may add too many decision variables to reliably identify global optimum heuristics 

through conventional rule-based optimization approaches alone. Conversely, DRL may scale 

well with the increasing complexity of the decision-making problem, as the number of input 

observations or the size of the internal neural network can simply scale to suit the complex 

environment. In more realistic and complex modelling scenarios such as this, DRL may offer 

greater value towards improving water productivity and profits, in comparison to the 

simpler environments used in this thesis. 

6.2.4 From field to basin scale water productivity 

Finally, the flexibility of tools developed in this thesis, in particular AquaCrop-OSPy, can 

contribute to several areas of future research that extend beyond the focus of this thesis 

(i.e., improving field-level irrigation scheduling). Field-level improvements in water 

productivity can sometimes have negative externalities when aggregated at basin scales. For 

example, water that is no longer lost through deep percolation or surface runoff may then 

no longer contribute to recharge to aquifers or return flows supporting downstream users 

or ecosystems (Van der Kooij et al., 2013; Berbel & Mateos, 2014; Berbel et al., 2019). 

Integration of AquaCrop-OSPy with basin-scale land-use and hydrologic models would allow 

more accurate estimates of the implications of changing irrigation management practices 

and technologies for regional water-use dynamics, for example, calculating how new water-

use restrictions will effect streamflow depletion or groundwater return flows. 
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