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Abstract

There are many open questions in cosmology, chief among which are the nature of the dom-
inant components in the Universe: dark energy and dark matter. One promising probe with
which to make progress in answering these questions is the analysis of weak gravitational
lensing: subtle distortions in the shapes of distant galaxies due to the gravitational effect
of large-scale structure in the Universe. These distortions depend closely on the properties
of dark energy and dark matter, which govern the evolution of structure in recent times.
Careful statistical analysis of the distortions may therefore place tight constraints on physi-
cal theories of these components, along with gravity and other constituents of the Universe
such as neutrinos. This promise is set to be realised by the upcoming generation of weak
lensing experiments such as the Euclid space mission and the Square Kilometre Array ra-
dio observatory, which will observe tens of billions of galaxies, and in doing so will achieve
an unprecedented level of statistical precision on cosmological constraints. However, such
unprecedented precision requires equally unprecedented understanding and control of all
aspects of the analysis process, in order to obtain reliable results and avoid undiagnosed
biases and systematic errors.

This thesis makes progress towards a complete and robust understanding of certain aspects
of weak lensing analyses. Chapters 3–6 focus on pseudo-C` estimators, which are fast esti-
mators of two-point correlation in Fourier space, for use with partial-sky observations. The
exact joint likelihood of pseudo-C` estimates from an arbitrary number of correlated spin-0
and spin-2 Gaussian fields is derived and validated in Chapter 3. It is shown in Chapter 4
that to obtain accurate constraints on dark energy parameters with pseudo-C` estimates
from Euclid, a Gaussian likelihood is sufficiently accurate, and that this accuracy is robust
to the details of the analysis setup. A Gaussian likelihood requires a covariance matrix,
and in Chapter 5 a method is presented with which to calculate a complete covariance ma-
trix of pseudo-C` estimates for Euclid, including non-Gaussian mode coupling arising from
non-linear structure growth as well as Gaussian mode coupling arising from the convolu-
tion of the signal with the mask describing the details of the sky coverage. The resulting
covariance matrix is compared to one estimated from weak lensing simulations, with good
agreement. Chapter 6 turns to the question of how to select an angular binning strategy to
strike an optimal balance between statistical constraining power and data compression. Fi-
nally, Chapter 7 considers a different question, of whether convolutional neural networks
may be used to estimate weak lensing shear directly from radio visibilities from the Square
Kilometre Array. Working towards this aim from a simplified case of lensing of the cosmic
microwave background, it shows that this method is promising but also entails many chal-
lenges. The work presented in this thesis helps to make significant progress towards an
ultimate goal of reliable cosmological inference from future weak lensing data, but many
challenges and open questions remain, which are discussed in Chapter 8.
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– https://github.com/robinupham/shear_pcl_cov

for Gaussian covariance, plotting, and other utilities;

• Chapter 6: https://github.com/robinupham/angular_binning;

• Chapter 7: https://github.com/robinupham/cnn_lensing.

In addition, the following data repositories are available at Zenodo.

• Power spectra estimated from Gaussian field simulations used in Chapter 4:
https://doi.org/10.5281/zenodo.4316732;

• Power spectra estimated from Takahashi et al. (2017) weak lensing simulations, and
connected non-Gaussian covariance matrix, used in Chapter 5:
https://doi.org/10.5281/zenodo.5163132.
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Chapter 1

Cosmology

Cosmology is the study of the Universe, the components that make it up, and its past and
future evolution.

This chapter begins with an overview of the current standard model of cosmology in Sec-
tion 1.1, before outlining some of the key questions that remain unanswered in Section 1.2.
A description of the main observational probes for learning about cosmology is given in
Section 1.3, before Section 1.4 introduces the main such probe considered in this thesis:
weak gravitational lensing.

1.1. Standard cosmological model

The concept of a standard model of cosmology refers to the simplest model that is consis-
tent with all observational data to date.

The most minimal version of the standard cosmological model is called ΛCDM, which
stands for its two largest constituents: dark energy in the form of a cosmological constant
(Λ) and cold dark matter (CDM). These will be described in more detail in Section 1.1.4.
This model has six free parameters, which are described in Section 1.1.7, but is also extend-
able with additional parameters. For example, time-varying dark energy may be included
using the dark energy equation of state parameter w (see Section 1.1.4.3), in which case the
model is sometimes known as wCDM.

1.1.1. Cosmological principle and anisotropies

The most fundamental aspect of the standard cosmological model is the cosmological
principle, which states that on sufficiently large scales, the Universe is homogeneous and
isotropic, meaning that it is the same everywhere and in all directions.

However, the Universe is not completely isotropic. This is self-evident on smaller scales,
where we observe structure such as planets, stars and galaxies. It is also the case on larger
scales, where matter is distributed in the walls, filaments and voids that make up the
‘cosmic web’, as seen in Figure 1.1.

These anisotropies are believed to arise from quantum fluctuations in the early Universe,
which later resulted in over- and underdense regions of matter, which evolved under grav-

21



Chapter 1 — Cosmology

Figure 1.1. The cosmic web of the large-scale matter distribution, as traced by galaxies
detected by the Sloan Digital Sky Survey (SDSS; York et al. 2000; Blanton et al. 2017).
Image by M. Blanton and SDSS.
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1.1. Standard cosmological model

ity to give the structures we observe today. This is strongly supported by measurements of
baryon acoustic oscillations (which will be described in Section 1.3.4) and by observations
of the cosmic microwave background (CMB), which have revealed that the early Universe
was extremely smooth, with small anisotropies of order one part in 105. The CMB and its
anisotropies will be described in more detail in Section 1.3.1.

1.1.2. Cosmic expansion and redshift

After the cosmological principle, perhaps the most fundamental aspect of the standard
model of the Universe is that it is expanding. Mathematically, this can be described simply
using the scale factor, a (t), where any distance d at time t is given by

d (t) = a (t) d0, (1.1)

where d0 is the distance today (t = t0), and the current value of the scale factor, a0, is
defined as

a0 = 1. (1.2)

For any time in the past, t < t0,
a (t < t0) < 1, (1.3)

and therefore distances were shorter than they are today. Rewound far enough, this implies
that at one stage the Universe was infinitely dense. This is called the Big Bang, and is a
central part of the standard cosmological model.

If distances were shorter in the past, then so too were wavelengths of light and other
radiation. The wavelength of any photon has subsequently been stretched between its
emission in the past and its observation today. This effect is called redshift. Since the finite
speed of light means that observations of any distant object are equivalent to looking back
in time, redshift is a useful measure of the distance of objects from the Earth. Redshift, z,
can be quantified as

1 + z =
λobs

λemit
=

1
a (t)

, (1.4)

where λemit and λobs are the emitted and observed wavelengths of light.

Evidence for the expanding Universe comes from the Hubble law (Lemaître 1927; Hubble
1929), which states that distant galaxies are receding at a speed v proportional to their
distance d:

v = H0d, (1.5)

where the constant of proportionality is the Hubble constant H0. Despite its name, H0 is
today considered as the current value of a time-varying parameter H (t), which is related
to the scale factor a as
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Figure 1.2. Diagram of the Hubble law (Equation 1.5) relating the recession velocity of
distant objects (in this case Type Ia supernovae, which are described in Section 1.3.3) to
their distance. Taken from Kirshner (2004).

H =
ȧ
a

, (1.6)

where the overdot denotes a time derivative. A more recent diagram of the Hubble law is
shown in Figure 1.2. This was compiled from Type Ia supernovae, which will be described
in Section 1.3.3, and is taken from Kirshner (2004). Strong evidence for the implied Big
Bang is supplied by observations of the CMB (Section 1.3.1).

1.1.3. The FLRW Universe

This section provides an overview of some of the mathematics underpinning the standard
model of cosmology. It is named after four of its key contributors: Friedmann, Lemaître,
Robertson and Walker.

In ΛCDM and simple extensions such as wCDM, the Universe is governed by the theory
of general relativity (GR), which describes the relationship between the geometry of the
Universe and its contents. GR provides a near-universal theory of gravity covering both
everyday and cosmological scales (though it notably fails on quantum scales). GR is sum-
marised in the Einstein field equations, which may in fact be written as a single equation
(Einstein 1916),

Gµν + Λgµν =
8πG

c4 Tµν. (1.7)
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1.1. Standard cosmological model

Gµν in Equation (1.7) is the Einstein tensor describing the curvature of spacetime, and Tµν is
the energy–momentum tensor describing the energy density at a given point in spacetime.
gµν is the metric tensor, which describes the geometric and causal structure of spacetime,
and is related to the separation between points in spacetime, which is discussed below.
In Equation (1.7) it multiplies the cosmological constant Λ, which could alternatively be
absorbed into Tµν, where it could also be replaced with a time-varying dark energy contri-
bution to the density. The Einstein field equations are related to the Newtonian theory of
gravity through the classical gravitational constant G.

Distances between points in a homogeneous, isotropic and expanding Universe can be
quantified using the FLRW metric, which decomposes the line element of spacetime ds
into contributions from time dt and space, dΣ,

ds2 = −c2dt2 + a (t)2 dΣ2. (1.8)

The spatial metric is further decomposed, in hyperspherical coordinates, into a radial con-
tribution dχ and an angular contribution dΩ as

dΣ2 = dχ2 + SK (χ)2 dΩ2. (1.9)

χ is the comoving angular distance, defined in terms of the scale factor a as

χ (a) = c
∫ 1

a

da′

a′2H (a′)
. (1.10)

The angular line element dΩ is given in terms of polar and azimuthal contributions dθ and
dφ as

dΩ2 = dθ2 + sin2 (θ)dφ2. (1.11)

SK (χ) in Equation (1.9) is the comoving angular diameter distance, whose value depends
on the curvature of the Universe K. Specifically, it takes different forms in three cases: a
closed Universe with spherical geometry (K > 0), a flat Universe with Euclidean geometry
(K = 0), or an open Universe with hyperbolic geometry (K < 0). The comoving angular
diameter distance in each of these cases is given by

SK (χ) =


K−

1
2 sin

(
K

1
2 χ
)

for K > 0 (closed);

χ for K = 0 (flat);

|K|− 1
2 sinh

(
|K| 12 χ

)
for K < 0 (open).

(1.12)

The spacetime line element in the FLRW metric, ds, can be related to the metric tensor gµν

from Equation (1.7) as
ds2 = gµνdxµdxν, (1.13)
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where dxµ is the infinitesimal displacement in comoving coordinates; that is, spacetime
coordinates defined such that the spatial component remains constant in the expanding
Universe.

It is typical to model the constituents of the Universe as perfect fluids, which are completely
described by their energy density ρ and isotropic pressure P. Under this assumption,
a solution to the Einstein field equations for a homogeneous, isotropic and expanding
Universe governed by the FLRW metric is given by the Friedmann equations (Friedmann
1922, 1924),

H2 =

(
ȧ
a

)2

=
8πG

3
ρ +

Λc2

3
− Kc2

a2 ; (1.14)

ä
a
= −4πG

3

(
ρ +

3P
c2

)
+

Λc2

3
. (1.15)

These two equations can be used to derive a third, the energy conservation equation:

ρ̇ = −3H
(

ρ +
P
c2

)
. (1.16)

Under the assumption that the constituents of the Universe may be modelled as perfect
fluids, the equation of state relating the density ρX and pressure PX for a given constituent
X is

PX = wXρXc2, (1.17)

where wX is the dimensionless equation of state parameter. In this thesis, the symbol w will
be used without any subscript to denote the equation of state parameter for dark energy.
This parameter is discussed further in Section 1.1.4.3.

The energy conservation equation (Equation 1.16) may be used to derive an expression for
the evolution of the density of constituent X:

d ln ρX

d ln a
+ 3 (1 + wX) = 0. (1.18)

When wX is constant, this equation has a solution,

ρX ∝ a−3(1+wX). (1.19)

When a given component is dominant, the resulting evolution of the scale factor as a
function of time may be found by substituting ρX into Equation (1.14). Values of wX for the
different constituents of the Universe and the resulting evolution of the scale factor will be
discussed in Section 1.1.5.
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1.1. Standard cosmological model

1.1.4. Constituents of the Universe

1.1.4.1. Baryonic matter

Baryonic matter is the ordinary matter that makes up what we see on Earth and within the
solar system. The term is commonly used to include not only baryons—particles composed
of three quarks, including protons, neutrons, and their higher-energy counterparts—but
more generally any form of matter as described by the standard model of particle physics.
Today it constitutes around 4.9% of the total energy density of the Universe (Planck Collab-
oration et al. 2020b). Compared to dark matter and dark energy, baryonic matter is much
better understood. Countless high-precision tests of the standard model have been carried
out at particle colliders and elsewhere, with no significant deviations from the theoretical
predictions yet detected (e.g. Erler & Schott 2019, for a review).

However, there are many contradictions between the predictions of the standard model and
observations of the Universe. For example, in addition to its failure to describe dark matter
and dark energy (and gravity), it predicts that there should be an equal amount of matter
and antimatter, which is not observed. Discrepancies such as these continue to motivate a
large amount of active research in particle physics.

1.1.4.2. Dark matter

Several independent forms of observational evidence point towards the existence of some
additional form of matter, constituting around 25.9% of the energy density of the Universe
(Planck Collaboration et al. 2020b). This has come to be known as dark matter, since it does
not interact electromagnetically and cannot be ‘seen’ directly in the traditional sense. It has
only been observed to interact gravitationally, although many theories predict some small
amount of interaction by other means, such as via the weak interaction.

The first evidence for dark matter arrived in the form of an excess in the observed orbital
velocities of stars in nearby galaxies (Kapteyn 1922), and then galaxies themselves in clus-
ters (Zwicky 1933, 1937), compared to the velocities that could be explained by the amount
of visible matter. Without an alternative theory of gravity, these observed galaxy rotation
curves could only be explained by an invisible form of matter—roughly five times as much
as the visible, baryonic matter. An example of a galaxy rotation curve is shown in Fig-
ure 1.3. The data points can only be explained by combining the visible ‘disk’ component
with an invisible dark matter ‘halo’.

More direct evidence for dark matter has been provided by weak lensing mass reconstruc-
tions of galaxy cluster collisions, such as those of the Bullet Cluster. The reconstructed
matter distribution of this cluster was revealed to extend far beyond its visible limits, and
furthermore is inconsistent with a simple modification of gravity at a significance of 8σ

(Clowe, Gonzalez & Markevitch 2004; Clowe et al. 2006). The observations of the Bullet
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Figure 1.3. A galaxy rotation curve taken from van Albada et al. (1985). The data points
can only be explained by combining the visible ‘disk’ component with an invisible dark
matter ‘halo’.

Cluster also demonstrate the collisionless nature of dark matter (Markevitch et al. 2004).

Further evidence for the existence of dark matter comes from observations of the CMB.
Around six times the amount of matter that we observe directly is needed to achieve a good
fit to the ΛCDM model (Planck Collaboration et al. 2020b). The CMB will be discussed
further in Section 1.3.1.

Dark matter is required to be ‘cold’, i.e. sufficiently massive as to move non-relativistically,
in order to explain the observed level of structure in the present-day Universe (Bond, Szalay
& Turner 1982; Blumenthal, Pagels & Primack 1982; Peebles 1982; Blumenthal et al. 1984;
Davis et al. 1985).

However, despite the relative abundance of observational evidence for dark matter, a direct
detection on Earth continues to be elusive. Collider experiments have performed extensive
searches over the past decade, and classes of physical models of dark matter that were not
long ago believed to be likely have now been largely ruled out (Trevisani 2018; Aaboud
et al. 2018; ATLAS Collaboration 2019).
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1.1. Standard cosmological model

1.1.4.3. Dark energy

Almost all of the remaining energy density in the Universe—around 69.1% (Planck Collabo-
ration et al. 2020b)—is believed to be some additional unknown form of energy responsible
for the accelerating expansion of the Universe. This additional form of energy is known as
dark energy.

1.1.4.3.1. Evidence for dark energy

The main evidence for the existence of dark energy comes from the accelerating expansion
of the Universe, which was discovered by precision observations of distant Type Ia super-
novae in the late 1990s (Riess et al. 1998; Perlmutter et al. 1999). Type Ia supernovae will be
discussed further in Section 1.3.3. This accelerating expansion cannot be explained under
GR without a large additional and previously unknown contribution to the total energy
density.

Measurements of CMB anisotropies indicate that the Universe is flat or almost flat (Planck
Collaboration et al. 2020b). Under the ΛCDM model, this cannot be explained by matter
alone, including dark matter, and therefore requires a large contribution from dark energy.
Probes of the large scale structure of the Universe, such as weak lensing, also detect too
little matter for flatness (e.g. DES Collaboration et al. 2022).

1.1.4.3.2. Models of dark energy

Cosmological constant

The mathematically simplest way to account for an additional energy source in GR and
its solutions is with a cosmological constant, Λ. The cosmological constant was first intro-
duced by Einstein in his original descriptions of GR (Einstein 1917) in order to provide a
steady state Universe, which was generally assumed to be the case at the time, when his
equations otherwise predicted a dynamic Universe. After the Universe was discovered to
in fact be expanding, the cosmological constant was assumed to be zero, and Einstein is
alleged to have described its initial inclusion as his “biggest blunder” (O’Raifeartaigh &
Mitton 2018). However, after the accelerating expansion was discovered, the cosmological
constant was reinstated and today forms an essential pillar of the ΛCDM standard model
of cosmology.

The cosmological constant gives a dark energy equation of state parameter w of

w = −1. (1.20)

Physically a cosmological constant corresponds to an intrinsic vacuum energy of space.
Such a vacuum energy is predicted by the standard model of particle physics, but is around
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120 orders of magnitude too large to explain cosmological observations (e.g. Adler, Casey
& Jacob 1995). This is known as the cosmological constant problem, and is one of the major
outstanding questions in fundamental physics.

Quintessence

The term quintessence refers to a proposed new scalar field, many plausible models of
which exist (see Tsujikawa 2013 for a review). Such a field could change over time, such
that the dark energy equation of state parameter w is a function of the scale factor a,

w = w (a) . (1.21)

It is common to Taylor expand Equation (1.21) to linear order about a = 1 to define w0 and
wa as

w (a) = w0 + wa (1− a) , (1.22)

such that

w0 = w (a = 1) ; (1.23)

wa = −
dw
da

(a = 1) . (1.24)

Observations to date are consistent with the values of

w0 = −1; (1.25)

wa = 0 (1.26)

(e.g. Ribeiro 2019, from a combined analysis of CMB anisotropies, baryon acoustic os-
cillations, supernovae and cosmic chronometers), which corresponds to a cosmological
constant.

Modified gravity

It is possible to negate the need for dark energy altogether with suitable modifications
to gravity, which deviate from GR (e.g. Nojiri & Odintsov 2003, 2011; Nicolis, Rattazzi &
Trincherini 2009; Clifton et al. 2012; Nojiri, Odintsov & Oikonomou 2017). Alternatively,
dark energy could exist alongside a modified theory of gravity. However, all observations
to date are consistent with GR, provided that dark energy is included, and some modified
gravity models have been ruled out by recent observations of gravitational waves (Blas
et al. 2016; Vainio & Vilja 2017; Arai & Nishizawa 2018; Battye, Pace & Trinh 2018; Ma &
Yunes 2019). Pulsar timing experiments also place tight constraints on deviations from GR
(Beltrán Jiménez, Piazza & Velten 2016; Shao et al. 2017; Cai et al. 2019; Kramer et al. 2021).
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1.1.4.4. Other constituents

The Universe also contains small amounts of ‘radiation’, totalling less than 1% of the total
energy density. This includes neutrinos, and the CMB, which will be described further in
Section 1.3.1.

1.1.5. Expansion history

The Universe today is dominated by dark energy, but this is a fairly recent development.
Prior to this, the Universe is believed to have gone through several epochs in which differ-
ent components were dominant, each of which will now be described.

1.1.5.1. Inflation

It is believed that the early Universe underwent a short period of rapid expansion, known
as inflation (Guth 1981; Guth & Pi 1982; Starobinsky 1982; Linde 1982, 1983). The inflation-
ary period is thought to have lasted from 10−36 s to 10−33–10−32 s after the Big Bang, during
which the Universe expanded by around 60 e-folds (a factor of 1026) (Planck Collaboration
et al. 2020c). Inflation provides a mechanism to create the seeds for the present-day large-
scale structure of the Universe, by vastly magnifying quantum fluctuations in the early
Universe. The popularity of the theory is also driven by its ability to solve two significant
cosmological problems: the horizon problem and the flatness problem.

The horizon problem is the fact that the CMB is isotropic to within one part in 105, imply-
ing that regions far apart on the sky must have been in thermal equilibrium in the early
Universe, when—in the absence of inflation—they could have never been in causal contact.
Invoking inflation allows seemingly distant parts of the CMB sky to have been in causal
contact prior to inflationary expansion.

The flatness problem arises from the observation that the present-day Universe is extremely
close to flat (Planck Collaboration et al. 2020b). It can be shown from Equations (1.14)–(1.16)
that flatness is an unstable equilibrium, in that any perturbation from flatness should grow
over time. Therefore, the fact that the Universe is extremely close to flat today implies that
any deviation from flatness in the early Universe must have been infinitesimal—of order
10−55 or smaller (Guth 1981). The lack of an explanation—in the absence of inflation—
for this suspiciously convenient value is a type of ‘fine-tuning’ problem. Inflation provides
an explanation, because such a rapid expansion of the Universe strongly suppresses any
previous cosmic curvature and leaves a Universe sufficiently flat to explain current obser-
vations.

Inflation is also able to predict the observed value of the scalar spectral index ns (Bardeen,
Steinhardt & Turner 1983; Planck Collaboration et al. 2020c). (The scalar spectral index and
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other parameters of the ΛCDM model are discussed in Section 1.1.7.) Physically, inflation
can be explained by a new scalar ‘inflaton’ field, many plausible models of which exist (e.g.
Baumann & McAllister 2015, for a review). Future CMB polarisation experiments hope to
detect direct evidence of the inflaton field, which would confirm the theory of inflation and
constrain physical models (see Section 1.3.1).

1.1.5.2. Radiation domination

The Universe subsequently underwent a period of radiation domination, during which the
dominant components were relativistic photons and neutrinos. Radiation is modelled as a
gas, exerting a positive pressure in each of three spatial dimensions, giving it an equation
of state parameter wr of

wr =
1
3

. (1.27)

Inserting this into Equation (1.19) gives the evolution of the radiation density ρr as

ρr ∝ a−4. (1.28)

When radiation is dominant, the first Friedmann equation (Equation 1.14) then becomes

H2 ∝ a−4. (1.29)

Using the definition of the Hubble parameter H in terms of the time derivative of the scale
factor (Equation 1.6), we can obtain a solution for the scale factor as a function of time in
the epoch of radiation domination,

a ∝ t1/2. (1.30)

1.1.5.3. Matter domination

The period of radiation domination was followed by a period of matter domination. Matter
is pressureless, and therefore its equation of state parameter wm is

wm = 0, (1.31)

giving the evolution of the matter density ρm as

ρm ∝ a−3. (1.32)

Comparing this to Equation (1.28) for radiation explains why matter eventually came to
dominate over radiation, since radiation was more heavily diluted by the expansion of the
Universe. This effect can be understood in terms of redshift: as the Universe expanded,
radiation is redshifted, decreasing its energy by an additional factor 1/a.

In the epoch of matter domination, the Hubble parameter evolves as
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H2 ∝ a−3, (1.33)

which gives the evolution of the scale factor as

a ∝ t2/3. (1.34)

Despite the faster growth of the scale factor during matter domination, it was in this period
that structure was most able to form. Structure formation was strongly suppressed in the
period of radiation domination by the high density of relativistic particles.

1.1.5.4. Dark energy domination

The Universe is now in a period of dark energy domination. The dark energy equation of
state parameter w is either exactly or approximately equal to −1, depending on the model
(see Section 1.1.4.3). Inserting a value of w = −1, corresponding to a cosmological constant
Λ, into Equation (1.19) gives

ρΛ ∝ 1, (1.35)

i.e. a constant density. This is how dark energy has come to eventually dominate, as the
density of matter and radiation is diluted by the expanding Universe. For dark energy
domination, Equation (1.14) gives that

H2 =
Λc2

3
, (1.36)

which has an exponential solution for the scale factor:

a ∝ exp

[√
Λ
3

ct

]
. (1.37)

Under dark energy domination, therefore, the Universe undergoes exponential growth,
which suppresses structure formation. This means that the growth of structure as a func-
tion of redshift z (or equivalently, the scale factor a) depends heavily on the nature of dark
energy and its potential time evolution. Observational probes of structure growth and the
recent expansion history of the Universe are therefore able to potentially place tight con-
straints on dark energy models via their predictions of w (a).

1.1.6. Density parameters

It is convenient to define the critical density ρc, as the density required for a flat Universe,
obtained by setting K = 0 and Λ = 0 in Equation (1.14):

ρc =
3H2

8πG
. (1.38)
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For each component X of the Universe, we may then define the density parameter Ωx,

Ωx =
ρx

ρc
. (1.39)

We may include the curvature contribution to the Friedmann equation in this form too by
defining it as a density ρK,

ρK = − 3Kc2

8πGa2 , (1.40)

giving the curvature density parameter ΩK,

ΩK =
ρK

ρc
= − Kc2

a2H2 . (1.41)

Including a general dark energy contribution, the Friedmann equation (Equation 1.14) may
then be written in form which makes explicit the way in which the different components
evolve over time:

H2

H2
0
=

Ωr

a4 +
Ωm

a3 +
ΩK

a2 +
ΩDE

a3(1+w)
. (1.42)

If dark energy is a cosmological constant, then the last term in Equation (1.42) becomes
simply ΩΛ, with

ΩΛ =
Λc2

3H2 . (1.43)

1.1.7. Free parameters

The minimal ΛCDM model has six free parameters. There is not a single unique parame-
terisation, but a typical choice is the following (e.g. Di Valentino, Melchiorri & Silk 2015):

• The Hubble parameter H0, which may alternatively be described using the dimen-
sionless Hubble parameter h,

h =
H0

100 km s−1 Mpc−1 . (1.44)

• Ωbh2, where Ωb is the energy density of baryons as a fraction of the critical density.

• Ωch2, where Ωc is the dark matter energy density as a fraction of the critical density.

• The amplitude of primordial scalar perturbations As.

• The scalar spectral index ns, describing the scale dependence of primordial perturba-
tions.

• The optical depth to reionisation τ: a physical description of the redshift of the epoch
of reionisation, which was a period in the evolution of the Universe when the first
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stars and other luminous sources were formed, and were able to ionise hydrogen in
the intergalactic medium.

Other parameters may be derived from these six, and vice versa. The parameters that are
constrained by a particular experiment will depend on the cosmological probe in question.
Two derived parameters that are of interest in this thesis are:

• Ωm, the total matter density, given by

Ωm = Ωc + Ωb. (1.45)

• σ8, the amplitude of present-day matter fluctuations on scales of 8 h−1 Mpc. This may
be constrained directly by probes of large scale structure, but can also be predicted
by the ΛCDM model given the free parameters listed above.

The ΛCDM model may be extended by adding additional parameters. One extension is
of particular interest in this thesis, which is the extension to time-varying dark energy via
a dark energy equation of state parameter that depends on the scale factor as w (a). As
introduced in Equations (1.22)–(1.24), this may be Taylor expanded to linear order to define
w0 and wa, which are the two cosmological parameters of greatest interest to this thesis.
The extension to ΛCDM to include w0 and wa is often called wCDM.

Current constraints on the ten parameters listed above are given in Table 1.1. These are
taken from Planck Collaboration et al. (2020b), where they are derived from CMB tempera-
ture, polarisation and lensing, combined with baryon acoustic oscillations and, for the dark
energy parameters w0 and wa, Type Ia supernovae. Each of these probes is described in
Section 1.3.

1.2. Outstanding questions

The previous section has described in some detail the current best understanding of the
nature of the Universe. However, many questions remain outstanding. Below is a brief
summary of a selection of key open questions in cosmology.

• Nature of the constituents. As described in Section 1.1.4, around 95% of the en-
ergy density of the Universe consists of dark energy and dark matter. However, the
physical nature of both of these components remains unknown, along with an expla-
nation for why the cosmological constant does not correspond to the vacuum energy
predicted by the standard model of particle physics.

• Modified gravity. Is GR correct, or is a modified theory of gravity required?

• Inflation. What is the physical nature of the mechanism responsible for inflation?
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Table 1.1. Current constraints on the ten cosmological parameters described in Section 1.1.7.
Taken from Planck Collaboration et al. (2020b) Tables 2 and 6, where they are derived from
CMB temperature, polarisation and lensing, combined with baryon acoustic oscillations
and, for w0 and wa, Type Ia supernovae.

Parameter Best-fit value ± 68% limits

H0

[
km s−1 Mpc−1

]
67.66± 0.42

Ωbh2 0.02242± 0.00014

Ωch2 0.11933± 0.00091

109As 2.105± 0.030

ns 0.9665± 0.0038

τ 0.0561± 0.0071

Ωm 0.3111± 0.0056

σ8 0.8102± 0.0060

w0 −0.957± 0.080

wa −0.29+0.32
−0.26

• Tensions in measured parameters. It is common for different experiments to infer
values of cosmological parameters that are not in perfect agreement. However, two
particular discrepancies have arisen between experiments measuring the late-time
Universe and the early Universe. The most significant of these is the tension in the
Hubble parameter H0, between local measurements of Type Ia supernovae calibrated
by Cepheid variable stars using the distance ladder method (which will be described
in Section 1.3.3), and values inferred from CMB observations conditioned on the
ΛCDM model. This tension between early and late time measurements is illustrated
in Figure 1.4. This figure is taken from Di Valentino et al. (2021), since which the
tension has been claimed to have reached the 5σ significance level (Riess et al. 2022).
The second tension of interest is in the parameter S8, defined as1

S8 = σ8

[
Ωm

0.3

]0.5

, (1.46)

between local measurements using weak lensing compared to those inferred from
CMB observations. This tension is currently claimed to stand at the 2–3σ level based
on one recent weak lensing analysis from the Kilo-Degree Survey (Heymans et al.
2021), although better agreement with the CMB is found by the Dark Energy Sur-
vey (DES Collaboration et al. 2022). (Both of these current weak lensing surveys

1 The power of 0.5 in Equation (1.46) is sometimes varied slightly depending on the best fit to the data, such
as to 0.48 in Rhodes, Refregier & Groth (2001).
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will be described in Section 1.4.3.) While the S8 tension may just be a statistical
fluke, or the result of undiagnosed systematic errors, the H0 tension has persisted
and strengthened despite being repeatedly examined with increasing care (e.g. Riess
et al. 2018a,b,c, 2020, 2021, 2022; Burns et al. 2018; Yuan et al. 2019; Reid, Pesce &
Riess 2019; Macaulay et al. 2019; Soltis, Casertano & Riess 2021; Anand et al. 2022;
Romaniello et al. 2022), and a resolution may require new physics (Di Valentino et al.
2021).

1.3. Observational probes

There are a number of observational methods by which our current best understanding
of the Universe, as described in Section 1.1, has been developed, and using which we
hope to answer some of the remaining outstanding questions such as those summarised in
Section 1.2. A selection of these methods are described in this section.

1.3.1. Cosmic microwave background

Observations of the cosmic microwave background (CMB) have perhaps offered more in-
sight into the nature of the Universe than any other method. The CMB consists of photons
from the early Universe that have been redshifted over time and now reside in the mi-
crowave regime, corresponding to a temperature of around 2.7 K.

The origin of the CMB can be traced back to the first ∼ 380 000 years after the Big Bang,
during which the Universe was sufficiently hot that it was impossible for atoms to form
without being ionised, and high-energy photons existed in thermal equilibrium with pro-
tons and electrons. As the Universe expanded, it cooled, and eventually the photons had
insufficient energy to ionise atoms, and the first hydrogen atoms were born. This period,
called recombination, occurred at a redshift of z ∼ 1100.

The CMB contains small anisotropies in both its temperature and polarisation, of order one
part in 105 and 106 respectively, which are understood to be the precursor to the large-
scale structure in the present-day Universe. (Baryon acoustic oscillations, discussed in
Section 1.3.4 below, provide strong evidence for this link between the early and late time
Universe.) The scale dependence of these anisotropies, captured by the power spectrum
(see Chapter 2), are predicted by the ΛCDM model and depend closely on its free pa-
rameters. As a result, observations of the CMB are able to constrain many cosmological
parameters, such as the amount of baryonic matter, dark matter, dark energy and curvature
in the Universe, as well as its age and properties of primordial perturbations.

The CMB was proposed and discovered—initially by accident—in the mid-20th century
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Figure 1.4. Tension in measurements of the Hubble parameter H0 between early (indirect)
and late time (direct) observations. Figure taken from Di Valentino et al. (2021). Error bars
are 68% credible intervals. The blue band corresponds to the result from Riess et al. (2020)
and the pink to those from Planck Collaboration et al. (2020b).
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Figure 1.5. Map of CMB temperature anisotropies measured by the Planck satellite (Planck
Collaboration et al. 2020a). Red colours are warmer than average and blue colours cooler,
both by up to 300 µK.

(Gamow 1948a,b; Alpher & Herman 1948a,b; Doroshkevich & Novikov 1964; Penzias &
Wilson 1965; Dicke et al. 1965). A series of satellite missions in the late 20th and early 21st
centuries made increasingly precise observations, free from interference from terrestrial ra-
dio sources. The first was the NASA Cosmic Background Explorer (COBE) mission, which
operated from 1989 to 1993 and confirmed that the CMB radiation has an almost perfect
blackbody spectrum, consistent with theoretical predictions (Fixsen et al. 1996). It was
also able to measure the intrinsic anisotropies for the first time (Bennett et al. 1996). The
anisotropies were measured to much higher precision with the subsequent NASA Wilkin-
son Microwave Anisotropy Probe (WMAP) mission, which operated from 2001 to 2010 and
was able to resolve smaller scale features in the CMB temperature power spectrum. Finally,
the ESA Planck mission, which operated from 2009 to 2013, achieved higher resolution still,
as well as measuring anisotropies in the polarisation of the CMB. The map of CMB temper-
ature anisotropies from the Planck mission is shown in Figure 1.5. The final cosmological
analysis of Planck data in Planck Collaboration et al. (2020b) stands as the current pinnacle
of precision cosmology, achieving sub-percent precision in many cosmological parameters.

Current and future CMB experiments such as the South Pole Telescope (Carlstrom et al.
2011), the Atacama Cosmology Telescope (Swetz et al. 2011), the POLARBEAR experiment
(Kermish et al. 2012), the Simons Observatory (Ade et al. 2019), CMB-S4 (Abazajian et
al. 2016) and LiteBIRD (Hazumi et al. 2019) have science goals including the detection
of direct evidence of inflation via the measurement of primordial B-mode polarisation
(Kamionkowski & Kovetz 2016) and the measurement of spectral distortions, which probe
the thermal history of the Universe (Chluba et al. 2019, 2021).
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Figure 1.6. A strong lensing event captured by the Hubble Space Telescope, in which a
distant blue galaxy is lensed by a foreground red galaxy. Image credit: ESA/Hubble &
NASA.

1.3.2. Gravitational lensing

Gravitational lensing is the name given to the distortion of light by gravity. It was predicted
by GR (Einstein 1916, 1936), in which gravity is modelled as a consequence of the distortion
of spacetime by an uneven distribution of mass, which has the effect of not only bending the
paths of massive objects but also of light. The prediction was confirmed soon afterwards,
with measurements of the deflection of the images of stars by the gravity of the Sun during
a solar eclipse (Dyson 1917; Dyson, Eddington & Davidson 1920).

Occasionally the alignment of a source and lens object is such that strong lensing occurs,
in which the image of the source is distorted so strongly that the lensing effect is obvious
without the need for any statistical analysis. An example is shown in Figure 1.6, in which
the image of a distant blue galaxy has been strongly lensed by a foreground red galaxy.
Analysis of strong lensing events like this can help to constrain models of dark matter and
gravity, since the precise distortion of the source image depends sensitively on these factors
(e.g. Vegetti et al. 2014; Li et al. 2016; Hezaveh et al. 2016; Gilman et al. 2020; Andrade et al.
2022). Strong lensing observations have also been used to constrain the Hubble parameter
H0, because strong gravitational fields not only distort images but also the time taken for
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light to pass through the field (e.g. Bonvin et al. 2017).

Strong lensing is rare, but essentially every line of sight on the sky is lensed weakly to
some degree. This means that observations of distant galaxies are able to trace the large
scale structure of the Universe through weak lensing. Weak gravitational lensing is the
main observational probe of cosmology considered in this thesis, and is described in more
detail in Section 1.4.

1.3.3. Type Ia supernovae

Type Ia supernovae are the end-life stage of binary star systems in which one or both stars
is a white dwarf. Accretion onto the white dwarf from its companion eventually takes
it beyond a certain threshold mass, which triggers runaway nuclear fusion leading to a
supernova explosion.

The usefulness of Type Ia supernovae to cosmology lies in the fact that this fixed critical
mass—around 1.44 solar masses—leads to all Type Ia supernovae exploding at the same
peak brightness. Such an object of known brightness is known as a standard candle, and
allows the calculation of the distance to the object by comparison with the apparent bright-
ness from Earth. Although Type Ia supernovae are thought to all have the same intrinsic
peak brightness, this brightness is not itself predicted by theory. This necessitates the cal-
ibration of the brightness using observations of supernovae whose distance is known by
some other means. A common method involves observations of Cepheid variables in the
same galaxies as the supernovae. Cepheid variables are pulsating stars, whose pulsation
period is related to their brightness, such that the same method can be used to determine
their distance by measuring their pulsation period. The relationship between period and
brightness has to itself be calibrated, using parallax measurements of nearby Cepheids.
This method of repeated calibration to obtain reliable distance measurements is known as
the cosmic distance ladder.

Observations of distant Type Ia supernovae were used to detect cosmic acceleration (Riess
et al. 1998; Perlmutter et al. 1999), and are still regularly used for determining the Hubble
constant H0 (Dhawan, Jha & Leibundgut 2018; Burns et al. 2018; Macaulay et al. 2019;
Taubenberger et al. 2019; Khetan et al. 2021; Riess et al. 2021, 2022).

1.3.4. Baryon acoustic oscillations

Baryon acoustic oscillations are a particular scale dependence in the large-scale matter
distribution in the present-day Universe. They arise from acoustic waves in the early Uni-
verse prior to recombination, which were formed from the counteracting forces of gravity
and radiation pressure surrounding overdense regions of the primordial plasma. In this
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period, baryons and photons were coupled, but following recombination the photons free-
streamed away to form the CMB, relieving the radiation pressure and leaving the baryons
essentially frozen in shells of a particular size. This size is given by the sound horizon
at the time of recombination, which can be predicted by theory and has been confirmed
to high precision by CMB observations (Planck Collaboration et al. 2020a). These shells
evolved gravitationally to form a distinct signal in the late-time matter distribution in the
Universe. Measurements of the baryon acoustic oscillation signal in large-scale structure
provide a clear link between scales in the early and late Universe, while measurements of
the signal as a function of redshift directly probe the expansion history of the Universe.
This defined scale is known as a standard ruler, by analogy with standard candles such as
Type Ia supernovae described in Section 1.3.3 above.

Baryon acoustic oscillations have been detected in the past two decades by galaxy surveys
including the Sloan Digital Sky Survey (SDSS; Eisenstein et al. 2005; Percival et al. 2010),
the 2dF Galaxy Redshift Survey (2dFGRS; Cole et al. 2005), the 6dF Galaxy Survey (6dFGS;
Beutler et al. 2011), the WiggleZ Dark Energy Survey (Blake et al. 2011; Kazin et al. 2014)
and the SDSS (extended) Baryon Oscillation Spectroscopic Survey (BOSS/eBOSS; Anderson
et al. 2012, 2014; Delubac et al. 2015; de Sainte Agathe et al. 2019; Blomqvist et al. 2019).

1.3.5. Redshift-space distortions

Redshift-space distortions are distortions of galaxy positions in redshift space relative to
their positions in real space, due to additional contributions to their redshift beyond the
dominant Hubble expansion. These can be due to orbital Doppler shifts, or general rel-
ativistic gravitational redshift. Observations of redshift-space distortions can be used to
constrain models of cosmological structure formation (Percival & White 2009; Macaulay,
Wehus & Eriksen 2013; Howlett et al. 2015) as well as testing GR and constraining theories
of modified gravity (Beutler et al. 2014; Percival et al. 2011; Raccanelli et al. 2013).

1.3.6. Gravitational waves

Gravitational waves are travelling distortions of spacetime emanating from accelerating
masses. They are predicted by GR (Einstein 1916; Einstein 1918) but were only recently
directly detected for the first time, by the Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) and the Virgo Interferometer (Abramovici et al. 1992; Accadia et al. 2012;
Abbott et al. 2016). Gravitational wave detections are useful as a test of GR, and have al-
ready imposed significant constraints on modified gravity models (Blas et al. 2016; Vainio
& Vilja 2017; Arai & Nishizawa 2018; Battye, Pace & Trinh 2018; Ma & Yunes 2019). Gravi-
tational waves resulting from black hole or neutron star mergers may be used to constrain
cosmic expansion if accompanied by an electromagnetic detection, since the gravitational
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wave signal can be used to deduce distance while the electromagnetic signal provides red-
shift, thus directly constraining the Hubble constant H0 via Equation (1.5) (Abbott et al.
2017). Future gravitational wave observatories such as the Kamioka Gravitational Wave
Detector (KAGRA; Akutsu et al. 2019) and the space-based Laser Interferometer Space
Antenna (LISA; Amaro-Seoane et al. 2017) may be able to probe inflation by detecting a
gravitational wave background from the early Universe (Bartolo et al. 2016; Caprini et al.
2019; Maggiore et al. 2020; Kawamura et al. 2021).

1.3.7. Hydrogen 21 cm line

The Hydrogen 21 cm line is an emission line caused by a spin-flip in neutral hydrogen, be-
tween two states with an energy difference of around 5.9µeV, leading to an emission wave-
length of around 21.1 cm. Since the distribution of neutral hydrogen follows the large-scale
structure of the Universe, the 21 cm line can be used a probe of the large-scale structure.
In a low-redshift context, this can have similar uses to other probes of large-scale struc-
ture such as galaxy surveys; for example, to constrain models of dark energy and modified
gravity (Hall, Bonvin & Challinor 2013; Bull et al. 2015). However, much attention is fo-
cused on high-redshift observations of the 21 cm line, since it is the only known way to
probe the ‘dark ages’ between recombination and reionisation. This is an important period
of structure growth in the Universe, during which the first stars and galaxies were formed.
High-redshift 21 cm observations will probe this early growth of structure, which should
tightly constrain the properties of dark matter as well as potentially revealing signals from
the early Universe (Furlanetto, Peng Oh & Briggs 2006; Pritchard & Loeb 2012).

Measurements of the 21 cm line are challenging due to the faintness of the signal and inter-
ference from other radio sources, both terrestrial and astrophysical. However, it has been
estimated that future radio observatories such as the Square Kilometre Array (SKA; see
Section 1.4.5) will be sufficiently sensitive to measure the power spectrum of the 21 cm line
at the epoch of reionisation, provided foreground sources are sufficiently well understood
(Pober et al. 2014).

1.4. Weak gravitational lensing

Weak gravitational lensing is the main observational probe of cosmology considered in this
thesis. This section gives a qualitative description of weak lensing as a cosmological probe,
while some of the more mathematical aspects are introduced in Chapter 2.

As discussed in Section 1.3.2, light paths may be distorted by passing through gravitational
fields. This means that in principle, the light observed in any direction on the sky has
been subtly distorted by the mass distribution between the source and the observer. This
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offers particular value when applied to distant galaxies: the shape of each galaxy is subtly
distorted by everything along the line of sight from the galaxy to the observer on Earth.
For cosmologically distant galaxies with redshifts up to z ∼ 1–2, there is potentially a large
amount of matter along the line of sight to contribute to this distortion.

In principle, if the undistorted shape of a galaxy were known, it could be compared with
the observed shape to infer the projected mass distribution to the galaxy. In practice, the
intrinsic shape of a specific individual galaxy is unknown, but progress may be made with
a statistical treatment of a large number of galaxies. If, to first order, we assume that
galaxies are oriented randomly with no preferential alignment (which is not quite true
in practice; see the section on intrinsic alignments in Section 1.4.2), then we can look out
for a preferred alignment of a large number of galaxies in a particular part of the sky to
uncover the projected mass distribution in that region. Repeating this process over the
whole sky can probe the entire projected large-scale structure of the Universe, out to the
limiting redshift of the survey. Weak gravitational lensing by the large-scale structure of
the Universe is known as cosmic shear.

The scientific value of a weak lensing analysis can be increased further using the tech-
nique of tomography: splitting source galaxies into bins depending on their redshift. This
gains two additional sources of information: first, redshift corresponds to distance, which
introduces three-dimensional information about the large-scale structure. Second, redshift
corresponds to time, which introduces information amount the late-time evolution of struc-
ture. This is why weak lensing is such a promising probe of dark energy: as discussed in
Section 1.1.5.4, the evolution of structure in the recent Universe depends heavily on the na-
ture of dark energy, and specifically its equation of state parameter w (a). Weak lensing
also probes everything to do with matter, and therefore is a valuable tool to constrain the
properties of dark matter. Its unique advantage relative to other probes of large scale struc-
ture such as galaxy clustering is that it only depends on mass distributions and the lensing
theory predicted by GR, and not on additional factors such as galaxy bias.

1.4.1. Combination with galaxy clustering

It is common to combine weak lensing and galaxy clustering analyses. Galaxy clustering
is the statistical analysis of the positions of galaxies on the sky, often as a function of
redshift, which—similar to weak lensing—traces the large-scale structure of the late-time
Universe. Since weak lensing necessarily requires measuring the shapes and positions
of large numbers of galaxies, galaxy clustering may also be included in the analysis for
relatively little additional work.

The advantage of combining weak lensing and galaxy clustering data lies in their respec-
tive challenges and sources of systematic error. Dominant sources of systematic uncertainty
in weak lensing analyses such as shape estimation and intrinsic alignments, both of which
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are discussed in Section 1.4.2 below, do not apply to galaxy clustering, while model un-
certainties in the relationship between the positions of galaxies relative to their local dark
matter distribution are irrelevant to weak lensing. Combining the two types of data can
therefore reduce the importance of these sources of systematic error, while increasing the
statistical power of the analysis (e.g. Abbott et al. 2018).

Combined weak lensing and galaxy clustering analyses typically also include the cross-
correlation of galaxy positions and shapes, known as galaxy-galaxy lensing. As well as
probing the evolution of large-scale structure, galaxy-galaxy lensing offers valuable insight
into galaxy evolution (e.g. Zacharegkas et al. 2022).

1.4.2. Challenges in weak lensing

Weak lensing analyses are fraught with many challenges and sources of systematic error.
Some of the most significant of these are now discussed.

Intrinsic alignments

It is not necessarily safe to assume that all the source galaxies in a weak lensing analysis
are randomly oriented prior to any lensing. Tidal forces during galaxy formation can lead
to galaxies being aligned to their local large-scale dark matter structure. This leads to a
preferential alignment among physically nearby galaxies, which could be misinterpreted
as a lensing signal. Additionally, a foreground galaxy could be intrinsically aligned to
its local large-scale structure, which lenses a background galaxy, also causing a spurious
signal—this time an anti-correlation. Both effects have been measured in real data (Brown
et al. 2002; Hirata & Seljak 2004; Joachimi et al. 2011; Mandelbaum et al. 2011; Singh,
Mandelbaum & More 2015).

The effect of intrinsic alignments may be mitigated in broadly one of two ways: either by
downweighting certain nearby galaxy pairs (Heymans & Heavens 2003; Heymans et al.
2004; Joachimi & Schneider 2008) or by modelling the effect directly (Bridle & King 2007;
Schneider & Bridle 2010; Blazek, Vlah & Seljak 2015; Blazek et al. 2019; Fortuna et al. 2021;
Samuroff, Mandelbaum & Blazek 2021; Harnois-Déraps, Martinet & Reischke 2022). Since
the processes that cause intrinsic alignments are not well understood, such models typically
involve several free parameters which must be marginalised over to incorporate the model
uncertainty into cosmological parameter constraints (e.g. Joachimi & Bridle 2010; Troxel &
Ishak 2015; Amon et al. 2022).

Redshift determination

In an ideal scenario, the redshift of each galaxy in a weak lensing analysis would be de-
termined using spectroscopy: measuring the full spectrum of the galaxy, identifying key
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features with known rest-frame wavelengths and comparing to their observed wavelengths
to determine the redshift with high confidence. However, the galaxies in a real weak anal-
ysis are too numerous and too faint to determine spectroscopic redshifts for all but a small
fraction of the sample. Instead, photometric redshifts are used: galaxy flux is measured
in a few different bands, and these measurements are used to estimate the redshift of the
galaxy. This is a necessary but highly uncertain method, which has the potential to intro-
duce serious biases into cosmological results if not properly treated (Sun et al. 2009; Hearin
et al. 2010). The optimal treatment of photometric redshifts and the reduction of potential
induced biases are significant areas of active research within weak lensing (D’Isanto & Pol-
sterer 2018; Graham et al. 2018; Bilicki et al. 2018; Pasquet et al. 2019; Amaro et al. 2019;
Leistedt et al. 2019; Boucaud et al. 2020; Wright et al. 2020; Schmidt et al. 2020; Schuldt
et al. 2021; Henghes et al. 2021; Cordero et al. 2022; Lima et al. 2022; Rau et al. 2022). In
practice, much uncertainty remains, and it is therefore still necessary to marginalise over
many nuisance parameters describing photometric redshift uncertainty in a real analysis
(e.g. Heymans et al. 2021; DES Collaboration et al. 2022).

Shape determination

There are several challenges to determining galaxy shapes sufficiently accurately and pre-
cisely to detect a cosmic shear signal, which is an effect of order per cent. One such
challenge is the point spread function (PSF) of the telescope, which must be known to a
very high precision in order to avoid misinterpreting its effect as a shear signal (Kuijken
1999; Jarvis & Jain 2004; Rhodes et al. 2007; Rowe 2010; Chang et al. 2012; Lu et al. 2017;
Eriksen & Hoekstra 2018; Zhang, Mandelbaum & The LSST Dark Energy Science Collabo-
ration 2022). Another is overlapping galaxies on the sky, known as blending, which is an
inevitable consequence of the large numbers of galaxies included in weak lensing analyses.
Mistakenly identifying two overlapping galaxies as a single galaxy can cause biases, but
so too can naively removing galaxies identified as overlapping, since this would create a
selection bias against higher density regions (Dawson et al. 2016; Hoekstra, Kannawadi &
Kitching 2021; Gaztanaga et al. 2021; Sanchez et al. 2021; Melchior et al. 2021; Nourbakhsh
et al. 2022). A third class of challenges in shape determination is detector systematics,
such as charge transfer inefficiency (Rhodes et al. 2010) and the brighter-fatter effect (Wal-
ter 2015; Gilbertson, Nomerotski & Takacs 2017; Coulton et al. 2018; Rowlands, Midwinter
& Warner 2018; Freudenburg et al. 2020).

Modelling of non-linear scales

Regardless of how accurately and precisely observational measurements can be made, final
cosmological results are still limited by the ability to model all physical effects reliably.
A particular challenge in this regard lies in the modelling of small physical scales. The
growth of structure on such scales and the effect of astrophysical feedback processes are
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poorly understood and difficult to model. There is disagreement between different models,
and between model predictions and simulations (Casarini et al. 2011; Schneider et al. 2016;
Giblin et al. 2019; Bose, Koyama & Winther 2019; Bose et al. 2020). This is a highly active
area of ongoing study, and is likely to limit the scales at which future weak lensing data
can be analysed reliably (Huterer & Takada 2005; Jing et al. 2006; van Daalen et al. 2011;
Semboloni et al. 2011; Semboloni, Hoekstra & Schaye 2013; Zentner et al. 2013; Mohammed
et al. 2014; Eifler et al. 2015; MacCrann et al. 2017; Copeland, Taylor & Hall 2018; Huang,
Addison & Bennett 2019; Huang et al. 2021; Martinelli et al. 2021). Choosing such scale
cuts carefully can isolate well-understood scales while extracting maximal cosmological
information (Kitching & Taylor 2011; Taylor, Bernardeau & Kitching 2018; Deshpande,
Taylor & Kitching 2020; Taylor, Bernardeau & Huff 2021; Taylor et al. 2021).

Cosmic variance

Cosmic variance describes the principle that the value of any cosmological observable mea-
sured from Earth is just one sample from the distribution of this observable over the entire
Universe, which of course extends far beyond the most distant galaxies in a weak lens-
ing survey (Kamionkowski & Loeb 1997; Wiltshire 2007; Driver & Robotham 2010; Moster
et al. 2011). In practice, what this means is that even given perfect knowledge of both the-
ory and experiment, the value of a cosmological observable cannot be predicted exactly; it
is instead given by a probability distribution. In some ideal cases, we may know the form
of this distribution, but more generally it is necessary to make approximations. Inverting
the argument above implies that, even with perfect knowledge of an experiment and no
uncertainty of any kind on the observed data, we will necessarily still have non-zero error
bars on the inferred cosmological parameters (e.g. Martel, Shapiro & Weinberg 1998; Taylor
& Kitching 2010).

A consequence of cosmic variance is that it demands a statistical treatment of all observ-
ables in cosmology. As the precision achieved by cosmological experiments increases, so
too must the level of understanding of the statistical properties of all aspects of the data.
Upcoming weak lensing experiments such as Euclid (see Section 1.4.4) will offer an un-
precedented level of precision, due to the extremely large numbers of observed galaxies.
This level of precision demands an equally unprecedented level of refinement in statistical
modelling, which is the main focus of this thesis. The mathematical concepts involved in
this statistical modelling of cosmology, and specifically weak lensing, will be introduced in
Chapter 2.

1.4.3. Observational history of weak lensing

The first successful observations of weak lensing by large scale structure were made in
2000 by four separate teams. Van Waerbeke et al. (2000) used the Canada France Hawaii
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Telescope (CFHT) to survey 191 000 galaxies over an area of 6300 arcmin2, detecting cos-
mic shear on scales from 0.5 to 3.5 arcmin. Wittman et al. (2000) claimed a detection on
scales up to 30 arcmin, from 145 000 galaxies imaged using the Big Throughput Camera
(Wittman et al. 1998) on the 4 m Blanco telescope at the Cerro Tololo Inter-American Ob-
servatory. Detections were also made by Bacon, Refregier & Ellis (2000) using the 4.2 m
William Herschel Telescope (Boksenberg 1985) over a total area of 1792 arcmin2, and by
Kaiser, Wilson & Luppino (2000) using the CFHT with around 120 000 galaxies over an
area of 5400 arcmin2.

More surveys followed in the early 2000s. The first space-based weak lensing survey
was carried out using the Hubble Space Telescope (HST), surveying 4000 galaxies in the
168 arcmin2 HST survey strip using the Wide Field Planetary Camera 2 (Griffiths 1990), to
place constraints on S8 (Equation 1.46) with a one-third error bar at 68% posterior proba-
bility (Rhodes, Refregier & Groth 2001). This was improved upon with the Red-Sequence
Cluster Survey (Gladders & Yee 2001), which covered 53 deg2 using both the CFHT and
Cerro Tololo Inter-American Observatory 4 m telescope and included 1 773 543 galaxies, to
place constraints on S8 with a 27% error at 95% posterior probability (Hoekstra et al. 2002;
Hoekstra, Yee & Gladders 2002). The COMBO-17 survey covered 1.25 deg2 using the La
Silla 2.2 m telescope in Chile (Wolf et al. 2001), including 83 514 galaxies, and further im-
proved constraints on S8 to 12.5% at 68% posterior probability (Brown et al. 2003). Further
surveys followed: 2.1 deg2 using the Suprime-Cam (Miyazaki et al. 2002) at the Subaru
Telescope (Hamana et al. 2003); the Cerro Tololo Inter-American Observatory Survey of 2
million galaxies covering 75 deg2 (Jarvis et al. 2003); the VIRMOS-Descart survey using the
CFHT (Van Waerbeke, Mellier & Hoekstra 2005); and the HST GEMS Survey using the Ad-
vanced Camera for Surveys, including 71 233 galaxies over 795 arcmin2 in the Chandra Deep
Field South with an extremely high galaxy number density of 60 / arcmin2, compared to a
more typical value of ∼ 30 / arcmin2 (Heymans et al. 2005).

The CFHT Lensing Survey (CFHTLenS; Heymans et al. 2012) was the first to have sufficient
numbers of galaxies across a range of redshifts to place constraints on the expansion of the
Universe and its acceleration, via the dimensionless Hubble parameter h and the dark
energy equation of state parameter w. CFHTLenS was an optical imaging survey based
on 154 deg2 of data taken with the CFHT between 2003 and 2009 as part of the CFHT
Legacy Survey. It included around 6 million galaxies with shape and photometric redshift
estimates, across a redshift range from z = 0.5 to 1.3. The survey produced a number of
constraints on cosmology (Kilbinger et al. 2013; Benjamin et al. 2013; Heymans et al. 2013;
Van Waerbeke et al. 2013; Kitching et al. 2014; Fu et al. 2014) including values of h = 0.78±
0.12 and w0 = −1.10 ± 0.15 (68% credible interval) when combined with WMAP data.
There have also been several reanalyses combining CFHTLenS data with other external
data (e.g. More et al. 2015; Blake et al. 2016; Joudaki et al. 2017).

Three large weak lensing surveys are currently ongoing. This generation are known as
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Stage III surveys, based on the definitions set out in the Report of the Dark Energy Task
Force (Albrecht et al. 2006) regarding their ability to constrain dark energy. These are the
Hyper Suprime-Cam Subaru Strategic Program Survey, the Kilo-Degree Survey, and the
Dark Energy Survey.

The Hyper Suprime-Cam Subaru Strategic Program (HSC SSP; Aihara et al. 2018) is a
1400 deg2 optical imaging survey with the HSC (Miyazaki et al. 2012) on the 8.2 m Subaru
Telescope in Hawaii. To date an area of 670 deg2 has been observed and released publicly
(Aihara et al. 2022), but the only cosmological analysis so far is of the Year 1 data, compris-
ing 9 million galaxies over 137 deg2 with a redshift range of z = 0.3–1.5. This obtained a
constraint of S8 = 0.780+0.030

−0.033 at 68% posterior probability (Hikage et al. 2019). No mean-
ingful constraints on dark energy were possible with the first year data alone, but should
be possible with the ∼ 90 million galaxies expected to be observed in the full survey.

The Kilo-Degree Survey (KiDS; de Jong et al. 2013) is a 1350 deg2 optical imaging survey,
carried out with the OmegaCAM (Kuijken 2011) on the VLT Survey Telescope at the Paranal
Observatory in Chile. To date, an area of 1006 deg2 has been observed and released publicly
(KiDS-1000; Kuijken et al. 2019). The main cosmological analysis from this data set included
21 million galaxies over a redshift range of z =0.1–1.2 (Giblin et al. 2021), and obtained a
constraint of S8 = 0.766+0.020

−0.014. As mentioned in Section 1.2, this value is discrepant with
that from Planck CMB data (Planck Collaboration et al. 2020b) at ∼2–3σ (Heymans et al.
2021).

The Dark Energy Survey (DES; Dark Energy Survey Collaboration 2005) is a six-year optical
imaging survey on the Dark Energy Camera (Flaugher et al. 2015) at the Blanco 4 m tele-
scope at the Cerro Tololo Inter-American Observatory in Chile. 300 million galaxies were
observed between 2013 and 2019, but to date only 100 million have been included in pub-
lished cosmological analyses (DES Collaboration et al. 2022). The survey covers 5000 deg2

and includes galaxies out to redshift z = 2. The Year 3 cosmological analysis reports re-
sults of S8 = 0.775+0.026

−0.024 and w = −0.98+0.32
−0.20, from DES data alone. Combined with Planck

CMB data, plus baryon acoustic oscillations, redshift-space distortions and Type Ia super-
novae, they obtain S8 = 0.812± 0.08; w = −1.031+0.030

−0.027; h = 0.687+0.006
−0.007. Some parameter

constraints from the Year 3 analysis are shown in Figure 1.7. To obtain these results, such
methodological advances were necessary that the collaboration published 29 methods pa-
pers for the Year 3 analysis alone (DES Collaboration et al. 2022, and references therein).
The future Year 6 analysis will require still further refinement to reliably extract the maxi-
mum information from all 300 million sources.

1.4.4. Euclid satellite

Euclid (Laureijs et al. 2011) is an upcoming European Space Agency (ESA) satellite mission.
It was born from a combination of two satellite proposals to ESA: the Dark Universe Ex-
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show the constraints from DES data alone, while the blue constraints include Planck CMB
data, baryon acoustic oscillations, redshift-space distortions and Type Ia supernovae. Other
colours show other combinations of data.

50



1.4. Weak gravitational lensing

plorer (DUNE; Refregier & The DUNE Collaboration 2009), a weak lensing mission, and
the Spectroscopic All Sky Cosmic Explorer (SPACE; Cimatti et al. 2009), a spectroscopic
galaxy clustering mission to measure baryon acoustic oscillation and redshift-space dis-
tortions. As such, Euclid is equipped with two complementary instruments: an optical
imager—VIS—and a near-infrared spectrometer & photometer—NISP. Euclid is scheduled
to be launched in early 2023 from the ESA spaceport in French Guiana, into an orbit around
the L2 Sun–Earth Lagrange point.

Over a nominal lifetime of six years, Euclid will survey 15 000 deg2 of the extragalactic sky
(the Euclid Wide Survey; Euclid Collaboration: Scaramella et al. 2022) out to a magnitude
of 26.2 with VIS and 24.5 with NISP. It is expected to survey around 10 billion galaxies
in total, with around 1.5 billion having sufficiently precise shape and photometric redshift
estimates for use in the weak lensing analysis. These source galaxies will have redshifts
out to z ∼ 2, with the majority having z ∼ 1. Around 23 million galaxies will have precise
spectroscopic redshift estimates made using NISP. There will also be three deep fields,
together covering 40 deg2 to form the Euclid Deep Survey, which will reach about two
magnitudes deeper than the wide survey.

The Euclid cosmological analysis will use weak lensing and spectroscopic galaxy cluster-
ing, plus photometric galaxy clustering and its cross-correlation with weak lensing (Euclid
Collaboration: Blanchard et al. 2020). Using these probes, it will determine the late-time
evolution of the large-scale matter distribution in the Universe, and measure baryon acous-
tic oscillations and redshift-space distortions. The main scientific goal is to constrain dark
energy, constraints on which are expected to improve by over an order of magnitude rel-
ative to current Stage III surveys (Harrison et al. 2016). Euclid will also be able to tightly
constrain other parameters of the wCDM model, as shown in Figure 1.8, as well as theories
of modified gravity.

The preparation and initial data analysis is conducted by the Euclid Consortium, which
currently contains over 1400 people in 17 countries globally. After the initial analysis, data
will be released to the public, where it is expected to have a big impact on legacy science.
Potential non-cosmology uses include studies of galactic physics, and stellar physics within
the Milky Way.

1.4.5. Other future surveys

There are at least three other Stage IV weak lensing surveys planned alongside Euclid. The
first is the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST; formerly the
Large Synoptic Survey Telescope; Ivezić et al. 2019). Rubin is a brand new ground-based
observatory in Chile, which will conduct an optical imaging survey of around 18 000 deg2

of the southern sky. It has similar goals to Euclid of constraining dark energy and structure
growth, with some complementary characteristics; for example, Euclid will have higher
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angular resolution, but Rubin will be able to detect fainter objects. This means that there
is great potential from combining data from the two experiments (Rhodes et al. 2017; Guy
et al. 2022). The survey is scheduled to last for ten years, starting in 2023.

Euclid is expected to be joined at the L2 point by the Nancy Grace Roman Space Telescope
(formerly the Wide-Field Infrared Survey Telescope; Spergel et al. 2015), a NASA satellite
currently scheduled to launch by May 2027. It will carry two instruments: a wide-field
optical and near-infrared camera used primarily for a galaxy survey, alongside a corono-
graph for directly imaging exoplanets. Like Euclid and Rubin, the main cosmological aim
of Roman is to constrain dark energy. To do so, it will survey around 2000 deg2 of the ex-
tragalactic sky over a period of around 24 months. It will be sensitive to magnitudes up
to 28.5, so should be able to detect fainter galaxies than Euclid, with a superior angular
resolution due to its larger telescope, to compensate for the smaller survey area.

Finally, the Square Kilometre Array (SKA; Square Kilometre Array Cosmology Science
Working Group et al. 2020) is expected to be able to perform weak lensing analyses using
radio observations. The SKA is a radio array currently under construction in Australia and
South Africa, expected to begin observations in some capacity in the next decade. Use of
the SKA for weak lensing has several key advantages compared to optical surveys such as
Euclid (Harrison et al. 2016): it will probe a broader redshift distribution, potentially out
to z ∼ 6; there is less PSF contamination for radio observations; intrinsic alignments may
be able to be directly measured using radio polarisation (Brown & Battye 2011; Whittaker,
Brown & Battye 2015); and it has the ability to access more of the sky, since the Galaxy is ef-
fectively transparent to radio interferometers. However, the greatest benefits are gained by
cross-correlating radio and optical data, since this not only unlocks additional constrain-
ing power but also significantly reduces the impact of systematic errors, which are largely
different for radio and optical surveys (Camera et al. 2017).
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Chapter 2

Cosmological estimators and likelihoods

This chapter introduces some of the mathematical concepts involved in the later chap-
ters in this thesis. It begins with an introduction to cosmological fields on the sphere in
Section 2.1, before focusing specifically on weak lensing fields and two-point statistics in
Section 2.2. Section 2.3 introduces the pseudo-C` method, which is central to much of the
work presented in this thesis, before the concepts of Bayesian inference and likelihoods are
described in Section 2.4.

This chapter has been compiled from Heavens (2003), Chon et al. (2004), Brown, Castro &
Taylor (2005), Kilbinger et al. (2017), Chisari et al. (2019), and Fang et al. (2020).

2.1. Cosmological fields on the sphere

The sky as viewed from the Earth, or indeed anywhere, may be modelled as a sphere
(though one can only see up to half the sphere from a fixed point on the surface of the
Earth at any given instant). As a result, astronomical observations may be described as
fields on the sphere. In the context of cosmology, cosmic variance (introduced in Chap-
ter 1) means that cosmological fields are modelled as random fields on the sphere. The
cosmological principle requires that these fields are statistically isotropic and translation
invariant, meaning that information is only contained in the dependence on angular scales
and not in orientation or position. Because of this property, it is often most convenient to
work with spherical harmonics. For a general scalar field ψ, the transforms between the
field in angular coordinates ψ (θ, φ) and in spherical harmonics ψ`m are

ψ`m =
∫

dθ
∫

dφ ψ (θ, φ)Y∗`m (θ, φ); (2.1)

ψ (θ, φ) =
∞

∑
`=0

+`

∑
m=−`

ψ`mY`m (θ, φ) , (2.2)

where Y`m (θ, φ) are the spherical harmonics, and ∗ denotes complex conjugation. Equa-
tions (2.1)–(2.2) are the spin-0 spherical harmonic transforms (spin will be discussed in
Section 2.1.1).

Statistical isotropy implies that only the degree ` and not the order m carries cosmological
information. The field is then mostly characterised by the angular power spectrum C`,
defined as the expectation value of the product of spherical harmonic coefficients,
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〈ψ`mψ∗`′m′〉 = δ``′δmm′C
ψ
` , (2.3)

where δ is the Kronecker delta function. If the field ψ follows Gaussian statistics, the
information content of the field is entirely contained within this power spectrum. If the
field is non-Gaussian, higher-order moments are required to fully describe it.

An equivalent, alternative statistic to the angular power spectrum is the angular two-point
correlation function ξ (θ), defined as

〈ψ (Ω)ψ (Ω′)〉 = ξψ (|Ω′ −Ω|) , (2.4)

where Ω and Ω′ are sky coordinates. The correlation function may be obtained from the
power spectrum as

ξ (θ) =
∞

∑
`=0

2`+ 1
4π

C` d`00 (θ), (2.5)

where d`m′m is a Wigner small-d symbol.

Two correlated fields α and β may be described by their cross-power spectrum Cαβ
` ,

〈α`mβ∗`′m′〉 = δ``′δmm′C
αβ
` , (2.6)

or by their cross-correlation function, defined analogously to Equation (2.4). Cross-power
spectra and cross-correlation functions are symmetric such that

Cαβ
` = Cβα

` ; (2.7)

ξαβ (θ) = ξβα (θ) . (2.8)

2.1.1. Spin

Some cosmological fields are scalar, in that they are described by a single value at each
point on the sky. Examples include the CMB temperature anisotropies, or the number
density of galaxies. These fields are spin-0, and obey the above equations.

Some cosmological fields are spin-2, such as the CMB polarisation, and weak lensing shear.
These fields are described by two values at each point, such that they can be modelled as
complex. A general spin-2 field γ can be decomposed into two components γ1 and γ2,

γ = γ1 + iγ2, (2.9)

or into a magnitude |γ| and phase φ,

γ = |γ| e2iφ. (2.10)
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The factor of 2 in Equation (2.10) captures the spin-2 nature of γ. It ensures that the field
is invariant under

φ→ φ + π. (2.11)

The equivalent of Equations (2.1)–(2.2) for spin-2 fields are the spin-2 spherical harmonic
transforms,

2γ`m =
∫

dθ
∫

dφ γ (θ, φ) 2Y∗`m (θ, φ); (2.12)

−2γ`m =
∫

dθ
∫

dφ γ∗ (θ, φ) −2Y∗`m (θ, φ); (2.13)

γ (θ, φ) =
∞

∑
`=0

+`

∑
m=−`

2γ`m2Y`m (θ, φ) ; (2.14)

γ∗ (θ, φ) =
∞

∑
`=0

+`

∑
m=−`

−2γ`m−2Y`m (θ, φ) , (2.15)

where sY`m (θ, φ) are the spin-weighted spherical harmonics.

An alternative decomposition of a spin-2 field that is often more closely related to the
physical origins of the field (such as in both CMB polarisation and weak lensing shear) is
the decomposition into E-mode and B-mode components, as

E`m =
1
2

[
2γ`m + −2γ`m

]
; (2.16)

B`m =
−i
2

[
2γ`m − −2γ`m

]
. (2.17)

It is then possible to transform directly between the spin-2 field and its E- and B-mode
harmonic coefficients as

E`m =
1
2

∫
dθ
∫

dφ
[
γ (θ, φ) 2Y∗`m (θ, φ) + γ∗ (θ, φ) −2Y∗`m (θ, φ)

]
; (2.18)

B`m =
−i
2

∫
dθ
∫

dφ
[
γ (θ, φ) 2Y∗`m (θ, φ)− γ∗ (θ, φ) −2Y∗`m (θ, φ)

]
; (2.19)

γ (θ, φ) =
∞

∑
`=0

+`

∑
m=−`

[
E`m + iB`m

]
2Y`m (θ, φ) ; (2.20)

γ∗ (θ, φ) =
∞

∑
`=0

+`

∑
m=−`

[
E`m − iB`m

]
−2Y`m (θ, φ) . (2.21)

We may then define the E-mode and B-mode power spectra, CEE
` and CBB

` , as
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〈E`mE∗`′m′〉 = δ``′δmm′CEE
` ; (2.22)

〈B`mB∗`′m′〉 = δ``′δmm′CBB
` , (2.23)

as well as the E-B cross-power spectrum CEB
` ,

〈E`mB∗`′m′〉 = δ``′δmm′CEB
` . (2.24)

These may be used to obtain the spin-2 ξ+ and ξ− correlation functions,

ξ± (θ) =
∞

∑
`=0

2`+ 1
4π

[
CEE
` ± CBB

`

]
d`±22 (θ). (2.25)

There may also be cross-power spectra between spin-0 and spin-2 fields,

〈ψ`mE∗`′m′〉 = δ``′δmm′C
ψE
` ; (2.26)

〈ψ`mB∗`′m′〉 = δ``′δmm′C
ψB
` , (2.27)

and a corresponding cross-correlation function ξ×,

ξ× (θ) =
∞

∑
`=0

2`+ 1
4π

[
CφE
` − iCφB

`

]
d`20 (θ). (2.28)

2.2. Weak lensing fields and two-point statistics

2.2.1. Shear field

The main weak lensing target observable field is the shear field, γ. In the weak lensing
regime, the shear is additive to the galaxy ellipticity, such that the observed ellipticity of a
galaxy ε is given by

ε = εint + γ, (2.29)

where εint is the intrinsic galaxy ellipticity. Taking the two-point correlation of the ellipticity
gives

〈εε∗〉 =
〈
(εint + γ) (εint + γ)∗

〉
= 〈εintεint

∗〉+ 〈γγ∗〉+ 〈εintγ
∗〉+ 〈γεint

∗〉 . (2.30)

The first term in Equation (2.30) corresponds to shape noise (see Section 2.2.4), while the
third and fourth correspond to intrinsic alignments, discussed in Chapter 1. In practice all
of these terms contribute to the observed two-point correlation of galaxy ellipticity, but in
an idealised scenario with no intrinsic alignments and where an infinite number of galaxies
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are averaged over, we have
〈εε∗〉 = 〈γγ∗〉 . (2.31)

The shear field is spin-2, so follows the spin-2 spherical harmonic transforms described in
Section 2.1.1 above. It has the important property that the s = +2 and s = −2 spherical
harmonic coefficients are identical,

2γ`m = −2γ`m ≡ γ`m. (2.32)

The shear field at a particular redshift z and a point on the sky Ω, γ (z, Ω), is related to the
lensing potential field φ (z, Ω) via their respective harmonic coefficients, as

γ`m (z, Ω) =
1
2

√
(`+ 2)!
(`− 2)!

φ`m (z, Ω) . (2.33)

The lensing potential is a spin-0 field, which is given by a projection of the three-
dimensional gravitational potential Φ (z, Ω), as

φ (z, Ω) =
2
c2

∫ z

0
dz′

[
SK (r)− SK (r′)

SK (r) SK (r′)

]
Φ
(
z′, Ω

)
, (2.34)

where r = χ (z), and SK (χ) is defined in Equation (1.12).

The gravitational potential is related to the matter overdensity field δ (z, Ω) by the Poisson
equation,

∇2Φ (z, Ω) =
3ΩmH2

0
2a (t)

δ (z, Ω) , (2.35)

where the matter density parameter Ωm, the Hubble constant H0 and the scale factor a (t)
are all defined in Chapter 1. The matter overdensity field δ (z, Ω) is defined in terms of the
density field ρ (z, Ω) as

δ (z, Ω) =
ρ (z, Ω)− ρ

ρ
, (2.36)

where ρ is the mean density.

2.2.2. Galaxy number overdensity field

For galaxy clustering it is simplest to consider the galaxy number overdensity field n (z, Ω),
which is a spin-0 field defined analogously to Equation (2.36) in terms of the galaxy number
density field N (z, Ω) as

n (z, Ω) =
N (z, Ω)− N

N
. (2.37)
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2.2.3. 3×2 pt power spectra

For a general set of galaxy number overdensity fields n (zi) and shear fields γ (zi), we may
form three types of two-point correlations: galaxy–galaxy, shear–shear, and galaxy–shear.
This common set of three two-point correlations is known as 3×2 pt. The six 3×2 pt power
spectra are defined in terms of the spherical harmonic coefficients of the spin-0 number
overdensity fields n`m (zi) and of the E- and B-mode components of the spin-2 shear fields
E`m (zi) and B`m (zi) as (henceforth dropping the angular coordinate Ω for clarity)

〈n`m (z1) n∗`′m′ (z2)〉 = δ``′δmm′C
n(z1)n(z2)
` ; (2.38)

〈E`m (z1) E∗`′m′ (z2)〉 = δ``′δmm′C
E(z1)E(z2)
` ; (2.39)

〈B`m (z1) B∗`′m′ (z2)〉 = δ``′δmm′C
B(z1)B(z2)
` ; (2.40)

〈n`m (z1) E∗`′m′ (z2)〉 = δ``′δmm′C
n(z1)E(z2)
` ; (2.41)

〈n`m (z1) B∗`′m′ (z2)〉 = δ``′δmm′C
n(z1)B(z2)
` ; (2.42)

〈E`m (z1) B∗`′m′ (z2)〉 = δ``′δmm′C
E(z1)B(z2)
` . (2.43)

A consequence of Equation (2.32) is that the B-mode component of the shear field vanishes,
such that

CB(z1)B(z2)
` = 0; (2.44)

Cn(z1)B(z2)
` = 0; (2.45)

CE(z1)B(z2)
` = 0. (2.46)

However, the BB power spectrum will contain a noise contribution when z1 = z2 (see
Section 2.2.4 below). B-modes in the observed ellipticity field can also be introduced by
intrinsic alignments and other systematic effects. In practice, B-mode power spectra are
often tested for consistency with zero as a check of systematics (e.g. Asgari et al. 2019).

The remaining three power spectra CX(z1)Y(z2)
` , where each of X and Y may be n or E, are

given by a projection over the matter distribution,

CX(z1)Y(z2)
` =

2
π

∫ ∞

0

dk
k

k3
∫ z1

0
dz
∫ z2

0
dz′ Pm

(
k, z, z′

)
j` (kχ(z)) j`

(
kχ
(
z′
))

wX
` (k, z)wY

`

(
k, z′

)
,

(2.47)
with respective weight functions for galaxy number overdensity and shear given by
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2.2. Weak lensing fields and two-point statistics

wN
` (k, z) = n (z) b (z) ; (2.48)

wE
` (k, z) =

3H2
0 Ωm

2k2

√
(`+ 2)!
(`− 2)!

(1 + z)
cH (z)

∫ ∞

z
dz′ n

(
z′
) χ (z′)− χ (z)

χ (z′) χ (z)
, (2.49)

where additional effects such as redshift-space distortions, magnification and intrinsic
alignments have been neglected. j` are the spherical Bessel functions of order `, n (z) is
the normalised redshift distribution of galaxies in the survey, b (z) is the linear galaxy bias
such that n (z) = b (z) δ (z), and the matter distribution is described by the matter power
spectrum Pm (k, z, z′), defined as〈

δ̃ (k, z) δ̃∗
(
k′, z′

)〉
= (2π)3 δD (k− k′) Pm

(
|k| , z, z′

)
, (2.50)

where δ̃ (k, z) is the Fourier transform of the matter overdensity field at redshift z, and δD

is the Dirac delta function.

It follows from Equation (2.47) that measuring a set of 3×2 pt power spectra over a range
of redshifts directly probes the evolution of the matter distribution. This offers a wealth of
information about recent structure growth and the expansion of the Universe, the details
of which depend closely on the properties of dark energy and dark matter, as described in
Chapter 1. This is why weak lensing, and especially the combination of weak lensing and
galaxy clustering, are such valuable cosmological probes.

2.2.4. Shape and shot noise

The ability to trace the underlying matter distribution by the shapes and positions of galax-
ies is limited by the finite number of galaxies in a survey. This introduces a noise term,
resulting from the correlation of each galaxy with itself, which is suppressed as more galax-
ies are included. For galaxy clustering this noise term depends only on the number density
of galaxies in a particular redshift bin, Ns (z), and is known as shot noise. For cosmic shear,
there is an additional dependence on the dispersion of intrinsic shapes σε, which is defined
per component such that it contributes equally to the E- and B-mode power spectra. This
is known as shape noise. The noise contributions to the power spectra, N`, are given by

Nn(z1)n(z2)
` = δz1z2

1
Ns (z1)

; (2.51)

NE(z1)E(z2)
` = NB(z1)B(z2)

` = δz1z2

σ2
ε

Ns (z1)
; (2.52)

Nn(z1)E(z2)
` = Nn(z1)B(z2)

` = NE(z1)B(z2)
` = 0. (2.53)
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Since the noise power spectra are inversely proportional to the number density of galaxies,
this is a motivation for Stage IV weak lensing surveys to aim to detect large numbers of
galaxies.

2.3. Pseudo-C` method

For full-sky observations, the power spectrum is the underlying covariance of the spherical
harmonic coefficients, as was shown for the general case in Equation (2.6). (Covariance is
defined in Equation (2.69) below.) Therefore, the power spectrum may be estimated simply
using the sample covariance of those coefficients,

Ĉαβ
` =

1
2`+ 1

+`

∑
m=−`

α`mβ∗`m. (2.54)

However, in practice full-sky observations are never truly possible. From the ground, some
parts of the sky are never visible, while even in space much of the sky is obscured by
the Galaxy and other nearby objects (for example, Euclid will only observe around one
third of the sky). The estimator in Equation (2.54) does not return the underlying power
spectrum if the sky is cut, because the full sphere is needed in order to cleanly decompose
into spherical harmonics (see Chapter 3 for more details). Therefore, another approach to
estimating power spectra is needed. One such approach is the pseudo-C` method.

The pseudo-C` method as presented here was introduced in Hivon et al. (2002) and ex-
tended to correlated spin-0 and spin-2 fields in Kogut et al. (2003) and Brown, Castro &
Taylor (2005). It has been further modified to include extensions such as contaminant de-
projection and E/B purification (see Alonso, Sanchez & Slosar 2019 and references therein).
It has been used for CMB (Kogut et al. 2003), galaxy clustering (Camacho et al. 2019), and
weak lensing (Hikage et al. 2019) analyses, and will be used for the analysis of future Euclid
data (Loureiro et al. 2021).

When the estimator in Equation (2.54) is applied to full-sky data, its expected value is equal
to the underlying power spectrum, 〈

Ĉαβ
`

〉
= Cαβ

` , (2.55)

where Cαβ
` may include a noise contribution. However, when it is applied to cut-sky data,

denoted here as C̃αβ
` , its expectation value is a linear combination of the power spectrum at

different multipoles `, 〈
C̃αβ
`

〉
=

∞

∑
`′=0

M``′C
αβ
`′ , (2.56)

where M``′ are the elements of the mixing matrix M, which can also mix E- and B-mode
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components. Full expressions for the elements of the mixing matrix are given in Brown,
Castro & Taylor (2005).

In principle, Equation (2.56) may be inverted to obtain an unbiased estimate of the under-
lying power spectrum, 〈

∞

∑
`′=0

M−1
``′ C̃

αβ
`′

〉
= Cαβ

` . (2.57)

However, this step is unnecessary and can introduce problems, and is not being used for
Euclid (Loureiro et al. 2021).

As discussed in Chapter 1, the unprecedented precision offered by Euclid demands an
equally unprecedented understanding of all aspects of data analysis. This includes the sta-
tistical properties of estimators. While the pseudo-C` estimator has been used in previous
analyses (e.g. Kogut et al. 2003; Hikage et al. 2019; Camacho et al. 2019; Loureiro et al.
2021), a detailed understanding of its statistical properties is lacking, prior to the work pre-
sented in this thesis. This motivates much of the work presented here: Chapters 3, 4, and
5 are dedicated to studying the statistical properties of pseudo-C` estimates.

2.4. Bayesian inference and likelihoods

As a result of cosmic variance, as discussed in Chapter 1, all observable data in cosmology
are probabilistic and cannot be predicted exactly by theory. The typical approach to dealing
with this property centres on Bayes’ theorem, which relates the probability of a given model
M (or equivalently, a given set of parameters of a model) to some observed data D,

P (M|D) =
P (D|M) P (M)

P (D)
. (2.58)

P (M|D) in Equation (2.58) is the posterior probability, which is what we want to know:
how likely is a particular model, or a particular set of parameter values for a given model.
P (M) is the prior, containing the prior knowledge about the probability of M before the
observed data D is taken into account. This can incorporate constraints from previous
data, or it can be chosen to be uninformative. P (D) is known as the Bayesian evidence;
it often acts as simply a normalising factor such that P (M|D) integrates to unity over all
values of M, but can also be used to assess the overall fit of the data to a model over all
parameter values, in order to compare between models. The remaining term, P (D|M),
is the likelihood. This is where the details of the probabilistic nature of the data enter
the inference process. Finding the correct likelihood function, or at least a suitable choice,
is a challenge, and Chapters 3 and 4 focus on finding a suitable likelihood function for
pseudo-C` estimates.
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For a given choice of likelihood function, a posterior distribution is obtained by evaluating
the likelihood at all values of M (which is often the parameters of a given model) included
in the prior, multiplying by the prior itself, and normalising. In practice, the way that
the likelihood is evaluated everywhere could be through parameter grid searches, which
are used throughout this work, or by random sampling techniques such as Markov Chain
Monte Carlo, which are usually necessary in the high-dimensional cosmological analyses
of real data.

2.4.1. Credible regions and sigma notation

A posterior distribution will have a value at each point in its parameter space equal to
its probability density at that point. This is not a straightforward value to interpret, so
it is common to define credible regions to allow for easier interpretation of results. An
X% credible region contains X% of the total probability mass of the posterior distribution.
There are infinitely many such regions and there is more than one convention as to how
to choose it; the definition used in this thesis is that the X% credible region contains the
highest-probability-density X% of the total probability mass.

A further shorthand used in this thesis is sigma notation, where credible regions are re-
ferred to using the analogue of the univariate Gaussian distribution (see Section 2.4.2 be-
low), which contains a given amount of probability mass within N standard deviations of
the mean. The conversion between a sigma value of Nσ and the corresponding credible
region is given by

Nσ = erf
(

N√
2

)
credible region, (2.59)

where the error function erf is defined as

erf(x) =
2√
π

∫ x

0
dt e−t2

. (2.60)

The values for N = (1, 2, 3, 4, 5) are

1σ = 68.268 949 % credible region; (2.61)

2σ = 95.449 974 % credible region; (2.62)

3σ = 99.730 020 % credible region; (2.63)

4σ = 99.993 666 % credible region; (2.64)

5σ = 99.999 943 % credible region, (2.65)

but N may take any non-negative value including non-integer values.
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2.4. Bayesian inference and likelihoods

2.4.2. Gaussian likelihood and covariance

A common choice of likelihood function is the multivariate Gaussian (also known as nor-
mal) distribution. The Gaussian probability density function (PDF) for a data vector x of
length k is

fN (x|µ, Σ) = (2π)−k/2 |Σ|−1/2 exp
[
−1

2
(x−µ)T Σ−1 (x−µ)

]
, (2.66)

where |·| denotes a matrix determinant. In Equation (2.66), µ is the mean (expected value)
of x,

〈x〉 = µ, (2.67)

and Σ is the covariance matrix of x,

Σij = Cov
(
xi, xj

)
, (2.68)

where covariance is defined as

Cov
(
xi, xj

)
=
〈

xixj
〉
− 〈xi〉

〈
xj
〉

. (2.69)

The suitability of Equation (2.66) as a choice of likelihood function for pseudo-C` estimates
is investigated in Chapter 4, while the covariance of pseudo-C` estimates is studied in
Chapter 5.
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Chapter 3

Exact likelihood of pseudo-C` estimates from
Gaussian fields

3.1. Introduction

As described in Chapter 1, the unprecedented precision offered by upcoming weak lensing
surveys such as Euclid demands that all possible sources of bias in the process of cosmolog-
ical inference must be examined and controlled. One such source of bias is the likelihood
function, which—as described in Chapter 2—is an essential ingredient of Bayesian infer-
ence. The traditional, convenient choice throughout cosmology is a multivariate Gaussian
likelihood. Depending on the cosmological observable in question, this assumption may be
anything from (near-)exact to severely wrong. In the latter case, this error can potentially
propagate through to biased cosmological constraints.

This chapter considers the likelihood of observed cosmological power spectra. Even in con-
temporary analyses these are routinely assumed to be Gaussian distributed (e.g. Hikage et
al. 2019; Liu & Madhavacheril 2019; Planck Collaboration et al. 2019), and the choice of co-
variance matrix in a Gaussian likelihood is an extremely active area of research (e.g. Kod-
wani, Alonso & Ferreira 2019; Harnois-Déraps, Giblin & Joachimi 2019; Chapter 5). How-
ever, it is well known that the true power spectrum likelihood is strongly non-Gaussian,
especially on large scales, for weak lensing (Hartlap et al. 2009; Sellentin & Heavens 2018;
Sellentin, Heymans & Harnois-Déraps 2018; Hall & Taylor 2022) and also for CMB obser-
vations (Percival & Brown 2006; Sun, Wang & Zhan 2013).

For full-sky observations of Gaussian fields with statistically isotropic noise and in the ab-
sence of systematic effects, the exact likelihood of observed power spectra is known (Perci-
val & Brown 2006). However, the situation is more complex for realistic observations, and
specifically in the presence of a mask. Wandelt, Hivon & Górski (2001) presented the ex-
act distribution of power in a single multipole of a single spin-0 field in the presence of
an azimuthally symmetric mask. In this chapter, this is extended to obtain the exact likeli-
hood of an arbitrary number of multipoles of an arbitrary number of correlated spin-0 and
spin-2 Gaussian fields, each observed with a mask of any geometry. This is the first math-
ematically exact approach to such a generalisation. Previously, many approximate forms
have been suggested, some of which attempt to model other realistic effects beyond a cut
sky (Percival & Brown 2006; Hamimeche & Lewis 2008; Mangilli, Plaszczynski & Tristram
2015; Kalus, Percival & Samushia 2016). Alternative approaches include Gaussianisation of
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the data vector (e.g. Wang et al. 2019) or likelihood-free inference (Alsing & Wandelt 2019;
Taylor et al. 2019).

This chapter presents the exact distribution of power spectrum estimates from Gaussian
fields measured on a cut sky using the pseudo-C` estimator, which was introduced in
Chapter 2. In Section 3.2 the distribution of observed spherical harmonic coefficients—the
pseudo-a`ms—is derived, demonstrating that their Gaussianity is preserved in the presence
of a mask—regardless of its geometry—and exact expressions for the covariance of any pair
of pseudo-a`ms are presented. In Section 3.3 it is shown that each pseudo-C` estimator may
be written as a quadratic form in the pseudo-a`ms, which enables the use of the known joint
distribution of such quadratic forms to derive the full, exact joint likelihood of pseudo-C`

estimates from Gaussian fields. It is also shown that the same formalism can be applied to
obtain the exact joint likelihood of quadratic maximum likelihood (QML) estimates from
Gaussian fields. The QML estimator is an alternative to the pseudo-C` estimator, which
is designed to return minimum-variance estimates provided a suitable choice of fiducial
model is made (Tegmark 1997). As an example, Sections 3.4 and 3.5 consider the applica-
tion to observations of CMB polarisation, though as noted there, these results are equally
applicable to large-scale weak lensing data. Section 3.5 demonstrates that the pseudo-C`

likelihood reproduces the exact distribution of EE, BB and EB pseudo-C` power spectra
from Gaussian fields in the presence of a general mask. A discussion of the computational
tractability and practical applications is presented along with a summary in Section 3.6.

3.2. Pseudo-a`m distribution

In this section the distribution of spherical harmonic coefficients on a general cut sky, the
pseudo-a`ms, is derived.

3.2.1. Full-sky a`m distribution

We begin by considering the distribution of a`ms on the full sky. Let us assume correlated,
isotropic Gaussian spin-0 or spin-2 cosmological fields α (Ω), where Ω represents sky co-
ordinates. Greek characters will be used to represent cosmological fields throughout. Each
spin-0 field can be decomposed in terms of spherical harmonics as

α (Ω) =
∞

∑
`=0

`

∑
m=−`

a(α)`m Y`m (Ω) , (3.1)

where a(α)`m are the spherical harmonic coefficients for field α. Each (complex) spin-2 field
can be decomposed in terms of spin-weighted spherical harmonics as
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α (Ω) =
∞

∑
`=0

`

∑
m=−`

(
aE(α)
`m + iaB(α)

`m

)
2Y`m (Ω) , (3.2)

α∗ (Ω) =
∞

∑
`=0

`

∑
m=−`

(
aE(α)
`m − iaB(α)

`m

)
−2Y`m (Ω) , (3.3)

where the superscript ∗ denotes complex conjugation, and aE(α)
`m and aB(α)

`m are the spherical
harmonic coefficients of the E- and B-mode components of field α, respectively.

For spin-0 and spin-2 spherical harmonics, the a`ms have the property that

a(α)`−m = (−1)m
(

a(α)`m

)∗
, (3.4)

which further implies that the m = 0 a`ms must be real. For a given multipole `, the real
and imaginary parts of a(α)`m for all m > 0 are independently and identically distributed as
multivariate Gaussian with mean 0 and covariance matrix 1

2 C`, where the elements of C`

are given by
C

αβ
` = Cαβ

` . (3.5)

Here, each of α and β can represent either a spin-0 field or the E- or B-mode component
of a spin-2 field, and Cαβ

` is the underlying angular cross-power spectrum between fields α

and β (which may be 0). C` is symmetric such that Cαβ
` = Cβα

` , and α = β gives the auto-
power spectrum Cαα

` . In the case of m = 0, the lack of an imaginary part means that all
of the underlying power is in the real part, and hence the a(α)`0 are multivariate Gaussian
distributed with mean 0 and covariance matrix C`. The real part of each a(α)`m is independent
of all imaginary parts, and vice versa. All a(α)`m are independent between different ` and m;
the only cross-correlation is between a(α)`m s having the same ` and the same m, but different
fields α. The m < 0 a`ms can be regarded as deterministic functions of their positive-m
counterparts following Equation (3.4), rather than separate random variables.

3.2.2. Effect of a cut sky

In real space, the effect of a mask is to multiply each field by a window function Wα (Ω),
which can in general be unique to each field:

α̃ (Ω) = Wα (Ω) α (Ω) . (3.6)

The multiplication in real space is equivalent to a convolution in spherical harmonic space,
which has the effect of mixing the a`ms between different `, m, and between E- and B-
modes in the case of spin-2 fields, to give the pseudo-a`ms (Lewis, Challinor & Turok 2001;
Brown, Castro & Taylor 2005):
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ã(α)`m =
∞

∑
`′=0

`′

∑
m′=−`′

0Wmm′
``′ a(α)`′m′ ; (3.7)

ãE(α)
`m =

∞

∑
`′=0

`′

∑
m′=−`′

(
W+

``′mm′a
E(α)
`′m′ + W−``′mm′a

B(α)
`′m′

)
; (3.8)

ãB(α)
`m =

∞

∑
`′=0

`′

∑
m′=−`′

(
W+

``′mm′a
B(α)
`′m′ −W−``′mm′a

E(α)
`′m′

)
. (3.9)

The spin-weighted spherical harmonic space window functions are given by

sWmm′
``′ =

∫
dΩsY`′m′ (Ω)Wα (Ω)s Y∗`m (Ω) , (3.10)

noting that the optional field-dependence of the mask reflected in Wα (Ω) also means that
each sWmm′

``′ is implicitly field-specific, but the α is dropped on the left-hand side of Equation
(3.10) to limit the number of indices. Following Brown, Castro & Taylor (2005), W+ and
W− are defined as

W+
``′mm′ =

1
2

(
2Wmm′

``′ +−2 Wmm′
``′

)
; (3.11)

W−``′mm′ =
i
2

(
2Wmm′

``′ −−2 Wmm′
``′

)
, (3.12)

which may also be specific to each field.

3.2.3. Pseudo-a`m distribution

Equations (3.7)–(3.9) describe the effects of a mask on spin-0 and spin-2 fields. More gen-
erally, any observed pseudo-a`m can be written as a linear combination of full-sky a`ms
as

ã(α)`m = ∑
`′m′

∑
β

∂ã(α)`m

∂a(β)
`′m′

a(β)
`′m′ , (3.13)

where α and β may each be either a single spin-0 field or the E- or B-mode component of
a spin-2 field. This can be expanded into real and imaginary parts as

ã(α)`m = Re
(

ã(α)`m

)
+ i Im

(
ã(α)`m

)
, (3.14)

and it is shown in Appendix A.1 that the respective parts are given by
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Re
(

ã(α)`m

)
= ∑

β,`′

[
Re

(
∂ã(α)`m

∂a(β)
`′0

)
Re
(

a(β)
`′0

)

+ ∑
m′>0

([
Re

(
∂ã(α)`m

∂a(β)
`′m′

)
+ (−1)m′ Re

(
∂ã(α)`m

∂a(β)
`′−m′

)]
Re
(

a(β)
`′m′

)

−
[

Im

(
∂ã(α)`m

∂a(β)
`′m′

)
− (−1)m′ Im

(
∂ã(α)`m

∂a(β)
`′−m′

)]
Im
(

a(β)
`′m′

))]
;

(3.15)

Im
(

ã(α)`m

)
= ∑

β,`′

[
Im

(
∂ã(α)`m

∂a(β)
`′0

)
Re
(

a(β)
`′0

)

+ ∑
m′>0

([
Im

(
∂ã(α)`m

∂a(β)
`′m′

)
+ (−1)m′ Im

(
∂ã(α)`m

∂a(β)
`′−m′

)]
Re
(

a(β)
`′m′

)

+

[
Re

(
∂ã(α)`m

∂a(β)
`′m′

)
− (−1)m′ Re

(
∂ã(α)`m

∂a(β)
`′−m′

)]
Im
(

a(β)
`′m′

))]
.

(3.16)

Each derivative in these equations is a constant weight that is uniquely specified by the
geometry of the mask, and is independent of each a(β)

`′m′ . Therefore, Equations (3.15) and
(3.16) are simply linear combinations of Gaussian random variables. Any linear combina-
tion of Gaussian variables is itself Gaussian distributed, with mean and covariance adding
linearly such that

Y = ∑
i

aiXi, X ∼ N (µ, Σ) =⇒ Y ∼ N
(

∑
i

aiµi, ∑
ii′

aiai′ Σii′

)
, (3.17)

where ∼ means ‘distributed as’ and N (µ, Σ) represents a multivariate Gaussian distri-
bution with mean vector µ and covariance matrix Σ, or for a single variable such as Y,
N
(
µ, σ2) represents a univariate Gaussian distribution with mean µ and variance σ2. The

elements of Σ are given by
Σij = Cov

(
Xi, Xj

)
, (3.18)

where Cov (·, ·) represents the covariance of two random variables, and the covariance of
any variable with itself is its variance. From Equation (3.17) we find that the real and
imaginary parts of ã(α)`m each follow a Gaussian distribution with zero mean, since the full-
sky a`ms each have zero mean. It is shown in Appendix A.1 that the variance of the real
and imaginary part of each pseudo-a`m is
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Var
(

Re
(

ã(α)`m

))
= ∑

β,γ
∑
`′

Cβγ
`′

[
Re

(
∂ã(α)`m

∂a(β)
`′0

)
Re

(
∂ã(α)`m

∂a(γ)`′0

)

+
1
2 ∑

m′>0

(
Re

([
∂ã(α)`m

∂a(β)
`′m′

]∗
∂ã(α)`m

∂a(γ)`′m′

)
+ Re

[ ∂ã(α)`m

∂a(β)
`′−m′

]∗
∂ã(α)`m

∂a(γ)`′−m′


+ (−1)m′

[
Re

(
∂ã(α)`m

∂a(β)
`′m′

∂ã(α)`m

∂a(γ)`′−m′

)
+ Re

(
∂ã(α)`m

∂a(β)
`′−m′

∂ã(α)`m

∂a(γ)`′m′

)])]
;

(3.19)

Var
(

Im
(

ã(α)`m

))
= ∑

β,γ
∑
`′

Cβγ
`′

[
Im

(
∂ã(α)`m

∂a(β)
`′0

)
Im

(
∂ã(α)`m

∂a(γ)`′0

)

+
1
2 ∑

m′>0

(
Re

[ ∂ã(α)`m

∂a(β)
`′m′

]∗
∂ã(α)`m

∂a(γ)`′m′

+ Re

[ ∂ã(α)`m

∂a(β)
`′−m′

]∗
∂ã(α)`m

∂a(γ)`′−m′


− (−1)m′

[
Re

(
∂ã(α)`m

∂a(β)
`′m′

∂ã(α)`m

∂a(γ)`′−m′

)
+ Re

(
∂ã(α)`m

∂a(β)
`′−m′

∂ã(α)`m

∂a(γ)`′m′

)])]
,

(3.20)

where β and γ are all fields correlated with field α, each of which may be either spin-0 or
the E- or B-mode component of a spin-2 field.

Since both the real and imaginary parts of each pseudo-a`m are Gaussian distributed, the
joint distribution for both the real and imaginary parts of all pseudo-a`ms for all fields,
contained in the vector ã, can be described by a multivariate Gaussian distribution,

ã ∼ N (0, Σ) , (3.21)

with covariance matrix Σ whose diagonal elements are given by Equations (3.19) and (3.20).
The off-diagonal elements can be calculated using the rule—which is not specific to the
Gaussian distribution—that the covariance of two linear combinations of random variables
is given by

Cov

(
∑

i
αiXi, ∑

j
β jYj

)
= ∑

ij
αiβ jCov

(
Xi, Yj

)
, (3.22)

where αi and β j are constant weights. It is shown in Appendix A.1 that this leads to the
following expressions for the elements of Σ:
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Cov
(

Re
(

ã(α)`m

)
, Re

(
ã(β)
`′m′

))
= ∑

γ,ε
∑
`′′

Cγε
`′′

[
Re

(
∂ã(α)`m

∂a(γ)`′′0

)
Re

(
∂ã(β)

`′m′

∂a(ε)`′′0

)

+
1
2 ∑

m′′>0

(
Re

[ ∂ã(α)`m

∂a(γ)`′′m′′

]∗
∂ã(β)

`′m′

∂a(ε)`′′m′′

+ Re

[ ∂ã(α)`m

∂a(γ)`′′−m′′

]∗
∂ã(β)

`′m′

∂a(ε)`′′−m′′


+ (−1)m′′

[
Re

(
∂ã(α)`m

∂a(γ)`′′m′′

∂ã(β)
`′m′

∂a(ε)`′′−m′′

)
+ Re

(
∂ã(α)`m

∂a(γ)`′′−m′′

∂ã(β)
`′m′

∂a(ε)`′′m′′

)])]
;

(3.23)

Cov
(

Im
(

ã(α)`m

)
, Im

(
ã(β)
`′m′

))
= ∑

γ,ε
∑
`′′

Cγε
`′′

[
Im

(
∂ã(α)`m

∂a(γ)`′′0

)
Im

(
∂ã(β)

`′m′

∂a(ε)`′′0

)

+
1
2 ∑

m′′>0

(
Re

[ ∂ã(α)`m

∂a(γ)`′′m′′

]∗
∂ã(β)

`′m′

∂a(ε)`′′m′′

+ Re

[ ∂ã(α)`m

∂a(γ)`′′−m′′

]∗
∂ã(β)

`′m′

∂a(ε)`′′−m′′


− (−1)m′′

[
Re

(
∂ã(α)`m

∂a(γ)`′′m′′

∂ã(β)
`′m′

∂a(ε)`′′−m′′

)
+ Re

(
∂ã(α)`m

∂a(γ)`′′−m′′

∂ã(β)
`′m′

∂a(ε)`′′m′′

)])]
;

(3.24)

Cov
(

Re
(

ã(α)`m

)
, Im

(
ã(β)
`′m′

))
= ∑

γ,ε
∑
`′′

Cγε
`′′

[
Re

(
∂ã(α)`m

∂a(γ)`′′0

)
Im

(
∂ã(β)

`′m′

∂a(ε)`′′0

)

+
1
2 ∑

m′′>0

(
Im

[ ∂ã(α)`m

∂a(γ)`′′m′′

]∗
∂ã(β)

`′m′

∂a(ε)`′′m′′

+ Im

[ ∂ã(α)`m

∂a(γ)`′′−m′′

]∗
∂ã(β)

`′m′

∂a(ε)`′′−m′′


+ (−1)m′′

[
Im

(
∂ã(α)`m

∂a(γ)`′′m′′

∂ã(β)
`′m′

∂a(ε)`′′−m′′

)
+ Im

(
∂ã(α)`m

∂a(γ)`′′−m′′

∂ã(β)
`′m′

∂a(ε)`′′m′′

)])]
.

(3.25)

This is the first key result of this chapter: that the spherical harmonic coefficients of cor-
related Gaussian fields measured on a cut sky, which follow a multivariate Gaussian dis-
tribution, have mean 0 and covariance matrix Σ whose elements are given by Equations
(3.23)–(3.25). For a given cosmological model and survey mask, these expressions can then
be applied to a particular set of observational probes by specifying the fields in question
(α, β), the cosmological signals (Cγε

` ), and all non-zero derivative terms, which once again
are completely specified by the geometry of the survey mask. This is demonstrated explic-
itly for the example of the CMB later, in Section 3.4.1.

3.3. Pseudo-C` distribution

In this section, the distribution of pseudo-C` estimates for auto- and cross-power spectra of
an arbitrary number of correlated spin-0 and spin-2 Gaussian fields is derived for a general
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cut sky.

3.3.1. The pseudo-C` estimator

On the full sky, the covariance between either real parts or imaginary parts of two a`ms
having the same (`, m) is equal to the corresponding underlying power spectrum, modulo
a factor of 1

2 for m > 0 (see Section 3.2.1). Therefore, an unbiased estimator of the power
spectrum is given by an appropriately weighted sample covariance of observed a`ms:

Ĉαβ
` =

1
2`+ 1

[
Re
(

a(α)`0

)
Re
(

a(β)
`0

)
+ 2

`

∑
m=1

[
Re
(

a(α)`m

)
Re
(

a(β)
`m

)
+ Im

(
a(α)`m

)
Im
(

a(β)
`m

)]]

=
1

2`+ 1

`

∑
m=−`

a(α)`m

(
a(β)
`m

)∗
,

(3.26)

where we implicitly take the real part of the result. The auto-spectrum estimator is given
by the special case where α = β. Under a cut sky, this becomes the pseudo-C` estimator
(Wandelt, Hivon & Górski 2001; Hivon et al. 2002; Brown, Castro & Taylor 2005), written
in terms of the pseudo-a`ms:

C̃αβ
` =

1
2`+ 1

[
Re
(

ã(α)`0

)
Re
(

ã(β)
`0

)
+ 2

`

∑
m=1

[
Re
(

ã(α)`m

)
Re
(

ã(β)
`m

)
+ Im

(
ã(α)`m

)
Im
(

ã(β)
`m

)]]
.

(3.27)
This can be written as a matrix equation involving the vector of all pseudo-a`ms, ã:

C̃αβ
` = ãᵀM

αβ
` ã, (3.28)

where M
αβ
` is a real symmetric matrix chosen to pick out the correct elements of ã to match

the expression in Equation (3.27). Since this may not be obvious, it is here demonstrated by
choosing an order for ã and seeing the corresponding form for M

αβ
` . However, it should be

noted that this order is arbitrary and could be chosen, for example, to optimise computation
of the likelihood. For N correlated fields, each of which is either a spin-0 field or the E- or
B-mode component of a spin-2 field, and a maximum measured multipole of `max, ã can
be decomposed into three hierarchical levels as
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ã =


ã(field 1)

ã(field 2)

...
ã(field N)

 ; ã(field α) =


ã(α)
`=0

ã(α)
`=1
...

ã(α)
`max

 ; ã(α)
` =



Re
(

ã(α)`0

)
Re
(

ã(α)`1

)
Im
(

ã(α)`1

)
Re
(

ã(α)`2

)
Im
(

ã(α)`2

)
...

Re
(

ã(α)``

)
Im
(

ã(α)``

)



. (3.29)

We can then similarly decompose M
αβ
` into blocks to pick out the correct elements:

M
αβ
` =

Field : 1 2 . . . α . . . β . . . N

1
2
...

α
...

β
...

N



0 0 . . . 0 . . . 0 . . . 0

0 0 . . . 0 . . . 0 . . . 0
...

...
. . .

...
. . .

...
. . .

...
0 0 . . . 0 . . . M` . . . 0
...

...
. . .

...
. . .

...
. . .

...
0 0 . . . M` . . . 0 . . . 0
...

...
. . .

...
. . .

...
. . .

...
0 0 . . . 0 . . . 0 . . . 0



; (3.30)

M` =

`′ : 0 1 . . . ` . . . `max

0
1
...
`
...

`max



0 0 . . . 0 . . . 0

0 0 . . . 0 . . . 0
...

...
. . .

...
. . .

...
0 0 . . . M . . . 0
...

...
. . .

...
. . .

...
0 0 . . . 0 . . . 0


; (3.31)

M =

(
1 + δαβ

2`+ 1

)
diag

(
1
2

, 1, 1, 1, . . .
)

. (3.32)

The Kronecker delta δαβ accounts for the auto-spectrum case where α = β. M has 2`+ 1
diagonal elements, so the size of M is dependent on ` but its form is not. Each block in M`

has 2`′ + 1 elements in each dimension, so M` has a total of ∑`max
`′=0 (2`

′ + 1) = (`max + 1)2

elements along each side. This is also true of every zero block in M
αβ
` , so M

αβ
` has a total

of N × (`max + 1)2 elements along each side. The choice of `min = 0 is arbitrary, and any
other `min could be chosen as long as this choice is consistent between M

αβ
` and ã.
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3.3.2. The joint distribution of quadratic forms

Each cut-sky cross- or auto-spectrum estimator can be written in the form of Equation
(3.28), each with the same multivariate Gaussian vector ã and different symmetric matrix
M

αβ
` depending on the field(s) and multipole in question. The joint characteristic function

(CF) of an arbitrary number of such quadratic forms, ϕ (t), has a known analytic form
(Good 1963):

ϕ (t) =

∣∣∣∣∣I− 2i ∑
`

∑
αβ

tαβ
` M

αβ
` Σ

∣∣∣∣∣
−1/2

, (3.33)

where |·| denotes the matrix determinant. The joint CF is defined as the expectation value
〈eit·C̃〉, which can also be written as a Fourier integral, i.e.

ϕ (t) =
∫

dC̃ exp
(

it · C̃
)

f
(

C̃
)

, (3.34)

where each
{

C̃αβ
` , tαβ

`

}
are a Fourier pair1 and C̃ and t are the respective vectors of all

C̃αβ
` and tαβ

` for all fields and multipoles in question. f
(

C̃
)

is the joint probability density
function of all observed pseudo-C`s. Equation (3.34) may then be inverted to yield the exact
joint distribution of pseudo-C` estimates from Gaussian fields:

f
(

C̃
)
=

1
(2π)ν

∫
dt exp

(
−iC̃ · t

) ∣∣∣∣∣I− 2i ∑
`

∑
αβ

tαβ
` M

αβ
` Σ

∣∣∣∣∣
−1/2

. (3.35)

Here ν is the length of the data vector, which is equal to N× (`max + 1)2 when considering
N fields and all multipoles from 0 to `max. Equation (3.35) is normalised by construction,
such that it integrates to 1 over the range of possible C̃.

Equation (3.35) is the second key result of this chapter: the exact joint likelihood of an
arbitrary number of auto- and cross-pseudo-C` estimates from an arbitrary number of
correlated spin-0 and spin-2 Gaussian fields. It implicitly depends on the cosmological
model via the covariance matrix of pseudo-a`ms, Σ, whose elements are given in Equations
(3.23)–(3.25). These elements depend on both the underlying power spectra and the mask
for each field.

Equation (3.35) is related to Equation (16) of Wandelt, Hivon & Górski (2001) and to Equa-
tion (C6) of Hamimeche & Lewis (2008), as all three are instances of the general distribution
of quadratic forms. However, Equation (3.35) presented here is a much more generally ap-
plicable result than Equation (16) of Wandelt, Hivon & Górski (2001), which is restricted
to a single multipole of a single spin-0 power spectrum observed with an azimuthally
symmetric mask. Equation (C6) of Hamimeche & Lewis (2008), meanwhile, describes the

1 This should not be confused with the Fourier pair of {`, θ} which relate the power spectrum C` to the
correlation function ξ (θ).
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3.3. Pseudo-C` distribution

distribution of a single multipole of a full-sky weighted cross-spectrum estimator.

3.3.2.1. The likelihood of a subset of pseudo-C` estimates

The formalism presented in Equations (3.29)–(3.32) allows one to obtain the full multivari-
ate likelihood for all correlated fields and multipoles from `min to `max. However, this
likelihood may be adapted depending on exactly which pseudo-C`s are required, and only
the elements of Σ that contribute to the relevant estimators must be calculated. For exam-
ple, to calculate the joint likelihood of C̃αα

`=2 and C̃αα
`=4, the pseudo-a`m vector would be

ã =
(

Re ã20, Re ã21, Im ã21, Re ã22, Im ã22, Re ã40, Re ã41,

Im ã41, Re ã42, Im ã42, Re ã43, Im ã43, Re ã44, Im ã44
)ᵀ, (3.36)

where the (α) subscripts have been omitted for clarity. Mαα
2 and Mαα

4 could then be chosen
to pick out the appropriate elements of ã.

It is mathematically straightforward to extend this formalism to obtain the exact distribu-
tion of deconvolved power estimates from Gaussian fields, as this is a linear operation in
the pseudo-C`s and hence a quadratic form in the pseudo-a`ms. However, as discussed in
Chapter 2, this approach offers no additional constraining power and introduces additional
possible sources of error, so is not discussed further in this chapter. Similarly, the extension
to obtain the distribution of bandpowers through linear binning of multipoles2—which is
often necessary if one wishes to obtain deconvolved power estimates—is straightforward,
requiring only appropriate changes to the selection matrices M

αβ
` .

3.3.2.2. The likelihood of Quadratic Maximum Likelihood estimates

At low ` one may prefer to use a Quadratic Maximum Likelihood (QML) power spectrum
estimator (Tegmark 1997), due to its optimality. The price is an increased computational
cost, and diminishing returns at higher multipoles, compared to the pseudo-C` estimator
(Efstathiou 2004). By design, the QML estimator is also a quadratic form:

yαβ
` = xᵀE

αβ
` x, (3.37)

with
E

αβ
` =

1
2

C−1 ∂C

∂Cαβ
`

C−1, (3.38)

where x is the vector of all pixel values, which is multivariate Gaussian distributed with
covariance C. The y` may be scaled and linearly transformed to provide unbiased estimates
of the underlying power spectrum, but—beyond the iterative procedure described below,
and as with pseudo-C` estimates—this step is unnecessary for cosmological inference and

2 ‘Linear’ in the sense that each bandpower is a linear combination of C`s, not that the distribution of band-
powers across angular scales is linear.
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only the distribution of y` values is discussed here.

Since both C and Cαβ
` , and hence also E

αβ
` , depend on the true power spectrum which is

itself being estimated by this process, an iterative procedure is necessary. Typically, one
chooses an initial set of power spectra, which are used to calculate the ingredients to E

αβ
`

and to thereby generate estimates for the true power spectra of the data via y`, which are
then used to recalculate C and Cαβ

` , and the process is repeated until a level of convergence
is reached. Multiple starting points may be used to check robustness to the choice of initial
power spectra. (See e.g. Bond, Jaffe & Knox 1998, for more details).

From Equation (3.37) and the general distribution of quadratic forms, it is straightforward
to write down the joint likelihood of a set of QML estimates y,

f (y) =
1

(2π)ν

∫
dt exp (−iy · t)

∣∣∣∣∣I− 2i ∑
`

∑
αβ

tαβ
` E

αβ
` C

∣∣∣∣∣
−1/2

, (3.39)

where ν remains the length of the data vector, which is now equal to the total number of
pixels across all maps. A potentially useful property of Equation (3.39) is that the matrices
needed to evaluate it—C and the set of E

αβ
` —are the same matrices needed to evaluate the

estimator itself, reducing the amount of additional work needed to evaluate the likelihood.

Theoretically, one could also obtain the joint distribution of both pseudo-C` and QML esti-
mates. This would require writing both as quadratic forms in the same underlying quan-
tity, such as the full-sky a`ms. This is mathematically possible because the transforms from
full-sky a`ms to both pixels and cut-sky pseudo-a`ms are linear, meaning that a quadratic
form in one can also be written as a quadratic form in the other. These transforms could
then be encoded in the selection matrix in place of M

αβ
` in Equation (3.35) or E

αβ
` in Equa-

tion (3.39), with the comparatively simple full-sky a`m covariance matrix in place of Σ or
C respectively. However, in practice this is unlikely to be an attractive or computationally
tractable option. An alternative would be to form the approximate joint distribution using
a Gaussian copula, which would avoid the need to write both sets of estimates in terms of
a common basis. Instead, it would require the correlation coefficient or covariance between
QML and pseudo-C` estimates, expressions for which are given in Efstathiou (2004).

3.4. Application to cosmic microwave background polarisation

In this section it is demonstrated that the pseudo-C` likelihood presented in Section 3.3 is
correct by calculating the full joint distribution of three multipoles of the CMB polarisation
power spectra, and comparing to the observed distribution obtained from simulations. It
is shown that the likelihood exactly reproduces correlations between spectra. It also nat-
urally models correlations between any number of multipoles, but here three-dimensional
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distributions are considered, to limit the computational resources needed to calculate each
full distribution.

The likelihood is equally applicable to weak lensing, which is the main focus of this thesis,
but the CMB has been chosen here to highlight the full capture by the likelihood of leak-
age between E- and B-modes due to a cut sky. While this is of interest in weak lensing
observations too, it is essential to account for in CMB experiments searching for evidence
of inflation in the low-` BB power spectrum, if the small signal is to be uncovered beneath
the leakage from the much larger E-mode power. Focusing on low ` (here ` = 2) allows the
computational requirements to be kept to a minimum, since the full pseudo-a`m covariance
is required to be calculated, and there are ν = 2`+ 1 a`ms per multipole.

3.4.1. CMB pseudo-a`m covariance

In the case of the CMB, the relevant fields are the temperature field, the E-mode polarisation
and the B-mode polarisation. We therefore identify

a(α)`m ∈ {T`m, E`m, B`m} (3.40)

ã(α)`m ∈
{

T̃`m, Ẽ`m, B̃`m

}
. (3.41)

The fields are mixed as (Lewis, Challinor & Turok 2001; Brown, Castro & Taylor 2005)

T̃`m = ∑
`′m′

0Wmm′
``′ T`′m′ ; (3.42)

Ẽ`m = ∑
`′m′

(
W+

``′mm′E`′m′ + W−``′mm′B`′m′
)

; (3.43)

B̃`m = ∑
`′m′

(
W+

``′mm′B`′m′ −W−``′mm′E`′m′
)

, (3.44)

giving the relevant derivatives

∂T̃`m

∂T`′m′
= 0Wmm′

``′ ; (3.45)

∂Ẽ`m

∂E`′m′
= W+

``′mm′ ;
∂Ẽ`m

∂B`′m′
= W−``′mm′ ; (3.46)

∂B̃`m

∂E`′m′
= −W−``′mm′ ;

∂B̃`m

∂B`′m′
= W+

``′mm′ . (3.47)

Here only the polarisation fields are considered, as CMB polarisation is the focus of many
current and future experiments searching for evidence of inflation (e.g. Hui et al. 2018; Ade
et al. 2019; Abazajian et al. 2016; Hazumi et al. 2019). However, this formalism naturally ex-
tends to include the temperature field, as well as including cross-correlation between fields
observed by different detectors. Inserting the derivatives in Equations (3.45)–(3.47) into the
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general pseudo-a`m covariance matrix elements given in Equations (3.23)–(3.25) gives the
elements of the CMB polarisation pseudo-a`m covariance matrix. Here it is assumed that
all underlying CEB

` vanish, as is the case in any model in which parity is conserved, but
Equations (3.23)–(3.25) naturally allow for non-zero underlying CEB

` .

3.4.2. Implementation

The calculation of the pseudo-a`m covariance matrix requires theory power spectra and
harmonic space window functions. Here, CAMB (Lewis, Challinor & Lasenby 2000; Howlett
et al. 2012) was used through the CosmoSIS3 interface (Zuntz et al. 2015) to generate CMB
power spectra using the ΛCDM+r model with Planck 2018 best fit parameters from Planck
Collaboration et al. (2020b) and tensor-to-scalar ratio r = 0.01. The harmonic space win-
dow function transform in Equation (3.10) is manually implemented using spin-weighted
spherical harmonics provided by the spherical_functions4 Python package (Boyle, Stein
& Gross 2021). However, we found that these only work reliably up to ` ≈ 35, so for the
tests in this section `max = 30 is imposed. Alternative implementations could include cal-
culation of the harmonic space window functions by expressing them in terms of Wigner
3j symbols (Hivon et al. 2002) and making use of their recursion relations (Lewis, Challinor
& Turok 2001; see also the Appendices of Hamimeche & Lewis 2008, 2009).

When calculating the joint characteristic function in Equation (3.33), we found that it is
more numerically stable to use an alternative form that avoids the need to evaluate the
determinant of a complex matrix:

ϕ (t) = ∏
j

(
1− 2iλj

)−1/2 , λj ∈ λ

(
∑
`

∑
αβ

tαβ
` M

αβ
` Σ

)
; (3.48)

i.e., the product is over all eigenvalues of the real matrix ∑` ∑αβ tαβ
` M

αβ
` Σ. It is shown in Ap-

pendix A.2 that this form is mathematically equivalent to the form presented in Equation
(3.33). To calculate the full joint likelihood distribution from the joint CF, Equation (3.35)
may be written in terms of a Fast Fourier Transform (FFT):

f
(

C̃
)
=

1
(2π)n

∫
n

(
∏

k
dtk

)
exp

(
−i ∑

k
C̃ktk

)
ϕ (t)

= lim
∆tk→0

1
(2π)n

(
∏

k
∆tk

)
exp

(
−i ∑

k
tk0C̃k

)
FFTn[ϕ (t)

]
, (3.49)

where the index k is used as a proxy to encapsulate all summation variables (`, α, β) in
Equation (3.48). We used the NumPy5 n-dimensional FFT (Harris et al. 2020):

3 https://bitbucket.org/joezuntz/cosmosis
4 https://github.com/moble/spherical_functions
5 https://numpy.org
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FFTn[ f (t)
]
(x) = ∏

k

Nk

∑
mk=1

f ({tk0 + mk∆tk}) exp

(
−i ∑

k′

xk′mk′∆tk′

Nk′

)
, (3.50)

where each tk is discretised as tk = tk0 + mk∆tk.

3.4.3. Simulations

We generated 276 million realisations of the CMB polarisation field from the fixed theory
power spectra using the synfast routine in HEALPix6 (Górski et al. 2005; Zonca et al. 2019)
with a resolution of nside = 128. To match the assumptions made in the theoretical distri-
bution, a value of `max = 30 is also imposed in the input power. In general, the accuracy
of a finite `max requires either a band-limited signal (such as is the case for the CMB), a
well-behaved mask or apodisation to strongly suppress long-range mode mixing. For each
realisation, we applied the polarisation field mask used in the WMAP 9-year analysis, cor-
responding to a sky fraction of 73.2 %. The mask is described further in Bennett et al.
(2013). The EE, BB and EB pseudo-C` power spectra were measured from the masked
maps using anafast. We formed marginal histograms of the power at ` = 2, 5 and 10
from each spectrum and a three-dimensional histogram of the measured ` = 2 power from
all three spectra, which were selected to demonstrate the ability of the exact likelihood to
exactly describe correlations between spectra when applied to Gaussian fields. It also nat-
urally (and exactly, for Gaussian fields) describes correlations between multipoles, though
this is not shown here to limit the computational complexity and number of required sim-
ulations. The results shown here have been chosen to focus on the fact that the likelihood
exactly models the mixing of power between E- and B-modes of Gaussian fields, as this is
a particular difficulty for approximate methods due to the large discrepancy in the under-
lying E- and B-mode power. The ability of the likelihood to exactly describe correlations
between multipoles, for Gaussian fields, was separately tested and confirmed.

3.4.4. Comparison to approximation

Let us also consider an approximation to the exact likelihood for Gaussian fields, to demon-
strate the importance of accurately modelling the full multidimensional distribution. On
the full sky, the joint distribution of ĈEE

` , ĈBB
` and ĈEB

` for a single fixed multipole ` follows
a Wishart distribution (e.g. Percival & Brown 2006; Chapter 4):(

ĈEE
` ĈEB

`

ĈEB
` ĈBB

`

)
∼W2 (ν, W`) , ν = 2`+ 1, W` =

1
2`+ 1

(
CEE
` 0
0 CBB

`

)
, (3.51)

6 https://healpix.sourceforge.io
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where Wp (d, S) denotes the rank-p Wishart distribution with d degrees of freedom and
scale matrix S. We may adapt this for the cut sky using ‘effective’ parameters of νeff and
Weff

` . The values of these effective parameters are chosen to be those that best fit the
marginal distributions of C̃EE

` , C̃BB
` and C̃EB

` , as calculated with the exact likelihood, assum-
ing Gaussian fields. This is not intended to be taken as a viable or attractive alternative
to the exact likelihood; on the contrary, it is included to demonstrate that while a given
approximation may fit the marginals of the likelihood well, it can still fail to capture the
details of the full multidimensional distribution. In addition to this, the Wishart approx-
imation can only model correlations between different spectra for the same `, and not
correlations between multipoles. The exact likelihood for Gaussian fields presented in this
chapter, in contrast, exactly models correlations not only between spectra but also between
multipoles, a behaviour which has been verified separately to the tests presented in this
chapter. However, as discussed above, this example has been chosen to focus on the former
behaviour.

A common alternative is to use a multivariate Gaussian approximation to the likelihood.
With a suitable choice of mean, the problem then reduces to finding the most appropriate
choice of covariance matrix, which can be calibrated with simulations (see Chapter 5).
However, at low multipoles the true likelihood is so skewed that a Gaussian is an extremely
poor approximation, which can lead to biased results and, if not modified, can assign
non-zero probability to unphysical results such as negative auto-power spectra. For this
reason, the 2018 Planck analysis uses a pixel-based likelihood below ` = 30 as described in
Planck Collaboration et al. (2019). (Later work, presented in Chapter 4, reveals that despite
these shortcomings, a Gaussian likelihood is sufficient to obtain accurate results from weak
lensing power spectra.)

3.5. Results

3.5.1. Marginal distributions

Figure 3.1 shows the marginal distributions of C̃EE
` , C̃BB

` and C̃EB
` for each of ` = 2, 5 and

10, to compare the prediction of the exact likelihood for Gaussian fields to the distribu-
tions observed in the simulations. Each histogram uses 300 bins. There is an excellent fit
between the predicted and observed distribution, with no visible noise in the histograms
due to the large number of events in each marginal distribution. The predicted likelihood
exactly reproduces both the shape and amplitude of the observed distributions, including
the considerable skewness in the auto-spectra. This skewness is reduced for higher mul-
tipoles, which is consistent with the full-sky behaviour of the likelihood. Each auto-C̃` in
Figure 3.1 has been scaled by the relevant theory C` used to generate both the theoretical
likelihood and the simulations. In the case of the cross-spectrum C̃EB

` , there is no input CEB
`
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Figure 3.1. The marginal distributions of C̃EE
` , C̃BB

` and C̃EB
` for ` = 2, 5 and 10, predicted

by the exact likelihood for Gaussian fields presented in this chapter (blue curves) compared
to those observed in the simulations (pink histograms). The maximum value of each curve
has been rescaled to 1 for ease of comparison.
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so instead
√

CEE
` CBB

` is used for the normalisation. This scaling allows us to observe that
the E-mode power is reduced by the sky cut while the B-mode power is increased. This is
a result of E–B mixing: the EE power spectrum is much larger in magnitude than the BB
power spectrum (by a factor ∼ 200 at ` = 2), meaning that the E–B mixing induced by the
mask leads to a relative increase in B-mode power at the expense of E-mode power.

3.5.2. Correlation between spectra

As well as exactly reproducing marginal distributions, the exact likelihood naturally de-
scribes correlations both between multipoles of the same spectrum and between spectra,
for Gaussian fields. As described in Section 3.4, we formed the three-dimensional joint
likelihood of C̃EE

` , C̃BB
` and C̃EB

` for ` = 2. We formed the corresponding simulated distri-
bution by binning events in three dimensions, using 100 bins in each dimension. We then
integrated the exact likelihood over the volume of each histogram bin to allow for com-
parison between theory and simulations. Figures 3.2–3.4 show two-dimensional slices of
this three-dimensional likelihood. Each slice corresponds to fixing a single histogram bin
in one dimension and shows all bins in the other two dimensions. The exact likelihood ap-
pears to accurately match the observed distributions in all six slices to within pixel noise
that arises from the finite number of realisations in the simulations. The right-hand panel
for each slice shows the logarithmic fractional residual, defined as

r = log10

(∣∣sampled density from simulations− density from exact likelihood
∣∣

density from exact likelihood

)
. (3.52)

Bins with no sampled events have r = 0 and appear as white in Figures 3.2–3.4. These
areas were not explicitly excluded, but their probability is very low (albeit non-zero). No
clear evidence of structure is otherwise seen in these residuals, indicating that these bins
contain only noise. This is mostly at the level of r ≈ −4 to −2, except for a small number
of outlying bins whose probability density is so low that the expected number of events in
each bin from the 276 million simulations is significantly less than 1, leading to fractional
residual values up to r ≈ 2 in those bins in which an event was observed.

3.5.2.1. Comparison to approximation

In this section, the exact likelihood is compared to a Wishart distribution with fitted pa-
rameters νeff and Weff

` , as described in Section 3.4.4. This comparison is not included to
advocate for the use of this approximation; on the contrary, the aim is to demonstrate the
merits of using the exact likelihood for Gaussian fields. For this reason, it is not a concern
whether appropriate values of νeff and Weff

` can be obtained in practice. We simultane-
ously fitted the three marginals of a p = 2 Wishart distribution to the exact marginals, and
obtained the following best-fitting values:
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Figure 3.2. Two different slices of the joint C̃EE
` –C̃BB

` distribution for ` = 2, each for one

fixed bin of C̃EB
` . The top row is the slice corresponding to −4.13 ≤ C̃EB

` /
√

CEE
` CBB

` <

−4.02 while the bottom row corresponds to 0.00 ≤ C̃EB
` /

√
CEE
` CBB

` < 0.11. The left panel
in each row is the distribution observed from simulations, while the centre panel is the
distribution predicted by the exact likelihood for Gaussian fields. The same colour scale is
used for the left and centre panels within each row and has been chosen such that the exact
likelihood in each slice runs between 0 and 1. The right panels show logarithmic fractional
residuals, as defined in Equation (3.52), and contain only noise due to the finite number of
realisations.
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Figure 3.3. As Figure 3.2, but for the C̃EE
` –C̃EB

` distribution at fixed values of C̃BB
` . The top

row corresponds to 3.11 ≤ C̃BB
` /CBB

` < 3.88 and the bottom row to 34.17 ≤ C̃BB
` /CBB

` <
34.94.
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Figure 3.5. Marginal distributions based on the Wishart approximation with best-fitting
parameters given in Equation (3.53) (dashed red curves) compared to the exact likelihood
for Gaussian fields (solid blue curves).

νeff

2`+ 1
= 1.0; Weff

` =
1

2`+ 1

(
0.59CEE

` 0
0 14CBB

`

)
. (3.53)

There is no reason to expect that these values would also be the best-fitting values for a
different ` or for a different input cosmology, and they would certainly be different for
another mask. The resulting marginal distributions are shown in Figure 3.5, where the
simulated histogram is omitted for clarity. The fit is almost perfect for C̃EE

` , indicating
that this marginal distribution closely follows a gamma distribution as in the full-sky case.
There is slightly more deviation for C̃BB

` and C̃EB
` .

We integrated the Wishart probability density over each histogram bin in three-dimensional
space, as with the exact likelihood for Gaussian fields. Figure 3.6 shows one-dimensional
slices through this three-dimensional likelihood. For each slice, two dimensions have been
fixed at a single histogram bin, and the distribution across the third dimension is shown.
While the marginal distributions suggest a near-exact fit for the Wishart approximation, the
one-dimensional slices reveal that the approximation incorrectly distributes probability in
some parts of the three-dimensional space relative to other parts. The exact likelihood for
Gaussian fields, on the other hand, faithfully reproduces the observed distribution through-
out. This is also seen in Figure 3.7, which shows three one-dimensional slices in different
diagonal directions across the three-dimensional space. In each of these slices, the Wishart
approximation overestimates the probability density relative to the true distribution, im-
plying that it must underestimate it in other parts of the distribution, given that the whole
distribution is normalised to integrate to 1.

As well as failing to accurately reproduce the full distribution for a fixed `, the Wishart dis-
tribution cannot naturally be extended to include correlations between multipoles, whereas
the exact likelihood automatically produces the full joint distribution between all multi-
poles of all power spectra measured on Gaussian fields. In some cases an approxima-
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tion may work better over the joint distribution of many multipoles than for a single `

(Hamimeche & Lewis 2008), but the inverse can also be true (Elsner & Wandelt 2012). In
any case, the choice of approximation for the purposes of this comparison is unimportant:
no approximation can completely match the exact distribution.

3.6. Conclusions

This chapter has presented the exact joint likelihood of an arbitrary number of pseudo-
C` estimates from correlated Gaussian fields, valid for both auto- and cross-power spectra
and for any mask geometry. The likelihood—given in Equation (3.35)—naturally models
both intrinsic correlations between spin-0 and spin-2 fields, and correlations induced by a
cut sky which result in the mixing between spherical harmonic coefficients. The pseudo-
a`ms follow a multivariate Gaussian distribution with covariance matrix elements given by
Equations (3.23)–(3.25). The exact joint likelihood for QML power spectrum estimates from
Gaussian fields has also been presented, in Equation (3.39). An accurate likelihood function
is an essential companion to any estimator for unbiased cosmological inference, but until
now a complete likelihood for either the pseudo-C` or QML estimator on an arbitrary sky
has not been known.

Sections 3.4 and 3.5 showed how the exact likelihood can be applied to observations of
the polarisation of the Cosmic Microwave Background. This is especially relevant given
current and future experiments aimed at detecting primordial B-modes, which require
exquisite control of all possible sources of systematic bias. One such source of bias is an
inexact likelihood function, so knowledge of the exact likelihood could play an important
role in extracting cosmological information from polarisation measurements in an unbi-
ased manner. In particular, it exactly models the leakage of E-mode power into the much
smaller B-mode signal. This likelihood also extends naturally to include correlations be-
tween temperature anisotropy and polarisation, including cross-correlations between any
number of detectors, where each observed temperature or polarisation field may have its
own mask. It does not account for weak gravitational lensing of the CMB, which breaks
the assumption of Gaussianity at higher multipoles.

The exact likelihood for Gaussian fields could also be extremely useful for weak lensing
observations. It will perhaps be most valuable at relatively low multipoles, as this is the
regime where the common assumption of a Gaussian likelihood for power spectrum es-
timates is least applicable due to the considerable skewness in the true likelihood (e.g.
Sellentin, Heymans & Harnois-Déraps 2018). These low multipoles correspond to large
physical scales, for which it is an excellent approximation to describe the spin-2 cosmic
shear field as a Gaussian field. At higher multipoles there will be significant deviations
from Gaussianity, so this likelihood cannot be considered exact on small scales. The like-
lihood naturally extends to describe the full distribution of auto- and cross-power spectra
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between an arbitrary number of redshift bins, each with its own mask. It is thus well
suited for extracting robust cosmological constraints from tomographic galaxy clustering
and weak lensing shear power spectrum measurements in multiple redshift bins, such as
those from Euclid.

Use of the exact pseudo-C` likelihood for Gaussian fields is likely to be competitive in terms
of speed when considering a small number of bandpower estimates. Its main strength com-
pared to an exact pixel-based likelihood is that for a single power estimate the pseudo-C`

likelihood requires the determinant evaluation of a matrix of size ∼ ` compared to ∼ `2 for
a pixel-based method. This means that it may be evaluated at much higher ` than is pos-
sible for a pixel-based method. However, once many power estimates are considered the
scaling is less competitive. The pixel-based method would offer all additional multipoles
`′ < ` without significant additional computational cost, while the exact pseudo-C` likeli-
hood for Gaussian fields scales as ∼ kN , where N is the number of (band)power estimates
and k ∼ 200. The cost is driven by the need to evaluate the characteristic function in Equa-
tion (3.33) for every value of the vector t. The range of t must cover a wide enough space
for the integral in the likelihood expression to converge, while at a sufficiently high reso-
lution so that its curvature is accurately represented. Each point in t-space carries its own
determinant or eigenvalue calculation (which is not the case for a single power estimate,
due to the simple scaling of the determinant of a single matrix). Use of the exact likeli-
hood for Gaussian fields is therefore only recommended in the case of a very small number
of bandpower estimates, and alternative (necessarily approximate) approaches for the joint
distribution of many power estimates should be explored. One possibility is the use of a
copula with the exact marginal distributions. Copula methods have previously been de-
scribed in a cosmological context, but only with approximate marginal distributions (Ben-
abed et al. 2009; Sato, Ichiki & Takeuchi 2010; Sato et al. 2011). Alternative approaches
previously explored in the literature include approximate extensions to the Wishart dis-
tribution to model correlations between multipoles (Hamimeche & Lewis 2008; Mangilli,
Plaszczynski & Tristram 2015). Computational limitations in the likelihood calculation may
also be mitigated to some extent by potential speed increases at other levels in the inference
process such as neural net-assisted sampling (Manrique-Yus & Sellentin 2020).

Despite the limitations of its direct use, knowledge of the exact pseudo-C` and QML likeli-
hood for Gaussian fields is extremely useful as a starting point and testing benchmark for
developing fast, accurate approximations. It is used for this purpose in the work presented
in Chapter 4. A common approach to a total likelihood, particularly for CMB observations
(e.g. Planck Collaboration et al. 2019) is to use an exact pixel-based likelihood at low mul-
tipoles and to switch to an approximate Gaussian power spectrum likelihood for higher
multipoles, at the point at which a pixel-based likelihood becomes computationally unfea-
sible (at ` = 29 in the case of Planck, while for weak lensing analyses with many redshift
bins an exact pixel-based method may not be feasible at all). Methods derived from this ex-
act likelihood for Gaussian fields may fill an important niche between these two regimes,
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allowing the use of an exact or near-exact likelihood up to higher multipoles than is cur-
rently possible. This may be a powerful tool for interpreting future observations, given
the increased statistical precision that they will offer. This likelihood also has the advan-
tage that it can naturally describe the cross-correlation power spectrum measured between
two different maps, in contrast to exact pixel-based methods which are not readily adapted
to extracting just the cross-correlation information. Considering only cross-spectra in this
way makes the cosmological analysis insensitive to the details of the noise bias, which will
be especially relevant for cosmic shear observations, for which shape noise is an important
and uncertain factor.
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Chapter 4

Sufficiency of a Gaussian likelihood for weak
lensing power spectra

4.1. Introduction

Analysis of weak gravitational lensing of distant galaxies by large scale structure is among
the most promising methods of constraining theories of dark energy in the near future. As
described in Chapter 1, the unprecedented statistical precision offered by such upcoming
surveys as Euclid, the Rubin Observatory (LSST) and the Square Kilometre Array requires
equally unprecedented control of sources of systematic error in order to obtain reliable re-
sults. One of the many such sources is the choice of likelihood function, currently routinely
assumed to be Gaussian (e.g. Troxel et al. 2018; Hikage et al. 2019; Joachimi et al. 2021).

However, the true likelihood of weak lensing two-point statistics is well known to be non-
Gaussian. This has been studied in detail in distributions of simulated data (Sellentin &
Heavens 2018; Sellentin, Heymans & Harnois-Déraps 2018; Diaz Rivero & Dvorkin 2020;
Louca & Sellentin 2020) and has motivated many derivations of non-Gaussian likelihoods,
either approximate or exact under particular conditions (Taruya et al. 2002; Sato, Ichiki &
Takeuchi 2010; Sato et al. 2011; Hilbert, Hartlap & Schneider 2011; Keitel & Schneider 2011;
Wilking & Schneider 2013; Sellentin 2015; Wilking, Röseler & Schneider 2015; Manrique-
Yus & Sellentin 2020; Diaz Rivero & Dvorkin 2020; Hall & Taylor 2022). In particular, in
Chapter 3 an exact non-Gaussian likelihood of pseudo-C` estimates for Gaussian fields was
presented.

The impact of wrongly assuming a Gaussian likelihood on cosmological parameter con-
straints has, however, rarely been investigated in detail. Lin et al. (2020) did so for the
shear correlation function in an LSST-like experiment, and found that a Gaussian likeli-
hood is sufficiently accurate for obtaining joint posterior constraints on Ωm and σ8, despite
the small 100 deg2 sky patch used in their tests. This result is in contrast to the earlier work
in Hartlap et al. (2009), which found that a Gaussian correlation function likelihood could
lead to biased constraints in the same parameters. Taylor et al. (2019) tested the impact of
assuming a Gaussian likelihood for the full-sky shear power spectrum on joint constraints
of Ωm and S8 = σ8(Ωm/0.3)0.5 and found negligible difference in the posterior distribution
compared to a likelihood-free approach.

The work presented in this chapter tests the impact of assuming a Gaussian likelihood for a

93



Chapter 4 — Sufficiency of a Gaussian likelihood for weak lensing power spectra

Euclid-like joint tomographic 3×2 pt power spectrum analysis of weak lensing shear, galaxy
clustering and their cross-correlation, on posterior dark energy constraints. The chapter
begins with a full-sky setup in Section 4.2, which is extended to a cut sky in Section 4.3
and to non-Gaussian fields in Section 4.4. Conclusions are discussed in Section 4.5.

4.2. Full-sky likelihood

4.2.1. Background

The observable fields considered here are those introduced in Chapter 2: weak lensing
shear and galaxy number overdensity. For the majority of this chapter, these fields are
treated using Gaussian statistics. This is an approximation, but there are reasons to believe
it to be a good one for the purposes of this study, which are discussed in Section 4.4. It is
also a necessary starting point, since the only conditions under which the exact joint power
spectrum likelihood is both known and tractable is for Gaussian fields on the full sky.
Therefore, results will first be obtained for Gaussian fields. Section 4.4 argues that these
results hold for real observable fields, and also contains an analysis of the distribution of
power spectrum estimates from N-body simulations.

4.2.1.1. Wishart distribution

For correlated Gaussian fields observed on the full sky, the set of observed C`s follows a
Wishart distribution, independently for each ` (see Percival & Brown 2006 for a derivation
in the case of CMB temperature and polarisation). This distribution can be parametrised
using the degrees of freedom ν and p × p scale matrix V, in which case the probability
distribution function (PDF) for random matrix X is

fW (X|ν, V) =
|X|(ν−p−1)/2 exp[−trace(V−1X)/2]

2νp/2|X|ν/2Γp(ν/2)
, (4.1)

where Γp is the multivariate gamma function. For an N-bin tomographic 3×2pt analysis,
the set of observed C`s can be written as a 2N × 2N symmetric matrix, Ĉ`:

Ĉ` =



Ĉn(1)n(1)
` Ĉn(1)E(1)

` · · · Ĉn(1)n(N)
` Ĉn(1)E(N)

`

Ĉn(1)E(1)
` ĈE(1)E(1)

` · · · ĈE(1)n(N)
` ĈE(1)E(N)

`
...

...
. . .

...
...

Ĉn(1)n(N)
` ĈE(1)n(N)

` · · · Ĉn(N)n(N)
` Ĉn(N)E(N)

`

Ĉn(1)E(N)
` ĈE(1)E(N)

` · · · Ĉn(N)E(N)
` ĈE(N)E(N)

`


, (4.2)

where n represents the number overdensity field and E the shear E-mode, and ĈX(i)Y(j)
` is

the observed cross-power between redshift bins i and j. For Gaussian fields, Ĉ` follows a

94



4.2. Full-sky likelihood

Wishart distribution with parameters

Ĉ` ∼ W
(

ν = 2`+ 1, V =
C`

2`+ 1

)
, (4.3)

where C` is the symmetric positive definite matrix of underlying C`s analogous to Ĉ`,

C` =



Cn(1)n(1)
` Cn(1)E(1)

` · · · Cn(1)n(N)
` Cn(1)E(N)

`

Cn(1)E(1)
` CE(1)E(1)

` · · · CE(1)n(N)
` CE(1)E(N)

`
...

...
. . .

...
...

Cn(1)n(N)
` CE(1)n(N)

` · · · Cn(N)n(N)
` Cn(N)E(N)

`

Cn(1)E(N)
` CE(1)E(N)

` · · · Cn(N)E(N)
` CE(N)E(N)

`


. (4.4)

The order of rows and columns in C` and Ĉ` is arbitrary, provided it is consistent be-
tween the two matrices. For simplicity shape noise has been ignored in Equation (4.2) and
Equation (4.4), but this may be included by replacing each C` in the diagonal with C` +

N`, where N` is the corresponding noise power. Noise is included in the Euclid-like setup
described in Section 4.2.2. This setup may also be trivially extended to include a shear
B-mode.

It follows that the exact likelihood for a set of observed power spectra from correlated
Gaussian fields on the full sky is a product of Wishart distributions, one for each `, each
following Equation (4.3).

4.2.1.2. Gaussian distribution

As introduced in Chapter 2, the multivariate Gaussian distribution, parametrised by mean
vector µ and covariance matrix Σ, for length-k random vector x has PDF

fN (x|µ, Σ) = (2π)−k/2 |Σ|−1/2 exp
[
−1

2
(x−µ)T Σ−1 (x−µ)

]
. (4.5)

We may define a vector of observed C`s containing the unique elements of the matrix Ĉ`. If
Ĉ` obeys Equation (4.3), then the expectation value of this vector will be the corresponding
elements of C`; i.e., the expectation value of any given observed Ĉ` is the corresponding
underlying C`. The covariance matrix of this vector has elements given by the well-known
general expression for the covariance of full-sky C` estimates,

Cov
(

Ĉαβ
` , Ĉγε

`′

)
=

δ``′

2`+ 1

(
Cαγ
` Cβε

` + Cαε
` Cβγ

`

)
, (4.6)

where δ is the Kronecker delta. Therefore, the exact distribution of full-sky power estimates
(Equation 4.3) may be approximated by a Gaussian distribution having the same mean and
covariance.
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It turns out that this approximation performs much better if the covariance is fixed at
some fiducial cosmology, rather than being re-evaluated at each set of theory C`s being
considered in a likelihood analysis. This is explored in some detail in Hamimeche & Lewis
(2008) and Carron (2013), where it is also shown that allowing the covariance to vary as
a function of cosmology violates the Cramér-Rao bound. This is also discussed in the
methodology paper of the recent KiDS-1000 analysis (Joachimi et al. 2021). Therefore, this
is the approximation that is tested in this chapter: the term ‘Gaussian likelihood’ should be
taken to refer to the version of Equation (4.5) where Σ is fixed at some fiducial cosmology.
The impact of the choice of fiducial cosmology is explored in Section 4.2.4.2.

As will be discussed in more detail in Section 4.3.1, the marginal distributions of a
Gaussian-distributed vector have zero skewness and excess kurtosis, which is not the case
for the Wishart distribution. Since here the mean and variance of the Gaussian distribution
are fixed to be equal to those of the Wishart distribution, the inaccuracy of the Gaussian
likelihood approximation in describing the true marginal distributions will be largely cap-
tured by the skewness and excess kurtosis. However, for the Wishart distribution both
of these quantities decrease as power laws in 2` + 1, and the behaviour of the cut-sky
likelihood is similar. Therefore, the inaccuracy of the Gaussian likelihood will be most pro-
nounced for low `, corresponding to large physical scales. This is described in more detail
in Section 4.3.1.

4.2.2. Full sky: Methodology

The tests in this section involve comparing exact posterior distributions, obtained with
the Wishart likelihood, to approximate posterior distributions obtained with the Gaussian
likelihood. The mean, maximum and standard deviation of single-parameter posteriors are
studied in Section 4.2.3, and the contours of two-dimensional posteriors in Section 4.2.4. As
introduced in Chapter 2, the posterior distribution of model parameters θ from observed
data d, p (θ | d) is calculated by evaluating Bayes’ theorem,

p (θ | d) ∝ π (θ) f (d | θ) . (4.7)

The normalisation constant is formally given by the Bayesian evidence, but in this work
a manual normalisation is used assuming a uniform prior π (θ), chosen to be sufficiently
broad as to negligibly affect the posterior distribution. The remaining three ingredients
are the model predictions, which are deterministic functions of θ, the (mock) observation
d, and the likelihood function f (d | θ) which connects them. Each of these are described
below.
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4.2. Full-sky likelihood

4.2.2.1. Theory

For this work, regular grids of one, two or three cosmological parameters from (w0, wa,
Ωm) were used, with all other parameters held to a fixed value. These grids were gener-
ated using CosmoSIS (Zuntz et al. 2015). The pipeline consisted of the following CosmoSIS

standard library modules:

1. CAMB version Jan15, to calculate the linear matter power spectrum (Lewis, Challinor
& Lasenby 2000; Howlett et al. 2012);

2. Halofit_Takahasi version Camb-Nov-13, to compute the non-linear matter power
spectrum (Smith et al. 2003, Takahashi et al. 2012; CosmoSIS module by A. Lewis & S.
Bird);

3. no_bias version 1, to calculate the galaxy power spectrum with no galaxy bias—this
choice was made for simplicity, since galaxy bias is irrelevant to the tests presented
here;

4. gaussian_window version 1, to calculate Gaussian redshift distributions—for this
work, 5 bins centred on z = 0.65, 0.95, 1.25, 1.55, 1.85 were used, each with σ =

0.3;

5. project_2d version 1.0, to calculate projected galaxy and shear power spectra ap-
plying the Limber approximation—the accuracy of the Limber approximation is also
irrelevant for the purposes of the tests presented here. A small modification was ap-
plied to this module to output linearly spaced C`s for the full multipole range (2 ≤
` ≤ 2000).

4.2.2.2. Mock observations

To generate mock observations, output power spectra were taken from the pipeline de-
scribed above, with zero shear B-mode signal. A noise contribution, N`, was then added to
each auto-power spectrum (see Chapter 2):

Nn(i)n(i)
` =

1
Ni

; (4.8)

NE(i)E(i)
` = NB(i)B(i)

` =
σ2

ε

Ni
, (4.9)

where Ni is the galaxy number density per redshift bin and σε is the intrinsic ellipticity
dispersion per component. For this work, a Euclid-like number density of 30/arcmin2, split
equally between the five redshift bins, and a value of σε = 0.3, were used.

This results in 120 input power spectra, of which 65 relate to shear B-mode so are zero
or noise-only. From these, the healpy Python implementation of the HEALPix software
(Górski et al. 2005; Zonca et al. 2019) was used to generate 15 correlated maps, three per
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redshift bin, having the full set of 3×2pt correlations, including the noise contribution and
a proper spin-2 treatment of shear. The default resolution used in these tests is nside =

1024 (corresponding to an angular scale of 3.4 arcmin) and `max = 2000; any departure
from this is noted in the text. healpy was used again to measure the 120 observed full-sky
power spectra from these maps.

No angular binning to form bandpowers is used here, since the exact likelihood in this
case would no longer be a Wishart distribution. Instead, it would follow a more compli-
cated distribution, whose PDF could in principle be obtained either as a convolution of
Wishart PDFs or from the general PDF of quadratic forms in Gaussian variables, analo-
gous to the exact pseudo-C` likelihood derived in Chapter 3. The feasibility of such an
approach in practice is unclear, and is not the focus of this work. Furthermore, the dis-
tribution of individual C` estimates should be more non-Gaussian than the distribution of
bandpowers, since each bandpower has more contributing modes. This implies that the re-
sults obtained here should be taken in this regard as a lower limit on the accuracy of the
Gaussian likelihood.

4.2.2.3. Likelihoods

B-mode power spectra are excluded from the likelihood analysis, leaving 55 power spectra
as input to the likelihoods. Custom code was implemented in Python to evaluate each
log-likelihood at every grid point. For the Wishart likelihood, the SciPy1 Wishart log-
PDF function (Virtanen et al. 2020) was used, which implements Equation (4.3). For the
Gaussian likelihood, a custom implementation of the Gaussian log-PDF in Equation (4.5)
with precomputed inverse covariance was used, neglecting the determinant term since it is
constant when the covariance is fixed. Each log-likelihood is exponentiated and normalised
separately.

4.2.3. Full sky: Summary statistics

For the tests in this subsection, 7 000 mock observations were generated following the steps
outlined above (Section 4.2.2.2), but with `max = 100 to keep computation time and data
volume within reasonable limits. This isolates the part of the data vector for which the
Gaussian likelihood should be expected to perform worst, since the likelihood is most non-
Gaussian at low ` (see Section 4.3). For each realisation, a single-parameter likelihood
analysis on w0 was run with other parameters fixed. The sections below study the distri-
butions of the maximum, mean and standard deviation of the resulting one-dimensional
posterior distribution across all realisations.
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Figure 4.1. Left: Distribution of posterior maxima returned by the Gaussian likelihood
compared to the true, Wishart likelihood. Right: Per-realisation difference between the
posterior maximum returned by the two likelihoods, with a positive difference representing
a higher value of w0 for the Gaussian likelihood.

4.2.3.1. Posterior maximum

For a single spin-0 Gaussian field, the Gaussian likelihood with fixed variance is guaranteed
to give the same posterior maximum as the true likelihood, for a flat prior (Carron 2013).
Hamimeche & Lewis (2008) investigated the extension to correlated fields and found that
while the exactness of this relation does not hold, the Gaussian likelihood will still return
the correct posterior maximum as long as the fiducial model is proportional to the model
which maximises the likelihood. It is argued in that paper that for models which vary
smoothly with `, this will often hold approximately even if it does not hold exactly.

The left panel of Figure 4.1 shows the distribution of posterior maxima obtained from the
two likelihoods for the 27 000 realisations. The distributions are almost indistinguishable.
The right panel shows the per-realisation difference between the posterior maximum re-
turned by the two likelihoods. The Gaussian returns the correct maximum for 95.7 per
cent of the realisations, and for the remainder it is wrong by no more than four grid
points, which have a size of ∆w0 = 1.25× 10−3. This demonstrates that—as predicted in
Hamimeche & Lewis (2008)—the maximum-posterior property of the Gaussian likelihood
holds to a very good approximation in practice for correlated fields.

4.2.3.2. Posterior mean and standard deviation

Along with the posterior maximum, two other summary statistics for which it is perhaps
most important for an approximate likelihood to return accurate values are the posterior
mean and standard deviation. Unlike the posterior maximum, there is no general property
of the Gaussian likelihood which says that it should return approximately correct values
of these quantities. However, this appears to be the case on average: Figure 4.2 shows the

1 https://scipy.org
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Figure 4.2. Left: Distribution of posterior means returned by the Gaussian likelihood com-
pared to the true, Wishart likelihood. Right: Distribution of posterior standard deviations
for the two likelihoods.

distribution of posterior means (left panel) and standard deviations (right panel) for the
Gaussian likelihood compared to the true, Wishart likelihood. The distributions of means
are almost indistinguishable. The distributions of standard deviations are very similar,
though there is some visible discrepancy. Further investigation revealed that the Gaussian
overestimates the standard deviation on realisations for which the true standard devia-
tion is low (relative to its average over all realisations) and underestimates the standard
deviation on realisations for which the true standard deviation is high. This effect has a
magnitude of order 1 per cent of the true standard deviation. This is highly likely to be an
acceptable level of inaccuracy, and is also expected to be smaller still when `max is higher
than the value of 100 used here.

4.2.4. Full sky: Posterior contours

As described in Chapter 2, cosmological parameter constraints are often visualised using
two-dimensional contour plots, with the contours representing particular credible regions.
Here, the accuracy of the Gaussian likelihood is tested in this regard. A single mock ob-
servation is used, produced following the method described in Section 4.2.2.2 with `max =

2000. This realisation was produced at random, but the results presented here have been
checked with different realisations, and all give identical results in terms of level of agree-
ment between the two likelihoods. As is the case in a real experiment, the posterior con-
straints are not centred on the input cosmology, due to the sizeable contribution from
cosmic variance inherent in a single realisation.

In most cases, a two-parameter likelihood analysis in (w0, wa) is performed to keep com-
putational costs down, but a three-parameter example is also provided to demonstrate that
marginalisation over a third parameter does not affect the level of agreement between like-
lihoods. All two-dimensional posteriors are presented in terms of 1–3σ contours, using the
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shorthand convention (see Chapter 2) that 1, 2 and 3σ represent 68.3, 95.4 and 99.7 per cent
posterior probability.

4.2.4.1. Baseline setup

The baseline full-sky test setup used here is as follows. The sensitivity of the results pre-
sented in this chapter to the details of this setup are tested in Section 4.2.4.2.

1. Five redshift bins (see Section 4.2.2.1), each with galaxy number overdensity and
shear E-mode fields;

2. All 55 3×2pt power spectra between these ten fields; i.e., galaxy–galaxy, shear–shear
and galaxy–shear;

3. Gaussian noise assuming a Euclid-like number density evenly split between bins (see
Section 4.2.2.2);

4. Multipole range 2 ≤ ` ≤ 2000;

5. Fiducial cosmology for Gaussian covariance equal to the true input cosmology used
to generate the mock observation.

Figure 4.3 shows two- and one-dimensional marginalised posterior distributions obtained
from a three-parameter likelihood analysis with the Wishart and Gaussian likelihoods. The
results from the two likelihoods are visually indistinguishable, showing that under the
baseline setup the Gaussian likelihood is sufficiently accurate.

4.2.4.2. Robustness to deviation from baseline setup

It is important to check that the impressive degree of accordance between the Wishart and
Gaussian likelihoods in Figure 4.3 is not a result of any specific choices made in the baseline
setup outlined above. The robustness of these results to deviations from this baseline setup
is now tested. For these tests, a two-parameter likelihood analysis was performed with
other parameters fixed.

Fiducial cosmology

The Gaussian likelihood with fixed covariance requires choosing a fiducial cosmology at
which to evaluate the covariance. In the baseline setup, the fiducial cosmology was chosen
to be equal to the true input cosmology that was used to generate the mock observation. In
a real analysis this would not be possible, since the true cosmology is unknown. To model
this effect, the analysis was repeated with the fiducial cosmology chosen to be distant
from the true cosmology. Figure 4.4 shows one example, for which the fiducial cosmology
is excluded at more than 10σ and yet this does not appear to affect the accuracy of the
Gaussian likelihood. Further tests showed that the accuracy does eventually diminish, but

101



Chapter 4 — Sufficiency of a Gaussian likelihood for weak lensing power spectra

1 3  confidence
Wishart
Gaussian

0.050

0.025

0.000

0.025

0.050

0.05

0.00

0.05

w
a

1.01 1.00 0.99
w0

0.3135

0.3140

0.3145

m

0.05 0.00 0.05
wa

0.3135 0.3140 0.3145
m

Figure 4.3. Two- and one-dimensional marginalised posteriors from a three-parameter
likelihood analysis using the Gaussian likelihood compared to the true, Wishart likelihood.

1.010 1.005 1.000 0.995 0.990 0.985 0.980
w0

0.02

0.00

0.02

0.04

0.06

w
a

1 3  confidence
Wishart
Gaussian
True input parameters
Fiducial parameters

Figure 4.4. Posterior distribution of w0 and wa with other parameters fixed, where the
fiducial cosmology used to evaluate the Gaussian covariance is excluded at high confidence.
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Figure 4.5. Posterior distribution of w0 and wa with other parameters fixed, with only ` =
2–20 included in the likelihood.

only when the fiducial cosmology and the true cosmology are unrealistically far apart (e.g.
using a fiducial w0 = −0.2 and a true w0 = −1.0). Even in this case, it is the size and
shape of the posterior distribution that is affected, much more than its location. In any
real analysis, if the fiducial cosmology were excluded at high confidence then the analysis
should be repeated with a fiducial cosmology consistent with the data. Therefore, even
if posterior parameter constraints in the initial case were inaccurate due to the choice of
fiducial cosmology, they would converge onto the correct constraints through this process.

` range

The Gaussian likelihood should be expected to perform best at high `, as the true likelihood
gradually tends to Gaussian by the central limit theorem as more a`ms contribute to each
C` estimate (see Section 4.3). Therefore, as `max is reduced for a constant `min, the accuracy
of the Gaussian likelihood should decrease. This expected behaviour is observed, but it is
surprisingly weak. Figure 4.5 shows the posterior distribution obtained with `max = 20.
While there is some disagreement between the two sets of contours, the Gaussian likelihood
is still very clearly able to recover the non-Gaussian shape of the true posterior.

Noise

Even under the assumption of Gaussian fields and Gaussian noise, the level of noise has
a theoretical impact on the accuracy of the Gaussian likelihood. This is because the noise
power spectrum is flat, while the signal power spectra all decrease with `. For any noise
level, there is a threshold ` above which the noise dominates the signal. Increasing the noise
level decreases this threshold, meaning that a greater fraction of the overall constraining
power of the data comes from lower `. Therefore, increasing the noise level relatively
upweights the contribution of lower `, which—as discussed above—is the subset of the
data for which the Gaussian likelihood should perform worst. However, this does not
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Figure 4.6. Posterior distribution of w0 and wa with other parameters fixed, with noise at
100× Euclid-like levels.

appear to have a noticeable effect for realistic noise levels. Figure 4.6 shows the posterior
distributions obtained with 100× Euclid-like noise, achieved by assuming a total galaxy
number density of 0.3/arcmin2. The effect of decreasing noise was also tested (and even
switching it off entirely for a reduced two-redshift-bin setup), though for Gaussian fields
and Gaussian noise this should not decrease the accuracy of the Gaussian likelihood; rather,
it should increase following the inverse of the above argument. In both cases this did not
lead to any visible discrepancy between the two posteriors.

Other aspects of the baseline setup were also varied, including testing with a single power
spectrum and testing other parameter combinations (Ωm–σ8, w0–ns, Ωm–σ8–w0) but none
of these made any visible difference to the level of accordance between the two likelihoods.
One change that did make a significant difference was allowing the covariance matrix in
the Gaussian likelihood to vary across parameter space rather than being fixed, confirming
that this aspect is crucial to the accuracy of the Gaussian likelihood. With the covariance
fixed, we can conclude that the Gaussian likelihood is sufficiently accurate for full-sky
power spectra from Gaussian fields.

4.3. Cut-sky likelihood

It cannot be necessarily assumed that the accuracy of the Gaussian likelihood on the full
sky will extend to the cut sky, where the situation is more complicated. Although the exact
cut-sky likelihood under the assumption of Gaussian fields is known (Chapter 3), it is only
feasible to use in its exact form in specific low-dimensional cases. On the full sky, all a`ms
are independent, and are identically distributed for a given `. The introduction of a mask
mixes the a`ms (Lewis, Challinor & Turok 2001; Brown, Castro & Taylor 2005), breaking
these two properties. For an exact treatment, it becomes necessary to keep track of the
relationship between all a`ms, which quickly becomes impossible for a high-dimensional
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analysis such as this one.

This motivates an alternative approach, which is taken here: after having tested the accu-
racy of the Gaussian likelihood on the full sky–where the exact likelihood is both known
and tractable—the ways in which a sky cut might decrease this accuracy are now carefully
considered. To do this, the non-Gaussianity of the cut-sky likelihood is compared to the
non-Gaussianity of the full-sky likelihood. We can utilise Sklar’s theorem, which states
that any multivariate probability distribution may be separated into its marginal distribu-
tions and its dependence structure (Sklar 1959). The dependence structure is called the
copula, though for clarity this term is not used here to avoid confusion with the method
of forming an approximate joint distribution by combining separate approximations for
marginals and the copula, commonly using a Gaussian copula, which was mentioned in
Chapter 3 (see Benabed et al. 2009; Sato, Ichiki & Takeuchi 2010; Sato et al. 2011, for more
discussion of this method in a cosmological context). The non-Gaussianity of the marginal
distributions is therefore considered in Section 4.3.1, and the non-Gaussianity of the depen-
dence structure in Section 4.3.2, in each case comparing between the full-sky and cut-sky
likelihoods.

4.3.1. Cut sky: Effect on marginal distributions

The investigation into the non-Gaussianity of marginal distributions focuses on auto-
spectra, which by their positive-definite nature are much more non-Gaussian than cross-
spectra on both the full and cut sky (Percival & Brown 2006; Chapter 3). Non-Gaussianity
is here quantified using the skewness and excess kurtosis, following Lin et al. (2020) and
Diaz Rivero & Dvorkin (2020), since both vanish for a Gaussian distribution. These can be
written in terms of the mean E [X] and standard deviation Std (X) of a random variable X
as

Skew (X) = E

[(
X− E [X]

Std (X)

)3
]

; (4.10)

Ex kurt (X) = E

[(
X− E [X]

Std (X)

)4
]
− 3. (4.11)

The marginal distribution of a full-sky auto-C` (the diagonal elements of Equation 4.2) is a
gamma distribution, which under the (k, θ) parametrisation has PDF

fΓ (x|k, θ) =
xk−1 exp [−x/θ]

Γ(k)θk , (4.12)

where Γ is the gamma function. This distribution has skewness and excess kurtosis
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Skew (X) =
2√
k

; (4.13)

Ex kurt (X) =
6
k

. (4.14)

The full-sky likelihood corresponds to parameter values (Percival & Brown 2006; Hami-
meche & Lewis 2008; Sellentin, Heymans & Harnois-Déraps 2018)

Ĉ` ∼ Γ
(

k =
2`+ 1

2
, θ =

2C`

2`+ 1

)
. (4.15)

Both the skewness and kurtosis therefore depend only on `, and are both power laws in
2`+ 1:

Skew
(

Ĉ`

)
=
√

8 [2`+ 1]−1/2 ; (4.16)

Ex kurt
(

Ĉ`

)
= 12 [2`+ 1]−1 . (4.17)

The skewness and excess kurtosis of the cut-sky likelihood may be derived from the
pseudo-C` marginal characteristic function (CF),

ϕC̃`
(t) = ∏

j

(
1− 2iλjt

)−1/2 , (4.18)

where {λj} are the eigenvalues of MΣ, the product of the pseudo-a`m covariance matrix Σ

with M, the selection matrix picking out the relevant elements of Σ for the C` in question
(see Chapter 3). Equation (4.18) may be identified as a product of gamma distribution CFs:

ϕΓ (t) = (1− θit)−k , (4.19)

each with parameters k = 1/2, θ = 2λj. Since the CF of a sum of independent random vari-
ables is equal to the product of the individual CFs, it follows that the marginal distribution
of a pseudo-C` estimate is identical to that of a sum of independent gamma-distributed
variables. This allows the calculation of the cut-sky skewness and excess kurtosis in terms
of the eigenvalues λj of MΣ:

Skew
(

C̃`

)
=

23/2 ∑j λ3
j[

∑j λ2
j

]3/2 ; (4.20)

Ex kurt
(

C̃`

)
=

12 ∑j λ4
j[

∑j λ2
j

]2 . (4.21)

Figure 4.7 shows the full- and cut-sky skewness as a function of `, up to ` = 80, for a Euclid-
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Figure 4.7. Skewness of the full-sky and cut-sky marginal auto-C` distribution as a function
of `, where the cut-sky result is for a Euclid-like mask. The arrows demonstrate the ` →
`eff mapping described in Section 4.3.1.1.
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Figure 4.8. Left: ` → `eff mapping derived from equating the skewness (blue) and excess
kurtosis (orange) of the full-sky and cut-sky likelihoods. Right: Extrapolated to ` = 2000.

like mask incorporating the survey footprint and a bright star mask ( fsky = 30.7 per cent).
Both curves are smoothly decreasing, with the cut-sky skewness systematically higher.
The kurtosis exhibits a similar behaviour. The marginal distributions of the likelihood,
therefore, are more non-Gaussian on the cut sky than on the full sky. The impact of this
additional non-Gaussianity is now investigated.

4.3.1.1. Impact of additional non-Gaussianity

We can take advantage of the fact that both skewness and kurtosis are higher on the cut sky
and that both decrease smoothly with ` to define an ‘effective `’, `eff, for each ` by equating
the full- and cut-sky skewness, and the same for kurtosis. This process is demonstrated by
the arrows in Figure 4.7. This `→ `eff mapping is shown in the left panel of Figure 4.8, and
turns out to be perfectly linear for both skewness and kurtosis. This is unexpected, since it
is not apparent from the expressions for the full- and cut-sky skewness and excess kurtosis
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Figure 4.9. Validation of the extrapolation in Figure 4.8 against 63 100 simulated cut-sky
realisations.

in Equations (4.16)–(4.17) and (4.20)–(4.21). However, additional tests have confirmed that it
holds for all ten auto-spectra in this setup. It appears that the cut-sky skewness and excess
kurtosis as a function of ` are simply linear transformations of their full-sky counterparts,
with the slope of the transformation depending on the details of the mask.

In the right panel of Figure 4.8, this linear mapping is extrapolated to ` = 2000. Since this
is a large extrapolation, it is verified in Figure 4.9 by comparing to the sample skewness
and kurtosis from 63 100 simulated cut-sky realisations of a single field. It is clearly an
excellent fit.

Finally, the impact of this additional non-Gaussianity of the marginal distributions on the
cut sky is tested by applying an adjusted Wishart likelihood having the correct amount of
cut-sky non-Gaussianity in its marginal distributions, which is obtained by replacing ` in
the likelihood with `eff. The kurtosis mapping is used here, since it gives a lower `eff for
a given ` (Figure 4.8) and is therefore a more pessimistic choice. The adjusted likelihood
replaces Equation (4.3) with

Ĉ
′
` ∼ W

(
ν = 2`eff + 1, V =

C`

2`eff + 1

)
. (4.22)

Note that each observed ` still depends on the same ` in the theory power spectra. This
means that each C` will retain the correct sensitivity to cosmological parameters, enabling
a test of the impact of an increased amount of non-Gaussianity for the same cosmological
constraining power. The marginal distributions of the auto-C`s in Ĉ

′
` are gamma distribu-

tions, with parameters

Ĉ′` ∼ Γ
(

k =
2`eff + 1

2
, θ =

2C`

2`eff + 1

)
, (4.23)

and therefore—from Equations (4.16)–(4.17)—will have the same amount of skewness and
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Figure 4.10. Posterior distributions obtained from a mock observation designed to have the
same amount of non-Gaussianity in its marginal distributions as the cut-sky likelihood.

excess kurtosis as the cut-sky likelihood (in fact a slightly higher amount of skewness, since
the kurtosis `→ `eff mapping is used).

The corresponding Gaussian likelihood has the same mean and covariance as the adjusted
Wishart likelihood. Its mean, therefore, is unchanged from the full-sky case, while the
covariance is

Cov
(

Ĉαβ
` , Ĉγε

`′

)
=

δ``′

2`eff + 1

(
Cαγ
` Cβε

` + Cαε
` Cβγ

`

)
. (4.24)

A mock observation following Equation (4.22) was generated by sampling directly from the
Wishart distribution using the SciPy implementation of the Wishart variate generating al-
gorithm from Smith & Hocking (1972). Using this observation, a two-parameter likelihood
analysis was conducted with the adjusted Wishart and Gaussian likelihoods. The result-
ing posterior distribution is shown in Figure 4.10. There is very good agreement between
the two likelihoods. Although small deviations are visible, this is highly likely to be an
acceptable level of inaccuracy.

We can therefore conclude that the additional non-Gaussianity in the marginal distributions
of the cut-sky likelihood compared to the full-sky likelihood is insufficient to introduce
significant inaccuracy into the results obtained using a Gaussian likelihood.

4.3.2. Cut sky: Effect on dependence structure

To study the cut-sky dependence structure it is necessary to rely on simulations. 50 000
simulated observations were generated, following the method described in Section 4.2.2.2
with two differences: first, the observed power spectra were measured for each realisation
both before and after multiplication at the map level by the Euclid-like mask; 10 logarith-
mically spaced bandpowers from ` = 2 to 2000 were then formed, weighted following
Equation 20 of Hivon et al. (2002).
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4.3.2.1. Mutual information

Dependence between two data elements can be quantified using mutual information (MI).
MI is defined as the Kullback–Leibler (KL) divergence DKL of the joint distribution of two
variables from the product of their marginal distributions,

I (X, Y) = DKL

(
P(X,Y)

∣∣∣∣∣∣ PX ⊗ PY

)
, (4.25)

where the KL divergence for continuous distributions is

DKL

(
P(X,Y)

∣∣∣∣∣∣ PX ⊗ PY

)
=
∫∫

dx dy p (x, y) log
(

p (x, y)
p (x) p (y)

)
. (4.26)

If X and Y are independent, their joint distribution factorises and the MI vanishes. If they
are not independent, they will have a positive MI. In practice, however, MI estimation from
a finite number of samples may return a negative value.

To isolate non-Gaussian dependence, a whitening procedure is first applied to remove lin-
ear correlations. Linear correlations are those which are fully described by a covariance (or
equivalently, correlation) matrix. Since the dependence structure in a multivariate Gaussian
distribution is also fully described by its covariance matrix—such that the components of
a multivariate Gaussian with diagonal covariance are independent—removing linear cor-
relations removes all Gaussian dependence. This whitening follows the same process as
Sellentin & Heavens (2018), Sellentin, Heymans & Harnois-Déraps (2018), Diaz Rivero &
Dvorkin (2020) and Louca & Sellentin (2020): each pair of data elements is whitened sep-
arately using a Cholesky whitening procedure followed by a mean subtraction. The result
is a whitened pair having a mean of zero and a covariance matrix of the identity matrix.
Each pair is whitened separately so that pairs are still identifiable, allowing the study of
the behaviour of pairs with specific relationships.

For each whitened pair, MI is estimated using the Non-parametric Entropy Estimation Tool-
box (NPEET)2 (Ver Steeg 2014). The NPEET MI estimator implements a k-nearest neighbours
method described in Kraskov, Stögbauer & Grassberger (2004). The default parameters of
k = 3 and log base 2 are used in Equation (4.26).

Figure 4.11 shows the distribution of pairwise whitened MI compared between full-sky and
cut-sky bandpowers. Most of the pairs of elements are found in the part of the distribution
centred around zero, indicating no detected non-Gaussian dependence. This is more clearly
seen in Figure 4.12, in which each of the full-sky and cut-sky samples is compared to an
equivalent sample drawn from a multivariate Gaussian distribution having the same mean
and covariance. Non-Gaussian dependence is exhibited by the pairs of elements found in
the tail, in this case with MI & 0.02. This tail contains only a small fraction of pairs in both

2 https://github.com/gregversteeg/NPEET
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Figure 4.11. Comparison of non-Gaussian dependence between full-sky and cut-sky like-
lihoods. Non-Gaussian dependence is quantified by pairwise mutual information after
whitening. The mass centred around zero on the x-axis represents Gaussian dependence,
with the tail (here & 0.02) representing non-Gaussian dependence.
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Figure 4.12. Comparison of non-Gaussian dependence between full-sky (left) and cut-sky
(right) likelihoods. Non-Gaussian dependence is quantified by pairwise mutual informa-
tion after whitening. In both panels the corresponding distribution for pure Gaussian
dependence is shown, which is centred around zero on the x-axis. The tail (here & 0.02)
represents non-Gaussian dependence.
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Figure 4.13. Comparison of non-Gaussian dependence between full-sky and cut-sky like-
lihoods, for two specific populations of data element pairs. The left panel shows pairs
containing the equivalent bandpower of one cross-spectrum and one of its ‘parent’ auto-
spectra (e.g. P12

b and P11
b ). The right panel is for different-bandpower pairs in the same

combinations of spectra (e.g. P12
b and P11

b′ ). Non-Gaussian dependence is quantified by
pairwise mutual information after whitening. The bulk centred around zero on the x-axis
represents Gaussian dependence, with the tail representing non-Gaussian dependence. The
absence of this tail in the right panel indicates that those pairs exhibit only Gaussian de-
pendence.

cases, but with a slight excess for the cut-sky sample: 0.93 per cent of cut-sky pairs have MI
> 0.02, compared to 0.65 per cent of full-sky pairs. This is also evident in the small visible
excess of cut-sky pairs in Figure 4.11.

To investigate the origin of this small excess in non-Gaussian dependence for the cut-sky
sample relative to the full-sky sample, each sample is split into different pair populations,
corresponding to particular relationships between data elements. Non-Gaussian depen-
dence is almost exclusively found in pairs containing the same bandpower across corre-
lated fields. The strongest such case is shown in the left panel of Figure 4.13, which shows
pairs containing one bandpower from a cross-spectrum and the same bandpower from one
of its ‘parent’ auto-spectra, i.e. the auto-spectrum of one of the two fields between which
the cross-spectrum is describing the correlation. While most pairs still appear consistent
with zero, there is a significant tail of non-Gaussian dependence, which is slightly larger
for the cut-sky sample. This tail is not found when looking at pairs of different bandpowers
between the same two spectra, shown in the right panel of Figure 4.13. A similar behaviour
is found in other same-bandpower pairs, which is strongest when the two spectra in the
pair relate directly to the same underlying field; for example, two ‘sibling’ cross-spectra
which share one parent auto-spectrum. In most such pair populations, there is a slight
excess of non-Gaussian dependence for the cut-sky sample.

In contrast, it turns out that the dependence between bandpowers in the same spectrum
known to be induced by a cut sky in fact comprises almost purely linear correlations. This
is shown in Figure 4.14, which compares these pairs before and after the whitening process.
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Figure 4.14. Full-sky and cut-sky distributions of pairwise mutual information (MI) before
(left) and after (right) pairwise whitening, for pairs of adjacent bandpowers in the same
spectrum (e.g. P12

b and P12
b+1). Prior to whitening, MI captures all dependence; in this case

there is a substantial excess of dependence in the cut-sky likelihood. Whitening removes
Gaussian dependence such that after whitening, MI only captures non-Gaussian depen-
dence; in this case there is little or no excess dependence in the cut-sky likelihood. This
demonstrates that the additional dependence between adjacent bandpowers induced by a
mask is mostly or wholly Gaussian.

The left panel shows the unwhitened result, which includes linear correlations, showing
an expected cut-sky excess. After whitening, shown in the right panel, this excess is almost
entirely removed.

4.3.2.2. Impact of additional non-Gaussian dependence

The above section has shown that there is a small excess in non-Gaussian dependence in
the cut-sky likelihood compared to the full-sky likelihood. As was done for the marginal
distributions in Section 4.3.1.1, the potential impact of this additional non-Gaussianity on
the accuracy of constraints obtained using the Gaussian likelihood is now investigated.

On closer inspection it turns out that the increased non-Gaussian dependence in the cut-
sky likelihood is in fact an `-dependent effect. This is demonstrated in Figure 4.15, which
shows whitened MI as a function of ` for same-bandpower pairs, which as discussed above
are those which exhibit non-Gaussian dependence. Non-zero MI appears to be restricted
only to the lowest bandpowers, with a small excess for the cut sky. This ` dependence
resembles that of the skewness and kurtosis of the marginal distributions, and implies
that the mock cut-sky data vector and likelihood that was developed in Section 4.3.1.1 us-
ing the ` → `eff mapping process should have higher MI—indicating more non-Gaussian
dependence—than the full-sky data and likelihood tested in Section 4.2. The average MI in
the mock cut-sky setup can be conservatively estimated by taking the full-sky MI sample
and replacing the MI value of each same-bandpower pair at any ` with that of its cor-
responding `eff, interpolating the full-sky MI-vs.-` curve shown in Figure 4.15. The MI
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Figure 4.15. Non-Gaussian dependence as a function of `, compared between full-sky and
cut-sky likelihoods. Non-Gaussian dependence is quantified by pairwise mutual informa-
tion after whitening, and is here averaged over all same-bandpower pairs in a given ` bin,
with the shaded region containing one standard deviation.

of different-bandpower pairs is left unchanged. This gives an average MI of 9.0× 10−4,
which compares to 4.1× 10−4 for the full-sky sample and 5.2× 10−4 for the cut-sky sam-
ple. So the mock cut-sky sample and likelihood has roughly 80 per cent more non-Gaussian
dependence than the true cut-sky sample and likelihood, and yet the resulting posterior
distribution from the Gaussian likelihood in Figure 4.10 is still extremely accurate. There-
fore, we can conclude that the impact of additional non-Gaussian dependence on the cut
sky is negligible.

4.3.2.3. Transcovariance

Transcovariance is a measure of non-Gaussianity of a distribution introduced in Sellentin
& Heavens (2018) and subsequently used in Sellentin, Heymans & Harnois-Déraps (2018),
Louca & Sellentin (2020) and Diaz Rivero & Dvorkin (2020). This section will follow the
latter three papers in considering only the additive transcovariance S+, which is defined as

S+ =
1
B

B

∑
b=1

[Hb −Nb (0, 2)]2 , (4.27)

where the sum is over the bins b of a histogram H of the sum of two data elements after
whitening, and N (0, 2) is the expected histogram of a univariate Gaussian distribution
with mean 0 and variance 2.

S+ is a measure of non-Gaussianity, because if the two data elements were bivariate Gaus-
sian distributed, then their sum after whitening would be univariate Gaussian with mean
0 and variance 2, and so the expectation E [Hb −Nb (0, 2)] would vanish. S+ has some-
times been described as a measure of “non-Gaussian correlations”, but in practice it is
sensitive to non-Gaussianity of both the marginals and the dependence. For example, if
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Figure 4.16. Full-sky and cut-sky distributions of pairwise additive transcovariance after
pairwise whitening. Transcovariance is an alternative measure of non-Gaussianity, dis-
cussed in Section 4.3.2.3.

two data elements each had a non-Gaussian marginal distribution but their dependence
was purely linear correlation (or more simply, if they were independent), then their depen-
dence would vanish with the whitening procedure and yet they would return a non-zero
S+ value because their sum would not, in general, follow a Gaussian distribution. As such,
S+ is a holistic measure of non-Gaussianity, which is a useful property in many applica-
tions. However, it is for this reason that it is not used here as the main test of non-Gaussian
dependence, as it would not allow the separate consideration of the marginal distributions
and dependence structure of the likelihood.

For completeness, the distributions of additive transcovariance for the full-sky and cut-
sky samples are shown in Figure 4.16. There is a much larger excess of transcovariance
in the cut-sky likelihood compared to the full-sky likelihood than is seen for the MI in
Figure 4.11. The fact that the transcovariance mixes the effects of non-Gaussian marginals
and non-Gaussian dependence would prevent the identification of whether this is due to
the marginals, the dependence or both. As an additional check, a probability integral
transform was applied to each pair such that the marginal distributions were Gaussian
distributed, without affecting the dependence structure, and the resulting distribution had
a much smaller cut-sky excess, similar to the MI shown previously in Figure 4.11.

4.4. Non-Gaussian fields

It has been demonstrated in Section 4.2 that a Gaussian likelihood is sufficient to obtain
accurate parameter constraints in a combined weak lensing and galaxy clustering analysis
on the full sky, and in Section 4.3 that the additional non-Gaussianity of the cut-sky likeli-
hood is insufficient to introduce significant inaccuracy, both provided that the observable
fields may be described using Gaussian statistics. There are reasons to believe this to be a
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good approximation for the purposes of this study.

First, the matter distribution is most Gaussian on linear scales, corresponding to low `,
and most non-Gaussian at high `. But the inverse is true for the power spectrum likeli-
hood: it is most Gaussian at high `, and most non-Gaussian at low `. While this behaviour
has been demonstrated in the previous sections for Gaussian fields, it can be expected to
hold generally, as the number of a`ms contributing to each C` estimate increases with ` re-
gardless of the statistics of the field. The largest contribution to potential inaccuracy in the
Gaussian likelihood therefore comes from linear scales, where the observable fields are well
described as Gaussian. Additionally, the presence of shape noise causes two further effects:
it decreases the non-Gaussianity of the fields on all scales, and relatively upweights the con-
tribution of large scales to the overall constraining power, as discussed in Section 4.2.4.2.
Both of these effects will increase the accuracy of the Gaussian fields assumption. Finally,
the process of going from galaxy catalogues to power estimates involves first averaging
over galaxies in each pixel, followed by a spherical harmonic transform, both of which
may be expected to approximately Gaussianise the a`ms following the central limit theo-
rem. The latter principle has been tested in simple simulations using HEALPix spherical
harmonic transforms of arbitrary non-Gaussian fields and found to hold. Gaussian a`ms in
turn imply approximately gamma-distributed auto-C` estimates. However, the degrees of
freedom in these gamma distributions may be reduced (and hence the non-Gaussianity in-
creased) if the a`ms are correlated, similar to what happens on the cut sky. This idea was
tested in Taylor et al. (2019), which found no detectable difference between C` distributions
measured from Gaussian and lognormal simulations, which have been shown to well ap-
proximate real weak lensing data (Taruya et al. 2002; Hilbert, Hartlap & Schneider 2011;
Clerkin et al. 2016).

However, non-Gaussian fields will introduce additional contributions to the C` covari-
ance, which have been neglected here. Specifically, there is a contribution arising from
four-point correlations within a survey volume—often referred to as the connected non-
Gaussian covariance—and a generally larger contribution arising from the dependence of
such correlations on unmeasured super-survey modes—commonly termed super-sample
covariance. This topic is explored in detail in Chapter 5. (See also e.g. Scoccimarro, Zal-
darriaga & Hui 1999; Cooray & Hu 2001; Takada & Bridle 2007; Takada & Hu 2013; Li, Hu
& Takada 2014; Barreira, Krause & Schmidt 2018a,b.) These additional covariance contri-
butions predominantly affect high `, which will have the effect of relatively upweighting
the low-` regime where the Gaussian likelihood is least accurate. However, Section 4.2.4.2
showed that the Gaussian likelihood still performs well even at extremely low `, so we
should not expect this to outweigh the other factors outlined above, and we can expect
the overall impact of non-Gaussian fields on the accuracy of a Gaussian likelihood to be
negligible. Nevertheless, here the same techniques as in Section 4.3 are applied to test the
non-Gaussianity detected in a more realistic set of weak lensing simulations.
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Figure 4.17. Skewness of SLICS bandpowers compared to the Gaussian fields sample, after
whitening to remove the effect of linear correlations.

4.4.1. Non-Gaussian fields: Simulations

The tests presented in this section use the SLICS3, which are independent N-body weak
lensing simulations, described in detail in Harnois-Déraps & Van Waerbeke (2015) and
Harnois-Déraps et al. (2018). The only available tomographic power spectra were the weak
lensing convergence power spectra from the KiDS-450-like setup used in Hildebrandt et al.
(2017). These are flat-sky linearly-spaced bandpowers for auto-spectra only, produced from
948 independent realisations of 60 deg2 sky patches. Here a value of `max = 5000 is used,
in order to include non-linear scales.

An equivalent batch of Gaussian-field simulations were generated using pymaster, the
Python implementation of NaMaster4 (Alonso, Sanchez & Slosar 2019), using a KiDS-450-
like setup with four tomographic bins following the specification in Table 1 of Hildebrandt
et al. (2017).

Following the process in Section 4.3, the non-Gaussianity of the marginals and dependence
in the distributions from the SLICS is now compared to the Gaussian field sample.

4.4.2. Non-Gaussian fields: Effect on marginal distributions

Figure 4.17 shows the skewness of the SLICS compared to the Gaussian field sample, aver-
aged over the four redshift bins. Each sample was whitened prior to calculating skewness,
because significant linear correlations were found to be present in the SLICS data that were
not present in the Gaussian field simulations. These correlations are likely to be real rather
than an artefact, since the SLICS were designed and validated specifically for covariance
estimation (Harnois-Déraps & Van Waerbeke 2015). However, what matters for the accu-

3 https://slics.roe.ac.uk
4 https://github.com/LSSTDESC/NaMaster
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Figure 4.18. Comparison of non-Gaussian dependence between the SLICS weak lensing
simulations and a similar sample of Gaussian fields. Non-Gaussian dependence is quanti-
fied by pairwise mutual information after whitening. The left panel shows all pairs of data
elements, while the right panel shows only those containing different bandpower pairs
in the same spectrum. This population exhibits a possible small excess in non-Gaussian
dependence.

racy of a multivariate Gaussian distribution is the non-Gaussianity of the marginals after
whitening, since the Gaussian PDF effectively whitens the data vector itself. As shown in
Figure 4.17, the skewness after whitening is consistent to within the level of the noise, with
a possible slight excess for the Gaussian fields. Similar consistency is found for the excess
kurtosis. We can therefore conclude that there is no evidence of additional non-Gaussianity
of the marginals for realistic non-Gaussian weak lensing fields.

4.4.3. Non-Gaussian fields: Effect on dependence structure

Following the procedure described in Section 4.3.2, pairwise mutual information (MI) is
measured after a pairwise whitening process, and this is compared between the SLICS and
the Gaussian field sample. The overall MI distributions, shown in the left panel of Fig-
ure 4.18, are almost indistinguishable, but there is a very small excess for the SLICS. By
splitting pairs of data elements into populations depending on their relationship, it is re-
vealed that this excess is due to a particular population: different bandpowers in the same
spectrum, shown in the right panel of Figure 4.18. There is no apparent redshift depen-
dence in this behaviour, nor does it have any apparent `-dependent structure: Figure 4.19
shows the matrix of pairwise MI compared between the two samples. Both samples ap-
pear consistent with noise, with a slightly higher noise level in the SLICS. Whether this is a
real or spurious effect is unknown; however, we can expect its effect on the accuracy of the
Gaussian likelihood to be negligible: the average MI for the SLICS is 1.9× 10−4, far below
the 9.0× 10−4 that was found to cause negligible inaccuracy in constraints obtained using
the Gaussian likelihood in Figure 4.10. Therefore, no evidence is found to suggest the con-
clusions drawn from the Gaussian field tests in Section 4.2 and Section 4.3 should not hold
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Figure 4.19. Matrix of pairwise mutual information after pairwise whitening, averaged
over four redshift bins, compared between the SLICS and the Gaussian fields sample.

for real weak lensing fields.

4.5. Conclusions

It is well established that the true likelihood of weak lensing two-point statistics is non-
Gaussian (Sellentin & Heavens 2018; Sellentin, Heymans & Harnois-Déraps 2018; Diaz
Rivero & Dvorkin 2020; Louca & Sellentin 2020), and yet contemporary analyses rou-
tinely neglect this and assume a Gaussian likelihood (Troxel et al. 2018; Hikage et al. 2019;
Joachimi et al. 2021). The work presented in this chapter has tested the impact of assuming
a Gaussian likelihood for a Euclid-like combined power spectrum analysis of weak lensing,
galaxy clustering and their cross-correlation, on the inferred posterior distributions of dark
energy parameters.

In Section 4.2 it was found that on the full sky, the Gaussian likelihood returns the correct
posterior maximum, two-dimensional contours and one-dimensional posterior probability
density. This holds both when all other parameters are fixed or when marginalising over
a third parameter, and for any choice of fiducial cosmology consistent with the data. The
Gaussian likelihood is even a good approximation at low `, where the true likelihood is
most non-Gaussian.

It was shown in Section 4.3 that a sky cut increases the non-Gaussianity of both the
marginal distributions and dependence structure of the likelihood. However, by generating
a mock cut-sky data vector and likelihood with the appropriate amount of non-Gaussianity
in both cases, it was shown that this additional non-Gaussianity introduces only negligible
additional inaccuracy into the posterior parameter constraints obtained using the Gaussian
likelihood.

The results presented in Section 4.2 and Section 4.3 were obtained under the assumption
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of Gaussian fields. It was argued in Section 4.4 that this is a sufficient approximation
for the purposes of this analysis. Nevertheless, results obtained under this approximation
were compared to those obtained using an equivalent set of N-body weak lensing simula-
tions, and no evidence was found of significant additional non-Gaussianity of the power
spectrum likelihood.

These results indicate that a Gaussian likelihood will be sufficient for robust cosmological
inference with power spectra from stage IV weak lensing surveys such as Euclid. This
conclusion is further supported by the results obtained in Taylor et al. (2019), which found
no significant difference in parameter constraints obtained using a Gaussian likelihood
compared to a likelihood-free approach. We cannot automatically extend this conclusion
to the correlation function, which has a more complicated behaviour due to the mixing of
scales (Sellentin & Heavens 2018). Lin et al. (2020) have found that a Gaussian likelihood
is likely to be sufficiently accurate for parameter inference from LSST data. However, the
disagreement between that result and that of Hartlap et al. (2009), who found that the
assumption of a Gaussian correlation function likelihood introduced significant inaccuracy
in parameter constraints from a weak lensing analysis of the Chandra Deep Field South,
remains to be fully understood.

120



Chapter 5

Covariance of weak lensing pseudo-C`

estimates

5.1. Introduction

There are currently many unanswered questions in cosmology, including the origin of the
accelerating expansion of the Universe and apparent tensions within the dominant ΛCDM
model. As described in Chapter 1, one of the most promising tools with which to make
progress on these questions in the coming years is the analysis of weak gravitational lens-
ing of distant galaxies by large-scale structure, also known as cosmic shear. The upcoming
ESA Euclid space mission, as well as other surveys such as those with the Vera C. Rubin
Observatory in Chile and the Square Kilometre Array radio observatory in Australia and
South Africa, will observe over a billion galaxies, which is expected to lead to unprece-
dented precision on cosmological constraints—a more than an order of magnitude increase
over the previous generation of experiments (Harrison et al. 2016). In order to obtain reli-
able results, this precision is necessarily accompanied by a requirement to understand all
elements of an analysis pipeline to an equally unprecedented degree, including the inter-
play between the likelihood and estimator effects.

Continuing from Chapters 3 and 4, this chapter is concerned specifically with pseudo-C`

estimators, which were introduced in Chapter 2. Pseudo-C` estimators have been used
previously for the analysis of weak lensing data from the Hyper-Suprime Cam Subaru
Strategic Program in Hikage et al. (2019) and the Dark Energy Survey (DES) in Camacho et
al. (2021) and will be used in the analysis of future Euclid data (Loureiro et al. 2021). It was
shown in Chapter 4 that a Gaussian likelihood is sufficient to obtain accurate cosmological
results from weak lensing pseudo-C` estimates. An important ingredient for a Gaussian
likelihood is the covariance matrix, so this chapter focuses on the calculation of a cosmic
shear pseudo-C` covariance matrix.

The problem of calculating covariance matrices for weak lensing has been extensively dis-
cussed in the literature, ranging from analytic or semi-analytic approaches (Cooray & Hu
2001; Schneider et al. 2002; Joachimi, Schneider & Eifler 2008b; Takada & Jain 2009; Pielorz
et al. 2010; Hilbert, Hartlap & Schneider 2011; Barreira, Krause & Schmidt 2018a; Hall &
Taylor 2019; Gouyou Beauchamps et al. 2022) through to estimation from simulations (Sato
et al. 2011; Harnois-Déraps & Van Waerbeke 2015; Sellentin & Heavens 2016b,a; Harnois-
Déraps et al. 2018; Harnois-Déraps, Giblin & Joachimi 2019; Sgier et al. 2019; Schneider et
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al. 2020). This chapter extends this work to focus specifically on the covariance of pseudo-
C` estimates, for which coupling between modes occurs due to the effect of incomplete sky
coverage. This effect is in addition to the non-Gaussian mode coupling that is inherent in
weak lensing data as a result of non-linear structure growth, and which is known to be
important for parameter inference (Sato & Nishimichi 2013; Barreira, Krause & Schmidt
2018b).

In Section 5.2 the different Gaussian and non-Gaussian components of the cosmic shear
pseudo-C` covariance and their implementation in existing publicly available code are de-
scribed. This theoretical covariance is compared to that measured from publicly available
weak lensing simulations in Section 5.3. Section 5.4 examines the relative importance of the
different covariance contributions and how this depends on the mask, which describes the
details of sky coverage. This part of the analysis shares some similarities with that of Bar-
reira, Krause & Schmidt (2018b), who also studied the relative importance of the different
contributions to the cosmic shear covariance for a Euclid-like survey and concluded that
the ‘connected non-Gaussian’ component (see Section 5.2) can be neglected for only a . 5
per cent underestimation in single-parameter 1σ errors. However, this chapter is specifi-
cally focused on pseudo-C` estimates, for which the survey mask mixes power between all
multipoles and induces correlations even for Gaussian fields, which for many covariance
elements dominate over other sources of correlation (see Section 5.3). This effect was not
included in the analysis of Barreira, Krause & Schmidt (2018b), who assumed a diagonal
Gaussian covariance, and its inclusion may lead to different conclusions about the relative
importance of the different contributions to the covariance. The conclusions of this work
are discussed in Section 5.5.

5.2. Cosmic shear power spectrum covariance contributions

There are three contributions to the cosmic shear power spectrum covariance, which are
summarised below. A thorough theoretical background and derivation may be found in
Barreira, Krause & Schmidt (2018a) and the other references provided both therein and
below.

Starting in three-dimensional space, the covariance of the matter power spectrum receives
two contributions: one that depends on the matter power spectrum itself, and one that
depends on a particular (‘parallelogram’) configuration of the matter trispectrum that cor-
responds to the Fourier transform of the connected four-point correlation function. For a
Gaussian matter distribution, only the first contribution is non-vanishing, and hence it is
commonly referred to as the ‘Gaussian covariance’, which will be used in this chapter. (It
is also sometimes referred to as the ‘disconnected’ covariance.) Following Barreira, Krause
& Schmidt (2018a), the second contribution is referred to as the ‘connected non-Gaussian’
component.
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5.2. Cosmic shear power spectrum covariance contributions

However, for any realistic finite-volume survey such as Euclid, the observed matter power
spectrum is convolved with a three-dimensional window function. While the Gaussian
and non-Gaussian terms remain distinct, this has the effect of introducing additional non-
Gaussian coupling between large-scale modes outside the survey and small-scale modes
within the survey. This is commonly known as ‘super-sample’ (originally ‘beat-coupling’;
Hamilton, Rimes & Scoccimarro 2006) covariance, and physically can be explained by the
fact that unobservable large-scale modes within which the survey is embedded can influ-
ence the rate of small-scale non-linear structure growth, and therefore also the strength
of coupling between small-scale modes (Takada & Hu 2013; Barreira, Krause & Schmidt
2018a). Perhaps counter-intuitively, it turns out that this is generally the dominant source
of non-Gaussian covariance (Hamilton, Rimes & Scoccimarro 2006; Barreira, Krause &
Schmidt 2018b).

Progressing to projected two-point statistics such as cosmic shear angular power spec-
tra, the same three components—Gaussian, super-sample and connected non-Gaussian—
contribute to the covariance. Strictly speaking, the separation of the super-sample and
connected non-Gaussian components is only exact under the Limber approximation (Bar-
reira, Krause & Schmidt 2018a), but the inaccuracy of the Limber approximation is only
relevant on very large scales (very low multipoles, ` . 20) where non-Gaussian correlations
are small.

The calculation of the three cosmic shear covariance components are each now discussed
in turn.

5.2.1. Gaussian covariance

To calculate the Gaussian covariance, the ‘improved narrow kernel approximation’ method
(Nicola et al. 2021) was used, which was implemented using the publicly available code
NaMaster (Alonso, Sanchez & Slosar 2019; García-García, Alonso & Bellini 2019). Further
details and some background on this method are provided as follows.

The Gaussian covariance component of a general statistically isotropic field on the sphere
is equivalent to the total covariance of a Gaussian field with the same power spectrum. The
analytic covariance of pseudo-C` estimates on Gaussian fields has been well studied in the
cosmic microwave background literature (Efstathiou 2004; Challinor & Chon 2005; Brown,
Castro & Taylor 2005) as well as in the context of weak lensing (García-García, Alonso &
Bellini 2019; Nicola et al. 2021). The exact Gaussian pseudo-C` covariance can be written
down analytically, and includes terms of the following form (e.g. Brown, Castro & Taylor
2005):
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Cov
(

C̃`, C̃`′
)
= ∑

m, m′
`1, `2m1, m2

Wmm1
``1

(
Wm′m1

`′`1

)∗
Wm′m2

`′`2

(
Wmm2

``2

)∗
C`1 C`2

+ similar terms,

(5.1)

where the harmonic space window functions W are given in Equation (8) of Brown, Castro
& Taylor (2005), and the ‘similar terms’ involve different combinations of power spectra
depending on the situation and spins being considered (Hansen & Górski 2003; Challinor
& Chon 2005).

The evaluation of Equation (5.1) requires O(`6
max) operations per term, so it is impractical

to evaluate exactly and in practice approximations are used. These commonly involve
substitutions of the following kind (Efstathiou 2004; Brown, Castro & Taylor 2005; García-
García, Alonso & Bellini 2019):

C`1 C`2 → C`C`′ , (5.2)

which allows the power spectrum dependence to be brought out of the sums in Equation
(5.1). This means that the coefficients in the similar terms are now all the same (except
for any possible spin dependence, or if different fields use different masks). Symmetry
properties of the harmonic space window function allow the calculation of these coefficients
to be further simplified, to the point where the covariance can be evaluated in a reasonable
time. In essence, the approximation in Equation (5.2) assumes that the power spectrum is
constant over the region around a given ` in which the window function is non-negligible.
This will be accurate as long as the window function is sufficiently sharply peaked, and
therefore this approximation is often known as the ‘narrow kernel approximation’ (NKA).
A generalised version of the NKA is described in García-García, Alonso & Bellini (2019) and
implemented in NaMaster, which supports an arbitrary number of correlated spin-0 and
spin-2 fields and has both curved-sky and flat-sky support. For this work the curved-sky
spin-2 version was used, which naturally accounts for E–B leakage (here assuming noise-
only B-modes). By default, NaMaster provides the covariance of deconvolved pseudo-C`

estimates, but here the coupled=True option is set to instead obtain the covariance of ‘raw’,
un-deconvolved estimates such as those produced by the pseudo-C` estimator developed
for Euclid, which is described in Loureiro et al. (2021). No E–B purification or noise de-
biasing was applied.

Nicola et al. (2021) introduced a small modification to the NKA that turns out to signifi-
cantly increase its accuracy, which they refer to as the improved NKA. It involves simply
replacing each C` in the standard NKA by its mode-coupled counterpart,

C` →
〈C̃`〉
fsky

=
∑`′ M``′C`′

fsky
, (5.3)

where M is the usual pseudo-C` mixing or mode-coupling matrix (see Brown, Castro &
Taylor 2005 for a full derivation of its calculation), and the division by the sky fraction fsky
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5.2. Cosmic shear power spectrum covariance contributions

is to avoid double-counting the loss of power on the cut sky. NaMaster includes the func-
tionality to calculate the mixing matrix and to apply it to power spectra to calculate 〈C̃`〉, so
the extension to the improved NKA is trivial. The recent pseudo-C` analysis of DES Year 1
observations in Camacho et al. (2021) provided the first application of the improved NKA
to real data, but takes the approach of deconvolution and noise subtraction to obtain unbi-
ased estimates of the underlying power spectrum, unlike the forward-modelling approach
taken in this chapter.

5.2.2. Super-sample covariance

To calculate the super-sample covariance contribution, the publicly available code Cosmo-

Like1 (Krause & Eifler 2017) was used; specifically, an adapted version of the CosmoCov2 cor-
relation function covariance package (Fang, Eifler & Krause 2020), which obtains the real-
space non-Gaussian covariance as a transform of the harmonic space covariance. CosmoCov
has been used for the DES Year 1 and Year 3 cosmological analyses (Krause et al. 2017, 2021;
Friedrich et al. 2021), as well as for the non-Gaussian covariance in the Year 1 pseudo-C`

analysis in Camacho et al. (2021). The code adapted for this work to expose the harmonic
space covariance directly is available online.3

CosmoLike calculates the super-sample covariance using the approach introduced in Takada
& Hu (2013), by considering the response of the small-scale non-linear matter power spec-
trum to changes in the mean linear density field (see also Chiang et al. 2014; Li, Hu &
Takada 2014). The response of the non-linear matter power spectrum is evaluated using a
halo model, with the details given in Equations (A7)–(A11) of Krause & Eifler (2017). Since
that paper was published, the calculation of the survey variance σb(z) in their Equation
(A8) has been replaced within CosmoLike with the following calculation:

σb (z) =
1

4πr2
1

Cmask
`=0

1000

∑
`=0

(2`+ 1) Cmask
` Plin

(
`+ 1/2

r
, z
)

, (5.4)

where r = fκ (χ (z)), and Cmask
` is the power spectrum of the mask. This treatment of the

cut sky using the mask power spectrum was derived in Barreira, Krause & Schmidt (2018a).
The value of `max = 1000 in Equation (5.4) is arbitrary, but has a negligible impact in prac-
tice because the power spectrum of both masks is negligible above ` ∼ 100. CosmoLike

also provides an alternative implementation of both the super-sample and connected non-
Gaussian covariance using the ‘response approach’, which additionally accounts for a tidal
contribution to the super-sample covariance and has been found to be more accurate than
the standard implementation (Wagner et al. 2015; Barreira & Schmidt 2017a,b; Barreira,
Krause & Schmidt 2018a; Schmidt et al. 2018). Here the standard CosmoLike implementa-

1 https://github.com/CosmoLike
2 https://github.com/CosmoLike/CosmoCov
3 https://github.com/robinupham/CosmoCov_ClCov
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tion is used, as has been used by the DES Collaboration (Krause et al. 2017, 2021; Friedrich
et al. 2021; Camacho et al. 2021).

As stated previously, the approach taken in this work is to forward-model the effect of
the mask to obtain the covariance of raw un-deconvolved pseudo-C` estimates following
Loureiro et al. (2021). The non-Gaussian covariance output from CosmoLike corresponds
to the covariance of unbiased estimates of the underlying power spectrum Ĉ`, and does
not account for any estimator effects such as cut-sky mode coupling. Within the context of
the pseudo-C` method, the closest way to interpret the covariance output from CosmoLike

is as the covariance of deconvolved pseudo-C` estimates. This is how it is interpreted in
Camacho et al. (2021), and how it is interpreted in this work. In this case, the unbiased
estimates Ĉ` may in principle be obtained from raw pseudo-C` estimates C̃` as

Ĉ` = ∑
`′

M−1
``′ C̃`′ . (5.5)

It follows that the covariance matrices of Ĉ` and C̃`, denoted respectively here as Σ̂ and Σ̃,
are related as

Σ̂ =
(

M−1
)

Σ̃
(

M−1
)ᵀ

. (5.6)

The covariance as output from CosmoLike is interpreted as Σ̂. This choice is necessarily
an approximation since CosmoLike does not account for any estimator effects, including
pseudo-C` mode coupling, but it is a necessary choice and is equivalent to that made in
the DES Y1 pseudo-C` analysis in Camacho et al. (2021). In both that paper and this work
(Section 5.3), the resulting covariance is compared to simulations, with good agreement.
A full general non-Gaussian pseudo-C` covariance is presented in Shirasaki, Hamana &
Yoshida (2015), but in practice an approximation such as the one made here is necessary.
Equation (5.6) is therefore inverted to obtain the relation that was used to transform Σ̂ to
the raw pseudo-C` covariance, Σ̃:

Σ̃ = MΣ̂Mᵀ. (5.7)

The spin-2 mixing matrix M for this calculation was obtained using NaMaster.

5.2.3. Connected non-Gaussian covariance

The connected non-Gaussian covariance component was also calculated using CosmoLike

(referred to in Krause & Eifler 2017 as the ‘non-Gaussian covariance in the absence of
survey window effects’), using the same adapted version of the CosmoCov package that is
made available at the URL provided in Section 5.2.2.

CosmoLike calculates the connected non-Gaussian covariance as the projected matter tri-
spectrum. The trispectrum is calculated using a halo model, with the details given in
Equations (A3)–(A6) of Krause & Eifler (2017) (see also Cooray & Sheth 2002; Takada &
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Jain 2009). This is found to be suitably accurate in Section 5.3.2, and it is also shown
in Section 5.4 that the contribution from the connected non-Gaussian component to the
total parameter posterior error is no more than 10–20 per cent. As with the super-sample
covariance component, the connected non-Gaussian covariance matrix was multiplied by
the mixing matrix using Equation (5.7).

The calculation of the connected non-Gaussian covariance component is much slower than
the other two components. As a result, in Section 5.4.2 an approximation is used to di-
rectly estimate the connected non-Gaussian covariance of power spectrum bandpowers
(i.e. power spectra that have been binned in multipole space), which are subsequently
used to obtain mock parameter constraints. The approximation is described in that section.
However, the results provided in Sections 5.3 and 5.4.1 were obtained using the full (i.e.
per-multipole) connected non-Gaussian covariance matrix for a single redshift bin. This
took 36 days to calculate on 55 CPUs for 32 million elements.4 By contrast, the equivalent
Gaussian and super-sample covariance matrices each took around an hour to calculate on
12 CPUs.

5.3. Comparison to simulations

5.3.1. Method

The publicly available5 full-sky simulated spin-2 shear maps of Takahashi et al. (2017)
were used, which were produced by ray tracing through cosmological N-body simulations.
The simulations use a maximum box size of 6300 h−1Mpc. These simulated maps are
quite versatile, not only because they cover the full sky, but also because they describe
the underlying shear field with no shape noise or shot noise (which could be added if
required, but is not added for this work). A total of 108 realisations were performed,
which is a relatively small number considering that very large numbers of realisations
may be required for full convergence of a simulated covariance (Blot et al. 2016), but the
results show that a useful comparison between theory and simulations is still possible. In
addition, finite box simulations will necessarily underestimate the super-sample covariance
(Hamilton, Rimes & Scoccimarro 2006; Li, Hu & Takada 2014), but a significant deficit is
not detected. Further details and validation of the simulations can be found in Takahashi
et al. (2017), and density maps, halo catalogues and lensed cosmic microwave background
maps are also available at the same URL.

The shear maps are provided at 38 redshift slices from z = 0.05 to 5.3. For each realisation,
these were combined into five redshift bins, following a Gaussian redshift distribution

4 This number comes from a data vector running from `min = 2 to `min = 8000, which has a length of n =
8000− 2 + 1 = 7999, leading to a number of unique covariance elements equal to n (n + 1) /2 = 31 996 000.

5 http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing
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Figure 5.1. Full Euclid-like and Euclid DR1-like masks, which are used in Sections 5.3 and
5.4 to quantify the effects of different masks on the power spectrum covariance.

centred at z = 0.65, 0.95, 1.25, 1.55, 1.85 with a standard deviation of 0.3. The combined
shear map for each redshift bin was formed as a weighted average over all 38 slices, with
the weights given by the probability density of a Gaussian distribution with the appropriate
mean and standard deviation. This choice of redshift distribution is discussed below, in
Section 5.3.1.1. Three copies were then taken: one full-sky with no mask, one with a full
Euclid-like mask including the survey footprint and a bright star mask ( fsky = 0.31), and
one with a Euclid DR1-like footprint but no bright star mask ( fsky = 0.06). The full Euclid-
like and Euclid DR1-like masks are shown in Figure 5.1. These masks approximate the
coverage of the Euclid Wide Survey at different stages but do not exactly correspond to
what will be observed, which is described in Euclid Collaboration: Scaramella et al. (2022).
It is also assumed that the masks are uncorrelated with the signal, which may not be the
case in practice (e.g. Fabbian et al. 2021). Finally, the healpy (Zonca et al. 2019) interface
to the HEALPix (Górski et al. 2005) software was used to measure the spin-2 shear power
spectra for each realisation. The comparisons shown in this section are for the E-mode
auto-power in the lowest redshift bin.

For the theoretical covariance components described in Section 5.2, the same cosmology
and redshift distribution as the simulations were used. A maximum multipole of `max =

8000 was used in intermediate calculations to fully account for all relevant mode coupling,
but the comparison was limited to ` ≤ 3000 because the nside = 4096 maps that were used
experience distortion from limited angular resolution above this point, as documented in
Takahashi et al. (2017). Higher resolution maps with nside = 8192 are also available, so the
` range could in principle be extended, albeit with significantly increased computational
requirements.

5.3.1.1. Choice of redshift distribution

The choice of redshift distribution used here—five Gaussian bins, centred on z = 0.65,
0.95, 1.25, 1.55, 1.85 with a standard deviation of 0.3—was made for simplicity, with the
relatively low number of redshift bins (five) also chosen for computational efficiency. Since
there is freedom to enforce agreement between the redshift distributions in the simulations
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and theory, there is little additional value in choosing a more complicated, more realistic
distribution. Future cosmological analyses of real Euclid data are likely to use a larger
number of bins with less overlap than is used here (e.g. Euclid Collaboration: Pocino et al.
2021). There is no reason that this will affect the results presented in this chapter, although
it should be noted that marginalising over nuisance parameters describing photometric
redshift uncertainties will reduce the importance of all cosmological contributions to the
covariance.

5.3.2. Results

Figure 5.2 shows correlation matrices for the simulated covariance compared to the total
theoretical covariance for each mask, as well as the individual components of the theory
covariance. There appears to be good agreement between the simulated and total theo-
retical correlation matrices for all three masks. The relative contributions from the three
covariance components are discussed in Section 5.4.

Figure 5.3 shows a detailed comparison of certain diagonals of the covariance matrix. For
the main diagonal (∆` = 0), the variance divided by the square of the power spectrum is
shown, to remove any effects coming from disagreement in the power spectrum between
the simulations and theory, which is not the focus of this work. For the off-diagonals
(∆` = 2, 10, 100) the correlation is shown. In all panels the simulated line is a rolling
average over 50 `s and the shaded region is the standard deviation over this range. For
the full-sky and full Euclid-like masks, excellent agreement is observed between the theory
and simulations. For the more extreme Euclid DR1-like mask there is a slightly worse,
but still generally good, level of agreement. In particular, the super-sample covariance
component is clearly correctly increasing with the severity of the sky cut to match the
additional correlation found in the simulations. The relative sizes and importance of the
three theory contributions are discussed further in Section 5.4. We may conclude from
Figures 5.2 and 5.3 that CosmoLike’s non-Gaussian covariance calculations appear to be
suitably accurate, to the degree that can be assessed using these simulations.

This comparison was also repeated for purely Gaussian fields, which were simulated using
healpy. The results are shown in Figure 5.4, where an excellent level of agreement is
observed between the Gaussian field simulations and the prediction from the improved
NKA, which is a significant improvement over the standard NKA (not shown).
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Figure 5.2. Correlation matrices for the simulated covariance compared to the total theo-
retical covariance for each mask and for the individual components of the theory covari-
ance: Gaussian (G), super-sample (SS), and connected non-Gaussian (CNG). The covariance
shown here is for the shear E-mode power spectrum in the lowest redshift bin, without
shape noise.
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Figure 5.3. Comparison between the covariance predicted by theory and measured from
simulations, for the three masks. The top row shows the variance divided by the power
spectrum squared, and the lower three rows show correlation. In all panels the simulated
line is a rolling average over 50 `s, and the shaded region is the standard deviation over this
range. The covariance shown here is for the shear E-mode power spectrum in the lowest
redshift bin, without shape noise.
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Figure 5.4. Comparison between covariance measured from Gaussian field simulations and
predicted using the improved NKA method, for the three masks. In all panels the simulated
line is a rolling average over 50 `s, and the shaded region is the standard deviation over
this range. No shape noise is included.
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5.4. Importance of covariance components and dependence on
mask

This section addresses the size and importance of the different components of the cosmic
shear pseudo-C` covariance, and how these properties depend on the mask.

5.4.1. Relative sizes of components

5.4.1.1. Without shape noise

Let us first consider the case without shape noise, which has already been shown in Figures
5.2 and 5.3. It can be seen from the full correlation matrices plotted in Figure 5.2 that the
main diagonal of the matrix is dominated by the Gaussian component, which is purely
diagonal in the full-sky case and visibly broadens slightly as the sky cut is increased. The
super-sample covariance is the dominant off-diagonal component, particularly at higher `

but extending down visibly even to ` < 500 in the case of the most extreme Euclid DR1-
like mask. The connected non-Gaussian contribution is barely visible on the colour scale,
other than for the Euclid DR1-like mask at low `.

A more detailed comparison of the relative sizes of the different components is possible
with the selected diagonals shown in Figure 5.3. Again it is apparent that the main diagonal
(∆` = 0) is dominated by the Gaussian component, but the extent to which this is the case is
reduced as the sky cut is increased, as the contribution increases from both non-Gaussian
components. Moving away from the main diagonal, at ∆` = 2 the Gaussian is still the
largest component (except on the full sky, where its contribution is purely diagonal), but
by ∆` = 10 the super-sample component is dominant and increasing towards higher `. It
is clear that the super-sample covariance contribution increases with a more severe sky cut,
though notably it is still visibly non-zero even for full-sky observations. The connected
non-Gaussian component is the subdominant non-Gaussian contribution at all values of `
and ∆` for all masks.

5.4.1.2. With shape noise

Figure 5.5 shows an equivalent comparison of the sizes of the theoretical covariance compo-
nents with shape noise included. Gaussian shape noise is assumed, which—as introduced
in Chapter 2—is included as a contribution to the power spectrum,

C` → C` + N`; (5.8)

N` =
σε

2

Ni
, (5.9)
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Figure 5.5. Comparison between contributions to the theoretical covariance for the three
masks, with shape noise included following Equation (5.9). The top row shows the vari-
ance, and the lower three rows show correlation.

where σε is the intrinsic galaxy shape dispersion per component and Ni is the number of
galaxies per steradian per redshift bin. A Euclid-like galaxy number density of 30 / arcmin2,
equally split over five redshift bins, was assumed, along with a value of σε = 0.3.

With shape noise included, quite different behaviour to the no-noise case is found. The
Gaussian-dominated main diagonal is substantially increased, especially at higher `, re-
sulting in non-Gaussian off-diagonal correlations being significantly suppressed. The re-
sult is that the Gaussian component is dominant at all ` as far away from the main diagonal
as ∆` = 10. By ∆` = 100, the Gaussian component is no longer dominant at lower `, but
continues to account for the largest contribution at higher `: above ` ∼ 1000 for the full
Euclid-like mask and ` ∼ 1500 for the Euclid DR1-like mask. This suggests that once shape
noise is included, the Gaussian component is more important than the no-noise results in
Figure 5.3 suggest.
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5.4.2. Importance for parameter constraints

While the relative size of the different covariance components studied in Section 5.4.1 offers
interesting insight into their behaviour, it says relatively little about the actual importance
of each component. In particular, it is unclear to what extent the dominance of the Gaussian
component on and close to the main diagonal is offset by its sub-dominance farther away
from the main diagonal. In this section, to gain more insight into this, mock parameter
constraints are produced. Shape noise is included, following Equation (5.9).

Here five redshift bins were used, including all auto- and cross-spectra (E-modes only),
giving 15 power spectra in total. Scales up to `max = 5000 were included. The full data vec-
tor for this setup would have n = 75 000 elements (15× 5000), which gives n (n + 1) /2 =

2.8 billion unique covariance elements. Due to the time needed to evaluate the projected
matter trispectrum, it would be unfeasible to calculate the connected non-Gaussian contri-
bution in full. As a result, an angular binning approach was taken, with 12 logarithmically
spaced bandpowers, and an approximation was used to obtain the connected non-Gaussian
bandpower covariance from a more modest number of per-` covariance calculations. This
approximation is described and validated in Section 5.4.2.1. The Gaussian and super-
sample covariance components were calculated in full, using scales up to `max = 8000 for
intermediate calculations, before being binned into bandpowers as

Pb = ∑
`

Pb`C`, (5.10)

where P is the bandpower binning matrix whose elements are given by

Pb` =


` (`+ 1)

2π

[
`b+1

min − `b
min

]−1
for `b

min ≤ ` < `b+1
min ;

0 otherwise,
(5.11)

where `b
min is the lower edge of bin b.

A mock observation was obtained by sampling from a Gaussian likelihood with the total
covariance. The input mean was the fiducial theory power spectra, plus noise for auto-
spectra given by Equation (5.9), mixed using the mixing matrix obtained using NaMaster,
then binned following Equation (5.10). This random sampling process replicates the ran-
domness of cosmic variance that is present in a real observation, and means that—as with
real data—the resulting posterior distributions are not centred on the ‘true’ input param-
eters. Checks similar to those shown in Section 4.4 confirmed that bandpowers measured
from the Takahashi et al. (2017) simulations used in Section 5.3 are no more non-Gaussian
than those measured from Gaussian field simulations, and therefore since a Gaussian like-
lihood was shown to be sufficiently accurate for Gaussian fields in Chapter 4, it is a suitable
choice here.
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Parameter constraints were obtained by iterating over two-parameter grids produced us-
ing CosmoSIS (Zuntz et al. 2015), following the pipeline described in Section 4.2.2.1.6 All
other parameters were held fixed. At each point in parameter space, theory bandpowers—
calculated in the same way as the input mean to the observation described above—were
compared to the observed bandpowers using a Gaussian likelihood with different com-
binations of covariance components. All combinations necessarily include the Gaussian
component, since this on its own is a valid positive definite covariance matrix, unlike the
super-sample and connected non-Gaussian components.

5.4.2.1. Connected non-Gaussian approximation

As noted above, it is impractical to calculate the connected non-Gaussian component for
all 2.8 billion unique elements of the full covariance matrix. Instead, an approximation was
used to directly obtain its contribution to the bandpower covariance. This approximation
was designed to mimic two effects: the mixing of power by the survey mask, and the
binning of individual multipoles into bandpowers. In this analysis, both of these processes
are cosmology-independent: each shear field uses the same mask, and all power spectra use
the same binning scheme. As a result, both processes should have approximately the same
effect on every power spectrum, and consequently also every covariance block. Therefore,
the approximation made here uses two sets of weights—one to mimic binning and the
other to mimic mixing—which were calibrated for the covariance of the shear auto-power
spectrum in the lowest redshift bin and then applied to all further blocks.

First, the connected non-Gaussian component was evaluated in full for a single covariance
element per bandpower pair, for all combinations of power spectra. This was chosen to be
for the weighted average ` in each bandpower, with the weights given by Pb` (Equation
5.11), rounded to the nearest integer. This vastly reduced the number of projected trispec-
trum calculations, to 16 290.7 The result was then re-weighted using the weights calibrated
using the covariance of the shear auto-power spectrum in the lowest redshift bin, which
was calculated in full for the previous sections.

The weighting can be understood as a two-step process. First, a ‘binning’ weighting was
applied, designed to mimic the effect of taking the full unbinned covariance matrix and
binning it into bandpowers. Then a ‘mixing’ weighting was applied, designed to mimic the
effect of the mixing matrix. In both cases, the weights were obtained by carrying out the
process in full for the shear auto-power spectrum in the lowest redshift bin.

This can be illustrated using equations as follows. For the first block (covariance of shear
auto-power in the lowest redshift bin), the following procedure was used to transform the

6 The pipeline includes the CAMB (Lewis, Challinor & Lasenby 2000; Howlett et al. 2012) and Halofit–
Takahashi (Smith et al. 2003; Takahashi et al. 2012) modules.

7 This number comes from a reduced data vector of 12 bandpowers and 15 power spectra, giving a data vector
of length n = 12× 15 = 180 and a number of unique covariance elements of n (n + 1) /2 = 16 290.
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full unbinned covariance Covunbinned into a final binned and mixed block Covmixed, via a
binned and unmixed stage Covbinned:

Covbinned = P Covunbinned Pᵀ; (5.12)

Covmixed = M Covbinned Mᵀ, (5.13)

where P and M are the bandpower binning and pseudo-C` mixing matrices, respectively.
Elements were selected from Covunbinned corresponding to the weighted average ` within
each bandpower to give Covsampled. The matrices of binning weights wbin and mixing
weights wmix were then calculated as

wbin =
Covbinned

Covsampled
(elementwise); (5.14)

wmix =
Covmixed

Covbinned
(elementwise). (5.15)

Finally, the sampled covariance blocks Covsampled were calculated for every block in the
full covariance matrix, and transformed to give approximate binned and mixed covariance
blocks as

Covbinned_approx = wbin ∗Covsampled (elementwise); (5.16)

Covmixed_approx = wmix ∗Covbinned_approx (elementwise). (5.17)

While this two-step weighting process could be equivalently formulated as a single step,
separating the effect of the binning and mixing approximations allows for additional in-
sight into their respective effects.

These approximations were validated by carrying out an equivalent process for the super-
sample covariance matrix and comparing the results to those obtained using the full correct
treatment. Histograms of the ratios between the approximate and exact covariance for each
step, for all elements of the bandpower covariance across all redshift bins, are shown in
Figure 5.6. Each step introduces a bias of order per cent on average (although conveniently
in opposite directions) with a spread of a few per cent. This is sufficiently accurate for the
purposes of this work, especially considering that the connected non-Gaussian component
is the smallest of the three, but nevertheless this small potential error should be borne in
mind when interpreting the results. Since the super-sample and connected non-Gaussian
covariance contributions were shown to be similarly smooth in Section 5.3, the fact that this
approximation works well for the former suggests that it should too for the latter.

5.4.2.2. Results

Two-parameter constraints for different combinations of covariance components are shown
in Figure 5.7. The top row shows dark energy equation of state parameters (w0, wa), where
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Figure 5.6. Validation of the connected non-Gaussian approximation used to obtain the
mock parameter constraints in Section 5.4.2, which is described in Section 5.4.2.1. His-
tograms of the ratio of the approximate to exact covariance are shown, for the ‘binning’
(left) and ‘mixing’ (right) steps, for all elements of the bandpower covariance matrix across
all redshift bins, measured using the super-sample covariance. The results in all other
sections are obtained using the connected non-Gaussian component calculated in full.

w (a) = w0 + wa (1− a). The bottom row shows the matter density Ωm and the amplitude
of the matter power spectrum at z = 0 on the scale of 8 h−1 Mpc, σ8. The three columns are
for the three different masks. In each panel, all parameters other than the two shown are
held fixed. Only the 1 and 3 σ credible regions are marked, which respectively contain the
highest 68.3 and 99.7 per cent of the posterior probability mass. The relative areas of the
3σ credible region are listed for each combination of parameters and mask in Table 5.1.

The Gaussian contribution (G) alone only covers 30–38 per cent of the full 3σ region for
(w0, wa) and 37–49 per cent for (Ωm, σ8). The Gaussian and connected non-Gaussian com-
ponents combined (G + CNG) cover 51–63 and 54–70 per cent for (w0, wa) and (Ωm, σ8),
respectively, while the Gaussian and super-sample components combined (G + SS) cover
82–84 and 90–92 per cent. These results are broadly in line with the single-parameter error
bar ratios obtained in Barreira, Krause & Schmidt (2018b).

There is some amount of apparent mask dependence: as the sky cut is increased, the
relative area of G + SS sees a very small increase (by 2–3 per cent) whereas G + CNG and
G see larger decreases (by 16–22 and 8–12 per cent, respectively). This is consistent with
the expectation that super-sample covariance should become more important as the sky is
cut further, since this excludes more modes from the survey.

There are also some small shifts in the posterior means between the different composite co-
variance results for a given mask, despite the fact that the mean of the Gaussian likelihood
used in each case is identical and only the covariance differs. This demonstrates how an in-
correct covariance leads to an incorrect weighting of the random scatter present in the data
due to cosmic variance, and therefore to posterior constraints having not only the wrong
size but an erroneous position too, although this is a small effect.
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Figure 5.7. Two-parameter constraints for different masks and different combinations of
covariance contributions: Gaussian (G), super-sample (SS), and connected non-Gaussian
(CNG). Shape noise is included, following Equation (5.9). In each panel, all parameters
other than the two shown are held fixed. Only the 1 and 3 σ credible regions are marked,
which respectively contain the highest 68.3 and 99.7 per cent of the posterior probability
mass. The relative areas of each 3σ credible region are listed in Table 5.1. Note that the axis
ranges differ between panels.

Table 5.1. Relative areas of 3σ credible regions in Figure 5.7.

Parameters Mask
Relative area of 3σ credible region (%)

G + SS + CNG G + SS G + CNG G

(w0, wa)

Full sky 100 82 63 38

Full Euclid-like mask 100 84 61 36

Euclid DR1-like mask 100 85 51 30

(Ωm, σ8)

Full sky 100 90 70 49

Full Euclid-like mask 100 90 66 45

Euclid DR1-like mask 100 92 54 37

The table shows the relative area of the 3σ credible region in Figure 5.7 for each combi-
nation of parameters and mask and for different combinations of covariance components:
Gaussian (G), super-sample (SS), and connected non-Gaussian (CNG). The relative 1σ areas
are similar to the 3σ areas.
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5.4.2.3. Effect of marginalisation over additional parameters

Motivation to explore the impact of marginalisation over additional parameters on the
relative importance of each covariance component is provided by the results of Barreira,
Krause & Schmidt (2018b). In that paper, the authors produced mock parameter constraints
with different covariance contributions included, both for a single parameter at a time with
all others fixed and for five parameters with all five allowed to vary simultaneously. For
the latter case, they display marginalised two-parameter constraints (Barreira, Krause &
Schmidt 2018b, their Figure 3). For (w0, wa) in particular (and to a lesser extent with
some other parameter pairs), the 2σ credible region obtained with the Gaussian covariance
alone appears roughly the same as that for the total covariance, to within the sampling
noise. This is in contrast to their single-parameter constraints, for which the Gaussian
covariance only produced ∼ 50 per cent of the 1σ uncertainty on w0 obtained using the
full covariance (see Figure 2 of Barreira, Krause & Schmidt 2018b). This raises the question
of whether marginalisation might reduce the differences between the constraints obtained
using different combinations of covariance components.

Here, this question is investigated by performing a three-parameter likelihood analysis us-
ing the full Euclid-like mask over (w0, wa, Ωm), with all other parameters still held fixed.
One- and two-parameter marginalised constraints are shown in Figure 5.8. Table 5.2 com-
pares the relative areas and widths of one- and two-parameter 3σ credible regions before
and after marginalisation over a third parameter.

While the relative areas in Figure 5.8 appear qualitatively similar to those in Figure 5.7,
there are in fact some substantial quantitative differences, as shown by the values in Ta-
ble 5.2. In particular, there is almost a doubling in the area of the constraints on (w0, wa)
from the Gaussian covariance only (G) relative to the total covariance (G + SS + CNG)—
from 36 to 69 per cent—when marginalising over Ωm rather than holding it fixed. A similar
but smaller increase is seen for the other subsets (G + SS, G + CNG) of the total covariance
for the same parameters.

For constraints on wa alone, the width of the 3σ credible region for G relative to G + SS
+ CNG increases slightly when marginalising over both w0 and Ωm compared to only
marginalising over w0, and a similar slight increase is seen for G + SS and G + CNG. How-
ever, for constraints on w0, there is a small decrease in relative widths when marginalising
over both wa and Ωm rather than only wa. One reason for this difference in behaviour
between w0 and wa may be that—as seen in Figure 5.8—there is clearly a much stronger
correlation between wa and Ωm than between w0 and Ωm. Marginalisation over a strongly
correlated parameter should broaden constraints more than marginalisation over a more
weakly correlated parameter (indeed, marginalisation over a truly independent parame-
ter should have no effect at all), but it is not obvious that this should change the ratio
of relative areas rather than simply broadening all constraints by the same factor. Re-
gardless of the origin of this behaviour, it does appear to be the case that marginalisation
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Figure 5.8. Two- and one-parameter marginalised constraints obtained from a joint three-
parameter analysis of (w0, wa, Ωm) for the full Euclid-like mask, including different combi-
nations of covariance contributions: Gaussian (G), super-sample (SS), and connected non-
Gaussian (CNG). Shape noise is included, following Equation (5.9). The constraints in each
panel have been obtained by marginalising over one or two parameters in the joint three-
parameter posterior; for example, the panel marked ‘Marg. wa, Ωm’ has been marginalised
over wa and Ωm. All other parameters are held fixed. Only the 1 and 3 σ credible regions
are marked.
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Table 5.2. Impact of marginalisation on 3σ credible regions.

Parameter(s) Marginalised over
Relative area or width of 3σ credible region (%)

G + SS + CNG G + SS G + CNG G

(w0, wa)
— 100 84 61 36

Ωm 100 89 84 69

w0
wa 100 91 88 72

(wa, Ωm) 100 90 83 69

wa
w0 100 88 84 70

(w0, Ωm) 100 96 85 74

The table shows the relative areas (for two-parameter constraints) and widths (for one-
parameter constraints) of the 3σ credible regions obtained using different combinations of
covariance contributions, Gaussian (G), super-sample (SS), and connected non-Gaussian
(CNG), for the full Euclid-like mask. Each row contains two sub-rows: the top sub-row
is based on a two-parameter fit, which is marginalised over zero or one parameters; the
bottom sub-row is based on a three-parameter fit, which is marginalised over one or two
parameters. The relative 1σ areas are similar to the 3σ areas.

over additional parameters—particularly those with which the constrained parameters are
correlated—affects the relative importance of the difference covariance contributions. This
is in agreement with the findings of Barreira, Krause & Schmidt (2018b).

5.5. Conclusions

As the era of next-generation weak lensing surveys such as Euclid rapidly approaches, it
is increasingly important to understand the properties of all steps of an analysis pipeline,
including the covariance used in the likelihood. Section 5.2 has described how existing
publicly available codes can be used in combination to calculate the full covariance matrix
of cosmic shear pseudo-C` estimates, including the full details of an arbitrary mask. It has
been further shown in Section 5.3 that existing simulations can be used to verify the accu-
racy of a theoretical covariance, which found a high degree of agreement and consistency
between theory and simulations. This agreement persists for different masks, showing
that the theoretical covariance contributions correctly account for both the cut-sky mode
coupling that is inherent to the pseudo-C` method and the non-Gaussian mode coupling,
including additional cut-sky super-sample covariance.

This is encouraging for the use of pseudo-C` estimators in weak lensing, whose conve-
nience and speed make them an attractive choice of analysis framework for future surveys.
However, an outstanding challenge with such estimators is the need to understand their
statistical properties sufficiently well such that they can be used to deliver reliable cos-
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mological constraints to the precision and accuracy needed by future high-precision weak
lensing surveys. This challenge has now to a large degree been addressed since it is now
known that not only is a Gaussian likelihood sufficient (Chapter 4), but a full covariance
can be evaluated and validated using the methods shown in this chapter.

The results in this chapter have demonstrated that it is essential to include the non-
Gaussian contributions to the covariance, even though cut-sky mode coupling means that
the Gaussian covariance component dominates off-diagonal modes close to the main diago-
nal. The relative size and importance of the Gaussian component increases when including
shape noise, but it has been shown in Section 5.4 that only including the Gaussian com-
ponent in parameter inference can lead to an underestimation of uncertainties by up to
70 per cent. The dominant non-Gaussian covariance component is the super-sample co-
variance, but neglecting the subdominant connected non-Gaussian covariance component
can still lead to uncertainty underestimation on the scale of 10–20 per cent. In addition,
neglecting some covariance contributions can lead to biases in the position of posterior pa-
rameter constraints as well as their size. However, a real cosmological analysis will require
marginalisation over many nuisance parameters, which will decrease the relative impor-
tance of all cosmological contributions to the covariance, so these values should be taken
as upper limits on the importance of each component. Perhaps for this reason it was found
in the analysis of DES Year 3 data in Friedrich et al. (2021) that the connected non-Gaussian
contribution could be entirely neglected, but the results of this work suggest that this con-
clusion cannot be automatically extended to a Euclid-like survey. However, this need not
be an inconvenience, since approximations of the kind described in Section 5.4.2.1 can be
used to obtain the connected non-Gaussian component in a manageable amount of time
with a loss of accuracy of only a few per cent on an already subdominant term. Finally, this
chapter has shown that marginalisation over additional cosmological parameters may have
a substantial effect on the relative importance of the different covariance components. We
may conclude from this that it is important to take all marginalisation into account when,
for example, determining the required accuracy of theoretical results for a particular sci-
ence goal or producing forecasts of parameter constraints. The consistency of these results
with those of Barreira, Krause & Schmidt (2018b) implies that cut-sky mode coupling has
relatively little impact on the respective importance of the covariance components.
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Chapter 6

Dependence of cosmological parameter
constraints on angular binning of weak
lensing two-point statistics

6.1. Introduction

As introduced in Chapter 2, two-point statistics of weak lensing shear and galaxy num-
ber overdensity may be calculated in spherical harmonic space to estimate power spectra,
or in real (also called configuration) space to estimate correlation functions. In either case,
it is usually necessary to apply an angular binning in ` or θ. For the power spectrum,
this is not strictly necessary in principle, provided the effect of the survey mask is forward
modelled rather than removed with a mixing matrix inversion (see the discussion of the
pseudo-C` method in Section 2.3). However, a realistic 3×2 pt analysis setup with 10 to-
mographic redshift bins and a scale cut of `max = 5000 would have a data vector with over
a million elements if no angular binning was applied, which would be highly impractical.
Furthermore, the smooth nature of weak lensing power spectra means that retaining a per-
fect angular resolution is probably unnecessary. For the correlation function, on the other
hand, it is intrinsically necessary to bin in θ, since galaxy pair separation is a continuous
quantity sampled at particular points determined by the set of galaxies in the survey.

Varying numbers of angular bins have been used in recent weak lensing analyses. The
Dark Energy Survey Year 3 analysis in DES Collaboration et al. (2022) used 20 correlation
function bins from 2.5 to 250 arcmin, while the KiDS-1000 analysis used 9 bins from 0.5 to
300 arcmin, and 8 bandpowers from ` = 100 to 1500 (Joachimi et al. 2021; Heymans et al.
2021; Asgari et al. 2021). The Hyper Suprime-Cam Year 1 pseudo-C` analysis in Hikage
et al. (2019) used 15 bandpowers from ` = 60 to 6500, though only 6 from ` = 300 to 1900
were retained in the cosmological analysis.

This chapter explores how many angular bins are necessary to retain a sufficient amount
of constraining power in cosmological parameters. Specifically, it studies how the relative
size of posterior uncertainties depends on the number of angular bins, both for the power
spectrum and correlation function. Since angular binning will be essential in practice for
upcoming Stage IV weak lensing surveys, it is vital to understand the relationship between
this binning and cosmological parameter constraints in order to strike the optimal balance
between computational viability and scientific value.
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The main analysis of this chapter is contained within Section 6.2, which studies how the size
of parameter posterior uncertainties depends on the number of angular bins. In Section 6.3
a number of additional effects that may affect these results are examined. Conclusions are
discussed in Section 6.4.

6.2. Dependence of posterior uncertainties on number of angular
bins

This section contains the main analysis of the chapter. The method of measuring posterior
uncertainties is described in Section 6.2.1, while the observed dependence on the number
of angular bins is described in Section 6.2.2.

6.2.1. Measurement of posterior uncertainties

The posterior uncertainties in this section are measured directly from posterior distribu-
tions resulting from a full likelihood analysis. Later in the chapter, in Section 6.3, methods
will be described and used which approximate these results without the need for a full
likelihood analysis.

The different elements of the likelihood analysis will now each be described.

6.2.1.1. Modelling of two-point statistics

3×2 pt power spectra were generated using CosmoSIS (Zuntz et al. 2015), covering a two-
dimensional grid of values of w0 and wa, and one-dimensional grids of five other cosmo-
logical parameters (Ωm, Ωb, σ8, ns, h), with all other parameters held at fixed values in each
case. The pipeline is the same as described in Section 4.2.2.1, with five Gaussian redshift
bins centred on z = 0.65, 0.95, 1.25, 1.55, 1.85. Multipoles up to `max = 5000 were gener-
ated, but different scale cuts are explored in this chapter. Power spectra were binned into
bandpowers following Equation (5.11).

Angular-bin-averaged correlation functions for galaxy position ξNN , shear ξ±, and their
cross correlation ξNE, were calculated directly from the unbinned power spectra using the
following relations:

ξNN (θ, ∆θ) = ∑
`

2`+ 1
4π

C` d`00 (θ, ∆θ) ; (6.1)

ξ± (θ, ∆θ) = ∑
`

2`+ 1
4π

C` d`±22 (θ, ∆θ) ; (6.2)

ξNE (θ, ∆θ) = ∑
`

2`+ 1
4π

C` d`20 (θ, ∆θ) , (6.3)
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where d`m′m (θ, ∆θ) is the bin-averaged Wigner small-d symbol. Following Fang et al. (2020)
and Stebbins (1996), the small-d symbols may be written in terms of Legendre polynomials
P`, associated Legendre polynomials of order 2 Pm=2

` ,1 and Stebbins’s G symbol,

d`00 (θ) = P` (cos θ) ; (6.6)

d`±22 (θ) =
2

`2 (`+ 1)2

[
G+
`,2 (cos θ)± G−`,2 (cos θ)

]
; (6.7)

d`20 (θ) =
1

` (`+ 1)
Pm=2
` (cos θ) , (6.8)

which may be integrated analytically to obtain (Friedrich et al. 2021; Fang et al. 2020)

P` (θ, ∆θ) =
1

cos θ2 − cos θ1

1
2`+ 1

[P`+1 (x)− P`−1 (x)]x=cos θ2
x=cos θ1

; (6.9)

G+
`,2 ± G−`,2 (θ, ∆θ) =

1
cos θ2 − cos θ1

[
− ` (`− 1)

2

(
`+

2
2`+ 1

)
P`−1 (x)

− ` (`− 1) (2− `)

2
xP` (x) +

` (`− 1)
2`+ 1

P`+1 (x)

+ (4− `)
dP` (x)

dx
+ (`+ 2)

(
x

dP`−1 (x)
dx

− P`−1 (x)
)

± 2 (`− 1)
(

x
dP` (x)

dx
− P` (x)

)
∓ 2 (`+ 2)

dP`−1 (x)
dx

]x=cos θ2

x=cos θ1

; (6.10)

Pm=2
` (θ, ∆θ) =

1
cos θ2 − cos θ1

[(
`+

2
2`+ 1

)
P`−1 (x) + (2− `) xP` (x)

− 2
2`+ 1

P`+1 (x)

]x=cos θ2

x=cos θ1

, (6.11)

where θ1 = θ and θ2 = θ + ∆θ. The only symbols necessary to evaluate these equations are
the Legendre polynomials and their derivatives, which are evaluated up to a required `max

using the SciPy Python library (Virtanen et al. 2020). These transforms assume a uniform
distribution of galaxies, which corresponds to a distribution of galaxy pairs proportional to
sin θ (Friedrich et al. 2021). The angular bins are logarithmically spaced for both the power
spectra and correlation functions.

Noise was added to the power spectra prior to binning, following Equations (4.8)–(4.9),

1 Associated Legendre polynomials are defined as

Pm
` (x) = (−1)m

(
1− x2

)m/2 dm

dxm P` (x) , (6.4)

such that
P` (x) ≡ Pm=0

` (x) . (6.5)
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with a number density of 6/arcmin2 in each of five redshift bins, and an intrinsic shape
dispersion of σε = 0.3 per component. For the correlation functions, noise only contributes
via the covariance, which is described in Section 6.2.1.2 below.

6.2.1.2. Likelihood and covariance

A Gaussian likelihood was used for both the power spectra and correlation functions.
This was shown to be sufficiently accurate for power spectra in Chapter 4. It can also be
expected to be sufficiently accurate for correlation functions, since they are simply linear
transformations of power spectra. To remove any unwanted randomness from the size of
the posterior uncertainties, no observed realisation was simulated and instead the model
data vector was used at the fiducial parameter values.

The covariance of the unbinned power spectrum was calculated assuming Gaussian fields,
following Equation (4.6). This was then transformed linearly to obtain both the covariance
of the binned power spectrum and the binned correlation function, using the general rule
that for any data vector x having covariance matrix Σ, the covariance of Mx, where M is
the matrix representing some general linear transformation, is given by

Cov (Mx) = MΣMᵀ. (6.12)

For the power spectrum, noise was included in the unbinned C`s used to calculate the
covariance, as described above in Section 6.2.1.1. For the correlation function, noise-free C`s
were used, and a noise contribution to the diagonal of the covariance was added using the
following expressions (Schneider et al. 2002; Joachimi, Schneider & Eifler 2008a; Heymans
et al. 2013; Troxel et al. 2018)

CovNoise

(
ξ

ij
NN (θ1) , ξkl

NN (θ2)
)
=

1

Nij
p (θ1, ∆θ1)

δθ1θ2

(
δikδjl + δilδjk

)
; (6.13)

CovNoise

(
ξ

ij
+ (θ1) , ξkl

+ (θ2)
)
=

(
σi

εσ
j
ε

)2

Nij
p (θ1, ∆θ1)

δθ1θ2

(
δikδjl + δilδjk

)
; (6.14)

CovNoise

(
ξ

ij
− (θ1) , ξkl

− (θ2)
)
=

(
σi

εσ
j
ε

)2

Nij
p (θ1, ∆θ1)

δθ1θ2

(
δikδjl + δilδjk

)
; (6.15)

CovNoise

(
ξ

ij
NE (θ1) , ξkl

NE (θ2)
)
=

(
σi

εσ
j
ε

)2

Nij
p (θ1, ∆θ1)

δθ1θ2 δikδjl . (6.16)

In Equations (6.13)–(6.16), i–l represent redshift bins, σi
ε and σ

j
ε are the intrinsic shape
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Figure 6.1. The Stage-IV-like mask describing a fictitious satellite-based survey used for the
cut-sky results in this chapter.

dispersion per component in each redshift bin, and Np is the number of galaxy pairs in a
particular angular bin, given by (Friedrich et al. 2021)

Nij
p =

1
2

Asurvey Abin Ni Nj, (6.17)

where Asurvey is the survey area in steradians, Ni and Nj are the galaxy number densities
in bins i and j, and Abin is the angular bin area given by

Abin = 2π [cos (θ)− cos (θ + ∆θ)] . (6.18)

6.2.1.3. Cut-sky treatment

For the cut-sky results, a Stage-IV-like mask describing a fictitious satellite-based survey
was used. This was obtained by transforming the WMAP temperature mask used in Chap-
ter 3 (Bennett et al. 2013), to excise the ecliptic plane in addition to the galactic plane.
Additional point-source holes were added until a desired sky coverage of fsky = 0.3 was
achieved. The centre of each hole was chosen by selecting pixels at random. The imme-
diate neighbouring pixels were also excised, after which a recursive probabilistic method
was used, with a 50% chance of the next neighbouring pixels being removed, and so on up
to a maximum hole radius of 6 pixels. The final mask is shown in Figure 6.1.

The impact of the sky cut on observed power spectra was modelled using a mixing matrix
obtained using NaMaster (Alonso, Sanchez & Slosar 2019). A cut-sky power spectrum
covariance was obtained using the improved narrow kernel approximation (Nicola et al.
2021) method described in Chapter 5. The sky cut does not affect the expected value of the
correlation function, but does affect its covariance. This is modelled by applying a factor of
1/ fsky to the full-sky covariance matrix. Although this is presumably an approximation, it
is standard practice for the cut-sky correlation function, used for example in the DES Year
3 covariance described in Friedrich et al. (2021). It was shown in Cabré et al. (2007) that this
‘ fsky approximation’ is a good approximation to the simulated cut-sky correlation function

149



Chapter 6 — Dependence of parameter constraints on angular binning of two-point statistics

0 5 10 15 20 25 30
Number of bandpowers

1.00

1.05

1.10

1.15

1.20

Ar
ea

 in
sid

e 
co

nt
ou

r i
n 

w
0

w
a p

la
ne

(n
or

m
al

ise
d)

Power spectrum

1 3  average

0 5 10 15 20 25 30
Number of  bins

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Correlation function

Figure 6.2. Dependence of posterior uncertainties in a joint full-sky analysis of w0 and wa
on the number of angular bins for the power spectrum (left) and correlation function (right).
Each line is averaged over 100 contours linearly spaced from 1σ to 3σ and normalised to
be equal to 1 at its minimum, as described in the first paragraph of Section 6.2.2.

covariance, which is not the case for the power spectrum. Nevertheless, in Section 6.3.1 it
is shown that the use of this approximation for the power spectrum does not significantly
affect the dependence of posterior uncertainties on the number of angular bins. Therefore,
it can be expected to be a sufficiently accurate approximation for the correlation function
in this chapter.

6.2.2. Posterior uncertainty as a function of number of angular bins

The dependence of posterior uncertainties in a joint full-sky analysis of w0 and wa on
the number of angular bins is shown for the power spectrum and correlation function in
Figure 6.2. Each line is calculated by forming the joint posterior distribution of w0 and
wa, drawing 100 credible regions linearly spaced from 1σ to 3σ (following the definitions
of credible regions and sigma notation described in Section 2.4.1), measuring the area of
every credible region as a function of the number of angular bins, normalising each curve
to be equal to 1 at its minimum, and finally averaging over all 100 regions. This technique
removes most of the noise that results from the finite resolution of the posterior grids.

Both lines in Figure 6.2 are mostly flat above around 10 angular bins, and converge to a
minimum by around 20–25 bins. Below 10 bins, there is a sharp increase in contour area.
For the power spectrum, however, this only reaches a maximum of around 20 per cent
higher than the minimum area, even for a single bandpower. In contrast, the contour area
for the correlation function diverges sharply at around 5 bins. This difference in behaviour
is explored in Section 6.3.2.

To further illustrate the dependence shown in Figure 6.2, posterior distributions with dif-
ferent numbers of angular bins are shown in Figure 6.3 for the full-sky power spectrum
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Figure 6.3. 1–3σ posterior contours from the full-sky power spectrum with different num-
bers of bandpowers used in the likelihood analysis.
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Figure 6.4. As Figure 6.3 but for the correlation function. 1–3σ posterior contours from the
full-sky correlation function with different numbers of angular bins used in the likelihood
analysis.

and in Figure 6.4 for the full-sky correlation function. It can be seen in the left panel of
Figure 6.3 that the single-bandpower posterior distribution is only slightly larger than the
equivalent result with 30 bandpowers. The correlation function posteriors in Figure 6.4
show more degradation as the number of bins is decreased, as mentioned above.

Figure 6.5 shows the same dependence on the number of angular bins, but this time for a
cut-sky analysis. The results are very similar to the full-sky results in Figure 6.2. For this
reason, the remainder of this chapter considers only a full-sky setup, but the conclusions
should be applicable to a cut-sky analysis as well.

Additional cosmological parameters are investigated in Figure 6.6. These are chosen to be
the parameters included in the Euclid forecast paper (Euclid Collaboration: Blanchard et al.
2020): w0, wa, Ωm, Ωb, σ8, ns, h. These parameters are described in Chapter 1. Each parame-
ter is shown for three different scale cuts. For the power spectrum, the maximum multipole
`max is varied from the baseline value of `max = 2000 to a more conservative `max = 1000
and a more optimistic `max = 5000. For the correlation function, the respective equivalent
minimum separation θmin values are θmin = 0.1 deg, θmin = 0.2 deg, and θmin = 0.03 deg.
While the different parameters behave broadly similarly, there are some differences. For
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Figure 6.5. As Figure 6.2 but for a cut-sky analysis. Dependence of posterior uncertainties
in a joint cut-sky analysis of w0 and wa on the number of angular bins for the power
spectrum (left) and correlation function (right). Each line is averaged over 100 contours
linearly spaced from 1σ to 3σ and normalised to be equal to 1 at its minimum, as described
in the first paragraph of Section 6.2.2.

example, while some parameters such as w0 only exhibit a 10–20 per cent degradation at
low numbers of bandpowers, others such as Ωb exhibit as much as 300 per cent degrada-
tion, perhaps because constraining such parameters requires sufficient angular resolution
to resolve the shape of the power spectrum and not just its amplitude.

Ideally it would be possible to unify the results with different scale cuts in Figure 6.6 into
a dependence on a single measure, such as the logarithmic angular bin size. However, the
different parameters behave differently as `max and θmin are varied, so this is not possible in
practice. However, a certain subset of the parameters do exhibit such a convenient property
for the power spectrum: it is shown in Figure 6.7 that for four parameters—w0, wa, Ωm and
σ8—the number of bandpowers required for a given `max value scales approximately as√
`max. The reason for this particular dependence is not clear, but it is perhaps not a

coincidence that these parameters are those which depend most on the amplitude of weak
lensing power spectra and least on their shape. For this reason, these parameters are also
the most strongly correlated in a Euclid-like analysis (Euclid Collaboration: Blanchard et al.
2020).

6.3. Exploration of additional effects

In this section, three different effects which may affect the required number of angular bins
are explored. Section 6.3.1 investigates the impact of the fsky approximation in the power
spectrum covariance. Section 6.3.2 explores why the power spectrum and correlation func-
tion exhibit such different behaviour for low numbers of angular bins, while Section 6.3.3
studies the impact of noise.
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Figure 6.6. As Figure 6.2 but for a single parameter at a time. Dependence of posterior
uncertainties in a single-parameter analysis on the number of angular bins for the power
spectrum (left) and correlation function (right). Each line is averaged over 100 contours
linearly spaced from 1σ to 3σ and normalised to be equal to 1 at its minimum, as described
in the first paragraph of Section 6.2.2. Each parameter is constrained independently, with
all other parameters held fixed. The results for different scale cuts are shown in different
colours.
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Figure 6.7. Dependence on the number of bandpowers for the full-sky power spectrum, for
four parameters exhibiting a particular property: the number of bandpowers required for
a particular level of degradation for different `max values approximately scales as

√
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6.3.1. Impact of fsky approximation

In Section 6.2, the cut-sky power spectrum covariance was calculated using the Improved
NKA method. A faster alternative is to use the ‘ fsky approximation’:

Covcut-sky ≈
1

fsky
Covfull-sky, (6.19)

where fsky is the observed fraction of the sky. Figure 6.8 shows the dependence of pos-
terior uncertainties in a joint cut-sky analysis of w0 and wa on the number of bandpow-
ers when using the fsky approximation compared to the more accurate Improved NKA
method. While the curves produced by the two methods are not identical, the results are
similar other than for a very coarse binning (1–2 angular bins). The good performance of
the fsky approximation for the power spectrum supports its use for the correlation function
in Section 6.2, especially when combined with the results of Cabré et al. (2007), which show
through a comparison with simulations that this approximation is much more accurate for
the correlation function than it is for the power spectrum.
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Figure 6.8. Dependence of posterior uncertainties in a joint cut-sky analysis of w0 and wa
on the number of power spectrum bandpowers, when the covariance is calculated using
the fsky approximation (Equation 6.19) compared to the Improved NKA method. Each line
is averaged over 100 contours linearly spaced from 1σ to 3σ and normalised to be equal to
1 at its minimum, as described in the first paragraph of Section 6.2.2.

6.3.2. Contrast between power spectrum and correlation function behaviour for
small numbers of bins

A peculiar result that occurs throughout Section 6.2 is that posterior uncertainties obtained
through a power spectrum analysis tend to degrade much less for small numbers of angular
bins than those obtained through a correlation function analysis. For example, in Figure 6.2,
even a single bandpower only returns a joint w0–wa uncertainty around 20 per cent larger
than with 30 bandpowers, whereas for the correlation function there is a sharp divergence
by at least 500 per cent at around 5 angular bins. The explanation for this behaviour is the
differing ways in which scales are weighted within each angular bin for the two methods,
which will now be demonstrated.

The top panel of Figure 6.9 shows 45 theoretical power spectra, corresponding to the shear
auto-power in the lowest redshift bin for different points in the w0–wa plane. The points
are chosen from a diagonal line running perpendicular to the w0–wa degeneracy direction;
that is, from the lower left to upper right of a given panel of Figure 6.3. Each model is
coloured by its distance in σ from the fiducial model, determined from a full-sky unbinned
power spectrum likelihood analysis. The fiducial model is (w0, wa) = (−1, 0). In practice,
the 45 power spectra all appear on top of one another. Error bars are shown at a selection
of multipoles, and include a shape noise contribution. In the lower panel, the difference
between each model and the fiducial model is shown, scaled by the error bar for each `.
This is effectively equivalent to the per-` signal-to-noise as a function of scale. There is a
region of very low signal-to-noise at low `, ` . 50, which rapidly increases to a peak at
around ` ∼ 200, followed by a gentle decrease towards higher ` as shape noise begins to
dominate.
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Figure 6.9. Top: 45 theoretical power spectra, corresponding to the shear auto-power in
the lowest redshift bin for different points in the w0–wa plane. The points are chosen from
a diagonal line running perpendicular to the w0–wa degeneracy direction. Each model is
coloured by its distance in σ from the fiducial model, determined from a full-sky unbinned
power spectrum likelihood analysis. In practice, the 45 power spectra all appear on top of
one another. Error bars are shown at a selection of multipoles, and include a shape noise
contribution. Bottom: The difference between each model and the fiducial model, scaled
by the error bar for each `.

The equivalent for the correlation function, for ξ+ in the lowest redshift bin, is shown
in Figure 6.10. 30 angular bins are used. The colour for each model is the same as in
Figure 6.9. The signal-to-noise is roughly constant between 0.1 and 1 deg, before steadily
decreasing to reach a very low level at 10 deg.

As seen in Figures 6.9 and 6.10, both the power spectrum and correlation function have
poor signal-to-noise on large angular scales. This fact alone cannot explain the difference
between them when small numbers of angular bins are used. The difference arises because
of how scales are weighted within each bin. For the power spectrum, different ` within
each bandpower are weighted as ` (`+ 1) following Equation (5.11), which quadratically
downweights the largest scales, which are the lowest signal-to-noise part of the data vector.
For the correlation function, however, different θ within each bin are weighted as sin θ,
corresponding to a uniform distribution of galaxies (Friedrich et al. 2021). This weighting
upweights the largest scales, which can dramatically decrease the signal-to-noise when
combining scales into few bins.

The effect of the sin θ weighting is small when relatively large numbers of angular bins are
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Figure 6.10. As Figure 6.9 but for the correlation function. Top: 45 theoretical correlation
functions, corresponding to ξ+ in the lowest redshift bin for different points in the w0–
wa plane. The points are chosen from a diagonal line running perpendicular to the w0–wa
degeneracy direction. Each model is coloured by its distance in σ from the fiducial model,
determined from a full-sky unbinned power spectrum likelihood analysis. Error bars are
shown for each angular bin, and include a shape noise contribution. Bottom: The difference
between each model and the fiducial model, scaled by the error bar for each angular bin.

used. The left panel of Figure 6.11 shows the same selection of correlation functions and
per-bin signal-to-noise for 30 angular bins, while the right panel uses 15 bins. Each angular
bin on the right panel corresponds to exactly two bins on the left panel. It can be seen that
the sin θ weighting has little effect, because for instance the value of ξ+ in the first bin in
the right panel is approximately equal to the mean of the values of ξ+ in the first two bins
in the left panel. This is because with a fine binning such as that used here, the difference
in sin θ between adjacent bins is not significant.

However, with a very low number of bins the effect of the sin θ weighting is large. Fig-
ure 6.12 shows the difference between using two angular bins in the left panel and just a
single bin in the right panel. When combining the two bins into one, the value of ξ+ is
heavily weighted towards the larger-scale bin. The result is that the signal-to-noise drops
by an order of magnitude, as is evident in the lower panels.

It is possible to demonstrate that the power spectrum would experience the same problem
if large scales were not strongly downweighted. To do so, it is necessary to introduce a
new technique, in order to combine the signal-to-noise across all angular bins while taking
correlations between bins into account. This involves defining the covariance-weighted
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Figure 6.11. As Figure 6.10, but for 30 angular bins (left panel) compared to 15 (right panel).
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Figure 6.12. As Figure 6.10, but for 2 angular bins (left panel) compared to 1 (right panel).
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Figure 6.13. Comparison of the covariance-weighted distance d defined in (6.20) to the
distance from the fiducial model measured from the posterior distribution resulting from
a full likelihood analysis, for each of 45 different models. Each model corresponds to a
different point in the w0-wa plane, selected from a diagonal line running perpendicular to
the w0–wa degeneracy direction. The dashed line represents equality.

distance d,2 as
d2 =

(
x− xfid

)ᵀ
Σ−1

(
x− xfid

)
, (6.20)

where x is the theoretical data vector for a particular model (a set of C` or ξ (θ) values), xfid

is the data vector predicted by the fiducial model, and Σ is the covariance matrix.

Figure 6.13 shows that Equation (6.20) correctly predicts the distance from the fiducial
model measured from the posterior distribution resulting from a full likelihood analysis.
The left panel shows the value of the covariance-weighted distance d against the distance
from the fiducial model in σ measured from the posterior for the power spectrum, while
the right panel shows it for the correlation function, for the selection of 45 models used
throughout this section. The agreement is worse farther from the fiducial model, which
may be a result of being close to the boundary of the prior region used in the likelihood
analysis.

The upper left panel of Figure 6.14 shows the covariance-weighted distance from the fidu-
cial model as a function of the number of angular bins for the power spectrum with the
usual ` (`+ 1) weighting, for each of the 45 models. The results are consistent with those
found from a full likelihood analysis in Figure 6.2: the distance at which each model is ex-
cluded only decreases slightly when reducing the number of bandpowers, even to a single
bandpower. The upper right panel shows the equivalent for the correlation function, which
is weighted within each bin as sin θ. As seen previously in Figure 6.2, there is a much more
severe degradation in performance for small numbers of bins, with the distance from the
fiducial model shrinking to approximately zero for a model excluded at more than 30σ

with 20–30 angular bins.

2 This distance d is equivalent to the Mahalanobis distance (Mahalanobis 1936).
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Figure 6.14. Covariance-weighted distance d from the fiducial model, as defined in Equa-
tion (6.20), as a function of the number of angular bins, for a selection of 45 different
models. Each model corresponds to a different point in the w0-wa plane, selected from a
diagonal line running perpendicular to the w0–wa degeneracy direction. Each panel ex-
plores a different weighting of scales within each angular bin. Top left: power spectrum
with the usual ` (`+ 1) weighting. Top right: correlation function with the sin θ weight-
ing corresponding to a uniform distribution of galaxies. Bottom left: power spectrum with
a flat weighting, where each ` is weighted equally within each bandpower. Bottom right:
power spectrum with a correlation-function-like sin (π/`) weighting.
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The lower left panel of Figure 6.14 shows the effect of applying a flat weighting to the
power spectrum; that is, weighting each ` equally within a given bandpower. The effect
here is to reduce the amount by which large scales are downweighted, which leads to a
degradation in the overall signal-to-noise for small numbers of bandpowers. Finally, in
the lower right panel, a weighting is applied that is equivalent to the way in which the
correlation function is weighted: each ` is weighted as sin (π/`). The resulting form of
the distance from the fiducial model as a function of the number of bins is almost identical
to that for the correlation function. This demonstrates that the weighting of scales within
bins is responsible for the different behaviour of the power spectrum and the correlation
function for low numbers of angular bins.

6.3.3. Impact of noise

It is possible that the results derived in the main analysis presented in Section 6.2 may vary
if the level of noise present in the data changes. This is investigated in this section.

The top panel of Figure 6.15 shows the posterior uncertainty in w0 from a full-sky power
spectrum analysis, as a function of the number of bandpowers, for three noise levels. The
baseline noise level corresponds to 30 galaxies / arcmin2 across all redshift bins, while the
line labelled ‘×100 noise’ corresponds to 0.3 / arcmin2 and the line labelled ‘×0.01 noise’
corresponds to 3000 / arcmin2. Different behaviour is observed for the three different noise
levels, which is discussed further below. Varying the noise by a factor 100 turned out
to not be possible for the correlation function, due to problems with the conditioning of
the covariance matrix for low noise levels. For a fair comparison with the correlation
function, the lower left panel therefore shows the results for power spectrum with the
noise varying by a factor of 2. ‘×2 noise’ corresponds to 15 galaxies / arcmin2, while ‘×0.5
noise’ corresponds to 60 / arcmin2. While the spacing between the three lines is smaller
than in the top panel, it is still clearly present in the same arrangement.

The right panel of Figure 6.15 shows the equivalent figure for the correlation function, with
a factor of 2 between each noise level. In this case, little clear difference is observed between
the different noise levels.

Insight into the different behaviour of the power spectrum and correlation function under
varying noise levels seen in Figure 6.15 may be gained by studying the signal-to-noise as
a function of scale for each method with an enhanced level of noise. This may be studied
using some of the methods developed in Section 6.3.2 above. Since the methods used here
do not require the use of a covariance matrix, a factor of 100× may be used without any
problems, which allows a clearer illustration of the effect of noise.

The lower panel of Figure 6.16 shows the per-` signal-to-noise of the shear auto-power
spectrum in the lowest redshift bin for the 100× baseline noise level. (See Section 6.3.2
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Figure 6.15. Dependence of w0 posterior uncertainty on the number of angular bins for
the power spectrum and correlation function, for three different noise levels. Top: power
spectrum, varying noise by a factor of 100. Lower left: power spectrum, varying noise by
a factor of 2. Lower right: correlation function, varying noise by a factor of 2. Each line is
averaged over 100 contours linearly spaced from 1σ to 3σ and normalised to be equal to
1 at its minimum, as described in the first paragraph of Section 6.2.2. The baseline noise
level corresponds to 30 galaxies / arcmin2 across all redshift bins.
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Figure 6.16. As Figure 6.9 but with 100× baseline noise. Top: 45 theoretical power spectra,
corresponding to the shear auto-power in the lowest redshift bin for different points in
the w0–wa plane. The points are chosen from a diagonal line running perpendicular to
the w0–wa degeneracy direction. Each model is coloured by its distance in σ from the
fiducial model, determined from a full-sky unbinned power spectrum likelihood analysis.
In practice, the 45 power spectra all appear on top of one another. Error bars are shown at
a selection of multipoles, and include a shape noise contribution. Bottom: The difference
between each model and the fiducial model, scaled by the error bar for each `.

for a more detailed explanation of this type of figure.) In contrast to the relatively small
drop in signal-to-noise towards higher ` seen in Figure 6.9, there is now a much larger
decrease, in addition to a shift in the peak towards lower ` (` ∼ 50). This is because the
smaller scales are heavily suppressed by the increased noise level. If these low signal-to-
noise small scales are combined in a single bin with the high signal-to-noise region, they
will be strongly upweighted by the ` (`+ 1) weighting of `s within bandpowers, leading
to a strong decrease in the overall signal-to-noise. This is what is observed in the ‘×100
noise’ line in the top panel of Figure 6.15, and to a smaller extend in the ‘×2 noise’ line in
the lower left panel of the same figure. The opposite effect can be expected to occur for
low noise levels, which can explain the shallow slope of the ‘×0.01 noise’ and ‘×0.5 noise’
lines.

Figure 6.17 shows the equivalent for the correlation function. Compared to the baseline
noise level seen previously in Figure 6.10, there is little change in shape when the noise
is increased. This is unlike the power spectrum, and explains why the dependence on the
number of correlation function bins sees little change when the noise level is varied.
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Figure 6.17. As Figure 6.10 but with 100× baseline noise. Top: 45 theoretical correlation
functions, corresponding to ξ+ in the lowest redshift bin for different points in the w0–
wa plane. The points are chosen from a diagonal line running perpendicular to the w0–wa
degeneracy direction. Each model is coloured by its distance in σ from the fiducial model,
determined from a full-sky unbinned power spectrum likelihood analysis. Error bars are
shown for each angular bin, and include a shape noise contribution. Bottom: The difference
between each model and the fiducial model, scaled by the error bar for each angular bin.
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6.4. Conclusions

This chapter has investigated the question of how the statistical uncertainties in the poste-
rior distributions of cosmological parameters derived from weak lensing two-point statis-
tics depend on the number of angular bins used in the analysis. In Section 6.2 it was shown
that for some parameters such as w0 and wa, these uncertainties for the power spectrum
only increase by 7–20 per cent even for a single bandpower, relative to 30 bandpowers. In
contrast, for the correlation function there is a sharp divergence by several hundred per
cent at around 5 angular bins. However, these results vary quite substantially depend-
ing on the parameters in question and other aspects of the analysis. For example, power
spectrum constraints in Ωb and h can degrade by over 200 per cent for low numbers of
bandpowers, while the same parameters do not suffer quite as badly for the correlation
function. There is an inconsistent dependence on scale cut: a selection of four cosmologi-
cal parameters (w0, wa, Ωm, σ8) exhibit a dependence of

√
`max for the power spectrum, but

not for the correlation function, while the other parameters investigated (Ωb, h, ns) show
no such dependence.

In Section 6.3 a number of additional effects have been investigated. It was shown in
Section 6.3.1 that the use of the ‘ fsky approximation’ for the power spectrum covariance
leads to similar results to using the full Improved NKA method. The different behaviour of
the power spectrum and correlation function for small numbers of bins was investigated in
Section 6.3.2, where it was shown that this arises from the different ways in which scales are
weighted within each angular bin. Finally, the effect of noise was studied in Section 6.3.3,
where it was shown that the number of angular bins needed for the correlation function
has no strong dependence on the level of noise, but that a higher noise level in the power
spectrum requires more bandpowers.

While there is no single rule for the number of required angular bins that captures all pos-
sible analysis setups, the results in this chapter suggest that, for instance, if a maximum
degradation on parameter uncertainties of 10 per cent is required, then 10 bandpowers
appears comfortably sufficient for power spectra, and 15 angular bins for correlation func-
tions. This is true for any angular range up to at least `max = 5000 (θmin = 0.03 deg),
although significantly higher scale cuts than this may require more bins.
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Chapter 7

Weak lensing estimation with convolutional
neural networks

7.1. Introduction

Weak lensing, as introduced in Chapter 1, is a probe with enormous potential to explore the
low-redshift evolution of structure in the Universe and constrain theories of dark energy.
However, it is accompanied by many observational and analytical challenges, and sources
of bias and systematic error, some of which were described in Chapter 1. These challenges
differ depending on the wavelength of the observations. Chapters 3–6 have been written in
the context of an optical imaging survey, such as Euclid. Radio observations, on the other
hand, bring their own challenges. One such challenge is reliable galaxy shape measure-
ment. The fundamental difference between optical and radio data is that the raw data for
radio observations are in the form of Fourier-space visibilities. One option for shape mea-
surement from radio visibilities is to first produce images and then to use the same shape
estimation techniques as used in optical weak lensing surveys. This approach was taken
in Hillier et al. (2019), for instance. However, as pointed out in that paper, the imaging
process may introduce systematic errors into the data, and this approach fails to fully re-
alise the benefit of having a known point spread function (PSF), which is a key advantage
of radio observations for weak lensing. As a result, methods have been developed for es-
timating galaxy shapes, or weak lensing shear, directly from radio visibilities (Rivi et al.
2016; Rivi & Miller 2018; Rivi et al. 2019; Hillier 2020; Harrison et al. 2020). However, these
techniques are not yet known to be sufficiently mature and reliable for use with data from
the upcoming Square Kilometre Array radio observatory (SKA; described in Chapter 1),
which will achieve an unprecedented level of statistical precision due to the large number
of galaxies predicted to be observed (Brown et al. 2015). The topic of shear estimation from
radio visibilities therefore remains an active area of research.

One possible route to overcoming this challenge may be provided by machine learning.
Machine learning, in the broadest sense, is a class of methods which involve describing
some function using one or more parameters and then finding appropriate values for these
parameters using a ‘training’ set of known pairs of input and output values for the func-
tion.1 A simple example is a linear regression, in which the slope and intercept of the line
are the two parameters to be ‘learned’. A more complex class of model (though still funda-

1 In fact, the definition of machine learning is even broader than this, as it includes unsupervised methods in
which a training set is not present. Unsupervised learning is not discussed further within this chapter.
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mentally simple, as described in Section 7.2) are neural networks, which have recently ex-
ploded in popularity due to the unprecedented availability of training data and computing
resources. Within astrophysics and cosmology, popular applications include radio galaxy
classification (Aniyan & Thorat 2017; Scaife & Porter 2021; Mohan et al. 2022), supernova
classification (Charnock & Moss 2017; Möller & de Boissière 2020), star–galaxy discrimi-
nation (Kim & Brunner 2017), neutron star nuclear mass prediction (Utama, Piekarewicz
& Prosper 2016; Niu & Liang 2018), strong lensing analysis (Hezaveh, Levasseur & Mar-
shall 2017; Petrillo et al. 2017; Perreault Levasseur, Hezaveh & Wechsler 2017; Jacobs et al.
2017), real-time gravitational wave analysis (George & Huerta 2018), photometric redshift
estimation (Bonnett 2015; Hoyle 2016; Pasquet et al. 2019) and efficient likelihood sampling
(Manrique-Yus & Sellentin 2020). The work presented in this chapter uses convolutional
neural networks, a type of neural network that uses convolutions, which are introduced in
Section 7.2.2.

As a simpler starting point from which to work towards the application of radio galaxy
weak lensing, this chapter focuses on weak lensing of the cosmic microwave background
(CMB; described in Chapter 1), starting with lensed CMB maps (i.e. neglecting the CMB
map-making process, which is somewhat analogous to radio imaging in the challenges
it brings). This is an exploratory project, which proceeds by starting with an extremely
simplified problem and gradually adding complexity, with an aim to ultimately converge
towards a realistic application. The project as presented here is, in this respect, a work
in progress. Nevertheless, it contains some useful insights into what may be achieved us-
ing convolutional neural networks for weak lensing estimation. This can complement the
existing literature on the topic: Ribli, Dobos & Csabai (2019) and Tewes et al. (2019) both
demonstrated the potential of neural networks for galaxy shape and shear estimation for
optical galaxy imaging surveys, while Nurbaeva et al. (2015) showed the application to
PSF deconvolution, and Ribli et al. (2019) used neural networks for map-based parameter
inference. This work has some overlap with Caldeira et al. (2019), who tested the use of
convolutional neural networks to learn the functional mapping from maps of Stokes pa-
rameters describing CMB polarisation to lensing convergence maps, and found a superior
performance compared to a quadratic estimator approach.

An overview of the theory of neural networks is presented in Section 7.2, focusing specif-
ically on convolutional neural networks in Section 7.2.2. The methods used to generate
training data and to build and train convolutional neural network models are described
in Section 7.3. Section 7.4 describes the iterative exploration, starting from an extremely
simplified problem and gradually adding additional complexity and realism, detailing the
models used and the results obtained at each stage. A discussion of the status of the project
and its achievements and challenges is presented in Section 7.5.
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Figure 7.1. A simple neural network, containing four layers: the input layer, two hidden
layers, and the output layer. Each node represents a single number, so this network repre-
sents a mapping from two numbers (x(0)1 , x(0)2 ) to a third (y1).

7.2. Theory

An overview of neural networks and how they are trained is given in Section 7.2.1, before
convolutional neural networks are introduced in Section 7.2.2, along with some of the
specific methods, such as loss functions and optimisation algorithms, that are used in this
work.

7.2.1. Neural networks

A neural network, in the most basic sense, is a method to approximately emulate any
function by the repeated alternation of simple linear and non-linear functions. It is formed
as a series of layers, where each layer contains one or more nodes. A node constitutes
a single number, for any given input passed through the network. A simple example is
shown in Figure 7.1, showing one input layer with two nodes, two hidden layers, each
with two nodes, and an output layer with a single node. This could represent a functional
mapping from two numbers (x(0)1 , x(1)2 ) to a third (y1).

Mathematically, the nodes within each layer can be represented as a vector; for example,
for layer j containing two nodes,

x(j) =

(
x(j)

1

x(j)
2

)
. (7.1)

The output from layer j is then given as the product of a matrix of weights W(j) and the
output from the previous layer x(j−1), added to a further vector of ‘bias’ weights b(j) and
passed through a non-linear activation function f , as

x(j) = f
(

W(j)x(j−1) + b(j)
)

. (7.2)
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Generally, the activation function f is selected by the user as a hyperparameter.2 This leaves
the linear weights W(j) and b(j), for all layers j, to be learned during training.

The number of layers, referred to as the ‘depth’ of the network, and the number of nodes
in each layer—the ‘width’, which is generally different for each layer—are chosen by the
user, depending on the nature of the function to be learned and the available resources.

7.2.1.1. Training process

The weights W(j) and b(j) are initialised randomly. Generally all initial elements are drawn
from some joint distribution chosen by the user, as opposed to being initialised indepen-
dently. This choice of initialisation is discussed in Section 7.2.2 below. The network is
trained by being exposed to a (generally large) number of training samples, each contain-
ing an input x(0) and a known ‘truth’ output y. Each sample input in the training set is
passed through the network to generate an estimate for y, denoted ŷ. This estimate is com-
pared to the truth using a loss function L (y, ŷ), which is chosen by the user—choices of
loss function are discussed in Section 7.2.2 below.

The aim of the training process is to minimise the loss function. To achieve this, the deriva-
tive of the loss function with respect to each weight in the network is calculated, using
a process called ‘back propagation’. This is simply the repeated application of the chain
rule—for each layer j,

dL
dx(j)

i

= ∑
i′

∂x(j+1)
i′

∂x(j)
i

dL
dx(j+1)

i′

. (7.3)

Weights are then updated, generally in the direction of negative dL but with some amount
of randomness to attempt to avoid outcomes such as becoming stuck in local minima or
jumping over global minima. The exact behaviour depends on the choice of optimisation
algorithm used, which is discussed in Section 7.2.2 below. Updating of weights occurs once
per training ‘batch’, where a batch is a group of training samples of some predetermined
size chosen by the user. A smaller batch size may allow faster learning, but is also more
susceptible to noise caused by features of individual training samples that do not generalise
to the whole training set.

A single pass through the entire training set is termed an ‘epoch’ of training. Generally
the training process will continue for multiple epochs, until either some predetermined
number of epochs or amount of training time is reached, or some convergence condition
is fulfilled. This condition may involve the validation loss, Lval, which is the loss function
evaluated on a separate ‘validation’ set that is not used for training. This is typically
evaluated at the end of each epoch, and can allow for the detection of overtraining, whereby
the network is learning specific features of the training set that do not generalise to the
underlying data. The results of the validation loss are not used to update the weights in

2 A hyperparameter is a parameter that is selected by the user, rather than being learned during training.
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the network, and therefore provide a more unbiased estimate of the true performance on
the underlying data.

7.2.2. Convolutional neural networks

Convolutional neural networks (CNNs) are an extension to the simple case considered
above, which are convenient when dealing with images in scenarios where the function
to be learned is translationally invariant. In a CNN, the input to each layer is two-
dimensional,3 denoted here for node i of layer j as X

(j)
i , and the inner product in Equation

(7.2) is replaced by a convolution with some kernel K
(j)
ii′ ,

X
(j)
i = f

(
∑
i′

K
(j)
ii′ ∗X

(j−1)
i′ + B

(j)
i

)
. (7.4)

Each element of the bias vector b(j) from Equation (7.2) has now been replaced by a matrix
B
(j)
i , although sometimes this is reduced to a single value b(j)

i , in which case

B
(j)
i = b(j)

i I, (7.5)

where I is the identity matrix. Similarly, the activation function f is generally a non-linear
matrix-to-matrix function, but is often chosen to be an elementwise scalar function. It must
remain non-linear, however, since it is only by this property that the CNN as a whole may
emulate a general non-linear function. As before, its choice is typically made by the user
as a hyperparameter, and it is again the linear weights K

(j)
ii′ and B

(j)
i for each (i, i′, j) that

are learned during training.

Each of the hyperparameter choices mentioned above will now be discussed in turn.

Kernel and bias initialisation

Every element of the convolution kernels K
(j)
ii′ and bias matrices B

(j)
i must be initialised

to some value at the start of training. The method used in this work was orthogonal
kernel initialisation, whereby each kernel is initialised to be an orthogonal matrix, i.e. one
satisfying

K
(j)
ii′

(
K

(j)
ii′

)ᵀ
= I (7.6)

for all (i, i′, j). The elements are generated randomly under this constraint by first draw-
ing each independently and identically from a Gaussian distribution and then taking a
QR decomposition, following the method described in Saxe, McClelland & Ganguli (2013).
Alternative kernel initialisation methods include Glorot uniform (explored briefly in Sec-

3 Higher dimensions are possible, but only the two-dimensional case is considered here. In many applications
of CNNs the input data are multi-channel, but in most cases the channels are convolved independently and
so each may be considered as a separate two-dimensional image.

171



Chapter 7 — Weak lensing estimation with convolutional neural networks

tion 7.4.1 and described therein), and drawing elements independently from a Gaussian
distribution with no subsequent transformation. The bias matrices were initialised to zero.

Activation function

The Rectified Linear Unit (ReLU) activation function was used in this work. This is an
elementwise function that simply returns, for each element x,

fReLU (x) =

{
x for x > 0;

0 otherwise.
(7.7)

This minimally non-linear function is generally sufficient for the CNN as a whole to be able
to emulate any non-linear function, given a sufficiently complex architecture and volume
of training (e.g. Daubechies et al. 2019). One alternative choice is the sigmoid function,

fsigmoid (x) =
1

1 + e−x , (7.8)

but this has the shortcoming of becoming almost indistinguishable from unity as x ap-
proaches 1, which can significantly slow training.

Loss function

The loss function used in this work was the mean squared error,

LMSE

(
Y, Ŷ

)
= ∑

[
Ŷ−Y

]2
, (7.9)

where the sum is over all elements. An alternative choice could be the mean absolute error,

LMSE

(
Y, Ŷ

)
= ∑

∣∣∣Ŷ−Y
∣∣∣ , (7.10)

which might be suitable if a reduction in the sensitivity to outliers was required.

Optimisation algorithm

The optimisation algorithm determines how the weights in the network should be updated,
given the result of the loss function and its derivatives for a given batch of training data.
The ‘Adam’ optimiser (derived from ‘adaptive moment estimation’) was used in this work.
This is a type of stochastic gradient descent method, in that it tends towards minimising
the loss function, but with an element of stochasticity that helps to balance speed of con-
vergence with risk of misconvergence. This stochasticity is not generated artificially, but
instead arises naturally from the random noise present in small batches of training data,
relative to the ‘signal’ of the underlying features that the network is intended to learn. The
Adam optimiser keeps track of the following vectors of weights (elements of the convolu-
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tional kernels and bias matrices) and their gradients and moments (all at step t):

• Vector of weights θt;

• Vector of gradients gt;

• Vector of biased first moment estimates mt;

• Vector of biased second raw moment estimates vt.

These are each updated at each step as follows (Kingma & Ba 2014):

gt = ∇gL (gt−1) ; (7.11)

mt = β1mt−1 + (1− β1) gt; (7.12)

vt = β2vt−1 + (1− β2) (gt)
2 ; (7.13)

θt = θt−1 − αt
mt√
vt + ε

, (7.14)

where the training rate α, exponential decay rates β1 and β2, and numerical stability con-
stant ε are set by the user (see Section 7.4.1 for the values used in this work), and αt is given
by

αt = α

√
1− (β2)

t

1− (β1)
t (7.15)

(with superscripts here and above denoting powers, not labels).

CNNs are commonly used for image recognition and other classification-based computer
vision applications (e.g. Dieleman, Willett & Dambre 2015; Chen et al. 2016; Howard et al.
2017), or for image-to-number regression problems (e.g. Nibali et al. 2018; Baldi et al. 2019;
Pyo et al. 2019). However, in this work they are used for image-to-image regression: to
emulate a function that takes an image (a lensed CMB map) as input and produces another
image (the corresponding convergence map) as output. This motivates some of the choices
described above, such as the use of a mean squared error loss function. The methods
used to generate training data and to build and train CNN models are described below, in
Section 7.3.

7.3. Method

7.3.1. Data generation

Training, validation and test data were generated using a simulated implementation of the
basic weak gravitational lensing equation,
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Figure 7.2. Demonstration of the CMB lensing process, where the convergence is exagger-
ated by a factor 30. The left panel shows the unlensed CMB field, the centre panel shows
the convergence field (limited to `max = 50), and the right panel shows the lensed CMB
field. Each panel covers a field of view of 22.9 deg along each side.

Tlensed (Ω) = Tunlensed (Ω +∇φ) , (7.16)

where φ (Ω) is the lensing potential field defined in Equation (2.34). In this work, the
lensing fields were defined not from φ (Ω) but from the convergence field κ (Ω), defined
as

κ = −1
2
∇2φ. (7.17)

Convergence fields were generated using NaMaster (Alonso, Sanchez & Slosar 2019), from
power spectra generated using the Core Cosmology Library4 (Chisari et al. 2019). Unlensed
CMB fields were also generated using NaMaster, from temperature anisotropy power spec-
tra generated using CAMB5 (Lewis, Challinor & Lasenby 2000; Howlett et al. 2012). The
implementation of Equation (7.16) initially used the LensTools6 code (Petri 2016); how-
ever, due to issues arising from dependencies within LensTools, the lensing functionality
was later extracted out into a custom Python module. The effects of a telescope beam and
detector noise were neglected, as was the non-Gaussian nature of the true convergence
field.

For the early stages of this project (described in Sections 7.4.1–7.4.3), lensing was exagger-
ated to simplify the problem. This was achieved by multiplying each convergence map by a
constant factor (greater than 1) prior to simulating lensing. An example of the lensing pro-
cess using a 30× exaggeration is shown in Figure 7.2. The left panel shows the unlensed
CMB field, the centre panel shows the convergence field (limited to `max = 50), and the
right panel shows the lensed CMB field. The lensing effect is clearly visible, which would
not be the case without the 30× exaggeration.

4 https://github.com/LSSTDESC/CCL
5 https://camb.info
6 https://lenstools.readthedocs.io/en/latest
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Figure 7.3. Demonstration of the eight unique transforms used for data augmentation, each
formed by a different combination of a rotation and a reflection (flip).

From complexity level 2 onwards (described in Sections 7.4.2–7.4.6), a method of data aug-
mentation was used to multiply the size of the training set by a factor 8 without the need
to simulate additional realisations. This also had the benefit of implicitly teaching the rota-
tional invariance of lensing to the models during training. The augmentation method used
eight unique combinations of rotations and reflections (flips). These were implemented
using NumPy (Harris et al. 2020) functions and are demonstrated in Figure 7.3.

Training, validation and test data were always generated together and identically. Samples
were shuffled prior to splitting into training, validation and test sets. Only the training set
underwent data augmentation, after which it was re-shuffled prior to training, and again
between each training epoch. All samples were scaled consistently to ensure that every
pixel had a value between -1 and +1 while approximately maximising contrast within this
range. This scaling was carried out independently for each complexity level.

7.3.2. Model building and training

Convolutional neural networks were built, trained and tested using the open-source soft-
ware Keras7 (Chollet et al. 2015). Keras is a Python deep learning API for TensorFlow8

(Abadi et al. 2016), which is a powerful open-source machine learning library developed
by Google. TensorFlow is optimised for the linear algebra operations that are inherent in

7 https://keras.io
8 https://www.tensorflow.org
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neural network training. It is possible to develop neural networks directly in TensorFlow

without using the Keras interface, but Keras greatly speeds up development by offering a
simple yet highly customisable API.

The details of the neural network architectures used, and of the training process, are given
in Section 7.4. These were developed and explored empirically using an iterative process of
trial and error, bounded by the practical constraints of finite time and computing resources.
Most of the time, it was possible to hold the entire training set in memory during training,
even with the size of the training set being multiplied by 8 by the use of the data augmen-
tation methods described in Section 7.3.1 above. However, for the final level of complexity
explored in this chapter, which is described in Section 7.4.6, the larger image size used
(100×100 pixels) meant this approach was no longer feasible. An alternative pipeline was
therefore developed using a custom subclass of the Sequence object in Keras. The mini-
mum functionality required of such a class is to provide a single batch of training data on
request. In the default case, all batches would be loaded into memory on the initialisation
of the object, and each would be supplied in turn on request. However, since this would
take up too much memory in the case described here, the training set was not preloaded
into memory, and instead each batch was loaded from disk only as it was requested, before
being removed from memory when the subsequent batch was requested. This allowed the
memory requirements to be significantly reduced when the volume of training data was
large.

7.4. Models explored and results with increasing complexity

As mentioned above, the structure of this project was to start with a relatively simple (and
therefore unrealistic) problem, and gradually add complexity to converge towards a more
realistic case. Six increasing levels of complexity are presented in this section, which are
summarised below.

1. 22.9 degree field of view covered by 50 pixels along each side (equivalent HEALPix
resolution: Nside = 128); CMB `max = 383; convergence `max = 50; convergence
exaggerated by factor 30; same unlensed CMB realisation used throughout training,
validation and testing.

2. As level 1, except a different CMB realisation used for each training, validation and
test sample.

3. As level 2, but convergence exaggeration reduced to a factor 5.

4. As level 3, but no convergence exaggeration.

5. As level 4, except field of view reduced to 21.5 arcmin (equivalent HEALPix resolu-
tion: Nside = 8192); no CMB `max imposed; convergence `max = 24 575.
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6. As level 4, except field of view reduced to 10 degrees and number of pixels along each
side increased to 100 (approximate equivalent HEALPix resolution: Nside ≈ 512); no
`max imposed for CMB or convergence. (Note that while all other complexity levels
are each based on the previous level, levels 5 and 6 are alternative progressions from
level 4.)

In the following subsections, each complexity level is described further, with a descrip-
tion of the different convolutional neural network architectures explored and the results
obtained.

7.4.1. Complexity level 1: Same CMB realisation, different lensing realisations

The investigation began with an extremely simple case of a single realisation of the CMB
temperature field being lensed by many different convergence realisations. Each conver-
gence field realisation was different for every training, validation, and test sample, but
the unlensed CMB map used in each case was identical. The question was whether a
CNN could learn the mapping from lensed CMB map to convergence map. To increase its
chances, the lensing was strongly exaggerated by multiplying each convergence realisation
by a factor 30 at the map level prior to applying the lensing transform, when generating
the training data following the method described in Section 7.3.1. A wide field covering a
square of side 22.9 degrees was used, with a very low resolution of 50 pixels along each
side. This was chosen to be equivalent in pixel area to a HEALPix (Górski et al. 2005) reso-
lution of Nside = 128. The input CMB power spectrum was limited by the resolution of the
map to a maximum multipole of `max = 383, while the convergence power spectrum was
truncated at `max = 50 to further simplify the scenario.

Relatively few examples of image-to-image CNN models exist in the literature—excluding
generative models, which are inappropriate for this problem as here we do not just re-
quire a generic realistic convergence map; we require the particular convergence map that
corresponds to a specific lensed CMB map.9 One example of an image-to-image CNN
model that appeared suitable as a starting point was the image super-resolution model
described in Shi et al. (2016) and implemented as a Keras code example by Long (2020).
The model is designed to be able to scale a previously unseen low-resolution image (or
video) to higher resolution, using information it had learned from previously seeing many
low- and high-resolution pairs of images in training. While this may seem distant from
the problem at hand, it provides a valuable working example of an image-to-image CNN
pipeline to use as a baseline. The model was first stripped of its super-resolution function-
ality, which was provided by a single convolutional layer with a low-resolution input and
a higher-resolution output.

9 A notable exception is the DeepCMB model of Caldeira et al. (2019), which has similar aims to this work,
but we were not aware of that paper at the time.
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The remaining model used four convolutional layers: 64 nodes with a 5×5 pixel kernel, 64
nodes with a 3×3 kernel, 32 nodes with a 3×3 kernel, and 1 final node with a 3×3 kernel.
All convolutions used a padding method (named same in Keras) whereby each image is
padded with zeros prior to convolution such that the output from each layer has the same
dimensions as the input. Each layer used orthogonal initialisation and a ReLU activation
function (see Section 7.2.2). All other options in the model followed the Keras defaults:
single-stride convolution was used, with a bias vector initialised as zeros; no regulariser
was applied to any kernel, bias vector, or output, nor was a constraint function applied to
any kernel or bias vector.

For training, the Adam optimiser was used (see Section 7.2.2) with the default parameters
of a learning rate of α = 10−3, exponential decay rates of β1 = 0.9 and β2 = 0.999 and
numerical stability constant ε = 10−7. The AMSGrad variation of the Adam algorithm
introduced in Reddi, Kale & Kumar (2018), which may assist convergence in some cases,
was not used. A mean squared error loss function was used (Equation 7.9).

Many variations from this baseline model were explored. Each was trained for 5 epochs
with a training set of 800 samples and a batch size of 32, and validated once per epoch with
a separate validation set of 200 samples, and finally evaluated against an unseen test set
of 3 samples. Evaluation was primarily a visual comparison to the true convergence field
for each test sample (an example may be seen for the best-performing model in Figure 7.4,
which is described below). The variations explored were as follows:

• Changing the kernel initialisation from orthogonal to the Glorot uniform initialiser
(Glorot & Bengio 2010), which is the Keras default for a convolutional layer. This
draws the initial value for each kernel pixel W independently from a uniform distri-
bution as

W ∼ U (−Wmax, Wmax) , (7.18)

with

Wmax =

√
6

nj + nj+1
, (7.19)

where nj is the number of nodes in layer j. However, the performance with this
method was slightly worse compared to orthogonal initialisation.

• Varying the kernel size in the final layer: sizes of 3×3, 5×5, 7×7, 9×9 and 11×11 pix-
els were explored, with performance peaking at 9×9 for this particular low-resolution
setup.

• Varying the kernel size in the other layers: a small kernel of size 3×3 was found to
be optimal.

• Adding additional layers: many combinations of number of nodes and kernel size
were explored, from 2 nodes to 64 and from 3×3 to 7×7, but each one degraded
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Figure 7.4. Performance of the best-performing model for complexity level 1 (described
in Section 7.4.1) on three previously unseen test images. Rows correspond to the different
test images, while the columns show, from left to right: the lensed CMB map given as
input to the model, the predicted convergence map produced by the model, and the true
convergence map that was used to generate the test image in the first column. The model
was trained for 50 epochs on a training set of 800 samples, with a validation set of 200
samples.
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performance compared to the baseline model.

• Removing layers, but removing any layer was found to degrade the performance of
the model.

• Increasing the number of nodes in the first layer from 64 to 128, which also degraded
the performance, so increasing the numbers of nodes in other layers was not explored.

The conclusion from all of this testing was that the best-performing model over 5 epochs
was only a very small variation on the initial model taken from the image super-resolution
problem: four convolutional layers comprising 64 nodes with a 3×3 kernel, another 64
nodes with a 3×3 kernel, 32 nodes with a 3×3 kernel, and 1 final node with a 9×9 kernel.
This model was then trained for 50 epochs using the same training and validation sets as
described above (800 training samples and 200 validation samples), reaching a minimum
validation loss on epoch of 45 of Lval = 2.1× 103.10 The model was then applied to an
unseen test set of three samples, which are shown in Figure 7.4. The three rows correspond
to the three different test images, while the columns show, from left to right: the lensed
CMB map given as input to the model, the predicted convergence map produced by the
model, and the true convergence map that was used to generate the test image in the first
column. Visually the performance is very good, with a clear correspondence between the
estimate and the truth for all three test samples.

7.4.2. Complexity level 2: Different CMB realisations

The second level of complexity was to no longer use the same unlensed CMB realisation
across all samples; instead, a different realisation (from the same underlying power spec-
trum) was used for every sample in the training, validation and test sets. All other aspects
were identical to complexity level 1 described in Section 7.4.1 above, including that each
convergence field was exaggerated by a factor 30.

The baseline model for this level was a small variation on the best model from the previous
level. Early testing prior to implementing data augmentation (described below) yielded
a better performance with 64 nodes on the third layer as well as the first two, giving a
baseline model comprising four convolutional layers: three of 64 nodes with a 3×3 kernel
followed by 1 final node with a 9×9 kernel. All other aspects of the model, optimiser and
loss function used were identical to complexity level 1. This model will be referred to as
L2_baseline.

For this complexity level, data augmentation was introduced to multiply the size of the
training set by a factor 8, as described in Section 7.3.1, as well as to implicitly teach the rota-

10 Quoted loss values cannot be compared between different complexity levels, because each level uses its own
scaling of the training, validation and test samples to ensure that all inputs to the CNN are in the range (-1,
1) while approximately maximising the contrast within this range, as discussed in Section 7.3.1.
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tional invariance of lensing to the model. Prior to augmentation, the training set contained
800 samples and the validation set contained 200 samples. Augmentation was applied to
the training set to give 6400 training samples. The validation set was not augmented to
avoid any possible bias.

Data augmentation turned out to be highly effective in increasing the performance of the
model over a given number of epochs. Figure 7.5 shows the L2_baseline model evaluated
on an unseen test set (which was not augmented) after having been trained for 10 epochs
on the same training set with and without data augmentation. There is clearly a closer
resemblance to the true convergence field in the augmented case. This is also illustrated
by the training and validation loss per training epoch in each case, which is shown in
Figure 7.6. There is a consistent factor 2.5–5 improvement in both loss values throughout
training, reaching respective minima of Lval = 5.9× 103 without augmentation and Lval =

2.2× 103 with augmentation.

With data augmentation in place, three variations on the baseline model were explored,
which are summarised along with the baseline model as follows:

• L2_baseline:
Layers 1–3: 64 nodes with a 3×3 kernel;
Layer 4: 1 node with a 9×9 kernel.

• L2_+32:
As L2_baseline, but with an additional layer containing 32 nodes with a 3×3

kernel before the final layer.

• L2_+64:
As L2_baseline, but with an additional layer containing 64 nodes with a 3×3

kernel before the final layer.

• L2_first-layer-128:
As L2_baseline, but with the first layer having 128 nodes instead of 64.

Each model was trained for 5 epochs on the same training set, containing 800 samples
prior to augmentation, which increased the number of samples by a factor 8. A validation
set containing 200 samples was again used, and not augmented. Each model was evalu-
ated based on its visual performance on a test set of 3 previously unseen images, and on
its validation loss during training. These two measures were consistently in agreement.
Figure 7.7 shows the validation loss of each model over the training period. The best-
performing models were the L2_baseline and L2_+64 models, which both ended epoch 5
with an identical validation loss of Lval = 2.6× 10−3.

The L2_+64 model was re-trained for 10 epochs to obtain a comparison with the L2_

baseline model, which was previously trained for 10 epochs when testing the effect of
data augmentation as described above. This revealed a visual performance on the test set
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Figure 7.5. The effect of data augmentation on the performance of the L2_baseline model,
evaluated on three previously unseen test samples after having been trained for 10 epochs
on the same training set with and without data augmentation. Rows correspond to the
different test images, while the columns show, from left to right: the lensed CMB map
given as input to the model, the predicted convergence map produced by the model after
training without data augmentation, the predicted convergence map after training with
data augmentation, and the true convergence map that was used to generate the test image
in the first column. The training set contained 800 samples prior to augmentation, with a
validation set of 200 samples which was not augmented.
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Figure 7.6. Training and validation loss for the L2_baseline model over 10 epochs with and
without data augmentation. The training set contained 800 samples prior to augmentation,
with a validation set of 200 samples which was not augmented.
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Figure 7.7. Validation loss compared between the four models explored in complexity level
2, which are described in Section 7.4.2. Each model was trained for 5 epochs on the same
training set containing 800 samples prior to augmentation by a factor 8, and validated on
200 different samples which were not augmented.

that slightly surpassed that of the baseline model, with a validation loss of Lval = 1.8×
10−3 (compared to the corresponding 10-epoch value obtained above for the L2_baseline

model of Lval = 2.2× 10−3). The L2_+64 model was therefore selected to train for 50 epochs
on the same training set, reaching a best validation loss of Lval = 1.13× 10−3 in epoch 50.
The predictions made by this model on the previously unseen test set are shown in Fig-
ure 7.8. Visually the performance is good, roughly comparable with those from complexity
level 1 (Figure 7.4) despite using a different unlensed CMB realisation for each sample.

7.4.3. Complexity level 3: Reduced lensing exaggeration

The third level of complexity was to reduce the exaggeration of the convergence field to a
factor 5, from the value of 30 used in levels 1 and 2. All other aspects of the setup were
identical to level 2, i.e. a different unlensed CMB realisation was used for each sample and
the resolution settings were the same as described for level 1 in Section 7.4.1.

The exaggeration factor of 5 was chosen as the result of some initial exploratory testing,
carried out over 5 epochs with a training set containing 800 samples, augmented by a factor
8, and a validation set of 200 samples, which was not augmented. These tests used the best-
performing L2_+64 model from complexity level 2 (described in Section 7.4.2 above) as the
new baseline model, here renamed L3_baseline. This initial testing found that disabling
lensing exaggeration entirely yielded a completely blank prediction of the convergence
field for all test samples, and a validation loss that immediately plateaued at Lval = 1.4×
10−2. This would be a difficult starting point, since a working baseline is effectively an
essential requirement for finding iterative improvements. An exaggeration factor of 10 was
also explored, but this performed comparably well to a factor of 30, reaching a 5-epoch
validation loss of Lval = 2.8× 10−3, compared to Lval = 2.0× 10−3 for an equivalent run
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Figure 7.8. Performance of the best-performing L2_+64 model for complexity level 2 (de-
scribed in Section 7.4.1) on three previously unseen test images. Rows correspond to the
different test images, while the columns show, from left to right: the lensed CMB map
given as input to the model, the predicted convergence map produced by the model, and
the true convergence map that was used to generate the test image in the first column. The
model was trained for 50 epochs on a training set of 800 samples augmented by a factor 8,
with a validation set of 200 samples which was not augmented.
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Figure 7.9. Validation loss compared between the five best-performing models explored in
complexity level 3, which are described in Section 7.4.3. Each model was trained for 10
epochs on the same training set containing 800 samples prior to augmentation by a factor
8, and validated on 200 different samples which were not augmented.

with data from complexity level 2 (using an equivalent scaling, therefore allowing for a
valid comparison). An exaggeration factor of 5 was ultimately chosen as it produced a
relatively poor performance (Lval = 8.2× 10−3) in the L3_baseline model over 5 epochs,
while still producing a validation loss that was steadily decreasing and being able to predict
some features in the true convergence maps of the test sample. This made it a suitable
starting point for improvements, with an aim towards removing the lensing exaggeration
altogether in the next complexity level (Section 7.4.4).

As mentioned above, the baseline model for this complexity level was identical to the best-
performing L2_+64 model from complexity level 2, including all aspects of the training
setup. Several variations on this model were explored. The standout performers in initial
5-epoch tests were selected for longer 10-epoch tests, which are described below. These
standout performers, alongside the baseline model, are as follows:

• L3_baseline:
Layers 1–4: 64 nodes with a 3×3 kernel;
Layer 5: 1 node with a 9×9 kernel.

• L3_-64:
As L3_baseline, but without one of the 64-node layers. (This is identical to the

L2_baseline model.)

• L3_7x7:
As L3_baseline, but with the final lone kernel having size 7×7.

• L3_+32:
As L3_baseline, but with an additional layer of 32 nodes with a 3×3 kernel before

the final layer.
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Figure 7.10. Performance of the best-performing L3_+32 model for complexity level 3 (de-
scribed in Section 7.4.3) on three previously unseen test images. Rows correspond to the
different test images, while the columns show, from left to right: the lensed CMB map
given as input to the model, the predicted convergence map produced by the model, and
the true convergence map that was used to generate the test image in the first column. The
model was trained for 50 epochs on a training set of 800 samples augmented by a factor 8,
with a validation set of 200 samples which was not augmented.
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• L3_+64:
As L3_baseline, but with an additional layer of 64 nodes with a 3×3 kernel before

the final layer.

The other variations that were explored in the 5-epoch tests included adding and removing
different layers, changing numbers of nodes, and changing kernel sizes, but other than
the models listed above all variations were found to be either inferior to or similar to the
baseline model.

The five models listed above were each trained for 10 epochs using the same training and
validation sets as described above (training size: 800×8; validation size: 200). The valida-
tion loss of each model for each training epoch is shown in Figure 7.9. There is a clear vic-
tory for the L3_+32 model, which achieved a best validation loss of Lval = 2.4× 10−3, while
the L3_-64 (Lval = 5.8× 10−3) and L3_+64 (Lval = 4.3× 10−3) models performed worse
than the baseline (Lval = 3.5× 10−3). The L3_7x7 model achieved a slight improvement
on the baseline, of Lval = 3.3× 10−3. These respective performances were also mirrored in
visual tests on a previously unseen test set containing 3 new samples.

The L3_+32 model was subsequently trained for 50 epochs using the same training and
validation set, reaching a best validation loss of Lval = 1.173× 10−3. It was then evaluated
on the unseen test set of 3 samples. The resulting predictions for the convergence field are
shown alongside the lensed CMB maps and true convergence fields in Figure 7.10. The
model achieves a good performance, comparable to complexity level 2 (Figure 7.8), despite
the reduction in the lensing exaggeration, which is clearly visible in the left column of
Figure 7.10 when compared to the visibly exaggerated lensing effect in previous complexity
levels (Figures 7.4 and 7.8). This comparable level of performance to complexity level 2 has
been achieved without a larger amount of data or more training, and simply required a
slightly more complex model architecture.

7.4.4. Complexity level 4: No lensing exaggeration

With a working solution in place for the case of lensing exaggerated by a factor 5, the fourth
level of complexity was to now remove the exaggeration entirely. All other aspects of the
setup were identical to complexity levels 2–4, which were described in Section 7.4.2.

The best-performing L3_+32 model from complexity level 3 (Section 7.4.3) was adopted as
the baseline model for level 4, here renamed L4_baseline. Early testing over 10 epochs with
a training set of 800 samples, augmented by a factor 8 following the methods described in
Section 7.3.1, failed to recover any features in the true convergence maps. This training
set was subsequently enlarged to 1600 samples, but no improvement was detected. As
a result, the decision was made to train three models with different depths over a large
number of epochs with a large training set. The aim of this approach was twofold: if a
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Figure 7.11. Validation loss compared between the three models explored in complexity
level 4, which are described in Section 7.4.4. Each model was trained for 70 epochs on
the same training set containing 9800 samples prior to augmentation by a factor 8, and
validated on 200 different samples which were not augmented.

large amount of training did not help, it would imply that the lack of data was not the
problem and therefore that the models were in some way inappropriate, while if there was
a discernible difference between the performance of the three models, this could point to a
natural direction in which to seek further improvement.

The three chosen models are as follows:

• L4_baseline:
Layers 1–4: 64 nodes with a 3×3 kernel;
Layer 5: 32 nodes with a 3×3 kernel;
Layer 6: 1 node with a 9×9 kernel.

• L4_-64:
As L4_baseline, but without one of the 64-node layers.

• L4_+64:
As L4_baseline, but with an additional 64-node layer with a 3×3 kernel before the

final layer.

Each model was trained for 70 epochs on a training set containing 9800 unique samples,
augmented by a factor 8 to a final size of 78 400. A separate validation set of 200 samples
was used, which was not augmented. The validation loss during training for each model
is shown in Figure 7.11, which clearly indicates that more model complexity is beneficial:
the more complex L4_+64 model achieved a validation loss of Lval = 2.98× 10−3, while
the L4_baseline model reached Lval = 3.91× 10−3 and the simpler L4_-64 only reached
Lval = 5.45× 10−3. All three models converged to a stable validation loss after around 15–
30 epochs of training, indicating that they had exhausted the information available in the
finite training set.
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Figure 7.12. Performance of the best-performing L4_+64 model for complexity level 4 (de-
scribed in Section 7.4.4) on three previously unseen test images. Rows correspond to the
different test images, while the columns show, from left to right: the lensed CMB map
given as input to the model, the predicted convergence map produced by the model, and
the true convergence map that was used to generate the test image in the first column. The
model was trained for 70 epochs on a training set of 9800 samples augmented by a factor
8, with a validation set of 200 samples which was not augmented.
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After training, the three models were each evaluated on a previously unseen test set con-
taining three samples. The results were consistent with the respective validation loss values
for each model (Figure 7.11), and the L4_+64 was clearly the best performer in terms of the
visual correspondence of its predictions to the true convergence field. This is shown in
Figure 7.12. The performance is reasonable, although clearly worse than previous com-
plexity levels despite the extra volume of training—both in the size of the training set and
the number of training epochs. There are some signs of potential artefacts in the predicted
convergence maps. Similar features were observed previously in early tests for the previ-
ous complexity levels, but in those cases such features always disappeared with additional
training epochs. In this case, the convergence of the validation loss to a steady model for
all three models (seen in Figure 7.11) indicates that these features should not be expected to
disappear with still more training epochs. However, there are clear indications of possible
ways in which the performance seen in Figure 7.12 might be improved. First, a significant
improvement was observed when enlarging the training set from 800 or 1800 samples—
which failed to recover any features in the true convergence maps—to 9800 samples, which
delivered a much better performance, as seen in Figure 7.12, so it is reasonable to expect
that still more data may be able to improve the performance of the three models consid-
ered here. Additionally, the comparison between the three models indicates that for this
problem a deeper model is more successful, so a natural next step might be to try adding
additional layers. However, the level of realism considered at this complexity level is still
far below a case that might have practical use, so a progression to the next complexity level
takes priority over seeking further improvements to this one.

7.4.5. Complexity level 5: Higher resolution, small field of view

The fifth level of complexity was to add resolution, while maintaining the number of pixels
at 50×50 in order to retain computational feasibility within reasonable training timescales
and memory requirements, both of which rapidly increase with larger images. The field
of view was set to a side length of 21.5 arcmin, which allowed a sub-arcminute pixel size
of 0.43 arcmin, equivalent in pixel area to a HEALPix resolution of nside = 8192. The low
convergence `max value was raised to a resolution-limited value of `max = 24 575, while the
CMB `max constraint was removed entirely, being limited by the signal which is negligible
above around ` ∼ 7000. Such high resolution was partially motivated by the ability to
estimate power spectra, for comparison between power spectra estimated from the true
and predicted convergence fields.

The baseline model considered for this complexity level was a small variation on the best-
performing L4_+64 model from Section 7.4.4. The single 32-node layer was replaced with a
64-node layer like the other multi-node layers, and the final kernel size was reduced from
9×9 to 3×3, with an aim of being able to recover smaller-scale features in the convergence
field. Four variants on this baseline model were considered, which are summarised along
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with the baseline model as follows:

• L5_baseline:
Layers 1–6: 64 nodes with a 3×3 kernel;
Layer 7: 1 node with a 3×3 kernel.

• L5_+64:
As L5_baseline, but with an additional 64-node layer with a 3×3 kernel before the

final layer.

• L5_7x7:
As L5_baseline, but with the 3×3 kernel in the final single-node layer replaced

with a 7×7 kernel.

• L5_deep:
Layers 1–10: 32 nodes with a 3×3 kernel;
Layer 11: 1 node with a 3×3 kernel.

• L5_upsampled:
As L5_baseline, but upsampling by a factor 2 before the first layer, before applying

a mean pooling to downsample to the original resolution before the final layer.

There were various motivations for exploring these four variations on the baseline model.
L5_+64 was motivated by the results of complexity level 4 (Section 7.4.4), which were clearly
suggestive of additional layers achieving higher performance. L5_7x7 was something of an
insurance policy in case the reduction of the final kernel size turned out to be detrimental
to performance. L5_deep was motivated by the fact that deeper neural networks are, in
general, empirically and theoretically superior to wider networks, since they are better
able to model non-linearity in the function that maps from the input to the output (e.g.
Safran & Shamir 2016; Lee et al. 2020). Finally, L5_upsampled was inspired by the original
image super-resolution model of Shi et al. (2016) used as the starting point for complexity
level 1 in Section 7.4.1, which used sub-pixel convolution. It seemed plausible that this
technique may allow the model to extract smaller-scale information from the lensed CMB
maps in this problem.

Each of the five models was trained for 100 epochs, with a training set containing 9800
unique samples, which was augmented by a factor 8, and a validation set containing 200
samples, which was not augmented. The validation loss for each model throughout train-
ing is shown in Figure 7.13. The best-performing model was L5_+64, reaching a mini-
mum validation loss of Lval = 6.80× 10−3. Three other models performed similarly well:
L5_baseline and L5_deep also reached Lval = 6.80 × 10−3, while L5_deep was slightly
behind at Lval = 6.83× 10−3. However, all three of these models exhibited a strange be-
haviour of a sudden divergence in the validation loss followed by a slow convergence back
towards the initial minimum. In the case of the L5_deep model, a second divergence was
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Figure 7.13. Validation loss compared between the five models explored in complexity level
5, which are described in Section 7.4.5. Each model was trained for 100 epochs on the same
training set containing 9800 samples prior to augmentation by a factor 8, and validated on
200 different samples which were not augmented.

observed, at which point the model weights became infinite and training ceased; this is
why the corresponding line in Figure 7.13 stops suddenly at around 60 epochs. Similar
features were found in the training loss. This behaviour is not currently understood, since
divergent weights should not be permitted by the update rule for the Adam optimiser
(Equation 7.14). This issue is discussed further in Section 7.5. Meanwhile, the performance
of the L5_upsampled model was poor, plateauing at Lval = 8.05× 10−3.

Each model was evaluated using a test set of three previously unseen images. For each
model, the weights corresponding to the minimum validation loss were used—for in-
stance, the L5_baseline model was evaluated using its weights at around epoch 80, prior
to its subsequent divergence (seen in Figure 7.13). The results were consistent with the
respective validation losses: a similar performance was observed between all models ex-
cept L5_upsampled, which did not appear to recover any features in the true convergence
maps. The visual test results for the L5_+64 model are shown in Figure 7.14. Small-scale
features are absent, but there is an apparent correspondence between the estimated and
true convergence fields on larger scales.

For the first time, it was possible with this complexity level to estimate power spectra
from the true and predicted convergence fields, using NaMaster. These are shown for the
three test images and the L5_+64 model in Figure 7.15. It is clear that the model is able to
recover large-scale features in the power spectrum quite well, but that small-scale features
(above around ` ∼ 3500) are missed entirely. This is consistent with the visual observations
from the maps in Figure 7.14. Similar performance was found for all other models except
L5_upsampled, which did not recover any power.

It is perhaps unsurprising that smaller-scale features in the convergence maps are not re-
covered, given the lack of visible features on such scales in the input lensed CMB maps
(left column of Figure 7.14). This motivated a return to a larger field of view, in order to
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Figure 7.14. Performance of the best-performing L5_+64 model for complexity level 5 (de-
scribed in Section 7.4.5) on three previously unseen test images. Rows correspond to the
different test images, while the columns show, from left to right: the lensed CMB map
given as input to the model, the predicted convergence map produced by the model, and
the true convergence map that was used to generate the test image in the first column. The
model was trained for 100 epochs on a training set of 9800 samples augmented by a factor
8, with a validation set of 200 samples which was not augmented.

193



Chapter 7 — Weak lensing estimation with convolutional neural networks

0.000

0.001

0.002

0.003

0.004

C
×

(
+

1)
/2

Complexity
level 5 Test image 1

Estimated from output
Estimated from truth

0.000

0.001

0.002

0.003

C
×

(
+

1)
/2

Test image 2
Estimated from output
Estimated from truth

1000 2000 3000 4000 5000
0.000

0.001

0.002

0.003

0.004

C
×

(
+

1)
/2

Test image 3
Estimated from output
Estimated from truth

Figure 7.15. Power spectra estimated from the convergence maps shown in Figure 7.14.
Rows correspond to the three different test images. The blue solid line shows the power
spectrum estimated from the predicted convergence map output by the convolutional neu-
ral network, while the orange dashed line shows the power spectrum estimated from the
true convergence map. Results shown are for the L5_+64 model for complexity level 5
(described in Section 7.4.5). The model was trained for 100 epochs on a training set of
9800 samples augmented by a factor 8, with a validation set of 200 samples which was not
augmented.
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regain the degree-scale features in the CMB and convergence fields. This is explored in
Section 7.4.6 below.

7.4.6. Complexity level 6: Higher resolution, wide field of view

As mentioned above, for the next complexity level it was chosen to return to a larger
field of view, in order to regain the degree-scale features in the CMB and convergence
fields. Ideally this would be done while retaining sub-arcminute pixel size, since typical
deflections are around this scale (e.g. Lewis & Challinor 2006). However, this would require
a large number of pixels, of order 1000 along each side. Initial testing revealed that this
was not computationally feasible with the available resources, due to memory requirements
during training. As a result, an intermediate setup was instead explored, using 100 pixels
along each side with a 10 degree field of view, giving a pixel size of 6 arcmin along each
side. Unlike previous complexity levels, there is no exact equivalent HEALPix resolution
in terms of pixel area, but it is approximately equivalent to nside = 512. No explicit `max cut
was applied to either the CMB or convergence fields, but both were limited by resolution
to an effective `max ∼ 1535.

Even this modest increase of total number of pixels by a factor of 4 (2 along each side)
required the introduction of Keras Sequence objects to load only a part of the training data
into memory at any given point during training, as described in Section 7.3.2.

Motivated by the ability of the L5_deep model to quickly reach a low minimum validation
loss in Section 7.4.5 (the subsequent unexplained divergence notwithstanding), and by the
general preference towards deeper models in the literature described in that section, the
baseline model was chosen to contain 12 convolutional layers of 32 nodes each, plus the
usual final single-node convolutional layer. The final kernel size of 3×3 used in Section 7.4.5
was retained, since the goal of recovering small-scale features is the same. All other aspects
of the model, and the optimiser used for training, were identical to previous complexity
levels. Two additional model variations with increasing depth and decreasing width were
explored. These, along with the baseline model, are summarised as follows:

• L6_baseline:
Layers 1–12: 32 nodes with a 3×3 kernel;
Layer 13: 1 node with a 3×3 kernel.

• L6_x2depth:
Layers 1–24: 16 nodes with a 3×3 kernel;
Layer 25: 1 node with a 3×3 kernel.

• L6_x4depth:
Layers 1–48: 8 nodes with a 3×3 kernel;
Layer 49: 1 node with a 3×3 kernel.
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Figure 7.16. Validation loss compared between the three models explored in complexity
level 6, which are described in Section 7.4.6. Each model was trained for 70 epochs on
the same training set containing 9800 samples prior to augmentation by a factor 8, and
validated on 200 different samples which were not augmented.

Each model was trained for 70 epochs on a training set containing 9 800 samples, which
was augmented by a factor 8 using the methods described in Section 7.3.1, and validated
using a validation set containing 200 samples, which was not augmented. The validation
loss of each model throughout training is shown in Figure 7.16. The L6_baseline in fact
performed the best throughout the whole training process, reaching a validation loss of
Lval = 6.86× 10−3, although by epoch 70 the performance of the L6_x2depth model was
similar, reaching Lval = 6.87× 10−3. The L6_x4depth model performed most poorly, with
the validation loss plateauing at Lval = 7.59× 10−3.

After training, each model was assessed using a test set containing 3 previously unseen
images. The resulting estimated convergence map is shown for each image along with the
corresponding true convergence map in Figure 7.17, for the best-performing L6_baseline

model. It appears that most features are correctly recovered, but with a too-small ampli-
tude. Similar performance was observed for the L6_x2depth model, while the L6_x4depth

model did not appear to be able to recover any features in the true convergence maps.

Power spectra were also estimated, and are shown for the L6_baseline model in Fig-
ure 7.18. It appears that on larger scales (below ` ∼ 500), features are recovered at a re-
duced amplitude, whereas on smaller scales they are absent entirely, although the reduced
amplitude as a function of scale makes a comparison difficult.

This marks the final extent of the project at the time of writing. Possible future directions in
which to continue this work are discussed in Section 7.5 below, along with the achievements
and challenges of the work to date.
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Figure 7.17. Performance of the best-performing L6_baseline model for complexity level
6 (described in Section 7.4.6) on three previously unseen test images. Rows correspond to
the different test images, while the columns show, from left to right: the lensed CMB map
given as input to the model, the predicted convergence map produced by the model, and
the true convergence map that was used to generate the test image in the first column. The
model was trained for 70 epochs on a training set of 9800 samples augmented by a factor
8, with a validation set of 200 samples which was not augmented.
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Figure 7.18. Power spectra estimated from the convergence maps shown in Figure 7.17.
Rows correspond to the three different test images. The blue solid line shows the power
spectrum estimated from the predicted convergence map output by the convolutional neu-
ral network, while the orange dashed line shows the power spectrum estimated from the
true convergence map. Results shown are for the L5_baseline model for complexity level
6 (described in Section 7.4.6). The model was trained for 70 epochs on a training set of
9800 samples augmented by a factor 8, with a validation set of 200 samples which was not
augmented.
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7.5. Discussion

This chapter has presented an initial exploration of the use of convolutional neural net-
works for the estimation of weak lensing shear. While many issues remain outstanding,
and the conditions investigated have been far short of full realism, the method has nonethe-
less shown promise. With a restricted signal resolution (using `max = 50 in the input conver-
gence power spectrum) and an exaggerated lensing effect by a factor 5–30, a convolutional
neural network given a lensed CMB map was able to recover the corresponding conver-
gence map to a high degree of accuracy (Figures 7.8 and 7.10). Even with the lensing
exaggeration removed, a good degree of recovery was observed (Figure 7.12). However,
smaller-scale features in the convergence maps have not been recovered, and their pres-
ence seems to have hindered the recovery of the larger-scale features (Figure 7.17).

Besides imperfect performance, there have been a number of other issues. The sudden
divergence of training and validation loss during training, seen most prominently in Fig-
ure 7.13, is not understood. The failure of the L5_deep model to recover from this diver-
gence is of particular concern. This issue did not arise again, nor could records be found in
the literature of similar problems. As mentioned above, it should not be permitted accord-
ing to the update rules of the Adam optimiser (Equation 7.14). Another challenge is that
of computational requirements, which rapidly increased as complexity was added. These
arise from all steps of the data generation, model building, and training processes. Data
generation is time-consuming and large training sets can require a huge volume of stor-
age, which must be accessible to the machine(s) used for training. Training is itself a slow
process and the memory requirements for an image-to-image pipeline quickly spiral as res-
olution and model complexity are increased, which they must be to achieve high levels of
both realism and performance. In this work, these requirements at many stages forced a
reduction in complexity from what could have otherwise been investigated.

Other than more computing resources, there are many ways in which performance could
potentially be improved at the current level of complexity. For example, the learning rate
α used in the Adam optimiser (see Section 7.2.2) has been held constant throughout this
work, and while other values were explored, each was always treated as constant. Vari-
able learning rates hold some potential promise; methods include learning rate schedulers,
which vary the learning rate as a function of training epoch, or dynamic methods such as
reducing the learning rate upon reaching a loss plateau. Another possibility is integrat-
ing the training data generation into the training pipeline for a limitless supply of training
data, which need not be stored on disk, thereby circumventing one of the computational
restrictions discussed above. This idea has not been tested, but if implemented well could
potentially only slow the training process minimally. Its advantage would be to increase
the rate and eventual amount of learning, which is naturally reduced each time the training
set is repeated.
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While remaining within the CMB lensing context, there are many additional layers of com-
plexity that can be added. The main such angle explored here was resolution, which is still
far below a realistic combination of a wide field and small pixel size. As wider fields are
explored, the flat-sky approximation used here becomes more inaccurate. An extension to
curved-sky geometry with appropriate pixelisation such as HEALPix is attractive but chal-
lenging, although methods for implementing convolutional neural networks in this context
do exist (Perraudin et al. 2019). In addition, a telescope beam and detector noise have been
neglected throughout this work, both of which must be added to simulate a realistic case.
There is also the problem that a single known cosmology has been used to produce all of
the training, validation, and test data. In practice, we cannot know the true cosmology, so
it is necessary to take this into consideration in training and testing.

Finally, as described in the introduction to the chapter in Section 7.1, the context in which
this work is motivated is not CMB lensing but instead galaxy lensing using radio observa-
tions, with an ultimate aim of developing a method to estimate weak lensing shear directly
from radio visibilities. It is essential that such methods are developed and refined in ad-
vance of the influx of data predicted to arrive from the SKA in the next decade. The work
presented in this chapter has not begun to even attempt to face this challenge. It should
not be necessary, though, to master CMB lensing before moving onto radio galaxy lens-
ing. It could be argued that the results presented in this chapter show sufficient promise
that now is the appropriate time to move onto applying these methods towards the goal of
accurate and high-precision weak lensing analyses with the SKA.
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Chapter 8

Conclusions

8.1. Summary

Cosmology is in a peculiar state: on one hand, we have a model (ΛCDM, described in
Chapter 1) that fits most observational data, particularly from the cosmic microwave back-
ground (CMB), with remarkable accuracy. On the other hand, almost nothing is understood
about the two apparently dominant components of the Universe today—dark energy and
dark matter, and it is not clear how to reconcile these components with the theories of
gravity and of the standard model of particle physics.

Analysis of weak gravitational lensing by the large scale structure of the Universe has par-
ticular promise as an observational probe with which to make progress on these questions.
The subtle distortions of the shapes of distant galaxies induced by the gravitational effect of
large scale structure depends closely on how exactly this structure has formed and evolved
as the Universe has expanded, which in turn depends on the details of dark energy, dark
matter, and gravity. Precise measurements and statistical analysis of these distortions can
therefore place tight constraints on the physical nature of the dominant components in the
Universe.

This promise is set to be realised by an upcoming generation of weak lensing surveys,
such as the Euclid space mission, the Rubin optical observatory, and the Square Kilometre
Array radio observatory. (These surveys and others are described in Chapter 1.) This next
generation will survey billions of galaxies and, for this reason, will reach unprecedented
statistical precision in their cosmological constraints. This unprecedented precision will, in
turn, demand unprecedented accuracy and understanding of every aspect of the analysis
in order to obtain reliable results. The work presented in this thesis has helped to make
progress towards this goal.

Chapters 3–6 have contributed to understanding the statistical properties of pseudo-C` es-
timators, which are fast two-point correlation estimators in Fourier space designed for
partial-sky observations and are described in Chapter 2. These will be used for Euclid and
have been used in a number of weak lensing analyses to date (see Chapter 2 and references
therein), and yet prior to the work presented in this thesis little was known about their sta-
tistical properties. In Chapter 3, the exact joint likelihood function for an arbitrary number
of pseudo-C` estimates from an arbitrary number of correlated spin-0 and spin-2 Gaus-
sian fields was derived. While the likelihood function is not practical to evaluate in full
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for a real cosmological analysis, and the Gaussian field assumption does not hold for weak
lensing on all scales, this work was an essential stepping stone for the work presented in
Chapter 4. This later work demonstrated, with a high degree of robustness to changes in
the analysis setup or details of the underlying fields, that a Gaussian likelihood is a suffi-
ciently accurate choice for placing constraints on dark energy with data from a Euclid-like
survey. This means that when results obtained using a Gaussian likelihood are surprising
or suspicious, we can be confident that this is not the result of an inappropriate likelihood
function. A Gaussian likelihood requires a covariance matrix, and in Chapter 5 a method
was developed for calculating the covariance matrix of pseudo-C` estimates, accounting for
both the coupling of scales due to the effect of the mask, which describes the incomplete
sky coverage, and the non-Gaussian coupling arising from non-linear structure growth on
small physical scales. This covariance matrix was compared to an estimated covariance
matrix measured from weak lensing simulations, with good agreement, and it was demon-
strated that neglecting the non-Gaussian contributions leads to poor accuracy in parameter
constraints. Finally, Chapter 6 considered the question of how to choose the number of
angular bins used in a pseudo-C` analysis, which is a topic that had not previously been
investigated. This question was also investigated for real-space correlation functions, and
it was revealed that while the statistical precision of both estimators converges for a similar
number of angular bins, the divergence of this precision for a too-broad binning is dramat-
ically different between the two. This is an important demonstration that results derived
for one estimator cannot be automatically extended to others.

Chapter 7 turned to another problem that must be addressed before reliable cosmological
inference is possible with the next generation of weak lensing surveys, this time focusing
on radio observations, for which shear estimation is a particular challenge. In Chapter 7,
a machine learning approach to this challenge was investigated, using a simplified case
of CMB lensing as a starting point. The results therein suggest that convolutional neural
networks are a method of promise in this area.

8.2. Future prospects

Naturally many questions remain. For instance, while Chapter 5 provided a method for
calculating the covariance matrix of pseudo-C` estimates, and presented a comparison of
the result with simulations, it did not rigorously quantify the accuracy of the method at
the level required for Euclid, nor did it compare different options at each step. How are
the non-Gaussian contributions to the covariance best calculated? The super-sample co-
variance component dominates over the connected non-Gaussian component, and yet the
latter cannot be neglected. The method used to calculate the connected non-Gaussian com-
ponent in Chapter 5 is extremely slow, to the point of not being feasible for use when
analysing future data from Euclid. An approximation was presented, but is this sufficiently
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accurate? If not, can a better approximation be developed? The super-sample covariance
component in Chapter 5 was calculated using the halo model. Is this approach sufficiently
accurate? Should the response approach be used instead? Should the three-dimensional
details of the survey volume be taken into account, describing not only the survey mask
but the fact that the depth of the survey varies over its area? What about correlations be-
tween the signal and mask, which are likely to exist when dense regions are preferentially
masked out? Meanwhile, the generally dominant component of the pseudo-C` covariance
is the Gaussian component. In Chapter 5, this was calculated using the improved narrow
kernel approximation (NKA), which was found to be significantly more accurate than the
standard NKA, but is it sufficiently accurate for Euclid? Perhaps it is necessary to move to
an approximation closer to the known exact form. And how should we properly account
for the combination of cut-sky mode coupling and non-Gaussian mode coupling? This was
done in an approximate manner in Chapter 5, but again it is unknown whether this is suf-
ficiently accurate. Maybe a superior method can be derived that is still computationally
feasible. Ideally answering these questions could be achieved with a large suite of fully re-
alistic simulations, but that seems impossible when even a single realisation of the Euclid
flagship simulations takes close to a million node hours to evaluate.

Meanwhile, Chapter 6 considered the question of how to choose the number of angular
bins used for two-point estimators with Euclid. The results offer some useful data points
but do not establish an ultimate answer to this question. On the contrary, it was found that
the answer changes depending on which cosmological parameters are being constrained,
how many parameters are being constrained, and other aspects such as scale cuts and
noise levels. If the answer is truly so sensitive to all of these considerations then it becomes
extremely complicated to be confident that the correct choice has been made for a particular
analysis setup. Perhaps a universal solution can be found. On the other hand, perhaps it
is best not to bin at all, at least for the power spectrum. This may be possible, but may
cause problems due to the resulting length of the data vector. For the correlation function,
though, this is not an option, since the data are not fundamentally discrete. Another
interesting result in Chapter 6 is that the stark difference in constraining power between
the power spectrum and correlation function with an extremely coarse binning can be
explained by the different ways in which scales are weighed within bins between the two
statistics. This raises a further question of how this weighting should be chosen, if it has the
ability to make such a difference to the results. Finally, there is the accompanying question
of how best to bin in redshift space, and how this may itself interact with the choice of
angular binning strategy.

A further aspect of the use of any estimator that must be considered for its use for precision
cosmology is the modelling of the signal, including the contribution from noise. A forward-
modelling approach is being taken for the pseudo-C` estimator for Euclid, which means that
essentially the data are left alone, and the theory prediction to the data is instead treated
to contain all the contributions that have entered the observations. Modelling the signal
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correctly is a big challenge: there are significant challenges on the theoretical side, but there
are also many estimator effects that must be accurately modelled. How can we be confident
that these cumulative effects are modelled sufficiently accurately? Comparisons between
results obtained with different estimators are valuable, but it is difficult to be certain that no
systematic errors remain. Different estimators naturally produce different results because
of their distinct natures, such as how they weight different scales, meaning that there is
no perfect agreement even in the absence of any systematic errors. This is a challenge that
will require more work in order to have full confidence in the results obtained using any
estimators for Euclid.

Moving on from considering Euclid and pseudo-C` estimates, Chapter 7 considered the use
of convolutional neural networks (CNNs) for weak lensing estimation. The results show
that CNNs for this purpose have promise, but the method developed in that chapter is far
from a finished method for the ultimate aim of estimating shear from radio visibilities. The
chapter focuses instead on the case of CMB lensing, but much work needs to be done in
order to develop this into a method that is viable for current or future CMB experiments.
Many more challenges lie ahead before the method would be suitable for radio observa-
tions with the Square Kilometre Array (SKA), which are discussed in the chapter. As with
the previous chapters, there still exists a fundamental challenge with testing any candidate
method, because this ideally requires full-realism simulations of SKA observations, with
a sufficient number of realisations to detect subtle systematic errors, which is extremely
challenging computationally.

Besides all of the questions laid out above, which follow on immediately from the work
presented in this thesis, there are many more questions that must be answered in advance
of receiving data from the Stage IV generation of weak lensing experiments such as Euclid
and the SKA. Every aspect of the analysis must be intricately understood: how to treat
all the data appropriately, and how to model everything theoretically. The ultimate aim
is to reach a point where we can fully believe whatever the results from this upcoming
generation of experiments may tell us about the nature of the Universe.
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Appendix A

Proofs supplementing exact pseudo-C`

likelihood

This appendix contains proofs accompanying the exact joint pseudo-C` likelihood for cor-
related Gaussian fields presented in Chapter 3. Section A.1 contains the derivation of the
general pseudo-a`m covariance, and Section A.2 contains a proof that the joint characteris-
tic function used in the implementation of the likelihood in Chapter 3 is identical to that
presented in Good (1963).

A.1. General pseudo-a`m covariance derivation

This section contains the derivation of the general covariance matrix elements of the
pseudo-a`ms.

First, the derivation of the real and imaginary parts of the general pseudo-a`ms given in
Equations (3.15) and (3.16). We begin with the general form of a pseudo-a`m as a weighted
sum of full-sky a`ms as given in Equation (3.13). We expand the sum over m′ into separate
sums for m′ < 0 and m′ > 0, and a term for m′ = 0:

ã(α)`m = ∑
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Writing the m′ < 0 contributions in terms of their m′ > 0 counterparts using Equation (3.4)
gives
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(A.2)

We now expand this into real and imaginary parts as
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Re

(
∂ã(α)`m

∂a(β)
`′0

)
+ i Im

(
∂ã(α)`m

∂a(β)
`′0

)]
Re
(

a(β)
`′0

)

+ ∑
m′>0

([
Re

(
∂ã(α)`m

∂a(β)
`′m′

)
+ i Im

(
∂ã(α)`m

∂a(β)
`′m′

)] [
Re
(

a(β)
`′m′

)
+ i Im

(
a(β)
`′m′

)]

+ (−1)m′
[

Re

(
∂ã(α)`m

∂a(β)
`′−m′

)
+ i Im

(
∂ã(α)`m

∂a(β)
`′−m′

)] [
Re
(

a(β)
`′m′

)
− i Im

(
a(β)
`′m′

)])]
,

(A.3)

which, after some algebra, gives the real and imaginary parts in Equations (3.15) and (3.16).

We now proceed to the derivation of the covariance between two of the real parts, as
given in Equation (3.23). The derivations of the imaginary–imaginary and real–imaginary
covariance given in Equations (3.24) and (3.25) follow analogously. We begin by inserting
the expression for the real part of a pseudo-a`m from Equation (3.15):

Cov
(

Re
(

ã(α)`m

)
, Re

(
ã(β)
`′m′

))
= Cov

(
∑
γ,`′′

[
Re

(
∂ã(α)`m

∂a(γ)`′′0

)
Re
(

a(γ)`′′0

)

+ ∑
m′′>0

([
Re

(
∂ã(α)`m

∂a(γ)`′′m′′

)
+ (−1)m′′ Re

(
∂ã(α)`m

∂a(γ)`′′−m′′

)]
Re
(

a(γ)`′′m′′

)

−
[

Im

(
∂ã(α)`m

∂a(γ)`′′m′′

)
− (−1)m′′ Im

(
∂ã(α)`m

∂a(γ)`′′−m′′

)]
Im
(

a(γ)`′′m′′

))]
,

∑
ε,`′′′

[
Re

(
∂ã(β)

`′m′

∂a(ε)`′′′0

)
Re
(

a(ε)`′′′0

)

+ ∑
m′′′>0

([
Re

(
∂ã(β)

`′m′

∂a(ε)`′′′m′′′

)
+ (−1)m′′′ Re

(
∂ã(β)

`′m′

∂a(ε)`′′′−m′′′

)]
Re
(

a(ε)`′′′m′′′

)

−
[

Im

(
∂ã(β)

`′m′

∂a(ε)`′′′m′′′

)
− (−1)m′′′ Im

(
∂ã(β)

`′m′

∂a(ε)`′′′−m′′′

)]
Im
(

a(ε)`′′′m′′′

))])
.

(A.4)

We expand this into a linear sum of full-sky a`m covariances, noting that the terms involv-
ing covariance between real and imaginary full-sky a`ms immediately vanish, as do terms
involving covariance between m = 0 and m > 0 a`ms:
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A.1. General pseudo-a`m covariance derivation

Cov
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Re
(

ã(α)`m

)
, Re

(
ã(β)
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(A.5)

The full-sky covariances are given by

Cov
(

Re
(

a(α)`m

)
, Re

(
a(β)
`′m′

))
=

Cαβ
` δ``′δmm′ m = 0;

Cαβ
` δ``′δmm′/2 m > 0,

(A.6)

and for m > 0,
Cov

(
Im
(

a(α)`m

)
, Im

(
a(β)
`′m′

))
= Cαβ

` δ``′δmm′/2. (A.7)

Inserting these into Equation (A.5), evaluating the delta functions and rearranging, we
obtain
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Appendix A — Proofs supplementing exact pseudo-C` likelihood
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ã(α)`m

)
, Re

(
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)
+ (−1)m′′ Re

(
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+

[
Im

(
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∂a(γ)`′′m′′

)
− (−1)m′′ Im

(
∂ã(α)`m

∂a(γ)`′′−m′′

)]

×
[

Im

(
∂ã(β)

`′m′

∂a(ε)`′′m′′

)
− (−1)m′′ Im

(
∂ã(β)

`′m′

∂a(ε)`′′−m′′

)])]
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(A.8)

Finally, we use the identities that for complex A and B,

Re A Re B + Im A Im B = Re (A∗B) ; (A.9)

Re A Re B− Im A Im B = Re (AB) (A.10)

to obtain the final covariance given in Equation (3.23). The variance of a single real part is
a special case of Equation (3.23) having α = β, ` = `′ and m = m′.

A.2. Equivalence of the two forms of the joint characteristic
function

This section contains a proof that the expression for the joint characteristic function used
in the implementation of the likelihood used in Chapter 3, given in Equation (3.48) and
denoted here by ϕalt, is mathematically equivalent to the known analytic form from Good
(1963), given in Equation (3.33) and denoted here by ϕGood.

The form given in Good (1963) is written in terms of the determinant of the complex square
matrix which we will denote by X:

X = I− 2i ∑
`

∑
αβ

tαβ
` M

αβ
` Σ, (A.11)

where I is the identity matrix. The determinant of any matrix is equal to the product of its
eigenvalues, so we may write ϕGood as

ϕGood (t) = ∏
j

λ−1/2
j , λj ∈ λ (X) . (A.12)
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The eigenvalues of X, λ (X), are defined by the eigenvalue equation,

|X− λjI| = 0 ∀ λj ∈ λ (X) . (A.13)

Now let us define another matrix Y such that X = I − Y. Inserting this into Equation
(A.13), we obtain ∣∣∣− [Y− (1− λj

)
I
] ∣∣∣ = 0 ∀ λj ∈ λ (X) . (A.14)

For any matrix A, the determinant of −A is given by

|−A| = ±|A|, (A.15)

depending on whether the rank of A is even or odd. Using this fact in Equation (A.14)
implies that ∣∣∣Y− (1− λj

)
I
∣∣∣ = 0 ∀ λj ∈ λ (X) . (A.16)

Therefore, the eigenvalues of X and Y are related as

λ (Y) = 1− λ (X) , and hence λ (X) = 1− λ (Y) . (A.17)

This allows us to write ϕGood in terms of the eigenvalues of Y,

ϕGood (t) = ∏
j

(
1− λj

)−1/2 , λj ∈ λ (Y) . (A.18)

Finally, we use the fact that the eigenvalues of a scalar multiple of a matrix are equal to the
scalar multiplied by the original matrix,

λ (αA) = αλ (A) , (A.19)

to extract the multiple of 2i from Y:

λ (Y) = λ

(
2i ∑

`
∑
αβ

tαβ
` M

αβ
` Σ

)
= 2i× λ

(
∑
`

∑
αβ

tαβ
` M

αβ
` Σ

)
, (A.20)

which we insert into Equation (A.18) to obtain the alternative form,

ϕGood (t) = ∏
j

(
1− 2iλj

)−1/2 , λj ∈ λ

(
∑
`

∑
αβ

tαβ
` M

αβ
` Σ

)
= ϕalt (t) .

(A.21)
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