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Modern power networks are characterised by, among others, the following two features: 

a) Large amounts of low carbon technologies (LCTs) have been connected to both 

transmission and distribution networks; and b) In mature systems, power components are 

quite old and their ageing needs to be considered. LCTs have introduced new 

uncertainties and consequently operational issues in transmission networks. One 

important aspect, which needs to be addressed both in planning and operation, is the 

correlation between uncertain phenomena, such as wind speed, load fluctuations, etc. On 

the other hand, ageing of power system components can significantly affect network 

reliability performance, which, in turn, can have a negative impact on the asset “health”.  

In this research, sequential Monte Carlo simulation is developed to analyse operation and 

reliability of transmission networks. The above-mentioned phenomena, correlation 

between stochastic processes and asset ageing, are modelled and integrated into the 

sequential Monte Carlo simulation procedure. The correlation is modelled using Nataf 

transformation in conjunction with Cholesky decomposition and the technique is applied 

to both wind power and load since correlation between them has a significant impact on 

transmission networks. Asset ageing condition is also integrated into the SMC algorithm.  

The probabilistic expansion planning methodology under development shall model both 

component reinforcement and replacement. In the UK, transmission and distribution 

companies use methodologies for asset replacement based on asset Health Indices (HIs) 

which are used to describe asset conditions. In this research, two Monte Carlo procedures 

are developed to model the reliability of individual component. The first is deterministic 

approach, which is developed from the UK guide for distribution companies “DNO 

Common Network Asset Indices Methodology”. The second is a proposed probabilistic 

approach, which makes use of proportional hazards models and Kijima II virtual age 

model. The outputs for these two approaches are system-wide and nodal reliability indices, 

as well as asset interventions and asset profiles. The proposed probabilistic HI 

methodology is tested on IEEE RTS-96, and then compared to the deterministic HI 

method. Advantages of the transition to any HI approach are finally pointed out.   
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1.1 Background  

1.1.1 Probability Analysis  

There are rapid changes in the way of electricity generation and consumption, leading to 

a transition of the current power system to a new low-carbon power system which is 

guided by continuous innovation, efficiency and policy enhancement. With the 

integration of low carbon technologies, uncertainties and risks are introduced to the power 

system, which brings loads of challenges in the decision making of the power system 

operation and investment [1].  

In general, the uncertainties can be divided into two types: uncertainties from technical 

level and uncertainties from economic level [2]. The technical level involves both 

topological and operational perspectives. The topology group represents failures or 

interruptions of any component in the power network, such as generator, transformer, 

transmission line, etc.; the operation group represents the change of load demand, load 

growth, new load (such as electric vehicle and heat pump), the output from renewable 

sources (such as wind, solar, etc.) and fluctuations (voltage and frequency). The economic 

level involves the price variations of electricity market.  

In this research, the focus is put on the technical level in transmission network. The 

analysis of these uncertainties allows flexibility in power system investments and 

provides a guide to an optimal reinforcement/replacement planning of assets. Therefore, 

an analysing tool with the feasibility to incorporate uncertainties into the power system 

operation and planning is required. The probability analysis is done by using a probability 

density function (PDF) identified for the input variables. Two approaches are mainly used 

for probability analysis: analytical approach and simulation approach [3]. In brief, 

analytical approach can reflect the relationship between input data and results. But due to 

its simplified assumptions, this approach is limited when chorological features of the 

system are focused. It is usually applied to calculate the approximated average values of 

the system performance. The simulation approach can incorporate complex systems and 

reflect the frequency and duration characteristics as it is based on random sampling. It is 
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usually used to calculate detailed values with the related probability distribution. The 

details for probability analysis approaches are discussed in Chapter 2.2.2.  

1.1.2 Low Carbon Technologies 

Low carbon technologies (LCTs) are utilized to generate electricity with a low level of 

greenhouse gas emissions. Typical LCTs are hydroelectric power, nuclear power, wind 

power, solar power, geothermal power, tidal power and carbon capture and storage [4].  

The immoderate carbon emission has been recognized as a paramount reason for climate 

change. Furthermore, it poses a threat to natural carbon cycle and human society [5]. The 

energy industry is acknowledged as the primary source of carbon emissions. In 2019, it 

emitted more than 41.7% of overall carbon emissions, wherein nearly 39.4% came from 

the combustion of fossil fuels in thermal power plants [6]. In 2020, the emission reduced 

because of the applied restrictions during the pandemic. The impact, however, was still 

modest [7].  

Hence, to deal with this problem, the reduction of carbon emissions becomes inevitable. 

Many governments have taken endeavours to target this issue in the past decade. For 

example, the EU has committed that 20% of its energy needs to be provided from 

renewables by 2020 [8]. Following the EU directives, the UK has set a legally binding 

target of 15% energy from renewable energy by 2020 [9]. In 2021, the UK announced a 

new legal target to cut emissions by 78% by 2035 compared to 1990 levels [10]. Later in 

2021, the 26th meeting of the Conference Parties (COP26) was held in Glasgow, UK. 

Several goals were set targeting climate change and several approaches were urged to 

deliver on the goals such as speeding up of the phase-out of coal, acceleration of shift to 

electric vehicles and encouragement of renewable energy investment [11].  

As a result, power network transformation has become an inevitable trend. In the 

meantime, this transformation brings problems. On the supply side, the retirement of 

traditional coal-fired power plants (CFPPs) is an essential factor as most carbon emissions 

in the power industry are from thermal generators. However, the replacement of CFPPs 

with renewable generations usually takes years as the whole process needs to consider 

various aspects such as selection of site location, resource assessment, and installation. 

Besides, the integration of renewables poses uncertainties due to the intermittent and 

“uncontrollable” mode of operation. Moreover, with the incessantly growing demand in 
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the future, the transmission network, generation capacity, and energy storage are required 

to be expanded [12]. On the demand side, domestic customers are encouraged to adopt 

low carbon technologies (LCTs). These are related to distributed generation such as 

photovoltaic systems (PV), transport electrification such as electric vehicles (EV) and 

electro-thermal technologies such as heat pumps (HP) that bring uncertainties [13]. 

Several studies have been carried out to tackle the problems of this transformation [12]-

[15]. 

From the perspective of network planning, the changes introduced by LCTs contain the 

intermittent output of renewables, the varying output from other alternative energy 

sources and consequently the increasing difficulty for maintaining the instant generation-

demand balance (i.e. system frequency). These features need to be taken into account in 

network planning. Therefore, in both operational and planning time scales, uncertainties 

related to the integrated renewables need to be appropriately treated. Specifically, these 

uncertainties are [16]:  

• In operational time scales, the forecast of renewable generation contains an 

inevitable forecast error which needs to be integrated with other uncertainties;  

• In planning time scales, network planning needs to design the connection of 

renewable sources to the current network and consider the uncertainties related to 

the location (which is related to the values of wind speed, solar radiation, etc.) and 

capacity (i.e. the proper design of volume which is cost-related) of the renewables.  

1.1.3 Ageing Assets 

Many electric utilities in Europe, the United States and other countries around the world 

are having difficulties satisfying the customer service quality. A main reason is that large 

portions of their power networks consist of ageing assets. Several factors affecting ageing 

are discussed in [17]:  

• Ageing equipment 

Ageing equipment (specifically in [17], the equipment was installed prior to the 

1970s) has an increasing failure rate and customer interruption rate, which may 

have an impact on the system security and national economy. Ageing assets also 
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cause higher costs for maintenance and lead to further refurbishment and 

replacement. 

• Outdated system layout 

Old areas need additional supply capacity via supplementary substations. 

However, these regions are forced to use the existing and inadequate assets due to 

the problems related to obtaining permissions for new right-of-ways.  

• Obsolete planning 

Conventional power transmission planning and engineering tools cannot 

effectively address current problems such as ageing equipment, outdated system 

layouts, and new types of generations and demands.  

• Old cultural value 

Using planning and operational concepts and procedures to inform the vertically 

integrated power industries can be inadequate in the deregulated power industry.  

Challenges posed by ageing assets and their rising failure rates are one of the most 

contentious topics in modern power systems [18]. UK regulator, Ofgem, has pointed out 

that the ageing assets are not just in UK gas and electricity networks, but also other sectors 

such as power generation, water, rail, etc.; Europe faces similar issues [19]. To address 

these challenges, asset risk management technique has been widely employed, which 

contains three aspects [20]:   

• Gathering essential information such as asset conditions, failure mechanisms and 

failure effects;  

• Alignment of business and asset investment policies and strategies;  

• Development of a systematic and documented process for asset management.   

In literature, due to different dominant failure mechanisms, different approaches have 

been developed in terms of asset types. For example, in high voltage transformer, oil 

impregnated paper insulation is subjected to more failures [21]; in cable, cable joints are 

more likely to fail [22]; whilst for overhead line, failures are closely related to 

environment [23].   
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1.1.4 Regulatory Aspects 

Regulations at different levels provide guidance and reference covering corresponding 

responsibilities.  

Regulatory Requirements for LCTs 

With the threat posed by climate change, there has been a transition in power networks 

from coal-based generation to renewable generation. Regulators are supposed to contain 

all the changes introduced by power network transition. In the US, some essential 

regulations were passed to force the energy industry to focus on electricity generation 

sources other than coal. In China, the commitment to green energy has been made based 

on Paris Agreement. In this country, 104 coal-based power plants have been suspended. 

In the EU, the recently launched European Green Deal is a guideline for fulfilling climate 

neutrality in members by 2050. In the UK, Brexit is expected to be a significant factor 

impacting the energy market; some rules and regulations introduced by the EU would be 

revoked, such as [8]. The UK has introduced its own plan to decarbonise power system 

by 2035 which focuses on the establishment of a secure and home-grown electricity sector. 

The scheme supports the UK in proceeding with the power transition [26].  

Regulatory Requirements for GB Power Network  

Currently, the general energy system in the UK is confronting challenges from ageing 

assets and the changing energy structure which incorporates a rising proportion of 

renewable generation. The regulators need to make adjustments to the changes while 

preserving security of supply and protect interests of consumers, which may trigger 

substantial investments for expansion, reinforcement and replacement in transmission 

networks. Ofgem has introduced the Integrated Transmission Planning and Regulation 

(ITPR) project to evaluate if the current regulatory regimes are sufficient for the planning 

and development of the future transmission system in an efficient and coordinated manner 

[27][28].  

Beside ITPR, Ofgem also updated their regulations towards GB energy network 

companies to enable them to provide the networks with a sustainable, low carbon energy 

sector. It is known as the RIIO model (Revenue = Incentives + Innovation + Outputs), 

which encourages network owners to provide long-term value-for-money energy services 
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with sufficient security, reliability and sustainability to consumers. RIIO is used by 

Ofgem to develop price controls for GB gas and electricity companies, in both distribution 

and transmission industries. These price controls include RIIO-ED1 (which is for 

electricity distribution network; runs from 2015 to 2023 and follows by RIIO-ED2), 

RIIO-T1 (which is for transmission network; runs from 2013 to 2021 and follows by 

RIIO-T2) and RIIO-GD1 (which is for gas distribution network; runs from 2013 to 2021 

and follows by RIIO-GD2) [29].  

Ofgem requires the annual reports from the network owners on their performance against 

the price control. For example, National Grid, published their yearly results against the 

categories: safety, reliability, environmental impact, customer and stakeholder 

satisfaction and quick and efficient connect to customers, etc. [30] 

1.2 Research Aims and Objectives 

The ultimate aim of this research is to develop a probabilistic aggregated methodology 

for asset intervention planning that encompasses both reinforcement and replacement 

aspects. The following objectives are assigned to support the aim. All developed models 

are tested on the IEEE RTS-96 test system. Models and simulations are carried out using 

the codes developed in MATLAB/MATPOWER. 

1. Development of simulation methodology where temporal models describe asset 

health:  

• Modelling of load on an hourly basis; 

• Modelling of component operating state in normal operating stage via 

exponential distribution and ageing stage via modified Weibull distribution 

within developed sequential Monte Carlo simulation;  

• Modelling of renewable generations (wind power generation);  

• Modelling of spatial correlation between wind speeds and between nodal loads 

using Cholesky decomposition technique with the aid of Nataf transformation;  

• Assessment of network reliability via the calculated reliability indices using 

optimal power flow model.  

2. Development of simulation methodology where asset health is modelled with 

deterministic asset health approach: 

• Specification of asset categories; 
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• Development of the calculation process of deterministic asset health approach 

based on DNO documents (the use of distribution asset health approach on the 

developed transmission network model);  

• Incorporation of the deterministic health indices into the asset reliability models 

that are used within the developed sequential Monte Carlo simulation;  

• Assessment of network reliability via optimal power flow model.  

3. Development of simulation methodology where asset health is modelled with the 

proposed probabilistic asset health approach: 

• Specification of asset Health Index categories; 

• Assumptions on appropriate hazard functions for different Health Index 

categories; 

• Modelling of the “forward” transitions (deterioration) between asset Health 

Indices using a “queueing type” transition model;  

• Specification of repair types;  

• Modelling of “backward” transitions (repair process) using Kijima II virtual age 

model;  

• Incorporation of the probabilistic asset health approach into the asset reliability 

models that are used within the developed sequential Monte Carlo simulation; 

• Assessment of network reliability via optimal power flow model.  

4. Comparison of the developed models  

1.3 Research Contributions  

The contributions of the entire research are summarized as follows: 

• All real-life development planning stages are integrated within a single 

integrated planning methodology that consists of four stages: reinforcement, 

quality-of-supply investment optimization, optimal asset intervention planning 

and probabilistic simulation methodology for decision verification. 

• The thesis presents in-detail development of the last stage, probabilistic 

simulation methodology for decision verification. 

• The first version of the probabilistic simulation methodology is based on the 

temporal “asset health” models. The simulation methodology models nodal 

loads on an hourly basis, component operating states, uncertain renewable 
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generations, spatial correlation and optimal power flow model, which are all 

built into the developed sequential Monte Carlo simulation. Asset in-service 

time is sampled from exponential distribution for assets in normal operating 

stage, and modified Weibull distribution for ageing assets; out-of-service time is 

sampled from exponential distribution. The impacts of ageing assets as well as 

correlation between wind speeds and nodal load are studied.  

• The second version of the probabilistic simulation methodology is based on the 

deterministic asset health models; this approach is developed to address the 

impact of several (exogenous) influence factors on different asset types. Within 

the sequential Monte Carlo simulation, asset in-service time is sampled from 

hazard functions based on deterministic functions of asset scores for different 

asset types (cable, transformer and overhead line); out-of-service times are 

sampled from exponential distributions. The impacts of asset initial age, location 

and duty factor, and health score factor are also studied.  

• The most important contribution is the third version of the probabilistic 

simulation methodology that is based on the probabilistic asset health modelling. 

Probabilistic asset health approach is proposed to consider uncertainties in 

determining the asset health scores in real-life. In the developed methodology, 

asset degradation towards worse asset Health Indices (asset HIs) is modelled 

using a “queueing type” transition model, whilst asset improvement towards 

better HIs is modelled using a set of rules and processes. In this approach, asset 

in-service time is sampled using a proportional hazard model (PHM) in 

combination with the Kijima II model; out-of-service time is determined by 

random sampling from the uniform distribution. The impacts of asset initial age, 

exogenous factors and reduced set of repairs are also studied.  

1.4 Papers from the Dissertation 

The following paper has been submitted and is under review: 

1. Y. Wang, V. Levi, D. Cetenovic; “Probabilistic Health Index Based Methodology 

for Asset Intervention Planning”, IEEE Trans. On Power Systems, 2022.  

The following paper is to be submitted: 
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1. Y. Wang, V. Levi, M. Osborne; “Bringing Asset Interventions and Reinforcement 

Together: Probabilistic Asset Intervention Planning”, IET, 2022. 

1.5 Thesis Outline 

This thesis is organised into seven chapters:  

Chapter 1: Introduction 

This chapter gives an overall research background involving probability analysis, low 

carbon technologies, ageing assets and regulatory aspects. Aims and objectives, as well 

as main contributions of the research are also summarized.  

Chapter 2: Literature Review 

This chapter introduces power system planning and related concepts. Reliability 

evaluation techniques and quantitative expressions are also reviewed. The development 

and presentation of the IEEE reliability test network are given in this chapter.  

Chapter 3: Aggregated Network Planning 

This chapter provides an overview of the higher level aggregated network planning which 

consists of reinforcement and quality-of-supply investment optimization, optimal asset 

intervention planning and probabilistic simulation methodology for decision verification.  

Chapter 4: Modelling of Blocks in Reliability Analysis 

This chapter presents the modelling techniques involved in network reliability assessment. 

These include modelling of hourly load, component operating state, renewable generation 

and spatial correlation, as well as optimal power flow model.  

Chapter 5: Asset Health Condition 

This chapter introduces the concept of asset health condition and presents the 

methodologies of deterministic approach and probabilistic approach.  

Chapter 6: Probabilistic Asset Intervention Planning – Results 



 

30 

 

This chapter presents the reliability results obtained by the three developed models. 

Impacts of ageing assets, spatial correlation and generation reliability are discussed within 

temporal model. Impacts of asset initial age and some influence factors in deterministic 

function, as well as generation reliability are studied with deterministic approach. In 

probabilistic approach, impacts of asset initial age and some influence factors are 

analysed; asset repairs and trajectories are also given.  

Chapter 7: Conclusions and Future Works 

This chapter summarizes the main findings and conclusions of the research. Potential 

opportunities and further works are also identified. 
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This chapter provides a general review of power system planning and basic concepts of 

power system reliability. Essential aspects, for example, uncertainties from new 

generations and loads, investments and system reliability, are focused on within power 

system development planning. Reliability is one of the most significant criteria that must 

be considered at every stage of power system planning, design and operation. An 

insightful and comprehensive outline of the power system reliability, which includes the 

evaluation techniques and quantitative expressions, is presented. Furthermore, in order to 

provide a basis for comparing the results calculated from different methodologies, IEEE 

has developed a reference or “test” system, which is called “IEEE Reliability Test 

System”.  

2.1 Power System Planning  

2.1.1 Overview of Power System Planning  

Power system planning is a prediction of the system performance in a specific period of 

time, with the premise of certain assumptions and determinations applied for future loads, 

generation capacity and the scale of transmission equipment investment such as 

reinforcement [31].  

Planning for power system involves operational and development planning [32]. IET 

published a technical report of the "Electric Power Network Joint Vision" group, in which 

the extensive regulatory and commercial environment of investment planning for UK 

power system networks are presented [33]. It emphasised some key challenges of future 

network planning, such as: 

• For generation network planning, renewable generation such as wind and solar 

generation, by its nature, is intermittent. These generators are uncontrollable and 

unscheduled, therefore unable to support the balance between demand and supply. 

• For transmission network planning, the change of net demand at supply side is a 

result of the change of system demand and the growth and DG. Transmission 

planners do not expect the demand to grow extensively due to measurement 
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efficiency and cost efficiency, but do expect the growth of DG to ensure the net 

demand can be met. The growth of DG can cause the substantial change of power 

flows in the network, which needs to be accommodated. 

• As more uncertainties are encountered and new planning options are considered, 

network planning is facing multiple analytical challenges. To manage network 

planning effectively, a system-wide approach is required, which should 

incorporate transmission and distribution for planning and operation purposes.    

Due to multiple objectives, numerous variables and the dynamic nature of the network, 

complexity planning is introduced. The development of new technologies provides more 

opportunities to improve network operation. At the same time, however, it complicates 

the planning process. Fig. 2-1 indicates the objectives of network planning [34]. In 

general, three factors need to be optimized:  

• Expenditure  

      The calculation of the investment costs is the sum of the (annual) costs of all 

reinforcements, replacements and other asset interventions during the planning 

period. Operation and maintenance (O&M) costs can be included.  

• Reliability  

      In general, reliability is looked at the system basis and at the nodal, or customer 

level. Depending on the planning task and information available, different 

reliability indices are used to describe the network reliability (for example, 

transmission and distribution networks). Reliability indices can be used as an 

investment planning criterion (e.g. generation development planning in vertically 

integrated systems). 

• Power Losses  

      Power losses are usually included in the case of vertically integrated systems. The 

cost of power losses needs to be calculated throughout the entire planning period.  

 



 

33 

 

Satisfy growing and changing system load 

demand economically, reliably and safely

Minimize 

power losses
Minimize costs

Improve 

reliability of 

supply

Satisfy 

operational 

constraints

Minimize 

investment cost

Minimize 

O&M cost

Minimize 

energy not 

supply

Minimize 

customers 

outage cost

General 

objective

Level 1

Level 2

 

Figure 2-1: Objectives of network planning [34]  

During the entire planning period, a certain number of security and configuration 

constraints must be satisfied. The constraints are generally presented in equality or 

inequality form and usually include [35]:  

• Generation constraints 

The generation constraints include the lower and upper limits for generator active 

and reactive power.  

• Transmission constraints 

The transmission constraints represent all system operational constraints, 

including loading constraints, voltage constraints and power flow constraints.   

• Contingency (or, security) constraints 

The contingency constraints are in regards to all operational aspects when a 

disturbance occurs on any component in the system, and also related to the 

associated operating state of the failed component.  

• Operational policy based constraints 

It represents the limits of human-operation based system control. For example, it 

is unrealistic for a system operator to change numerous controls during a given 

period. The constraints help avoid the non-practical results. 

The main responsibilities of network planning are to inspect the load, voltage regulation, 

power quality, operating facilities, power supply security, system reliability, 



 

34 

 

environmental impact and overall efficiency (losses included). This requires a 

considerable planning effort which is able to provide asset replacement, network 

reinforcement, improvement of supply quality and system flexibility and efficiency, in 

order to avoid an unacceptable deterioration in system security or performance. Therefore, 

it is crucial to build a network planning scheme from both a long-term and short-term 

perspective, while considering the overall development of the network. The following 

aspects should be considered during the design of planning scheme:  

• Systematic and accurate load forecast; 

• Asset condition information and network performance data; 

• Prospective new connections, including DG developments, such as solar panels, 

wind farms and energy storage schemes; 

• Any cost-effective opportunities to improve long-term efficiency (e.g. reduce 

demand and electrical losses) or network performance (e.g. active network 

management, enhanced protection, etc.). 

The network planning aims to minimise the total cost of the network in order to make the 

network service most effective. The total cost of the power system network contains three 

parts [36][37]: 

• The cost of network infrastructure;  

• The cost of operating the system;  

• The impact of the unreliable supply on consumers. 

Planners need to make appropriate investments for the management of these three parts, 

and must deliver a network with adequate security. This planning process is guided by 

planning standards. Fig. 2-2 shows the context of network planning associated with the 

timescales of system operational processes, rules and standards, and disturbances and 

uncertainties. In the timescales of investment planning, the background conditions for 

applying security standards are more uncertain than in the operational planning (i.e. all 

the uncertainties given in the top of Fig. 2-2 have an impact on system planning). 

Therefore, planning standards need to specify the operational conditions, quality of 

supply, and a set of security events, and align with the security standards utilized in 

timescale of operation. Specific planning standards are introduced in Chapter 2.1.2.  
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Figure 2-2: The context of network planning [37] 

In current literature, a number of studies has been carried out in the area of network 

planning. Reference [38] studied generation and transmission planning. It pointed out that 

generation expansion planning involves the decision of size, location and time for 

construction/installation and meanwhile, the minimization of total cost over the planning 

period; the transmission expansion planning includes the establishment of new 

transmission lines and/or the expansion of current transmission lines. Reference [39] 

proposed a new methodology for transmission expansion planning with N-1 contingency, 

aiming to minimize investment cost. It also considered the integration of wind power.  

References [40] and [41] studied distribution network planning with integration of wind 

power and DG plants, respectively. And reference [42] studied distribution network 

planning by dividing the distribution network into three levels: power supply functional 

area, mesh and unit.  
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2.1.2 Planning Categories  

Fundamental planning categories are planning of reinforcements (so-called load-related 

planning) and planning of asset interventions (including replacement, repair and 

maintenance).  

2.1.2.1 Reinforcement  

One of the critical issues for power transmission and distribution utilities is to develop an 

optimal reinforcement strategy to support and maintain reliable and economical service 

to customers. Planning of reinforcement is always based on loading of power components 

and associated network constraints, and should suggest, exhaustively, each compulsory 

modification in the network. For example, system capacity should have the ability to 

satisfy the needs from the consumer side when load reaches a certain level. In this case, 

possible reinforcement options to support load range from traditional approaches such as 

upgrade of asset, feeder reinforcement and substation, to installation of distributed 

generation (DG) [43]-[45].  

In multiple regulatory environments, Transmission Network Owners (TNOs) and 

Distribution Network Operators (DNOs) are responsible for planning of network 

reinforcements in such a way to comply with national planning standards set by the 

national regulator. Thus, TNOs and DNOs should develop reinforcement plans which 

should be consistent with planning standards and avoid overloaded branches or 

substations under pre-defined conditions. There are several studies focusing on network 

reinforcement strategies using different algorithms [46]-[49].  

When utilities carry out reinforcement planning, the process follows specified planning 

standards. In the UK at transmission level, Security and Quality of Supply Standard 

(SQSS) [50] sets out the criteria for planning as the minimum requirements for power 

supply quality and security. At distribution level, Engineering Recommendation P2/7 [51] 

defines the standard of power supply security [52]. 

2.1.2.2 Replacement  

Decisions for replacement are generally based on three criteria: a) asset age; b) asset 

condition; and c) asset performance [53]. These criteria are directly related to reality. The 
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economic aspects sometimes also need to be considered, which means replacement is 

required when it is more economical compared to frequent repairs. In practice, there are 

different replacement strategies for different types of assets. For example, overhead lines 

are refurbished/replaced when frequent failures are experienced (i.e. based on asset 

performance). In HVDC systems, ageing components are usually continuously monitored 

and replaced when failures of major components are observed (i.e. based on asset 

condition). Finally, assets can be replaced when they reach their expected lifetime age 

[54].  

In the UK, regulator Ofgem has introduced an age-based model to assess asset 

replacement in RIIO-T1 Electricity Transmission Price Control Review [55] and 

distribution price control review (DPCR5) [56], which considers asset age profile, unit 

costs and asset condition (associated with asset age).  

2.1.2.3 Repair and Maintenance 

Repair and maintenance are essential to the security, reliability and environmental 

performance in network planning. The planning of repair and maintenance contains the 

understanding of asset reliability under certain failure modes, consideration of rising 

operating costs between repair and maintenance activities and identification of asset 

performance changes. These activities enable the discovery of developing defects and 

corrections of failures. Precisely, through repair and maintenance, the asset conditions 

can be monitored, and subsequently, the reduction in degradation of asset conditions can 

be achieved [28].  

For a repairable and maintainable system, the most common models are renewal process 

(RP, also called perfect repair/maintenance), which brings asset to an as-good-as-new 

state, and Non-Homogeneous Poisson Processes (NHPP, also called minimal 

repair/maintenance), which brings asset to a same-as-old state [57][58]. In practice, 

however, repair/maintenance may lead asset to another state between as-good-as-new 

state and same-as-old state. Hence, imperfect repair/maintenance is introduced in order 

to model the repair/maintenance more generally, where perfect repair/maintenance and 

minimal repair/maintenance can be treated as special cases [59]. In current studies, virtual 

age model is an essential tool to model imperfect repairs/maintenances; asset age is 

described by virtual age rather than “real” age [59]-[61]. Kijima I and Kijima II models 
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are the fundamental virtual age models, which use a constant parameter to accommodate 

the repair degree [62][63]. Details are given in Chapter 5.3.2.  

Moreover, repair and maintenance actions may cause failure or reduction in reliability. 

The common reasons include: a) the technician’s operation directly results in the failure 

due to poorly written manual or human error such as lack of training; b) the access to the 

component which needs repair/maintenance is blocked; c) certain parts of the component 

are difficult to conduct preventive maintenance without broken, such as fittings [64]. 

Maintenance-induced failure has been studied in some literature. For example, references 

[65] quantified post-maintenance failure rate and analysed the network reliability. 

Reference [66] used the imperfect repair model (as reviewed in [59]) to analyse the impact 

of maintenance-induced failures. 

2.2 Power System Reliability Concepts 

2.2.1 Reliability and Planning: Higher Level Story 

2.2.1.1 Overview of Reliability and Planning 

Reliability generally represents durability, dependability and system performance. In the 

engineering area, reliability of the system needs to be considered in planning, design and 

operation stages. In power systems, reliability refers to the capability of a system, within 

its expected lifetime, to perform the designed functions under the given operating 

conditions. Reliability is usually addressed at three levels [67]:  

• Generation system,  

• Transmission (and generation) system, 

• Distribution system. 

From consumers’ perspective, power system reliability ideally means a constant supply 

of electricity from the above three systems. In practice, the most important reliability 

indicators for customers are duration and frequency of outages.  

The aim of power system is to maintain uninterrupted electricity supply to consumers 

safely, reliably and economically. The assessment of power system reliability is crucial 

to achieving this aim. The methodologies for reliability assessment continually evolve in 

order to accommodate the technical changes in power system configuration and operation. 
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Currently, the main changes are introduced by the renewables as they significantly affect 

the operations of generation, transmission and distribution networks. Apart from 

renewable energy sources, another outstanding challenge for energy companies is to boost 

the market value of their services with proper reliability level, while reducing costs for 

construction, operation and maintenance. With these concerns, power companies expect 

the optimal power system planning with the appropriate reliability value leading to the 

lowest combined costs [67].  

2.2.1.2 Generation System Reliability  

A commonly accepted indicator for generation system reliability is Loss of Load, an event 

caused by the lack of generation capacity. Generation system reliability is defined by Loss 

of Load Probability (LOLP) in p.u. over a given time duration, or Loss of Load 

Expectation (LOLE) in days over a year. When a loss of load occurs, due to scheduled 

intervention and/or forced outages of other generators, the system capacity drops below 

the system demand [67].  

Both LOLP and LOLE have been widely used to quantify the amount of time that load 

exceeds generation capacity and, consequently, indicate the generation system reliability. 

These are the fundamental indicators for which the constraint is imposed in generation 

development planning. Numerous researches have been carried out to develop the 

evaluation tools and models with LOLP and LOLE as the main planning criterion [68]-

[73].  

On the other hand, to assess the cost of unreliably, which is the financial damage to 

customers due to supply interruption, another reliability indicator is used. This is the 

Expected Energy not Served (EENS) which gives non-delivered energy in MWh/year. 

Specific unreliability costs, often called Value of Lost Load (VOLL) in £/kWh, is then 

used to calculate reliability (or, outage) costs in £/year. 

An example of applied generation reliability can be found in the worldwide known 

methodology for generation expansion planning “Wien Automatic System Planning” 

(WASP). The global flowchart is shown in Fig. 2-3 [74]. In expansion stage, several 

feasible configurations of existing and new units are established. Each feasible 

configuration has technical and non-technical constraints, such as limitations on the 

number and capacity of new units, and is characterised by the total investment costs of 
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new units. Here, LOLP index is calculated in an approximate way and any feasible 

configuration must satisfy a constraint on it. In operation stage, detailed reliability 

assessment of each configuration is done and each configuration not satisfying LOLP 

constraint is dropped. Generation cost and reliability cost based on EENS are then 

calculated for all configurations that satisfy the reliability requirements. In optimization 

stage, the optimum development strategy is determined from the “minimum cost path” 

across the decision tree in which investment, operation and reliability costs are associated 

with branches.  

Input and process data for the generation – 

demand system 

Increment the year in future 

Define combinations of existing and new units – 

establish development plans in the studied year 

Horizon year reached?

All development plans 

done?

Horizon year reached?

Simulation of generation – demand operation 

for one development plan 

Optimal generation development strategy 

in the planning period 
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No

Yes
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No

No
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Operation 
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Optimization 
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Figure 2-3: Global flowchart for generation expansion planning [74] 
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2.2.1.3 Transmission System Reliability  

Transmission system contains transmission lines and substations which consist of 

different assets such as overhead lines, transformers and circuit breakers. The system 

performance – reliability depends on each component reliability. However, the reliability 

is not only influenced by different assets, but environmental factors and system 

configuration. Environment has an impact on the asset constraints and consequently 

system operation. For instance, severe weather such as lightning, heavy winds and snow 

may most likely cause failures of outdoor components. Beyond that, failures of assets in 

transmission system are not always independent, i.e. failure in one asset may increase the 

likelihood of failure in other assets. On the other hand, failure in one asset may not 

necessarily contribute to system failure due to the redundancy in other sections of 

transmission system [67]. 

Various studies have been done regarding different assets [75]-[78] and weather 

conditions [79]-[83]. References [75] and [76] present statistical analysis of different 

transmission assets such as transmission lines, cables, circuit breakers and transformers; 

while in [77] and [78], reliability models were developed and reliability indices were 

allocated to each asset to describe the reliability level. The impact of extreme weather is 

studied through weather state models. Two-state weather model was introduced in [79], 

which divides the entire weather conditions into normal state and adverse state. Based on 

two-state model, three-state weather model subdivides the adverse state, where the state 

groups become normal, adverse and major adverse weather [79]-[81]. References [82] 

and [83] specifically discussed the icing conditions. A climate-dependent failure rate was 

utilized for the reliability assessment of transmission lines.  

An essential planning concept that defines transmission system reliability is the 

contingency criterion. The commonly used criterion is N-1 contingency, which means the 

ability of the system to withstand a single asset outage. This type of contingency only 

guarantees the normal system operation under the condition of one single component 

failure. When two or more failures occur, this contingency will contribute to system 

unreliability. Therefore, other types of criteria, for example, N-1-1/N-2 contingency, 

which require the system to accommodate new operating conditions with two 

sequential/simultaneous asset outages, are established [84][85]. Then N-k contingency 

criterion is the general concept for k simultaneous component failures [86]. After having 
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built the network that satisfies one of the above security criterion, the transmission system 

reliability can be assessed using the estimated probabilities of component failures.  

2.2.1.4 Distribution System Reliability  

Distribution system in England and Wales usually starts at 132kV busbars of Grid Supply 

Points and goes down to low voltage of 0.4 kV over 33 kV and 11 kV (or, 6.6 kV) voltage 

levels. The 132 kV and 33 kV networks are called primary distribution system, they are 

meshed, and “similar” to transmission networks.  

Secondary distribution system starts at 11 kV (or, 6.6 kV) side of primary substations. In 

the most of cases, the 11 kV (or, 6.6 kV) network is constructed as a meshed network but 

operated radially with normally open points. LV networks have some connections 

between individual radial feeders via link boxes, and are almost always operated as radial 

networks. Secondary distribution network is illustrated in Fig. 2-4. 

Primary Substation

Main Feeder

Distribution 

Transformer

Lateral

Load

 

Figure 2-4: Line diagram of secondary distribution system [87] 
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Distribution system reliability is more consumer side oriented and only considers the local 

distribution system whilst neglecting generation and transmission assets. Along with 

transmission reliability, it also considers network capacity and quantifies network 

reliability via different indicators [67].  

In the past, compared to generation and transmission system, less attention was paid to 

distribution system in terms of reliability assessment. This is because failures of 

generation and transmission can lead to extensive disastrous economic impacts on society. 

However, most outages on consumer side occur due to failures in distribution system. 

Moreover, due to the radial operation topology of the secondary system, a single outage 

can easily result in power interruption to consumers. Therefore, distribution feeders are 

recognized as the most vulnerable segment between supply side and customer side [88]-

[90].  

The distribution system reliability level is usually determined by the calculation of 

interruption frequency and duration indices. IEEE has introduced a guide for indices and 

factors that are involved in the calculation of distribution reliability [91]. Apart from the 

system-oriented indices such as Energy Not Suppled (ENS), Expected Energy Not 

Suppled (EENS), Loss of Load Probability (LOLP) and Loss of Load Expectation 

(LOLE), customer/load-oriented indices, namely System Average Interruption Frequency 

Index (SAIFI), System Average Interruption Duration Index (SAIDI), Customers 

Average Interruption Duration Index (CAIDI) and Average Service Availability Index 

(ASAI) are also defined. In the UK, distribution network performance is measured in 

terms of SAIFI and SAIDI indices, which are simply called, respectively, “Customer 

Interruptions” and “Customer Minutes Lost”. 

Several studies have been carried out to analyse distribution system reliability. The 

conventional assessment method consists of three parts: establishing asset-level and 

system-level reliability model, and evaluating the reliability by reliability indices. 

Reference [92] pointed out that the traditional evaluation method may not be sufficient 

for systems with partial redundancy, especially for converters. Therefore, improvements 

targeted at component failure rate and system-level model were proposed; focus is put on 

the modification of component failure rate, which was related to asset operating 

conditions such as asset loading, cable length and cable joints. Reference [93] considered 

customers’ view against interruptions and defined Customer Dissatisfaction as a 
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reliability index. There are some studies related to assets. For example, reference [94] 

discussed the reliability of DC distribution network. The assessment model differed from 

the common-used model in electronic devices, and redundant components were also 

studied. Reference [95] integrated the identification and analysis method of key assets 

into the reliability study, whilst reference [96] studied the effect of reclosing devices and 

distribution generation in order to improve reliability indices in radial distribution lines. 

Finally, some studies conducted a statistical analysis historical/observed data using 

proper models [97][98]. 

2.2.2 Reliability Assessment Aspects and Techniques 

Power system reliability refers to the probability that, at any given time, the power system 

will remain sufficient under a given series of disturbances, while maintaining to supply 

power demand for a given operational duration. The way to make the power system 

reliable is a combination of solutions which take both the external and internal effects of 

factors into account. The external factors are environmental-related failures, whilst 

internal factors contain failures associated with power generation, transmission and 

protection components [99].  

Power system reliability can be categorized into adequacy and security. System adequacy 

evaluates the adequacy of the present system assets to meet the needs of customer side 

and/or satisfy the system operational constraints. This includes the necessity of the assets 

to produce adequate energy and the requirement of transmission and distribution assets 

to deliver the energy to demand points. System security evaluates the performance of the 

power system in the event of disturbances. This includes local and extensive disturbances 

and sudden interruptions of primary generation or transmission [100][101].  

In the field of system security, disturbances include overloading, voltage and dynamic 

instability, as shown in Fig. 2-5 [102]. Several studies have been carried out to evaluate 

power system security. These studies have pointed out that advanced analysis tools, for 

instance, Dynamic Security Assessment (DSA), which are capable of comprehensive 

static and dynamic security evaluation, are necessary. They must be able to model the 

system properly and compute security limits accurately and fast [103]. Regarding 

adequacy, the concerns are system generating units and load demand. There is a broad 
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range of evaluation techniques and tools which can be commonly categorized as 

analytical and simulation techniques [104].  
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Figure 2-5: Security Reliability Assessment [102] 

Various reliability assessment techniques have been developed over the past. Analytical 

techniques evaluate the system reliability indices based on an appropriate model through 

mathematical approaches. There are some studies using the analytical technique to assess 

system adequacy. State enumeration is a commonly used analytical technique for systems 

with a small scale or low failure rate [105][106]. System states are enumerated until a 

given failure sequence or pre-set probability threshold is met [107]. Then, an impact 

increment-based state enumeration method is developed for the reliability evaluation of 

composite generation and transmission systems, which has higher efficiency than the 

traditional state enumeration method. Apart from state enumeration, reference [108] 

proposed an analytical method for flexible resource adequacy assessment of power 

system with renewable generations. The proposed method is based on a net-load duration 

curve and is capable of evaluating reliability indices and a trade-off between reliability 

and generation cost. Reference [109] introduced supplied demand algorithm to calculate 

reliability indices, mainly for generation systems. In summary, however, accurate 

mathematical equations can be very complicated for large and complex systems and may 

require approximations when modelling complex operating procedures.  

Simulation techniques, such as Monte Carlo simulation, simulate the random behaviour 

of the system to evaluate the reliability indices. This technique is more flexible in 

modelling and can be more easily carried out using computers [110]. It has been widely 
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used in various systems. For example, reference [111] analysed the reliability of 

distribution network with solar generation and DG by using Monte Carlo simulation. 

Reference [112] applied Monte Carlo simulation to forecast the failure rate based on 

temperature and humidity distributions; reference [113] discussed the reliability of reactor 

protection system using the Monte Carlo simulation. Moreover, there are also some 

researches that combine analytical and simulation methods to analyse the reliability of 

power systems [114][115]. The application of Monte Carlo has been introduced in [110], 

which will be presented in later chapters.  

2.2.2.1 State Enumeration 

State enumeration method (also called contingency enumeration method) is a common 

numerical method [116]. The reliability of the network is evaluated by calculating 

reliability of each network state. The network state is based on the load level, as well as 

network structure defined by first-order independent failures and/or second-order 

independent failures. Since all events in the power system are considered independent, 

the system state probability can be obtained by multiplying the probability of each 

element, such as load level, overhead lines, transformers, etc. The equation is given by 

Eq. (2-1).   

𝑝𝑠 =∏ 𝑝𝑐 ∙ 𝑝𝑙
𝑐∈𝐶

 
(2-1) 

where 𝑝𝑠𝑦𝑠 is the probability of system state s; 𝑝𝑐 is the probability of component state 

(represented by unavailability of failed components times availability of the in-service 

comments); 𝑝𝑙 is the probability of load level; C represents the set of all components in 

the network. The number of system states is determined by the order of contingencies, 

such as first order, second order, etc. In each system state, reliability indices are calculated, 

multiplied by system probability, and added up to find their expectations.  

2.2.2.2 Monte Carlo Simulation 

Monte Carlo Simulation is a traditional simulation method. It is a stochastic procedure 

which is suitable for the analysis of large and complex systems. The method is based on 

stochastic selection of system states (as opposed to enumeration) by using random 

numbers. The random numbers, in other words, directly simulate the stochastic 
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behaviours of the studied system. The random numbers in Monte Carlo simulation have 

the following characteristics [117]:  

• Uniformity: The random numbers should be uniformly distributed between 0 and 

1. 

• Independence: The random numbers should be independent from each other.  

• Random numbers are generated use pseudo-random algorithms, which are the 

mathematical models that satisfy certain randomness criteria. 

Monte Carlo Simulation method is categorized as sequential and non-sequential 

simulation. 

I) Sequential Monte Carlo Simulation  

Sequential Monte Carlo (SMC) can be applied to simulate the chronological operation of 

the power system network. The procedure for analysing system reliability by using SMC 

is summarized as follows: 

1. Define the set of possible stochastic events; 

2. In in each time interval, randomly sample all stochastic events and generate 

system model; 

3. In each time interval, apply power system analysis and find reliability indices; 

4. Aggregate the reliability indicators within the studied period. 

The main advantage of sequential Monte Carlo simulation is that it is mathematically 

simple to implement, it can model chronological phenomena like wind, hydro and storage, 

and can be applied to estimate frequency and duration reliability indices. Also, it has the 

ability to correlate time-dependent uncertainties. The main drawback is the need for a 

long computational time, especially when all chronological behaviours in the network are 

modelled.  

II) Non-Sequential Monte Carlo Simulation 

Compared to sequential Monte Carlo simulation, there is no temporal modelling of 

physical phenomena and the generated system states are mutually independent. In 

particular, each system state is determined by the combination of states of all components. 

System state sampling method is adopted in non-sequential Monte Carlo simulation 
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technique. Given that each system state is independent, this method cannot be used to 

record and assess frequency and duration indices, and is unable to correlate the 

chronological phenomena. 

In particular, each network component may reside in one of several discrete states. In the 

two-state representation, a component can be in the up-state and down-state, and the 

corresponding probabilities (i.e. availability and unavailability) are defined via failure 

rate λ and repair rate µ. The state space diagram is presented in Fig. 2-6 [118]. When 

modelling the states by non-sequential Monte Carlo simulation technique, a random 

number U in uniform distribution between (0, 1) is generated. The component state is 

determined by comparing U and the component availability, or forced outage rate (FOR). 

The calculation of FOR is given in Eq. (2-2):  

𝐹𝑂𝑅 =
𝜆

𝜆 + 𝜇
 

(2-2) 

 

Figure 2-6: Two-state representation [118] 

For each component [118], 

• if 𝑈 ≤ 𝐹𝑂𝑅, the component is in down state; 

• if 𝑈 > 𝐹𝑂𝑅, the component is in up state.  

The system state is the combination of all individual component states and the system 

probability is calculated accordingly.  

Large generators can often be operated at a reduced MW output, which is a so-called 

derated state. Assuming there is only one derated state, the state space diagram is 

presented in the Fig. 2-7 [119]. It should be noted that large generating units may have 

more than one derated state and the transitions between states need to be specified based 

on real-life experience.  
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Figure 2-7: State representation of a component with one derated state [119] 

The probabilities of components residing in down and derated state are 𝑃𝑑𝑛  and 𝑃𝑑𝑒 . 

Similarly, by comparing the generated random number U from uniform distribution (0, 1) 

with the limiting state probabilities, the state of each component can be obtained as 

follows:  

• if 𝑈 ≤ 𝑃𝑑𝑛, component state is down;  

• if 𝑃𝑑𝑛 < 𝑈 ≤ 𝑃𝑑𝑛 + 𝑃𝑑𝑒, component state is derated;  

• if 𝑈 > 𝑃𝑑𝑛 + 𝑃𝑑𝑒 , the component state is up.  

2.2.3 Reliability Indices 

Reliability indices indicate the system performance from the standpoint of system 

adequacy. The indices are expected statistical values, and can be used to demonstrate 

future system performance. There are generally four types of reliability indices for a 

composite system: probability, duration, frequency and expectation indices. The details 

are listed in the table below [119].  

Table 2-1: Reliability indices and measured objects [119] 

Reliability Indices Measured Object 

Probability indices The possibility of an event occurrence 

Duration indices The expected time that an event will last for 

Frequency indices The expected recurrence rate of an event per unit of time  
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Expected indices The average of the expected results of an event 

Reliability indices are typically calculated for the load points and the entire system. Nodal 

indices indicate the nodes where the impact from an event is the biggest. If the 

unreliability of ageing asset is considered, nodal indices may also indicate where asset 

replacement, refurbishment and maintenance may give the biggest improvement in the 

system reliability. 

The following indices are the most commonly used for the reliability analysis of 

composite power systems:  

Expected Energy Not Supplied (EENS) 

EENS is defined as the expected energy not supplied under the circumstance of the load 

exceeding the available generation (i.e. power outage), or violation of network constraints. 

EENS is one of the most important transmission system indicators, it models both 

transmission capacity deficiency and energy limitation due to reduced prime energy [120]. 

The expression is shown below: 

𝐸𝐸𝑁𝑆 = ∑ 8760 ∙ 𝐶𝑖 ∙ 𝑝𝑖𝑖∈𝑆     (MWh/yr) (2-3) 

Where S is the set of all system states with load curtailment; 𝐶𝑖 and 𝑝𝑖 are the curtailed 

load and the probability of system state i, respectively; 8760 is the total hours of one year. 

Note that Eq. (2-3) gives the so-called annualized value. 

Loss of Load Probability (LOLP) 

LOLP is defined as the probability of load exceeding the available generation. Small 

LOLP value implies good system performance. However, it defines the likelihood of load 

curtailment but not the severity. For example, for the same LOLP value, the degree of 

failure can be less than 1 MW or greater than 1000 MW. Therefore, the extent of capacity 

or energy shortage cannot be identified [121]. The expression is:   

𝐿𝑂𝐿𝑃 = ∑ 𝑝𝑖𝑖 ∙ 𝑡𝑖/8760   (p.u.) (2-4) 
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where 𝑡𝑖 is the time duration of the load loss of the system state i; other parameters are 

defined above. 

Loss of Load Expectation (LOLE)  

LOLE is defined as the average number of days/hours in a given period of time (usually 

a year) that the load is expected to exceed the available generation capacity (i.e. a loss of 

load occurs). Similarly to LOLP, it cannot define the severity of the load loss: 

𝐿𝑂𝐿𝐸 = ∑ 𝑝𝑖𝑖 ∙ 𝑡𝑖    (days/yr or hours/yr) (2-5) 

Specifically, in reliability test network, the indices defined above can be calculated at 

node level and system level.  

I) Node Level 

a) EENS 

𝐸𝐸𝑁𝑆𝑖 =
1

𝑁𝑌
∑∑𝐸𝑁𝑆𝑖

𝑛

𝑡=1

𝑁𝑌

𝑘=1

 (2-6) 

where 𝐸𝐸𝑁𝑆𝑖 is the load loss of node i in hour t, year k; NY is the number of simulated 

years; for simplicity, subscripts t and k are dropped. 𝐸𝑁𝑆𝑖 can be calculated using the 

equation below:  

𝐸𝑁𝑆𝑖 = {
𝑃𝑖,𝑐 − 𝑃𝑖,𝑎        𝑖𝑓 𝑃𝑖,𝑐 > 𝑃𝑖,𝑎 

0                       𝑖𝑓  𝑃𝑖,𝑐 ≤ 𝑃𝑖,𝑎
 (2-7) 

where 𝑃𝑖,𝑐 is the MW demand at node i; 𝑃𝑖,𝑎 is the delivered MW at node i.  

b) LOLP 

𝐿𝑂𝐿𝑃𝑖 =
1

𝑁𝑌 ∙ 8760
∑∑{

1     𝑖𝑓 𝐸𝑁𝑆𝑖 > 0
0     𝑖𝑓 𝐸𝑁𝑆𝑖 = 0

𝑛

𝑡=1

𝑁𝑌

𝑘=1

 (2-8) 
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where 𝐿𝑂𝐿𝑃𝑖  is the probability of load loss occurring at node i; other parameters are 

defined above. 

c) LOLE 

𝐿𝑂𝐿𝐸𝑖 =
1

𝑁𝑌
∑∑{

1     𝑖𝑓 𝐸𝑁𝑆𝑖 > 0
0     𝑖𝑓 𝐸𝑁𝑆𝑖 = 0

𝑛

𝑡=1

𝑁𝑌

𝑘=1

 (2-9) 

where 𝐿𝑂𝐿𝐸𝑖 is the expected number of days (or hours) for which a load loss occurring 

at node i; other parameters are defined above. 

II) System Level 

a) EENS 

𝐸𝐸𝑁𝑆𝑠𝑦𝑠 =∑𝐸𝐸𝑁𝑆𝑖

𝑁

𝑖=1

 (2-10) 

where 𝐸𝐸𝑁𝑆𝑠𝑦𝑠 is the power outage of the entire system, which is the sum of the load 

losses at all nodes; N is the number of nodes. 

b) LOLP 

𝐿𝑂𝐿𝑃𝑠𝑦𝑠 =
1

𝑁𝑌 ∙ 8760
∑∑

{
 
 

 
 1     𝑖𝑓 ∑𝐸𝑁𝑆𝑖

𝑁

𝑖=1

> 0

0     𝑖𝑓 ∑𝐸𝑁𝑆𝑖

𝑁

𝑖=1

= 0

𝑛

𝑡=1

𝑁𝑌

𝑘=1

 (2-11) 

where 𝐿𝑂𝐿𝑃𝑠𝑦𝑠 is the probability of power outage of the entire system, other parameters 

are defined above. 

c) LOLE 
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𝐿𝑂𝐿𝐸𝑠𝑦𝑠 =
1

𝑁𝑌
∑∑

{
 
 

 
 1     𝑖𝑓 ∑𝐸𝑁𝑆𝑖

𝑁

𝑖=1

> 0

0     𝑖𝑓 ∑𝐸𝑁𝑆𝑖

𝑁

𝑖=1

= 0

𝑛

𝑡=1

𝑁𝑌

𝑘=1

 (2-12) 

where 𝐿𝑂𝐿𝐸𝑠𝑦𝑠 is the expected duration (in days or hours) of power outage of the entire 

system, other parameters are defined above. 

2.2.4 Reliability Functions  

In reliability assessment, the random variable is component in-service time. Assume T 

(𝑇 ≥ 0) is the continuous random variable, and its distribution is characterized by its 

probability density function (PDF) 𝑓(𝑡) and cumulative distribution function (CDF) 𝑄(𝑡). 

PDF describes the probability of the random variable located within a specific range of 

values. CDF, as express in Eq. (2-13), gives the probability that failure has occurred by 

time duration t. The curve of CDF is described in Fig. 2-8, which represents component 

unavailability that varies from zero to unity as time increase from zero to infinity. At t=0, 

the component or system is in operating state; therefore its probability of failure (or, 

unavailability) is zero. When t is long enough, a failure will occur on the component (or 

the system) and the unavailability tends to unity [118][119].  

𝑄(𝑡) = 𝑃{𝑇 ≤ 𝑡} (2-13) 

Time

CDF

Q(t)

0

1

 

Figure 2-8: Cumulative distribution function [119] 
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In some practical problems, it is not required to evaluate the probability of failure but the 

probability of surviving up to the certain moment t (i.e. failure has not occurred by t). 

This is the complement to the failure function 𝑄(𝑡) [120]. The survivor function, denoted 

as 𝑅(𝑡), has the following relationship with 𝑄(𝑡):  

𝑅(𝑡) = 𝑃{𝑇 > 𝑡} = 1 − 𝑄(𝑡) (2-14) 

The first derivative of failure function 𝑄(𝑡) is probability density function 𝑓(𝑡), as shown 

in Fig. 2-9, and calculated as: 

𝑓(𝑡) =
𝑑𝑄(𝑡)

𝑑𝑡
= −

𝑑𝑅(𝑡)

𝑑𝑡
 (2-15) 

which can also be expressed in the integral form:  

𝑄(𝑡) = ∫ 𝑓(𝑡)
𝑡

0

 (2-16) 

𝑅(𝑡) = 1 − ∫ 𝑓(𝑡)
𝑡

0

= ∫ 𝑓(𝑡)
∞

𝑡

 (2-17) 

PDF

f(t)

t Time

Q(t) R(t)

0
 

Figure 2-9: Probability density function of in-service time [119] 

In reliability analysis, the hazard function 𝜆(𝑡) is one of the most broadly used function 

in assessing asset reliability [120]. The expression is given in Eq. (2-18) [121]. The 
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numerator gives the conditional probability that component fails in interval (𝑡 + ∆𝑡) 

given that it has not failed before; the denominator is the width of interval. 

𝜆(𝑡) = lim
∆𝑡→0

𝑃{(𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡)|(𝑇 > 𝑡)}

∆𝑡
 (2-18) 

It can be further derived as:  

𝜆(𝑡) = lim
∆𝑡→0

𝑃{(𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡) ∙ (𝑇 > 𝑡)}

∆𝑡 ∙ 𝑃{𝑇 > 𝑡}
= lim

∆𝑡→0

𝑃{𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡}

∆𝑡 ∙ 𝑅(𝑡)
=
𝑓(𝑡)

𝑅(𝑡)
 (2-19) 

2.3 Reliability Test System 

For the purpose of providing a basis for comparing the results obtained from different 

methods, IEEE has developed a reference or “test” system, which is the IEEE Reliability 

Test System. In 1979, the IEEE Subcommittee on the Application of Probability Methods 

(APM) of the Power System Engineering Committee published the first version of the 

IEEE Reliability Test System (RTS-79) [122]. IEEE RTS-79 aims to test and compare 

the results obtained by using different reliability assessment methods. It is designed as a 

reference system with all data and parameters that are necessary for the reliability 

assessment of composite systems. However, for particular applications, some 

enhancements to RTS-79 are needed. For example, the additional data can be included by 

individual researchers or addressed in the future development of the IEEE RTS-79 [123].  

In 1986, IEEE RTS-86 was developed and published as the second version of IEEE RTS 

[124], aiming to make the IEEE RTS more widely used for different reliability modelling 

and assessment methods. The experience with IEEE RTS-79 helped identify the need for 

essential additional data and “appropriate” reliability indices that can be calculated on the 

test system. The extension is made mainly on the data related to the generation system. 

Specifically, it includes the extension of the generating units in the IEEE RTS-79 database, 

unit scheduled maintenance, unit derated states, uncertainty in load prediction and the 

influence of interconnection. These improvements allow IEEE RTS-86 to calculate the 

reliability indices that are derived through accurate solution techniques, without the need 

for making approximations. Then the reliability indices are determined in a uniform way 

and can be used for comparison with results obtained from other techniques [123]. After 
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1986, in order to bridge the gap between increasing industry demand and current 

computing tools, other useful network models were proposed and published in [125]. 

More specifically, the changes in the electrical industry, such as transmission access and 

emission caps, need to be modelled. These changes and some perceived enhancements to 

the IEEE RTS-86 motivated the IEEE task group to develop a multi-region RTS with 

additional data [123]. 

IEEE test system RTS-96 was developed as an enhanced test system by the former APM-

RTS Task Force for large and complex power system reliability assessment studies. The 

new system can be used for multi-area studies and is expected to allow standard and 

comparative studies of new and existing reliability assessment techniques [123]. It is 

important to note that in the development and adoption of the parameters in IEEE RTS-

96, it is not intended to develop a test system that represents any particular or typical 

power system. If this requirement is applied to IEEE RTS-96 as mandatory, it will result 

in a system with fewer general-purpose features, and testing the influence of different 

evaluation techniques will be less useful as a reference. Besides, a comparison study of 

IEEE RTS-79 and IEEE RTS-96 has been done, which verifies that IEEE RTS-96 has 

more robustness than the old IEEE RTS-79 test system as it produces more representative 

reliability indices [125].  

The topology of one-area IEEE RTS-96 is shown in Fig. 2-10. By merging two one-area 

systems through interconnections, the two-area system can be obtained. Similarly, the 

three-area system is formed by adding a third area to the two-area system via 

interconnections [123].  
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Figure 2-10: The topology of one-area IEEE RTS-96 test system [123] 
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2.4 Research Gap  

In the last price control review, the UK regulator Ofgem has specified a common set of 

“network output measures”[126], which provide metrics for measuring transmission asset 

performance; they also bring together reinforcement and asset interventions such as repair, 

maintenance and replacement. Traditional approach to reinforcement planning does not 

consider asset conditions, whilst replacement planning sometimes accounts for network 

operating conditions via so-called “loading factors” [127]. A more realistic modelling of 

intervention impacts needs to involve reliability analysis, whereby asset hazard models 

are usually functions of in-service time only [128]. One of early attempts to model 

exogenous variables was done in the Cox’s proportional hazard model (PHM) [129].  

The UK utilities have adopted the concept of health indices (HIs) to describe asset health 

and choose “proper” asset interventions [130]-[131]. Asset HIs are defined as 

deterministic scores [131] that outline asset conditions via relevant asset and 

environmental parameters. However, the impact of asset’s in-service operation, post-

repair result and external factor (such as location) can be combined to model asset hazard 

more generally.  In this research, PHM and Kijima models are utilized to reflect this 

impact.  

Furthermore, a higher level aggregated network planning methodology is proposed, 

where the concept is inspired by the WASP model (as reviewed in Chapter 2.2.1.2). The 

details of this methodology are given in Chapter 3. 

2.4 Chapter Summary 

This chapter first gives an overview of power system planning. Then planning categories 

are reviewed. Since Reliability is one of the most significant criteria that must be 

considered at every stage of power system planning, design and operation, this chapter 

also reviews the basic concepts of power system reliability. The evaluation techniques for 

assessing the power system reliability are introduced. The related functions in reliability 

assessment and the quantitative expressions used to indicate system performance are also 

presented.  

In order to provide a basis for comparing the results calculated from different methods of 

reliability assessment, IEEE has developed a reference or “test” system, which is the IEEE 
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Reliability Test System. This chapter introduces the development history of the IEEE 

Reliability Test System, as well as the topology of the one-area IEEE RTS-96.  

Research gap is highlighted in this chapter.  
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This chapter provides an overview of the proposed higher level aggregated network 

planning that consists of reinforcement and quality-of-supply investment optimization, 

optimal asset intervention planning and probabilistic simulation methodology for 

decision verification. The focus of this research is on the development of a probabilistic 

simulation methodology whose primary goal is to find impact of optimized asset 

interventions (and reinforcements) on the overall system operation as well as on 

individual assets.  

3.1 Aggregated Planning Methodology 

Traditionally, reinforcement (load-driven) and replacement (non-load driven) planning 

have been done separately. Ofgem has recognized the connection between the two areas, 

developed aggregated output metrics and encouraged companies to develop probabilistic 

approaches to the aggregated planning model. The framework for integrated asset 

intervention and reinforcement planning addresses all major planning blocks in the UK 

utilities and it is an extension of the work on the integrated reinforcement and quality-of-

supply planning [132][133]. The overall problem is set in the form of a decision tree [134], 

where the nodes denote different network configurations in certain time periods and 

branch (cost) transitions between two configurations in consecutive time periods. The 

entire problem is divided into four stages, denoted by I, II, III and IV in Fig. 3-1:  

I Optimal asset intervention planning; 

II Reinforcement planning, both general and connection-driven; 

III Quality-of-supply (QoS) planning; 

IV Probabilistic simulation. 

CHAPTER 3  AGGREGATED NETWORK 

PLANNING  
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Optimal long-run asset intervention planning:

Replacements, imperfect repairs, preventive maintenance

Optimal reinforcement 

planning

Optimal quality-of-supply 

planning

Probabilistic simulation model and cost update

 

Figure 3-1: Simplified flowchart of the integrated planning methodology 

Optimal long-run asset intervention planning is done in the first place. The aim is to find 

the best imperfect repairs, preventive maintenance and replacements in the considered 

planning period [134][135]. The optimal replacements are then input into the 

reinforcement planning which is based on static planning within individual years of the 

planning period. This leads to the decision tree (in time) concept, where several 

development alternatives are presented in each year. Decision tree can be of either 

deterministic or probabilistic nature. An example of the probabilistic tree is shown in Fig. 

3-2, where (R+R)x-y represents discounted replacement and reinforcement (investment) 

costs; and Prx-y denotes the transition probability from state x to state y. 

 

Figure 3-2: Illustrative example of a decision tree 
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To separate this planning stage from the later stages, the optimum development strategy 

path is determined at this stage. This path can be obtained based on dynamic programming 

in the deterministic approach or a set of probability rules in the probabilistic approach.  

The optimization of QoS investment cost is done in a similar way as reinforcement 

planning. Specifically, if the optimal reinforcement & replacement investment strategy is 

decided in the previous stage, a new set of scenarios (configurations) can then be specified, 

as well as a new decision tree for the QoS problem; if not, the QoS problem can be solved 

for each node of the original decision tree (Fig. 3-2). The result of this stage is the optimal 

and suboptimal development paths characterized with reinforcement, replacement and 

QoS costs.  

Probabilistic simulation of the selected network development strategy is performed in the 

final stage. It gives system performance in terms of reliability indices, as well as asset 

performance in terms of asset health indices and/or (virtual) age profiles, required 

interventions, and costs relating to operation and reliability. If the studied development 

strategy does not meet reliability constraints, it is discarded and a new set of optimum 

and suboptimum strategies may need to be determined.  

To sum up, the general solution to the aggregated problem consists of three parts:  

• Optimization of maintenance, repair and replacement strategies over a longer time 

period to get corresponding capital costs. 

• Integration of reinforcement planning with the optimal replacement, repair and 

maintenance plans to get an overall optimum development strategy. 

• Verification of the optimal and suboptimal development strategy using the 

probabilistic simulation of the power system operation based on sequential Monte 

Carlo simulation. 

The focus of the thesis is on the probabilistic simulation model.  

3.2 Probabilistic Asset Intervention Planning 

This thesis completes the last stage shown in the flowchart of Fig. 3-1, which is the 

probabilistic simulation to quantify asset interventions. This stage is utilized to study the 

impact of optimized asset interventions on the overall system operation as well as on 
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individual assets. The developed probabilistic simulation methodology contains the 

following building blocks: a) temporal asset hazard modelling; b) probabilistic asset HI 

modelling; c) deterministic asset HI modelling; and d) correlation between external inputs. 

Here are the details of how this research completes this stage: “Asset health” modelling 

with the aid of temporal models (or, temporal hazard functions) is initially developed; it 

incorporates basic blocks of Sequential Monte Carlo simulation including component 

state modelling, load modelling, LCTs modelling, spatial correlation and optimal power 

flow model. Two further approaches are developed for modelling asset health indices. 

The first is the deterministic approach, where asset health scores are modelled as 

deterministic quantities and integrated into the hazard functions. The second is the 

probabilistic approach, where the concept of probabilistic asset health indices is proposed 

to address health index uncertainties and generate results required by the UK regulator on 

both system and asset level. Asset HIs are described by known pdfs associated with virtual 

asset age. Degradation of asset towards worse HIs (i.e. asset degradation) is modelled 

first using the proposed “queueing type” transition model. Improvement of asset towards 

better HIs is then modelled using a set of rules/processes related to asset repairs. In this 

way, asset in-service time is sampled from hazard functions based on proportional hazard 

models (PHMs) in combination with the Kijima KT2 model, whilst out-of-service time is 

sampled based on the developed repair process. All developed asset HI models are 

incorporated into a sequential Monte Carlo procedure, where other input blocks are the 

same as temporal model.  

3.3 Chapter Summary 

This chapter introduces the higher level aggregated network planning methodology. It 

includes four main building blocks, that is, reinforcement and quality-of-supply 

investment optimization, optimal asset intervention planning and probabilistic simulation 

methodology for decision verification. This thesis addresses the last stage of the 

aggregated methodology, which can be used to study the impact of optimized asset 

interventions on both system and individual asset level. 
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In reliability analysis, all events associated with the calculation of the reliability indices 

need to be modelled probabilistically. The events, including component operating states, 

load profiles, and low carbon technology (LCT) production can be treated as input blocks 

in the power system reliability analysis. This chapter gives the modelling of the input 

blocks. Sequential Monte Carlo simulation method is used to obtain the chronological 

operating states of all network components which includes branches, dispatchable 

generators, transformers and wind turbines.  

Spatial correlation between wind generating units and between load points is also studied. 

This chapter gives a brief introduction into the correlation modelling method. Here Nataf 

transformation in conjunction with Cholesky decomposition [136] is used to analyse the 

correlation between wind speeds, and the correlation between nodal loads.  

After obtaining the input blocks, system reliability assessment requires an optimization 

tool which is the Optimal Power Flow (OPF) model to calculate the reliability indices. 

This chapter introduces the objective function and corresponding constraints of the OPF 

model and gives an overall simulation algorithm.  

4.1 Component State Modelling  

The reliability curve is used to describe the change of component failure rate over its 

lifetime. In the 1950s, a group called AGREE (Electronic Equipment Reliability Advisory 

Group) pointed out that the classic "bathtub" curve can describe the failure rate of 

electronic components and systems [137]. This curve is presented in Fig. 4-1. 

CHAPTER 4  MODELLING OF BLOCKS IN 

RELIABILITY ANALYSIS  
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Normal operating stage Wear-out 

stage

Infant 

stage

Time

Failure rate λ(t) 

λ(t)=λ=constant

Increasing λ(t)

 

Figure 4-1: Bathtub Curve [137]  

Three distinctive stages are presented in the bathtub curve: 

• Infant stage 

The failure rate of components in this stage shows a falling trend. Failures in this 

stage are mainly caused by manufacturing process, inadequate installation, etc. 

• Normal operating stage 

Components in this stage have a relatively constant failure rate, which means their 

in-service time in this period is exponentially distributed. In this stage, failures 

occur due to unexpected or sudden overstress. Components in this stage are 

repairable. 

• Wear-out stage 

This stage is the ageing stage of the components, featured with a rising failure rate. 

In-service time of components usually follow Weibull distribution. In this stage, 

components can either be repaired or replaced. 

Generally, the operating states of a reparable component can be divided into up state and 

down state. The state-space transition between the up and down states is illustrated in Fig. 

4-2, whilst Fig. 4-3 shows in-service and out-of-service times. 

Up state Down state

λ 

µ 
 

t1 t2 t3

up

down

time

tup

tdown

 

Figure 4-2: Transition between 

component states 

Figure 4-3: In-service and out-of-service 

times 
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Here, λ and µ represent the failure rate and the repair rate, respectively; 𝑡𝑢𝑝 is the time 

duration of components residing in normal operating state, also called time to failure 

(TTF); 𝑡𝑑𝑜𝑤𝑛  is time to repair (TTR), representing the time duration of components 

residing in failed stage.  

4.1.1 In-service Time Distributions  

As mentioned earlier, stochastic variables in reliability analysis are in-service and out-of-

service times. There are three distributions widely used in reliability analysis [138]:  

• Normal Distribution 

• Exponential Distribution 

• Weibull Distribution 

4.1.1.1 Normal Distribution  

When the asset’s in-service time data fit normal distribution, the failure rate (or, hazard 

function) increases monotonically with time (Fig. 4-4), which fits the wear-out stage in 

the bathtub curve. Normal distribution is usually applicable to failures influenced by 

additional factors, such as mechanical failures led by multiple random small mechanical 

deteriorations. This type of mechanical failure is usually observed as the system wears 

out in use. 

 

Figure 4-4: Shapes of PDF, CDF, and hazard function of a normal distribution 

4.1.1.2 Exponential Distribution 

It can be shown that where the failure rate is constant over time, the distribution of the in-

service time is exponential (Fig. 4-5). It can be applied to model the asset in normal 

operating stage of the bathtub curve, during which failures occur randomly.  
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Figure 4-5: Shapes of PDF, CDF, and hazard function of an exponential distribution 

4.1.1.3 Weibull Distribution 

Weibull Distribution was developed by W. Weibull to analyse failures due to metal 

fatigue [139]. It is described by the scale parameter α and the shape parameter β. The 

Weibull PDF can model the characteristics of other distributions as its shape depends on 

the value of β. All the stages in the bathtub curve, in fact, can be modelled by varying the 

β value [140]. Details are given below:  

• The infant stage, featured by a decreasing failure rate, can be modelled with the 

aid of Weibull distribution with 0 < 𝛽 < 1. 

• The normal operating stage, where the asset’s failure rate is a constant, can be 

modelled by the Weibull distribution with 𝛽 = 1.  

• The wear-out stage, featured by an increasing failure rate, can be modelled by the 

Weibull distribution with 𝛽 > 1. The bigger the shape parameter is, the faster the 

failure rate increases.  

A few examples of the Weibull PDF and hazard function are given in Table 4-1 (with 

varying shape parameter and scale parameter 𝛼 = 2). 
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Table 4-1: PDF and failure rate function of Weibull distribution with different shape 

parameter values 

Value 

of β 
PDF Hazard Function 

𝛽 = 0.2 

  

𝛽 = 1 

  

𝛽 = 1.5 
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𝛽 = 2 

  

𝛽 = 3 

  

4.1.2 Component in normal operating stage  

In normal operating stage, the failure and repair rates of a component are constant. The 

probability density functions (PDF) of in-service time 𝑓𝑢𝑝(𝑡) and out-of-service time 

𝑓𝑑𝑜𝑤𝑛(𝑡) are exponential distribution:  

𝑓𝑢𝑝(𝑡) = 𝜆𝑒
−𝜆𝑡 (4-1) 

𝑓𝑑𝑜𝑤𝑛(𝑡) = 𝜇𝑒−𝜇𝑡 (4-2) 

where λ and µ are the failure rate and repair rate of component, respectively.  

The cumulative distribution functions 𝑄(𝑡), representing unreliability, can be calculated 

by integrating the PDF from time 0 to the required time t: 

𝑄𝑢𝑝(𝑡) = 1 − 𝑒
−𝜆𝑡 (4-3) 

𝑄𝑑𝑜𝑤𝑛(𝑡) = 1 − 𝑒
−𝜇𝑡 (4-4) 
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Assuming that 𝑅(𝑡) = 1 − 𝑄(𝑡) = 𝑈 (which can also be treated as 𝑄(𝑡) = 𝑈), where U 

is a random number generated from uniform distribution between 0 and 1, the up-time 

and down-time of a component in normal operating stage can be obtained by using the 

inverse transform method as illustrated in Fig. 4-6.  

Time

CDF

Q(t)

0

1

U

t=Q (U)-1

 

Figure 4-6: Inverse transform method [3] 

𝑡𝑢𝑝 = −
1

𝜆
ln (𝑈) (4-5) 

𝑡𝑑𝑜𝑤𝑛 = −
1

𝜇
ln (𝑈) (4-6) 

4.1.3 Component in Ageing Stage  

In ageing stage, component has an increasing failure rate. The probability density function 

(PDF) of in-service time follows Weibull distribution, while PDF of out-of-service time 

is assumed to remain exponentially distributed. The PDF of in-service time is: 

𝑓(𝑡) =
𝛽 ∙ 𝑡𝛽−1

𝛼𝛽
∙ 𝑒𝑥𝑝 [−(

𝑡

𝛼
)𝛽] (4-7) 

where β is the shape parameter and α is the scale parameter. Note that 𝑡 ≥ 0, 𝛽 > 0, 𝛼 >

0.  

The cumulative distribution function is calculated by integrating the PDF from time 0 to 

the required time t:  
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𝑄(𝑡) = 1 − 𝑒𝑥𝑝[−(
𝑡

𝛼
)𝛽] (4-8) 

The cumulative reliability function can be then calculated as:  

𝑅(𝑡) = 1 − 𝑄(𝑡) = 𝑒𝑥𝑝[−(
𝑡

𝛼
)𝛽] (4-9) 

The failure rate function (or, hazard function) is the ratio of probability density function 

to cumulative reliability function. 

𝜆(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
=
𝛽 ∙ 𝑡𝛽−1

𝛼𝛽
 (4-10) 

However, it is a continuous process for the component to turn from normal operating 

stage into ageing stage. The component failure rate profile adapted from the bathtub curve 

is shown in Fig. 4-7, featured a time duration k when the component stays in normal 

operating stage before moving to ageing stage. Accordingly, the failure rate of the 

component in ageing stage is modified as follows:  

time

Failure rate 

λ(t) 

k0

λ

Normal operating 

stage
Ageing stage

 

Figure 4-7: Failure rate function of component in ageing stage 

𝜆(𝑡) = {

𝜆,                             𝑡 ≤ 𝑘

𝜆 +
𝛽 ∙ 𝑡𝛽−1

𝛼𝛽
, 𝑡 > 𝑘

 

(4-11a) 

(4-11b) 
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The cumulative reliability function can then be obtained.  

𝑅(𝑡) =

{
 
 

 
 exp [−∫ 𝜆

𝑡

0

𝑑𝜏] ,                                                      𝑡 ≤ 𝑘

exp [−∫ 𝜆
𝑘

0

𝑑𝜏 − ∫ (𝜆 +
𝛽 ∙ 𝑡𝛽−1

𝛼𝛽
)

𝑡

𝑘

𝑑𝜏] , 𝑡 > 𝑘

 

(4-12a) 

(4-12b) 

Assuming that 𝑅(𝑡) = 1 − 𝑈, where U is a random number from uniform distribution 

between 0 and 1, the up-time can be solved only in a numerical way (i.e. there is no 

explicit solution). In ageing stage, the down-time is always calculated based on the 

exponential distribution.  

4.1.4 Simulation Algorithm for a Component 

Within the sequential Monte Carlo simulation, “behaviour” of each component in the 

studied interval has to be determined first. This is basically a chronological sequence of 

binary values 1 and 0 denoting up and down states in each hour of the simulation period. 

To be specific, in this research, the sampling of down-time is actually the modelling of 

independent failures. Failure modes are not considered. The sampling technique is 

developed as follows: 

1. Select a component which is in up-state. 

2. Two uniformly-distributed random numbers 𝑈𝑢𝑝 and 𝑈𝑑𝑜𝑤𝑛 between 0 and 1 are 

generated. 

3. Time to failure (TTF, i.e. up-time) is sampled from the cumulative distribution 

function based on the selected lifetime distribution. For normal operating stage, 

component in-service time is assumed to follow exponential distribution; for 

ageing stage, it is assumed to follow modified Weibull distribution. Component 

state is set to be 1 during TTF:  

𝑇𝑇𝐹 = 𝑡𝑢𝑝 = 𝑄𝑢𝑝
−1(𝑈𝑢𝑝)  (4-13) 

4. Time to repair (TTR, i.e. down-time) is sampled from the exponential cumulative 

distribution function. Component state is set to be 0 during TTR: 

𝑇𝑇𝑅 = 𝑡𝑡𝑜𝑤𝑛 = 𝑄𝑑𝑜𝑤𝑛
−1 (𝑈𝑑𝑜𝑤𝑛)  (4-14) 
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5. Steps 2 to 4 are repeated over the duration of the simulation period to obtain one 

row of the matrix that shows status of all components within hours of the 

simulation period.  

6. Steps 1 to 5 are repeated for all network components, including all branches and 

possibly generators. 

The simulation procedure is illustrated in Fig. 4-8.  

Start

Generate two uniformly distributed random 

variables between (0,1): Uup and Udown

Calculate time to failure (i.e. up-time) using the 

cumulative distribution function Qup(t) based on the 

selected proper lifetime distribution

Qup(tup) = Uup

Calculate time to repair (i.e. down-time) using the 

exponential cumulative distribution function Qdown(t)

Qdown(tdown) = Udown

Total time = required 

sampled time?

Create the matrices of system states

End

Yes

No
time+1

Within the duration of tup, component state =1

Within the duration of tdown, component state =0

 

Figure 4-8: Procedure for obtaining component states using Sequential Monte Carlo 

simulation 
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4.2 Load Modelling 

Load varies with time. Consequently, the load should be modelled as a time-dependent 

stochastic process. R Billinton and W Li proposed a dynamic hourly load model to access 

the system reliability [118]. The mean value of hourly loads can be calculated as follows:  

𝑝𝑖 = 𝑝𝑤 × 𝑝𝑑 × 𝑝ℎ (4-15) 

𝑃𝐿 = 𝑃𝑝 × 𝑝𝑖 (4-16) 

where 𝑝𝑖 is the percent hourly load factor; 𝑝𝑤 is the weekly peak load, as a percent of 

annual peak; 𝑝𝑑 is the daily peak load, as a percent of weekly peak; 𝑝ℎ is the hourly peak 

load, as a percent of daily peak; 𝑃𝑝 is the annual peak load at each bus; and 𝑃𝐿 is the hourly 

load demand. Fig. 4-9 illustrates the computation procedure for finding the mean values 

of hourly loads. 
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Start

Select week, w

Select day of week, d

Select hour of day, h

Calculate percent 

hourly load factor

p =p  ×p  ×p 

Hour h=24?

Day d=7?

Week w=52?

h=h+1

d=d+1

w=w+1
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of percent hourly load factors

Select bus, i

Calculate hourly load

P  =P  ×p

Bus number 

i=24?

end

i=i+1

wi d h

L p i

 

Figure 4-9: Procedure for developing hourly load profiles 

It is assumed that each hourly load follows normal distribution, whose mean is defined 

by Eq. (4-15) and Eq. (4-16), and standard deviation is assumed to be in the range of 20%. 

4.3 Models of Low Carbon Technologies -Wind Power 

In a long-term perspective, wind power is a clean and reliable energy source. The 

principle of operation of wind power generation is that airflow through wind turbines 

provides mechanical power that rotates the electric generator, as described below (Fig. 4-

10). 
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Figure 4-10: The conversion of wind energy into electricity [141] 

The modelling of wind generation contains two parts:  

• Wind speed modelling  

• Wind power calculation  

4.3.1 Wind Speed Modelling  

The wind generation output is directly dependent on wind speed. Wind speed is an 

intermittent and non-stationary process. Therefore, an appropriate mathematical model 

should be developed that reflects these features. Within the probabilistic power system 

studies, Weibull distribution is widely used to model wind speeds when studying 

aggregated yearly data. In this research, sequential time intervals are studied and auto-

regressive moving average (ARMA) process is adopted to find mean values of wind 

speeds and forecast future means [142]. In each hour, normal distribution of wind speed 

is assumed with a mean defined via ARMA process and standard deviation of around 

15%. 

Time series (ARMA model) is applied for the prediction of wind speed means. It is 

demonstrated that historical wind speed data can be adequately characterised by ARMA 

model and then the model can be used for the forecast of future wind speed means. 

Besides, ARMA model offers a computationally efficient scheme and has a minimum 

computer storage requirements [143].  
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ARMA model contains an Auto-Regressive (AR) model and a Moving Average (MA) 

model. AR model indicates the association between present data and historical data, while 

MA model describes the error term which is correlated to the previous observations. The 

general equation of ARMA model is described below:  

𝑦𝑡 = 𝜑1𝑦𝑡−1 + 𝜑 2𝑦𝑡−2 +⋯+ 𝜑𝑛𝑦𝑡−𝑛 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −⋯− 𝜃𝑚𝜀𝑡−𝑚 (4-17) 

where 𝑦𝑡 is the time series of the normalised wind speeds; 𝜑𝑖  means the auto-regressive 

parameter; 𝜃𝑖  means the moving average parameter; 𝜀𝑡  is the white noise which is in 

normal distribution with zero mean value and variance 𝜎𝜀
2. 

The hourly wind speed data needs to be collected and then fitted into ARMA model to 

obtain the forecast data. The first stage is to make the wind stochastic process stationary 

which is given below. 

𝑦𝑡 =
𝑣𝑡 − 𝜇

𝜎
 (4-18) 

where µ and σ are the mean value and standard deviation of the all observed wind speed 

data respectively; 𝑣𝑡 is the observed wind speed; 𝑦𝑡 is the time series of the normalised 

wind speeds that are modelled with the ARMA model.  

It is essential to select a proper AR order and MA order (i.e. parameters p, q respectively) 

when modelling the hourly wind speed. Decision criteria such as AIC (Akaike 

Information Criterion), BIC (Bayesian Information Criterion), FPE (Final Prediction 

Criterion), MSE (Mean Square Error) and RMSE (Root Mean Squared Error) are used to 

determine the best AR and MA orders [144].  

The following table shows the determination of p and q using RMSE method, with the 

same wind speed data collected as in [145]. This method measures how well the model’s 

response matches the historic data and the results are expressed as a percentage (Fit 

Percent). Higher Fit Percent implies more accurate model. In this case, the best result is 

obtained for 𝑝 = 4 and 𝑞 = 4. 

Table 4-2: The results of RMSE for each pair of AR order (p) and MA order (q) in wind 

speed simulation 
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p             q 1 2 3 4 5 

1 64.7608 64.7650 64.7922 64.7927 64.7935 

2 64.7769 64.7771 64.7930 64.8782 64.7970 

3 64.7770 64.7845 64.8206 65.4837 64.7955 

4 64.7938 64.7939 65.3476 65.4854 65.3087 

5 64.7939 65.3666 64.6155 65.4730 65.4684 

With proper values of p and q, wind speed can be sampled by fitting the collected data 

into ARMA model. An example of sampled results is presented in the Fig. 4-11.  

 

Figure 4-11: Historical and simulated hourly wind speed using ARMA model 

4.3.2 Wind Power Calculation  

The wind turbine output power is required after obtaining randomly sampled wind speeds. 

The power curve of a typical wind turbine is shown in Fig. 4-16. Wind output is related 

to four parameters: cut-in speed (𝑣𝑐𝑖), rated wind speed (𝑣𝑟), cut-out speed (𝑣𝑐𝑜) and 

maximum output power (𝑃𝑟). With 𝑣𝑡 representing the wind speed at time t, the wind 

turbine operation can be classified into the following four stages [146]:  

• 𝑣𝑡 ≤ 𝑣𝑐𝑖 
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The wind speed is too low to rotate the blades. The wind turbine does not produce 

any power. 

• 𝑣𝑐𝑖 < 𝑣𝑡 < 𝑣𝑟 

The wind turbine starts to generate power. The output power goes up steadily until 

𝑣𝑡 reaches 𝑣𝑟. 

• 𝑣𝑟 ≤ 𝑣𝑡 < 𝑣𝑐𝑖 

The output is limited at the rated power 𝑃𝑟. 

• 𝑣𝑡 ≥ 𝑣𝑐𝑜 

The wind speed is so strong that the turbine may be damaged. Therefore, 𝑣𝑐𝑜 is 

set to define the safe operating region. When 𝑣𝑡 exceeds 𝑣𝑐𝑜, the turbine is shut 

down.  

Wind Speed v

100

vci
0 vr vco

Power Output 

(% of Rated Output)

 

Figure 4-12: Typical wind turbine power curve [146] 

The wind turbine power curve is mathematically presented as follows: 

𝑃 = {

0                                                    𝑣𝑡 ≤ 𝑣𝑐𝑖
(𝐴 + 𝐵𝑣𝑡 + 𝐶𝑣𝑡

2)𝑃𝑟          𝑣𝑐𝑖 < 𝑣𝑡 < 𝑣𝑟
𝑃𝑟                                         𝑣𝑟 ≤ 𝑣𝑡 < 𝑣𝑐𝑜
0                                                    𝑣𝑡 ≥ 𝑣𝑐𝑜

 (4-19) 

The coefficients A, B and C can be calculated by using the following equations [146]: 

𝐴 =
1

(𝑣𝑐𝑖 − 𝑣𝑟)2
[𝑣𝑐𝑖(𝑣𝑐𝑖 + 𝑣𝑟) − 4𝑣𝑐𝑖𝑣𝑟(

𝑣𝑐𝑖 + 𝑣𝑟
2𝑣𝑟

)3] (4-20) 
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𝐵 =
1

(𝑣𝑐𝑖 − 𝑣𝑟)2
[4(𝑣𝑐𝑖 + 𝑣𝑟) (

𝑣𝑐𝑖 + 𝑣𝑟
2𝑣𝑟

)
3

− (3𝑣𝑐𝑖 + 𝑣𝑟)] 

𝐶 =
1

(𝑣𝑐𝑖 − 𝑣𝑟)2
[2 − 4 (

𝑣𝑐𝑖 + 𝑣𝑟
2𝑣𝑟

)
3

] 

4.4 Spatial Correlation  

Wind speeds and load demands are spatially correlated. The standard probabilistic 

concept with no correlation is not able to present the real behaviour of the network [147]. 

Reference [147] also pointed out that there exists an impact from the correlation on 

system reliability. Therefore, the impact of correlation needs to be analysed.  

4.4.1 Overview of Correlation Analysis  

Correlation is a mutual relationship between two quantitative variables. The strength of 

the relationship can be statistically assessed by correlation analysis [148][149]. Fig. 4-17 

shows three types of correlation. For the two variables X and Y, if there is no relation 

between X and X, the situation can be defined as no correlation; if there is correlation, it 

can be either positive or negative [149]. For positive correlation, both variables increase, 

whilst for negative correlation, Y reduces while X increases and vice versa.  

X

Y

X

Y

X

Y

No Correlation Positive Correlation Negative Correlation
 

Figure 4-13: Types of correlation [149] 

In correlation analysis, correlation coefficient is the measure of correlation degree and 

ranges from -1 to +1. It can be categorised into three segments [150]:  

• Negative value indicates negative correlation. Values between -1 and 0 means a 

partial correlation, and -1 reflects the strongest (“full”) negative correlation. 

• 0 means the absence of correlation. 
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• Positive value indicates positive correlation. Values between 0 and +1 means a 

partial correlation, and +1 reflects the strongest positive correlation.  

The correlation coefficient 𝜌𝑋,𝑌 between two variables X and Y is defined as:  

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 (4-21) 

where 𝜎𝑋  and 𝜎𝑌  refer to standard deviation of variables X and Y respectively, and 

𝑐𝑜𝑣(𝑋, 𝑌) means covariance which can be calculated using the equation below:  

𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌))] (4-22) 

where E refers to the expected value calculation of the considered variables (for example, 

E(X) is the expected value of X, also known as the mean of X). 

Moreover, for a model consisting of n variables, the correlation coefficients can be built 

as a correlation matrix shown below:  

𝝆 = (

𝜌11 𝜌12
𝜌21 𝜌22

⋯
𝜌1𝑛
𝜌2𝑛

⋮ ⋱ ⋮
𝜌𝑛1 𝜌𝑛2 ⋯ 𝜌𝑛𝑛

) (4-23) 

Further calculations and analyses are based on the correlation coefficient matrix. Details 

of obtaining correlated results are presented in the following chapter (Chapter 4.4.2). 

Three techniques are introduced as the methods of analysing correlation problems: a) 

Nataf transformation; b) Polynomial normal transformation; and c) Copula theory [136]. 

These techniques are compared in [151], and the comparisons are performed based on 

Cholesky decomposition, Nataf transformation in conjunction with Cholesky 

decomposition and Copula theory, respectively. The results show that Copula theory 

provides the highest accuracy. However, it also requires the longest computational time 

because there are complicated functions that need to be determined in each step. The 

results of Nataf transformation can still be accepted although they are less accurate.  

In power system, the effects of correlation have been widely studied mainly by analysing 

probabilistic power flow. The studies primarily focus on power systems with renewable 
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energy such as wind and solar, and investigate stability, generation adequacy and impact 

on transmission planning [152]-[154].   

4.4.2 Correlation Decoupling Technique  

Nataf transformation in conjunction with Cholesky decomposition is widely used to 

model the correlation. The basic idea is to use correlation matrix from standard normal 

deviates to generate correlated random vector. For n correlated input parameters, the 

vectors of the input (correlated) parameters and means are: 

𝒑 = (𝑝1 … 𝑝𝑛)𝑇 (4-24) 

𝝁𝒑 = (𝜇1 … 𝜇𝑛)𝑇 (4-25) 

Then the variance-covariance matrix is:  

𝑪𝒑 = (

𝜎1
2 𝜎12

𝜎21 𝜎2
2 ⋯

𝜎1𝑛
𝜎2𝑛

⋮ ⋱ ⋮
𝜎𝑛1 𝜎𝑛2 ⋯ 𝜎𝑛

2

) (4-26) 

where 𝜎𝑖
2 is the variance of the 𝑖𝑡ℎ input parameter and 𝜎𝑖𝑗 means the covariance between 

the 𝑖𝑡ℎ and 𝑗𝑡ℎ inputs.  

The correlation matrix can also be written in normalized form giving the correlation 

coefficient matrix:  

𝑹 = (

1 𝑟12
𝑟21 1

⋯
𝑟1𝑛
𝑟2𝑛

⋮ ⋱ ⋮
𝑟𝑛1 𝑟𝑛2 ⋯ 1

) (4-27) 

where 𝑟𝑖𝑗 =
𝜎𝑖𝑗

𝜎𝑖𝜎𝑗
, means correlation coefficient, which can be calculated from Eq. (4-21).  

Standardization of the correlated input parameters needs to be done based on standard 

normal distribution: 
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𝒑′ =
𝒑 − 𝝁𝒑

√𝑫𝒑
 (4-28) 

where 𝒑′  is the vector of standardized input parameters; 𝑫𝒑 = 𝑑𝑖𝑎𝑔(𝜎1
2, … , 𝜎𝑛

2)  are 

variances of input parameters. Consequently, 𝒑′ will be a vector with zero mean and unit 

standard deviation. Based on Eq. (4-21) and Eq. (4-22), the variance-covariance matrix 

of standardized inputs can be expressed as:  

𝑪𝒑′ = (

1 𝜌12
𝜌21 1

⋯
𝜌1𝑛
𝜌2𝑛

⋮ ⋱ ⋮
𝜌𝑛1 𝜌𝑛2 ⋯ 1

) (4-29) 

The correlation coefficients can be calculated as 𝑟𝑖𝑗 =
𝜎𝑖𝑗

𝜎𝑖𝜎𝑗
, which is denoted as 𝜌𝑖𝑗  in 

matrix 𝑪𝒑′ . Thus, the matrix 𝑪𝒑′  is also called correlation coefficient matrix and is 

renamed 𝑹𝒑 (i.e. 𝑹𝒑 = 𝑪𝒑′). Note that the matrix is only possible when all inputs are 

normally distributed. For other distributions, transformation needs to be done before 

applying these equations. Transformed correlation coefficient matrix is: 

𝑹𝒚 = (

1 𝜌12
′

𝜌21
′ 1

⋯
𝜌1𝑛
′

𝜌2𝑛
′

⋮ ⋱ ⋮
𝜌𝑛1
′ 𝜌𝑛2

′ ⋯ 1

) (4-30) 

𝜌𝑖𝑗
′ = 𝐺(𝜌𝑖𝑗) ∙ 𝜌𝑖𝑗 (4-31) 

where 𝐺(𝜌𝑖𝑗) is the multiplicative function. Details how to calculate 𝐺(𝜌𝑖𝑗) are given in 

Table 4-3.  

Table 4-3: Multiplicative function of different distributions [155] 

Distribution of i Distribution of j Multiplication Factor 𝐺(𝜌𝑖𝑗) 

Normal Normal 1 
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Weibull Weibull 

1.063 − 0.004𝜌𝑖𝑗 − 0.200(𝛾𝑖𝛾𝑗) − 0.001𝜌𝑖𝑗
2

+ 0.337(𝛾𝑖
2 + 𝛾𝑗

2)

+ 0.007𝜌𝑖𝑗(𝛾𝑖 + 𝛾𝑗)

− 0.007𝛾𝑖𝛾𝑗 

In this table, 𝛾𝑖 =
𝜎𝑖

𝜇𝑖
 and 𝛾𝑗 =

𝜎𝑗

𝜇𝑗
 denote the variance coefficients of variable 𝑝𝑖  and 𝑝𝑗 

respectively.  

In most engineering applications, matrix 𝑹𝒚  is positive definite. Therefore, Cholesky 

decomposition can be applied to decompose 𝑹𝒚, which is presented below:  

𝑹𝒚 = 𝑳𝑳
𝑻 (4-32) 

where L is a lower triangular matrix.  

Then a vector of mutually independent standard normal random variables w can be used 

to generate the correlated standard normal variables y:  

𝒚 = 𝑳𝒘 (4-33) 

Since the equations above are based on standard normal distribution, the correlated 

standard normal variables y, however, need to be transformed from standard normal 

distribution to its original distribution. The transformation is applied with the aid of 

cumulative distribution functions (CDF). The methodology is presented in Fig. 4-18.  
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Figure 4-14: Transformation of standard normal variables y 

Here, 𝑄(𝑦) is the cumulative distribution function of the correlated results y (standard 

normal distributed variables) and 𝐻(𝑝) is the cumulative distribution function of the input 

parameters p. The mathematical equation is shown below.   

𝑝𝑖 = 𝐻−1[𝑄(𝑦𝑖)] (4-34) 

4.4.3 Simulation Algorithm  

Correlation model is applied to wind speeds at each location and load demands at each 

bus, for each hour over one year. This means that the wind speeds and load demands are 

spatially correlated in each time slot, but not in time. The basic idea of correlation 

modelling is given below: 

• Apply Cholesky decomposition to the known correlation coefficient matrix.  

• Generate a sample of independent input parameters that follow standard normal 

distributions. 

• Correlate the generated sample of independent standard normal input parameters. 

• Perform a transformation of correlated results into the correlated input parameters, 

which follow the original distribution. 

The algorithm is applied to hourly wind speeds and load demands. The procedure is 

described as follows:  

1. For a network with n wind farms/load demands, define the vector of input variables 

p. The dimension of p is 𝑛 × 1.  
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2. Define the correlation coefficient matrix 𝐶𝑝′, wherein the 𝑛 × 1 vector p’ is standard 

normal. The assumed values of each correlation factors in 𝐶𝑝′(𝑖, 𝑗) are presented in 

the Table 4-4. Note that the dimension of 𝐶𝑝′ is 𝑛 × 𝑛. 

Table 4-4: Correlation factors of different correlation levels 

Correlation 

Level 

Wind Speeds/ Load Demands 

in The Same Region 

Wind Speeds/ Load Demands 

in Different Regions 

Zero 0 0 

Partial  0.8 0.5 

Full  1 1 

 

3. Build the correlation matrix 𝑅𝑦  by using the multiplication factor. Subscript y 

denotes new correlated parameters which follow the original distributions of input 

parameters. More specifically: 

• For load demands at nodes i and j, the original distribution is assumed to be 

normal distribution. Therefore, all the multiplication factors 𝐺(𝜌𝑖𝑗) is 1.  

• For wind speeds, it is firstly forecast by AMAR model the fit into normal 

distribution. The multiplication factors 𝐺(𝜌𝑖𝑗) is 1.  

4. Apply Cholesky decomposition to 𝑅𝑦. Lower triangular matrix L can be obtained 

consequently.  

5. Generate n independent random standard normally distributed variables, and record 

in the form of 𝑛 × 1 vector 𝑤𝑠.  

6. Calculate the correlated sampled parameters by using relation 𝑦𝑠 = 𝐿 ∙ 𝑤𝑠.  

7. Transform ys to the original distribution.  

Assume load demands follow normal distribution. It is only necessary to return to the 

original domain from the standardized normal domain by using the following 

equation:  

𝑥(𝑖) = 𝑧(𝑖)𝜎(𝑖) + 𝜇(𝑖)      𝑖 = 1, 2, … , 𝑛 (4-35) 

where 𝑥(𝑖) is the active load/ wind speed at point i; 𝑧(𝑖) is the standardized normally 

distributed result, which is in fact the correlated value 𝑦(𝑖); 𝜎(𝑖) is the standard 
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deviation of active load/ wind speed at point i. In this research, it is assumed that 

𝜎(𝑖) = 5% ∙ 𝜇(𝑖); 𝜇(𝑖) is the average active load/ wind speed at point i. For load, it 

is calculated by multiplying annual peak load and hourly load factor. 

8. Calculate reactive power at each load point by using the following equation. 

𝑞(𝑖) = 𝑥(𝑖) ∙
𝑄(𝑖)

𝑃(𝑖)
 (4-36) 

where 𝑞(𝑖) is the reactive power at load point i; 𝑥(𝑖) is the active load at load point 

i; 𝑃(𝑖) is the annual peak active demand at load point i; 𝑄(𝑖) is the annual peak 

reactive demand at load point i. Note that Eq. (4-40) is a simplified assumption as it 

does not go deep to reactive power load composition and curtailment prioritization 

at each individual node. 

The flowcharts in Fig. 4-19 and Fig. 4-20 illustrate the computation procedures for 

modelling spatially correlated hourly wind powers and hourly loads considering the 

correlation of wind speeds and load demands. The procedures are incorporated within the 

sequential Monte Carlo simulation. 
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Figure 4-15: Procedure for modelling 

wind output considering the correlation 

of wind speeds 

Figure 4-16: Procedure for modelling the 

correlation of load demands 

4.5 Optimal Power Flow Model – MLC Model 

Optimal Power Flow (OPF) model is an optimization problem that optimizes the 

operation of a power system within limits imposed by engineering constraints and 

electrical laws. The main principle is to minimize the objective function by modifying the 
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controllable variables of the system. Carpentier first proposed OPF model as a further 

development of the optimal Economic Dispatch (ED) problem (i.e. all generators 

connected to a single node system), by incorporating the nodal power flow equations in 

the ED formulation [156]. Today, there are several types of OPF models that are still 

based on the power flow equations and a set of inequality constraints [157].  

The optimization problem is formulated as an objective function with power flow 

equations and physical inequality constraints (i.e. limitations). The transmission system 

is modelled as a system with N buses connected by L branches, and controllable 

generators are located at G buses (G⊆N). The objective is to minimize the total cost of 

power generation while maintaining network security. The classic form of the formulation 

is represented below. 

The objective function is:  

𝑚𝑖𝑛∑𝐶𝑖(𝑃𝑖
𝐺)

𝑖∈𝐺

 (4-37) 

The constraints are:  

∑𝑝𝑖𝑗(𝑉, 𝛿)

𝑗

= 𝑃𝑖
𝐺 − 𝑃𝑖

𝐿       ∀𝑖 ∈ 𝑁 (4-38) 

∑𝑞𝑖𝑗(𝑉, 𝛿)

𝑗

= 𝑄𝑖
𝐺 − 𝑄𝑖

𝐿       ∀𝑖 ∈ 𝑁 (4-39) 

𝑃𝑖
𝐺,𝑚𝑖𝑛 ≤ 𝑃𝑖

𝐺 ≤ 𝑃𝑖
𝐺,𝑚𝑎𝑥        ∀𝑖 ∈ 𝐺 (4-40) 

𝑄𝑖
𝐺,𝑚𝑖𝑛 ≤ 𝑄𝑖

𝐺 ≤ 𝑄𝑖
𝐺,𝑚𝑎𝑥        ∀𝑖 ∈ 𝐺 (4-41) 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥        ∀𝑖 ∈ 𝑁 (4-42) 

√𝑝𝑖𝑗
2 + 𝑞𝑖𝑗

2 ≤ 𝑆𝑙𝑖𝑚 (4-43) 
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Where, at bus i,  𝑃𝑖 and 𝑄𝑖 are real power and reactive power injection; 𝑝𝑖𝑗 and 𝑞𝑖𝑗 are the 

real and reactive power flow between bus i and j; 𝑃𝑖
𝐺  and 𝑄𝑖

𝐺 are real power and reactive 

power produced by generators; 𝑉𝑖 and 𝛿𝑖 are voltage magnitude and angle; 𝑃𝑖
𝐿 and 𝑄𝑖

𝐿 are 

the load; 𝑆𝑙𝑖𝑚 is thermal limit on apparent power at both terminal buses. 

In particular, for reliability assessment, the OPF model needs to be modified by including 

the load curtailments 𝑅𝑖. In such a case, the objective is to minimize the load curtailment 

at all nodes. The objective function can be written as follows, where 𝜔𝑖  is the load 

curtailment weighting factor.  

𝑚𝑖𝑛∑𝜔𝑖𝑅𝑖
𝑖∈𝑁

 (4-44) 

The constraints can be represented as follows:  

∑𝑝𝑖𝑗(𝑉, 𝛿)

𝑗

= 𝑃𝑖
𝐺 − 𝑃𝑖

𝐿 + 𝑅𝑖       ∀𝑖, 𝑗 ∈ 𝑁 (4-45) 

∑𝑞𝑖𝑗(𝑉, 𝛿)

𝑗

= 𝑄𝑖
𝐺 − 𝑄𝑖

𝐿 + 𝑅𝑖
𝑄𝑖
𝐿

𝑃𝑖
𝐿        ∀𝑖, 𝑗 ∈ 𝑁 (4-46) 

𝑃𝑖
𝐺,𝑚𝑖𝑛 ≤ 𝑃𝑖

𝐺 ≤ 𝑃𝑖
𝐺,𝑚𝑎𝑥        ∀𝑖 ∈ 𝐺 (4-47) 

𝑄𝑖
𝐺,𝑚𝑖𝑛 ≤ 𝑄𝑖

𝐺 ≤ 𝑄𝑖
𝐺,𝑚𝑎𝑥        ∀𝑖 ∈ 𝐺 (4-48) 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥        ∀𝑖 ∈ 𝑁 (4-49) 

0 ≤ 𝑅𝑖 ≤ 𝑃𝑖
𝐿        ∀𝑖 ∈ 𝑁 (4-50) 

√𝑝𝑖𝑗
2 + 𝑞𝑖𝑗

2 ≤ 𝑆𝑙𝑖𝑚 (4-51) 

here 𝑅𝑖is the load curtailments at bus i; 𝑝𝑖𝑗 and 𝑞𝑖𝑗 are the real and reactive power flow 

between bus i and j; other variables are introduced above.  
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4.6 Simulation Algorithm  

The simulation algorithm containing the modelling blocks is presented in the Fig. 4-21. 

Start

Select year

Select hour =1

Obtain hourly load with/without correlation 

Obtain hourly wind power output 

with/without correlation 

Obtain hourly operating state of components 

(OHL, tx, cable and etc.)

Use optimal power flow model to calculate 

hourly load curtailment and record its 

occurrence

Calculate yearly load curtailment and its 

occurrence times 

year = simulation period ?

hour = 8760?

Calculate EENS and LOLP over the 

simulation period 

hour = hour + 1

year = year + 1

 

Figure 4-17: Procedure for obtaining system reliability indices over a given simulation 

period  

4.7 Chapter Summary 

This chapter gives the modelling of the input blocks in power system reliability study. 

The input blocks in this project are: component operating states, load demand, LCTs 

generation and wind/load correlation effect. Sequential Monte Carlo simulation is 

developed to access the chronological operating states of the network, whose components 
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can be in either normal operating stage, or ageing stage. In normal operating stage, 

exponential distribution is used to reflect the component failure rate with in-service time; 

in ageing stage, a modified Weibull distribution is developed to reflect more realistic 

features of the ageing stage. A dynamic hourly load model is adopted to model the load 

demand. For LCTs, the models for wind power generation and solar generation are 

introduced. Some of modelling results are also given in this chapter.  

The methodology and models for the correlated inputs, such as wind generation and load 

demand, are introduced. Nataf transformation in conjunction with Cholesky 

decomposition is used to analyse the correlation effect.  

Optimal power flow model with the reliability objective function is used to minimize the 

load curtailments at all nodes. This chapter gives a brief introduction of the OPF model 

and the expressions of the objective function and corresponding constraints. The 

reliability indices used to express the system reliability are calculated using this model.  
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The asset health is a result of a series of factors, ranging from the asset’s loading condition 

to its geographical location. The factors can affect the durability or service life of any 

component, as well as its operational performance and future failure rate [158]. The asset 

condition is measured by Asset Health Index (AHI), which can be either integer or 

decimal number; the latter is also called Asset Health Score. The common point between 

asset health and network analysis is reliability analysis, whereby asset health is 

incorporated within failure rate functions (or, hazard functions). Asset health can be 

modelled using either deterministic approach or the proposed probabilistic approach. 

5.1 Reliability Analysis Involving Asset Health 

Reliability analysis of power system refers to the study of the probability that a system, 

under the formulated operating conditions, operates satisfactory within a specified period 

of time without failures. It requires proper selection of probability distributions of in-

service and out-of-service times for each asset, which then define temporal hazard 

functions [159]. The standard approach does not involve asset conditions, just the 

temporal aspect. However, when replacement/maintenance plans are considered in the 

analysis, a more realistic model is required, whereby asset failure rate functions need to 

identify asset ageing conditions and influences of different interventions [160]. One of 

the early attempts was made in the Cox’s proportional hazard model (PHM) [129], which 

models external (or, exogenous) variables and which has been used in several studies 

[161][162].  

The concept of health indices (HI) has been introduced in the UK utilities to consider 

asset conditions and utilize it to select appropriate asset interventions, such as 

replacements and repairs [131][163]. Asset HI is defined as a deterministic score 

summarizing the asset condition which can reflect the asset characteristics and 

environment parameters. There are further developments of the approaches for 

deterministic HI modelling in several studies [164]-[166]. Nevertheless, there is a high 

level of uncertainty in determining asset health scores due to subjectivity in determining 

the values of impact factors, for example, environmental parameters. Consequently, 

fuzzy-based approaches for calculation have been developed in [167] and [168] and 

CHAPTER 5  ASSET HEALTH CONDITION 
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probabilistic analysis has been studied in [169], mainly for transformer HIs. However, a 

general probabilistic HI approach has not been developed so far; that is the main 

contribution of this research.  

5.2 Deterministic Health Index Approach 

A deterministic health index approach is developed based on DNO Common Network 

Asset Indices Methodology [131]. This approach includes a universal methodology for 

asset health calculation that is applied by all UK DNOs. The calculation is specified by 

asset types [131]. 

5.2.1 Asset Classification 

According to the DNO Common Network Asset Indices Methodology [69], there are 

three levels of asset types. Table 5-1 presents an example of asset classification for 132kV 

towers. The entire table is given in Table 1 in Appendix [131]. 

Table 5-1: An example of asset classification for 132kV towers [131] 

Asset Category Subcomponent Observed Condition 

132kV Towers 

Tower 

Steelwork 

1. Tower Legs  

2. Bracings  

3. Crossarms  

4. Peak 

Tower 

Paintwork 
Paintwork Condition 

Foundations Foundation Condition 

5.2.2 DNO Overall Approach 

According to the DNO Common Network Asset Indices Methodology, calculation of 

asset indices consists of three stages:  

• Health Index  

It is determined from Asset Health and Probability of Failure (PoF). 

• Criticality Index 
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It is relevant for Consequences of Failure (CoF). 

• Risk Index 

It relates to the combination of the above indices.   

The diagram of Fig. 5-1 shows the global calculation process. The risk of condition-based 

failure, related to individual assets, is the output of PoF and CoF. In the methodology, 

PoF shows the probability of condition-based failure on a yearly basis and CoF shows the 

influence of failure, described as a monetised value. The final output Risk Matrix is 

formed by Health Index Band (column) and Criticality Index Band (row). Each individual 

asset can be assigned a position within the Risk Matrix. 

Location 

Factor

Health Score 

Modifier

Duty Factor

Reliability 

Modifier

Financial 

Consequences

Environmental 

Consequences

Safety 

Consequences

Network 

Performance 

Consequences

CoFRisk Matrix

Health Score

& 

PoF

Input

Process

Output

 

Figure 5-1: Calculation process overview of DNO methodology [131] 

Note that this DNO document specifies a general approach to assess the condition-based 

risk of distribution assets. In this research, this methodology is extended to assets in 

transmission network. The main task is to obtain failure rate functions (or, hazard 

functions) from PoF calculation (left-hand side in Fig. 5-1) and then incorporate the 

failure rate functions into Sequential Monte Carlo Simulation. Failure rate functions are 

dependent on asset health scores, which are in turn dependent on several factors of 

influence. 

Failure rate function is approximated with the PoF, which is a polynomial function of the 

Health Score (in fact, third order Taylor expansion of exponential function). Health Score 
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needs to be calculated within three phases consisting of multiple steps: a) Initial Health 

Score is an exponential function of the asset age using the initial ageing rate; b) Current 

Health Score is a function of the Initial Health Score and modification factors; and c) 

Future Health Score is an exponential function of the Current Health Score, current ageing 

rate and time in future. The diagram of Fig. 5-2 shows the calculation steps. 

Normal 

Expected Life
Expected Life

Location 

Factor
Duty Factor

Asset Register 

Category
Sub-division

Initial Health 

Score 

Current 

Health Score 

Health Score 

Modifier

Reliability 

Modifier

Future Health 

Score 

Ageing 

Reduction

 

Figure 5-2: Calculation of Health Score [131] 

The failure rate (in this case PoF) function is a function of the Health Score. Future Health 

Score is replaced into the PoF function to get Future PoF. Fig. 5-3 shows the shape of a 

typical PoF (or, failure rate) curve. The PoF function is defined as:  

0.5 4 5.5 6.5 8

PoF

Health Score

HI1 HI2 HI3 HI4 HI5

 

Figure 5-3: PoF curve [131] 
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𝑃𝑜𝐹 = 𝐾 × [1 + (𝐶 × 𝐻𝑆) +
(𝐶 × 𝐻𝑆)2

2!
+
(𝐶 × 𝐻𝑆)3

3!
] (5-1) 

where HS is Health Score (Current or Future); K and C are constants of the PoF curve. 

Eq. (5-1) is valid for 𝐻𝑆 > 4, otherwise 𝐻𝑆 = 4 when 𝐻𝑆 ≤ 4. Specifically, the shape of 

the curve is defined by C, whilst K value scales the value of PoF. The values of C, K and 

Health Score limit are presented in Table 2 in Appendix.  

The procedure for the PoF calculation is illustrated by the following steps [131]:  

1. Normal Expected Life 

It is defined as the age (in years) of an asset when the first critical signs of 

deterioration occur. It is dependent on the Asset Register Category and sub-category. 

The specific values are listed in Table 3 in Appendix.  

2. Expected Life 

It is determined from Normal Expected Life, while taking two factors into account: 

Location Factor (LF) and Duty Factor (DF). Location Factor reflects the influences 

of the surroundings and environment on the asset. Duty Factor refers to any further 

ageing caused by the way the asset is being applied (e.g. high loading, frequent 

switching, etc.). Expected Life is obtained using the following equation: 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒 =
𝑁𝑜𝑟𝑚𝑎𝑙 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒

𝐿𝐹 × 𝐷𝐹
 (5-2) 

3. Initial Ageing Rate (𝛽1) 

It is assumed that the asset deterioration process (e.g. insulation breakdown, 

corrosion, etc.) is exponential function between the asset installation (new asset) and 

asset retirement at the Expected life. The Ageing Rate of the asset is then determined 

as:  

𝛽1 =
𝑙𝑛 (

𝐻𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑙𝑖𝑓𝑒
𝐻𝑛𝑒𝑤

)

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒
 

(5-3) 
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where 𝐻𝑒𝑥𝑝𝑐𝑡𝑒𝑑 𝑙𝑖𝑓𝑒 is the Health Score of the asset when its age is Expected Life, 

𝐻𝑒𝑥𝑝𝑐𝑡𝑒𝑑 𝑙𝑖𝑓𝑒 = 5.5; 𝐻𝑛𝑒𝑤 is the Health Score of the new asset, 𝐻𝑛𝑒𝑤 = 0.5.  

4. Initial Health Score (IHS) 

It is calculated with the aid of the following equation: 

𝐼𝐻𝑆 = 𝐻𝑛𝑒𝑤 × exp(𝛽1 × 𝑎𝑔𝑒) (5-4) 

where age means the current age (in years) of the asset; other parameters are 

explained above.   

5. Current Health Score (CHS) 

It is obtained by modifying Initial Health Score using the Health Score Modifier and 

Reliability Modifier.  

𝐶𝐻𝑆 = 𝐼𝐻𝑆 × 𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 × 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟  (5-5) 

where the Health Score Factor is a component of Health Score Modifier and the 

Reliability Factor is a component of Reliability Modifier 错误!未找到引用源。.  

6. Forecast Ageing Rate (𝛽2) 

In order to predict Future Health Score based on Current Health Score, the Ageing 

Rate is required to be modified with the consideration of the influences of the Health 

Score Modifier and Reliability Modifier, which means the forecast is performed 

using the asset current condition. The modified Ageing Rate is presented below:  

𝛽2 =
𝑙𝑛 (

𝐶𝐻𝑆
𝐻𝑛𝑒𝑤

)

𝑎𝑔𝑒
 

(5-6) 

where age is the asset’s current age (i.e. the age used in IHS calculation).  

7. Future Health Score (FHS) 

It is calculated in the following way:  

𝐹𝐻𝑆 = 𝐶𝐻𝑆 × exp[(𝛽2/𝑟) × 𝑡]   (5-7) 

where t is future time (in years); r is the Ageing Reduction Factor.  
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Ageing Reduction Factor is applied to adjust the rate of asset deterioration, so that 

the possible overestimate of the forecast future health score can be overcome. The 

details are illustrated in Fig. 5-4 错误!未找到引用源。.  

1.5

1

2 5.5

0.8

0

Ageing Reduction 

Factor 

Current Health Score
 

Figure 5- 4: Ageing Reduction Factor [131] 

5.2.3 Simulation Algorithm  

When the Health Indices are assumed deterministic, the DNO methodology is adopted. 

According to the PoF calculation introduced in the previous section, the PoF function, 

which is in fact hazard function, is a function of Health Scores, where Health Scores are 

a function of time (i.e. the life of the asset). By substituting the expression for Future 

Health Score (Eq. (5-7)) into Eq. (5-1), the hazard function can be derived as follows:  

𝜆(𝑡) = 𝑃𝑜𝐹 = 𝐾 ∙ [1 + (𝐶 ∙ 𝐶𝐻𝑆 ∙ 𝑒𝛽2𝑡) +
(𝐶 ∙ 𝐶𝐻𝑆 ∙ 𝑒𝛽2𝑡)

2

2!

+
(𝐶 ∙ 𝐶𝐻𝑆 ∙ 𝑒𝛽2𝑡)3

3!
] 

(5-8) 

The failure rate function can be simplified as follows:  

𝜆(𝑡) = 𝐾 ∙ 𝛾 + 𝑎 ∙ 𝑒𝛽2𝑡 + 𝑏 ∙ 𝑒2𝛽2𝑡 + 𝑐 ∙ 𝑒3𝛽2𝑡 (5-9) 

where 𝛾 is an additional parameter introduced to control the failure intensity and avoid 

unrealistically high values of reliability indices. The details for deciding the value of 𝛾 is 

presented in Appendix.  
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The survival function can be calculated by using the following equation that is based on 

the definition of hazard function:  

𝑅(𝑡) = exp[−∫ 𝜆(𝑥) ∙ 𝑑𝑥
𝑡

0

] (5-10) 

The sampled up-time can be obtained by solving 𝑅(𝑡) = 1 − 𝑈, where U is a random 

number sampled from uniform distribution in the 0 to 1 range. This is a non-linear 

algebraic equation in unknown t that can be solved in a numerical way by using MATLAB 

function, which is based on the Levenberg-Marquardt and trust-region methods [170]. On 

the other hand, down-time is sampled from the exponential distribution. Fig. 5-5 

illustrates the algorithm for random sampling of up- and down-times of a single asset 

within the Sequential Monte Carlo simulation, when the hazard function is based on the 

deterministic asset condition. 
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Start

Generate two uniformly distributed random 

variables between (0,1): Uup and Udown

Calculate time to failure (i.e. up-time) using the survival 

function R(t) derived from deterministic approach

R(tup) = 1 – Uup

Calculate time to repair (i.e. down-time) using the 

exponential cumulative distribution function Q(t)

Q(tdown) = Udown

Total time = required 

sampled time?

Create the matrices of system states

End

Yes

No
time+1

Within the duration of tup, component state =1

Within the duration of tdown, component state =0

 

Figure 5-5: Procedure for Sequential Monte Carlo simulation using deterministic asset 

condition 

5.3 Probabilistic Approach 

Proposed probabilistic approach is developed based on a National Grid technical note. It 

aims to estimate the expected asset’s age at the end of the simulation period, generate 

asset transitions among different HIs and eventually determine the asset repair processes 

and corresponding costs. In the proposed methodology, Asset Health Indices are 

modelled as probabilistic quantities. 
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5.3.1 Asset Health Index Categories 

The methodology is developed based on the assumptions that Asset Health Indices are 

divided into 6 categories (Fig. 5-6) in line with the asset’s age. Details are shown in Table 

5-1; the concept can easily be extended to a higher number of asset health indices. 

Table 5-2: Asset Health Indices Categories 

HI Category Asset Operating Stage 

HI1: New Infant stage 

HI2: Young Normal operating stage 

HI3: Medium Normal operating stage 

HI4: Initial ageing Ageing stage 

HI5: Old Ageing stage 

HI6: Very Old Ageing stage 

Normal operating stage Wear-out 

stage

Infant 

stage

Time

F
a
il

u
re

 r
at

e 
λ
(t

) 

HI1 HI2 HI3 HI4 HI5 HI6

 

Figure 5-6: Asset health indices for probabilistic approach 

Each HI is characterized by an assumed hazard (i.e. failure rate) function. The assumed 

hazard functions of different types of asset for different HIs are given below.  

1. HI1: New 
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This is infant stage in the asset life. The failure of an asset is caused by “children 

diseases”, as well as by completely random outages. The failure rate function is:  

𝜆(𝑡) =
𝛽1 ∙ 𝑡

𝛽1−1

𝛼𝛽1
+ 𝜆1 (5-11) 

where 𝜆1 is the constant failure rate associated with random outages; 𝛼 is the Weibull 

scale parameter; 𝛽1 is the Weibull shape parameter. In this stage, 𝛽1 < 1 is used in 

order to provide monotonically decreasing hazard function. This equation indicates 

that the in-service time follows modified Weibull distribution. 

2. HI2: Young 

Asset is at the beginning of the normal operating stage. The PDF of the in-service 

time is exponential distribution, so that the hazard function is constant:   

𝜆(𝑡) = 𝜆1 (5-12) 

3. HI3: Medium 

Asset is still in the normal operating stage, but the failure rate can be higher.   

𝜆(𝑡) = 𝜆2, (𝜆2 > 𝜆1) (5-13) 

where 𝜆02 > 𝜆01.  

4. HI4: Initial Ageing  

Asset is in the initial ageing stage. The failure rate is assumed to be the failure rate 

of the last normal operating stage plus the initial ageing failure rate developed from 

the Weibull Distribution:  

𝜆(𝑡) = 𝜆2 +
𝛽2 ∙ 𝑡

𝛽2−1

𝛼𝛽2
 (5-14) 

where the shape parameter 1 < 𝛽2 < 2. This condition indicates that the increase in 

failure rate over time is modest, that is, less than the linear increase. 

5. HI5: Old 

𝜆(𝑡) = 𝜆3 +
𝛽3 ∙ 𝑡

𝛽3−1

𝛼𝛽3
 (5-15) 

where the shape parameter is assumed to be 𝛽3 = 2; constant failure rate term 𝜆3 is 

determined from the condition that there is no discontinuity between the previous 

curve and the current hazard curve. 
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6. HI6:Very Old 

The failure rate of asset in this category is assumed to be polynomial.  

𝜆(𝑡) = 𝜆4 + 𝑎1 ∙ 𝑡
𝛽4 + 𝑎2 ∙ 𝑡

𝛽5 (5-16) 

where 𝛽4 𝑜𝑟 𝛽5 > 1. This equation shows the increment of failure rate is faster than 

the linear increment. The polynomial form is used to avoid very high values of 𝜆(𝑡) 

if the exponential function were used.   

5.3.2 Models of Repair Process 

In reliability analysis, the models for the repair process of a maintained system have been 

intensively studied. The most common models are renewal process (RP) and Non-

Homogeneous Poisson Process (NHPP) [58]-[60]. The renewal process assumes that, 

after repair, the system state is restored to an as-good-as-new state (i.e. original state). 

Therefore it is also called perfect repair. The NHPP assumes the system is restored to a 

same-as-old state (i.e. the same state prior to failure). It is also called minimal repair. Fig. 

5-7 and Fig. 5-8 show the failure rate functions of RP and NHPP, respectively [60]; time 

instants t1 , t2 ,…,tn are moments of component failures.  

Failure 

Rate

Time0 t1 t2 tn...

 

Figure 5-7: Failure rate of the renewal process [60] 
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Failure 

Rate

Time0 t1 t2 tn...

× 

× 

× 

 

Figure 5-8: Failure rate of the minimal repair [60] 

Many repair models have been developed based on RP and NHPP. The (p,q) rule model 

assumes the repair can be either perfect with probability p or minimal with probability 

𝑞 = 1 − 𝑝 [171]. The age-dependent version (p(t), q(t)) rule model is then developed, 

which is more realistic than the constant (p,q) model [172]. In fact, however, repair 

process can result in other states than as-good-as new and same-as-old state. To address 

general repairs, the imperfect repair models have been developed. In this thesis, two 

imperfect repair models are combined: a) Virtual age model; and b) Proportional Intensity 

(PI) model [173]-[175].  

In this research, again, only multiple independent failures are modelled in repair process. 

Failure modes are not considered.   

I) Virtual Age Model  

The virtual age model is the most commonly used imperfect repair model [60]. In general, 

virtual age model assumes the system is restored to a state younger than the state prior to 

failure, i.e. it rejuvenates the system. The virtual age model does not change the shape of 

the system failure intensity curve, but shifts the curve horizontally along the time axis 

[176]. 

Two general repair models have been developed by Kijima to introduce the concept of 

virtual age [63][177]. For a repairable system installed at time 𝑡 = 0 , denote the 

successive failure times by 𝑡1, 𝑡2, … , and the inter-arrival times between failures by 

𝑥1, 𝑥2, …. Then inter-arrival times can be expressed as:  
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𝑥𝑖 = 𝑡𝑖 − 𝑡𝑖−1, 𝑖 = 1, 2, … (5-17) 

Consider the system under the nth repair. Introduce the repair factor 𝑞 (0 ≤ 𝑞 ≤ 1), and 

the system virtual age 𝑣𝑛 (𝑣𝑛 = 0 when the system is new).  

Kijima I model assumes the repair only removes the damage generated in the last inter-

arrival time. Accordingly, the system virtual age after the nth repair is:  

𝑣𝑛 = 𝑣𝑛−1 + 𝑞𝑥𝑛 (5-18) 

Thus giving: 

𝑣𝑛 = 𝑞(𝑥1 + 𝑥2 +⋯+ 𝑥𝑛) (5-19) 

Kijima II model assumes the repair removes all damages accumulated up to the 

considered time point. Thus the system virtual age after the nth repair is:  

𝑣𝑛 = 𝑞(𝑣𝑛−1 + 𝑥𝑛) (5-20) 

giving 

𝑣𝑛 = 𝑞(𝑞
𝑛−1𝑥1 + 𝑞

𝑛−1𝑥2 +⋯+ 𝑥𝑛) (5-21) 

In case different types of repairs are considered, different repair factors qm need to be 

applied (m denotes the repair type). Eq. (5-20) then becomes: 

𝑣𝑛 = 𝑞𝑛,𝑚(𝑣𝑛−1 + 𝑥𝑛) (5-22) 

where 𝑞𝑛,𝑚 is repair factor of mth type at nth stage. Eq. (5-21) needs also to be modified 

accordingly. 

II) Proportional Intensity Model 

The proportional intensity (PI) model assumes that the system failure can be increased or 

decreased in proportion to pre-specified internal and external factors. This model does 



 

107 

 

not change the shape of failure intensity curve, but shifts the curve vertically along the 

intensity axis, which is illustrated in Fig. 5-9. 

Failure 

Rate

Time
0 t1 t2 tn...

× 

× 

× 

 

Figure 5-9: Proportional intensity model [60] 

The general PI model function can be defined as:  

𝜆(𝑡) = 𝜆0(𝑡) ∙ exp (𝜽 ∙ 𝒛(𝑡)) (5-23) 

where 𝜆0(𝑡) is the baseline failure rate function; 𝜽 is the row-vector of parameters; and 

𝒛(𝑡) is the column-vector of temporal functions that represent internal (e.g. loading) and 

external (e.g. environment) factors of influence.  

5.3.3 Asset Degradation Processes Modelling  

In the National Grid (NG) guide document [126], it is assumed that asset conditions 

always deteriorate over time and accordingly the HI transition is always from 𝐻𝐼𝑖 to the 

next 𝐻𝐼𝑖+1. If it is assumed, for simplicity, that there are 4 HIs only, the procedure can be 

summarized as follows [126]:  

• Assume the asset has the best HI1.  

• Age at which the asset becomes HI2 = minimum (Age asset becomes HI2;  

                                                                                Age asset becomes HI3; 

                                                                                Age asset becomes HI4) 

• Age at which the asset becomes HI3 = minimum (Age asset becomes HI3; 

                                                                                Age asset becomes HI4) 
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Using the basic idea of the NG methodology, a new degradation transition process 

between HIs is developed and performed before the main sequential Monte Carlo (SMC) 

procedure. Results from this stage are used for in-service time sampling in the main SMC. 

In this new methodology, asset HIs are extended to 6 HIs. And it assumes asset condition 

can deteriorate to any further HI, and also can be the same as the current one.  

The analysis starts with classification of assets of certain type by age and health. The total 

number of one type of assets is assumed to be NT. It is assumed there are 6 age bins (each 

bin represents 10 years), and all assets are classified by bins j=1,2,…,6 (table rows) and 

by health indices i=1,2,…,6 (table columns), which gives numbers of assets in individual 

cells 𝑁(𝑗, 𝑖), so that 𝑁𝑇 = ∑ ∑ 𝑁(𝑗, 𝑖)𝑖𝑗 . Normalization of the asset numbers needs to be 

done and this can be performed in two ways:  

I) By rows and columns (i.e. dividing by ∑ 𝑁(𝑗, 𝑖)𝑖  for each bin j=1,2,…,6) giving 

discrete conditional probabilities 𝑃(𝐻𝐼𝑖|𝑥𝑗), where 𝑥𝑗 is virtual age bin;  

II) By columns (i.e. dividing by ∑ 𝑁(𝑗, 𝑖)𝑗  for each HI i=1,2,…,6) giving discrete 

conditional probabilities 𝑃(𝑥𝑗|𝐻𝐼𝑖). 

These two normalizations are used in asset deterioration algorithms. 

I) Algorithm Based on Normalization by Rows and Columns   

Conditional probabilities 𝑃(𝑥𝑗|𝐻𝐼𝑖) and 𝑃(𝐻𝐼𝑖|𝑥𝑗) are calculated from asset number table 

using, respectively, normalization by rows. Probabilities 𝑃(𝑥𝑗|𝐻𝐼𝑖) are illustrated in Fig. 

5-10 as dashed areas under pdfs. They are used to find the age bin 𝑥𝑗 when the asset health 

is 𝐻𝐼𝑖. On the other hand, probabilities 𝑃(𝐻𝐼𝑖|𝑥𝑗) are required to determine transition to 

a new (worse) HI; this is illustrated in Fig. 5-11, where blue arrows denote transitions to 

the next HI and violet arrows transitions to any HI. 
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Figure 5-10: Probability of HIi for the age bin j 

The HI deterioration transition process can now be obtained by performing an 

independent Monte Carlo Simulation before the main SMC procedure. The algorithmic 

steps are as follows:  

100 20 4030 50 60 70 beyond
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Figure 5-11: Movement through asset health indices: a) To next HI (blue); b) To any HI 

(violet) 

1. Assume the asset condition is new, so the asset HI is 𝐻𝐼1. The age 𝑥𝑗1 can be sampled 

from the corresponding conditional CDF 𝑃(𝑥|𝐻𝐼1), obtained by “normalization by 

columns”. 

2. The sample bin j is known from 𝑥𝑗1. Calculate the conditional probabilities 𝑃(𝐻𝐼𝑖|𝑥𝑗), 

𝑖 = 1,2, … ,6, by using “normalization by rows”. 
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3. Randomly sample a uniformly-distributed number U between 0 and 1 to determine 

the next 𝐻𝐼𝑘 that the asset moves to (Fig. 5-12). Here, 𝐻𝐼𝑘 must be worse than the 

previous HI.  

0 1P(HI1|xj) P(HI2|xj) P(HI6|xj)...

...

U
 

Figure 5-12: Conditional probabilities for each HI when the bin is j 

4. Randomly sample 𝑥𝑗2 from the CDF 𝑃(𝑥|𝐻𝐼𝑘). Note that 𝑥𝑗2 > 𝑥𝑗1. 

5. Return to step 2 and repeat the following steps to obtain the next transition. The 

process stops when the transition reaches the worst 𝐻𝐼6.  

6. Generate matrices Ar and Br for the current simulation r (see below). 

II) Algorithms Based on Normalization by Columns  

Assumed conditional probabilities 𝑃(𝑥𝑗|𝐻𝐼𝑖), an example of which is shown in Table 5-

3, are interpolated to get yearly values 𝑃(𝑥|𝐻𝐼𝑖). Interpolation is done in such a way to 

follow the Weibull pdf shapes (Fig. 5-13), whose hazard functions are specified in section 

5.2.1. More specifically, the following methods are used: 

• Monotonically decreasing geometric series for HI1, 

• Monotonically decreasing arithmetic series for HI2 and HI3, 

• Increasing geometric series and decreasing arithmetic series for HI4, 

• Increasing and decreasing geometric series for HI5, and 

• Monotonically increasing geometric series for HI6. 

“Smooth” transitions between bins are always maintained. So calculated 60 x 6 input 

matrix for each asset category is used to calculate transitions between health indices.  

Table 5-3: Bin probabilities for each HI 

 HI1 HI2 HI3 HI4 HI5 HI6 

Bin 1 0.9 0.1     

Bin 2 0.1 0.5     
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Bin 3  0.4 0.3 0.3 0.2  

Bin 4   0.4 0.4 0.3 0.1 

Bin 5   0.1 0.25 0.4 0.3 

Bin 6    0.05 0.1 0.6 

 

Figure 5-13: PDF shapes for different Weibull parameters β 

An example of the calculation of annual probabilities from the bin totals, when a 

geometric series is used, is as follows. The sum of annual probabilities over 10 years is: 

𝑆𝑛 =
𝑎(𝑟𝑛 − 1)

𝑟 − 1
 (5-24) 

where 𝑆𝑛 is bin probability; a is the initial value (i.e. probability of the first/last year in 

the age bin); n is 10 years; r < 1 is common ratio. Eq. (5-25) can be solved for the 

unknown common ratio r. In case of a monotonically increasing series, this is done in the 

reverse order from the last to the first year giving 𝑎𝑟9, 𝑎𝑟8, … , 𝑎𝑟0. 
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Input probabilities 𝑃(𝑥|𝐻𝐼𝑖) are used to find transition probabilities stored in a matrix M 

whose elements are 𝑀(𝑥, 𝑖, 𝑗), where x is the age, i is the current HI and j is the “arriving” 

HI. Two algorithms are developed: a) Asset health always moves to the next deteriorated 

state, which is called “To next HI” algorithm; and b) Asset health moves to any 

deteriorated state, which is called “To any HI” algorithm. These two transition approaches 

are summarized below. 

a) Transition to Any HI  

1. Set the asset HI 𝑖 = 1 . Determine virtual age 𝑥𝑖  in years from the generated 

pseudo-random number.  

2. Generate pseudo-random numbers Um for each HI index 𝑚 =  𝑖 + 1, 𝑖 + 2,… 6, 

and determine the corresponding virtual ages 𝑥𝑚 (𝑚 =  𝑖 + 1, 𝑖 + 2,… 6).  

3. Find the new HI index j based on:  

𝑗 = 𝑎𝑟𝑔 {𝑚𝑖𝑛[(𝑥𝑚) ;   𝑚 = 𝑖 + 1, 𝑖 + 2,… 6]} (5-25) 

where the corresponding virtual age must be greater than the virtual age 

determined in the previous step.  

4. If HI index 𝑗 < 6, set 𝑖 = 𝑗 and return to step 2. Otherwise, go to the next step.  

5. Generate matrices Ar and Br for the current simulation r (see below). 

b) Transition to Next HI 

1. Set the asset HI 𝑖 = 1 . Determine virtual age 𝑥𝑖  from the generated pseudo-

random number.  

2. Generate pseudo-random numbers U for next HI index 𝑗 =  𝑖 + 1, and determine 

the corresponding virtual age 𝑥𝑗  (𝑗 =  𝑖 + 1), where 𝑥𝑗 must be greater than the 

virtual age determined in the previous step.  

3. If HI index 𝑗 < 6, set 𝑖 = 𝑗 and return to step 2. Otherwise, go to the next step.  

4. Generate matrices Ar and Br for the current simulation r. 

Matrix Ar contains binary values representing asset virtual age (rows) for each HI 

(columns). An example matrix 𝑨𝒓 is shown below. It means asset has HI=1 at age 0; HI=2 

at age 3; HI=3 at age 5; HI=4 at age 7; HI=5 at age 10; and HI=6 at age 12.  
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𝑨𝒓 =

(

 
 
 
 
 
 
 
 
 
 
 

1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
1 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 1 0
0 0 1
0 0 1)

 
 
 
 
 
 
 
 
 
 
 

 (5-26) 

Based on matrix 𝑨𝒓, matrix 𝑩𝒓 that describes the age at which the asset moves from one 

HI to another HI can be obtained. In matrix 𝑩𝒓, there are fifteen columns which represents 

transitions from HI1 to HI2, HI1 to HI3, HI1 to HI4, HI1 to HI5, HI1 to HI6, HI2 to HI3, 

HI2 to HI4, HI2 to HI5, HI2 to HI6, HI3 to HI4, HI3 to HI5, HI 3 to HI6, HI4 to HI5, HI4 

to HI6 and HI5 to HI6. Based on the above example, matrix 𝑩𝒓 is:  

𝑩𝒓 =

(

 
 
 
 
 
 

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 1

⋯

0
0
0
0
0
0

⋮ ⋱ ⋮
0 0 0 0 0 0
0 0 0 0 0 0

⋯
1
0)

 
 
 
 
 
 

 (5-27) 

Following the completion of the independent MC procedure, averaged matrices A and B 

are calculated: 

𝑨 =
∑ 𝑨𝒓𝑟

𝑛
 (5-28) 

𝑩 =
∑ 𝑩𝒓𝑟

𝑛
 (5-29) 

where n is the number of Monte-Carlo simulations. Matrices A and B are used for the 

calculation of transition matrix 𝑴, whose element 𝑀(𝑥, 𝑖, 𝑗) is conditional probability 

based on known asset health index at (𝑥 − 1):  
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𝑀(𝑥, 𝑖, 𝑗) =
𝐵(𝑥, 𝑖, 𝑗)

𝐴(𝑥 − 1, 𝑖)
 (5-30) 

Tables 4, 5 and 6 in Appendix give an example of transition matrix M obtained using 

normalization by rows (Table 4), normalization by columns for transitions to any HI 

(Table 5) and next HI (Table 6). Algorithms based on the normalization by columns are 

utilized in this research.  

5.3.4 Asset Condition Improvement Processes  

Asset conditions can be improved through interventions. To develop the repair process, 

repair policies have to be assumed. The “full” set of repairs is given below: 

• Absolutely Minimal Repair 

Following a failure, asset stays on the “arrived” HI at the arrived age (i.e. repair 

factor is 1.0). Both post-failure asset HI and virtual age are defined. 

• Marginally Improved Repair (Minor Repair) 

Following a failure, asset stays on the “arrived” HI, however virtual age is reduced. 

• Significantly Improved Repair (Major Repair 1) 

Following a fault, the asset is brought to the previous HI (better than the “arrived” 

HI) and the virtual age is reduced.  

• Significantly Improved Ageing Repair (Major Repair 2) 

Following a fault, the asset is brought down by two HIs and the virtual age is 

reduced.  

• Replacement 

After replacement, asset has the best HI and the virtual age is set to zero. 

The possible repair types for each HI category are given in Table 5-4.  

Table 5-4: Possible repair types for each HI category 

Post-Failure HI Possible Repair Types Post-Repair HI 

HI1 (New) Minimal repair HI1 
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HI2 (Young) 

Minimal repair  HI2 

Minor repair  HI1 

HI3 (Medium) 

Minimal repair HI3 

Minor repair  HI2 

Major 1 repair HI1 

HI4 (Initial Ageing) 

Minimal repair HI4 

Minor repair  HI3 

Major 1 repair  HI2 

Major 2 repair  HI1 

HI5 (Old) 

Minimal repair  HI5 

Minor repair HI4 

Major 1 repair HI3 

Major 2 repair HI2, HI1 

HI6 (Very Old) Replacement  HI1 

It is assumed that data on %-ages of repair types for each asset health index are available. 

Asset post-failure (deteriorated) HI is known and shown in the first column of Table 5-4. 

Assuming uniform distribution of repair types for each HI, random sampling determines 

the repair type (second column in Table 5-4), which in turn defines the improved post-

repair HI, where an asset has “landed” to (third column). 

Following the repair, the virtual age can be reduced or reset. Kijima II model is applied:  
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𝑣𝑎𝑚 = 𝑞𝑚 ∙ 𝑣𝑎
′
𝑚 = 𝑞𝑚 ∙ (𝑣𝑎𝑚−1 + 𝜑𝑚 ∙ 𝑡𝑠𝑎𝑚𝑝𝑙𝑒𝑑

𝑢𝑝 )  (5-31) 

Where 𝑞𝑚 is repair factor at the mth repair stage. The following repair factors for each 

repair type are assumed:  

• 𝑞𝑚 = 1.0 for absolutely minimal repair; 

• 𝑞𝑚 = 0.8 for minor repair; 

• 𝑞𝑚 = 0.6 for major 1 repair; 

• 𝑞𝑚 = 0.4 for major 2 repair; 

• 𝑞𝑚 = 0 for replacement. 

5.3.5 Simulation Algorithms  

5.3.5.1 In-service Time Sampling 

In the simulation using probabilistic asset health approach, there are two timelines: one 

is asset virtual age and the other is simulation time, which is shown in Fig. 5-14. It is 

recognized the asset virtual age can be “accelerated” or “decelerated” during in-service 

operation. The following equation describes this process:  

1  2 8760

vam-1 va'm vam

 tsampled tsampled
up down

Simulation  

time 

Virtual age

 

Figure 5-14: Illustration of the two timelines in probabilistic approach 

𝑣𝑎′𝑚 = 𝑣𝑎𝑚−1 + 𝜑𝑚 ∙ 𝑡𝑠𝑎𝑚𝑝𝑙𝑒𝑑
𝑢𝑝

 (5-32) 

where 𝑣𝑎′𝑚 is the asset virtual age at the beginning of repair stage m; factor 𝜑 gives the 

information of the impact during in-service time. For example, when the asset suffers 

ageing during in-service operation, 𝜑𝑚 > 1, asset virtual age is accelerated; when the 

loading is less than nominal or the ambient temperature is lower than design ambient 

temperature, 0 < 𝜑𝑚 < 1, asset virtual age is decelerated.  
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Besides, during the in-service operation, there exists impact from loading condition, 

environment, etc. on the asset virtual age and hazard function 错误!未找到引用源。. 

Therefore baseline hazard functions need to be modified to reflect the impact of these 

exogenous factors on failure intensity, which gives a Proportional Hazard Model (PHM) 

[129]: 

𝜆(𝑣𝑎) = 𝜆0(𝑣𝑎) ∙ exp[𝜽
𝑇 ∙ 𝒛(𝑡)]   (5-33) 

where 𝜆0(𝑣𝑎)  is the baseline hazard function previously specified by HI levels; 

exp[𝜽𝑇 ∙ 𝒛(𝑡)] is proportional intensity (PI) function; 𝜽 is vector of parameters and 𝒛(𝑡) 

is vector of time functions that describe the exogenous phenomena. Several exogenous 

factors are introduced in the DNO document: location factor, duty factor, observed 

condition modifier, measured condition modifier, oil test modifier and reliability modifier; 

details are shown in Table 5-5. If the location factor 𝑧1 and duty factor 𝑧2 is considered, 

the PI function is:  

𝑃𝐼 = exp(𝜃1 ∙ 𝑧1 + 𝜃2 ∙ 𝑧2) /𝑒
𝜃1+𝜃2  (5-34) 

𝜃1 + 𝜃2 = 1 (5-35) 

where nominal conditions are described by 𝑧1 = 𝑧2 = 1 and factor 𝑒𝜃1+𝜃2 is introduced 

to make PI function equal to 1 for nominal conditions. For light conditions, 𝑧1 < 1, 𝑧2 <

1; for heavy conditions 𝑧1 > 1, 𝑧2 > 1. Note that the PI function needs to be defined by 

asset types and that location constant 𝜃1 can be 0. For simplicity, the following values are 

assumed: 

• For OHL, environment is very important. Let 𝜃1 = 0.7, 𝜃2 = 0.3. 

• For transformer, environment is indoor or outdoor, but loading is much more 

important. Let 𝜃1 = 0.2, 𝜃2 = 0.8.  

• For cable, environment can be neglected. So, 𝜃1 = 0, 𝜃2 = 1.0.  
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Table 5-5: Exogenous factors affecting asset HI [131]错误!未找到引用源。 

Exogenous Factor Description 

Asset Location 
Influenced by: a) Indoor/outdoor; b) Distance from 

coast; c) Altitude; d) Corrosion 

Asset Duty 
Influenced by: a) Loading; b) Number of operations; 

c) Operating/design voltage 

Asset Reliability 
Additional reliability modifier that is a result of 

generic issues that affect asset health 

Asset Condition 
Observed condition, measured condition, oil test 

modifiers (deterministic HI approach) 

The assumed asset hazard functions consists of a constant and Weibull terms: 

𝜆(𝑣𝑎) = {
𝑃𝐼 ∙ 𝜆 = 𝜆′,                                                                 𝑣𝑎 ≤ 𝑣𝑎𝑡ℎ𝑟

𝑃𝐼 ∙ 𝜆 + 𝑃𝐼 ∙
𝛽 ∙ 𝑣𝑎𝛽−1

𝛼𝛽
= 𝜆′ +

𝛽′ ∙ 𝑣𝑎𝛽−1

𝛼𝛽
, 𝑣𝑎 > 𝑣𝑎𝑡ℎ𝑟

 (5-36) 

where PI is a constant given by Eq. (5-35) ; 𝑣𝑎𝑡ℎ𝑟 is threshold value of the virtual age 

when ageing is initiated, and α and β are Weibull shape and scale parameters. To 

determine in-service time, 𝑅(𝑡𝑚+1
𝑢𝑝

) = 1−𝑈 is solved via the following equations:  

𝑅(𝑡𝑚+1
𝑢𝑝 ) = 𝑒𝑥𝑝 [−∫ 𝜆′ ∙ 𝑑𝜏

𝑣𝑎𝑚+𝜑𝑚+1∙𝑡𝑚+1
𝑢𝑝

𝑣𝑎𝑚

] = 𝑒𝑥𝑝[−𝜆′ ∙ 𝜑𝑚+1 ∙ 𝑡𝑚+1
𝑢𝑝 ],

𝑣𝑎 ≤ 𝑣𝑎𝑡ℎ𝑟  

(5-37a) 
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𝑅(𝑡𝑚+1
𝑢𝑝 ) = 𝑒𝑥𝑝 [−∫ (𝜆′ +

𝛽′ ∙ (𝜏)𝛽−1

𝛼𝛽
)𝑑𝜏

𝑣𝑎𝑚+𝜑𝑚+1∙𝑡𝑚+1
𝑢𝑝

𝑣𝑎𝑚

]

= 𝑒𝑥𝑝 [−𝜆′ ∙ 𝜑𝑚+1 ∙ 𝑡𝑚+1
𝑢𝑝 −

𝛽′ ∙ (𝑣𝑎𝑚 + 𝜑𝑚+1 ∙ 𝑡𝑚+1
𝑢𝑝 )

𝛽−1

𝛼𝛽

+
𝛽′ ∙ (𝑣𝑎𝑚)

𝛽−1

𝛼𝛽
] , 𝑣𝑎 ≤ 𝑣𝑎𝑡ℎ𝑟 

(5-37b) 

5.3.5.2 Out-of-service Time Sampling 

It is assumed that repair durations are not dependent on asset health indices but only on 

repair types. Boundary values in the ±(40-50)% range of the base repair time as given in 

[123] are specified for each repair type (Table 5-6), uniform distribution is assumed in all 

cases, and repair duration is determined by random sampling from the uniform 

distribution. 

Table 5-6: Percentages of base repair duration for each repair type 

Repair Type Percentage of Base Repair Duration 

Minimal Repair 60% 

Minor Repair 80% 

Major 1 Repair 100% 

Major 2 Repair 120% 

Replacement 150% 

5.3.5.3 Simulation Algorithm within Sequential Monte Carlo Procedure 

The algorithm for obtaining asset operating states on a yearly basis is shown in Fig. 5-15. 

Its individual steps are as follows:  

1. Select asset type and calculate transition matrix M.  
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2. Input the asset’s initial virtual age and HI. 

3. Find the corresponding row of transition matrix M and calculate the cumulative 

transition probability. Generate a uniformly distributed number U to decide the 

next HI the asset moves to.  

4. Calculate the up-time based on the input virtual age and HI.  

5. Based on the next HI, the repair type can be determined and down-time is 

obtained consequently. Asset virtual age and HI are also updated.  

6. Use the new virtual age and HI in step 4 as input data. Return to step 3 and repeat 

the following steps until the required sampled time is met.  

7. Generate the asset state matrix in chronological order.  
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Start

Define the asset type

Calculate the asset transition matrix M

Input the asset va and HI

t   8760?

Create the asset states matrix

End

Yes

No va = vanew

HI = HInew

Calculate tup based on the input data

Generate a random number in uniform 

distribution to decide the next HI (HInext) 

based on the corresponding row of M

Based on HInext, use a uniformly 

distributed random number to decide 

the repair type

According to the repair type, obtain tdown and 

asset vanew and HInew at the end of the repair 

Within the duration of tup, asset state = 1

Within the duration of tdown, asset state = 0

Set asset initial virtual age and HI 

Simulation timeline t=0

t = t + tup + tdown

 

Figure 5-15: Procedure for obtaining yearly asset operating states 

5.3.6 Simulation Results Classification 

The simulation output can be classified as system- and asset-oriented.  
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System and nodal EENS and LOLP are essential system indicators, whilst on asset level, 

average up- and down times, numbers and types of asset interventions, asset health indices 

(or scores) at the end of the simulation period and transitions between indices are 

produced. 

Asset-orientated results are fed back into the optimal long-run asset intervention planning 

(first block in Fig. 3-1) in case further asset improvements are required. Similarly, system-

orientated indices can be used to tighten network planning standards if the results are 

outside satisfactory limits. 

5.4 Chapter Summary 

This chapter introduces the basic concept of asset health modelling. Two approaches are 

applied, based on deterministic and probabilistic modelling. For deterministic approach, 

the methodology involves asset classification and PoF calculation process which is 

developed in line with the UK DNO approach. The proposed probabilistic approach 

distinguishes between asset deterioration (transition to worse HIs) and improvement of 

asset conditions (transitions to better HIs). Asset degradation is modelled based on a 

“queueing type” transition model, and two algorithms for asset health transitions are 

developed. The improvement process is based on Kijima II virtual age model, several 

repair types and semi-probabilistic approach for finding the post-repair states. To assess 

the network reliability, the developed approach is then incorporated into the sequential 

Monte Carlo simulation. The simulation model gives reliability indices on system level 

(e.g. EENS, LOLP), asset profiles in terms of health indices and virtual ages, as well as 

repair numbers by types and their costs.  
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This chapter gives the modifications made to the IEEE RTS-96 due to the addition of 

wind generation. Network reliability is studied based on the three models developed in 

the previous chapters: temporal model, deterministic approach and probabilistic approach.  

6.1 Modified Reliability Test System 

IEEE RTS-96 is utilized in the entire research for system reliability studies. The following 

characteristics of one-area IEEE RTS-96 (Fig.2-10) are identified:  

• 2 voltage levels: 230kV in the “north” and 138kV in the “south” 

• 24 buses: first 10 in the “south” and last 14 in the “north” 

• 17 demand points 

• 5 230/138 kV transformers  

• 38 branches including 5 transformers and 2 underground cables 

• 32 generating units connected at 10 buses 

• A synchronous compensator connected at bus 14 

In this research, wind generation is added to IEEE RTS-96. The following modifications 

are done:  

• Addition of wind generation 

Four wind farms with 700MW capacity in total are connected to four buses of the test 

network, 400MW in the southern region and 300MW in the northern region. The total 

wind generation capacity is about 20% of the conventional generation. The assumed 

parameters are listed in Table 6-1. Note it is assumed that wind generation is limited 

to active power (in reality, a lot of wind generation can generate reactive power, which 

has an impact on the grid voltage stability. The effect from wind reactive power is not 

considered in order to reduce the number of study cases. It can be added in future 

work). 
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Table 6-1: Wind farm data 

Wind 

Farm 
Bus Unit Size (MW) MTTF (hour) MTTR (hour) 

1 1 150 780 20 

2 7 150 780 20 

3 21 200 550 20 

4 23 200 550 20 

• Modification of load demand 

Four additional windfarms (Table 6-1) are connected to the network, giving an 

increase of generation capacity of 20% so that the nodal peak loads are multiplied by 

1.2. 

6.2 Additional Specifications  

6.2.1 Cost of Repairs  

Costs of each repair type for different assets are collected in [178]-[183] and modified:  

Table 6-2: Repair cost of each repair type for different asset types 

Repair 

Cost (M£) 
Minimal Minor Major 1 Major 2 Replacement 

OHL (/km) 0.0105 0.0174 0.0348 0.0452 0.522 

Cable (/km) 0.0261 0.0305 0.0435 0.174 3.045 

Transformer 0.0022 0.022 0.25 0.55 0.66 
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6.2.2 Base Case Specifications  

Asset’s age is not an actual input in temporal model. To be consistent with deterministic 

approach and probabilistic approach where asset’s age is an input data, asset’s initial age 

of 1, 21 and 31 years are assumed as three base cases in temporal model and 

corresponding failure rates are assigned to each case.  

In all the three models, the simulation period for each case is set for 10 years. On one 

hand, this simulation period can help analyse the impact of ageing asset (or asset’s age) 

in all the models; one the other hand, it can save the extreme long computational time 

since a number of cases are studied in this research. However, in asset condition 

modelling, six age bins are assumed, meaning assets’ expected lifetime is 60 years. It is 

not possible to receive global results by using the 10-year simulation.  

6.3 Temporal Asset Health Modelling  

In temporal model, three base cases are specified and illustrated as follows: 

• Asset initial age = 1, asset in-service time follows exponential distribution with 

failure rate 𝜆0;  

• Asset initial age = 21, asset in-service time follows exponential distribution with 

failure rate 𝜆1 (𝜆1 = 1.1𝜆0);  

• Asset initial age = 31, asset in-service time follows modified Weibull 

distribution with failure rate 𝜆2 (𝜆2 = 𝜆1 +
𝛽∙𝑡𝛽−1

𝛼𝛽
, where 𝛼 =

1

𝜆1
, 𝛽 = 2).  

time

Failure rate 

λ(t) 

31211

λ0
λ1 λ2

 

Figure 6-1: Illustration of failure rate for temporal model 



 

126 

 

Asset out-of-service time is modelled via exponential distribution. Since repair types are 

not modelled in the temporal model, total asset repair costs are calculated for the five 

types of repairs listed in Table 6-2. 

6.3.1 Impact of Asset Ageing  

6.3.1.1 Base Case Study  

The reliability results for three base cases are presented in Table 6-3, Fig. 6-2 and Fig. 6-

3. The reliability results show decrease of reliability with the increase of asset age. From 

the nodal level results, it can be found that the worst performance occurs at bus 6, 

followed by bus 3 and 8. All of these buses are located in southern area and have no 

generating units, which contributes to higher load curtailment. The same reason also 

applies to bus 4, 5, 9 and 10.  

Bus 6 is connected to two transmission lines; either of them becoming unavailable leads 

to load curtailment in order to satisfy the power flow constraints. Bus 3 also has large 

load curtailment but is slightly better than 6 due to one more transmission link connected. 

Bus 3 and bus 8 have similar values of LOLP, but EENS at bus 3 is nearly twice of bus 

8. The reason is bus 3 and bus 8 are both connected to three transmission lines; however, 

power flow results show that bus 3 is only supplied by the transformer link (branch 7), 

and the other two links consume power; whilst the links connected to bus 8 all supply the 

load. This causes higher load curtailment at bus 3.  

The significant outage time of transformers connected to bus 9 and 10 also contributes to 

higher load curtailment at these buses. However, the reliability at bus 9 is worse than bus 

10. Bus 9 are linked to bus 3, 4, 8, 11 and 12; while bus 10 are linked to bus 5, 6, 8, 11 

and 12. The difference is that the loads at bus 5 and 6 are smaller than bus 3 and 4. 

Therefore, more load curtailment at bus 9 is needed to supply the further load.  

In the north, the relatively worse performance occurs at bus 14 and 18. The reason is that 

bus 14 has no generators and limited transmission capacity due to two transmission links. 

Bus 18 is connected to a nuclear generator with large capacity (400MW). The load, 

however, at bus 18 is the biggest. The reason for load curtailment at bus 18 is mainly due 

to the large consumption of power by the link between bus 17 and 18 (branch 30) and 

outages of branch 32 and 33.  
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Table 6-3: System reliability results for different initial ages (temporal model) 

Initial Age (yr) EENS (MWh/yr) LOLP (p.u.) 

1 24003.54 0.017717 

21 27519.17 0.019566 

31 31491.83 0.020205 

 

Figure 6-2: Nodal EENS for different initial ages (temporal model) 

 

Figure 6-3: Nodal LOLP for different initial ages (temporal model) 
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Transformer branches 14 and 17 have the highest average down-time, while the other 

transformer branches (15 and 16) experienced no outages. The highest number of repairs 

occurs on overhead lines. The total numbers of repairs for these cases are 92 (initial age 

= 1), 149 (initial age = 21) and 202 (initial age = 31), which indicates more repairs and 

subsequently higher repair costs are required when assets become old.  

 

Figure 6-4: Average down-time of each branch for different initial ages (temporal 

model) 

 

Figure 6- 5: Number of repair in each branch for different initial ages (temporal model) 

 

 

 

 



 

129 

 

Table 6-4: Total repair costs for different initial ages (temporal model) 

Initial 

Age 

(yr) 

Total Repair Costs for Different Repair Types (M£) 

Minimal 

Repair 

Minor 

Repair 

Major 1 

Repair 

Major 2 

Repair 
Replacement 

1 33.634 55.048 109.150 148.115 1766.448 

21 51.150 84.093 167.447 224.058 2637.804 

31 68.811 112.541 223.583 305.294 3633.969 

6.3.1.2 Partial Ageing Case Study  

Partial ageing means that some of the network assets are in ageing state while others are 

in normal operating state. Specifically, branches 2, 5, 8, 12, 16, 18, 22, 26, 32 and 36 are 

ageing. This case is compared to networks whose initial age is 1 and 31.  

The results presented in Table 6-5 show that EENS and LOLP of partial ageing network 

is higher than network with initial age of 1 and lower when initial age is 31. This indicates 

that part of the assets becoming ageing also exacerbates system reliability. Compared to 

the case of initial age = 21, the values of partial ageing network are slightly higher.  

As for nodal results (Fig. 6-6 and Fig. 6-7), EENS at bus 3 is reduced. Bus 3 is supplied 

through transformer, whilst power flows in branches 2 and 6, connected to bus 3, are from 

bus 3 (they “consume” power). When branch 2 is in ageing stage, frequent outages happen, 

which leads to decreased loading of the transformer branch and less curtailment is needed 

at bus 3. On the other side, EENS at bus 6 is increased when compared to initial age = 31. 

This is because bus 6 is fed from branches 5 and 10. When only branch 5 is in ageing 

stage, frequent outage leads to decreased supply and consequently increased load 

curtailment. Next, EENS at bus 18 is also reduced. The supply side of bus 18 is a nuclear 

generator connected at bus 21, via branches 32 and 33, whilst load at bus 18 and branch 

30 are “consumers”. Bus 21, where is a nuclear generator is connected, is also supplied 

by branch 38, but branches 25, 26, 32 and 33 are all fed from bus 21. Branches 25 and 26 

transfer much more power than branches 32 and 33. In the partial ageing network, branch 
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26 and 32 are in the ageing stage. When branch 26 is on outage, its power flow is 

transferred by branch 33. Therefore, the supply at bus 18 is increased, and load 

curtailment is reduced consequently. 

Table 6-5: System reliability results for different ageing conditions (temporal model)  

Ageing Condition EENS (MWh/yr) LOLP (p.u.) 

Initial Age = 1 24003.54 0.017717 

Partial Ageing 26322.97 0.019132 

Initial Age = 31 31491.83 0.020205 

 

Figure 6-6: Nodal EENS for different ageing conditions (temporal model) 

 

Figure 6-7: Nodal LOLP for different ageing conditions (temporal model) 
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Figure 6-8: Average down-time of each branch for different ageing conditions (temporal 

model) 

Average down-time by branches is shown in Fig. 6-8, whilst average number of repairs 

in Fig. 6-9. The total number of repairs for the partial ageing network is 153. The total 

number and total repair costs (Table 6-6) show the same phenomenon as system reliability 

results.  

 

Figure 6-9: Number of repair in each branch for different ageing conditions (temporal 

model) 
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Table 6-6: Total repair costs for different ageing conditions (temporal model) 

Ageing 

Condition  

Total Repair Costs for Different Repair Types (M£) 

Minimal 

Repair 

Minor 

Repair 

Major 1 

Repair 

Major 2 

Repair 
Replacement 

Initial Age 

= 1 
33.634 55.048 109.150 148.115 1766.448 

Partial 

Ageing 
55.164 90.948 181.436 240.349 2809.368 

Initial Age 

= 31 
68.811 112.541 223.583 305.294 3633.969 

6.3.2 Impact of Spatial Correlation   

To study the impact of correlation, the following studies cases are done with the given 

correlation factors:  

• No Correlation: the correlation factor is 0. 

• Partial correlation: the correlation factor is 0.8 for variables in the same region 

(north/south) and 0.5 in different regions. 

• Full correlation: the correlation factor is 1.  

6.3.2.1 Wind Correlation  

Initial Age = 1 

The reliability indices of the system at initial age of 1 with different wind correlation 

levels are presented in Table 6-7, Fig. 6-10 and Fig. 6-11. The results indicate that a higher 

correlation level leads to worse reliability performance. Wind generation is non-

dispatchable (i.e. there is no wind curtailment) and causes branch congestions that can 

only be rectified via load shedding, particularly in the south region. This effect is 

pronounced when the wind farms are fully correlated. Nodal indices usually follow the 

same pattern. 
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Table 6-7: System reliability results with different wind correlation levels – initial age = 

1 (temporal model) 

Correlation Level  EENS (MWh/yr) LOLP (p.u.) 

No Correlation  24003.54 0.017717 

Partial Correlation 26777.57 0.019418 

Full Correlation  32425.65 0.021324 

 

Figure 6-10: Nodal EENS for different wind correlation levels – initial age = 1 

(temporal model) 

 

Figure 6-11: Nodal LOLP for different wind correlation levels – initial age = 1 

(temporal model) 
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Average down-times and number of repairs in each branch are shown in Fig. 6-12. The 

number of repairs in some branches is higher for partial correlation than full correlation, 

for example, branches 10, 11, 12 and 27. In the cases of no correlation and partial 

correlation, there are no repairs for transformer branches 7, 14, 15, 16 and 17, whilst 

branch 14 has the highest average down-time when wind speeds are fully correlated.  

The total numbers of repair for the three cases are 92, 129 and 145, and the total repair 

costs for each repair type are given in Fig. 6-13. It can be found that when correlation 

level rises, system reliability reduces and total repair costs increase.  

 

Figure 6-12: Average down-time of each branch for different wind correlation levels – 

initial age = 1 (temporal model) 

 

Figure 6-13: Number of repair in each branch for different wind correlation levels – 

initial age = 1 (temporal model) 
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Table 6-8: Total repair costs for different repair types of system with different wind 

correlation levels – initial age = 1 (temporal model) 

Correlation 

Level 

Total Repair Costs for Different Repair Types (M£) 

Minimal 

Repair 

Minor 

Repair 

Major 1 

Repair 

Major 2 

Repair 
Replacement 

Zero 33.634 55.048 109.150 148.115 1766.448 

Partial 48.228 79.195 157.392 211.126 2497.248 

Full 50.653 83.843 167.734 219.144 2534.448 

Initial Age = 21 

The values of reliability indices with different wind correlation levels are higher than the 

previous case (initial age = 1). The same phenomenon applied to this study case: an 

increment in correlation level causes weakening in network reliability. 

Table 6-9: System reliability results with different wind correlation levels – initial age = 

21 (temporal model) 

Correlation Level  EENS (MWh/yr) LOLP (p.u.) 

No Correlation  27519.17 0.019566 

Partial Correlation 28490.75 0.021418 

Full Correlation  32670.31 0.023482 
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Figure 6-14: Nodal EENS for different wind correlation levels – initial age = 21 

(temporal model) 

 

Figure 6-15: Nodal LOLP for different wind correlation levels – initial age = 21 

(temporal model) 

In this study case, transformer branch 17 has the highest average down-time. The total 

numbers of repair for the three cases are 149, 156 and 181, which are higher than the 

previous case (initial age = 1), and the total repair costs for each repair type are in Table 

6-10. It can be found that when correlation level rises, system reliability reduces and total 

repair costs increase.  
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Figure 6-16: Average down-time of each branch for different wind correlation levels – 

initial age = 21 (temporal model) 

 

Figure 6-17: Number of repair in each branch for different wind correlation levels – 

initial age = 21 (temporal model) 

Table 6-10: Total repair costs for different repair types of system with different wind 

correlation levels – initial age = 21 (temporal model) 

Correlation 

Level 

Total Repair Costs for Different Repair Types (M£) 

Minimal 

Repair 

Minor 

Repair 

Major 1 

Repair 

Major 2 

Repair 
Replacement 

Zero 51.150 84.093 167.447 224.058 2637.804 

Partial 52.767 86.733 172.675 231.202 3138.540 

Full 61.317 100.997 201.514 268.179 3138.540 



 

138 

 

Initial Age = 31 

In this case, the reliability results are higher than the previous cases (initial age = 1&21). 

And the same conclusion applies to this study case: the higher correlation level leads to 

worse system performance.  

Table 6-11: System reliability results with different wind correlation levels – initial age 

= 31 (temporal model) 

Correlation Level  EENS (MWh/yr) LOLP (p.u.) 

No Correlation  31491.83 0.020205 

Partial Correlation 32722.14 0.021685 

Full Correlation  34046.96 0.023084 

 

Figure 6-18: Nodal EENS for different wind correlation levels – initial age = 31 

(temporal model) 
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Figure 6-19: Nodal LOLP for different wind correlation levels – initial age = 31 

(temporal model) 

In this case, higher average down-time occurs at bus 14 and 17, which shows an 

exacerbation compared to the previous cases. The total numbers of repair for the three 

cases are 202, 229 and 256, which are higher than the previous cases, and the total repair 

costs for each repair type are given in Table 6-12. It can be found that when correlation 

level rises, system reliability reduces and total repair costs increase. 

 

Figure 6-20: Average down-time of each branch for different wind correlation levels – 

initial age = 31 (temporal model) 
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Figure 6-21: Number of repair in each branch for different wind correlation levels – 

initial age = 31 (temporal model) 

Table 6-12: Total repair costs for different repair types of system with different wind 

correlation levels – initial age = 31 (temporal model) 

Correlation 

Level 

Total Repair Costs for Different Repair Types (M£) 

Minimal 

Repair 

Minor 

Repair 

Major 1 

Repair 

Major 2 

Repair 
Replacement 

Zero 68.811 112.541 223.583 305.294 3633.969 

Partial 79.459 130.090 258.729 352.226 4179.597 

Full 88.971 145.629 289.681 394.886 4686.249 

6.3.2.2 Wind and Load Correlation  

Initial Age = 1 

The reliability results of the three wind correlation and load correlation levels are given 

in Table 6-13, Fig. 6-22 and Fig. 6-23. Compared to the study of wind correlation, the 

increment of reliability indices between each correlation level is bigger, which indicates 

the combination of different correlations has a high impact on the network performance.  
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Table 6-13: System reliability results with different wind and load correlation levels – 

initial age = 1 (temporal model) 

Correlation Level  EENS (MWh/yr) LOLP (p.u.) 

No Correlation  24003.54 0.017717 

Partial Correlation 29889.17 0.020845 

Full Correlation  34172.02 0.022500 

 

Figure 6-22: Nodal EENS for different wind and load correlation levels – initial age = 1 

(temporal model) 

 

Figure 6-23: Nodal LOLP for different wind and load correlation levels – initial age = 1 

(temporal model) 
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Average down-times and number of repairs in each branch are shown in Fig. 6-24 and 

Fig. 6-25 respectively. The number of repairs of transformer branches 7, 14 and 17 is 

highest for the full correlations. The total numbers of repair of the three study cases are 

92, 138 and 172, which are higher than the study of wind correlation only. And the repair 

costs show the same trend: the repair costs of network with combined correlation are 

higher than wind correlation only.  

 

Figure 6-24: Average down-time of each branch for different wind and load correlation 

levels – initial age = 1 (temporal model) 

 

Figure 6-25: Number of repair in each branch for different wind and load correlation 

levels – initial age = 1 (temporal model) 
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Table 6-14: Total repair costs for different repair types of system with different wind 

and load correlation levels – initial age = 1 (temporal model) 

Correlation 

Level 

Total Repair Costs for Different Repair Types (M£) 

Minimal 

Repair 

Minor 

Repair 

Major 1 

Repair 

Major 2 

Repair 
Replacement 

Zero 33.634 55.048 109.150 148.115 1766.448 

Partial 48.295 79.005 156.780 213.495 2544.801 

Full 58.051 95.080 189.527 258.456 3054.738 

Initial Age = 21 

Compared to the study of wind correlation, the same conclusion applies to this study case. 

Compared to the previous case (initial age = 1), it can be found that ageing assets have a 

negative impact on the network reliability.  

Table 6-15: System reliability results with different wind and load correlation levels – 

initial age = 21 (temporal model) 

Correlation Level  EENS (MWh/yr) LOLP (p.u.) 

No Correlation  27519.17 0.019566 

Partial Correlation 33032.40 0.022043 

Full Correlation  36685.33 0.025171 
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Figure 6-26: Nodal EENS for different wind and load correlation levels – initial age = 

21 (temporal model) 

 

Figure 6- 27: Nodal LOLP for different wind and load correlation levels – initial age = 

21 (temporal model) 

Average down-times and number of repairs in each branch are shown in Fig. 6-28 and 

Fig. 6-29 respectively. The highest average down-time occurs at transformer branch 16 

and 17 for fully correlated case. The total numbers of repair for the three cases are 149, 

173 and 202, which is higher than the case of initial age =1, as well as the case of initial 

age =21 with wind correlation only. And the repair costs are higher than these cases as 

well.  
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Figure 6-28: Average down-time of each branch for different wind and load correlation 

levels – initial age = 21 (temporal model) 

 

Figure 6-29: Number of repair in each branch for different wind and load correlation 

levels – initial age = 21 (temporal model) 

Table 6-16: Total repair costs for different repair types of system with different wind 

and load correlation levels – initial age = 21 (temporal model) 

Correlation 

Level 

Total Repair Costs for Different Repair Types (M£) 

Minimal 

Repair 

Minor 

Repair 

Major 1 

Repair 

Major 2 

Repair 
Replacement 

Zero 51.148 84.071 167.197 223.508 2637.144 

Partial 60.138 98.727 196.176 263.381 3117.297 

Full 69.262 113.697 226.454 305.263 3600.474 
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Initial Age = 31  

In this study, the same conclusion applies to this study case: ageing assets have a negative 

impact on the network reliability. 

Table 6-17: System reliability results with different wind and load correlation levels – 

initial age = 31 (temporal model) 

Correlation Level  EENS (MWh/yr) LOLP (p.u.) 

No Correlation  31491.83 0.020205 

Partial Correlation 35086.59 0.023180 

Full Correlation  38811.49 0.025651 

 

Figure 6-30: Nodal EENS for different wind and load correlation levels – initial age = 

31 (temporal model) 



 

147 

 

 

Figure 6-31: Nodal LOLP for different wind and load correlation levels – initial age = 

31 (temporal model) 

Average down-times and number of repairs in each branch are shown in the Fig. 6-32 and 

Fig. 6-33 respectively. The highest average down-time occurs at transformer branches 14, 

16 and 17, followed by cable branch 10.  The total numbers of repair for the three cases 

are 196, 220 and 258, which is higher than all the previous cases. It can be concluded that 

ageing assets and the combination of different correlations can cause frequent repairs and 

consequently high repair costs.  

 

Figure 6-32: Average down-time of each branch for different wind and load correlation 

levels – initial age = 31 (temporal model) 
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Figure 6-33: Number of repair in each branch for different wind and load correlation 

levels – initial age = 31 (temporal model) 

Table 6-18: Total repair costs for different repair types of system with different wind 

and load correlation levels – initial age = 31 (temporal model) 

Correlation 

Level 

Total Repair Costs for Different Repair Types (M£) 

Minimal 

Repair 

Minor 

Repair 

Major 1 

Repair 

Major 2 

Repair 
Replacement 

Zero 66.305 109.613 219.407 288.590 3341.649 

Partial 75.822 124.178 247.062 336.015 3983.064 

Full 89.148 145.869 290.451 397.159 4708.362 

6.3.3 Impact of Generation Reliability  

Generation reliability is studied in the base case without correlation. In-service time of 

ageing generator is assumed to be modified Weibull distribution with shape parameter 

𝛽 = 2, and out-of-service time is modelled via exponential distribution. Other involved 

parameters are given in [56]. The reliability results are drastically larger than base case, 

which shows that ageing generation has a significant, negative impact on system 

reliability. EENS and LOLP differences between different initial ages are relatively small 

because the overall reliability is driven by ageing generation.  



 

149 

 

Table 6-19: System reliability results with generation reliability (temporal model) 

Initial Age (yr) 
Generator 

Reliability  
EENS (MWh/yr) LOLP (p.u.) 

1  

Without  24003.54 0.017717 

With  750725.35 0.060776 

21 

Without  27519.17 0.019566 

With  768675.84 0.061130 

31  

Without  31491.83 0.020205 

With  781233.02 0.062272 

 

Figure 6-34: Nodal EENS with generation reliability (temporal model) 
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Figure 6-35: Nodal LOLP with generation reliability (temporal model) 

6.4 Deterministic Asset Health Modelling 

6.4.1 Addition Input Data  

Parameters used in hazard functions (Eq.(5-9)) are specified in the following tables:  

Table 6-20: Parameters for deterministic asset health modelling [131] 

Asset Type 

Normal 

Expected 

Life (yr) 

K-value C-value γ-value 

Cable  100 0.0658% 1.087 0.08 

Transformer 60 0.0454% 1.087 0.1 

Overhead Line 50 0.0080% 1.087 0.3 
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Table 6-21: Default values of factors for deterministic asset health modelling 

Factor Default Value 

Location Factor 1 

Duty Factor 1 

Health Score Factor 1 

Reliability Factor 1 

Table 6-22: Functions of ageing reduction factor [131] 

Current Health Score 

(CHS)  
Ageing Reduction Factor 

< 2 1 

2 to 5.5 [𝐶𝐻𝑆 – 2] / 7 + 1 

> 5.5 1.5 

6.4.2 Base Case Study  

Three base-case studies are done; the initial asset age is 1 yr, 21 yr and 31 yr. System 

reliability indices substantially increase with the increase in asset age. Fig. 6-36 and Fig. 

6-37 present nodal reliability results of the three study cases. The results at node level 

follow the same trend as system level. It can be seen that, in deterministic approach, bus 

3 and 6 have the worst performance. Both of these buses have no generating units, which 

contributes to the higher load curtailment. The same reason applies to bus 4, 5, 8, 9 and 

10. All these buses are located in southern area. In addition, the significant outage time 

of transformers connected to bus 3, 9 and 10 also contributes to higher load curtailment 

at these buses. In the north, the relatively worse performance occurs at bus 14. The reason 
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is that bus 14 has no generators and limited transmission capacity due to two transmission 

links.  

Table 6-23: System reliability results with three initial ages (deterministic approach) 

Initial Age (yr) EENS (MWh/yr) LOLP (p.u.) 

1 25026.99 0.022158 

21 31488.89 0.029703 

31 54997.05 0.060845 

 

Figure 6-36: Nodal EENS for different initial ages (deterministic approach) 

 

Figure 6-37: Nodal LOLP for different initial ages (deterministic approach) 
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HI score results show that different asset categories exhibit different paths as assets 

become older. When assets are new and young, their HIs all stay at 1. When assets are in 

service for a certain time (initial age = 21), overhead lines transition from HI1 to HI3, 

whilst transformers and cables remain at HI1. When assets become older (initial age = 

31), overhead lines go to HI5; transformers transition from HI1 to HI3; and cables remain 

at HI1. The HI score results of deterministic approach indicate the deterioration of cable 

is the slowest, followed by transformer. 

 

Figure 6-38: Asset rounded-off HI at the end of simulation period for different initial 

ages (deterministic approach) 

Fig. 6-39 and Fig. 6-40 present average down-time and number of repairs in each branch. 

Total repair numbers of all assets are 207 (initial age =1), 548 (initial age =21) and 1162 

(initial age =31). The numbers are much higher than in the cases of temporal model.  

 

Figure 6-39: Average down-time of each branch for different initial ages (deterministic 

approach) 
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Figure 6-40: Number of repair in each branch for different initial ages (deterministic 

approach) 

Similar to temporal model, repair types are not modelled in the deterministic HI model; 

total asset repair costs are calculated for the five types of repairs given in Table 6-2. 

Variation of costs by repair types is huge.  

Table 6-24: Asset repair costs for different repair types (deterministic approach)  

Initial 

Age 

(yr) 

Asset 

Repair Costs for Different Repair Types (M£) 

Minimal 

Repair 

Minor 

Repair 

Major 1 

Repair 

Major 2 

Repair 
Replacement 

1 

Cable 7.308 8.540 12.180 48.720 852.600 

Tx 0.086 0.858 9.750 21.450 25.740 

OHL 49.092 81.354 162.707 211.333 2440.611 

Total 56.487 90.752 184.637 281.503 3318.951 

21 

Cable 8.579 10.035 14.312 57.246 1001.805 

Tx 0.205 2.046 23.250 51.150 61.380 
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OHL 137.834 228.410 456.820 593.340 6852.294 

Total 146.625 240.490 494.381 701.736 7915.479 

31 

Cable 12.580 14.701 20.967 83.868 1467.690 

Tx 0.3102 3.102 35.250 77.550 93.060 

OHL 332.456 550.928 1101.855 1431.145 16527.825 

Total 345.347 568.731 1158.072 1592.563 18088.575 

6.4.3 Impact of Location and Duty Factor  

Assumed location- (LF) and duty-factors (DF) are shown in Table 6-25. 

Table 6-25: Assumed location and duty factors 

Branch 
“From” 

Bus 

“To” 

Bus 
Asset Type 

Influenced 

Location 

Location 

Factor 

Duty 

Factor 

1 1 2 Cable / 1 1.1 

7 3 24 Transformer 
Distance 

from Coast 
1.1 1.05 

17 11 13 Transformer 
Distance 

from Coast 
1.05 1.05 

20 12 13 
Overhead 

Line 

Distance 

from Coast 
1.2 1 

27 15 24 
Overhead 

Line 

Distance 

from Coast 
1.5 1 
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30 17 18 
Overhead 

Line 
Altitude 1.15 1 

31 17 22 
Overhead 

Line 
Altitude 1.05 1 

32 18 21 
Overhead 

Line 
Altitude 1.05 1 

33 18 21 
Overhead 

Line 
Altitude 1.05 1 

38 21 22 
Overhead 

Line 
Altitude 1.05 1 

When assets are young, system reliability is relatively similar; the difference increases 

when assets are older. However, there is no exponential increase in unreliability. Similar 

conclusions can be drawn for total repair costs.  

Table 6-26: System reliability results for modified duty and location factor 

(deterministic approach) 

Initial 

Age 

(yr) 

Factor Value EENS (MWh/yr) LOLP (p.u.) 

1 

Default 25026.99 0.022158 

Modified 25759.15 0.023721 

21 

Default 31488.89 0.029703 

Modified 33612.14 0.034759 
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31 

Default 54997.05 0.060845 

Modified 58904.43 0.065881 

Table 6-27: Total repair costs for modified location and duty factors (deterministic 

approach) 

Initial 

Age 

(yr) 

Total Repair Costs for Different Repair Types (M£) 

Minimal 

Repair 

Minor 

Repair 

Major 1 

Repair 

Major 2 

Repair 
Replacement 

1 59.817 96.919 197.755 305.353 4628.706 

21 156.803 266.557 520.692 746.903 8518.881 

31 368.761 606.773 1204.480 1654.580 19040.384 
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c). Initial Age = 31
 

Figure 6-41: Asset HI at the end of simulation period with different duty and location 

factors (deterministic approach) 
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Figure 6-42: Number of repair with modified duty and location factor for different 

initial ages (deterministic approach) 

6.4.4 Impact of Health Score Factor  

Health score factor is determined from observed condition factor and measured condition 

factor. The calculation is presented in Table 6-28: 

• a is the maximum value of observed condition factor and measured condition 

factor; 

• b is the minimum value of observed condition factor and measured condition 

factor. 

Table 6-28: Calculation of health score factor [131] 

a b Health Score Factor 

> 1 > 1 a + [(b – 1) / 1.5] 

> 1  ≤ 1 a 

≤ 1 ≤ 1 b + [(a – 1) / 1.5] 

The other related data are introduced in [131]. In this study, ten branches (the same as 

partial ageing case in temporal model) are considered to have normal wear. For these 

branches, observed condition input is set to be 1.1 (normal wear), and measured condition 

input is set to be 1.1 (medium/normal wear).  
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System reliability indices and intervention costs are shown in Table 6-29 and Table 6-30. 

HSF>1 gives worse reliability performance and higher repair costs; the differences grow 

with the asset age. This can also be seen on the asset health score profile when initial age 

is 21 yr.  

Table 6-29: System reliability results for modified Health Score Factor (deterministic 

approach)  

Initial 

Age 

(yr) 

Factor Value EENS (MWh/yr) LOLP (p.u.) 

1 

Default 25026.99 0.022158 

Modified 25409.17 0.023288 

21 

Default 31488.89 0.029703 

Modified 32079.82 0.033744 

31 

Default 54997.05 0.060845 

Modified 56740.34 0.064795 

Table 6-30: Total repair costs for modified Health Score Factor (deterministic approach) 

Initial 

Age 

(yr) 

Total Repair Costs for Different Repair Types (M£) 

Minimal 

Repair 

Minor 

Repair 

Major 1 

Repair 

Major 2 

Repair 
Replacement 

1 57.854 92.827 191.284 290.629 3823.450 

21 159.908 262.280 537.475 759.363 8603.250 

31 378.208 621.794 1263.011 1743.277 19925.436 
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Figure 6-43: Asset HI at the end of simulation period with different health score factors 

(deterministic approach)  
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Figure 6-44: Number of repair with modified health score factor for different initial ages 

(deterministic approach) 

6.4.5 Impact of Ageing Reduction Factor  

Ageing reduction factor is initially introduced to decelerate the asset ageing rate in order 

to avoid assets at low Health Score/HI deteriorating faster than high Health Score/HI. In 

this study, the default value is calculated from the Ageing Reduction Factor calibration 

table (Table 6-22). The modified values are:  

• when initial age = 1, ARF = 1;  

• when initial age = 21, ARF = 1.15; 

• when initial age = 31, ARF = 1.4. 

The reliability results show that at early age (initial age = 1), the differences of both 

reliability indices are quite small which can be treated as the same; when assets are in 

service for a certain time (initial age = 21&31), the results show that the ARF≠1 leads 

to better system performance. The results for asset HI at the end of simulation period also 

show that the ageing reduction factor has no influence on young assets; whilst it can 

decelerate asset deterioration process when assets get old. The repair costs are also lower 

than default case.  
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Table 6-31: System reliability results for modified Ageing Reduction Factor 

(deterministic approach) 

Initial 

Age 

(yr) 

Factor Value EENS (MWh/yr) LOLP (p.u.) 

1 

Default 25026.99 0.022158 

Modified 25507.03 0.022163 

21 

Default 31488.89 0.029703 

Modified 30197.88 0.028516 

31 

Default 54997.05 0.060845 

Modified 52887.38 0.058525 

Table 6-32: Total repair costs for modified Ageing Reduction Factor (deterministic 

approach) 

Initial 

Age 

(yr) 

Total Repair Costs for Different Repair Types (M£) 

Minimal 

Repair 

Minor 

Repair 

Major 1 

Repair 

Major 2 

Repair 
Replacement 

1 54.709 89.784 180.322 267.428 2974.686 

21 144.126 235.804 484.804 695.496 7375.003 

31 338.836 557.865 1136.235 1564.905 17775.375 
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c). Initial Age = 31
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Figure 6-45: Asset HI at the end of simulation period with different ageing reduction 

factors (deterministic approach)  
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Figure 6-46: Number of repair with modified ageing reduction factor for different initial 

ages (deterministic approach) 

6.4.6 Impact of Generation Reliability   

The base-case deterministic HI studies are repeated with ageing generating units, where 

the parameters are the same as generation reliability study in temporal model. Compared 

to the case of temporal model (Table 6-19), reliability results are worse. They again show 

that ageing generation has a significant, negative impact on system and nodal reliability; 

EENS and LOLP indices are drastically larger than in the base cases. EENS indices show 

that load curtailments in the north are higher than the south due to higher generation 

capacity. However, LOLP results are not that different at buses with connected generation.  

In this case, bus 10 becomes the most reliable bus. The reason is no generators are 

connected to bus 10, therefore the outages of generators have no impact on bus 10. And 

bus 10 is supplied by two transformer links, one cable and two overhead lines which 

reduces the probability of interrupted power supply. Although bus 9 is also connected to 

five links, its reliability is much lower. This is because the power transferred on link 

between bus 9 and bus 3 (branch 6) highly relies on the transformer link (branch 7) 

connected to bus 3. Once an outage of the transformer occurs, branch 6 has to supply bus 

3 to satisfy its load. Hence, the load curtailment at bus 9, as well as its probability, is 

higher than bus 10. 
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Table 6-33: System reliability results with generation reliability (deterministic 

approach)  

Initial Age (yr) 
Generator 

Reliability  
EENS (MWh/yr) LOLP (p.u.) 

1  

Without  25026.99 0.022158 

With  781626.97 0.063002 

21 

Without  31488.89 0.029703 

With  900208.39 0.071164 

31  

Without  54997.05 0.060845 

With  1032267.41 0.082021 

 

Figure 6-47: Nodal EENS with generation reliability (deterministic approach) 
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Figure 6-48: Nodal LOLP with generation reliability (deterministic approach) 

6.5 Probabilistic Asset Health Modelling   

6.5.1 Pre-Processor for Asset Health Deterioration  

In this research, the number of MC simulations n in Eq. (5-28) and Eq. (5-29) is 1000. 

The transition matrix M for the same asset with different values of n are provided in Table 

7, Table 8 and Table 9 in Appendix, as well as the corresponding computational time. It 

can be seen that 𝑛 = 1000 can save the computational time while ensuring the transition 

accuracy. Two transition approaches are applied to access asset HI transition matrix M. 

Examples of the entire matrix M of one single asset has been given in Appendix. Table 

6-34 and Table 6-35 provide the elements in the matrix M of one asset from each group 

(OHL, Tx; Cable) at three virtual ages (1, 21, 31).  

Transition to Any HI 

As the initial asset age increases, the probabilities of asset transitions towards higher HIs 

increase; there are very few transitions when assets are young. Cables have higher 

transition probabilities than OHLs and transformers, whilst transformers are close to OHL.  
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Table 6-34: Elements M(x,i-j) when asset moves to any HI 

Asset/yr 

Elements M(x, i-j) 

1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 

OHL/1 0.025 0.002       

OHL/21 0.088 0.036 0.016   0.044 0.030 0.014 

OHL/31      0.06 0.032 0.046 

Tx/1 0.002        

Tx/21 0.098 0.052 0.014 0.005  0.061 0.02 0.008 

Tx/31      0.091 0.012 0.009 

Cable/1 0.024 0.003       

Cable/21 0.111 0.069 0.021 0.014  0.069 0.026 0.017 

Cable/31      0.039 0.034 0.03 

Asset/yr 2-6 3-4 3-5 3-6 4-5 4-6 5-6  

OHL/1         

OHL/21  0.022 0.044      

OHL/31 0.018 0.033 0.029 0.008 0.02 0.013 0.023  

Tx/1         

Tx/21  0.03       
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Tx/31  0.019 0.004  0.01 0.004 0.006  

Cable/1         

Cable/21  0.044 0.026  0.04    

Cable/31 0.023 0.056 0.026 0.013 0.02 0.013 0.014  

Transition to Next HI 

In this case, there are five transitions only. Similar conclusions as in the previous case 

can be drawn. This approach is simpler and faster to apply in the SMC procedure; 

however, it offers less diversity in asset degradation and consequent repairs. 

Table 6-35: Elements M(x,i-j) when asset moves to next HI 

Asset/Yr 

Elements M(x, i-j) 

1-2 2-3 3-4 4-5 5-6 

OHL/1 0.02     

OHL/21 0.104 0.056 0.063   

OHL/31  0.098 0.094 0.089 0.019 

Tx/1 0.001     

Tx/21 0.115 0.083 0.071   

Tx/31  0.168 0.121 0.161  

Cable/1 0.04     

Cable/21 0.134 0.057 0.085   

Cable/31  0.128 0.076 0.093 0.005 
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6.5.2 Base Case Studies   

The following cases are studied for two transition approaches:  

• all assets with initial ages of 1 year and initial HI=1; 

• all assets with initial age of 21 years and initial HI=2; 

• all assets with initial age of 31 years and initial HI=3.  

6.5.2.1 Transition to Any HI 

The results at system and node level show that the network reliability decreases as asset 

initial age increases. In this approach, the worst performance occurs at bus 6, followed by 

bus 3, 8 and 4. All of these buses have no generating units, which contributes to the load 

curtailment. Bus 6 is connected to two transmission lines; either of them becoming 

unavailable leads to load curtailment. Bus 3 also has considerable load curtailment but 

slightly better than 6 due to one more transmission link connected. The difference of load 

curtailment between bus 4 and 8 is small. The difference of the probabilities, however, is 

significant. The reason is that the demand at bus 4 is much smaller than bus 8. But bus 4 

is connected to only two transmission line (similar to bus 6). In the southern area, load 

curtailment also occurs at bus 5, 9 and 10 due to the lack of generators and/or relatively 

higher load demand. In the north, the relatively worse performance occurs at bus 14 and 

18. The reason for bus 14 are lack of generators and limited transmission capacity due to 

two transmission links. Bus 18 is connected to a nuclear generator with a large capacity 

(400MW). The load, however, at bus 18 is the biggest. The reason for load curtailment at 

bus 18 is mainly due to the large consumption of power by the link between bus 17 and 

18 (branch 30). 
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Table 6-36: System reliability results for transition to any HI (probabilistic approach) 

Initial 

Age 

(yr) 

EENS (MWh/yr) LOLP (p.u.) 
Total Repair Cost 

(M£)  

1 20146.92 0.019224 78.58 

21 24155.77 0.019966 208.92 

31 33813.35 0.021610 321.02 

 

Figure 6-49: Nodal EENS for different initial ages for transition to any HI (probabilistic 

model) 
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Figure 6-50: Nodal LOLP for different initial ages for transition to any HI (probabilistic 

model) 

Average asset HIs at the end of the simulation period, rounded to the nearest integer, are 

shown by deterioration methods, initial virtual ages and asset groups in the following 

table. For OHL and transformers, initial asset ages contribute significantly to worsening 

of HIs, whilst HI results are similar for “older” cables (initial age is 21 and 31). 

Table 6-37: Asset profiles at the end of simulation period for transition to any HI 

Initial 

Age 

(yr) 

Asset 

Numbers of Assets in Each HI Category 

HI1 HI2 HI3 HI4 HI5 HI6 

1 

OHL 23 8     

Tx 5      

Cbl 1 1     

21 

OHL 9 16 3 3   

Tx 1 1 3    
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Cbl 1 1     

31 

OHL 10 10 8 2  1 

Tx 1  1 2 1  

Cbl   1 1   

Average virtual ages of branch assets at the end of simulation period for “to any HI” 

deterioration are shown in Fig. 6-51. For young assets, the majority of assets’ virtual age 

is 10 years, because there were either minimal (𝑞𝑚 = 1.0) or no repairs, and default 

aggregated in-service factor 𝜑𝑚 = 1 is used. On the other hand, for older assets whose 

initial age is 31 yr, only a few assets have virtual age of 40 years, because higher levels 

of repair types are applied.  

 

Figure 6-51: Asset HI at the end of simulation period for transition to any HI 

(probabilistic model) 

 

Figure 6-52: Asset virtual age at the end of simulation period for transition to any HI 

(probabilistic model) 
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6.5.2.2 Transition to Next HI 

There is no significant difference in system reliability results between the two 

deterioration approaches (“to any HI” and “to next HI”). In a similar manner, total asset 

intervention costs are higher when the assets are older; however, there is a big difference 

in costs between two deterioration approaches for older assets. This is caused by 

transitions to worse HIs and more demanding repair requirements in the “to any HI” 

approach. This approach is deemed better suited to real-life systems based on comparison 

with real data on repair types and numbers of “older” assets. 

The results at system and node level show that the network reliability decreases as asset 

initial age increases. In the south, the most unreliable bus is bus 6, followed by 3, 8, 4, 9 

and 10. In the south, the load curtailment occurs at bus 14 and 18. The reasons are similar 

to the transition to any HI.  

Table 6-38: System reliability results for transition to next HI (probabilistic approach) 

Initial 

Age 

(yr) 

EENS (MWh/yr) LOLP (p.u.) 
Total Repair Cost 

(M£)  

1 21825.47 0.018573 78.64 

21 25436.92 0.019726 89.29 

31 34484.55 0.022363 113.85 
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Figure 6-53: Nodal EENS for different initial ages for transition to next HI 

(probabilistic model) 

 

Figure 6-54: Nodal LOLP for different initial ages for transition to next HI 

(probabilistic model) 

This transition approach gives similar HI profiles to the previous one, and the results are 

slightly better. The results also show the same phenomenon: for OHL and transformers, 

initial asset ages contribute significantly to worsening of HIs, whilst HI results are similar 

for “older” cables.  
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Table 6-39: Asset profiles at the end of simulation period for transition to next HI 

Initial 

Age 

(yr) 

Asset 

Numbers of Assets in Each HI Category 

HI1 HI2 HI3 HI4 HI5 HI6 

1 

OHL 25 6     

Tx 5      

Cbl 2      

21 

OHL 5 17 7 2   

Tx  3 2    

Cbl  1  1   

31 

OHL 6 14 8 3   

Tx 1   4   

Cbl  1 1    

In the case of “to next HI” deterioration, virtual age profile of young assets is very similar 

to the profile in the previous approach with possibly different values for individual 

branches. However, age profiles for “older” assets (initial ages are 21 and 31) are higher 

because less demanding repairs are done.  
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Figure 6-55: Asset HI at the end of simulation period for transition to next HI 

(probabilistic model) 

 

Figure 6-56: Asset virtual age at the end of simulation period for transition to next HI 

(probabilistic model) 

6.5.3 Asset Repairs in Base Case Studies   

Table 6-40 and Table 6-41 present the number of repairs, classified by initial ages 1, 21 

and 31, for each asset group using both transition approaches. The total numbers of asset 

interventions are 139, 147 and 158 for transition to any HI, and 130, 138 and 164 for 

transition to next HI, which are relatively similar. When assets are young, there is almost 

no difference in repair types between two deterioration approaches and the total costs are 

similar as well. For older assets, transition to any HI approach produces transitions to 

worse HIs, which require higher level of interventions, including replacements, and more 

funding. Hence, there exists a significant difference between the two approaches. 
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Table 6-40: Total number of repairs in the simulation period for transition to any HI 

Initial 

Age 

(yr) 

Asset Minimal Minor Major 1 Major 2 Replacement 

1 

OHL 132 1    

Tx 3     

Cbl 3     

21 

OHL 103 22 4 3 5 

Tx 2 1  1 1 

Cbl 4   1  

31 

OHL 94 24 9 2 9 

Tx 6 3  2 1 

Cbl 5 3   1 

Table 6-41: Total number of repairs in the simulation period for transition to next HI 

Initial 

Age 

(yr) 

Asset Minimal Minor Major 1 Major 2 Replacement 

1 

OHL 127 1    

Tx      

Cbl 2     
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21 

OHL 106 19 3 1  

Tx 4 1    

Cbl 4     

31 

OHL 108 28 7 1  

Tx 11 1 1   

Cbl 4 2 1   

Fig. 6-55 and Fig. 6-56 show the results of the average down-time and number of repairs 

of each branch for both transition approaches, respectively. The longest out-of-service 

times are obtained for transformer branches 7, 15, 17, 14 and 16; the increased initial age 

significantly contributes to the down-time increase; they are much smaller for OHLs. On 

the other hand, OHLs fail most frequently but there is no regular pattern related to 

individual branch ages.  

 

Figure 6-57: Average down-time of each branch for different initial ages for transition 

to any HI (probabilistic approach) 
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Figure 6-58: Number of repair in each branch for different initial ages for transition to 

any HI (probabilistic approach) 

 

Figure 6-59: Average down-time of each branch for different initial ages for transition 

to next HI (probabilistic approach) 

 

Figure 6-60: Number of repair in each branch for different initial ages for transition to 

next HI (probabilistic approach) 
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6.5.4 Asset Trajectories in Base Case Studies   

Fig. 6-59, Fig. 6-60 and Fig. 6-61 show an asset in each group (i.e. overhead line, 

transformer and cable) movements between HIs and virtual age changes within one 

simulation year.  

Overhead Line 

An OHL in the 1st year had one minimal repair with no change of HI1. Its virtual age at 

the end of the first year is equal to 8760h minus repair times (𝑞𝑚 = 1 in Table 5-6). An 

OHL had HI2 at the beginning of the 21st year and experienced a failure in the 7284th hour. 

Then a minor repair improved health to HI1 and brought down the virtual age to 16 years 

and 5828h (𝑞𝑚 = 0.8). In the 31st year, an OHL had a transition from HI3 to HI4 and no 

virtual age change due to minimal repair. 

Transformer  

In these three study years, all the transformers experienced no repairs and there are no 

changes on HIs. Their virtual ages are equal to their in-service times which are 8760h.  

Cable  

A cable at young age had two failures in the first simulation year with no change of HI1. 

Its virtual age at the end of the first year is equal to 8760h minus repair. The same process 

applies to a cable in the 21st year as well. In the 31st year, a cable experienced two failures. 

Minimum repair does not change HI3, however major 1 (𝑞𝑚 = 0.6) repair starting in the 

5182nd hour improved health to HI1 and brought virtual age back to 18yr and 3110h.  
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Figure 6-61: Transitions and repairs of an asset in each type in Year 1 
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Figure 6-62: Transitions and repairs of an asset in each type in Year 21 
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Figure 6-63: Transitions and repairs of an asset in each type in Year 31 
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6.5.5 Sensitivity Studies  

The following sensitivity studies are presented based on the transition approach to any 

HI: 

• Impact of in-service factor 𝜑𝑚;  

• Impact of a reduced set of repairs;  

• Impact of external variables.  

6.5.5.1 Impact of In-service Factor 

In the base case, in-service factor 𝜑𝑚 = 1. In this study, cases with 𝜑𝑚 = 1.1 and 𝜑𝑚 =

0.9 are studied.  

System-wide results are shown in Table 6-42. They show in-service factor and system 

reliability, as well as repair costs, are positively correlated. The total intervention costs 

vary in ranges [-11.5% - 4.6%], [-13.9% - 7.0%] and [-24.5% - 11.7%] for initial ages 1, 

21 and 31, respectively. This shows high sensitivity of total intervention costs to input 

parameters 

Table 6-42: System-based results for different in-service factors (probabilistic approach) 

Initial Age 

(yr) 
Study Case 

EENS 

(MWh/yr) 
LOLP (p.u.) 

Total Repair 

Cost (M£)  

1 

Base Case 20146.92 0.019224 78.58 

𝜑 = 0.9 19685.09 0.017192 69.51 

𝜑 = 1.1 22854.30 0.021370 82.20 

21 

Base Case 24155.77 0.019966 208.92 

𝜑 = 0.9 21405.68 0.018493 179.79 

𝜑 = 1.1 26143.12 0.020235 223.60 
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31 

Base Case 33813.35 0.021610 321.02 

𝜑 = 0.9 31122.63 0.021062 242.36 

𝜑 = 1.1 36777.84 0.023128 358.68 

6.5.5.2 Impact of A Reduced Set of Repairs 

The simplified set of repairs are given in Table 6-43:  

Table 6-43: Simplified set of repairs 

Repair Type Repair Factor 𝒒𝒎 

Minimal Repair 1 

Minor Repair 0.7 

Major Repair 0.5 

Replacement 0 

The reduced set of repairs presents similar reliability indices to the base cases and always 

gives smaller total costs because “Major 2” category is not used.  

Table 6-44: System-based results for different sets of repairs (probabilistic approach) 

Initial Age 

(yr) 
Study Case 

EENS 

(MWh/yr) 
LOLP (p.u.) 

Total Repair 

Cost (M£)  

1 

Base Case 20146.92 0.019224 78.58 

Reduced 

Repair Set 
19693.59 0.019235 71.49 
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21 

Base Case 24155.77 0.019966 208.92 

Reduced 

Repair Set 
23531.66 0.019977 166.50 

31 

Base Case 33813.35 0.021610 321.02 

Reduced 

Repair Set 
31754.74 0.020845 284.13 

6.5.5.3 Impact of External Variables 

Assumed location and duty variables are shown in Table 6-45:  

Table 6-45: Location and duty variables 

Factor OHL 
Outdoor 

Transformer 
Cable 

Location (𝑧1) 1.3 1.2 1 

Duty (𝑧2) 1.0 1.2 1.5 

The results show that 𝑧1 > 1.0  and 𝑧2 > 1.0  have a negative impact on the system 

reliability. Compared to the other sensitivity studies, exogenous variables give the most 

significant difference to base case. The results indicate that low-mild external factors can 

provide better reliability indices and lower intervention costs.  
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Table 6-46: System-based results for different external variables (probabilistic 

approach) 

Initial Age 

(yr) 
Study Case 

EENS 

(MWh/yr) 
LOLP (p.u.) 

Total Repair 

Cost (M£)  

1 

Base Case 20146.92 0.019224 78.58 

External 

Variables 
24241.25 0.019973 103.77 

21 

Base Case 24155.77 0.019966 208.92 

External 

Variables 
28295.87 0.020000 239.13 

31 

Base Case 33813.35 0.021610 321.02 

External 

Variables 
36320.05 0.022489 392.55 

The number of asset repairs in the simulation period for this study is presented in Fig. 6-

62. The higher number of repairs compared to the base case occurred in the majority of 

branches, indicating a negative effect of factors 𝑧1 > 1.0; 𝑧2 > 1.0.  

Asset HI profiles and virtual ages are shown in Fig. 6-63 and Fig. 6-64 for the same study 

and parameters. It can be found that asset HIs and virtual ages are often higher in the base 

case because fewer interventions and lower levels of interventions are carried out. 
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Figure 6-64: Number of repair in each branch with different external variables 

(probabilistic approach) 
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Figure 6-65: Asset HI at the end of simulation period with different external variables 

(probabilistic approach) 
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Figure 6-66: Asset virtual age at the end of simulation period with different external 

variables (probabilistic approach) 
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6.6 Comparison  

Table 6-47 presents the system level reliability indices for the three models. Since 

temporal does not include asset age as an input or asset HI as an output, the results of 

temporal model, to some extent, provide a “reference” value to deterministic and 

probabilistic approach.  

By comparing probabilistic approach to deterministic approach, UK deterministic HI 

approach gives higher unreliability results, particularly when the initial asset age grows 

older. Comparison is also made between the total costs for the probabilistic approach 

(Table 6-36 for “to any HI” approach and Table 6-38 for “to next HI” approach) and for 

the deterministic HI approach (Table 6-24). It shows that deterministic approach gives 

much higher costs in all cases but one (initial age = 1, minimal repair). If the average 

repair costs are used in the deterministic approach instead, the totals of £153.34M, 

£395.81M and 916.18M for initial ages of, respectively, 1, 21 and 31 years, are still much 

higher than in the probabilistic case. This indicates that the use of exponential functions 

can be challenged.  

Table 6-47: Comparisons of base cases in three models  

Initial 

Age 

(yr) 

Model  EENS (MWh/yr) LOLP (p.u.) 

1  

Temporal 24003.54 0.017717 

Deterministic 25026.99 0.022158 

Probabilistic (to any HI) 20146.92 0.019224 

Probabilistic (to next HI) 21825.47 0.018573 

21 

Temporal 27519.17 0.019566 

Deterministic 31488.89 0.029703 
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Probabilistic (to any HI) 24155.77 0.019966 

Probabilistic (to next HI) 25436.92 0.019726 

31  

Temporal 31491.83 0.020205 

Deterministic 54997.05 0.060845 

Probabilistic (to any HI) 33813.35 0.021610 

Probabilistic (to next HI) 34484.55 0.022363 

Furthermore, transition to any HI approach produces more diverse intervention and asset 

health profiles, as well as higher repair costs. This approach is general and deemed better 

because the level of repair costs is more realistic when compared to UK real-life figures. 

6.7 Chapter Summary 

Network reliability analyses are performed on three models: temporal model, 

deterministic approach and probabilistic approach.  

In temporal model, impact of ageing asset is studied. The results show that ageing assets 

have a negative impact on system reliability. Then impact of correlation is analysed, 

which is based on the correct operation of the temporal model. Results illustrate the 

detrimental effect of the increasing correlation level, as well as the combination of 

different correlations. Besides, impact of generation reliability is also studied, where 

results show a significant and negative impact on system reliability.  

In deterministic approach, base cases are classified by asset initial age: 1 year, 21 years 

and 31 years. Results show a decreasing trend of system reliability as asset initial age 

increases. Impacts of several factors in the deterministic functions are studied: location 

and duty factor, health score factor and ageing reduction factor. Only ageing reduction 

factor study gives a better system performance, whilst the others lead to worse reliability. 

Generation reliability is also analysed within deterministic approach which has again a 

significant and negative impact on system reliability.  
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In probabilistic approach, base cases are also classified by asset initial age: 1 year, 21 

years and 31 years; and two transition approaches are applied: “to any HI” and “to next 

HI”. Results indicate system reliability reduces as asset initial age rises. Transition to any 

HI approach is deemed better suited to real-life systems. Asset repairs and trajectories are 

also provided in the base case study. Three sensitivity studies are carried out within this 

approach: in-service factor, reduced set of repair and external variables.  

A comparison among the developed models is made, which draws a conclusion that 

probabilistic approach is more realistic in terms of reliability results, along with repair 

costs. 
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7.1 Conclusions  

In this research, a higher level aggregated network planning methodology is proposed to 

address asset interventions, reinforcements and quality-of-supply investments. The focus 

of this research is put on the developed probabilistic simulation methodology whose 

primary goal is to find impact of optimized asset interventions and reinforcements on the 

overall system performance, as well as on individual assets.  

The first version of the probabilistic simulation methodology Temporal Asset Health 

Modelling. The modelling blocks in this model include nodal loads on an hourly basis, 

component operating states, uncertain renewable generations, spatial correlation and 

optimal power flow model. All of these blocks are built within sequential Monte Carlo 

simulation. In temporal model, asset in-service time is sampled from exponential 

distribution for assets in normal operating stage, and modified Weibull distribution for 

ageing assets; out-of-service time is sampled from exponential distribution. The impacts 

of ageing assets as well as correlation between wind speeds and nodal load are studied.  

The second version of the probabilistic simulation methodology is Deterministic Asset 

Health Models. Within the sequential Monte Carlo simulation, asset in-service time is 

sampled from hazard functions based on deterministic functions of asset health scores for 

different asset types; out-of-service times are sampled from exponential distributions. 

This approach is able to incorporate asset age and asset health score and address the 

impact of several external influence factors on different asset types.  

The most important contribution is the third version of the probabilistic simulation 

methodology that is Probabilistic Asset Health Modelling. In this approach, asset virtual 

age is introduced to describe asset condition, along with asset heath indices. Two 

processes are modelled: asset degradation process and asset condition improvement 

process. Asset in-service time is sampled using a proportional hazard model (PHM) in 

combination with the Kijima II virtual age model, which makes this approach is able to 

reflect the impact from some external (or environmental) factors, as well as the impact 

CHAPTER 7  CONCLUSIONS AND FUTURE 

WORKS  
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from the last in-service and out-of-service cycle; out-of-service time is determined by 

random sampling from the uniform distribution, which depends on repair types. In this 

approach, the impacts of asset initial age, exogenous factors and reduced set of repairs 

are studied. Overall, this approach is able to incorporate asset virtual age and HI, and 

generate an asset intervention plan which includes the total repair cost.  

Moreover, a comparison is made mainly between deterministic approach and probability 

approach. It presents that the probabilistic model gives more realistic results when 

compared to the deterministic approach as deterministic approach gives very high 

reliability indices and repair costs. Besides, the probabilistic asset health approach makes 

it possible to obtain averages of individual asset health indices and virtual ages, as well 

as pdfs. These are exactly the information required by the UK national regulator. 

7.2 Future Works 

The following studies can be done to improve the current model:  

• The impact of reactive power can be included in the current model. For example, 

the calculation of reactive power at each load point needs to be reconsidered and 

improved, and reactive power generated from wind farms can be involved.  

• A comparison of test cases with wind/load correlation when the hazard function 

is modelled via time and asset HIs can to be done.  

• The simulation period can be extended to 60 years to receive global results in 

probabilistic approach.  

Then, following this research, optimization of different types of interventions, such as 

maintenance, repair and replacement needs to be considered. This completes the link 

between the last and the first stage in Fig. 3-1. The optimization can be done by 

developing a higher level optimization model that considers the entire planning period. 

The optimization model also needs to account for:  

• The consideration of different uncertainties: wind, future demand, component 

unavailability, etc.; 

• The establishment of optimization objective and criteria for intervention;  

• A trade-off between costs of interventions and system reliability (or outage costs).  
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1. Asset Classification  

Table 1: Classification of Assets [131] 

Asset Category Subcomponent Observed Condition 

132kV Transformer 

Main 

Transformer  

1. Main tank condition 

2. Coolers/Radiator condition  

3. Bushings condition  

4. Kiosk condition  

5. Cable boxes condition 

Tapchanger  

1. Tapchanger external condition 

2. Internal Condition 

3. Drive Mechanism Condition 

4. Condition of Selector & Divertor 

Contacts 

5. Condition of Selector & Divertor 

Braids 

132kV Cable (Non 

Pressurised) 
N/A None 

132kV Cable (Oil) N/A None 

132kV Cable (Gas) N/A None 

132kV Towers 

Tower 

Steelwork 

1. Tower Legs  

2. Bracings  

3. Crossarms  

4. Peak 

Tower 

Paintwork 
Paintwork Condition 

Foundations Foundation Condition 

132kV Fittings N/A 
1. Tower fittings  

2. Conductor fittings  

APPENDIX 
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3. Insulators - Electrical  

4. Insulators - Mechanical 

132kV Tower Line 

Conductor 
N/A 

1. Visual Condition  

2. Midspan joints 

2. PoF Curve Parameters  

Table 2: PoF curve parameters [131] 

Functional Failure Category K-Value C-Value 

Health 

Score 

Limit 

HV Switchgear (GM) - Primary 0.0052% 1.087 4 

HV Switchgear (GM) - Distribution (GM) 0.0067% 1.087 4 

EHV Switchgear (GM) (33kV & 22kV assets 

only) 
0.0223% 1.087 4 

EHV Switchgear (GM) (66kV assets only) 0.0512% 1.087 4 

HV Transformer (GM) 0.0078% 1.087 4 

EHV Transformer/ 132kV Transformer 0.0454% 1.087 4 

Towers 0.0545% 1.087 4 

Fittings 0.0096% 1.087 4 

OHL Conductor 0.0080% 1.087 4 

Pressurised Cable (EHV UG Cable (Oil) and 

132kV UG Cable (Oil)) 
2.0944% 1.087 4 

Pressurised Cable (EHV UG Cable (Gas) and 

132kV UG Cable (Gas)) 
4.5036% 1.087 4 

Submarine Cables 0.0202% 1.087 4 

Non Pressurised Cable 0.0658% 1.087 4 
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3. PoF Calculation  

Table 3: Normal Expected Life [131] 

Asset Register Category Sub-division 

Normal 

Expected 

Life (yr) 

132kV Transformer (GM)  

Transformer – Pre 1980 60 

Transformer – Post 1980 50 

Tapchanger 60 

132kV OHL (Tower Line) 

Conductor 

ACSR - greased 55 

ACSR - non-greased 50 

AAAC 60 

Cad Cu 50 

Cu 70 

Other  50 

132kV Tower 

Steelwork 80 

Foundation –  

Fully Encased Concrete 
95 

Foundation – Earth Grillage 60 

Paint System – Galvanising 30 

Paint System – Paint 20 

132kV Fittings  40 

132kV UG Cable (Oil) 

Aluminium sheath –  

Aluminium conductor 
75 

Aluminium sheath –  

Copper conductor 
75 

Lead sheath –  

Aluminium conductor 
80 

Lead sheath –  80 
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Copper conductor 

132kV UG Cable (Gas) 

Aluminium sheath –  

Aluminium conductor 
65 

Aluminium sheath –  

Copper conductor 
70 

Lead sheath –  

Aluminium conductor 
75 

Lead sheath –  

Copper conductor 
75 

132kV Sub Cable  60 

4. Deterministic Hazard Function 

Deterministic hazard function:  

𝜆(𝑡) = 𝐾 ∙ 𝛾 + 𝑎 ∙ 𝑒𝛽2𝑡 + 𝑏 ∙ 𝑒2𝛽2𝑡 + 𝑐 ∙ 𝑒3𝛽2𝑡 

Here, 𝛾 is introduced to control the failure intensity and avoid unrealistically high values 

of reliability indices. The steps for finding the proper value of 𝛾 are given as follows:  

1. For each asset type, it starts from no control, meaning 𝛾 = 1. Use average up-time 

as an indicator to decide if the indicator fits the reality. For example, the average 

up-time over a simulation year for a cable whose age is 1 year is about 400-500 

hours. In this case, the average up-time is considered short for a young cable.  

2. Reduce to 𝛾 = 0.1. The average up-time for the cable with the same condition is 

4340-8745 hours. This value is better compared to the previous step.  

3. The approximated range of the 𝛾 value is between 0.1 and 1. The lower boundary 

value can be increased or decreased to receive a more realistic value. In the case 

of the cable, the lower boundary is reduced to 0.08, which makes its average up-

time locate between 8746 and 8760 hours.  
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5. Transition Matrix M 

5.1 Entire Transition Matrix M with Different Approaches  

Table 4: Matrix M using normalization by rows 

 

  

Year 1→2 1→3 1→4 1→5 1→6 2→3 2→4 2→5 2→6 3→4 3→5 3→6 4→5 4→6 5→6

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0.05 0.087 0.104 0.14 0 0 0 0 0 0 0 0 0 0

3 0.0194 0.02469 0.04409 0.02469 0.0388 0 0.01923 0.01923 0.01923 0.02 0 0.04 0.02299 0.02299 0.01923

4 0.01455 0.01871 0.03119 0.02287 0.03326 0 0.01667 0.03333 0.01667 0 0 0 0.01818 0.00909 0.01681

5 0.01182 0.00946 0.01418 0.01655 0.04255 0 0.01587 0.01587 0.01587 0.01429 0 0.01429 0 0.02439 0.05303

6 0.00522 0.01044 0.01567 0.02089 0.02611 0 0.01538 0 0.06154 0.01389 0.05556 0 0.00781 0.03125 0.05263

7 0.00567 0.01416 0.01416 0.017 0.01983 0 0 0 0.04839 0 0.01408 0.02817 0.0229 0.01527 0.08633

8 0.00915 0.00915 0.00915 0.01524 0.03963 0 0.01639 0.01639 0.01639 0 0.0137 0.0137 0.00763 0.0229 0.07299

9 0.00332 0.00997 0.00332 0.00664 0.0299 0 0.01639 0.01639 0.03279 0 0 0.02703 0.01527 0.0458 0.05926

10 0.01053 0 0.01404 0.01404 0.02807 0 0 0 0.01724 0 0.01333 0 0.024 0.056 0.02273

11 0.00376 0 0.01128 0.02256 0.02256 0 0 0 0.01667 0 0.01351 0 0.01681 0.02521 0.0438

12 0.012 0.004 0.004 0.008 0 0.01667 0 0 0 0 0.0274 0 0.01709 0 0

13 0.01646 0.02058 0.01646 0.00823 0 0.01613 0.01613 0.03226 0 0.05479 0 0 0.00862 0 0

14 0.01316 0.01754 0.02193 0.01316 0 0.03226 0 0.03226 0 0.01333 0 0 0.00806 0 0

15 0.00939 0.02347 0.01408 0.01878 0 0 0 0 0 0 0 0 0.00775 0.00775 0

16 0.0201 0.01005 0.00503 0.00503 0 0 0 0 0 0.01176 0 0 0.03077 0 0

17 0.04712 0.01047 0.02094 0 0 0 0 0.01493 0 0.01163 0.01163 0 0.00781 0 0

18 0.01705 0.02841 0.01705 0.00568 0 0 0.02667 0.01333 0 0.02326 0 0 0.00758 0 0

19 0.0061 0.0122 0.01829 0.02439 0 0 0 0 0 0.01124 0 0 0.01449 0 0

20 0.01299 0 0.02597 0.01299 0 0 0 0 0 0.02222 0.01111 0 0.01429 0 0

21 0.02055 0.0137 0 0.00685 0 0.01282 0.01282 0.01282 0 0.02299 0 0 0.01389 0 0

22 0.00714 0.02857 0.00714 0.00714 0 0 0.01282 0 0 0.01136 0 0 0 0 0

23 0.01504 0.00752 0.01504 0.00752 0 0.01282 0 0 0 0.02198 0 0 0.00676 0 0

24 0.00787 0.02362 0 0.00787 0 0 0.01266 0 0 0 0 0 0 0 0

25 0.01639 0 0.01639 0 0 0.02532 0.01266 0 0 0.01064 0 0 0 0 0

26 0.02542 0 0.01695 0 0 0 0 0 0 0.01053 0 0 0 0 0

27 0.0177 0.02655 0 0 0 0.02469 0.01235 0 0 0.01064 0 0 0 0 0

28 0 0.00926 0 0.00926 0 0.025 0 0 0 0.02041 0 0 0.00621 0 0

29 0.01887 0.00943 0.01887 0 0 0.01282 0 0 0 0.0101 0 0 0 0 0

30 0.0099 0.0099 0.0099 0.0099 0 0.02532 0.02532 0 0 0 0 0 0.01212 0 0

31 0.01031 0.01031 0.02062 0 0 0.01316 0.02632 0 0 0 0 0 0.01205 0 0

32 0.01075 0.04301 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0.02273 0.01136 0 0 0 0 0.01333 0 0 0.00917 0 0 0 0 0

34 0.01176 0.01176 0 0 0 0.02632 0 0 0 0 0 0 0 0 0

35 0.01205 0 0 0 0 0.01333 0.01333 0 0 0.01786 0 0 0 0 0

36 0.03659 0.02439 0.02439 0 0 0.01351 0 0 0 0.01802 0 0 0 0 0

37 0.01333 0.02667 0.02667 0 0 0.01316 0.01316 0 0 0.00893 0 0 0.00565 0 0

38 0.01429 0.02857 0 0 0 0 0 0 0 0.00877 0 0 0 0 0

39 0.04478 0.04478 0.01493 0 0 0.01316 0 0 0 0 0 0 0 0 0

40 0 0 0.01667 0 0 0 0.01282 0 0 0 0 0 0 0 0

41 0 0 0 0 0 0.03896 0.01299 0 0 0 0 0 0 0 0

42 0 0.0339 0.01695 0 0 0 0.0137 0 0 0.0082 0 0 0 0 0

43 0.01786 0.01786 0 0 0 0 0 0 0 0 0 0 0 0 0

44 0 0.03704 0 0 0 0.0411 0 0 0 0 0 0 0 0 0

45 0.01923 0.03846 0.01923 0 0 0.01429 0 0 0 0 0 0 0 0 0

46 0.02083 0.02083 0 0 0 0.02857 0 0 0 0 0 0 0 0 0

47 0.04348 0.02174 0 0 0 0.01449 0.01449 0 0 0.00741 0 0 0 0 0

48 0.02326 0.02326 0 0 0 0.02899 0 0 0 0.01471 0 0 0 0 0

49 0 0 0 0 0 0.04412 0 0 0 0.0073 0 0 0 0 0

50 0.02439 0 0 0 0 0.01538 0 0 0 0 0 0 0 0 0

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

52 0.025 0.025 0 0 0 0.01538 0 0 0 0 0 0 0 0 0

53 0 0.02632 0 0 0 0.03077 0 0 0 0 0 0 0 0 0

54 0.08108 0 0 0 0 0 0 0 0 0.0069 0 0 0 0 0

55 0.02941 0.02941 0 0 0 0.01515 0.01515 0 0 0.01389 0 0 0 0 0

56 0 0.03125 0 0 0 0.03077 0 0 0 0 0 0 0 0 0

57 0 0.03226 0 0 0 0 0 0 0 0 0 0 0 0 0

58 0.06667 0 0 0 0 0.01587 0 0 0 0 0 0 0 0 0

59 0 0.03571 0 0 0 0 0 0 0 0.00671 0 0 0 0 0

60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



 

219 

 

Table 5: Matrix M using normalization by columns – transition to any HI 

 

  

Year 1→2 1→3 1→4 1→5 1→6 2→3 2→4 2→5 2→6 3→4 3→5 3→6 4→5 4→6 5→6

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0.018 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0.01969 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0.02748 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0.02065 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0.01887 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0.02149 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0.03699 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0.03001 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0.0297 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0.06505 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0.06139 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0.08721 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0.07962 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0.08304 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0.10189 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0.08613 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0.11034 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0.1447 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0.15408 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 0.07857 0.05714 0.03214 0.025 0 0.05139 0.02222 0.02083 0 0 0 0 0 0 0

22 0.08036 0.04911 0.01786 0.02232 0 0.06667 0.02074 0.02074 0 0.01887 0 0 0.03846 0 0

23 0.12903 0.06452 0.01075 0.01613 0 0.06947 0.02908 0.021 0 0.02778 0 0 0.04444 0 0

24 0.11111 0.04167 0.02083 0.02083 0 0.06151 0.02812 0.01406 0 0.01863 0.01863 0 0.01515 0 0

25 0.13793 0.06897 0.0431 0 0 0.07605 0.02662 0.03042 0 0.05612 0.0051 0 0.03448 0 0

26 0.25 0.04545 0.03409 0.03409 0 0.07676 0.04264 0.02345 0 0.03846 0.02564 0 0.01754 0 0

27 0.17544 0.10526 0.03509 0.03509 0 0.10142 0.04717 0.01179 0 0.04247 0.03861 0 0.02098 0 0

28 0.26316 0.13158 0.05263 0.02632 0 0.0989 0.02473 0.02473 0 0.02076 0.0346 0 0.03488 0 0

29 0.26316 0.15789 0 0.15789 0 0.08723 0.04984 0.03427 0 0.03822 0.03503 0 0.01093 0 0

30 1 0 0 0 0 0.11397 0.05147 0.02206 0 0.04063 0.02813 0 0.02392 0 0

31 0 0 0 0 0 0.03896 0.0303 0.02597 0.00433 0.05775 0.03647 0.01216 0.03043 0.01304 0.00476

32 0 0 0 0 0 0.04306 0.02392 0.00478 0.01435 0.06601 0.0297 0.0066 0.02033 0.0122 0.00858

33 0 0 0 0 0 0.03684 0.03158 0.06316 0.01053 0.04965 0.0461 0.00709 0.03422 0.01141 0.0122

34 0 0 0 0 0 0.01829 0.07927 0.04268 0.0122 0.05769 0.04231 0.00769 0.02583 0.01845 0.00725

35 0 0 0 0 0 0.02878 0.09353 0.06475 0.01439 0.05085 0.02119 0 0.03846 0.0035 0.00334

36 0 0 0 0 0 0.05455 0.04545 0.04545 0 0.03125 0.04464 0.00446 0.02007 0.00669 0.0031

37 0 0 0 0 0 0.05263 0.08421 0.05263 0.01053 0.07547 0.0283 0 0.03642 0.00331 0.01166

38 0 0 0 0 0 0.03947 0.14474 0.02632 0 0.05641 0.04103 0.01538 0.03175 0.00952 0.02222

39 0 0 0 0 0 0.03333 0.13333 0.03333 0 0.04545 0.03977 0.01136 0.0463 0.00926 0.00806

40 0 0 0 0 0 0.0625 0.08333 0.0625 0 0.1118 0.04348 0.00621 0.03106 0.00932 0.00763

41 0 0 0 0 0 0.13158 0.02632 0 0.02632 0.04348 0.08696 0.00725 0.05136 0.02417 0.01707

42 0 0 0 0 0 0.03333 0.06667 0.06667 0.03333 0.06504 0.04065 0.01626 0.06667 0.02857 0.01389

43 0 0 0 0 0 0.08333 0.04167 0.04167 0 0.06422 0.00917 0.01835 0.05085 0.02373 0.02423

44 0 0 0 0 0 0.1 0.25 0.05 0 0.07619 0.04762 0.01905 0.04676 0.00719 0.02832

45 0 0 0 0 0 0.07692 0 0 0 0.07609 0.07609 0.05435 0.06182 0.02545 0.02151

46 0 0 0 0 0 0.16667 0 0.08333 0.08333 0.05405 0.05405 0.02703 0.06615 0.05058 0.03542

47 0 0 0 0 0 0 0.125 0.25 0.125 0.09091 0.06061 0 0.09914 0.0431 0.05372

48 0 0 0 0 0 0 0 0.25 0 0.05455 0.07273 0.05455 0.0625 0.05288 0.02881

49 0 0 0 0 0 0 0.33333 0 0 0.06667 0.06667 0.06667 0.09043 0.03723 0.03067

50 0 0 0 0 0 0.5 0 0 0 0.05714 0.02857 0.02857 0.09524 0.04762 0.04242

51 0 0 0 0 0 0 0 0.5 0 0.03226 0 0.06452 0.02703 0.07432 0.07362

52 0 0 0 0 0 0 0 0 0 0 0.03571 0.07143 0.02985 0.09701 0.08734

53 0 0 0 0 0 0 0 0 0 0 0 0.12 0.03419 0.17094 0.08747

54 0 0 0 0 0 0 0 0 0 0 0 0 0.03261 0.08696 0.12788

55 0 0 0 0 0 0 0 0 0 0.1 0.05 0.05 0.03614 0.14458 0.10465

56 0 0 0 0 0 0 0 0 0 0 0 0.05882 0.01389 0.08333 0.19417

57 0 0 0 0 0 0 0 0 0 0 0.06667 0.13333 0.03125 0.17188 0.19048

58 0 0 0 0 0 0 0 0 0 0.2 0 0.3 0.01923 0.23077 0.23077

59 0 0 0 0 0 0 0 0 0 0 0 0.2 0.025 0.3 0.2716

60 0 0 0 0 0 0 0 0 0 0 0 0 0 0.48148 0.30252
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Table 6: Matrix M using normalization by columns – transition to next HI 

 

5.2 Determination of n Value 

Three values of n are investigated; the computational time is for one single asset.  

• 𝑛 = 100: computational time = 2.923s; 

• 𝑛 = 1000: computational time = 23.025s; 

• 𝑛 = 2000: computational time = 46.831s; 

Year 1→2 1→3 1→4 1→5 1→6 2→3 2→4 2→5 2→6 3→4 3→5 3→6 4→5 4→6 5→6

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0.0228 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0.03075 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0.02626 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0.02022 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0.02982 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0.03901 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0.01845 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0.02256 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0.0641 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0.06301 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0.08626 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0.0848 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0.10839 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0.10784 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0.10549 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0.14005 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0.15714 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0.14915 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 0.11952 0 0 0 0 0.05607 0 0 0 0 0 0 0 0 0

22 0.0905 0 0 0 0 0.07327 0 0 0 0.04762 0 0 0 0 0

23 0.0995 0 0 0 0 0.07966 0 0 0 0.07447 0 0 0 0 0

24 0.1326 0 0 0 0 0.10495 0 0 0 0.04196 0 0 0.11111 0 0

25 0.17834 0 0 0 0 0.08696 0 0 0 0.0628 0 0 0.07143 0 0

26 0.20155 0 0 0 0 0.11092 0 0 0 0.10081 0 0 0 0 0

27 0.27184 0 0 0 0 0.1009 0 0 0 0.0692 0 0 0.11765 0 0

28 0.34667 0 0 0 0 0.12524 0 0 0 0.06462 0 0 0.07692 0 0

29 0.55102 0 0 0 0 0.15195 0 0 0 0.1 0 0 0.08642 0 0

30 1 0 0 0 0 0.175 0 0 0 0.09582 0 0 0.04505 0 0

31 0 0 0 0 0 0.08052 0 0 0 0.1236 0 0 0.06897 0 0

32 0 0 0 0 0 0.05932 0 0 0 0.06888 0 0 0.08947 0 0

33 0 0 0 0 0 0.04204 0 0 0 0.08475 0 0 0.07921 0 0

34 0 0 0 0 0 0.04075 0 0 0 0.04592 0 0 0.07692 0 0

35 0 0 0 0 0 0.06209 0 0 0 0.06977 0 0 0.04955 0 0.02353

36 0 0 0 0 0 0.04181 0 0 0 0.12401 0 0 0.07563 0 0.02128

37 0 0 0 0 0 0.06909 0 0 0 0.10174 0 0 0.12734 0 0.01818

38 0 0 0 0 0 0.05078 0 0 0 0.1189 0 0 0.11567 0 0.04225

39 0 0 0 0 0 0.04115 0 0 0 0.12914 0 0 0.09058 0 0.02994

40 0 0 0 0 0 0.06867 0 0 0 0.17216 0 0 0.13793 0 0.03209

41 0 0 0 0 0 0.10599 0 0 0 0.11157 0 0 0.15152 0 0.02262

42 0 0 0 0 0 0.10825 0 0 0 0.15966 0 0 0.14695 0 0.03831

43 0 0 0 0 0 0.16763 0 0 0 0.19005 0 0 0.15217 0 0.0411

44 0 0 0 0 0 0.11111 0 0 0 0.20673 0 0 0.19928 0 0.04658

45 0 0 0 0 0 0.17188 0 0 0 0.14917 0 0 0.22348 0 0.08011

46 0 0 0 0 0 0.23585 0 0 0 0.20455 0 0 0.20259 0 0.07398

47 0 0 0 0 0 0.20988 0 0 0 0.30909 0 0 0.27602 0 0.07561

48 0 0 0 0 0 0.29688 0 0 0 0.29008 0 0 0.33175 0 0.1

49 0 0 0 0 0 0.57778 0 0 0 0.35714 0 0 0.36872 0 0.10086

50 0 0 0 0 0 1 0 0 0 0.52041 0 0 0.48366 0 0.10103

51 0 0 0 0 0 0 0 0 0 0.36364 0 0 0.43846 0 0.1549

52 0 0 0 0 0 0 0 0 0 0.11905 0 0 0.3299 0 0.16393

53 0 0 0 0 0 0 0 0 0 0 0 0 0.18571 0 0.11818

54 0 0 0 0 0 0 0 0 0 0.18919 0 0 0.19298 0 0.1596

55 0 0 0 0 0 0 0 0 0 0.16667 0 0 0.32075 0 0.21264

56 0 0 0 0 0 0 0 0 0 0.04 0 0 0.34146 0 0.27491

57 0 0 0 0 0 0 0 0 0 0.125 0 0 0.32143 0 0.32444

58 0 0 0 0 0 0 0 0 0 0.38095 0 0 0.5 0 0.36025

59 0 0 0 0 0 0 0 0 0 0.53846 0 0 0.73684 0 0.57018

60 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1
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Table 7: Matrix M with 𝑛 = 100 

 

Year 1→2 1→3 1→4 1→5 1→6 2→3 2→4 2→5 2→6 3→4 3→5 3→6 4→5 4→6 5→6

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0.020833 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0.021277 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0.021739 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0.022222 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0.045455 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0.047619 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0.0625 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0.055556 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0.073529 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0.063492 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0.050847 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0.107143 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0.090909 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0.117647 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 0 0 0.074074 0 0 0.054795 0.041096 0.013699 0 0 0 0 0 0 0

22 0.08 0.08 0 0 0 0.015385 0.030769 0.015385 0 0 0 0 0 0 0

23 0.285714 0 0 0.047619 0 0.126984 0.047619 0.015873 0 0 0.142857 0 0 0 0

24 0 0.071429 0.071429 0 0 0.087719 0.017544 0.017544 0 0 0.071429 0 0 0 0

25 0.083333 0.083333 0 0 0 0.08 0 0 0 0.052632 0 0 0 0 0

26 0.1 0 0 0.1 0 0.042553 0.06383 0.042553 0 0.043478 0.043478 0 0 0 0

27 0.375 0 0 0 0 0.146341 0.02439 0 0 0.043478 0.043478 0 0 0 0

28 0.2 0.2 0 0 0 0.083333 0.027778 0.055556 0 0.035714 0 0 0 0 0

29 0 0.666667 0 0 0 0.032258 0.032258 0.032258 0 0.032258 0.032258 0 0.095238 0 0

30 1 0 0 0 0 0.107143 0.107143 0.071429 0 0.03125 0.0625 0 0 0 0

31 0 0 0 0 0 0.047619 0.095238 0 0 0.125 0 0.03125 0 0 0

32 0 0 0 0 0 0.111111 0 0 0 0.035714 0 0 0 0.032258 0

33 0 0 0 0 0 0 0.0625 0.125 0 0.034483 0.034483 0 0.032258 0 0.045455

34 0 0 0 0 0 0 0.076923 0 0 0.148148 0.037037 0 0.03125 0 0

35 0 0 0 0 0 0.083333 0 0 0 0 0.090909 0 0.027778 0.027778 0

36 0 0 0 0 0 0.181818 0.090909 0.181818 0 0.190476 0 0 0.029412 0 0

37 0 0 0 0 0 0 0.166667 0 0 0.052632 0 0 0.078947 0.026316 0.030303

38 0 0 0 0 0 0 0 0 0 0 0 0 0.027778 0 0.028571

39 0 0 0 0 0 0 0 0 0 0.166667 0.055556 0 0 0 0

40 0 0 0 0 0 0 0 0 0 0.214286 0.071429 0 0.026316 0 0

41 0 0 0 0 0 0 0 0.2 0 0 0.1 0.1 0.05 0 0.052632

42 0 0 0 0 0 0.25 0 0 0 0 0.125 0 0 0.052632 0

43 0 0 0 0 0 0 0.25 0 0 0.125 0.125 0 0.028571 0.028571 0.04878

44 0 0 0 0 0 0 0 0 0 0 0 0 0.028571 0 0.02439

45 0 0 0 0 0 0 0.333333 0.333333 0 0 0 0 0.090909 0.060606 0.04878

46 0 0 0 0 0 0 0 0 0 0 0 0 0 0.034483 0

47 0 0 0 0 0 0 0 0 0 0.142857 0.142857 0 0.107143 0.035714 0.046512

48 0 0 0 0 0 0 1 0 0 0 0 0 0.076923 0.038462 0.066667

49 0 0 0 0 0 0 0 0 0 0 0 0.25 0.208333 0.083333 0.022727

50 0 0 0 0 0 0 0 0 0 0.333333 0 0 0.176471 0.117647 0.020833

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.142857

52 0 0 0 0 0 0 0 0 0 0 0 0.5 0.142857 0 0.02381

53 0 0 0 0 0 0 0 0 0 0 0 0 0 0.083333 0.186047

54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.057143

55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.151515

56 0 0 0 0 0 0 0 0 0 0 0 0 0 0.090909 0.142857

57 0 0 0 0 0 0 0 0 0 0 0 0 0 0.181818 0.166667

58 0 0 0 0 0 0 0 0 0 0 0 0 0 0.125 0.190476

59 0 0 0 0 0 0 0 0 0 0 0 0 0.142857 0.142857 0.235294

60 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0.285714
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Table 8: Matrix M with 𝑛 = 1000 

 

  

Year 1→2 1→3 1→4 1→5 1→6 2→3 2→4 2→5 2→6 3→4 3→5 3→6 4→5 4→6 5→6

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0.009 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0.020492 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0.025105 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0.022532 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0.021954 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0.032548 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0.020882 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0.027251 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0.029233 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0.053952 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0.06366 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0.09915 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0.056604 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0.075 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0.117117 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0.089796 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0.100897 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0.134663 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0.152738 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 0.105442 0 0.017007 0 0 0 0 0 0 0 0 0 0 0 0

22 0.097458 0.050847 0.050847 0.008475 0 0.056972 0.022489 0.016492 0 0 0.015152 0 0.086957 0 0

23 0.13369 0.069519 0.026738 0.005348 0 0.054313 0.023962 0.022364 0 0.034783 0.043478 0 0 0 0

24 0.06993 0.076923 0.041958 0.048951 0 0.064516 0.022071 0.027165 0 0.026316 0.019737 0 0.027778 0 0

25 0.192661 0.06422 0.036697 0.009174 0 0.088512 0.054614 0.009416 0 0.015464 0.010309 0 0.010638 0 0

26 0.197368 0.078947 0.039474 0.039474 0 0.067797 0.03178 0.021186 0 0.033058 0.024793 0 0.03876 0 0

27 0.244898 0.081633 0.020408 0.020408 0 0.069767 0.025581 0.027907 0 0.033835 0.018797 0 0.02 0 0

28 0.483871 0.032258 0 0.064516 0 0.102828 0.046272 0.015424 0 0.031469 0.017483 0 0.005952 0 0

29 0.538462 0.153846 0 0 0 0.108187 0.032164 0.026316 0 0.041667 0.016026 0 0.010363 0 0

30 1 0 0 0 0 0.078767 0.037671 0.034247 0 0.048048 0.024024 0 0.027907 0 0

31 0 0 0 0 0 0 0 0 0 0 0.018072 0.009036 0.017021 0.008511 0.011111

32 0 0 0 0 0 0 0 0 0 0 0.031949 0.00639 0.034351 0.01145 0.010309

33 0 0 0 0 0 0 0 0 0 0 0.023891 0.006826 0.025362 0.003623 0.004464

34 0 0 0 0 0 0 0 0 0 0 0.039146 0.010676 0.016892 0.006757 0.012245

35 0 0 0 0 0 0 0 0 0 0 0.030303 0.015152 0.045455 0.00974 0.007692

36 0 0 0 0 0 0 0 0 0 0 0.058091 0.008299 0.019231 0.003205 0.003521

37 0 0 0 0 0 0 0 0 0 0 0.050228 0.022831 0.058642 0.009259 0.01634

38 0 0 0 0 0 0 0 0 0 0 0.010471 0.010471 0.024615 0.012308 0.002967

39 0 0 0 0 0 0 0 0 0 0 0.038889 0.022222 0.050898 0.005988 0.014327

40 0 0 0 0 0 0 0 0 0 0 0.031646 0 0.035608 0.014837 0.01626

41 0 0 0 0 0 0 0 0 0 0 0.036765 0.058824 0.049275 0.02029 0.023499

42 0 0 0 0 0 0.088235 0.029412 0.029412 0 0.067227 0.016807 0.016807 0.05136 0.02719 0.022556

43 0 0 0 0 0 0 0.103448 0.137931 0.103448 0.036036 0.072072 0.027027 0.047923 0.01278 0.026829

44 0 0 0 0 0 0.105263 0 0 0.052632 0.03125 0.0625 0.041667 0.093023 0.023256 0.044601

45 0 0 0 0 0 0.176471 0.176471 0 0 0.094118 0.164706 0.023529 0.063433 0.029851 0.024943

46 0 0 0 0 0 0.166667 0 0.25 0.083333 0.046875 0.0625 0.0625 0.063241 0.035573 0.034707

47 0 0 0 0 0 0.2 0.4 0 0 0.035714 0.107143 0.035714 0.060606 0.034632 0.042735

48 0 0 0 0 0 0 0.333333 0 0 0.041667 0.125 0.0625 0.07109 0.028436 0.042735

49 0 0 0 0 0 0 0 0 0 0.052632 0.105263 0.026316 0.083333 0.0625 0.044872

50 0 0 0 0 0 0 0 0 0 0 0.206897 0.034483 0.08284 0.04142 0.051392

51 0 0 0 0 0 0 0 0 0 0 0.043478 0.043478 0 0.108844 0.101512

52 0 0 0 0 0 0 0 0 0 0 0 0 0.029851 0.074627 0.081731

53 0 0 0 0 0 0 0 0 0 0.052632 0 0.105263 0.016667 0.141667 0.080311

54 0 0 0 0 0 0 0 0 0.5 0 0 0 0.019608 0.098039 0.151261

55 0 0 0 0 0 0 0 0 0 0 0 0.125 0.033708 0.123596 0.137255

56 0 0 0 0 0 0 0 0 0 0 0.214286 0.071429 0 0.144737 0.116541

57 0 0 0 0 0 0 0 0 0 0 0 0.111111 0.046154 0.123077 0.179916

58 0 0 0 0 0 0 0 0 0 0 0 0.125 0.018519 0.203704 0.18593

59 0 0 0 0 0 0 0 0 0 0 0 0.4 0.069767 0.27907 0.323171

60 0 0 0 0 0 0 0 0 0 0 0 0 0 0.428571 0.330435
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Table 9: Matrix M with 𝑛 = 2000 

 

 

Year 1→2 1→3 1→4 1→5 1→6 2→3 2→4 2→5 2→6 3→4 3→5 3→6 4→5 4→6 5→6

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0.023 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0.018858 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0.027229 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0.024698 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0.027575 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0.03125 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0.029869 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0.028325 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0.031052 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0.05036 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0.073691 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0.070632 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0.08 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0.091304 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0.099522 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0.09458 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0.103286 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0.117801 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0.163205 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 0.095745 0 0 0.014184 0 0 0 0 0 0 0 0 0 0 0

22 0.1 0.056522 0.017391 0.019565 0 0.062777 0.017725 0.023634 0 0.050505 0.020202 0 0.058824 0 0

23 0.127027 0.037838 0.021622 0.010811 0 0.054893 0.025457 0.013524 0 0.029412 0.004902 0 0.011494 0 0

24 0.131313 0.107744 0.020202 0.010101 0 0.060017 0.026205 0.023669 0 0.024735 0.024735 0 0.007576 0 0

25 0.111111 0.083333 0.050926 0.023148 0 0.070513 0.020147 0.022894 0 0.02681 0.018767 0 0.017143 0 0

26 0.14557 0.082278 0.037975 0.044304 0 0.073887 0.033401 0.019231 0 0.028698 0.022075 0 0.02765 0 0

27 0.220183 0.036697 0.036697 0.036697 0 0.090395 0.040678 0.028249 0 0.038685 0.015474 0 0.015209 0 0

28 0.410959 0.041096 0.027397 0.041096 0 0.112565 0.041885 0.018325 0 0.043328 0.032929 0 0.028213 0 0

29 0.371429 0.142857 0.028571 0 0 0.08953 0.040971 0.019727 0 0.040128 0.024077 0 0.013477 0 0

30 0.6875 0.125 0 0 0 0.097391 0.043478 0.026087 0 0.044822 0.032457 0 0.028777 0 0

31 0 0 0 0 0 0 0 0 0 0 0.015244 0.009146 0 0.00655 0.007634

32 0 0 0 0 0 0 0 0 0 0 0.020472 0.011024 0 0.010352 0.018476

33 0 0 0 0 0 0 0 0 0 0 0.027961 0.009868 0 0.011788 0.002212

34 0 0 0 0 0 0.060423 0.036254 0.021148 0.009063 0.040422 0.036907 0.005272 0.02403 0.005545 0.012048

35 0 1 1 0 0 0.055363 0.051903 0.020761 0.00692 0.049815 0.035055 0.012915 0.025 0.008929 0.007505

36 0 0 0 0 0 0.052632 0.05668 0.05668 0.012146 0.057087 0.047244 0.005906 0.034247 0.013699 0.007042

37 0 0 0 0 0 0.057971 0.062802 0.019324 0.009662 0.064516 0.023656 0.012903 0.053512 0.010033 0.008078

38 0 0 0 0 0 0.056818 0.056818 0.034091 0.022727 0.037209 0.037209 0.009302 0.041391 0.011589 0.012121

39 0 0 0 0 0 0.06 0.086667 0.02 0 0.099256 0.057072 0.004963 0.028476 0.0067 0.015782

40 0 0 0 0 0 0.032258 0.080645 0.080645 0.008065 0.075145 0.049133 0.017341 0.033281 0.004754 0.010974

41 0 0 0 0 0 0 0 0 0 0 0.05 0.033333 0 0.026398 0.024707

42 0 0 0 0 0 0.101266 0.088608 0.050633 0.037975 0.062271 0.032967 0.03663 0.057471 0.036125 0.032298

43 0 0 0 0 0 0 0 0 0 0 0.069388 0.028571 0 0.04007 0.026538

44 0 0 0 0 0 0 0 0 0 0 0.061321 0.033019 0 0.020561 0.031653

45 0 0 0 0 0 0.051282 0.051282 0.102564 0 0.036842 0.063158 0.047368 0.07014 0.016032 0.035348

46 0 0 0 0 0 0.125 0.0625 0.1875 0.0625 0.042683 0.067073 0.042683 0.090129 0.045064 0.034637

47 0 0 0 0 0 0.157895 0.157895 0.105263 0 0.028369 0.099291 0.014184 0.079518 0.028916 0.046688

48 0 0 0 0 0 0 0 0 0 0 0.072581 0.024194 0 0.031915 0.038919

49 0 0 0 0 0 0.444444 0.111111 0.111111 0 0.066667 0.066667 0.057143 0.080357 0.050595 0.028785

50 0 0 0 0 0 0 0.75 0 0 0.066667 0.066667 0.033333 0.083893 0.033557 0.05074

51 0 0 0 0 0 0 0 0 0 0 0.026667 0.066667 0 0.076642 0.075594

52 0 0 0 0 0 0 0 0 0 0.014925 0.014925 0.104478 0.008032 0.076305 0.085747

53 0 0 0 0 0 0 1 0 0 0.017544 0.035088 0.070175 0.02193 0.078947 0.119647

54 0 0 0 0 0 0 1 0 1 0.041667 0.020833 0.125 0.02439 0.092683 0.108604

55 0 0 0 0 0 0 0 0 0 0.026316 0 0.131579 0.038251 0.103825 0.118936

56 0 0 0 0 0 0 0 0 0 0 0 0.09375 0.037736 0.194969 0.13181

57 0 0 0 0 0 0 0 0 0 0 0 0.16 0.024 0.168 0.193613

58 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0.188119 0.240196

59 0 0 0 0 0 0 0 0 0 0 0 0.235294 0.02439 0.256098 0.274194

60 0 0 0 0 0 0 0 0 0 0.166667 0 0.25 0.033333 0.283333 0.352423


