Design Space Exploration of
Concurrency Mapping to FPGAs in
Weather and Climate Applications with
Xilinx SDSoC OpenCL, SDSoC C++

and Vivado

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
IN THE FACULTY OF SCIENCE AND ENGINEERING

2022
Moteb Salem Alghamdi

Department of Computer Science

University of Manchester

Contents

Abstract 14

Declaration 16

Copyright 17

Acknowledgements 18

1 Introduction 20

1.1 Motivationo e e e e 21

1.2 ResearchQuestions 24

1.3 Thesis Contributions 25

1.4 Thesisstructure i 26

1.5 Publications 27

2 Background and Related Work 28

2.1 Field Programmable Gate Arrays (FPGA) 28

2.2 High Level Synthesis Tools 29

23 SDSoCHLS 30

23.1 SDSoCOpenCL 32

232 SDSoCCH++ o e 34

24 Xilinx Vivadoo 37

2.5 Vivado and SDSoC OpenCL/C++ Optimisation Strategies 40
2.5.1 Kernel Computation and Data-movement Optimisation Attributes

and Pragmas oo 42

2.6 HPC-based Benchmark Applications 45

2.6.1 Shallow Water Dynamics Model 45

2.6.2 LFRic Weather and Climate Model mini-app 53

2

2.63 Summary e e e 55

27 RelatedWork 55
2.7.1 Single HPC-Kernel accelerators 56
2.77.2 Exploratory studies L oo 58
2.7.3 Comparison and Survey studies 61
2.7.4 Related Work Summary 63
Research Methodology and Study Experiments Setup 64
3.1 Target FPGA Hardware 64
3.2 System and Experimental Setup L. 67
33 Exploratory Study 67

3.3.1 Exploratory Study (1): SWM Concurrency Mapping Exploration 67
3.3.2 Exploration Study (2): MatVec Kernel with SDSoC OpenCL/C++

and VivadoHLS 68

34 Comparison Study 69
3.4.1 Comparison Study (1): SWM Implementations In SDSoC OpenCL

versus Vivadoo oo 69

34.2 Comparison Study (2): MatVec Kernel implementations in

SDSoC OpenCL and C++ Versus Vivado HLS 69
3.4.3 Comparison Study Metrics 70
3.5 Summary ... e e 71

Exploratory Study (1) Part One: L.100 kernel Concurrency Mapping 72

4.1 L100 Concurrency and Coding Options 72
42 Study Setup 74
4.3 L100 kernel mapping using SDSoC OpenCL 75
4.3.1 SDSoC OpenCL L100 Initial Implementation 76
4.3.2 Mapping Mechanism Experiments 80
4.3.3 Instruction-level parallelism 81
434 Dataparallelism 82
4.3.5 Functional parallelism 85
43.6 Discussion 87
4.4 L100 kernel mapping using VivadoHLS 89
4.4.1 Vivado Initial Implementation 90
4.4.2 Mapping Mechanism Experiments 96
4.4.3 Instruction-level parallelism 97

3

4.4.4 Functional Parallelism 97

445 Discussion 102
45 Summary e e e 108
Exploratory Study (1) Part Two: SWM Multiple-Kernels Mapping 109
5.1 SWM Kernels Mapping Using SDSoC OpenCL 110
5.1.1 Optimise the SWM SDSoC OpenCL kernels 110
5.1.2 Exploring the problemsize 113
5.1.3 Kernel-to-kernel communication exploration 113
5.2 SWM Application Mapping Using Vivado 122
5.2.1 Optimise the SWM Vivadokernels 122
5.2.2 Finding the problemsize 123
5.2.3 Kernel-to-Kernel Communication Exploration 123
5.3 Summary ... e e 125

Comparison Study (1): SWM Implementations In SDSoC OpenCL Versus

Vivado 127
6.1 L100 concurrency mapping comparison 127
6.1.1 Performance Analysis 128
6.1.2 Resource Usage Analysis. 134
6.2 Multiple kernel mapping comparison 134
6.2.1 Performance Analysis 135
6.2.2 Resource Usage Analysis. 137
6.3 Development Effort and Hardware Level of Expertise 137
6.4 Summary 138

Exploration Study (2): MatVec Kernel with SDSoC OpenCL, SDSoC C++

and Vivado 140
7.1 MatVec Reference Implementation 141
7.2 MatVec Xilinx Vivado Design 141
7.2.1 MatVec Xilinx Vivado Design Overview 142
7.2.2 MatVec Xilinx Vivado Kernel Code 142
7.2.3 MatVec Vivado Hardware Design 147
724 MatVec VivadoCPUcode 151
7.3 MatVec OpenCL design, 156
7.3.1 MatVec SDSoC OpenCL Kernelcode 157

4

7.4

7.5
7.6

7.3.2 MatVec SDSoC OpenCL, Hardware Design 162

7.3.3 MatVec SDSoC OpneCL, HostCode 165
MatVec SDSoC C++,design 170
7.4.1 MatVec SDSoC C++, Kernelcode 171
7.4.2 MatVec SDSoC C++, Hardware Design 176
743 MatVecC++HostCode 180
7.4.4 Other SDSoC OpenCL and C++ MatVec Design Alternatives . 182
Summary of MatVec Exploration Study 187
Summary of the Two Exploratory Studies 189
7.6.1 Singlekernel 189
7.6.2 Multiplekernels L oL 189

8 Comparison Study (2): MatVec Kernel implementations in SDSoC OpenCL

and SDSoC C++ Versus Vivado HLS 192

8.1 Performance Analysis 193
8.1.1 Computation Flop Rate (Gflop/s) 193

8.1.2 Application Runtime Considerations 198

8.2 Resource Usage Analysis 201

8.3 Data Movement Analysis 202
8.3.1 Matvec CPU Implementation Comparison 203

8.4 Summary of the MatVec Comparison Study 204

8.5 Summary of the Two Comparison Studies 205
8.5.1 Singlekernel 205

8.5.2 Multiplekernels 205

9 Conclusions and Future Work 207
9.1 Review of Thesis Research Questions 207
9.2 Summary of Contributions 215

9.3 General Recommendations 216
9.4 Limitations and Future Work 217
Bibliography 219
A The Shallow Water Model Source Code 233
A.1 SWM Nine Kernels Host Source Code 233
A.2 SWM Nine Kernels SourceCode 240

B Block designs 249

Word Count: 46498

List of Tables

2.1

2.2

2.3

3.1

4.1

4.2

4.3

Summary of the current available HLS tools and their properties: Avail-
ability Some of the tools are made freely accessible by the develop-
ers, while others require a licence. Target architectures There are
two main FPGA board producers, Xilinx [Wind] and Altera [Wina];
Some target a specific FPGA board; while others target both FPGA
platforms. Computation type demonstrates whether a specific tool
supports the dataFlow or controlFlow paradigm [SMB™]. Input Lan-
guage describes the design entry language of the tool. [KHZ16] [NSP*16].

Information in the empty cells is not available. 31

The properties details of the available Data movers engines in the SD-

SoCC/C++approach. 36
SDSoC OpenCL/C++ and Vivado HLS Kernel Computation and data-
movement Optimisations Attribute and Pragmas. 42

Xilinx Zynq UltraScale+ MPSoC ZCU102 board Available Resources

The performance effects of each optimisation on the L.100 kernel in
SDSoC OpenCL. (Seq) no optimisations; (Max) max DDR memory
ports; (BRAMs) use of BRAM memories; (B) use burst mode; (AP)
use array partitioning e 76
ILP mapping performance of the 1100 kernel in SDSoC OpenCL. (P)
pipelining, (a) or (b) code options (a) or (b) in Figure 4.1; (U) un-
rolling. 81
Data parallelism performance of the L100 kernel in SDSoC OpenCL.:

NDRange. (N) NDRange kernel; (CU) No. of compute units; (WG)
No. of work-groups. 84

4.4

4.5

4.6

4.7

4.8

4.9

4.10

Functional parallelism performance of the L100 kernel in SDSoC OpenCL:

Dataflow. (DF) dataflow ; (F) apply DF to function code style; (L)
apply DF over loops; (M) A kernel per operation; (P) pipeline; (U)
unrolling; N NDRange kernel.

Comparison of the number of compute units (CUs), the number of
command queues (CQs), and loops, and the coding difficulty (score
from 1 to 5) and resource usage of different mechanisms implemented
on the L100 kernel in SDSoC OpenCL.

The performance figures of each optimisation on the L.100 kernel in
Vivado HLS. (Seq) no optimisations; (BRAMs) use of BRAM memo-

ries; (B) use burst mode; (AP) use array partitioning

The resource usage figures of each optimisation on the L.100 kernel in
Vivado HLS. (Seq) no optimisations; (BRAMs) use of BRAM memo-

ries; (B) use burst mode; (AP) use array partitioning.

The performance figures of the ILP and Functional parallelism map-
ping of the L100 kernel in the Vivado approach. (P) pipelining; (a)
code option (a) in Figure 4.1; (DF) dataflow, (F) apply DF to function
code style; (M) A kernel per operation. The blank entries in this table
mean that the information is not available to be reported. The speed up

is relative to the Vivado L100-seq initial implementation.

The resource usage figures of the ILP and Functional parallelism map-
ping of the L100 kernel in the Vivado approach. (P) pipelining; (a)
code option (a) in Figure 4.1; (DF) dataflow, (F) apply DF to function
code style; (M) A kernel per operation.

Comparison of the programming difficulty levels (score from 1 to 5)
between the different mechanisms implemented on the L100 kernel in
the Vivado HLS approach.

5.1

5.2

5.3
54

6.1

6.2

6.3

6.4

7.1

7.2

8.1

8.2

The compute time detail for the three SDSoC OpenCL SWM 5 Ker-
nels optimized versions implementations Versus the SDSoC OpenCL
SWM 5 Kernels un-optimized version. All versions implemented on
ZCU102 FPGA board with a clock frequency of 200 MHz (The maxi-
mum possible frequency). In the "DDR" implementation the host will
explicitly start kernels when previous kernels have completed, so there
is no kernel to kernel marshalling here. Un-optimised SWM kernels

implementations are similar to the L.100_seq implementation in Chap-

terd. ..o 117
Resource Usage Figures of the SDSoC OpenCL SWM Five Kernels

implementations. 122
Performance Figures of the Vivado SWM 5 kernels implementation. . 125

Resource Usage Figures of the Vivado SWM Five Kernels implemen-
tation. 125

The application runtime details of the best L100 SDSoC OpenCL and
Vivado implementations in Chapter4. 128
Total design resource usage figures for the best L100 SDSoC OpenCL
and Vivado implementations in Chapter4. 135
The application runtime details for the SWM five Kernels implemen-
tations in SDSoC OpenCL and Vivado approaches in Chapter 5. . . . 135
Total design resource usage figures for the best SWM five Kernels im-

plementations in SDSoC OpenCL and Vivado approaches in Chapter 5. 137

Latency figures comparison between the SDSoC OpenCL MatVec Dataflow
implementation Versus the SDSoC OpenCL MatVec design with no
Dataflow in terms of Latency (clock cycles) figures. The test design is

One MatVec block with 26 cells. 184
Calc function latency breakdown of the SDSoC OpenCL MatVec Dataflow
implementation Versus the SDSoC OpenCL MatVec design with no
Dataflow. 185

Performance details for the best Matvec implementations from Vi-
vado, SDSoC OpenCL and SDSoC C++. (*: performance results for a
smaller, 1 block/26 cell versions) 199
The best implementations resource usage figures for the MatVec 1P

block and the total system design. 201

9

8.3
8.4

Rates of data movement for the best implementations
Comparison of ZU9 FPGA double-precision Vivado, OpenCL and C++
matrix-vector performance implementations with Intel multicore CPU

performance

10

List of Figures

2.1
2.2
2.3

24
2.5

2.6
2.7

2.8
29

2.10

2.11

3.1

4.1

4.2
4.3

SDSoC Design Flow [SG20].
OpenCL memory model in Xilinx Zynq UltraScale+ MPSoCZCU102.
“SDSoC data motion network components. PS means the processing
system CPU part. Acc means the accelrator par which is the FPGA
(A) is the system port type. (B) are the data mover engines. (C) is the
accelerator interface port type” [Xil21h].
An example of IP Repository in the Vivado IP Catalog.
A full Vivado system design example with an IP kernel integrated to
thedesign. L
An example of the Vivado address editor.
An Arakawa-C grid mapping for the shallow water variables [Sad75,
Papl2]. . . .
SWM nine OpenCL kernels representation.
Halo regions representation in the SWM arrays elements.
A highlight of the data flow of the five main kernels in the SWM coding
algorithm. L
“cubed-sphere mesh as used in GungHo with 12x12 subdivisions per

face, referred to as a C12 mesh. This gives 864 columns of cells”
[AFHT19].

Zynq UltraScale+ MPSoC Top-Level Block Diagram [Xil20].

Pseudocode for the L7100 kernel coding options. A- Wrap the kernel
operations with one for loop. B- Wrap each operation in a loop. C-
Wrap each operation in a function.
Effects of optimisation on resource utilisation.
Bar graph showing the resource utilisation of the optimised concur-

rency mapping implementations listed in Section 4.3.1.

11

38

73
78

82

4.4

4.5

4.6
4.7
4.8
4.9
4.10
4.11

5.1

5.2
53

54

5.5

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

Schedule view of the 11 created CUs for L100-DF-F implementation
from the SDSoC OpenCL buildreports. 86

Bar graph showing the resource utilisation of the optimised concur-

rency mapping implementations listed in Section4.3.2. 87
Vivado L100 kernel IPblock. 92
Vivado L100 Initial implementation system design 93
Vivado L100-DF IPBlock. 101
Vivado L100-DF-F-1-BRAM-Block implementation system design. . 103
Vivado L100-DF-F-7-BRAM-Blocks implementation system design . 104
Vivado L100-M-P-4-BRAM-Blocks implementation system design. . 105

The implementation system design for SDSoC OpenCL Five kernels
with DDR mechanism for kernel-to-kernel communication implemen-
tation systemdesigno 114
OpenCL Pipe IP Block example. 115
The implementation system design for the SDSoC OpenCL Five ker-
nels with Pipes (Version 1) mechanism for kernel-to-kernel communi-
cation implementation system design 119
The implementation system design for the SDSoC OpenCL Five ker-
nels with Pipes (Version 2) mechanism for kernel-to-kernel communi-
cation implementation system design 121

The implementation system design for the Vivado Five kernels with

one external BRAM method for kernel-to-kernel communication . . . 124
Overview of the MatVec Vivado HLS design. 142
The generated MatVec Vivado IPblock. 147
Overview a Vivado two MatVec IP blocks design. 148
Address map example for two Vivado MatVec design. 151
Example of the register map of the Vivado MatVec IP block. 155
Overview of the SDSoC OpenCL MatVec design. 158
Overview of the SDSoC OpenCL one MatVec IP block system design 163
OpenCL MatVecIPblock. 164
Overview of the SDSoC OpenCL four MatVec IP blocks system design 166
Overview of the SDSoC C++ MatVec design. 171
Overview of the SDSoC C++ one MatVec 1P block system design. . . 177
The SDSoC C++ MatVec generated IP block. 178

12

7.13

7.14

8.1

8.2

8.3

B.1

The flops timeline of the Calc function in the SDSoC OpenCL MatVec
no-Dataflow implementation.
The flops timeline of the Calc function in the SDSoC OpenCL MatVec

Dataflow implementation.,

Performance of the Vivado Matrix-vector kernel designs at 310Mhz, as
the number of blocks and cells-per-block varies. Performance figures
here are the kernel "compute time only"
Performance of the OpenCL Matrix-vector kernel designs at 200Mhz
as the number of blocks and cells-per-block varies. Performance fig-
ures here are the kernel "compute time only"
Performance of the C++ Matrix-vector kernel designs at 150Mhz, as
the number of blocks and cells-per-block varies. Performance figures

here are the kernel "compute time only"

Overview of the SDSoC C++ six MatVec IP blocks system design

13

Abstract

DESIGN SPACE EXPLORATION OF CONCURRENCY MAPPING TO
FPGAS IN WEATHER AND CLIMATE APPLICATIONS WITH XILINX
SDSoC OPENCL, SDSOC C++ AND VIVADO
Moteb Salem Alghamdi
A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy, 2022

Recent years have seen increased interest from the HPC community in Field Pro-
grammable Gate Arrays (FPGAs) as an alternative/additional accelerator. This has
been largely due to the slowdown in the transistor scaling and the difficulty of gaining
performance improvement and energy efficiency from the current processing solutions.
General (scientific) software programmers have shied away from the FPGA technol-
ogy because of their perceived lack of programmability. However, various academic
and commercial vendors have now developed High-Level Synthesis (HLS) tools, such
as Xilinx SDSoC OpenCL, SDSoC C++, Vivado HLS, Intel Altera SDK and solu-
tions from Maxeler, which enable the generation of FPGA hardware configurations
from higher-level descriptions. Even though HLS tools aim to minimize the hard-
ware knowledge gap between the software programmers and FPGAs, HLS tool pro-
gramming methodologies are still challenging for the software programmers aiming
to achieve high performance. These HLS tools impose many choices for mapping the
concurrency in HPC applications to FPGAs. The choices are complex as they include
different options available at the programming language level and the HLS tool level
for designing the host code, the kernel code, and the FPGA hardware itself. Further-
more, a wide choice of optimization methods controls the final design of the FPGA
hardware. The many options and different parameter settings available can severely
affect a design’s performance and also the programmer’s productivity and lead to a
large design space exploration problem. The HPC software programmer has to spend
much time finding the appropriate options and parameter settings that provide the best

14

possible design. Furthermore, choosing a suitable HLS tool from those available is an-
other complexity in utilizing HLS tools. This thesis explores and compares the options
and techniques for mapping the concurrency levels of two weather and climate appli-
cations using two high-level HLS tools, Xilinx SDSoC OpenCL and SDSoC C++, and
a low-level HLS tool, Xilinx Vivado HLS, to a single Xilinx Ultrascale+ FPGA board.
Two exploratory and two comparison studies have been conducted, involving many
experiments, to provide insight into the best mapping techniques for performance, re-
sources usage, and programmability in single and multiple kernel solutions. In the
exploratory studies of the design space, data was collected from various implementa-
tions and configurations of the two weather and climate applications. This data is then
utilized and analyzed, using multiple metrics, in the two comparison studies, providing
insights for traditional HPC programmers considering using FPGAs in their applica-
tions and also contributing evidence to support the possible future development of an
efficient methodology for their use.

15

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute

of learning.

16

Copyright

1. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-

ing for administrative purposes.

i1. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to

time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions’), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of

the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/Doculnfo.aspx?
DocID=487), in any relevant Thesis restriction declarations deposited in the Uni-
versity Library, The University Library’s regulations (see http://www.manchester.
ac.uk/library/aboutus/regulations)andin The University’s policy on pre-

sentation of Theses

17

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations
http://www.manchester.ac.uk/library/aboutus/regulations

Acknowledgements

o) o)l

sl ﬁ.\'a_cj 4> 9 JMA-W lS”) sed! oL F Canl SV et
Al ode (Y oy by s

Words cannot describe my gratitude to my supervisor Graham Riley for his dedi-
cated support, guidance, and help. Graham continuously provided encouragement, and
he was always there to assist in any way he could, throughout the ups and downs of
my PhD journey and before in my master’s degree. Thanks to him for enlightening my
knowledge with the fruitful and engaging discussions that shaped this thesis.

I want to thank my friends at the Advanced Processor Technologies group: Abdul-
lah Khalufa, Ahmed Alghamdi, Guillermo, Konstantinos lordanou, and Swapnil, for
their kind help, support, and companionship that have made my study and life in the
UK a wonderful time. A special thanks go to Mike Ashworth and Andrew Attwood
for the help and technical support.

I am indebted to my parents: my dad (Salem), who supported me, stood by me, and
sadly died before he could see me finishing my PhD. I devoted this work to him and my
mom (Ajab), who gave me her love, help, and prayers and made numerous sacrifices to
get me to this point in my life. I am also grateful to my wife (Abrar) for her patience,
love, and support through all these years. She devoted her life to the success of me
and of the kids, Turki and Reema. Words cannot describe all the sacrifices those three
made to help me get through this journey.

My gratitude extends to my brothers: Abdullah, Hamdan, Ahmed, Talal, Ali, and
sisters: Hanan, Dalal, Norah. Without their tremendous understanding and encourage-
ment in the past few years, it would be impossible for me to complete my study.

I am thankful to my closest friends (Hamza, Khaled, Anwar, Fahad), who always
provided support, advice, and help. I also extend my thanks to all Saudi students

fellows who I had the pleasure to know during my time in the UK.

18

I would also like to express my sincere gratitude to my country Saudi Arabia and
Taibah University, for the funding opportunity to undertake my studies and their sup-
port throughout this journey.

19

Chapter 1
Introduction

In recent years, industry and academia have been exploring an alternative computa-
tional form for their application needs [HP19] due to the slowdown in the transistor
scaling and the difficulty of gaining performance improvement from the current pro-
cessing solutions. The continued transistor scaling has not been delivering better en-
ergy scaling; therefore, accelerators (heterogeneous computing) became the new norm
for increasing performance. In addition, energy efficiency is now a priority concern-
ing the high performance community [SP11]. In current dominant HPC architectures,
CPU modules are utilized, coupled with bus-attached GPU accelerators to boost the
performance of the HPC workloads. Undeniably, GPUs provide unbeatable perfor-
mance for the HPC workloads due to their high memory bandwidth, however, they are
power-hungry, and their performance is limited to specific domains [MV 14].

An alternative accelerator that the HPC community has an interest in is Field
Programmable Gate Arrays (FPGAs) due to their better performance-per-watt over
other technologies such as GPUs [MV14]. Recently, FPGAs have been explored
for their potential to accelerate traditional HPC applications [DRP11, HM17, Brol9,
BD19, Bro21, BKB21, MPK21, KPJ*21, KSFNA21, KPK"22]. They have been de-
ployed in a range of HPC applications, for example, in large-scale scientific applica-
tion domains [DRP11,HM17], including weather and climate applications [GFY 14,
ARAMI19,VN14,SKN™16], fluid computations [SHY 14,GFY " 14,KSFNA21], SLAM
algorithms [AEB™16] and linear algebra, e.g. Matrix Multiplication algorithms [DVKGO5,
OPAM21]. FPGAs are also emerging in large-scale computers on the path to Exascale
computing [HM17], such as in the EUROEXA project [Pro20].

Despite the performance-per-watt that FPGAs offer and the growing interest in

their use in HPC applications, they have been, until recently, restricted in their use to a

20

1.1. MOTIVATION 21

narrow group of hardware programmers. This was because the low-level nature of FP-
GAs meant that significant programmer effort was needed to achieve performance lev-
els comparable with traditional architectures. Traditionally, implementing applications
on FPGAs has been delivered through the use of low-level hardware design languages
such as VHDL [Ash10] and Verilog [TMOS8]. These conventional methods require a
high level of hardware design expertise [BRS13]. A hardware design would involve
building using low-level blocks such as gates, registers and multiplexers, in addition to
hand crafting the application’s datapath, the computational pipeline of hardware mod-
ules required, memory management, communication interfaces, and the specification
of the behaviour required of the datapath in every register and model in the design.
These programming languages require extensive low-level hardware knowledge and
significant development time and effort [BRS13].

General (scientific) software programmers have shied away from the FPGA tech-
nology because of the FPGAs’ lack of programmability. However, various academic
and commercial vendors have now developed High-Level Synthesis (HLS) tools [CLN"11]
[KHZ16] which enable the generation of FPGA hardware configurations from higher-
level descriptions, based on such languages as C/C++, OpenCL and Java. HLS tools
convert an application’s algorithm into a low-level register-transfer level (RTL) de-
scription. Several compiler frameworks and languages have been proposed for easy-
to-use FPGA programming methods. All aim for raising the level of abstraction at
which the software programmer can implement an application to be compiled down to
the equivalent of VHDL or Verilog specifications (and then to RTL). Examples of HLS
tools are Xilinx Vivado HLS [VH20], Intel Altera SDK [Int20], Xilinx SDSoC [Xil19]
and Maxeler [Max20].

1.1 Motivation

HLS tool vendors have adopted high-level languages to simplify the FPGA’s pro-
grammability, specifically targeting the HPC software programmers who come new to
FPGAs. Even though HLS tools aim to minimize the hardware knowledge gap between
the software programmers and FPGAs, HLS tool programming methodologies are still
challenging for the software programmers aiming to achieve high performance. Recent
studies have explored these challenges and have been evaluating the HLS tools’ tech-
niques and methods [NSP* 16, CFH" 18, PKB*16], and developing improved optimi-
sation strategies and programming methodologies [SVK,BRS13, GLN"14,CBM 18]

22 CHAPTER 1. INTRODUCTION

to enhance the programmability experience of users of the HLS tools aiming to achieve
high performance. Moreover, researchers from different HPC areas have contributed
to the advancement of the HLS tools programmability by, for example, creating (spe-
cific) fine-tuned accelerator designs [GBLS16, SKN' 16, ZPM18], evaluating mem-
ory design solutions [GCDJ19, Svel6, LWY "17] and developing optimisation meth-
ods [CFH" 18, ARAM19,KPZ*16].

However, other issues remain outstanding in the effort to improve FPGA pro-
grammability in HPC applications, including in weather and climate HPC applica-
tions. Projects such as EUROEXA [Pro20] have been investigating the use of HLS
tools to improve the accessibility of FPGAs, in the context of exascale computing, to

the weather and climate application programmers as well as other application domains.

HPC software programmers already face a complex design problem when choos-
ing how best to map the concurrency in their applications to the heterogeneous hard-
ware resources in traditional HPC systems. Concurrent designs are typically mapped
into high-level language extensions such as MPI to exploit parallelism over the shared
memory nodes typical of current HPC architectures, OpenMP to exploit shared mem-
ory parallelism within a node and OpenACC, OpenCL or CUDA to exploit GPU ac-
celerators. In each of these cases, the target hardware is essentially fixed. With the
introduction of the FPGAs and HLS tools, HPC programmers can control the design
of (some of) the actual hardware itself. This makes the concurrency mapping problem
much more complex since the choices now include language options which control the
design of the FPGA hardware.

For example, OpenCL is portable and easy-to-use [MGMG11] and is being ex-
plored by the HPC community for the acceleration of applications on FPGAs [SVKI18,
Zoh18,WHU18]. However, although OpenCL compilers for FPGAs generate function-
ally correct hardware designs, achieving high performance remains a challenge. The
many options and different parameter settings available can affect a design’s perfor-
mance and also the programmer’s productivity. The different options that the OpenCL
HLS tool provides for use in writing the kernel code and the different optimisation im-
plementation options lead to a design space exploration problem. The HPC software
programmer would spend much time finding the options and parameter settings that
provide the best possible design. In addition, current HPC weather and climate appli-
cations consist of multiple kernels which lead to multiple levels of concurrency in the

algorithms; therefore, porting such algorithms effectively to FPGAs requires another

1.1. MOTIVATION 23

phase of exploration for the software programmer. Several aspects have to be consid-
ered in consolidating the final FPGA design, such as the concurrency mapping choices,
the number of the kernels to map to the FPGAs in the computer system, the size of the
problem which can execute on the FPGAs, the data movement design across the com-
puter system, and the memory hierarchy optimisation. The software programmer has

to have a rationale for choosing among all these options.

HPC software programmers also face another challenge related to choosing a suit-
able HLS tool from those available. A few efforts have been made to address this
challenge, such as the study in [NSPT15]. Choosing the right HLS tool is another
complexity that limits the accessibility of the HLS tools. HLS tools vary in terms of
the required low-level hardware knowledge, level of hardware control, the design flow,
the programming language support they provide, and the learning time they require.
Those differences contribute to the productivity when using the chosen tool, and the
possible performance that can be achieved. For example, the use of the Xilinx High-
Level Productivity Design Methodology approach Xilinx Vivado tool [VH20] requires
the acquisition of deep hardware design skills to benefit from its capabilities fully, and
the programmer needs to perform manual optimisations, that involve several low-level
design stages, manual creation of the hardware solution components while taking care
of the interconnection between the components. In other, relatively higher-level, tools
such as Maxeler, Xilinx SDSoC and SDAccel, programmers are required to directly
control fewer hardware aspects, such as the number of computing units to be used,
the number of memory ports to exploit and the use of some low-level optimisations

through high-level language specifications (e.g. through the use of directives).

Therefore, choosing and using an appropriate HLS methodology for the hardware
design is a research problem, and there is a need for an exploration study from the high-
level scientific programmer’s perspective across the different tools and a comparison
between the HLS tools when developing solutions for the same algorithms to examine

their differences in terms of programmability and performance.

This thesis presents two exploratory studies that collect data from different weather
and climate applications implemented on different HLS approaches independently and
two comparison studies that compare, based on that data gathered, between and across
the HPC applications and HLS approaches. These studies are intended to contribute
to the analysis and evaluation of the challenges regarding the HLS tools programma-

bility and performance. Given the large scope of the problem, we focus on example

24 CHAPTER 1. INTRODUCTION

applications from the weather and climate domain targeting a specific Xilinx system-
on-chip FPGA. The two applications from the weather and climate domain are a well
studied, traditional finite difference Shallow Water Dynamics Model (SWM) [Sad75]
and a modern finite element example of the LFRic atmospheric weather forecasting
model being developed at the UK Met Office [Off21]. For the HLS tools, we focus on
the Xilinx High-Level Productivity Design Methodology approach Xilinx Vivado tool
and the relatively higher level Xilinx SDSoC tool supporting both OpenCL and C++.

In the two exploratory studies, a large number of experiments have been conducted.
The first one is conducted, in two parts, to explore the concurrency mapping problem
of single kernels in the SWM application (in part one) and across multiple kernels in
the application (in part two) utilising the (high-level) SDSoC OpenCL and the (lower-
level) Xilinx High-Level Productivity Design Methodology Vivado approach. In the
second exploratory study, several experiments have been conducted to explore trying to
replicate an existing FPGA design for the LFRic application created using the (lower-
level) HLS tool Xilinx High-Level Productivity Design Methodology Vivado approach
in the (higher-level) HLS tools, SDSoC OpenCL and SDSoC C++). The exploratory
studies collect performance and resource usage data for the different implementation
options (quantitative data). In addition, in the studies we also investigate the different
options available in the HLS tools and in the programming languages used, and com-
ment on the trade-offs involved in their use, including the impact on programmability
(qualitative data).

In the two comparison studies, two evaluations, based on a systematic compari-
son between the Vivado HLS, SDSoC OpenCL and SDSoC C++ tools, are conducted
using multiple metrics based on the quantitative and qualitative data collected from
the exploratory studies. One comparison study compares the data of the SWM im-
plementations (single and multiple kernel examples) collected using the Vivado HLS
and the SDSoC OpenCL tools. The other compares the results of the implementations
from the LFRic exploration studies using the Vivado HLS, SDSoC OpenCL and SD-
Soc C++ tools. Finally, some conclusions are drawn from the outcomes across both

studies.

1.2 Research Questions

As described above, this thesis’s main objective is to contribute to the accessibility of

the FPGA to (traditional high-level) software programmers for accelerating weather

1.3. THESIS CONTRIBUTIONS 25

and climate application. The research challenges mentioned above concern the lack
of exploratory and comparison studies for mapping concurrency levels in scientific
applications, specifically weather and climate HPC applications, to FPGAs.

The main research questions (RQs) that this thesis aims to answer are:

* What are the technology options from the FPGA level and the HLS tool (SDSoC
OpenCL and Vivado HLS) level for mapping the concurrency within a single
HPC kernel and in the case of multiple HPC kernels?

* Can the use of high-level optimization techniques in SDSOC OpenCL and SD-
SoC C++ match the design choices and performance achievable from the use of
the (lower-level) manual optimizations in Xilinx High-Level Productivity De-

sign Methodology Vivado approach ?

* What can be said about the best mapping technology options suitable for HPC
application’s concurrency, and about the trade-offs related to achieving the best

choice in terms of performance, resource usage, and development effort?

* What are the trade-offs between performance and programmer effort (which
can be expected to be reduced) that can be achieved by using the high-level
approaches of SDSoC OpenCL and SDSoC C++ compared to using the lower
abstraction level of the Vivado HLS?

* Isit feasible to consolidate a methodology for mapping the concurrency in weather
and climate applications to FPGAs to improve the FPGA programmability for

traditional HPC software programmers?

1.3 Thesis Contributions

The thesis presents the following contributions, from the perspective of informing tra-

ditional HPC software programmers as they consider adopting FPGA technologies:

* An exploratory study of the use of HLS mechanisms with SDSoC OpenCL and
Vivado HLS for mapping the concurrency in a single SWM application (targeting
instruction-level-, data- and functional-parallelism) and multiple SWM kernels
to a Xilinx Ultrascale+ FPGA.

26 CHAPTER 1. INTRODUCTION

* An exploratory study aiming to investigate the extent to which is it possible
to achieve replication of an existing FPGA design for the MatVec kernel created
using (lower-level) Xilinx High-Level Productivity Design Methodology Vivado
approach in the (higher-level) HLS tools SDSoC OpenCL and SDSoC C++.

* A comparison study and analysis of the performance, resource usage and pro-
grammability issues between the SDSoC and Vivado HLS SWM single and

multi-kernel implementations.

* A comparison study of Vivado HLS and SDSoC OpenCL and SDSoC C++
MatVec implementations and an analysis of the techniques available to be used
in the approaches with a focus on the differences in the three approaches which
result in their performance, scalability and resource usage and a discussion of

programmability issues.

1.4 Thesis structure

The structure of the thesis is as follows: Chapter 2 presents the necessary related back-
ground and the related work. Here, the FPGA is explained as a technology. The three
target HLS tool-sets (SDSoC OpenCL, SDSoC C++ and Vivado HLS) methodologies
and design flows are described. Moreover, the different HLS mechanisms available in
each HLS tool-set for mapping the concurrency in HPC applications and kernels are
explained. The two weather and climate example applications used, SWM and LFRic,
are then described, along with a discussion of the concurrency available for exploita-
tion in parallel implementations. Chapter 3 establishes the methodology for conduct-
ing the two exploratory and two comparison studies presented in this thesis. First, the
target Xilinx ZynQ UltraScale+ platform is described. Following this, the methods
and techniques used in the exploration studies are presented and, finally, the method
and metrics used in the comparison studies are detailed. The first exploratory study
is presented in two chapters. Chapter 4 presents the first part of the first exploratory
study which explores the concurrency level mapping strategies available within a sin-
gle SWM kernel (L100) using the SDSoC OpenCL and the Vivado HLS approaches.
Chapter 5 presents the second part of the first exploratory study which explores the
mapping of the SWM application’s multiple kernels using the SDSoC OpenCL and

the Vivado HLS approaches. Chapter 6 compares the concurrency mapping solutions

1.5. PUBLICATIONS 27

developed using the SDSoC OpenCL and the Vivado for mapping the SWM applica-
tion’s single and multiple kernels. Chapter 7 establishes the exploratory study for the
LFRic implementation using the SDSoC OpenCL, SDSoC C++ and Vivado HLS tools
and Chapter 8 presents and analyses the results of the comparison study of the LFRic
implementations developed with each of the three HLS tools (SDSoC OpenCL, SD-
SoC C++ and Vivado). At the end of Chapter 7 a summary discussion of the findings
from the two exploratory studies is presented, and at the end of Chapter 8 we present
a summary discussion of the findings from across the two comparative studies. Fi-
nally, conclusions, limitations of the research and possible future work are presented
in Chapter 9.

1.5 Publications

This thesis research has resulted in the following publications:

* Alghamdi, M., Riley, G. and Ashworth, M. Concurrency Mapping to FPGAs
with OpenCL: A Case Study with a Shallow Water Kernel [ARA21b].

* Alghamdi, M., Riley, G. and Ashworth, M. A Comparison of Vivado HLS, SD-
SoC C++ and OpenCL for Porting a Matrix-vector-based Climate model mini-
app to FPGAs [ARA21a].

* Alghamdi, M., Riley, G. Design Space Exploration of Concurrency Mapping to
FPGAs with OpenCL: A Case Study with Shallow Water Model Kernel [Alg20].

Chapter 2

Background and Related Work

This chapter establishes the necessary background for this PhD research. It starts with
introducing FPGAs and High-level synthesis tools, focusing on the background de-
tails (methodologies and design flow) of the target HLS tools used in this research
(SDSoC OpenCL SDSoC C++ and Vivado HLS). This chapter also presents the opti-
misation methods that are relevant to the research study implementations and related to
the OpenCL programming language and the target HLS tools. The two HPC applica-
tions, the shallow water model and the LFRic, used in this PhD research study are also
explained and discussed in this chapter. The final section in this chapter presents the
related literature work and discusses where this PhD contribution lies between those

studies.

2.1 Field Programmable Gate Arrays (FPGA)

The Field Programmable Gate Array (FPGA) is a programmable device. Unlike other
processing devices, such as GPUs and CPUs, which have pre-defined architectures,
FPGAs s enable the logic architecture to be fully customizable, whereby the programmer
can tailor the hardware solution to the application needs [WHU18]. FPGAs are based
on three building blocks that are configured to implement a specific application. These
components are a matrix of configurable logic blocks (CLBs), input and output blocks,
and communication resources. The main element of an FPGA is the matrix of CLBs,

which comprises thousands of logic blocks of different types [KHZ16] such as:
* Look-Up Tables (LUTs) which performs logic operations.
* Multiplexers and Flip-Flops (FF) which store the results of LUTs.

28

2.2. HIGH LEVEL SYNTHESIS TOOLS 29

There are also other components including these:

* Digital Signal Processors (DSPs) which are embedded arithmetic logic units
(ALU).

* Block RAM which is on-chip dual-port RAM modules that can provide storage
for a relatively large set of data. The ports can both be used for reading and

writing or one for read and another for writing.

In the past, FPGAs were considered low density, low volume ASIC replacements;
however, following Moore’s law, they became faster and denser. Several kinds of
FPGA-based system types are accessible today. They range from heterogeneous sys-
tems that couple FPGAs with conventional CPUs through PCle such as [Xil] to
system-on-chip (SOC) FPGAs that mix ARM processors with programmable logic on
the same fabric [Wine, Int]. Compared to CPUs and GPUs, FPGAs typically run at an
order of magnitude lower clock frequency. In several workloads (especially floating-
point-based ones), GPU performance is either very close or slightly better than an
FPGA; However, both CPUs and GPUs power efficiency (performance per watt) lag
significantly behind FPGAs, as shown in recent studies [BNM ™20, XX20, NWS™20,
JF20,GLR19, AMI21,ZP20,QDL"19,CHPB21,Z0oh18].

FPGAs are gaining popularity in both industrial and academic research as a way of
implementing application-specific accelerators [KHZ16]. Until recently, most FPGA
users would have been hardware designers with extensive experience and knowledge
of circuit design using conventional hardware description languages (HDL). However,
a wide range of High-Level Synthesis (HLS) FPGA programming languages and sup-
porting tools have been developed to improve FPGA usability.

2.2 High Level Synthesis Tools

HLS tools are a step that the commercial and academic communities have deployed
to facilitate FPGAs programmability. HLS tools have improved the software develop-
ment productivity of using FPGAs by automating the design creation process from the
algorithm level to RTL. They generate the RTL design from an algorithm written in a
high programming language such as C, C++, OpenCL or Java [KHZ16]. HLS tools
hide several traditionally low-level manual design tasks from the programmers, such

as: resource allocation, for example determining the type and amount memory

30 CHAPTER 2. BACKGROUND AND RELATED WORK

elements to use and the types of associated operators; scheduling, e.g., assigning the
algorithm’s operations to time slots (clock cycle); resource binding, such as assign-
ing the algorithm’s operations to specific operators and memory elements. In addition,
the HLS tools typically automate the interface synthesis, such as the interface type
generation (i.e., data or control signals) between the generated design and peripherals

such as the memory interface.

HLS tools offer several advantages to the FPGA programmer. For example, re-
ducing the coding time dramatically compared to the use of low-level descriptive lan-
guages (such as Verilog and VHDL) [LY 16], which results in both development time
savings and fewer design mistakes. Design optimisation in HLS tools is achieved
through tweaking the source code and tool options, which lead to extensive design
space exploration opportunities, an issue explored in this thesis. Design verification
time is reduced with the use of HLS tools due to the ability of most of the tools to

generate test benches and setting the data test to validate the source code.

Table 2.1 presents a summary of the most common HLS tools that are available,
either academic or commercial. The following subsections will focus on the SDSoC
OpenCL, SDSoC C++! and Vivado HLS tools which are used in this thesis.

2.3 SDSoC HLS

SDSoC is a development environment that provides an easy to use Eclipse-based IDE
for C/C++ and OpenCL application development. SDSoC provides a high-level FPGA
programming model by combining the processing system, accelerators, data movers,
signalling and drivers under one infrastructure. This abstraction enables shorter FPGA
development time and simplifies the developer’s view of the interface between the
software and hardware. This environment contains two FPGA high-level compilers:
sdscc/sds++ for C/C++ kernels and xocc for OpenCL [Xil21h]. Those compilers in-
voke the Vivado HLS tool in order to compile the C/C++ and OpenCL functions into a
bitstream to load onto the programmable logic. Figure 2.1 shows the SDSoC environ-
ment top-level user design flow. The first step is profiling the application to identify the

compute-intensive candidate portion(s) of the application for acceleration. Following

IXilinx Vitis HLS tool is a rebranding of SDSoC OpenCL and SDSoC C++, and this research and
conclusions are applicable to the Vitis too.

2.3. SDSOC HLS 31
#Number Tool Name | ALvaiiaiJili‘ty Computation type Input language Target Architecture | Year
1 Vlgl?;l ° Commercial CDgﬁf;l)erofzv C/C++,SystemC | Specific FPGA Board | 2013
2 SDSoC Commercial | ooarlow & OpenCl/C/C++ | Specific FPGA Board | 2015
3 SDAccel Commercial CDg;?-ngToftv OpenCl/C/C++ Specific FPGA Board | 2015
4 MaxCompiler Commercial DataFlow Max] Specific FPGA Board | 2010
5 OmpSS Commercial ControlFlow OpenMP Specific FPGA Board | 2016
6 Altera SDK/OpenCL | Commercial CDg;ﬁ:;(I)FTofzv OpenCL/C Specific FPGA Board | 2013
7 Bluspec Commercial | poiarlow & BSV FPGA 2007
. DataFlow & ANSI
Catapult Commercial ControlFlow C++, SystemC ASICFPGA 2004
CHC Compiler Commercial ControlFlow Standard C FPGA 2008
10 C-to-Silicone Commercial | DataFlow & C,C++,SystemC ASIC,FPGA 2008
11 CyberWorkBench | Commercial | o low & BDL ASIC,FPGA 2011
12 Cynthesizer Commercial CDg;ﬁgcl)ero&v:' SystemC,C ASIC,FPGA 2004
13 GAUT Academic gg;f;&";’of‘v C ASIC,FPGA 2010
. Matlab,
14 HDL Coder Commercial ControlFlow Simulink ASIC,FPGA 2015
. C++
15 HIPAcc Commercial DataFlow Embedded DSL FPGA 2014
Impulse . DataFlow &
16 C Commercial ControlFlow ANSI C FPGA 2003
17 LabVIEW FPGA | Commercial | poarlow & G Specific FPGA Board | -
18 LegUp Academic gg;f;&";’of‘v ANSI C FPGA 2011
19 Merlin Compiler Commercial DataFlow C /C++ FPGA -
20 PARO Academic DataFlow PAILA FPGA -
21 ROCCC Academic ControlFlow C Specific FPGA Board -
22 SPIRAL Both DataFlow SPL ASIC FPGA -
23 Trident Academic ControlFlow C subset FPGA -
24 Synphony C Comp. Commercial CDg;ﬁ:;(I)FTofzv C/C++ ASIC,FPGA 2010
25 eXCite Commercial - C - 2001
26 CoDeve-loper Commercial - Impulse-C - 2003
. SystemC
27 CtoS Commercial - / TLM/ C++ - 2008
28 DK Design Suite Commercial - Handel-C - 2009
29 Bambu Academic - C/C++ FPGA 2001
30 DWARV Academic - C subset FPGA 2012
31 triSYCL Commercial - OpenCL FPGA -
31 Intel® oneAPI Commercial - DPC++ Language | Specific FPGA board | 2018
-, . DataFlow & Lo
32 Vitis Commercial ControlFlow OpenCL/C/C++ Specific FPGA Board | 2019

Table 2.1: Summary of the current available HLS tools and their properties: Avail-
ability Some of the tools are made freely accessible by the developers, while others
require a licence. Target architectures There are two main FPGA board producers,
Xilinx [Wind] and Altera [Wina]; Some target a specific FPGA board; while others
target both FPGA platforms. Computation type demonstrates whether a specific tool
supports the dataFlow or controlFlow paradigm [SMB™]. Input Language describes
the design entry language of the tool. [KHZ16] [NSP'16]. Information in the empty
cells is not available.

that, the SDSoC system compiler can be invoked to generate a complete system-on-
chip and SD-card boot image for the application. The application code can be instru-

mented to analyze performance and help optimize the hardware functions using a set

32 CHAPTER 2. BACKGROUND AND RELATED WORK

of directives within the SDSoC environment. After the bitstream generation, the tool
generates estimation reports to support further optimizations and other information.
The programmer’s interaction with the FPGA system in the SDSoC environment is
greatly simplified since the SDSoC compilers abstract the FPGA design flow. The SD-
SoC compilers automatically choose the system design, such as the data transfer ports
to use and the data mover IP blocks, etc [Xil21h].

C/C++ Application
running on ARM

A

Profile application

|

y

Optimize data transfer and Mark functions for HW acceleration
parallelism using SDSoC guidelines

1 ‘

Optimize accelerator code Estimate performance

PR S |
Build application to generate
software and hardware

Analyze performance

A
SD Card Image

Run on the board

Figure 2.1: SDSoC Design Flow [SG20].

The following subsections present the OpenCL and C++ programming languages

within the SDSoC environment.

2.3.1 SDSoC OpenCL

OpenCL is a parallel programming standard that is developed by the Khronos Group
for addressing the challenges of programming heterogeneous compute platforms and
multi-core systems. It is a programming model that is supported by different hardware
platforms, which provides for the utilisation of devices from multiple vendors [Scall].

OpenCL supports the development of functional and portable “close-to-the-metal”

2.3. SDSOC HLS 33

software by providing a programming language and a runtime API [Winb]. In addi-
tion, a set of low-level hardware abstractions such as platform, memory and execution
model for exposing the underlying hardware details is provided. Understanding the
translation of these OpenCL concepts into the physical implementations on the FP-
GAs is an important step for achieving efficient implementation.

The OpenCL platform defines all the available hardware that is capable of exe-
cuting an OpenCL program. The available host and one or more OpenCL compute
devices are grouped when the OpenCL platform is defined. In the SOC system used
in this thesis, the host is an ARM CPU responsible for the general OpenCL tasks such
as the launch duties of the OpenCL applications. The device is the FPGA hardware
implementation on which the OpenCL application’s compute kernels are executed.

The OpenCL execution model defines a kernel’s execution. There are two types
of kernels, one is called 7ask kernel and the other is NDRange kernel. The OpenCL
execution model with task kernels executes the kernel as a single work item while, an
NDRange kernel is executed within the concept of an index space. For instance, an
index space which is easy to understand is that of the C/C++ for loop. Index spaces
in OpenCL are called NDRange, and they can have 1,2 or 3-dimensions [MGMG11].

The OpenCL Memory model defines the memory hierarchy and behaviour of the
memories that the OpenCL applications can use. This memory hierarchy represen-
tation is common across all OpenCL implementations. However, it depends on the
individual vendors mapping definition of the OpenCL memory model to specific hard-
ware. For example, Figure 2.2 shows the representation of the OpenCL memory model
in Xilinx SOC Ultrascale+ FPGAs that we target in this thesis.

Constant
Global mem

[-

AXI

FPGA

2

Kernel A

Kernel B

Interfaces|

Host

Compute Unit 0
Local mem

Private | Private | Private
mem | mem | mem

PE

Compute Unit 1
Local mem

Private | Private | Private
mem | mem | mem

PE

Compute Unit 0
Local mem

Private | Private | Private
mem | mem | mem

EE

Compute Unit 1
Local mem

Private | Private | Private
mem | mem | mem

PE

PS

PL

Figure 2.2: OpenCL memory model in Xilinx Zynq UltraScale+ MPSoCZCU102.

The OpenCL memory model is translated onto the FPGAs as follows:

34 CHAPTER 2. BACKGROUND AND RELATED WORK

* Host memory represented by a memory address space within an off-chip-memory
(e.g. DDR) that resides outside the FPGA’s fabric area. This memory is a shared
memory between the processing system (PS) and programmable logic (PL) parts
of the FPGA. The OpenCL buffer allocation and de-allocation is the responsibil-
ity of the host and is controlled by a handshake method between host and device
that switches the data access rights to memory buffers between the host and the
device. The data is transferred from the host address space to the other device

spaces using the OpenCL API when the device kernels require the data.

* OpenCL global memory can be either represented by the shared off-chip mem-
ory or use distributed memories (e.g. BlockRAM) that reside within the FPGA’s

fabric area.

* Constant Global Memory is a system memory region that has full rights access
from the host and read only access rights for the OpenCL device. This memory

model is implemented within the off-chip memory, as shown in figure 2.2.

* Local Memory is on-chip memory that is accessible only within one com-
pute unit. This memory type, which is typically implemented using registers
or BlockRAMs, can be implemented either as RAM or ROM, covering on-chip
global, local, and private memory types.

* private memory is a memory that is only accessible to an individual work-item.

It is implemented using registers or BlockRAMs in the FPGA fabric.

2.3.2 SDSoC C++

The C++ design approach consist of three coding phases: a standard C++ host appli-
cation that runs on a CPU; the C++ functions that are selected to be accelerated by
the FPGA, which are handled by the SDSoC sds++ compiler; and the design of the
data motion network that manages the data movement between the CPU and the FPGA
hardware.

The host C++ application allocates the data buffers in the DDR memory shared
with the FPGA hardware. The sds_alloc function is recommended [SG20] for the
memory allocation because the data will then be stored in physically contiguous mem-
ory. The data movement in the C++ approach is specified through the data motion
network [Xil21h] that manages the data movements. A data motion network has three

components that programmers can control with pragmas for a better choice that suits

2.3. SDSOC HLS 35

the target kernel design. The most critical components are the data mover engines
which are FPGA 1P blocks for transferring the data between the CPU and the FPGA
accelerator.

Figure 2.3 shows a highlight of the three data motion network components avail-

able, which are labelled as A, B and C. The three components are: (A) System port

Acc
) Data-Mover(B) &= C PL

Host
PS

| E—

Figure 2.3: “SDSoC data motion network components. PS means the processing
system CPU part. Acc means the accelrator par which is the FPGA (A) is the sys-
tem port type. (B) are the data mover engines. (C) is the accelerator interface port
type” [Xil21h].

which is the port that connects the data mover engines to the CPU, (B) Data mover
engine which is an FPGA IP block for transferring the data between the CPU and the
FPGA accelerator and (C) Accelerator Interface port which is the accelerator port for
transferring the data between the data mover and the accelerator [Xil21h]. The choice
of component hardware affects system performance and efficiency. Therefore, finding
the best choices for the kernel design is vital for performance.

The SDSoC sds++ compiler can analyse the design and choose the three compo-
nents automatically. However, in this HLS approach, the designer has the freedom to
override the compiler choices. The choice of the system and accelerator interface ports
always depends on the data mover engine selected [Xil21h].

System port is the port connection type that connects the data mover and the host
side. For example, the Zynq® UltraScale+™ MPSoC board provides the following

System port options:

* High performance ports ACP and AFI. ACP is a cache-coherent port and AFT is

a non-cache-coherent port.
* PL-based DDR memory controller port MIG

* Stream port

The SDSoC sds++ compiler analyze the choice of memory attributes based on the data
transferred and data motion type to identify the appropriate system port. However,
using the following pragma, #pragma SDS data sys_port(arg:port) , the programmer

can override the compiler decision.

36 CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.2: The properties details of the available Data movers engines in the SDSoC
C/C++ approach.

Data Mover Physical Memory | Data Size
Engine Contiguity (bytes)
AXI_LITE No -
AXI_DMA_SIMPLE Contiguous <8 M
AXI_DMA_SG No >300
AXI_FIFO No <300
Zero-Copy Contiguous -

Data mover engine is an FPGA IP block that is responsible for transferring the
data between the host-side and the accelerators and among accelerators. There are five
data mover engines options available. The engine choice depends on the properties and
size of the data being transferred. In addition, the selection of the data mover engines
is a trade-off between performance and resource usage. Table 2.2 shows the five data
mover engines and their properties. Engine AXI_LITE is suitable only for transferring
scalar data, while the other engines are for transferring arrays. AXI_DMA_SIMPLE
is the faster transfer engine and only supports up to 8 MB of data. The data must
be allocated contiguously in the DDR memory when using this data mover engine.
AXI_DMA_SG is a scatter and gather engine that is slow and consumes high resources,
but it has fewer limitations compared to the other options. This engine accepts trans-
ferring data that are not physically contiguous. AX/ FIFO is a data mover engine that
does not require many hardware resources compared to the other engines. In addition,
it is a slow engine and limited to transferring less than or equal to 300 bytes of data.
Zero-Copy is a unique data mover engine because it covers the choice of the acceler-
ator interface and the data mover. The use of the AXI LITE, AXI DMA_SIMPLE and
AXI_DMA_SG engines require an explicit data copy from the host to the accelerator
via the data mover. However, in the Zero-Copy case, the SDSoC compiler generates an
AXI-Master accelerator interface that fetches the data from the host as specified in the
accelerator code. The use of this engine requires physically contiguous memory data

allocation.

The SDSoC C++ compiler analyzes the transferred array data in terms of mem-
ory contiguity and size and selects the appropriate data mover. However, in some
cases this analysis is not possible. In this case SDSoC provides the programmer with
SDS pragmas for specifying the data mover and for specifying the memory attributes

and size. This SDS pragma: #pragma SDS data data_mover (A:<data_mover name> ,

2.4. XILINX VIVADO 37

B:<data_mover name>) is used to define the use of either AXI_LITE,AXI_DMA_SIMPLE
or AXI_DMA_SG engines. For choosing the Zero Copy engine the programmer can use
this pragma: #pragma SDS data zero_copy(arg[offset:size]).

If the SDSoC C++ compiler cannot analyse the memory attribute of the transferred
data, it will issue a warning message asking the programmer to to specify the memory
attributes and size. The following two pragmas can be used by the programmer to
specify memory attributes: #pragma SDS data mem_attribute(arg:contiguity) and data

size #pragma SDS data copy(arg[offset:size]).

Accelerator Interface port defines the connection between the data mover and the
hardware accelerator. Register interface port is used if the transferred data is a scalar.
However, in the case of array data, there are two port types options: RAM interface or
a streaming interface. The RAM interface is used for random data access and requires
transferring the whole array of data before access can occur. While in the streaming
interface option, the data are accessed sequentially and it does not require the whole
array being transferred. This port interface allows the pipelineing of the array elements
for processing. #pragma SDS data access_pattern(arg:pattern) is an SDS pragma that
the programmer can use to define the accelerator Interface port type. The pattern can be
either RANDOM for the RAM interface or SEQUENTIAL for the streaming interface.

2.4 Xilinx Vivado

Xilinx Vivado HLS tool is a compilation system which analyses a restricted form of C
code and schedules operations on the FPGA hardware during a later synthesis phase.
The design flow methodology in this approach consists of the following three design
stages [Xil21d].

Vivado HLS tool (Compile Stage) is the first stage in the Xilinx Vivado approach.
This stage aims to synthesize a C function code into an IP block. Vivado HLS writes
Register Transfer Level (RTL) code which forms the basis of an IP (Intellectual Prop-
erty) Block that can be saved to an IP Repository for later inclusion in a complete
FPGA system design. In addition, this tool provides compiler-automated optimizations
that are supplemented by programmer-supplied HLS pragmas that invoke and guide a
range of optimizations such as pipelining and unrolling, and managing data placement
and streaming. In this stage, the programmer focuses on creating an efficient IP block

for the HPC workload. The tool provides performance estimation reports that enable

38 CHAPTER 2. BACKGROUND AND RELATED WORK

the programmer to improve the kernel code design. Several HLS optimization prag-
mas are available to be utilized to improve the kernel computational performance, as
discussed in Section 2.5. Following this, the final design can be synthesized into a
hardware IP block.

Vivado design suite (Link Stage) is the second stage. The design methodol-
ogy in this stage requires the construction of the full system design manually using
the Vivado Design Suite. That involves specifying plenty of low-level hardware de-
tails to configure the final generated system design and gives the application developer
considerable fine control. The HLS-generated application-specific IP blocks are man-
ually integrated with IP from the Vivado IP Catalog and, potentially, from third-party
sources. The generated IP block for the target kernel from stage one can be seen from
the Vivado IP Catalog in the Vivado design suite. For example, see Figure 2.4 which
shows an example of an IP Repository created using the Vivado HLS (as in stage one)
in the Vivado IP Catalog. The programmer can integrate the IP block to a full system
design before generating the final FPGA bitstream file. Figure 2.5 shows an exam-
ple of a full Vivado system design with the IP kernel from Figure 2.4 integrated into
the design. The programmer in this stage is responsible for choosing the appropriate
IP blocks in order to support the communication between the kernel IP and the Zynq
(ARM host) IP block. In addition, the responsibility involves the choice of the connec-
tion ports, setting the data path sizes and choosing and creating the memory solution.
The programmer manually performs the address management and the setting of the
frequency of clocks. The Vivado environment adjusts the IP blocks address automati-
cally, see Figure 2.6. However, the programmer can override those addresses manually,

if needed.

IP Catalog x Project Summary x| Diagram x ?OE0O
Cores | Interfaces
z ¢ [® 4 m o
Mame A1 oaxa Status License VLN
User Repository (/home/motebphd201 9fvivado_waorkspace/L100-P-affft_single/proj/solutionl/imp
WIWADO HLS IP
vivado Repository

Figure 2.4: An example of IP Repository in the Vivado IP Catalog.

The third stage is creating the ARM CPU Host application. The host application
code manages the data transfer of input and output data between the host and the HLS

kernel, and the host programmer has to manually configure the data addresses. The

2.4. XILINX VIVADO 39

e ZYNOS

UltraSCALE*+
Zinq Ukrascalet MPSat

Figure 2.5: A full Vivado system design example with an IP kernel integrated to the
design.

Figure 2.6: An example of the Vivado address editor.

host program also manages the invocation of kernels. At the end of the three stages,
the application is ready for execution on the host and FPGA. The following points

summarise the steps in managing the Vivado host code:

* Open device tree (/uio0, /uiol). See line 2 in Listing 2.1.

* Map device tree to Zynq ports (i.e. HPMO, HPM1) using open and mmap system
calls, to control the kernel IP blocks. See lines 4-9 in Listing 2.1.

* Manually configure the IP blocks and memory solution addresses. See lines
11-16 in Listing 2.1.

* Control Kernels IP blocks execution through the access to the IP blocks’ con-
trol registers (i.e. configure AP_START bit to 1 to start IP block execution and
AP_IDLE for polling the IP block status). See lines 18-28 in Listing 2.1.

Listing 2.1: Vivado ARM CPU code example

1 //dtc command
2 dtc -I fs -O dts /sys/firmware/devicetree/base

40 CHAPTER 2. BACKGROUND AND RELATED WORK

4 // open and mmap system calls

5 fd = open(device, O RDWR);

6 fpgamemsize[idev] = 0x0800000;

7 fpgamemory[idev] = (char :x)mmap

8 (NULL, fpgamemsize[idev] ,PROT_READ/|

9 PROT_WRITE ,MAP_SHARED, fd ,0); }

10

11 //Set up IP block addresses

12 iterr = fpga_add_block (0, 0xA0000000);
13

14 // Set memory solution addresses
15 // (Example BRAM block)
16 1err = fpga_add_bram (1, 0xB0000000);

17

18 // IP Block start

19 int fpga_start (int ib_block) {
20 scontrol[ib_block] = 1;
21 return 0;

22 }

23

24 // IP Block status check

25 hold =0;

26 while ((x control [ib_block]&4) == 0) {
27 hold ++;

28 }

2.5 YVivado and SDSoC OpenCL/C++ Optimisation Strate-
gies

As evident in the previous sections, the Vivado, SDSoC OpenCL and SDSoC C++
design flow methodologies are different; however, when it comes to the kernel com-
putational design, they provide the programmer with annotations that can be inserted
into the kernel code to guide the HLS compiler for optimizing the kernel computa-

tional performance. These annotations are called HLS pragmas in the Vivado and the

2.5. VIVADO AND SDSOC OPENCL/C++ OPTIMISATION STRATEGIES 41

SDSoC C++ approaches and attributes in the SDSoC OpenCL approach. The HLS
compilers are designed to analyze the kernel code and automatically apply some an-
notation optimizations such as pipeline and unroll when possible. However, auto-
compiler kernel optimizations are often not efficient enough to extract the desired per-

formance [HLC ™" 13]. The following points present the HLS optimization annotations
available in the Vivado, SDSoC OpenCL and the SDSoC C++ relevant to this thesis.

In SDSoC OpenCL there are two levels of optimization mechanisms, one is the
optimizations methods related to the OpenCL programming language, and the other
is the computational and data movement optimization attributes. The OpenCL pro-
gramming language has three important mechanisms which are: the OpenCL kernel

type, the OpenCL number of kernels and the OpenCL AP1 command queue(s).

An OpenCL kernel for an FPGA can be either a task kernel or an NDRange ker-
nel [XO20]. Task kernel (or Single work-item kernel): Task kernel refers to the exe-
cution of the kernel with a single work-group (WG) that contains only one work-item
(WI). NDRange Kernel: This kernel type exploits data parallelism by processing the
kernel data using multiple work-items (WIs). NDRange organizes the WIs in WGs.
WGs can be executed simultaneously, and the WIs within each WG can also be pro-
cessed in parallel [XO20]. The kernel type is specified through the setting of the work-
group size of the OpenCL kernel. The following OpenCL attribute is used to specify
the kernel’s work-group size: __kernel __attribute__ ((reqd_work_group_size(N, M,
L))). The values of N define the type of the kernel for the SDSoC OpenCL compiler. In
the case of the fask kernel, N, M and L values should be /, 1, I; while in the NDRange
kernel those values define one-dimensional, two-dimensional, and three-dimensional

NDRanges (and hence work-groups).

OpenCL number of kernels results from the software design, reflecting the devel-
oper’s choice as to how to implement the algorithmic operations of the application
in one or more kernels [XO20]. The execution of multiple kernels can be controlled
through the choice of the OpenCL API command queue(s) selected. Individual com-
mand queues can execute kernels in-order or out-of-order and multiple queues may
be used. OpenCL has (host) mechanisms to synchronize the execution of individual

kernels through the use of barriers and events [X020].

42 CHAPTER 2. BACKGROUND AND RELATED WORK

2.5.1 Kernel Computation and Data-movement Optimisation At-

tributes and Pragmas

This subsection presents in Table 2.3 the list of optimization annotations that are rele-
vant to this thesis and which are available in the SDSoC OpenCL/C++ and Vivado HLS
tools. Table 2.3 shows the optimization methods in the two computational and data-
movement categories and introduces the annotations (attribute or pragma) associated

with each method.

Table 2.3: SDSoC OpenCL/C++ and Vivado HLS Kernel Computation and data-
movement Optimisations Attribute and Pragmas.

Optimisation | Computation Data OpenCL C+.+
s . movement . and Vivado
method Optimisation e e . Attributes
Optimisation Pragmas
Pipelining __attribute__ #pragma HLS pipeline II
Yes - . .
Loops ((xcl_pipeline_loop)) =<int>
Pipelining Yes __attribute__
Work Items ((xcl_pipeline_workitems))
Unrolling Yes i __attribute__ #pragma HLS unroll factor
Loops ((opencl_unroll_hint(n))) =<N>
__attribute__
Dataflow Yes - ((xcl_dataflow)) #pragma HLS dataflow
Multiple Multi-kernels
Compute Yes - and Multi-Kernels
Units GUI feature
.) pipe int pO __attribute__ i
Pipes Yes ((xcl_reqd_pipe_depth(512)))
Data #pra}gma HLS §tream
Streamin. - Yes - variable=<variable>
g depth=<int>dim=<int>off
#pragma HLS pipeline 11
__attribute__ =<int>
Burst Mode) Yes ((xcl_pipeline_loop)) OR
C memcpy function
Max Memory - Yes GUI feature -
Ports
__attribute__ #p ragma HLS.
Data Array .. array_partition variable=
e . - Yes ((xcl_array_partition(<type>,
Partitioning . . <name>\<type>
<factor>, <dimension> . . .
factor=<int>dim=<int>

The kernel computational optimisation methods are the following:

The pipeline attribute (__attribute__ ((xcl_pipeline_loop))) and #pragma
HLS pipeline II=<int> pragma is used to maximize the calculation throughput and
improve the latency of the kernel by keeping several stages of the kernel hardware
elements implementing an algorithms step busy. The most important parameter that

the pipeline attribute can influence is the initiation interval (1) which is the number of

2.5. VIVADO AND SDSOC OPENCL/C++ OPTIMISATION STRATEGIES 43

clock cycles before the next iteration can start [OG20]. The smaller the II, the better
the performance. For OpenCL NDRange kernels Xilinx provides a specific pipeline
attribute (__attribute_ ((xcl_pipeline_workitems))) to pipeline the WIs ex-
ecution [OG20].

The loop unrolling attribute (__attribute__ ((opencl_unroll _hint(n))))
and #pragma HLS unroll factor=<N> pragma is used to reduce the number of cy-
cles needed to process a loop’s iterations by reducing the loop trip count. Multiple
copies of the loop body are created in the FPGA hardware that can be executed in
parallel [OG20].

The Dataflow attribute (__attribute ((xcl_dataflow))) and #pragma HLS

dataflow pragma is used to exploit the functional parallelism within a single ker-
nel, allowing for parallel execution of the kernel’s functions or loops, improving the
throughput of the design and decreasing the latency. When the Dataflow method is
utilized, individual channels are created to store the results of each Dataflow task.
Those channels can be by default either simple FIFOs (for scalar variables) or ping-
pong block RAM registers (for variables like arrays). The Dataflow tasks throughput
is only limited by the availability of the input and output buffers. If data is accessed
in sequential order, the channels are implemented as a FIFO of depth 2; otherwise,
they are implemented as two block RAMs, each defined by the maximum size of array

data [Xil21d].

The use of multiple Compute Units, CUs increases the level of parallelism by util-
ising more FPGA resources to compute the kernel operations. The kernel operations
can be executed by multiple (different) CUs or creating multiple CUs for same the
kernel to enhance the spatial parallelism. This is particularly useful, especially with
NDRange kernels with multiple WGs where a CU can be created per WG [OG20].
The Xilinx Zynq UltraScale+ MPSoC can accommodate up to sixty Compute Units.

The data-movement optimisations are mainly for improving the data movement be-
tween the host and the FPGA kernels and between kernels. The kernel data-movement
optimisation methods are the following: Burst Mode: Data transfer in burst mode
is a technique that transfers large volumes of data from the host memory (DDR) to
the FPGA kernel local memories (e.g. BRAMs). Instead of issuing multiple single
memory transactions. This mechanism ensures the best memory access controller ef-
ficiency [SG20]. In the SDSoC OpenCL, Xilinx recommends the use of pipeline at-
tribute to implement the Burst Mode. Similarly, in the SDSoC C++ and Vivado, Burst

Mode can be implemented using the pipeline attribute over the data read/write loops.

44 CHAPTER 2. BACKGROUND AND RELATED WORK

The C memcpy function can also used to implement the Burst Mode.

Max Memory Ports: DDR memory has several memory access ports; the Xilinx
Zynq UltraScale+ MPSoC board has four ports. Therefore, this optimisation option
can increase the number of available DDR memory ports that the CUs in the design
can use to access the data from the DDR, either in burst mode or in individual memory
accesses per clock cycle [OG20]. In OpenCL, this feature can be enabled through the
SDSoC GUI or by setting a compiler flag. In the SDSoC C++, this feature is enabled
automatically, while in the Vivado, it is managed manually in the system design blocks.

Array Partitioning: The FPGAs BRAMs have a limited number of data access
ports, which can limit the efficiency of the read/write operations. Therefore more than
two accesses per cycle will cause conflicts and reduce the Initiation Interval. The
use of the array partitioning attribute and pragma can improve the BRAM memory
bandwidth. This optimisation method divides the data array into smaller arrays im-
plemented in multiple physical BRAMs, increasing the number of memory access
ports being used. There are three types of array partitioning: block, cyclic and com-
plete [OG20].

In SDSoC OpenCL Pipes: are an OpenCL 2.0 specification that is introduced to
stream data between OpenCL kernels inside an FPGA device without using the exter-
nal global memory. Pipes are implemented in the FPGAs as FIFOs. In the SDSoC
OpenCL, pipes have to be defined outside all the kernels functions using the pipes
attributes, see Table 2.3. In addition, the depth of the pipes is specified within the
attribute definition, and the valid depth values are 16, 32, 64, 128, 256, 512, 1024,
2048, 4096, 8192, 16384, 32768. The access of the pipes is allowed only from the
OpenCL kernel, and they can be only accessed using the OpenCL standard functions:
read_pipe () and write_pipe () for non-blocking mode, and read_pipe_block ()
and read_pipe_block () for blocking mode. In addition, a given pipe should only

have one producer and consumer in other kernels [OG20].

By default, array variables in FPGAs are implemented as RAM. However, if the
array data are accessed or produced sequentially, a more efficient implementation for
the array data in the FPGA can be using streaming data. The Data Streaming data-
movement optimisation method is a similar method to the OpenCL Pipes method, but
to be utilised in the SDSoC C++ and the Vivado HLS approaches. Using the Data
Streaming pragma in Table 2.3, the array variables will be implemented using FIFOs

instead of RAMs for more efficient communication [OG20].

2.6. HPC-BASED BENCHMARK APPLICATIONS 45

2.6 HPC-based Benchmark Applications

This section provides background on the two main benchmark applications from the
weather and climate domain that are the focus of this thesis. The applications are a
Shallow Water Model and an LFRic mini-app. Details of the applications’ equations

and algorithms are presented.

2.6.1 Shallow Water Dynamics Model

Shallow Water dynamics can be described by a set of hyperbolic partial differential
equations that are widely used to model various kinds of flows such as coastal, river
hydrodynamics, and oceanic. This dynamics model describes the fluids flow in re-
gions that have vertical dimensions smaller than the horizontal dimension. The dy-
namics model can also used to describe widely used atmospheric flow models such as

in numerical weather prediction [Vre94].

The Shallow Water Model (SWM) Equations

The SWM studied in this thesis is based on the shallow water equations presented in
Sadourny’s original paper in 1975 [Sad75] and are also described in [Pap12] which
investigated an OpenCL version of SWM. The SWM model has been widely used as
a HPC benchmark. In addition, it represents a number of interesting and generalised
facts exhibited by numerous HPC codes. These are the multiple kernels, the data must
“flow around” from one iteration to the next, and the the application’s computation
is stencil based and iterative. The latter two facets are extremely common in climate
and weather computational codes and represent a broad range of HPC codes. The
SWM computes mainly wind velocities in x and y directions, potential pressure, as
prognostic variables, and also mass fluxes, potential vorticity and fluid surface height

as intermediate variables. The model’s equations are expressed as

ou oH

52V 45 =0 @.1)
v oH

52U+, =0 2.2)
oP JoU dV

§+g+§—0 (2.3)

46 CHAPTER 2. BACKGROUND AND RELATED WORK

where

The lowercase u and v are the wind velocities.

P is the potential pressure.

The uppercase U and V are the mass fluxes.

Z is the potential vorticity.

H is the the fluid surface height.

U, V, Z and H are further defined by the following equations 2.4, 2.5, 2.6 and 2.7.

U =Pu (2.4)
V =Py (2.5)
(5%~ 59
Z= 5 (2.6)
H :P—i—%(uz—i—vz) 2.7)

A two-dimensional finite difference model is used to solve the SWM equations
that are updated over time and space. An Arakawa C grid [Chal2, HSS88] is used to
calculate the finite-difference model as shown in Figure 2.7. The dimensions of the
Arakawa C grid are calculated within a rectangle range of a <x < bandc <y <d. In
addition, with selected M and N integer values defining the resolution of the grid.

The elements of the grid are defined as:
: } 1
X =iAx+a, wherel:07§,1,...,M+l (2.8)

1
yj =YAy+b, wherej:(),i,l,...,N—f—l (2.9)
SWM Mathematical Representation

Mathematically, the SWM equations solution is evolved using multiple steps. First step

initializing the wind velocities u and v and potential pressure P are initialized using a

2.6. HPC-BASED BENCHMARK APPLICATIONS

y(j)

yl(j+1)

x(i) x(i+1)
P(i.j) uli+1/2,) P(i+1,)
* . ' yli)
H(i.j) uli+1/2, j) H(i+1.))
vii,j+1/2) Z(i+1/2,j+1/2) vii+1,j+1/2)
L] . []
V(i,j+1/2) V(i+1,j+1/2)
P(i,j+1) uli+1/2, j+1) P(i+1,j+1)
* . . g y(j+1)
H(i,j+1) uli+1/2, j+1) H(i+1,j+1)
x(i) x(i+1)

47

Figure 2.7: An Arakawa-C grid mapping for the shallow water variables [Sad75,

Pap12].

48 CHAPTER 2. BACKGROUND AND RELATED WORK

stream function, as expressed in equation 2.10.

2 2
Axsin(™)sin(y

i1 = b

) (2.10)

Following that, initial velocities are derived as:

u g =2 3] @2.11)

Vo1 = ' ' 2.12)

and the potential pressure is initialised as:

4mi 21
b—a

AZ 2m

Pij=lG—

)2cos()]+ Po (2.13)
with Py = 50,000.
Over a large number of repeated cycles, the wind velocities and potential pressure

P are calculated using the following equations:

un+1 _ un—l + (Zi+l

= Z. . * (V.
i+ il 3t l+%7r%) Vierjd Vil V-1tV

2 2 !

1 —1
(2.15)

+1 _ pn—1
Pln] _Plrvl] +(Ui+%,j_Ui7%,j)_(ij+% i,jf%) (2.16)

Next to that, the mass fluxes U and V, the potential vorticity Z and the surface

height H are computed using the following discrete equations:

1
Uip12,j = §<H+17j+37j)”i+1/2,j (2.17)

1
Vijri2 = 5Fijer +Fij)vi ey (2.18)

2Superscripts in equations 2.14, 2.15 and 2.16 shows the computation’s iteration.

2.6. HPC-BASED BENCHMARK APPLICATIONS 49

(Vi+17j+1/2_vi,j+1/2) o ("i+1/2,j+1*'4i+1/2,j)

z A A (2.19)
i+1/2,j+1/2 — .
I TP+ P jr1+Piji1)

2 2 2 2
U Wy T8y 2) Vijgrp +Vig)
Hij= Py 5 | =g s 2.20

In both of the Arakawa C grid x and y directions, cyclic boundary conditions are
applied using halos. Therefore, a periodic continuation is applied to updated the ele-

ments at the grid boundary, see equations 2.21 and 2.22.

f(x+b,y)=f(x+a,y) (2.21)
fx,y+d)=f(x,y+c) (2.22)

Final step in the mathematical representation of the SWM equations is applying a

time smoothing filter by the end of every computation cycle, see equation 2.23.

F = ¢ +a(f("+]) — 2f(") +F(”—1)) (2.23)

SWM Coding Algorithm

The mathematical SWM equations are transformed into a form of OpenCL code that
has nine kernels 3, as depicted in Figure 2.8 and the source code in appendix A.

The SWM algorithm defines a group of (M+1) x (N+1) sized double-precision
floating-point arrays. Each array stores the data of the dependent variables from the
previous equations. The arrays are named, corresponding to the names used in the
SWM equations. The the wind velocities and the potential pressure are interpret as
(u, v, P). The mass fluxes in the horizontal and vertical directions, arrays U and V, are
interpreted in the code with "C indicating capital then U or V, (CU, CV). The potential
vorticity and the surface height are interpret as Z and H.

The calculation of each array is processed in two phases: The first phase computes
the array’s elements values over the M x N matrix. The second phase updates the
boundary conditions by copying values to the halos. Figure 2.9 shows the halo regions

in each array. The halo regions are updated by mirroring border elements of each

3SWM was initially written in Fortran by Paul Swarztrauber for the US National Center for Atmo-
spheric Modelling (NCAR). The supervisor of this thesis, Graham Riley, provided a CUDA OpenCL
version.

50 CHAPTER 2. BACKGROUND AND RELATED WORK

Initialisation Phase

1-init1 2- init2 3- initpc kernel
Kernel Kernel Initialise
Initialise psi Initialise u_old, v_old,
&P u&v P_old

Main loop Kernels: Compute u,v,P
5- L100pc

4- L100 6- L200 Kernel

Kernel c Petfmd':f Compute:
Compute: on |(n)lf.|a fon u_new&v_new
U&V&Z&H &P_new

9-L300pc 8- L300 Kernel 7;;?23&"
Kernel Time Smoothing . .
Update the next Compute: Contlgl;atmn
Cycle. Update: u_old&v_old
u,v,P &P old u_new&v_new

&P_new

Figure 2.8: SWM nine OpenCL kernels representation.

array, see Figure 2.9. Two "helper" arrays (i.e. u_new and u_old) are introduced in the
code to store the values of the previous and next iteration elements, see Figure 2.8 and
the source code in appendix A. This method called for time smoothing to reduce high
frequency oscillations in the computed velocities.

The SWM OpenCL code is organized as nine kernels. Figure 2.8 shows a high
abstract-level picture of the nine kernels, where each kernel represents a step from the
solution of the mathematical equations. Each step is given a kernel name. For example,
Kernel 1 (init]) initializes an array called psi and P, kernel 2 (init2) initializes u and v,
and kernel 3 (initpc) keeps the old u, v, and P values that are needed in the first iteration
of the main loop. In a large number of cycles L7100 kernel computes CU, CV, Z, and
H; then kernel 5 (L100pc*) updates the boundaries of them. Kernel L200 computes
new data of u, v and P using the old values from kernel 3. Then the boundaries of
those values are updated in kernel 7 1200pc. Kernel 8 (/300) does time smoothing
while kernel 9 (1300pc®) updates u, v, and P for the next cycle. Kernels 4 to 9 are
the main kernels computed, typically for 4,000 iterations in our simulation runs. The
nine kernels are processed sequentially because they depend on each other; however,
several operations can be executed in parallel within each kernel. Figure 2.10 shows
a highlight of the data movement between the SWM’s five main kernels. This figure
also shows the data dependencies between the kernels.

“pc stands for periodic continuation.
3This kernel called only once inside the main loop.

2.6. HPC-BASED BENCHMARK APPLICATIONS

SWM
Halo regions
< N_LEN
: < N 5
A 5 A KOOSO OISO
= A : z A
= : = :
| C‘:] u oo
vVl v Vv
< —>
N_LEN
< ~ N_LEN > < — >
: < N
A 5 A T e e e
- A : = A
= : | = :
s : = :
......... v U
v v|[tm—— ------------- v VY
< - N >
< NLEN >
N_LEN
< = > < N_LEN >
< 5 N, < 5 N 5
A OO0 OISO A A ;
A : :
= : = :
"_'n‘[= : "—'IJ[= :
= : = :
- : \ / : -
Y YL : v [RO

Figure 2.9: Halo regions representation in the SWM arrays elements.

51

52 CHAPTER 2. BACKGROUND AND RELATED WORK

Host Code

>

¥y

L100 Kernel

Compute:
CU(u,P)
CV(v,P)
Z(u,v,P)
H(u,v,P)

211

L100_pc Kernel
Periodic Continuation

for CU,CV,Zand H

* * Y A.
% v_old!
VAV \

L200 Kernel

Compute:
u_new(u_old,CU,Z,H)

v_new(v_old,CV,Z,H)

P_new(P_old,CU,CV)

L200_pc Kernel

Periodic Continuation for

u_new, v_new, P_new

e H

L300 Kernel

Compute:
u_old(u_old,CU,Z,H)
v_old(v_old,CV,Z,H)
P_old(P_old,CU,CV)
u(u_old)
v(v_old)

P(P_old)

$38 conem

‘
Final:- v -

Figure 2.10: A highlight of the data flow of the five main kernels in the SWM coding
algorithm.

2.6. HPC-BASED BENCHMARK APPLICATIONS 53

2.6.2 LFRic Weather and Climate Model mini-app

The LFRic is a new atmospheric weather forecasting and climate simulation model
that uses a cube-sphere grid to cover the globe, see Figure 2.11. LFRic has been
developed by the Met Office in the UK in partnership with universities and other re-
search centres and builds upon the GungHo dynamical core [3] with the aim of pro-
viding portable performance achieved using an innovative, architecture-independent,
domain-specific programming methodology implemented using PSyclone [AFH " 19].
The model used in this thesis is an LFRic mini-app model consisting of simple dy-
namics and individual kernels. This version was profiled on a Cray XC40°, in the Met
Office collaboration system running on a single node. The profiling showed that around
50% of the CPU time was spent on the Helmholtz solver used in the pressure update
computation within each integration time-step. The solver performs double-precision
matrix-vector multiplication on finite element cells within an outer loop that runs over
an atmospheric column of forty vertical levels in the mini-app, see Figure 2.11. The
grid in Figure 2.11 is a test grid which is a very coarse representation of the globe.
This cube-grid has six faces where each face consists of 12x12 finite-element cells,
making 864 cells in the horizontal. Since columns of cells share edges, they cannot all
be updated in parallel. A graph colouring scheme is used in LFRic to resolve some of
the dependencies updates across the horizontal mesh [AFH ™ 19]. Six colouring groups
represent the 864 cells. A single "colour" has no dependencies and can be processed
simultaneously. The mesh cells are distributed to four groups with 205 cells each plus

a 32 cell group and a 12 cell group.

- /..I

Figure 2.11: “cubed-sphere mesh as used in GungHo with 12x12 subdivisions per face,
referred to as a C12 mesh. This gives 864 columns of cells” [AFH " 19].

The profiling results and the mini-app model was provided by Mike Ashworth at the University of
Manchester.

54 CHAPTER 2. BACKGROUND AND RELATED WORK

LFRic Matrix-Vector Multiplication Kernel (MatVec-kernel)

Listing 2.2 shows the restricted C kernel of the matrix-vector multiplication kernel that
has been extracted from the LFRic mini-app model, which is used as the basis for the
Chapter 7 and 8 in this thesis. The kernel computes a set of 40 (NK) matrix-vector
multiplications corresponding to the 40 finite element cells within a single vertical
column of a coarse resolution global atmospheric model. Each update consists of a
matrix of size 8 vertices by 6 faces and a 6 element right-hand-side vector, x, producing
a left-hand-side output vector of 8 elements, /As. Thus, there are (8+6+48) * 864 * 40
* 8B = 17 MB of input data and 8 * 864 * 40 * 8B = 2MB of output data for the entire
mesh. The size of the matrix is derived from the order of the finite element scheme

used.

Listing 2.2: restricted C kernel for the Matrix-vector multiplication for NK vertical

level

#define NDFI 8
#define NDF2 6
#define NK 40
#define MVTYPE double

int matvec_8x6x40_vanilla (
MVTYPE matrix [NK][NDF2][NDFI],
MVTYPE x[NDF2][NK],
MVTYPE lhs [NDFI][NK]
) A
int df,j,k;
for (k=0;k<NK;k++) {
for(df=0; df<NDFI1;df++) {
lhs[df][k]=0.0;
for(j=0;j<NDF2;j++) {
lhs[df][k]= lhs[df][k]+x[j][k]=*
matrix [k][j][df];

2.7. RELATED WORK 55

LFRic Matrix-Vector Multiplication Kernel (MatVec-Host)

The LFRic mini-app host code prepares the input data for the MatVec kernel and reads
back the results. In addition, /As appears in the design as input and output, the MatVec
kernel code only computes the matrix-vector product, and the host code on the ARM
CPU updates the /hs output data. Depending on the FPGA design, the host code orga-
nizes the mesh cells distribution and passes the correct number of cells to the FPGA
implementation. Moreover, manages the MatVec kernels’ data decomposition and ex-

ecution.

2.6.3 Summary

This section presented a necessary background about the used two weather and climate
models in this thesis. Further implementation details are provided in the Chapters 4
and 7.

2.7 Related Work

Raising the interaction level of scientific programmers with FPGAs to a level where
they can utilize FPGAs efficiently and rapidly has been challenging. HLS tools have
been introduced to help facilitate FPGA’s usability and raise the interaction level. The
level of abstraction of HLS tools is higher than that of hardware description languages
such as Verilog, VHDL and Bluespec. Although the emergence of HLS tools has
raised the FPGA’s programmability abstraction level, achieving high performance us-
ing them is challenging [BRS13] [NSP'16] [CFH" 18] [SVK] [PKB"16] [GLN " 14]
[CBM 18] and poses usability challenges to scientific programmers.

As stated in Section 2.2, there are now many proposed academic and commercial
HLS tools which differ in the level of FPGA control provided and require different
levels of FPGA hardware knowledge. In addition, the level of complexity encountered
during software development varies between them, as they provide different program-
ming languages and different options and methods controlling FPGA design mech-
anisms. These differences increase the number of trade-offs between the available
options and approaches, affecting the desired performance and increasing the tool’s de-
velopment complexity, and, hence, affect the programmer productivity. For example,
accelerating large HPC applications on heterogeneous systems (with single or multi-

ple FPGA) using an HLS tool involves several FPGA-related design challenges and

56 CHAPTER 2. BACKGROUND AND RELATED WORK

decisions, such as: multiple kernels implementation, concurrency mapping problem,
trade-offs between optimizations options and design decisions. In addition, designs
build times can be hours or days and this raises challenges for software programmers
as it’s a very different way of working. The level of these challenges and the design
complexity vary from one tool to another, which adds another layer to the FPGA us-
ability challenge.

Researchers have been exploring and studying the challenges of utilizing HLS tools
for accelerating various HPC workloads to find efficient methods to support design
decisions and achieve high performance, thereby improving FPGA usability. The effort
in studying HLS tools to accelerate HPC workloads on FPGA span multiple areas of
the literature. This section provides a literature review of the different approaches
used, exploratory studies using HLS tools, optimization method studies, and, finally,
frameworks and methodologies proposed to facilitate the use of FPGAs with HLS
tools. This thesis applied an exploratory concurrency mapping study in the domain of
weather and climate applications, and also a comparative study between higher-level
HLS tools (SDSoC OpenCL and SDSoC C++) and a lower-level HLS tool (Vivado
HLS) as a contribution to research exploring FPGA usability using HLS tools to the
problem of accelerating large HPC applications. This section places this research in
the context of the related work.

The related work in the literature can be divided into three categories: Single HPC-
Kernel accelerators, Exploratory studies with HLS tools, HLS tool Comparison and

Survey studies.

2.7.1 Single HPC-Kernel accelerators

To contribute in addressing the challenges raised from the emergence of HLS tools, au-
thors have proposed performance-tuned accelerators using different HLS tools such as
Alter OpenCL SDK, Maxeler, OmpSS, Xilinx Vivado and Xilinx SDAccel and SDSoC
for different HPC workloads such as in weather and climate, linear algebra, machine
learning and finance.

For example, the authors in [ZPM 18, ARAM19,SKN™16] presented performance-
tuned FPGA accelerators for HPC workloads from weather and climate applications.
[ZPM 18] proposed a high-performance 2D/3D stencil computation accelerator using
the Intel OpenCL SDK and implemented it on an Arria 10 GX 1150 FPGA. The pro-

posed FPGA design combined spatial and temporal blocking to avoid issues caused

2.7. RELATED WORK 57

by the input size restrictions and by employing a set of FPGA-specific optimiza-
tion techniques, such as loop collapsing, exit condition optimization, and padding.
In [ARAM19] the authors used the Xilinx Vivado environment to propose an FPGA
design for an LFRic workload kernel. Their design consists of twelve IP blocks (Spa-
tial Parallelism) implemented on a Xilinx Zynq UltraScale+ board. The authors in
[SKNT16] utilised the Altera Stratix V 5SGXEA7 FPGA and system-on-programmable-
chip development tool to propose an efficient FPGA hardware design for the 1D tsunami
simulation. The design depends on streaming computation where fusion loop, shift
buffers and cascading processing elements optimisation techniques are used to im-

prove the performance.

Across almost all scientific areas in HPC applications, linear algebra operations
such as partial differential equations are ubiquitous. Studies such as [DVKGO05,KJPN10,
FOS*14,BFV 17, MML] presented FPGA performance-tuned accelerators for linear
algebra workloads. Linear algebra implementation on FPGAs has focused mostly on
matrix-matrix multiplication, sparse Matrix-vector multiplication, and simple iterative
stencil-based solvers. For matrix-multiplication, the authors in [DVKGO05] have pro-
posed a block design accelerator that enhances data locality and re-usability consid-
ering the local storage and I/O limitations in FPGAs. Another example is [KJPN10]
which provides two FPGA accelerator designs that support IEEE 754 double-precision
floating-point matrix multiplication on Virtex-5 FPGA. For sparse matrix-vector solu-
tion, authors in [FOS™14] proposed a novel optimized sparse matrix-vector FPGA
design that exposes parallelism across rows with low usage of on-chip memory. An-
other example is provided by authors in [BFV*17]. They have presented an FPGA de-
sign for the matrix multiply benchmark. The design is implemented on a Xilinx Zynq
Ulterascale+ board and synthesised using the OmpSS approach. Authors in [MML]
demonstrated an accelerator design for a large matrix multiplication kernel using the
Maxeler platform. They have utilised the data flow engine MAX3 card based on a
Virtex 6 FPGA chip.

Other examples of performance-tuned HPC accelerators in the literature are FPGA
designs provided using the Xilinx SDSoC and SDAccel. For example, authors in [HM21]
utilised the Xilinx SDSoC C/C++ tool to create a deep convolutional neural network
accelerator implemented on the Xilinx ZYNQ Ultrascale ZCU104 board. The same
authors provide another design in [CCS™18] for image processing. They have used
the SDSoC C/C++ development environment and Xilinx Zyng-700 to create an FPGA
design for the Gaussian blur function. Authors in [MWT*20] proposed an optimized

58 CHAPTER 2. BACKGROUND AND RELATED WORK

FPGA design for image processing using SDSoC C/C++ development software and
the OpenCV image library (XfOpenCV). The design is evaluated using several image
processing algorithms, and the results are presented based on the processing speed,
development cycle and power efficiency. The authors in [KG17] proposed an FPGA
accelerator for the AKAZE feature detection algorithm. The design is synthesized us-
ing the Xilinx SDAccel and implemented on a Xilinx Virtex-7 FPGA. The study also
discussed different optimization strategies and methods for reaching the best design.
These studies targeted FPGA accelerator design for a single HPC kernel in isola-
tion. In contrast, this thesis ultimately targets the context of multiple kernels of HPC
applications that will require large distributed accelerators running on a heterogeneous

machine.

2.7.2 Exploratory studies

Exploratory studies are another approach in the literature to address the challenges of
using HLS tools with FPGAs. Authors have explored the different options of opti-
mization methods and design decisions available with the HLS tool’s programming
language or the vendor-based FPGA mechanisms. These studies resulted in optimiza-
tions, recommendations, proposed methodologies and frameworks based on the se-
lected HLS tool and the target HPC workload.

For example, authors in [JZ16,CFH " 18,PFC20,VHKF16,GF20,LWY *17,SEEZ19]
provided studies exploring the OpenCL programming language optimizations in accel-
erating HPC workloads. Different HLS tools are explored, and different HPC kernels
are utilized. These studies explored a similar set of OpenCL-based optimizations, such
as OpenCL local memory and vectorization. However, the aim of the exploration, tools
and HPC kernels are different.

Authors in [JZ16] explored OpenCL code optimizations for stencil kernels, to im-
prove stencil computation kernels in both OpenCL single task and NDRange modes.
They have utilized an Altera FPGA and discussed the performance details of the Altera
FPGA memory system. They recommended utilising the constant memory and shift
register patterns with the OpenCL single task kernel. Moreover, applying constant
memory, local memory and vectorisation to the NDRange kernel can provide higher
memory access bandwidth, hence better performance. Similarly, in [CFH™ 18] study,
authors explored a few simple steps to improve the usability of the HLS tool and help
achieve high performance for stencil computational kernels on FPGA. They pro-

posed a “best-effort” guideline consisting of five main HLS optimization strategies:

2.7. RELATED WORK 59

explicit data caching, customized pipelining, double buffering and scratchpad reorga-
nization for developing FPGA accelerators in an HLS environment. The authors have
quantitatively evaluated the best-effort optimizations methodology and illustrated its
match to software programming techniques, using accelerators from the MachSuite
benchmark, and a Xilinx Virtex-7 FPGA with the Xilinx SDAccel HLS tool. The
proposed guideline is only tested for MachSuite benchmark accelerators; therefore,

exploration for a wide range of HPC workload and HLS tools is still required.

In contrast, the study from [PFC20] explored the variations in OpenCL coding
styles and resulting changes in performance of OpenCL kernels implemented on Xilinx
Kintex UltraScale XCKUO060-2 FPGA. The explored OpenCL coding styles included:
task and NDRange kernels, vectorisation, on-chip local memory and burst mode. A
k-means algorithm was used as a case study, where they have produced ten k-means
OpenCL code versions and twelve integer data sets. They evaluated the effects of
different data set characteristics, the number of processing cores, resource usage, and

performance.

Another exploratory study example is provided in [VHKF16]. In this study, authors
employed the OpenCL kernels through taking the considerations of the hardware con-
straints which can improve the FPGA design performance. The authors have evalu-
ated general optimization techniques in OpenCL, such as single task and NDRange
kernels, single-item and work-group, static coalescing, manual vectorization and intra-
kernel channels on the OpenDwarfs benchmark Suite, using Altera FPGA. Their eval-
uation focused on the effectiveness of the identified optimization techniques in terms
of performance and resource utilization. They revealed that the FPGA accelerator de-
veloped using the OpenCL kernels showed improved performance, thereby showing
the potential of OpenCL for designing efficient FPGA accelerators. In contrast, au-
thors in [SEEZ19] have evaluated the performance potential of a specific OpenCL to
FPGA optimisation methods that they claim are not being deeply assessed in the liter-
ature. Those optimisations are: Local atomic operations, OpenCL single-task kernel,
avoiding global atomic operations, using channels/pipes between producer and con-
sumer kernels, multi-threaded consumer and single-task consumers, and appropriately
specifying work-group sizes. The evaluation was conducted using micro-benchmark
workloads, and the FPGA designs were implemented on Altera Stratix V GX FPGA

and compared to implementations on an Intel 2160 CPU.

60 CHAPTER 2. BACKGROUND AND RELATED WORK

The authors in [GF20] and [LWY " 17] explored various OpenCL optimisation tech-
niques to address the memory-access bottleneck. In [GF20] the memory-access bot-
tleneck is explored on the dense graphs breath-first search (BFS) building block. They
have explored three categories of optimisations: OpenCL-specific optimisations, ar-
chitecture aware optimisations and application-specific optimisations. The study has
considered the choice of data structure, such as queue versus array, the number of
memory banks and the kernel launch configuration. The OpenCL-specific optimisa-
tions used are task kernel, kernel fusion, elimination of host-based synchronisation
and maintaining the data in local memory to avoid expensive global-memory accesses.
The architecture-aware optimisations were: local queue, multiple memory banks and
speculated iterations. The application-specific optimisations merged the three com-
putational stages of BFS (filter-apply-expand) into a single kernel to avoid overhead
from kernel launch and eliminate duplicate entries. In citeluo2017evaluating the au-
thors studied the performance/energy effects of the irregular memory access patterns
to off-chip memory in OpenCL to FPGA. A case study kernel called XSbench from
the Monte Carlo model was used to evaluate the experiments in the study. They trans-
formed and optimized the XSbench kernel in OpenCL using a range of optimizations
and implemented it on an Altera Arrial0 FPGA using the Intel OpenCL SDK tool.

Another exploratory study example was carried out on the Vivado HLS tool in [BD19].
The authors in this study explored a design improvement for an existing Vivado design
for an advection scheme to reduce the data movement overhead. The authors explored
the dataflow style to redesign the existing Vivado design. They have first developed a
profiling approach that can be used within the Vivado HLS tool to highlight the source
of bottlenecks in a Vivado FPGA design. They have found that 86% of the existing
kernel design’s execution time was spent on DRAM data access. Therefore, to improve
the kernel design, they have improved two main areas: the kernel runtime and the DMA
access time. The kernel code is redesigned into four functions (read, prepare-stencil,
compute, write) and the Dataflow HLS pragma is used to launch the four functions
in parallel. This design decision led to data streaming between the execution stages
and improved kernel latency. For improving the DMA access time, they have defined
a C Struct function to increase the data access width to four double-precision values
per access, and divided the data into chunks, overlapping them with the compute stage
where possible. A Xilinx Kintex Ultrascale KU115-2 FPGA card and 18 cores Broad-
well CPU was used to evaluate the proposed design. This work suggested that data

2.7. RELATED WORK 61

movement cost is a key performance factor for achieving high performance FPGA de-
signs. In addition, their work involved low-level hardware design details that are not
feasible to be accessed in higher-level HLS tools such as Altera, SDAccel and SDSoC.

The studies mentioned above focused on exploring the OpenCL language and the
FPGA-vendor HLS tools, but for different aspects, related to the target HPC kernel and
the exploration study’s aim. These studies have not discussed other OpenCL design
options, such as Dataflow and multiple kernels mapping. In addition, the explorations
have not discussed the concurrency mapping problem in multiple kernels, which is a

focus of this thesis focus.

2.7.3 Comparison and Survey studies

HPC Scientific programmers face another phase of complexity in utilising HLS tools
which is related to the various options available in HLS tools. Some of these tools
are only compatible with a specific set of FPGA boards or work within a particular
environment. This leaves the programmer with only a small choice among the available
HLS tools. However, deciding the best choice is always challenging. These tools vary
in their abstraction level presented to the programmer and require different levels of
hardware knowledge; hence, different levels of outcome in productivity result. To
improve the HLS choice decision, researchers have conducted comparison and survey
studies.

For example, authors in [MVBG™12], and [SW19] provided a qualitative compar-
ison and survey study for several selected HLS tools. In [MVBG™ 12] the study aims
to provide designers with a view on the tools and help the designer to decide the best
choice that suits their needs. The comparison was carried out based on three main
metrics: the capabilities of the tool, quality of results and usability. The list of tools
was Xilinx AccelDSP, Agility compiler, AutoPilot (Vivado), BlueSpec, Catapult C,
Compaan, C-to-Silicon, CyberWorkBench, DK Design Suite, Impulse CoDeveloper,
ROCCC, Synphony C Compiler. In [SW19] the authors demonstrated a Design Space
Exploration (DSE) study to overview and classify published HLS tools. This study
compared the different approaches to provide details of their limitations, trade-offs
and produce a guide for researchers wanting to create their own HLS DSE. Moreover,
the main techniques proposed in each tool are summarised.

With a similar aim, the authors in [NSP™16] and [PZMM17] provided a compre-
hensive analysis study for HLS tools, however only for a small set of recent HLS tools.

In [NSP"16] the authors proposed a methodology for evaluating HLS tools, and they

62 CHAPTER 2. BACKGROUND AND RELATED WORK

used them to evaluate the selected HLS tools. The evaluation study is conducted on
one commercial and three academic HLS tools (DWARYV, BAMBU, LEGUP), and the
experiments are carried out on a common set of C benchmarks and implemented on
Xilinx Stratix V and Virtex-7 boards. The tools are compared in terms of the perfor-
mance metric (maximum FPGA frequency, cycle latency, wall-clock time) and the use
of resources. Similarly, the authors in [PZMM17] provided a comparison study and
overview for three different FPGA programming methods. The three HLS tools used
are LegUp, Quartus and Intel OpenCL SDK. Six kernels from the Rodinia benchmark
suite were used and implemented on a Stratix V FPGA to provide a quantitative per-
formance evaluation of the three HLS tools. The authors have identified bottlenecks in

the LegUp HLS tool and recommended a set of improvement methods.

In contrast, the authors in [LY 16] provided a study for comparing low-level RTL
programming vs HLS tools. They reported the development of kernels in the Vivado
HLS environment to explore the programmability transition from an FPGA low-level
programming language (Verilog) to a higher level of abstraction methodology (Vivado
HLS). Their exploration involved the implementation of a filter example to show the
step-by-step creation of an FPGA design in the Vivado HLS environment. Verilog de-
sign and Vivado HLS were compared in terms of their development time and it was
found that the implementation in the Vivado HLS approach required one week com-
pared to two weeks taken by the RTL approach. This study showed the importance of
the HLS tools in reducing the effort in FPGA programming to help software program-
mers who come new to FPGAs. However, the study did not discuss the tool perfor-
mance benefits and challenges against other HLS choices. The authors in [Ken19] also
provided a comparison study for two HLS tools. However, their study focused on two
HLS tools using the same programming language: OpenCL-based Xilinx SDAccel,
and Intel FPGA SDK. This study aimed to test the portability in both OpenCL-based
FPGA designs since they build upon the same programming model. The study shows
that OpenCL-based FPGA design portability is possible by following design patterns
that work well for both tools.

A comparison study is also undertaken in this thesis. However our study com-
pares the implementation of a relatively large HPC application using a low-level of
abstraction HLS tool (Vivado HLS) versus using higher-level of abstraction HLS tools
(SDSoC OpenCL/C++).

2.7. RELATED WORK 63

2.7.4 Related Work Summary

This thesis contribution fits in three areas of the overall body of related work: This
thesis ultimately targets the context of multiple kernels of HPC applications that will
require large distributed accelerators running on a heterogeneous machine. In addition,
the study focused on exploring the design options and their effects on the performance,
the generated hardware, and the programmability, rather than producing fine-tuned ac-
celerator. This thesis also explores and compares the implementation of two relatively
large HPC applications using different HLS tool methodologies (Vivado HLS versus
SDSoC OpenCL and SDSoC C++).

Chapter 3

Research Methodology and Study
Experiments Setup

This chapter presents the methodological approach that is used in this thesis. The
used methodology consists of two primary research studies, which are referred to as
an Exploratory Study and a Comparison Study. Those two studies are carried out
for two HPC-based benchmark applications: SWM and the Matvec kernel from the
LFRic-mini-app. The first part of this chapter details the target FPGA board used to
achieve the research objectives. The second part presents details of the exploratory

study method. The third part discusses the comparison study method and components.

3.1 Target FPGA Hardware

The targeted FPGA platform is the Xilinx Zynq UltraScale+ MPSoC ZCU102 Eval-
uation Kit [Xil20]. We have selected this FPGA hardware since it is a SOC where
the ARM CPU and FPGA fabric are built within the same hardware chip. This thesis
study focused on implementing the exploration experiments on SOC FPGA, where the
requirement for PCle data movement is neglected. The ZCU102 board consist of two
main parts: a Processing System (PS) and a Programmable Logic (PL). The PS part
has the fundamental components to run general-purpose tasks, particularly the Host-
code of an HPC application. For example, the application Processing Unit (APU) has
quad-core ARM Cortex-A53 with 32KB L1 Cache and 1IMB L2 Cache. The ARM
CPUs execute the Host-code and control the accelerator (i.e. the HPC FPGA kernel)
design in the PL part. Other peripherals include a Real-Time Processing Unit (RPU),

64

3.1. TARGET FPGA HARDWARE

Processing System [G]
i APU GPU
H ;5 Mali-400 MP2
i ==l =
Cortex-A53| [Cortex-A53| |Cortex-A53] [Cortex-AS3
Coran-R5 Corten-ES J2KBIVD || 3I2KBVD | | 32KBID || 32 KB D
I2KBVD A2 KB WD
128 KB TCM 128 KB TCM (1 [] [[B4 KBL2
SCu
r r I ACP I I 1MBL2 I
[Low Power Switch ¥
-
258 KB —f SMMUICCI PCle Gen2 | _ -
OCM x1, X2, or x4
2 1 SATA -
]
M0 4x1GE vi1
SGM
2 x USB 3.0
Y usaan
MNAMND x8
ONFI 31
2x 8030/ >< Vi xt, x2
aMMC4.51 >
I Quad SF1 - Central -4
= Switch ” E
2% CAN — ;
I 2xi2C I .q_‘
2 x UART h -
——1 LPD-DMA FPD-DMA [—| ¥ |g—]= Programmatie
= T
g
= | g
&l £
- 100G
'-'rEI Interiaken Ett
= | GFe ol
GTY GTH
SHAZ PMU
AES-GEM Quad Quad
ReA L | B 11
| [EET I DDRC (DDR4/3/3L, LPDDRY) R GEM"
32-bit/64-bit
Battery M -5 M 5
Low Power | | Full Power 1 B4-bit 12851
ENENAT LT

Figure 3.1: Zynq UltraScale+ MPSoC Top-Level Block Diagram [Xil20].

66CHAPTER 3. RESEARCH METHODOLOGY AND STUDY EXPERIMENTS SETUP

an ARM Mali-400 MP2 GPU, High-Speed Connectivity and Dynamic Memory Con-
troller (DDRC) for communication management between the PS and PL. The board
also has 4GB DDR memory, shared between the CPU and the FPGA, consisting of four
memory banks supported with four access ports, as shown in Figure 3.1. The PL part
contains the Zynq UltraScale XCZU9EG-FFVB1156 FPGA and has all the logics used
to build FPGA accelerators. Table 3.1 shows that the XCZU9EG-FFVB1156 FPGA
resources consist of 548,160 Flip-Flops (FFs), 274,080 Look-Up-Tables (LUTs), 912
Block RAMs (BRAMs) and 2,520 DSP Slices (DSPs).

The communication between the PS and the PL parts is managed through 12 Mas-
ter and Slave interfaces, see Figure 3.1. The Master interfaces are M_AXI_HPMO_LPD
and M_AXI HPM[0-1]_FPD. The ARM CPU uses the Master interfaces to control the
accelerator by writing/reading to control registers. Each accelerator kernel has some
control registers in a memory accessible by the ARM to control the Kernel’s start/fin-
ish and data movement. The PL part uses the Slave interfaces to retrieve/send data
to the ARM CPU by writing to the shared DDR memory. The slave interfaces are
S_AXI_HPC[0-1]_FPD,S_AXI_HP[0-3]_FPDand S_AXI_LPD. AXI protocols [Xil21a]

manage the communication through those interfaces. There are three AXI protocols:

* AXI4 for high-performance memory transactions between the Kernel and the
Shared DDR memory.

* AXI4-Lite, a protocol for kernel control and status.
* AXI4-Stream for high-performance data streaming.

The choice of those interfaces and protocols is the responsibility of the compiler in
SDSoC designs, but has to be managed manually by the developer in the Vivado tool,

as we will discuss in chapters 6 and 7.

Table 3.1: Xilinx Zynq UltraScale+ MPSoC ZCU102 board Available Resources
Count.

Hardware Resource

Resources Count
CLB Flip-Flops 548160

CLB LUTs 274080

Block RAM Blocks 912
DSP Slices 2520

3.2. SYSTEM AND EXPERIMENTAL SETUP 67

3.2 System and Experimental Setup

The version of the utilized HLS tools (SDSoC OpenCL, SDSoC C++ and Vivado) is
2018.2. The ZCU102 board ARM CPU runs Ubuntu 16.04.5 with the device tree of
the SDSoC OpenCL and Vivado environment, the binary files of the FPGA boards and
the necessary drivers and libraries. For the SDSoC C++ designs, we used the Bare-
metal [Xil21b] method to execute the designs on the FPGA board. All reported results

are averaged over five runs.

3.3 Exploratory Study

The exploratory study is an exploration of the concurrency mapping techniques, low
level optimisations and the different mapping option trade-offs that are available from
the HLS tool level and from the programming language. In this thesis we conducted
two exploratory study where one targeting the SWM application and the other targeting
the Matvec application. These two exploratory studies are designed to collect data on
performance and resource usage, along with information related to programmability,
from each of the two studies, independently. Comparison between and across the

results gathered is the subject of the Comparison Study described in Section 3.4.

3.3.1 Exploratory Study (1): SWM Concurrency Mapping Explo-

ration

In the first exploratory study, we explore FPGA mapping techniques for mapping the
concurrency levels available in the SWM benchmark to the ZCU102 FPGA board,
using the SDSoC OpenCL and the Vivado HLS tools. There are two levels of concur-
rency in the SWM application; Concurrency within each of the SWM kernels (Single
kernel) and concurrency between the SWM kernels (Multiple kernels). We explored
these two concurrency levels and split them into two parts. The following points

present these two study parts:

* Exploratory Study (1) Part One: 1100 kernel Concurrency Mapping: The
first part of the exploratory study (1) explores the concurrency within a single
SWM kernel mapping. We chose a candidate kernel out of the nine SWM ker-
nels to study its concurrency types mapping to approach this study. The L100

kernel, described in Section 2.6.1 from Chapter 2, has been chosen to conduct

68CHAPTER 3. RESEARCH METHODOLOGY AND STUDY EXPERIMENTS SETUP

the concurrency mapping exploration to a single FPGA board because it is a
good candidate kernel that represents typical levels of concurrency in an HPC
kernel. The study starts with exploring the options available in SDSoC OpenCL
to map the L100 kernel’s concurrency. The mapping options are identified from
the language level (OpenCL) and at the FPGA level (SDSoC HLS tool). These
options are then explored and characterised based on their resulting performance
and FPGA resource usage. Secondly, the L100 concurrency levels are explored
in the Vivado HLS tool after identifying the mapping options available in the
Vivado tool, and the study then gathers these mapping options’ resulting perfor-
mance and resources usage. In addition, the study addresses information related
to the development effort required in both HLS approaches to provide insight
to the traditional HPC software developer, guiding their future design choices
and trade-off options between the mapping options. This study part (one) is
presented in Chapter 4.

* Exploratory Study (1) Part Two: SWM Multiple-Kernels Mapping: The
second part of the exploratory study (1) explores the mapping of the concurrency
between the SWM kernels. This exploration includes studying the available op-
tions and trade-off choices in the number of kernels that can fit in a single FPGA,
the options for data exchange management between the kernels, the problem size
choice, and the impact of optimisation levels that can be applied. In addition, the
study explores the application of the optimisation lessons learned from mapping
the L100 kernel concurrency to the other SWM kernels. The exploration for
mapping the multiple kernels SWM application to a single FPGA is conducted
using the SDSoC OpenCL, and Vivado approaches. This study part (two) is
presented in Chapter 5.

3.3.2 Exploration Study (2): MatVec Kernel with SDSoC Open-
CL/C++ and Vivado HLS

In the second exploratory study, we explores the implementation of an existing FPGA
design of a key kernel (referred to as MatVec) taken from the LFRic Weather and
Climate model developed using a low-level HLS tool, Vivado, and gathers data for
several designs created using the relatively higher-level approaches of SDSoC OpenCL
and SDSoC C++. The study includes exploring the techniques available at a higher
level of abstraction (in SDSoC OpenCL and SDSoC C++) with the aim of replicating

3.4. COMPARISON STUDY 69

the design decisions made in the low-level Vivado HLS tool as closely as possible. In
addition, this study explores and gathers qualitative data for implementations designs,
again with the aim of matching as closely as possible, the MatVec design in the Vivado
HLS. This study is presented in Chapter 7.

3.4 Comparison Study

The comparison study is a comparison of the gathered data from the two exploratory
studies. This study compares performance, resource usage, and programmability dif-
ferences between the best implementations of the two weather and climate bench-
marks, SWM and MatVec, using the different HLS approaches. Two comparison stud-

ies are conducted which the following Subsections present.

3.4.1 Comparison Study (1): SWM Implementations In SDSoC
OpenCL versus Vivado

The first comparison study compares the gathered data from the mapping exploration
study (1) of the L100 kernel and the SWM multi-kernels between the SDSoC OpenCL
and the Vivado. This comparison compares the best implementations results, methods,
mapping techniques and trade-offs of the concurrency mapping explorations from the
two different levels of abstraction of the two HLS tools. This study is presented in
Chapter 6.

3.4.2 Comparison Study (2): MatVec Kernel implementations in
SDSoC OpenCL and C++ Versus Vivado HLS

The second comparison study compares the best implementations of the MatVec kernel
from the three HLS approaches (SDSoC OpenCL, SDSoC C++ and Vivado) that we
explored in the exploratory study (2). This comparison compares the gathered data
of performance results, resources usage, data movement methods and differences in

design decisions and applied design techniques. This study is presented in Chapter 8.

70CHAPTER 3. RESEARCH METHODOLOGY AND STUDY EXPERIMENTS SETUP

3.4.3 Comparison Study Metrics

In the two comparison studies we evaluate the gathered data from the two exploratory
studies through the use of quantitative and qualitative metrics. These comparison met-
rics are chosen based on the research objectives aims, which interested in implemen-
tations performance, resource usage, data movement methods and HLS approaches

programmability. The following points present the comparison metrics:

* Performance: This metric compares the performance in terms of the kernel’s
computational time and overall execution time. The kernel’s computational time
is measured in two forms: the arithmetic computation flops per second rate that
the design produces and the runtime (seconds). Flops rate in a design is calcu-
lated by knowing the number of floating operations that the design needs. The
runtime (seconds) is used to report the multiple SWM kernels implementations
performance (Chapter 5), while the flops form used for the L100 kernel and the
LFric benchmark best implementations. The kernel overall execution time is the
data movement time added to the kernel’s computational time (in seconds). The

data movement time is calculated based on the bytes per second.

* Resource usage: This metric is used to compare the percentage of FPGA re-

sources that a design has consumed.

* System Hardware design: This metric compares the generated hardware sys-
tem designs differences. We compare the differences in terms of the chosen
IP blocks, communication ports, data movement methods, interconnection tech-
niques. In addition, we compare the coding choices that led to the generated

system design.

* Data movement method: This metric compares the data movement time in
bytes per second between the applied data movement methods. In addition, we
discuss and compare the available options for exploiting the memory hierarchy
and how the choice affects performance. In the Matvec design, we also compare
how close to the Vivado design data movement design the SDSoC OpenCL and
SDSoC C++ data movement methods get and why.

* Development effort: This metric is a qualitative review of the steps and effort
of developing the design in each development environment: SDSoC OpenCL,
SDSoC C++ and Vivado.

3.5. SUMMARY 71

* Level of hardware expertise required: How much hardware knowledge the
traditional HPC programmer needs to achieve “good” performance compared to

the three development environments: SDSoC OpenCL, SDSoC C++ and Vivado.

3.5 Summary

This chapter presented the methodological approach to achieve the thesis objectives.
The chapter presented first the target ZCU102 FPGA board and the system setup. Fol-
lowing that, the two primary research studies (Exploratory and Comparison studies)
were explained, and how they will be approached in the next chapters are also dis-

cussed.

Chapter 4

Exploratory Study (1) Part One: L100
kernel Concurrency Mapping

This chapter presents the first part of the exploratory study (1) for mapping the con-
currency available in a Single kernel (L100) from the SWM application to the Xilinx
ZCU102 FPGA board using the SDSoC OpenCL and also the Vivado HLS tools. It dis-
cusses the trade-offs involved and the performance results and describes the different
implementations for mapping the single SWM candidate kernel. This chapter starts by
presenting the concurrency levels related to the mechanisms available in the HLS tools
and programming languages and the concurrency types available in the L100 kernel. In
addition, the different possible coding options for writing the L100 kernel are also pre-
sented. We then present the study setup that involved the basic optimisations applied in
each mapping mechanism experiment. Section 4.3 then presents the exploration study
for mapping the L100 kernel using the SDSoC OpenCL; While Section 4.4 presents
the mapping of the L100 using the Vivado approach. Finally, the chapter ends with a

section summarising the main lessons learned from the experiments carried out.

4.1 L100 Concurrency and Coding Options

Mapping a kernel’s concurrency levels efficiently to the FPGA using HLS tools in-
volves multiple design decisions and option choices related to three areas. First is
the programming language constructs e.g. OpenCL. Second is the vendor compu-
tational and data-movement optimisation mechanisms, and Third is the different

ways for writing the kernel code(s). The software developer has to have a rationale

72

4.1. L100 CONCURRENCY AND CODING OPTIONS 73

for choosing among all the different available options. This section explores the con-
currency mapping options available in the /700 kernel using first SDSoC OpenCL and
secondly Vivado HLS. In addition, a characterisation of their use in terms of perfor-
mance and FPGA resource usage, and address questions related to development effort.
The SWM kernels, such as /100, [200 and (300, have similar concurrency levels. The
focus in this section is on studying the /700 kernel because it represents most of the
examples of concurrency levels in the SWM application. The lessons learned from
this exploration can then be applied to the other kernels in the SWM multiple-kernels
mapping exploration study in Chapter 5.

As described in Section 2.6.1 from Chapter 2, the L100 kernel takes three arrays
as input (u, v, P) representing the wind velocities and the potential pressure. These are
used to calculate four arrays (CU,CV,Z, H) representing the mass fluxes, the potential
vorticity and the surface height. There are several ways to express this kernel algorithm
in a high-level programming language such as C++ and this initial expression of the
computations in code constrains the choices to exploit concurrency. Here, we consider

three candidate coding options as represented in Figure 4.1. The calculations can be

//Compute cu,cv,z and h //Compute cu,cv,z and h //Compute functions
for 1 in @, M; j in @, N : for i in @, M; j in @, N : //cu,cv,z and h
th[i+1][j]=-5*(p[i+1][j]+p[i][j])* th[i+1][j]=-5*(p[i+1][j]+p[i][j])* Compute:
uli+11[31; U[i+11[31; X
oV[i][3+ 1]=.5*(pLL1[F+11+pL41[3])* cu (u,p);
VIil[3+1]; for i in @, M; j in @, N : cv (v,p);
z[i+1][J+1]=(Fsdx*(v[i+1][j+1]-v[i][j+1])- ev[il[j+ 1]=.5*(p[il[j+1]+p[i1[F])* z (u,v,p);
fsdy*(u[i+1][j+1]-u[i+11[3]1))/(p[i1[J]+ VIi][3+1]; h (u,v,p);
pli+11[j1+p[i+1][J+11+p[i]1[J+11);
h[i][31=p[i]1[3]+.25*(u[i+1][j]*u[i+1][j]+ for i in @, M; j in e, N :
uli1[31*u[i1[F]+v[i][F+1]*v[i][F+1]+ z[i+1][3+1]=(fsdx*(v[i+1][j+1]-v[i][j+1])-
vIil[FI*vIil[i1); fsdy*(u[i+1][3+1]1-u[i+1][31))/(p[i1[3]+
pli+1]1[j]+p[i+1]1[+1]+p[i]1[3+1]);
for i in @, M; j in @, N :
h[i]1[3]=p[i]1[j]+.25*(u[i+1][J]*u[i+1][J]+
uli1[3T1*u[i1[3T+vIi1[F+1]*v[i]1[F+1]+
VIEI[31*v[il[31);
A- One Nested Loop B- Four Nested Loops C- Four Functions

Figure 4.1: Pseudocode for the L100 kernel coding options. A- Wrap the kernel oper-
ations with one for loop. B- Wrap each operation in a loop. C- Wrap each operation in
a function.

wrapped with one nested for loop as in the pseudocode in Figure 4.1(a). Another
coding option is to wrap the assignment to each variable (CU, CV, Z, H) with a separate
nested for loop Figure 4.1 (b). A third coding option considered is to implement each
of the assignments as a separate function Figure 4.1 (c). As is apparent in Figure 4.1,
each assignment, and every computation of an element of each of CU, CV, Z and H,

are all independent. This means that, theoretically, with an ideal machine design all

74 CHAPTER 4. L100 KERNEL CONCURRENCY MAPPING

the operations could be executed in one step'; there is an high degree of concurrency
in this embarrassingly parallel algorithm.

Three distinct types of concurrency may be identified in L100 kernel: Instruction-
Level Parallelism (ILP) which involves exploiting parallelism from the computation of
each instance of the loop iterations (i.e. each statement) since each consists of several
floating point operations. This parallelism is clear in the code options (a) and (b) in
Figure 4.1. Functional Parallelism (FP) where each function in code option (c¢) in
Figure 4.1 can be processed in parallel. Data Parallelism (DP) where the processing
of the iterations in each loop in the algorithm can be carried out in parallel. In OpenCL
terminology, each such iteration (or group of operations) may be considered as a work-
item (WI).

FPGAs are a platform where a hardware solution can be tailored to fit the algorithm
requirements. The question for the HPC scientific programmer/developer is: how best
to map the different concurrency types available in the L100 algorithm to exploit the
FPGA’s potential, using the mechanisms available in the OpenCL language and in the
Xilinx SDSoC (see subsection 4.3) and Vivado HLS tools (see subsection 4.4)?

4.2 Study Setup

The HLS vendor-supplied computational optimisations for either SDSoC OpenCL or
Vivado HLS are used for mapping the kernel’s concurrency and part of the process
of optimising the computation. Background on the available optimisations related to
mapping is provided in subsection 2.5.1 in the background chapter. However, applying
only the mapping mechanisms to the kernel is not sufficient (i.e. does not generally
result in efficient performance) without utilising the optimisation strategies that are
presented in subsection 2.5.1 for improving the data-movement required by a kernel.
The memory hierarchy that is available in the ZUC102 FPGA must be exploited and
memory bandwidth can be increased, for example, by utilising the full range of mem-
ory ports for accessing data either in the DDR memory or in the BRAMs.

Therefore, a set of optimisation strategies is proposed which are applied in each
mapping mechanism experiment that is carried using SDSoC OpenCL or Vivado HLS,
in the following order. This optimisation order was chosen based on the programming

complexity of the optimisation. The first optimisation being the more straightforward

! The computation of CU, CV, Z and H points are not equivalent as some are more complex than
others but they can all start in parallel.

4.3. L100 KERNEL MAPPING USING SDSOC OPENCL 75

optimisation strategy and requires the least programming effort.

1. Enable the max memory ports to increase the bandwidth, leading to a lower

overall time to access the data.

2. Transfer data from the DDR memory to the FPGA BRAMs to take advantage of
the lower access latency of BRAMs.

3. Transfer the data to the BRAMSs in burst-mode, so that we hide the data transfer

latency. Bursting mode is where the read (or write) loop is pipelined.

4. Use the array partitioning attribute/Pragma with the pipeline (work-item pipeline
attribute with OpenCL NDRange kernels), unrolling and dataflow attributes/Prag-
mas, to provide more BRAM ports for the calculations, and thus increase the

memory bandwidth available.

For both mapping explorations for the 1100 kernel, using SDSoC OpenCL and
Vivado HLS, a domain of size 64x64 is used. Whilst a domain size of 64x64 is small,
the computation could be undertaken in chunks (similarly to the LFric benchmark
implementations in Chapter7). A single iteration of the inner loop of the L100 kernel
has 24 32-bit float operations. In total, therefore, there are 98,304 float ops for
the 64x64 domain for a single cycle. The kernel requires 23 read accesses, and 4
write accesses to the global DDR memory in each iteration (in the base version of
the code), leading to a total of 368 KiB input data and 64 KiB output data for a single
time-step. For all experiments, the highest hardware optimisation flag, -O3, is used and
the highest clock frequency that is possible without breaching the timing constraints is
used. The performance results in this exploration chapter are the kernel compute time

only and not overall runtime (which will be reported in Chapter6.)

4.3 L100 kernel mapping using SDSoC OpenCL

Using SDSoC OpenCL, there are two paths available for mapping the concurrency
in the /100 kernel to the ZCU102 FPGA. The first is through the use of the high-
level OpenCL programming constructs and the second through the use of the SD-
SoC mapping mechanisms. As presented in Section 2.5, there are three critical mech-
anisms available in the OpenCL language to control/change the mapping of the con-
currency in an application to the FPGA. The first is the OpenCL kernel type which can

be either a rask or an NDRange kernel. The second is the number of kernels included

76 CHAPTER 4. L100 KERNEL CONCURRENCY MAPPING

Table 4.1: The performance effects of each optimisation on the L.100 kernel in SDSoC
OpenCL. (Seq) no optimisations; (Max) max DDR memory ports; (BRAMs) use of
BRAM memories; (B) use burst mode; (AP) use array partitioning

. Latency . Loop | Execution
Experiment Iteration . .
Name (Clock Latency trip Time Speedup
Cycles) Count | Seconds
L100-Seq 4714 1151 4096 188.4 -
,496
L100-Max | 35,457 853 4096 34 55.41x
L100-Max
BRAM 97,344 1528 4096 2.29 82.27x
L100-Max
BRAMLB 14,805 524 4096 0.66 285.48x
L100-Max
BRAM 14,804 524 4096 0.66 285.48x
-B-AP

in the software design, reflecting the developer’s choice as to how to implement the al-
gorithmic operations of the application in one or more kernels. The third is the choice
of the type of OpenCL API command queue(s) selected for controlling the kernel’s

execution, which can be either in-order or out-of-order queue(s).

4.3.1 SDSoC OpenCL L100 Initial Implementation

The first exploration carried out, in mapping the L100 concurrency using the SD-
SoC OpenCL approach, explores the impact of applying the data-movement low-level
FPGA optimisations that are discussed in Sub-subsection 2.5.1 to give insight about
the performance and the programmability of those strategies. Table 4.1 shows the ef-
fect of each optimisation applied, on the performance figures, to the simplest coding
option for the L100 kernel as described in Section 4.1 and depicted in Figure 4.1.

This option is the most straightforward in terms of the coding required for both the
host OpenCL and the FPGA kernel to implement the desired concurrency mapping. In
this option the whole of the algorithm’s operations are wrapped within a single for
loop. Such a loop-based kernel is represented in OpenCL as a Task kernel. This basic
implementation of the kernel is denoted as L100-Seq. This implementation provides
the reference execution time for subsequent OpenCL exploration experiments, and is
summarised in Table 4.1. The applied clock frequency is 200 MHz which was found

to be the maximum that can be used in most cases. Higher frequencies caused failures

4.3. L100 KERNEL MAPPING USING SDSOC OPENCL 77

to meet timing constraints in the hardware compilation process.

Implementing the L100-Seq version creates an IP block that contains just a single
Compute Unit (CU). Since the kernel is implemented as a single task there is, by
default, only a single work-item to be mapped to the CU by the host. This can be
achieved with a single, simple OpenCL task queue on the host and a single call to
enqueue the work-item. Listing 4.1 shows the key steps of the OpenCL Host code to

achieve this, along with the outline of the OpenCL Kernel function code.

Listing 4.1: SDSoC OpenCL Initial implementation Host and kernel code fragnments
for L100 kernel

// command queue
cl :: CommandQueue q(context, device);
// kernel call
kernel _L100(cl:: EnqueueArgs(q,
cl ::NDRange(1, 1, 1),
cl::NDRange(1, 1, 1)),
buffer_u, buffer_v, buffer_p,
buffer_cu, buffer_cv, buffer_z,
buffer_h , fsdx, fsdy);
// Kernel function
__attribute__ ((reqd_work_group_size(1,1,1)))
__kernel void L100¢(
__global float =u,
__global float =v,
__global float =p,
__global float =cu,
__global float =cv,
__global float =z,
__global float =h,
const float fsdx,
const float fsdy
) A
outer_loop:for (i=0;i<n;i++) {
inner_loop:for (j=0;j<m;j++) {

1

78 CHAPTER 4. L100 KERNEL CONCURRENCY MAPPING

The creation of only a single CU is a result of the use of the following state-
ments in Listing 4.1: c1::NDRange (1, 1, 1) in the host code and __attribute___
((reqd_work_group _size(1,1,1))) in the kernel code which specifies that only
one work item is to be mapped.

Xilinx provides analysis tools that can be accessed from the SDSoC SDK that sup-
port analysis of the L100 kernel performance and latency reports generated during the
build process. Table 4.1 shows that the initial implementation requires a latency of
4,714,496 clock cycles (CC) (188.4s in time) to execute. A closer look at the timeline
analysis of the kernel’s operations > shows that one iteration requires 1,151 CC to fin-
ish. These cycles are divided between the kernel’s float arithmetic operations, fmul,
fadd and fsub and read/write global memory gmem, access operations. In the unop-
timised initial code the execution of these operations and memory accesses are seen in
the timeline analysis to be carried out sequentially (i.e. one operation per clock cycle).

Resource usage for the initial implementation, L100-Seq, is given in Figure 4.2.

16
)
= FF mLUTs mDSPs m BRAMs
o 12
=
)
—
= 8
-
(7]
w
O 4
-
o
D
w0
L100-Seq L100-MAX L100-Max- L100-Max- L100-Max-
BRAM BRAM-B BRAM-B-AP

Figure 4.2: Effects of optimisation on resource utilisation.

This straightforward, unoptimised implementation’s performance is poor, and the
resource usage is low; only a small fraction of the available resources are utilised.

The first optimisation we applied to L100-Seq is the selection of Max Memory
Ports resulting in the implementation which is called L100-Max in Table 4.1. Enabling
the Max Memory Ports flag in SDx instructs the xocc compiler to utilise the four
DDR memory ports, where possible. The compiler reports indicated that this memory
port utilisation helped the compiler to pipeline the computational loops with Initia-
tion Interval (II=4) automatically on the inner loop of the kernel’s operations. With

this optimisation, the kernel latency reduced to 35,457 CC (an 132.96x improvement),

2 Available in a report from the build process.

4.3. L100 KERNEL MAPPING USING SDSOC OPENCL 79

and the iteration latency improved from 1151 CC to 853 CC. The execution time im-
proved by 55.41x. The timeline analysis shows that the use of Max Memory Ports
optimises the Global memory (gmem) access operations. Multiple gmem operations are
now carried out per CC. The use of Max Memory Ports increased the resource usage
compared to the initial implementation, as can be seen in Figure 4.2. More DSPs are
utilised, which is consistent with the performance improvement achieved.

The next optimisation, applied on the L100-Max implementation, is utilising the
BRAM memory, this resulted in the L100-Max-BRAM implementation in Table 4.1.

Listing 4.2: SDSoC OpenCL L100-MAX-BRAM and L100-MAX-BRAM-B imple-

mentations kernel code demonstration

// create 2D local memories
float local_u [n_len*n_len];
float local_v [n_len*n_len];

float local_p [n_lenxn_len];

b

float local_cu [n_len*xn_len

1
float local_cv [n_lenxn_len];
float local_z [n_len*n_len];

float local_h [n_len*n_len];

/!l populate the local BRAM in burst mode
__attribute__ ((xcl_pipeline_loop (1)))
for(int 1=0; i< n_lenxn_len; i++) {
local_u[i]= ul[i];
local_v][i]=v][i];

local_p[i]l=pl[il;

In this optimisation, we introduce local BRAM storage for the kernel input data,
see Listing ??, then transfer that data from the DDR memory to the BRAMs using a
for loop. The kernel’s operations will access the data from the BRAM buffers, which
have much lower data access latency. After the calculations finish, we transfer the data
back from the BRAMs to the DDR memory. The timeline analysis shows that the data
movement between the BRAMs and the DDR memory take 1404 CC, and the kernel’s
operations take only 124 CC with IT=1. With the utilisation of the BRAM memory,
the compiler perfectly pipelined the inner-loop of the kernel’s operations. This im-

plementation took 2.29 seconds to finish, which improved the execution time 82.27x

80 CHAPTER 4. L100 KERNEL CONCURRENCY MAPPING

compared to the initial implementation. The resource usage for the L100-Max-BRAM
implementation is shown in Figure 4.2. The usage of BRAMs increased to 10% com-

pared to 0% in the initial implementation.

To further improve the data-movement from the DDR memory to the local BRAMs,
in a further optimisation we used the burst mode optimisation strategy. Burst mode
is triggered through the use of the pipeline attribute xcl_pipeline_loop on the data
read/write loops in the kernel. In Table 4.1 this implementation is called L100-Max-—
BRAM-B. The use of burst mode has improved the performance further and the execution
time has decreased to 0.66s. The use of burst mode reduced the cost of data move-
ment between the BRAMs and the DDR memory from 1404 CC to 400 CC. That has
improved the kernel’s latency to 14,805 CC, a 285.48x improvement compared to the
initial implementation. The use of burst mode has increased only the usage of FFs
(3.44%) and LUTs (7.44%) compared to the L100-Max-BRAM implementation.

The final optimisation strategy is the use of array partitioning. The local mem-
ory BRAM has only two access ports. Array partitioning thus provides more BRAM
access ports for the calculations when the pipeline and unrolling attributes are used.
In Table 4.1 this implementation, L100-Max-BRAM-B-AP, shows that no performance
improvement compared to to the L100-Max-BRAM-B implementation is noticed with
the use of array partitioning. The pipeline 1T is already equal to 1, meaning that the
BRAM’s access ports were already sufficient to allow this initiation interval. In terms
of resource usage, the FF, LUTs and BRAM usage increased to FF (4.28%), LUT
(11.5%), DSPs (3.80%), and BRAMs (12.7%) compared to the L100-Max-BRAM-B

implementation.

4.3.2 Mapping Mechanism Experiments

The following sections presents the results of experiments to exploit the three identified
concurrency types (Instruction-Level-Parallelism, Data Parallelism and Functional
Parallelism) in the L/00 kernel, first, using the mechanisms provided by OpenCL dis-
cussed in Section 2.5 and then using the mechanisms provided by Xilinx SDSoC HLS
discussed in Subsection 2.5.1. Results in terms of performance and FPGA resource
usage are presented and the issues related to programmability discussed. The results
in this section build on top of those of the L100-Max-BRAM-B-AP version described
earlier in this chapter, so they include the low-level optimisations discussed in the pre-

vious section.

4.3. L100 KERNEL MAPPING USING SDSOC OPENCL 81

4.3.3 Instruction-level parallelism

Instruction-level parallelism can be exploited through the use of the pipeline and un-
rolling mechanisms for the L100 kernel’s operation loops. It should be noted that
the use of -O3 compilation flag instructs the xocc compiler to automatically apply
the pipeline mechanism to the inner-loop of the kernel’s operations. We have seen
in section 4.3.1 with the L100-Max-BRAM-B-AP implementation that the compiler has
automatically pipelined the inner-loop.

In section 4.1 two loop-based coding options for the kernel were shown. In Fig-
ure 4.1(a) a single loop nest contained all the operations, while in Figure 4.1(b), a
loop nest was used for each operation.

The SDSoC build reports reveal that the use of the pipeline attribute on the outer
loops in both these cases does not affect the total iteration latency. Pipelining the
outer loop means that we are trying to pipeline outer iterations that each have 64 inner
iterations. The SDSoC compiler failed to translate this design to a register transfer
level (RTL) file and the compilation failed.

The use of a loop per operation, as reported for implementation L.100-P (b) in Ta-
ble 4.2, which contains data for each of the implementations discussed in this section,
increased the kernel latency to 29,991 CC compared to the L100-P (a) implementation
(14,805 CC), and its execution time is 0.97s. The performance differences between im-
plementation L100-P (a) and implementation L.100-P (b) come from the fact that for
a single loop nest (a) pipelining of the execution of all the kernel’s operations is per-
formed. In contrast, with one loop nest per operation (b), the operations are executed

in sequence.

Table 4.2: ILP mapping performance of the L100 kernel in SDSoC OpenCL. (P)
pipelining, (a) or (b) code options (a) or (b) in Figure 4.1; (U) unrolling.

Experiment Latency Iteration | Tri Execution
PliIame (Clock Latenc COUI;)Y[Time Speedup
Cycles) y Seconds
Ll((:l())—P 14,805 524 4096 0.66 285.48x
Ll(%())_P 29,991 816 4096 0.97 194.22x
L100-U 15,508 542 1024 0.68 277.05x

The use of unrolling (version L100-U in Table 4.2) provides similar performance

figures to the pipeline implementation, L100-P (a). The kernel execution time is 0.68s,

82 CHAPTER 4. L100 KERNEL CONCURRENCY MAPPING

despite the fact that the unrolling mechanism has reduced the trip count of the inner-
loop to 1024 iterations. Unrolling results in arithmetic operations from successive
iterations being executed in parallel, however, performance can be impacted due to
conflicts when accessing the BRAMs. These conflicts may be avoided by increas-
ing the array partitioning factor to provide more BRAM access ports which may be
accessed concurrently. The best unrolling factor we found was 4, with an array par-
titioning factor of 8. L100-U utilised more resources compared with the pipelined
version, as can be seen in Figure 4.5, which summarises the resource usage for all the
implementations discussed in this section. The design has utilised: FF (6.7%), LUTs
(19%), DSPs (3.80%), BRAMs (16.44%).

80
60
FF LUTs = DSPs = BRAMs

40

20

RESOURCES UTILISATION (%)

0 - - —
L100-P L100-U L100-1CU- L100-4CU- L100-DF-F L100-DF-L L100-M-P L100-M-U
1IWG-N AWG-N

Instructions-level-Parallelism Data Parallelism Functional Parallelism

Figure 4.3: Bar graph showing the resource utilisation of the optimised concurrency
mapping implementations listed in Section 4.3.1.

In terms of coding the kernel code, we only need to add the pipeline or unrolling

attribute to the appropriate loop in the kernel.

4.3.4 Data parallelism

Data parallelism is available in the L100 kernel because the kernel operations are en-
tirely independent as discussed in Section 4.1. The OpenCL NDRange kernel mecha-
nism is suitable for mapping this concurrency type because multiple W1s can be initi-
ated to execute those operations in parallel.

Listing 4.3 shows the coding side of the NDRange mechanism. This coding style
is different from that of the Task kernel. There are no loops specified in the kernel for
L100, and we use __attribute_ ((xcl_pipeline _workitems)) to enable burst-
mode and to pipeline the execution of WIs. In the host code, the global and local work

size of the kernel is defined using the c1:NDRange OpenCL function.

Listing 4.3: NDRange kernel implementation

4.3. L100 KERNEL MAPPING USING SDSOC OPENCL 83

// Host kernel call

kernel _L100(cl:: EnqueueArgs(q,
cl :: NDRange (64, 64, 1),
cl ::NDRange (32, 32, 1)),
buffer_u, ... , fsdx, fsdy);

//NDRange Kernel. 1024 WIs with 4 WGs
__attribute__ ((reqd_work_group_size (32,32,1)))
// read data in burst mode to Local BRAMs
__attribute__ ((xcl_pipeline_workitems)) {
loops: 1_u[1[1=; 1_v[I[l= 1_p[l[]l=;

}

int j

get_global_id (0);
int i = get_global_id (1);
/1 WIs Calculate their work
if(] < N& i <M) {
__attribute__ ((xcl_pipeline_workitems)) {
Loops: CU[]=; CV[]l=; Z[]=; H[]=;
}
}
// WIs write data back in burst mode
__attribute__ ((xcl_pipeline_workitems)) {
loops: =local_u[][]; =local_v [][];
=local_p [][]:
3

The first, straightforward, NDRange implementation is to create one WG that con-
tains all 4096 WIs which can be executed in parallel. The number of WIs is defined in
the hostas c1:NDRange (64, 64, 1) andin the kernel, the attribute reqd_work_group_size
is used with the local size of (64, 64, 1). The NDRange function get_global_id
provides the WI's coordinate within the global work size. The first NDRange design
implemented has 64*64 WIs, and is labeled L100-N-1CU-1WG in Table 4.3. This has
created a kernel with (4096) WIs and one WG that is mapped to one CU.

This kernel’s iteration latency has improved 17.9x (64 CC) compared to the initial
implementation (1151 CC). The SDSoC build reports show that 64 read accesses to

local memory are carried in parallel in one CC, and the next 64 read accesses happen

84 CHAPTER 4. L100 KERNEL CONCURRENCY MAPPING

Table 4.3: Data parallelism performance of the L100 kernel in SDSoC OpenCL.:
NDRange. (N) NDRange kernel; (CU) No. of compute units; (WG) No. of work-
groups.

. Latency . Loop | Execution
Experiment Iteration . .
Name (Clock Latenc trip Time Speedup
Cycles) Y| Count | Seconds
L100-N-
1CU-1WG 38758 64 4096 1.17 161.02x
L100-N-
ACU-AWG 15219 396 1024 1.14 165.4x

in the next CC. In addition, the kernel’s arithmetic operations are pipelined with IT =
1. The use of __attribute__ ((xcl_pipeline_workitems)) and multiple WIs has
improved the kernel’s performance significantly. However, in Table 4.3, the kernel’s
total latency did not improve to the same extent. This is because data transfers between
DDR memory and the local BRAMs add a high overhead. 29,582 CC out of 38,758
CC were needed for data-movement, a result of congestion as many WIs are trying to
access the DDR memory through only 4 DDR ports. The resulting execution time of
L100-N-1CU-1WG design is 1.17s. For resource usage see Figure 4.5.

In OpenCL NDRange, data parallelism can be exploited at the W1 level and also the
WG level. The kernel’s global data size is divided into multiple local work groups. As
the L100 algorithm’s operations are completely independent, the WGs can be executed
in parallel by mapping each WG to a separate CU. The creation of the WGs is driven
by the OpenCL API function cl:NDRange (32, 32, 1) in the host where we define
the global and the local work size. We specify the number of CUs required through the

application project settings in the SDSoC SDK environment.

The implementation L100-N-4CU-4WG in Table 4.3 exploits the data parallelism
at the WG level, where the global work size of 64 x 64 is divided by 4 (by 2 in each
dimension), and 4 CUs are requested. The kernel’s latency has improved compared to
the L100-N-1CU-1WG implementation, and the trip count of the kernel’s operations has
decreased by 4 (1024). However, no execution time improvement has resulted. The
SDSoC build report shows that there are multiple read/write operations to BRAMs
carried out in parallel, and the kernel’s arithmetic operations are pipelined, but the
latency of accessing the DDR memory has degraded the performance. In terms of re-
sources, L100-N-4CU-4WG has created 4 CUs that consume a high number of LUTs
and BRAMs, as can be seen in Figure 4.5.

4.3. L100 KERNEL MAPPING USING SDSOC OPENCL 85

4.3.5 Functional parallelism

Two mapping mechanisms for functional parallelism are available in L100, as dis-
cussed in Section 2.5, termed Data-Flow and The number of kernels in that sec-
tion. These allow each kernel operation to be mapped to a separate compute unit (CU).
Data-Flow can be applied over functions or loops. Code options 2 and 3 in Figure 4.1
are suitable for this mechanism. In code option 2, the attribute xc1_dataflow can be
specified in the kernel and applies to each of the multiple loops, which are then ex-
ecuted in parallel. In code option 3 the same attribute applies to the functions in the

kernel.

Table 4.4: Functional parallelism performance of the L.100 kernel in SDSoC OpenCL.:
Dataflow. (DF) dataflow ; (F) apply DF to function code style; (L) apply DF over
loops; (M) A kernel per operation; (P) pipeline; (U) unrolling; N NDRange kernel.

. Latency . Loop | Execution
Experiment Iteration . .
Name (Clock Latenc trip Time Speedup
Cycles) Y| Count | Seconds
Ll()_(l):-DF 12,861 - - 0.60 314x
Ll()_(i—DF 16971 - - 0.67 281.19x
L100-M-P | 56158 88 4096*4 1.62 116.29x
L100-M-U | 29974 104 1024*4 1.61 117.01x

Table 4.4 shows the implementations with Data-Flow over functions and loops as
L100-DF-F and L100-DF-L, respectively. As can be seen from Figuer 4.4, the build
reports show that in each implementation 11 CUs have been created by the compiler,
7 CUs for read/write operations and 4 CUs, one for computing each of the operations
CU, Ccv, Z, H. The kernel’s execution timeline in SDSoC shows that the kernel is
executed in three pipelined steps: load, Compute and Store. In the Compute step
the four operations are seen to be carried out in parallel, see Figure 4.4.

The L100-DF-F implementation delivered better performance, with latency 12,861
CC compared to that of the L100-DF-L implementation which had 16,971 CC. L100-DF-F
also delivered the best execution time (0.60 seconds) of all the implementations in this
exploration study. The resource usage data in Figure 4.5 shows, however, that the

L100-DF-F implementation utilised more resources, especially DSPs and BRAMs,

86 CHAPTER 4. L100 KERNEL CONCURRENCY MAPPING

Operation\Control Step | 0 | 1 | 2 | 3 | 4 | 5 |

Fsdy_read(read)

fsdx_read(read)

h_read(read)

z_read(read)

cv_read(read)

cu_read(read)

p_read(read)

v_read(read)

u_read(read)

1100_entry14(function)
read_input_u_proc_l100_1(function)
read_input_v_proc_l100_1(function)
read_input_p_proc_l100_1(function)
cal_cu_proc_l100_1(function)
cal_cv_proc_l100_1(function)
cal_z_proc_l100_1(Function)
cal_h_proc_l100_1(Function)
write_result_cu_proc_l100_1(function)
write_result_cv_proc_l100_1(function)
write_result_z_proc_[100_1(function)
write_result_h_proc_l100_1(Function)

Figure 4.4: Schedule view of the 11 created CUs for L100-DF-F implementation from
the SDSoC OpenCL build reports.

than L100-DF-L. The performance differences can be related directly to the resource
usage.

Table 4.4 also shows the implementations for the use of Multiple kernels. In
this version, we have created a kernel for each of the operations in L100. The kernels
can be Task kernels or NDRange kernels.

Given the resource usage figures in the Data Parallelism experiments, where one
NDRange kernel with 4 WGs mapped to 4 CUs consumed more than 70% of the avail-
able LUTs, the use of multiple NDRange kernels is not an option as it will exhaust the
FPGA’s resources. Therefore, the implementations L100-M-P and L100-M-U use Task
kernels. There are four kernels with either the pipeline or unroll attribute applied on
the kernel’s operation loop. The use of multiple kernels needs synchronisation from
the host, where we use an out-of-order command queue to allow parallel execution.
This command queue issues the execution of the four kernels in the same clock cycle.
The compiler creates 4 CUs and each kernel is mapped to a specific CU. The compiler
reports show that the latency is high, however, and execution time is higher in both
implementations, (L100-M-P and L100-M-U), compared to the Data-Flow mechanism.

With both Data-Flow and Multiple kernels L100’s operations are carried out
in parallel. However, with Multiple kernels, we increase the data transfer latency
by the number of kernels we create. The data transferred to the local BRAM are for
the U, V and P arrays for one kernel, and for four kernels ten data memory transfers

are required from the DDR memory. These data transfers are inefficient (compared to

4.3. L100 KERNEL MAPPING USING SDSOC OPENCL 87

BRAM access) and there are only four DDR memory ports to carry the ten memory
access requests. In the Data-Flow mechanism, only three memory data read accesses
are carried out in parallel, which explains the performance difference. This overhead
has an impact on the latency figures in Table 4.4 for the L100-M-P and L100-M-U im-
plementations. However, in terms of computational iteration latency, L100-M-P and
L100-M-U report 88 CC and 104 CC compared to that of the initial implementation
with 1151 CC. L100-M-P has lower resource usage than L100-M-U, as shown in Fig-
ure 4.5.

0
s}

-}
=}

FF LUTs DSPs BRAMs

RESOURCES UTILISATION (%)
) I
S S

o | L - - - — - L

L100-P L100-U L100-1CU- L100-4CU- L100-DF-F L100-DF-L L100-M-P L100-M-U
1IWG-N 4WG-N

Instructions-level-Parallelism Data Parallelism Functional Parallelism

Figure 4.5: Bar graph showing the resource utilisation of the optimised concurrency
mapping implementations listed in Section 4.3.2.

4.3.6 Discussion

Multiple mechanisms have been discussed in subsections 4.3.2 to 4.3.5 for mapping
the concurrency of the L100 kernel in the SWE shallow water application onto the
Xilinx SDSoC FPGA OpenCL programming model. This subsection discusses the
performance differences seen, and the sources of inefficiencies, as well as considering
programmability issues. Table 4.5 provides some high-level summary information for
the discussion.

Performance and Resource Usage Figures: The performance resulting from the
use of the different mechanisms was presented mainly in terms of latency and exe-
cution time in subsections 4.3.2 to 4.3.5. In addition, we have observed the iteration
latency in different implementations. Different ways were explored for mapping the
concurrency in the L100 kernel to the target FPGA. The results show that using Data-
Flow over functions, targeting the functional parallelism in the kernel, provided the
best performance in terms of both latency and execution time. Further, this approach
utilises fewer FPGA resources compared to the use of multiple kernels or the use of

the multiple WG NDRange mechanism.

88 CHAPTER 4. L100 KERNEL CONCURRENCY MAPPING

Table 4.5: Comparison of the number of compute units (CUs), the number of command
queues (CQs), and loops, and the coding difficulty (score from 1 to 5) and resource
usage of different mechanisms implemented on the L100 kernel in SDSoC OpenCL.

Task NDRange DF DF Multiple
Kernel Kernel Functions Loops Kernels
1 CU 4 CUs 13 CUs 13 CUs 4 CUs
1 in-order- | 1 in-order- | 1 in-order- | 1 in-order- | 1 out-of

CQ CQ CQ CQ -order-CQ
1 Loop No Loop | NoLoop | 11 Loops | 12 Loops
2 5 4 4 4
Low High Low Low Medium
Resource | Resource | Resource | Resource | Resource
Usage Usage Usage Usage Usage

Code option 3 in Figure 4.1 proved to be the better of the coding choices to map
the L 100 concurrency. Since the kernel’s operations are independent, processing them
all in parallel seems to be the appropriate method to achieve good computational per-
formance — for L100-DF-F, a latency of just under 13,000 CC and execution time of
0.60s, with a speedup of 314x over the initial version. The Data-Flow over functions
mechanism assigned each operation in the kernel to its own CU and executed them
in parallel after filling the local BRAMs with the required input data. Exploiting in-
struction level parallelism with the pipeline mechanism (L100-P (a)) came second,
with nearly 2000 CC extra latency, execution time of 0.66s and speedup 285.48x over
the initial version. This version had similar resource usage, except that the Data-Flow

implementation used more BRAMs.

In terms of iteration latency (a measure of the level of data parallelism), the use
of the NDRange mechanism with 1CU and 1WG provided a speedup of 17.9x. This
implies a potential to exploit a high level of parallelism, since 4096 WIs are set to be
executed in parallel. However, the pressure on DDR memory bandwidth to support

4096 WIs severely degrades the performance in this case.

In terms of resource usage, Table 4.5 and Figure 4.5 show that the multiple WGs
NDRange kernel and the multiple kernels implementation consumed the highest per-
centage of resources. Utilising a large amount of resources does not guarantee high
performance, mainly due to memory access overheads in this case. However, use of
fewer resources can be expected to lead to lower power use, though we did not pursue
this here.

4.4. L100 KERNEL MAPPING USING VIVADO HLS 89

Mapping Mechanisms Programmability: Quantifying programmability is a chal-
lenging task. Therefore, in this subsection, we choose to observe what code changes
were required to the original initial implementation and give some qualitative indi-
cation of the programming difficulty involved in our implementations. Programming
FPGAs requires traditional scientific programmers to take on a new computational
model involving the low-level design of hardware as well as often novel high(er)-level
programming models for FPGA systems. For example, OpenCL introduce new de-
sign choices and trade-offs that become easier to deal with with experience. Table 4.5
summarises some high-level aspects of those choices and trade-offs®>. The NDRange
kernel mechanism with multiple WGs was the largest and most complex to design and
implement. The implementation required numerous changes to the initial code, and the
exploration of various designs to find the best solution given the use of local BRAMs.
In contrast, the use of the pipeline and unroll mechanisms were the most straightfor-
ward to apply since the changes to the initial implementation required only inserting
SDSoC attributes on the loops.

The exploitation of Functional parallelism with the Data-Flow and multiple kernel
mechanisms was in the middle in terms of coding difficulty. Applying Data-Flow
over functions required coding in the functional style, while the Data-Flow over loops
required only the insertion of an attribute in the kernel top-level function. Both
Data-Flow mechanisms needed changes to the number of local BRAMs used (achieved
with local data declarations) and, therefore, extra data copies to read to and write from
the BRAMs. The Multiple kernels mechanism required a considerable amount of time
to code the four kernels. In addition, changes to the host code were required to be

explored and implemented, as indicated in Table 4.5.

4.4 L1100 kernel mapping using Vivado HLS

The use of the Vivado HLS tool approach involved two paths to map the L100 kernel’s
concurrency to the ZCU102 FPGA. As described in the Section 2.4 in the background
Chapter 2, the first path is through the use of Vivado HLS tool (Compile Stage), which
involves producing an FPGA IP block for the L100 kernel. In this stage, there are
different HLS pragmas that can be used and the various L100 kernel coding options that

are available can affect mapping the L100’ s concurrency levels. The second path is

3The scoring judgement in Table 4.5 is being made by the thesis author who is more from a software
development background but familiar with FPGAs, and this likely matches the background of potential
users.

90 CHAPTER 4. L100 KERNEL CONCURRENCY MAPPING

through the use of the Vivado design suite (Link Stage), where there are plenty of low-
level hardware design options that can be explored in order to form a system design
which includes the L100 IP block. The hardware design decisions involve choices such
as selecting appropriate communication blocks, data addresses management, designing
the memory solutions (e.g. the use of DDR memory and/or BRAM memory), the
selection of connection ports and the data path parameters, including sizes and data
widths.

4.4.1 Vivado Initial Implementation

The first exploration that is carried out, in mapping the L100 concurrency using the
Vivado approach, explores the initial implementation that represents the base code
for the mapping mechanism implementations. In addition, it explores the impact on
performance and resource usage of applying the low-level FPGA optimisations that
are discussed in section 2.5.1. In conducting this initial exploration, two steps were
carried out first: The first step is building the L100 kernel IP block, and the second is
creating the system design that hosts the L100 kernel IP block. Listing ?? shows the
Vivado HLS kernel code for building the 1100 kernel IP block. The HLS pragma HLS
INTERFACE is used in the kernel code to define data depth and data burst attributes for
each kernel argument. In the base code, all the kernel’s arguments are bundled to one
port that can connect to the memory block. Two available memory solutions (DDR
memory and BRAM blocks) are available for storing the shared data between the Host
(ARM CPU) and the 1100 IP block. The use of DDR memory was already explored
in the L100 implementation with OpenCL, see Section 4.3. Therefore, the memory
solution choice for the L100 Vivado exploration is to explore the use the BRAM block
memory. To enable the access of the L100 IP block argument ports to the BRAM
block we bundled all the ports to bram in the HLS INTERFACE HLS pragma, as shown
in Listing ??. The L100 kernel code in Listing ?? is compiled using the Vivado HLS
tool which results in an IP block for L100 kernel, see Figure 4.6. The 1L100 IP block
has two ports: m_axi_bram for accessing the BRAM storage, and s_axi_AXILiteS
for the ARM CPU to control the execution of the kernel.

Listing 4.4: Vivado Initial implementation kernel code structure for L100 kernel

// Kernel function
int L100_seq(

float =u,

4.4. L100 KERNEL MAPPING USING VIVADO HLS

float =v,
float =p,
float =*cu,
float =cv,
float =z,
float =xh

)

#pragma HLS INTERFACE m_axi depth=128

port=u offset=slave bundle=bram \

num_read_outstanding=8 num_write_outstanding=8 \

max_read_burst_length=32 max_write_burst_length=32
#pragma HLS INTERFACE m_axi depth=128

port=v offset=slave bundle=bram \

num_read_outstanding=8 num_write_outstanding=8 \

max_read_burst_length=32 max_write_burst_length=32
#pragma HLS INTERFACE m_axi depth=128

port=p offset=slave bundle=bram \

num_read_outstanding=8 num_write_outstanding=8 \

max_read_burst_length=32 max_write_burst_length=32
#pragma HLS INTERFACE m_axi depth=128

port=cu offset=slave bundle=bram \

num_read_outstanding=8 num_write_outstanding=8 \

max_read_burst_length=32 max_write_burst_length=32
#pragma HLS INTERFACE m_axi depth=128

port=cv offset=slave bundle=bram \

num_read_outstanding=8 num_write_outstanding=8 \

max_read_burst_length=32 max_write_burst_length=32
#pragma HLS INTERFACE m_axi depth=128

port=z offset=slave bundle=bram \

num_read_outstanding=8 num_write_outstanding=8 \

max_read_burst_length=32 max_write_burst_length=32
#pragma HLS INTERFACE m_axi depth=128

port=h offset=slave bundle=bram \

num_read_outstanding=8 num_write_outstanding=8 \

92 CHAPTER 4. L100 KERNEL CONCURRENCY MAPPING

max_read_burst_length=32 max_write_burst_length=32

#pragma HLS INTERFACE s_axilite port=return
outer_loop:for (i=0;i<local_n;i++) {
inner_loop:for (j=0;j<local_n;j++) {

} // operation code

return 0;
L100_seq_O
s N
.- = s_axi_AXILiteS Vivade™ HLS b
. m_axi_bram == |: =
-== ap_clk e
' interrupt jm
=Qap rst n

(G J
L100_seq (Pre-Production)

Figure 4.6: Vivado L100 kernel IP block.

The second step is creating the system design using the Vivado design suite to host
the L100 kernel IP block shown in Figure 4.6. Figure 4.7 shows the created system
design. This system design is inspired by the design proposed in [ARAM19], which

will be further discussed in Chapter 7. The system design consists of:

* One AXI BRAM Controller and One Block Memory Generator to provide the
BRAM memory solution for the L100 IP block.

* The number of AXI Crossbars to be used for the data-path conversion, where

necessary.

* One AXI Protocol Converter to convert between the AXI4 port in the ZynQ block
and the AXI_Lite portin the L100 IP block.

* One AXI Interconnect for converting the 128 bit data path (of the ZynQ block
port) to the 32 bit (L100 IP block port).

* One Clock Wizard block that provides multiple clock frequencies that can be
used by the system design block and the 1L.100 IP block.

93

u3Isop wsAs uoneyuaw[dwr [eniuy ([T OPBAIA :L'{ 9IN3L]

20SdW +3[easenin bukz

+3TVISEHN

]

1959Y WaISAS 105530014

1owIoues Alowa Yoolg

(Asnq~ st 81804 Wvaa +

1RGSS0ID XY

H0E Py

" @ [0:0]obursd d
i

o Aol Tuuc

TWAH XY W

OWdH XY W

0 @ sd ennbukz

fesayduad

"auLodIEl

[e ————

[e -

paooi wap
184S Bngap qui
uresar e

uiesar e

4.4. L100 KERNEL MAPPING USING VIVADO HLS

fsnqeiss viMOd WvHa 4 —osaiqu Ho"ouks Isamars
XY
T uab wauw g 0 1852l shs ooud
NLISTUY
J31104U0D WV IXY — = =
T 1eqssoi e B
NLISTHY
_ asarE e _
=+ a10d Wrug J— 1oV
_ HoE e \
+ vidod Wvag G J8UBAUOD (090101 IXY . - " MESEY
i 1xv TN - X - 10V
T o weiq xe s 4+ XV 00N X NLISTHV
+xv W . - . —n MOV
18QSS0ID XY
0 101BAU0D 0001010 IXE o
HE _ XV
.. IXv"10S 4
— J8gSS0ID XV - 9
= 0 198U XE
~reqsson e i - L
€ e T X prezip Bupiooio 1959 Wa1SAS 10558901d
(uononpoid-aid) bas 00T BT | I
pawaol _ (00lussare esayduad pa¥o0 wop
o
Ui — — M0 auuoasaIl 18745 Bngap qu
adnusaiun 0 1eqssoi ixe | " =
P Ao e Tino 0 [0:0hesai fesayduiad uriasai e
[Rep— SauIXY e s 4 [[0:0hiesai ons"snq uMesai x|
0 ZMP asai qu Ho"ouksIsamars
0 bas 00T

T 1952l shs ooud

94 CHAPTER 4. L100 KERNEL CONCURRENCY MAPPING

Table 4.6: The performance figures of each optimisation on the L.100 kernel in Vivado
HLS. (Seq) no optimisations; (BRAMs) use of BRAM memories; (B) use burst mode;
(AP) use array partitioning

. Latency . Loop | Execution
Experiment Iteration . .
Name (Clock Latenc Trip Time Speedup
Cycles) Y | Count | Seconds
L100-Seq | 1290369 | 20162 64 15.54 -
L100-
BRAM 470042 5940 4225 5.27 2.94x
L.100-
BRAM-B 402496 5938 4225 3.59 4.32x
L100-
BRAM-B- | 1770564 | 27229 4225 15.75 -1.01x
AP

Table 4.6 shows the performance effect of applying the low-level FPGA optimisa-
tions, in the order that is discussed in section 4.2, when applied to the simplest coding
option, (a), for the L100 kernel. In this option, the whole of the algorithm’s operation
code is wrapped within a single for loop. This basic implementation of the kernel is
denoted as L100-Seq (as we did in the OpenCL exploration, see 4.3). L100-Seq rep-
resents the initial execution time for the subsequent Vivado exploration experiments,
and is summarised in Table 4.6. The applied clock frequency is 447 MHZ, which was
the maximum that could be used in most cases. Higher frequencies caused failures to
meet timing constraints in the hardware compilation process. The Vivado L100 design
clock frequency is much higher than the SDSoC OpenCL L100 version which is likely
due to the added complexity imposed by the SDSoC OpenCL tooling.

The L100-Seq IP block is generated and inserted into the system design in Fig-
ure 4.7. Then this design is compiled to generate the bitstream files. Table 4.6 shows
that the initial implementation requires a latency of 1290369 clock cycles (CC) (15.54s
in time) to execute. The Vivado HLS tool provides a timeline analysis report that shows
that one iteration requires 20162 CC to finish. These cycles are divided between the
kernel’s float arithmetic operations and accessing the data from the external BRAM
block in Figure 4.7. Resource usage is given in Table 4.7. This straightforward, unop-
timised implementation’s performance is poor, and the resource usage is low; only a

small fraction of the available resources are utilised.

4.4. L100 KERNEL MAPPING USING VIVADO HLS 95

Table 4.7: The resource usage figures of each optimisation on the L.100 kernel in Vi-
vado HLS. (Seq) no optimisations; (BRAMs) use of BRAM memories; (B) use burst
mode; (AP) use array partitioning.

Implementation |z | br | psp | BRAM 36K
Name

7907 | 7054 | 16 2
L100-Sea 1) | 2%y | 0%) | (0%)
L100- 7918 | 6183 | 16 79
BRAM (1%) | %) | (0%) (4%)
L100- 8033 | 6469 | 16 79
BRAM-B (1%) | 2%) | (0%) (4%)
Bl{ggz:B_ 10425 | 9209 | 17 114
AP (1%) | 3%) | (0%) (6%)

To improve the Vivado L100 kernel performance, we started with the order of op-
timisations mentioned section 4.2. Any change to the Vivado L100 kernel requires re-
generating of the L100 IP block, re-inserting it to the system design and re-generating
the bitstream files. The Max Memory ports optimisation is not suitable for the Vi-
vado design because we use the BRAM block, not the DDR memory. The BRAM
block only provides two memory ports, one used for reading access and writing ac-
cess. Therefore, the first optimisation we applied to the L100-Seq IP block is utilising
the BRAM memory. This involves utilising local BRAM memory within the L100-Seq
IP block; this is L100-BRAM in Table 4.6. The local BRAM storage is introduced for
the kernel input data. That data is then transferred from the external BRAM block in
the system design, see Figure 4.7. The kernel’s operations will access the data from
the local BRAM buffers, which have much lower data access latency as they are inside
the 1100 kernel. After the kernel’s calculations finish, we transfer the data from the
local BRAM buffers to the external BRAM block storage. The timeline analysis from
Vivado shows that the kernel’s latency and iteration latency has improved by 2.74x and
3.39, respectively, compared to the initial implementation, as can be seen in Table 4.6.
In addition, this implementation took 5.27s, which improved the execution time by
2.94x compared to the initial implementation. The resource usage for the L100-BRAM
implementation is shown in Table 4.7. The key figure is the BRAM usage which in-

creased to 4% compared to 0% in the initial implementation.

To improve the data movement from the external BRAM memory to the local

96 CHAPTER 4. L100 KERNEL CONCURRENCY MAPPING

BRAM blocks, we used the burst mode optimisation strategy. Burst mode is trig-
gered through the use of the C function memcpy. The use of burst mode has improved
the performance further and the execution time decreased to 3.59s, see experiment
L100-BRAM-B in Table 4.6. In addition, this optimisation has improved the kernel’s la-
tency to 402496 CC from 1290369 CC in the initial implementation. The use of burst
mode has slightly increased only the FFs and the LUTSs usage figures compared to the
L100-BRAM implementation.

The final optimisation strategy, as mentioned in the optimisations order in sec-
tion 4.2 is the use of array partitioning. Array portioning increases the local BRAM
bandwidth by providing more BRAM access ports. In Table 4.6 this implementation,
L100-BRAM-B-AP, shows a performance degradation (15.75s) compared to the initial
implementation (15.54s). In the L100 Vivado exploration we replaced the DDR mem-
ory used in the SDSoC OpenCL exploration (4.3) with an external BRAM storage
block. The memory path between the local (partitioned) BRAM blocks and the ex-
ternal BRAM memory (2 memory ports) is narrower compared to that of the DDR
memory (4 memory ports). This has led to limited bandwidth where the use of ar-
ray partitioning increased the number of memory access required in filling those local
BRAMs from the external memory. This issue will be investigated more in the func-
tional parallelism exploration in 4.4.4.

The Vivado HLS reports show that II of the four different versions in Table 4.6 are
null; Which means that the Vivado compiler did not undertake any automatic pipelin-
ing for the loops. In contrast to the SDSoC OpenCL, the xocc compiler has undertak-

ing some automatic optimization (pipeline) as illustrated in section 4.3.

4.4.2 Mapping Mechanism Experiments

This section presents the results of the exploration experiments carried out on the Vi-
vado HLS approach to map only two of the L100 kernel’s identified concurrency types
(Instruction-Level-Parallelism and Functional Parallelism). Data parallelism de-
pends on the availability of a mechanism to allow the processing of the L100 kernel’s
iterations in each loop in parallel. This was feasible to map in the SDSoC OpenCL
approach through the use of NDRange kernels. There is no mechanism to support the
equivalent in Vivado HLS in order to map this concurrency type. The Vivado HLS
mechanisms that are available, which are discussed in section 2.5.1, are utilised for

these mapping experiments. Results in terms of performance, resource usage, and

4.4. L100 KERNEL MAPPING USING VIVADO HLS 97

programmability issues are discussed and presented in the following. The implemen-
tations in this section are built on top of the L100-BRAM-B version in Table 4.6, so they

include the low-level optimisations discussed in the previous section.

4.4.3 Instruction-level parallelism

Instruction level parallelism is available through the use of the HLS pipeline pragma
mechanism for the operation loops in the L100 kernel. In the SDSoC OpenCL explo-
ration, we found that the performance of the mappings when using a loop per opera-
tion (L100-P (b)) and unrolling (L100-U) was lower than when using the pipelining
(L100-P (a)) implementation, see section 4.3.3. Thus, motivated by the results of the
OpenCL explorations, we only applied the implementation of version L100-P (a) in
this concurrency type exploration to avoid repetition of unnecessary experiments.

The pipeline pragma is applied to the code option (a) in Figure 4.1, where a single
loop nest contains all the operations. Table 4.8 shows that the L100-P (a) implementa-
tion improved the L100 performance by 58.86x compared to the initial implementation.
This performance improvement is a result of the inner loop operations being pipelined
with II= 2. The kernel latency is reduced to 37915 CC, which helped achieve 0.264s
execution time. Table 4.9 shows increases in resource usage compared to the initial

implementation, especially in BRAM usage (9%).

4.4.4 Functional Parallelism

Two mapping mechanisms for Functional parallelism are available in the Vivado HLS
approach. As described in Section 2.5, they are: Data-Flow and the number of
kernels. Motivated by the results of the SDSoC OpenCL explorations in 4.3.5, we
only applied the Data-F1low over functions with regard to the use of Data-Flow mech-
anisms in the Vivado HLS exploration since Data-Flow over functions showed better
performance in the OpenCL results compared to the performance of Data-Flow over
loops version.

Table 4.8 shows two Vivado Data-F1low implementations which are L100-DF-F~1-BRAM
Block and L100-DF-F-7-BRAM Blocks. The number of BRAM blocks in the imple-
mentation’s name is the number of external BRAM blocks utilzed in the system de-
sign. Both implementations have the same kernel code, which is shown in Listing 4.5;
Therefore, the same L100 IP block is generated for the both implementations, see Fig-

ure 4.8. The kernel’s operations in this implementation are following code option (C)

98 CHAPTER 4. L100 KERNEL CONCURRENCY MAPPING

Table 4.8: The performance figures of the ILP and Functional parallelism mapping
of the L100 kernel in the Vivado approach. (P) pipelining; (a) code option (a) in
Figure 4.1; (DF) dataflow, (F) apply DF to function code style; (M) A kernel per
operation. The blank entries in this table mean that the information is not available to
be reported. The speed up is relative to the Vivado L100-seq initial implementation.

Concur- Experi- Latency . Loop | Execution
Iteration . .
rency ment (Clock Latency Trip Time Speedup
Type Name Cycles) Count | Seconds
Instruction-
Level L100-P-a 37915 114 4225 0.264 58.86x
Parallelism
L100-DF-F
. 1-BRAM 16740 - - 0.322 48.26x
Functional
Parallelism Block
L100-DF-F
7-BRAM 16740 - - 0.164 94.75x
Blocks
L100-M-P-
4-BRAMS - - - 0.238 65.29x
Blocks

in Figure 4.1 of mapping the kernel’s operations to four functions. In the implementa-
tion L100-BRAM-B, which we build these mapping mechanism experiments on top of,
we bundled all the kernel’s argument ports to one bram port. That means the L100 IP
block would have only one memory port connected to the external BRAM block for the
read/write access operations. In the L100-DF kernel code, we designed the kernel to
have three memory read functions that are executed in parallel and four memory write
functions that also executed in parallel, see Listing 4.5. This kernel design decision
was explored in the SDSoC OpenCL exploration and showed a high performance. In
the SDSoC OpenCL operations we found that the parallel access to the DDR memory
improved the data-movement which, in turn, improved the overall kernel’s execution
time. Enabling parallel read/write was available using the max memory ports mecha-
nism, which ensures that each kernel argument has a separate memory port. To enable
the parallel read/write operations in the Vivado Data-Flow implementation, we bun-
dled L100 kernel arguments to separate bram ports which allows parallel execution of
the read/write functions, see code Listing 4.5. The bram ports are distinguished with

port numbers from 0 to 6, as shown in the code Listing 4.5.

Listing 4.5: Vivado L100-DF implementation kernel code for L.100 kernel

4.4. L100 KERNEL MAPPING USING VIVADO HLS 99

Table 4.9: The resource usage figures of the ILP and Functional parallelism mapping
of the L100 kernel in the Vivado approach. (P) pipelining; (a) code option (a) in
Figure 4.1; (DF) dataflow, (F) apply DF to function code style; (M) A kernel per
operation.

Total
Local &
Concurrency Experiment External
Type Name FF LUT | DSP BRAM
36K
Usage
Instruction- 13327 9028 39 83
Level Parallelism | 100-F-2 Q%) | B%) | 1%) | (9%)
LII%OI;D;\&F 21124 | 16791 | 65 | 259.50
Functional Block (3%) 6%) | %) | 28%)
Parallelism
L71_ (I)SORI;B;V[F 21124 | 16791 65 283.50
Blocks (3%) (6%) 2%) | (31.09%)
1‘;_1](3);){- };41\'41;' 21077 | 15962 | 65 | 195.50
Blocks (3%) | (5.85%) | 2%) (21%)

// Kernel function
int L100_df(
float =*u,

float =v,

float =p,

float =xcu,

float =*xcv,

float =z,

float =xh

) A

#pragma HLS INTERFACE m_axi depth=128

port=u offset=slave bundle=bram0O \
num_read_outstanding=8 num_write_outstanding=8 \
max_read_burst_length=32 max_write_burst_length=32

#pragma HLS INTERFACE m_axi depth=128

port=v offset=slave bundle=braml \

100 CHAPTER 4. L100 KERNEL CONCURRENCY MAPPING

num_read_outstanding=8 num_write_outstanding=8 \
max_read_burst_length=32 max_write_burst_length=32

#pragma HLS INTERFACE m_axi depth=128

port=p offset=slave bundle=bram2 \
num_read_outstanding=8 num_write_outstanding=8 \
max_read_burst_length=32 max_write_burst_length=32

#pragma HLS INTERFACE m_axi depth=128

port=cu offset=slave bundle=bram3 \
num_read_outstanding=8 num_write_outstanding=8 \
max_read_burst_length=32 max_write_burst_length=32

#pragma HLS INTERFACE m_axi depth=128

port=cv offset=slave bundle=bram4 \
num_read_outstanding=8 num_write_outstanding=8 \
max_read_burst_length=32 max_write_burst_length=32

#pragma HLS INTERFACE m_axi depth=128

port=z offset=slave bundle=bram5 \
num_read_outstanding=8 num_write_outstanding=8 \
max_read_burst_length=32 max_write_burst_length=32

#pragma HLS INTERFACE m_axi depth=128

port=h offset=slave bundle=bram6 \
num_read_outstanding=8 num_write_outstanding=8 \

max_read_burst_length=32 max_write_burst_length=32

#pragma HLS DATAFLOW

// Data Read from External BRAM
//Read u,v and P

read_u(u, local_u)

read_v (v, local_v)

read_p(p, local_p)

// Compute functions
//CU,CV,Z and H
Compute:

local_cu (local_u, local_p);

4.4. L100 KERNEL MAPPING USING VIVADO HLS 101

local_cv (local_v, local_p);
local_z (local_u, local_v, local_p);

local_h (local_u, local_v, local_p);

// Data Write back to External BRAM
// Write CU,CV, Z and H
write_cu(local_cu, cu)

write_cv (local_cv, cv)

write_z (local_z , z)

write_h (local_h , h)

L100_df b 0

m_axi_bram0 = f:
m_axi_bram1 ==

m_axi_bram2 2
< s_axi_AXILiteS Vivado™ HLS - +i
m_axi_bram3== £:
ap_clk

‘ m_axi_bram4 4
ap_rst_n .
m_axi_bram5 <= £

1

m_axi_bramé = f:

interrupt pm=

L100_df_b (Pre-Production)

Figure 4.8: Vivado L100-DF IP Block.

As the L100-DF IP block created has seven ports, the parallel read/write accesses
to the external BRAM also required multiple ports in the external BRAM block. How-
ever, the external BRAM only has one data access port. This would cause bandwidth
congestion and overhead in the implementation’s execution time. To explore this is-
sue, the Vivado Data-Flow version named L100-DF-F-1-BRAM-Block in Table 4.8
was created with just one external BRAM block that has only one data access port,
as in Figure 4.9. The resulting performance compared to the L100-P-a version is
slower with 0.322s execution time. The L100-DF-F-1-BRAM-Block implementation
thus demonstrated the need, and benefit, for more memory bandwidth to efficiently

map the L100 kernel’s functional parallelism through the Data-F1low mechanism. To

102 CHAPTER 4. L100 KERNEL CONCURRENCY MAPPING

improve the memory bandwidth, we explored the memory design solution of creating
seven external BRAM blocks. Thus, a BRAM memory per argument is created in this
design where each memory holds one array (u, v, P, CU, CV, Z and H), see Figure 4.10.
Table 4.8 shows that this memory design solution (L100-DF-F-7-BRAM-Blocks) has
improved the performance by 94.75x compared to the initial implementation. The
utilisation of seven external BRAM blocks improved the kernel’s execution time from
0.322s (with one external BRAM block) to 0.164s. In addition, the kernel latency has
improved to 16740 CC compared to 1290369 CC of the initial implementation. Ta-
ble 4.9 shows increases in resource usage of FF (3%), LUT (6%) and DSP (2%) compared
to the initial implementation. The BRAM usage was the highest increase figure as we
utilised (31.09%) of the BRAM resources.

Table 4.8 also shows reults for the implementation (L100-M-P-4-BRAM-Blocks)
which was designed to explore the use of the multiple kernels mapping mecha-
nism. In this version, we created a kernel for each of the operations in the L100 kernel.
Motivated by the SDSoC OpenCL exploration results, the chosen mapping mechanism
for each of the four kernels’ operations is the pipeline pragma. The four kernel codes
are following code option (a) in Figure 4.1, with the pipeline pragma applied to the
inner loop in each kernel. Using the Vivado HLS tool, four IP blocks are generated
which compute CU, CV, Z and H, respectively. Figure 4.11 shows the system design for
this L100-M-P-4-BRAM-Blocks implementation. Each operation kernel is connected
to its own external BRAM block, so this implementation has four external BRAM
blocks. Input arrays u, v and P are shared between the four kernels. In order to enable
each IP block access to those arrays we duplicate them in the external BRAM blocks in
order to avoid conflict for bandwidth. This implementation delivered an execution time
of 0.238s and speedup of 65.29x compared to the initial implementation, see Table 4.8.
Similarly to the other mapping mechanisms, the resource usage of this implementation
increased, to FF (3%), LUT (5.85%), DSP (2%) and BRAM (11%) compared to the initial
implementation, see Table 4.9.

4.4.5 Discussion

Multiple Vivado HLS mechanisms have been utilised for mapping the L100 kernel’s
concurrency. This section discusses the performance differences seen, the sources of

inefficiencies found and considers programmability issues.

Performance and Resource Usage Figures: The performance of the different

103

4.4. L100 KERNEL MAPPING USING VIVADO HLS

"u31sop wa)sAs uoneuewA[dwI ¥00 Tg-WYId-T-A-I0-00TT OPBAIA 6§ 2IN3L]

199UU0DIAI IXY

NLISTAV |
MOV T D0SdW +3[easenn bukz
+3TvDSeaN
ATV = 00"1d e
- _ L [o:oloba™sd™d
N13STY d -
- L . R joe”pdyTwdypxew
XV TON 1% Q3 TN 1XYW .
+1xv 10 X 0 +
= | b | = R Hoe”pdj owduxew|
4 1xv oon VA NLISIHY {4 adTONdH 1XYW
N. 0 o sd enn bukz
R
IXVT0S = [£
J01e19Ua9 AIOWA %00l Pxv008 .l_.
+
Asna™ars) 81804 W - || s 0 108UUOdIBUI™ IXe

Asngeis1 vi¥od Wvdg 4 ““

1959 WalsSAS 10s59901d

1egSS0ID IXY

0 b wew g

" fesayduad PaX00[Wop|

=+ XV 90N
=+ ixvson

+ixvvon O M

(uononpoid-aid) 4 4P~ 0011

1517sAs Bngep qui

(0i0hesai esayduad uasai ey

19]|01U0D WYHE IXY inuau

m[0:0l19501 05 7SNq Uijesai 0|
=+ gweiq e w =+ Ixv E0N VA
_ WasareTIXES _ _ {1253, qw H0T9uksTIsaMOlS)
481404 Wvug o - +ixvzon M M xvoos+
_ Ao e o ‘ s . g
weiq ixeTw S
+vidod Wvada M =+ n_\ " - +_x<w§z 0 19sal sAs ooud
- + eweiqTxe w s =+ Ixv 00N
N STH mopu SOUTIXY XeTS
0 0 Wweig ixe Frzueapeu _ _
+ Tweig e W T Jeqssod Ixe
JRGSSOID IXY e
Foumiew 13IBAUOD 000101 XY
1059 WaSAS 10SS8201d
0 9 Jp 00T7
“ +o 0lwasase fesayduad Pa300| wop|
IXV'S
XV 9054 0:0hasar"fesauduad uTjasai ey
Fixv " VA " ool 0 48uanuod” j0doj0ud” Ixe (0:0h9s3, oIS ™8Nq uiMjesaITIXe|
XV 00N L
n ™ XV 70S =+ 1asal”qui N0 duks Isamos |
wsos+ Jeassoi0 ey o
XV 20s 4 T 10501 SAs ooid
IXv 10+ =
— +ixv Ton LR
Ixv 0054 ~ VA
=+ 1xv oon _ A
B B xvos+ prezim Bunjooj
7 reqsson ke
0 Jeqssoi Ixe g [~ Tu

0 ZWOoHR

CHAPTER 4. L100 KERNEL CONCURRENCY MAPPING

104

clk_wiz_0

axi_interconnect 0

)_AcLK

n
AreseTN

|_ACLK -
aresem
Aok

) ARESETN

Clocking Wizard

AcLK

L_ARESETN

proc_sys_reset 0

siowest_sync_ck mb_resetf=
ext_resetin

au_reset_in

axi_crossbar_2

axi_crossbar_0

mb_debug_sys_rst

lsoa m oW

L100_dt b 0

. ax_AXILieS

jdem_locked X C

o e
Processor System Resel
AXT Grossbar
proc_sys_resel 1

slowest_syne._ck mb_reset| axi_protocol_converter_0

ext_resetin bus s

o resetin perpher

b gebug_sys_rst mercomect

e Jockes periph

Processor System Resel

2ynq_ulira_ps_e_0

axi_crossbar_1

termuptf=

L100_d1_b (Pre-Production)

maxinpmo_fpd_ack
maxinpm3_fpd_ack
pLps_irq0(0:0]

ZYNQ

YN N R

M_AXI_HPMO_FPD i

M_AXI_HPMI_F

[L)

pl_cko—I oS,

Scale+ MPSOC

UltraSCALE*

AXI Crossbar

AXI Crossbar

LAX axi_bram_ctrl_0 blk_mem_gen_0
AXI L gL
- X ot
AR ™ T s o
SRAM_PORTA.
e o ook - aRAM_PoRTa st by
onsw_rorro el +
X Crossar Block Memory Generator
axi_crossbar_3
axi_bram_ctrl_1
e
PYEEL L ™ blk_mem_gen_1
X ot aran_porra |
e s s —
nm SRaM_PORTE 4 __I_l__+§§%;
App—
o [l +eravporrs
AXT Grossar AXTBRAM Controler
BTock Memory Generator
axi_crossbar_4
axi_bram_ctrl_2
< blk_mem_gen_2
i ™
- m
X ot " aran_porra | |[[4+8Ran_rorTa
L | - SRA_PORTS [[jommme |+ BRAM_PORTS
App—
Hiock Wiemory Generator
AXTGrosstar AT BRAM Controller
axi_crossbar_5
= = axi_bram_ctrl_3 " N
_mem_gen
e
™ IX- ot eram_porTA | ||| -+erav_porTa
- BRAM_PORTE - ||| 4 BRAM_PORTS
' m [{
Block Memory Generator
AXTBRAM Controler
AXT Crossbar
axi_crossbar_6
= = axi_bram_ctrl_4 blk_mem_gen_4
> mm i |[|+8Rav_porTa o
- ¥ s o
DN Y by i o Sy
BrAM_PORTE 4 ||
.
Block Memory Generator
=
axi_crossbar_7
axi_bram_ctrl_5
blk_mem_gen_5
™
™ le ot SRAM_PORTA 4 |[jomme||| +-87AV_PORTA
- BRAM_PORTB +BRAM_PORTB
nm I {l
Siock Wiemory Generator
X Crossbar
axi_crossbar_8 b e
axi_bram_c
= E— blk_mem_gen_6
™
a IX- " eram_poRTA | ||| +eram_porTa
woo_ax u
- BRAM_PORTB 4 +BRAM_PORTB
nm I {l

Block Memory Generator

Figure 4.10: Vivado L100-DF-F-7-BRAM-Blocks implementation system design

105

4.4. L100 KERNEL MAPPING USING VIVADO HLS

J10jeI2URD) AIoWBa A Y20|g

"u31Isop wIsAs uoneyuawAdw SO0 Tg-WTdd-F—d-W-00TT OPBAIA][{ 9INSL]

13]j013Uu0D NVH4G IXY

1eQss0ID IXY

N B (uononpo.d-aid) Y0011
fsng~ais a180d Wvda 4 —)
fsnqers! N HOd W) usid
q V140d Wvda 4 || 4er] oee . EEm oo e ‘ 3
|| 4 vrzod wvug _ + Ixvoon VA o sHio”de
- — IXY S [- ureigixeTw e
€ uab” waw g H N SIH wopENA SoITIXY Ixe S [1-
€ |10 weliq Ixe S J
— — 0 Y 0011
9 1eqssold Ixe
13]|01Uu0) NVHE IXY Jeqsso.) XV _
101e18U9) AIOWB %20|g N N (uononpoid-ald) Z 00T 1
N
_ _ _ ujesale Ixe _
Asngaus 81404 Wrag 4 ||| 4 8r0d wvua o EEm] bt ‘ usiTd
e _ A I _
Asnqeiss VLHOd Wvdg == __ +v1d0d Wvug _ =+ 1xv 0on VA o Ao de o
XY’ m+¥ — m m =+ weiq ixe w s .. H
STH woPEuA SANTIXY X S |-
2 uab waw y|q s —
Z 110 weuq Ixe — J
= — 0 Z 00T1
S Jeqssold” Ixe
lojelaua) >‘_OE®_>_ 00|19 19]]01U0D ANVHG IXY 1eqssol) XY o
N I N (uononpoid-aid) A9 00T
~
Asnq~aisi 9140d Wvda 4 _ u}oSaIeIXE o
3 | _|r__ + 81804 Wrag o E B wsid
fsnges v1d0d Wvdg 4 _Ir__ I | Aloexe”s S VA 1dnuaul —
V140d Wvdg .. IXY"00W
IXV welq Ixe” w ..
T RTETT w+g H B + Prp— SaUTIXY Xe S - =
T 110 weuq Ixe S J
L _ _ 0 A 0011
¥ Jeqssolo Ixe
Jojelauas) >‘_OE®_>_ 00|19 19]]01U0D ANVHG IXY —
a JeqssolD XY (uonanpoid-ald) N9 00T 1 »
(7 7
Asnq~qusi 9140d Wvda -4 _Ir__ R Ewmmﬁl_xml uTsid
(TG AR TR = |r__ 4 vin0d W e b L RPL e e SHo™de
IXV — IXY 00N welq”Ixe”w e
0 usb waw g) J.. * | VA | * Ml LA o
0 10 weiq Ixe S J
L 0 nd 0011

€ 1eqssoid Ixe

106 CHAPTER 4. L100 KERNEL CONCURRENCY MAPPING

mechanisms was presented in terms of latency and execution time. Moreover, the iter-
ation latency was reported in different implementations, where available. The results
show that using Data-Flow over functions with seven external BRAM blocks, target-
ing the functional parallelism in the L100 kernel, provided the best performance in
terms of both latency and execution time (L100-DF-F-7-BRAM-Blocks). Code op-
tion (C) in Figure 4.1 proved to be the better coding option to map the L100 kernel’s
concurrency. Processing the kernel’s operations in parallel, where possible, is the ap-
propriate method to achieve good computational performance since the kernel’s oper-
ations are independent. The other functional parallelism implementation of utilising
the multiple kernels mechanisms (L100-M-P-4-BRAM-Blocks) came second with
an execution time of 0.238s and speedup 65.29x, with less usage of LUT and BRAM re-
sources. This is a good example of the trade-offs available to the programmer between
performance and resource usage.

In terms of resource usage, Table 4.9 shows that the use of Data-F1low mechanisms
consumed more resources compared to the other implementations, especially the use
of BRAM blocks.

Mapping Mechanisms: Programmabiltiy: We have observed the level of pro-
gramming difficulty in each implementation in terms of the host and the kernel code,
as well as the system design changes that were required to be made to the original initial
implementation. In addition, we give some qualitative indication of the programming
difficulty involved in our implementations, which is summarised in Table 4.10 4.

Programming FPGAs using the Vivado HLS approach requires detailed under-
standing and low-level hardware design knowledge of both the FPGA hardware and
Vivado programming mechanisms, such as those associated with the memory solution
design and implementation and data addresses management for connecting BRAM
memories appropriately. Table 4.10 summarises the programming difficulty level in-
volved with each implementation.

The easiest implementation to carry out was L100-P-a. The only change that was
required to the baseline implementation was applying the pipeline HLS pragam over
the inner loop of the kernel’s operations. In addition, inserting only the single IP block
created for L100-P-a to the system design was required. This implementation required
a similar amount of FPGA resources compared to the other implementations.

Both Data-Flow implementations required many changes to the kernel code and

“The scoring judgement in Table 4.10 is being made by the thesis author who is more from a
software development background but familiar with FPGAs, and this likely matches the background of
potential users.

4.4. L100 KERNEL MAPPING USING VIVADO HLS 107

these were complex changes compared to the original initial implementation. Cod-
ing the host code and creating the system design for the Data-Flow implementation
with one external BRAM block was straightforward and did not require any changes
other than inserting the IP block to the system design (straightforward but not trivial).
However, the Data-F1low implementation with seven external BRAM blocks required
a great deal of host code and system design changes. The changes in both the host
code and the system design were complex and needed high coding effort. This imple-

mentation required the highest amount of BRAM resources.

The final implementation involvoing multiple kernels was very complex. The
kernel code required multiple changes as we had to code four kernels and generate
four IP blocks. The host code was also amended to manage four kernels with their four
external BRAM blocks, instead of managing only one kernel as in the original initial
implementation. Creating the system design was challenging in order to accommodate
four IP blocks and manage the connection of four external BRAM blocks and the
their address management. This implementation required a higher amount of resources

compared to the original initial implementation.

Table 4.10: Comparison of the programming difficulty levels (score from 1 to 5) be-
tween the different mechanisms implemented on the L100 kernel in the Vivado HLS
approach.

. Host Kernel System
Experiment . Resource
Name Code Code Design Usage
Difficulty | Difficulty | Difficulty
L100-P-a 2 2 2 Low
L100-DF-F High
1-BRAM 2 5 2 BRAM
Block Usage
L100-DF-F Very High
7-BRAM 4 5 4 BRAM
Blocks Usage
L100-M-P- High
4-BRAMS 5 5 4 BRAM
Blocks Usage

108 CHAPTER 4. L100 KERNEL CONCURRENCY MAPPING

4.5 Summary

The main aim of this chapter was to explore, from the viewpoint of the traditional sci-
entific HPC software developer, the wide range and levels of approaches and mecha-
nisms available for exploiting FPGAs in scientific applications. The exploration high-
lighted numerous trade-offs involved in the design and implementation phases and
demonstrated their impact on performance, resource usage, and programmability to a
less quantitative extent. This exploration aimed to provide traditional scientific pro-
grammers with insight into how best to exploit FPGAs in their applications. This
chapter explored the mechanisms available to scientific programmers in a relatively
high-level HLS approach, SDSoC OpenCL, and a low-level HLS approach, Vivado,
to map the concurrency types available within a single kernel, L100, in both HLS ap-
proaches.

The results of this exploration study can be summarised as follows. The Data-Flow
over functions mechanism can extract the best performance out of a single kernel that
has multiple independent operations. In both HLS approaches (SDSoC OpenCL and
Vivado) implementations targeting the functional parallelism in the L100 kernel, with
the Code option (C) in Figure 4.1 proved to be the better coding option to map the L100
kernel’s concurrency. Processing the kernel’s operations in parallel, where possible, is
the appropriate method to achieve good computational performance since the kernel’s
operations are independent. The Data-Flow over functions implementation assigned
each of the kernel’s computational operations to its own compute unit and launched
them in parallel from the host.

However, this method can have high FPGA resource usage and requires a relatively

high programming effort.

Chapter 5

Exploratory Study (1) Part Two:
SWM Multiple-Kernels Mapping

This chapter presents the second part of the exploratory study (1) for mapping and opti-
mizing the whole SWM application kernels and exploring the kernel-to-kernel commu-
nication implementation options using SDSoC OpenCL and Vivado HLS tools. This
chapter shows the application of the learned lessons in Chapter 4 for mapping the L100
kernel concurrency type to optimize the other SWM kernels. Two main sections are
presented in this chapter, Section 5.1 and Section 5.2. Section 5.1 presents the map-
ping of the SWM application using the SDSoC OpenCL, and Section 5.2 presents the
use of the Vivado approach for mapping the SWM multiple kernels. In each section,
we first explore the suitable mapping mechanism to optimize each of the SWM kernels
and explore their impact on performance and resource usage for a fixed problem size.
Following that, we identify the maximum possible size of the problem based on the
applied optimisations and the finding number of kernels possible to implement out of
the nine SWM kernels. Moreover, the final step in these two sections explores options
for managing the data movement associated with communication between the SWM
kernels. The chapter ends with a section summarizing the main lessons learned from
the experiments. The performance results in this exploration chapter are the kernel

compute time only and not overall runtime (which will be reported in Chapter6.)

109

110 CHAPTER 5. SWM MULTIPLE-KERNELS MAPPING

5.1 SWM Kernels Mapping Using SDSoC OpenCL

5.1.1 Optimise the SWM SDSoC OpenCL kernels

The L100 concurrency mapping exploration with the SDSoC OpenCL in Section 4.3
from Chapter 4 revealed that the Data-F1low mechanism was the most suitable option
for mapping the kernel’s concurrency. The identified concurrency types in Section 4.1
from Chapter 4 for the L100 kernel are examples of the similar concurrency types in
other kernels in the SWM application. The SWM’s kernels that share similar concur-
rency types to the L100 kernel are the L200 and L300 kernels. As mentioned previously
in Section 2.6.1 from Chapter 2, 1100, L200 and L300 are computationally intense
kernels, since they execute large loops numerically-intense iterations with independent
operations.

We have, therefore, applied the Data-Flow over functions mechanism targeting
the functional parallelism in the L200 and L300 kernels. Listing 5.1 and 5.2 show
the SDSoC OpenCL kernel codes for the L200 and L300 kernels, respectively. Note
that the Data-Flow mechanism was applied on top of the same key-optimisations that
we explored in the L100 SDSoC OpenCL initial implementation, as discussed in Sec-
tion 4.3.1 from Chapter 4.

Following this, we optimised the halo kernels (L100pc and L200pc) with the use of
a pipeline mechanism similar to the L100-P-a implementation in the SDSoC OpenCL
exploration study in Section 4.3 from Chapter 4. The reason for choosing this mapping
mechanism is that the halo kernels do not include functional parallelism.

The SWM initialisation kernels initl, init2 and L300pc are kernels that are
executed only one time during the lifetime of the SWM application. Therefore, there
is the option to either implement them with optimisations method that do not consume
high amount of resources or call them only on the host to as it is worth sparing some
FPGA resources for the kernels called multiple times. We have tested optimising these
one-time initialisation kernels with the pipeline mechanism similar to the L100-P-a
implementation in Section 4.3 Chapter 4, and compile all the SWM nine (compiler flag
applied was -O3, and the clock frequency 200MhZ which was the max possible). This
test shows that it was not possible to have all nine optimised SWM kernels compiled
even when choosing very small problem sizes such as (2%2),!, Having all the nine

optimised kernels required more resources than the ZCU102 FPGA can provide. To

IThe compilation process always fails if one or more of the FPGA resources (FF, LUT, DSP, BRAM)
utilisation percentage exceeded 80%.

5.1. SWM KERNELS MAPPING USING SDSOC OPENCL 111

help reduce the resource usage and allow compilation of a bigger sized problem than
(2*2), we chose not to compile for the FPGA the kernels that are only called one time
from the host CPU code, such as the initl, init2 and 1300pc Kernels. These three
kernels can be executed in the host ARM CPU instead. This design decision can spare
more resources for the main five kernels (1100, L100pc, L200, L200pc and L300) in
order to accommodate bigger problem sizes as discussed in following Subsection.

Listing 5.1: SDSoC OpenCL L200-DF implementation kernel code for the 1200 kernel.

__attribute__ ((xcl_dataflow))
//L200 kernel

// Data Read from DDR memory

//Read u,v and P

read_old (uold, vold, pold, local_uold, local_vold,
local_pold)

read_cu(cu, local_cu)

read_cv(cv, local_cv)

read_zh(z, h, local_z, local_h)

// Compute functions
//unew, vnew, Pnew

Compute :

local_unew (local_unew , local_uold, local_z, local_cv,
local_h);

local_vnew (local_vnew , local_vold, local_z , local_cu,
local_h);

local_pnew (local_pnew, local_pold, local_cu,

local_cv);

// Data Write back to DDR memory
// Write CU,CV, Z and H

write_unew (unew, local_unew)

112 CHAPTER 5. SWM MULTIPLE-KERNELS MAPPING

write_vnew (vnew, local_new)

write_pnew (pnew, local_pnew)

__attribute__ ((xcl_dataflow))
// L300 kernel

// Data Read from DDR memory

//Read u,v and P

read_uvp(u, v, p, local_u, local_v, local_p)
read_old (uold, vold, pold, local_uold, local_vold,
local_pold)

read_new (unew, vnew, pnew, local_unew , local_vnew,

local_pnew)

// Compute functions

//uold, vold, Pold

Compute :

local_uold (local_uold, local_unew);
local_vold (local_vold, local_vnew);

local_pold (local_pold, local_pnew);

// Data Write back to DDR memory

// Write uold, vold, Pold, u, v, P

write_old (uold, vold, pold, local_uold, local_vold,
local_pold)

write_old(u, v, p, local_unew, local_vnew , local_pnew)

5.1. SWM KERNELS MAPPING USING SDSOC OPENCL 113

5.1.2 Exploring the problem size

With having only five SWM kernels (1100, L100pc, L200, L200pc and L300) to im-
plement, we have explored different problem sizes to find the highest possible one. As
discussed in Section 5.1.1 we found that the largest possible problem size is (53*53)
with the five kernels are optimised using the Data-Flow for L100, L200 and L300 ker-
nels, and the pipeline mechanisms for the L100pc and L200pc kernels. This (53*53)
problem size is used in the kernel-to-kernel exploration in both the SDSoC OpenCL

and the Vivado approaches in Section 5.2.

5.1.3 Kernel-to-kernel communication exploration

Figure 2.10 in Chapter 2 shows the data-movement behaviour between the five main
kernels in the SWM application. There are two available mechanisms in the SDSoC
OpenCL that can provide a design solution for the kernel-to-kernel data movements
between the SWM five kernels. The two mechanisms are: the use of the DDR memory
or the OpenCL pipes.

The use of the DDR memory solution means that the output data of a kernel is shared
with the following kernel through the DDR memory. Each kernel starts with reading
the input data from the DDR memory and writing the output data back to the DDR
memory as input data for the next kernel. Figure 5.1 shows the system design for the
SWM five kernels implementation with the use of the DDR memory mechanism for
moving the data between the five SWM kernels.

The use of the OpenCL pipes solution means that the output data of a kernel
is shared with the following kernel through the OpenCL pipes (AXI4_Stream Data
FIFO). The first kernel e.g. (L100) starts with reading the input data from the DDR
memory and then use the OpenCL pipe API functionwrite_pipe_block (<pipe_name>,
array_name) to write the output data to pipes. These pipes carries input data for the
next kernel (L100pc). In the L100pc kernel, the OpenCL read_pipe_block (<pipe_name>,
array_name) API function is used to read the input data. After the L100pc kernel’s
calculation phase finish, it writes the output data to another pipes that connected to the
next kernel (L200), and so on for the other kernels; See code example in listing 5.3.
As described in Sub-section 2.5.1 in the background Chapter 2, pipes have two modes,

which are read/write blocking and unblocking modes. The mode used is blocking

CHAPTER 5. SWM MULTIPLE-KERNELS MAPPING

114

1300_1

| 4rs_axi_control rvado™ FIS BLnL
e, 4 e

axi_ic_ps_e_S_AXI_HPO_FPD

axi_ic_ps_e_M_AXI_HPMO_FPD

300 (Pre-Production)

X

BEE oo e

IRI

, ARESETN

, AcL

| ARESETN

T100_pc (Pre-Production)

axi_ic_ps_e_S_AXI_HPL_FPD

(]

) AXI

LAxi
502 A1

) ACLK

MOoO_
IMI oL
BEE oz
aXg o

o4

{ ARESETN

AXT Terconnect

ps_e

ZYNQ

UltraSCALE+

1100 1
| ARESETN
m_a_ “AXT Tnferconnect
i corkel o s -
o ¥ xiconcat_0
s 4 - xooneat 1
m_ax axi_ic_ps_e_S_AX|_HP2_FPD =
intertupt=
T100 (Pre-Production)
Concat
Concat

Zynq Ultascaler MPSOC

Figure 5.1: The implementation system design for SDSoC OpenCL Five kernels with DDR mechanism for kernel-to-kernel commu-
nication implementation system design

5.1. SWM KERNELS MAPPING USING SDSOC OPENCL 115

xcl_pipe_cv_pipe_I100

M_AXIS == [

axis_data_count[31:0]

— 4= S_AXIS

s_axis_aresetn

axis_wr_data_count[31:0]
s_axis_aclk

axis_rd_data_count[31:0]

AXl4-Stream Data FIFO

Figure 5.2: OpenCL Pipe IP Block example.

mode as it is the only mode supported by SDSoC Xilinx. The OpenCL pipe is created
in the OpenCL kernel using the OpenCL attribute pipe <data_type> <pipe_name>
__attribute_ ((xcl_reqd_pipe_depth(size))).

Listing 5.3: A sketch of what the OpenCL code looks like when using pipes (just for

two kernels interacting).

// OpenCL pipes creation

1
2
3 //LI00 kernel’s pipes

4 pipe float cu_pipe_1100

5 __attribute__ ((xcl_reqd_pipe_depth (16384)));
6 pipe float cv_pipe_1100

7 __attribute__ ((xcl_reqd_pipe_depth (16384)));
8 pipe float z_pipe_1100

9 __attribute__ ((xcl_reqd_pipe_depth (16384)));
10 pipe float h_pipe_1100

11 __attribute__ ((xcl_reqd_pipe_depth (16384)));
12

13 //LI100pc kernel’s pipes
14 pipe float cu_pipe_1100pc

15 __attribute__ ((xcl_reqd_pipe_depth (16384)));
16 pipe float cv_pipe_1100pc
17 __attribute__ ((xcl_reqd_pipe_depth (16384)));
18 pipe float z_pipe_1100pc
19 __attribute__ ((xcl_reqd_pipe_depth (16384)));
20 pipe float h_pipe_I1100pc
21 __attribute__ ((xcl_reqd_pipe_depth (16384)));

22

116

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

CHAPTER 5. SWM MULTIPLE-KERNELS MAPPING

//L100 kernel
__kernel void

__attribute__ ((reqd_work_group_size(1l, 1, 1)))
1100 (

//read u, v, p data from DDR memory

read_uvp(u,v,p);

//compute cu, cv, z, h

compute_cucvzh(cu, cv, z, h, u, v, p);

//pass cu, cv, z, h data to 1100pc kernel
// through 1100 kernel’s pipes
__attribute__ ((xcl_pipeline_loop (1)))
for(int 1i=0; i< n_len*m_len; i++){
write_pipe_block (cu_pipe_1100, &culi]);
write_pipe_block (cv_pipe_1100, &cv[i]);
write_pipe_block (z_pipe_1100, &z[i]);
write_pipe_block (h_pipe_1100, &h[i]);

}

)

//L100pc kernel

__kernel void

__attribute__ ((reqd_work_group_size(l, 1, 1)))
1100 (

//read cu, cv, z, h data from [100 kernel’s pipes
// to local buffers

__attribute__ ((xcl_pipeline_loop (1)))

for(int 1i=0; i< n_lens*m_len; i++){
read_pipe_block (cu_pipe_1100, &cul[i]);
read_pipe_block (cv_pipe_1100, &cv[i]);
read_pipe_block (z_pipe_1100, &z[i]);
read_pipe_block (h_pipe_1100, &h[i]);

5.1. SWM KERNELS MAPPING USING SDSOC OPENCL 117

58 }

59

60 //update cu, cv, z, h data boundary

61 update_cucvzh(cu, cv, z, h);

62

63 //pass the updated cu, cv, z, h data to the next kernel

64 // through [100pc kernel’s pipes

65 __attribute__ ((xcl_pipeline_loop (1)))
67 for(int i=0; i< n_lenxm_len; i++){
68 write_pipe_block (cu_pipe_1100pc, &cul[i]);

69 write_pipe_block (cv_pipe_1100pc, &cv[i]);

70 write_pipe_block (z_pipe_1100pc, &z[1]);
71 write_pipe_block (h_pipe_1100pc, &h[1]);
72}

73)

Table 5.1: The compute time detail for the three SDSoC OpenCL SWM 5 Kernels
optimized versions implementations Versus the SDSoC OpenCL SWM 5 Kernels un-
optimized version. All versions implemented on ZCU102 FPGA board with a clock
frequency of 200 MHz (The maximum possible frequency). In the "DDR" implemen-
tation the host will explicitly start kernels when previous kernels have completed, so
there is no kernel to kernel marshalling here. Un-optimised SWM kernels implemen-
tations are similar to the L.100_seq implementation in Chapter4.

Kernels SWM- SWM- SWM- SWM-
Timing SKernels- S5Kernels- | 5Kernels- | 5Kernels-
(seconds) (53*53) (53*53) (53*53) (53*53)
un-optimised DDR PipesV1 | PipesV2
L100 124.961 0.829 0.635 0.834
L100pc 4511 0.334 0.431 0.475
L200 95.152 0.671 0.702 0.732
L200pc 3.655 0.320 0.457 0.464
L300 100.235 0.781 0.783 1.774
Total kernels
Only Compute 328.514 2.935 3.008 4.279
Time

Two SWM five kernels OpenCL pipes versions are explored in the following. The
first version is named SWM-5Kernels-PipesV1 and the second is SWM-5Kernels—-PipesV2

in Table 5.1. Figure 5.3 shows the system design for the first pipe (SWM-5Kernels-PipesV1)

118 CHAPTER 5. SWM MULTIPLE-KERNELS MAPPING

design version. In this first pipe implementation, we have created fourteen pipes. Four
between the L100 and L100pc kernels, four between the L100pc and L200 kernels,
three between the 1L200 and L200pc kernels, and three between the L200pc and L300
kernels, see Figure 5.3. These kernels are executed 4000 times, so in each iteration, the
execution of the kernels starts with L100 kernel reading input data from the DDR mem-
ory, then the output data is shared between the following kernels through the pipes. At
the end of an iteration, kernel L300 writes the output data back to the DDR memory to
act as input data for the L100 kernel in the next iteration. This design option requires
eighteen DDR memory accesses” (12 read access, 6 write access) and fourteen pipe
accesses in every iteration of the 4000 iterations. L100 kernel does three DDR mem-
ory read accesses to read u, v and P data; L200 kernel does three DDR memory read
accesses to read uold, vold and Pold data; and L300 kernel does six DDR memory
read accesses to read u, v, P, uold, vold and Pold data. The six DDR memory write
accesses are happening at the end of the L300 kernel to write the new u, v, P, uold,

vold and Pold data for the next iteration.

In the second pipe design version (SWM-5Kernels-PipesV2), we explored the op-
tion to minimize the access to the DDR memory and flow the data between the five
kernels through only pipes when possible. Figure 5.4 shows the system design for the
second pipe design option, where we have created twenty pipes. Compared to the first
pipe design option, we have introduced six new pipes. Figure 5.4 shows that three
pipes connect the L300 kernel with the L100 kernel, and three connect L300 kernel
with the L200 kernel. These six pipes supply the new u, v and P data for the L100
kernel; and uold, vold and Pold data for the L200 kernel every iteration. L300 kernel
is a key factor for this design, as it produce the new output for the next iteration. As
described in Section 2.6.1 from Chapter 2, the execution of L300 kernel starts in the
second iteration. The SWM application starts in the first iteration by executing the
1100, L100pc, L200 and L200pc kernels, then a host side execution of L300pc kernel
before the start of the second iteration. In the first iteration (in both pipes designs), the
L200pc output data need to be written back to the host for the second iteration initiali-
sation. Therefore, to adapt this second pipe design option with the dataflow behaviour
of the shallow application, we have used flags within each kernel code to control the

data access either to/form DDR memory or pipes (depending on the iteration number).

1300 kernel reads and writes the u, v, P, uold, vold and Pold data. In this second

ZEach of these "accesses" is a variable read/write and comprises very many individual memory
accesses (each 32-bits wide).

119

5.1. SWM KERNELS MAPPING USING SDSOC OPENCL

ug1sop wA)sAs uonejuow[dwl UONBITUNWOD [OUIY
-0)-[QUIY JOJ WSTURYOAW (] UOISIAA) sadid yim s[ouIay aAL] TOuedO DOSS 2y} 10J uIIsop wasAs uonejuowa[duir oy J, :¢'¢ I3y

+3Tvosean _ e

120 CHAPTER 5. SWM MULTIPLE-KERNELS MAPPING

pipe version these data are shared with the L100 and L200 kernels through pipes to
keep data flow between the kernels. L300 kernel also needs a copy of these data as
its input data for the next iteration. L300 kernel cannot pass data to itself for the next
iteration through pipes because we are using the dataflow design and parallel read/write
to a pipe at the same time violates the dataflow design. Therefore, in this case we store
a copy of the u, v, P, uold, vold and Pold data in the DDR memory to be used as
input data for the L300 in the next iteration. This is the only place were we access
the DDR memory. From iteration number two, the data is streaming between the five
kernels only through the twenty created pipes, since it was anticipated that pipes would
provide a more efficient mechanism of sharing data than the use of DDR memory.
This design option requires twelve DDR memory accesses (six read access, six write
access), compared to eighteen in the first pipe option, and twenty pipes accesses in

every iteration (from iteration two) of the 4000 iterations.

Table 5.1 shows the compute time of the three explored kernel-to-kernel SDSoC
OpenCL optimised implementations. In addition, the table shows a initial SWM five
kernels un-optimized implementation (SWM-5Kernels-un-optimised) that we com-
pare against. The focus in this section is on the effect on the kernel’s compute time of
the kernel-to-kernel mechanism options, and the use of the dataflow method, as ker-
nel optimization techniques; however, in Section 6.2 from Chapter 6 we discuss the
performance from the perspective of the overall application time of these three imple-

mentations, including the data movement overhead time.

The use of DDR memory (SWM-5Kernels-DDR) as the data-sharing mechanism be-
tween the five kernels achieved a compute time of 2.934s, which is faster by 111.92x
compared to the (SWM-5Kernels-un-optimised) un-optimised version (328.514), see
Table 5.1. The use of DDR memory as the kernel-to-kernel mechanism also provided a
slightly better compute time (by 1.02x) than the (SWM-5Kernels-PipesV1) implemen-
tation (3.008s) and 1.45x faster than the (SWM-5Kernels-PipesV1) implementation
(4.279s).

The compute time figures in Table 5.1 show a performance difference between
the use of DDR memory and the pipes. The bandwidth access between these two
technologies is different. DDR memory provides a higher bandwidth by utilizing four
memory ports, while pipes offer only one producer and one consumer port. In addition,
the blocking pipe mode (the only supported mode) limited the overlapping between
the execution of the kernels. The execution time of the two pipes implementations was

limited to the pipes’ read/write access rate.

121

5.1. SWM KERNELS MAPPING USING SDSOC OPENCL

ug1Sop Wo)sAs uoneuAW[dW UOHBITUNWWIOD [UIDY
-0]-[oUIaY JOJ WSIURYIAW (7 UOISISA) sadid Yiim S[ouIay 9AL] TDOuUad(DOS S oY) J0J uIsop wolsAs uonejuawadwr oy, 4G 21

122 CHAPTER 5. SWM MULTIPLE-KERNELS MAPPING

In comparing the two pipes kernel-to-kernel implementations, Table 5.1 shows that
the pipe versionl compute time was faster (3.008s) than the pipe version2 implemen-
tation (4.279s) by 1.42x. It can be seen from Table 5.1 that the biggest source of
overhead in the second pipe design option is the L300 kernel. As described earlier,
L300 performs six DDR memory write accesses and six pipes write access operations.
In addition, it does three pipes read accesses and six DDR memory read access opera-
tions, see Figure 5.4. This mixed-use of DDR and pipes in the L300 kernel contributes

to slowing down the kernel’s execution time.

Table 5.2: Resource Usage Figures of the SDSoC OpenCL SWM Five Kernels imple-
mentations.

Experiments FF LUT DSP | BRAM_36K
Name

SWM-5Kernels | 30657 | 38266 52 14

un-optimized | (5.59 %) | (13.96%) | (2.06%) | (1.53%)

SWM-5Kernels | 107159 | 127365 | 262 462
DDR (19.54%) | (46.47%) | (10%) | (50.65%)

SWM-5Kernels | 123315 | 118055 | 261 408
Pipes-V1 | (22.49%) | (43.07%) | (10%) | (44.73%)

SWM-5Kernels | 81250 | 91900 199 406
Pipes-V2 | (14.82%) | (33.53%) | (8%) | (44.51%)

In terms of resource usage, Table 5.2 shows that the the DDR implementation re-
quired slightly more BRAM and LUT resources compared to the pipe implementations.
The pipes versionl implementation FF, LUT and DSP resources utilisation were more
than the resources utilised in the pipes version2 implementation. Both pipe implemen-
tations required a similar amount of BRAM blocks. The DDR memory mechanism
design was more straightforward in terms of programmability as it required no extra
coding and effort compared to the pipes versions. The use of pipes required high cod-
ding effort and raised many debugging issues related to the halting of the application’s

execution due to synchronisation issues.

5.2 SWM Application Mapping Using Vivado

5.2.1 Optimise the SWM Vivado kernels

The mapping exploration of the L100 kernel concurrency using the Vivado approach

in Section 4.4 from Chapter 4 shows that the use of Data-Flow mechanism provided

5.2. SWM APPLICATION MAPPING USING VIVADO 123

the best performing implementation; however, this implementation required the use of
multiple external BRAM blocks. Applying the Data-Flow mechanism on the L200
and L300 kernels, as we did in the SDSoC OpenCL multiple kernels in Section 5.1,
would exhaust the BRAM resources available and increase the complexity of the Vi-
vado host code design and the system design. The management of the external BRAM
addresses in the Vivado approach has to be conducted manually (this is done automat-
ically using the OpenCL approach), therefore, using Data-Flow would require a great
deal of programmer effort in the Vivado multiple kernel implementation. Instead, we
decided to apply the pipeline mechanism as we did in the L100-P-a implementation
(described in Sub-section 4.4.2 from Chapter 4) with the use of code option (a) from
Figure 4.1 in Section 4.1 from Chapter 4 on all the five SWM kernels.

5.2.2 Finding the problem size

Similar to what we determined in Section 5.1, the largest problem size we found with
the five kernels are optimized using the pipeline mechanisms is (53*53), which is,

therefore, is the used size in the following sub-section.

5.2.3 Kernel-to-Kernel Communication Exploration

There is only one implementation explored in this Section and this is motivated by the
lessons learned from the Vivado exploration study in Section 4.4 from Chapter 4. In
addition, we concentrate on shared memory solutions between the HLS kernels rather
than HLS streams based on lessons learned from the OpenCL implementation in sec-
tion 5.1.3, which proved to be the most efficient kernel design. Figure 5.5 shows the
system design of the Vivado five kernels implementation. The five kernels are opti-
mised using the pipeline option, and each kernel is compiled in isolation, resulting in
five IP blocks. All the five IP blocks share only a single external BRAM block in this
design. We have learned from the exploration study in Section 4.4 from Chapter 4 that
the use of multiple external BRAM blocks with multiple kernels can provide a slight
performance improvement, as was seen with the L100-P-a implementation compared
with the L100-M-P-4-BRAMs-Blocks in Table 4.8 which discussed the cost of du-
plicating array data. We thus decided only to use one external BRAM block in this
implementation to avoid increasing the design and programming complexity as well as
the axxociated increase in resources cost for only a slight performance benefit.

Table 5.3 shows that this implementation’s execution time is 1.340 seconds, and it

clk_wiz_0

ok,

clk.

locked{m

izard

2ynq_ultra_ps_e_0

maxinpmo_fpd_ack
1_fpd_ack
pL_ps_irq0[0:0] ®

UltraSCALE*

M_AXI_HPMO_f

M_AXI_HPML_f

pLr

pl_clko)

H s ax

Zynq UltraScale+ MPS0C

axi_crossbar_0

L100_p_a 0

AXT Crossbar

axi_protocol_converter_0

't. M_AXI o | e

+s_ax_AXILieS oo HES .
B m_ai_bram - e
p_ck T
‘ intermuptjm
p_tst_n

L100_p_a (Pre-Production)

1100_pc_0

s _ax_AXILites oeaco™ WL "
B m_ax_bram
p_ck *
\ interrupti=

p_rstn

L100_pc (Pre-Production)

axi_interconnect_0

Emm
[X[X]|
EEE

CHAPTER 5. SWM MULTIPLE-KERNELS MAPPING

AXT Interconnect

Figure 5.5: The implementation system design for the Vivado Five kernels with one external BRAM method for kernel-to-kernel

communication

124

Mo0_AXI4 i

AXT Protocol Converter

axi_crossbar_1

1200_0

+| 4 s_axi_AXiLites Vivodo™ HIS
. m_axi
ck
Az [

AXT Crossbar

[200 (Pre-Production)

axi_crossbar_3

AXT Crossbar

axi_bram_ctrl_1

BRAM_PO!

BRAM_PO!

AXTBRAM Controller

MOL_AXI i

1200_pc_0

i s_ax_AxiLies _w _w_

[200_pc (Pre-Production)

1300_0

|4 s_axi_AXiLites Vivad'™ WIS .

- m + it
p_clk i
o [

1300 (Pre-

blk_mem_gen_1

Block Memory Generator

5.3. SUMMARY 125

consume 71% of the BRAM resources, as reported in Table 5.4. The BRAM resources
of this implementation is consistent with our choice of applying only the pipeline
mechanism and using a single external BRAM block. The use of Data-Flow or multi-
ple external BRAMs would likely have exhausted the BRAM available and thus caused

a compiler error.

Table 5.3: Performance Figures of the Vivado SWM 5 kernels implementation.

Kferr.lels SWM-5Kernels-
Timing P-a
(Seconds)
Freq
MhZ, 447
L100 0.234
L100pc 0.214
L200 0.308
L200pc 0.163
L300 0.415
Total E.xecutlon 1,340
Time

Table 5.4: Resource Usage Figures of the Vivado SWM Five Kernels implementation.

Total
Local &
Experiments External
Name FF LUT DSP BRAM
36K
Usage
SWM-5Kernels- | 48988 36425 112 247
P-a (8.93%) | (13.28%) | (4%) | (71%)

5.3 Summary

This chapter explored the mechanisms available in the SDSoC OpenCL, and Vivado
approaches to map the five SWM kernels to the ZCU102 FPGA board. We also ex-
plored the design options and mechanisms in the two approaches for managing the data
movement between the five SWM kernels. The trade-offs in the different approaches,

in terms of performance and resource usage, were discussed, along with issues related

126 CHAPTER 5. SWM MULTIPLE-KERNELS MAPPING

to programmability. The results of this exploration study showed that in the multiple
kernels case, utilising the Data-F1low mechanism efficiently depends on the memory
design solution. We found that using DDR memory in the OpenCL design helped
provide enough memory bandwidth with multiple Data-F1low kernels compared to the
Vivado multiple Data-Flow kernels solution. The use of an external BRAM solution
in the Vivado design was not suitable for Data-Flow-style kernels, which we trade
with pipeline kernels style. The results also revealed that the use of the shared-
memory method (DDR and external BRAM) between multiple kernels provided better
performance against the another explored data movement methods (pipes). This de-
sign decision was the best in both the SDSoC OpenCL and the Vivado kernel-to-kernel
communication exploration studies. In addition, it was the most straightforward design

solution in terms of programmability.

Chapter 6

Comparison Study (1): SWM
Implementations In SDSoC OpenCL

Versus Vivado

This chapter compares the data gathered from exploration study (1) described in Chap-
ter 4 and Chapter 5 for mapping the concurrency types in the SWM application to the
ZU9102 FPGA board using the SDSoC OpenCL and the Vivado approaches. Here, we
compare the data from exploration study (1) related to two main aspects, with the use
of the quantitative and qualitative metrics discussed in Section 3.4 in Chapter 3. The
first aspect (in Section 6.1) considers the data from the L100 mapping explorations.
The second aspect (in Section 6.2) considers the data from the kernel-to-kernel com-
munication exploration in the multiple kernel implementations. We also discuss the
differences arising from the use of the two approaches (SDSoc OpenCL and Vivado)
and their effect on the achieved performance. These differences arise from two pri-
mary sources: first, from the different processes required to create and implement the
designs and the implied use of FPGA resources; and, secondly, from timing constraints

in the designs which dictate the highest frequency at which a design can execute.

6.1 L100 concurrency mapping comparison

This section compares the L100 concurrency mapping performance and resources us-
age results from Chapter 4 using the comparison metrics descried in Subsection 3.4.3
from Chapter 3. The comparison is conducted between the best mapping mechanisms
from both the SDSoC OpenCL and the Vivado approaches.

127

128 CHAPTER 6. SWM SDSOC OPENCL VS VIVADO

6.1.1 Performance Analysis

Table 6.1 presents the application runtime details for the best L100 SDSoC OpenCL
and Vivado implementations from the exploration study (1) in Chapter 4. In Chapter 4
we presented the compute time (kernel computational time) in Seconds of the map-
ping implementations. In this section, we are comparing the compute time between
the implementations from the two HLS approaches and the application overall time
in Seconds that also includes the data movement time. The Overall time metric is
presented in this chapter in the context of each the three main phases of the application
runtime: Load Time, preparing and loading data from the host to the FPGA memory
solution, Compute Time, computing, and Store Time, returning the data back from
the FPGA memory solution to the host. We also present the compute time in the form
of flops/s for only the best SDSoC OpenCL and Vivado implementations. The meth-
ods used to calculate the two sets of figures in Table 6.1 are different and are discussed

further in this Section.

Table 6.1: The application runtime details of the best L100 SDSoC OpenCL and Vi-
vado implementations in Chapter 4.

HLS Il:llglteigif- Frequency | Load | Compute | Store | Overall
Approach Name MHz Time(s) | Time(s) | Time(s) | Time(s)
L100 L100-P-a 200 0.391 0.661 2.312 3.364
SDSoC L100-DF 200 0.387 0.601 2.304 3.292
OpenCL | L100-M-P 200 0.408 1.716 2.330 4.454
L100-P-a* 200 0.706 0.350 11.313 | 12.369
L100 L100-P-a 447 0.635 0.264 10.369 | 11.868
Vivado L100-DF-
7.BRAM 447 4.061 0.164 11.138 | 15.363
L100-M-P
4-BRAMS 447 2.312 0.238 11.308 | 13.858

Compute Time Metric: In comparing the computational time, Table 6.1 show that
the best L100 mapping implementations provided the best compute time in Chapter 4 is
the Vivado L100-DF-7-BRAMs. This design achieved a compute time of 0.164 seconds.
Table 6.1 also shows that the Vivado L100 implementations achieved better compute
time compared to the SDSoC OpenCL implementations. Two factors played a major
role in the achieved Vivado L100 compute time. The first factor is that the Vivado

implementations are executed with a clock frequency of 447 MHz compared to only

6.1. L100 CONCURRENCY MAPPING COMPARISON 129

200 MHz on the SDSoC OpenCL L100 implementations. Nonetheless, executing a Vi-
vado implementation with a 200 MHz frequency for comparison (See implementation
L100-P-a* in Table 6.1), shows that the Vivado L100 implementation still provides a
better compute time, which leads to the second factor. The second factor that provided
the Vivado implementation with better compute time is that the Vivado 1L100 IP block
accesses data from an external BRAM block, rather than from DDR memory access,
as in the SDSoC OpenCL 1100 design. Both SDSoC OpenCL and Vivado L100 kernel
designs in terms of the levels of optimisations and mapping techniques are actually
identical and read/write the same amount of input/output data. However, the L100 IP
block computational time is affected by the external BRAM’s data access time versus
DDR memory access time. The compute time in the SDSoC OpenCL L100 design
is slower because it includes the overhead involved in accessing data from the slower
DDR memory option.

Computation Flop Rate (flop/s): Analysis of the 1L100 design timeline reveals
that in the compute part of the best .100 Vivado (1L100-DF-7-BRAMs) design; there
are a maximum of seven flops per cycle performed. At 447 MHz, this leads to a
theoretical peak performance figure of 3.1 Gflop/s. However, based on the ker-
nel achieved compute time, see Table 6.1, the Vivado (L100-DF-7-BRAMs) design
achieved 1.4 Gflop/s'(45.16% of peak)’. In a similar analysis for the timeline of
the best performing 1L.100 SDSoC OpenCL design (1L100-DF), there are a max-
imum of six flops per cycle performed. Meaning, that at 200 MHz, this leads
to a theoretical peak performance figure of 1.2 Gflop/s. However, based on the
compute time figure the 1L.100-DF design, see Table 6.1 , has only achieved 655.36
Mflop/s of performance (54.5% of peak).

Overall Time Metric: This metric is used to compare the overall application ex-
ecution time which includes the 1oad time, plus the compute time and store time of
the best L100 SDSoC OpenCL and Vivado implementations presented in Table 6.1. In
both the SDSoC OpenCL and the Vivado L100 implementation designs, we load and
store the same amount of data, except in some specific Vivado implementations. How-
ever, the data movement methods used are not equivalent due to the different memory

solutions used.

The data movement method between the SDSoC OpenCL host and the OpenCL

I'The actual achieved flops per second performance is calculated using this simple calculation: total-
flops (24flops*problem size(64*64)*number of iterations(4000)/ Actual run time)

Theoretical peak performance is calculated using this simple calculation: Frequency * the number
of flops per cycle. Applying this to the best L100 Vivado L100-DF-7-BRAMs design (447*7 = 3.1 GF/s)

130 CHAPTER 6. SWM SDSOC OPENCL VS VIVADO

L100 FPGA IP block is managed as follows. The OpenCL system creates two DDR
memory spaces where one space is allocated for the host code buffers, and the other
space is allocated for the OpenCL kernel’s buffers (known as global memory in the
OpenCL terminology). The OpenCL API EnqueueRead/WriteBuffer functions are
used in the SDSoC OpenCL L100 host code to first write the input data to the OpenCL
buffers (which measured in in the code as Load Time) and when the kernel finished ex-
ecution (measured as Compute time), we read the output data back to the host buffers
from the OpenCL buffers (measured as Store Time), as can be seen in code List-
ing 6.1. These three phases represent the SDSoC OpenCL L100 overall time, which
are executed for 4000 time-steps. The different SDSoC OpenCL L100 implementa-
tions are Loading and Storing the same amount of data and use the same data move-
ment method. Table 6.1 shows that the Load and Store time of the SDSoC OpenCL

implementations are similar.

Listing 6.1: L100 SDSoC OpenCL Load and Store API functions.

// main loop of 4000 timesteps
for (ncycle=1;ncycle <=4000;ncycle++) {

// Write L100 kernel input data to DDR

// record load time

load=clock ();
q.enqueueWriteBuffer(buffer_p, CL_TRUE, O,
vector_size_bytes , source_p.data());
q.enqueueWriteBuffer (buffer_u, CL_TRUE, O,
vector_size_bytes , source_u.data());
q.enqueueWriteBuffer (buffer_v , CL_TRUE, O,
vector_size_bytes , source_v.data());
q.finish ();

// accumulate load time

load_dur += (clock() — load) / (double) CLOCKS_PER_SEC;

//L100 Kernel launch

6.1. L100 CONCURRENCY MAPPING COMPARISON 131

// record compute time

1100_s = clock ();

kernel_1100(cl:: EnqueueArgs(q, cl::NDRange(1, 1, 1),
cl::NDRange(1, 1, 1)), buffer_u, buffer_v,

buffer_p, fsdx, fsdy);

q.finish ();

// accumulate compute time

1100_dur += (clock() — 1100_s) / (double) CLOCKS_PER_SEC;

// Read output data from DDR

// record store time

store=clock ();

q.enqueueReadBuffer (buffer_cu, CL_TRUE, O,
vector_size_bytes , source_cu.data());
q.enqueueReadBuffer(buffer_cv, CL_TRUE, O,
vector_size_bytes , source_cv.data());
q.enqueueReadBuffer (buffer_z , CL_TRUE, O,
vector_size_bytes , source_z.data());
q.enqueueReadBuffer (buffer_h , CL_TRUE, O,
vector_size_bytes , source_h.data());
q.finish ();

// accumulate store time

store_dur += (clock() — store) / (double) CLOCKS_PER_SEC;

}//end of 4000 timesteps

In contrast, the data movement method between the Vivado host and the Vivado
L100 FPGA IP block is managed in the L100 Vivado designs as follows. The host
prepares and transfers the input data to the external BRAM block in the Vivado system
design using manually-managed memory address configuration. As shown in Fig-
ure 4.7 in Chapter 4, the ZynQ IP block has a direct connection to the external BRAM

block. This helps to have a separate communication path between the host code and

132 CHAPTER 6. SWM SDSOC OPENCL VS VIVADO

the external BRAM block. The Vivado host code fills first the external BRAM block
with the input data using the load_input function in code listing 6.2 (Load Time).
Following that, the kernel starts execution by fetching the input data from the external
BRAM block to local BRAM buffers and computes the kernel’s operations (Compute
time). In the final phase, the host code reads back the output data from the external
BRAM block to the host buffers using the get_output function in code listing 6.2
(Store Time). These three phases, which are executed for 4000 timesteps, contribute
to the Vivado 1L100 overall time. The different Vivado L100 implementations are Load-
ing and Storing data with the same data movement method. Table 6.1 shows that the
Vivado implementation’s Store time are similar. However, the Load time is differ-
ent depending on the number of created external BRAM blocks. The Vivado designs
with one external BRAM block have a similar Load time. However, designs such as
L100-DF-7-BRAMs and L100-M-P-4-BRAMs have different amounts of input data as
the design decision included duplicating and distributing the input data in different

external BRAM blocks. This decision resulted in increasing the Load Time cost.

Listing 6.2: 1100 Vivado Load and Store functions.

// main loop of 4000 timesteps
for (ncycle=1;ncycle <=4000;ncycle++) {

// Write L100 kernel input data to external BRAM
// record load time

load=clock ();

int load_input (int ib, float =u,

float =v, float =xp){

for (i1=0;i<N_LEN*M_LEN;i++) {

«(sfpga_ul[ib]+i) = ul[i];

v[i];

plil;

x(sfpga_v[ib]+1)
«(sfpga_p[ib]+1)
}

// accumulate load time

load_dur += (clock() — load) / (double) CLOCKS_PER_SEC;

6.1. L100 CONCURRENCY MAPPING COMPARISON 133

//L100 Kernel launch

// record compute time

1100_s = clock ();

terr = fpga_start (0);

ierr= fpga_wait(0);

// accumulate compute time

1100_dur += (clock () — 1100_s) / (double) CLOCKS_PER_SEC;

// Read output data from external BRAM
// record store time

store=clock ();

int get_output(int ib, float =cu,
float =xcv, float =xz, float =xh) {

for (1=0;i<N_LEN=M_LEN;i++) {

x*(cu+i) = =(sfpga_cul[ib]+i);

x*(cv+1) = =(sfpga_cv[ib]+1);

x*(z+1) = =(sfpga_z[ib]+1);

x*(h+i) = =(sfpga_h[ib]+1);

}

// accumulate store time

store_dur += (clock() - store) / (double) CLOCKS_PER_SEC;

}//end of 4000 timesteps

The overall times in Table 6.1 show that all three SDSoC OpenCL L100 designs
provided faster overall application times compared to that of the Vivado designs. There
is a significant overall time difference between the SDSoC OpenCL and the Vivado de-
signs because the Vivado implementations’s Load time and Store time are slower
than the SDSoC OpenCL implementations’s Load time and Store time. Table 6.1
shows that the Vivado design that utilised one external BRAM block such as L100-P-a

has a Load time that is slower by 1.64x and a Store time that is slower by nearly

134 CHAPTER 6. SWM SDSOC OPENCL VS VIVADO

4.5x compared to the fastest overall SDSoC design (L100-DF); while implementations
with multiple external BRAM blocks such as L100-DF-7-BRAMs and L100-M-P-4-BRAMs
have a Load time that is slower by 10.49x and 5.97x respectively, and Store time
that 1s slower by nearly 4.8x for both implementations. The Load and Store time dif-
ferences between the designs from both approaches is a result of the different memory
path between the host and the memory solutions utilized for the L100 kernel(i.e. DDR
versus external BRAM). The data movement paths between the SDSoC OpenCL host
DDR memory space and the SDSoC OpenCL 1100 kernel’s DDR memory space is
shorter compared to the data path between the Vivado host DDR memory and the ex-
ternal BRAM. The SDSoC OpenCL design transfers the data within the same memory
between two DDR memory spaces (host buffers and OpenCL buffers). In contrast, the
data in the Vivado designs travel a longer distance between the DDR memory (host
buffers) and the external BRAM block (kernel buffers) inside the FPGA fabric area. In
conclusion when considering the analysis of the overall time metric, although the SD-
SoC OpenCL implementations in Table 6.1 did not provide the best compute time,
the SDSoC OpenCL L100-DF implementation provided the best overall time of 2.292s
compared to the other SDSoC L1100 implementations and to the Vivado L100 imple-

mentations.

6.1.2 Resource Usage Analysis

Table 6.2 shows the resource usage for the best SDSoC OpenCL and Vivado 1L100
implementations from the exploration study (1) in Chapter 4. The figures show that the
most utilised resources are BRAM blocks. The Data-Flow implementations in both
the SDSoC OpenCL and the Vivado approaches utilised the highest BRAM resources
(27%) and (31%), respectively, due to the design decision taken in the Data-Flow

implementations.

6.2 Multiple kernel mapping comparison

This section compares results from the SDSoC OpenCL and the Vivado SWM five Ker-
nel implementations from the SWM multiple-kernels mapping exploration conducted
in Chapter 5. We compare the performance (Compute time and Overall time), the
kernel-to-kernel data movement methods, and the resource usage figures of the three

best implementations from Chapter 5, which are summarised in Table 6.3.

6.2. MULTIPLE KERNEL MAPPING COMPARISON

135

Table 6.2: Total design resource usage figures for the best L100 SDSoC OpenCL and
Vivado implementations in Chapter 4.

HLS Implementation BRAM _
Approach Name FF | LUTs | DSPs 36K
23593 | 20653 | 55 84

s | R ag) | gw) | ew) | o%)
OvenCL L100-DF 28086 | 27819 | 102 248
P (5%) | (10%) | (4%) | (27%)
41948 | 38278 | 89 171.50

L100-M-P 8%) | (14%) | 3%) | (19%)

14697 | 11768 | 55 78.50

P_ag*

L100 L100-P-a 3%) | (4%) | 2%) | (8.61%)
Vivado L100-P-a 22267 | 16180 | 39 83
4%) | (6%) | 1%) | (9%)

L100-DF- 30238 | 22285 | 65 283.50

7-BRAMs 6%) | (8%) | 2%) | (31.09)

L.100-M-P 20712 | 20052 | 65 195.50

4-BRAMs (5%) | (%) | Q%) | 21%)

Table 6.3: The application runtime details for the SWM five Kernels implementations
in SDSoC OpenCL and Vivado approaches in Chapter 5.

HLS
Approach

Impleme-
ntation
Name

Freq-
uency
MHz

Load
Time(s)

Compute
Time(s)

Store
Time(s)

Overall
Application
Time(s)

SDSoC
OpenCL

Vivado

SWM-
SKernels-
(53*53)
DDR

200

0.000609

2.935

0.000704

2.936

SWM-
S5Kernels-
(53*53)
PipesV1

200

0.000609

3.008

0.000704

3.0093

SWM
-5Kernels
-P-a

447

0.000472

1.334

0.000284

1.337

6.2.1 Performance Analysis

Compute Time Metric: As was discussed in Chapter 5, the SWM five kernels designs

in both approaches are different in terms of utilized optimization levels and mapping

136 CHAPTER 6. SWM SDSOC OPENCL VS VIVADO

mechanisms. The mapping mechanism used in the Vivado SWM five kernels imple-
mentation was the pipeline mechanism, while the Data-Flow mechanism was used to
map the five SWM kernels in the SDSoC OpenCL implementations. In comparing
the computational time, Table 6.3 shows that the compute time of the Vivado SWM
five kernels implementation provided the best compute time (1.334s) compared to the
two SDSoC OpenCL SWM five kernel implementations (2.935s (DDR) and 3.008s

(pipes)).

For a similar reason to that discussed in Section 6.1, the Vivado implementation has
higher performance because it runs at a higher clock frequency (447 MHz) compared to
only 200 MHz used in the SDSoC OpenCL implementations. In addition, the Vivado
implementation accesses a faster memory solution, using an external BRAM block
rather than the DDR memory used in the SDSoC OpenCL designs.

Overall Time Metric: In both the SDSoC OpenCL and the Vivado SWM five ker-
nels implementation designs (DDR and pipes), we Load and Store the same amount
of data. In addition, the Load and the Store operations are executed only once at the
start of the 4000 time-steps. In both SDSoC OpenCL and the Vivado implementations
we Load the data before the 4000 time-steps start, then the compute phase for the five
kernels is executed for 4000 time-steps and at the end of the compute phase we Store
the results back from the FPGA kernel. The output data from each kernel are shared
between the kernels over time-steps through the utilised kernel-to-kernel memory so-
lution. Three kernel-to-kernel design options were explored in Chapter 5 for the
OpenCL SDSoC and Vivado SWM five kernels implementations. These design so-
lutions utilised DDR memory and pipes in the SDSoC OpenCL implementations and
an external BRAM block in the Vivado design. In both cases, Kernels read and write
through a form of shared memory solution to avoid having to share the data through
the host code. Table 6.3 shows that the time cost of the Load and Store phases is, in
all cases, small compared to the compute time. In addition, Vivado Load time and the
Store time are faster by around 1.29x and 2.47x respectively compared to the two

SDSoC OpenCL implementation’s Load and Store time.

In conclusion to the overall time metric analysis, Table 6.3 shows that the Vivado
SWM five kernels implementation with the pipeline mechanism and one shared exter-
nal BRAM block has provided the best overall application time between the explored
implementations in Chapter 5. This Vivado implementation was faster by 2.2x and
3.2x than the SDSoC OpenCL DDR and SDSoC OpenCL pipe versions, respectively.

6.3. DEVELOPMENT EFFORT AND HARDWARE LEVEL OF EXPERTISE 137

6.2.2 Resource Usage Analysis

Table 6.4 shows the resource usage figures for the best SWM five kernels implemen-
tations from both the SDSoC OpenCL and the Vivado approaches. The Vivado SWM
five Kernels implementation consumed the lowest number of FF, LUTs and DSPs
resources, compared to the SDSoC OpenCL SWM five Kernels with DDR implemen-
tation, and the pipes-V2 implementation. The SDSoC OpenCL SWM five Kernels pipe
version consumed 78% of the BRAM resources (the highest) followed by a consump-
tion of 71% of the BRAM resources in the Vivado design. The comparison results in
this section show that the Vivado SWM five kernels implementation not only achieved

the best performance but required the lowest resource usage.

Table 6.4: Total design resource usage figures for the best SWM five Kernels imple-
mentations in SDSoC OpenCL and Vivado approaches in Chapter 5.

SDSoC -signMels 162665 | 155261 | 262 | 504
OpenCL -DDR B0%) | (57%) | (10%) | (55%)
-sizanels 1180011 | 123529 | 199 | 715
-Pipes-V2 (22%) | (45%) | (8%) | (78%)
Vivado _Sf(‘:mls 56309 | 37189 | 112 | 649
Poa (10%) | (14%/) | (4%) | (71%)

6.3 Development Effort and Hardware Level of Exper-
tise

The exploration study (1) reported in Chapter 4 and in Chapter 5 showed that the
L100 mapping mechanism that required the highest amount of development effort in
both the SDSoC OpenCL and the Vivado approaches was the Data-F1low mechanism.
Although this mechanism provided the best compute time and overall time, it required
significant coding changes to the initial implementation and coding effort (to avoid
introducing coding bugs). However, the pipeline mapping mechanism with the single-
nested-loop-based coding option was the most straightforward choice to implement for

the Vivado SWM multi-kernels implementation.

138 CHAPTER 6. SWM SDSOC OPENCL VS VIVADO

In terms of kernel-to-kernel communication development effort described in Chap-
ter 5, the use of the DDR memory option required the lowest development effort as
it required less host and kernel coding effort and was straightforward to implement.
Utilising pipes as a kernel-to-kernel communication solution required a great deal of
coding effort in both the SDSoC OpenCL host and kernel codes.

6.4 Summary

This chapter compared the data gathered from the exploration study (1) conducted in
Chapter 4 and Chapter 5. The comparison analysed the performance results, resource
usage figures, and design decisions for the L100 kernel concurrency mapping study
and the SWM five kernels exploration in both the SDSoC OpenCL and the Vivado
approaches. The comparison results revealed the following points. The Data-Flow
mechanism with functions provided the best performance for mapping the L100 ker-
nel’s concurrency in both SDSoC OpenCL and Vivado approaches. However, this
mechanism required high BRAM resource usage and coding effort.

The 1100 Data-Flow Vivado design achieved the best compute time and the 1L100
SDSoC OpenCL Data-Flow design provided the best overall application time (3.292s).
The data movement Load and Store cost was high compared to the compute time in
the both SDSoC OpenCL and Vivado L100 implementations, and this dominated the
overall time. However, the use of the DDR memory in the SDSoC OpenCL implemen-
tations provided better data movement (Load, Store) times compared to the Vivado
L100 (Load, Store) multi times. Nevertheless, in the SWM five Kernels implementa-
tions, the data movement cost was less significant, not affecting either approache’s de-
sign compute time, because the data were only shared between the five kernels through
three data-movement solutions options (DDR, Pipes, and external BRAM). The exter-
nal BRAM memory block shared between the five kernels in the Vivado design pro-
vided the best compute and overall time in the kernel-to-kernel communication
comparison.

In summary, comparing the SDSoC OpenCL and the Vivado design methodolo-
gies, the Vivado design methodology with external BRAM solutions required higher
development effort and hardware expertise. It requires the programmer to take care of
low-level concerns to create the FPGA solution, including the manual creation of the
FPGA hardware system design, which requires low-level configuration, connections

between the IP blocks and address manipulation management. In managing the host

6.4. SUMMARY 139

and the kernel solutions, the Vivado approach required more coding effort and FPGA

expertise.

Chapter 7

Exploration Study (2): MatVec Kernel

with SDSoC OpenCL, SDSoC C++
and Vivado

This chapter presents the exploratory study for mapping an existing low-level FPGA
design, of the MatVec kernel implemented using Xilinx Vivado, to two relatively higher-
level HLS approaches SDSoC OpenCL and SDSoC C++. The study in this chapter
presents first the Vivado MatVec design details based on a design study in [ARAMI19].
The Vivado MatVec design is used as the reference design, in that we compare so-
lutions developed using the SDSoC OpenCL and SDSoC C++ approaches that try to
replicate the Vivado HLS design objectives, where possible. In particular, we keep
the algorithm in the FPGA kernel in each solution essentially the same. This study
explores three parts in each solution design which are: the Kernel code, the MatVec
IP block and the System design and the LFRic mini-app host code design which in-
vokes the MatVec kernel. In each part, we explore the design decisions, optimizations,
and programming steps for the implementations in the three HLS approaches (Vivado,
SDSoC OpenCL and SDSoC C++).

In this chapter, we also discuss what design decisions from the Vivado MatVec de-
sign were, or were not, possible to be replicated in the SDSoC OpenCL, and SDSoC
C++ approaches. Moreover, we discuss other design options which are available in the
SDSoC OpenCL and SDSoC C++ approaches. The differences in design flow method-
ologies between the Vivado, SDSoC OpenCL and SDSoC C++ approaches are also
discussed, including how these differences affect the design decisions. This chapter

focuses only on presenting the exploration design details for the MatVec designs in the

140

7.1. MATVEC REFERENCE IMPLEMENTATION 141

three HLS approaches. In particular, this chapter introduces the design options and the

best performing designs will be presented in the Comparison Study in Chapter 8.

7.1 MatVec Reference Implementation

The MatVec implementation that we explore in this Chapter is based on the reduced in-
terconnect design described in [ARAM19] study. This design processes 864 columns
of 40-level data from the LFRic mini-app model. The design consists of twelve MatVec
IP blocks distributed across the logic cells of a Xilinx ZU9EG FPGA. Each IP block
processes a single column of data (40 double-precision floating-point matrix-vector
multiplications with an 8 x 6 matrix). As described in Section 2.6.2 from Chapter 2,
the originlly provided MatVec code performs double-precision matrix-vector multi-
plication on finite element cells within an outer loop that runs over an atmospheric
column of forty vertical levels in the mini-app model. This mini-app model has 864
cells, and they are distributed over six colouring groups (exposing concurrency within
each group), four groups with 205 cells each plus a 32 cell group and 12 cell group.
The exploration objectives in this Chapter include exploring the replication (when pos-
sible) of the Vivado MatVec design objectives of the reduced interconnect design from
the [ARAM19] study. Moreover, we explore implementations having a MatVec design
with single and multiple IP block(s), each either processing either a single cell column
or multiple cell columns. The next Sections will present the exploration of the MatVec
implementations in three HLS approaches Xilinx Vivado, SDSoC OpenCL and SDSoC
C++.

7.2 MatVec Xilinx Vivado Design

Vivado MatVec design is based on the reduced interconnect design from [ARAM19].
In this thesis, the design from [ARAM19] is slightly modified to have multiple MatVec
IP blocks, each processing multiple of the mini-app model’s cell data, one cell at a
time. As described in Section 2.4 from Chapter 2, the Vivado design flow methodology
consists of three stages. The following sections discuss the Vivado MatVec design
with regard to those three stages. In the following sections we review some of the
related background issues to this topic (Xilinx Vivado) before presenting the results in
Chapter 8.

'The design modification was carried out with help from the author in [ARAM19], Mike Ashworth.

142 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

7.2.1 MatVec Xilinx Vivado Design Overview

The main idea of the Vivado MatVec design is to exploit spatial parallelism on the
FPGA using multiple MatVec IP blocks, each with its own external memory block.
Figure 7.1 shows the overall Vivado MatVec design concept. The design depends on
using the small and fast BRAM blocks as the external memory block that is attached
to a MatVec 1P block, because the BRAM block’s access latency is lower than the
DDR memory access latency. The ARM CPU code fills the external BRAM blocks
directly, since in Vivado, the BRAM addresses can be mapped into the host’s address
space. The blocks are filled with data for several cells, ahead of the execution of the
IP blocks. When the IP blocks execute, the cell data are then accessible and can be
fetched from the external BRAM blocks to local BRAM elements inside the kernel IP
blocks for the calculation process of each cell. A kernel thus processes a single cell at

a time. The kernel in this case called a single-cell kernel.

Data / Programrnable \
Logic

Movement
—_— Matvec Matvec
DDR IP IP
Block 0 = = o= Block_N
SR
Local BRAM Local BRAM
ARM
CPU 1[@
./
BRAM BRAM

\Block_o = En BIock_N/

Figure 7.1: Overview of the MatVec Vivado HLS design.

7.2.2 MatVec Xilinx Vivado Kernel Code

The first stage in the Vivado design flow is writing the kernel code and generating the
IP block using the Vivado HLS tool. This step is called compile stage, as described in
the Section 2.4 from Chapter 2. Vivado HLS is also used for the analysis and synthesis
of the Vivado MatVec kernel. It provides a synthesis report containing performance
metrics and information on the applied optimizations. Using the feedback informa-
tion from the Vivado HLS tool, the programmer can observe the (likely) effect of an

optimization on the kernel performance without executing it.

7.2. MATVEC XILINX VIVADO DESIGN 143

The Vivado MatVec kernel code design is created based on three design objectives,
see [ARAMI19]. First: to stream the input and output data to the IP Block, targeting
one 64-bit word per clock cycle. Second: to pipeline and overlap of the arithmetic
operations targeting 64-bit multiplications and 64-bit addition operations every clock
cycle. Third: to minimize FPGA resource usage. These objectives were carried out
through several optimization decisions. The optimisation methods can be classified
into three categories: Data array access organisation optimisations, improving the
algorithm’s computation throughput optimisations, and improving the data movement
optimisations. These optimisation methods are applied on the starting code shown in
listing 2.2 in Section 2.6.2 from Chapter 2. The resulting optimized Vivado MatVec

kernel code is presented in Listing 7.1.

Listing 7.1: Vivado design’s kernel code.

1 #define NDF1 8

2 #define NDF2 6

3 #define NK 40

4 #define MVTYPE double

S5 #include <string.h>

6

7 int matvec_8x6x40_v6 (const MVITYPE sxmatrix , const MVITYPE xx,
8 MVTYPE x1lhs)

9 |

10

11 #pragma HLS INTERFACE m_axi depth=128

12 port=matrix offset=slave bundle=bram \

13 num_read_outstanding=8 num_write_outstanding=8 \
14 max_read_burst_length=64 max_write_burst_length=64
15

16 #pragma HLS INTERFACE m_axi depth=128

17 port=x offset=slave bundle=bram \

18 num_read_outstanding=8 num_write_outstanding=8 \
19 max_read_burst_length=64 max_write_burst_length=64
20

21 #pragma HLS INTERFACE m_axi depth=128

22 port=lhs offset=slave bundle=bram \

23 num_read_outstanding=8 num_write_outstanding=8 \

144

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

max_read_burst_length=64 max_write_burst_length=64
#pragma HLS INTERFACE s_axilite port=return

int df,j . k;

// Local BRAM elements

MVTYPE ml[NDF2][NK];

#pragma HLS array_partition variable=ml block
factor=60

x] [NDF2][NK];

#pragma HLS array_partition variable=ml block
factor=60

IT[NK];

#pragma HLS array_partition variable=ml block
factor=40

//Read input data from the external BRAM
memcpy (x1, x, NDF2«NKxsizeof (MVTYPE));

for (df=0;df<NDF1;df++) {
#pragma HLS PIPELINE
memcpy (ml, matrix+df«NDF2«NK,NDF2«NKxsizeof (MVIYPE));

for (k=0;k<NK;k++) {
#pragma HLS UNROLL
I11[k] = 0.0;

}

for (j=0;j<NDF2;j++) {
for (k=0;k<NK;k++) f{
#pragma HLS UNROLL

// Matrix vector multiplication
IT[k] = 11[k]+ xI[jI{k]=*ml[j][k];
}

7.2. MATVEC XILINX VIVADO DESIGN 145

59 }

60

61 // Write output data to the external BRAM
62 memcpy (lhs+df«NK, 11, NK«sizeof (MVIYPE));
63 }

64

65 return O;

66 }

The kernel code and data layout was changed from the starting code, in the follow-
ing ways?:

Data array access organisation optimisations:

* The k-index loop over the vertical levels became the innermost loop by swapping
loops, see line 57 in the listing 7.1. This allows sequential execution of the k-
loop with potential for stride 1 access to the column of data associated with each

cell, providing more computation per cell (higher granularity).

» Transposed the data array, where necessary, to support the stride 1 execution of

the k-index loop.

* The kernel only computes the matrix-vector product. The update of the lhs data

array is computed on the host Arm CPU.
Computation throughput optimizations:
* Unroll the innermost loops in nested loops.
* Pipeline the outer loop.

* Partition the local BRAM arrays to provide more memory access ports (and,
hence, higher bandwidth). The best partitioning factors were found to be 60
for the matrix and x1 arrays and 40 for 1hs array. See lines 31, 34 and 37 in

listing 7.1.

Data movement optimizations:

2The optimisations in the bullet points are undertaken from the [ARAM19] paper, except the array
partitioning.

146 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

* matrix and x array data are first transferred from the DDR memory of the host to
the external block BRAM storage associated with each kernel IP block. Those
data are then transferred from the external BRAM block to local BRAM_I18K

logic elements in burst mode during the execution of the kernel.

* The x data array is copied to the kernel only once, to the local BRAM_18K, as it
is constant for all the iterations of the outer df-loop in the processing of a cell,

see line 41 in the listing 7.1.

* Slices of the matrix data are transferred to the local kernel BRAM_18k array
each df-loop iteration, and output columns of the /Ahs data array are copied out to
the external BRAM block at each iteration of the loop in burst mode, thus freeing
local BRAM__18k for use in the next iteration, see line 45 in the listing 7.1.

* Upon the completion of the kernel execution, the lhs array is copied from the
external BRAM back to the DDR memory for use by the host.

The Vivado MatVec kernel data movement optimizations ensure that the data stream-
ing in and out of the IP block occurs at the rate of one word per cycle (read/write).
Without these optimizations, in particular the use of burst mode, the IP block will be
waiting for one read to complete before starting the next, for example. The data trans-
fer is implemented using the memcpy function, which the Vivado HLS recognises and
implements using “burst mode” [Xil21e].

The HLS INTERFACE pragmas in lines 11-25 in Listing 7.1 are used in the kernel
function to define the Vivado MatVec IP block ports for the interconnection in the block
integration stage, as described in Section 7.2.3. The kernel’s three array arguments x,
matrix, lhs, are specified as AXI master ports (m_axi). These three ports in each
MatVec 1P block are connected to one (external) BRAM block port. Therefore, they are
bundled together as one m_axi_bram port to form a single port which helps to simplify
the interconnection network in the system design, as described in Section 7.2.3. The

burst mode properties are defined in the HLS INTERFACE pragmas as follows:
* num_read_outstanding=8
* max_read_burst_length=64
* num_write_outstanding=8

* max_write_burst_length=64

7.2. MATVEC XILINX VIVADO DESIGN 147

matvec_8x6x40_v6_0

v 4 s_axi_AXILiteS i
. m_axi_bram - =

ap_clk
' interrupt je=

ap_rst_n

>

Matvec_8x6x40_v6 (preproduction)

Figure 7.2: The generated MatVec Vivado IP block.

The num_read/write_outstanding specifies how many read/write requests can
be made before stalling, where the max_read_burst_length specifies the maximum
number of data to be read/written in the burst transfer.

At the end of this stage, the Vivado MatVec IP block is generated (as shown in
Figure 7.2) and exported as an IP block that can be integrated into a full system design
in the second stage of the Vivado HLS process, which is described in Section 7.2.3.

The generated Vivado MatVec IP block in Figure 7.2 has two ports. A Master AXI
port (m_axi_bram) which is the result of the use of HLS INTERFACE pragma in lines
11-25 from 7.1. This port is the gate access for the Vivado MatVec 1P block to the
external BRAM block. The Slave AXI port (s_axi_AXILiteS) is a result of the use
of the HLS INTERFACE s_axilite pragma in line 25 from 7.1. This port is the gate
access of the ZynQ to the Vivado MatVec IP block. The Slave AXI port gives the ARM
CPU an access to the control register in the generated Vivado MatVec IP block which

is used to control the block’s start/stop execution signals.

7.2.3 MatVec Vivado Hardware Design

The second stage (link stage) of the Vivado design flow is to incorporate the generated
IP block into a system design that supports its execution. Therefore, the Vivado MatVec
IP block in Figure 7.2 is incorporated into a system design using the Vivado Design
Suite [Xil21f]. The Vivado system design is created by utilizing some IP blocks from
the Vivado IP Catalog [Xil21g]. Those IP blocks can provide functionalities such
as an interface with the ARM CPU, data handling BRAMs and clock control. The
choice of the IP blocks and the interconnection method between them can be made
in different ways, requiring considerable knowledge and effort to reach an appropriate
design option.

Figure 7.3 shows an example with two Vivado MatVec 1P blocks to illustrate the
Vivado MatVec system design. The Vivado system design consist of the following IP

CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

148

ZYNQ

UltraSCALE*+

Figure 7.3: Overview a Vivado two MatVec IP blocks design.

7.2. MATVEC XILINX VIVADO DESIGN 149

blocks that provide the functionality of the design:

1. Twelve MatVec kernel IP blocks. The best found Vivado MatVec design consists
of twelve MatVec 1P blocks. This is the best performing Vivado design that we
focus on in this Section, further details of this design’s performance and other

Vivado designs will be discussed in Chapter 8.
2. Twelve memory generator IP blocks to provide BRAMs per MatVec 1P block.

3. Twelve AXI BRAM controllers to provide AXI protocol interfaces for each
BRAM memory block.

4. A ZynQ UltraScale+ MPSoC IP block.
5. A clocking wizard IP block to provide a custom clock.
6. Two Reset System block processors.

The twelve Vivado MatVec IP blocks are replicates of the Vivado MatVec 1P block
generated in the compile stage. Each Vivado MatVec IP block is connected to an AXI
BRAM controller that connects the MatVec block to its external BRAM memory, as
illustrated in Figure 7.3.

Managing and controlling the connection between the functional IP blocks is by
utilizing a set of interconnecting IP blocks and connection ports from the Vivado IP
Catalog [Xil21g]. Choosing the proper connection method and IP blocks depends on
the design objectives and the choice of data movement implementation. The following

points summarize the interconnecting IP blocks in the Vivado system design:

1. One AXI Interconnect IP block.
2. One AXI_Protocol _Converter IP Block.
3. Fourteen AXI_Crossbar IP blocks.

4. One Master ZynQ (HPMO) port which connects the ARM CPU with the slave
ports of the MatVec IP blocks for ARM CPU access control on the IP blocks’

control registers.

5. One Master ZynQ (HPM1) port connects the ARM CPU with the slave ports of
the BRAM block controllers for ARM CPU external BRAM access.

150 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

6. A Master port on each MatVec IP block, see Figure 7.2, connects a slave port on
each BRAM controller for external BRAM data access.

As can be seen in the example Figure 7.3, the connection between the design blocks
is managed through the use of one AXI_Interconnect and fourteen AXI_Crossbar
IP blocks. The AXI_Interconnect helps to do the large number of data-related con-
versions required, automatically converting between different clocks, different data
widths, and different protocols. However, it consumes a large amount of FPGA re-
sources. This IP block is used only to convert between the 128-bit paths of the High-
Performance Master HPM ports from the ARM CPU to the 64-bit paths used in the rest
of the design blocks. The AXI_Crossbar block is used for connection where the data
path conversion is unnecessary, see the example Figure 7.3. The AXI_Protocol_Converter
is used to explicitly convert between AXI4 on the ZynQ block and the AXI_Lite for
the control register ports on the twelve Vivado MatVec 1P blocks, see the example Fig-
ure 7.3. The two ZynQ AXI4 high-performance HPMO and HPM1 ports are utilised to
provide the ARM CPU interface with the twelve Vivado MatVec 1P blocks. These two
ports map to addresses 0xA0000000 and 0xB0000000, respectively . The addresses
of the design peripherals such as BRAMs and MatVec IP blocks are mapped to these
two address ranges to facilitate accessing them through the ARM CPU, see 7.2.4. The
HPMO port is connected to the twelve Vivado MatVec 1P blocks’ slave ports to give the
ARM CPU access to the MatVec blocks’ control registers. The other ZynQ port, HPM1,
is connected to the twelve AXI BRAM controllers so that the ARM CPU can access
the external BRAM blocks for data movement operations. The Vivado system design
blocks’ addresses can be generated automatically, but the programmer can configure
them manually. The Vivado design suite provides the programmer with an address
editor tool that enables the management of the system design addresses. Figure 7.4
shows the address ranges configuration for the twelve Vivado MatVec IP blocks and
their BRAM blocks. The Vivado MatVec IP blocks offset addresses range started from
the HPMO ZynQ port address of 0xA0000000. The other ZynQ port, HPM1 of address
0xB0000000, is used as the base address for the external BRAM blocks’ addresses
range.

The Clock Wizard block used in the Vivado system design in Figure 7.4 controls
multiple clock domains. The ZynQ IP block is limited to a maximum of 333MHz
clock speed, but the MatVec IP block can run faster than that (310 MHz). Each clock
domain requires a Processor System Reset block, and that is why two of them are used

in the design.

7.2. MATVEC XILINX VIVADO DESIGN 151

Cell Slave Interface Base Name Offset Address Range High Address
~ ¥ zynq_ultra_ps_e_0
v [Data (40 address bits : 0x00A0000000 [256M | ,0x0400000000 [4G] ,0x1000000000 [224G | ,0x00BO000Q00 [256M] ,0x05..
oo axi_bram_ctrl_0 S_AXI MemOQ O0x00_BOGO_C00O 1M ~ Ox00_BOOF_FFFF
== axi_bram_ctrl_1 S_AXI Mem0 0x00_BO1O_BGOGO 1M ~ 0OxB0_BOLF_FFFF
oo matvec_Bx6x40_v6_0 s_axi_AXiLiteS Reg 0x00_ADOD_0000 8K ~ 0OxO0_AGOO_1FFF
oo matvec_8x6x40 v6_1 s_axi_AXILiteS Reg 0x00_ADGO_2000 8K ~ OxB0_AGOQ_3FFF

v W matvec_8x6x40_v6_0
+ B Data_m_axi_bram (32 address bits : 4G)

== axi_bram_ctrl_0 S_AXI Mem0 0xB0O00_0000 1M~ OxBOOF_FFFF
v W matvec_8x6x40_v6_1
v [@ Data_m_axi_bram (32 address bits : 4G)
= axi_bram_ctrl_1 S_AXI MemoO 0xB0O1G_00c0 1M~ OxBOLF_FFFF

Figure 7.4: Address map example for two Vivado MatVec design.

Upon the completion of the Vivado MatVec IP blocks’ integration and the config-
uration of the Vivado system design, the programmer directs the Vivado Design Suite

to carry out the following steps to generate the bitstream of the design:
» Synthesis of the RTL-specified design into a gate-level representation.

* Placing and routing the resulting netlist onto the FPGA resources, within the

physical, logical, and timing constraints of the design.

* Generation of the design Bitstrean for the target FPGA configuration.

7.2.4 MatVec Vivado CPU code

The Vivado host CPU code is a C code that manages the addresses and the transfer
from/to the DDR memory to/from the external BRAM blocks of the LFRic-mini app
data arrays associated with each cell, (x, matrix and 1hs). In addition, the host code
manages the Vivado MatVec 1P blocks execution and addresses configuration. The
CPU code utilises the aforementioned ZynQ high-performance master ports, HPMO and
HPM1, to control the Vivado MatVec IP blocks and the external BRAM blocks. More-
over, the CPU code utilises two device tree (/uio0 and /uiol) from the system device
and maps them to the two zynQ ports, (HPMO and HPM1), see code fragment in List-
ing 7.2 lines 11-20. These two devices are helpful to manage the addresses in the CPU
code. There contents can be checked in the device tree by using the command dtc,
as can be seen in code fragment from Listing 7.2 lines 1-8. The two devices can be
mapped into the user address space of the executable file using the open and mmap

system calls, as shown in Listing 7.2 lines 22-27.

Listing 7.2: Vivado MatVec design’s CPU code fragments.

152 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

1 //dtc command

2 dtc -I fs -O dts /sys/firmware/devicetree/base
3

4 // dtc command output

5 gpio@a0000000 {

6 compatible = "generic—-uio", "uio";

7 reg = <0x0 0xa0000000 0x0 0x800000 >;

8 }s

9

10

11 //Initialise the FPGA,

12 //with settings tailored the design

13 //(0xA0000000) Matvec IP blocks

14 //base address (HPMO)

15 //(0xB0000000) External BRAM blocks

16 //base address (HPMI)

17 ierr = mvupdt_fpga_init(0, is_update,

18 "/dev/uio0", 0xA0000000);

19 iterr = mvupdt_fpga_init(1l, is_update,
20 "/dev/uiol", 0xB0000000);

21

22 // open and mmap system calls

23 fd = open(device, O_RDWR);

24 fpgamemsize[idev] = 0x0800000;

25 fpgamemory[idev] = (char =)mmap

26 (NULL, fpgamemsize[idev] ,PROT_READ/|

27 PROT_WRITE ,MAP_SHARED, fd ,0); }

28

29 //Set up Matvec blocks addresses

30 //(Example code fragment)

31 // for two Ip blocks design

32 terr = mvupdt_fpga_add_block (0, 0xA0000000,
33 0, 40, 1, nchunk);

34 ierr = mvupdt_fpga_add_block (0, 0xA0002000,
35 0, 40, 1, nchunk);

7.2

36
37
38
39
40
41
42
43
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

MATVEC XILINX VIVADO DESIGN 153

// Set up external BRAM blocks addresses
// (Example code fragment) for
// two BRAM blocks design
ierr = mvupdt_fpga_add_bram (1, 0, 0xB0000000);
iterr = mvupdt_fpga_add_bram (1, 1, 0xB0100000);

//Matvec IP Block start
int fpga_start (int ib_block) {
scontrol [ib_block] = 1;

return O;

//Matvec IP Block status check

hold =0;

while ((x control [ib_block]&4) == 0) {
hold ++;

// Start addresses of arrays in BRAM
BRAM_matrix_start[ib] = base;

BRAM_x_start[ib] = BRAM_matrix_start[ib] +
ncmem|[ib]J*nkblock [ib |«*NDF1«NDF2«sizeof (MVTYPE) ;
BRAM_lhs_start[ib] = BRAM_x_start[ib] +
ncmem|[ib]+* nkblock [ib]*NDF2«sizeof (MVTYPE);

// Set the array addresses in
//the block control register

al = BRAM_matrix_start[ib];

a2 = BRAM_x_start[ib];

a3 = BRAM_lhs_start[ib];
#(control[ib]+ic) = al;
x(control[ib]+ic+2) = a2;
«(control[ib]+ic+4) = a3;

154 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

72

73 // Load the data into FPGA memory
74 //matrix

75 for (j=0;j<NDF1«NDF2xnk;j++) {
76 «(sfpga_x+j) = #(x_in+j);

77 }

78 //x

79 for (j=0;j<NDF2s#nk;j++) {

80 x(sfpga_matrix+j) = #(matrix_in+j);
81 }

82

83 //get the lhs data back

84 for (j=0;j<NDFl#nk;j++) {
85 #(lhs_k+j) = =(sfpga_lhs+j);
86 }

MatVec and external BRAM IP blocks, addresses configuration: The two con-
figured addresses ranges, starting at 0xA0000000 and 0xB0000000, that are mentioned
in Section 7.2.3 are used in the CPU code to configure the MatVec IP blocks’ and
the external BRAM IP blocks’ addresses. For example, the first Vivado MatVec 1P
block is given the base address (0xA20000000) of the HPMO port. The second MatVec
IP block’s address is 0xA0002000 and so on for the other Vivado MatVec blocks, see
code fragment in Listing 7.2 lines 29-35. The same addressing process is applied to
the external BRAM blocks, where the first external BRAM block address is given the
address 0xB0000000. The second external BRAM block’s address is 0xB0100000,
see code fragment in Listing 7.2 lines 37-41. The address offset between the external
BRAM blocks is based on the size of the data to be stored in the BRAM block.

MatVec IP blocks, execution control: The execution process of the MatVec 1P
blocks is managed in the CPU code through the access to the MatVec 1P blocks’ con-
trol registers. Figure 7.5 shows an example set of control register details, where the
first word contains control signal bits that can be configured to control the IP block’s
execution. For example, the AP_START bit (bit 1) can be set to “1” to start the block
execution, and the AP_IDLE (bit 4) is used to check whether the Vivado MatVec 1P
block is idle. The AP_IDLE bit also can be polled to check when the IP block has fin-
ished execution. Lines 45-49 in the Vivado CPU code fragment in Listing 7.2 show the

function that uses the Vivado MatVec control signal start bit in the control register to

7.2. MATVEC XILINX VIVADO DESIGN 155

start the execution of the target MatVec IP block. In addition, lines 51-55 in Listing 7.2
shows the function that checks the status of a target Vivado MatVec IP block through
the use of AP_IDLE bit.

x Registers for matvec_8x6x40_v6_0

Name Description Address/Offset Size (Bytes/Bits) Access

| CTRL Controlsignals 0xa0000000 read-write

4
AP_START | Control signal Register for'ap_; 0 1 read-write
AP_DONE | Control signal Register for 'ap_; 1 1 read-only
AP_IDLE | Controlsignal Register for 'ap_i 2 1 read-only
AP_READY | Control signal Register for 'ap_i 3 1 read-only
RESERVED: Reserved. Os on read. 4 3 read-only
AUTO_RES? Control signal Register for "aut; 7 1 read-write
RESERVED; Reserved. Os on read. 8 24 read-only

» GIER Global Interrupt Enable Registe 0xa0000004 4 read-write
» IP_IER IP Interrupt Enable Register 0xa0000008 4 read-write
» IP_ISR IP Interrupt Status Register 0xa000000c = read-write
» ap_return Data signal of ap_return 0xa0000010 4 read-only
» matrix Data signal of matrix 0xa0000018 4 write-only
L ¢ Data signal of x 0xa0000020 4 write-only
» |lhs Data signal of lhs 0xa0000028 4 write-only

Figure 7.5: Example of the register map of the Vivado MatVec IP block.

External BRAM blocks, data addresses configuration: As mentioned previ-
ously, the ARM CPU can access the external BRAM blocks through the master HPM1
port. The address of each BRAM block in the CPU code is configured within the ad-
dress range of the HPM1 port (starting at 0xB0000000). Therefore, the data addresses
in each BRAM block start with that BRAM block address within the 0xB0000000 ad-
dress range. The address offset between data in a BRAM block is configured based
on the data size. For example, the data addressed in an external BRAM block that
has a 0xB0100000 address, starts from this 0xB0100000 address. The three arrays
of data associated with an IP block, (matrix, x and lhs) in this particular BRAM
block, will have the following addresses. The matrix start address is the base address,
0xB0100000; the x address is 0xB0200000, the base address plus the size of matrix
data; and the 1hs address is the x address plus the size of the x data. This manual
addressing configuration process is managed in the CPU code in lines 57-62 of List-
ing 7.2. This code enables the ARM CPU to write and read data from the external
BRAM block directly.

To enable the MatVec IP blocks access to their external BRAM block data, the
CPU code configures those data addresses using the IP block control registers. As

mentioned earlier, each MatVec IP block has control registers that hold the addresses

156 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

of the three array arguments (matrix, x and 1hs). Further down in the register map in
Figure 7.5 we can see the locations of the 32-bit registers that carry the addresses of the
Vivado MatVec IP block’s three arguments. The data addresses in the BRAM block are
mapped to their corresponding control registers addresses. For example, the data ad-
dress in the BRAM block with address 0xB0000000 is mapped to its attached MatVec
IP block control registers in the following way. The register address 0xA0000018 of
the matrix argument holds the address 0xB0000000 of the matrix array in that par-
ticular BRAM block. The register address 020000020 of the x argument holds the
address of the x data in the attached BRAM block; and the same pattern applies for the
1hs data address. The CPU code lines 64-71 in 7.2 manage this addresses mapping
configuration for each MatVec IP block, which enables each MatVec IP block to know
where to find its required data in their attached external BRAM block.

In summary, the CPU code is designed to follow the following steps to execute the

MatVec blocks, once the algorithm is started:

* Check the MatVec block has finished the last calculation by checking AP_IDLE
register, see Listing 7.2 lines 51-55.

* Write data into the BRAM attached to each MatVec block using the appropriate

address, noting the offsets for matrix, x and 1hs, see lines 73-81 in Listing 7.2.

* Write the addresses for matrix, x and lhs into the control registers for each
MatVec block, see lines 64-71 in Listing 7.2.

* Start each MatVec block by writing a “1” into AP_START register, see Listing 7.2
lines 45-49.

* Poll AP_IDLE register status to check the MatVec block to see if it has finished

execution, see lines 51-55 in Listing 7.2.

* Read data from each BRAM block for the results of the computation in 1lhs, see
lines 83-86 in Listing 7.2.

7.3 MatVec OpenCL design

This section explores the design options for creating a MatVec solution using the SD-
SoC OpenCL approach. We explored options for replicating the Vivado kernel design

objectives and optimizations where possible. In addition, we compare the MatVec

7.3. MATVEC OPENCL DESIGN 157

SDSoC OpenCL design stages against the three design stages that of the Vivado ap-
proach which were presented in Section 7.2. We also discuss the design aspects that
can and cannot be replicated in the auto-compiler SDSoC OpenCL methodology when
attempting to match the manual Vivado MatVec design.

The SDSoC OpenCL approach methodology required only two stages for creating
a MatVec design. These two stages are writing the OpenCL kernel code and the CPU
host code. The following sections explore the SDSoC OpenCL MatVec design with

regard to those two stages.

7.3.1 MatVec SDSoC OpenCL Kernel code

The first stage in creating a MatVec design in the SDSoC OpenCL approach is writing
the OpenCL kernel code. In writing the OpenCL kernel, we are following the MatVec
Vivado kernel code optimisations and design decisions in code Listing 7.1, where ap-
plicable. This includes replicating the Data array access organisation optimisations,
computation throughput optimisations, and the data movement optimisations. The
Vivado MatVec kernel code design was created based on three design objectives (see
section 7.2.2) and on the use of external BRAM blocks. The use of external BRAM
blocks in the Vivado system design was a significant factor in designing the Vivado
kernel code. The SDSoC OpenCL does not provide proper support for the equivalent
external BRAM block creation outside of the Matvec IP block 3. Therefore, the only
available memory solution option in the SDSoC OpenCL approach is the use of DDR
memory. In contrast to the Vivado approach, the SDSoC OpenCL methodology is a
high-level HLS tool based only on inserting attributes into the kernel code. The SDSoC
xocc compiler creates the system design automatically based on the decisions taken in
writing the kernel code. Figure 7.6 shows an overview of a possible design option for
the MatVec kernel in the SDSoC OpenCL approach. In this design, the BRAM blocks
are only used as local memory buffers within the SDSoC OpenCL MatVec blocks (re-
quiring only the declaration of local arrays in the kernel). The data are transferred
between the host and the MatVec blocks through the DDR memory.

The first design decision in writing the MatVec SDSoC OpenCL kernel is the choice
of OpenCL kernel type. As described in Section 2.3.1 from Chapter 2, two OpenCL
kernel type options are available: (task and NDRange kernels). The appropriate choice

for the MatVec kernel is the task kernel, since the task kernel proved to be a better

3Private communication with a Xilinx engineer confirms that creating on-chip global memory using
BRAM is not supported.

158 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

Data
Movement
() 4 Programmable N\
DDR |+ Logic
— MaItF\,rec Mallt;ec
ARM :} D " .
Block 0 Block n
CPU - -
= Local BRAM Local BRAM

- /

Figure 7.6: Overview of the SDSoC OpenCL MatVec design.

OpenCL kernel type option for FPGAs as the exploration study presented in Chapter 4
concluded. As described in the previous section, the Vivado MatVec kernel design
reads/writes data from an external BRAM block. The external BRAM block accom-
modates data from several cells, and the MatVec IP block reads and processes only one
cell at a time. In addition, the Vivado MatVec kernel reads slices of mat rix data every
df loop iteration to allow for streaming one word per cycle. BRAM access latency is
lower than DDR memory access latency which was a determining factor in the kernel
design decisions for the Vivado MatVec kernel. However, as the only memory option
available in the SDSoC OpenCL approach is the use of DDR memory, some of the
SDSoC OpenCL MatVec kernel design decisions taken have to be different to those
of the Vivado kernel design. These design decisions aim to minimise the latency ac-
cess overhead that can be caused by using the DDR memory. First: we transfer the
entire matrix data to the local BRAM in the kernel from the DDR memory instead
of using the slice-based method in the Vivado design. In addition, this data transfer
occurs before the start of the df loop, compared to the Vivado MatVec kernel design.
Second: we transfer (to the local BRAM) and process multiple cells in a single call
to the kernel instead of following the cell-by-cell method used in Vivado. These two
design decisions aim to minimise the access to the DDR memory as far as possible to
improve the SDSoC OpenCL MatVec kernel latency overhead, even though it is not a
replication of the Vivado MatVec kernel design. Choosing how many cells the SDSoC
OpenCL MatVec can process in a call is based on two factors: the number of SDSoC
OpenCL MatVec 1P blocks to be created, and the maximum data size that the local
BRAM in the IP block can accommodate. We found that the maximum number of
cells that can be accommodated in only one SDSoC OpenCL MatVec IP block is 160

7.3. MATVEC OPENCL DESIGN 159

cells data. However, the more IP blocks that are created, the fewer cells the IP block
can process due to resource limitations encountered when the full design is created. In
Chapter 8 we evaluate and discuss SDSoC OpenCL MatVec designs that process both

a single cell and multiple cells.

To manage the variants of cell designs in the SDSoC OpenCL MatVec kernel, we
introduced a new loop around the df loop to manage the number of cells the kernel is
processing. As described in Section 2.6.2 from Chapter 2, the LFRic model cubed-
sphere grid has 864 cells and these are organized into six groups of colours (four 205
cells groups, one 32 and and 12 cells group). The SDSoC OpenCL MatVec kernel is
created to be able to process the maximum number of cells that the kernel IP block can
process, and we call it from the host CPU code as many times as required in order to
process the number of cells in each colouring group in turn. For example, creating an
SDSoC OpenCL MatVec kernel with 160 cells means the IP block can processes the
cells of a 205 cell colouring group with two kernel calls. The first call processes 160
cells, and the second call processes the remaining 45 cells. The same idea is applied
to the other colouring groups. To manage this static data scheduling # in the SDSoC
OpenCL MatVec kernel we introduced two variables. These variables are: NCELLS
and nchunk. The NCELLS variable holds the highest possible number of cells that the
IP block can process in a particular build of the kernel; the nchunk variable holds the
number of cells that the IP block will process in a particular call. The nchunk variable
is passed as a kernel function argument from the host code at the kernel’s execution.
However, the NCELLS variable is defined in the kernel code, because it is used to
define the kernel’s BRAM elements size at compile time to avoid an xocc compilation

failure.

The relevant Vivado MatVec Kernel optimisation HLS pragmas are translated to
the equivalent attributes in the SDSoC OpenCL MatVec Kernel. However, array par-
titioning optimisation is avoided because we found it increases the design complexity
and causes a compiler error.

The creation of multiple SDSoC OpenCL MatVec IP blocks in the SDSoC OpenCL
was achieved by replicating the kernel code in the SDSoC OpenCL .c! file and giving
each kernel instance a different IP block name. For example, if three SDSoC OpenCL

“Static data scheduling means creating a kernel that processes the max number of cells regardless
that it will be sometimes be called to process a smaller number of cells. This design is not an efficient
solution in terms of resource usage; however, dynamic data scheduling is not suitable because the kernel
cannot be compiled without the data size being known at compiler time. This issue will be looked at
further in future work.

160 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

MatVec 1P blocks are created, the kernel code will be written three times with different
kernel function’s names such as kernel_0 to kernel 2.
Code listing 7.3 presents the SDSoC OpenCL MatVec kernel code with all the

design decision changes compared to the Vivado MatVec kernel code that have been

discussed.
Listing 7.3: SDSoC OpenCL MatVec kernel code
1 #define NDF1 8
2 #define NDF2 6
3 #define NK 40
4 #define NCELLS 160
5
6 #define MVTYPE double
7
8 __attribute__ ((reqd_work_group_size(1l, 1, 1)))
9 _ _kernel void matvec_8x6x40_v6_vanilla_0 (
10 int nchunk,
11 __global MVTYPE % _ _restrict matrix ,
12 __global MVTYPE * _ _restrict x,
13 __global MVTYPE * _ _restrict lhs)
14 {
15
16 int df,j.k,nc;
17
18 //nchunk arg is the number of cells to actually run with.
19
20 // local storage
21 MVTYPE ml [NCELLS+NDF1:+NDF2xNK] ;
22 MVTYPE xI1 [NCELLS+«NDF2+NKT ;
23 MVTYPE 11 [NCELLS+NDF1:xNK] ;
24
25 // Read x data from golbal memory
26
27 __attribute__ ((xcl_pipeline_loop (1)))
28 ix_rd: for (nc=0;nc<nchunk*NDF2«NK;nc++) {

29 xl[nc] = x[nc];

7.3. MATVEC OPENCL DESIGN 161

30 }

31

32 __attribute__ ((xcl_pipeline_loop (1)))

33 imat_rd: for (nc=0;nc<nchunkxNDF1+NDF2«NK;nc++) {
34 ml[nc] = matrix[nc];

35 }

36

37 for (nc=0;nc<nchunk;nc++) {

38

39 // set up base for lhs and matrix
40 int base 11;

41 int base_xI;

42 int base_ml;

43

44 base_ 11 = nc*NDF1«NK;

45 base_x1 = nc*NDF2xNK;

46 base_ml = nc*NDF1«*NDF2xNK;

47

48

49 __attribute__ ((xcl_pipeline_loop))

50 df _loop: for (df=0;df<NDFI;df++) {

51

52 __attribute__ ((opencl_unroll_hint))

53 I11_init: for (k=0;k<NK;k++) {

54 Il [base_ll+k] = 0.0;

55 }

56

57 matvec_j: for (j=0;j<NDF2;j++) {

58 __attribute__ ((opencl_unroll_hint))
59 matvec_k: for (k=0;k<NK;k++) {

60 I1[base_Il+k] = 1l1[base_ll+k] +
61 xl[base_xI+j*NK+k] * ml[base_ml+j«NK+k];
62 }

63 }

64 base_11 += NK;

162 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

65 base_ml += NDF2xNK;

66

67 } // end df loop

68

69 } // end nc loop

70

71 // Write lhs to global memory

72 __attribute__ ((xcl_pipeline_loop (1)))
73 lhs_w: for (nc=0;nc<nchunk:«NDFI1«NK;nc++) {
74 lhs[nc] = 11 [nc];

75 }

76 }

7.3.2 MatVec SDSoC OpenCL, Hardware Design

In contrast to the Vivado approach, the system design creation in the SDSoC OpenCL
approach for the MatVec kernel is processed automatically by the SDSoC OpenCL xocc
compiler after writing the kernel code. The xocc compilation process is influenced
by the OpenCL MatVec kernel code design decisions and the inserted optimisation
attributes. In the compilation process, the xocc compiler creates the system design IP
blocks, including the SDSoC OpenCL MatVec IP block(s), decides the interconnection
methods to be used and generates the final bitstream file automatically. Figure 7.7
shows the system design generated by the SDSoC xocc compiler for one OpenCL
MatVec TP block. This system design is relatively simple compared to the MatVec
Vivado system design in Figure 7.3.

The following points explore the functional components that the xocc compiler
created for the SDSoC OpenCL MatVec system design. The main generated IP blocks

in Figure 7.7 are the following:
1. One OpenCL MatVec kernel IP block.
2. A ZynQ UltraScale+ MPSoC IP block.
3. A clocking wizard IP block to provide a custom clock.

4. One Reset System block processor.

163

7.3. MATVEC OPENCL DESIGN

uS1Sap WAISAS N00[q dI 24P 2uo THUdO DOSAS Y} JO MIIAIIAQ :/°[2INT1

1959 WaISAS 105530019

urjesai

AOouAS Y

1951 Sks 00id
prez Bupoiy
reauoc
2 1953 WaISAS 10553001
T
o
= oz
T Te0u00K T
weou0n
weisuon
0 Teau00 SU0o b 5ps
U0 1Y
1ouu0IBI 1XY
n 0S4 +ajeasenin bukz NL3S34V Z0S =t
BB ussauyoos—a S0V 20s—1 4
—fbveon miom wovee +31vOSBAIN —
Xa L e .
>ovi—1 i -
wovoos [A ET——— nrm LU
- ,‘ Qa3 0aH XY S+ [i+ v oon IMI [
Qa3 ONH 1XYW 0 50 o1 i@ aXa it
5sd € 1asa1 sfs o0id
nov
v zos+
X
X005 4 i
- ___________ g
Qd3 0dH IXV § 5 50 0 e 0 EllUeR 9K 0pX¥g denEwl

164 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

matvec 8x6x40 v6 vanilla 0 1

m_axi_gmemQ =

=+ s_axi_control .
: [:| m_axi_gmeml <=
ap_c '

m_axi_gmem2 <=
ap_rst_n .
interrupt r

Matvec 8x6x40 v6_vanilla_0 (Pre-Production)

Figure 7.8: OpenCL MatVec IP block.

Figure 7.8 shows the generated SDSoC OpenCL MatVec IP block by the xocc com-
piler. The block has three Master global memory AXI ports (m_axi_gmem (n)), and one
Slave AXI port (s_axi_control). The Master AXI ports are representing the three
MatVec kernel OpenCL global memory arguments matrix, x and 1hs. Each port gives
a separate access for each of the three arguments in the DDR memory. The OpenCL
xocc compiler generates these multi-Master AXI ports because we used the MAX mem-
ory port optimisation. As mentioned in Section 2.5.1 and in [ARA21b], the use of the
MAX memory port optimisation was found to reduce DDR access time (through the

increased bandwidth available).

The Slave AXI port (s_axi_control) in Figure 7.8, is the gate access for the
ARM CPU on the SDSoC OpenCL MatVec 1P block. This port gives the ARM CPU
the with control of the IP block control registers to control the block execution start
and stop. Unlike with the Vivado MatVec design approach, in the SDSoC OpenCL,
the programmer is not required to interact with the MatVec IP block control registers
or configure the start and stop execution bits. The kernel execution is instead handled
by the OpenCL API enqueueTask function. This results in a large reduction in the

detailed knowledge of low-level detail and effort required of the programmer.

The Clock Wizard block used in the SDSoC OpenCL MatVec block in Figure 7.7
controls only one clock domain. Unlike the Vivado design, where the programmer has
the advantage of separating the ZynQ IP block clock speed from the Vivado MatVec
IP blocks’ clock speed. The auto-generated SDSoC OpenCL hardware design runs
within the ZynQ maximum of 333 MHz clock speed. Therefore, the SDSoC OpenCL
MatVec TP block speed cannot run faster than that 333 MHz. The highest found clock
speed that the OpenCL MatVec 1P block can run with was only 200Mhz. The OpenCL
MatVec implementation operates on a lower clock speed (200MhZ) compared to the
MatVec Vivado design (310MhZ), further discussion is provided in Section 7.5, and

7.3. MATVEC OPENCL DESIGN 165

Section 8.1.1 in Chapter 8.

The xocc compiler also controls automatically the generation of the interconnection
method between the IP blocks in the SDSoC OpenCL MatVec system design, as can be
seen in Figure 7.7. Two AXI_Interconnect IP blocks are generated and configured
in Figure 7.7. The AXI_Interconnect IP blocks are utilised to manage the data-
path conversion between the ZynQ Master HPM0 port (128-bit) and the Slave HP0 ports
to/from the SDSoC OpenCL MatVec 1P block(s).

In creating multiple SDSoC OpenCL MatVec IP blocks, the xocc compiler gener-
ates the same hardware system design as for the single SDSoC OpenCL MatVec 1P
block in Figure 7.7. However, the size of the two AXI_Interconnect blocks is in-
creased to manage the connection of the multiple MatVec IP blocks’ ports to the ZynQ
IP block, as can be seen in Figure 7.9. The xocc compiler increases the number of slave
ports in the AXI_Interconnect blocks to match the number of the gmem ports and the
s_axi_control ports in the OpenCL MatVec 1P blocks. This auto-generated hardware
design decision can be expected to affect the performance scalability of the design, as
the DDR memory bandwidth is being shared through only one AXI_Interconnect
block between the four MatVec blocks; this will be discussed further in Section 8.1.1in
Chapter 8. In addition, the bigger the AXI_Interconnect block the more FPGA re-

sources are consumed.

7.3.3 MatVec SDSoC OpneCL, Host Code

The second stage in the SDSoC OpenCL MatVec design approach is writing the host
CPU code. Unlike the Vivado host CPU code, OpenCL provides the programmer with
OpenCL API functions that hide the details of the manual address configuration, man-
ual data transfer management and kernel execution required with Vivado. As stated
in Section 2.3.1 from Chapter 2, the SDSoC OpenCL host code is responsible for the
general management, the task launching associated with the execution of the MatVec
OpenCL IP block(s) and the data transfer to/from the OpenCL global memory (DDR
memory), through a set of OpenCL API functions.

The relevant host code is shown in Listing 7.4.

Listing 7.4: SDSoC OpenCL MatVec CPU code fragment
1 //Getting Xilinx Platform and its device
2 devices = xcl::get_xil_devices ();

3 device = devices[0];

CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

166

la_0_1

matvec_8x6x40_v6_var

axi_ic_ps_e_S_AXI_HPO_FPD

a
- m_axi_gmemo0, S00_AXI
4s_ax_contol PR + +
- m_axi_gmem1- +s01_AxI
p_clk
m_axi_gmem2+ +5s02_AX1
p_rst_n
interrupt] +503_AXI
404 AxI
Matvec_8x6x40_v6_vanilla_0 (Pre-Production) T
matvec_8x6x40_v6_vanilla_1_1 =+ s06_AxI
+5s07_ax1
. m_axi_gmemO= e | 4= S08_AX|
+s_axi_control do™ HLS —
C m_axi_gmem1 1 =+ 509_AXI
clk
i m_axi_gmem2- -— =+ 5s10_AXI
p_rst_n
interrupty +s11.Ax
——={AcLK
Matvec_8x6x40_v6_vanilla_1 (Pre-Production) 1
matvec_8x6x40_v6_vanilla_2_1)_ACLK
)_ARESETN
- - - m_axi_gmemO-)_ACLK
4 s_axi_control Vivado™ HLS.
m_axi_gmem1=)_ARESETN
p_clk
m_axi_gmem2 _ACLK
p_rst.n ‘ |] X]
- - interrupt f—— SOL_ARESETN
—n MOO_AXI 4=
> ACLK X
Matvec_8x6x40_v6_vanilla_2 (Pre-Production) ARESETN B =—=n
matvec_8x6x40_v6_vanilla_3_1 _ACLK
_ARESETN
- - A m_axi_gmemo0, _ACLK
%[4+s_axi_control Vhado™ KIS +
| - m_axi_gmem1 4_ARESETN
o
P ‘ m_axi_gmem2 _ACLK
p_rst_n
L - interrupt] _ARESETN
_ACLK
Matvec_8x6x40_v6_vanilla_3 (Pre-Production) PRESED
_ACLK
07_ARESETN
_ACLK
_ARESETN
_ACLK
_ARESETN
)_ACLK
) ARESETN
1_ACLK
—— S11_ARESETN
AXI Interconnect

sds_irq_const

xlconcat_0

Constant

Concat

xlconcat_1

ps_e

= S_AXI_HPO_FPD

)_fpd_aclk

p0_fpd_aclk
pl_ps_irqo[7:0]
pl_ps_irq1{7:0]

ZYNQ

UltraSCALE*

axi_ic_ps_e_M_AXI_HPMO_FPD

+]

M_AXI_HPMO_FPD=4 I_

~+s00_AXI
r{—={ACLK
TN

Pl
pl_cko]

Zynq UltraScale+ MPS0C

)_ACLK
)_ARESETN

)_ACLK
) ARESETN

_ACLK

|_ARESETN

_ACLK

»_ARESETN
_ACLK
_ ARESETN

MOO_AXI ==
MO1_AXI4
MO2_AXI=
MO3_AXI 4

Figure 7.9: Overview of the SDSoC OpenCL four MatVec IP blocks system design

AXI Interconnect

7.3. MATVEC OPENCL DESIGN 167

std :: string device_name = device.getInfo <CL_DEVICE_NAME>();

// Creating Context
context = cl:: Context(device);

0 N N K

9 //Creating Multiple Command Queues

10 for (int bl = 0; bl < MAX BLOCKS; bl++) {

11 cmd_q[bl] = cl::CommandQueue(context, device);
12}

13 //Loading XCL Bin into char buffer

14 std::string binaryFile =

15 xcl::find_binary_file (device_name, "matvec");

16 cl::Program:: Binaries bins =

17 xcl::import_binary_file(binaryFile);

18

19 // Creating the program

20 program = cl::Program(context, devices, bins, NULL, &errl);
21

22 //Create array of buffers for matrix, x, lhs

23 for (int bl = 0; bl < nbreq; bl++) {

24

25 //create matrix buffers

26 buf_matrix[bl] = cl::Buffer(context, CL MEM_READ WRITE
27 ,MAX _CELLS # ndfl = ndf2 = nlayers = sizeof(cl_double),
28 NULL, &status);

29

30 //create x buffers

31 buf_x[bl] = cl::Buffer(context, CL_MEM_READ_ WRITE,

32 MAX_CELLS * ndf2 % nlayers = sizeof(cl_double), NULL,
33 &status);

34

35 //create lhs buffers

36 buf_lhs[bl] = cl::Buffer(context, CL_MEM_READ WRITE,
37 MAX _CELLS % ndfl % nlayers = sizeof(cl_double), NULL,

168 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

38 &status);

39 }

40

41 // kernel_matvec: create kernel(s)

42 kernel_matvec[bl] = cl:: Kernel (program, kernel_name,
43 &status);

44

45 // start the timing t0 (load time)

46 t0 = (double) clock () / CLOCKS_PER_SEC;

47

48 //write the cells data to the buffers of each IP block
49 for (bl = 0; bl < nblocks; bl++) {

50

51 //write the matrix data

52 cmd_q[bl].enqueueWriteBuffer (buf_matrix[bl], CL_TRUE, O,
53 ncellblk [bl] % NDFI % NDF2 % nlayers * sizeof(double),
54 mat_temp);

55

56 //write the x tata

57 cmd_q[bl].enqueueWriteBuffer (buf_x[bl], CL_TRUE, O,
58 ncellblk[bl] % NDF2 % nlayers % sizeof(double), cpu_x);
59 }

60

61 // wait for the data transfer tasks to finish

62 for (bl = 0; bl < nblk; bl++) {

63 cmd_q[bl]. finish ();

64 }

65

66 // starting timing tl (compute time)

67 tl = (double) clock () / CLOCKS_PER_SEC;

68

69 // execute the IP block

70 // ncellblk —> number of cells the block will process
71 kernel_matvec[bl].setArg(0, ncellblk[bl]);

72 kernel_matvec[bl].setArg(l, buf_matrix[bl]);

7.3.

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

MATVEC OPENCL DESIGN 169

kernel_matvec[bl].setArg(2, buf_x[bl]);
kernel_matvec[bl].setArg(3, buf_lhs[bl]);
cmd_q[bl].enqueueTask (kernel_matvec[bl]);

//wait for all blocks to finish execution
for (bl = 0; bl < nblk; bl++) {
cmd_q[bl]. finish ();

// start timing t2 (store time)
t2 = (double) clock () / CLOCKS_PER_SEC;

// write the lhs data back

// from the buffers to the host

cmd_q[bl].enqueueReadBuffer(buf_lhs[bl],
CL_TRUE, 0, ncellblk[bl] % NDFl % nlayers =
sizeof (double),cpu_lhs);

//wait for the data write back to finish
cmd_q[bl]. finish ();

// take the timing t3

t3 = (double) clock () / CLOCKS_PER_SEC;
tl = t1 — t0; (data load time)

tc = t2 — tl; (blocks compute time)

ts = t3 — t2; (data store time)

The following presents the MatVec SDSoC OpenCL host code tasks for executing the
OpenCL MatVec design.

* Getting the Xilinx platform and finding the OpenCL device. In this case the
ZCU102 FPGA board, see lines 1-4 in the code fragment in Listing 7.4.

* Create the OpenCL context and command queue for the selected device. The
command queue type used in the OpenCL MatVec host code is an in-order com-
mand queue. We created multiple in-order command queues, each is associated

to a MatVec 1P block, see lines 9-12 in code fragment 7.4. The reason for this

170 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

choice is to execute the OpenCL MatVec IP blocks in parallel.

* Load the Xilinx ¢/ binary file that contains the MatVec kernel code, see lines

13-17 in code fragment 7.4
* Create the OpenCL program, see line 20 in code fragment 7.4.

* Create OpenCL memory buffer objects in the DDR memory for the matrix, x,
and lhs arrays. In the multiple MatVec IP blocks design we create an array of
buffers for the matrix, x, and 1hs arrays, each associated with a certain MatVec
IP block, see lines 22-39 in code fragment 7.4.

* Create an array of OpenCL kernel functions and link them to the name of the
MatVec OpenCL kernel, see lines 41-43 in code fragment 7.4.

* Transfer the data between the ARM CPU host code and the OpenCL MatVec
IP block(s) using the OpenCL API functions Enqueue WriteBuffer, which copies
the relevant cell data from the host DDR memory space to the OpenCL DDR
memory buffers, as required, see lines 51-59 in code fragment 7.4.

 Set the kernels’ argument lists and execute them in parallel, see lines 69-75 in

code fragment 7.4.

» After the MatVec IP block(s) finish execution, the OpenCL API EnqueueRead-
Buffer function is used to read the data from the 1hs buffers in the DDR OpenCL
memory space to the host DDR memory space for further processing in the host,

see lines 85-89 in code fragment 7.4.

7.4 MatVec SDSoC C++, design

This section explores the design options for creating a MatVec solution using the SD-
SoC C++ approach. Again, we explored options for replicating the Vivado design
objectives and optimisations where possible. In addition, we compared the MatVec
design stages in SDSoC C++ against both the Vivado and the SDSoC OpenCL design
stages. Similarly to the SDSoC OpenCL approach, the SDSoC C++ methodology re-
quired only two design stages for creating a MatVec solution. These two stages are:
writing the C++ kernel code and the CPU host code. The following subsections explore
the SDSoC C++ MatVec design with regard to those two stages.

7.4. MATVEC SDSOC C++, DESIGN 171

7.4.1 MatVec SDSoC C++, Kernel code

In writing the SDSoC C++ MatVec kernel code we followed the MatVec Vivado kernel
code optimisations and design decisions in code Listing 7.1, where applicable. These
optimisations included the Data array access organisation optimisations, computa-
tion throughput optimisations, and the data movement optimisations. Similarly to the
SDSoC OpenCL MatVec design, the SDSoC C++ does not provide proper support for
the equivalent external BRAM block usage in the Vivado MatVec design. The only
memory solution option available in the SDSoC C++ approach is the DDR memory.
The design creation in the SDSoC C++ approach is achieved automatically by the
sds++ compiler. The compiler decisions are influenced by HLS pragmas inserted in
the kernel code. In contrast to the Vivado and the SDSoC OpenCL data-movement de-
sign, the SDSoC C++ approach requires the use of data movement engines (also called
the Data Motion Network) for the movement of data between the DDR memory ac-
cessible by the FPGA and the ARM CPU, as discussed in Section 2.3.2 in Chapter 2.
The Data Motion Network can be automatically generated by the SDS++ compiler;
however, the programmer is allowed to override those choices using HLS pragmas that
can be inserted into the kernel code to explore solutions that may better suit the design.
The main components of the Data Motion Network in the SDSoC C++ approach is the
data movers blocks. Figure 7.10 shows an overview of the SDSoC C++ MatVec de-
sign. In this design, the BRAM blocks are only used as local memory elements within
the SDSoC C++ MatVec blocks. The data travel between the host and the C++ MatVec
blocks through the DDR memory and the DMA engines.

Data
Movement
Programmable

DDR / Logic \

R Zhiael Matvec Matvec
'< #> IP IP

ARM " .

CPU . Block 0 Block_n
U DMA n Local BRAM Local BRAM

o)

Figure 7.10: Overview of the SDSoC C++ MatVec design.

Similar to the SDSoC OpenCL design, we applied some design decisions in the

172 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

SDSoC C++ kernel code that are different to those of the Vivado MatVec kernel design.
These decisions are related to using the DDR memory and aim to minimise the DDR
memory access overhead. First: transfer the full matrix data to the local BRAM
element instead of the slice-based method that was used in the Vivado MatVec kernel
design. In addition, this transfer happens before the df loop executes. Second: transfer
(to local BRAM elements) and process multiple cells in a single call to the kernel
instead of the cell-by-cell method used in the Vivado MatVec kernel design. These
two design choices aim to minimise the DDR memory access frequency for better
overall kernel latency. As with the OpenCL design, the choice of number of cells
to be processed in a call depends on the number of created SDSoC C++ MatVec 1P
blocks and on the maximum data size that the local BRAM can accommodate. We
found that the maximum number of cells data that can be accommodated in only one
SDSoC C++ MatVec IP block is 180 cells. However, the more SDSoC C++ MatVec 1P
blocks created, the fewer cells the IP block can process due to resources limitations. In
Chapter 8 we evaluate and discuss SDSoC C++ MatVec designs that process one cell
and multi-cells per call.

Similar to the SDSoC OpenCL MatVec kernel code, we managed the number of
cells design variants in the SDSoC C++ MatVec kernel code by introducing a new loop
around the df loop. In addition, we introduced the two variables NCELLS and nchunk.
The NCELLS variable holds the highest possible number of cells that the IP block can
accommodate. The nchunk holds the number of cells that the IP block will process in
a call. The SDSoC C++ kernel is created with the maximum number of cells that the
SDSoC C++ MatVec IP block can process, and we call it from the CPU host as many
times as required to process the number of cells in an LFRic min-app colouring group.

The SDSoC C++ MatVec kernel code uses the same HLS optimisation pragmas
utilised in the Vivado MatVec Kernel. However, array partitioning optimisation is
avoided because we found it increases the design complexity and causes a compi-
lation error. Creating multiple MatVec IP blocks in the SDSoC C++ MatVec kernel
follows the same method as used in the SDSoC OpenCL MatVec kernel by replicat-
ing the kernel code in the SDSoC C++ kernel file and using different kernel function
names.

In contrast to the SDSoC OpenCL and the Vivado designs, the SDSoC C++ kernel
code required the use of a header file, as shown in 7.5, that defines the Data Motion

Network component choice.

Listing 7.5: SDSoC C++ MatVec header code.

7.4. MATVEC SDSOC C++, DESIGN 173

1 #ifndef MATVEC_KERNEL_H

2 #define MATVEC _KERNEL H

3 #define MVTYPE double

4 #include "sds_utils.h"

5

6 #define MAX BLOCKS 1

7 #define NCELLS 180

8 #define MAX CELLS 180

9

10 #pragma SDS data mem_attribute (buf_matrix_O0:

11 PHYSICAL_CONTIGUOUS, buf_x_0:PHYSICAL_CONTIGUOUS,

12 buf_lhs_0 :PHYSICAL_CONTIGUOUS)

13

14 #pragma SDS data copy(buf_matrix_0[O:(chunk_size % 1920)],
15 buf_x_0[0:(chunk_size % 240)], buf_lhs_O0[0:(chunk_size % 320)])
16

17 #pragma SDS data access_pattern (buf_matrix_0:SEQUENTIAL,
18 buf_x_0:SEQUENTIAL, buf_lhs_0 :SEQUENTIAL)

19

20 #pragma SDS data data_mover(buf_matrix_0 :AXIDMA_SG,

21 buf_x_0:AXIDMA_SG, buf_lhs_0:AXIDMA_SG)

22

23 void matvec_8x6x40_v6_vanilla_0(int nchunk,

24 const double xbuf matrix 0, const double =buf x O,

25 double =x=buf_lhs_0);

As presented in Section 2.3.2 from Chapter 2, the Data Motion Network has three
components, and the critical component is the data mover engine which affects the
other two component choices. We found that the most suitable DMA choice is the AX/
Scatter and Gather (AXI_DMA_SG) data mover engine. Although AXI_DMA_SG is the
slowest data mover engine option and consumes most hardware resources as discussed
in Section 2.3.2 from Chapter 2, it has fewer limitations and is considered the best
default sds++ compiler option. We found that the other data mover engine choices,
such as AXI_DMA_SIMPLE and zero_copy, showed some limitations and caused dead-
locks or compilation failure when they are used in multiple IP block designs for C++
MatVec.

174 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

Code listing 7.6 presents an example of the SDSoC C++ MatVec kernel code with
all the design decision changes that have been discussed, compared to the Vivado and
the SDSoC OpenCL MatVec kernels.

Listing 7.6: SDSoC C++ MatVec Kernel code.
#define NDFI 8
#define NDF2 6
#define NK 40
#define MVTYPE double
#include <string.h>

#include "matvec_kernel.h"

o0 N N Lt AW N -

— \O
(e}

void matvec_8x6x40_v6_vanilla_0(int nchunk,

[u—
p—

const double xbuf _matrix_0,const double
x«buf_x_0, double xbuf_lhs_0) {

—_ = =
B W

int df, j, k, nc;

—_
AN W

// local storage

MVTYPE ml[NCELLS = NDF1 % NDF2 = NK];
MVTYPE x1[NCELLS % NDF2 % NK];
MVTYPE 11 [NCELLS * NDF1 = NK];

N N N = — e
N — O O o

//Read x data
ix_rd: for (nc = 0; nc < nchunk * NDEF2
x* NK; nc++) {
#pragma HLS PIPELINE
xl[nc] = buf_x_O[nc];

D D N D N
O o0 9 O Nk~ W
——

//Read matrix data
30 imat_rd: for (nc = 0; nc < nchunk * NDFI
31 % NDF2 % NK; nc++) {

7.4.

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
67

MATVEC SDSOC C++, DESIGN 175

#pragma HLS PIPELINE

ml[nc] = buf_matrix_0[nc];
}
for (nc = 0; nc < nchunk; nc++) {
// set up base for lhs and buf_matrix_0

int base 11;
int base_xl1;

int base _ml;

base_11 = nc % NDFl % NK;

base_x1 = nc % NDF2 x NK;

base_ml = nc % NDFl % NDF2 % NK;
df_loop: for (df = 0; df < NDFl; df++) {

#pragma HLS PIPELINE

I1_init: for (k = 0; k < NK; k++) {
#pragma HLS UNROLL

Il1[base_I11 + k] = 0.0;

}

matvec_j: for (j = 0; j < NDF2; j++) {
matvec_k: for (k = 0; k < NK; k++) {
#pragma HLS UNROLL
Il[base_I11 + k] = 1l[base_1l1 + k]
+ xI[base_xI + j = NK + k]
* ml[base_ml + j = NK + k];
}
}
base_ 11 += NK;
base_ml += NDF2 = NK;

176 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

68 } // end df loop

69

70 } // end nc loop

71

72 lhs_w: for (nc = 0; nc < nchunk * NDFI
73 % NK; nc++) {

74 #pragma HLS PIPELINE

75 buf_lhs_O[nc] = 1l[nc];
76 }

77

78 }//end of kernel

7.4.2 MatVec SDSoC C++, Hardware Design

The SDSoC C++ sds++ compiler generates the MatVec 1P block and the system de-
sign automatically, as compared to the manual design generation required in Vivado.
Similar to the SDSoC OpenCL approach, the sds++ compiler system design creation
is influenced by the kernel code design decisions and the (HLS) pragmas inserted by
the programmer. Figure 7.11 shows the generated system design with a single SDSoC
C++ MatVec IP block.

This Figure shows that the SDSoC C++ MatVec system design is more complicated
than that of both the Vivado and the SDSoC OpenCL system designs, mainly because
of the utilisation of the SDSoC C++ data motion network components.

The following points explore the SDSoC C++ MatVec system design. The main
generated IP blocks in Figure 7.11 are the following:

1. One MatVec kernel IP block.

2. A ZynQ UltraScale+ MPSoC IP block.

3. A clocking wizard IP block to provide a custom clock.
4. One Reset System block processor.

Figure 7.12 shows the auto-generated SDSoC C++ MatVec IP block. It has three
buffer ports for the mat rix, x and 1hs arrays, and one Slave AXI port (s_axi_control).
In contrast to the SDSoC OpenCL and Vivado MatVec IP blocks, there is no use of
Master AXI memory ports in the C++ MatVec 1P block. The interface of the three

177

7.4. MATVEC SDSOC C++, DESIGN

uS1Sop WAISAS N00[q JI 22AIPIA QU0 ++D) DOSS Y} JO MIIAIIAQ [/ In31]

i3s3 Tos
novos|

uzsau oon|

O=01 v oo

. X i3Sz 005
X 0w oos|

r

T eilueR 9% 07Xaxg oanew

r

]

T

(e18) 0 10 ewpbszo s

13524 WaISAS 10553004

suwoosew v = S
H+vavasnn o
N | vavasps
v 2 wp ewpbszsie
e
nov

100u0OIBI WeaNS-YIXY. Tveser sk v0id

[Sl oV
= X nov

- BEm wssay NAISIV XV

VS

on EE

Qs

= on v S 1959y warsis ossacoig

Q3 ONaH XY W 5 53 o1 e

oo
20Sdi +areasenin bukz 15U00 b Sps. A
oo node E - _w
oo+ E P
el o [-
+3TvOSelN - e
—H) oS ____
11 TR

152y warsks ossas0ig

(e198) 0 T4 o spxezewpBs

ONAZ =

Qe o
QT il
igented oo s wuzs
i iosai e wizs
B T 1SSV S+ E

oy S
= TS
avas s

o iz SIS |
s [

o

eSS Tun 0w sikezewpbs

T

|.
= -eml.& (e198) 0N saidepe
s oony 55890 KIOWaW 199110 IXY
am rovom—N
o X QIS —
Litoon mH
i L] sovws— 14
[2a
v :
"y
Qdd TdH IXV S @ sd o e B a
T Sy ——
oy
oumoronaveh | =]
Fourourav||—]
| — [l OIS SIXY S o [
cowrour
[l L 00dI4SIXY S
AT 0 BlIUBA 9N OpXOXS danEBW
s i
i
o wp
Gdd 0dH XV S @ sd o e ;

e

178 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

matvec_8x6x40 v6 vanilla 0 1

<+ ap ctrl ,
= . buf_matrix 0 4+
ap_clk i B -
- buf x 0 =+
ap_rst_n / —=
buf |hs_ 0 4

nchunk[31:0]

s

Matvec 8x6x40 v6 vanilla_0 (Pre-Production)

Figure 7.12: The SDSoC C++ MatVec generated IP block.

buffer ports in Figure 7.12 with the DDR memory is managed through the use of a
C++ Data Motion network. The ARM CPU utilises the s_axi_control port in the
SDSoC C++ MatVec IP block to control its execution. Similar to the SDSoC OpenCL
design, the Clock Wizard block used in the SDSoC C++ design controls only one
clock domain and runs within the ZynQ maximum of 333 MHz clock speed. We found
that the highest clock speed that the SDSoC C++ MatVec IP block can run at is only
150 MHz. This SDSoC C++ MatVec implementation clock speed (150MhZ) is slower
compared to the MatVec Vivado design (310MhZ), further discussion is provided in
Section 7.5, and in Section 8.1.1 in Chapter 8.

Figure 7.11 shows the generated Data Motion Network components. As descried
in Section 2.3.2 from Chapter 2, a Data Motion Network consist of three components.
As can be seen in that figure, those components are: the ZynQ interface ports (A), the
data mover (B) and the accelerator interface ports (C). The following points explore
the corresponding selections of those three components in the generated SDSoC C++
system design in Figure 7.11.

The first Data Motion Network component generated is the ZynQ interface port
(A). The SDS++ compiler generated three ZynQ memory interface ports (S_AXI_HPn_FPDn)
on the ZynQ block to support the connection between the data mover engines and the
DDR memory in the ZynQ block. As stated in Section 2.3.2 and Section 3.1, the ZynQ
block provides two types of ZynQ interface ports: a cache-coherent (S_AXI_HPCn_FPD)
interface port, and a non-cache coherent (S_AXI_HPn_FPD) interface port. The SDS++
compiler default choice is the (S_AXI_HPn_FPD) interface port. This interface choice
is a suitable choice for the MatVec design because it support the utilisation of the four
DDR memory ports. In the case of creating multiple C++ MatVec IP blocks, the four
S_AXI_HPn_FPD interface ports are shared between the created data mover engines, as

can be seen in Figure B.1 in AppendixB.

7.4. MATVEC SDSOC C++, DESIGN 179

In addition, the DDR memory bandwidth in Figure B.1 in AppendixB is shared
by multiple data mover engines which would limit the design performance. The data
width in the S_AXI_HPn_FPD portis 128-bit, so the SDS++ compiler utilised an AXI_Interconnect
IP block per a ZynQ interface port to convert between the data movers’ 64-bit data
paths and the 128-bit paths of the S_AXI_HPn_FPD ports.

The second Data Motion Network component generated is the Data mover com-
ponent (B). Since our DMA engine choice in Listing 7.5 was SG, the sds++ compiler
generated multiple Scatter and Gather (AXI_DMA_SG) data mover engines with mul-
tiple AXI Direct Memory Access IP blocks to support the data movement between
the MatVec 1P block and the ARM CPU, as can be seen in Figure 7.11.

The third Data Motion Network component generated is the Accelerator interface
port (C). The SDS++ compiler generated multiple AXI4_Stream Interconnect IP
blocks to support the connection between the C++ MatVec IP block ports and the Scat-
ter and Gather (AXI_DMA_SG) DMA engines. In addition, one adapter_v3_0 IP block
was generated to support the connection between the C++ MatVec 1P block ports and
the FIFO ports. As stated in Section 2.3.2, specifying the accelerator interface compo-
nent (C) depends on the accelerator’s argument types. The C++ MatVec IP block’s ar-
guments types are arrays. Therefore, two accelerator interface options were available,
either RAM interface (for Random data access) or streaming interface (for Sequential
data access). The MatVec data is organised in the memory in a sequential manner, so
we found that the most suitable accelerator interface in this case was the streaming in-
terface. In Listing header code 7.5 (see lines 17-18) we have used the SDS data access
pattern pragma to guide the sds++ compiler to use the streaming interface option. As
a result, Figure 7.11 shows that the compiler introduced an adapter IP block to define
the C++ MatVec 1P block buffer ports as FIFO ports, which enables the data stream-
ing behaviour. In addition, this pragma guides the sds++ compiler to create multiple
AXI4_Stream Interconnect IP blocks which manage this data streaming to the C++
MatVec 1P block.

Figure 7.11 shows that in a single SDSoC C++ MatVec block design, the sds++
compiler utilised three AXI_Interconnect IP blocks, three AXI_DMA_SG with three
AXI Direct Memory Access IP blocks and two AXI4_Stream Interconnect IP
blocks. However, in multiple SDSoC C++ MatVec 1P block designs, the number
of the generated IP blocks increased with regard to the number of C++ MatVec 1P
blocks created. This resulted in: four AXI_Interconnect blocks (one per ZynQ in-
terface port); Multiple AXI_DMA_SG, AXI Direct Memory Access and AXI4_Stream

180 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

Interconnect IP blocks, as can be seen in Figure 7.9, showing a four MatVec IP block
design, and Figure B.1 in Appendix B showing a six MatVec IP block design.

Moreover, the SDS++ compiler increased the number of adapter_v3_0 IP blocks
to provide FIFO ports that match the number of created C++ MatVec IP blocks, again,
which can be seen in Figure 7.9 and B.1 in Appendix B.

7.4.3 MatVec C++ Host Code

The second stage in the SDSoC C++ MatVec design approach is writing the host CPU
code. The host code in the SDSoC C++ approach is responsible for allocating and
populating buffers, executing kernels and reading the data back from the C++ MatVec
IP blocks. The manual addresses manipulation and kernel execution are abstracted in
this approach compared to the Vivado design approach.

Listing 7.7 shows the code fragment for the C++ MatVec host code.

Listing 7.7: SDSoC C++ MatVec host code fragment.

1 // Create buffers for the block(s) arguments

2 //_0 indicate the first IP block. higher number is the
3 // next IP block

4

5 buf_matrix_0 = (doublex) sds_alloc (

6 MAX_CELLS # ndfl % ndf2 % nlayers =« sizeof(double));
7

8 buf_x_0 = (doublex) sds_alloc (MAX CELLS * ndf2

9 x nlayers * sizeof(double));

10

11 buf_lhs_0 = (doublex) sds_alloc (MAX CELLS % ndfl

12 % nlayers % sizeof (double));

13

14 // timing t0 (start load)

15 t0 = (double) clock () / CLOCKS_PER_SEC;

16

17

18 //the first IP block (0) data load

19 if (bl == 0) {

20 for (j = 0; j < ncellblk[bl] = NDFI % NDF2 % nlayers;j++)

7.4.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

MATVEC SDSOC C++, DESIGN

buf_matrix_0[j] = mat_temp[]];

181

for (j = 0; j < ncellblk[bl] % NDF2 % nlayers; j++) {

buf_x_0[j] = cpu_x[j];

for (j = 0; j < ncellblk[bl] % NDFI % nlayers; j++) {

buf_lhs_O[j] = cpu_lhs[j];
}

//timing tl (start compute)
tl = (double) clock () / CLOCKS_PER_SEC;

// execute the the first IP block (0)

matvec_8x6x40_v6_vanilla_0(chunk_size, buf_matrix_0,

buf_lhs_0);

//timing t2 (start store)
t2 = (double) clock () / CLOCKS_PER_SEC;

//the first IP block (0) data store
if (bl == 0) {

buf _x 0,

for (j = 0; j < ncellblk[bl] = NDFl % nlayers; j++) {

cpu_lhs[j] = buf_lhs_O[j];
}

// timing t3 (finish)

t3 = (double) clock () / CLOCKS_PER_SEC;
tl = t1 - t0; // load time

tc = t2 — tl; // compute time

ts = t3 — t2; // store time

182 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

The following points describe the host code tasks for executing the SDSoC C++
MatVec design:

* Create and allocate multiple buffers that hold the cells data with the use of the
SDSoC sds_alloc function for each created C++ MatVec IP block. This func-
tion ensures that the data are allocated contiguously in the DDR memory, see

lines 5-12 in code fragment 7.7.
* Load the buffers with cell data, see lines 18-32 in code fragment 7.7.
* Execute the C++ MatVec IP block(s), see line 38 in code fragment 7.7.

 After the C++ MatVec IP block(s) finish executing, the output data are transferred

from the 1hs buffers to the host array, see lines 44-48 in code fragment 7.7.

7.4.4 Other SDSoC OpenCL and C++ MatVec Design Alternatives

In this section, two design options are explored for minimizing the overhead of access-
ing the DDR memory in the SDSoC OpenCL and C++ implementations. In addition,
there is an outstanding issue that needs to be addressed: that is that timing the SD-
SoC OpenCL and the SDSoC C++ kernels pure computational time (compute time)
is not feasible. The utilization of an external BRAM block in the Vivado MatVec de-
sign allows for timing the MatVec pure computational time (compute time) separately
from the data-movement time between the ARM CPU and the external BRAM block °.
Timing the SDSoC OpenCL and the SDSoC C++ MatVec kernels compute time can-
not be separated out from the data-movement time because of the use of DDR memory
by the kernels. Therefore, this section explores two design options. The first option
is the use of the Dataflow method to minimize the DDR memory access overhead by
overlapping the data movement and the kernel computation. The second design option
is the use of pipes, which theoretically can allow for separating the data-movement
timing from the kernel’s pure compute time. Both methods, in principle, allow over-
lapping between the kernel execution and the data movement, promising solutions for
minimizing the DDR memory access overhead. Moreover, the pipes design method
can allow for creating three kernels (a Read kernel, a Compute kernel and a Write ker-
nel) that can be timed separately. Our interest in timing only pure compute time in the
SDSoC OpenCL, and C++ is to enable a more direct comparison against the Vivado

pure compute and data movement times.

3See the Vivado timing detail in section 8.1.2 from Chapter 8.

7.4. MATVEC SDSOC C++, DESIGN 183

Dataflow Method

The Dataflow method is useful on a set of sequential tasks where there is the possi-
bility of pipelining (overlapping) the tasks’ execution [Xil21e], such as with the three
SDSoC OpenCL and C++ MatVec kernel tasks: load data from DDR memory to the
local BRAM; compute operations; and store data back to the DDR memory. The util-
isation of the Dataflow method pipelines those tasks which potentially results in data
movement and calculation overlapping. In addition, the use of Dataflow can be used
to execute independent tasks in parallel.

We explored the use of dataflow in the SDSoC OpenCL and C++ MatVec designs
by creating four functions in the kernel code that represent the three MatVec tasks,
(load, which has two functions, compute and store, with one function each), as can be

seen in code listing 7.8.

Listing 7.8: OpenCL MatVec Dataflow kernel function code fragment

1 // OpenCL Matvec Kernel

2 _ _kernel void _ attribute

3 __((reqd_work_group_size(l, 1, 1)))
4 __attribute__ ((xcl_dataflow))

5 matvec_8x6x40_v6_vanilla_0 (

6 int nchunk,

7 __global MVTYPE % _ _restrict matrix ,
8 __global MVTYPE * _ _restrict x,
9 __global MVTYPE * __restrict lhs)
10 {

11

12 // local storage

13 MVTYPE ml[NCELLS:=NDF1:=NDF2+NK];

14 MVTYPE x1[NCELLS:=NDF1:=NDF2«NK];

15 MVTYPE 11 [NCELLS«NDF1%NK];

16

17 //input data functions

18 read_ml (matrix, ml,nchunk);

19 read_x1(x, xl, nchunk);

20

21 //calc function

184 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO
22 cal(ml, x1, 11, nchunk);

23

24 //output data function

25 write_11(lhs, 11, nchunk);

26

27 }

Using Dataflow aims to overlap the execution of these three tasks; ideally, a ker-
nel’s data movement time overlaps with the compute time to hide the DDR data access
latency and thus increase the kernel’s performance. The utilisation of Dataflow was
tested in a design using one MatVec block with 26 cells © for both the SDSoC OpenCL
and the C++ approaches.

Table 7.1 shows details of latency figures for the SDSoC OpenCL 1 block, 26 cells

Dataflow test design, which we discuss first.

Table 7.1: Latency figures comparison between the SDSoC OpenCL MatVec Dataflow
implementation Versus the SDSoC OpenCL MatVec design with no Dataflow in terms
of Latency (clock cycles) figures. The test design is One MatVec block with 26 cells.

Implementation Loa(-l Load Calc Store Total
Name Matrix X Latency Ihs Latency
Latency | Latency Latency
1B_26C_NO_DF | 6241 781 3145 1041 11208
1B_26C_DF 50057 78625 49932 8455 78626

For comparison purposes, Table 7.1 shows two designs, one using the Dataflow
method (/B_26C_DF) and the other not (/B_26C_NO_DF). The latency figures for
the MatVec design with Dataflow (/B_26C_DF) shows an overlapping between the
four functions that execute the three tasks: load, compute and store. The overlap is
apparent because the overall latency is equal to the latency of reading the x array data,
which is the task with the highest latency. Although an overlapping has been successful
between the three MatVec tasks, the results show that the use of the Dataflow method
has shown no performance benefit compared to the non-Dataflow implementation. The
latency of the /B_26C_NO_DF implementation (11208 CC) is much lower than that of
the /B_26C_DF implementation with 78626 CC. The difference in the latency figures

between the two designs results from the following three reasons. Firstly, to comply

%We based this exploration on the SDSoC OpenCL and C++ versions that delivered the best overall
time, see section 8.1.2 from Chapter 8.

7.4. MATVEC SDSOC C++, DESIGN 185

with the Dataflow design style, we had to expand the x array data size to allow the com-
putation to flow, see line 14 in Listing 7.8. The x array data is replicated eight times
x to match the ml data size, which allows the computations in the compute function to
flow. Secondly, the timeline reports for each version that the SDSoC system produces
show that the no-dataflow design allows the xocc compiler to utilize a wider port data
width than that utilized in the dataflow design. In the /B_26C_NO_DF design, the
reports show that the xocc compiler utilized 512 bit width read/write operations com-
pared to only 64-bit width read/write operations in the /B_26C_DF design. These first
two reasons explain the significant increase in the ml, x and /hs latency for the dataflow
version compared to the latency figures in the no-dataflow design in Table 7.1.

Current Module : matvec_8x6x40_v6_vanilla © ERE | ELEC

Operation\Control Step 79 280 281 282 | 283 | 284 285 286

uUnp_soi1_numuy
tmp_483_1(dmul)
tmp_485_1(dmul)
x|_load_10(read)

xl_load_11(read)

tmp_487_1(dmul)
tmp_489_1(dmul)
tmp_491_1(dmul)
tmp_493_1(dmul)
tmp_495_1(dmul)
tmp_497_1(dmul)

tmp_499_1(dmul)
tmp_501_1(dmul)
tmp_503_1(dmul)
tmp_505_1(dmul)
tmp_507_1(dmul)
tmp_509_1(dmul)
tmp_511_1(dmul)
tmp_513_1(dmul)
tmp_515_1(dmul) .
tmp_517_1(dmul)
tmp_34112_2(+) 1 |
ml_load_11(read)
tmp_36710_2(+) i |
|

ml_load_12(read)
x|_load_12(read) = 1

Figure 7.13: The flops timeline of the Calc function in the SDSoC OpenCL MatVec
no-Dataflow implementation.

Table 7.2: Calc function latency breakdown of the SDSoC OpenCL MatVec Dataflow
implementation Versus the SDSoC OpenCL MatVec design with no Dataflow.

Implementation Total | Iteration | Initiation | Trip

Name Latency | Latency | Interval | Count
1B_26C_NO_DF | 3145 41 15 208
1B_26C_DF 49932 251 240 208

186 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

Current Module : matvec 8x6x40_v6 _vanilla 0 > - = @ a M AllOps Y @

Operation\Control Step |

tmp_130(amut) A
x|_read_7(read) ||
ml_read_7(read)
tmp_123(dadd)
tmp_132(dmul)
x|_read_8(read) [|
ml_read_8(read)
tmp_125(dadd)
tmp_134(dmul)
x|_read_9(read) [|
ml_read_9(read)
tmp_127(dadd)
tmp_136(dmul)
xl_read_10(read) L
ml_read_10(read)
tmp_129(dadd)
tmp_138(dmul)
xl_read_11(read) L
ml_read_11(read)
tmp_131(dadd)
tmp_140(dmul)
xl_read_12(read) L
ml_read_12(read)
tmp_133(dadd)
tmp_142(dmul)
x|_read_13(read) = ! ’. ! |
{

Figure 7.14: The flops timeline of the Calc function in the SDSoC OpenCL MatVec
Dataflow implementation.

The third reason is related to the number of executed flops per cycle in the com-
pute function (Calc) in each version. Figure 7.13 and Figure 7.14 show the timeline
of the Calc function in the no-Dataflow and Dataflow implementations, respectively.
The timeline shows that the internal computation in the dataflow design executed only
2 flops per cycle (see Figure 7.14) compared to the 16 flops per cycle in the non-
dataflow design (see Figure 7.13). Table 7.2 presents a latency breakdown of the Calc
function in the no-Dataflow and Dataflow implementations. The initiation interval of
the Dataflow design is 16x (240), bigger than the no-Dataflow design (15). In ad-
dition, the cost of executing one iteration in the Dataflow design is 6.12x (251 CC)
times higher than the no-Dataflwo iteration cost (41 CC). This evidence supports the
explaination of the significant differences in the latency figures from the use of the

Dataflow design style compared with those of no-dataflow style in the MatVec kernel.

A similar exploration was undertaken on the SDSoC C++ MatVec Dataflow design,
and we found a similar conclusion: that the benefit of the use of the Dataflow method

1s limited, as described above, with the MatVec kernel.

7.5. SUMMARY OF MATVEC EXPLORATION STUDY 187

Multi-kernels with pipes Design

As we discussed in Section 2.5.1 from Chapter 2 the only version of pipes mode that
is supported in the SDSoC approach is the blocking mode. That means a pipe has to
be filled before the next kernel can start using that pipe. This design style is based
on creating three kernels: a load kernel, a compute kernel and a store kernel. These
kernels communicate through FIFO-based pipes. In the SDSoC OpenCL approach
we used the OpenCL pipes mechanism [Xil21c] and in the SDSoC C++ approach we
used the hls: :streampragma [Winc], which provides similar functionality. The Load
kernel is responsible for filling two FIFOs (one for the mat rix array and one for the x
array) with the cell data from the DDR memory. The compute kernel reads from these
FIFOs, and the store kernel reads data from the compute kernel through FIFOs and
the writes it back to the DDR memory. This design style aims to overlap the kernel
computation and the data movement and enable separate timing of the compute phase
from the data movement phases to support a direct comparison against the Vivado pure
compute time. However, for both the SDSoC OpenCL and C++ implementations, the
compute time has shown no improvement with the use of pipes as the performance was

limited by the use of blocking pipes which, essentially, serializes the access to the data.

7.5 Summary of MatVec Exploration Study

This chapter explored the mapping of the Vivado MatVec design to the higher-level
HLS approaches SDSoC OpenCL and the SDSoC C++. We have explored what can
and cannot be replicated from the Vivado design optimisations and methods to the SD-
SoC OpenCL and the SDSoC C++ MatVec design solutions. In addition, alternative
design options were attempted regarding the available design methods in the SDSoC
OpenCL and C++ approaches. This Chapter also discussed and compared other pos-
sible MatVec SDSoC OpenCL and C++ designs. In addition, the design differences
between the three approaches and the design justifications were discussed.

This exploration study shows that some Vivado MatVec design aspects were mapped
successfully in the SDSoC OpenCL and the SDSoC C++ MatVec designs. However,
other design choices did not, or could not, be applied to the SDSoC OpenCL and
the SDSoC C++ MatVec designs. The manual design manipulation in the Vivado ap-
proach allows for more design freedom and options compared to the SDSoC OpenCL
and C++ approaches. Two main Vivado design methods were not able to be replicated
in the SDSoC OpenCL and C++ designs. The creation and use of external BRAM

188 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

blocks outside the MatVec IP blocks and the ability to have two clock domains being
two of the most significant. The SDSoC OpenCL and SDSoC C++ designs, therefore,
used DDR memory and only one clock domain. The use of DDR memory influenced
how the SDSoC OpenCL and SDSoC C++ kernels are designed. We have made some
necessary kernel design changes that are different to the Vivado MatVec kernel code.
Those changes were that the SDSoC OpenCL and C++ MatVec 1P blocks process mul-
tiple data cells in a single kernel call, and the mat rix data is transferred into the BRAM
in the kernel IP block in full, rather than by slice with Vivado. Therefore, the Vivado
MatVec kernel code is slightly different to the SDSoC OpenCL and the SDSoC C++

kernel codes.

The Vivado MatVec IP block runs with a 310 MHz clock frequency because the Vi-
vado MatVec system design has two separated clock domains. In contrast, the SDSoC
OpenCL design runs at only 200 MHz, and the SDSoC C++ design runs at 150 MHz

which are found to be the maximum.

In terms of programmability, This study shows that the Vivado approach is rather
traditional high-level programmer unfriendly as it required the highest amount of low-
level hardware and Vivado tool knowledge and design experience to work through
the many implementation options and design trade-offs that are available, as well as
development effort. This is because the approach requires the programmer to take
care of many low-level concerns to produce an FPGA solution, including the manual
creation of the FPGA hardware system design which requires the explicit configuration
of the data-movement and connections between the IP blocks, address manipulation,
setting widths of data paths and managing the execution of the kernel IP blocks through
setting and examining the start and stop bits of the kernel. In addition, the programmer
has to design and implement the management of the preparation and transfer of data to
the FPGA BRAM blocks explicitly in the host code. This all requires significant effort.
The writing and optimization of kernel code requires a similar level of effort to other
methods, however, essentially, only the syntax of the pragmas required for pipelining
and unrolling, etc. change. In contrast, the OpenCL and C++ approaches hide most
of the complexity of the system design steps required by the Vivado approach and
assign it to the SDSoC compilers. In these two approaches, the programmer needs
only to know the SDSoC design flow and to have a good understanding of the kernel
code pragmas for pipelining and unrolling, etc., and knowledge of their effect on the
performance. The C++ approach requires also an understanding of the data-movement

engines available in the system and their advantages and disadvantages. However, the

7.6. SUMMARY OF THE TWO EXPLORATORY STUDIES 189

resulting automatic designs, while generally more simple, are not as efficient as can be
achieved manually with Vivado. This is presumably because of the generality of the
design solution, but this generality can lead to issues with timing in designs, limiting

the maximum clock rate that can be used, for example.

7.6 Summary of the Two Exploratory Studies

This section summarises the key findings from the two conducted exploratory studies
on the two benchmarks, SWM and MatVec.

7.6.1 Single kernel

The first exploratory study (part one) of mapping the independent operations in the
L100 kernel in Chapter 4 concluded that the use of Data-Flow over functions mech-
anism provided the best mapping option of the kernel’s concurrency. In both SDSoC
OpenCL and Vivado approaches, Data-Flow over functions mechanism showed bet-
ter execution time over the other mapping mechanisms. However, this mechanism
required higher effort in programmability and resource consumption than the other
design options.

Processing the kernel’s operations in parallel, where possible, was found to be the
appropriate method to achieve good computational performance if the kernel’s opera-
tions are independent. This proved to be the appropriate design option for the L100 ker-
nel from the SWM benchmark. However, utilizing this design method for the MatVvec
kernel calculations from the LFRic benchmark, in the second exploratory study from
Chapter 7, showed no performance benefit compared to the other design options. The
use of Dataflow with the MatVec kernel has an impact on the kernel’s latency (high
latency), limits the read/write operations bit-width to 64 bit, and reduces the number

of flops per cycle that the kernel computations can produce.

7.6.2 Multiple kernels

Mapping multiple kernels was explored in Chapter 5 (different Multiple SWM ker-
nels) and Chapter 7 (Multiple MatVec kernels). These two studies explored the effect
of the selected mapping mechanisms as the application problem size changed and as
the number of implemented kernels varied. In addition, the kernel-to-kernel communi-

cations options available in the HLS approaches used were explored and their effects

190 CHAPTER 7. MATVEC WITH SDSOC OPENCL/C++ AND VIVADO

on performance, resource usage and programmability were investigated.

The results of mapping the multiple kernels in SWM using both the SDSoC OpenCL
and the Vivado approaches showed that the kernel optimization level severely limited
the problem size and, hence, the number of kernels that a user design could imple-
ment. Five out of nine SWM kernels were able to be implemented with a maximum
problem size of 53*53 being possible with the selected kernel design style. In the
SDSoC OpenCL implementations, three SWM kernels (L100, L200 and L300) were
designed using the Data-Flow style and the two SWM kernels (L100pc and L200pc)
were implemented using the Pipeline design style. In the five SWM kernels Vivado
implementation, the Pipeline design style was found to be the appropriate mapping
mechanism, although Data-Flow provided better performance in the single L100 Vi-
vado mapping exploration. Utilising the Data-F1low mechanism with the multiple ker-
nels efficiently depends on the memory design solution selected. The use of DDR
memory in the OpenCL design helped provide enough memory bandwidth with mul-
tiple Data-Flow kernels compared to the Vivado multiple Data-F1low kernels solution
which used BRAM external to the kernels to share data. The use of an external BRAM
solution in the Vivado design was not a suitable choice for Data-Flow-style kernels
as it requires extensive use of BRAM resources and increases the design complexity,
particularly in terms of the manual addressing and data management required. This
latter effort is much less when using the pipeline style to communicate between the
kernels; this is a good example of the kind of trade-off that can be made between

performance, resource usage and programmability.

The study of mapping multiple copies of the MatVec kernel showed that the number
of MatVec IP blocks and the size of data (related to the number of cells to be processed)
each block is processing varies from one approach to another. The final system design,
whether auto-created by the system when using SDSoC OpenCL and SDSoC C++ or
manually-created when using Vivado, has an effect on the number of MatVec IP blocks
that can be created and on the maximum size of data each block can process. The
SDSoC OpenCL design allowed the lowest number of MatVec 1P blocks, a maximum
of three MatVec IP blocks, each processing 42 cells, while the Vivado design allowed

for the creation of twelve MatVec 1P blocks each processing thirteen cells.

The exploration of kernel-to-kernel communication methods revealed that using
the shared-memory method (DDR with SDSoC OpenCL and external BRAM with Vi-
vado) between multiple kernels provided better performance compared with the use of

pipes, the other explored data movement method explored. The use of DDR memory

7.6. SUMMARY OF THE TWO EXPLORATORY STUDIES 191

in the SWM five kernels SDSoC OpenCL design and an external BRAM block in the
Vivado SWM five kernels design resulted in the best performance as a kernel-to-kernel
communication design option. In addition, in the multiple MatVec kernels design, the
use of DDR memory in the SDSoC OpenCL and the SDSoC C++ solutions, and ex-
ternal BRAM blocks in the Vivado design was also a better design choice than the use
of pipes. Further, the use of the shared-memory method was the most straightforward

design solution in terms of programmability.

Chapter 8

Comparison Study (2): MatVec Kernel
implementations in SDSoC OpenCL
and SDSoC C++ Versus Vivado HLS

This chapter presents a comparison study of the implementation of the MatVec Vi-
vado, SDSoC OpenCL and SDSoC C++ designs that we explored in Chapter 7. The
comparative study is between the best performing MatVec designs from each approach
with the use of the quantitative and qualitative metrics that we discussed in Section 3.4
from Chapter 3. A discussion of the results of each applied metric is presented and
discussed in separate sections. The exploration study in Chapter 7 shows that the final
MatVec designs we found for the SDSoC OpenCL and the SDSoC C++ approaches
are different to the Vivado design in three main aspects. The first difference is that the
Vivado design uses external BRAM blocks for providing data to the Vivado MatVec
IP blocks, while DDR memory is used in the SDSoC OpenCL and C++ designs. This
leads to the second difference which is that the SDSoC OpenCL and C++ kernel codes
are slightly different from the Vivado kernel code due to the use of DDR memory.
The third difference is the different used clock domains. The Vivado design runs on
a higher clock frequency (310Mhz) than the SDSoC OpenCL (200 Mhz) and the SD-
SoC C++ (150Mhz). These differences are crucial facts in the comparison study in this

chapter.

192

8.1. PERFORMANCE ANALYSIS 193

8.1 Performance Analysis

With the intention of having a fair like-for-like comparison of the MatVec designs, the
initial aim was to replicate, as far as possible, the same design and coding decisions in
the SDSoC OpenCL and C++ versions as were used in the pre-existing Vivado MatVec
version. In this section we present the implementation results for each of the final
MatVec design version that we explored in Chapter 7.

The final MatVec designs we found and explored in Chapter 7 have crucial dif-
ferences that arise from two primary sources: first, from the different approaches to
generate the overall system design and the use of FPGA resources, and secondly, from
timing constraints in the designs which dictate the highest clock frequency at which
a design can execute (the Xilinx Ultrascale+ board supports up to a 600 MHz clock).
Moreover, each of the SDSoC OpenCL and C++ design methodologies impose other
restrictions that have to be considered in the comparison.

In this section, we present the implementation performance figures of the MatVec
designs described in Chapter 7 using two metrics. We are interested in the implementa-
tions performance in terms of the design’s Computational flop rate (Gflop/s) and the
overall execution time of the entire mini-App application. We first give a summary
performance in terms of the flop rate of each implementation of the MatVec design and
we analyse the design differences, scalability and peak performance of each imple-
mentation. We then discuss the performance in the context of each of the three phases
of the overall algorithm , which, together, make up the overall execution time. The
phases are: Load, preparing and loading data required by the FPGA IP blocks from
the host, Comp, the compute time in the kernels, and store, returning the data from the
FPGA blocks to the host.

8.1.1 Computation Flop Rate (Gflop/s)

To calculate the MatVec design’s floating point operation rate we measure the time
of the execution for the MatVec kernel to calculate the results for the full 864 cells
(tcalc) in the mini-App. Based on that time, we calculate the time that the kernel
took to calculate only one cell (tpc_calc), using equation 8.1. As we descried in
Section 2.6.2 from Chapter 2, we know that one cell has two flop operations (one
addition and one multiplication) in the inner loop, so the total flops to be calculated
per cell is 40*%6*8*2 = 3840 flops_per_cell. If the created MatVec kernel design

is a multi-cell design, then we multiply the flops_per_cell by the number of cells

194 CHAPTER 8. MATVEC SDSOC OPENCL/C++ VS VIVADO

that the kernel processes in one call resulting in a figure for flops_per_OneCall,
as in equation 8.2. To calculate the total number of flops that a MatVec kernel is
processing per second we divide the flops_per_cell by the kernel’s tpc_calc, with
equation 8.3. The total_ flop_rate computed in equation 8.3 produces the MatVec

design performance in flop/s but we convert it to Gflop/s for presentation.

tcale
t lc = 8.1
pc_calc 264 (8.1)
flops_per_OneCall = flops_per_cell xnumber_of_cells (8.2)
) 1l
total_flops — 11OPS=Per—Cce (8.3)

tpc_calc

MatVec Vivado Design

Figure 8.1 shows the performance (Gflop/s) of the Vivado design implementation for a
range of number of IP blocks and cells-per block (i.e. the data for the number of cells
in the external BRAM of an IP block). As discussed in Section 7.2 from Chapter 7, the

Performance of the Vivado HLS matrix-vector kernel at 310 MHz
6.0

—e—nblocks 12 —s—nblocks 8 nblocks 4 nblocks 2 —e—nblocks 1
5.0 D ——————
[—
w
S 40 //
2
& ;
g o L,
s ,/
£
Nel
5 2.0
a

1.0

0.0
0 2 4 6 8 10 12

Number of cells

Figure 8.1: Performance of the Vivado Matrix-vector kernel designs at 310Mhz, as the
number of blocks and cells-per-block varies. Performance figures here are the kernel
"compute time only"

Vivado design has the advantage of providing BRAM memory that is created outside

8.1. PERFORMANCE ANALYSIS 195

the kernel IP blocks. In this design, the data is directly transferred from the host CPU
DDR memory to BRAM associated with each block. BRAM access is much faster
than access to DDR. In addition, as stated in [ARAM19], in any full port of the LFRic
mini-app, the aim would be that the kernel data are generated on the FPGA and kept
in the “FPGA plane” and so will not need to be repeatedly transferred to or from the
host. A single Matvec 1P block can run at 435 MHz, but when integrating 12 blocks
(Max number of blocks) in a multi-block design, the maximum clock speed is reduced
to 310 MHz to meet timing constraints. All data in Figure 8.1 is at 310 MHz.

The best performing Vivado implementation has 12 blocks and 13 cells-per-block
and delivers 4.98 Gflop/s, as can be seen in Figure 8.1. The scaling with number of
blocks is good, the parallel efficiency is 88%, i.e. the performance at twelve blocks as
a fraction of twelve times the single block performance. As can be seen in Figure 8.1,
increasing the number of cells per block initially delivers improved performance, as
additional cells hide some of the latency costs, but quickly saturates.

Analysis of the design timeline reveals that for one block, there are 2 flops per cycle
(one dmul and one dadd). At 310 Mhz and for 12 blocks, this leads to a theoretical
peak performance figure of 7.44 Gflop/s. Thus, the Vivado HLS design achieves 67%
of peak !.

MatVec SDSoC OpenCL Design

Figure 8.2 shows the performance (Gflop/s) for three SDSoC OpenCL MatVec 1P
blocks and a range of cells-per-block. Unlike the Vivado implementation, where the
kernel data is pre-loaded into fast external BRAM blocks, the data in the OpenCL
implementation is located in DDR RAM. The OpenCL kernel block has to first load
cells data into local BRAM before starting execution. As discussed in Section 7.3 from
Chapter 7, the SDSoC OpenCL kernel processes multiple cells in a call to minimise the
DDR memory access, whereas Vivado processes only a single cell in each call since the
used memory solution is external BRAM blocks. See also the data movement design
analysis in Section 8.3 for more insight.

The highest clock rate we were able to use in the OpenCL design is 200 MHz since
above 200 MHz, the hardware design that is automatically generated by the SDSoC

system did not meet timing constraints. The highest performance achieved is with one

ITheoretical peak performance is calculated using this simple calculation: Frequency * the number
of flops per cycle * the number of IP blocks. Applying this to the MatVec Vivado design (310%2*12 =
7.44 GFIs)

196 CHAPTER 8. MATVEC SDSOC OPENCL/C++ VS VIVADO

Performance of OpenCL matvec-vector kernel at 200 Mhz
25

2
1.5

el

1 / —eo—1 block 2 blocks 3 blocks
o

05 /

0

0 20 40 60 80 100 120 140 160 180
Number of Cells

Performance (Gflop/s)

Figure 8.2: Performance of the OpenCL Matrix-vector kernel designs at 200Mhz as the
number of blocks and cells-per-block varies. Performance figures here are the kernel
"compute time only"

SDSoC OpneCL MatVec IP block with 120 cells, at 2.02 Gflop/s. SDSoC OpenCL
implementations with different numbers of blocks scale quite well with increasing cell
numbers, but the more blocks created, the fewer cells each block can have due to
resource limitations, specifically BRAMs. The resources used for the best performing
implementations are shown in Table 8.2 in Section 8.2 which shows the number and
percentage used for each type of logic element per IP block and also for the total
system design on the ZU9 FPGA. The highest number of SDSoC OpenCL MatVec 1P
blocks that could be created was only three, regardless of the number of cells, due to
either lack of sufficient resources or failure to meet timing constraints. In addition,
the creation of two or three SDSoC OpenCL MatVec IP blocks shows no performance
benefit due to DRAM overhead. This is believed to be due to additional complexity
in the auto-generated design due to the number of DDR memory paths required. This
problem is avoided in the Vivado design, in which each block has a dedicated path to
BRAM, rather than sharing limited paths to DDR.

The best Vivado design has 12 blocks with 13 cells in each block. The 12 blocks are
executed concurrently, leading to the processing of 156 cells per 12 kernel execution.
The best SDSoC OpenCL design has 1 block with 120 cells, a slightly lower number
of cells. The OpenCL runs at 200 MHz while the Vivado runs at 310 MHz, which
contributes to the performance differences seen. Analysis of the design timeline reveals
that in the compute part of the kernel there are a maximum of 32 flops per cycle (16
dmuls and 16 dadds). At 200 MHz this leads to a theoretical peak performance figure of

8.1. PERFORMANCE ANALYSIS 197

6.4 Gflop/s (compared with 7.44 Gflop/s for Vivado HLS). Thus, the SDSoC OpenCL
design achieves 31.5% of peak performance (Vivado achieves 67%).

MatVec SDSoC C++ Design

Figure 8.3 shows the performance (Gflop/s) of the SDSoC C++ design implementation
as the number of blocks and cells varies. The highest performance with the SDSoC
C++ is 1.78 Gflop/s with one block and 180 cells.

Performance of C++ matvec-vector kernel at 150 Mhz

%038 / ——1 block 2 blocks 4 blocks

0 20 40 60 80 100 120 140 160 180
Number of Cells

Figure 8.3: Performance of the C++ Matrix-vector kernel designs at 150Mhz, as the
number of blocks and cells-per-block varies. Performance figures here are the kernel
"compute time only"

As with the SDSoC OpenCL MatVec design, the SDSoC C++ performance figures
include the data transfer costs from DDR to local BRAM. Another issue affecting the
SDSoC C++ performance is the choice of DMA engine. The SDSoC C++ data engine
that is used is the Scatter-Gather, SG, engine. SG is the slower DMA option, but it
can handle larger volumes of data, making it the only option for transferring the large
quantity of data associated with multiple cells. This issue is discussed further in the
data movement design section below, Section 8.3.

The highest clock rate we were able to use in the SDSoC C++ design 1s 150 MHz,
again limited by timing constraints in the auto-generated design. For the SDSoC C++
designs, the performance scales reasonably well with the increase in cell numbers, but
the more blocks used, the fewer cells can fit in the FPGA due to resource limitations.
Unlike SDSoC OpenCL, up to four blocks can be used with the SDSoC C++, as long

198 CHAPTER 8. MATVEC SDSOC OPENCL/C++ VS VIVADO

as the number of cells is small enough that resource limits are not exceeded. With
more blocks, the design fails to build due to timing constraints.

In Figure 8.3, it can be seen that multiple block designs did not scale well as the
number of blocks increases. This is as a result of the bandwidth of the DDR memory
ports being shared between the blocks in the C++ design. In addition, the creation
of two or four SDSoC C++ MatVec 1P blocks shows no performance benefit due to
DRAM overhead.

Analysis of the design timeline reveals that in the compute part of the kernel there
are a maximum of 32 flops per cycle (16 dmuls and 16 dadds). At 150 MHz this leads
to a theoretical peak performance figure of 4.80 Gflop/s (compared with 7.44 Gflop/s
for Vivado HLS). Thus, the SDSoC C++ design achieves 37.5% of peak performance
(Vivado achieves 67%).

8.1.2 Application Runtime Considerations

In this section, we compare the execution times of the three best Matvec designs in the
three approaches in the context of three phases of the full application (Load, Comp and
Store). This enables us to put the previous section’s performance rates into the broader
context of the whole application (overall execution time) and provides further insight
into the different data movement and cells-per-block strategies that were employed in
the designs of the three approaches. The overall execution time consists of the time
to prepare the input data for use by the kernel(s) (Load time), the time that the kernel
takes to do the arithmetic computation (Comp), and the time taken to store the results
back in the data structures of the host (Store).

Note that the Load and Store times are not equivalent between the three approaches
due to the different data movement methods used, as discussed in Section 8.3.

Table 8.1 shows the execution times for the best implementations and for two spe-
cial cases (marked with an asterisk in the table) where the overall time is better.

For the SDSoC OpenCL and C++ designs we found that the highest Comp perfor-
mance does not necessarily lead to the fastest overall time. For both SDSoC OpenCL
and C++ we found that execution of 1 block with 26 cells delivered a better overall
time compared that of the best performing versions - see the (*) data in Table 8.1. This
is despite the fact that with 26 cells the Comp performance rate is only 0.67 Gflop/s
(OpenCL) and 1.31 Gflop/s (C++) compared with 2.02 Gflop/s for the 120 cell SDSoC
OpenCL version and 1.78 Gflop/s cells for SDSoC C++. The 26 cell case delivers

faster overall time because the Load and Store times are faster. We note that for the 26

8.1. PERFORMANCE ANALYSIS

199

Table 8.1: Performance details for the best Matvec implementations from Vivado, SD-
SoC OpenCL and SDSoC C++. (*: performance results for a smaller, 1 block/26 cell

versions)
Compute | Overall
. Load Comp Store | Overall Time Time
Design Perfor- Perfor-
Time(s) | Time(s) | Time(s) | Time(s)
mance mance
(Gflop/s) | (Mflop/s)
Vivado
12-Blocks | 0.02044 | 0.00067 | 0.01374 | 0.0349 498 95.06
13-Cells
SDSoC
OpenCL |) 0310 | 0.00489 | 0.01883 | 0.0469 | 2.0 70.74
1-Block
120-Cells
*SDSoC
OpenCL |) 51667 | 0.00495 | 0.01951 | 0.0381 0.67 87.08
1-Block
26-Cells
SDSoC
C++
0.02234 | 0.00186 | 0.00327 | 0.0274 1.78 121.09
1-Block
180-Cells
*SDSoC
C++
0.01254 | 0.00251 | 0.00327 | 0.0183 1.31 181.29
1-Block
26-Cells

200 CHAPTER 8. MATVEC SDSOC OPENCL/C++ VS VIVADO

cell case, the kernel is called more times than in the 120 cell OpenCL version and 180
cell C++ version, because it deals with fewer cells per call. This effect is not seen with
the Vivado design.

With SDSoC C++, the Load and Store times are fastest with 1 block/26 Cells since,
for the C++ design, data for 26 cells at a time is prepared by the host and written to
DDR for the block, which has shared access with the FPGA.

Load time in the three best implementations is fairly similar, but the Store time is

faster in the C++ implementations.

Vivado HLS Load and Store time is faster than the OpenCL time. For Vivado,
data for 13 cells for each of 12 blocks (per kernel call) is prepared on the host at a
time (in DDR memory) and then written directly from the host to the BRAM associ-
ated with each block. In contrast, for SDSoC OpenCL, data for 120 cells at a time is
prepared on the host for the single block, and the OpenCL buffer write call executed
(enqueueWrite()) [Khr21].

The Vivado Comp time is faster than that of both SDSoC OpenCL and C++. In SD-
SoC OpenCL and C++ the compute kernels are reading data from DDR and compute
multiple cells per call, whereas in the Vivado design the compute kernels operate with
data from BRAM and process one cell per call. However, the overall execution times
show that the SDSoC OpenCL whole application performance is competitive with the
Vivado design, while the SDSoC C++ whole application performance is faster in both
the best implementation case and the 1 Block/26 cell case; mainly as a result of the

cheaper Store times.

The results in the previous two Sections show that the Vivado design achieved the
best performance for the compute phase with a performance peak around 4.98 Gflop/s,
while the SDSoC C++ design achieved the best overall time. Although the SDSoC
OpenCL and C++ designs operate at a lower clock rate than the Vivado design, and the
data transfer time is from DDR rather than BRAM, the extra parallelism they exploit
by processing multiple cells per call means that the SDSoC OpenCL design provides
a competitive overall runtime, with a peak compute performance of 2.02 Gflop/s, and
the SDSoC C++ design delivered the best overall time though with a peak compute
performance of only 1.78 GFlop/s.

8.2. RESOURCE USAGE ANALYSIS 201

Table 8.2: The best implementations resource usage figures for the MatVec 1P block
and the total system design.

Resource

Design FF LUT | DSP| BRAM
Usage
Vivado 78388 81396 120 ”
Usage 12-Blocks (5078%) | 29.69%) | 5%) | (5.26%)
Per 13-Cells 1070 -69% o 26%
ok ?pglt)il% 74845 31174 | 224 588
120.Colls | (3% | (11%) | 8%) | (64%)
1-(1;:& 22895 | 27563 | 28 | 7815
180.Colls | 4%) | (10%) | (1%) | (85%)
1ng§:ks 304118 | 178574 | 120 | 816
Total (55%) | (65%) | (53%) | (90%)
Design |1 3Cells
DPenL | 94101 | 4sss0 | 224 | 6225
0ot | (1716%) | (17.83%) | (8%) | (68.25%)
1_(1;:ck 49987 | 37100 | 28 827
180.Cells | ©%) | (14%) | (1%) | (91%)

8.2 Resource Usage Analysis

Table 8.2 presents the resource usage figures for the MatVec IP block and the total sys-
tem design from the best Vivado, SDSoC OpenCL and SDSoC C++ implementations.
Usage per IP block shows that the Vivado 12-blocks, 13-Cells design consumed more
FF (50.78%) and LUT (29.69%) resources than the SDSoC OpenCL and the SDSoC
C++ designs FF and LUT usage. The SDSoC C++ 1-Block, 180-Cells design consumed
the lowest amount of FF (4%) and DSPs (1%), but it consumed the highest amount of
BRAM resources (85%).

In terms of total design resource usage, the Vivado design utilisation of FF (55.78%)
and LUT (65%) still higher than the SDSoC OpenCL and the SDSoC C++ designs FF
and LUT usage. However, the utilisation of BRAM usage has increased to (90%), which
is similar to the SDSoC BRAM usage of (91%).

202 CHAPTER 8. MATVEC SDSOC OPENCL/C++ VS VIVADO

8.3 Data Movement Analysis

This Section discusses the utilised methods for data transfer between the CPU and
the memory solution (DDR RAM memory and the external BRAM blocks) in each
approach, and the impact of these design choices upon performance.

Data movement in the Vivado design depends on isolating the data transfer from
the kernel execution. The technique is achieved by providing external BRAM blocks
for each kernel block, and the data transfer occurs in a separate step to the kernel call.
The matrix and x data is read by the kernel from external BRAM into local BRAM,
one cell at a time. The performance rates in Figure 8.1 exclude the data transfer time
between CPU and FPGA. Table 8.3 shows that the Vivado load rate (1085.8 MB/s) is
higher than the load rates in the best SDSoC OpenCL and C++ implementations. This
is a result of the manually configured DDR-to-BRAM connection used in the Vivado

design.

Table 8.3: Rates of data movement for the best implementations

Design Load Store
(MB/s) | (MBY/s)
Vivado
12-Blocks | 1085.8 | 108.2
13-Cells
OpenCL
1-Block 643.6 116.6
120-Cells
C++
1-Block 666.9 676.7
180-Cells
*CH+
1-Block | 1189.6 | 673.9
26-Cells

The load rates for the best SDSoC OpenCL (120 cells) and C++ (180 cells) imple-
mentations in Table 8.3 are slow compared to the Vivado load rate but, as discussed in
Section 8.1.2, these rates reflect only the preparation of cell data and the writing of the
data to DDR, rather than to the external BRAM blocks in the Vivado design. However,
for the SDSoC C++ one Block/26 cells (which delivered the best overall time) load
and store rates are better than those of the Vivado and the SDSoC OpenCL rates since
the DDR buffers are shared between the host and device.

8.3. DATA MOVEMENT ANALYSIS 203

In SDSoC OpenCL and C++, local BRAMs are populated at the start of the kernel
execution and this data is read during execution. In addition, the size of data transfer
in the SDSoC OpenCL and C++ is larger than that of the data transferred between the
external BRAM blocks and local BRAMs in the Vivado design. Thus, the data transfer
overhead is counted in the SDSoC OpenCL and C++ performance. In addition, C++
design performance has been impacted by the DMA engine choices as described in
Section 8.1.1.

8.3.1 Matvec CPU Implementation Comparison

The authors in [ARAM19] provided performance figures for the MatVec kernel im-
plementation on a state-of-the-art Intel Broadwell E5-2650 v2 2.60 GHz CPU with
eight cores. The CPU’s eight cores are exploited by using OpenMP. Table 8.4 shows a
performance comparison between the CPU implementation and the three best imple-

mentations we have discussed in this thesis. The CPU can deliver a peak performance

Table 8.4: Comparison of ZU9 FPGA double-precision Vivado, OpenCL and C++
matrix-vector performance implementations with Intel multicore CPU performance

Peak
Performance Percentage
Hardware (Gflop/s) performance peak
(Gflop/s)

Intel Broadwell
E5-2650v2 2.60 9.86 332.8 3.0%
GHz 8-core CPU
ZCU102 FPGA
(Vivado 498 600 0.83
implementation)
ZCU102 FPGA
(OpenCL 2.02 600 0.33
implementation)
ZCU102 FPGA
(C++ 1.78 600 0.29
implementation)

of 332.8 Gflop/s as it can process 16 flops/cycle multiplied by eight cores with 2.6 GHz
frequency. A theoretical ZCU102 FPGA peak Performance is 600 Gflop/s, as stated

204 CHAPTER 8. MATVEC SDSOC OPENCL/C++ VS VIVADO

in [Int21]2. In [ARAM19] it was reported that FPGA performance for the double-
precision matrix-vector kernel of is 5.34 Gflop/s which is 54% of that achieved on an
8- core Intel Broadwell CPU.

The CPU implementation outperforms the FPGA implementations. The ideal would
be for the FPGA “accelerator” to outperform the CPU. However, considering the com-
parison between power consumption and price between these two devices is critical
in an overall comparison with CPUs and other accelerators, such as GPUs. CPUs
are much more power hungry than FPGAs. The authors in [Ber19] report that that
GPU power efficiency is up to 20 Gflop/s/W, with price efficiency varying from 0.07
to 0.12 €/Gflop/s. GPUs are used as accelerators in multi-CPU systems as their ef-
ficiencies exceed those of CPUs. The author’s state that a mid-class FPGA’s power
efficiency exceeds 70 Gflop/s/W, with a price efficiency of 0.29 €/Gflop/s.

8.4 Summary of the MatVec Comparison Study

In the case of the LFRiC matrix-vector-based mini-app studied, the overall perfor-
mance gap between the three approaches is seen to be relatively small even though the
original Vivado HLS solution could not be replicated exactly. While Vivado HLS pro-
vides a compute phase performance of 4.98 GFlop/s, SDSoC OpenCL 2.02 GFlop/s
and SDSoC C++ 1.78 GFlop/s, the best overall execution times for one execution over
the full mesh of 864 elements in this (small) version of the mini-app was 0.0183s
(181.29 Mflop/s) for the SDSoC C++ with 1 Block/26 cells, whereas the overall time
for the Vivado HLS design with 12 Blocks/13 cells was 0.0349s (95.06 Mflop/s) and
the best SDSoC OpenCL overall time, with 26 cells, was 0.0381s (87.08 MFlop/s).
The Vivado design compute performance benefited from not including the data trans-
fer overhead. However, as the overall runtime is absolutely crucial here and probably
what users are ultimately most interested in, the overall runtime of the SDSoC C++
design (1 Block/26 cells) make it the best design version.

The Vivado HLS design takes advantage of kernel-related BRAM, rather than DDR
memory, to store input (and output) data prior to execution of the compute-intensive
phase of the kernels; a clear performance advantage. This facility is not readily avail-
able in the SDSoC OpenCL and C++ approaches, and the consequent data access from

DDR has a performance impact. In addition, the absence of this facility has limited

The peak performance computation does not take into account the FPGA data precision; probably,
it is an overestimate for 64-bit precision.

8.5. SUMMARY OF THE TWO COMPARISON STUDIES 205

the scalability of multi-blocks performance in SDSoC OpenCL and C++ due to the
sharing of DDR memory bandwidth between the blocks. However, the processing of
multiple cells in a call allows the exploitation of some extra parallelism, providing a
performance benefit over the Vivado HLS design which processes a single cell per call.

The abstraction level in the SDSoC OpenCL and the C++ approaches is higher than
in Vivado HLS and leads to higher programmer productivity but provides less control
of the system and low-level design than Vivado HLS, which can lead to extracting

better performance from the FPGA resources.

8.5 Summary of the Two Comparison Studies

This section summarises the key findings from the two conducted comparative studies
on the two benchmarks (SWM and MatVec).

8.5.1 Single kernel

As the exploratory study for the L100 single kernel shows, the Data-Flow mecha-
nism with functions provided the best performance for mapping the L100 kernel’s con-
currency in both SDSoC OpenCL and Vivado approaches. The comparison study in
chapter 6 showed that the 1100 Data-Flow Vivado design achieved the best com-
pute time (0.164s); however the L100 SDSoC OpenCL Data-Flow design provided
the best overall application time (3.292s). Considering the data movement Load and
Store costs, they were high in the single L100 kernel exploration, and dominated the
overall time. The reason for this related to the fact that the data was shared with the
host code in every call in a time-step (for 4000 time-steps) of the kernel. The cost
of the data movement between the host and the L100 kernel with the use of the DDR
memory in the SDSoC OpenCL implementations was lower compared to the use of
external BRAM in the Vivado L100 design, as discussed.

8.5.2 Multiple kernels

The comparison study of the SWM five Kernels implementations in chapter 6 showed
that the data movement cost was not significant, and did not affect the compute time of
either the SDSoC OpenCL nor the Vivado design approach. The data in the five SWM
kernels implementations were shared between only the five kernels through three data-

movement solution options (DDR, Pipes, and external BRAM). The results revealed

206 CHAPTER 8. MATVEC SDSOC OPENCL/C++ VS VIVADO

that the Vivado SWM five kernels implementation provided the best compute time
(1.334s) and overall time (1.337s). The external BRAM memory block shared be-
tween the five kernels in the Vivado design proved to be the best kernel-to-kernel
communication design options. This is in contrast to the results seen with L.100 Overall
time where DDR was the better solution in terms of Load and Store time.

In the case of the LFRiC matrix-vector-based mini-app study, the Vivado design
provided the best compute time performance (0.00067s) compared to the SDSoC OpenCL
(0.00495s) and the SDSoC C++ (0.00251s). However, in terms of overall application
time for one execution over the full mesh of 864 elements, the SDSoC C++ design
with 1 Block/26 cells provided the best overall time of 0.0183s (181.29 Mflop/s);
whereas the overall time for the Vivado HLS design with 12 Blocks/13 cells was
0.0349s (95.06 Mflop/s) and the best SDSoC OpenCL overall time, with 26 cells, was
0.0381s (87.08 MFlop/s).

As we have seen in the SWM and the MatVec studies, the Vivado design compute
time performance benefited from not including the data transfer overhead. However,
when we include the data transfer time, the SDSoC C++ in the MatVec study and the
SDSoC OpenCL in the L100 study achieved better overall time than the Vivado design.

Comparing the SDSoC OpenCL, SDSoC C++, and the Vivado design methodolo-
gies, the Vivado design methodology with external BRAM solutions required higher
development effort and hardware expertise. It requires the programmer to take care of
many low-level concerns to create the FPGA solution, including the manual creation
of the FPGA hardware system design, which requires low-level configuration, connec-
tions between the IP blocks, and address manipulation management. In managing the
host and the kernel solutions, the Vivado approach also required more coding effort
and FPGA expertise.

Chapter 9
Conclusions and Future Work

This chapter first summarizes the thesis findings, considering the extent to which the
research questions raised in Chapter 1 have been addressed. This is followed by a
review of the thesis contributions and a discussion of some limitations of the research

which leads to a number of suggestions of possible research routes for future work.

9.1 Review of Thesis Research Questions

This thesis explored and compared the options and techniques for mapping the concur-
rency levels of two weather and climate applications using two high-level HLS tools,
Xilinx SDSoC OpenCL and SDSoC C++, and a lower-level HLS tool, Xilinx Vivado to
a single Xilinx Ultrascale+ FPGA board. Two exploratory and two comparison studies
were conducted, involving a large number of experiments, in an attempt to answer the
research questions (RQs) introduced in Chapter 1, and which are repeated in the fol-
lowing. In the exploratory studies, we collected data from a range of implementations
and configurations of the two weather and climate applications, which we then utilized
in the two comparative studies.

What are the technology options from the FPGA level and the HLS tool (SD-
SoC OpenCL and Vivado HLS) level for mapping the concurrency within a single
HPC kernel and in the case of multiple HPC kernels?

We first explored the technology options from the FPGA level and the HLS tool
level (focusing initially on SDSoC OpenCL and Vivado HLS) to map the concurrency
within a single HPC kernel. The L100 kernel from the SWM application was chosen
as the candidate kernel for this study. We first studied the concurrency types available

in the algorithm for the L100 kernel and the possible mapping options available to

207

208 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

map these types of concurrency. Three (common) concurrency types were identified
in the L100 algorithm (Instructions level parallelism, Data Parallelism, and Function
parallelism). Using the SDSoC OpenCL and Vivado HLS approaches, twenty two
FPGA designs were created to explore the mapping options.

The first exploratory study showed that targeting the mapping of the kernel’s function-
based parallelism using the mapping mechanism option Data-Flow over functions
provided the best mapping design out of the twenty two FPGA designs of both ap-
proaches, SDSoC OpenCL and Vivado. In both approaches, the use of the Data-Flow
over functions mechanism to map the kernel functional parallelism provided bet-
ter execution time compared to the other mapping mechanisms that targeted the other
concurrency types such as Pipeline, Multiple Kernels, Unrollingand Dataflow
over loops. Processing the kernel’s operations in parallel (coded as functions), where
possible, was found to be the appropriate method to achieve good computational per-
formance, if the kernel’s operations are independent, as is the case in the operations in
the L100 algorithm. In the the Data-Flow over functions L100 design implemen-
tation, the L100 kernel’s independent operations (CU, CV, Z, H) are formed in the kernel
code as four functions. These functions are then assigned to their own compute unit
(a compute unit per function) in the generated FPGA design, and they are launched in
parallel when the design is called from the host.

However, the Data-Flow over functions design style required higher program-
ming effort than other options and resulted in higher resource consumption, specifically
BRAM usage, than the other design options, illustrating the kind of trade-offs involved
when searching the design space.

In contrast to the Data-Flow over functions design option, the design choice
of using the Pipeline mechanism for mapping the L100 kernel’s Instruction Level
Parallelism (ILP) showed a competitive execution time and thus represents a viable
alternative design choice. In this design choice, the L100 kernel’s operations (CU, CV,
Z, H) are coded using a single loop nest, where the pipeline pragma is applied over the
inner loop of the kernel. Pipelining the inner loop was found to be the best method to
extract the highest performance using the Pipeline mechanism. This design option
required lower use of BRAM blocks compared to the Data-Flow over functions
designs, providing a trade-off in design choices in a case where a design may require
an extensive use of BRAM blocks, as we discuss next.

Two memory solutions (DDR and on-chip BRAM ') were available for data sharing

on-chip BRAM is the BRAM block on the Programmable Logic Part of the MPSoC

9.1. REVIEW OF THESIS RESEARCH QUESTIONS 209

between the host CPU and the FPGA solution for the exploratory studies. We utilized
the DDR memory solution in the SDSoC OpenCL approach since, in OpenCL, there
was no support for the direct implementation of on-chip BRAM shared between the
host and FPGA. As we wished to explore both memory solutions, we utilized the on-
chip BRAM memory solution (which we called external BRAM) in the Vivado designs
which did support its use. This is a clear illustration of the point that the ability to
manually manipulate the lower-level Vivado design allows more freedom in design

choices.

The use of Data-Flow over functions with external BRAM in Vivado provides
a trade-off between the number of external BRAMs and the bandwidth available. The
best performing Vivado L100 Data-Flow FPGA design required the creation of seven
external BRAMs, one for each data array, to achieve the best execution time. However,
this exhausted the available BRAM, which has an implication on the multiple Vivado
kernels design.

Following this single kernel exploration, the lessons learned for exploring the map-
ping of the L100 kernel concurrency types were used in an exploratory study of the
technology options for mapping an application with multiple HPC kernels to FPGA.
The SWM application with nine kernels was the case study for this, and we used the
SDSoC OpenCL and Vivado approaches again for the implementation designs. We
first studied the options for optimizing every single kernel based on the results we
found in mapping the L100 kernel. In the SDSoC OpenCL approach, we mapped the
SWM kernels that share similar concurrency types to the L100 kernel, such as L200
and L300, using the Data-Flow over functions mechanism. The other kernels that are
not suitable for the Data-Flow coding style (functions), such as L100pc and L200pc,
were mapped using the second-best mechanism option found, that is the pipeline

mechanism (pipeline the inner loop).

However, in the Vivado approach, we mapped all the SWM kernels using the
pipeline mechanism. The reason for this design decision related to the Vivado
memory solution choice we made (external BRAM block). As we explored in the
Vivado L100 mapping design, we initially tried creating seven BRAM blocks with
the use of Data-Flow over functions mechanism aiming to achieve the best per-
formance. However, applying the Data-Flow over functions design to the other
kernels (1200 and L300) led to the requirement for many BRAM blocks to be created,

which conflicted with the number of available BRAM resources on the Ultrascale+

210 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

FPGA. In addition, the Vivado design’s complexity (creating many BRAM blocks, re-
quiring more addresses configuration, and management of data distribution and move-
ment) was much more labour intensive (and error prone). The trade-off of utilizing
high BRAM resources (seven BRAM blocks) when implementing one kernel (L100)
was acceptable to achieve higher performance, however, when implementing multiple
kernels, this performance trade-off was not suitable. Consequently, we chose to map
all the SWM kernels using the pipeline mechanism in the Vivado multiple kernels

implementation.

Next, we explored the trade-offs involved in the number of kernels that can be im-
plemented, based on the available resources in the FPGA board, in the context of the
constraint on the largest possible problem size a given number of kernels can process.
We found that five out of the nine SWM kernels, which implemented the computation
in the main time-stepping loop (i.e. excluding kernels that were essentially implement-
ing one-time initialization functions) was the appropriate number of kernels to place on
the FPGA. The maximum problem size that these five kernels can process was found

to be a 53*53 grid before exceeding the FPGA resources limit.

The final part of the multiple HPC kernels mapping exploration was exploring the
technology options for managing the kernel-to-kernel data movement. Three design
options were explored which were: DDR memory, external BRAM and pipes. The
DDR memory and pipes were explored using the SDSoC approach, while the external
BRAM was available to be explored only in the Vivado approach. The results showed
that using the shared-memory method (DDR or external BRAM) between multiple
kernels provided better performance against the other explored data movement method
with pipes. This design decision was the best in both the SDSoC OpenCL and the
Vivado kernel-to-kernel communication exploration studies. In addition, it was the

most straightforward design solution in terms of programmability.

Can the use of high-level optimization techniques in SDSOC OpenCL and
SDSoC C++ match the design choices and performance achievable from the use

of the lower-level manual optimizations in Vivado HLS?

In the second exploratory study we undertook the mapping of an existing lower-
level FPGA design, of the MatVec kernel from the LRFic application implemented
using the Vivado approach, to two relatively higher-level HLS approaches, SDSoC
OpenCL and SDSoC C++. We first explored the different mapping methods and op-
timisation techniques utilised in the Vivado MatVec design. We classified the Vivado

MatVec design mapping techniques into three categories: the kernel source code, the

9.1. REVIEW OF THESIS RESEARCH QUESTIONS 211

MatVec 1P block and the system design in which it is embedded, and the host code
design. This classification was used to try to replicate the Vivado MatVec design objec-
tives where possible. This exploration study shows that some Vivado MatVec design
aspects could be mapped successfully in the SDSoC OpenCL and the SDSoC C++
MatVec designs. However, other design choices did not, or could not, be applied to
the SDSoC OpenCL and the SDSoC C++ MatVec designs. The manual design manip-
ulation required in the Vivado approach allows for more design freedom and options
compared to the SDSoC OpenCL and SDSoC C++ approaches. Two main Vivado de-
sign methods were not able to be replicated in the SDSoC OpenCL and C++ designs.
The creation and use of external BRAM blocks outside the MatVec IP blocks and the
ability to have two clock domains being two of the most significant. The SDSoC
OpenCL and SDSoC C++ designs, therefore, used DDR memory and only one clock
domain. The use of DDR memory influenced how the SDSoC OpenCL and SDSoC
C++ kernels are designed. We had to make some necessary kernel design changes that
are different to the Vivado MatVec kernel code in order to try to compensate for the
use of DDR memory rather than the (lower latency) BRAM. Those changes were that
the SDSoC OpenCL and C++ MatVec IP blocks process multiple data cells in a single
kernel call, and the mat rix data is transferred into the BRAM internal to the kernel IP
block in full, rather than by slice as with Vivado. Therefore, the Vivado MatVec kernel
code is different to the SDSoC OpenCL and the SDSoC C++ kernel codes. The Vivado
MatVec IP block can run with a 310 MHz clock frequency because the Vivado MatVec
system design has two separated clock domains. In contrast, the SDSoC OpenCL de-
sign could run at only 200 MHz, and the SDSoC C++ design at 150 MHz, which were

found to be the maximum possible.

What can be said about the best mapping technology options suitable for HPC
application’s concurrency, and about the trade-offs related to achieving the best

choice in terms of performance, resource usage, and development effort?

We conducted the first comparison study to gain insight about the best mapping
technology options, in terms of performance, resource usage and development effort,
in mapping the single and multiple SWM kernels using the SDSoC OpenCL and Vi-
vado approaches. The comparison study analysed the performance results, resource
usage figures, and design decisions for the L100 kernel concurrency mapping study
and for the SWM five kernels exploration in both the SDSoC OpenCL and the Vivado
approaches. The comparison results revealed that the Data-Flow mechanism with

functions provided the best performance for mapping the L100 kernel’s concurrency

212 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

in both SDSoC OpenCL and Vivado approaches. However, this mechanism required
high BRAM resource usage and coding effort. The L100 Data-Flow Vivado design
achieved the best compute time and the L100 SDSoC OpenCL Data-Flow design pro-
vided the best overall application time. The data movement (Load and Store) times
were high compared to the compute time in the both SDSoC OpenCL and Vivado
L100 implementations, and this dominated the overall time. However, the use of the
DDR memory in the SDSoC OpenCL implementations provided better data movement

(Load, Store) times compared to the Vivado L100 (Load, Store) multi-kernel times.

Nevertheless, in the SWM five Kernels implementations, the data movement cost
was less significant, not affecting either approach’s design compute time, because the
data were only shared between the five kernels through one of the three data-movement
solution options (DDR, Pipes, and external BRAM). The external BRAM memory
block shared between the five kernels in the Vivado design provided the best compute

and overall time in the kernel-to-kernel communication comparison.

What are the trade-offs between performance and programmer effort (which
can be expected to be reduced) that can be achieved by using the high-level ap-
proaches of SDSoC OpenCL and SDSoC C++ compared to using the lower ab-
straction level of the Vivado HLS?

We also conducted a second comparison study to consider the trade-offs between
performance and programmer effort (which can be expected to be reduced) that can be
achieved by using the high-level approaches of SDSoC OpenCL and SDSoC C++ com-
pared to using the lower abstraction level of the Vivado HLS. In doing so, we used the
data collected from the second exploratory study for the MatVec kernel. This compari-
son study showed that the overall performance gap between the SDSoC OpenCL/C++
and Vivado approaches was seen to be relatively small even though the original Vivado
HLS solution could not be replicated exactly. While Vivado HLS provides the best
compute time performance, the best overall execution times for one execution over the
full mesh of 864 elements in this (small) version of the mini-app was delivered by the
SDSoC C++ with 1 Block/26 cells design. The Vivado design’s compute performance
was seen to have benefited from not including the data transfer overhead. However,
when we include the data transfer time, the SDSoC C++ overall time was better than

the Vivado design, and the SDSoC OpenCL overall time is competitive.
The Vivado HLS design takes advantage of kernel-related BRAM, rather than DDR

memory, to store input (and output) data prior to execution of the compute-intensive

phase of the kernels; a clear performance advantage. This facility is not available in the

9.1. REVIEW OF THESIS RESEARCH QUESTIONS 213

SDSoC OpenCL and C++ approaches, and the consequent data access from DDR has a
performance impact. In addition, the absence of this facility has limited the scalability
of the multi-block performance in SDSoC OpenCL and C++ due to the sharing of
DDR memory bandwidth between the blocks. However, the processing of multiple
cells in a call allows the exploitation of some extra parallelism, providing a compute
performance benefit over the Vivado HLS design which processes only a single cell

per call.

In terms of programmability, comparing the three utilised approaches in this the-
sis (SDSoC OpenCL, SDSoC C++ and Vivado), the conducted studies show that the
Vivado approach requires much knowledge that the traditional high-level program-
mer would not typically posses. It requires the highest amount of low-level hardware
knowledge and much design experience to work through and evaluate the many im-
plementation options and design trade-offs that are available, and this results in high
development effort. This is because the approach requires the programmer to take care
of many lower-level concerns to produce an appropriate, efficient FPGA solution. This
includes the manual creation of the FPGA hardware system design, which requires the
explicit configuration of the data-movement mechanisms and of the connections be-
tween the IP blocks, address manipulation, setting widths of data paths and managing
the execution of the kernel IP blocks through setting and examining the start and stop
bits of the kernel. In addition, the programmer has to design and implement the man-
agement of the preparation and transfer of data to the FPGA BRAM blocks explicitly
in the host code. This all requires significant effort. The writing and optimization of
kernel code requires a similar level of effort to other methods, however; essentially,
only the syntax of the pragmas required for dataflow, pipelining and unrolling, etc.
change. In contrast, the OpenCL and C++ approaches hide most of the complexity
of the system design steps required by the Vivado approach and assign it to the SD-
SoC compilers. In these two approaches, the programmer needs only to know the
SDSoC design flow and to have a good understanding of the kernel code pragmas for
dataflow, pipelining and unrolling, etc., and knowledge of their expected effect on the
performance. The C++ approach requires also an understanding of the data-movement
engines available in the system and their advantages and disadvantages. However, the
resulting automatic designs, while generally more simple, are not as efficient as can be
achieved manually with Vivado. This is presumably because of the generality of the
design solution, but this generality can lead to issues with timing in designs, limiting

the maximum clock rate that can be used, for example.

214 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

In conclusion, as with all sophisticated systems, the more low-level knowledge a
programmer/designer has, the better performance that can generally be achieved. The
current level of the abstraction in the higher-level HLS tools such as SDSoC OpenCL
and SDSoC C++ cannot necessarily help programmers to achieve better performance.
However, in the research in this thesis we have seen a that a competitive performance
and, in the case of the MatVec kernel, a better overall application time (including Load,
compute and Store time) can be achieved with less effort than with the Vivado ap-

proach.

Is it feasible to consolidate a methodology for mapping the concurrency in
weather and climate applications to FPGAs to improve the FPGA programma-
bility for traditional HPC software programmers?

The design space exploration undertaken in this thesis leads us to conclude that
consolidating such a methodology would require extensive gathering of data from both
across HPC weather and climate applications and the many HLS tools that are emerg-
ing in order to reach an acceptable level of generalization to enable a general method-

ology to emerge.

This thesis studied, in detail, only two HPC weather and climate applications cases
using only one set of tools from one vendor, Xilinx (SDSoC OpenCL, SDSoC C++,
Vivado), targeting only a single FPGA (an Ultrascale+ SOC Architecture board). In
the available time frame for this thesis, we aimed for an exhaustive exploration as
was possible for exploring options and mechanisms that the tools provided, with the
intention of exploring the (vast) design space and this required long hours as a result of
the fact that producing FPGA designs, building implementations, generating bitstreams

and debugging etc. processes are slow.

Thus the development/debug cycle for each design option case in this thesis re-
quired a long time, which limited the amount of data that could be gathered during the
time available which would contribute towards the aim of consolidating a methodol-
ogy. There is now a growing body of literature that is beginning to provide other data
that might be useful in a future step to consolidate the lessons being learned across the
published studies. However, many of theses studies tend to present a "best" design,
without showing the path (and trade-offs) explored to achieve that design, which limits
their use when attempting to generalize.

Despite that this thesis did not fully achieve this target, it does contribute by pro-
viding data from a wide exploration of two cases studies using three HLS tools with a

considerable variation of FPGA designs which can hopefully feed into work towards

9.2. SUMMARY OF CONTRIBUTIONS 215

a future methodology consolidation. In addition, many lessons can be learnt from this
research, as the SWM benchmark is a stencil-based algorithm, a common pattern in
HPC applications; And the research findings can also be applied to other HLS tools

such as Vitis.

9.2 Summary of Contributions

The contributions in this thesis have resulted from a thorough design space explo-
ration of the utilization of one set of Xilinx HLS tools (SDSoC OpenCL, SDSoC
C++, Vivado) to exploit concurrency types in two weather and climate-related appli-
cations targeting an SOC Xilinx Ultrascale+ FPGA. The following points summarise

thesis contributions.

An exploratory study of the use of HLS mechanisms and options available from
a high-level HLS technology approach, SDSoC OpenCL, and a lower-level HLS ap-
proach, Vivado, for mapping the concurrency in a single candidate HPC kernel from
the Shallow Water SWM application to a Xilinx Ultrascale+ FPGA. Twenty two FPGA
designs variation were created for conducting the exploration of mapping instruction-
level-, data- and functional-parallelism. Variants of host CPU techniques from the
OpenCL language and kernel code techniques such as Dataflowand Multiple kernels
were utilized for conducting this exploration. Moreover, four five-kernel SWM FPGA
designs were created to explore the technology options for managing multiple SWM
kernels and kernel-to-kernel communications mechanisms, such as DDR memory, on-
chip memory and pipes, to map the whole HPC application to a Xilinx Ultrascale+
FPGA.

An exploratory study for investigating the extent to which it is possible to achieve
replication of an existing FPGA design for the MatVec kernel, created using the (lower-
level) HLS tool Vivado, in the (higher-level) HLS tools SDSoC OpenCL and SDSoC
C++. Eleven FPGA design variations were created to explore similarities, differences,
and options for design decisions, including optimization levels and mapping methods
for the host CPU codes, the kernel codes, and the FPGA hardware system designs in
the three HLS approach. Various optimization techniques and methods in the host,
kernel code, and at the hardware-level were explored. Three MatVec hardware designs

were presented and discussed at a low-level of abstraction.

A comparison study and analysis was presented of the performance (execution

216 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

time and overall application time), resource usage, and programmability issues be-
tween the SDSoC OpenCL and Vivado HLS for mapping the candidate SWM sin-
gle kernel L100 to a Xilinx Ultrascale+ FPGA. In addition, a comparison study was
presented of the performance, resource usage and programmability of the different
possible solutions of mapping the SWM multi-kernel and methods for managing the
kernel-to-kernel communication. We compared and presented a detailed analysis of
the best performing design variations out of the twenty two L100 designs created and
the four five-kernel SWM FPGA designs.

A comparison study and analysis was presented of Vivado HLS and SDSoC
OpenCL and SDSoC C++ MatVec implementations along with an analysis of the tech-
niques available to be used in the three approaches with a focus on the differences in
the three approaches which result in their performance, scalability and resource usage,
along with a discussion of programmability issues. We compared and discussed the
source of inefficiencies and the design limitations in the three best performing MatVec
FPGA designs. We also briefly compared the FPGA design’s performance against a
multi-core CPU MatVec design.

9.3 General Recommendations

These recommendations and insights are concluded from the learned lessons in this
thesis. In porting HPC kernels to FPGAs, we recommend identifying first the concur-
rency types in the kernel. In addition, studying the possible best options for mapping
the identified concurrency types and finding the best trade-off mapping mechanism op-
tion. In selecting the HLS tool, it is recommended to understand the trad-off in how
deep hardware knowledge is needed to utilize that HLS tool, which would affect pro-
ductivity and performance gaining. It is important to consider studying the trade-off
between the kernel’s problem size and the level of optimization that can be applied, as
this trade-off relates to the available FPGA resources. If the FPGA resources trade-off
allows for creating multiple IP blocks, it is recommended to consider applying spatial
parallelism over duplicated IP blocks. It is recommended to utilize the dataflow style
within the IP block to explore more parallelism if the kernel’s instructions are inde-
pendent. In debugging design bugs, (first) testing the kernel’s output is recommended.
Dataflow and pipes coding styles are the most prone to error. Therefore, applying these
two coding styles with careful data dependency and memory bandwidth management

is recommended. In the Vivado HLS approach, it is recommended to carefully manage

9.4. LIMITATIONS AND FUTURE WORK 217

the data port width and data/IP block addresses, as they cause the most errors.

9.4 Limitations and Future Work

This thesis explored possible solutions and options for mapping two weather and cli-
mate HPC application to FPGAs which are available to the HPC programmer from two
high-level HLS tools and one lower-level HLS tool.

The concurrency mapping designs we have explored in the two exploratory studies
have performance limitations due to the cost of data movement. Although we applied
optimization strategies to improve the data movement, the results show that a more
in-depth study is needed in the future. The following data movement optimization
strategies can be the subject of future work.

Utilise On-chip global memory: BRAMs can be used as OpenCL global memory.
The use of global memory shared between kernels would reduce the overhead of DDR
access. In addition, on-chip global memory would allow for future study of the perfor-
mance of OpenCL NDRange kernels. We have seen that using on-chip global memory
in the Vivado designs has performance benefits, but its use currently requires high pro-
gramming effort. On-chip global memory is not supported in the SDSoC HLS tool
2018.2 used in this work or in newer versions up to 2019 (though there was an attempt
to support it in earlier versions).

Utilising the full width of DDR ports: The second optimization strategy is utiliz-
ing the full width of the DDR ports. This designs in this thesis, using either SDSoC
OpenCL/C++ or Vivado, transfer data with only the bit-width of the data type (double
or float). Attempts to widen the data transfer width were left to the tools’ compiler
to decide. We have seen that in only one case (SDSoC OpenCL MatVec designs) the
xocc compiler has chosen to apply 512 bit-width. This method would considerably
reduce the data-movement overhead. The manual attempts to apply this strategy were
unsuccessful. To apply such a method, we needed to use a bigger data type such as
double16. However, this data type is not supported in the SDSoC HLS tool 2018.2.

Utilise DDR memory banks: The third strategy is the utilization of the DDR mem-
ory banks. For example, the DDR memory on the Zynq UltraScale+ MPSoC ZCU102
board has four memory banks; these banks can be accessed from the kernel in paral-
lel. Utilizing this method would reduce the data-movement overhead and improve the
performance of the implementation. This feature is supported in the new Xilinx tool,

Vitis, but this tool appeared too late in the timescale of this thesis, and is, therefore, out

218 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

of the thesis scope and its use subject to future work.

Designing a solution in the Vivado approach involves having to consider selecting
from a great deal of various design options and methods. In this thesis we decided
to follow certain design choices that suited the study objectives and scope. There are
other interesting design options, such as the use of data streaming (pipes), alterna-
tive data movement engines and other uses of DDR memory which are left to future
investigations.

This thesis focused on exploring the higher level of options and mechanisms avail-
able in the selected HLS tool, with the perspective of a traditional HPC programmer;
a future in-depth study of low-level FPGA hardware aspects could help improve and
understand the outcome of the user-guided, but auto-compiled designs resulting from

the tools.

Bibliography

[AEBT16]

[AFH*19]

[Alg20]

[AMI21]

[ARA21a]

[ARA21b]

Mohamed Abouzahir, Abdelhafid Elouardi, Samir Bouaziz, Omar Ham-
mami, and Ismail Ali. High-level synthesis for FPGA design based-
SLAM application. In 2016 IEEE/ACS 13th International Conference of
Computer Systems and Applications (AICCSA), pages 1-8. IEEE, 2016.

Samantha V Adams, Rupert W Ford, M Hambley, JM Hobson, I Kav¢ic,
Christopher M Maynard, Thomas Melvin, Eike Hermann Miiller,
S Mullerworth, AR Porter, et al. LFRic: Meeting the challenges of
scalability and performance portability in Weather and Climate models.
Journal of Parallel and Distributed Computing, 132:383-396, 2019.

Moteb Alghamdi. Design space exploration of concurrency mapping
to fpgas with opencl: A case study with shallow water model kernel.
In Proceedings of the International Workshop on OpenCL, pages 1-1,
2020.

Mikhail Asiatici, Damian Maiorano, and Paolo Ienne. How many CPU
cores is an FPGA worth? Lessons learned from accelerating string sort-
ing on a CPU-FPGA system. Journal of Signal Processing Systems,
pages 1-13, 2021.

Moteb Alghamdi, Graham Riley, and Mike Ashworth. A Comparison
of Vivado HLS, SDSoC C++ and OpenCL for Porting a Matrix-vector-
based Climate model mini-app to FPGAs. In PDPTA’21-The 27th Int’l
Conference on Parallel and Distributed Processing Techniques and Ap-

plications, 2021.

Moteb Alghamdi, Graham Riley, and Mike Ashworth. Concurrency
Mapping to FPGAs with OpenCL: A Case Study with a Shallow Water
Kernel. In CSC’21-The 19th Int’l Conf on Scientific Computing, 2021.

219

220

[ARAM19]

[Ash10]

[BD19]

[Ber19]

[BFV*17]

[BKB21]

[BNM20]

[Bro19]

BIBLIOGRAPHY

Mike Ashworth, Graham D Riley, Andrew Attwood, and John Mawer.
First steps in porting the LFRic weather and climate model to the FPGAs

of the EuroExa architecture. Scientific Programming, 2019.

Peter J Ashenden. The designer’s guide to VHDL, volume 3. Morgan
Kaufmann, 2010.

Nick Brown and David Dolman. It’s all about data movement: Optimis-
ing fpga data access to boost performance. In 2019 IEEE/ACM Interna-
tional Workshop on Heterogeneous High-performance Reconfigurable
Computing (H2RC), pages 1-10. IEEE, 2019.

BertonDSP. GPU vs FPGA Performance Comparison, Berton White Pa-
per BWPQOO1 v1.0. http://www.bertendsp.com/pdf/whitepaper/
BWPO01_GPU_vs_FPGA_Performance_Comparison_vl.0.pdf.,
2019. [Online; accessed 12-January-2021].

Jaume Bosch, Antonio Filgueras, Miquel Vidal, Daniel Jimenez-
Gonzalez, Carlos Alvarez, and Xavier Martorell. Exploiting parallelism
on GPUs and FPGAs with OmpSs. In Proceedings of the 1st Workshop
on AutotuniNg and aDaptivity AppRoaches for Energy efficient HPC
Systems, pages 1-5, 2017.

Nick Brown, Mark Klaisoongnoen, and Oliver Thomson Brown. Opti-
misation of an fpga credit default swap engine by embracing dataflow
techniques. In 2021 IEEE International Conference on Cluster Comput-
ing (CLUSTER), pages 775-778. IEEE, 2021.

Andrew Boutros, Eriko Nurvitadhi, Rui Ma, Sergey Gribok, Zhipeng
Zhao, James C. Hoe, Vaughn Betz, and Martin Langhammer. Be-
yond Peak Performance: Comparing the Real Performance of Al-
Optimized FPGAs and GPUs. In 2020 International Conference on
Field-Programmable Technology (ICFPT), pages 10-19, 2020.

Nick Brown. Exploring the acceleration of the Met Office NERC cloud
model using FPGAs. In International Conference on High Performance

Computing, pages 567-586. Springer, 2019.

http://www. bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_ Performance_Comparison_v1.0.pdf.
http://www. bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_ Performance_Comparison_v1.0.pdf.

BIBLIOGRAPHY 221

[Bro21]

[BRS13]

[CBM*18]

[CCST18]

[CFH* 18]

[Chal2]

[CHPB21]

[CLN*11]

[DRP11]

Nick Brown. Porting incompressible flow matrix assembly to fpgas for
accelerating hpc engineering simulations. In 2021 IEEE/ACM Interna-
tional Workshop on Heterogeneous High-performance Reconfigurable
Computing (H2RC), pages 9-20. IEEE, 2021.

David Bacon, Rodric Rabbah, and Sunil Shukla. FPGA Programming
for the Masses: The programmability of FPGAs must improve if they
are to be part of mainstream computing. Queue, 11(2):40-52, 2013.

Georgios Christodoulis, Francois Broquedis, Olivier Muller, Manuel
Selva, and Frédéric Desprez. An FPGA target for the StarPU heteroge-
neous runtime system. In 2018 13th International Symposium on Recon-
figurable Communication-centric Systems-on-Chip (ReCoSoC), pages
1-8. IEEE, 2018.

Mattia Cacciotti, Vincent Camus, Jeremy Schlachter, Alessandro Pez-
zotta, and Christian Enz. Hardware acceleration of HDR-image tone
mapping on an FPGA-CPU platform through high-level synthesis. In
2018 31st IEEE International System-on-Chip Conference (SOCC),
pages 158-162. IEEE, 2018.

Jason Cong, Zhenman Fang, Yuchen Hao, Peng Wei, Cody Hao Yu,
Chen Zhang, and Peipei Zhou. Best-effort FPGA programming: A few
steps can go a long way. arXiv preprint arXiv:1807.01340, 2018.

Julius Chang. General circulation models of the atmosphere, volume 17.
Elsevier, 2012.

Walther Carballo-Herndndez, Maxime Pelcat, and Francois Berry. Why
is FPGA-GPU Heterogeneity the Best Option for Embedded Deep Neu-
ral Networks? arXiv preprint arXiv:2102.01343, 2021.

Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vis-
sers, and Zhiru Zhang. High-level synthesis for FPGAs: From proto-
typing to deployment. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 30(4):473-491, 2011.

Rob Dimond, Sébastien Racaniere, and Oliver Pell. Accelerating large-
scale HPC Applications using FPGAs. In 2011 IEEE 20th Symposium
on Computer Arithmetic, pages 191-192. IEEE, 2011.

222

[DVKGO5]

[FOS'14]

[GBLS16]

[GCDJ19]

[GF20]

[GFY*14]

[GLNT14]

BIBLIOGRAPHY

Yong Dou, Stamatis Vassiliadis, Georgi Krasimirov Kuzmanov, and
Georgi Nedeltchev Gaydadjiev. 64-bit floating-point FPGA matrix mul-
tiplication. In Proceedings of the 2005 ACM/SIGDA 13th international
symposium on Field-programmable gate arrays, pages 8695, 2005.

Jeremy Fowers, Kalin Ovtcharov, Karin Strauss, Eric S Chung, and Greg
Stitt. A high memory bandwidth fpga accelerator for sparse matrix-
vector multiplication. In 2014 IEEE 22nd Annual International Sym-

posium on Field-Programmable Custom Computing Machines, pages

36-43. IEEE, 2014.

Paul Grigoras, Pavel Burovskiy, Wayne Luk, and Spencer Sherwin. Op-
timising sparse matrix vector multiplication for large scale fem prob-
lems on fpga. In 2016 26th International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 1-9. IEEE, 2016.

Matthias Goebel, Kai Norman Clasen, Robert Drehmel, and Ben Ju-
urlink. Evaluating the Memory Architecture of Next-Generation FPGA-
SoCs for HPC. In 2019 International Conference on High Performance
Computing & Simulation (HPCS), pages 209-216. IEEE, 2019.

Atharva Gondhalekar and Wu-chun Feng. Exploring FPGA Optimiza-
tions in OpenCL for Breadth-First Search on Sparse Graph Datasets. In
2020 30th International Conference on Field-Programmable Logic and
Applications (FPL), pages 133-137. IEEE, 2020.

Lin Gan, Haohuan Fu, Chao Yang, Wayne Luk, Wei Xue, Oskar Mencer,
Xiaomeng Huang, and Guangwen Yang. A highly-efficient and green
data flow engine for solving euler atmospheric equations. In 2014 24th

International Conference on Field Programmable Logic and Applica-
tions (FPL), pages 1-6. IEEE, 2014.

Nithin George, HyoukJoong Lee, David Novo, Tiark Rompf, Kevin J
Brown, Arvind K Sujeeth, Martin Odersky, Kunle Olukotun, and Paolo
Ienne. Hardware system synthesis from domain-specific languages. In
Field Programmable Logic and Applications (FPL), 2014 24th Interna-
tional Conference on, pages 1-8. IEEE, 2014.

BIBLIOGRAPHY 223

[GLR19] Georgios Georgis, George Lentaris, and Dionysios Reisis. Acceleration
techniques and evaluation on multi-core CPU, GPU and FPGA for im-
age processing and super-resolution. Journal of Real-Time Image Pro-
cessing, 16(4):1207-1234, 2019.

[HLC*13] Qijing Huang, Ruolong Lian, Andrew Canis, Jongsok Choi, Ryan Xi,
Stephen Brown, and Jason Anderson. The effect of compiler optimiza-
tions on high-level synthesis for fpgas. In 2013 IEEE 21st Annual Inter-

national Symposium on Field-Programmable Custom Computing Ma-
chines, pages 89-96. IEEE, 2013.

[HM17] Nicole Hemsoth and Timothy Prickett Morgan. FPGA Frontiers: New
Applications in Reconfigurable Computing. Next Platform Press, am,
2017.

[HM21] Rania O Hassan and Hassan Mostafa. Implementation of deep neural
networks on FPGA-CPU platform using Xilinx SDSOC. Analog Inte-
grated Circuits and Signal Processing, 106(2):399-408, 2021.

[HP19] John L Hennessy and David A Patterson. A new golden age for com-
puter architecture. Communications of the ACM, 62(2):48-60, 2019.

[HSS88] G-R Hoffmann, PN Swarztrauber, and RA Sweet. Aspects of using
multiprocessors for meteorological modelling. In Multiprocessing in

meteorological models, pages 125-196. Springer, 1988.

[Int] Intel HARP system. https://cpufpga.files.wordpress.com/
2016/04/harp_isca_2016_final.pdf. Accessed: 2019-11-12.

[Int20] Intel. Intel FPGAs SDK for OpenCL. 2-https://www.intel.co.uk/
content/www/uk/en/software/programmable/sdk-for-opencl/

overview.html, 2020. [Online; accessed 01-September-2020].

[Int21] Intel. Understanding peak floating-point perfor-
mance claims. https://www.intel.com/content/
dam/www/programmable/us/en/pdfs/literature/wp/
wp—01222-understanding-peak-floating-point-performance-claims.
pdf, 2021. [Online; accessed 12-January-2021].

https://cpufpga.files.wordpress.com/2016/04/harp_isca_2016_final.pdf
https://cpufpga.files.wordpress.com/2016/04/harp_isca_2016_final.pdf
2- https://www.intel.co.uk/content/www/uk/en/software/programmable/sdk-for-opencl/overview.html
2- https://www.intel.co.uk/content/www/uk/en/software/programmable/sdk-for-opencl/overview.html
2- https://www.intel.co.uk/content/www/uk/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf

224

[JF20]

[JZ16]

[Ken19]

[KG17]

[Khr21]

[KHZ16]

[KJPN10]

[KPJT21]

[KPK122]

BIBLIOGRAPHY

Zheming Jin and Hal Finkel. Population Count on Intel® CPU, GPU
and FPGA. In 2020 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), pages 432-439, 2020.

Qi Jia and Huiyang Zhou. Tuning stencil codes in OpenCL for FP-
GAs. In 2016 IEEE 34th International Conference on Computer Design
(ICCD), pages 249-256. 1IEEE, 2016.

Tobias Kenter. Invited Tutorial: OpenCL design flows for Intel and Xil-
inx FPGAs: Using common design patterns and dealing with vendor-
specific differences. In FSP Workshop 2019; Sixth International Work-
shop on FPGAs for Software Programmers, pages 1-8. VDE, 2019.

Lester Kalms and Diana Gohringer. Exploration of opencl for fpgas us-
ing sdaccel and comparison to gpus and multicore cpus. In 2017 27th
International Conference on Field Programmable Logic and Applica-
tions (FPL), pages 1-4. IEEE, 2017.

Khronos. opencl-cplusplus Specs. https://www.khronos.org/
registry/OpenCL/specs/opencl-cplusplus-1.2.pdf, 2021. [On-
line; accessed 12-January-2021].

Dirk Koch, Frank Hannig, and Daniel Ziener. FPGAs for Software Pro-

grammers. Springer, 2016.

Vinay BY Kumar, Siddharth Joshi, Sachin B Patkar, and H Narayanan.
FPGA based high performance double-precision matrix multiplication.

International journal of parallel programming, 38(3):322-338, 2010.

Martin Karp, Artur Podobas, Niclas Jansson, Tobias Kenter, Christian
Plessl, Philipp Schlatter, and Stefano Markidis. High-perfomance spec-
tral element methods on field-programmable gate arrays: Implemen-
tation, evaluation, and future projection. In 35rd IEEE International

FParallel & Distributed Processing Symposium, 2021.

Martin Karp, Artur Podobas, Tobias Kenter, Niclas Jansson, Christian
Plessl, Philipp Schlatter, and Stefano Markidis. A high-fidelity flow
solver for unstructured meshes on field-programmable gate arrays: De-

sign, evaluation, and future challenges. In International Conference on

https://www.khronos.org/registry/OpenCL/specs/opencl-cplusplus-1.2.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-cplusplus-1.2.pdf

BIBLIOGRAPHY 225

[KPZ"16]

[KSFNA21]

[LWY*17]

[LY16]

[Max20]

[MGMG11]

[MML]

[MPK21]

High Performance Computing in Asia-Pacific Region, pages 125-136,
2022.

David Koeplinger, Raghu Prabhakar, Yaqi Zhang, Christina Delimitrou,
Christos Kozyrakis, and Kunle Olukotun. Automatic generation of effi-
cient accelerators for reconfigurable hardware. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA),
pages 115-127. Ieee, 2016.

Tobias Kenter, Adesh Shambhu, Sara Faghih-Naini, and Vadym
Aizinger. Algorithm-hardware co-design of a discontinuous galerkin
shallow-water model for a dataflow architecture on fpga. In Proceedings

of the Platform for Advanced Scientific Computing Conference, pages
1-11, 2021.

Yingyi Luo, Xianshan Wen, Kazutomo Yoshii, Seda Ogrenci-Memik,
Gokhan Memik, Hal Finkel, and Franck Cappello. Evaluating irregular
memory access on opencl fpga platforms: A case study with xsbench.
In 2017 27th International Conference on Field Programmable Logic
and Applications (FPL), pages 1-4. IEEE, 2017.

Huan Li and Wenhua Ye. Efficient implementation of FPGA based on
Vivado high level synthesis. In 2016 2nd IEEE International Conference
on Computer and Communications (ICCC), pages 2810-2813. IEEE,
2016.

Maxeler. Maxeler SDK. https://www.maxeler.com/products/
desktop/, 2020. [Online; accessed 01-September-2020].

Aaftab Munshi, Benedict Gaster, Timothy G Mattson, and Dan Gins-
burg. OpenCL programming guide. Pearson Education, 2011.

ALEKSANDAR MILINKOVIC, STEVAN MILINKOVIC, and
LJUBOMIR LAZIC. FPGA based dataflow accelerator for large matrix

multiplication.

Johannes Menzel, Christian Plessl, and Tobias Kenter. The strong scal-
ing advantage of fpgas in hpc for n-body simulations. ACM Transactions
on Reconfigurable Technology and Systems (TRETS), 15(1):1-30, 2021.

https://www.maxeler.com/products/desktop/
https://www.maxeler.com/products/desktop/

226

[MV14]

[MVBG+12]

[MWT+20]

[NSP*15]

[NSP'16]

[NWS*20]

[Off21]

[0G20]

BIBLIOGRAPHY

Sparsh Mittal and Jeffrey S Vetter. A survey of methods for analyz-
ing and improving GPU energy efficiency. ACM Computing Surveys
(CSUR), 47(2):1-23, 2014.

Wim Meeus, Kristof Van Beeck, Toon Goedemé, Jan Meel, and Dirk
Stroobandt. An overview of today’s high-level synthesis tools. Design
Automation for Embedded Systems, 16(3):31-51, 2012.

Liang Mu, Tao Wei, YY Tao, Chang Liang, and XJ Zhang. Design of
Medical Image Hardware Acceleration Platform by SDSoC for ZYNQ
SoC. Journal of Image and Graphics, 8(4):98-106, 2020.

Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair
Fort, Andrew Canis, Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fab-
rizio Ferrandi, et al. A survey and evaluation of FPGA high-level synthe-
sis tools. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 35(10):1591-1604, 2015.

Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair
Fort, Andrew Canis, Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fab-
rizio Ferrandi, et al. A survey and evaluation of FPGA high-level synthe-
sis tools. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 35(10):1591-1604, 2016.

Tan Nguyen, Samuel Williams, Marco Siracusa, Colin MacLean, Dou-
glas Doerfler, and Nicholas J. Wright. The Performance and En-
ergy Efficiency Potential of FPGAs in Scientific Computing. In 2020
IEEE/ACM Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS), pages 8—19, 2020.

The Met Office. LFRic-Model: A modelling system fit for
future computers-Met Office. https://www.metoffice.gov.uk/
research/approach/modelling-systems/1fric, 2021. [Online;
accessed 12-January-2021].

Optimisation-Guide. Xilinx SDAccel optimisations guide.
https://www.xilinx.com/support/documentation/sw_manuals/
x11inx2017_4/ugl207-sdaccel-optimization-guide.pdf, 2020.
[Online; accessed 01-September-2020].

https://www.metoffice.gov.uk/research/approach/modelling-systems/lfric
https://www.metoffice.gov.uk/research/approach/modelling-systems/lfric
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1207-sdaccel-optimization-guide.pdf

BIBLIOGRAPHY 227

[OPAM21]

[Pap12]

[PFC20]

[PKB*16]

[Pro20]

[PZMM17]

[QDL*19]

[Sad75]

[Scall]

Guillermo Oyarzun, Daniel Peyrolon, Carlos Alvarez, and Xavier Mar-
torell. An fpga cached sparse matrix vector product (spmv) for un-
structured computational fluid dynamics simulations. arXiv preprint
arXiv:2107.12371, 2021.

Michail Emmanouil Pappas. Parallelisation of Shallow Water Simula-
tion for Heterogeneous Architectures. PhD thesis, MSc dissertation for
University of Manchester, 2012.

Nuno Paulino, Jodo Canas Ferreira, and Jodo MP Cardoso. Optimizing
OpenCL Code for Performance on FPGA: k-Means Case Study With
Integer Data Sets. IEEE Access, 8:152286—152304, 2020.

Raghu Prabhakar, David Koeplinger, Kevin J Brown, HyoukJoong Lee,
Christopher De Sa, Christos Kozyrakis, and Kunle Olukotun. Generat-
ing configurable hardware from parallel patterns. ACM SIGARCH Com-
puter Architecture News, 44(2):651-665, 2016.

European Exascale Projects. European Exascale Projects. http:
//exascale-projects.eu/, 2020. [Online; accessed 01-September-
2020].

Artur Podobas, Hamid Reza Zohouri, Naoya Maruyama, and Satoshi
Matsuoka. Evaluating high-level design strategies on FPGAs for high-
performance computing. In 2017 27th International Conference on
Field Programmable Logic and Applications (FPL), pages 1-4. IEEE,
2017.

Murad Qasaimeh, Kristof Denolf, Jack Lo, Kees Vissers, Joseph Zam-
breno, and Phillip H. Jones. Comparing Energy Efficiency of CPU, GPU
and FPGA Implementations for Vision Kernels. In 2019 IEEE Interna-
tional Conference on Embedded Software and Systems (ICESS), pages
1-8, 2019.

Robert Sadourny. The dynamics of finite-difference models of
the shallow-water equations. Journal of the Atmospheric Sciences,
32(4):680-689, 1975.

Matthew Scarpino. OpenCL in action: how to accelerate graphics and

computations. 2011.

http://exascale-projects.eu/
http://exascale-projects.eu/

228

[SEEZ19]

[SG20]

[SHY14]

[SKNT16]

[SMB*]

[SP11]

[Svel6]

[SVK]

[SVKI18]

BIBLIOGRAPHY

Kholoud Shata, Marwa K Elteir, and Adel A El-Zoghabi. Optimized
implementation of OpenCL kernels on FPGAs. Journal of Systems Ar-
chitecture, 97:491-505, 2019.

SDSoC-Guide. Xilinx SDSoC development guide. https://www.
xilinx.com/html_docs/x11inx2018_1/sdsoc_doc/index.html,

2020. [Online; accessed 01-September-2020].

Kentaro Sano, Yoshiaki Hatsuda, and Satoru Yamamoto. Multi-FPGA
accelerator for scalable stencil computation with constant memory
bandwidth. [EEE Transactions on Parallel and Distributed Systems,
25(3):695-705, 2014.

Kentaro Sano, Fumiya Kono, Naohito Nakasato, Alexander Vazhenin,
and Stanislav Sedukhin. Stream computation of shallow water equa-
tion solver for FPGA-based 1D tsunami simulation. ACM SIGARCH
Computer Architecture News, 43(4):82—-87, 2016.

Sasa Stojanovic, Veljko Milutinovic, Dragan Bojic, Miroslav Bojovic,
Oliver Pell, Michael J Flynn, and Oskar Mencer. Comparing MultiCore,
ManyCore, and DataFlow SuperComputers: Acceleration, Power, and

Size.

Avinash Sodani and C Processor. Race to exascale: Opportunities and
challenges. In Keynote at the Annual IEEE/ACM 44th Annual Interna-

tional Symposium on Microarchitecture, 2011.

Bo Joel Svensson. Exploring OpenCL Memory Throughput on the
Zynq. Technical report, Technical Report, 2016.

Leonardo Solis-Vasquez and Andreas Koch. A Case Study in Us-
ing OpenCL on FPGAs: Creating an Open-Source Accelerator of the
AutoDock Molecular Docking Software.

Leonardo Solis-Vasquez and Andreas Koch. A case study in using
opencl on fpgas: Creating an open-source accelerator of the autodock
molecular docking software. In FSP Workshop 2018; Fifth Interna-
tional Workshop on FPGAs for Software Programmers, pages 1-10.
VDE, 2018.

https://www.xilinx.com/html_docs/xilinx2018_1/sdsoc_doc/index.html
https://www.xilinx.com/html_docs/xilinx2018_1/sdsoc_doc/index.html

BIBLIOGRAPHY 229

[SW19]

[TMO8]

[VH20]

[VHKF16]

[VN14]

[Vre94]

[WHU18]

[Wina]

[Winb]

[Winc]

Benjamin Carrion Schafer and Zi Wang. High-Level Synthesis De-
sign Space Exploration: Past, Present, and Future. [EEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
39(10):2628-2639, 2019.

Donald Thomas and Philip Moorby. The Verilog® Hardware Descrip-
tion Language. Springer Science & Business Media, 2008.

Vivado-HLS. Xilinx Vivado SDK. https://www.xilinx.com/
products/design-tools.html, 2020. [Online; accessed 01-
September-2020].

Anshuman Verma, Ahmed E Helal, Konstantinos Krommydas, and Wu-
Chun Feng. Accelerating workloads on FPGAs via OpenCL: A case
study with opendwarfs. Technical report, Department of Computer Sci-

ence, Virginia Polytechnic Institute & State ..., 2016.

Mario Vestias and Horacio Neto. Trends of CPU, GPU and FPGA for
high-performance computing. In 2014 24th International Conference on
Field Programmable Logic and Applications (FPL), pages 1-6. IEEE,
2014.

Cornelis Boudewijn Vreugdenhil. Numerical methods for shallow-

water flow, volume 13. Springer Science & Business Media, 1994.

Hasitha Muthumala Waidyasooriya, Masanori Hariyama, and Kunio
Uchiyama. Design of FPGA-based computing systems with OpenCL.
Springer, 2018.

Intel-products. https://www.intel.com/content/www/us/en/
products/programmable.html. Accessed: 2018-08-26.

OpenCL section in Xilinx document. https://www.
xilinx.com/support/documentation/sw_manuals/

ugl207-sdaccel-performance-optimization.pdf. Accessed:
2019-11-12.

Programming Hardware Functions . https://china.xilinx.com/
html docs/x11inx2019 1/sdsoc_doc/huil519743141622.html.
Accessed: 2022-02-11.

https://www.xilinx.com/products/design-tools.html
https://www.xilinx.com/products/design-tools.html
https://www.intel.com/content/www/us/en/products/programmable.html
https://www.intel.com/content/www/us/en/products/programmable.html
https://www.xilinx.com/support/documentation/sw_manuals/ug1207-sdaccel-performance-optimization.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug1207-sdaccel-performance-optimization.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug1207-sdaccel-performance-optimization.pdf
https://china.xilinx.com/html_docs/xilinx2019_1/sdsoc_doc/hui1519743141622.html
https://china.xilinx.com/html_docs/xilinx2019_1/sdsoc_doc/hui1519743141622.html

230

[Wind]

[Wine]

[Xil]

[Xil19]

[Xil20]

[Xil21a]

[Xil21b]

[Xil21c]

[Xil21d]

BIBLIOGRAPHY

Xilinx-products-devices. https://www.xilinx.com/products/
silicon-devices.html. Accessed: 2018-08-26.

Xilinx SOC FPGAs board. https://www.xilinx.com/products/
boards—-and-kits/ek-ul-zcul02-g.html. Accessed: 2019-11-12.

Xilinx PCI Express FPGAs board. https://www.
xilinx.com/support/documentation/data_sheets/
ds923-virtex-ultrascale-plus.pdf. Accessed: 2019-11-12.

Xilinx. Xilinx SDSoC Environment User Guide UG1027 (v2019.1).
https://www.xilinx.com/support/documentation/sw_manuals/
x11inx2019_1/ugl027-sdsoc-user—guide.pdf, 2019. [Online;
accessed 01-September-2020].

Xilinx. Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit.
https://www.xilinx.com/products/boards-and-kits/
ek-ul-zcul02-g.html, 2020. [Online; accessed 01-September-
2020].

Xilinx. AXI Reference Guide. https://www.xilinx.com/support/
documentation/ip_documentation/axi_ref_guide/v13_4/
ug761_axi_reference_guide.pdf, 2021. [Online; accessed 12-
January-2021].

Xilinx. Bare-Metal System Running on Both Cortex-A9 Pro-
CESSOrs. https://www.xilinx.com/support/documentation/
application_notes/xappl079-amp-bare-metal-cortex-a9.pdf,
2021. [Online; accessed 12-January-2021].

Xilinx. SDSoC Development Environment Help. https:
//www.xilinx.com/support/documentation/sw_manuals/
x111inx2018_2/ugl207-sdaccel-optimization-guide.pdf,
2021. [Online; accessed 12-January-2021].

Xilinx. Vivado Design Suite User Guide. https://www.xilinx.
com/content/dam/xilinx/support/documentation/sw_manuals/
x111nx2020_2/ug902-vivado-high-level-synthesis.pdf#
nameddest=xApplyingOptimizationDirectives, 2021. [Online;
accessed 12-January-2021].

https://www.xilinx.com/products/silicon-devices.html
https://www.xilinx.com/products/silicon-devices.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1079-amp-bare-metal-cortex-a9.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1079-amp-bare-metal-cortex-a9.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf#nameddest=xApplyingOptimizationDirectives
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf#nameddest=xApplyingOptimizationDirectives
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf#nameddest=xApplyingOptimizationDirectives
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx2020_2/ug902-vivado-high-level-synthesis.pdf#nameddest=xApplyingOptimizationDirectives

BIBLIOGRAPHY 231

[Xil21e]

[Xil21f]

[Xil21g]

[Xil21h]

[XO20]

[XX20]

[Zoh18]

[ZP20]

Xilinx. Vivado Design Suite User Guide. https://www.xilinx.
com/support/documentation/sw_manuals/xilinx2017_1/
ug910-vivado-getting-started.pdf, 2021. [Online; accessed
12-January-2021].

Xilinx. Vivado Design Suite User Guide. https://www.xilinx.
com/support/documentation/sw_manuals/xi1inx2018_3/
ug903-vivado-using-constraints.pdf, 2021. [Online; accessed
12-January-2021].

Xilinx. Vivado Design Suite User Guide Designing with IP.
https://www.xilinx.com/support/documentation/sw_manuals/
x11inx2017_1/ug896-vivado-ip.pdf, 2021. [Online; accessed
12-January-2021].

Xilinx. Xilinx SDSoC programmers Guide. https://www.xilinx.
com/support/documentation/sw_manuals/x11inx2018_2/
ugl278-sdsoc-programmers—quide.pdf, 2021. [Online; accessed
12-January-2021].

Xilinx-OpenCL. Xilinx OpencL. documentation. https:
//www.xilinx.com/support/documentation/sw_manuals/
ugl207-sdaccel-performance-optimization.pdf, 2020. [Online;
accessed 01-September-2020].

Chong Xiong and Ning Xu. Performance Comparison of BLAS on
CPU, GPU and FPGA. In 2020 IEEE 9th Joint International Infor-
mation Technology and Artificial Intelligence Conference (ITAIC), vol-
ume 9, pages 193-197, 2020.

Hamid Reza Zohouri. High performance computing with FPGAs and
OpenCL. arXiv preprint arXiv:1810.09773, 2018.

Hanqing Zeng and Viktor Prasanna. GraphACT: Accelerating GCN
training on CPU-FPGA heterogeneous platforms. In Proceedings of the
2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 255-265, 2020.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug910-vivado-getting-started.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug910-vivado-getting-started.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug910-vivado-getting-started.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug903-vivado-using-constraints.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug903-vivado-using-constraints.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug903-vivado-using-constraints.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug896-vivado-ip.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug896-vivado-ip.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug1207-sdaccel-performance-optimization.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug1207-sdaccel-performance-optimization.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug1207-sdaccel-performance-optimization.pdf

232

[ZPM18]

BIBLIOGRAPHY

Hamid Reza Zohouri, Artur Podobas, and Satoshi Matsuoka. Combined
spatial and temporal blocking for high-performance stencil computation
on FPGAs using OpenCL. In Proceedings of the 2018 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages
153-162, 2018.

Appendix A

The Shallow Water Model Source
Code

A.1 SWM Nine Kernels Host Source Code

//SWM OpenCL Host Code

#include "xcl2.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <vector>
#include <algorithm>
#include <cstdio>
#include <string>
#include <ctime>

#include <time.h>
using namespace std;
int main(int argc, char **argv) {

// Grid size
int M = 64, N = 64;

233

234 APPENDIX A. THE SHALLOW WATER MODEL SOURCE CODE

int M LEN = M + 1, N_LEN = N + 1;
int ELEMENTS = M_LEN * N_LEN;
std::cout << "number of ELEMENTS:" << ELEMENTS << endl;

// simulation run iterations
int ITMAX = 4000;

int ncycle;

int i, 3;

int err;

float dt = 90;

float tdt = dt;

float dx 100000.0;
float dy = 100000.0;
float fsdx (4. / dx);
float fsdy (4. / dy);
float a = 1000000.0;
float alpha = 0.001;
float el = (N * dx);
float pi = (4.0 * atanf(1.0));
float tpi = pi + pi;

float di = (tpi / M);
float dj = (tpi / N);
float pcf = ((pi * pi * a * a) / (el * el));

std::vector<float> source_p (ELEMENTS) ;
std::vector<float> source_u (ELEMENTS) ;
std::vector<float> source_ v (ELEMENTS) ;

/*********************************/

/**OPENCL HOST CODE AREA START***%x/

/*********************************/

A.1. SWM NINE KERNELS HOST SOURCE CODE 235

unsigned int vector_size_bytes = sizeof (float) * ELEMENTS;

//Getting Xilinx Platform and its device
std::vector < cl::Device > devices = xcl::get_xil_devices();
cl::Device device = devices[0];

std::string device_name = device.getInfo<CL_DEVICE_NAME>();

//Creating Context and Command Queue for selected Device
cl::Context context (device);

cl::CommandQueue g(context, device);

//Loading XCL Bin into char buffer

std::string binaryFile = xcl::find_binary_file(device_name, "shallow");
cl::Program::Binaries bins = xcl::import_binary_file(binaryFile);
devices.resize (1);

cl::Program program(context, devices, bins);

std::cout << "create kernel initl" << endl;

cl::Kernel kernell (program, "initl", &err);

auto kernel_initl = cl::KernelFunctor<cl::Buffer&, cl::Buffer&, float,
float, float, float>(kernell);

std::cout << "create kernel init2" << endl;

cl::Kernel kernel2 (program, "init2", &err);

auto kernel_init2 = cl::KernelFunctor<cl::Buffer&, cl::Buffer&, cl::Bufferg,
float, float> (kernel2);

std::cout << "create kernel initpc" << endl;

cl::Kernel kernel3(program, "initpc", é&err);

auto kernel_initpc = cl::KernelFunctor<cl::Buffer&, cl::Buffersg,
cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&>(kernel3);

std::cout << "create kernel 1100" << endl;
cl::Kernel kerneld (program, "1100", &err);

auto kernel 1100 = cl::KernelFunctor<cl::Buffer&, cl::Buffer&, cl::Bufferg,

236 APPENDIX A. THE SHALLOW WATER MODEL SOURCE CODE

cl::Buffer&, cl::Bufferé&, cl::Bufferé&, cl::Bufferé&, float, float>(

kerneld);

std::cout << "create kernel 1100_pc" << endl;

cl::Kernel kernel5(program, "1100_pc", &err);

auto kernel 1100_pc = cl::KernelFunctor<cl::Buffer&, cl::Bufferg,
cl::Buffer&, cl::Bufferé&>(kernelb);

std::cout << "create kernel 1200" << endl;

cl::Kernel kernel6 (program, "1200", &err);

auto kernel 1200 = cl::KernelFunctor<cl::Buffer&, cl::Buffer&, cl::Bufferg,
cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Bufferg,
cl::Buffer&, cl::Bufferg&, float, float, float>(kernelb6);

std::cout << "create kernel 1200_pc" << endl;

cl::Kernel kernel7(program, "1200_pc", &err);

auto kernel_1200_pc = cl::KernelFunctor<cl::Buffer&, cl::Bufferg,
cl::Buffer&> (kernel?);

std::cout << "create kernel 1300" << endl;

cl::Kernel kernel8(program, "1300", &err);

auto kernel 1300 = cl::KernelFunctor<cl::Buffer&, cl::Buffer&, cl::Bufferg,
cl::Buffer&, cl::Bufferé&, cl::Bufferé&, cl::Bufferé&, cl::Bufferg,
cl::Buffer&, float> (kernel8);

std::cout << "create kernel 1300_pc" << endl;

cl::Kernel kernel9(program, "1300_pc", &err);

auto kernel_1300_pc = cl::KernelFunctor<cl::Buffer&, cl::Bufferg,
cl::Buffer&, cl::Bufferé&, cl::Bufferé&, cl::Bufferé&, cl::Bufferg,
cl::Buffer&, cl::Buffer&>(kernel9);

//Creating Buffers inside Device

cl::Buffer buffer_psi (context, CL_MEM_READ_WRITE, vector_size_bytes);
cl::Buffer buffer_p(context, CL_MEM_READ_WRITE, vector_size_bytes);
cl::Buffer buffer_ u(context, CL_MEM _READ_WRITE, vector_size_bytes);

A.1. SWM NINE KERNELS HOST SOURCE CODE 237

cl::Buffer buffer_v(context, CL_MEM_READ_WRITE, vector_size_bytes);
cl::Buffer buffer uold(context, CL_MEM_READ_WRITE, vector_size_bytes);
cl::Buffer buffer_vold(context, CL_MEM_READ_WRITE, vector_size_bytes);
cl::Buffer buffer_pold(context, CL_MEM_READ_WRITE, vector_size_bytes);
cl::Buffer buffer_cu(context, CL_MEM_READ_WRITE, vector_size_bytes);
cl::Buffer buffer cv(context, CL_MEM READ_WRITE, vector_size_bytes);
cl::Buffer buffer_z(context, CL_MEM_READ_WRITE, vector_size_bytes);
cl::Buffer buffer_h(context, CL_MEM_READ_WRITE, vector_size_bytes);
cl::Buffer buffer unew(context, CL_MEM READ WRITE, vector_size_bytes);
cl::Buffer buffer_vnew(context, CL_MEM_READ_WRITE, vector_size_bytes);
cl::Buffer buffer_pnew(context, CL_MEM_READ_WRITE, vector_size_bytes);

//initl psi and p

kernel_initl (cl::EnqueueArgs(q, cl::NDRange(l, 1, 1), cl::NDRange(l, 1, 1)),
buffer_p, buffer_ psi, a, di, dj, pcf);

g.finish();

//init2 u,v

kernel_init2 (cl::EnqueueArgs (g, cl::NDRange(l, 1, 1), cl::NDRange(l, 1, 1)),
buffer_u, buffer_v, buffer psi, dx, dy);

g.finish();

//initpc uold, vold, pold

kernel_initpc(cl::EnqueueArgs(q, cl::NDRange(l, 1, 1), cl::NDRange(l, 1, 1)),
buffer_u, buffer_v, buffer_p, buffer_uold, buffer_vold,

buffer_pold);

g.finish{();

//the main loop

238 APPENDIX A. THE SHALLOW WATER MODEL SOURCE CODE

for (ncycle = 1; ncycle <= ITMAX; ncyclet+t) {

//1100

kernel 1100 (cl::EnqueueArgs(q, cl::NDRange(l, 1, 1), cl::NDRange(l, 1, 1)),
buffer_u, buffer_ v, buffer_p, buffer_cu, buffer_cv, buffer_z,

buffer_h, fsdx, fsdy);

g.finish();

//1100-pc update bounds of cu,cv,z,h

kernel_1100_pc(cl::EnqueueArgs(q, cl::NDRange(l, 1, 1), cl::NDRange(l, 1, 1)),
buffer cu, buffer cv, buffer_z, buffer h);

g.finish();

float tdts8 = tdt / 8.0;
float tdtsdx = tdt / dx;
float tdtsdy = tdt / dy;

//1200

kernel_1200 (cl::EnqueueArgs(q, cl::NDRange(l, 1, 1), cl::NDRange(l, 1, 1)),
buffer_uold, buffer_vold, buffer_pold, buffer_unew, buffer_vnew,
buffer_pnew, buffer_cu, buffer_ cv, buffer z, buffer_h, tdtss§,

tdtsdx, tdtsdy);

g.finish();

//1200_pc update bounds of unew,vnew,pnew

kernel_1200_pc(cl::EnqueueArgs(q, cl::NDRange(l, 1, 1), cl::NDRange(l, 1, 1)),

A.1. SWM NINE KERNELS HOST SOURCE CODE 239

buffer_unew, buffer_vnew, buffer_pnew);

g.finish();

//1300

if (ncycle > 1) {

kernel_1300(cl::EnqueueArgs(q, cl::NDRange(l, 1, 1),cl::NDRange(l, 1, 1)),
buffer_u, buffer_ v, buffer_p, buffer_uold, buffer_vold,

buffer_pold, buffer_unew,buffer_vnew, buffer_pnew, alpha);

g.finish{();

//1300_pc

} else {

tdt = tdt + tdt;

kernel 1300_pc(cl::EnqueueArgs(q, cl::NDRange(l, 1, 1),cl::NDRange(l, 1, 1)),
buffer_u, buffer v,buffer_p, buffer_uold, buffer_vold,

buffer_pold, buffer_unew,buffer_vnew, buffer_pnew);

g.finish();

}//main loop end

g.finish();

}//main function end

240 APPENDIX A. THE SHALLOW WATER MODEL SOURCE CODE

A.2 SWM Nine Kernels Source Code

//SWM Kernel Code

#define M 64
#define N 64
#define M_LEN 65 //M+1

/**/

// initl kernel : Initialize potential pressure and psi
_ _kernel void __attribute_ ((reqd_work_group_size(1l, 1, 1)))
initl(

__global float *p,

__global float *psi,

const float a,

const float di,

const float dj,

const float pct

) |

int i, 73;

for (1i=0;i<M_LEN;i++) {

for (j=0; J<M_LEN; j++) {

psi[i*M_LEN +j] = a * sin((float) (i + 0.5) * di) *
sin((float) (3 + 0.5) * dj);

p[1i*M_LEN +j] =pcf * (cos((float) (2.0 * i * di)) +
cos((float) (2.0 * 3 * dj))) + 50000.0;

}

}

return;

}

/***/

A.2. SWM NINE KERNELS SOURCE CODE 241

/***/

//init 2 kernel :Calculate initial values of wind velocities
_ _kernel void __attribute_ ((reqd_work_group_size(l, 1, 1)))
init2(

__global float *u,

__global float *v,

__global float *psi,

const float dx,

const float dy

) |

int 1, 3;

//M_LEN

for (i=0;i<M;i++) {

for (3j=0; J<N; j++) {

ul(i + 1)*M_LEN + j] = —(psi[(i+1)*M_LEN+(j+1)]-
psi[(i+1)*M_LEN+j]) /dy;
V[i*M_LEN + (j + 1)] = (psi[(i+1)*M_LEN+(j+1)] -

psi[i*M_LEN+ (j+1) 1) /dx;
H}
return;

}

/***/

/***/

// initpc kernel: Ubdate the boundray of the wind velocities
//and keep the old version of them

_ _kernel void __attribute_ ((reqd_work_group_size(l, 1, 1)))
initpc(

__global float *u,

__global float *v,

__global float *p,

__global float *uold,

__global float *vold,

__global float *pold

) |

242 APPENDIX A. THE SHALLOW WATER MODEL SOURCE CODE

int i,9;

for (i=0;1i<N;i++) {

ul (0)*M_LEN + (i)] = ul[(M)*M_LEN + (1)]1;
v[(M)*M_LEN + (i + 1)] = v[(0)*M_LEN + (i + 1)];
}

for (3=0; j<M; j++) {

ul(j + 1)*M_LEN + (N)] = ul[(] + 1)*M_LEN + (0)];
v[(3)*M_LEN + (0)] = v[(])*M_LEN + (N)];

}

ul(0)*M_LEN + (N)]
v[(M)*M_LEN + (0)]

ul (M) *M_LEN + (0)1;
ul (0)*M_LEN + (N)];

for (i=0;i<M_LEN;i++
for (j=0; J<M_LEN; j++
uold[(1) *M_LEN + (3J)
vold[(i) *M_LEN + (73)
pold[(i) *M_LEN + (7)
H

return;

}

/***/

ul (1) *M_LEN + (3)1;
v[(i)*M_LEN + (3)];
p[(1)*M_LEN + (3)1;

)
)
]
]
]

/***/

// kernel L100: calculate the mass fluxes (CU,CV), potential vorticity (z)
//and fluid surface height (h)

_ _kernel void __attribute_ ((reqd_work_group_size(l, 1, 1)))

1100 (

__global float *u,

__global float *v,

__global float *p,

__global float *cu,

__global float *cv,

__global float *z,

A.2. SWM NINE KERNELS SOURCE CODE 243

__global float *h,
const float fsdx,
const float fsdy

) A

int i, 73;

for (i=0;i<M;i++) {
for (3=0; j<N;j++) {
cul(i + 1)*M_LEN + (j)] = .5 * (p[(1i + 1)*M _LEN + (3j)] +

(1) *M_LEN + (j)1) * ul(i + 1)*M_LEN + (J)]1;

[(1)*M_LEN + (J + 1)] = .5 * (p[(1)*M_LEN + (J + 1)] +

(1) *M_LEN + (3)]1) * v[(i)*M_LEN + (3 + 1)1;

((1 + 1I)*M_LEN) + (3 + 1)]= ((fsdx * (v[((i + 1)*M_LEN) + (7 + 1)] -
(i*M_LEN) + (3 + 1)]))—-(fsdy * (u[((i + 1)*M_LEN)+ (3 + 1)] -

((1 + 1)*M_LEN) + (3)1))) / (p[((1)*M_LEN) + (3)] +

((1 + 1)*M_LEN) + (J)] + pl((1 + 1)*M_LEN) + (J + 1)] +

((1)*M_LEN) + (j + 1)]
(1) *M_LEN + (3)] = p
(1 + 1)*M_LEN + (3)]
(]
(

[(1)*M_LEN + (j)] + .25 * (u[(i + 1)*M_LEN + (3)] *
+ ul(1)*M_LEN + (3)] * ul(i)*M_LEN + (3)] +
1)*M_LEN + (jJ + 1)] * v[(i)*M_LEN + (j + 1)] + v[(i)*M_LEN + (J)] *

1) *M_LEN + (3)1);

return;

}

/**/

/***/

// kernel L100: update the boundray of the mass fluxes (CU,CV),
//potential vorticity (z) and fluid surface height (h)

_ _kernel void __attribute_ ((reqd_work_group_size(l, 1, 1)))
1100_pc(

__global float *cu,

__global float *cv,

244 APPENDIX A. THE SHALLOW WATER MODEL SOURCE CODE

__global float *z,
__global float *h

) A

int i,73;
cul (0)*M_LEN + (N)] = cu[(M)*M_LEN + (0)];
cv[(M) *M_LEN + (0)] = cv[(0)*M LEN + (N)];
[(O)*M_LEN + (0)] = z[(M)*M_LEN + (N)];

]

z[(
h[(M)*M_LEN + (N)
for (3=0; j<N; j++) {

h[(0)*M_LEN + (0)];

cul (0)*M_LEN + (3j)] = cul (M) *M_LEN + (3)];
cv[(M)*M_LEN + (3 + 1)] = cv[(0)*M_LEN + (§ + 1)1;
z[(0)*M_LEN + (3 + 1)] = z[(M)*M_LEN + (3 + 1)];
h{(M)*M_LEN + (J)] = h[(0)*M_LEN + (3)];

}
for (i=0;i<M;i++) {

cul(i + 1)*M_LEN + (N)] = cu[(i + 1)*M_LEN + (0)];
cv[(1)*M_LEN + (0)] = cv[(1)*M_LEN + (N)];

z[(1 + 1)*M_LEN + (0)] = z[(1 + 1)*M_LEN + (N)];
h[{(i)*M_LEN + (N)] = h[(i)*M_LEN + (0)];

}

return;

}

/***/

/**/

//kernel 1200: claculate new values for u,v,p

_ _kernel void __attribute_ ((reqd_work_group_size(l, 1, 1)))
1200 (

__global float *uold,

__global float *vold,

__global float *pold,

__global float *unew,

__global float *vnew,

__global float *pnew,

A.2. SWM NINE KERNELS SOURCE CODE 245

__global float *cu,
__global float *cv,
__global float *z,

__global float *h,

const float tdtss,

const float tdtsdx,
const float tdtsdy
) |

int 1, 3;

for (i=0;i<M;i++) {

for (J=0;3<N;j++) {

unew([(1 + 1)*M_LEN + (j)] = uvold[(1i + 1)*M_LEN + (J)] +

tdts8 * (z[(i + 1)*M_LEN + (7 + 1)] + z[(1 + 1)*M_LEN + (3J)]) *
(cv[(i + 1)*M_LEN + (3 + 1)] + cv[(L)*M_LEN + (j + 1)] +

cv[(1) *M_LEN + (j)] + cv[(i + 1)*M_LEN + (j)]) - tdtsdx *

(h[(1 + 1)*M_LEN + (3)] - h[(1)*M_LEN + (3)]);

vnew[(1) *M_LEN + (3 + 1)] = vold[(i)*M_LEN + (j + 1)] - tdts8 *
(z[(1 + 1)*M_LEN + (j + 1)] + z[(i)*M_LEN + (j + 1)]) *

(cul (i + 1)*M_LEN + (3 + 1)] + cul (i)*M_LEN + (j + 1)] +

cul (1) *M_LEN + (j)] + cul[(i + 1)*M_LEN + (j)]) - tdtsdy *

(h{ (1) *M_LEN + (3 + 1)] - h[(1)*M_LEN + (3)]);

pnew[(i) *M_LEN + (j)] = pold[(i)*M_LEN + (j)] - tdtsdx *
(cu[(1 + 1)*M_LEN + (j)] - cul[(i)*M_LEN + (3j)]) - tdtsdy *
(cv[(i)*M_LEN + (3 + 1)] - cv[(i)*M_LEN + (3)1);

}}

return;

}

/***/

/**/

246 APPENDIX A. THE SHALLOW WATER MODEL SOURCE CODE

//kernel L200_pc: update the boundray of the new u,v,p

_ _kernel void __ attribute_ ((reqd_work_group_size(l, 1, 1)))
1200_pc(

__global float *unew,

__global float *vnew,

__global float *pnew

) A

int 1, 3;

for (3=0; j<N; j++) {

unew[(0) *M_LEN + (j)] = unew[(M)*M_LEN + (j)];
vnew|[(M) *M_LEN + (j + 1)] = vnew[(0)*M_LEN + (J + 1)1;
pnew[(M) *M_LEN + (3)] = pnew[(0)*M_LEN + (J)];

}

for (1i=0;i<M;i++) {

unew[(i + 1)*M_LEN + (N)] = unew[(1i + 1)*M_LEN + (0)];
vnew[(1) *M_LEN + (0)] = vnew[(i) *M_LEN + (N)];
pnew[(1) *M_LEN + (N)] = pnew[(i)*M_LEN + (0)];

}

unew|[(0)*M_LEN + (N)] = unew[(M)*M_LEN + (0)];

vnew[(M) *M_LEN + (0)]
pnew[(M) *M_LEN + (N)]

vnew[(0) *M_LEN + (N)];
pnew[(0) *M_LEN + (0)];

return;

}

/***/

/***/

//kernel L300: create old values of u,v,

//and p and the new values for u,s and p for the next cycle
__kernel void __ attribute_ ((reqd_work_group_size(l, 1, 1)))
1300 (

__global float *u,

__global float *v,

__global float *p,

__global float *uold,

__global float *vold,

A.2. SWM NINE KERNELS SOURCE CODE 247

__global float *pold,
__global float *unew,
__global float *vnew,
__global float *pnew,
const float alpha

) |

int 1i,73;

for (1i=0;i<M_LEN;i++) {
for (3=0; j<M_LEN; j++) {

uold[(1) *M_LEN + (3j)] = u[(i)*M_LEN + (3j)] + (alpha *
(unew[(i) *M_LEN + (3)] - (2. * u[(i)*M_LEN + (3j)]) + uold[(i)*M_LEN + (3)1));
vold[(i) *M_LEN + (3)] = v[(i)*M_LEN + (j)] + (alpha * (vnew[(i)*M_LEN + (J)]
- (2. * v[(1)*M_LEN + (j)]) + vold[(i)*M_LEN + (3)1));
[(1) *M_LEN + (j)] + (alpha * (pnew([(i)*M_LEN + (3)]
]

pold[(i) *M_LEN + (j)] = p
- (2. * p[(1)*M_LEN + (j)]) + pold[(i)*M_LEN + (3)1));
ul (1) *M_LEN + (3)]
v[(1i)*M_LEN + (3)]
pl(1)*M_LEN + (J)]
}

}

unew[(i) *M_LEN + (J)1;
vnew[(1) *M_LEN + (3)1;
pnew[(1) *M_LEN + (J)];

return;

}

/***/

/**/

//kernel L300_pc : it is called ones for the first cycle only
_ _kernel void __attribute_ ((reqd_work_group_size(l, 1, 1)))
1300_pc(

__global float *u,

__global float *v,

248 APPENDIX A. THE SHALLOW WATER MODEL SOURCE CODE

__global float *p,
__global float *uold,
__global float *vold,
__global float *pold,
__global float *unew,
__global float *vnew,
__global float *pnew
) A

int i, 73;

for (i1i=0;i<M_LEN;i++
for (j=0; J<M_LEN; j++
uold[(i) *M_LEN + (3J)
vold[(i) *M_LEN + (7)
pold[(i) *M_LEN + (7J)

ul (1) *M_LEN + (3)1;
v[(1) *M_LEN + (3)1;
pl (1) *M_LEN + (J)];

)
)
]
]
]

ul (1) *M_LEN + ()] = unew[(1)*M_LEN + (3)];
v[(i)*M_LEN + (3)] = vnew[(i)*M_LEN + (3)];
pl(1)*M_LEN + (J)] = pnew[(1)*M_LEN + (J)];
I8

return;

}

Appendix B

Block designs

249

250 APPENDIX B. BLOCK DESIGNS

rj

$00[q dI 224D XIS ++D DOSAS Y} JO MIIAIAQ g SMS1]

" Fii

u3ISop WAISAS

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Motivation
	Research Questions
	Thesis Contributions
	Thesis structure
	Publications

	Background and Related Work
	Field Programmable Gate Arrays (FPGA)
	High Level Synthesis Tools
	SDSoC HLS
	SDSoC OpenCL
	SDSoC C++

	Xilinx Vivado
	Vivado and SDSoC OpenCL/C++ Optimisation Strategies
	Kernel Computation and Data-movement Optimisation Attributes and Pragmas

	HPC-based Benchmark Applications
	Shallow Water Dynamics Model
	LFRic Weather and Climate Model mini-app
	Summary

	Related Work
	Single HPC-Kernel accelerators
	Exploratory studies
	Comparison and Survey studies
	Related Work Summary

	Research Methodology and Study Experiments Setup
	Target FPGA Hardware
	System and Experimental Setup
	Exploratory Study
	Exploratory Study (1): SWM Concurrency Mapping Exploration
	Exploration Study (2): MatVec Kernel with SDSoC OpenCL/C++ and Vivado HLS

	Comparison Study
	Comparison Study (1): SWM Implementations In SDSoC OpenCL versus Vivado
	 Comparison Study (2): MatVec Kernel implementations in SDSoC OpenCL and C++ Versus Vivado HLS
	Comparison Study Metrics

	Summary

	Exploratory Study (1) Part One: L100 kernel Concurrency Mapping
	L100 Concurrency and Coding Options
	Study Setup
	L100 kernel mapping using SDSoC OpenCL
	SDSoC OpenCL L100 Initial Implementation
	Mapping Mechanism Experiments
	Instruction-level parallelism
	Data parallelism
	Functional parallelism
	Discussion

	L100 kernel mapping using Vivado HLS
	Vivado Initial Implementation
	Mapping Mechanism Experiments
	Instruction-level parallelism
	Functional Parallelism
	Discussion

	Summary

	Exploratory Study (1) Part Two: SWM Multiple-Kernels Mapping
	SWM Kernels Mapping Using SDSoC OpenCL
	Optimise the SWM SDSoC OpenCL kernels
	Exploring the problem size
	Kernel-to-kernel communication exploration

	SWM Application Mapping Using Vivado
	Optimise the SWM Vivado kernels
	Finding the problem size
	Kernel-to-Kernel Communication Exploration

	Summary

	Comparison Study (1): SWM Implementations In SDSoC OpenCL Versus Vivado
	L100 concurrency mapping comparison
	Performance Analysis
	Resource Usage Analysis

	Multiple kernel mapping comparison
	Performance Analysis
	Resource Usage Analysis

	Development Effort and Hardware Level of Expertise
	Summary

	Exploration Study (2): MatVec Kernel with SDSoC OpenCL, SDSoC C++ and Vivado
	MatVec Reference Implementation
	MatVec Xilinx Vivado Design
	MatVec Xilinx Vivado Design Overview
	MatVec Xilinx Vivado Kernel Code
	MatVec Vivado Hardware Design
	MatVec Vivado CPU code

	MatVec OpenCL design
	MatVec SDSoC OpenCL Kernel code
	MatVec SDSoC OpenCL, Hardware Design
	MatVec SDSoC OpneCL, Host Code

	MatVec SDSoC C++, design
	MatVec SDSoC C++, Kernel code
	MatVec SDSoC C++, Hardware Design
	MatVec C++ Host Code
	Other SDSoC OpenCL and C++ MatVec Design Alternatives

	Summary of MatVec Exploration Study
	Summary of the Two Exploratory Studies
	Single kernel
	Multiple kernels

	Comparison Study (2): MatVec Kernel implementations in SDSoC OpenCL and SDSoC C++ Versus Vivado HLS
	Performance Analysis
	Computation Flop Rate (Gflop/s)
	Application Runtime Considerations

	Resource Usage Analysis
	Data Movement Analysis
	Matvec CPU Implementation Comparison

	Summary of the MatVec Comparison Study
	Summary of the Two Comparison Studies
	Single kernel
	Multiple kernels

	Conclusions and Future Work
	Review of Thesis Research Questions
	Summary of Contributions
	General Recommendations
	Limitations and Future Work

	Bibliography
	The Shallow Water Model Source Code
	SWM Nine Kernels Host Source Code
	SWM Nine Kernels Source Code

	Block designs

