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Abstract

The number of mobile devices in indoor environments has dramatically increased,
and the capacity of conventional RF wireless networks may not be enough to
support the indoor traffic demand. Users’ applications, such as texting, 4K video
streaming, and virtual reality have substantial differences in terms of data rate
requirements. A heterogeneous network is one of the most promising approaches
to improve indoor coverage and throughput. Recently, visible light communication
(VLC) systems have emerged as a complementary unlicensed media. In this thesis,
we proposed a hybrid WiFi-VLC system wherein multiple VLC access points (APs)
coexist with a WiFi AP. A number of indoor users can share the hybrid WiFi-VLC
system. All users employ WiFi for the uplink, and one access point (WiFi or VLC)
is assigned to each user. We presented reinforcement learning algorithms that can
be implemented at the WiFi AP to aid in the selection of an access point for
each user. Moreover, we proposed a new federated Q-learning (FQL) algorithm,
in which each VLC AP performs local Q-learning and updates the global model
at the WiFi AP. Knowledge transfer using a neural network (NN) was proposed
to further reduce the FQL’s convergence speed. We evaluated the performance of
the proposed approaches using different objective functions such as sum-rate and
max-min. Finally, we proposed a global Q-learning approach for a macro base
station to solve the resource allocation problem in a dense femtocell network. The
reward function was designed to maintain the quality of service (QoS) for a macro
user and maximize the sum capacity of the femtocell users. Numerical simulations
showed that the derived Q-learning algorithms in this thesis improved the network
performance.
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Chapter 1

Introduction

In this chapter, section 1.1 states the background of the work, section 1.2 describes
the motivation behind the work, and section 1.3 states the overall objectives of the
thesis. The major contributions of this dissertation and the relevant publications
are summarized in Sections 1.4 and 1.5, respectively. Finally, the outline of the
thesis is discussed in section 1.6.

1.1. Background

The continued development in mobile communication systems aims to satisfy
the explosive growth in data rate requirements. Future mobile networks aim to
support a wide range of applications with different needs in terms of bandwidth,
reliability, flexibility, and most importantly a high data rate. The International
Telecommunication Union (ITU) predicted that mobile data traffic will continue
to exponentially grow to reach 5 zettabytes per month in 2030 [2]. Additionally, it
has been predicted that the radio frequency (RF) spectrum will not be sufficient
to satisfy the traffic demand by 2035 [3]. The increasing demand for a higher
data rate is mainly due to the increasing number of mobile devices and their
applications, especially in indoor environments. To support future data rate
requirements, research on heterogeneous networks significantly increased. Small
base stations such as femtocells can extend the network coverage and improve
network efficiency. Alternatively, many researchers investigated the other parts
of the electromagnetic spectrum for a possible new communication technologies.

19



CHAPTER 1. INTRODUCTION 20

Visible light communication (VLC), which works on the visible light spectrum, is a
promising solution for indoor environments. VLC utilizes an unlicensed spectrum,
and does not interfere with devices that operate on the RF spectrum. As it
uses light emitting diodes (LEDs) to provide high speed wireless communication,
it can be used as a complementary network in indoor environments to enhance
the network’s overall performance. However, the complexity of designing hybrid
systems to meet future wireless expectations has increased, such that conventional
methods might not be sufficient, especially in dense environments. Network
resource allocation in indoor environments is a growing challenge that requires
an appropriate design to enhance network performance.

1.2. Motivation

The rapid development of cloud computing, network virtualization, and smart
devices, such as smart-phones, cars, and smart-homes, has led to an explosive
growth in data traffic. At the same time, network complexity has increased,
as these technologies involve multiple networks. Different networks such as
macrocell, femtocell, WiFi, and VLC, have different coverage areas, transmission
powers, and work mechanisms. Implementing these networks has made it harder
to effectively optimize the network resources. Recently, interest in integrating
machine learning (ML) methodologies to improve the network resource allocation
has significantly increased. As the complete model of the environments in wireless
communication is unknown, reinforcement learning (RL) is a promising solution
to solve the optimization problems. The main advantage of using RL is the ability
to generalize. Designing a model for all network scenarios with multiple base
stations (BSs) and users while considering all the possibilities, such as users’
positions, BSs’ power level, interference and load, would be impossible. The
ability to decide by interacting with the environment allows RL to adapt to any
changes in the environment’s status without human intervention [4]. Recently, the
implementation of RL showed promising results, which increased the focus on the
development of RL frameworks [5]. In this thesis, we implemented different RL
frameworks in the following two environments: hybrid WiFi-VLC networks and
macro-femtocell networks.

The use of VLC as a complementary network in hybrid WiFi–VLC networks
is a great solution to improve the overall network performance. As VLC uses the
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light spectrum, there is no interference between the VLC and WiFi links. VLC
can overcome most of the WiFi limitations, such as the low data rate and security.
Moreover, VLC can transmit a high data rate over a small coverage area, which
enables a secure transmission and high data rate, as the light cannot penetrate
the walls. However, mobility and coverage are the main limitations of VLC, as the
transmission can easily be interrupted if the light is blocked. Research on network
selection and offloading users in hybrid WiFi–VLC networks has received lots of
attention due to the ability of maximizing both networks’ capabilities. Therefore,
this work focuses on designing RL frameworks and considers various factors, such
as the access point load, user requirements, and locations, to improve the resource
allocation in hybrid WiFi–VLC networks.

The use of macro–femtocell networks is another area of research that has
received lots of attention recently [6]. Femtocells are deployed to enhance the
indoor coverage and network performance of traditional cellular networks. It has
a short range that can be deployed in indoor environments at a low cost. However,
the network performance is significantly affected by the number of deployed
femtocells in the same area due to the increase in the interference. Therefore,
power allocation optimization to reduce the interference and improve both the
macro users and femto users’ quality of service (QoS) is a key challenge that needs
to be evaluated. This work also focused on the design of RL to improve the power
allocation in macro-femtocell networks.

1.3. Aims and Objectives

The main aim of this research is to improve the resource allocations in
indoor wireless networks using different schemes of RL. In this research, the
implementation of RL algorithms to maximize the user throughput, minimum
achievable rate, and fairness are investigated. The research covers various practical
environments to test the performance of the RL algorithms. The main objectives
of this research are detailed as follows:

• To provide a deep literature study on the use of VLC as a complementary
network to WiFi in hybrid WiFi-VLC networks including the research gaps
and challenges.

• To investigate the benefits of RL techniques in enhancing the performance
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of indoor wireless networks.

• To propose a RL framework that enhances the users’ QoS and reduces the
interference in macro-femtocell environments.

• To design a near-optimal centralized RL scheme that improves the network
selection mechanism in hybrid WiFi-VLC networks.

• To propose different RL schemes to enhance the load balance in hybrid WiFi-
VLC networks. RL schemes are proposed to improve the minimum user data
rate and fairness.

• To develop a neural network (NN) scheme that aims to further reduce the
convergence speed of the applied reinforcement learning schemes.

1.4. Key Contributions

The main contributions of this thesis are illustrated as follows:

• C1 (Chapter 4): The resource allocation problem in a hybrid WiFi-VLC
system is solved using centralized Q-learning. The proposed algorithm
offloads users from one access point (AP) to another to improve the overall
QoS. Additionally, a new reward function is designed to consider the user’s
location to minimize the handover in VLC.

• C2 (Chapter 5): The content-aware resource allocation problem in a hybrid
WiFi-VLC system is solved using centralized Q-learning. A reward function
is designed to maximize the users’ satisfaction.

• C3 (Chapter 5): A novel federated Q-learning is proposed to maximize the
minimum user satisfaction in hybrid WiFi-VLC networks. Local and global
models are presented with different reward functions to improve the learning
speed while ensuring the security of the local data privacy. Each VLC AP
only shares partial information with the WiFi, as all APs use it for the
uplink.

• C4 (Chapter 5): Knowledge transfer using a deep NN (DNN) is proposed to
reduce the federated Q-learning (FQL) complexity. The output of the DNN
is adjusted so that the proposed algorithm can assign some users directly to
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their APs and perform the FQL on the rest of the available users to improve
the convergence speed.

• C5 (Chapter 6): A novel global Q-learning approach is proposed to solve the
resource allocation problem in a femtocell network. The proposed approach
was able to achieve similar results to the cooperative Q-learning approach. A
new reward function can be implemented with global Q-learning to maintain
the QoS of the macrocell user and maximize the sum capacity of the femtocell
users’ equipment in a dense femtocell network.

1.5. List of Publications

The list of publications that have been extracted from this thesis are detailed as
follows:

• P.1 (Chapter 4): A. M. Alenezi and K. A. Hamdi, "Reinforcement
Learning Approach for Hybrid WiFi-VLC Networks," 2020 IEEE 91st
Vehicular Technology Conference (VTC2020-Spring), 2020, pp. 1-5, doi:
10.1109/VTC2020-Spring48590.2020.9128892.

• P.2 (Chapter 5): A. M. Alenezi and K. A. Hamdi, "Reinforcement Learning
Approach for Content-Aware Resource Allocation in Hybrid WiFi-VLC
Networks," 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-
Spring), 2021, pp. 1-5, doi: 10.1109/VTC2021-Spring51267.2021.9448829.

• P3. (Chapter 5): A. M. Alenezi and K. A. Hamdi, "Federated Reinforcement
Learning with Knowledge Transfer for Network Selection in Hybrid WiFi-
VLC Networks" 2022 IEEE open access (submitted).

• P4. (Chapter 6): Alenezi, A.M., Hamdi, K. (2019). Global Q-Learning
Approach for Power Allocation in Femtocell Networks. In: Yin, H. et al.
Intelligent Data Engineering and Automated Learning – IDEAL 2019, vol
11871. Springer, Cham. https://doi.org/10.1007/978-3-030-33607-3

1.6. Thesis Organization

The rest of the thesis is organized as follows:
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• Chapter 2 states the background theory for the main aspects and concepts
of the implemented WiFi and VLC links. The basic principles of VLC
link, channel modelling, and some modulation schemes are illustrated. The
importance of using hybrid WiFi-VLC networks and how the integration of
WiFi and VLC links will outperform each link alone is also illustrated. In
addition, this chapter presents several key works in the literature on hybrid
RF-VLC networks.

• Chapter 3 introduces the basics of RL techniques. The key parameters of RL
techniques are illustrated in detail, and the methodology for RL techniques is
explained. Finally, how RL can be implemented in wireless communication
is stated alongside a literature review.

• In chapter 4, a RL approach is proposed to solve the network selection in
hybrid WiFi-VLC networks. The design of the proposed RL is illustrated in
detail. In the simulation results, the coverage and outage of the VLC stand-
alone link are simulated first to illustrate the importance of using hybrid
networks. Then, the performance of implementing the RL is illustrated.

• In chapter 5, different RL schemes are proposed to solve the content aware
resource allocation in hybrid WiFi-VLC networks. Centralized and federated
Q-learning are proposed with different schemes to maximize the minimum
user satisfaction and fairness. Additionally, knowledge transfer using a NN
is also proposed to improve the RL convergence speed.

• Chapter 6 concludes the work and describes the future of this research.



Chapter 2

Background Theory

This chapter presents the background information for several key concepts and
theories that are utilized in the thesis. Section 2.1 states some of the fundamental
characteristics of visible light communication, including the background, basics,
channel modelling, and modulation schemes. The fundamental characteristics of
the WiFi model are described in section 2.2. In Section 2.3, the importance of
using hybrid WiFi-VLC is illustrated by stating some of the key challenges for each
stand-alone model, followed by a key literature review on the hybrid WiFi-VLC
networks. Finally, section 2.4 summarizes the chapter.

2.1. Visible Light Communication (VLC)

2.1.1. Background

Optical wireless communication (OWC) originated in the early 800 BC, when the
fire beacons were used by the Greeks to transfer information from one place to
another. In 1880, Alexander Graham Bell invented a photo-phone to transmit
voice signals over a distance of 200 meters by modulating sunlight [7]. Optical
communication gained popularity when the laser was invented in the early 1960s.
Since then, the interest in the field of free-space optics has increased dramatically
[8]. LEDs were first used to transmit data in indoor environments by visible
light in 2003 at Nakagawa Laboratory in Keio University, Japan. In 2007, they
established the Visual Light Communication Consortium (VLCC) in cooperation
with Japanese technology firms. In 2011, visible light communication gained a

25
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global standard by IEEE called 802.15.7-2011 [9]. LEDs are expected to take over
nearly 90% of illuminations due to the recent developments in solid-state lighting,
which improved LEDs’ lifespan, cost, reliability, and energy consumption [10].
Recently, VLC attracted various applications due to the low power consumption,
existing infrastructure, free spectrum, and no interference. Table 2.1 shows some
of the current work on the implementation of VLC. Some of these applications are
as follows:

• Wireless connectivity: VLC can provide a high data rate of up to 15 Gbps.
The advantages of using VLC over RF include security, low cost, and a
high spectrum, which make it a promising alternative method for wireless
connectivity.

• Heterogeneous networks: The lack of interference between VLC and RF
networks makes VLC to be one of the best complementary networks for
hybrid networks. The main hybrid networks that use VLC are as follows:

– Hybrid VLC and WiFi or small cells: VLC improved the system
performance in various hybrid networks such as VLC-WiFi, VLC-cell,
WiFi-LiFi, and OCC-RF. These hybrid networks benefit from both
links’ advantages, including supporting a high data rate and wider
coverage.

– Hybrid VLC and macrocells: The hybrid VLC-macrocell has been
proposed for some indoor scenarios to improve the QoS level.

• Vehicle-to-everything (V2X) communication: The use of LEDs in most
vehicles, traffic lights, and street lamps create the potential for research on
the use of VLC for communication between vehicle-to-infrastructure (V2I)
and vehicle-to-vehicle (V2V). In future intelligent transport systems, VLC is
expected to play an important role, as most of the recent research suggests
using VLC for communication in V2V and V2X [11].

• Underwater communications: Underwater wireless optical communication
(UWOC) recently attracted various applications that require a long-range
and high data rate, such as oil pipe investigations, environmental monitoring,
and offshore investigations. The main advantages of UWOC are high
communication security, high transmission rate, low link delay, and low
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Application References
Wireless connectivity [14] [15] [16] [17] [18]

Heterogeneous network
VLC-WiFi [19] [20] [21] [22]

VLC-Small cells [23] [24] [25]
VLC-Macrocells [26] [27]

V2X Communication [28] [29] [30] [31] [32]
Underwater communication [33] [34]

Healthcare [35] [36] [37] [38]
Localization [39] [40] [41] [42]

Table 2.1: Different applications that implement VLC.

implementation cost. RF systems are limited to short links due to multi-
path propagation, time variations of the channel, and signal attenuation.
Thus, 405-nm blue light LD is promising for a long-range as optical systems
can support up to Gbps data rate [12].

• Healthcare: Monitoring devices are a crucial part of healthcare systems.
With the current improvements in healthcare, most devices are expected
to have network connectivity. Currently, applications such as wearable
sensors/patches, use RF-based technology for connectivity. As RF causes
electromagnetic interference, it might not be applicable as a solution in
healthcare systems, especially in electromagnetic wave-sensitive areas. The
VLC system is a promising complementary solution for these scenarios.

• Localization: While both RF and VLC can be used for localization, optical-
based localization showed a better accuracy compared to the WiFi system
[13]. VLC based localization can be easily implemented in most of the places
as LEDs are taking over most of the current illuminations. Hybrid RF/VLC
networks can be used to further enhance the localization and prediction of
users’ movement in both outdoor and indoor scenarios.

2.1.2. Basics of VLC

Visible light communication is part of the optical wireless communication that
uses visible light between 400 to 800 THz. As shown in Fig 2.1, The RF lies in the
range of 30 KHz to 400 GHz of the electromagnetic spectrum, which makes the
VLC suitable for a complementary network, as both operate at different frequency
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Figure 2.1: The electromagnetic spectrum [1]

bands. Visible light communication uses a light source to transmit the data.
Switching the light source to ’On’ means transmitting ’one’, and switching the
light to ’Off’ means transmitting ’zero’. LED light bulbs can switch at very high
speeds, which make them suitable for VLC. LEDs emit light in a low power pulse
stream and repetitive high frequency.

In most of indoor scenarios, LEDs are commonly used as the transmitter in
VLC system. The typical amplitude and phase modulation do not work on LEDs
due to the incoherent nature of the LED. Therefore, intensity modulation and
direct detection (IM/DD) techniques are used in VLC, such that the signal is
represented by variations in the instantaneous optical power. The basic block
diagram for a VLC system is shown in Fig. 2.2. In the transmitter, the input data
is coded based on the source. Then, the modulation scheme is implemented on the
coded data. After that, the modulated signal is converted into real and unipolar
signals to make it compatible with LEDs. The output signal of the LED travels
through an optical channel to reach the photodetector. At the photodetector, an
optical filter is used to filter out the slow-response components. The photodetector
absorbs the light and generates an electrical signal. The generated electrical signal
is then amplified via a trans-impedance amplifier (TIA), which prepares the data
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Figure 2.2: Block diagram of a VLC system

for demodulation. Finally, the output data is demodulated and decoded.

2.1.3. Channel Modelling

Most VLC systems use IM/DD due to the low cost and complexity. VLC signals
do not suffer from the impact of multipath fading because the photodetector area
is larger than the signal wavelength. However, some signals travel in a dispersive
way from the surrounding areas, which arrive at the receiver causing intersymbol
interference (ISI). The dispersion with ISI in the VLC link can be modelled as
the baseband linear impulse response h(t). The VLC channels are assumed to be
static, in which both the transmitter and receiver are assumed to be static. For
indoor VLC systems, the channel model can be expressed as [43]

y(t) = RPDx(t)⊗ h(t) + n(t), (2.1)

where RPD is the responsivity of the photodetector, x(t) is the real value of the
instantaneous input power (x(t) > 0), ⊗ denotes the convolution operation, and
n(t) represents the noise. In a typical VLC system, there are two main noise
sources:

• Shot noise: The presence of solar radiations and fluorescent lamps causes
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optical noise in the receiver. During the day, shot noise usually dominates
the noise components. An optical filter can be implemented to minimize the
effect of ambient noise at the receiver [44].

• Thermal noise: The thermal motion of the electrons in the resistance of the
transimpedance amplifier (TIA) is the main source of thermal noise at the
receiver [44].

The noise can be modelled as an additive white Gaussian noise (AWGN), and the
power of the overall noise can be calculated as

σ2 = σ2
shot + σ2

thermal, (2.2)

where σ2
shot and σ2

thermal indicate the power of the shot and thermal noise, which
can be calculated as

σ2
shot = 2qIB

σ2
thermal =

4KTB
RL

,

(2.3)

where q is the electron charge (q = 1.602 · 10−19 coulombs), I is the produced
photocurrent, B is the receiver bandwidth, K is Boltzmann’s constant, T is the
temperature, and RL is the load resistance.

Figure 2.3: VLC line of sight (LOS) downlink
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The impulse response h(t) can be expressed as

h(t) = hLoS(t) + hNLoS(t). (2.4)

Only LoS is considered in this work. Fig. 2.3 shows a typical VLC channel with
a LoS link. The average received power by a photodetector can be calculated as

Pr = H(0)Pt, (2.5)

where Pt is the average transmitted power, and H(0) is the channel dc gain, which
can be expressed as [45]

H(0) =
Arcos(ϕ)

2πd2qk
(m+ 1)cosm(ψ), (2.6)

where m is the order of Lambertian mode for the light source, which is related to
the LED’s semi-angle Φ 1

2
by m = − ln 2

ln(cos(Φ 1
2
))
. The remaining notations in (2.6) are

illustrated in Table 2.1.3.

Head Head
→
rqk

Unit vector pointing towards user k from LED q

→
nk

Normal unit vector for the kth user

→
lk

Radiation unit vector for the kth user

ϕ The angle between →
rqk

and →
nk

vectors

ψ The angle between →
rqk

and →
lk

vectors

Ar Area of the photodetector
dqk Distance between transmitter q and user k
m Lambertian mode of the light source
RPD Responsivity of the photodetector

Table 2.2: Notation in equation 2.6

The signal-to-noise ratio (SNR) for user k connecting to a VLC AP is defined
as [46]

SNRVLC
k =

(RPDPr)
2

NVLC
0 BVLC

, (2.7)

where RPD is the responsivity of the photodetector, BVLC is the VLC AP
bandwidth, and NVLC

0 is the noise spectral density of the VLC.
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2.1.4. VLC Modulation Schemes

Typical modulation schemes do not work in VLC systems because VLC relies
on IM/DD. Some of the techniques in IM/DD can be implemented directly,
such as on-off keying (OOK), and pulse modulation (PM). These schemes might
suffer from the effect of ISI as the data rate increases. Therefore, advanced
schemes, including frequency selective schemes, such as orthogonal frequency
division multiplexing (OFDM), might be required. Based on IEEE 802.15.7 and
802.15.13, the most common modulation schemes are as follows:

• OOK: The simplest modulation for the VLC system is OOK. Turning
the LED to’ON’ means transmitting ’1’, and turning the LED to ’OFF’
is equivalent to transmitting ’0’. Note that transmitting ’0’ occurs by
reducing the light intensity rather than turning the light ’OFF’. Therefore,
the presence or absence of light defines the transmitted binary as ’1’
or ’0’, respectively. OOK modulation schemes suffer from ISI at higher
transmission speeds, as the OOK pulse bandwidth exceeds the LED 3-dB
bandwidth [47].

• Pulse modulation (PM): The transmitted signal in the PM is presented in
the form of pulses. Different PM schemes are implemented in VLC systems
and the most common schemes are pulse position modulation (PPM), pulse
amplitude modulation (PAM), and pulse width modulation (PWM). The
key differences between these modulation schemes are as follows:

– The width and position of the pulse varies between PPM and PWM.

– PAM has a lower noise immunity compared with PPM and PWM.

– Synchronization is required for PPM.

– Transmitted power is fixed for PPM since the amplitude and width are
constants.

• OFDM: In OFDM, the frequency band is divided into multiple small bands
using orthogonal subcarriers. The standard OFDM needs to be modified
to become suitable for IM/DD, as the OFDM signals are bipolar complex
values. The most common technique to obtain a unipolar OFDM signal
involves using DC biased optical OFDM (DCO-OFDM). A DC bias is added
to the real signal in order to create a positive optical signal.
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• Colour shift keying (CSK): CSK transmits data imperceptibly based on the
variation of the colour that is emitted by the red-green-blue LED.

2.1.5. VLC Modulation Bandwidth

While VLC is motivated by a huge unregulated bandwidth, the limited bandwidth
of the commercial LEDs constrains the transmission data rate [48]. White LEDs
support different data rate based on the implemented technology such as phosphor-
coated LEDs, red-green-blue (RBG) LEDs, gallium nitride (GAN) micro LEDs
and RGB laser LEDS. These types of white LEDs support data rates of 0.1, 5,
10 and 100 Gbps, respectively [49]. Different approaches can be implemented to
improve the modulation bandwidth such as using pre-equalization of the driving
circuity, post-equalization of the receiver, and a blue-filter at the receiver to filter
out the slow yellow components [50].

2.2. WiFi Model

Due to the implementation of carrier sense multiple access/collision avoidance
(CSMA/CA) schedule scheme in 802.11, each user occupies the total bandwidth
for a time interval t. Therefore, the user throughput can be calculated by working
out the average over time T [51]. The normalized achievable rate for user k in
bits/s/Hz when connected to WiFi can be calculated as

CWiFi
k = sk[log2(1 + SNRWiFi

k )], (2.8)

where sk ∈ [0, 1], which corresponds to the amount of time tk that user k occupied
the channel over the total time T . Note that

∑K
k=1

tk
T

= 1. As there is only one
WiFi AP and both VLC and WiFi operate at different frequencies, there is no
co-channel interference. The signal to noise ratio (SNR) for user k can be given
as

SNRWiFi
k =

|Gk,n|2 (f)Pt

BN0

, (2.9)

where f is the carrier frequency, Pt is the transmitted power, B is the bandwidth,
N0 is the PSD of noise at the receiver, and Gk,n(f) is the channel gain between
the WiFi AP and user k.
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Gk,n(f) =

√
10

−L(d)
10 hr, (2.10)

where hr represents the small-scale fading gain that follows an independent
identical Rayleigh distribution with an average power of 2.46 dB [52]. d is the
distance, and L(d) is the large-scale fading loss, which can be given as

L(d) = 20 log10(d) + 20 log10(f)− 147.5 (dB). (2.11)

Figure 2.4: Comparison between RF and VLC networks

2.3. Hybrid WiFi-VLC Networks

The recent research on both WiFi and VLC showed the importance of these two
networks for future wireless networks. Although both networks have different
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advantages, they suffer from several limitations. Fig. 2.4 shows the main
differences between VLC and RF networks [53].

The major drawbacks for WiFi and VLC stand-alone are as follows:

• The VLC system needs a reliable supplementary network for uplink, such as
WiFi or infrared radiation (IR). It is not practical to put a light source on
each user’s device to transmit the data in uplink.

• The WiFi stand-alone fails to support a high data rate in dense indoor
scenarios. The use of other RF networks in cooperation with WiFi increases
the interference as they work on the same frequency.

Parameter VLC WiFi
IEEE standard 802.15 802.11
Interference No High
Spectrum Visible light RF
Coverage range 3-5m 10m
Data rate 10-100 Gbps [54] Few Gbps
Power consumption Low High
Security High Low
Blockage Yes Limited
Stability Indoor Indoor and outdoor

Table 2.3: Comparison between VLC and WiFi

Table. 2.3 shows a more detailed comparison between the two networks.
These limitations can be significantly reduced by using VLC as a complementary
network for WiFi. WiFi and VLC operate in a non-overlapping spectrum, which
allows VLC and WiFi to coexist and form hybrid WiFi-VLC networks. VLC
can support high data rates, while WiFi can support reasonable data rates with
flexible coverage. The hybrid WiFi-VLC networks outperformed WiFi or VLC
stand-alone in terms of a higher throughput and QoS.

Regarding the system resource utilization, there are two categories of hybrid
VLC-RF networks:

• Aggregated hybrid VLC-RF networks: Users employ both RF and VLC
simultaneously. The aggregated systems improve the throughput, packet
delivery, connectivity, and load balancing [55].
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• Non-aggregated hybrid VLC-RF networks: Users employ only RF or VLC
technology for transmission. Therefore, any request is assigned to the RF or
VLC links [21].

The challenges and current research on the design of hybrid VLC-RF networks
range from the MAC layer to the application layer and have been summarized in
Table. 2.4.

Type Type References Main contribution

Analysis

Achievable data rate [56] [57] [58] [59] [60] [61]
The throughput performance for various hybrid
RF-VLC networks is measured subject to the AP
selection, load balancing and handover.

Delay [55] [62] [63]
The network performance subject to the average
transmission delay is evaluated.

Packet loss probability
&

bit error rate (BER)
[62] [64] [65]

Different models are used to analyze the packet loss
probability and BER in hybrid RF-VLC networks.

Coverage and outage
probability

[64] [65] [66] [61]

The probability of coverage and outage is measured
subject to different constraints such as randomness
of positions for both transmitters and receiver,
handover, and other different network configurations.

Network fairness [59] [67] [68]
Network performance is evaluated subject to the overall
network fairness or individual user’s satisfaction.

Handover [69] [70] [70]
Different algorithms were proposed to improve the
handover between RF and VLC AP.

Optimization

Power and
energy efficiency

[71]
Energy consumption is minimized to maintain
acceptable illumination levels and satisfy the users
requirements.

[72]
The energy efficiency of the entire communication
system is maximized subject to the QoS requirements.

[73]
The area power consumption (APC) is reduced subject
to the outage probability constraint.

[74] The queue length and power consumption are minimized.

Throughput
maximization

[75]
Users are allocated to the available AP subject to the
overall throughput improvement.

[76]
The system throughput is maximized, and the
outage probability for D2D is minimized.

[77] The system throughput is maximized subject to fairness.

[78]
Network selection to improve the best long term
average performance.

Table 2.4: Hybrid RF-VLC studies: Analysis and optimization

Signal Strength Strategy (SSS)

In a typical network consisting of multiple APs, a user follows the SSS approach
connects to the AP that offers the highest signal strength. In a hybrid WiFi-
VLC networks, the characteristics of each link is different and the use of received
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signal strength matrix is insufficient to represent the channel quality. Therefore,
SNR is used instead of the received signal strength as decision metric for the SSS
method [79]. The SNR value can be calculated using (2.7) and (2.9) for VLC and
WiFi AP respectively. The objective for a user k using SSS is given by

max
n

SNRk,n s.t n ∈ N, (2.12)

where N represents the set of all available APs. SNRk,n represents the received
SNR for user k when connected to AP n. In this work, we have considered the
SSS as a benchmark.

2.4. Chapter Summary

This chapter presented the key concepts, channel model, and some of the
challenges for both visible light communication (VLC) and WiFi stand-alone. The
use of these two models as a hybrid WiFi-VLC helps overcome the main challenges
of each stand-alone model faces. Moreover, different types of hybrid WiFi-VLC
networks in terms of system resource utilization were presented. Finally, some of
the most recent studies on both optimization and analysis of hybrid WiFi-VLC
networks were presented.



Chapter 3

Applied RL Techniques

RL is the main ML technique that has been implemented throughout this thesis.
This chapter aims to describe the fundamental aspects of RL and how it can
be applied in wireless communication. Section 1 introduces the ML techniques,
followed by the definition and key elements of reinforcement learning in section
2. The description of the interaction between the agent and its environment is
illustrated in section 3. Section 4 describes how to formalize RL as a Markov
decision process (MDP), followed by the value function and Bellman equation in
section 5. Section 6 introduces the Q-learning algorithm, which has been used
in this work, followed by an illustration of how to implement RL in wireless
communication in section 7. Finally, section 8 summarized the chapter.

3.1. Introduction

Recently, ML has been used in many fields and has been more effective than
most of the traditional methods. ML is a potential solution to the increasing
complexity of wireless networks. Future wireless networks require an intelligent
system that can interact and adapt to any change in the environment and solve it
without the need for human decisions. Using ML techniques enables the system
to operate independently and achieve results that are close to optimal. Table. 3.1
summarized the ML techniques that can be used in wireless communication. Based
on the environment, data, and goal, different ML techniques can be implemented
to improve the wireless network performance. In this work, RL and NN are used.

38
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More details about RL will be illustrated in section 3.1.1.

Category ML Techniques Application in 5G Pros Cons

Supervised
Learning

- Neural network (NN)
- Support vector machine (SVM)

- Classification
- Detection

- Full control of the data analysis
- Input and output data are known in
advance
- The ability to determine the number
of classes
- More accurate results compared to
the unsupervised learning

- Needs large training data
- Requires high computational
capacity
- The model might be
over-trained

Unsupervised
Learning

- Principle component analysis (PCA)
- K-means clustering.

- Detection
- D2D communication
- Heterogeneous network

- Lower complexity
- It does not require labelled data
- Aims for large and complex
models

- Output is unknown
- Less control over the data
analysis

Reinforcement
learning Q-learning - D2D communication

- Heterogeneous network

- It does not require labelled data
or models.
- Low computational complexity
- Easy to implement

-Training process is slow
- Learning environment is
unknown
- Limited action-state space

Table 3.1: Summary of ML techniques

3.1.1. Key Elements of RL

RL is the ability to learn what to do by mapping situations to a state action model.
It aims to maximize a numerical reward signal. Unlike other ML techniques, the
learner is not told which action to take, but must interact with the environment
to find the actions that offer the best reward. The ability to learn by interacting
makes the learner aware of the consequences of performing an action, the cause-
and-effect relationship, and how to react to achieve a specific goal. RL is the
most appropriate solution for any model where the agent must learn from its
own experience of interaction with the environment. RL can be formulated as a
stochastic optimized solution for a finite MDP. Any method that can solve MDP
is considered as a RL method [80]. The key elements of RL can be categorize as
follows:

• Agent: The agent is the learner who interacts with the environment and
makes decisions based on the reward and penalty.

• Environment: The environment is the world in which the agent interacts
and makes decisions. When the agent performs an action, the environment
returns to a new state by sending a reward to the agent that indicates the
effect of performing that action on the environment.

• Policy: A policy defines the agent’s behaviour, and how it should interact
with the environment. Based on the model, it can be a simple function, such
as a lookup table, or it may involve extensive computation. Policies may be
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deterministic or stochastic. Stochastic policy is the most common policy,
and it is denoted by π.

• Reward signal: Each time the agent performs an action, the environment
sends a single value that represents the reward of performing that action.
The goal of the agent is to maximize the reward signal.

• Value function: The value function can be defined as the total number of
rewards that an agent can accumulate over multiple actions. The reward
refers to the immediate reward for performing the action, while the value
is an estimation for the sequence of observations that an agent makes. The
value estimation is the core element of almost all RL methods.

3.1.2. The Agent-Environment Interface

In RL, the learning framework is based on the agent interacting with the
environment to achieve a specific goal. The decision-maker or controller is called
the agent. Everything outside the agent is part of the environment. The agent
performs an action, and the environment responds to the action with a reward.
Fig. 3.1 shows the agent-environment interaction diagram. The interaction
between the agent and the environment can be represented as a sequence of discrete
time steps, such as t = 0, 1, 2, ..., T . Let R, S and A be the reward, sets of possible
states, and actions, respectively. At each time step, the agent senses the state of
the environment St ∈ S and selects an action At ∈ A(St), where A(St) represents
the set of available actions in state St. The agent moves to a new state St+1 in
the next time step and receives a reward Rt+1 ∈ R. The reward signal is a scalar
value that represents the effect of performing that action. The agent strategy
of selecting each possible action at state St represents the agent’s policy, which
can be denoted by πt, where πt(a|s) represents the probability of selecting action
At = a when the agent is in state St = s. The RL methods identify how the agent
changes its policy during training to achieve the best possible long-term reward.

The agent’s goal is to maximize the total reward that it receives over multiple
time steps rather than the instantaneous reward. The interaction between the
agent and environment occurs over a sequence of episodes. Let the sequence of
received rewards be denoted as rt+1, rt+2, ..., rT , where T is the final time step. RL
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Figure 3.1: RL model.

aims to maximize the expected return value Gt, which is the sum of the rewards

Gt = rt+1 + rt+2 + rt+3 + ...+ rT . (3.1)

In some models, where the interaction is continuous tasks, Gt might reach infinity,
as the final time step would be T =∞. As the agent’s aim is to maximize Gt over
the shortest possible time, a discount factor needs to be implemented to limit the
long-term runs. Therefore, (3.1) can be modified to be the expected discounted
return as

Gt = rt+1 + γrt+2 + γ2rt+3 + ...+ γ(T−1)rT =
∞∑
k=0

γkrt+k+1, (3.2)

where γ is the discount rate in which γ ∈ [0, 1]. When γ = 0, the agent aims
to maximize the immediate reward and neglect any future reward. The choice
of γ < 1 ensures that the infinite sum for Gt has a finite value for any bounded
reward sequence rk. A stochastic policy for an agent can be illustrated as the
probability that the agent performs an action at = a, given that it observed the
current state st = s, which can be defined as

π(a|s) = p(at = a|st = s). (3.3)

The general concept of (3.3) can be illustrated using the framework of Markov
decision Processes (MDPs).
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3.1.3. Markov decision processes (MDPs)

MDP is a discrete time stochastic process that aims to model the decision-making
process when the agent has partial control over the outcomes [81]. In general,
when an environment responds at time t + 1 for an action taken at time t, the
response may depend on everything that happened in the past. Mathematically,
for all r, s′, and values for past events, the probability distribution can be defined
as [80]

Pr {Rt+1 = r, St+1 = s′|S0, A0, R1, ..., St−1, At−1, Rt−1, St, At, Rt} . (3.4)

To define the Markov property for an environment, it must have a finite set of
states and reward, and the future is independent of the past given the present.
Therefore, the environment has the Markov property if and only if the response
at t + 1 depends only on the state and action at time t. Mathematically, a state
signal has a Markov property if (3.4) is equivalent to

p(s′, r|s, a) = Pr {Rt+1 = r, St+1 = s′|St, At} , (3.5)

for all s′, r, St, and At. Any RL algorithm that satisfies the Markov property
is assumed to be MDP. The MDP framework is essential for RL problems, as
RL aims to maximize the total reward, and MDP captures the dynamics of RL
problems. A finite MDP consists of the following four main core elements:

• A is a finite set of all available actions.

• S is a finite set of all the possible states that represents the environment’s
dynamic.

• p(s′|s, a) is the state-transition probability, which can be denoted by

p(s′|s, a) = Pr {St+1 = s′|St = s, At = a} =
∑
r∈R

p(s′, r|s, a), (3.6)

where p(s′, r|s, a) is the probability of each possible pair of next state St+1

and reward r given any state s and action a, and R is a set of possible
rewards [82]- [83].

• r(s, a, s′) is the expected reward for state-action pairs, which can be
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expressed as
r(s, a) = E[Rt+1|St = s, At = a]. (3.7)

3.1.4. Value Function and Bellman Equation

Most RL methods are based on estimating the value function of a stochastic policy.
There are the following two types of value functions for a policy π: state-value
function vπ(s) and action-value function qπ(s, a). These values can be estimated
from experience when the agent follows policy π. vπ(s) is the value of a state
under policy π and can be expressed as

vπ(s) = Eπ[Gt|St = s] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s

]
. (3.8)

qπ(s, a) is the expected return from a state s when the agent takes action a,
following the policy π, which can be denoted by

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s, At = a

]
, (3.9)

where qπ(s, a) is also called the Q-function. qπ(s, a) can be expressed as a function
of vπ(s′).

The relationship between qπ(s, a) and vπ(s) will be illustrated in the optimal
value functions. The relationship between the state-value function of state st = s

and the next state st+1 = s′ for a policy π can be defined using the Bellman
equation as

vπ(s) =
∑
a∈A

π(a|s)
∑
s∈S

P (s′|s, a)[R(s, a, s′) + γvπ(s
′)], (3.10)

where π(s|a) is the policy, P (s′|s, a) is the state-transition probability function,
v(s′) is the state-value function for the next state st+1, and R(s, a, s′) is the reward
function. The motivation for deriving the Bellman equation can be stated as:

• The Bellman equation describes the relationship between the value of the
current state vπ(s) and the value of the next state vπ(s′).

• It has been proved that the Bellman equation for vπ has a unique solution
for each policy known as the state-value function of the policy [84].
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In any RL model, the aim is to find the optimal policy that achieves the best
reward over the long run. In a RL model, where there might be more than one
policy that shares the same state-value function, the optimal state value function
v∗(s) and the optimal action value q∗(s, a) can be defined as

v∗(s) = max
π

vπ(s), for all s ∈ S (3.11)

q∗(s, a) = max
π

qπ(s, a), for all s ∈ S and a ∈ A(s). (3.12)

q∗(s, a) can be written as a function of v∗ as [80]

q∗(s, a) = E[Rt+1 + γv∗(St+1)|St = s, At = a]. (3.13)

The Bellman optimality equation is valid when the value of a state following the
optimal policy is equal to the expected value for the best action from the same
state. Therefore, v∗(s) can be written as a function of q∗(s, a) as

v∗(s) = max
a∈A(s)

qπ∗(s, a). (3.14)

Substituting the value of qπ(s, a) from 3.13 in 3.14, v∗(s) can be written as

v∗(s) = max
a

E[Rt+1 + γv∗(St+1)|St = s, At = a], (3.15)

which represents the Bellman optimality equation for v∗. When substituting the
value of v∗(s) from 3.14 in 3.13, the Bellman optimality equation for q∗ can be
written as

q∗(s, a) = E[Rt+1 + γ max
a′

q∗(St+1, a
′)|St = s, At = a]. (3.16)

From 3.10 and 3.11, the Bellman optimality equation for state-values can be
derived as

v∗(s) = max
a∈A

∑
s′∈S

P (s′|s, a)[R(s, a, s′) + γv∗(s
′)]. (3.17)

More details about the derivation of (3.17) can be found in [85]. The Bellman
optimality equation for any finite MDP has a unique solution that is independent of
the policy. By knowing the dynamics of the environment P (s′|s, a) and R(s, a, s′),
v∗ can be solved using any method to solve non-linear equations. Solving the
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Bellman optimality equation to find an optimal policy is not practical for the
following three main reasons:

• Computational cost: Finding the optimal policy is like an exhaustive search,
where the agent has to look for all possibilities in all states and compute
their probabilities.

• The dynamics of the environment must be well known by the agent.

• The environment must has the Markov property.

Alternatively, multiple decision-making methods aim to approximately solve
the Bellman optimality equation rather than find the optimal solution. Most
RL methods involve approximately solving methods for the Bellman optimality
equation. RL methods can be used if the agent is not knowledgeable about the
environment. Therefore, v∗ and q∗ are not known to the agent. The exploitation-
exploration trade-off is one of the key issues in applying RL algorithms [86]. The
agent cannot directly choose the action with the highest reward, as it also needs to
discover the environment to explore the rewards for the other actions. The trade-
off between the attempt to discover new rewards and perform the action based
on the current knowledge is known as the exploitation-exploration trade-off and
can be solved using the following two different approaches: the on-policy and the
off-policy. These two approaches differ regarding how they estimate and control
the policy. In the on-policy, the same policy that makes the decision is evaluated
and improved. In the off-policy method, estimating the value of the policy differs
from the behaviour policy. In this way, the behaviour policy can continue to
explore different actions. Based on the approach, the agent may use different
action selection strategies to deal with the trade-off. The main action-selection
strategies are as follows:

• Greedy: The greedy strategy implements pure exploitation, where the
agent always selects the action with the highest reward.

• ϵ-greedy: In this strategy, the agent uniformly selects an action with a
probability of ϵ from all available actions and takes the best action with a
probability of (1− ϵ) [82].
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• Softmax: In the softmax strategy, the best action has the highest
probability, and all other actions are weighted based on their estimated
values [87].

Figure 3.2 shows the main model-free RL methods [88]. In the rest of this
work, we will focus on the Q-learning algorithm.

Figure 3.2: Model-free RL methods

3.2. Q-learning

In 1989, Waltkins introduces Q-learning as an off-policy learning algorithm that
enables the agent to act optimally in an MDP environment [89]. Q-learning is used
in a wide range of applications to find the approximate solution to the Bellman
optimality equation. The main advantage of using Q-learning is that the agent
directly approximates the optimal action-value function q∗ independent of the
implemented policy. The policy still has a role in updating the visited state-
action pairs. This has been proven to simplify the analysis of the algorithm and
improve the convergence speed [89]. The simplest form of one-step Q-learning can
be defined as

Q(St, At)← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)], (3.18)
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where α is the learning rate. Since Q-learning is an off-policy, the action selection
strategy may follow one of the strategies in Section (3.1.4), such as the greedy
or ϵ − greedy strategy. Under the assumption that all state-action pairs must be
visited during the exploration within the episodes limit, q converges to q∗ with a
high probability.

3.2.1. Process of Q-learning

The Q learning process when the agent uses ϵ−greedy is illustrated in the following
five steps:

• Initialize the Q-table: The Q-table consists of n columns and m rows,
where n is the number of actions and m is the number of states. The Q
table is initialized with zero values.

• Choose and perform an action: The agent chooses action a in a state
s from the Q-table using the ϵ − greedy policy. The epsilon rate at the
beginning is high, which allows the agent to explore the environment and
choose actions at random. As the iterations continue, the epsilon rate will
decrease, and the agent will start to exploit the environment.

• Measure the reward and update the Q-table: After calculating the
reward for performing action a from a state s, the Q-table is updated using
3.18. For the optimal Q-value, the agent selects action a and receives a
reward r, which is affected by a discount factor of performing the policy.

The workflow of the Q-learning algorithm is illustrated in Algorithm 1.

3.2.2. Motivations to use Q-learning

Q-learning combines Monte Carlo methods and dynamic programming in order to
solve the Bellman equation [90]. As Q-learning is an off-policy method, the main
motivations for using Q-learning can be summarized as follows

• Off-policy methods have the ability to learn the optimal policy regardless of
the behaviour policy.

• Exploitation and exploration in Q-learning: Based on the environment, the
developer can adjust the balance between exploration and exploitation in Q-
learning to improve the learning performance. Therefore, more flexibility in
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Algorithm 1 Q-learning algorithm
1: Initialize Q(st, at) arbitrarily.
2: for all episodes do
3: Initialize st
4: for all steps of episode do
5: Choose at for all users from a set of actions using (ϵ− greedy) policy.
6: Take action at
7: Observe Rt, st+1

8: Receive shared reward
9: A(St, At)← Q(St, At) + α[Rt+1 + γ max

a
Q(St+1, a)−Q(St, At)]

10: st ← st+1

11: end
12: end

designing the Q-learning can be achieved. For example, in some applications,
knowledge transfer has been implemented to replace the exploration part of
the training phase, which significantly improved the convergence speed [91].

• Q-learning is suitable for both single-agent and multi-agent reinforcement
learning. As different policies can be applied, multiple algorithms can be
used based on the application such as Deep Q-learning, Double Q-learning
and Nash Q-learning [90].

3.2.3. Q-learning in Wireless Communication

In wireless communication, the core elements of RL vary depending on the
environment and the purpose of implementing the algorithm. The agent, states,
actions, and reward need to be properly defined to achieve the best results. Fig. 3.3
presents examples of different implementations of RL in wireless communication
environments.

• Wireless environments: RL can be applied to any wireless environment
that requires resource allocation optimization, such as heterogeneous
networks, internet of things (IoT), and V2V.

• Agent: The agent is the main controller of RL. It can be either a single agent
or multiple agents where each one performs a separate Q-learning algorithm.
The agent can be the end user [92] or the main access point (AP) [93] based
on the design of the Q-learning algorithm.
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Figure 3.3: Q-learning in wireless communication

• Action: Different actions can be designed based on the optimization
problem that needs to be solved. In resource allocation problems, the action
can be formalized as increasing or decreasing the transmitted power, channel
selection [94], or network selection [95].

• State: The defining of states vary from one environment to another, they
can represent the coverage area, interference, or locations [94]- [96].

• Reward: The design of the reward equations is crucial to improve the
network performance. The reward design is the key contribution that needs
to be carefully investigated, as some reward functions may lead to a low
Q-learning performance. The best results in terms of convergence speed
and QoS improvements can be achieved by designing the reward function.
More details about the different reward function designs will be illustrated
in Chapter 6.
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3.3. Chapter summary

This chapter introduced and presented the key concepts RL techniques. While
RL techniques are widely used in wireless communication, they can only be
applied if certain conditions are satisfied such as the availability of an environment
with a Markov property. Moreover, an introduction to Q-learning, which is
one of the most common RL techniques that has been implemented in wireless
communication, was illustrated. Finally, the process of Q-learning and how to
formalize RL in wireless communication was presented with a literature review.



Chapter 4

RL Approach for Network Selection
in Hybrid WiFi-VLC Networks

In this chapter, a hybrid WiFi-VLC network is considered in which multiple visible
light communication (VLC) access points (AP) coexist with a WiFi AP. A number
of indoor users can share the hybrid WiFi-VLC system. All users employ WiFi
for the uplink, and one access point (WiFi or VLC) is assigned to each user to
maximize the network’s overall capacity. We propose a new reinforcement learning
algorithm that can be implemented at the WiFi AP and result in the selection
of an access point such that the total throughput is maximized. Numerical
simulations are provided to validate the performance of the proposed algorithm.
The standalone VLC link is also investigated from different perspectives, such as
coverage and outage, to show the importance of integrating VLC with WiFi.

Part of the work in this chapter has been published in P.1. The rest of this
chapter is organised as follows: Section 4.1 introduces the chapter and states the
main contribution. A literature review of hybrid WiFi-VLC networks and the
implementation of RL in hybrid WiFi-VLC networks are presented in section 4.2.
Section 4.3 describes the system model and how to calculate the data rates of
both the WiFi and VLC links. Section 4.4 formulates the problem presented in
this chapter, while section 4.5 presents the proposed RL approach. Section 4.6
starts with the simulation results showing the performance of the standalone VLC
link, followed by some numerical results for the implementation of RL in hybrid
WiFi-VLC networks. Finally, the chapter summary is presented in section 4.7.

51
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4.1. Introduction

Future wireless networks are expected to maintain the QoS for all users despite
the dramatic increase in mobile devices, especially in indoor environment [97].
Maintaining the required high data rate with low delay for a large number of
users may not be applicable in the current systems due to the limitation in the
radio frequency (RF) spectrum. One possible way to improve an indoor wireless
network is using hybrid system with multiple networks. Multihoming capability
has been developed to support multiple networks, allowing users to receive data
from multiple networks [98].

Selecting the best complementary network is crucial, as it can significantly
increase the hybrid system’s complexity, resulting in more complicated schemes.
For example, in hybrid LTE-WiFi, both networks operate at the same frequency,
which increases the co-channel interference. As both networks share the same
spectrum, the use of a hybrid system may not significantly improve the overall
performance. Most of the research on hybrid LTE-WiFi focused on improving the
energy efficiency which is out of the scope in this work [51].

Visible light communication has recently exhibited great potential as a
complementary network to WiFi due to many factors, such as low energy
consumption, an unlicensed band and security [99]. As VLC can be directed, it
is suitable for achieving a high data rate in a small coverage area. However, VLC
is mainly implemented in the downlink and needs a reliable uplink connection,
such as WiFi or infrared, since it is not practical to be used in the uplink [100].
Combining WiFi and VLC can benefit from both networks’ advantages and
overcome the limitations of both networks.

In this chapter, we propose a new centralized Q-learning algorithm on the WiFi
AP that improves the total system performance. The contribution is categorized
into three main points:

• To show the importance of implementing hybrid WiFi-VLC networks, the
standalone VLC link is investigated under different VLC parameters such as
light intensity, and the field of view of the receiver’s photo-detector. These
parameters can impact the coverage probability, SNR distribution, and users’
interference.

• The resource allocation problem in a hybrid WiFi-VLC system is solved
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using centralized Q-learning. The proposed algorithm offloads users from
one AP to another to improve the overall QoS.

• A new reward function that takes into consideration the users’ location to
minimize the handover is presented.

4.2. Related Work

Improving the indoor wireless networks is a crucial topic that many researchers
have tried to tackle. This section focuses on previous works that have been
investigated on hybrid RF and VLC networks.

Mohammad Kashef et al. published a paper investigating the backhaul of the
VLC network in a hybrid WiFi and VLC network and how it can be maximized
to improve overall network performance [101]. Their aim was to evaluate the
use of power-line communication in a cascade with VLC. In this paper, they
used orthogonal frequency-division multiplexing-based PLC to find the power and
subcarriers required to improve the system’s performance.

Several studies have investigated the implementation of heterogeneous RF and
VLC networks [100]- [102]. In [100], the authors proposed a heterogeneous system
in which the WiFi is used in the uplink and VLC in the downlink. In this case,
the hybrid system improved the overall performance but did not reach the full
potential of using WiFi-VLC in the downlink. In [103], the authors investigated
the handover mechanism in hybrid RF-VLC, while [102] investigated the energy
efficiency of the hybrid system.

Recently, several studies have suggested the use of reinforcement learning in
hybrid networks [104] - [105]. The authors in [104] applied RL to hybrid LTE,
WLAN, and VLC for network selection, taking into consideration the traffic type
and the possibility of having learning records to improve the Q-learning algorithm.
In [106], the authors proposed a new RL algorithm for energy efficient resource
management. In [105], the authors used multi-agent RL to develop online power
allocation that improves the user’s QoS.

Sarah Saeed et al. published a paper that used mixed-integer linear
programming to optimize the allocation of wavelengths and access points to
users in an indoor VLC environment [107]. They employed laser diodes as
APs, each consisting of four colours: green, yellow, blue and red. With a
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centralized controller, they could maximize the sum of the signal-to-interference-
plus-noise ratio (SINR) for all users. Resource allocation was done by a centralized
controller that had prior knowledge of the users’ locations and their received
power from all the access points. When a user was assigned to a wavelength,
the other wavelengths were neglected. The results showed that the throughput
was maximized with seven users, but it decreased exponentially after that.

Chunxi Wang et al. used reinforcement learning for network selection in a
hybrid system with LTE, WiFi and VLC networks [108], but unlike other papers,
they emphasised reinforcement learning with knowledge transfer. Assuming
that there are historical data about the environment, this can be used to
speed up the convergence process. With historical information, Q-learning can
initialise the algorithm by loading the Q-values from historical data instead
of exploring with ϵ-greedy. Their simulation results showed good results in
terms of speeding up convergence and improving the algorithm’s performance.
Nevertheless, they focused only on the performance of the Q-learning algorithm
with different observations. Showing the results from the network selection would
have significantly supported their algorithm.

Justin Kong et al. published a letter that evaluated Q-learning in two time-
scale power allocations for hybrid RF-VLC networks to accommodate the different
characteristics of RF and VLC channels [109]. In their algorithm, each AP works as
an agent and performs the algorithm. Based on the achievable rate from the VLC
AP, the RF AP controls its transmit power so that the user can meet his required
QoS. To do that, the reward value for performing the Q-learning in the RF AP
also depends on the parameters achieved from the VLC AP. The simulation results
showed that the algorithm maintained an average achievable rate for different time
slots.

Helin Yang et al. used heterogeneous RF-VLC networks to support the QoS
requirements of all industrial internet of things (IoT) devices [110]. Both ultra-
reliable low latency and high data rate QoS were considered in formulating the
problem as a MDP in which network selection, channel assignment and power level
were taken into account. Reinforcement learning was used to improve both QoS
requirements and energy-efficient resource management. They proposed a new
algorithm called deep post-decision state-based experience replay and transfer
(PDS-ERT) reinforcement learning. In PDS-ERT, the agent can utilise both
historical data and other agents’ experiences. Deep PDS-ERT QL is different
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from deep Q-learning (DQL) because it stores only the important parameters
while updating the memory. Compared with other algorithms, the simulation
results showed better performance in accelerating the learning rate and improving
learning efficiency.

4.3. System Model

We considered an indoor heterogeneous wireless access environment consisting of
K users, one WiFi AP and N VLC access points. All users were equipped with
multi-homing capability and could only connect to one AP. The uplink was served
by the WiFi, while the downlink could be served by either VLC or WiFi. As shown
in Fig. 4.1, some users could connect to the WiFi even though they were located
under the VLC AP to maximize the total system performance. A VLC system
is significantly different from an RF system in terms of operating frequencies and
modulation/demodulation techniques, making it suitable for a hybrid system with
WiFi, as both operate at different frequencies.

...

Downlink Uplink

Figure 4.1: System architecture of hybrid VLC-WiFi network.
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4.3.1. Achievable Rate for the WiFi Link

Due to the implementation of the CSMA/CA schedule scheme in 802.11, each
user occupies the total bandwidth in the WiFi link for a time interval t. Thus,
the user throughput can be calculated by averaging in a period of time T [111].
The normalized achievable rate for user k in bits/s/Hz when connected to WiFi
AP can be given as

CWiFi
k = sk[log2(1 + SNRWiFi

k )], (4.1)

where sk ∈ [0, 1], which corresponds to the time interval tk user k occupies the
channel over the total time T . Note that

∑N
n=1

tn
T
= 1. There is only one WiFi AP,

and both VLC and WiFi operate at different frequency, so there is no co-channel
interference in the WiFi link. More details about the WiFi link can be found in
Chapter 2.

4.3.2. Achievable Rate for VLC link

Since VLC uses intensity modulation and direct detection for optical signals, half
of the subcarriers are used after modulation as only the real valued signals can be
transmitted. When VLC APs support multiple users, TDMA with RR scheduling
is used to support the assigned users [102]. Thus, the normalized achievable rate
for user k in bits/s/Hz when connected to VLC AP n can be given as [104]

CVLCn
k =

1

2Un

log2(1 + SNRVLC
k ), (4.2)

where Un is the total number of users assigned to the same AP. More details about
the VLC link can be found in Chapter 2.

4.4. Problem Formulation

In a hybrid WiFi-VLC system, WiFi covers a large area, so it is assumed that all
users are inside its coverage. However, due to the fairness in WiFi, users located
farther away from the AP take more time to transmit compared with users closer
to the AP. By offloading WiFi users to the VLC APs, the system’s performance
can be significantly improved, as the users are distributed over multiple APs. Note
that each user can connect to only one AP at time t. The total throughput for
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WiFi can be calculated as

CWiFi =
K∑
k=1

sk(log2(1 + SNRWiFi
k )). (4.3)

Similarly, the total throughput for one VLC AP can be calculated as

CVLCn =
K∑
k=1

1

2Un

log2(1 + SNRVLC
k ). (4.4)

Adding (4.3) and (4.4), the total system throughput can be calculated as

Ctotal = CWiFi +
N∑

n=1

CVLCn , (4.5)

where N is the total number of available VLC APs in the hybrid system. Since
each user can connect to only one AP at time t, (4.5) needs to follow the constraint
δnk = 1 for only AP n and 0 for the other APs, which means that user k is connected
to AP n. The goal is to maximize the system throughput by reassigning users to
each AP so that we can achieve higher total throughput. Therefore, (4.3) and
(4.4) can be rewritten as

CWiFi =
K∑
k=1

δWiFi
k sk(log2(1 + SNRWiFi

k )), (4.6)

CVLCn =
K∑
k=1

δnk
1

2Un

log2(1 + SNRVLC
k ), (4.7)

where Un is the total number of connected users to AP n. The maximum total
throughput can be given as

max
δWiFi
k ,δ

VLC1
k ,...,δ

VLCN
k

(
CWiFi + CVLC1 + ...+ CVLCN

)
. (4.8)

Solving (4.8) using exhaustive research is not practical, as it cannot support a
dense users environment. One approach that can be used to solve the optimization
problem is RL.
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4.5. Centralized RL Approach

Since all users use the WiFi AP as the uplink, centralized reinforcement learning
can be applied at the WiFi AP using a controller to offload users from one AP to
another in the downlink. In a heterogeneous network, the Q-learning parameters
can be defined as follows:

• Agent: The WiFi AP acts as an agent, as all users use it for the uplink. The
agent uses the ϵ-greedy policy for exploration by choosing an action with a
probability of 1− ϵ, and acting randomly with a probability of ϵ.

• Actions: For each user, the controller selects one action from a set of actions
A = (aWiFi, a1, ..., aN). The number of actions is the same as the total
number of APs in the system and all actions have the same probability.
Each action consists of a vector indicating which user should connect to
which AP, as shown in Table 4.5. a1 means that the user is connected to
only WiFi while selecting action aN for user k allows the user to connect to
only VLCN .

WiFi VLC1 VLC2 . . . VLCN

aWiFi 1 0 0 . . . 0
a1 0 1 0 . . . 0
a2 0 0 1 . . . 0

. . . . . . . . . . . . . . . . . .
aN 0 0 0 1

Table 4.1: Set of actions

• Reward function: Defining the reward function significantly affects system
performance, as it can be designed to satisfy a specific goal. We proposed a
new reward function that can be implemented for a centralized Q-learning
approach to maximize the total system throughput. The reward function
for user k selecting action ak at time step t can be defined as

Rk = aWiFi
k CWiFi

k + a1kg
1CVLC1

k + ...+ aNk g
NCVLCN

k , (4.9)

where gn =
( v

dVLCn
k

)
, dVLCn

k is the distance between VLC AP n and user k,
and v is a reference distance as shown in Fig. 4.2. gn is used to imply higher
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reward value for assigning user k to VLC AP n when the user is located
close to the same AP. Once the distance is more than v meters, the reward
value for assigning the user to VLC AP n is significantly reduced because
connecting to a VLC AP that is too far is not practical.

Figure 4.2: Illustration of g(n) in reward function (4.9).

Once the reward value for each connected user is calculated, we can apply the
sum of the reward values in the Q update equation below

Q(St, At)← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)], (4.10)

where γ is the discount rate, α is the learning rate, and Rt+1 is the sum of the
reward values for each connected user, which can be mathematically defined as

Rt+1 =
K∑
k=1

Rk. (4.11)

To obtain the optimal Q-value, the agent receives a reward Rt+1 for selecting
action a, which is affected by a discount factor γ for performing the policy. The
Q-learning algorithm is shown in Algorithm 2. The QL algorithm is guaranteed
to converge when the rewards are bounded and all actions are repeatedly sampled
[112]- [113]. In this work, the algorithm runs until the max Q(St, At) does not
increase over multiple iterations or the iterations stops.
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Algorithm 2 Q-learning algorithm
1: Initialize Q(st, at) arbitrarily.
2: for all iterations do
3: Initialize st
4: for each time step do
5: Choose at for all users from a set of actions using (ϵ− greedy) policy.
6: Take action at
7: Observe Rt, st+1

8: Q(St, At)← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)]

9: st ← st+1

10: end
11: end

The complexity of model-free QL algorithms depends upon exploring the
unknown environments and maximizing the expected reward [114]. The
complexity of QL can be discussed from three different perspectives [115]:

• Regret complexity: The upper confidence bound (UCB) regret is
O(
√
SATH3), where S, A, T, and H are the total number of states, number

of actions, number of steps, and number of steps per iteration, respectively.
In this work, H = 1 implies only one step per iteration.

• Time complexity: The time complexity can be expressed as O(T ).

• Space complexity: The space complexity can be expressed as O(SAH).

The main advantage of this approach is that the selection of the best network
for each user is not based on only the individual user’s preference but also
on the overall performance. For example, assume that only two users request
transmission, and both are located under the same VLC AP. The algorithm may
allow one user to transmit using VLC and the other with WiFi, which benefits
both users instead of having them share the same resources.

4.6. Simulation Results

In this section, we analyze the network’s performance by simulating the impacts of
different parameters. To begin, a stand-alone VLC link is simulated in subsection
4.6.1. The aim is to illustrate the limitations of the VLC link and the need to
implement a hybrid WiFi-VLC networks. Next, the simulation results from the
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network selection in the hybrid WiFi-VLC networks using the proposed RL are
illustrated in subsection 4.6.2.

4.6.1. Stand-alone VLC Link

The objective of this section is to demonstrate the impacts of VLC parameters,
such as light intensity, the field of view (FOV) of the PD receiver and the coverage
probability of a typical user, using two different indoor scenarios:

• Scenario 1: a 5 m × 5 m × 3 m room size using two VLC APs.

• Scenario 2: an 8 m × 8 m × 3 m room size using four VLC APs.

Parameters Values

Room Size - 5 m× 5 m × 3 m
- 8 m× 8 m × 3 m

Source

Scenario 1: 2 VLC APs (location) (1.25, 2.5), (3.75, 2.5)

Scenario 2: 4 VLC APs (location) (2, 2, 3), (2, 6, 3),
(6, 2, 3), (6, 6, 3)

Scenario 3: 4 VLC APs (location) (1, 4, 3), (3, 4, 3),
(5, 4, 3), (7, 4, 3)

Number of LEDs per lamp 25
PLED 1 W (total 25 W per lamp)
Semiangle at half power 70

Receiver
receiver height above the floor 1 m
Area of PD 1 cm2

Half angle FOV 60

Table 4.2: VLC link parameters.

Table 4.2 illustrates the VLC link parameters. The optical power distribution
at a receiver plane using a LOS link is demonstrated in Fig. 4.3 and Fig. 4.4
using different FOV. In both figures, uniform optical power distributed at the
centre of each AP can be observed. In Fig. 4.3, a half-angle of 20 degrees at the
receiver led to a maximum of -13 dBm and a minimum of -15.5 dBm, indicating
the importance of the design of the PD, as only users located directly under the
AP could be connected. In Fig. 4.4, a half-angle of 70 degrees at the receiver
improved the range of optical received power to a maximum of -14 dBm and a
minimum of -34 dBm. While there are other factors could affect optical signal
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Figure 4.3: Optical power distribution in received optical plane when FOV=20◦.

Figure 4.4: Optical power distribution in received optical plane when FOV=70◦.
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strength such as transmitted power, and number of LEDs per lamp, the FOV was
crucial, as it indicated whether the user was in range of the AP or not.

The effect of transmitted power on the received SNR was another parameter
that needed to be illustrated. The transmitted power of a lamp directly affects the
received signal. In this work, we used the lamp design in [45]. Each lamp consisted
of 25 LEDs pointing towards the floor in slightly different directions. Even though
only two VLC APs were used, high transmitted power led to almost full coverage
as shown in Fig. 4.5. This figure illustrates that when a 50 W lamp was used,
the SNR distribution at a receiver plane was sufficiently high to support any user.
However, increasing the transmitted power significantly increased interference, as
the users could receive from multiple APs. By contrast, when a 12.5 W lamp was
used as an AP, only the areas under the lamp could receive high SNR, as shown
in Fig. 4.6. The area under the AP had around 40 dB SNR, while other areas had
only 5 dB SNR. The gap between the minimum and maximum SNR was around
35 dB leading to dead zones in many areas.
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Figure 4.5: SNR distribution in a plane when FOV=70◦ and PLED = 2W (Plamp =
50 W ).

Coverage probability was another factor that needed to be illustrated, as VLC
link has a limited coverage area. A user could connect to a VLC link if at least one
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Figure 4.6: SNR distribution in a plane when FOV=70◦ and PLED = 0.5 W
(Plamp = 12.5 W ).

VLC AP was within the FOV of the user’s PD such that cos−1(h
d
) ≤ FOV, where

h is the fixed vertical distance between the VLC AP and the floor, and d is the
direct distance between the user and the VLC AP. The coverage probability for
both scenarios was simulated using different heights for AP deployments. Fig. 4.7
shows the coverage probability for scenario 1. As shown in the figure, as the height
increases, the coverage probability increased. Full coverage for APs deployed at
2.15 m, 3.15 m, and 4 m occurs when the users PD have FOV angles of around
63, 55, and 50 degrees, respectively.

As the room size increased, the coverage probability decreased even though
four VLC APs were deployed, as shown in Fig. 4.8. This led to wider FOV angle
requirements to guarantee full coverage. For a typical room height of 3.15 m, all
users’ PD should have a FOV angle of at least 68 degree to achieve a full coverage
area.

While coverage probability is important when designing a VLC link, it does
not always guarantee that a user can connect to a VLC AP even though he is
located within the coverage of the AP. Users with low received SNR have lower
QoS, especially if they are located at the edge of the VLC AP coverage area, as
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Figure 4.7: Coverage probability for a 5 m × 5 m room size using 2 VLC APs.

30 40 50 60 70 80 90

Half of field of view (FOV) in degree

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
v
e
ra

g
e
 p

ro
p
a
b
ili

ty

h= 2.15 m, 4 VLC APs

h= 3.15 m, 4 VLC APs

h= 4 m, 4 VLC APs

Figure 4.8: Coverage probability for a 8 m × 8 m room size using 4 VLC APs.
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the light is easily blocked. While all of the mentioned parameters are essential in
designing a VLC link, implementing a backup link such as Wifi is necessary to
improve the users’ QoS.
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(a) VLC APs locations in Scenario 2
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(b) VLC APs locations in Scenario 3

Figure 4.9: Different scenarios for 4 VLC APs locations
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Figure 4.10: Outage probability for different scenarios of 4 VLC APs locations.

Fig. 4.9 shows different scenarios for 4 VLC APs deployed at different locations
in the room to show the effect of the APs locations on the performance of VLC
network. The outage probability for scenario 2 and 3 are simulated in Fig. 4.10.
It is noticeable that the locations of the VLC APs significantly affects the outage
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probability. For example, when the received SNR is around 23 dB, the outage
probability in scenario 2 is around 40% while the outage probability in scenario 3
is around above 60%, which implies higher outage probability by more than 20%.
Therefore, VLC APs locations needs to be carefully considered to cover larger
areas of the room.

4.6.2. Network Selection in Hybrid WiFi-VLC Networks Using RL

An indoor environment is simulated in a 5 m × 5 m × 3 m room using one WiFi
AP and two VLC APs. All users were assumed to be stationary and could obtain
instantaneous rate based on their location and the channel parameters. Each VLC
AP covered a small room area, while WiFi covered the entire room. The users
were uniformly distributed in the room, and all the results were averaged over 40
runs. The WiFi link was assumed to operate at 2.4 GHz, and the channel gain was
assumed to depend only on the path loss. The parameters used in VLC and WiFi
links are summarized in Table 4.3 [116]- [117]. The simulation setup is coded in
MATLAB 2019.

VLC Parameters Value
PVLC
t 25 W
Apd 1 cm2

Semi-angle 60◦

Responsivity 0.5 A/W
BVLC 20 MHz
N0VLC

10−18 W/Hz
WiFi parameters Value

BWiFi 20 MHz
N0WiFi

-174 dBm/Hz

Table 4.3: Simulation’s parameters

In the proposed Q-learning method, the maximum number of iterations was
set to 60,000. The agent was the WiFi AP, and it used the ϵ-greedy policy with
ϵ = 0.1. The learning rate and the discount factor were set at 0.5 and 0.9,
respectively. The total number of actions in this scenario was three, as the user
could connect to one of the three APs, while the number of steps per iteration is
set to one. The algorithm ran through all the iterations for all the connected users
and updated the Q-value using the reward function in (4.9). Note that the Q-value
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in the centralized Q-learning at each iteration depended on the reward value for
all connected users. For a fair comparison, the proposed Q-learning algorithm was
compared with signal strength strategy (SSS) [79], which is a non RL approach
wherein a user connects to an AP based on the best signal strength. For the
rest of the simulation, the proposed method is called ’Proposed Q-Learning’ while
the conventional approach is ’SSS’. The WiFi stand alone performance was also
simulated.

Fig. 4.11 shows the total system throughput for various numbers of connected
users. Clearly, using a hybrid system improved the network’s performance,
as both hybrid systems outperformed the WiFi standalone. In contrast with
the WiFi standalone, the proposed algorithm improved the system throughput
by approximately 182% when the number of connected users was nine, while
Algorithm 2 improved the total throughput by about 139%. It can be noticed
that connecting to the network with the highest signal strength was not always
the best case, as offloading users with the proposed algorithm improved the total
throughput significantly.

Another factor we needed to consider when testing the hybrid system was
fairness among all connected users. In some cases, depending on a user’s preference
may affect the other users’ performance. As shown in Fig. 4.12, connecting to the
network with the best connection was not always the best option for maximizing
the individual user throughput. The proposed algorithm showed an improvement
in terms of maximizing the worst user’s throughput.

Considering both the average system throughput and the worst user
throughput, the proposed algorithm showed a significant improvement in all cases,
as shown in Fig. 4.13. The worst user throughput in the proposed algorithm was
better than what an average user could achieve with Algorithm 2. As the number
of users increased, Algorithm 2 failed to maintain fairness, and the gap between the
worst user throughput and the average user throughput increased. The proposed
algorithm could maintain the same level in all cases.
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Figure 4.11: Total system throughput comparison for different number of
connected users
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Figure 4.12: Worst user throughput for different number of connected users
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Figure 4.13: Comparison of systems performance versus different number of
connected users

4.7. Chapter Summary

Using a hybrid WiFi-VLC system has great potential to improve indoor wireless
networks, as it can overcome the limitations of each type of system, such as low
coverage and limited spectrum. In this chapter, we analyzed the effects of VLC
parameters on SNR distribution and coverage probability. Moreover, we evaluated
the performance of the hybrid WiFi-VLC system using centralized reinforcement
learning. The algorithm was applied to the WiFi AP and improved network
selection by offloading users to one of the available APs. The numerical simulation
results showed a significant improvement in the total system throughput.



Chapter 5

RL techniques for Content-Aware
Network Selection in Hybrid WiFi-
VLC Networks

In this chapter, the network selection in a hybrid WiFi-VLC networks is
investigated when the users request different data rates. The aim is to enhance
the fairness by maximizing the minimum user satisfaction. To do that, multiple
reinforcement learning techniques have been proposed. A centralized RL approach
with a new reward function is investigated. Then, a new federated reinforcement
learning approach is proposed to improve the convergence speed and network
performance in dense environments. To further improve the new approach,
knowledge transfer using neural network is proposed to enhance the federated
RL approach. Numerical simulations are provided to validate the performance of
the proposed algorithms.

The centralized RL approach has been published in P.2. The rest of the
chapter is organized as follows. Section 5.1 introduces the chapter and states
the main contributions, followed by the literature review in section 5.2. Section
5.3 presents the system model, followed by the problem formulation in section
5.4. The centralized RL, federated RL, and federated RL with knowledge transfer
are proposed in section 5.5. Numerical simulation and comparison with other
approaches are presented in section 5.6. Finally, section 5.7 summarize the chapter.

72
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5.1. Introduction

The number of mobile devices in indoor environments has dramatically increased,
which in turn increased the diversity of content-based mobile applications. Mobile
devices, such as smartphones, tablets, and watches, demand widely different data
rates. They varies from as low as sending a text to as high as video streaming.
Currently, half of mobile video traffic is related to video streaming, which requires
a high data rate [118]. Future wireless networks are expected to maintain the
quality of service (QoS) for all users. Recently, smart content-based networks
were proposed as a solution to the diversity of applications [119].

Implementing hybrid systems with multiple networks is one possible approach
researchers have investigated [97]. Multihoming capability has been developed to
allow users to receive data from multiple networks [51]. Different hybrid networks
have been presented in previous work and shown promising results in improving the
QoS in indoor environments. However, selecting the best complementary network
is crucial because it might significantly increase the hybrid system’s complexity as
more interference is introduced, especially in dense environments [98]- [100].

Visible light communication (VLC) has recently shown great potential as a
complementary network to the WiFi due to several factors, such as unlicensed
band, low energy consumption, and security [45]. VLC uses LED lamps, which
can be deployed on the ceiling of the room to provide direct illumination. This
approach is suitable for users who require a high data rate in small areas of coverage
[120]. The main limitation of VLC is the need for a reliable uplink, which can
be solved by using WiFi for the uplink. Hybrid WiFi-VLC networks benefit from
both networks to support the diversity of applications in indoor environments.
Users can be assigned to VLC or WiFi based on their data rate requirements.
The use of hybrid WiFi-VLC networks to improve the users’ QoS is investigated
in [120]- [121].

In this chapter, we propose multiple Q-learning algorithms that maximize the
fairness among all the users based on the data rate requested by the user. Our
contribution is categorized into three main points:

• The content-aware resource allocation problem in a hybrid WiFi-VLC system
is solved using centralized Q-learning. A reward function is designed to
maximize the users’ satisfaction.
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• The content-aware resource allocation problem in a hybrid WiFi-VLC system
is solved using federated Q-learning. The proposed algorithm offloads users
to different APs based on their demands to ensure high QoS for all users.
Local and global models are presented with different reward functions to
improve the learning speed. Each VLC AP shares partial information with
only the WiFi, as all APs use it for the uplink.

• Knowledge transfer using a deep neural network (DNN) reduces the
algorithm’s complexity. The output of the DNN is adjusted so that the
proposed algorithm can assign some users directly to their APs and perform
the FQL on the rest of the available users to improve the convergence speed.

5.2. Related Work

In hybrid WiFi-VLC networks, downlink signals are transmitted by WiFi or
VLC with a switching mechanism. Network selection is addressed by different
methods, which can be classified into two main categories: machine learning
and non-machine learning approaches. Different studies have investigated the
performance of hybrid WiFi-VLC networks. In [122], the network coverage and
outage probability of a hybrid RF-VLC network are investigated based on the
randomness of the positions of devices, while [123] presents a framework for
coverage under different network configurations. In [124], a hybrid RF-VLC
network where each VLC AP performs non-orthogonal multiple access (NOMA)
is investigated. Game theory is proposed to solve the merge-and-split algorithm
for the optimal users grouping. Network fairness is investigated in [125]- [126].
In [125], joint power allocation and load balancing for maximizing the system
fairness in hybrid RF-VLC networks using a new iterative algorithm is presented.
In [126], a cooperative NOMA scheme in hybrid RF-VLC networks is proposed to
support the users with weak signals. An iterative approach is used to improve the
sum-rate and fairness. In [127], the diversity of QoS requirements is considered
using a decentralized algorithm.

While conventional resource allocation techniques can achieve reasonable
results, they are not robust in dynamic environments in which the user
requirements alternate [128]. Machine learning-based solutions can solve complex
optimization problems in dynamic environments. Deep learning (DL) and RL
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are the most common techniques used in hybrid networks to improve network
performance [129]. Most of the recent research implementing machine learning can
be categories into two main approaches: centralized and decentralized. In [130],
neural network (NN) is used to predict a near optimal network selection between
RF and VLC for each device-to-device pair (D2D). A centralized algorithm at
one base station is implemented to perform the NN for all users simultaneously.
In [131], the handover mechanism between RF and VLC APs is addressed with
centralized Q-learning, which optimizes the time-to-trigger (TTT) values based
on historical SNR measurements. In [46], centralized reinforcement learning
is used for load balancing between WiFi and VLC networks. The algorithm
aims to maximize the overall system throughput while ensuring user fairness.
In [132], a support vector machine (SVM) has been proposed to determine
the AP selection for users. As the user cannot detect the blockage accurately
in real time, the proposed SVM scheme exploits the correlation of blockage
parameters to improve the AP selection. In [104], knowledge transfer is proposed
to improve the reinforcement learning (RL) algorithm in hybrid RF-VLC networks.
Based on historical data, knowledge transfer improved the convergence speed and
performance of the RL algorithm by avoiding random exploration.

In [133], decentralized deep Q-learning is proposed wherein each AP acts as
an agent to optimize the transmitted power based on the user’s required data
rate. Their work focused on improving the convergence speed while providing
average user data rate closer to the target rate. In [134], a new policy for DQN
called deep deterministic policy gradient (DDPG) is proposed for computationally
intensive problems. The proposed distributed DDPG can learn to adapt to
dynamic environments. In [135], a DQN learning-based algorithm is proposed to
maximize the total data rate of the hybrid RF-VLC networks. Transfer learning
is also proposed for the arrival of new users. While decentralized techniques’
convergence speed is noticeably higher, more overhead communication is usually
needed between the agents in order to communicate. It also affects the privacy of
the users by sharing the data between the agents.

In [136]- [137], federated learning (FL) has been implemented to improve the
performance of different mobile networks. However, these approaches are different
from our proposed federated reinforcement learning because FL uses NN as a
policy instead of the Q-learning policy.
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5.3. System Model

We considered an indoor heterogeneous wireless access environment consisting of
K users, one WiFi AP, and N VLC access points. All users are equipped with
multi-homing capability and can only connect to one AP. The uplink is served by
the WiFi, while the downlink can be served by either VLC or WiFi. As shown in
Fig. 5.1, a user who requests a low data rate can connect to WiFi even though
they are located under the VLC AP, to maximize the throughput for users who
might need a higher data rate. A VLC system is significantly different from an RF
system in terms of operating frequency and modulation/demodulation techniques,
which makes it suitable for a hybrid system with WiFi, as both operate at different
frequencies.

Figure 5.1: System architecture of a hybrid WiFi-VLC networks.

The achievable rate for a user connecting to WiFi or VLC link is discussed in
chapter four, which can be calculated using (4.1) and (4.2), respectively.

5.4. Problem Formulation

In an indoor hybrid environment where the users can connect to different APs,
their data rate requirements vary based on their different applications. Requested
data rates can be high for streaming 4K videos or low for sending texts or emails.
The aim is to maximize an indoor hybrid network’s capacity with respect to
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fairness and QoS. Note that fairness in this scenario does not mean receiving
similar data rate but rather meeting the requested data rate based on the user’s
application requirements. As each user can connect to only one access point, we
define a band indicator δ as

δk ∈ {0, 1} . (5.1)

If the kth user connects to WiFi, δk is set to 0. If δk is set to 1, it means the
user connects to the VLC AP with the highest received signal power. Thus, the
achievable data rate for user k can be calculated as

Ck = δkC
VLC
k + (1− δk)CWiFi

k . (5.2)

Let Ckreq be the required data rate for user k based on the application. Let Ck be
the actual data rate that user k receives from an AP. User equipment satisfaction
Sk can be calculated as

Sk =
Ck

Ckreq

. (5.3)

The main aim is to distribute the users on all available APs to maximize the
minimum user satisfaction. The optimization problem is formulated as

maximize
δnk

(min
k

(Sk))

s.t. δnk ∈ {0, 1} ∀k ∈ {1, 2, ..., K}

CVLC
k ≥ ΓVLC

δWiFi
k +

∑N
n=1 δ

n
k = 1

(5.4)

where ΓVLC is the minimum threshold to ensure the QoS for the user when
connecting to the VLC AP. ΓVLC can be calculated using (4.2) when the minimum
received SNR is equal to 23 dB. Due to the interference term, the rate function
for each user is nonconvex, hence (5.4) is nonconvex optimization problem, which
can be solved sequentially by an exhaustive search [138]- [139]. However, this
approach cannot be used for practical implementations due to its high complexity,
especially in dense environments. Note that the complexity in (5.4) is equal to
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O(NK), where K is the total number of users, and N is the total number of
available APs as each user can connect to only one AP.

5.5. Content-Aware Q-learning Approaches

To tackle the problem in (5.4), the following assumptions in our model needs to
be illustrated:

• All users use the WiFi AP for uplink and can connect to only one AP that
can be WiFi or VLC. The user selects the VLC AP with the highest signal
strength to ensure the QoS.

• Each user measures the received power from the corresponding APs and
the sum interference from other available VLC APs. Note that only VLC
interference is considered, as there is only one WiFi AP.

• All users transmit a reference signal to the WiFi AP including the requested
data rate, received power and sum interference for all available APs. The
reference signal has the following information (PrRF

, PrVLC
, IVLC, Creq). Note

that the assumptions on reference signals received power (RSRP) and
reference signal received quality (RSRQ) are in line with 3GPP standards
in the RF networks [140].

RL can be used to tackle the problem in (5.4). RL is an effective technique for
solving the resource allocation optimization problem in a stochastic environment.
Several RL techniques can be applied to solve the resource allocation in
heterogeneous networks, and the most two common techniques are:

• Centralized reinforcement learning (CRL): CRL is a single agent Q-
learning approach suitable for this model, as all users use a single band
(WiFi) for uplink [141]. In CRL, all data are trained in a centralized unit,
which reduces overhead communication cost as there is no shared information
between agents during training. However, the convergence speed is slow;
hence, it might not be an optimal solution in complex scenarios.

• Decentralized reinforcement learning (DRL): DRL, where multi-
agents share their information during the training, shows better results in
terms of convergence speed, especially in a large state-action space [142].



CHAPTER 5. RL TECHNIQUES FOR CONTENT-AWARE NETWORK
SELECTION IN HYBRID WIFI-VLC NETWORKS 79

However, DRL might not be applicable for some indoor hybrid WiFi-
VLC networks because DRL needs a direct link between the agents to
communicate during the training. As VLC APs use WiFi for uplink, there
is no direct link between the agents to communicate, and the use of WiFi
will increase the overhead communication.

5.5.1. Proposed Centralized Q-learning approach

Since all users use the WiFi AP as uplink, centralized reinforcement learning
can be applied at the WiFi AP using a controller to perform the reinforcement
learning algorithm. To solve (5.4), the problem can be formalize as a reinforcement
learning. In a heterogeneous network, the Q-learning parameters can be defined
as:

• Agent: The WiFi AP acts as an agent as all users use it for uplink. The
agent uses ϵ-greedy policy for exploration by choosing an action with a
probability of 1− ϵ, and acting randomly with a probability of ϵ.

• Actions: For each user, the controller selects one action from a set of actions
A = (aWiFi, a1, ..., aN). The number of actions is the same as the total
number of APs in the system and all actions have the same probability.
Each action consists of a vector indicating the user should connect to which
AP as shown in Table 5.5.1. Simply aWiFi means that the user is connected
to only WiFi while selecting action aN for user k allows the user to connect
to only VLCN .

WiFi VLC1 VLC2 . . . VLCN

aWiFi 1 0 0 . . . 0
a1 0 1 0 . . . 0
a2 0 0 1 . . . 0

. . . . . . . . . . . . . . . . . .
aN 0 0 0 1

Table 5.1: Set of actions

• Reward function: Defining the reward function significantly affects the
system performance as it can be designed to satisfy specific goal.
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Let K be the total number of connected users and Ckreq be the required data
rate for user k based on the application. Assume that the requested data
rate set for all users is ρ = {1, 2, ...,M}. Let Ck be the actual data rate that
user k receives .

The aim is to maximize the minimum user satisfaction as

max( min
k

(
Ck

Ckreq

)). (5.5)

To do that, We propose a new reward function that can maximize the total
system throughput and can be implemented for a centralized Q-learning
approach. The reward function for user k selecting action ak at time step t

can be defined as

Rk =

(
1

Ckreq

)(
aWiFi
k (CWiFi) + a1kg

1(CVLC1) + ...+ aNk g
N(CVLCN

)
)

(5.6)

Figure 5.2: Illustration of g(n) in the reward function.

where gn = ( v

dVLCn
k

), dVLCn
k is the distance between VLCn and the user k,

and v is a reference distance as shown in Fig. 5.2. gn is used to imply a
higher reward value for assigning user k to VLCn when the user is located
close to the same AP. Once the distance is greater than v meters, the reward
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value for assigning the user to VLCn is significantly reduced because it is
not reliable to connect to the far VLC AP.

Once the reward value for each connected user is calculated, we apply the sum
of the reward values in the Q update equation below

Q(s, a)← Q(s, a) + α[Rt+1 + γmax
a

Q(s
′
, a)−Q(s, a)], (5.7)

where γ is the discount rate, and α is the learning rate. R can be calculated as

Rt+1 = max( min
k

(Rk)). (5.8)

To obtain the optimal Q-value, the agent receives a reward r from selecting
action a, which is affected by a discount factor γ for performing the policy. The
Q-learning algorithm is similar to the local Q-learning algorithm. More details
will be illustrated in the next section. The main advantage of this approach is
that selecting the best network for each user is based on the requested data rate
for each connected user. For example, let us assume that only two users request
transmission, and both are located under the same VLC AP. The algorithm will
assign the user who requested a higher data rate to the VLC AP and assign
the other user to the nearest other VLC AP or WiFi to benefit both users by
prioritizing their requested data rate.

5.5.2. Proposed Federated Q-Learning approach

A new technique called federated Q-learning has recently been proposed, which
combines CRL and DRL. Federated learning involves training the model globally
on a controller device while keeping the data localized [143]. Each agent shares
partial information only with the controller (main agent) while performing a local
algorithm. The workflow of the proposed FQL is shown in Fig. 5.3. As all users use
WiFi for uplink, a global model can be applied at the WiFi AP while each VLC AP
performs a local Q-learning model. All APs learn collaboratively by performing
a local Q-learning and sharing the data with only the WiFi to update the global
model. In this method, all training can be carried out locally without any shared
data between VLC APs. To ensure additional security, each AP shares partial
information with the WiFi. In a heterogeneous network, the FQL parameters can
be defined as:
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Figure 5.3: Proposed federated Q-learning technique that combines local models
(blue box in the figure) and global model (red box in the figure).

• Agent: Each AP acts as an agent to perform a local Q-learning model, while
the WiFi AP acts as an agent for both local and global Q-learning models.
The agents use ϵ-greedy policy for exploration by choosing an action with a
probability of 1− ϵ, and acting randomly with a probability of ϵ.

• Actions (A): Each agent has a finite set of discrete actions based on the
number of available users u. The number of actions for each agent is Au.
Each action represents the AP assignment which is 0 or 1.

• States (S): States are defined based on the number of APs that can share
the same users Nu. They can be represented by a matrix S, which includes
the SNR for all available users. The dimensions of S are [Au ×Nu].

• Reward function: Defining the reward function significantly affects the
system performance, as it can be designed to satisfy a specific goal. In FQL,
the reward function needs to be designed for both local and global models.

Local Q-Learning

In a hybrid WiFi-VLC networks, most users are in the coverage of more than
one AP. The users’ selection for each AP must be designed so that all available
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users have access to at least one AP that can be WiFi or VLC. Though each AP
performs a local Q-learning, sharing some information would significantly improve
the convergence speed. There is no direct communication between the APs as each
VLC AP updates only the WiFi. The WiFi then update each VLC AP based on
the global reward. Let Fn(S,A) be the information that AP n can share. It can
be defined in this model as

Fn(S,A) = min
k

Sn
k . (5.9)

Using the WiFi link, each AP shares only the minimum Sk with the APs who
share the same users to improve the convergence speed without affecting the local
data at each AP. The WiFi AP can determine APs that can share the same users
by comparing the reference signals for all users to the threshold value ΓVLC from
each VLC AP. As users selection significantly affects all APs that share the same
users, the aim is to maximize the average of the shared reward to improve the
convergence speed. Thus, the reward function at AP n can be formulated as

Rn = E[Fn(S,A) +
∑
z∈Z

Fz(S,A)], (5.10)

where Z is the total number of APs who share the same users. The average value
is used to ensure that each AP does not converge based only on its reward value
but also on the reward value of the APs who share the same users. If each agent
prioritizes its reward function, the global model might not converge as each local
agent will aim to maximize only its own reward.

To illustrate the local reward function, Fig. 5.4 shows an example consisting
of four APs that share different sets of users. Notice that the reward function for
AP2 is averaged with the reward functions of both AP1 and AP3, as both APs
share some users. These data can be shared using WiFi as an average value of
the shared reward to ensure the privacy of the local data. AP4 does not share
any users with other APs, so there is no need to communicate to improve the
convergence speed.

Once the reward value is calculated, we apply the average of the reward values
in the Q update equation below [85]

Q(s, a)← Q(s, a) + α[Rn + γmax
a

Q(s
′
, a)−Q(s, a)], (5.11)
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Figure 5.4: Example to illustrate the local reward function.

where γ is the discount rate, s′ is the next state, and α is the learning rate.
To obtain the optimal Q-value, the agent receives a reward r from selecting

action a, which is affected by a discount factor γ for performing the policy. The
local Q-learning algorithm is shown in Algorithm (3). The main advantage of
this approach is the selection of the best network for each user based on the
performance of all shared APs without affecting the privacy of users’ data. As all
VLC APs are connected with the WIFI AP, sharing the average reward value can
be carried out without significantly affecting the communication cost.

Global Q-Learning

While each AP performs a local Q-learning model with limited shared information,
all APs update the WiFi AP to perform a global Q-learning. Note that each AP
cannot know how many users are connected to the other APs, which might not
satisfy the constraints in (5.4), as each user can only connect to one AP. The
global reward function Rg can be formulated as
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Algorithm 3 Local Q-learning algorithm
1: Receive the requested data rate from all available users.
2: Initialize Q(s, a) arbitrarily.
3: for all iterations do
4: Initialize S
5: for each step do
6: Choose at for all users from set of actions
7: Take action a
8: Observe Fn, s

′

9: Receive shared reward
10: Q(s, a)← Q(s, a) + α[Rn + γmax

a
Q(s

′
, a)−Q(s, a)]

11: s← s
′

12: end
13: end

Rg = min
k

rk, (5.12)

where rk is the individual reward for each user and can be defined as

rk =


(δ1k(CWiFi)+...+δnk (C

VLCN ))
Ckreq

,
∑N

n=1 δ
n
k = 1

ξr,
∑N

n=1 δ
n
k ̸= 1,

(5.13)

where ξr is a negative reward value to ensure that each user can only connect to
one AP, and (δ1k, ..., δnk ) represents the actions each AP selects for user k.

During the training process, each AP receives all potential users who might
connect to and performs a local Q-learning. Each AP shares only F(S,A) with
the WiFi AP to update the local model. The WiFi AP will update the global FQL
model (5.12) and transmit it to each AP to optimize the local models. The process
is repeated until the global reward function converges to the optimal solution or
the iteration stops. The global Q-learning algorithm is shown in Algorithm 4.

The main differences between the centralized Q-learning and federated Q-
learning can be illustrated as follows

• In centralized Q-learning, the algorithm is performed in a centralized unit
(WiFi AP), which increases the state-action space significantly as the
centralized Q-learning will learn to optimize the network selection for all
available users in the environment.
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Algorithm 4 Global Q-learning algorithm
1: Receive the requested data rate from all users.
2: Initialize the shared reward Rn for each agent.
3: for all iterations do
4: for each AP do
5: Send the shared reward Rn.
6: Compute local Q-learning based on algorithm 1.
7: Update the shared reward Rn.
8: end
9: Update the global reward (5.12).

10: end

• In federated Q-learning, each VLC AP performs a local Q-learning with
its own states and actions based on the number of assigned users by the
WiFi AP. The federated learning model used in this work is client-server
model [144]. This model consists of two major components: participants
and coordinators. In this work, the WiFi AP acts as a coordinator and the
participants are the VLC APs. The basic workflow of this model can be
summarized in the following steps:

– The WiFi AP creates an initial model and sends it to each VLC AP.

– Each VLC AP trains a local Q-learning with unique Q-table based on
the assigned users.

– The results of performing the local Q-learning are sent to the main
coordinator (WiFi AP).

– The WiFi AP perform the global model and updates each VLC AP.

5.5.3. Federated Q-learning with knowledge transfer approach

In this section, the aim is to improve the convergence speed of FQL, as most Q-
learning algorithms have slow convergence speed and poor performance in dense
environments due to the random exploration cost in a large state-action space.
Knowledge transfer has been proposed in several works as an initial Q-table
replacement and shown improvement in terms of convergence speeds [145] - [146].
We propose an approach that not only uses the knowledge transfer as the initial
Q-table for the FQL but also reduces the number of assigned users during the
training stage. An offline trained deep neural network (DNN) model is used to
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reduce the random exploration cost at the early stage of performing the Q-learning
algorithm.

Deep Neural Network: Network Selection (DNN-NS)

While Q-learning aims to find an optimal solution at the cost of slow convergence
speed, a trained DNN can be used in cooperation with FQL to reduce the
complexity cost. Defining the trained model is crucial in reducing the network
complexity, as some models might add further complexity. DNN is a suitable
model to be used in this scenario due to its ability to extract a complex model
using input-output data. Data can be collected using an exhaustive search and
all competition complexity can be neglected, as training can be performed offline.
Thus, the use of DNN does not affect the complexity of the online training. Fig.
5.5 shows the proposed DNN model.

Figure 5.5: Trained DNN model.

DNN is composed of an input layer known as Xt, multiple sequential hidden
layers and an output layer Yt. Each layer consists of multiple neurons, while the
input layer has four neurons. The output layer has only one neuron for binary
classification. More details about the DNN architectures can be found in [130].
Let Xt be 4×K input matrix containing the power received from both bands, sum
interference from other VLC APs, and the requested data rate for all K users. Xt

can be defined as

Xt =


PrRF1

PrRF2
... PrRFK

PrVLC1
PrVLC2

... PrVLCK

IVLC1 IVLC2 ... IVLCK

Creq1 Creq2 ... CreqK

(5.14)
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Note that the first column contains only information related to the first user.
Let the output of the DNN Yt be the optimal selection band for the first user
δ1 ∈ {0, 1}. The training data can be obtained using exhaustive search to find the
optimal solution for the optimization problem in (5.4). The training sets consist
of t trails for input-output relationships using (5.4) for a random number of users
uniformly distributed in an indoor environment. By feeding Xt into a trained
DNN, we can obtain the network selection band Yt for the first user. The output
Yt is a single value that represents the probability of selecting the band: the closer
the output to 1, the more likely the user is to select a VLC AP. The DNN selection
decision for user k can be defined as

δDNN
k =

{
1 if Yt > 0.5

0 if Yt ≤ 0.5.
(5.15)

Note that the DNN model takes all users’ reference signals as inputs and
computes the selection band for only the first user in Xt. K identical DNNs
can be applied at the WiFi AP for all users simultaneously to obtain the selection
bands. For each user, the same DNN model is used with different orders of data
in Xt. For example, the first column in (5.14) for user 3 is replaced with the
third column to prioritize user 3’s reference signals. All users’ selection bands are
obtained in parallel in a single step.

Enhanced adjustment for the DNN output

The complexity of reinforcement learning is significantly affected by the number
of associated users. Following the constraints in (5.4), some users can connect to
only one AP. These users can be assigned directly to the APs to be considered
part of the environment when performing the FQL. To further reduce the network
complexity, we can take advantage of DNN to evaluate the QoS for all users. As
the output of the DNN Yt is in a probability form, the closer the output is to
one or zero, the more certain the selection is accurate. If Yt is close to 0.5, the
degree of uncertainty is high, and the decision cannot be made. A new parameter
ζ ∈ [0, 0.5] can be introduced to evaluate the degree of uncertainty for the DNN
output. The enhanced DNN’s decision can be defined as
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δDNN
k ∈



δQL if 0.5− ζ < Yt < 0.5 + ζ

Yt > 0.5 + ζ

δd if or Yt < 0.5− ζ
or Ck < CVLC

th ,

(5.16)

where δQL is a vector containing all the users who need to perform FQL, δd is
a vector containing all the users who can be assigned directly to their APs. While
performing FQL, the actions change only for the users in set δQL, while the actions
for the users in set δd are fixed for all iterations. The proposed FQL-KT algorithm
is shown in Algorithm 5. To illustrate (5.16), assume the output Yt for three users
are 0.9, 0.5, and 0.1. User 1 will be assigned to VLC AP and user 3 will be
assigned to WiFi AP directly. These users will be added to δd. As the probability
for selecting WiFi or VLC AP for user 2 is 50%, the degree of uncertainty is high.
Therefore, user 2 will be added to δQL, which require performing Q-learning to
identify the best possible band. The choice of ζ value will increase or decrease
assigning the users directly before performing the Q-learning algorithm. When
ζ = 0.2, all users with Yt ∈ [0.3, 0.7] will be assigned to δQL. Fig. 5.6 shows the
workflow of the proposed FQL-KT.

Algorithm 5 Federated Q-learning assisted by knowledge transfer
1: Receive PrRF

, PrVLC
, IVLC, Prreq from all users.

2: for k ∈ {1, 2, ..., K} do
3: Derive Y k

t via DNN algorithm.
4: if Y k

t ∈ [0.5− ζ, 0.5 + ζ] then
5: Y k

t ∈ δQL

6: else
7: Y k

t ∈ δd
8: end

end
9: Assign δd users directly to their APs.

10: Initialize Q(xt, at) based on δQL

11: for all iterations do
12: for each AP do
13: Compute local Q-learning based on Algorithm 1.
14: end
15: Update the global model

end
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Advanced Knowledge transfer 
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Figure 5.6: Proposed FQL with knowledge transfer.

Compared to the standard centralized RL approach in [129], the proposed
FQL-KT is able to adjust faster to the changes in the environment. The standard
RL approach cannot adjust to the dynamics of the environment such as new
users’ arrival or changes in users’ locations. The algorithm has to start randomly
searching for an optimal solution every time there is a change in the environment
which is not practical. Unlike the standard RL approach, the proposed FQL-KT
benefits from the knowledge transfer by adjusting the starting-point of the learning
process closer to the final solution. For any change in the environment, the trained
NN can instantly predict an initial solution to the FQL.
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5.6. Simulation Results

An indoor environment was simulated in a 5 m × 5 m × 3 m room size using one
WiFi AP and two VLC APs. The WiFi received the requested data rates from
all connected users. All users were assumed to be stationary and could obtain
instantaneous rate based on their locations and the fading parameters. Each VLC
AP covered a small area of the room, while the WiFi covered the entire room. As
shown in Fig. 5.7, a user can connect to a VLC link if the received SNR is greater
than 23 dB to ensure a reliable link. The parameters used in the VLC link are
summarized in Table 5.6. The WiFi was assumed to operate at 2.4 GHz. The
parameters used in WiFi are summarized in Table 5.6. All users were distributed
uniformly in the room, and each user requested data rate randomly from the set of
Ckreq ∈ [1, 4, 10] Mbps. The simulation setup is coded in MATLAB 2020 and deep
learning toolbox is used to train the DNN. The simulation results were averaged
over 200 trials.
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Figure 5.7: VLC coverage areas when SNRVLC
min = 23 dB.
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VLC Parameter Value
PVLC
t 25 W
Apd 1 cm2

Semi-angle 60◦

Responsivity 0.5 A/W
BVLC 20 MHz
N0VLC

10−18 W/Hz
SNRVLC

min 23 dB
WiFi Parameter Value

BWiFi 20 MHz
N0WiFi

-174 dBm/Hz

Table 5.2: Simulation parameters

In each trial, the maximum number of iterations for the proposed FQL-KT
was set to 1000. Each AP is acted as an agent, and it used the ϵ-greedy policy
with ϵ = 0.1. The learning rate and the discount factor were set at 0.5 and 0.9,
respectively. The total number of actions in this scenario for each user was two, as
the user can be assigned or not to the AP. For each AP, the algorithm ran through
all the iterations and updated the Q-value using the reward function. The Q-value
in the Q-learning at each iteration depended on the global and local reward value
for all APs. To test the proposed FQL algorithm performance, we compared the
results with two other algorithms:

• Centralized Q-learning [129]: In this algorithm, the WiFi acted as
an agent to perform CQL. We applied the same global reward for a fair
comparison.

• Signal strength strategy (SSS) [79]: This algorithm is a non-machine
learning approach in which each user connects to the AP based on the best
received SNR. More details about this approach can be found in chapter 2.

• WiFi: We consider the performance of WiFi as a standalone to show the
importance of using VLC as a complementary network.

• Optimal: An exhaustive search for (5.4) was used as an optimal solution.

In Fig. 5.8, we compare the performance of all RL algorithms in terms of
convergence speed when 10 users are connected. As the number of iterations



CHAPTER 5. RL TECHNIQUES FOR CONTENT-AWARE NETWORK
SELECTION IN HYBRID WIFI-VLC NETWORKS 93

0 100 200 300 400 500 600 700 800 900 1000

Iteration

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
R

e
w

a
rd

FQL-KT

Federated QLearning

Centralized QLearning [117]

Optimal

Figure 5.8: Comparison of algorithms performance in terms of convergence speed.

increases, all algorithms will converge to the optimal solution. However, the
proposed FQL-KT converged in less than 500 iterations. It outperformed the
other Q-learning algorithms by reducing the computational complexity for two
reasons:

• Some users were assigned directly to their APs based on the degree of
uncertainty of the DNN, as shown in Fig. 5.6.

• Creating an initial Q-table for the FQL based on δQL reduces the exploration
during the training. Although FQL-KT started at a lower reward, it
outperformed the other approaches in less than 50 iterations.

In Fig. 5.9, different values for ζ were simulated to show the effect of ζ on the
DNN’s output. Selecting the best ζ is crucial for the proposed FQL-KT, as shown
in the figure. When the value of ζ is high, more users will be assigned directly to
their APs, which results in faster convergence. However, it might not converge to
the optimal solution as some users were assigned to the wrong AP.



CHAPTER 5. RL TECHNIQUES FOR CONTENT-AWARE NETWORK
SELECTION IN HYBRID WIFI-VLC NETWORKS 94

0 100 200 300 400 500 600 700 800 900 1000

Iteration

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

R
e

w
a

rd

Optimal

Figure 5.9: Convergence speed for different α values.
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Figure 5.10: Outage probability with fixed rate requirements

The outage probability is simulated in Fig. 5.10. A user is said to be unsatisfied
if Ck < Creq. The outage probability P0 can be obtained as

P0 = Pr[Ck < Creq]. (5.17)

We considered fixed bit rate requirements for six connected users. As the figure
shows, all Q-learning approaches performed similar to the optimal approach. As
only six users are connected, all Q-learning approaches converged to the optimal
solution. They offered the lowest outage probability for the considered bit rate
range. However, as bit rate requirements increase, the SSS approach outperforms
all Q-learning approaches. This is mainly because the Q-learning approaches aim
to maximize the minimum user satisfaction by distributing the users over multiple
APs. In the SSS approach, each user connects based on the best received signal,
which illustrates why the outage is lower when the bit rate requirements are high.
The WiFi stand-alone has the highest outage probability, as it failed to support
bit rate requirements over 1.5 Mbps, when six users were connected.

Fig. 5.11 shows the outage probability for different number of connected
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users when all users request the same data rate (Creq = 2 Mbps). When the
number of users is low, all Q-learning approaches performed similarly by offering
the lowest outage probability. As the number of users exceeds eight users, FQL-KT
outperforms the other Q-learning approaches. The performance of the centralized
Q-learning approach drops as the number of users increases. The SSS approach
has a higher outage probability in low and dense environments, while WiFi failed
to support all users when more than three users are connected.
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Figure 5.11: Outage probability for different number of connected users when
Creq = 2 Mbps.

Fig. 5.12 shows the minimum user satisfaction for different numbers of
connected users. When the number of connected users was low, all QL algorithms
converged to the optimal solution. Once the number of connected users exceeded
seven, the proposed FQL-KT outperformed the other algorithms. When ten users
were connected, the minimum user satisfaction using the FQL-KT approach was
more than FQL and Centralized QL by 9.8% and 17%, respectively. In comparison
with SSS and WiFi approaches, FQL-KT improved the minimum user satisfaction
by 29% and 91%, respectively. The proposed FQL-KT scheme also achieved
similar results as the exhaustive search with only a 1% difference, which means
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Figure 5.12: Minimum user satisfaction for different number of users

that the FQL-KT did not reach the optimal solution in only a few runs out of the
200 trials.

The fairness is simulated in Fig. 5.13. Fairness in this model meant satisfying
all connected users by sending data rates that were close to their requested data
rate. Jain’s fairness index was used to evaluate the performance of the proposed
algorithm, which can be expressed as [147]

Jindex =

(∑K
k=1 Sk

)2

K
∑K

k=1 S
2
k

. (5.18)

The figure shows the Jain’s fairness index for various numbers of connected users.
As the number of connected users increased, the proposed FQL-KT approach
outperformed the other approaches. Centralized QL failed to maintain fairness, as
the algorithm did not reach the optimal solution when the number of iterations was
low. It should be noted that connecting to the best link does not always guarantee
the best data rate for the user, as offloading users with low data rate requirements
to WiFi might benefit all users. When 10 users were connected, the fairness
between the users using the FQL-KT approach was higher than the centralized
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and SSS approaches by 6.7% and 10.4%, respectively, which indicated that FQL-
KT not only improved the minimum user satisfaction but also fairness between
all connected users. Compared to the optimal approach, FQL-KT performed
similarly in low-dense environments. When the number of users exceeds eight,
FQL-KT performance drops by 1-5%. One reason for this slight drop can be
because FQL-KT reached different optimal minimum user satisfaction as there
can be multiple optimal solutions for the RL [85].
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Figure 5.13: Jain’s fairness index for different number of users

5.7. Chapter Summary

In an indoor environment where multiple users request different data rates, hybrid
WiFi-VLC networks has a great potential in supporting the verity of data rate
requirements. In this chapter, the content-aware network selection in hybrid WiFi-
VLC networks is investigated using multiple Q-learning approaches. A centralized
Q-learning deployed at the WiFi AP is investigated. Moreover, a federated Q-
learning approach enhanced by knowledge transfer is proposed. all the approaches
aim to maximize the fairness by improving the minimum user’s satisfaction.
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Numerical simulation results show a significant improvement in maximizing the
minimum user’s satisfaction. The federated Q-learning converged faster to the
optimal solution than the centralized Q-learning approach. Further enhancement
to the convergence speed has been achieved using knowledge transfer by the neural
network.



Chapter 6

Global Q-Learning Approach for
Power Allocation in Femtocell
Networks

In this chapter, a HetNet is investigated, which consist of multiple femtocells
deployed in the coverage area of a macrocell. In a dense femtocell network, the
complexity of resource allocation increases significantly as the network becomes
denser, which limits the network’s performance. The use of reinforcement learning
to solve the resource allocation problem has shown promising results compared
with conventional methods. This work implements global Q-learning in a macro
base station to solve the resource allocation problem in a dense and complex
network. We propose a new reward function that can be implemented in a
centralized Q-learning algorithm to achieve good results in terms of maintaining
the QoS for a macro user and maximizing the sum capacity of femtocell users.
Numerical simulations show that the proposed reward function can maintain both
the QoS for the macro user and fairness among all femtocell users. In previous
chapters, RL was implemented to solve network selection in hybrid WiFi-VLC
networks. Therefore, we aim to further investigate the performance of RL by
optimizing the power allocation in a dense femtocell network.

The rest of the chapter is organised as follows: Section 6.1 introduces the
chapter and states the main contributions. The related works are stated in section
6.2, followed by a presentation of the system model in section 6.3. The problem

100
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formulation and proposed Q-learning approach are presented in sections 6.4 and
6.5, respectively. The numerical simulation comparing the results with other works
is presented in section 6.6. Finally, section 6.7 summarises the chapter.

6.1. Introduction

Due to the high demand for wireless data transmissions and the dramatic growth
in the number of wireless users, researchers have been trying to enhance wireless
networks to maintain the required QoS and maximize each user’s capacity. Several
studies have stated that the current techniques are not adequate to satisfy the high
demand in the future, as mobile traffic is seen to increase thousands of times in
the next decade [148].

One possible approach to satisfy the demand for high capacity is the use of
femtocells [149]. A femtocell is a small base station with low transmitted power
that the end user can deploy. Within a building, a femtocell is a promising solution
for any indoor scenarios that are out of the coverage areas [150]. One of the greatest
advantages of femtocells is that they do not need a new spectrum, as they allow
users to reuse the same spectrum assigned to the nearest macro user. However,
implementing femto base stations in the same coverage area as a macro user while
using orthogonal frequency division multiple access creates co-channel and cross-
channel interference [151]. This interference increases proportionally with the
number of deployed femto base stations in the same area and significantly impacts
the QoS of each user [152].

Several techniques have been suggested and investigated to solve the resource
allocation problem in a femtocell network. Most of the work was performed
using frequency-selective or power-allocation techniques between the femto base
stations (FBS) [153]- [154]. However, as the number of FBS increases, the current
techniques can no longer solve the optimization problem while maintaining both
high capacity and QoS. To solve the resource allocation problem in dense HetNets,
RL has recently been implemented in wireless communications [155].

In this chapter, we propose a centralized Q-learning approach for a macro base
station (MBS) that maintains the QoS for the macro user and maximizes the sum
capacity of the femto users’ equipment. Our contribution can be categorised into
two main points:

• A new global Q-learning approach is presented to solve the resource
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allocation problem in a femtocell network. The proposed approach can
achieve similar results to the cooperative Q-learning approach.

• A new reward function that can be implemented with global Q-learning to
maintain the QoS for the macrocell user and maximize the sum capacity of
the femtocell users’ equipment for a dense femtocell network is proposed.

6.2. Related Work

Resource allocation in wireless communication is one of the areas that researchers
are aiming to improve. Minimizing interference and improving network
performance using resource allocation is crucial for future wireless communication.
Recently, many researchers have evaluated the RL approaches for resource
allocation [155]- [156]. Specifically, it has been investigated in device-to-device
(D2D) and femtocell networks. Below are some of the studies carried out on
femtocell networks.

Hussein Saad et al. published a paper on distributed Q-learning for
power allocation in femtocell networks [94]. The authors’ objective was to
maximize femtocell capacity while maintaining macro user capacity above a certain
threshold. They employed two different approaches to solve the optimization
problem: independent learning (IL) and cooperative learning (CL). In the first
approach, each agent tried to learn while ignoring the other agents’ actions. The
reward functions differed from single-agent Q-learning in that they depended
on the agents’ joint actions. Two reward functions were used to consider the
capacity of the femtocells. The first reward function’s results showed that the
algorithm succeeded in maintaining the macro user’s capacity above the threshold.
The second reward function aimed to enhance the femtocells’ capacity while the
macro user’s capacity was above the threshold. However, their results showed
poor performance in terms of fairness among the femtocell users. In the second
approach, instead of sharing the entire Q-table of each agent, the agent shared
only the raw data from the Q-table that corresponded to the current state. Their
simulation showed an improvement in the femtocells’ capacity while the macro
user’s capacity was also above the threshold.

Hussein Saad et al. published another paper about cooperative Q-learning
[157]. In this paper, they extended the research and compared it with another
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approach called centralized Q-learning. By improving the reward function, they
showed that CL could outperform IL in terms of learning, maintaining convergence
and reacting to network dynamics.

Tianmu Gao et al. attempted to solve resource allocation optimization in a
cache-enabled small cell network using RL [158]. In this scenario, the content
was mostly stored in the cloud pool, but part of it was stored in small cache
storage within each small base station. The user could download the content from
cache storage or the cloud directly. The authors’ goal was to determine the best
resource allocation scheme for the cloud based on user mobility. They used two
machine learning techniques. The first one involved the use of the long short-term
memory (LSTM) neural network to predict the user’s mobility. By using the user’s
position, the cloud trains LSTM to predict the user’s next location. The mobility
pattern was then used to determine the associate users of each small base station.
The authors considered the resource allocation optimization problem as a game
theory wherein each small base station was a player. This study was different
because actions were based on the transmitted power of each SBS, the number of
subcarriers, and the content availability in the cache storage. Once the problem
was formulated as a game, the authors used Q-learning techniques to maximize
the overall throughput. In the simulation, they compared their approach with
random and the nearest algorithms, and the results showed improvements in the
throughput by 58.2% and 26.1%, respectively.

Roohollah Amiri et al. researched power allocation in dense HetNets using Q-
learning [159]. In this paper, the author considered a scenario in which the macro
user’s QoS was affected by the femtocell base stations. To minimize interference,
the authors maintained the transmitted power of each FBS. They used a new
reward function to guarantee fairness for all femto users while maintaining the
capacity of the macro user. The states were defined based on the distance of
each FBS to both the macro user and the macro base station. In this model,
each FBS needed to share only one raw data from its Q-table, as the affected
femto base stations were in the same state. Therefore, the amount of shared
information during learning was significantly reduced. In their simulation, the
authors compared their results with a proximity-based reward function, which was
used in [160], and their results outperformed considerably. The authors published
two more papers related to the same technique [161]- [162].

Bilal Abedalguni et al. compared four learning algorithms: BEST-Q, AVE-Q,
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WSS and PSO-Q [163]. This paper’s main comparison was how the agents shared
their Q-tables during the learning process. In the first algorithm, the agents
selected the best Q-value among all the learners. Then, each agent updated their
Q-table by replacing the existing Q-value with the best Q-value. In the second
algorithm, each agent updated their Q-table by averaging their Q-value and the
best Q-value among all the learners. In the third algorithm, the authors used an
algorithm called particle swarm optimization (PSO) to find the optimal solution
(more details about this algorithm can be found in [164]). In the fourth algorithm,
the agents assigned weight values to the Q-tables of all the other agents. By
averaging the weights, each agent could update their Q-table. All the previous
work was performed in other studies. The main contribution of this paper was the
aggregation of the sharing strategy. The authors combined all strategies into one,
which they compared with each algorithm. They also tested the learning speed of
each agent by changing the frequency of Q-table sharing, concluding that sharing
the Q-table was not always beneficial and varied based on the frequency of sharing
the Q-values. High-frequency sharing accelerated the process, while low-frequency
sharing could slow down the learning process.

Jonathan Tefft et al. applied a proximity-based Q-learning reward function
to femtocell networks [160]. The scenario in this paper was similar to the work
done in [142], but their reward function was different. Their reward function was
a function of both macro user equipment (MUE) and femtocell capacity. It was
tested in three scenarios based on MUE-FBS proximity: centred in the femtocell
cluster, at the edge of the femtocell cluster and away from the cluster. In the
three cases, their reward function outperformed the other reward functions used
in previous works. The reward function was able to maintain the femto user
equipment (FUE) capacity close to the threshold.

Ana Galindo and Lorenza Giupponi published a paper introducing a new
method of using Q-learning to avoid the effect of femtocell interference on
the macro user. They introduced a fuzzy Q-learning approach to improve Q-
learning’s self-organisation capability. Using fuzzy theory, they could eliminate the
subjectivity of the environment’s design. They also analyzed the implementation
of Q-learning and fuzzy Q-learning techniques in 3GPP systems. Finally, they
stated some memory and computational requirements and showed that both
techniques could be implemented in the current processors.

Recently, most of the work carried out on resource allocation created new
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Reward function Reference
1 r = K − (SINRMUE − SINRth)

2 [155]
2 r = e−(CMUE−ΓMUE)

2 [94]

3 rk =

{
k1Ck − 1

k1
(CMUE − ΓMUE)

2 CMUE ≥ ΓMUE

k1Ck − Kp

k1
CMUE < ΓMUE

[160]

4 Ri = BiCFUEi,t
C2

MUEt
− 1

Bi
(CMUE − ˜qMUE)

2 − (CFUEt,i
− q̃)2 [159]

Table 6.1: Reward function examples used in recent papers.

reward functions to achieve the goals. Table 6.1 shows some of the reward functions
that have been implemented. The parameters in Table 6.1 are illustrated in Table
6.2.

Parameter Illustration
r Reward function
K Constant value specified by the designer

SINRMUE The SINR of the macro user equipment (MUE) at time t
SINRth The MUE threshold SINR
CMUE The capacity of the MUE at time t
ΓMUE The MUE capacity threshold
k1 k1 = dMUE/dth (The distance from the FBS to the MUE

normalized by a reference distance)
Kp Penalty constant
Bi The distance of the ith FBS to the MUE

normalized by a reference distance
q̃ The minimum required capacity of the FUE
˜qMUE The minimum required capacity of the MUE

Table 6.2: Reward function parameters.

In most papers that used Q-learning, the main differences were the definitions
of the reward functions, particularly the definitions of the constraints. In Table
6.1, the authors of reward functions (1) and (2) focused only on maximizing the
MUE capacity by specifying the threshold SINR or capacity. Reward function (3)
depended not only on the MUE capacity but also on the distance of each FBS to
the MUE. The authors also provided a penalty when the MUE capacity was not
satisfied. In reward function (4), the authors took into consideration fairness for
the FUE capacities, and the MUE capacity was doubled compared with the FUE.
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6.3. System Model

A HetNet scenario was considered, which consisted of a MBS serving only one
macro user and L femto base stations. Each base station served only one user at
any time. All base stations operated in the same spectrum, creating interference
in the downlink as the density of the network increased. We focused on the power
allocation problem in the downlink. Fig. 6.1 shows the system model.

Figure 6.1: Macro/femto networks deployment

As the received signals in the MUE and FUE contain co-channel and cross-
channel interference from the other base stations, the signal-to-interference-plus-
noise ratio SINR for the MUE can be expressed as

SINRMUE =
PMBShMBS,MUE∑L

i=1 PihFBSi,MUE + σ2
, (6.1)

where PMBS is the transmitted power of the macro base station, hMBS,MUE is the
channel gain from the MBS to the MUE, Pi is the transmitted power of FBSi,
hFBSi,MUE is the channel gain from FBSi to the MUE, σ2 is the variance of the
additive white Gaussian noise (AWGN).
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The SINR for the FUE can be expressed as

SINRFUEi
=

PihFBSi,FUEi

PMBShMBS,FUEi
+
∑L

j=1,j ̸=i PjhFBSj ,FUEi
+ σ2

, (6.2)

where Pi is the transmitted power from FBSi, hFBSi,FUEi
is the channel gain from

FBSi to the FUEi, Pj is the power transmitted by FBSj, hMBS,FUEi
is the channel

gain from MBS to the FUEi, and hFBSj ,FUEi
is the channel gain from FBSj to the

FUEi. Similar to the prior work in [159], all channel parameters are assumed to
be known by the FBS. The normalized capacity for any user is calculated as

CMUE = log2(1 + SINRMUE) (6.3)

CFUEi
= log2(1 + SINRFUEi

), i = 1, .., L, (6.4)

where SINR is the signal-to-interference-plus-noise ratio, which can be calculated
using (6.1) and (6.2).

6.4. Problem Formulation

The main goal of the optimization problem is to maximize the sum capacity for
all the FUE while maintaining the MUE capacity above a certain threshold. Each
FBS has the same set of transmit powers, p = (p1, p2, ..., pmax). The optimization
problem can be defined as

maximize
p̃

∑M
k=1CFUEk

. (6.5)

To ensure high QoS, equation (6.5) needs to satisfy the following constraints:

Pi ≤ Pmax, i = 1, 2, ...,M

CMUE ≥ ΓMUE

CFUEi
≥ ΓFUE, i = 1, 2, ..,M,

(6.6)

where ΓMUE refers to the threshold capacity of the MUE and ΓFUE refers to the
threshold capacity of the FUE. By ensuring a limited power to each FBS, the
goal is to maximize the sum capacity of all FUE without affecting the QoS for
the MUE specified by the threshold ΓMUE. To solve the optimization problem, we
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focus our attention on the Q-learning technique.

6.5. Proposed Q-Learning approach

Most researchers considered the FBS an agent and applied the Q-learning
algorithm to the FBS [159]. After comparing the cooperative and non-cooperative
agents, the best result could be achieved by sharing the information at each
iteration for a faster learning process. In recent works, some papers suggested
sharing only part of the Q-table at each iteration. In all cases, the agents needed
to communicate at each iteration through the backhaul network. According
to [152], low-frequency sharing does not benefit the learning process and may
achieve results similar to independent Q-learning. Thus, the agents need to share
their information at each iteration to help each other learn faster. This way,
more overhead communication is added to the network. The learning process
can be improved at the cost of high communication. Another aspect that needs
investigation is the reward function [155]- [160]. In [159], the reward function
achieved the best results in maximizing the FUE capacity while maintaining the
MUE capacity close to the threshold. However, after adding eight FUE near the
macro user, the reward function failed to maintain the MUE capacity above the
threshold.

To avoid coordination and communication between the agents in Q-learning,
we can apply centralized Q-learning at the MBS. Assuming that the MBS knows
the location of the FBS, Q-learning can be implemented using a controller at the
MBS. In the femtocell network scenario, the Q-learning parameters can be defined
as follows:

Agents: The MBS acts as an agent. It uses the ϵ-greedy policy for exploration.
The agent chooses an action with a probability of 1− ϵ, and acts randomly with
a probability of ϵ.

Actions: The MBS can choose a transmit power level between Pmin and Pmax

for each FBS from a set of A = (a1, a2, ..., aNpower). All actions have the same
probability of occurrence, which can be applied using equal step sizes between
Pmin and Pmax.

States: The states are chosen based on the location of the FBS relative to
both the MUE and MBS. Si

t ∈ (DMUE, DMBS). DMUE defines how far the FBS is
from the MUE, and DMBS defines how far the FBS is from the MBS. By defining
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the states in this way, each FBS has a specific state as long as the location is fixed.
In a dense environment where multiple FBSs cause interference to the MUE, they
will share the same state and this can help improve the learning speed, as all
nearby FBS will only use one state.

Reward function: To ensure a sufficient reward function that achieves good
results in maximizing the sum capacity of the FUEs, we need to include all the
constraints in the reward function. Therefore, we propose a new reward function
that can be implemented in the centralized Q-learning approach. The reward
function at time step t can be defined as follows:

Rt =



∏L
i=1(BiCFUEi

)(CMUE)
2 − 1

k
(CMUE − ΓMUE)

−
∑L

i=1(CFUEi
− ΓFUE), if CMUE ≥ ΓMUE ,

∏L
i=1(BiCFUEi

)(CMUE)
2 − Kp

kc
, if CMUE < ΓMUE .

(6.7)

Unlike the reward function in [159], this reward function guarantees the QoS for
the MUE above certain threshold and can maximize the sum capacity of all the
FUEs. To do that, we add a penalty Kp to the reward function whenever the MUE
capacity is below the threshold. The rest of the parameters are as follow: Bi is
the normalized distance from FUEi to the MUE, and kc is the average normalized
distance between all connected FUEs and the MUE. In equation (6.7), the first
term implies a high reward value when the MUE or FUE capacity is high. The
MUE capacity is squared to imply a higher reward for the MUE. Note that Bi

is normalized which reduces the reward value if the distance between the MUE
and the FUE is less than the reference distance. We use the

∏
of all connected

FUEs to provide fairness among all the FUEs. When one of the FUE’s capacity is
below the threshold, this affects the reward value, as the total value is multiplied
by a number less than one. The second and third terms are used to reduce the
overall reward value. We apply the reward function in the Q update equation
shown below

Q(St, At)← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)], (6.8)
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where α is the learning rate, γ is the discount rate, and r is the reward function.
For the optimal Q-value, the agent selects action a and receives a reward r affected
by the discount factor γ of performing the policy. Algorithm 6 shows the learning
procedure.

Algorithm 6 Centralized Q-learning algorithm
1: Initialize Q(st) arbitrarily.
2: for all iterations do
3: Initialize st
4: for each step do
5: Choose at for all FBS from a set of actions.
6: Take action at
7: Observe Rt, st+1

8: Q(St, At)← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)]

9: st ← st+1

10: end
11: end

6.6. Numerical Simulation

In this section, the environment setup, and some simulation results are presented
to show the performance of the proposed approach.

6.6.1. Simulation Setup

The environment was simulated using a single MBS serving one MUE and ten
FBSs. Each FBS served only one FUE. To simulate a dense environment where
multiple FBS interfere with the MUE, we placed all the FBS in the coverage area
of the MUE. All FUE were located within 10 m from the serving FBS. Figure 6.2
shows the locations of the MBS, MUE, FBS and FUE. The rings around the MBS
and MUE define the states. The total number of rings for both the MUE and MBS
was three. Defining the states was essential because of the dense environment. For
example, the FBS located in the third ring of the MBS and the second ring of the
MUE used the same state.

The MBS and all the FBS were assumed to be operating over the same channel
bandwidth at 2.4 GHz. For simplicity, the channel gain was assumed to depend
only on the path loss. Fading and shadowing were not considered in this scenario
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Figure 6.2: Locations of the MBS, MUE, FBS, and FUEs.

to measure performance of only Q-learning algorithm. The path loss model for
the link between the MBS and its associated user was the same as the path loss
model for the FBS and its associated FUE. The path loss was calculated as [165]

Lp = (
4πd1
λ

)2(d/d1)
n (6.9)

where d1 is the reference distance, d is the distance between the transmitter and
the receiver, n is the path loss exponent and λ is the wavelength. The path loss
exponent was set to three in this scenario.

The QoS requirements for the MUE and FUEs were defined in this simulation
as ΓMUE = 1 (b/s/Hz) and ΓFUEi

= 1(b/s/Hz), respectively. They were specified
as the minimum capacities that the user needed to support their application. In
the Q-learning algorithm, the agent used the ϵ-greedy policy with ϵ = 0.1. The
maximum number of iterations was set to 100,000. For each connected FBS,
the algorithm ran through all iterations using the algorithm in section 6.5. The
learning rate in (6.8) was set to α = 0.5 where the discount factor was set to
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Parameters Values Parameters Values
d1MBS 50 m d1MUE 15 m
d2MBS 150 m d2MUE 50 m
d3MBS 400 m d3MUE 125 m
dth 25 m Kp 10−12

Table 6.3: Simulation parameters.

γ = 0.9. For each FBS, the total number of actions was set to three. The FBS
could select a transmit power level from Pt ∈ (-20 dBm, 0 dBm, 10 dBm). The
rest of the parameters are illustrated in Table 6.3. The simulation setup is coded
in MATLAB 2018.

To investigate the effectiveness of the proposed algorithm, we ran it using two
methods. We want to determine which method was better in terms of maintaining
the QoS for the MUE while maximizing the FUEs’ capacity.

In the first method we applied, we investigated the implementation of one
of the existing reward functions in centralized Q-learning. To do that, we used
the reward function in [159]. Instead of updating the Q-value for each FBS, the
algorithm was changed to include the sum of all reward values for the connected
FUEs, as shown in (6.10). Thus, the Q-value at each iteration depended on all
the connected FUEs reward values. The sum of reward values is implemented in
the Q function below

Q(xt, at)← (1− α)Q(xt, at) + αmax
a

(
∑

Ri
t + γQ(xt+1, a)), (6.10)

where
∑
Ri

t is the summation of the reward values for all the connected FUEs.
In the second method, which we proposed, we modified the reward function to

serve all the connected FUEs. We applied the proposed reward function (RF) in
(6.7) to the same algorithm. For the rest of the simulation, the proposed method
is called ’Proposed RF’, and the reward function in method 1 is ’RF1’. For a fair
comparison, we also simulate the reward function in [159] and called it ’RF2’.

6.6.2. Simulation Results

In this section, we compare the proposed RF with RF1 and RF2. For each reward
function, we plotted the measurement of the MUE capacity, the sum capacity of
all the FUE, and the capacity of each FUE.
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Figure 6.3: MUE capacity

Fig. 6.3 shows the MUE capacity for the three RFs. RF1 had the highest
MUE capacity for both low and dense users environment. When two to seven
users were connected, all RFs satisfied the MUE capacity constraint, which was
above 1 b/s/Hz. RF1 outperformed the other two RFs. Comparing RF2 with
proposed RF, both RFs succeeded in maintaining the MUE capacity above the
threshold up to seven connected users. However, once the number of connected
users exceeded seven, RF2 failed to satisfy the QoS for the MUE, which is similar
to the finding in [159]. The proposed RF, however, maintained the MUE capacity
above the threshold all the time. Fig. 6.4 shows the sum capacity of all the FUE
for the three RFs. RF1 had the lowest sum capacity of FUEs, while RF2 and the
proposed RF produced similar results in maximizing the sum capacity of FUEs.
RF2 shows better results when the number of users exceeded seven at the cost of
reducing the MUE capacity as shown in Fig. 6.3.

To compare the three RFs fairly, both the MUE capacity and the sum of
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Figure 6.4: Sum capacity of FUEs

FUEs need to be considered. As shown in Fig. 6.3 and Fig. 6.4 , RF1 purely
depended on the MUE capacity, as the sum capacity of the FUEs was not high
enough compared to the other RFs. When using

∑
Ri

t, the algorithm did not care
about the users with the low reward values as long as other users had high reward
values. Thus, this algorithm failed to maintain fairness among the FUEs. RF2
and proposed RF had similar results when the number of connected users did not
exceed seven. As the number of users increased, RF2 maximized the sum capacity
of the FUE better than Proposed RF but at the expense of not maintaining the
MUE capacity above the threshold. Consequently, the proposed RF showed better
overall results, as it maintained the QoS for the MUE while maximizing the sum
capacity of all the FUE.

Fig. 6.5 and Fig. 6.6 show the capacity of the FUE for RF1 and proposed RF,
respectively. RF1 failed to maintain fairness among all the FUE, as significant
gaps existed between the users’ capacities. By contrast, proposed RF maintained
fairness among the users, as all of the users’ capacities except one were above the
threshold when 10 users were connected.
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Figure 6.5: Capacity per user versus different number of connected FBSs using
RF1
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Figure 6.6: Capacity per user versus different number of connected FBSs using
the proposed RF
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6.7. Chapter Summary

In this chapter, centralized Q-learning was proposed to solve the resource
allocation problem in a dense femtocell network. By reducing the number of used
actions, centralized Q-learning can be implemented at the MBS and achieve similar
results as the distributed approach, and it significantly reduces the communication
cost between base stations. The proposed approach maximized the sum capacity of
the femtocell users while ensuring that the macro user’s capacity was maintained.
The numerical simulation showed that with a proper reward function, the Q-
learning approach could achieve good results in terms of maintaining the QoS for
the macro user and maximizing the sum capacity of the femtocell users.



Chapter 7

Summary, Conclusion and Future
Work

7.1. Conclusion

The study presented in this thesis focused on the implementation of reinforcement
learning techniques to solve the resource allocation problems in indoor HetNet.
Network selection was investigated in a hybrid WiFi-VLC network by using
different RL techniques with various objective functions, such as max–min and
sum rate. Further improvements to the RL schemes were proposed to reduce
the convergence speed. Moreover, the RL schemes were designed to optimize the
power allocation in a macro-femtocell networks.

In chapter 2, the background information on wireless communication, including
VLC and WiFi, was presented. It is clear that the RF band cannot support the
enormous growth in the demand for data rate. VLC is an important aspects of
future wireless communication, as it can work effectively with RF networks. An
overview of VLC, including its background, applications, advantages, challenges,
basics, channel modelling, and related works was presented. The WiFi channel
model was also discussed. In addition, the major drawbacks for both VLC and
WiFi standalone and how can the use of hybrid WiFi-VLC networks can overcome
these limitations were discussed. Lastly, the types of hybrid WiFi-VLC networks
and some literature reviews were presented.

Chapter 3 focused on RL techniques and how they can be applied to
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wireless communication. The background information on RL, including its
definition, key elements and applications, were presented. Furthermore, the
process of RL and how the agent in RL interacts with the environment were
described. RL can be applied to any wireless communication environment that
can satisfy the Markov property. To further illustrate the RL framework, the
relation between the value function and the Bellman equation and how RL
can be used to approximate the Bellman optimality equation were discussed.
Finally, a type of RL implemented throughout this work, namely Q-learning,
was introduced. Q-learning’s advantages, process, algorithm and applications in
wireless communication were also discussed.

In chapter 4, network selection in hybrid WiFi-VLC networks was addressed.
WiFi is used for the uplink, and all VLC APs are connected to WiFi; therefore,
a centralized Q-learning technique was employed at the WiFi AP. The system
model was designed so that each user could connect to only one AP, which could
be WiFi or VLC. The Q-learning algorithm was designed to offload users from one
AP to another using a proper reward function that aimed to maximize the total
throughput. In the numerical simulation, the VLC standalone was investigated to
show the importance of implementing a hybrid WiFi-VLC network. The effects of
LED’s light intensity and the FOV of the receiver’s PD on the outage probability
and received SNR were demonstrated. Additionally, the numerical simulation
showed that the proposed Q-learning approach outperformed the SSS approach in
maximizing the total throughput and worst user’s throughput.

The topic of network selection in hybrid WiFi-VLC networks was extended
in chapter 5 to consider the content requested by the users. Users’ applications
need various data rates; therefore, distributing the users in a hybrid WiFi-VLC
network based on their demand significantly improves network performance. In
this chapter, different Q-learning techniques were proposed to maximize user
satisfaction and fairness. In the first approach, centralized Q-learning (CQL) was
implemented at the WiFi AP. The reward function was designed to consider the
users’ locations and requested data rates so that the Q-learning performance could
be maximized. The second approach incorporated federated Q-learning (FQL),
wherein each VLC AP performed local Q-learning and updated the WiFi AP.
New global and local models with different reward functions were also presented.
Additionally, knowledge transfer using a neural network was proposed to further
improve the convergence speed of the proposed FQL. The neural network reduced
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the complexity of the FQL by assigning some users directly and creating an initial
policy instead of randomly searching for the optimal solution. The numerical
simulation showed that both CQL and FQL outperformed the SSS approach.
FQL-KT showed promising results in terms of converging to the optimal solution
at a low iteration rate.

Chapter 6 investigated resource allocation in dense macro-femtocell networks.
We proposed global Q-learning that could be implemented at the macro base
station. The aim was to adjust the power levels of the femto base stations to
minimize the interference level. The reward function was designed to maintain the
QoS for the macro user and maximize the sum capacity of the femtocell users. The
numerical simulation showed that the design of the reward function maintained
the QoS for the macro user and improved the sum rate of the femto users.

In summary, we proposed different Q-learning techniques to solve the resource
allocation problems in two different indoor environments: hybrid WiFi-VLC
networks and macro-femtocell networks. The reward function of RL can be
designed to achieve various objective functions, such as max-min and sum
rate. Centralized Q-learning can reduce the overhead communication cost, and
federated Q-learning can significantly reduce the convergence speed with a low
communication cost. Additionally, knowledge transfer using a neural network
was proposed to further reduce Q-learning complexity. All proposed Q-learning
techniques showed promising results compared with other approaches.

7.2. Future Work

This thesis investigated the use of RL to improve the resource allocation problems
in indoor HetNets. The use of RL in wireless communication is a promising
solution that needs further investigation. Moreover, several applications and
areas of wireless communications that still need further study. There are several
potential future directions of this research, which are mentioned below:

7.2.1. Hybrid WiFi-VLC Networks Assisted by IRS

Recently, intelligent reflecting surface (IRS) has emerged as a promising technology
for 6G wireless communication [166]. IRS can enhance the transmission quality
between the AP and the users, and provide an indirect link when a direct link is
interrupted. Fig. 7.1 shows an overview of the implementation of IRS to assist a
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VLC network. Different designs and implementations of IRS can be considered to
enhance the VLC link [167]. In a hybrid WiFi-VLC network assisted by IRS, RL
can be designed to improve the resource allocation, as adding a new link increases
the network’s complexity.

Figure 7.1: VLC network assisted by IRS.

7.2.2. Mobility-Aware Load Balancing in Hybrid WiFi-VLC Network

In this thesis, the VLC model only considered the receiver’s orientation with
stationary users. The signal can easily be interrupted due to the user’s movement
or self-blockage. Further investigations on the performance of hybrid WiFi-VLC
networks considering users’ mobility and the environment layout are necessary.
Moving users may need to connect to different APs; therefore, the handover
mechanism also needs further study. To effectively evaluate the performance of the
proposed FQL-KT, a real mobility model must be adopted, as the NN is capable
of learning to predict users’ mobility, which can reduce unnecessary handovers
while performing the RL.

7.2.3. Other Extensions

• In this thesis, the hybrid WiFi-VLC networks was investigated using one
WiFi AP and two VLC APs. Further research is recommended to consider
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multiple VLC and WiFi APs in a larger area.

• The work in chapter 4 can be extended to further examine different objective
functions. The reward function of the RL can be designed to maximize
different objective functions, such as the average throughput, max-min, and
fairness index.

• This work assumed that all users use WiFi for the uplink and one link that
can be WiFi or VLC for the downlink. Further research is recommended to
assess the use of RL on other types of hybrid WiFi-VLC networks such as:

– Aggregated hybrid WiFi-VLC networks: As users can employ both links
in downlink simultaneously, the splitting and reordering of transmitted
packets over different links need to be considered to provide a realistic
evaluation of the performance of the RL.

– The implementation of RL in other types of hybrid VLC-RF networks
such as LTE, and femtocells need further investigation.

• The design of the RL focused on the end user’s QoS. Other parameters, such
as the handover time and latency need to be considered to evaluate the RL’s
performance effectively.
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