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Astronomy has always been at the cutting edge of data volumes but the growth of interest

in short timescale variability is taking that to an entirely new level. The new generation of

multi-epoch, multi-band and wide field-of-view astronomical surveys will generate a deluge

of astronomical sources, including variables and transients. The sheer volume of this data sug-

gests that transient detection and localization are transitioning from an offline process, to an

online and real-time, automated decision-making procedure. In response, this thesis presents

an interdisciplinary study of the transient and variable classification problem, with the aim

of developing several machine learning (ML) based methods for both optical and radio astro-

nomy.

This thesis starts with the classification of 11 types of periodic variable stars acquired with

the Catalina Real-Time Transient Survey (CRTS). Based on our analyses, we find that accur-

ate variable star classification is possible with just seven features - much fewer than in other

works. In addition, we show that this classification problem cannot be solved with a ‘flat’ mul-

ticlass classification approach, as the data are inherently imbalanced. To partially alleviate the

‘imbalanced learning problem’, we convert a standard multiclass problem into a hierarchical

classification problem, by aggregating subclasses into superclasses. This results in improved

performance on rare class examples typically misclassified by multiclass methods. To further

improve the hierarchical classification performance, we apply ‘data-level’ approaches to dir-

ectly augment the training data so that they better describe under-represented classes. When

combining the ‘algorithm-level’ together with the ‘data-level’ approach, we further improve

variable star classification accuracy by 1-4%.

In addition, in order to have an early and rapid characterisation of interesting candidates

in optical and radio surveys, it is fundamentally important to automate several steps within a

transient detection pipeline, including the separation of transients/astrophysical events from

‘bogus’ or Radio Frequency Interference (RFI) detections, which has become a bottle-neck in
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fast detection pipelines. To address this challenging task, we built MeerCRAB and FRBID - ML

software based on a Convolutional Neural Network. MeerCRAB has been deployed in the Meer-

LICHT transient vetting pipeline and is designed to filter out the so called ‘bogus’ detections

from true astrophysical sources. Optical candidates from the MeerLICHT telescope are de-

scribed using a variety of 2D images. However, the relationship between the input images and

the target classes is unclear, since the ground truth is poorly defined and often the subject of de-

bate. This makes it a challenging task to find which numerical features or source of information

should be utilised to build a classifier. We therefore used two methods for labelling our data (i)

thresholding and (ii) latent class model approaches. Afterwards, variants of MeerCRAB models

are deployed using different combinations of input images and training set choices, based on

classification labels provided by volunteers. We found that the deepest network worked best

with an accuracy of 99.5%.

FRBID is being used in MeerTRAP - a backend for the MeerKAT radio telescope that continu-

ously searches for radio transients and pulsars. FRBID aims to remove any remaining RFI and

classify new astrophysical candidates automatically in real-time. The performance of FRBID

shows less than 1% false positive rate. Up till date, FRBID has detected more than half a dozen

new FRB candidates, even in the presence of RFI. This discovery shows how accurate and effi-

cient an ML algorithm can be, in real-time processes.

Lastly, this thesis provides a first proof of concept of a model, Fast Radio Burst Localization

& dEtection, FABLE, based on Mask R-CNN. FABLE is used for automatic detection, segment-

ation, and classification of FRBs with Dispersion Measure-Time (DM-T) images. We focus on

improving the detection rate of FRBs, especially for low signal to noise ratio (SNR) in radio

images and to identify ‘single pulse’ from background noise. The FABLE algorithm provides

us with the probability that the detected source, is an FRB/Single Pulse and also the position

of the FRB. In addition, FABLE outputs the DM and time parameters of the detected candidate,

which allow us to characterise the FRB candidate detected. The time parameter is used to ex-

tract a piece of the original filterbank data and to de-disperse it to generate two further plots

which astronomers will want to look at: a de-dispersed pulse, and the frequency - time plot.

Moreover, FABLE’s performance is evaluated on the Average-Precision (AP) score metric. We

measure a precision of 99.9% at 90% recall for FRB/SP with a minimum detection confidence

threshold of 0.5. The FABLE model can serve as a new tool for real-time pipeline that can auto-

matically detect FRB/SP and can be adopted in other domains in astronomy, for e.g. in source

extraction software for detecting and localizing sources in astronomical images.
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1
MACHINE LEARNING IN ASTRONOMY

“We can build a much brighter future where humans are relieved of menial work using Artifi-

cial Intelligence capabilities.”

– Andrew Ng

1.1 Introduction

In recent years, there has been rapid progress in the development of astronomical instrumenta-

tion. An increasing number of instruments are dedicated to undertaking repeated observations

of large swaths of the sky every few nights. This is not just restricted to optical astronomy

but extends across the electromagnetic spectrum from radio to gamma-ray wavelengths. With

an ever-increasing number of astrophysical transient surveys (surveys that observe short time

scale sources in the sky), this has led to an avalanche of data, thus resulting in large databases.

In these huge databases, a large of amount of information is hidden that cannot be obtained

by manually analysing them. In astronomy, it is of crucial importance to develop efficient

automated data analysis approaches to detect these interesting objects, otherwise much of the

important information and potential science in the data, will be left unexplored.

To appreciate the extent of this problem, with the upcoming photometric surveys such as

those conducted at the Vera C. Rubin observatory (LSST; LSST Science Collaboration et al.

2009), it is estimated that it will generate around 30 TB of raw data. These data will require

processing and reduction, thus final archival data will be around 60 PB and the final catalogue

will be approximately 10-20 PB in size (Borne, 2008). This challenging task calls for a new

approach in astronomy, one that is able to deal with Big Data. By Big Data, it refers to data-sets

that are so large that traditional data storage and processing methods are inadequate and no
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longer efficient. Many fields and industries are already in the era of Big Data and are currently

facing this challenging problem.

As the challenges regarding Big Data continue to grow, many fields of study have shown a

great interest in Machine Learning. Machine Learning (ML) is the application of statistics and

mathematics to enable algorithms to be constructed that are capable of ‘learning directly from

data’. For example, weather forecasts can be made by an algorithm that learnt from previous

weather data or an algorithm can identify a cat in an image within milliseconds without the

intervention of human. The surge in popularity of ML can largely be attributed to an expo-

nential growth in computational power. The easy access of graphics processing units (GPUs)

and tensor processing units (TPUs) via Google Collaboratory* (also known as Colab, a cloud

service based on Jupyter Notebooks), facilitates the application of ML in various fields and in-

dustries. Recently, ML has achieved great success in Artificial Intelligence (AI) and Big Data

applications, from the popular chatbots to self-driving cars (Hancock et al., 2019).

Various algorithms starting from traditional ML algorithms (e.g. Random Forest, (RF)

Breiman (2001)) to Deep Learning (DL) algorithms, for example Convolutional Neural Network

(CNNs, Lecun et al. 1999) have started to reach levels of human performance in image re-

cognition tasks. DL has had incredible success in other fields too, from voice recognition to

mixed-reality for medical diagnoses, thus showing its promise for many other domains.

1.2 Real-time Candidate Selection Challenge

Various surveys, for instance, the Catalina Real-time Transient Survey (CRTS †, Drake et al.

(2009)), the MeerLICHT optical wide-field telescope (Bloemen et al., 2016; Paterson, 2019), and

the MeerKAT radio telescope (Jonas & MeerKAT Team, 2016), to name a few, are already gen-

erating vast amount of data, from petabytes to exabytes of data. Realistically, this data cannot

be stockpiled indefinitely. Therefore, it is necessary to process the data as it arrives from these

telescopes in real-time. Such a real-time system would allow the identification of candidates

(interesting patterns detected in the data collected) and these candidates would be prioritized

for storage and/or immediate follow-up observations. All other candidates, for instance noisy

or corrupted data, must be discarded. The development of these advanced technological in-

struments have inadvertently introduced a real-time process to the pre-existing candidate se-

lection challenge. Although it is feasible to apply existing sub-optimal selection techniques to

*https://colab.research.google.com/notebooks/intro.ipynb
†http://crts.caltech.edu/
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reduce these problems, it is almost with certainty that this would result in missed discoveries.

However, it is inconceivable for these instruments to miss potential interesting candidates in

this way, due to inadequate technological software. Thus, it is a necessity to develop automatic

candidate selection pipelines that will enable the instruments to deliver their science goals.

1.3 Research Scope

The research presented in this thesis is mostly focused on the development of various ma-

chine learning pipelines for optical and radio surveys. More specifically, machine learning

frameworks that automate the classification of transients and variable stars with high levels

of accuracy for CRTS, the MeerLICHT and the MeerKAT telescopes. This work addresses the

challenges in classifying variable stars and transients in optical and radio data. In addition,

it is concerned with the technical and practical challenges encountered in time-domain astro-

physics, that is rejecting artefacts (which can occur as a result of saturated sources, convolution

problems, defects in the detector, atmospheric dispersion, radio frequency interference and

cosmic rays passing through the detector, amongst other things) in the imaging process for the

MeerLICHT and MeerKAT telescopes. The rejection of artefacts and noise has become the most

obstructive bottle-neck between fast transient detection and the ability to feed these interesting

targets to follow-up observations for early classification. Central to these challenges is the im-

balanced learning problem. Together these challenges make the existing classification methods

hard to use in real-time. The classification challenges addressed by this thesis include,

• selecting the characteristics that best describe each class of variable stars and use them to

train a ML algorithm,

• a severely class imbalanced distribution, that makes the classification difficult for certain

types of variable stars due to their rarity,

• the need to maintain extremely low false positive rates so that time, observational and

computational resources and effort are not wasted in analysing spurious detections or

discarding interesting candidates,

• the need to maintain low false negative rates to avoid discarding interesting candidates

and increase the chance of new discovery,

• developing an adaptive learning technique that can be trained anytime as data distribu-

tion may change with time due to noise and interference dominated environments.
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1.4 Aims and Objectives

The aim of this study is to devise various machine learning pipelines for variable and transient

classification and establish the positive role it plays in the future of astronomy. With new facil-

ities and archives of astronomical databases, time domain astronomy requires these advanced

statistical and machine learning techniques to enable scientific discovery. These include char-

acterization, categorization and classification of candidates with high precision and accuracy.

For our aims to be tractable, they are divided into key research objectives and challenges:

1. To analyse the effectiveness of features characterizing variable stars.

2. To assess the strengths and suitability of existing machine learning techniques for variable

star classification, highlighting any weaknesses to overcome.

3. To develop a new variable star classification pipeline for CRTS data. The aim is to de-

velop an algorithm that overcomes the challenges encountered with existing pipelines,

for instance, the imbalanced learning problem.

4. To develop transient detection software for the MeerLICHT telescope for early detection

and rapid follow-up, thus allowing the astronomical community to have an accurately

labelled data set that will speed up the discovery of new transients.

5. To develop a Fast Radio Burst (FRB) and Radio Frequency Interference (RFI) detection

software for the MeerKAT telescope. The software will automate the rejection process of

RFI and noise candidates.

6. To evaluate the proposed automated frameworks by analysing the false positive and false

negative rates.

1.5 Research Method

A detailed staged research methodology is employed. This research work is somewhat unusual

as it bridges the gap between the field of computer science and astronomy.

1.5.1 Research Hypothesis

The goal of this research is to employ machine learning techniques to ease the candidate clas-

sification challenge. Success in this regard is evaluated upon the existence of features that well
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characterize a particular candidate. These features are used in automated machine learning

algorithms to successfully ‘learn’ boundary separation between candidates of real and bogus,

FRBs and RFI, and among various types of variable stars. This leads to a hypothesis that can be

formulated as follows. It is hypothesized that real transient candidates have certain features,

that demarcate them out of the large number of noisy, spurious bogus detections during a tran-

sient search. A similar hypothesis is applied to FRBs & RFI/noise candidates and to various

types of variable stars. Each candidate possesses certain salient features that differentiate them

from other types of candidates. If such features prevail, it is plausible to learn a separation with

high precision and accuracy using machine learning algorithms, for e.g., between real & bogus,

FRBs & noise/RFI and various types of variable stars. If such features are easily distinguish-

able, then transient search and variable stars classification would be an entirely trivial process.

However, if such prominent features are not available, it will be hard and perhaps impossible

to classify transients and variable stars. This hypothesis shows a valid answer why classific-

ation of transients and variable stars are hard. Therefore, it is important to find a suitable set

salient features for the hypothesis to hold.

1.5.2 Literature Review

Prior to undertaking each area of research, a survey of background literature has been carried

out independently in Chapters 4, 5, 6, 7 and Chapter 8. Each of these chapters begins with

a thorough analysis of the variable stars, real-bogus and FRB & noise/RFI classification liter-

ature respectively. The aim of the literature reviews in these chapters was firstly, to gain an

understanding of the variable star classification problem and the challenges encountered in

fast transient detection pipelines. The second stage provides an overview of the computer sci-

ence domain for classification. The aim is to acquire a broader picture of the state of the art

computer science research within astronomy and to better comprehend the transients and vari-

able stars classification problems in a wider context. The third phase of these chapters focuses

exclusively on the application of the core computer science techniques for classifying variable

star and transient. This brought about an in-depth review in Chapter 3, of various machine

learning algorithm used for classification.

1.5.3 Experimental Studies

Experimental studies carried out during this research varied in design and purpose, from de-

veloping machine learning pipelines for variable stars & real-bogus transients classification
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using data from optical telescopes, to analysing classifier performance of FRBs-RFI collected

by the MeerKAT radio telescope. For each study, statistical methods will be utilized to ana-

lyse and evaluate the results obtained. The tools of information theory will be employed to

study the importance of salient features, the latent class model will be deployed to examine la-

belling provided by volunteers, and standard machine learning metrics will be used to inspect

classification performance of the softwares that will be developed in this study.

1.5.4 Development Work

Many of the outcomes from this research have been publicly shared with both the machine

learning and astronomy community for wider use. This research encourages open-source soft-

ware development that helps to advance research and lays a foundation for others to follow in

the years to come.

1.6 Contributions

The work presented in this thesis has led to various contributions.

Contribution 1: Development of a hierarchical classification scheme for variable stars.

The study employed a number of machine learning algorithms to classify periodic vari-

able stars using CRTS data. It concluded empirically that a ‘flat multi-class’ scheme is an

unsuitable approach for classifying CRTS data into different categories of variable stars.

A ‘flat multi-class’ scheme is inadequate as the CRTS data is subject to the imbalanced

learning problem. This work illustrated that such classifier systems show a poor perform-

ance upon the imbalanced datasets. This contribution is proposed in Chapter 4, where

a ‘flat multi-class’ scheme is converted to a Hierarchical scheme as a plausible solution to

tackle the problem of imbalanced data.

Contribution 2: Generating fake light curves of variable stars as a solution for imbal-

anced learning problem.

In this work, an attempt to further improve hierarchical classification performance is de-

scribed by applying ‘data-level’ approaches to directly augment the training data so that

they better describe under-represented classes. Three data-augmentation methods have

been proposed. When combining the hierarchical scheme together with the ‘data-level’

approach, variable star classification shows an improvement both in terms of accuracy
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and precision. The new proposed ‘data-level’ hierarchical classifier achieves a consider-

able increase on rare classes compared to existing approaches. This approach has been

adopted recently by Sánchez-Sáez et al. (2020) to data streams produced by the Zwicky

Transient Factory (ZTF, Bellm et al. 2019).

Contribution 3: a demonstration of sensitivity of machine learning algorithms when

using noisy labelling during training and prediction phase.

This study demonstrates the fundamental importance of having a ‘pure’ data set when

training a machine learning algorithm. By ‘pure’, this implies that the data (for e.g light

curves or image data) shows distinguishable characteristics and the label associated with

each candidate, is clearly defined. Latent class modelling has been introduced in this

work to show the effect of human error while labelling large data sets. Incompleteness

or wrong labels in the training set will lead to inaccuracy in the classifier. Chapter 6

demonstrates the performance drop of machine learning algorithm with the introduction

of noisy labels.

Contribution 4: Developing an automated machine learning pipeline to filter bogus

candidates for the MeerLICHT facility.

A Real-Bogus classifier, MeerCRAB, using deep learning has been developed for the Meer-

LICHT facility. Artefacts and noise rejections has been one of the bottle-neck in fast tran-

sient detection and our ability to feed these candidates to follow-up surveys for rapid

classification. Artefacts/bogus candidates are picked up as potential real transient can-

didates by current software and then human expert must reject these artefact detections.

Chapter 6 detailed the process of building the data set to train a deep learning pipeline

using convolutional neural network. Given the success of MeerCRAB, the software has

now been integrated in the MeerLICHT transient pipeline to alert the MeerLICHT team

of interesting new transients detected.

Contribution 5: a method for classifying between Fast Radio Bursts/Single Pulses and

Radio Frequency Interference for the MeerKAT facility.

MeerCRAB can be adapted to disentangle interesting objects from a noisy background. Sim-

ilar models in radio astronomy are implemented that distinguished Single Pulses from

Radio Frequency Interference for the MeerKAT telescope (FRBID: Fast Radio Burst Intelli-

gent Distinguisher) as detailed in Chapter 7. MeerCRAB is a flexible software, thus we were

able to easily modify it to integrate different images as its inputs and as result, achieve
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high levels of performance when using it for radio astronomy images.

Contribution 6: A demonstration of detecting and localizing fast radio burst or single

pulses in radio images.

Classifying radio or optical images has made great breakthrough in astronomy that has

helped to achieve important discoveries and the methods have been game-changing, thus

allowing us to have so many discoveries. However, it is not only important to classify an

image in a particular category or label, but it is important to also implement detection,

segmentation and classification of candidate files. This process will improve decision

making and will allow us to gain significantly more understanding about the character-

istics of detected candidates. Candidate detection and segmentation will not only allow

us to distinguish different sources in an image by drawing bounding box on a specific

source, but also further mark and classify the pixels within the bounding boxes to a spe-

cific class/category. Fast rAdio Burst Localization and dEtection, FABLE, discussed in

Chapter 8, is a deep learning software developed in this study to detect, localize, seg-

ment and classify single pulses/FRBs and RFI candidates.

1.7 Publications and Softwares

This research has led to the following publications.

Primary Author Publications

• Z. Hosenie., B. W. Stappers., R. J. Lyon., et al. ‘FABLE: Fast rAdio Burst Localization

and dEtection using Mask-RCNN’. Submitted in 35th Conference on Neural Inform-

ation Processing Systems (NeurIPS) at the Machine Learning and Physical Sci-

ences Workshop, 2021. DOI:NeurIPS2021.

• Z. Hosenie., B. W. Stappers., R. J. Lyon., et al. ‘FRBID: Fast Radio Burst Intelligent

Distinguisher at the MeerKAT Telescope’. Submitted in 35th Conference on Neural

Information Processing Systems (NeurIPS) at the Machine Learning and Physical

Sciences Workshop, 2020. DOI:NeurIPS2021.

• Z. Hosenie., S. Bloemen., P. Groot., R. J. Lyon., B. Scheers., B. W. Stappers et al. ‘Meer-

CRAB: MeerLICHT Classification of Real and Bogus using Deep Learning’. Experimental

Astronomy. DOI:10.1007/s10686-021-09757-1.
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• Z. Hosenie., P. Groot., R. J. Lyon., B. W. Stappers et al. ‘Classification of Optical Tran-

sients at the MeerLICHT Telescope using Deep Learning’. Accepted in 34th Conference

on Neural Information Processing Systems (NeurIPS) at the Machine Learning

and Physical Sciences Workshop, 2020. DOI:NeurIPS2020-ID25.

• Z. Hosenie., R. J. Lyon., B. W. Stappers., A. Mootoovaloo., V. McBride. ‘’Data Aug-

mentation in a Hierarchical-Based Classification scheme for Variable Stars‘’. Accepted in

34th Conference on Neural Information Processing Systems (NeurIPS) at the Ma-

chine Learning and Physical Sciences Workshop, 2020. DOI:NeurIPS2020-ID26.

• Z. Hosenie., R. J. Lyon., B. W. Stappers., A. Mootoovaloo., V. McBride. ‘Imbalance

Learning for Variable star classification using Machine Learning’. MNRAS, 493 (4): 6050-

6059, 2020. DOI:10.1093/mnras/staa642.

• Z. Hosenie., R. J. Lyon., B. W. Stappers., A. Mootoovaloo. ‘Comparing Multi-class,

Binary and Hierarchical Machine Learning Classification schemes for variable stars’. MNRAS,

488 (4): 4858-4872, 2019. DOI:10.1093/mnras/stz1999.

Co-Author Publications

• A. Vafaei Sadr., E. E. Vos., B. A. Bassett., Z. Hosenie., N. Oozeer., M. Lochner. ‘Deep-

Source: Point Source Detection using Deep Learning’. MNRAS, 484 (2): 2793-2806, 2019.

DOI:10.1093/mnras/stz131.

• Heavens, A., Fantaye, Y., Sellentin, E., Eggers, H., Z. Hosenie., Kroon, S., and Mootoova-

loo, A. ‘No evidence for extensions to the standard cosmological model’. PhysRevLett, 119

(10-8), 2017. DOI:10.1103/PhysRevLett.119.101301.

• Heavens, A., Fantaye, Y., Mootoovaloo, A., Eggers, H., Z. Hosenie., Kroon, S., and

Sellentin, E. ‘Marginal Likelihoods from Monte Carlo Markov Chains’. arXiv:1704.03472v1,

2017. DOI:arXiv:1704.03472.

Software

• Z. Hosenie, Fast rAdio Burst Localization and dEtection using Mask-RCNN, FABLE,

2021. This arose from the work described in Chapter 8. The code can be accessed

on Github: https://github.com/Zafiirah13/FABLE and Zenodo: DOI: 10.5281/zen-

odo.4599248.

• Z. Hosenie, Multi-Input Fast Radio Burst Intelligent Distinguisher, Multi-Input-FRBID,

2021. This arose from the work described in Chapter 7. The code can be accessed
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on Github: https://github.com/Zafiirah13/multi_input_frbid and Zenodo: DOI:

10.5281/zenodo.4434307.

• Z. Hosenie, Fast Radio Burst Intelligent Distinguisher using deep learning, FRBID,

2020. This arose from the work described in Chapter 7. The code can be accessed

on Github: https://github.com/Zafiirah13/FRBID and Zenodo: DOI: 10.5281/zen-

odo.4049946.

• Z. Hosenie, MeerLICHT Classification of Real and Bogus transients using Deep

Learning, MeerCRAB, 2020. This arose from the work described in Chapter 6. The

code can be accessed on Github: https://github.com/Zafiirah13/meercrab and Zen-

odo: DOI: 10.5281/zenodo.4049943.

• Z. Hosenie, Latent Class Model, LCM, 2020. This arose from the work described in

Chapter 6. The code can be accessed on Github: https://github.com/Zafiirah13/latent-

class-model and Zenodo: DOI: 10.5281/zenodo.4049954.

• Z. Hosenie, Imbalance Learning for Variable Star Classification using Machine Learn-

ing, ICVaS, 2020. This arose from the work described in Chapter 5. The code can

be accessed on Github: https://github.com/Zafiirah13/ICVaS and Zenodo: DOI:

10.5281/zenodo.4049970.

1.8 Thesis Structure

The rest of the thesis is structured as follows:

Chapter 1 provides a description of the aims and objectives of this study. It also elaborates

its contributions to the astronomy and machine learning community.

Chapter 2 presents an introduction to the transient universe, with some description of

variable stars, pulsars and fast radio bursts. In addition, it describes the various surveys

utilized in this research.

Chapter 3 considers the classification of variable stars and transients with respect to

wider machine learning research. It then provides a detailed introduction of the vari-

ous machine learning algorithms utilized in Chapters 4, 5, 6, 7 & 8. This chapter helps to

bridge the gap between computer science and astronomy.

Chapter 4 addresses the first research objective. It explores possible solutions to variable

star classification found in the literature and this led to the development of a hierarchical
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classification scheme, first introduced in this thesis to tackle the imbalanced problem in

the CRTS data.

Chapter 5 reflects on the poor performance on some of the categories of variable stars

with small sample sizes highlighted in Chapter 4. This chapter introduces three meth-

ods of data-augmentation to overcome their deficiencies by generating fake variable light

curves. A thorough analysis of the new approach lays out the solid evidence for its high

accuracy and recall capabilities on the small sample categories.

Chapter 6 studies the application of a deep learning algorithm to classify optical transi-

ent image data for the MeerLICHT facility. The algorithm developed in Chapter 6 learns

directly from the image data, rather than feeding salient features that characterizes a par-

ticular class/category of transients.

Chapter 7 shows the flexibility of the software developed in Chapter 6. The algorithm

is adapted such that it is capable of taking radio images from the MeerKAT telescope as

input and provides classification probabilities of whether it is an FRB or RFI candidate.

Chapter 8 proposes a new algorithm for not only classifying FRB-RFI candidate, but to

also detect and localize the sources in the candidate image. It demonstrates the high level

of recall and accuracy on real-world data.

Chapter 9 concludes the research and suggests possible avenues for future research.
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2
VARIABLE AND TRANSIENT ASTRONOMICAL

SOURCES

“I believe there is no deep difference between what can be achieved by a biological brain and

what can be achieved by a computer. It, therefore, follows that computers can, in theory,

emulate human intelligence - and exceed it”

– Stephen Hawking

This chapter provides the reader with a background introduction to variable and transient

universe. Terminology and concepts related to variable stars, transients, pulsars and fast radio

bursts are presented. These concepts will help the reader to understand various data we used

in other chapters.

2.1 The Variable and Transient Universe

Time-domain astronomy inspects the dynamic sky to enable the discovery and monitoring of

transient and variable stars. The study of transients allows us to have wide-reaching and com-

prehensive information about the physics and evolution of many different types of stars. They

also allow us to study the presence of materials along the line of sight and their surrounding

environment. In addition, we can have a more comprehensive understanding of the effects of

interactions of sources in binary systems and, also in some situations, identify unique sources

in which general relativity and extreme physics theory can be tested. Therefore, time-domain

astronomy opens many laboratories of astronomy, thus enabling us to explore the Universe in

more details from a new perspectives.

The definition of ‘transient’ in astronomy is quite arbitrary. It usually concerns sources that

were present in previously acquired data and that the sources afterwards disappear after a
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certain amount of time or vice-versa, i.e. never seen before but suddenly appear, for e.g. super-

novae. In most situations, archival data may or may not reveal the quiescent counterpart to a

new star/source due to the fact that the latter is largely dependent on the chosen wavelength

or the instruments used during observations. For instance, in blue optical filters a bright flare

may appear to be transient, however, with red filters during deep observations the flare can

be revealed to be generated by an M-dwarf star. It is important to adopt a flexible definition

of ‘transient’ in various contexts, as the origin of the definition is mostly observational. Gen-

erally, observable features and physical processes can be described as transient when they are

short-lived when compared with stellar- and galaxy-evolution timescales.

The Universe can be analysed and explored across almost the whole electromagnetic spec-

trum. In astronomy when innovative instruments were crafted together with new ‘window’ to

observe the sky at different wavelength range, unexpected phenomena were discovered that

populate at phase-space regions formerly inaccessible. Spectacular examples are the discover-

ies of gamma-ray bursts (GRBs) at high energy (Klebesadel et al., 2004) and Jocelyn Bell’s dis-

covery of pulsars at radio wavelengths (Hewish et al., 1969). Most transient events are powered

by mechanisms that make them visible at multi-wavelengths. The signatures of those mech-

anisms can reveal unexpected changes in duration and energy at different wavelengths. Thus

only multi-wavelength observations both simultaneously and over time, can totally reveal the

physics and the evolution of various astrophysical events, especially when they involve ex-

treme objects, for example, massive stars, white dwarfs, neutron stars and black holes.

2.1.1 Observing transients in the optical

In the last two decades, the emergence of dedicated surveys have revolutionised our under-

standing of the transient sky. These include the Supernova Legacy Survey (Astier et al., 2006),

the Australian SkyMapper (Keller et al., 2007), the Palomar Transient Factory (Rau et al., 2009),

the Catalina Sky Survey (Drake et al., 2009), Pan-STARRS (Stubbs et al., 2010), the All-Sky Auto-

mated Survey for Supernovae (Shappee et al. 2014; Holoien et al. 2017), the Zwicky Transient

Factory (ZTF, Bellm et al. 2019) among others. Such surveys often focus on transients evolving

with characteristic timescales from minutes to several years and also include a broad range of

events, both galactic and extragalactic. Example of transients include phenomena such as su-

pernovae, novae, neutron stars, blazars, pulsars, cataclysmic variable stars (CV), gamma ray

bursts and active galaxy nuclei (AGN). We provide a short description of a sample of these

transient sources as follows.
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Figure 2.1 – The physical characteristic of a cataclysmic variable. The white dwarf is accreting
materials filling its Roche-Lobe from companion star, in this example, a red dwarf. This figure was
created by Rob Hynes using the BinSim binary visualization code (BinSim, 2021).

• Supernovae: they are astronomical events that occur in the last stages of a massive star’s

lifetime. When a star runs out of fuel and its fusion reaction pressure, that is the endo-

thermic fusion of iron cannot withstand its own gravitational force, the core of the stars

with masses >8M� (where M� is the mass of the Sun) collapses (Nadyozhin, 2008).

• Cataclysmic Variable (CV) Stars: CVs such as classical novae and dwarf novae, are binary

star systems that consist of a primary white dwarf and a normal companion star. The

stars are so close to each other that the white dwarf accretes matter from the companion

stars, via a process called accretion (Knigge, 2011). This occurs due to the acceleration of

matter by the strong gravitational field, from the companion star onto the white dwarf.

A visualization of these kind of stars is illustrated in Figure 2.1. In addition, pulsating

stars are common examples of variables detected in our Galaxy, for example Cepheids,

RR-Lyrae, Mira-type, and RV-Tauri variables.

• Active Galactic Nuclei (AGN): Galaxies showing a very bright central core, with a lu-

minosity that outshines the entire host galaxy are known as Active Galactic Nuclei, and

galaxies hosting an AGN are named active galaxies. They are known to be the most lu-

minous steady objects in the universe and their power output is variable on time scales

of minutes up to years (Krawczynski & Treister, 2013).

• Quasars and Blazars: Both Blazars and quasars are types of AGNs. In addition to the

fact that they emit high luminosity, they also emit a pair of perpendicular relativistic jets

perpendicular to their accretion disks. These perpendicular jets, also known as beams,

are rays of ionized matter expelled at bulk velocities of 95% - 99.9% the speed of light.

These ionised materials are presumably generated by the active interaction of matter in
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Figure 2.2 – In the Hertzsprung-Russell diagram the temperatures of stars are plotted against their
luminosities. The position of a star in the diagram provides information about its present stage
and its mass. Stars that burn hydrogen into helium lie on the diagonal branch, the so-called main
sequence. When a star exhausts all the hydrogen, it leaves the main sequence and becomes a red
giant or a supergiant, depending on its mass. Stars with the mass of the Sun which have burnt all
their fuel evolve finally into a white dwarf (left low corner). Credit: European Southern Observat-
ory (ESO).

the accretion ring that surrounds supermassive black holes.

In this chapter, we will mainly focus on some particular types of variables and transients

(e.g. periodic variable stars, pulsars and fast radio bursts) as this thesis is mainly concerned

with the classification and discovery of these transients. In the sections below, we will introduce

a few terms and concepts about light curves, the Hertzsprung - Russell diagram and variable

stars.

2.1.2 The Hertzsprung-Russell (H-R) Diagram

It was found that when the absolute magnitude (MV), that is, the intrinsic brightness of stars is

plotted against their temperature (stellar classification), we observe that stars are not randomly

distributed but are mostly restricted to a few well-defined regions. However, another interest-

ing fact shows that as the physical characteristics of a star change over time, its position on the
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H-R diagram also changes. Therefore, the H-R diagram can be viewed as a graphical plot of

stellar evolution. Knowing the location of a star on an H-R diagram, can reveal information

about this particular star, for example, its luminosity, spectral type, color, temperature, and age

among others.

53500 54000 54500 55000 55500 56000
Time(MJD)

15.4

15.6

15.8

16.0

16.2

16.4

16.6

16.8

M
ag

ni
tu

de

0.0 0.5 1.0 1.5 2.0
Phase

15.4

15.6

15.8

16.0

16.2

16.4

16.6

16.8

M
ag

ni
tu

de

Figure 2.3 – An example of a δ-Scuti variable star light curve from the Catalina Real-Time Transient
Surveys (CRTS, Drake et al. 2017) with magnitude on the y-axis and time on the x-axis (top panel).
The bottom panel illustrates a phase-folded light curve for similar variable star, with a two phase-
cycles on the x-axis.

Most stars can be classified by their:

• temperature, that is, spectral types from hottest to coolest,

• luminosity, that is, the differences in spectral lines among stars that have similar spectral
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type are a function of the star’s radius. These differences result in different luminosities.

The luminosity (L) of a star is directly linked to its absolute magnitude (MV). Therefore,

luminosity can be defined as the total amount of energy radiated per second, that is, it is

proportional to fourth power of temperature. It means that if two stars are at the same

effective temperatures but have different luminosities, they must differ in size.

Figure 2.2 illustrates the H-R diagram. From the plot we can observe a main-band, also

known as the main sequence, that starts at the lower right-hand corner and curving up to the

left-hand corner. Almost 90% of all stars lie within the main sequence and these stars are burn-

ing their hydrogen into helium. Stars at the top left-hand corner are bright, hot and from O

and B spectral classes whereas stars in the lower right-hand corner are cooler, dimmer and are

of K and M spectral classes. On the main sequence, stars undergo an evolutionary process that

depends on the rate of hydrogen fusion occurring in their cores. Stars on the main sequence

remain at fixed position on the H-R diagram when there is a state of dynamic equilibrium. The

latter occurs when the radiation pressure pushes outward from the hydrogen fusion mech-

anism and balances the inward pull of gravity. However, stars in the main sequence start to

moves off along the band when the two forces no longer balanced. This happens when there

is a depletion of hydrogen, thus the radiation pressure decreases and can no longer balances

the gravitational forces. These evolutionary stages are also dependent on the initial mass of the

star. In addition, there are specific locations on the H-R diagram that are occupied by giants

and supergiants that exhibit types of variability. These stars have transitioned from the main

sequence and are fusing heavier elements.

2.1.3 Light Curves

Stars show some variability in brightness/magnitude during the evolutionary process. The

brightness that we observe on Earth depends on its distance and its absolute magnitude. The

characteristics and behaviour of a star that show a variation in magnitude can be analysed by

measuring their changes in brightness/magnitude over a period of time. We can therefore plot

the variation on a graph also known as a light curve (LC).

Astronomical observations are taken with sophisticated telescopes from a region of the sky

for a period of time. This produces a sequence of images at various times of observation.

Using a technique in astronomy called photometry, which enables the precise measurement of

the apparent magnitude of a source from the sequence of images over a period of time from

which we can form a light curve, that is, a temporal sequence of brightness measurement over
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time for a particular source of interest. Light curves are usually plots of apparent magnitude

(y-axis) over time (x-axis). An example of a light for a variable star is illustrated in Figure 2.3.

If the source shows some periodic behaviour and its period can be determined, it can be useful

to plot the phased light curve. The phase φ of an observation can be calculated as,

φ =

(
t− t0

P

)
−E (t) , (2.1.1)

where P is the period, t0 is an arbitrary starting point, t is the time when the observation was

taken and E (t) is the integer part of
( t−t0

P

)
. Generally, the phase is expressed as the fraction of

the period of variability, taking values in the range [0, 1].

2.2 Variable Stars

A variable star is a star whose brightness fluctuates over time. Historically, the study of vari-

able stars have been the principal method for determining the content and structure of stellar

systems and the Universe. Among these stars, we can categorise them into two types: intrinsic

and extrinsic variable stars.

Figure 2.4 shows a ‘variability tree’, which illustrates a visual summary of various types of

variable phenomena. In this diagram there are three levels. In the first level, there is the classical

division between extrinsic and intrinsic variables. In the second level a distinction is made

based on the origin of the variability. In the extrinsic variability group, the stars considered are

the rotation and eclipses by a companion or by a foreground object. Among the former, are the

eclipsing binaries. The latter is composed of the classes: Beta Persei (EA), Beta Lyrae (Semi-

detached) & the W Ursae Maj (contact) and rotational variables consist of Ellipsoidal (ELL) &

RS Canum Venaticorum.

In the second level itself we move to the intrinsic variable objects. We find the eruptive

variables, the cataclysmic variables and finally the pulsating variables. Arguably the most

important group among the intrinsic variables is that of pulsating variables because it contains

the RR Lyrae and Cepheids classes. These two classes exhibit relations between their periods

and absolute luminosities that allow us to estimate distances, a quantity both fundamental

and elusive in Astronomy (Feast & Walker, 1987; Freedman, 1988; Walker, 1988; Madore &

Freedman, 1991). For a current review of the physics and phenomenology of pulsating stars,

we refer the reader to Catelan et al. (2013).

As we can see variable stars are divided into several classes and subclasses, depending on
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Figure 2.4 – Variability tree showing the many different types of stellar (and non-stellar) phenom-
ena that are found in astronomy.

their period of pulsation and the shape of their light curves. In this thesis, we mainly focus on

the classification of periodic light curves of pulsating stars, rotational variables and of binaries.

The classification schemes are discussed in Chapters 4 & 5. In the next Section, we discuss

mostly about the subset of variable stars that we use to build a classifier in Chapters 4 & 5.

2.2.1 Pulsating variables

The interior of a star is not directly observed, but by studying stellar pulsations one can de-

termine the internal structure of stars. On the H-R diagram studied in §2.1.2, we observe that

stars are not always in complete equilibrium, but seem to pulsate. The regions on the H-R

diagram where pulsations occur, are called the instability regions. There are two major types

of pulsation modes: gravity (g-modes) and pressure modes (p-modes). Pressure is the main

driving force that causes a star to be perturbed from its equilibrium, this gives rise to acoustic

waves, also known as pressure modes (p-modes). The latter largely produces radial motion,

while for gravity modes, buoyancy is the restoring force that gives rise to perturbations, thus

causing horizontal motions (Aerts et al., 2010).

A radial pulsation occurs when a star starts oscillating around its equilibrium state by chan-

ging its radius while maintaining its spherical shape. If a single overtone is excited, these

radial pulsations will appear as mono-periodic variability in their light curves. Examples of

well-known stars that show radial oscillations are the Cepheid and RR Lyrae stars. However,
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a non-radial pulsation occurs when some regions of the stellar surface of a star move inwards,

while, simultaneously, other parts move outwards.

Pulsations occur in almost all stars and at various stages of stellar evolution. As discussed

in §2.1.2, most stars are found along the main sequence, where hydrogen burning is occurring

in their core. Along the main sequence, there are various types of variable stars, from low-

mass to high-mass solar-like stars. When hydrogen is depleted in their core, helium burning

takes over as an energy source. This process causes the helium core to contract while the outer

regions of the star expands. These stars evolve towards cooler temperatures where classes of

pulsating stars reside along the horizontal and red-giant branch.

We consider here the most common variables such as δ-Scutis, RR Lyrae, Cepheids, Long

Period Variables (LPVs: Mira, and semi-regular variables). We focus in particular on periodic

variable stars that are distinguishable with the CRTS (Drake et al., 2009).

• δ Scuti stars: The δ Scuti stars are Population I stars, found at the intersection of the

instability strip with the main-sequence. Both radial as well as non-radial pulsations are

observed in δ Scuti stars. Generally, they are of low order p-modes with a range of periods

between 18 minutes to 8 hours. They have masses in the range from 1.5 to 2.5 M� and are

often of A0 to F5 type giant or main sequence stars.

• RR Lyrae: RR Lyrae stars are of great galactic and cosmological importance as they are

good distance indicators. They are population II, low metallicity, low-mass stars with

masses varying in the range 0.6-0.8 M� and spectral types ranging from A2 to F6. They

are found commonly in globular clusters, which are dense groups of old stars in the halos

of galaxies. They are regarded as classical radial pulsators, having a pulsation period of

nearly half a day. RR Lyrae stars are divided into RRab, RRc, RRd and Blazkho as they

pulsate in different modes - fundamental radial mode or in the first-overtone radial mode

respectively. For instance, RRab have longer pulsation periods (from 0.3 to 1.2 days) and

asymmetric light curves, where as RRc have shorter periods (0.2 to 0.5 days) and more

or less sinusoidal light curves. RRd stars are double-mode pulsators, in which both the

fundamental and the first overtone are excited. However, many RR Lyrae are known to

exhibit the Blazhko effect (long-term modulation; Blažko 1907a).

• Cepheids: Cepheids are Population I giant or supergiant stars with masses above 5 M�

and spectral types ranging between F5 and G5. Cepheids expand and contract in a re-

peating cycle of size changes. The change in size can be observed as a change in appar-
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ent brightness (apparent magnitude). Together with the RR Lyrae, they are considered

to be radial pulsators, with periods in the range 1-50 days and their light curves dis-

play a skewed characteristic distribution. Cepheids can also be divided in to the Clas-

sical Cepheids (Type I), the Double-mode Cepheids (Type II) and Anomalous Cepheids

(ACEPs) classes. Double-mode Cepheids (Type II) have either both the fundamental and

the first overtone, or the first and second overtone, excited. The different Cepheids types

obey different period-luminosity relations. In general, Type I Cepheids are brighter than

Type II Cepheids, if both have the same period.

• Long Period variables (LPVs): They are Population I radial pulsators, located nearly at

the red end of the instability strip and they have periods in the range longer than 80 days.

Also, they show luminosities between the range of about 1× 103L� and 7× 103L� and

have low effective temperatures between 2500 and 3500 K. LPVs can be categorised into

two subclasses; Mira and Semi-regular. Mira variables are periodic pulsating red giants

with a periods of 80 to 1000 days. It is a stage that most mid-sized main sequence stars

transition through as they evolve to the red giant branch. Semi-regular variables are

giants and supergiants showing periodicity accompanied by intervals of semi-regular or

irregular light variation. Their periods range from 30 to 1000 days.

2.2.2 Rotational and Eclipsing Binaries

Many stars belong to a binary system. Binaries will always be present in any unbiased sample

of stars. In this work, we will consider eclipsing binaries (contact plus semi-detached binary

group (Ecl) and detached eclipsing binaries (EA)) and rotational variable stars such as ellips-

oidal and RS Canum Venaticorum variables.

Stars in eclipsing binary systems have fundamentally allowed the computation of masses

of their components based on their orbits. The calculation of the masses can further be used to

constrain other fundamental parameters, such as density and radius and can also be used to

determine an empirical mass-luminosity relationship (MLR) from which the masses of single

stars can be calibrated. Hence, binaries play an important role in astrophysics.

• Contact binaries: They are also known as both W Ursae Majoris (W UMa’s) stars or

EW’s. Usually these stars have very similar temperatures and spectral types and exhibit

eclipses with symmetric shapes. However, we sometimes observe slight differences in

temperature and size, and this gives rise to slight differences in eclipse depth. Generally,
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contact binaries are known to have minimum periods near 0.22 d (Rucinski 1996, 2007).

However, Drake et al. (2014a) have discovered that a small number of systems may have

shorter periods.

• Detached binaries: Detached eclipsing binaries are gravitationally bound systems. They

are well-separated stars whose orbital plane is aligned closely along our line of sight.

Detached binaries have highly elliptical orbits. Generally, their light curves show that the

times of occurrence of their primary and secondary eclipse are not equally separated.

• Semi-detached binaries: The depths of the primary and secondary eclipses of semi-

detached binaries are noticeably different. However, such systems can be difficult to

distinguish from detached systems while those with smaller eclipse amplitudes are not

easy to identify from contact binary systems.

• Rotational variables: For example Ellipsoid variables (ELL) are close binary systems

with ellipsoidal shapes (not a ‘perfect’ sphere). These binary system do not show ec-

lipses. Their combined brightness changes with period because of changes in emitting

areas projected towards an observer. Another example is the RS Canum Venaticorum

variables (RS CVns). They are spotted stars with periods of less than 1 day for main-

sequence stars, up to hundreds of days for giants. These stars have prominent bright and

dark areas on their surface that result in small variations in brightness as they rotate in

and out of our line of sight.

Up till now, we have discussed that various types of variable stars that are investigated in

Chapter 4 & 5. In this thesis, we have also looked at the classification of radio data, for instance

single pulses/pulsars/fast radio bursts and radio frequency interference in Chapters 7 & 8. In

the next section, a background introduction on pulsars and fast radio bursts is given.

2.3 Observing transients at the radio wavelengths

The discovery of radio pulsars over a half century ago was a seminal moment in astronomy. It

demonstrated the existence of neutron stars, and has allowed us to probe strong gravity, dense

matter, and the interstellar medium.
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2.3.1 Pulsars

Pulsars are rapidly rotating radio sources, that is, rotating neutron stars that possess typical

magnetic field strengths that range between 108 − 1014 Gauss. The first pulsar was discovered

in 1967 by Jocelyn Bell and Antony Hewish at Cambridge University (Hewish et al., 1968;

Pilkington et al., 1968; Bell Burnell, 1977). They found a “pulsating” radio source while de-

termining the angular sizes of compact sources using interplanetary scintillation (IPS). At first

the source was thought to be terrestrial, for e.g. radio frequency interference (RFI). However,

the dispersed nature of the signal and its frequency indicated that the source was of celestial

origin and was characterized as either a white dwarf or a neutron star (Hewish et al., 1968). The

pulses were theorised to be coming from radial pulsations of a compact star with a measured

stable magnetic field strength of 107 Gauss.

The origin of the radio emission produced by pulsars, actually comes from their magneto-

sphere (Ghosh, 2007). A magnetosphere can be defined as a region of space that surrounds

a pulsar in which charged particles are influenced by both open and closed magnetic field

lines, known as the co-rotating magnetic field (Lorimer & Kramer, 2004). The radio emission is

broadly explained by the acceleration of charged particles along the magnetic field lines of the

rotating, not pulsating, neutron star (Gold, 1968). The magnetic field strength can be calculated

by assuming the period, P and the slow-down rate, Ṗ of the pulsar, is due to magnetic dipole

braking (Lorimer & Kramer, 2004). The surface magnetic field strength of a pulsar is expressed

as:

Bs ≡ B (r = R) =

√
3c3

8π2
I

R6sin2α
PṖ. (2.3.1)

By taking the values of the moment of inertia, I = 1045 g cm2 and radius, R= 10 km for a pulsar

and assuming the angle between the magnetic moment and the spin axis, α = 90◦, the surface

magnetic field is re-written as:

Bs = 3.2× 1019G
√

PṖ ≈ 1012G
(

Ṗ
10−15

) 1
2
(

P
1s

) 1
2

. (2.3.2)

It is believed that the strong magnetic field causes particles to be extracted from the surface

of the neutron star surface, thus creating a voltage gap. The extracted particles are then accel-

erated along the co-rotating magnetic field lines of the magnetosphere (Lorimer, 2008), which

result in an increase in energy, hence the particles emit radiation in the form of high energy
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Figure 2.5 – Schematic diagram that illustrates the radius to frequency mapping in radio pulsars.
At higher frequencies, the emission occurs closer to the neutron star surface as compared to the
emission at lower radio frequencies, resulting in wider beams at low radio frequencies. Figure
courtesy of Seiradakis & Wielebinski (2004).

photons. The photons now interact with the strong magnetic field of the pulsar and thus un-

dergo the process called pair production (creating opposite elementary particles - an electron

and positron). The particles radiate energy as they are accelerated along the open field lines. It

causes the emission of radio waves and other various forms of radiation along the open field

lines near a pulsar’s magnetic pole, producing a coherent radiation beam. The magnetic axis of

a pulsar is often inclined from the direction of its rotational axis. Therefore, the radiation beam

produced at the magnetic poles is swept at an angle across the sky as the pulsar rotates. If the

beam passes the line of sight of an observer, it is detected as a rise and fall in the broadband

radio emission. This is known as the “Lighthouse effect” proposed by Gold (1968), that is, the

radio pulses were attributed to the fact that the beam swept past our line of sight once per

rotation.

2.3.1.1 Effects of the Interstellar Medium

The interstellar medium (ISM) consists of gas in the form of either plasma or neutral atoms.

The most influential part of the ISM for radio signals from a pulsar, is the plasma. It affects the

signals produced by pulsars in many ways and produces path differences and distorts the wave

fronts of the pulsars such that the observed flux density varies randomly with time. The pulsar

signal gets modulated through dispersion, Faraday rotation, scattering and scintillation. These

effects impede our ability to observe and detect pulsars as their signals become indistinguish-

able from the background noise due to the smearing of the signals. In the following section, we
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discuss dispersion as it is the main interstellar effect that renders the search for pulsars difficult.

2.3.1.2 Dispersion

Dispersion causes the radio emission from a pulsar at lower frequencies to arrive later (Lorimer

& Kramer, 2004). As pulsars are weak sources, modern pulsar searches use a wide bandwidth

to improve sensitivity. Therefore, their pulse profile may be spread out by dispersion. When

the radio emission from the pulsar travels through cold ionised plasma (ISM), it experiences a

frequency dependent refractive index, where the refractive index µ for an observing frequency

f is given by

µ =

√
1−

(
fp

f

)2

, (2.3.3)

where fp is the plasma frequency given by

fp =

√
e2ne

πme
' 8.5

( ne

cm−3

) 1
2

kHz, (2.3.4)

where e, me and ne are the charge, mass and number density of the electron respectively. It is

clear from Equation 2.3.3 that due to the differential speed of the propagating wave, the pulse

at a higher frequency will arrive earlier than that at a lower frequency. As a consequence, the

propagation of pulsar signal of frequency f to a distance d will be delayed in time with respect

to a signal at infinite frequency. The time delay is

t =

(ˆ d

0

dl
vg

)
− d

c
, (2.3.5)

where d is the distance of pulsar from Earth and vg is the group velocity of the propagating

wave. We then substitute for vg = µc and considering that fp � f , we obtain

t ' D× DM
f 2 , (2.3.6)

where the Dispersion Measure (DM), that is, integrated free electron density along the line of

sight is given by

DM =

ˆ d

0
nedl, (2.3.7)
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which is expressed in pc cm−3 where the Dispersion constant, D is

D ≡ e2

2πmec
= (4.148808± 0.000003)× 103MHz2 pc−1 cm3 s. (2.3.8)

The delay between two observed frequencies f1 and f2 is given by

∆t ' D×
(

f−2
1 − f−2

2
)
× DM. (2.3.9)

As DM is not known a priori, it must be searched over to find a new pulsar. By measuring pulse

arrival times at the two different frequencies, the DM of a pulsar can be estimated along the

line of sight. Then, according to Equation 2.3.7, the distance of the pulsar can be estimated by

integrating Equation 2.3.7 if ne is known from standard models like the NE2001 model (Cordes

& Lazio, 2002).

Figure 2.6 – Illustration of the importance of de-dispersion. The grey scale plot represents the un-
corrected dispersive delay, the x-axis represents the pulse phase as a function of frequency from an
observation of the pulsar J1800+5034. Directly integrating the data across the frequency dimension
smears the pulse in phase/time and makes it difficult to detect. Hence, the dispersion delay must
be removed by shifting every frequency channel individually by the correct number of time/phase
samples (red arrows). The top panel illustrated the “de-dispersed” band-integrated pulse profile.
Based upon diagram originally presented by Wang (2017) in Chapter 6.
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2.3.1.3 Searching for Pulsars and Fast Radio Bursts

Searching for pulsars/fast radio bursts requires two fundamental search tools. A large radio

telescope sensitive to weak radio emissions, and a signal search pipeline that is capable of

isolating weak signals from noise/Radio Frequency Interference (RFI).

Radio telescopes comprise of typically an aperture that guides electromagnetic signals from

the sky to a focus. The signals can be measured as a function of time using feeds. The feed

response is measured over a range of radio frequencies. It can be imagined as a bandwidth,

which is amplified and sampled discretely by a number of frequency channels (Petroff et al.,

2019). High-time-resolution observations, similar to those utilized to search for pulsars and

FRBs, record the stream of voltages in each channel over a period of time, and sampled the

voltage stream at some finite time resolution.

These data are saved to disk in the voltage data format. It can further be downsampled by

summing adjacent time or frequency channels, thus decreases the resolution and volume of the

data. In the case of two orthogonal antennas, both polarizations are recorded, thus at this stage

they may be summed. The resulting data cube of intensities at each time and frequency can be

saved to disk in the format of ‘filterbank’ file. There are several steps that are required to search

for dispersed pulses in these data cubes. In some situations, this involves a pre-processing

step to sum the polarizations, if they are recorded separately. Afterwards, the total intensity

data are analysed to generate a list of candidate FRB signals. The first step involve removal

of noise/RFI. In this work, we developed an automated pipeline using artificial intelligence

to perform distinction between noise/RFI and single pulse candidates in FRBs search pipeline

(see Chapter 7).

2.3.1.4 Pre-processing step of radio frequency interference excision

Radio frequency interference (RFI) is ubiquitous in radio astronomical data. RFI can over-

whelm the intensity of astrophysical signals and in some cases, can look sometimes fairly sim-

ilar to an astrophysical signal by showing some of the expected characteristics (for example, a

frequency-dependent sweep in time that appear like astrophysical dispersion, see Foster et al.

2018). In most FRBs searches and pipelines, before the data is searched for pulses an initial

attempt is made to separate or remove RFI. The most common techniques entail masking time

samples and frequency channels. For instance, if there are known in-band emitters, the corres-

ponding frequency channels can be masked automatically (Petroff et al., 2019). Also, the data

can be searched for impulsive RFI by searching for peaks in the DM = 0 cm−3 pc time series and
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masking the contaminated time samples (Kocz et al., 2012). The goal is to mask as much RFI as

possible, without removing an astronomical signal. In Chapter 7, we provide a detail overview

of the machine learning pipeline to automate the classification between real candidates (single

pulses) and those that are noise or RFI for the MeerKAT facility.

2.3.1.5 Stages in the detection of pulses

Signals received from radio telescopes are readily interpreted by digital filter banks. Filter bank

file is an array of band-pass filters. It is utilized to split up the pre-processed radio signal into a

number of frequency channels. A received signal in the filter bank file is split up in to nchannels

frequency channels, each of width ∆υ. Each channel consists of a total number of samples of

the signal, stotal , that is taken at a time interval, tsampling (µs), over a length of observational

time, tobserve (s), such that,

stotal =
tobserve

tsampling
. (2.3.10)

The filter bank file acts as input to the software search pipeline. The software comprises of

various stages applied to the filter bank data. The first step is the RFI excision, which involves

the removal of channels that contain known noise/RFI. Once RFI excision has been applied, the

next step known as ‘Clipping’ (Keith et al., 2010). ‘Clipping’ is achieved by setting the samples,

which exhibit higher intensities than some threshold intensities, to zero. After the data has

undergone a cleaning process, the pre-processed data now enters a highly computationally

expensive stage known as de-dispersion.

As described in §2.3.1.1 & 2.3.1.2, signals travelling through the ISM are affected in various

ways. These signals interact with charged particles and cause a delay in the arrival of the

signal on earth. This is viewed as a dispersive effect that causes a smearing effect in time of the

pulsar signal. This smearing effect makes it hard to detect pulsar signals, as their pulses are

less pronounced, i.e. their pulses show a reduction in Signal-to-noise ratio (S/N). Therefore,

a signal receives an amount of dispersive smearing, and this quantity is proportional to the

so-called dispersion measure (DM) (Lorimer & Kramer, 2004). However, the DM value of a

particular signal is not known a priori, thus a number of DM tests or ‘DM trials’ must be carried

out to find this DM value as accurately as possible. Using an accurate DM value will remove

the smearing effect of the signal, thus maximizing its S/N. For each DM-trial, each frequency

channel is shifted by an appropriate delay as illustrated in Figure 2.6. Each successive DM-

trial increases the delay in steps, until a maximum DM is reached. This process generates a
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single ‘de-disperse’ time-series per frequency channel. Then, per trial DM, these generated

time-series are summed to produce a single de-disperse time-series. In overall, the process of

de-dispersion generates a number of time-series that is equal to the total number of DM-trials.

The next step in pulsar searching is known as periodicity search (Lorimer & Kramer, 2004)

and it involves a Fourier analysis. The periodicity search step filters the data to remove strong

spectral features, also known as ‘birdies’ (Manchester et al., 2001; Hessels et al., 2007). Strong

spectral features are commonly caused by periodic or quasi-periodic interference. The next

step involves a summation of the amplitudes of harmonically related frequencies to their cor-

responding fundamentals. This is an important step as in the Fourier domain, the power from

a narrow pulse is distributed between its fundamental frequency and its harmonics (Lorimer

& Kramer, 2004). Thus it would have been unlikely to find a pulsar signal, if one would try

to only detect the fundamental. After the summation process, periodic detections with Fourier

amplitudes above certain threshold, are regarded as ‘suspect’ periods.

Hence, a further process is applied to the ‘suspect’ periods, also known as sifting (Stovall

et al., 2013). Sifting removes duplicate detections of the same signal at slightly different DMs,

along with their related harmonics. After the sifting process, a large number of ‘suspect’ peri-

ods are remained. The output of this Fourier search is a list of candidates that are characterised

by some best-fit search parameters, for e.g. DM, frequency, number of harmonics summed and

acceleration. These parameters are not sufficient to provide a distinct boundary and distinction

between legitimate pulses and noise/RFI. To be able to detect pulses in the data, we need to

return back to the original, multi-channel data and phase-fold them at the candidate period.

This step will generates an integrated pulse profile of the candidate, along with additional

diagnostic plots as shown in Figure 2.7 and detailed in §2.3.1.6.

2.3.1.6 Pulsar Candidates

A pulsar candidate is a signal detection that exhibits ‘pulsar like’ characteristics (Lorimer &

Kramer, 2004; Eatough et al., 2010). These characteristics can be used for further analysis. Us-

ing graphical plots and statistics, each candidate summarises such a detection. By either an

automated method, or a human expert, these plots and statistics must be inspected in order

to determine a candidate’s probable origin. The causes of the vast majority of candidates are

due to fluctuations in Galactic background noise, electronic noise of the receiving system and

terrestrial RFI. However, only those with probable pulsar origin will be further analysed. The

process of determining which candidates are deemed suitable to investigate, is known as can-
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didate ’selection’, which is a fundamental step in the search for pulsars. When correct selection

decisions have been made, they allow valuable telescope time to be prioritized upon those

detections and this yields a new discovery, and prevents pulsars from being missed.

Figure 2.7 – Example pulsar candidate plot of PSR J1926+0739. The bottom left of the plot dis-
plays: the integrated pulse profile, folded at the optimum period and dispersion measure (DM).
The middle left shows the 64 temporal sub-integrations of the observation, illustrating how the
pulse varies with time. Top left illustrates the stacked pulses across four frequency sub-bands,
showing how the pulse varies with observing frequency. In addition, the period-DM diagram illus-
trates how the SNR varies with small changes in the folding period and DM. The DM-SNR curve
shows the spectral SNR as a function of a wide range of trail DMs, and finally the acceleration-SNR
curve illustrates the spectral SNR as a function of trial acceleration. The candidate was discovered
by Eatough et al. (2010) using an Artificial Neural Network.

The basic candidate is described in terms of a small number of characteristic variables and

plots. According to Eatough et al. (2010), common features of a pulsar candidate include: a nar-

row pulse width (~ 5% of the pulse period); the presence of a pulse over all the sub-integrations;

pulse phase coherent emission across all frequency sub-bands; an ‘island’ in the period-DM

diagram; good agreement between the real and theoretical DM-SNR curve, and a good agree-

ment between the real and theoretical acceleration-SNR curve (Eatough et al., 2010). Figure 2.7

(upper left) shows the candidate plot of PSR J1926+0739. This candidate shows how the signal

persists throughout both the time and frequency domains (Eatough et al., 2010). In addition,

the integrated pulse profile is shown in Figure 2.7 (bottom left). The IP profile is the result of

averaging across all observed frequencies and time. The period-DM plane and DM-SNR curves

on the right of Figure 2.7 are used to describe the relationship between trial DM values, and the

S/N as the DM value is not known a priori, thus it must be searched over to find a new pulsar.
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2.3.2 The pulsar population

Given the very long lifetimes of pulsars, ~ 10’s of millions of years, for ’normal’ pulsars and

a few billion years for milliseconds pulsars, what one essentially wants to do when studying

pulsars is to analyse a large number of them to construct a population to find out how they form

and evolve in various situations. The current pulsar population is mostly found in the Galaxy

due to the weak nature of their emission. Currently, there are 28 pulsars that are the farthest

and they are located in the Magellanic clouds (Ridley et al., 2013). Out of the remaining, 144

are located in Galactic globular and other clusters. This means that out of about 2500 pulsars

currently detected (Manchester et al., 2005), almost 93% pulsars are in the Galactic disk of the

Milky way Galaxy.

Due to the interstellar medium (ISM) effects, there would be an observational bias against

detecting highly scattered and weak, distant pulsars. Another bias is due to the narrow radio

beam of the pulsars which implies that there may be active radio pulsars not beaming towards

the Earth.

Radio pulsars possess one unique property which allows us to construct a diagram for them

called the P− Ṗ diagram. Pulsars are effectively large rotating dipole magnets in space and so

they lose energy by spinning down and some of this energy manifests as radio emission. They

therefore emit radiation at the expense of their rotational kinetic energy. This loss of energy

causes the pulsars to slow down over time. This rate can be very precisely determined by

doing pulsar timing measurements and is called the rate of slow-down or the period derivative(
Ṗ
)
. These characteristics allow us to construct a diagram depicting the pulsar population as

shown in Figure 2.8. The plot has been made using the psrqpy package*, which is an interactive

python tool within the ATNF pulsar catalogue†.

The P− Ṗ diagram illustrates that normal pulsars and the millisecond pulsars (MSPs) are

two distinct populations. It is observed that the normal pulsars are clustered towards the centre

of the plot while, the MSPs form a cluster towards the bottom left, having much smaller periods

as well as period derivatives when compared to normal pulsars. The lines of constant magnetic

field strength which is given by Equation 2.3.2, characteristic age of detected pulsars is calcu-

lated as in Equation 2.3.11 and spin-down luminosity are also shown in the P− Ṗ diagram.

The characteristics age of pulsars can be inferred from

*http://psrqpy.readthedocs.io/en/latest/
†http://www.atnf.csiro.au/people/pulsar/psrcat/
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τc ≡
P

2Ṗ
. (2.3.11)

From Figure 2.8, it is seen clearly that MSPs are much older and have much lower magnetic

fields as compared to the normal pulsars but are still almost as luminous. This led to the theory

that MSPs are born as normal pulsars. Later, they turn into MSPs through mass transfer from

their binary companions (Bhattacharya & van den Heuvel, 1991).

Figure 2.8 – A P − Ṗ diagram. The dot-dashed lines are lines of constant characteristic age and
the dashed lines are lines of constant surface magnetic field strength, from 1010 − 1014 G. Circled
points are pulsars in binary systems. The plot has been made using the psrqpy package, which is
an interactive python tool combined with data from the ATNF pulsar catalogue.

Rotating RAdio Transients (RRATs; denoted by green circles in Figure 2.8) (McLaughlin
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et al., 2006) are transient pulse emitters and have slightly higher magnetic field strengths than

normal pulsars. Various types of extreme pulsars also exist and their position in the P − Ṗ

diagram helps in assessing how the evolution of neutron stars happens after the supernova

explosion.

2.3.3 Fast Radio Bursts

Recently, pulsar surveys have resulted in the serendipitous discovery of fast radio bursts (FRBs).

While FRBs seem identical to the individual pulses from pulsars, their large dispersive delays

indicate that they originate from far outside the Milky Way and hence are many orders-of-

magnitude more luminous (Petroff et al., 2019). FRBs are bright and powerful (50 mJy - 100

Jy) millisecond duration pulses of emission at radio frequencies between 100 MHz and 8 GHz.

The origins of FRBs are still unknown, even though many more FRBs are discovered yearly,

it is complicated to identify the galaxies in which they originate. The excitement about the

discovery of FRBs has led to an increased in searches through new and archival data, not only

at the Parkes telescope (Burke-Spolaor & Bannister, 2014; Ravi et al., 2015; Champion et al.,

2016) but also at other telescopes, for example the discovery of FRBs at the Arecibo Observat-

ory (Spitler et al., 2014), the Green Bank telescope (Masui et al., 2015), the Australian Square

Kilometre Array Pathfinder (ASKAP, Bannister et al. 2017; Shannon et al. 2018), and the Ca-

nadian Hydrogen Intensity Mapping Experiment (CHIME, Boyle & Chime/Frb Collaboration

2018; CHIME/FRB Collaboration et al. 2019b). Since 2013, the rate of discovery of FRBs has

increased and shows a doubling rate of the known population in the recent years (Shannon

et al., 2018; CHIME/FRB Collaboration et al., 2019b). Discoveries from these telescopes have

highlighted ∼ dozen repeating FRBs, two of which have been studied extensively, namely FRB

121102 (Spitler et al., 2016; Scholz et al., 2016; Chatterjee et al., 2017) and FRB 180814.J0422+73

(CHIME/FRB Collaboration et al., 2019a).

2.4 Astronomical surveys

In this thesis, several ML pipelines are developed to automate various steps in various surveys.

Hence, in this section, we provide some details about the various surveys we used, ranging

from optical to radio surveys. Several ground-based and space-based mission surveys have

been undertaken during the last two decades. In this section, we elaborate on surveys that have

been used in this work, for example, the Catalina Real-time Transient Survey, the MeerLICHT

and the MeerKAT telescopes.

50



2. VARIABLE AND TRANSIENT ASTRONOMICAL SOURCES 2.4. Astronomical surveys

2.4.1 The Catalina Real-time Transient Survey (Optical)

The Catalina Sky Survey‡ started back in 2004 and utilizes three telescopes to observe the sky

between declination δ = −75 and +65 degrees. Each of the telescopes is operated as a separate

sub-survey and looks for optical transients. These comprise of the Catalina Schmidt Survey

(CSS), the Mount Lemmon Survey (MLS) and the Siding Spring Survey (SSS). CSS and MLS

are located in Tucson, Arizona and SSS is found in Siding Spring, Australia. Each telescope

has allocated fields that cover the sky and avoids the Galactic plane region by 10 to 15 degrees

because of reduced source recovery in crowded stellar regions (Drake et al., 2014b). All data

observed by the Catalina Sky Survey is analysed for transient sources by the Catalina Real-

time Transient Survey (CRTS §, Drake et al. (2009)). In this work, we used data from the Siding

Springs Survey. We utilized the periodic variable catalogue from the southern location within

region−20◦ < δ < −75◦. More details about the data and methodology employed, are detailed

in Chapter 4 and 5.

2.4.2 MeerLICHT Optical Telescope

MeerLICHT is an optical wide-field telescope that is operated robotically. The telescope is

located at the Sutherland station of the South African Astronomical Observatory (SAAO). It

consists of a 65 cm primary mirror and provides a 2.7 square degree field-of-view at a pixel

scale of 0.56′′/pixel (Bloemen et al., 2016). MeerLICHT will co-observe with the MeerKAT ra-

dio telescope (Jonas & MeerKAT Team, 2016) on the same field. The combination of an optical

and a radio telescope will enable the study of fast transient phenomena using simultaneous

observations in two very distinct parts of the electromagnetic spectrum, whilst eliminating the

delay introduced by triggering optical follow-up after the detection of a radio event. Both

MeerLICHT and the BlackGEM array (Groot, 2019) (that is currently being installed at the La

Silla Observatory in Chile) will yield about 500 observations per night, per telescope, thus gen-

erating tens of thousands of candidate alerts every clear night that could be spectroscopically

followed up.

BlackGEM’s main focus is on the detection of optical counterparts to gravitational wave

events and MeerLICHT is designed to co-observe the sky as seen with the MeerKAT radio ar-

ray. MeerLICHT and BlackGEM are technically identical with MeerLICHT being the prototype

for the BlackGEM array. These arrays will enable the creation of a large database of transient

‡http://www.lpl.arizona.edu/css/
§http://crts.caltech.edu/
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and variable sources. Such large databases are important for future analyses of data collected

during upcoming photometric surveys like the Vera C. Rubin observatory (LSST; LSST Science

Collaboration et al. 2009). In Chapter 6, we automate the transient detection pipeline for the

MeerLICHT facility by developing a ML model to remove spurious sources detected in the

MeerLICHT data.

2.4.3 MeerKAT Radio Telescope

The MeerKAT radio telescope is the (more) Karoo Array Telescope (Camilo et al., 2018) and is

a precursor for the Square Kilometre Array (SKA) mid-frequency telescope, located in South

Africa. It consists of 64 dishes with diameter 13.96 m each. MeerKAT has a field of view (FoV) of

over a square degree at 1.4 GHz. This characteristic makes it an excellent instrument for search-

ing for radio transients, for e.g. Fast Radio Bursts (FRBs). The nature of FRBs present various

challenges, e.g compute power, real-time communication and in system design (Jankowski

et al., 2020). Rapid data processing is fundamental to decrease the delay for follow-up obser-

vations and to retain high resolution data of the object of interest. In this work, a machine

learning algorithm is constructed and implemented in a real-time triggering infrastructure for

FRBs classification and localization at the MeerKAT telescope. More details can be found in

Chapter 7.

2.5 Concluding Remarks

This chapter provides a background introduction to the transient universe, both in terms of

radio and optical astronomy. The reader was introduced with various terminology and vari-

ous types of transients and variable stars. The concepts behind various variable stars are in-

troduced, thus allowing the reader to become familiar with these terms being used in other

chapters. In this thesis, both optical and radio data are used independently. Hence, the various

surveys we used are detailed.
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MACHINE LEARNING CLASSIFICATION

“A computer would deserve to be called intelligent if it could deceive a human into believing

that it was human.”

– Alan Turing

This chapter introduces the reader to Artificial Intelligence and various machine learning al-

gorithms. Section 3.2 introduces important terminology and the steps to be undertaken when

implementing machine learning techniques. An introduction to multiple machine learning

algorithms is presented in Section 3.3. This will cover fundamental techniques whilst also ex-

plaining key concepts relevant throughout the remainder of the thesis.

3.1 Overview

Artificial Intelligence (A.I.) is a field of scientific study concerned with replicating human in-

telligence via artificial means. The field of A.I. is comprised of numerous sub-fields (computer

vision, speech synthesis, machine learning, etc.) which together aim to create machines able to

learn independently from experience. A.I. has had a long and rich history, arising from differ-

ent philosophical points of view. Whilst there are far too many breakthroughs in the history

of A.I. to elaborate in detail, there some key milestones worthy of mention. The first one, is

the challenge of searching for patterns in data, an important one and has a successful history.

For example, in the 16th century, the extensive astronomical observations carried out by Tycho

Brahe, enabled Johannes Kepler to make the discovery of the empirical laws of planetary mo-

tion, which in turn provided a starting point for the development of classical mechanics. Simil-

arly, in the early twenties, the discovery of regularities in atomic spectra played a fundamental

role in the evolution and verification of quantum physics. Automated pattern recognition and
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learning was further explored by Alan Turing (Turing, 1937). The second occurred during the

1940’s with the introduction of artificial neurons by McCulloch & Pitts (1943). They developed

artificial nerve cells capable of learning and thereby recognizing patterns. It was not until 1956

that the field of A.I. was formally established at a conference in Hanover, New Hampshire

(Benko & Lányi, 2009). The area of A.I. concerned with learning to recognize patterns is known

as Machine Learning (ML). ML is concerned with the automatic detection of patterns in data

through the use of computer algorithms and with the help of the discovery of these irregularit-

ies can take actions such as ‘categorising’ the data into various categories/classes. Such systems

capable of learning to recognize patterns can often also make predictions based on observed

data. In other words they can use data collected about the past and today, to make predictions

about tomorrow.

Split	Dataset	into	Training	and	Test	Set

Train	the	model	on	the	Training	data

Evaluate	the	trained	model	on	the	Test	data

Gather	Dataset

Figure 3.1 – The main stages required when implementing a machine learning algorithm. Some
intermediate steps are skipped in this process, for instance, any pre-processing steps that need to
be applied to the dataset and hyper-parameter tuning/optimisation are excluded too.

AI has seen a rise in popularity in recent years due to a number of factors. But perhaps

most crucially, i) vast quantities of data are being generated by us and about us on a daily basis.

Such data can be used to build automated ML systems capable of classification and prediction

in a number of application domains, whilst, ii) advances in computing infrastructures (both

hardware and software) have also improved. Nowadays, A.I. is being used in many areas,

from fraud prediction, control system monitoring, stock trading, voice / facial recognition and

within scientific fields. For example, computer vision is a sub-field of A.I. that is capable of

mimicking the capabilities of human vision. It can be used to scan various categories of images

and extract useful patterns. Similarly, A.I. has made it possible to undertake Natural Language

Processing (NLP) tasks with some success and such tools are being more widely applied, from

speech recognition to sentence completion.
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The key research field within A.I. that is of central importance to this thesis is Machine

Learning (ML). ML is a discipline that deals with the creation of computational machines which

enable a computer program to speed up various processes, for instance, the recognition of

patterns, and in doing so imitate the brain’s ability to learn (Mitchell, 1997). These machines

process information in the form of data as input, and output a decision which can be in the

form of prediction, grouping (clustering) or classification. This chapter introduces some ML

notation and terminology used throughout the thesis, and describes in detail the process of

classification using ML algorithms.

3.2 Introduction to Machine Learning Terminology

Certain tasks are too challenging and too time-consuming for a human to tackle. Hence, ML is

often deployed to solve various challenging problems, for example, a myriad of data classific-

ation tasks (Kotsiantis, 2007). It is necessary that certain concepts need to be understood and

pre-determined steps need to be undertaken to train a machine learning algorithm. Figure 3.1

lists the stages that are followed during the building process.

The first stage in applying a machine learning algorithm is to acquire a dataset, D. A dataset

refers to a collection of variables or records which contain some information about a particular

problem. In this case, a data set D is described in the form of tabular data. Each row within D is

known as an instance or example. Each instance is successively made up of a number of features

otherwise known as input variables represented by X. The features represent the characteristics

of the instances. These can be discrete or continuous. In addition, each example can also be

assigned a continuous or discrete ground truth label, that describes it. The goal of ML is to use

a subset of data from D, which we call experience E, to ‘teach’ an algorithm to solve a problem,

using the past experience in E. This experience can then be used to solve a task T, where the

ability of the algorithm to solve the problem is measured via some quantifiable performance

measure P.

A machine learning model is therefore a mathematical model which can accurately map the

input features to ground truth labels (sometimes called target labels, or just targets) (Cios et al.,

2007). Any systems capable of mapping features describing instances to ground truth labels is

known as a classification model*, or a classification algorithm. Figure 3.2 shows an example

of a typical dataset which consists of a number of instances. Each instance is represented by a

*Here a model refers to the mathematical representation of a learning system, that is implemented within an
algorithm and able to ‘learn’ and make decisions over data.
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Feature	1 Feature 2 Feature 3 … Feature M Target

Feature Label/Class

Instance/Example

1Figure 3.2 – Highlighting the primary step related to the implementation of a machine learning
algorithm - the dataset. A dataset can be in a tabular form. Each row in the dataset is an in-
stance/example, for which the examples are made up of a number of features and targets/labels.
Each feature is represented as a column, and the right most column is the target.

number of features and a target class ‘label’ respectively.

A task, T, can be categorised as supervised or unsupervised. In supervised machine learning, a

problem is defined in terms of input variables, X and associated outputs y which the algorithm

uses to learn the inherent connection between features and class variables. Once it has learned,

the algorithm can be applied to data comprised of features without labels (i.e., the ground truth

is unknown), in order to predict what the class label should be. In many cases, the ground truth

output labels y may be challenging to collect automatically and must be provided by a human.

Thus, in the supervised approach, each instance is also characterised by a ground truth or target,

y. Generally, a dataset comprises of a number of instances, characterised by a number of input

features and corresponding targets. In the classification scenario (see §3.2.1), the target is also

referred to as the class or label.

In unsupervised learning, input variables X are available but there are no labels y available

for a variety of reasons - labelling cost, scarcity amongst others. In an informal way, unsuper-

vised learning aims to use the inherent structure of the data, to guide prediction / categor-

ization tasks without the need for human annotators to acquire ground truth labels normally

required for supervised learning.

3.2.1 Classification Tasks

This thesis is mostly concerned with classification tasks. In such problems, the main objective is

to build a model that can accurately predict the class or label for as many instances as possible.

A perfect classifier is a model that can accurately predict the correct ground truth label on data

for which there exists no pre-existing labels. In classification scenarios, the targets are usually
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discrete finite categories. Classification tasks dealing with two classes are often referred to as

binary and if the task is concerned with more than two classes, then it is referred to as multi-class.

1

Figure 3.3 – Holdout splitting is accomplished by splitting the full dataset into training, validation
and testing sets. Each set is disjoint. Models are trained on the training data, then evaluated on the
validation data. The model hyper-parameters are optimised based on the validation set. The model
which achieves the best performance on the validation data is then selected and employed to the
test data.

3.2.2 Data Splitting

In general, machine learning algorithms use training data to build a mathematical model,

where the training data is comprised of feature data. These features may have varying util-

ity, that is, information rich features are desirable as they can be used to build more accurate

classification systems. Let S = {X1, . . . , Xn}, represent a set of data available to us, then Xi

is an individual object represented by variables known as f eatures. An arbitrary feature of an

object Xi is denoted by X j
i , where j = 1, . . . , l. Each object has an associated label y such that

y ∈ Y = {y1, . . . , yk}. For multi-class scenarios the possible labels assignable to these objects

vary as 1 ≤ y ≤ Nclass. Meanwhile for binary class classification scenarios, we consider binary

labels y ∈ Y = [0, 1].

The goal is to build a machine learning algorithm that learns to classify objects described

by features, from a labelled input vector, also known as the training set, XTrain. The training

set consists of pairs such that XTrain = {(X1, y1) , . . . , (Xn, yn)}. The learnt mapping function

between input feature vectors and labels in XTrain, can then be utilised to label new unseen

objects, in XTest.

Data splitting is a fundamental stage when training and evaluating a machine learning

algorithm. Essentially, the dataset needs to be split so that the model can be evaluated and

tested to determine its performance. Commonly, the dataset is split into a training set and test

set, where training data is a fully labelled subset of some dataset S for a supervised problem.

It should contain instances representing all the different patterns we want an algorithm to

recognize. Using this information a model is developed and this is known as the training phase.

Furthermore, the test set which is also a subset of S that is completely distinct from XTrain,

is used to evaluate the trained model. The testing phase is also referred to as an unbiased

evaluation (Kotsiantis, 2007) as the model is being evaluated on data it has not seen before.

57



3. MACHINE LEARNING CLASSIFICATION 3.2. Introduction to Machine Learning Terminology

1 2 3 4 5

1

2

2 3 54

1 3 4 5

⋮

Run 1

Run 2

Run 5

⋮

Test data

1

Figure 3.4 – Illustrating 5-fold cross-validation. The dataset is split into 5 disjoint partitions and the
algorithm is trained on 4 partitions and tested on the last one. The training data is coloured in blue
and the testing data in red. In the first run partition 5 is used as the test set. Then, the algorithm is
executed again except this time the test set is another partition, in run 2 partition 4 is used as the test
set. This is repeated 5 times until eventually the first partition is used for testing and the remaining
ones are used for training.

Data splitting is necessary as performing training and evaluation on the same training data

will not give a true impression of the generalization capabilities of the trained model on new

data it has never before encountered. If data is shared between the training and testing data,

we often obtain an unrealistic impression of model performance. It is therefore important that

the training and test data are disjoint (Witten et al., 1999). The training set will be used to build

the model and the test set will be used to evaluate the performance of the model. Two common

approaches for splitting a dataset are K-fold cross-validation and holdout (Yadav & Shukla, 2016).

3.2.2.1 K-Fold cross validation and holdout splitting

When using machine learning algorithms, a major problem is an overoptimistic result, i.e the

output results are too good to be true on training data, due to over/under fitting. Mislead-

ing performance mostly happens when we perform training and evaluation on the same data.

Therefore, classification algorithms must be tested on data independent from the test set to

avoid this problem. One method for avoiding this issue, involves splitting the data into train-

ing and testing sets. There are many potential split ratios, however 2/3 training and 1/3 test is

common (Borovicka et al., 2012). A modified version of this approach is called the holdout test.

In this case, the full dataset is split into three disjoint partitions, namely, the training, validation

and test set. In the former approach involving 2 splits, the hyper-parameters† of the model are

being optimised and selected based on the test set. While for the latter case, that is the 3 splits,

the training data is first used to train the model. Once the training phase is completed, the
†Hyperparameter is a model configuration that is external to the model and whose value cannot be estimated

from data. They are usually specified by the practitioner and tuned for a given predictive modelling problem.
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model is evaluated and potentially optimised on the validation data. In this context, various

models can be evaluated according to the results of parameter optimization. The model reach-

ing the best performance measure on the validation data can be fully assessed on the test data.

In the holdout approach, the hyper-parameters are optimised and fine-tuned on the validation

data and not on the test data. An example of holdout splitting is illustrated in Figure 3.3.

Another common method for splitting datasets for evaluation is known as K-fold cross-

validation, that is, the training dataset S is split randomly into K mutually exclusive subsets

(S1, S2, . . . , SK) of nearly the same size. The classification algorithm is trained and tested K

times. For each time step t ∈ {1, 2, . . . , K}, the algorithm is trained on K− 1 folds and one fold

St is used for validation. In addition, a stratification of the data can be applied such that for each

of the K− f olds, the data are arranged to ensure each fold preserves the proportion of samples

for each class in the dataset at large. The overall balanced-accuracy (see §3.2.3) of an algorithm

trained/tested via cross-validation is simply the average of each of the K balanced-accuracy

measures obtained after each time step. A 5-fold cross-validation is illustrated in Figure 3.4.

3.2.3 Model Evaluation

The previous subsection introduced model evaluation on validation or testing data. In this

section, we present the evaluation metrics terminology used in this thesis. The motivation of

the metric is to evaluate the performance of the model, which eventually answers the question:

how accurate is the model on a particular dataset?

In this thesis, the performance of machine learning algorithms used for various classifica-

tion problems, is evaluated using measures such as the balanced-accuracy, precision, recall, F1

score, sensitivity and specificity (Chao et al., 2004). They are defined in terms of True Positive

(TP), False Positive (FP), True Negative (TN) and False Negative (FN).

• Sensitivity Measure: Equation 3.2.1 also known as the true positive rate or “recall”. It

measures the proportion of actual positives correctly identified by the model.

Sensitivity/Recall =
TP

TP + FN
(3.2.1)

• Specificity Measure: Equation 3.2.2 also known as True Negative rate. It measures how

well a model identifies negative results.
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Specificity =
TN

TN + FP
(3.2.2)

• Precision: It is a measure of retrieved instances that are correctly labelled. Precision is

described in Equation 3.2.3.

Precision =
TP

TP + FP
(3.2.3)

• F1-score: It is a metrics that aims to quantify overall performance, expressed in terms of

precision and recall as shown in Equation 3.2.4.

F1-Score = 2× Precision× Recall
Precision + Recall

(3.2.4)

• Accuracy: It is simply the ratio of correctly classified instances/examples to the total

number of instances/examples used in the test set and is given as:

Accuracy =
TP + TN

TP + FP + TN + FN
(3.2.5)

• Balanced accuracy measure: It is defined as the average recall rate obtained on each class

and it is a metric that allows a representative impression of classifier performance in the

presence of heavily imbalanced class distributions,

Balanced Accuracy (%) =
Sensitivity + Specificity

2
× 100. (3.2.6)

• Geometric Mean Score: G-Mean is defined as the square root of the product of class-

wise sensitivity. It maximizes the accuracy on each class in addition to keeping these

accuracies balanced.

G-Mean =
√

Sensitivity× Specificity. (3.2.7)

• Precision-Recall curve: PR curve illustrates the trade-off between TPR and positive pre-
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dictive value for a model at different probability thresholds.

• Receiver Operating Characteristic Curves, also known as ROC curves: It is a visualiza-

tion of the true positive rate (recall) against false positive rate, defined as:

FPR =
TN

TN + FP
(3.2.8)

at various thresholds ∈ [0,1]. The area under the ROC curve, also called as (AUC) is a

metric used to evaluate the ability of the model to distinguish between two classes. AUC

is independent of the threshold used to compute ROC.

• Matthew’s Correlation Coefficient: It is mostly used in situations where we must evalu-

ate classifier performance on class imbalanced data and it is the combination of the above

metrics. MCC can be defined as:

MCC =
TP × TN − FP × FN√((

TP + FP
)(

TP + FN
)(

TN + FN
)) , (3.2.9)

where an MCC of +1.0 indicates a perfect prediction, −1.0 a total disagreement between

the model predictions and the true classes, and 0.0 is a “random guess”.

• Confusion Matrices: The TP, FP, TN , and FN can be visualized via a confusion matrix as

illustrated in Table 3.2.1, where the predicted class is indicated in each column and the

actual class in each row. In this case, from Table 3.2.1, the true positives (TP) are Class I

examples that were correctly classified as Class I, false positives FP correspond to Class

II examples wrongly classified as Class I. In a similar way, false negatives FN and true

negatives TN can be explained.

Table 3.2.1 – Confusion matrix implemented for our specific problem, where the positive class cor-
responds to Class I and the negative class to Class II for the two classification schemes. True/false
positives/negatives are represented as TP, FP, TN , and FN respectively.

Class II Class I

Actual
Class

Class II TN FP

Class I FN TP

Predicted Class
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3.3 Machine Learning Classification Algorithms

This thesis is concerned with the classification of astronomical data. This section provides a

brief introduction to several ML classification algorithms used in this work.

Instances are characterized by the features extracted from the data. A rigorous way is

needed to turn this information about each instance in to a quantifiable prediction. Our goal is

to perform a supervised classification: given a sample of instances along with their respective

class labels, a model is developed such that it learns the characteristics of each instance from

the feature space and outputs the likelihood / prediction of an instance belonging to each class.

The trained model can then be used to automatically make predictions regarding the true class

variables represented by X of each new instance given.

The subsections below introduce several machine learning algorithms, for instance, de-

cision trees (DTs), random forests (RFs), and XGBoost. These algorithms take as input features

that describe the data and a class label. At the end of the process, a class prediction is output

for each example in a test set.

3.3.1 Decision-Trees

A decision tree (Quinlan, 1986) is a graph-like structure comprised of nodes that represent

features and edges that represent the possible values that features can take as illustrated in

Figure 3.5. Decision trees map input features to output classes based on a series of selection

rules (Breiman et al., 1984). They achieve this via a recursive binary partitioning that splits the

feature space X into disjoint nodes in the tree. In our case, one node can correspond to one

of the features listed in Figure 3.5, for example, one feature can be ‘Gender’, with two edges

directing away from the node with two possible values, for instance, ‘male’ and ‘ f emale’. For a

given instance passed to the root of the tree for classification, it follows a path along one edge

depending on the value of the feature at that node. The algorithm at each step chooses both

the feature and split-point that provides the highest Information Gain (IG, Berrar & Dubitzky

2013) or produces the smallest impurity in the two resultant nodes in terms of classification. It is

possible to measure the information content of a feature, using IG alone, or as part of a different

metrics that incorporates it, such as GINI impurity. In our case, we use the GINI impurity for

a set of instances as it is more efficient in terms of computational power and statistical power

(Nembrini et al., 2018). To illustrate how tree-learning works, consider the following problem.

Given data describing the survival rate of penguins in the wild as illustrated in Figure 3.5.
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Age Survived
0.73,	36%

Gender

Male Female

Died
0.17;	61% Temperature

Survived
0.89,	4%

Survived
0.02,	2%

Age	<	2 Age>=	2

Temp	<	0OC Temp	>=	0OC

Figure 3.5 – A decision tree showing survival of penguins. The figures under the leaves show the
probability of survival and the percentage of observations in the leaf. Summarizing: the chances of
penguins survival were good if they were (i) a female or (ii) a male older than 2 years, living in an
area where the temperature is below 0◦C.

The penguins will move down the edges passing through many other nodes and will be

filtered based on the values of other potential features. At the end of the path, the penguins

end up at a particular leaf. The majority label at leaf determines the predicted class, for ex-

ample, a leaf may correspond to the percentage of penguins ‘survival’ or ‘death’. Therefore,

decision trees present an automated way of performing classification of unknown objects by

learning which path to take based on their features. However, building the best decision tree is

a challenging task, for example, in our case, constructing an automated classification decision

tree to distinguish between different types of variable stars (see Chapter 4). Generally, using a

single decision tree for classification often leads to poor performance due to low or high vari-

ance, for instance, a small change in the training set can lead to a very different estimated tree

structure. Instead of using a single decision tree, advanced techniques, for example, the en-

semble methods that combined multiple individual trees have been developed that depend on

the averaging of errors arising from between groups of trees.

3.3.2 Random Forest

A Random Forest (RF, Breiman, 2001) is simply a system that combines multiple of decision

trees (shown in Figure 3.6) and evidence shows that ensemble methods tend to outperform

single-model learners in real world scenarios. The RF approach is based on training several de-

cision trees using sub-samples from the training set, and subsequently utilizing these decision
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trees to perform a classification of unknown objects.

Let us consider ns samples in the training set having m features each. We then define the

number of trees as T in the random forest and n f is the number of features utilized in each

tree where n f < m. RF is then trained following two steps. First, T datasets with ns samples

are generated. The data set is constructed in such a way that the objects/stars are randomly

sampled with replacement from the training set. Therefore, each set T consists of the same

number of objects as the training set, but some objects are picked up more often (Carrasco

et al., 2015). Finally, the individual decision tree is built from each T data sets. A set of features

are randomly selected from the initial m features in Figure 3.2 whereby the best split at each

node is based on those selected features.

The RF algorithm often performs well in practice because of two principles. The first is

that each individual decision tree, created on different samples, acts as an independent and

individual classifier. The second principle is based on the fact that only a subset of the features

selected randomly, are utilized to construct an individual tree. These two principles allow the

classifier to decipher patterns in each subset of features as they capture more of the variability

in the data.

At the final stage, based on the feature value, every tree from the forest allocates a specific

label to an object. The final prediction of the classifier for a given object is the one chosen by the

majority of the T trees (Carrasco et al., 2015) though more complex ensemble voting systems

are possible (e.g., votes weighted by individual classifier accuracy).

3.3.3 XGBoost

XGBoost (eXtreme Gradient Boosting) is a boosting algorithm and is a tree-based model which

became popular since its inception in the ML community in 2016. XGBoost is an ensemble

learning algorithm. Ensemble learning provides a systematic solution to combine the predict-

ive power of multiple trainable models. The result is a single model which gives the aggregated

output from several models. Bagging and boosting are examples of ensemble ML concepts.

Bagging decreases the variance (variability of model prediction for a given data) in the predic-

tion by generating additional data for training. New training datasets are produced by random

sampling with replacement from the original data set. Boosting algorithm is an iterative pro-

cess which adjusts the weight of the observations based on the previous classification, i.e., after

each training step, the weights are redistributed. Misclassified examples increases its weights

to emphasize the most difficult data to classify. In this way, subsequent learner will emphas-
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ize on them during the training process and decreases bias (the difference between the model

prediction and the ground truth value/label).

Tree 1 Tree 2 Tree 3 Tree N

…

Class 2 Class 4 Class 3 Class 4

Majority Voting

Final Class

Feature 1 Feature 2 Feature 3 Feature M

X Dataset

1Figure 3.6 – Illustration of a random decision forest. A Random forest (RF) consists of a large
number of individual decision trees that operate as an ensemble. Each individual tree in the RF
outputs a class prediction and the class with the most votes becomes our final prediction.

XGBoost works in the same way as the Gradient Boosting Decision Tree (GBDT, Friedman,

2001) method. GBDT is an ensemble classification system that iteratively adds simple decision

tree classifiers. The first classifier of the ensemble system is trained on the data, while the

successive classifiers are trained on the errors of the predecessor classifiers. The base learners

in boosting are weak learners which are highly biased, and the predictive power is no better

than random guessing. Each of these weak learners contributes some vital information for pre-

diction, enabling the boosting technique to produce a strong learner by effectively combining

these weak learners. The final strong learner brings down both the bias and the variance.

Example:
K = 5
Classes:

Find class:   

.+*
*

1Figure 3.7 – Given N training points and there are three classes of objects. kNN will identify the
class label of a test point regardless of its label. For k = 5, the algorithm will find the 5 Nearest
neighbours to the test point based on the Euclidean distance. We note that for this test point, there
are three training points in purple and one blue and red category closest to the test point. Therefore,
kNN takes the majority class vote and assigned the test point to the purple class.

In addition, this classifier controls overfitting by using the regularization techniques, L1-
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norm (Tibshirani, 1996) and L2-norm (Ng, 2004). In contrast to bagging techniques like Random

Forest (an addition of decision trees that aggregate tree decisions), in which trees are grown to

their maximum extent, boosting makes use of trees with fewer splits. Such small trees, which

are not very deep, are highly interpretable. Unlike, in GBDT, the beauty of XGBoost lies in its

scalability, which drives fast learning through parallel and distributed computing and offers

efficient memory usage.

3.3.4 k Nearest Neighbours

k Nearest Neighbours (kNN, Buturovic, 1993) is a simple instance-based technique utilized for

classification. kNN often performs very well and acts as a benchmark technique despite its

simplicity (Ali et al., 2019). kNN classifies an unlabelled example/instance by applying the

average class determined from majority class vote of the labels among the k nearest neighbours

(Hastie et al., 2009). The k nearest neighbours of a test object are determined by computing the

Euclidean distance measure. kNN outputs a discrete value that an object belongs to a particular

class y. This output is computed by a majority vote of its neighbors, with the object belonging

to the class most common among its k nearest neighbors. An illustration of the kNN algorithm

is illustrated in Figure 3.7 and in Theorem 3.3.1.

Theorem 3.3.1: kNN Algorithm

Inputs:

Training set X = {x1, . . . , xN} with labels Y = {y1, . . . , yN},
An integer k where 0 < k ≤ N,

Test example x0.

Output:

Predicted y0 of x0

For each point, P′ = (x′, y′)

• Compute the distance D(x′, xi), for e.g euclidean distance =
√

∑k
i=1(x′ − xi)2 and

append in S,

• Sort the |S| distances by increasing order,

• Count the number of occurrences of each class yi among the k nearest neighbours,

• Assign to x0 the most frequent class.

66



3. MACHINE LEARNING CLASSIFICATION 3.4. Introduction to Deep Learning

kNN is robust to noisy training data (training data with corrupted or distorted information)

and it performs effectively when the data set is sufficiently large. However, one disadvantage

of kNN is that all the features are needed when computing the distance between data points. If

a small portion of the data set consists of discriminatory information and the larger portion con-

tains irrelevant features, the distance between the instances will be more influenced by the irrel-

evant samples (and their feature values) and this problem is known as the curse of dimensionality

(Bellman, 1957), that is, in high dimensional space, the distances become meaningless. kNN is

sensitive to this problem which can be overcome by weighting each feature differently when

computing the distances between instances. Another problem with kNN is efficient memory

indexing. Various techniques such as the kd−tree (Bentley, 1975a; Friedman et al., 1977) have

been developed for more efficient memory indexing of the training data sets.

WX +	b

f(W
X
+	b

)

X

WX

Output	dendrite

Soma

Dendrite

Synapse

Axon	from
previous	
neuron

Figure 3.8 – The analogy of an artificial neuron in a neural network that mimics a neuron in the
brain. The synapses in a neuron are represented as the, X, the dendrite is the multiplication of the
weights and the input, W× X, the soma cellular body is similar to the application of the activation,
f (WX + b), and the output dendrite represents the output of the function.

3.4 Introduction to Deep Learning

Machine learning algorithms for instance kNN, DT, RF, and XGBoost require features that rep-

resent specific and unique physical properties of the objects/sources they represent. The qual-

ity of the features utilized is a fundamental determinant in the success of these algorithms.

This technique is known as shallow learning (Chen & Guestrin, 2016). Feature extraction is an

important and difficult process that is crucial for this form of learning.

Deep learning is an area of machine learning in which the algorithms learn the features dir-

ectly from the raw data, e.g, images. This becomes important in cases where feature extraction

does not completely capture the physical characteristics of the raw data and also, helps reduce

labelling cost. In recent years, with computationally powerful computing resources becoming
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readily available resources, deep learning has seen significant development and rapid deploy-

ment to numerous applications. Deep learning has received an enormous amount of attention

in the computer vision community in particular.

LeCun et al. (2011) demonstrated that Deep Neural Networks (DNNs) are capable of out-

performing shallow learning approaches. DNNs have been implemented in various domains

such as object recognition (Szegedy et al., 2013), speech recognition (Ossama et al., 2014), image

captioning (Vinyals et al., 2015) and voice recognition (Oord et al., 2016), to name a few. With

these sophisticated advancements, DL is a fundamental field that can be used for the classific-

ation challenges that astronomy is facing with the deluge of data. In this thesis, the computer

vision domain is explored to guide the classification of both radio and optical astronomical

sources. More details can be found in Chapters 6, 7 and 8. In the next sections, we intro-

duce some deep learning terminology before describing the various layers used to construct

DL models implemented in future chapters.

3.4.1 Artificial Neural Network Learning

Artificial Neural networks (ANNs) (Bishop, 2006) dated back to the early 1940’s, with the devel-

opment of the artificial neuron by McCulloch & Pitts (1943). Their artificial neuron is inspired

by the biological neuron based on an early understanding of the human brain.

A biological neuron works by propagating an electrical impulse received from other nearby

neurons, only if the total sum of electrical input to that neuron is above some threshold level.

If that level is met, the neuron fires an electrical impulse to those neurons it connects to via

the synapse. In the artificial model, a neuron is represented by a mathematical function. This

artificial neuron (function) accepts inputs from one or more nearby neurons, and will produce

an output if the weighted sum of its inputs is above some threshold level.

An artificial neuron model is analogous to a biological neuron, that is comprised of inputs to

the neuron, an activation function which can output a signal, similarly to a dendrite connected

to the cellular body which outputs through the axon (Felten et al., 2015). Figure 3.8 presents a

model of an artificial neuron.

The purpose of an ANN is to approximate some function f ∗ that maps some input X to a

single output. For instance, for a classification scenario y = f ∗ (X) maps an input X ∈ Rn to an

output y ∈ Rm, which can also be written as

y = α (WX + b) , (3.4.1)
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where the matrix parameters W ∈ Rm×n are known as the weights, a vector of small positive

values b ∈ Rm are called the biases (can take values such as 0 or 0.1), and α is a non-linear ac-

tivation function (see §3.4.1.1). Therefore, an ANN is simply a mapping of y = f (X; W, b) and

the algorithm learns the value of the parameters W and b that construct the best function ap-

proximation. Assuming α is a step function, then ANNs can be considered as binary classifiers

and thus output either 0 or 1 as follows:

f (X) =


1, if wixi + b > 0.

0, otherwise.
(3.4.2)

where wi denotes the ith weight, and the input vector (xi denotes the ith vector component).

Figure 3.8 illustrates an example of a single layer network along with the inputs, weights and

bias. ANNs consist of many different types of layers, which are detailed below.

3.4.1.1 Activation function: Rectified Linear Units (ReLU)

The function f (X; W, b) from the previous subsection was a step function which only outputs

either 0 or 1. This thresholding/step function is often used for linear classifiers. Generally,

the function which is applied to the inputs and weights is known as an activation function, α.

Most activation functions can be viewed as taking an element-wise non-linear function α and

apply it on top of an affine transformation y = (WX + b). One can use alternative non-linear

functions, instead of limiting to only step functions and these include tanh, ReLU, hyperbolic

tangent, sigmoid, and softmax, to name a few (Goyal et al., 2019). In this thesis, the activation

function that is mostly used after each layer is the ReLU and at the end of most models, the

softmax function is used. The ReLU function can be defined as,

ReLU (x) = max
{

0, x
}

. (3.4.3)

3.4.1.2 Softmax function

In a classification scenario, the aim is to represent the output of our model by a probability

distribution over a discrete variable. For the case of a classifier, the probability distribution is

represented over n different classes and for binary classification problem we want to output a

single number:
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ŷ = P (y = 1|x) , (3.4.4)

as this number has to lie between 0 and 1. The softmax function is used at the end of the net-

work to normalize the output of a network to a probability distribution over predicted output

classes and it is given by:

softmax (xd) =
exp (xd)

∑D
j=1 exp

(
xj
) , (3.4.5)

where d ∈
{

1, . . . , D
}

and D is the number of neurons in the last dense layer of the network.

Formally, the softmax function is useful for multi-class-classification. For the case of binary

classification, D will be equal to 2 and the softmax function will assign a probability to each

neuron.
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Figure 3.9 – Illustrating a multi-layer perceptron with 2 layers. There are a single input layer and
output layer, and a hidden layer in between. Each layer is comprised of three input units, two
hidden units and one output unit. In each layer, the units are stacked vertically. In the MLP, there
are often many hidden layers where each unit is connected to every other unit in the previous layer.

3.4.2 Multi-layer network

In the previous section, a single layer network was discussed. However, for more complicated

challenges, functions need to be more complex thus the network needs to consist of more than

one layer. A network comprising of more than one layer is referred to as multilayer perceptron

(MLP). A complication appears here, as inside the MLP many functions are connected in a

chain. For example, consider the functions f1 and f2 are linked as follows: f (x) = f2( f1(x)).

In this case, the function f (x) is more complicated than the independent functions f1 and f2.
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Goodfellow et al. (2016) refers to this chain as being widely used in the design of neural net-

works. In this particular example, the function f1 represents layer 1 and f2 refers to layer 2.

Following similar reasoning, any layers can be added in the network, and hence this is referred

to as deep neural networks (DNNs). The length of DNNs can be very large and the number of lay-

ers which are added together is known as the depth of the neural network. Figure 3.9 presents

a two layer neural network. The first group of neurons/units is known as the input layer, and

the last group of neurons/units is referred to as the output layer. All the layers in between the

input and the output layers are known as the hidden layers. Figure 3.9 illustrates a two layer

neural network with only one hidden layer.

Assuming that a ReLU activation function is used on each layer for the network presented

in Figure 3.9, this implies there are three calculations which require computation. Primarily,

h1 is computed by applying a ReLU activation function on (w1,1 × x1) + (w2,1 × x2) + (w3,1 ×
x3). Then h2 is obtained by applying a ReLU activation function on (w1,2 × x1) + (w2,2 × x2) +

(w3,2 × x3). Lastly, the output of the network, O1, is obtained by applying a ReLU function on

the calculation of (h1 ×w3) + (h2 ×w4). In this process, we note that the previous layer acts as

input to the next layer and is referred to as a forward pass, which is also known as a feedforward

network.

3.4.3 Deep neural network layers

A Deep neural network is composed of various layers, namely Convolutional layers plus pool-

ing, dense/fully connected layers and activation layers among others. These layers can be

combined in various ways to form different neural network architectures.

3.4.3.1 Convolutional layers

Convolutional layers (CLs) (Lecun, 1989) are used in DNN neural network (DNN), used to

process 1-D grid data for example, time-series, 2-D grid or 3-D grid of image pixels. Such

layers perform a kind of linear operation and apply a mathematical operation on the input,

known as ‘convolution‘ which can be written as,

f = α (X ∗W + b) , (3.4.6)

where W is the kernel or filter, b is the vector of biases for each filter, α is the activation function

and the output f is also known as the feature map. The aim of the CL is to extract features
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from the data. As can be noted in Equation 3.4.6, the convolution operation is employed on

two functions X and W and at the end, the resulting function f is obtained.

In the context of deep learning, a convolutional neural network comprises of CLs that take

as input the data X. The input X is typically an image and W is also known as a filter or

kernel. A filter is described as having a depth, width and a height. The depth of a filter is

similar to as the depth of the input image. The depth of an image is described by the number of

channels, for instance, some images are made of red, green and blue channels. Thus for an RGB

color image, the depth is 3. In astronomy, the channels are different parameters that describe

astrophysical objects. For instance, for radio images of a pulsar, the channels are frequency-

time and dispersion measure - time, thus the depth is 2. During the convolutional process, the

filter convolves or “slides” over the input image in a horizontal and vertical pattern.

∗ =

Input	Image Filter Feature	Map

5

5

3

3

3

3

0

1

0

0

0

0 00

1

1

1

1

1 1

1 1

0

00

0

0

0 0

0

0

00

00 1

1

1

0 0

1

Weights

3

2

1

2

2 2

2 2

5

5

0

1

0

0

0

0 00

1

1

1

1

1 1

1 1

0

00

0

0

0 0

0

0

22

21 2

3

2

2 2

!×! + !×! + !×$
+

!×! + $×$ + !×!
+

!×$ + $×! + $×!
=
$

00

0

0

0

1

01

1

Figure 3.10 – Illustration of convolution process in the convolutional layer. On top, an input image,
a filter and the resulting feature map after the convolution operation are presented. The bottom
figure shows how the computation of the values are obtained in the feature. The filter slides over
the image and the sum of the element-wise multiplication between the filter and the corresponding
region of the image are computed. Thus for the top left region, the computed value is 1. After this
step, the filter will shift by one pixel on the input image, and the computation is repeated. These
sliding and computation steps are replicated until the resulting feature map is obtained.

Given an image I and a filter Wk, each pixel (i, j) is calculated using Equation 3.4.6 thus the

resulting function f is known as the feature map. The convolution operation is computed each
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time the filter slides over the image. Figure 3.10 presents an example of the application of the

convolutional operation to an input image. In this scenario, an input image with dimension

5× 5 and a filter size of 3× 3 are used. The figure shows how the value of 1 is computed at

position (1,1) in the feature map. A 3× 3 filter is positioned on the image and the dot product

between both matrices are computed. Then, the 3× 3 filter slides one by one pixel to the right

of the input image and again the dot product is calculated to obtain a value of 2. There will be a

time where the filter will no longer be able to move to the right, thus the filter moves down by

one stride and the process of dot products continues. This process is repeated until all values

in the feature map is calculated. Each value in the filter represents a weight that needs to be

optimized by the neural network during training.

3.4.3.2 Pooling layers

A typical convolutional neural network comprises of three stages. The first stage of the process

performs several convolution operations that produces a sample of linear activations or feature

maps as discussed in the previous section. At the second stage, each linear feature map is

passed through a hidden unit or a non-linear activation function, such as the ReLU activation

function described in §3.4.1.1. The second stage is also known as the detector stage. Finally,

the third stage deals with a pooling function that replaces the output of the network with the

maximum output within a rectangular grid, also known as Max Pooling. The pooling function

is an important step that enables the representation of the input invariant to small translations.

This helps to provide useful information about the presence of some features in the input rather

than exactly where the features are located in the image. In addition, the purpose of Max

Pooling is to reduce the spatial size of the previous layer, thus decreasing the parameters in

the model. Figure 3.11 shows an application of max pooling on a previous layer. Max pooling

is typically done with a filter size width and height of 2× 2. It strides over the previous layer

and returns the maximum value as illustrated in Figure 3.11.

3.4.3.3 Dropout

Dropout refers to randomly ‘omitting’ or ‘dropping out’ units or neurons during the training

phase. Dropout acts as a regularizer to prevent overfitting. More technically, during the train-

ing process, individual nodes/neurons are either ignored with probability 1-P or are kept with

probability P, such that the complexity of the model networks is removed. During the training

and validation process, dropout performs various operations which are defined by the dropout
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Figure 3.11 – Illustrating the dimensional reduction of the previous layer in a convolutional neural
network. Spatial reduction is achieved by applying max pooling. The width and the height of the
filter is 2× 2, and the stride is set to 2. Max pooling works by computing the maximum value in
each of the four regions.

rate, η. The latter is a parameter that needs to be defined during training and it takes values

between 0 and 1. Dropout sets some of its input values to 0, and then multiplies all non-zero

values by 1
(1−η)

, in such a way that the sum over all the input values remains similar. The ad-

vantage of using dropout is that it reduces the effective size of a layer to a certain percentage of

the outputs from the CLs or dense layers.

3.4.3.4 Fully connected layers/Dense layers

Fully connected or dense layers work similarly to a multi-layer perceptron. Each neuron/unit

in layer l has a weight connection with each unit in the previous layer l − 1. A dot product

operation is performed between the weights in layer l and the output from the units in layer

l − 1.

3.5 Training a neural network - Optimization

A neural network architecture can be built using the various layers described in the previous

section. After assembling these layers, we then proceed with the training process. However,

when training a ML algorithm, we need to specify an optimization function, a cost/loss func-

tion and a model structure. Therefore, during training we need to initialise all weights W to

small random values and biases b to be initialised to 0 or small positive values. In the case

of supervised learning for image classification, an input dataset with its associated labels are

required. Hence labelled image data is used to train a model and then at the end of the pro-

cess, classification probabilities are obtained. This stage is known as forward propagation. The

74



3. MACHINE LEARNING CLASSIFICATION 3.5. Training a neural network - Optimization

difference between the true label and the classification probabilities is quantified by a cost func-

tion. An iterative gradient-based optimization algorithm is applied to train the DL models.

The training process is mostly based on utilising the gradient to descend the cost function with

respect to different weights. The gradient, together with a constant value, also known as the

learning rate, is used to optimize the weights. This process is known as back-propagation.

As with many ML models, to be able to apply gradient-based learning, we need to choose

a cost function to minimize and also at the end how to represent the output of the model. Most

models are trained based on maximum likelihood. This implies that the cost function is simply

the negative log-likelihood. One example of a cost function is the cross-entropy. Cross-entropy

is a measure of difference between two probability distributions, for e.g., between the training

data distribution and the predicted distribution. The cross-entropy or cost function is written

as

J(θ) = −Ex,y∼P̂data
logPmodel (y|X) , (3.5.1)

where Ex,y∼P̂data
is the expectation of x, y with respect to an empirical distribution P̂data. The

form of the cost function varies from model to model, which depends on the specific form of

logPmodel.

The network is trained on the training data and is then evaluated on the validation data.

The training process continues until we obtain the best performance on the validation set. At

the end of the process, the trained model is saved and then can be used to perform prediction

on the test data. It is important to emphasize that during training, both the validation and test

sets have not been seen by the network.

In addition, the training process is done in small batches of training data as the forward

and backward propagation are intensive computations. When the entire training set has been

used once during forward and backward propagation, this is known as an epoch. The training

process is computationally expensive and is done through several epochs. Afterwards, train-

ing stops when a specified performance criterion is met. It is fundamental to note that the

training process often can under or over fit. Under f itting occurs when performance on both

training and validation data is poor. This usually implies that the model needs to have more

parameters to fit the data. When training performance is outstanding and the performance

on validation data is poor, it falls under the over f itting regime. To overcome those issues, we

use regularisation (such as dropout), data augmentation and early stopping, which are discussed
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further below.

3.5.1 Data Augmentation

The best strategy for better generalisation of an ML model is to train it with large amounts of

data. In practice, in a supervised learning approach the amount of labelled data is limited. One

way to tackle this challenge is to create synthetic data and add it during the training process.

For a classification task, this means that the classifier takes as input a complicated and high-

dimensional vector x and maps it to a single target y. This implies that the main task a classifier

is facing is that it needs to be invariant to various transformations. We can generate new input

(X, y) easily by applying a transformation on X inputs in our training sample.

Such data augmentation techniques have proven to be an effective method to alleviate prob-

lems caused by a lack of labelled data, where we could not otherwise train a model given in-

sufficient data. Images being of high dimension and consisting of various variations/noise,

they can be simulated by various data augmentation techniques. For example, operations like

translating, scaling, and rotating the training input images by a few pixels can often improve

generalization, although CNNs (the convolution and pooling techniques) already have this

feature of being translational invariant.

3.5.2 Early Stopping

The training of large models shows over-fitting characteristics when we observe that the neg-

ative log-likelihood of the training process, or the training error decreases steadily with the

number of epochs (number of training iterations over the datasets), but the validation set error

starts to increase again. This scenario implies that a model with the best validation set error can

be obtained (thus a better test set error) if the parameter setting is returned to a point in time

where the lowest validation set error has been captured. For every epoch when the validation

set error improves, a copy of the model parameters are stored. Therefore, for some pre-specified

number of epochs, the training process stops when no improvement of the parameters over the

best recorded validation set error is recorded. This strategy is called early stopping.

3.6 Concluding Remarks

This chapter introduced various concepts and terminology related to machine learning. This

thesis is mostly concerned with supervised classification schemes, thus the concept of classific-
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ation with traditional machine learning tools and deep learning concepts are illustrated in this

chapter. The data splitting methodology into training and validation sets was described. In

addition, techniques for evaluating the performance of a supervised machine learning classifi-

ers was discussed. Next, the reader was presented with an introduction to deep learning, and

multi-layer networks. Various types of layers and activation functions were discussed. Finally,

the chapter ends with ways to avoid overfitting and underfitting while optimizing and training

a neural network. Machine learning being a field that advances at a fast pace, we cover only

topics related to work employed in this thesis.
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A HIERARCHICAL CLASSIFICATION APPROACH FOR

VARIABLE STAR USING MACHINE LEARNING

This chapter was originally published as a paper in MNRAS with the title: ‘Comparing Multi-

class, binary and Hierarchical classification of variable star using Machine Learning’.

Zafiirah Hosenie , Robert J. Lyon , Benjamin W. Stappers and Arrykrishna Mootoovaloo

Accepted in MNRAS on 15 July 2019 and can be found at arXiv:1907.08189v1.

Summary of contributions: The work developed in this chapter is entirely my own. Co-authors

provided supervision, suggestions of additional angles to discuss in the paper, and feedback

on earlier drafts of it.

This chapter introduces the reader to the application of machine learning for variable stars clas-

sification. The following sections present an overview of the challenges in classifying variable

stars and the idea of using machine learning to tackle the problem. The outline of this chapter

is as follows. In §4.3, we provide a brief description of the dataset used and in §4.4 we present

the feature generation techniques we employ here; while in §4.5 we explain how we build

the classification pipeline. In §4.6 we apply state-of-the-art feature visualisation techniques to

visualise how separable our features are before performing a multi-class classification. In §4.7,

we provide an in-depth feature evaluation to determine the usefulness of our extracted fea-

tures before performing a binary classification. In §4.8, we present a hierarchical taxonomy for

classification and discuss our results; finally, we summarise our results and conclusions in §4.9.
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4. A HIERARCHICAL CLASSIFICATION APPROACH FOR VARIABLE STAR USING MACHINE LEARNING 4.1. Overview

4.1 Overview

Upcoming synoptic surveys are set to generate an unprecedented amount of data. This requires

an automatic framework that can quickly and efficiently provide classification labels for sev-

eral new object classification challenges. Using data describing 11 types of variable stars from

the Catalina Real-Time Transient Surveys (CRTS), we illustrate how to capture the most im-

portant information from computed features and describe detailed methods of how to robustly

use Information Theory for feature selection and evaluation. We apply three Machine Learn-

ing (ML) algorithms and demonstrate how to optimize these classifiers via cross-validation

techniques. For the CRTS dataset, we find that the Random Forest (RF) classifier performs

best in terms of balanced-accuracy and geometric means. We demonstrate substantially im-

proved classification results by converting the multi-class problem into a binary classification

task, achieving a balanced-accuracy rate of ∼99 per cent for the classification of δ-Scuti and

Anomalous Cepheids (ACEP). Additionally, we describe how classification performance can

be improved via converting a ‘flat-multi-class’ problem into a hierarchical taxonomy. We de-

velop a new hierarchical structure and propose a new set of classification features, enabling the

accurate identification of subtypes of cepheids, RR Lyrae and eclipsing binary stars in CRTS

data.

4.2 Introduction

Astronomy has experienced an increase in the volume, quality and complexity of datasets pro-

duced during numerical simulations and surveys. One factor that contributes to the data ava-

lanche is the new generation of synoptic sky surveys, for example, the Catalina Real-Time

Transient Surveys (CRTS) (Drake et al., 2017). In addition, the Large Synoptic Survey Tele-

scope (LSST, Ivezić et al. 2019) for example, which is now on the horizon, will produce ∼ 15

Terabytes of raw data per night (Jurić et al., 2017). However, despite this data deluge, source

variability is often still visually inspected to detect new promising candidates/variable stars.

Visual inspection does have utility for detection and classification. Human experts can extract

new useful information despite unevenly sampled data sets and also have the ability to dis-

tinguish noisy data from data exhibiting interesting behaviour/characteristics. They can also

incorporate complex contextual information into their decision making. However, the efficacy

of the manual approach decreases as the volume of data grows exponentially, as will be the

case for the next generation of surveys. Visual inspection becomes inconsistent, consequently,
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Figure 4.1 – Examples of folded light curves from the CRTS for the various types of variable stars
considered in our analyses.

mistakes are made, and rare/interesting objects can be missed.

To address this problem, Machine Learning (ML) has been applied to variable-star classi-

fication in multiple time-series datasets (see Belokurov et al. 2003; Willemsen & Eyer 2007). In

ML, variable stars are represented by features: independent measures that contain information

useful for differentiating variable stars into their respective classes. Therefore, several devel-

opments have been made towards determining the best methods and features for describing

variable-stars, including the Lomb-Scargle periodogram (Lomb, 1976; Scargle, 1982), Bayesian

Evidence Estimation (Gregory & Loredo, 1992) as well as hybrid methods (Saha & Vivas, 2017).

In addition, Eyer & Blake (2005) analysed the small sharp features of light curves and included

them as input features to a Naïve Bayes classifier (Zhang, 2004). While Djorgovski et al. (2016)

developed an automatic framework to detect and classify transient events and variable stars.

They used a subset of the CRTS data to perform classification between two types of variable

stars (W Uma and RR Lyrae) and obtained completeness rates of ∼96-97 per cent.

Kim & Bailer-Jones (2016) developed the UPSILON package to classify periodic variable stars

using 16 extracted features from light curves, which achieves good results. Mahabal et al.

(2017) developed a classifier based on the Convolutional Neural Network (CNN) model using

labelled datasets of periodic variables from the CRTS (Drake et al., 2009; Djorgovski et al., 2011;
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Mahabal et al., 2012; Djorgovski et al., 2016). They transformed a light curve (time series)

into a two-dimensional mapping representation (dm − dt) which is based on the changes in

magnitude (dm) over the time-difference (dt). Using multi-class classification, their algorithm

achieved an accuracy of ∼83 per cent. Narayan et al. (2018) developed an ML approach to

classify variable versus transient stars. Similarly, they performed a multi-class classification of

combined variable stars & transients, and a “purity-driven” sub-categorisation of the transient

class using multi-band optical photometry. Revsbech et al. (2018) used a data augmentation

technique to mitigate the effects of bias in their data by generating additional training data

using Gaussian Processes (GPs). They used a diffusion map method that calculates a pair−wise

distance matrix that outputs diffusion map coefficients of the light curves. These coefficients act

as feature inputs to a Random Forest (RF) classifier used to help identifying Type Ia supernova.

We found that it is fundamentally important to develop accurate and robust automated clas-

sification methods for this problem using machine learning and other statistical approaches.

This work describes a new automatic classification pipeline for the classification of variable

stars via application to archival data. To our knowledge, this is the first time the southern

CRTS (Drake et al., 2017) data set has been used to build/evaluate an automatic classification

system.

Similar work has been completed in recent years (Kim & Bailer-Jones, 2016; Mahabal et al.,

2017; Narayan et al., 2018), though the features used for learning are rarely evaluated in a

statistically rigorous way. We found that using a large set of features does not imply higher

classification metrics. We therefore perform an in-depth analysis of ML features to understand

their information content, and determine which give rise to the best classification performance.

We utilize various visualization techniques and the tools of Information Theory to achieve this.

Based on our analyses we find that accurate variable star classification is possible with just

seven features - much fewer than in other works. In addition, we show that this classification

problem cannot be solved with a ‘flat’ multi-class classification approach, as the data is inher-

ently imbalanced. To partially alleviate the ‘imbalanced learning problem’ (Last et al., 2017),

we developed an approach inspired by earlier work in this area (Richards et al., 2011a). This

involved converting a standard multi-class problem in to a hierarchical classification problem,

by aggregating sub-classes in to super-classes. This results improved performance on rare class

examples typically misclassified by multi-class methods. We adopt a similar methodology to

Richards et al. (2011a), however we i) propose a different hierarchical classification structure,

ii) use a different feature analysis/selection methodology resulting in different feature choices,

81



4. A HIERARCHICAL CLASSIFICATION APPROACH FOR VARIABLE STAR USING MACHINE LEARNING 4.3. Data

1.
RRab

2.
RRc

3.
RRd

4.
Blaz

hko
5.

Ecl
6.

EA

7.
Rotat

ional

8.
LPV

9.δ
Sc

uti

10
. ACEP

12
. Cep

-II
0

1000

2000

3000

4000

N
um

be
r

of
Sa

m
pl

es

4325

3752

502
171

4509 4509

3636

1286

147 153 153

Figure 4.2 – Class distributions for the CSDR2 datasets. We downsample Type 5: semi-detached bin-
ary stars to 4,509 samples to prevent larger classes from dominating the training sets. The excluded
samples ∼14,294 for Type 5: Ecl are then included in the test set for prediction. These distributions
highlight the remaining imbalance in the datasets.

iii) apply hyper-parameter optimisation to build optimal classification models, and finally iv)

apply the resulting approach to CRTS data.

4.3 Data

We use the publicly available CRTS (Drake et al., 2017) dataset that covers the sky with de-

clinations between − 20◦ and − 75◦. The sources in the dataset have median magnitudes in

the range 11 < V < 19.5. The dataset contains different forms of periodic variable stars, these

are stars that undergo regular changes in brightness every few hours or within a few days or

weeks. The periodic variable stars in the dataset can generally be classified into three broad

classes: namely eclipsing, pulsating, and rotational. A detailed overview of each type of vari-

able star is provided in §2.2. The classes can be further divided into sub-types, for example

pulsating stars consist of δ Scutis, RR Lyrae, Cepheids, and the Long Period Variables (LPVs)

group which includes both semi-regular variables and Mira variable stars. The RR Lyrae class

consists of RRab’s (fundamental mode), RRc’s (first overtone mode), and RRd’s (multimode).

However, many RR Lyrae stars are known to exhibit the Blazhko effect (long-term modula-

tion) (Blažko, 1907b). In addition, the Cepheids include type-II Cepheids (Cep-II), Anomalous

Cepheids (ACEPs), and Classical Cepheids. The eclipsing binary variables in the data are di-

vided into detached binaries (EA) and contact plus semi-detached binaries (Ecl). The rotational
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class consists of variable stars including the ellipsoidal variables (ELL) and spotted RS Canum

Venaticorum (RS CVn) systems. A more detailed overview of the data set is given in Drake

et al. (2017) and Alonso-Garcia et al. (2015) gives a more detailed overview of the properties of

the various types of pulsating stars.

Table 4.3.1 – The seven features used as inputs to our classification scheme. Six features
based on simple statistics, are extracted directly from light curves using FATS. Note that the
period feature is obtained from the Drake et al. (2017) catalogue.

Features Description Symbol

Mean
µ = 1

N ∑N
i=1 mi where m is the magnitude and N is the

number of data points.
µ

Standard Deviation σ =
√

1
N−1 ∑N

i=1 (mi − µ)2 σ

Skewness γ = N
(N−1)(N−2) ∑N

i=1

(
mi−µ

σ

)3
γ

Kurtosis kurt = N(N+1)
(N−1)(N−2)(N−3) ∑N

i=1

(
mi−µ

σ

)4
− 3(N−1)2

(N−2)(N−3) kurt

Mean-variance
This is a simple variability index and is defined as the ratio
of the standard deviation, σ, to the mean magnitude, µ.

σ
µ

Period

Drake et al. (2017) used the Lomb-Scargle (L-S) periodo-
gram analysis together with an Adaptive Fourier Decom-
position (AFD) method to calculate the period of unevenly
sampled data. More information about this feature can be
found in Drake et al. (2017).

T

Amplitude
The amplitude is half of the difference between the median
of the maximum 5% and the median of the minimum 5%
magnitudes.

Amp

The dataset contains about 37,745 periodic variable stars (Catalina Surveys Data Release 2, *

CSDR2). For our analysis, we use a sample of 37,437 out of the 37,745 stars from the CSDR2. We

have excluded Type 11: Miscellaneous variable stars (periodic stars that were difficult to clas-

sify as presented in Drake et al. (2017)) and Type 13: LMC-Cep-I which as a group consists of

only 10 examples. We remove the smallest classes as there are too few samples to characterise

those classes, as we also know that classifiers given such data will struggle to categorise them

accurately due to the imbalanced learning problem (Last et al., 2017). Furthermore, we down-

sample Type 5: semi-detached binary stars to 4,509 samples as this class of object originally

consisted of 18,803 samples. We perform this downsampling to prevent the large class from

dominating the training sets, which could otherwise potentially bias a classifier. The excluded

samples of Type 5 are then included in the test set. Fig. 4.1 shows examples of folded light

*Catalina Surveys Data Release 2
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curves for each class under consideration. We also present the number of samples considered

for the 11 different types of variable stars in Fig. 4.2. Note that ∼14,294 samples of Type 5: Ecl,

unused during training, were eventually used in the test set.
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:

:

Prediction	Phase
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Figure 4.3 – The different stages of our classification framework. First, we use light curves of vari-
able stars as input data. For the first stage process, features are extracted using FATS and then are
later split into training and test sets. The second stage involves data preprocessing and feature selec-
tion. In this process, the extracted features are normalised, visualised and selected based on various
techniques. Afterwards, the third stage covers hyper-parameter optimisation using the randomized
grid search with cross-validation methods. Finally, the last stage uses the best hyper-parameter to
re-train the ML algorithms using the entire normalised training set in stage 2 and evaluate it on the
normalised test set in stage 2 using various metrics to quantify the models.

4.4 Feature Generation

In general, machine learning algorithms use training data to build a mathematical model,

where the training data is comprised of feature data. These features may have varying util-

ity, that is, information rich features are desirable as they can be used to build more accurate

classification systems. In this work, we generate statistical features from the light curves to

characterize and distinguish different variability classes. Let S = {X1, . . . , Xn}, represent the

set of variable star data available to us, then Xi is an individual star represented by variables

known as f eatures. An arbitrary feature of star Xi is denoted by X j
i , where j = 1, . . . , l. Each

variable star has an associated label y such that y ∈ Y = {y1, . . . , yk}. For multi-class scenarios

the possible labels assignable to variable stars vary as 1 ≤ y ≤ 12 but since we do not consider

Type 11 examples for reasons given at the end of §4.3, we note that y 6= 11. Meanwhile for

binary class classification scenarios, we consider binary labels y ∈ Y = [0, 1].

The goal is to build a machine learning algorithm that learns to classify variable stars de-
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scribed by features, from a labelled input vector, also known as the training set, XTrain. The

training set consists of pairs such that XTrain = {(X1, y1) , . . . , (Xn, yn)}. The learnt mapping

function between input feature vectors and labels in XTrain, can then be utilised to label new

unseen stars, in XTest.

In this work, we focus mainly on using the statistical properties of the data with no precon-

ceived notions of their suitability or expressiveness as input features to our ML algorithms. As

a result we focus on 7 features, of which 6 are intrinsic statistical properties relating to location

(mean magnitude), scale (standard deviation), variability (mean variance), morphology (skew,

kurtosis, amplitude), and time (period). These features are highly interpretable, and robust

against bias. Note that we remove data points from light curves that are 3σ above or below the

mean magnitude, where σ is the standard deviation and it is an important step to remove any

outliers in the data. This cleaning does not alter the light curves significantly as it removes less

than 1 per cent of their data points.

Afterwards, we used the FATS† (Nun et al., 2015) Python Library to extract these features.

FATS takes as input the unfolded light curves and it outputs various statistical features: the

mean, standard deviation, skew, kurtosis, mean-variance, and amplitude. We also incorporate

the period for each star given in the catalogue as a feature to our ML algorithms. The descrip-

tion of the input features used for classification is listed in Table 4.3.1. Practitioners should be

cautious when applying the mean magnitude as a feature in combination with data obtained

at another telescope. It has the potential to bias a training set against fainter/brighter sources.

We note that adding the telescope label as a feature may overcome this issue, but we leave that

to future work.

One important aspect of the training process used to build a classification model is data pre-

processing. Some ML algorithms, e.g functions/classifiers that calculate the distance between

data points, will not work properly without normalisation or standardisation since the range of

values of the features/raw data varies widely. We therefore employ a normalisation method,

Ŝ, to standardize the feature data such that all values in the feature space are scaled between 0

and 1.

4.5 Classification Pipeline

In this section, we describe the process used to perform the classification of variable stars, for

instance, training, hyper-parameter optimisation and prediction. We first extract features and

†FATS: Feature Analysis for Time Series
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Figure 4.4 – One-dimensional density estimates of the selected features by class. The features con-
sidered are (a) Skew, (b) Mean, (c) Sigma, (d) Kurtosis, (e) Period, (f) Amplitude, (g) Mean Variance.

then split the feature data into the training (70 per cent) and the test (30 per cent) data. The

training data is used to train the model while the test data is used to evaluate the performance

of the trained model. Once the data is split into two, we perform a simple normalization where

each feature X j
i is divided by its maximum, max(X j

i ) (see Eq. 4.5.1). The goal of normalisation

is to ensure that all features use a common scale. This is beneficial for ML algorithms that are

sensitive to feature distributions, for instance, distance-based algorithms that require Euclidean
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distance computation (for e.g. k−Nearest Neighbours (kNN)). Some models (e.g. Decision Tree

(DT), Random Forest (RF)) are less sensitive to feature scaling. However, it is good practice to

standardize when comparing between classification systems to rule out potential sources of

disparity in our results. Note that in this context, we found that this simple normalisation was

enough to yield good performance. For XTest, the features are then rescaled using max(X j
Traini

),

XTrain =

∣∣∣∣ XTraini

max (XTraini)

∣∣∣∣ ; XTest =

∣∣∣∣ XTesti

max (XTraini)

∣∣∣∣ . (4.5.1)

Afterwards, we apply some feature evaluation strategies to check whether the features

show some separability. Then, for our classification purposes, we apply three different classi-

fication algorithms: DT, RF and kNN, accomplished with Scikit-Learn (Pedregosa et al., 2012).

A detailed overview of each classifier can be found in §3.3.1, §3.3.2 and §3.3.4.

A major problem faced when using various classifiers is hyper-parameter optimization.

This is crucial for finding the hyper-parameters which yield the best overall classification per-

formance for a specific problem. The most widely used techniques are Hyperopt (Bergstra et al.,

2015), a Bayesian optimisation approach, grid search and manual search.

In our study, we adopt a randomized search that iterates a number of times through pre-

specified hyper-parameters and finds the optimum parameter that outputs the best balanced-

accuracy for a classifier. Together with the randomized grid search for hyper-parameter optim-

ization, we apply 5-fold stratified cross-validation (see §3.2.2.1) on the training set to evaluate

model performance, that is, the 70 per cent training set is further split into training and valid-

ation sets. We cross-validate to ensure any observed results are real and not just due to some

dataset specific effect. We note that CRTS data exhibits distributional disparities - some types of

star are common in the data, while others are relatively rare. Traditional machine learning clas-

sifiers perform poorly on such data (He & Garcia, 2008). They become biased towards correctly

classifying the common classes, a strategy that typically yields the greatest overall accuracy. In

some cases, this bias can be overcome by re-weighting training examples so that rare examples

are weighted higher than common ones. However where/when imbalance is manifested via

complex data characteristics (class overlap, small disjuncts, sub-class inseparability, see (He &

Garcia, 2008)), re-weighting alone is insufficient. Based on our analysis of our data presented in

§4.6.1 & §4.6.2, we see enough imbalanced characteristics to suggest that our problems cannot

be solved by weighting alone, nonetheless we apply re-weighting with the aim of mitigating

such problems.
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We then proceed with cross-validation, use the best model hyper-parameters found during

this process and re-train the model with the entire 70 per cent training set. The trained model

is then evaluated on the test set (30 per cent), XTest using various evaluation metrics described

in §3.2.3. The performance of our pipeline is evaluated on balanced-accuracy, the Geometric-

mean score, F1-score, recall and standard confusion matrices. The classification pipeline is

summarised in Fig. 4.3.
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(b) t-SNE with small sample data

Figure 4.5 – (a) shows the t-distributed stochastic neighbour embedding (t-SNE) visualization for
the feature set after normalisation with large sample data (RRab, EA, Rotational and LPV). We note
that the classes are quite well-separated in the embedding space. (b) illustrates t-SNE visualization
for the feature set after normalisation with the small sample size data (Blazhko, δ-Scuti, ACEP and
Cep-II). No distinct separation is seen within the small sample dataset.

4.6 Multi-class Classification

Our main goal is to perform a multi-class classification using our classification pipeline previ-

ously described. We first apply some feature evaluation strategies to check whether our extrac-

ted features in §4.4 are good for classification. The most common methods that characterise

‘good’ features: look for the presence of linear correlations between the features and the class

labels, and/or we sometimes indirectly measure feature utility by using classification perform-

ance (for e.g Bates et al. (2011)) as a proxy. If performance is good, we assume the features have

utility. However, it is often misleading to evaluate features based on classifier performance as

it varies according to the classifier used (Brown et al., 2012).

In this work, we employ the three primary considerations as in Lyon et al. (2016) to eval-

uate our features. A feature must i) show importance in discriminating between the differ-

ent classes/types of variable stars, ii) maximise the separation between the various variable

stars, and iii) lastly yield a good performance when used in conjunction with a classification

algorithm. We have therefore applied two feature visualisation strategies to our features given

in Table 4.3.1 before performing a multi-class classification.
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4.6.1 Visualisation of feature space with one-dimensional density estimates

One way to visualise the features we extracted in §4.4, is to plot one-dimensional density estim-

ates of the observed distribution as shown in Fig. 4.4. This plot allows us to visually compare

the distributions of the normalised features for the different classes of variable stars. The plots

depict distinct feature-by-feature characteristics of each class. It enables us to identify outliers

and determine if there is multi-modality in the feature space. For example, the RR Lyrae skew

distributions are mostly narrow and peaked, showing that these classes are well-characterised

by the skewness. In addition, the density plots provide us with information of which features

are fundamentally important in discriminating different sets of classes. Some classes have over-

lapping distributions for one or more feature variables. This applies to the RR Lyrae, eclipsing

binary and the Cepheid stars, whilst other classes, such as the LPVs have trivially separable

distributions, suggesting that the LPV class should be easy to classify. However, more rigor-

ous investigation is needed to determine with confidence whether these features are useful for

classification purposes.

4.6.2 t-SNE

After visualising the individual features separately, we wish to understand the relationship

between our features but this is difficult to do given the feature dimensionality we are deal-

ing with. Yet it is possible to overcome this problem by reducing the dimensionality so that

it is representable in a 2- or 3-D representation space. t-Distributed Stochastic Neighbour Em-

bedding (t-SNE, van der Maaten & Hinton (2008)) is a tool for performing this reduction and

visualisation‡.

More specifically, similar objects in high-dimensional space are clustered together with

nearby points using a k-D tree (Bentley, 1975b) of all the points. Using a Student-t distribu-

tion (same as the Cauchy distribution (Cauchy, 1853)), the Euclidean distance between each

point and its k-nearest neighbours is computed. This distance is further converted into a prob-

ability distribution. Similar points have a high probability of being assigned to the same class

and different points have a low probability of being picked. Afterwards, t-SNE constructs a

similar probability distribution using a gradient descent method, in the low-dimensional space

over the points, thus minimizing the Kullback-Leibler divergence between the two probability

distributions (Kullback & Leibler, 1951).

‡sklearn.manifold.TSNE
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Figure 4.6 – Normalised confusion matrix for multi-class classification with the RF classifier using
the best hyper-parameters from a randomized grid search cross-validation. The RF classifier was
applied on a 70% training set and evaluated on a 30% test set. The classifier performs poorly on
under-represented class labels.

Generally, classes that are well separated in a t-SNE visualization, yield good levels of clas-

sification performance by machine learning systems. However, the converse is not strictly true

(Lochner et al., 2016). We use t-SNE only for the visualization of class separability as there

are various limitations with t-SNE, as neither the sizes of the clusters nor distance between the

points may be informative (Wattenberg et al., 2016). For our high dimensional visualisation,

we partition the data into two categories: i) data with large sample sizes that consists of RRab,

RRc, Ecl, EA, Rotational and LPV stars and ii) data with a small sample size containing RRd,

Blazhko, δ-scuti, ACEP and Cep-II. Fig. 4.5(a) shows quite well-separated classes for the large

sample sizes and we would expect our ML algorithms to perform well using this data. Fig.

4.5(b) strongly suggests inseparability of the classes for the small sample data. This insepar-

ability may be attributed to the fact that there are few examples of each class. Also, another
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Figure 4.7 – The box and whisker plots show how the features separate RRab (Type 1) and EA
(Type 6) examples. The orange coloured boxes describe the feature distribution for RRab sources,
where the corresponding black circles represent extreme outliers. The box plots in green describe
the EA distributions. There is no clear separation of the period (T) between the two classes. The
other features show varying degrees of improved separability, and are generally easily separable
at a visual level between the two different types. Refer to Table 4.3.1 for definitions of the features
used.

possible explanation is that, for these stars, other features might be required to enable separ-

ability. After performing some feature visualisation, we decided to use all of the features as

inputs to perform a multi-class classification.

4.6.3 Performance of Multi-class classification

We implement three classifiers, RFs, DTs and kNN to perform an 11-classes classification. Of

these, RF achieves the best performance with a balanced-accuracy rate of ∼70 per cent on the

30 per cent test data. This poor performance is not surprising, given the large class imbal-

ance present in the data, i.e. the classes with small sample sizes make up just ∼6 per cent of

the whole dataset. The results presented here are mainly focused on the RF classifier as this

achieves the best performance balanced-accuracy. In Fig. 4.6, we plot the confusion matrix of

the RF classifier which depicts the predicted class versus the true class in a tabular form. The

results obtained by a perfect classifier would result in values only along the diagonal of the

confusion matrix. The off-diagonals give us information about the various types of errors that

the classifier makes.

We note that some of the mistakes made by the classifier can be attributed to the fact that

some of the science classes are physically similar, for example, the RR Lyrae, eclipsing bin-
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aries and Cepheids subclasses. We also note that most of the misclassified examples arise

from classes for which there are few training examples, hence indicating bias toward larger

classes, which illustrates that class imbalance is an issue. Classes comprising of many ex-

amples are more likely to be correctly classified, implying that having more examples of the

under-represented science classes will help the classification.

4.7 Binary Classification

Given the complication of the multi-class classification scheme, decomposing the multi-class

problem into smaller binary class problems may alleviate this issue. This may reduce the higher

complexity inherent to an 11-class problem. Therefore, in this section we consider binary cases

for the classification scheme.

In addition, the poor performance of the multi-class classification in the previous section

can be attributed not only to class imbalance but also to the relative importance of features.

Therefore, to further investigate whether the features we used are important for classification,

we perform an in-depth analysis of the features used for binary classification in §4.7.1, 4.7.2 &

4.7.3 by using roughly balanced classes. Feature selection strategies can be grouped in various

categories: classifier-independent (filter methods) and classifier-dependent (wrapper and em-

bedded methods) are the most common. Whilst it is possible to evaluate feature importance

using some classification models (e.g. using a random forest), we instead decouple feature

analysis from any specific classifier model. We do this as wrapper methods are susceptible to

overfitting, which can lead to feature choices that may not generalise well beyond the classifier

used during selection (Brown et al., 2012). Thus in this work, we used mostly filter methods.

These methods rank the features based on statistical measures of information content, determ-

ined by calculating the correlations/relationships between them.

Recall that in §4.6.2, we sub-divided the data set into two subsets, namely small and large

samples, for which each has roughly equal number of examples. We therefore consider pair-

wise combinations of each class within the small-sample dataset and perform feature selection

and binary classification. This is repeated for the large-sample dataset. Here, we report on

results for Type 1 (RRab) & Type 6 (EA) only for in-depth feature analyses. However, similar

performance is obtained for the other pair-wise combinations. For the performance of binary

classification, we report the results obtained with Type 1 (RRab) & Type 6 (EA) from the large

sample dataset and Type 9 (δ-Scuti) & Type 10 (ACEP) from the small-sample dataset.
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Table 4.7.1 – The point-biserial correlation coefficient and the Mutual Information MI(X; Y) for
each feature for the binary class pair: RRab (Type 1) and EA (Type 6) is illustrated. Higher mutual
information is desirable. A high MI value implies that there is a strong correlation between the
features and the class labels. In addition, the Joint Mutual Information (JMI) rank is given for each
feature. A lower JMI rank is preferred. The JMI ranking illustrates the importance of each feature
after taking into account the redundancy between features.

Features

Classes

Type (1 & 6)

rpb MI JMI

Skew 0.648 0.503 2

Mean - 0.547 0.260 6

Std - 0.481 0.402 4

Kurtosis 0.248 0.486 3

Period, T 0.019 0.336 1

Amplitude - 0.375 0.307 5

Mean Variance - 0.368 0.174 7

4.7.1 Data visualisation for binary classes

The discriminating capabilities of the features are examined for some binary cases. To determ-

ine if there is some amount of separability between the two classes, we plot the box and whisker

plots for the different features extracted.

The data has been pre-processed by performing the normalization described in §4.4. Here,

we take Type 1 (RRab) as the negative class and Type 6 (EA) as the positive class. For each

individual feature, the median value of the negative class is subtracted. This ensures a fair

separability scale and centres the plots around the median, hence a distinct separation is seen

more clearly between the two classes. The box plots centred on the median value represent the

feature distribution of the negative class. Fig. 4.7 shows a reasonable amount of separability

between Type 1: RRab and Type 6: EA. For each individual feature, we note a clear separability

between the two classes, except for the Period, T. At this point, we are tempted to write-off this

feature, however, for a more rigorous analysis of feature selection, we extend our investigation

by looking for any linear correlation between the features and the class label.
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4.7.2 Point Biserial Correlation Test

The point biserial correlation coefficient, rpb (Gupta, 1960) is applied to find the relationship

between a continuous variable x, and binary variable, y. Similarly to other correlation coeffi-

cients, it varies between -1 and +1, where +1 corresponds to a perfect positive relation and -1

corresponds to a perfect negative relation while a value of 0 means there is no association at all.

The point biserial correlation coefficient is similar to the Pearson product moment (Pearson,

1895). More detailed information can be found in Lyon et al. (2016).

Table 4.7.1 illustrates the correlation between the seven features studied and the target class

variable, for one binary class. From Table 4.7.1, it is observed that there are three features

that show strong correlations (>| 0.45 |), for instance, the skew, the mean and the standard

deviation. It can also be seen from Table 4.7.1 that the T exhibits a weak correlation for this

binary class pair. This means that T might not be useful for classification. However, again one

should be careful when judging the feature importance based upon their linear correlations.

Features having linear correlations close to zero, may have useful non-linear correlations.

4.7.3 Information Theory

To investigate the relative importance of the features, we implement the Information Theoretic

method that Lyon et al. (2016) applied to the pulsar search problem. According to Guyon &

Elisseeff (2003), features that appear to be information poor, may provide new and meaningful

information when combined with one or more other features. Information theory is mainly

based on the entropy of a feature, X. The Mutual Information (MI, Brown et al. (2012)), which

measures the amount of information between the input feature X and the true class label Y is

defined as:

I (X; Y) = H (X) − H (X | Y) , (4.7.1)

where H(X) is the entropy and H (X | Y) is the conditional entropy. The conditional probabil-

ity represents the amount of uncertainty remaining in X, after knowing Y. Hence, the mutual

information is indicative of the amount of uncertainty in X that is removed by knowing Y. MI

can be zero if and only if X and Y are statistically independent. Therefore, it is useful for fea-

tures to have high MI. A high MI indicates that a feature is correlated with the target variable,

and thus can in principle be used by a classifier to yield accurate classifications.
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Table 4.7.2 – A summary of the performance results of the various classifiers, ordered from best-
performing to worst-performing based on the balanced-accuracy and G-mean for binary classifica-
tion. Two values are given for all metrics. For each binary case presented, the first values represent
metric values for Type 1 (RRab) and Type 9 (δ-Scuti). The second values are the metrics values for
Type 6 (EA) and Type 10 (ACEP). In addition, the average of those metrics are summarised in single
value.

Classifiers Precision Recall F1-Score G-mean Balanced Accuracy

Type 1 (RRab) and Type 6 (EA) Classification

RF 0.97/0.97 0.97/0.97 0.97/0.97 0.97/0.97 0.94/0.94

∼0.97 ∼0.97 ∼0.97 ∼0.97 ∼0.94

DT 0.96/0.96 0.96/0.96 0.96/0.96 0.96/0.96 0.92/0.92

∼0.96 ∼0.96 ∼0.96 ∼0.96 ∼0.92

KNN 0.95/0.97 0.97/0.95 0.96/0.96 0.96/0.96 0.92/0.91

∼0.96 ∼0.96 ∼0.96 ∼0.96 ∼0.92

Type 9 (δ-Scuti) and Type 10 (ACEP) Classification

RF 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0

∼1.0 ∼1.0 ∼1.0 ∼1.0 ∼1.0

DT 1.00/0.96 0.96/1.00 0.98/0.98 0.98/0.98 0.95/0.96

∼0.98 ∼0.98 ∼0.98 ∼0.98 ∼0.96

KNN 0.98/0.98 0.96/0.98 0.97/0.97 0.97/0.97 0.93/0.94

∼0.97 ∼0.97 ∼0.97 ∼0.97 ∼0.93

The MI value of the seven features are listed in Table 4.7.1. Using the MI method, we are able

to choose the features that best describe the difference between two types of classes. However,

the selected features might have redundant information, for example two features that give

high MI might have the same information, in which a single selected feature could be all that

is required to achieve the same classification results.

Therefore, a ranking system can be applied, which is also known as the Joint Mutual In-

formation (JMI) criterion (Yang & Fong, 2011). The JMI enables the detection of complimentary

information, and thereby a reduction in the number of features by eliminating redundancy. The

JMI performs a selection from a sample of feature sets based on the amount of complementary

information and ranks them. It starts from the feature that possesses the largest MI value, X1.
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A greedy iterative process is used to decide which features complement X1 (Guyon & Elisseeff,

2003). The JMI score is given by,

JMI
(

X J
)

= ∑
XK∈F

I
(

X JXK; Y
)

, (4.7.2)

where X JXK is the joint probability of two features and F is the selected features. The iterative

process continues until a set of features are selected or all features are ranked. The use of the

JMI enables a reduction in the amount of redundancy within the features.

We have applied the JMI to our feature data as shown in Table 4.7.1. We note that features

which appear to be of low information content, as determined via visual analysis and study

using the point-biserial correlation coefficient, now appear to be useful. It is tempting to write

off features that show low scoring linear correlations. However, it can be seen that even though

the Period, T, exhibits a low linear correlation, it is ranked as the ‘1st’ best feature by the JMI.

Given that we have shown that all the seven features have utility, we apply them all for binary

classification.

4.7.4 Performance of Binary Classification

For binary classification, we train three classifiers independently using roughly balanced pair-

wise class combinations from the large-sample and small-sample datasets. We present the res-

ults for i) Type 1: RRab & Type 6: EA and ii) Type 9-δ-Scuti & Type 10: ACEP only to show

the difference between utilizing the two different sized datasets. Similar results are obtained

with other pair-wise combinations of binary classes achieving balanced-accuracy and G-Mean

values that vary by ∼ ±0.03.

We found that the RF performs best with an overall balanced-accuracy of 0.94 with a G-

mean value of 0.97 for Type 1: RRab & Type 6: EA. In addition, we observe that the two science

classes in the small dataset samples (Type 9: δ-Scuti and Type 10: ACEP) have some level of

misclassification in multi-class classification, while in the case of binary classification, the RF

(being the best performing algorithm) outputs a balanced-accuracy of 1.0 with a G-mean value

of 1.0. The results for both cases studied are summarised in Table 4.7.2.

As discussed in §4.6.3, multi-class classification gave undesirable results. On the other

hand, using binary classification (§4.7.4) we show how to obtain improved balanced-accuracies

for the science classes, achieving balanced-accuracies > 90 per cent in all cases we investigated.

We thus now attempt to build upon the result by following an hierarchical approach to clas-
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sification which will allow us to break the problem into sets of binary comparisons or smaller

multi-class comparisons.
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Figure 4.8 – A hierarchy of variable-star classification for data used in §4.3 which is constructed
based on the understanding of their physical properties. At the top layer, the variable-stars can be
split into three major classes: eclipsing, rotational and pulsating systems. The number in paren-
thesis represents the number of samples in each particular class.

4.8 Hierarchical Classification Concepts

Using some astrophysical properties of the variable stars in our dataset, we group the variable

sources into categories as shown in Fig. 4.8. The first level of the hierarchy is split into three

broad science classes: eclipsing, rotational and pulsating. From the top level, we continue to

subdivide the classes, for instance, at the third level, we are left with exactly two main classes:

RR Lyrae and Cepheids with 6 science sub-classes in the final sub-node. For further details on

hierarchical classification, we refer the reader to the excellent review by Silla & Freitas (2011).

Firstly, we perform a multi-class classification on the first hierarchy layer to distinguish

between eclipsing, rotational and pulsating stars. This method helps to address some of the

class imbalance issues. However, this separation is not perfect because the rotational class has

many less examples than the other two classes. The same evaluation methodology as in §4.5 is

employed and the results for the top layer is summarised in Table 4.8.1. We obtain a balanced-

accuracy rate of ∼ 61 per cent with a G-mean value of ∼ 0.79 for the first layer.

We then move down the hierarchy to perform two separate classifications for layer 2, keep-

ing the same examples in the training sets and the test sets as in the top layer. We subdivide the

eclipsing binary group into Ecl and EA classes and perform a binary classification. The result
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of this experiment shows that we are successful in classifying between the two classes of ob-

jects with a 0.86 balanced-accuracy and 0.93 G-mean value. In the second layer, we undertake a

multi-class classification of four distinct types of classes: RR Lyrae, LPV, Cepheids and δ-Scuti.

We achieve a balanced-accuracy of 0.98 in distinguishing between those classes.
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Figure 4.9 – The normalized confusion matrices for the best classifier (RF) for hierarchical classific-
ation.

Eventually, we follow the hierarchy down to the third layer where we investigate the cat-

egorization of two classes: RR Lyrae and Cepheids. Our aim here is to find to what extent we
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will be successful in distinguishing between the sub-classes of RR Lyrae (RRab, RRc, RRd and

Blazhko) and Cepheids (ACEP and Cep-II). The analysis shows that we are successful in dis-

tinguishing between RRab and RRc with high balanced-accuracy. However, most of the RRd

sources are classified as RRc and Blazhko sources are classified as RRab. To check whether

our results are affected by class imbalance, we downsample RRc in the training set to the same

number of samples as RRd and perform a binary classification. This process is repeated for

RRab, whereby the number of objects is decreased to the same number as in Blazhko class.

We train a binary classifier, keeping the test set the same for RRc & RRd and RRab & Blazhko.

We found that using balanced classes does increase the performance of the classifier signific-

antly, for instance, we are able to distinguish between RRab & Blazhko and RRc & RRd with a

balanced-accuracy rate of 80 per cent and 75 per cent respectively.
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Figure 4.10 – We plot the distribution of RR Lyrae sub-types (RRab, RRc, RRd and Blazhko) using
available data from the ascii catalogue of the sources in Drake et al. (2017).

For an in-depth analysis of the RR Lyrae sub-classification, we use the data provided by

Drake et al. (2017) that utilised the Adaptive Fourier Decomposition (AFD) method (Torrealba

et al., 2015) to determine the period of each source. To see how the visually selected periodic

variables differ from the initial candidates; we plot the amplitude and the period distribution of

the variable stars available in the catalogue. From Fig. 4.10, we note that it is a challenging task

to separate the subclasses: RRab & Blazhko and RRc & RRd. We found that our ML classifier

also struggles to separate those classes. In addition, we observe a clear separation between
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RRab and RRc, and our classification pipeline is also able to separate these two classes. In the

same vein, Malz et al. (2018) point out it is generally challenging to have a clear separation

between RRc and RRd even though they have different pulsating modes and due to the rarity

of RRd sources, they are often subsumed by RRc labels. Moreover, Drake et al. (2017) argued

that RRd phased light curves often appear like those of RRc and Blazhko stars often resemble

RRab’s when phase-folded over multiple cycles.

Furthermore, we analyse the classification of Cepheids and we obtain an error classifica-

tion rate of ∼19 per cent. On the same note, Drake et al. (2017) argued that classifying ACEP

and BL Her (a sub-groups of Cep-II) is difficult for field stars because of the mixture of stellar

populations in the field and the inadequate distance information.
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Figure 4.11 – Precision-Recall curves for each node in the hierarchical model. Each curve represents
a different variable stars with the area under the precision-recall curves score in brackets. This
metric is computed on the 30% of the dataset used for testing, except that Type 5: Ecl stars has
∼15647 samples.

For our hierarchical model, we present the RF classifier results only as it performs well

compared to other classifiers discussed in this chapter. From the results in Table 4.8.1 and Fig.

4.9, we see immediately a disparity in performance among the classes. This discrepancy in

misclassification is due to the comparative size of each of the science classes. We note that

we obtain high performance with classes that are data-rich. To alleviate the class-imbalance

problem, one can either gather different catalogues for the under-sampled classes or augment

the existing available catalogues via sophisticated statistical machine learning approaches.
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Table 4.8.1 – A summary of the performance results of the RF classifier for the variable-star hierarchical classification. We report metrics per class, separated by
‘/’. Also, we compute the average metrics taking into consideration the overall classes, summarised in a single value.

Precision Recall F1-Score G-Mean Balanced Accuracy

First Level: Eclipsing, Rotational and Pulsating Classification

0.97/0.19/0.51 0.66/0.74/0.87 0.79/0.30/0.64 0.78/0.78/0.86 0.59/0.60/0.75

∼0.86 ∼0.70 ∼0.74 ∼0.79 ∼0.61

Second Level: RR Lyrae, LPV, Cepheids and δ-Scuti

1.00/1.00/0.75/0.96 0.99/0.99/0.95/1.00 0.99/1.00/0.84/0.98 0.99/1.00/0.97/1.00 0.98/0.99/0.93/1.00

∼0.99 ∼0.99 ∼0.99 ∼0.99 ∼0.98

Second Level: Ecl and EA

0.90/0.50 0.92/0.94 0.95/0.65 0.93/0.93 0.86/0.86

∼0.95 ∼0.92 ∼0.93 ∼0.93 ∼0.86

Third Level: RRab, RRc, RRd and Blazhko

0.96/0.93/0.36/0.29 0.98/0.90/0.44/0.19 0.97/0.91/0.40/0.23 0.97/0.92/0.65/0.44 0.94/0.85/0.40/0.18

∼0.90 ∼0.90 ∼0.90 ∼0.92 ∼0.86

Third Level: ACEP and Cep-II

0.86/0.95 0.96/0.85 0.91/0.90 0.90/0.90 0.82/0.80

∼0.91 ∼0.90 ∼0.90 ∼0.90 ∼0.81
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Table 4.8.2 – Comparison of our Hierarchical model, Multi-class model and UPSILON package (Kim &
Bailer-Jones, 2016). For a fair comparison, we test these models on 8 classes and report the scores in terms
of recall and F1-score. The model with higher classification score in highlighted in blue.

Types of Variable Stars

UPSILON Model Our Multi-Class Model Our Hierarchical Model

with 16 Features with 7 Features with 7 Features

Recall F1-Score Recall F1-Score Recall F1-Score

RRab 0.75 0.86 0.92 0.73 0.98 0.97

RRc 0.78 0.87 0.77 0.46 0.90 0.91

RRd 0.11 0.20 0.33 0.14 0.44 0.40

Ecl (EC & ESD) 0.75 0.73 0.60 0.74 0.92 0.95

EA 0.97 0.98 0.90 0.68 0.94 0.65

LPV 0.92 0.96 0.98 0.95 0.99 1.00

δ-Scuti 0.86 0.93 0.96 0.70 1.00 0.98

Cep-II 0.38 0.55 0.52 0.32 0.85 0.90

In Fig. 4.11, we plot the precision-recall curve for each class and we note that the classific-

ation performance is very good. The area under the precision-recall curve values are greater

than 0.85 for several classes, except for Type 7: Rotational, Type 3: RRd and Type 4: Blazhko.

This correlates with the results presented in Table 4.8.1. In addition, we compare our proposed

hierarchical approach to an already implemented machine learning package known as UPSILON

(Kim & Bailer-Jones, 2016). The latter used a RF classifier, trained on 16 features extracted from

OGLE (Udalski et al., 1997) and EROS-2 (Tisserand et al., 2007) periodic variable stars light

curves; while our model is trained on 7 features from CRTS data. The comparison is made with

only 8 classes out of 11 as UPSILON has not been trained on all the variable stars available in

CRTS data. We report the results in terms of recall and F1-score in Table 4.8.2. It is seen that

our hierarchical model outperforms the UPSILON model in classifying most of the variable stars,

except for Type 6: EA. We can plausibly say that our hierarchical classifier yields good perform-

ance with 7 features in classifying sub-groups of stars as compared to the UPSILON package. For

a comparison in terms of features used, we report results when using a ‘flat’ multi-class model

(RF) in §4.6.3 with 7 features and compare it with the hierarchical model. The hierarchical

model outperforms both the UPSILON model and the multi-class model developed in this work.

This clearly shows that it is not necessary to extract many features to obtain higher classification

metrics. In addition, we have shown that converting a ‘flat’ multi-class problem into a hierarch-
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ical system improves variable star classification. Comparing the classification performance of

the HC and multi-class approach is difficult and nuanced as the multi-class approach seeks to

improve overall classification performance (accuracy, recall), while our HC approach aims to

improve rare class recall in particular. Before deciding on which approach to use, practitioners

should consider their goal and choose an appropriate evaluation metric based upon this.

4.9 Conclusion and Future work

With the upcoming synoptic surveys (for e.g. LSST, Ivezić et al. (2019)), automated transient

and variable-star classification is becoming an increasingly important field in astronomy. It

presents a difficult computational challenge which we have nonetheless attempted to tackle in

this work. We describe the core challenges associated with automatic variable-star classification

and subsequently explored the nature of the data to be processed. We then applied various

approaches with the aim of accurately classifying 11 types of variable star. Some of the methods

we applied are similar to current techniques, while others are new to this field. Compared to

other related work, we utilized only 7 input features during classification, where 6 features are

based on statistical properties of the unfolded data and the Period, T, is obtained directly from

the data catalogue. We used these features as inputs to three separate commonly employed

ML algorithms. We demonstrate that the RF classification algorithm performed best in all test

cases. Treating the variable-star classification as a multi-class problem with 11 classes, results

in a poor performance. In doing so, the RF algorithm is efficient at identifying RRab, RRc,

Ecl, EA, Rotational and LPV classes, but is unsuccessful in distinguishing, for example, δ-Scuti

and ACEP. However, by decomposing the multi-class problem into several binary classification

problems, we gain a significant improvement in balanced-accuracy - with a balanced-accuracy

rate of 1.0 for the classification of δ-Scuti and ACEP. Our results suggest that decomposing a

multi-class problem into several binary classification steps could yield improved results.

We therefore developed a hierarchical approach for classifying the 11-variable-star classes

in our data, by aggregating those classes that show similarities. We show that a hierarchical

taxonomy for n-class objects improves the classification rate. We are now successful in identi-

fying sub-types of cepheids and eclipsing binaries with a balanced-accuracy rate of 81 per cent

and 86 per cent respectively. Whilst the hierarchical approach does not work well for all classes,

this is understandable in cases with high class-imbalances and a lack of training examples.

We have presented an approach to analysing variable star data in such a way, that is benefi-

cial to machine learning feature analysis and extraction. This process yields insights that allow
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us to obtain improved classification performance. In other words, we have taken a principled

approach to feature analysis and design, especially for multi-class problems with a highly im-

balanced datasets. We employ new methods for feature selection and evaluation and we show

that converting a multi-class problem towards a hierarchical classification scheme helps to re-

duce the class-imbalance problem as well as provide a significant improvement for variable

stars classification. In the near future, we wish to investigate the impact of data augmentation

on the performance of our ML classifiers. Moreover, flagging data (as we did for the “Mis-

cellaneous class”) is often undesirable. One school of thought is to treat them as outliers but

another might argue that these could perhaps indicate new discoveries. It is a major task with

such a classification scheme, since we now have to tackle the problem in an unsupervised way,

a topic currently in its infancy.
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IMBALANCE LEARNING FOR VARIABLE STAR

CLASSIFICATION USING MACHINE LEARNING

This chapter was originally published as a paper in MNRAS with the title: ‘Imbalance Learn-

ing for variable star classification using Machine Learning’.

Zafiirah Hosenie , Robert J. Lyon , Benjamin W. Stappers, Arrykrishna Mootoovaloo and Vanessa

McBride

Accepted in MNRAS on 27 February 2020 and can be found at arXiv:2002.12386v1.

Summary of contributions: The work developed in this chapter is entirely my own. Co-authors

provided supervision, suggestions of additional angles to discuss in the paper, and feedback

on earlier drafts of it.

This chapter introduces the reader to imbalance learning problem encountered in the previous

chapter for variable stars classification. The following section presents an overview of the chal-

lenges in classifying variable stars and provides three methods of data augmentation to tackle

the imbalance learning problem. The structure of this chapter is as follows. In §5.3, we de-

scribe the data set used in our analysis; while in §5.4, the three data augmentation algorithms

used, are explored. In §5.5, we provide a description of the various stages in the hierarchical

classification pipeline; in §5.6 we present the classification results and finally, we conclude in

§5.7.
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5.1 Overview

The accurate automated classification of variable stars into their respective sub-types is dif-

ficult. Machine learning based solutions often fall foul of the imbalanced learning problem,

which causes poor generalisation performance in practice, especially on rare variable star sub-

types. In previous work, we attempted to overcome such deficiencies via the development of a

hierarchical machine learning classifier. This ‘algorithm-level’ approach to tackling imbalance,

yielded promising results on Catalina Real-Time Survey (CRTS) data, outperforming the binary

and multi-class classification schemes previously applied in this area. In this work, we attempt

to further improve hierarchical classification performance by applying ‘data-level’ approaches

to directly augment the training data so that they better describe under-represented classes.

We apply and report results for three data augmentation methods in particular: Randomly

Augmented Sampled Light curves from magnitude Error (RASLE), augmenting light curves

with Gaussian Process modelling (GpFit) and the Synthetic Minority Over-sampling Technique

(SMOTE). When combining the ‘algorithm-level’ (i.e. the hierarchical scheme) together with the

‘data-level’ approach, we further improve variable star classification accuracy by 1-4%. We

found that a higher classification rate is obtained when using GpFit in the hierarchical model.

Further improvement of the metric scores requires a better standard set of correctly identified

variable stars and, perhaps enhanced features are needed.

5.2 Introduction

Astronomy is now in an era dominated by an explosion of big data, produced with current and

future surveys, such as OGLE (Udalski et al., 2008, 2015), CRTS (Drake et al., 2017) and Kepler

(Koch et al., 2010) among others, thus, relying solely on visual inspection for classification is

becoming impractical. Therefore, automatic classification pipelines are required to categorize

an unprecedented amount of variable star light curves into known or unknown classes for

various astrophysical applications. Accordingly, machine learning has heavily been studied

to solve classification problems, for instance, uncovering aberrant phenomena encountered in

observations, also known as unsupervised anomaly detection (Chen et al., 2018; Zong et al.,

2018) and automatic classification of variable stars (Kim & Bailer-Jones, 2016; Benavente et al.,

2017; Mahabal et al., 2017; Narayan et al., 2018; Pashchenko et al., 2018; Tsang & Schultz, 2019;

Zorich et al., 2020).

However, a major issue that impedes the successful automated classification of astronom-
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Figure 5.1 – Hierarchical Tree classification with automated light curves augmentation for CRTS
Data. The number of training examples (real LCs) is represented by Tr, the number of training ex-
amples after augmentation (both real and synthetic LCs) is represented by A.Tr and the number of
test examples (real LCs) is represented by Te. At level 1, the real LCs in the training set are aug-
mented and the dotted square represents a trained model (RF/XGBoost classifier). During testing
phase, the classified examples in the test set move down the hierarchy at level 2. Afterwards, real
LCs in the training set in level 1 moves to their respective branches at level 2. The real LCs are
augmented and features are extracted. This process is repeated until it reaches all leaves in the hier-
archy.

ical data is known as the imbalanced learning problem. This occurs when we wish to organise

data into distinct groups known as “classes”, using examples to guide a process known as “clas-

sification”. When there is a large distributional difference between the number of examples

belonging to each class, minority and majority classes form. When the imbalance between the

minority and majority classes is large, problems can arise when attempting to build standard

machine learning classification algorithms, ultimately resulting in poor categorisation perform-

ance. This happens as such algorithms are usually optimised to achieve maximum accuracy.

However this is trivially achievable in imbalanced datasets by always assigning the majority

class label when making predictions. This leads to biased classifiers that obtain high predictive

accuracy for majority class, but poor predictive accuracy for minority classes, which are more

often than not, the focus of our interest.

Imbalanced learning problems occur in many domains, for instance in fraudulent phone

call identification (few calls are fraudulent, (Fawcett & Provost, 1996)), or text classification

(in cases where there is either more positive or more negative sentiments). In astronomy, this

issue becomes acute given that datasets must often be searched for rare or unusual phenomena

which may not be accurately defined in advance. This problem impacts the classification of
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variable stars in particular, as some types of variable star are uncommon, making it difficult to

build systems to be able to recognise them. In astronomy, several works have tried to address

the problem of class imbalance to date (Hoyle et al. 2015; Lochner et al. 2016; Narayan et al.

2018; Revsbech et al. 2018; Agarwal et al. 2020).

There are two approaches for dealing with class imbalance problems (He & Garcia, 2008).

The first are generally known as ‘algorithm level’ approaches. These seek to modify classi-

fication algorithms directly, to better accommodate imbalanced class distributions. This can

involve, for example, adapting the learning function at the heart of the algorithm to favour

metrics other than accuracy during training and also applying hyperparameter tuning while

training the algorithm (See §5.5.4). Algorithm level approaches make an implicit assumption -

that the data is sufficiently descriptive and statistically characteristic of the classes under con-

sideration, and changes to the algorithm alone will enable this data to yield good classification

performance.

Alternatively, ‘data level’ approaches seek to modify the data given to a classification al-

gorithm, with the aim of improving classification performance. Data level approaches can

be as simple as balancing training data artificially via an appropriate sampling method, or

as complex as generating artificial samples to balance the training set. Data level approaches

assume that classification algorithms will be capable of separating the classes under consider-

ation, given appropriate training data. Hybrid approaches mix the two techniques when faced

with difficult problems. For instance, in some cases modifying an algorithm will not produce

the improvement expected, if the classification problem at hand exhibits excessive class over-

lap, disjuncts, or is affected by small sample sizes (i.e. some classes are genuinely rare), whilst

in some cases trying to balance training sets will not work if the information content of the

training samples is too low to allow a classifier to delineate effective class boundaries.

In previous work, we attempted to develop a variable star classifier together with various

techniques of feature selection and feature importance, and ran into the imbalanced learning

problem. To overcome this, we attempted to modify the algorithms used for classification, and

ultimately proposed a successful hierarchical classification system. We compared the hierarch-

ical system (using 7 features) with the UPSILON package (Kim & Bailer-Jones, 2016) (using 16

features). Whilst hierarchical system was effective, recall on minority classes could be stub-

bornly low relative to majority classes. In other domains such problems are overcome by bal-

ancing the training distribution directly. This approach implies the minority class is sufficiently

described in the training data to solve the imbalance, and further that the classifier used is sens-
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itive to the class size. We believe this to be the case, thus we proceed similarly. We present a

hybrid approach to overcoming imbalances, which represents a principled and pragmatic ap-

proach to this problem. Thus in this work, we improve the Hosenie et al. (2019a, hereafter H19)

classification scheme by adding a sufficient amount of data, such that each class has an equal

amount of training examples. This can be achieved by simulating more data or gathering more

real data (which is often difficult).

Balancing training sets directly can be difficult. Fortunately, techniques such as Synthetic

Minority Over-sampling Technique (SMOTE, Chawla et al. 2011), random values drawn from

the Gaussian distribution (Peterson et al., 1998) and Gaussian Processes (GPs, Rasmussen 2003)

modelling (GpFit) can simplify the problem to a large extent by simulating lightcurves. GPs

have been used in several works to synthetically augment biased supernova training sets (Loch-

ner et al., 2016; Narayan et al., 2018; Revsbech et al., 2018), variable stars (Faraway et al., 2016;

Castro et al., 2018; Martínez-Palomera et al., 2018) and lightcurve de-trending (Aigrain et al.,

2016).

In this work, we are concerned only with periodic variable star classification and we present

GPs for augmenting periodic variable star data using folded light curves. Second, we propose

a new method, Randomly Augmented Sampled Light curves from magnitude Error (RASLE*),

to periodic variable star data for the first time, which synthetically augments the training set by

sampling from the magnitude errors. We then compare the three data augmentation methods

(SMOTE, GpFit & RASLE) and their utility for improving variable star classification, trained with

either a Random Forest (RF, Breiman, 2001) classifier or eXtreme Gradient Boosting (XGBoost,

Chen & Guestrin, 2016) classifier. Finally, we incorporate a Bayesian Optimisation approach to

find the best hyper-parameters for the RF and XGBoost in the hierarchical classification (HC)

scheme. We achieve an improvement of 1-4 percent in terms of balanced-accuracy and G-mean

scores at all levels in the HC, compared to the results of H19.

5.3 Data

The Catalina Real-Time Transient Survey (CRTS, Drake et al. 2017) has produced a catalogue

of periodic variable stars from 6 years of optical photometry from the Siding Spring Survey

(SSS). We consider only 11 classes from the CSDR2† dataset as presented in Table 5.3.1 for our

analysis. From Table 5.3.1, we observe that the data is heavily imbalanced. Thus to simplify

*After the preparation of this manuscript, we learnt that another team Gabruseva et al. (2020), has come up with
a similar method independently.

†Catalina Surveys Data Release 2
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Table 5.3.1 – Sample size of classes in CRTS data. The class distribution is extremely imbal-
anced, such as Ecl are over-represented.

Types of variable stars NObjects

RRab (fundamental mode) 4325
RRc (first overtone mode) 3752
RRd (multimode) 502
Blazhko (long-term modulation) 171
Contact & Semi-Detached Binary: Ecl 18803
Detached Binary: EA 4509
Rotational: Rot 3636
Long Period Variable: LPV 1286
δ-Scuti 147
Anomalous Cepheids: ACEP 153
Type-II Cepheids: Cep-II 153

our experimentation, we reduced the size of the largest class (Ecl) via random under-sampling.

We down-sample this class to 4509 (this makes the number of Ecl examples comparable to the

next biggest class, EA) and the remaining Ecl light curves (LCs) are then used for prediction.

This is why the number of samples available for testing exceeds those for training as shown in

Fig 5.1.

5.4 Data Augmentation

While the under-sampling methods (i.e. downsample Ecl and developing the hierarchical sys-

tem) help to address some of the class imbalance issues, they are themselves insufficient, as

minority class performance was not good enough for our purposes. We therefore provide three

ways to over-sample the data, a form of data augmentation necessary as some of the classes

still outnumber other classes (see Tr values in Fig 5.1). We augment the data via the generation

of artificial data, in order to increase the number of training samples by generating similar but

not identical examples. In principal the more data we have, the better our ML models will

be as this technique helps to reduce overfitting. In this work, we consider three methods of

augmentation, (i) SMOTE, (ii) RASLE, and (iii) GpFit.

5.4.1 Synthetic Minority Over-sampling Technique

The Synthetic Minority Over-sampling Technique (SMOTE) inserts artificially generated minor-

ity class examples into a dataset, by operating in “feature space” rather than “data space”. This

technique helps to balance the overall class distribution. The standard implementation of SMOTE

utilizes k−nearest neighbours (Buturovic, 1993) to group similar class objects and to determine
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Figure 5.2 – RASLE: generating new light curves by random sampling from a normal distribution.
The true magnitude along with its error bars is shown in black and yellow. We assume a normal
distribution with mean equal to the true magnitude and with sigma equal to the error in magnitude.
We randomly draw one sample (red-dashed line) from each normal distribution to produce a com-
pletely new light curve.

which class categories are in the minority class and need over-sampling. To generate a new syn-

thetic example, the k−nearest neighbours method is further used by first selecting an example

in the minority class. The collection of feature values describing this example, its feature vector,

is then combined with the feature vectors of one of its k nearest neighbours chosen at random.

The difference between the vectors of these two examples is computed and subsequently mul-

tiplied by a random number drawn between 0 and 1. This produces an entirely new synthetic

feature vector. This process is repeated until enough synthetic examples have been created.

Finally, the new augmented training set is comprised of both the synthetic examples and the

real minority examples. In our pipeline, we utilize the ‘regular-SMOTE’ algorithm from the

imbalanced-learn‡ (Lemaitre et al., 2016) package.

5.4.2 Randomly Augmented Sampled Light curves from magnitude Errors

The artificial examples generated by standard SMOTE, may not truly represent data recorded

during observations. One way around this is to generate artificial samples from existing data

points in a more scientifically valid way. That is we randomly sample a selection of rare class

examples, take their primary characteristics, and generate new examples from them by per-

turbing them in a principled way. We do this using the Randomly Augmented Sampled Light

curves from magnitude Errors (RASLE) method.

The application of RASLE is employed on unfolded-LCs, that is, each variable star is de-

scribed by its time, magnitude and error in magnitude. Using this information, we generate

‡https://imbalanced-learn.readthedocs.io/en/stable/index.html
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Figure 5.3 – Gaussian Processes offer a flexible approach to produce a smooth model of periodic
light curves reported in magnitudes as a function of phase. This is demonstrated with model fits
for each example of variable stars considered in the CRTS dataset. The data points are illustrated
in black-rounded dots along with the error bars. The mean of the GP fit is shown in brown with
three standard deviation away from the mean, shown in shaded pale brown. In the bottom panel,
the black lines represent three randomly drawn samples from the GP fit. These randomly sampled
light curves, also known as synthetic LCs together with real LCs, are used in the training set.

new light curves in the following way. Let us consider a probability distribution which can be

concisely represented by a normal distribution. The probability distribution function (pdf ) can

be interpreted as going over the magnitude space vertically with the horizontal axis showing

the probability that some value will occur. To construct the pdf, we make an assumption that

the magnitude follows a normal distribution with mean, µ, to be equal to the true magnitude

and the standard deviation, σ, to be equal to the error in magnitude. For each data point at

a specific time, we sample a single magnitude from the pdf. Each sampled magnitude is as-

signed the same time as in the original data. Fig 5.2 shows an example of a light curve with the

magnitude and error bars drawn for three specific times. The pdf of the magnitude is shown

in blue and one magnitude is sampled randomly from the pdf shown in dotted red lines. The

generated light curve is given the new (random) sampled magnitude with the same time value

as in the original data.
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5.4.3 Modelling Light Curves with Gaussian Process

An ideal case for data augmentation is to use a well defined model of the classes under consid-

eration to create synthetic data. However, there is no available model valid for all the different

variable stars considered. We therefore build a model describing variable stars using Gaussian

Processes (GPs, Rasmussen 2003) applied to CRTS data. We then use this model to generate

artificial light curves, allowing us to augment our training data through the addition of new

examples in a principled way, using the distributions of existing data to create them.

A GP is a distribution over functions. It is defined by a mean µ(t) and a covariance (kernel)

function c(t, t′), and is given as

f (t) ∼ GP
(
µ(t), c(t, t′)

)
. (5.4.1)

When the function f is computed at points t, the marginal distribution follows a multivariate

normal distribution (Rasmussen, 2003). The kernel function, c, takes two inputs and shows

the similarity between them. When evaluating Bayesian inference, having the set of known

function values for the training sets fx, and the set of known function values for the test sets

fy, are normally distributed and is given as follows:

 fx

fy

 = N


 µ fx

µ fy

 ,

 C fx fx C fx fy

C fx fy C fy fy


 , (5.4.2)

where the means of the training and test set are denoted by µ fx and µ fy respectively and likewise

C fx fx , C fy fy , C fx fy represent the training, test and train-test covariances/kernels. The conditional

distribution, fx | fy = P is given by

P ∼ N
(

C fx fy C−1
fy fy

(
fy − µy

)
+ µ fx , C fx fx − C fx fy C−1

fy fy
Cᵀ

fx fy

)
. (5.4.3)

For a specific set of testing samples, Eq 5.4.3, represents the posterior distribution. For a set of

training examples D, the posterior distribution is described by (Rasmussen, 2003)

fy | D ∼ GP(µD, cD),

µD(t) = µ(t) + cᵀTstC
−1 ( fy − µ

)
,

cD
(
t, t′
)
= c

(
t, t′
)
− cᵀTstC

−1cᵀTst′ ,

(5.4.4)

where the covariance vector between every training sample, Ts and t is cTst = c(Ts, t). The
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choice of the covariance function is established, based on the knowledge of the domain. In our

case, we want to model light curves, so we require a kernel that can demonstrate both small

fluctuations and smooth variations. Given the different characteristics of the various stars, an

appropriate choice of the kernel in this work is the Matern 5/2 kernel given by,

CMatern52(Υ) =

(
1 +

√
5Υ
`

+
5Υ2

3`

)
exp

(
−
√

5Υ
`

)
, (5.4.5)

where Υ and ` are the kernel hyperparameters, that is, Υ controls the degree of smoothness and

` is the characteristic length scale. We employ the GP regression using George (Ambikasaran

et al., 2015) with kernel hyper-parameters randomly initialised. Using our data and these ran-

domly initialised hyper-parameters, the negative log likelihood is calculated. Afterwards, these

hyper-parameters for the kernel are optimised (i.e., finding the best values for these paramet-

ers) using the Limited memory Broyden-Fletcher- Goldfarb-Shanno (L-BFGS, Fletcher 1987)

optimization algorithm by minimizing the negative log likelihood.

The kernel with the optimized parameters is then used to fit the GP from which we sample

synthetic light curves to augment our training set. Before fitting a GP to our data, we first

convert the LCs from time distribution to phase distribution (folded-light curves) where the

data is at the detected period for each variable star. We then randomly sampled synthetic LCs

from the GP model to form the augmented training set. We show an example of GpFit on the

folded-LCs for the different variable stars in Fig 5.3 and the bottom plot illustrates 3 synthetic

LCs randomly drawn from GpFit. We then unfolded the phases back into time space and used

those synthetic LCs together with the original LCs as the training set.

5.5 METHOD DESCRIPTION

Drawing heavily from H19, we outline the general approach used to classify variable stars. In

this study, we use RF and XGBoost classifiers. We use these classifiers for two reasons. Firstly, to

ensure that results presented here are comparable with previous work. Secondly, because they

have proven to be robust against the issues associated with class imbalance (Chen et al. 2004;

Wang et al. 2020). We then provide an overview of the HC scheme, together with the various

stages we adopt to build the ML pipeline. Similar to H19, we pre-processed the lightcurves by

applying a sigma-clipping method prior to any analysis.
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Figure 5.4 – Period versus Skew distribution for real and synthetic LCs generated using GpFit.

5.5.1 Stage 1: Hierarchical Tree Classifiers

H19’s HC uses the astrophysical properties of the various sources to construct a tree-based

structure to represent the different classes (Fig 5.1). Each node/leaf represents a class - iden-

tified by the label inside the node/leaf - and the edges represent the relationship between

the super-class and sub-class. For the HC, we use XGBoost and RF and then report the one

that provides the best classification performance. A detailed overview of XGBoost and Ran-

dom Forest can be found in §3.3.3 and §3.3.2 respectively. In astronomy, XGBoost has recently

been used by Mirabal et al. (2016) who implemented this classifier for unknown point source

classification in the Fermi-LAT catalogue and for the separation of pulsar signals from noise

(Bethapudi & Desai, 2018). In addition, XGBoost has also been applied for variable star classi-

fication (Sesar et al., 2017; Pashchenko et al., 2018; Kgoadi et al., 2019).

5.5.2 Stage 2: Level-wise Data Augmentation in HC

Since the training set is still imbalanced after aggregating sub-classes into super-classes, we

use the three data augmentation techniques described in §5.4. Each technique is applied and

tested independently in our HC based ML pipeline. For the SMOTE approach, features (the mean

magnitude, standard deviation, skewness, kurtosis, mean-variance, amplitude and period) de-

scribed in H19 are extracted from the real LCs. Then, SMOTE automatically balances the class

distribution via the creation of synthetic examples sampled over the feature space, such that

the size of the minority class equals the size of the majority class, cancelling the imbalance out.
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Figure 5.5 – For each synthetic LC, a period value (red vertical line) is randomly sampled from a
normal distribution, with mean T being the true period of the real LC and σT being the computed
uncertainty of the period, T.

For example, considering level 1 in Fig 5.1, the majority class is Pulsating, consisting of 7338

examples. Therefore, SMOTE adds new examples of the other two minority classes (eclipsing

6312 and rotational 2545) ensuring they both contain 7338 examples. This process is repeated

for each branch and level in the HC, where the training set is directly balanced according to the

size of the majority class prior to data augmentation.

While for the GpFit and RASLE cases, we are generating new light curves based on real

LCs, thus generating new synthetic LC examples. Therefore, our training set will consist of

both real and synthetic LCs, whilst we test our ML pipeline with only real LCs. These two

techniques can be used to over-sample both the majority and minority class. The number of

training examples after augmentation, A.Tr used for each level is given in Fig 5.1. Afterwards,

features are extracted from these LCs as discussed below.

5.5.3 Stage 3: Feature Extraction

In this work, similarly to H19, our features are based on 6 intrinsic statistical properties re-

lating to location (mean magnitude), scale (standard deviation), variability (mean variance),

morphology (skew, kurtosis, amplitude), and time (period). These features are highly inter-

pretable, and robust against bias (Hosenie et al., 2019a). For the GpFit and RASLE approach, the

first six features are extracted directly from the augmented training set (containing both real

and synthetic LCs) using the FATS library (Nun et al., 2015). Whilst for the period feature, the

real LCs in the training set are assigned their respective period from the ascii-catalogue (Drake
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et al., 2017) and the synthetic LCs are assigned a period calculated by the method discussed in

§5.5.3.1. For the test set we use only real LCs, hence the six features are extracted directly from

the LCs and their period is obtained from the data catalogue. Therefore, we have 7 features that

describe each variable star. Fig 5.4 shows the distribution of the two most important features as

investigated in H19 (period and skew) for real and synthetic LCs. We observe that the synthetic

LCs show similar characteristics compared to the real LCs.

5.5.3.1 Period for augmented LCs

A synthetic LC is given a period based on the uncertainty in the estimated period of the real

LC. In this case, the estimated period, T, is obtained from Drake et al. (2017). The associated

uncertainty, σT for a given period is calculated as follows. A periodic signal is detected in a peri-

odogram by the presence of a peak with a certain width and height. In Fourier perspective, we

assume that there is a direct relationship between the precision with which a peak’s frequency

can be detected and the width of this peak; often known as the half-width at half-maximum

(VanderPlas, 2018) and is given by:

υ 1
2
≈ 1

T
(5.5.1)

This can be viewed as interpreting the periodogram with the least-square method, that is, the

inverse of the curvature of the peak is determined with the uncertainty (Ishak, 2017). In the

Bayesian perspective, this translates to a Gaussian curve fit to the exponentiated peak (Smith &

Erickson, 2012; Bretthorst, 2013). Let us consider a periodogram with maximum value Pmax =

P (υmax), such that

P
(

υmax ± υ 1
2

)
=

Pmax

2
. (5.5.2)

Hence, the Bayesian uncertainty is calculated by approximating the exponentiated peak as a

Gaussian, that is,

exp [P (υmax ± δυ)] ∝ exp
[−δυ2

(2σ2
υ)

]
. (5.5.3)

The above equation can then be written as follows and we obtain the uncertainty in frequency

in Eq 5.5.4.
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Pmax

2
≈ Pmax −

υ2
1
2

(2σ2
υ)

;
υ2

1
2

2σ2
υ

≈ Pmax

2
;

συ ≈
υ 1

2√
Pmax

, (5.5.4)

where δυ ≈ υ 1
2
. Considering the signal-to-noise ratio ϕ = rms

[
yn−µ

σn

]
, where µ is the mean

magnitude, yn and σn is the magnitude and error in magnitude for each data point respectively.

We can then write the following equation for a well-fitted model,

Pmax ≈
ϕ2N

2
. (5.5.5)

We then substitute Eq. 5.5.5 in Eq. 5.5.4 and the uncertainty in frequency can be written as:

συ ≈ υ 1
2

√
2

ϕ2N
, (5.5.6)

where υ 1
2
≈ 1

T , N is the number of data points and ϕ is the signal to noise. We now compute

the uncertainty in period by taking the derivative of συ,

∂υ

∂T
≈ − 1

T2 ; ∂T = −T2συ; σ2
T = T4σ2

υ .

Hence, the uncertainty in period is then obtained using Eq 5.5.7.

σT = T2συ (5.5.7)

where σT will be Gaussian if συ is very small. A period value is given to each synthetic LC

(generated either with GpFit or RASLE), by randomly sampling from a normal distribution with

mean, T (the true period of the real LC from which the synthetic LCs are generated) and within

1 σ-confidence interval, being σT using Eq. 5.5.7. An example of associating a period to an

augmented LC is shown in Fig 5.5.

5.5.4 Stage 4: Training with Bayesian Optimization

We first randomly split our data into training (70 per cent) and testing sets (30 per cent). The

training set moves through the first level in the HC scheme discussed in §5.5.1. The training

examples are then augmented using one of the three data augmentation techniques and fea-

tures are extracted where appropriate. Afterwards, the model (see dotted square at level 1 in
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Fig 5.1) is trained using either the RF or XGBoost classifier, as required. We then use a Bayesian

Optimization approach to find the best hyper-parameters for the ML algorithm. It has been

demonstrated for large parameter spaces that Bayesian Optimization, also known as Sequen-

tial Model-Based Optimization (SMBO, Hutter et al. 2011) performs better than either manual

or randomized grid searches (Bergstra et al., 2015). It is one of the most efficient techniques for

hyper-parameter optimization of ML algorithms.

In this work, we used SMBO techniques compared to H19, who used a randomized grid-

search for hyper-parameter optimization. Before applying the above methods, we perform a

stratified cross validation. The training data is split into 5 folds, where 4 different folds are kept

for training each time and an independent fold is used for validation. We then use the SMBO

method, HyperOpt (Bergstra et al., 2015) to find the best hyper-parameters on the 4 folds and

validated the model on the independent fold. We then evaluate our trained model based on

balanced-accuracy, G-mean, precision, recall, and F1-scores, on real LCs in the test set.

5.6 Analysis and Results

This work is mostly concerned with learning from an imbalanced class distribution. The prob-

lem is typically addressed using the following approaches.

1. Data level: We employ three approaches to the HC scheme in such a way that the class

distributions are rebalanced directly; that is, it is a first proof of principle application

of a level-wise augmentation in Hierarchical taxonomy, where we resample the original

dataset to achieve a desired balancing.

2. Algorithm level: We focus on using two different algorithms (RF and XGBoost), together

with a Bayesian Optimization algorithm for hyper-parameter tuning, to achieve improved

performance on the minority class examples.

The HC algorithm is trained on both real and artificially augmented data and tested on real

data. We show the results of the three data augmentation techniques in Table 5.6.1. We assess

the consistency of the results based on balanced-accuracy and G-mean scores. The shaded blue

color represents the augmentation methods, which when applied together with the HC classi-

fier, yielded improved results over H19. We found that GpFit achieves the best performance

measures compared to H19 at all levels in the HC. When using the GpFit method, we found

that our RF implementation performs best at all HC levels when compared to H19 and we high-

light this result in grey. In addition, we found that XGBoost, similarly to the RF, provides good
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Figure 5.6 – Receiver operating characteristic (ROC) curves for each node in the hierarchical model.
Each curve represents a different variable star class with the area under the ROC curve (AUC) score
in brackets. This metric is computed on the 30% of the dataset used for testing.

performance for variable star classification. Moreover, in H19, we show that the HC model

is neither underfitting nor overfitting by plotting precision-recall curves at different levels. In

this work, we assess the consistency of the results using GpFit and RF by plotting the Receiver

Operator Characteristic (ROC) curve for each class (see Fig 5.6). We note that classification per-

formance is very good. The area under the ROC curve (AUC) values are greater than 0.95 for

several classes, except for Rotational, RRd, and Blazhko. The reasons for these misclassification

are further discussed in §5.6.1.

We improve upon the result obtained in H19. For instance, the balanced-accuracy increases

from 61 to 65 per cent in level 1, from 86 to 88 per cent at level 2 for the eclipsing node, from

86 to 87 per cent for sub-classes of RR Lyrae at level 3, and finally from 81 to 83 per cent

for Cepheids at level 3. To check the consistency and robustness of our new approach, we

perform an additional step. We use different splits (K = 5, 6, . . . ,10) during cross-validation and

predict on the 30% test set. With these analyses, we obtain an uncertainty on the metric scores

considered, for example for Cepheids at level 3, a 0.83 ± 0.02 balanced-accuracy and 0.91 ±
0.01 G-mean score are obtained. We obtain similar results at different levels in the hierarchy.

In these analyses, we observe that we have not made a huge improvement to H19, in terms of

minority classes and we explain the various reasons that might lead to this outcome in §5.6.1.

5.6.1 Impact of imbalance on classification performance

Training a classifier upon imbalanced data does not guarantee poor generalisation performance

(Galar et al., 2011). Regardless of imbalance, if the features or the training data themselves are
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discriminative enough to provide a clear separation between the different classes, then classi-

fiers will likely generalize well. However, there are three main characteristics of imbalanced

data sets that make it hard for a classifier to discriminate the minority from the majority classes.

These are

1. small sample sizes (Galar et al., 2011; He & Garcia, 2008),

2. class inseparability (Galar et al., 2011; Japkowicz & Stephen, 2002) (see Fig 5.7(a) & 5.8)

and,

3. small disjuncts (see Fig 5.7(b)).

Ultimately, the training data showing these characteristics conspire to make it hard for any

classifier to build an optimal decision boundary leading to sub-optimal classifier performance.

These characteristics are seen at some levels in the HC. In this section, we illustrate these effects

at level 3 using the sub-classes of RR Lyrae. Fig 5.7(a) shows that some classes have overlapping

characteristics, which leads to poor performance. We observe similar characteristics (class-

overlapping) for the sub-classes of RR Lyrae in Fig 5.8(a), even after balancing the classes in

the training set. These overlapping characteristics are due to the fact that there are no physical

distinction between some of the subclasses. As can be seen in Fig 5.8(a), RRab and RRc classes

can reasonably be separated based on their period alone. RRab are variable stars pulsating

in fundamental mode, RRc stars pulsate in the first overtone while RRd stars simultaneously

pulsate in the fundamental and first overtone. Therefore, RRd’s form part of both RRab and

RRc variable stars at the same time. In addition, Blazhko stars are found among RRab stars

(Jurcsik et al., 2009), RRc stars (Netzel et al., 2018) and even RRd stars (Jurcsik et al., 2015).

This explains the poor performance of the classifier for separating RRd and Blazhko stars, even

after balancing the classes. In addition, we also present a t-distributed stochastic neighbour

embedding (t-SNE, van der Maaten & Hinton 2008) of the minority classes (Blazhko, δ-Scuti,

ACEP & Cep-II) in Fig 5.8(b) after augmenting them using the GpFit method. The result shown

in Fig 5.8(a) does not differ when we perform multiple runs with different parameters. Each

time we find small disjuncts in the feature space, showing characteristics similar to those shown

in Fig 5.7(b), thus making it difficult for the classifier to construct a decision boundary.

In this work, we found that training the HC with class-balanced data has the effect of im-

proving balanced-accuracy and G-mean scores. However, the minority classes are still misclas-

sified. Although these results suggest that balancing the class distribution is not sufficient for

classifying the minority classes, their capacity to prevent overfitting and increase the recall rate
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makes them appealing.

Another reason that leads to misclassification - the lack of a standard set of correctly clas-

sified (i.e. where the ground truth is certain) variable star example useful for training. Drake

et al. (2017) investigated the level of agreement of their classifications with the International

Variable Star Index (VSX, Watson et al. (2007)). They found that

1. VSX has not classified any of their Blazhko stars, but instead simply classify them as RRab

stars,

2. VSX classified many of their contact binaries as detached and semi-detached binaries,

3. most of their Rotational stars (spotted or ellipsoidal variables) have been classified as

contact binaries, and

4. most of their RRd stars have been misclassified as other stars (RRab, RRc) by VSX.

We observe similar misclassifications when using our automated HC pipeline, even after

balancing the classes. With the presence of so many misclassified objects, we can plausibly say

neither Drake et al. (2017) or VSX can be considered as providing ground truth. Therefore, there

is a real need to have a standard set of correctly identified variable stars that can be utilized for

training automated machine learning methods. It is imperative to train these sophisticated

ML based algorithms with accurately calibrated priors in order to obtain reliable classification

outputs.

(a) (b)

Figure 5.7 – Demonstration of (a) Class inseparability and (b) small disjuncts in feature space.
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Table 5.6.1 – Evaluation metrics used to summarize the HC pipeline with the application of three
methods of data augmentation. We present the balanced-accuracy and G-mean scores level-wise to
evaluate our model. H19 results are presented in bold text in the table. It is seen that the HC pipeline
performs fairly well with data augmentation, achieving G-mean scores above ∼ 80% at all levels.
The shaded blue represents the augmentation methods that outperform H19. We observe that at
all levels, GpFit together with RF, performs better than H19 and it is represented in shaded grey.
The ‘∼’ represents a single value for the computed average metrics by taking into consideration the
overall classes and ‘No aug’ means no augmentation is applied on the data.

Augmentation
Methods

Classifiers G-Mean Balanced-accuracy

First Level: Eclipsing, Rotational and Pulsating Classification
H19 (No aug) RF 0.78/0.78/0.86 (∼ 0.79) 0.59/0.60/0.75 (∼ 0.61)

XGBoost 0.80/0.77/0.89 (∼ 0.81) 0.63/0.59/0.80 (∼ 0.65)
SMOTE

RF 0.80/0.78/0.89 (∼ 0.81) 0.63/0.60/0.79 (∼ 0.65)
XGBoost 0.82/0.76/0.89 (∼ 0.83) 0.66/0.57/0.79 (∼ 0.68)

RASLE
RF 0.82/0.77/0.89 (∼ 0.83) 0.66/0.58/0.79 (∼ 0.68)

XGBoost 0.80/0.75/0.89 (∼ 0.81) 0.63/0.56/0.79 (∼ 0.65)
GpFit

RF 0.80/0.75/0.89 (∼ 0.81) 0.63/0.56/0.78 (∼ 0.65)
Second Level: RR Lyrae, LPV, Cepheids and δ-Scuti

H19 (No aug) RF 0.99/1.00/0.97/1.00 (∼ 0.99) 0.98/0.99/0.93/1.00 (∼ 0.98)

SMOTE
XGBoost 0.99/1.00/1.00/0.95 (∼ 0.99) 0.97/0.99/1.00/0.90 (∼ 0.97)

RF 0.99/1.00/1.00/0.96 (∼ 0.99) 0.97/0.99/1.00/0.92 (∼ 0.97)
XGBoost 0.99/1.00/0.99/0.93 (∼ 0.99) 0.98/1.00/0.98/0.85 (∼ 0.98)

RASLE
RF 0.99/1.00/1.00/0.94 (∼ 0.99) 0.98/0.98/1.00/0.88 (∼ 0.98)

XGBoost 0.99/1.00/0.99/0.95 (∼ 0.99) 0.97/0.99/0.97/0.99 (∼ 0.98)
GpFit

RF 0.99/1.00/1.00/0.97 (∼ 0.99) 0.97/0.99/1.00/0.93 (∼ 0.98)
Second Level: Ecl and EA

H19 (No aug) RF 0.93/0.93 (∼ 0.93) 0.86/0.86 (∼ 0.86)
XGBoost 0.94/0.94 (∼ 0.94) 0.88/0.88 (∼ 0.88)

SMOTE
RF 0.94/0.94 (∼ 0.94) 0.88/0.88 (∼ 0.88)

RASLE
XGBoost 0.93/0.93 (∼ 0.93) 0.85/0.85 (∼ 0.85)

RF 0.93/0.93 (∼ 0.93) 0.85/0.86 (∼ 0.86)
XGBoost 0.93/0.93 (∼ 0.93) 0.88/0.88 (∼ 0.88)

GpFit
RF 0.94/0.94 (∼ 0.94) 0.87/0.88 (∼ 0.88)

Third Level: RRab, RRc, RRd and Blazhko
H19 (No aug) RF 0.97/0.92/0.65/0.44 (∼ 0.92) 0.94/0.85/0.40/0.18 (∼ 0.86)

SMOTE
XGBoost 0.95/0.92/0.67/0.58 (∼ 0.91) 0.91/0.83/0.42/0.31 (∼ 0.83)

RF 0.95/0.82/0.47/0.33 (∼ 0.91) 0.91/0.82/0.47/0.33 (∼ 0.83)
XGBoost 0.96/0.95/0.56/0.53 (∼ 0.92) 0.93/0.89/0.30/0.26 (∼ 0.87)

RASLE
RF 0.97/0.95/0.52/0.52 (∼ 0.92) 0.94/0.90/0.25/0.25 (∼ 0.87)

XGBoost 0.97/0.93/0.57/0.44 (∼ 0.92) 0.94/0.86/0.30/0.17 (∼ 0.85)
GpFit

RF 0.97/0.93/0.56/0.41 (∼ 0.92) 0.94/0.87/0.32/0.26 (∼ 0.87)
Third Level: ACEP and Cep-II

H19 (No aug) RF 0.90/0.90 (∼ 0.90) 0.82/0.80 (∼ 0.81)

SMOTE
XGBoost 0.88/0.88 (∼ 0.88) 0.78/0.76 (∼ 0.77)

RF 0.88/0.88 (∼ 0.88) 0.78/0.76 (∼ 0.77)
XGBoost 0.88/0.88 (∼ 0.88) 0.77/0.78 (∼ 0.77)

RASLE
RF 0.88/0.88 (∼ 0.88) 0.77/0.78 (∼ 0.78)

XGBoost 0.88/0.88 (∼ 0.88) 0.78/0.78 (∼ 0.78)
GpFit

RF 0.91/0.91 (∼ 0.91) 0.84/0.82 (∼ 0.83)
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5.7 Conclusion

In this work, we present a new approach for tackling the problem of imbalanced data: a level-

wise data augmentation in a hierarchical classification framework. Through an empirical in-

vestigation, we demonstrate three techniques for augmenting data, that is, SMOTE, RASLE and

GpFit are applied to variable star data. We show that using RF and GpFit together can effect-

ively improve recall rates, hence increasing the balanced-accuracy and G-mean scores by 1-4

per cent. Although, the results show that even after balancing the training set level-wise, such

approaches do not prevent the misclassification of the minority class, though their capacity to

increase other metrics (e.g. recall) still makes their application appealing. Perhaps, the mis-

classification occurs because these objects are just not easily separable and we observe similar

misclassifications in this work as determined by Drake et al. (2017) when they compared their

results with VSX. Therefore, it is imperative to have correctly labelled data that can accurately

be used to train automated ML pipeline in order to output reliable classification performance.
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Figure 5.8 – (a) shows the Period-Skew distribution of RRab, RRc, RRd and Blazhko after augment-
ing each respective class to 10,000 examples. We note that the classes are still overlapping in the
feature space, even after the augmentation process. (b) illustrates small disjoints in feature space
using t-distributed stochastic neighbour embedding (t-SNE) visualization in the small sample size
data (Blazhko, δ-Scuti, ACEP and Cep-II), after augmentation. No distinct separation is seen within
the feature space.
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Summary of contributions: The work developed in this chapter is entirely my own. Co-authors

provided supervision, suggestions of additional angles to discuss in the paper, and feedback

on earlier drafts of it. In this work, we present two labelling strategies to label our data (i)

thresholding which removes noisy labelling and (ii) the Latent class model, Llcm (Formann, 1984)

which incorporates labelling uncertainty in our model. Afterwards, we constructed three mod-

els based on CNNs to build a new robust system that separates real candidates from their bogus

counterparts for the MeerLICHT-transient search pipeline. In §6.3 we provide an overview of

the MeerLICHT telescope and we detail the data used for training and testing the MeerCRAB

algorithms. In §6.4, the methods, network set-up and architectures are described. Results and

experimental set-up are detailed in §6.5, followed by our main conclusions in §6.6.
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6.1 Overview

Astronomers require efficient automated detection and classification pipelines when conduct-

ing large-scale surveys of the (optical) sky for variable and transient sources. Such pipelines

are fundamentally important, as they permit rapid follow-up and analysis of those detections

most likely to be of scientific value. We therefore present a deep learning pipeline based on

the convolutional neural network architecture called MeerCRAB. It is designed to filter out the

so called “bogus” detections from true astrophysical sources in the transient detection pipeline

of the MeerLICHT telescope. Optical candidates are described using a variety of 2D images

and numerical features extracted from those images. The relationship between the input im-

ages and the target classes is unclear, since the ground truth is poorly defined and often the

subject of debate. This makes it difficult to determine which source of information should be

used to train a classification algorithm. We therefore used two methods for labelling our data

(i) thresholding and (ii) latent class model approaches. We deployed variants of MeerCRAB that

employed different network architectures trained using different combinations of input images

and training set choices, based on classification labels provided by volunteers. The deepest net-

work worked best with an accuracy of 99.5% and Matthews correlation coefficient (MCC) value

of 0.989. The best model was integrated to the MeerLICHT transient vetting pipeline, enabling

the accurate and efficient classification of detected transients that allows researchers to select

the most promising candidates for their research goals.

6.2 Introduction

Contemporary large-scale optical surveys such as Skymapper (Keller et al., 2007), the Palo-

mar Transient Factory (PTF, Rau et al. 2009), the Catalina Real-time Transient Survey (CRTS,

Drake et al. 2009), the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS1,

Kaiser et al. 2010), the All-Sky Automated Survey for SuperNova (ASASSN, Shappee et al.

2014), Gaia (Gaia Collaboration et al., 2016), the MeerLICHT telescope (Bloemen et al., 2016;

Paterson, 2019) and the Zwicky Transient Factory (ZTF, Bellm et al. 2019) are generating a pleth-

ora of transient events originating from a wide range of sources. These instruments enable us

to observe and explore changes in millions of sources/candidates, thus unlocking new oppor-

tunities for interpreting and understanding large families of sources.

The MeerLICHT facility provides a 2.7 square degree field-of-view at a pixel scale of 0.56”/pixel

(Bloemen et al., 2016) that maximises the volume of astrophysical candidates with brightnesses
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appropriate for spectroscopic follow-up using current large-aperture optical facilities. More

details regarding the survey can be found in Bloemen et al. (2016). Both MeerLICHT and the

BlackGEM array (Groot, 2019) (that is currently being installed at the La Silla Observatory in

Chile) will yield about 500 observations per night, per telescope, thus generating hundreds of

candidate alerts every clear night that could be spectroscopically followed up. BlackGEM’s

main focus is on the detection of optical counterparts to gravitational wave events and Meer-

LICHT is used to co-observe the sky as seen with the MeerKAT radio array (Jonas & MeerKAT

Team, 2016). MeerLICHT and BlackGEM are technically identical with MeerLICHT being the

prototype for the BlackGEM array.

Transients and variables are sources that vary on all timescales (from milliseconds up to

years) and they vary significantly from a reference image - either an increase or decrease in

brightness. Transients include phenomena such as supernovae, gamma-ray bursts, tidal dis-

ruption events and flare stars, to name a few. A successful transient follow-up program en-

ables the creation of a large database of transient and variable sources. Such large databases

are important for future analyses of data collected during upcoming photometric surveys such

as those conducted at the Vera C. Rubin observatory (LSST; LSST Science Collaboration et al.

2009). While we possess a reasonable understanding of many transient sources, achieved via

consideration of their spectra, the main goal of surveys undertaken with MeerLICHT is to find

and select the subset of sources that are not well understood. This will help us to increase

our knowledge of the different families of transients and variable stars. Secondly, given that

transients are rapidly fading sources due to their often destructive nature, MeerLICHT aims to

identify transients rapidly, as they are only visible for a limited amount of time for follow-up.

In order to have an early and rapid characterisation of these sources, it is fundamentally im-

portant to automate several steps within a transient detection pipeline, including the separation

of transients/astrophysical events from “bogus” detections, which has become a bottle-neck in

fast detection pipelines. So called “bogus” detections can occur as a result of saturated sources,

convolution problems, defects in the detector, atmospheric dispersion, unmodelled differences

at the subtraction stage and cosmic rays passing through the detector, amongst other things.

Most surveys use three images for transient event detection and extraction: (i) an early ob-

servation of the relevant sky (also known as the template/reference image), (ii) a calibrated recent

image (New/Science image), (iii) the difference image which is formed by subtracting the reference

image from the new/science image. Using the difference image, one can, in principle, effectively

detect transients, however, in many cases, the subtracted image contains bogus sources.
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(b) Bogus examples.

Figure 6.1 – Examples of bogus and real transients in the MeerLICHT database. Each column rep-
resents the new (N), reference (R), difference (D) and significance (S) images and the rows are the
different fields.

Therefore to be successful, surveys require an automated way to distinguish between real

and bogus candidates. To address this challenging task, most of the time-domain surveys men-

tioned previously have adopted machine learning (ML) algorithms to perform real-bogus clas-

sification. Convolutional neural networks (CNNs, Lecun et al. 1999) have been used in the

image domain as feature extractors for automatic vetting algorithms, for example, during the

Skymapper Survey (Gieseke et al., 2017), the High cadence Transient Survey (HiTS, Cabrera-

Vives et al. 2017) and the ZTF (Bellm et al., 2019) similarly utilized deep learning techniques.

Other ML techniques such as Random Forest (RF) and k-Nearest Neighbour (k-NN) classific-

ation approaches have been employed to classify light curve transients from CRTS (Richards

et al., 2011b; Hosenie et al., 2020, 2019b).

The classification task in these surveys is usually separated into two distinct steps. Firstly,

128



6. REAL-BOGUS CLASSIFICATION USING DEEP LEARNING FOR THE MEERLICHT FACILITY 6.3. The MeerLICHT facility

Figure 6.2 – MeerVETTING web-interface used to label MeerLICHT candidates as either real, bogus
or skip confused candidates. Vetters are provided with three images (new, reference, difference)
that are cut-outs of the science images.

bogus candidates are filtered out from real sources immediately after acquiring data, that is,

the classification between real and bogus. The second stage involves assigning an astrophys-

ical category/class label to each detected transient based on its spectroscopic or photometric

information (e.g. Muthukrishna et al. 2019). In this thesis, we focus on the automation of

the first stage, that is, the classification of sources as either Real or Bogus using deep learning

methods developed for the MeerLICHT facility.

We note that when using ML based automated classification systems, we should not use

models trained on data acquired at one telescope, to make predictions upon data acquired by

another. Doing so constitutes a violation of the i.i.d principle, which ultimately limits classific-

ation performance and consistency. In addition, labelling mistakes are often even more costly

- especially on rare sub-classes of transient phenomena. The performance of an ML system is

thus entirely dependent upon the quality and distributional properties of the input data and

the associated labels it is given. For a system to perform well for a given task, it must be built

using data and labels that are distributionally similar to the data it must process in practice.

6.3 The MeerLICHT facility

MeerLICHT is an optical wide-field telescope that is operated robotically. The telescope is

located at the Sutherland station of the South African Astronomical Observatory (SAAO). It

consists of a 65 cm primary mirror and provides a 2.7 square degree field-of-view at a pixel
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Figure 6.3 – Decision tree characterising real and bogus candidates. Vetters used this guide to label
each candidate and to construct a large training set for MeerCRAB.

scale of 0.56”/pixel (Bloemen et al., 2016). MeerLICHT will co-observe with the MeerKAT radio

telescope on the same field. The combination of an optical and a radio telescope will enable the

study of fast transient phenomena using simultaneous observations in two very distinct parts

of the electromagnetic spectrum, whilst eliminating the delay introduced by triggering optical

follow-up after the detection of a radio event.

MeerLICHT (and also BlackGEM) images are processed by the BlackBOX package* to pro-

duce image products and catalogues of all objects detected as well as transient candidates res-

ulting from optimal image subtraction. The raw MeerLICHT images are automatically trans-

ferred from SAAO to the Inter-university Institute for Data Intensive Astronomy (IDIA†) in

Cape Town, South Africa, and processed by BlackBOX.

First, the images are gain and overscan-corrected, and flat-fielded using a set of twilight

flats. Cosmic rays and satellite trails are detected using the astroscrappy‡ implementation of

LA Cosmic (van Dokkum, 2001) and STSDAS satdet§ modules, respectively. Subsequently,

the following steps are performed: object detection using Source-Extractor (Bertin & Arnouts,

1996), astrometric calibration using Astrometry.net (Lang et al., 2010), estimation of the Point

Spread Function (PSF) as a function of position using PSFEx (Bertin, 2011) and photometric

calibration. The latter is done using a custom-built catalogue of calibration stars in the Meer-

LICHT photometric system based on fitting stellar spectral templates to Gaia, SDSS, PanS-

*see https://github.com/pmvreeswijk/BlackBOX and https://github.com/pmvreeswijk/ZOGY
†see https://www.idia.ac.za/
‡see https://github.com/astropy/astroscrappy
§see https://acstools.readthedocs.io/en/latest/satdet.html
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TARRS, SkyMapper, 2MASS and GALEX photometry.

Finally, optimal image subtraction is performed, comparing the new image with a reference

image, closely following the prescriptions of Zackay, Ofek & Gal-Yam, a.k.a. ZOGY (Zackay

et al., 2016). To allow for the PSF to vary across the image, the full MeerLICHT images are

divided into 8 by 8 sub-images, on which the ZOGY calculations are applied separately, before

inserting the sub-images back into a full image. The following images are produced: a differ-

ence (D) image (see Eq. 13 in the ZOGY paper) and a statistics (also known as significance /

Scorr, S) image (see Eqs. 16 and 17 in the ZOGY paper) providing the probability of a transient

being present at a particular position. The Scorr image, S, is normalized by the Poisson noise of

the input images and the error resulting from the astrometric uncertainty when remapping the

reference image to the new image frame; this leads to the Scorr image (see Eq. 25 in the ZOGY

paper), which we also refer to as the significance image. The unit of this Scorr image is standard

deviations (sigma) and transients above an adopted significance threshold (we used Scorr≥12

for the data presented in this thesis) are normally selected on the basis that they are potentially

significant. In practice, many significant but artificial transients are present in collected data

due to cosmic rays, saturated stars, bad pixel regions or other image artefacts; many of these

can be filtered out with some basic constraints applied to the size and shape, but for each im-

age, tens of transient candidates remain where we only expect a few astrophysical transients

per image.

The MeerLICHT/BlackGEM database ingests the transient catalogues produced by Black-

BOX, including 1×1 arcminute thumbnail cut-outs around each transient of the new (N), the

reference (R), the difference (D) and significance / Scorr (S) image as shown in Figure 6.1. The

process of creating a training set for MeerCRAB is detailed in the next section.

6.3.1 MeerLICHT dataset and data labelling

Our goal is to automate the separation of real candidates from bogus objects for the MeerLICHT

transient detection pipeline. The main challenge faced when building a supervised automated

system is that we need to construct a large labelled data set that can be used to train a ML

model. In addition, the data set needs to be representative, that is, we should have a fairly

balanced number of real and bogus candidates. If the latter are unavailable, ML algorithms

built from such unrepresentative data tend to be biased towards the majority class (e.g. Hosenie

et al. 2019b).

We therefore construct a large representative training dataset for the Real-Bogus challenge
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Figure 6.4 – Thresholding method used to analyse the labelling provided by vetters. The x-axis
represents criteria we applied on the labelling. For Atleast 9 (T9), this indicates that 9 out of the 10
vetters have agreed on the labelling. Similar strategy applies for Atleast 5 (T5) to Atleast 10 (T10).
The y-axis is the number of candidates with a given label, either real or bogus.

by manually vetting a selection of transients, using a web-interface, known as MeerVETTING as

shown in Figure 6.2. Using the MeerLICHT database, a set of 5000 transient candidates were

randomly selected from MeerLICHT data taken between 2017 and 2020. A team of 10 people

(‘vetters’) were presented with three 100×100 pixels images during vetting, i.e. the new (N),

reference (R), and difference (D). The properties for real and bogus candidates were defined

as a phenomenological distinction based solely on the MeerLICHT data, not an astrophysical

distinction. In the context of MeerLICHT data, ‘positive’ implies positive pixel values and

‘negative’ points to negative pixel values located at the centre of the 100×100 images.

• Real is any source that is of astrophysical origin, and variable in time and/or position. A

real source therefore

1. has a shape that reflects a point-source. Most MeerLICHT data is taken in decent

focus conditions, so it implies that the source is round, and has a (visual) extent of

∼ 5-10 pixels,

2. is positive in either the new or the reference image,

3. can be variable in both directions, e.g. fading or brightening between the new and

reference image, and is therefore positive or negative in the difference image and the

significance image,

4. can (dis)appear between the new and the reference image. This means that in one of

the two images there is no source at all, and in the other there is a clear point-source.
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• Bogus is any source that is not of astrophysical origin. A bogus source therefore generally

has

1. a shape that is not a point-source: not round, not ‘Gaussian‘, with a size . 5 pixels

or & 10 pixels,

2. is negative in the new image,

3. is positive in the new image but negative in the reference image.

Before using the MeerVETTING web-interface, vetters were provided with a visual guide of

the various properties of real and bogus candidates. By providing vetters with a guide, we

in principle create better annotators, who should produce better labels which in turn should

yield improved ML models - as long as the guide itself is not inherently biased in some way.

The above characteristics are summarised in a decision-tree as shown in Figure 6.3. Using the

MeerVETTING web-interface, vetters based their decision to manually vet a source as either Real

or Bogus by following the decision-tree.

Despite these guidelines, the decision is still subjective whilst there remain boundary cases

that are hard to label. Therefore large training datasets will almost always contain examples

with inaccurate labels. We test the performance of the MeerCRAB models by (i) removing con-

fused candidates (noisy labels) using a thresholding method, and (ii) including the entire dataset

with labels based on the latent class model, Llcm. In the following sections, we provide a brief

discussion of the two methods.

6.3.2 Labelling data with Thresholding Method

Our sample of real-bogus training samples is constructed from a pool of 5000 candidates that

has been selected randomly. Each object is classified by 10 vetters as either real, bogus or can

be skipped if they are unsure how to classify it. Each vetter’s ability to classify a particular

candidate may vary according to the class, images, criteria and experience. This may result in

very different classifications for the same candidate. We therefore assign a probability P (Real)

and P (Bogus) to each vetted candidate as follows:

P (Real) =
n (R)
n (T)

, (6.3.1)

P (Bogus) =
n (B)
n (T)

, (6.3.2)
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Figure 6.5 – An example of the procedure for selecting the candidates for training the CNN using
the thresholding approach, applied on the 5000 candidates. In this example, Atleast 9 (T9) is applied
and we note that 623 candidates are discarded. Then, the remaining candidates (4377) are split into
training, validation and test set for training and evaluation processes.

where n (R) is the total number of vetters who classified a candidate as real, n (B) is the total

number of vetters who classified a candidate as bogus, n (T) is the total number of vetters

classifying a particular candidate and in this case n (T) = 10 as none of the vetters skipped a

particular candidate. The vetters classification results are illustrated in a bar plot as shown in

Figure 6.4. If a candidate has P (Real) ≥ 0.9, it will be given the label real or if P (Bogus) ≥ 0.9,

it will be assigned as bogus in the bar plots with x-axis “Atleast 9” (T9). Each bar corresponds

to a threshold, e.g, the last bar indicates that out of 5000 candidates, 3216 labelled objects are

agreed upon by all the 10 vetters, of which 1572 are bogus and 1644 real. Therefore, there

are 1784 sources remaining for which vetters did not agree completely and these confused

candidates are removed from the data when using T10. In the “Atleast 9” (T9) case, there are

2167 sources where vetters agreed they are bogus and 2210 sources where “Atleast 9” vetters

say they are real, and so on. Going down to T5, that is, “Atleast 5” vetters where all the 5000

candidates have been assigned a class, with 2384 bogus and 2616 real. In this thesis, we will

analyse what happens to the classification results when varying thresholds from T8 to T10.

6.3.3 Labelling data with Latent Class Model, Llcm

Latent class model (LCM) is a statistical technique used to classify candidates into mutually

exclusive, or latent classes. When data is in the form of a series of categorical responses,
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Figure 6.6 – The three network architectures considered in this work: MeerCRAB1, MeerCRAB2 and
MeerCRAB3. We show four images grouped together (new, reference, difference and significance) to
form the input of the networks, followed by convolutional layers, max-pooling, dropout and dense
layers. At the end, the network outputs a probability whether a candidate is either real or bogus
during the prediction phase.

for example individual-level voting data as in the case of real-bogus classification, it is often

an interesting technique to identify and characterize clusters of similar cases. In this work,

some confused sources¶ were removed from the data when using the thresholding method as

shown in Figure 6.5. The process outlined in Figure 6.5, is exactly the same irrespective of

the threshold used, the only difference lies in the number of candidates removed when the

threshold is applied. However, these confused sources are useful for determining how the

system will perform in a real-world scenario. Therefore, confused examples will also be used

¶5 vetters labelled them as bogus and the other 5 as real.
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Figure 6.7 – Learning curves of the MeerCRAB3 model with T9 and NRD as input. The left panel
shows the training and validation accuracy over iterations/epochs. The right panel shows the
change in negative log-likelihood/loss with epochs. It can be observed that the training object-
ive decreases consistently over iterations, but at some point (around 48 epochs) the validation set
loss eventually starts to increase again. An early-stopping technique is applied to avoid overfitting
by terminating that training process. At this stage, the algorithm picks the best parameters at 48
epochs.

during the evaluation phase, and this is achieved by using Llcm to assign them their most likely

labels. Therefore, for the Llcm technique we used all 5000 candidates during the training and

evaluation phase.

LCM relates a set of observed multivariate variables to a set of latent variables. The latent

variable is usually discrete. A class is identified by a pattern of conditional probabilities that

provide the chance that variables are given certain values.

Let us take the situation of real versus bogus. We want to use LCM to understand the labels

provided by the vetters and give a final label to each source. Imagine that class 0-1 is given to

a range of candidates with characteristics a, b, c, and d and that class 0 is associated with the

presence of characteristics a, b, and c, and class 1 with characteristics b, c and d. LCM will try to

detect the presence of latent classes (the candidates entities), generating patterns of association

in the characteristics. Then LCM is used to classify candidates according to their maximum

likelihood class membership.

The introduction of a latent variable ensures conditional independence within each latent

class, the observed variables, in this case the vetters’ labelling, are statistically independent.

The association between the observed variables is explained by the classes of the latent variable

(McCutcheon, 1987). The latent class model can be formulated as follows:

Pi1,i2,...,iN ≈
C

∑
c
Pc

N

∏
n
Pn

in,t, (6.3.3)

where C is the number of latent classes and in our case, C = 2, i.e. real and bogus classes. N is
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Figure 6.8 – Probability distribution on test data with 1095 candidates, trained with model config-
uration MeerCRAB3 with T9 and NRD as input.

the number of observed binary variables (in this case, n = 1, . . . , 10, since we have 10 vetters)

and Pc are the unconditional probabilities that should sum to one. Pn
in,t are the marginal/con-

ditional probabilities.

6.4 MeerCRAB: A Real-Bogus Intelligent Distinguisher for the Meer-

LICHT facility using Deep Learning

Before providing further details on the model used, we define a few important terms that will

be used in this work. We labelled bogus examples as 0 and real examples as 1, therefore,

• TP: true positives are real candidates correctly classified as real,

• TN: true negatives are bogus candidates correctly classified as bogus,

• FP: false positives are bogus candidates that are classified as real,

• FN: false negatives are real candidates that are classified as bogus.

From the above definition, our classifier must minimize the number of FP and FN. This is

because we do not want to lose many real candidates falsely classified as bogus (FN) and we

want to minimize contamination (FP) by any bogus candidates in our final sample.

To overcome this challenge, we employed a Convolutional Neural Network as it has been

proven by various studies to have excellent classification performance (Gieseke et al., 2017;

Cabrera-Vives et al., 2017; Bellm et al., 2019; Vafaei Sadr et al., 2019; Lin et al., 2020). In this
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work, we construct three CNN models, referred to as MeerCRAB1, MeerCRAB2, and MeerCRAB3.

The details of the CNN models are illustrated in Figure 6.6. A brief overview of each layer in

the MeerCRAB architecture is explained in details in §3.4.3. MeerCRAB1 is a network with a single

convolutional layer (CL), MeerCRAB2 comprises two CLs while MeerCRAB3 is a deeper network

with three CLs. Each CL is made of (3× 3) pixel filters, together with a Rectified Linear Unit

(ReLU, Agarap 2018) function, followed by a pooling layer with filter size of (2× 2). After the

CLs, we used fully connected layers (also known as dense layers). In addition, we use a dropout

rate varying from (0.1 to 0.5) after each of the pooling and dense layers as seen in Figure 6.6 to

avoid over-fitting. For the output layer, we used a softmax function that outputs a probability

value between 0 and 1.

The implementation of MeerCRAB is made using the Tensorflow|| and Keras (Chollet &

others, 2018) API with Python v3.6. For training the MeerCRAB models, we used an Nvidia

GeForce GTX 1080Ti 11GB GPU. During training, the binary cross-entropy loss function, Adam

optimizer (Kingma & Ba, 2014) with a low learning rate (lr = 0.0002) and a batch-size of 64 were

used. We then split our data for each and every experiment as follows: 50% training, 20%

validation and 30% testing. As input to the MeerCRAB models, we cropped the (100× 100) pixel

images that were analysed by vetters to (30× 30) pixel images. We also utilized the (100× 100)

pixel images during training, but we observed a drop in performance and therefore only use

the (30× 30) pixel images cropped from the centre. This pre-processing step increases the

likelihood that the models will retain useful information and not be distracted by noise or

spurious patterns.

As described above, the MeerLICHT database provides four images N, R, D and S. We

perform several analyses which are presented in §6.5, where we use a combination of these im-

ages. This work allows us to understand which image/s is/are important for helping the CNN

to output better classification results. We therefore use cut-outs of N, R, D, S and stack them to

form either of these input images: NRDS (30× 30× 4), NRD (30× 30× 3), NR (30× 30× 2),

D (30× 30× 1), or S (30× 30× 1).

Afterwards, we apply data augmentation to mitigate the risk of over-fitting which may res-

ult in poor generalisation performance upon data outside the training set. Therefore, at each

training step, the images are augmented by flipping them randomly in a horizontal and/or

vertical direction. We do not apply any rotation or translation to the images. This data aug-

mentation step is important as it helps to increase the training sample size and the probability

||https://github.com/tensorflow/tensorflow
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Table 6.4.1 – Contingency table used as a visual aid for model selection. The sum of A, B, C, and
D represents the total number of instances in the test set. A is the number of instances correctly
classified by both models. D is the number of instances misclassified by both models. B is the
number of objects that model 1 correctly classified, but has been misclassified by model 2. C is the
number of examples misclassified by model 1 but being correctly classified by model 2.

Model 2 Correct Model 2 Wrong
Model 1 Correct A B
Model 1 Wrong C D

that the CNN models will encounter similar images twice, will decrease.

Moreover, to further avoid any over-fitting during training, we employ an early stopping

technique to stop the training process if no further decrease in validation loss is observed for

several epochs. The various cases and models are trained for a number of epochs varying from

40 to 150. We show the optimisation curves (the accuracy and loss curves) during training

and validation in Figure 6.7 for the best models with NRD and T9 as input. We observe that

both the training and validation accuracy reaches a range between 98.5% to 99.5% where the

algorithm picks the best parameters at 48 epochs.

6.4.1 Evaluation Performance

We use different evaluation techniques as detailed in §3.2.3, for instance, the accuracy, the preci-

sion, the recall and the Matthew correlation coefficient (MCC) metrics to evaluate the MeerCRAB

models. In addition, we utilize the McNemar test for model comparison.

6.4.1.1 McNemar’s Test

The McNemar test (McNemar, 1947) is a statistical test used to check marginal homogeneity in

the context of statistical models. It is used to compare the predictive accuracy of two models’

predictions and it is based on a contingency table as shown in Table 6.4.1. The latter provides

insights for model selection, in contrast to a typical confusion matrix. It shows the number

of instances/predictions model 1 and model 2 got right or wrong given a fixed test set. In

McNemar’s test, a null hypothesis, H0 is formulated such that P (B) and P (C) are similar or it

can be interpreted as two models perform equally well. Therefore, the alternative hypothesis

H1 is that P (B) 6= P (C) or the two models do not perform equally well. Edwards (1948)

proposed a corrected McNemar test statistic that can be computed as given below:

χ2 =
(|B− C| − 1)2

B + C
. (6.4.1)
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Figure 6.9 – Confusion Matrix without normalisation from a test set of 1095 candidates. The model
is trained using MeerCRAB3 with T9 and NRD as input. The diagonal represents the correctly classi-
fied instances in the test. The off-diagonals represent the number of instances that are misclassified.
We note that we have a very low FP and FN with this model configuration.

If the sum of B and C is greater than 25 or sufficiently large, under H0 the χ2 value follows

a chi-squared distribution with one degree of freedom. If we set a significance threshold for

example, α = 0.05, the p-value can be computed. Assuming that the null-hypothesis is true,

the p-value implies the probability of observing a larger chi-squared value. However, if the p-

value is less than α, then the null hypothesis is rejected, that is, the two models do not perform

equally well.

In the case where the sum of B and C is less than 25, an exact binomial test is used instead,

since the chi-squared value may not be well approximated by the chi-squared distribution.

Thus, the exact p-value is calculated as follows:

p-value = 2×
n

∑
i=B

(
n
i

)
0.5i(1− 0.5)n−i, (6.4.2)

where n = B + C and a factor 2 indicates the computation of a two-sided p-value. For model

selection, if the p-value is less than 0.05, we reject the null hypothesis, thus one model is out-

performing the other. However, if the p-value is greater than 0.05, we do not reject the null

hypothesis and it indicates that both models perform equally well.

6.5 Results and Analysis

The classification performance of the MeerCRAB models are analysed as follows:
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(a) Bogus feature maps (b) Real feature maps

Figure 6.10 – Feature maps induced by the convolutional layer in MeerCRAB3 given a “bogus” and
“real” source, respectively. We observe that the model distinguishes between background noise and
the source at the centre of an image.

• The MeerCRAB models are trained on a subset sample of input images and validated on an

unseen image sample.

• During the prediction phase, the trained models are then used to output probabilistic

predictions for unseen images in the test set as shown in Figure 6.8. The probability dis-

tribution from the output of the MeerCRAB models spanned the range of PMeerCRAB ∈
[
0; 1].

Therefore, a candidate is predicted as bogus if PMeerCRAB < 0.5 and as real if PMeerCRAB ≥ 0.5.

PMeerCRAB = 0.5 indicates a random guess and the MeerCRAB models are confused between

real and bogus candidates.

We investigated various scenarios for training and evaluating the pipeline. We made use

of three network structures: MeerCRAB1, MeerCRAB2, & MeerCRAB3. We also varied the number

of images used as input to the three model architectures. We use these combinations of input

images NRDS, NRD, NRS, NR, D and S independently. In addition, we investigated the

effect of varying the thresholding applied on data labelling, ie., the effect of noisy data labels

as discussed in §6.3.2 and §6.3.3.

For all the experiments considered, it is worth mentioning that we train the networks with

and without data augmentation. We found that employing data augmentation decreases the

number of misclassifications. Therefore, we report results with the models trained with data

augmentation only in this work. Using data augmentation, we found the objective values

steadily decreased during the fitting process on both the training set and validation set. Figure

6.7 provides an illustration of the objective functions and we observe that both the training and

validation loss are close to each other, indicating that the models did not overfit on the training
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Table 6.5.1 – The results for various labelling methods are presented in terms of precision, recall,
accuracy and MCC values using NRD as input to the three models.

Methods of labelling Precision Recall Accuracy MCC

MeerCRAB1
Llcm 0.96 0.96 0.960 0.920
T8 0.98 0.98 0.980 0.958
T9 0.98 0.98 0.979 0.958
T10 0.99 0.99 0.991 0.983

MeerCRAB2
Llcm 0.97 0.97 0.967 0.936
T8 0.99 0.98 0.977 0.953
T9 0.99 0.99 0.986 0.973
T10 0.99 0.99 0.994 0.988

MeerCRAB3
Llcm 0.97 0.97 0.968 0.936
T8 0.99 0.99 0.988 0.976
T9 0.99 0.99 0.995 0.989
T10 1.00 1.00 0.998 0.995

sample. Hence, the dropout layers as well as various regularization techniques used in the

models are effective measures to prevent overfitting.

6.5.1 Case studies

We start by providing an overall comparison of various scenarios used and will subsequently

analyse some of the models along with certain modifications in more details. The MeerCRAB

models are evaluated on various metrics. Based on the PMeerCRAB value, we construct a confusion

matrix to have an overview of the classification results. The confusion matrices display the

fraction of correctly classified candidates as TP, TN along the diagonal. The off-diagonal values

in the confusion matrices show the misclassified examples (FP and FN). We also evaluated the

models based on precision, recall, accuracy, and MCC as discussed in §6.4.1. The results for the

various scenario cases are summarised in Table 6.5.1, 6.5.2, 6.5.3, 6.5.4 and Figure 6.9.

6.5.1.1 Data labelling based on Thresholding criteria

In supervised learning algorithms, the success of deep neural networks depends highly on the

availability and accessibility of high-quality labelled training data. In this work, we found that

the presence of label errors (label noise) in the training data greatly reduced the accuracy of

all MeerCRAB models on test data. Unfortunately, large training datasets almost always contain

examples with inaccurate or incorrect labels. It is a challenging task to train deep neural net-

142



6. REAL-BOGUS CLASSIFICATION USING DEEP LEARNING FOR THE MEERLICHT FACILITY 6.5. Results and Analysis

MeerCRAB1 Right MeerCRAB1 Wrong

MeerCRAB2 Right 1065 15

MeerCRAB2 Wrong 7 8

(a) MeerCRAB1 vs MeerCRAB2

MeerCRAB2 Right MeerCRAB2 Wrong

MeerCRAB3 Right 1080 9

MeerCRAB3 Wrong 0 6

(b) MeerCRAB2 vs MeerCRAB3

MeerCRAB1 Right MeerCRAB1 Wrong

MeerCRAB3 Right 1071 18

MeerCRAB3 Wrong 1 5

(c) MeerCRAB1 vs MeerCRAB3

Figure 6.11 – The contingency tables for the three models under consideration with T9 and NRD
as input. For model selection, we compare the performance accuracy of each model on a similar
test set. From the plots, we observe that MeerCRAB3 is a better model compared to MeerCRAB1 and
MeerCRAB2.

works (DNNs) robustly with noisy labels (Han et al., 2018) as DNNs have a high capacity to fit

noisy labels (Zhang et al., 2016), and this results in poorer model performance in practice.

In this work, in order to sanity check the potential generalisation performance of our mod-

els, we utilised latent class models, Llcm to label our data - including those samples for which

vetters could not reach agreement. This approach allows us to introduce labelling noise. Whilst

this noise reduces the performance of our models causing accuracy to drop to 0.968, it helps us

obtain an impression of real-world performance where imperfect labelling and noise cannot be

controlled for. Results show that models trained using such data still perform very well. This

indicates that the networks are robust to noise.

Our analysis also involves comparing various thresholding criteria: T8, T9, and T10 along

with the MeerCRAB3 model with NRD as input. The results for labelling techniques are sum-

marised in Table 6.5.1. We observe that as the threshold increased from T8 to T10, the accuracy

of the model increases from 0.988 to 0.998 and MCC values increase from 0.976 to 0.995. How-

ever, when using the Llcm method, we note a significant drop in Llcm accuracy (0.968) as deep

networks tend to memorize training label noise, resulting in poorer model performance. There-
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Table 6.5.2 – The results with Threshold 8 (T8) are presented in terms of precision, recall, accuracy
and MCC values using various combinations of input images (new (N), reference (R), difference
(D), and significance (S)) to the three models.

Number of Images Precision Recall Accuracy MCC

MeerCRAB1
NRDS 0.98 0.98 0.980 0.958
NRD 0.98 0.98 0.977 0.954
NRS 0.97 0.97 0.971 0.942
NR 0.96 0.96 0.962 0.923
D 0.88 0.88 0.877 0.762
S 0.83 0.83 0.831 0.662

MeerCRAB2
NRDS 0.97 0.97 0.975 0.948
NRD 0.98 0.98 0.977 0.953
NRS 0.99 0.99 0.986 0.973
NR 0.99 0.99 0.987 0.975
D 0.91 0.91 0.910 0.825
S 0.89 0.89 0.887 0.777

MeerCRAB3
NRDS 0.98 0.98 0.983 0.966
NRD 0.99 0.99 0.988 0.976
NRS 0.98 0.98 0.983 0.968
NR 0.98 0.98 0.981 0.963
D 0.92 0.92 0.921 0.843
S 0.89 0.89 0.891 0.786

fore, it is necessary to obtain fairly high-quality labels for a CNN to work appropriately, thus

removing noisy labelling from the model yields better model performance.

However, from here on we focus on experimentation that uses labels obtained via threshold-

ing criteria : T9 only, and not the Llcm. we do this as we aim to have the best optimized model

with an adequate number of candidates along with a good level of agreement on the labelling,

such that we obtain fewer false positives and false negatives.

6.5.1.2 Network architectures

We trained the MeerCRAB pipeline with three different architectures using T9 data. MeerCRAB1

consists of a single CL, MeerCRAB2 is trained with 2 CLs and MeerCRAB3 with 3 CLs. From Table

6.5.2, Table 6.5.3 and Table 6.5.4, we note that MeerCRAB1 which is a shallow network yields

a surprisingly good performance for T8 to T10. Looking at Table 6.5.3 with T9, we note that

MeerCRAB1 achieves an accuracy of 0.980 and MCC = 0.960 on the test set. When using deeper

networks (MeerCRAB2 and MeerCRAB3), we found that we obtain a better performance. The

accuracy for MeerCRAB2 and MeerCRAB3 using NRD as input are 0.986 & 0.995 and MCC values
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Table 6.5.3 – The results with Threshold 9 (T9) are presented in terms of precision, recall, accuracy
and MCC values using various combinations of input images (new (N), reference (R), difference
(D), and significance (S)) to the three models.

Number of Images Precision Recall Accuracy MCC

MeerCRAB1
NRDS 0.98 0.98 0.980 0.960
NRD 0.98 0.98 0.979 0.958
NRS 0.98 0.98 0.978 0.956
NR 0.97 0.97 0.972 0.946
D 0.86 0.83 0.823 0.690
S 0.86 0.85 0.853 0.708

MeerCRAB2
NRDS 0.99 0.99 0.988 0.976
NRD 0.99 0.99 0.986 0.973
NRS 0.99 0.99 0.986 0.973
NR 0.99 0.99 0.989 0.978
D 0.91 0.91 0.912 0.827
S 0.89 0.87 0.865 0.751

MeerCRAB3
NRDS 0.99 0.99 0.987 0.974
NRD 0.99 0.99 0.995 0.989
NRS 0.99 0.99 0.990 0.980
NR 0.99 0.99 0.989 0.978
D 0.93 0.93 0.931 0.863
S 0.89 0.87 0.868 0.760

are 0.973 & 0.989 respectively.

To have a better understanding of why MeerCRAB1 yields a good performance, we plot in

Figure 6.10 the feature maps of the CL for a bogus and real example. We observe that there

appears to be feature maps that activate on the background (“dark centre”), while other maps

activate on different parts of the centre. This suggests that the network can distinguish between

the source itself and the background, thus it is able to classify images relatively unhindered by

different levels of noise.

To determine which network performs best, we employ the McNemar statistical test as

discussed in §6.4.1.1. We plot the contingency tables for the three models in Figure 6.11. The

sample size in the B and C cells are relatively small and (B + C) < 25 to approximate the

chi-square value from the chi-square distribution. We therefore compute the p-value in this

case from a binomial distribution. Assuming we use α = 0.05, if the p-value is less than 0.05,

we reject the null hypothesis that both models perform equally well on the test set and if the

p-value is greater than 0.05, we do not reject the null hypothesis, we then conclude that the

two models perform equally well. From Table 6.6.1, we note that when comparing MeerCRAB1

145



6. REAL-BOGUS CLASSIFICATION USING DEEP LEARNING FOR THE MEERLICHT FACILITY 6.5. Results and Analysis

Table 6.5.4 – The results with Threshold 10 (T10) are presented in terms of precision, recall, accuracy
and MCC values using various combinations of input images (new (N), reference (R), difference
(D), and significance (S)) to the three models.

Number of Images Precision Recall Accuracy MCC

MeerCRAB1
NRDS 1.00 1.00 0.995 0.990
NRD 0.99 0.99 0.991 0.983
NRS 0.98 0.98 0.985 0.970
NR 0.99 0.99 0.986 0.973
D 0.92 0.92 0.920 0.841
S 0.93 0.93 0.934 0.868

MeerCRAB2
NRDS 1.00 1.00 0.995 0.990
NRD 0.99 0.99 0.994 0.988
NRS 0.98 0.98 0.984 0.968
NR 0.99 0.99 0.992 0.985
D 0.94 0.94 0.944 0.888
S 0.94 0.94 0.940 0.881

MeerCRAB3
NRDS 0.99 0.99 0.990 0.980
NRD 1.00 1.00 0.998 0.995
NRS 0.99 0.99 0.994 0.988
NR 0.99 0.99 0.985 0.970
D 0.94 0.94 0.939 0.878
S 0.94 0.94 0.943 0.886

with MeerCRAB2, the p-values are greater than 0.05, we therefore conclude that the models have

an equal performance. However, when comparing MeerCRAB1 with MeerCRAB3 and MeerCRAB2

with MeerCRAB3, the p-value is less than 0.05 this indicates that one model is performing better.

When we analyse Figure 6.11(b,c), we note that MeerCRAB3 has less instances being misclassified

compared to MeerCRAB1 and MeerCRAB2. Therefore, we conclude MeerCRAB3 is a better model

compared to MeerCRAB1 and MeerCRAB2.

6.5.1.3 Input Images

In this section, we investigate the effect of adding and removing images from the input to

the CNN models. Vetters were shown only three images during vetting: N, R and D images.

However, when training and evaluating the three networks, we compare the different groups

of images, to see whether a competitive performance can be achieved with more or less input

data. Focusing on T9 and MeerCRAB3, we note that NRD input yields the best performing

model with an accuracy of 0.995 and MCC value of 0.989. Similar results are obtained with

T8 and T10. The second best model in T9 is with input NRS yielding an accuracy of 0.990
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Figure 6.12 – The false positives obtained with MeerCRAB3, trained with T9 labelling and NRD as
input. These candidates are classified as bogus by humans. However, the best performing network
misclassified them as real.

and MCC value of 0.980. With only NR as input, we note that MeerCRAB3 performs equally

well. Therefore, using a reduced image input set (NR) yields a competitive performance and

indicates that a reduced set of images is sufficient for separating real and bogus. However, we

note that using only D or S as input worsens the classification performance and this indicates

that using information only from the difference or significance imaging is insufficient.

6.5.2 Analysis of misclassification

With the various investigations, it is worth mentioning that the classification performance is,

in general, very similar for the different MeerCRAB models, i.e., neither a particular network

structure nor the involved parameters seem to have a significant influence on the final classi-

fication performance. The conclusion one can draw at this point is that a standard CNN model

seems to be well-suited for the task at hand and that even relatively simple networks yield a

performance that is competitive with state-of-the-art approaches.
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Figure 6.13 – The false negatives obtained with MeerCRAB3, trained with T9 labelling and NRD as
input. These candidates have been classified as real by vetters. However, the best model misclassi-
fied them as bogus candidates. The first two rows illustrate two real candidates with characteristics
of an extended source with > 10 pixels extent. The large extent of the sources can be attributed to
that fact that the seeing can be very poor.

In this section, we focus on our best model, MeerCRAB3 network with the NRD configuration

and T9 as input. In Figure 6.12 and Figure 6.13, we present all misclassifications it made

In Figure 6.12, the top two rows show bogus candidates with the presence of elongated

spikes but the CNN found high pixel values at the centre, thus got confused and classified

them as a real. The last row shows bogus candidates caused by blinking tail light of planes

which can be recognized by the stripe. However, the MeerCRAB models seemingly recognized

it as real due to the presence of a strong point source at the centre. However, we find that the

decision made by MeerCRAB fulfils our requirements as we do not feed information related to

elongated spikes and tail-light-trails when training the ML algorithm. These are not commonly

occurring bogus events at present but may be added to our training set in the future and it will

enable MeerCRAB to identify them.

Figure 6.13 shows real candidates being misclassified as bogus. The top two rows are likely
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to be real point sources because the Seeing can be very poor, thus leading to the large extent of >

10 pixels. The fact that the source in the top row is oriented differently in the science/new and

reference image suggests that it is not a Galaxy. However, these misclassifications are expected

as these characteristics of real objects were not provided when training the network.

6.6 Conclusions

A deep learning framework, MeerCRAB, integrated in the MeerLICHT facility is a step forward

in the automation and improvement of the transient vetting process. In practice, by using

MeerCRAB we can significantly reduce the number of missed transients per night and this may

have a great impact on detecting and classifying the unknown unknowns of our universe.

In this thesis, we detailed the process of developing MeerCRAB. To be able to train a deep

neural network, we construct a large, high-quality labelled and representative dataset. To do

so, we developed a vetting guidelines for vetters and taught them how real or bogus candidates

in the MeerLICHT data appear. Then, a sample of 5000 candidates were provided to 10 vetters

for labelling. Based on the vetters labels, we applied two methods to assign the final labelling

to each candidate: (i) the thresholding method (T8, T9 & T10) and (ii) latent class model Llcm. At

T9, a source is labelled as real if atleast 9 out of the 10 vetters labelled it as real or vice-versa. We

found that T9 is a good threshold criteria to be used since we have enough samples for training

and testing the models, hence providing high quality labelled data. We found that going lower

than this (i.e. T7, T8) or using Llcm, added noisy labels. When used to train the network, such

data decreased the performance of the models.

Moreover, we demonstrated that by increasing the depth of the network, (MeerCRAB1 to

MeerCRAB3), the performance of the model increases as well. McNemar’s statistical test showed

that MeerCRAB3 performs better than MeerCRAB1 and MeerCRAB2. In addition, we used a com-

bination of input images (new (N), reference (R), difference (D), significance (S)) as input to

the three networks. We found that with only NR, we obtained competitive results. We also

observed that adding the difference and significance images improves network performance.

In summary the best performing model has the following configuration: T9 with MeerCRAB3

having NRD as input. This model yields an accuracy of 99.5 % and MCC value of 0.989. This

performance achieves an acceptable false positive and false negative rate for the real-time Meer-

LICHT transient detection pipeline requirements.

MeerCRAB is a crucial component of the MeerLICHT project which aims to detect and identify

transient and variable sources. With the streaming data coming from MeerLICHT, the vast ma-

149



6. REAL-BOGUS CLASSIFICATION USING DEEP LEARNING FOR THE MEERLICHT FACILITY 6.6. Conclusions

Table 6.6.1 – McNemar’s Test using T9 and NRD results for model selection. MeerCRAB3 has the best
performance than MeerCRAB1 and MeerCRAB2 as the p-value is less than 0.05.

Models P-value
MeerCRAB1 vs MeerCRAB2 0.13400
MeerCRAB2 vs MeerCRAB3 0.00390
MeerCRAB1 vs MeerCRAB3 0.00008

jority of astrophysical data are not only challenging to store, but also to classify efficiently and

effectively. Therefore, MeerCRAB will enable the rapid identification of promising astrophysical

sources in a timely-manner. In addition, MeerCRAB can be adapted to be a system that disen-

tangles interesting objects from a noisy background. We have already implemented similar

models in radio astronomy that distinguish Single Pulses from Radio Frequency Interference

for the MeerKAT telescope (FRBID**: Fast Radio Burst Intelligent Distinguisher). MeerCRAB is

a flexible software system, thus we were able to easily modify it to integrate different images

as its inputs and as result, achieved high levels of performance when using it for radio astro-

nomy images. Given the performance of MeerCRAB on both optical and radio image sources in

astronomy, the method may have utility for those working in related areas.

**See https://github.com/Zafiirah13/multi_input_frbid and https://github.com/Zafiirah13/FRBID
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7
FRBID: FAST RADIO BURST INTELLIGENT

DISTINGUISHER AT THE MEERKAT TELESCOPE

This chapter has been submitted as a conference paper in NeurIPS conference 2021 with the

title: ‘FRBID: Fast Radio Burst Intelligent Distinguisher at the MeerKAT Telescope’.

Zafiirah Hosenie, Robert Lyon, Benjamin Stappers et al.

Submitted in NeurIPS conference 2021 on 27 September 2021.

Fast Radio Bursts (FRBs, Lorimer 2008) are luminous radio pulses, originating from ex-

tragalactic distances and have a duration of just a few milliseconds. This work is part of the

MeerTRAP (more TRAnsients and Pulsars) project*. The aim is to use the MeerKAT telescope

located in South Africa to search for, detect and localise those bursts (pulsars and fast radio

transients) accurately in real-time. MeerTRAP will detect dozens of new bursts and localise

them with high precision, thus will enable us to identify their hosts and distances. This in-

formation will enhance their use as cosmological probes. In this chapter, we provide a short

overview of a single stage in the MeerTRAP pipeline, that is, the design, implementation

and exploitation of state-of-the-art machine learning techniques (FRBID) to classify between

Single Pulses (can be periodic pulsars (1ms - 30s), rotating radio transients (RRATs) or FRBs)

and noise, and Radio Frequency Interference jointly referred to as N-RFI in real time at the

MeerKAT telescope. At the moment, FRBID is currently being used ‘off-line’ but will be moved

‘online’ soon.

*https://www.meertrap.org/
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Figure 7.1 – An overview of the MeerTRAP real-time triggering pipeline at the MeerKAT telescope.
The red highlighted region is the ML classifier developed in this work. Figure courtesy of Jankowski
et al. (2020).

7.1 Introduction

Detecting and understanding the origin of FRBs is extremely challenging as their sporadic

nature demands vast amounts of observing time and/or wide fields of view. In this work, we

use data from the 64-dishes MeerKAT telescope (see §2.4.3 for more details) to classify single

pulses/FRBs in real time as part of the MeerTRAP project. Real-time FRB detections will be

performed using a single pulse search pipeline. For the time being, single pulses and N-RFI

classification is being carried out ‘offline’.

As the dispersion measure of candidates is unknown (see §2.3.1.2), this necessitates search-

ing for pulses at different dispersion measures (DMs). The MeerTRAP team is currently work-

ing towards constructing a fully-automated, real-time transient detection pipeline. The pipeline

is split into five main parts as follows:

1. Data reception.

2. Real-time GPU based time-domain search.

3. Candidate classification.

4. Transient trigger and voltage capture.

5. Database storage and data exploration.
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Figure 7.1 illustrates an overview of the MeerTRAP real-time processing infrastructure.

More information about the various steps are detailed at https://www.meertrap.org/about-

1/real-time-transient-detection-pipeline/ and in the Jankowski et al. (2020); Rajwade et al.

(2021) papers. There are various challenges in the real-time triggering pipeline illustrated in

Figure 7.1. The first challenge is the software must deal with the processing of the candid-

ate data in ≤ 10 seconds after it is received by the single pulse pipeline and in ≤ 40 seconds

overall (Jankowski et al., 2020). The second challenge deals with the reduction of the number

of single-pulse candidates caused by noise, radio frequency interference (N-RFI, mostly from

planes, satellites, maintenance work, lightning), and from known radio sources, above a certain

candidate noise level. The MeerTRAP team have developed a set of python tools that execute

multi-beam clustering and source matching algorithms from given catalogues†. This combina-

tion will typically reduce the candidate rate by 70 to 90 per cent (Jankowski et al., 2020). After

this step, a machine-learning classifier is anticipated to decrease this rate further to < 1 per cent

once fully deployed.

Although MeerKAT is very sensitive, because it is an interferometer its field of view for

one beam is small so MeerTRAP makes hundreds of beams. Hence, the candidate rate gen-

erated can be tens of thousands per day. Recently with the advent of state-of-the-art Graphic

Processing Units (GPUs) - accelerated pipelines (e.g., heimdall ‡ (Barsdell et al., 2012) it is now

possible to implement real-time FRB searches. However, these searches generate up to thou-

sands of candidates per day and they are highly affected by a high false positive rate, due both

to Gaussian noise and the presence of RFI. Hence, the last stage of visual inspection by a human

becomes challenging and ultimately infeasible. It is imperative to reduce the sheer volume of

candidates that require inspection. Therefore, various techniques are presently being imple-

mented. These often include N-RFI mitigation techniques to remove DM = 0 pc cm−3 signals.

k-Nearest neighbours as a clustering technique (Cover & Hart, 1967) has also been deployed to

identify single, bright events that trigger many candidates (see Burke-Spolaor et al. (2011)).

However, the above-stated techniques cannot provide a real-time classification of candid-

ates, for example as N-RFI, FRB or pulsars. Traditionally classification of candidates has been

done visually by astronomers. However, this limits the ability to trigger real-time multi-wavelength

follow-ups, and forces a requirement to record and store large data volumes. This is one of the

challenge that the MeerTRAP real-time transient pipeline is facing. Machine learning has the

potential to provide an automated solution to this problem.

†https://bitbucket.org/jankowsk/meertrapdb/
‡https://sourceforge.net/pro jects/heimdall-astro
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Figure 7.2 – An overview of various stages in single search pipeline and an illustration of the pro-
cess of FRBID model for classification of FRB and N-RFI. First data is received from Filterbank Beam-
Former User Supplied Equipment (FBFUSE). Once we receive the data, we have to deal with noise
and RFI (N-RFI). A static frequency channel mask and an Inter-Quartile Range mitigation (IQRM)
algorithm are applied to the data before the de-dispersion. This cleaning process removes corrup-
ted data from the pipeline. Then the data is de-dispersed and is searched for single pulses using a
standard Boxcar filter. Afterwards, a multi-beam clustering and source matching algorithm is im-
plemented to reduce the candidate rate by 70 to 90 per cent. After this step, FRBID is anticipated to
decrease this rate further to < 1 per cent once fully deployed.

Table 7.1.1 – Total Number of FRB and N-RFI candidates in our labelled dataset. Candidates
marked as ‘FRB’ also include multiple detections of the same pulsar/FRB.

N-RFI FRBs Total
Training Set 8235 7852 16087

Validation Set 2059 1963 4022
Testing Set 477 468 945
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Applying a ML classifier at this stage has been inspired by the work of Agarwal et al. (2020).

The latter developed a ML classifier based on a transfer learning approach for transient classi-

fication. We tried their publicly available software but found that some aspects did not match

our data. Therefore, in this chapter, we adopted a similar approach to that presented in Chapter

6 and in Agarwal et al. (2020). We developed a state-of-the-art machine learning classifier,

FRBID: Fast Radio Burst Intelligent Distinguisher, that will distinguish between single pulses,

FRBs and N-RFI. In the next section, we discuss in detail the multiple stages in the MeerTRAP

pipeline.

7.2 How does MeerTRAP search for single pulses?

The overview of the pipeline is described in Figure 7.2 and is detailed below.

1. First we need to receive data from Filterbank BeamFormer User Supplied Equipment

(FBFUSE). FBFUSE is a separate compute cluster developed by the Max-Planck Institüt

für Radioastronomie in Bonn, Germany. It generates 768 coherent beams and an inco-

herent sum of the power from all the available (maximum of 64) antennas, and these are

received via the network interface cards (NIC) on each compute node (Rajwade et al.,

2021). The data are sent over the network to MeerTRAP. Multiple modes are possible -

we can observe in ultra high frequency (UHF) and L-Band (1-2 GHz) in the range of 1024-

4000 channels, at multiple sampling times. Currently the real-time processing operates

best at a sampling time of 360 µs at L-band. With 12 beams per node, the task is quite

challenging as we can generate up to 2.4 GB of data per second per node. The challenge

is that we need to receive the data, process it and output it in usual format, all in real

time.

2. The next step is the cleaning process. Once we receive the data, we have to deal with

noise and RFI. Even though MeerKAT is located in the desert, the N-RFI environment

is quite dynamic because of planes, satellites, maintenance work, and lighting among

others. To reduce the number of N-RFI detections, a static frequency channel mask was

applied to the data before the de-dispersion and single-pulse search. Recently, a new N-

RFI mitigation algorithm called Inter-Quartile Range mitigation (IQRM, Morello et al. in

prep) has been implemented. These methods combined, allow the removal of most of the

corrupted data from the pipeline (Rajwade et al., 2021). In addition, the ‘standard’ zero-

DM excision (Eatough et al., 2009) is implemented to discard any remaining N-RFI that
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was too broad band to be masked by the static channel mask or was not frequent enough

to be detected by the IQRM algorithm.

3. The next stage is to de-disperse the data. As single pulse signals travel through the in-

terstellar medium (ISM) before arriving at the telescope, their radio emission are ‘dis-

persed’ by the free electron content in the ISM. The amount of dispersion is proportional

to the dispersion measure (DM). DM is described as the integrated column density of free

electrons between the source (pulsar/FRB) and the observer. This generates a frequency-

dependent delay in such a way that lower frequency signals arrive later in comparison to

higher frequency signals. Since the true DM of a pulsar/FRB is not known beforehand,

the data is de-dispersed into multiple trial values (trial-DMs, see §2.3.1.2). Therefore, the

DM sweep needs to be removed from the data obtained after cleaning. Some decisions on

the number of steps of DMs need to be made. DM steps need to be chosen in such a way

that it is small enough that intra-channel smearing is not a major concern, but should be

big enough so that we do not de-disperse unnecessary DMs. In this step, we end up with

(tens of) thousands of DMs. This is the most intensive part of the process and has to be

run on GPUs using a highly optimised ASTRO-ACCELERATE § algorithm.

4. The next process is to search for single pulses. A standard Boxcar filter (convolve the

signal with a simple rectangular function - up to a maximum boxcar width of 0.67s) is

used. And when we take the number of DMs and the number of waves, sometimes this

leads to a few hundreds candidates per node in just a few minutes only.

5. Then, we use a first stage vetting. The candidates are clustered in the DM and time plane.

Only the most significant candidates are kept.

6. Even after clustering or after the first stage vetting, there are still tens of thousands of

candidates sometimes and we do not want to have scientists to look at those candidates

one by one, and many of them are just N-RFI. And, per day we can get more than 100

thousands of candidates. This process can get tiring and inefficient.

7. An additional vetting also known as multi-beam clustering is used to remove common N-

RFI and known sources. But even after that, we can still end up with 10,000+ candidates

per day and this amount of data can take up 250TB archive storage in no time.

8. Therefore, we need an additional post-processing step that can sift through the data as

§https://github.com/AstroAccelerateOrg/astro-accelerate
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quickly and efficient as possible. Inspired by the work carried out by Agarwal et al.

(2020), in this chapter we implement a ML classifier, FRBID, that can actually make a

decision of what this candidate actually is, whether there is anything useful (is a pulsar/-

FRB/RRAT) or do we want to just get rid of it.

The next section provides a description and processing of the data we used to train the FRBID

machine learning algorithm.

7.3 MeerKAT Data and Data Labelling Description

Figure 7.3 – Example images of high S/N candidates from the MeerKAT telescope. The top row
shows an example of a single-pulse/FRB candidate, while the bottom row is an example of an N-
RFI candidate. The first column corresponds to the DM-time image and the second column is the
Frequency-time image of the candidates.

We used observations from the MeerKAT telescope at UHF band and L-band modes, to gen-

erate single pulse and N-RFI candidates. Single pulse candidates are obtained from known

periodic pulsars (1ms - 30s), rotating radio transients (RRATs) and FRBs. The candidates have

a dispersion measure range of 0-5000 pc/cc at L-band and 0-1490 pc/cc at UHF band. Also,

the candidates have a width range from 0.3 to 300 ms with S/N threshold at 8 sigma. In this
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work, we use only two plots: the DM-time and Frequency-time plot. An example of DM and

Frequency plots of a single pulse/FRB and N-RFI candidate is shown in Figure 7.3.

The MeerTRAP data is standardised such that FRBID becomes agnostic to observing fre-

quency. Hence, de-dispersed data in the frequency-time spectrogram is utilised as input. This

de-dispersion process makes the data to be independent of the true DM of the candidate and

observation frequency. Afterwards, a resizing process is performed by averaging the frequency

axis and removing the extra pixels, that is, the frequency-time is resized to 256×256 pixels.

We chose 256 frequency bins to maintain the frequency modulation of recently reported FRBs

(Shannon et al., 2018).

DM-time images are constructed by performing an averaging along the frequency-axis,

after de-dispersing the frequency-time at different DMs. The DM range lies from zero to

twice the DM of the candidate, spanning across 256 steps. The DM-time images are resized

to 256×256 pixels. As can be observed in Figure 7.3, a typical DM-time image of a single-

pulse/FRB candidate looks like a bow-tie shape centred around a non-zero DM value, while

N-RFI is mostly a stripe in the DM-time plane and in this case peaks at DM=0. The extent of the

bow-tie shape is dependent on the pulse width and S/N. The angle between the edges depends

on the DM, the width of the candidate and its bandwidth. The filled area between the edges is

controlled by the spectra of the candidate.

For training a supervised deep neural network, we need to provide accurate labels to the

model. We therefore select candidates that were visually labelled by three vetters. We ensure

to alleviate the imbalanced-learning problem by acquiring highly balanced dataset of single

pulses/FRB and N-RFI. Since it is a supervised learning algorithm, we used the label ‘0’ for

N-RFI candidates and label ‘1’ for FRB candidates. We assigned a label ‘0’ if all three vetters

labelled it as N-RFI and a label ‘1’ is given to candidate where three vetters agree that it is

a single pulse/FRB. For training and evaluating FRBID, we split the data into 76% training,

19% validation and 5% test set. The number of candidates for N-RFI and FRBs in the training,

validation and test sets, are detailed in Table 7.1.1.

7.4 FRBID: Fast Radio Burst Intelligent Distinguisher for the MeerKAT

telescope using Deep Learning

FRBID: Fast Radio Burst Intelligent Distinguisher, is a deep learning model based on a convo-

lutional neural network (CNN, see §3.4.3). FRBID is developed based on MeerCRAB discussed as
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in Chapter 6. We developed two model architectures for the classification of FRB and N-RFI:

FRBID and Multi-Input FRBID.

• FRBID

In FRBID, the input (i.e. Frequency-time and DM-time) images are stacked together and a

CNN model is trained using the stacked images as shown in Figure 7.4.
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Figure 7.4 – Illustration of FRBID architecture. We show two images grouped together (DM-time and
Frequency-time) to form the input of the network, followed by convolutional layers, max-pooling,
dropout and dense layers. At the end, the network outputs a probability whether a candidate is
either an N-RFI or SP/FRB during the prediction phase.
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Figure 7.5 – Illustration of Multi-Input FRBID architecture. Here the frequency-time and the DM-
time array are used as inputs to two separate convolutional neural networks. These models are
then fused at then and perform a binary classification. Both models are trained at the same time
and the overall model will learn the relative importance of each input separately.

• Multi-Input FRBID

While in Multi-Input FRBID, two separate CNN models are trained on the Frequency-

time & DM-time images respectively and once the Frequency-time & DM-time models

are trained, they are combined at the end to obtain a more robust model. This process
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is also known as ‘Network fusion/hierarchical hybrid neural network’. The idea of using two

separate CNN models has been inspired from Agarwal et al. (2020). Figure 7.5 illustrates

the Multi-Input FRBID architecture. Two CNN models are concatenated after the feature

extraction layers and then are later passed through a large fully connected layer and this

results in a binary classification at the end of the model.

Both FRBID and Multi-Input FRBID models are based on three convolutional layers (CLs).

Each CL is made of (3 × 3) pixel filters, together with a Rectified Linear Unit (ReLU) function,

followed by a pooling layer with filter size of (2 × 2). After the CLs, we used fully connected

layers (also known as dense layers). In addition, we use a dropout rate varying from (0.1 to 0.5)

after each of the pooling and dense layers as seen in Figure 7.4 & 7.5 to avoid over-fitting. For

the output layer, we used a softmax function that outputs a probability value between 0 and 1.

Both FRBID and Multi-Input FRBID are built with Keras and TensorFlow as the backend. Both

models are trained and tested on the same dataset and are compared in §7.5.

7.4.1 Training process

For training both models independently, we used an Nvidia GeForce GTX 1080Ti 11GB GPU.

Both networks are trained and tested independently. We do not apply data augmentation to our

data since we have sufficient examples of each class considered. We apply an early stopping

technique (see §3.5.2) while training the networks. The training process continues until the

validation accuracy stops increasing for at least 5 consecutive epochs. At this iteration, we

considered this model to be the best representative model for prediction purposes.

For training purposes, we employed the Adam optimiser (Kingma & Ba, 2014) with a binary

cross-entropy loss function. The parameters used while training the models are: the learning

rate is set to 0.0002, batch size of 64 and epochs 30. Figure 7.6 shows the optimisation curves

of FRBID. As can be seen in Figure 7.6, FRBID stops training when the validation loss starts

increasing.

7.4.2 Evaluation metrics

Various metrics are employed to evaluate the performance of the models. Our main goal is to

have an algorithm that accurately identifies FRB and N-RFI candidates while minimising the

false positives and false negatives. In this chapter, we have used balanced accuracy, the Mat-

thew Correlation Coefficient, precision, and recall to analyse the performance of the classifier.

These metrics are detailed in §3.2.3.
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Figure 7.6 – Learning curves of the FRBID model. The upper panel shows the training and validation
accuracy over iterations/epochs. The lower panel shows the change in negative log-likelihood/loss
with epochs. It can be observed that the training objective decreases consistently over iterations, but
at some point (around 20 epochs) the validation set loss eventually starts to increase again. An early-
stopping technique with (patience = 8) is applied to avoid overfitting by terminating that training
process. At this stage, the algorithm picks the best parameters at 20 epochs. Patience parameter is
the number of epochs when no improvment is observed after which the training process will be
stopped.

7.5 Results and Analysis

We start by providing an overall comparison of various scenarios used and will subsequently

analyse some of the models along with certain modifications in more detail. The models are
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(a) FRB feature maps (b) RFI feature maps.

Figure 7.7 – Feature maps induced by the convolutional layer in FRBID given an FRB and N-RFI
candidate, respectively. We observe that the model distinguishes between background noise and
the bow-tie shape at the centre of the image.

Table 7.4.1 – The results with FRBID and Multi-Input FRBID are presented in terms of precision,
recall, balanced accuracy and MCC values using the DM-time and frequency-time images as input.

Model Precision Recall Balanced Accuracy MCC

FRBID 1.00 1.00 0.999 0.998
Multi-Input FRBID 1.00 1.00 0.999 0.998

evaluated on various metrics. Based on the PFRB value, we construct a confusion matrix to

have an overview of the classification results.

7.5.1 Model Selection

As discussed in the previous sections, we trained two models independently on DM-time im-

ages, and frequency-time images. We used the validation accuracy and test accuracy as metrics

to decide the best performing model. We evaluated the performance of the models on an in-

dependent test data. This step demonstrates how well the models perform and generalise on

real and unseen FRB and N-RFI data. The results are detailed in Table 7.4.1 and we note that

with both FRBID and Multi-Input FRBID we obtain an accuracy and MCC values of ∼ 99.8 %.

Given that both models have comparable performance, therefore in the MeerTRAP pipeline,

we integrated the FRBID as it requires less computational power, compared to Multi-Input

FRBID.

7.5.2 Feature Extraction

The satisfactory performance of both models shows reasonable confidence that they have learnt

features of both N-RFI and FRB candidates, based only on the frequency-time and DM-time
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(a) FRBID model. (b) Multi-Input FRBID model.

Figure 7.8 – (a) shows the confusion matrix obtained with FRBID model. (b) illustrates the confusion
matrix obtained with Multi-Input FRBID model. Both models perform equally well with only one
misclassification of N-RFI candidate.

images. Figure 7.7 illustrates the feature maps of an example of FRB and N-RFI candidate.

We observe that there appears to be feature maps that activate on the background, while other

maps activate on the bow-tie shape of the FRB candidate. This suggests that the network can

distinguish between the morphology of the FRB candidate (bow-tie shape) and the background

noise, thus it is able to classify images relatively unhindered by different levels of noise.

7.5.3 Analysis of Misclassification

Figure 7.8 illustrates the confusion matrices of both FRBID and Multi-Input FRBID models. The

number of incorrect classifications of FRB & N-RFI and the number of correct classification of

FRBs & N-RFI are reported. As noted in Table 7.4.1 and Figure 7.8, the rate of misclassifying

N-RFI candidates is relatively low. The false positive rate varies between 0.015% and 3% (<1%

most of the time). Both models show a single incorrect classification of N-RFI candidate and

all FRB candidates are correctly classified. Figure 7.9 presents a single misclassification made

by both models. This misclassification can be attributed to the fact that when viewed closely, a

faint point source in the middle of the image can be observed.

7.5.4 Output of FRBID

During the prediction phase, the trained models are then used to output probabilistic predic-

tions for unseen images in the test set as shown in Figure 7.10. The probability distribution

from the output of the FRBID model spanned the range of PFRB ∈
[
0; 1]. Therefore, a candidate

is predicted as N-RFI if PFRB < 0.5 and as FRB if PFRB ≥ 0.5. PFRB = 0.5 indicates a random

guess and the FRBID model is confused between FRB and N-RFI candidates.
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Figure 7.9 – Illustration of a misclassified N-RFI candidate by FRBID and Multi-Input FRBID. This
candidate has been classified by a human as N-RFI. However, both models identified it as an FRB
candidate. When looked at closely, a point-like source at the centre of DM-time image can be ob-
served, thus this feature confused the networks.

7.6 Conclusion

We provide a user-friendly open-source python package FRBID: Fast Radio Burst Intelligent

Distinguisher ¶, currently integrated in single pulse search pipelines MeerTRAP for real-time

classification of candidates. Currently FRBID is being used in ‘offline’ mode and will soon move

to ‘real-time’ mode. The input of FRBID is a candidate file with the DM-time and frequency-time

data. The output of FRBID is the probability of a candidate to be an FRB in the range of [0;1].

We compared two model architectures in this chapter: FRBID and Multi-Input FRBID||. The

latter trains two CNN models in parallel and it takes as input the DM-time and frequency-time

images separately. At the end of the process, both models are concatenated and Multi-Input

FRBID outputs the probability of a candidate being an FRB. For training FRBID and Multi-Input

FRBID, it is recommended to use a balanced dataset, that is one with a comparable amount of

FRB and N-RFI candidates.

We found that both architectures, FRBID and Multi-Input FRBID, perform best on our chosen

metrics, achieving an accuracy of > 99.8% with a false positive rate of <1% most of the time.

However, Multi-Input FRBID requires more computational resources since we are training

two CNN models simultaneously. Given that FRBID is less computationally expensive, hence

it is currently being integrated into the MeerTRAP pipeline for commensal FRB searches at the

MeerKAT telescope. The performance of FRBID shows a false positive rate of less than 1%. Up

till date, FRBID has detected more than half a dozen new single pulse candidates, even in the

presence of N-RFI and follow-ups are still undergoing for these discoveries.

¶https://github.com/Zafiirah13/FRBID
||https://github.com/Zafiirah13/multi-input-frbid
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Figure 7.10 – Probability distribution on test data with 945 candidates, trained with model con-
figuration FRBID with DM-time and frequency-time as input. The only one misclassified N-RFI
candidate is shown in purple *.
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8
FABLE: FAST RADIO BURST LOCALIZATION &

DETECTION USING MASK-RCNN

This chapter has been submitted as a conference paper in NeurIPS conference 2021 with the

title: ‘FABLE: Fast rAdio Burst Localization and dEtection using Mask-RCNN’.

Zafiirah Hosenie, Robert Lyon, Benjamin Stappers et al.

Submitted in NeurIPS conference 2021 on 27 September 2021.

This chapter provides a first proof of concept of an implementation of localization, detection

and segmentation algorithm using Artificial Intelligence for Fast Radio Bursts or single pulses.

The main aim of this chapter is to provide a general idea of detecting and localizing sources

in astronomical images. This automated ML algorithm can be adopted to other domains in

astronomy, for instance source extraction software. In addition, the analysis in this chapter was

carried out well before Chapter 7. Hence, we use a different dataset obtained from Agarwal

et al. (2020) and we did not attempt to provide a comparison between these two chapters. The

following section presents the general idea of detecting and localizing FRBs using machine

learning. Section 8.3.1 introduces the terminology and steps to undertake when implementing

the ‘Fast rAdio Burst Localization & dEtection using Mask-RCNN’: FABLE algorithm.

8.1 Introduction

We focus on improving the detection rate of Fast Radio Bursts (FRB), especially for low signal

to noise ratio (SNR) in radio images. Recently, deep learning (LeCun et al., 2011, 1998; Li et al.,
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Figure 8.1 – The workflow of real-time Single Pulse/Fast Radio Burst detection, classification and
segmentation. Real-time sequence of DM-time images will be the input to the pipeline. A detection
window will be defined, for example 300 × 300 pixels and another smaller window where the
detection of an FRB will be activated, for example 256 × 256 pixels. The output of the network will
be the probability that the window contains an FRB, the location of the FRB in pixel coordinates,
the DM and time value.

2018) methods such as the convolutional neural network (CNN) with hierarchical feature learn-

ing abilities has made great breakthroughs in various fields, for instance, for face recognition,

in biomedical image analysis for cancer detection, and disease classification.

One method is to use detection and segmentation algorithms. They are useful to distinguish

different sources in an image and draw bounding boxes over a specific source of interest. Mask

Region Convolutional Neural Network (R-CNN) is one of the methods of object detection and

segmentation. It can not only draw a bounding box for the target object, but also further mark

and classify whether the pixels in the bounding box belong to the source or not. Mask R-

CNN can be used to identify the source, mark the boundary of the source, and detect key

points (Chiao et al., 2019), before classifying the source into other classes (whether it is a pulsar,

variable stars, FRBs ...).

The aim of this chapter is to build a model, FABLE, based on Mask R-CNN for automatic de-

tection, segmentation, and classification of FRBs with Dispersion Measure-Time (DM-T) radio

images. The aim for this project is to detect FRBs in real-time without having to use a threshold-

ing technique. In this chapter, we are dealing with static images. However, these images can be

imagined as a sequence of images that we will access in real time. We want the FABLE algorithm

to provide us with the probability that it is an FRB/Single Pulse and we also need the position

of the FRB. The latter will allow us to work out the DM and time value of the candidate.

With FABLE, we can perform:
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• FRB detection, giving us the (x,y) bounding box coordinates for each FRB in a candidate

file,

• Instance segmentation, enabling us to obtain a pixel wise mask for each individual FRB

in an image,

• Output Dispersion measure of FRB - calculate the dispersion measure and time based

on pixel-wise mask for each individual FRB in an image.

The output (for instance the DM and time parameters) of FABLE is fundamental as it allows us

to characterise the FRB candidate detected. We want to use the time to extract a piece of the

original filterbank data and to de-disperse it to generate two further plots which astronomers

will want to look at:

1. a de-dispersed pulse, and

2. the frequency - time plot.

In the next sections, we will elaborate on the data acquisition and process we used to annotate

the labelled data. These annotation, labels and the DM-time images will act as input to the

FABLE algorithm.

8.2 Dataset Preparation

In this section, we elaborate on the data we used and the technique we developed to automate

the annotation step.

8.2.1 Dataset Used

One major problem when training supervised deep neural networks is the insufficiency of la-

belled data. We overcome this issue by using candidate files generated by Agarwal et al. (2020).

We provide a brief summary of the data in this section. More information about the candid-

ate files generation can be found in Agarwal et al. (2020) and the sample size used in this

paper is detailed in Table 8.2.1. In this chapter we utilised data from observations using the

Green Bank Telescope (GBT) and the 20m telescope both located at the Green Bank Observat-

ory (GBO) (Agarwal et al., 2020). In order to generate a uniform dataset, Agarwal et al. (2020)

used Heimdall* (Barsdell et al., 2012) with the following parameters on all the data in Table

*https://sourceforge.net/pro jects/heimdall-astro
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Table 8.2.1 – Size of dataset used to train, validate and test the FABLE model.

Splits Single Pulse

Training 17907
Validation 1121

Test 3357

8.2.1: S/N ≥ 8, 10 < DM < 10, 000 pc cm−3 and width < 32 ms. A brute force de-dispersion is

performed to transform data from frequency-time to DM-time space. Each de-dispersed time

series is baselined to zero mean and afterwards sliding box-car filters of various widths are im-

plemented. The boxcar filtered time series is normalised to unit root mean squared deviation.

Therefore, the peaks in the time series correspond to S/N. Afterwards, a threshold is utilized

to select the candidates. The generated candidates were manually labelled. In this work, from

Agarwal et al. (2020) paper, we used only 22 385 single pulse candidates.

8.2.2 Contouring and classification of FRB process

For training and validating the model, we need to provide the FABLE algorithm the original

images and labels with exact indication of the types of objects present in the image, known

as annotation. The process of annotation produces polygon objects which are coordinates of

the location of the targets of interest. In our case, we are interested in separating FRB/Single

pulses from the background noise in the DM-time image. The annotation is saved in the format

of JavaScript Object Notation (.json). For annotating candidate files, we split our dataset of

22385 candidates into 80% training and 20% validation and test set. The 20% is further split

into a 25% validation set and a 75% test set. The number of candidates available for training,

validating and testing the FABLE model is detailed in Table 8.2.1. As noted in Table 8.2.1, the

amount of available data is quite large. Hence the process of annotating the 256 ×256 pixels

DM-time images for 22385 candidates will be time consuming and will require human labour.

We therefore built an algorithm that will automate this labelling process. This is achieved by

computing a Model of Summed Dispersed Pulse (MSDP) of the bow-tie shape for a single pulse

(see §7.3 for detailed description). Hence, this annotation process is carried out automatically

without involving a human in the loop.

8.2.3 Automatic annotation of FRB candidate

In this section, we elaborate on the process of automatically annotating an FRB candidate. This

is based on finding an approximation of a de-dispersed pulse in the DM-time plane, which we
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call a Model of Summed Dispersed Pulse (MSDP). Analytically, we can assume a pulse depends

on time, t, and in general can modelled as a Gaussian or a delta function and the dynamic spec-

trum of the dispersed pulse can be generated as a function of frequency and time, as shown in

Figure 8.2. Because it is expensive to de-disperse the data for each given dispersion measure,

we compute the MSDP that can be used to model each line in the DM-time plane using the dis-

persion equation. In Figure 8.3, we plot the amplitude of the analytical dispersed pulse (based

on Gaussian assumption) and the MSDP (based on the dispersion equation) as a function of

time, after de-dispersing at the given DM and summing across all frequency channels. We

found that the analytical dispersed pulse (after summing and scrunching along the frequency

channels) and MSDP are almost identical. We therefore conclude that we can use the MSDP to

create an annotation/mask for FRB candidate. The description and derivation of the MSDP are

detailed below.
Dynamic spectrum of a dispersed pulse

Figure 8.2 – An example of a dynamic spectrum of a dispersed pulse is shown in the plot, where the
pulse can be assumed as a Gaussian or delta function as a function of frequency (y-axis) running
from low to high and time (x-axis).
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Figure 8.3 – Comparison of an analytical dispersed pulse and MSDP. The plot shows the amplitude
of the analytical pulse (based on Gaussian assumption) and the derived pulse (based on the disper-
sion equation) as a function of time, after de-dispersing at the given DM and summing across all
frequency channels.
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• Model of Summed Dispersed Pulse

Our goal is to generate a model of bow-tie shape of a pulse in the DM-time plane. In this

section, we derive an approximation of the model of summed dispersed pulse (MSDP)

based on the dispersion equation. We found that the derivative of the dispersion equation

is a good approximation/model of the pulse in the DM-time plane as detailed below.

Consider the dispersion equation;

t = 4149× DM
[

f−2 − f−2
0
]

(8.2.1)

where f0 is the reference frequency and the value 4149 is the dispersion constant, KDM =

e2

2πMec . Me and c is the mass of electron and the speed of light respectively. Using Equation

8.2.1, we solve it for f as follows:

f−2 =
t

4149DM
+ f−2

0 , (8.2.2)

f =

(
t

4149DM
+ f−2

0

)− 1
2

. (8.2.3)

We then compute the derivative of f , which is almost similar to an analytical dispersed

pulse when summing and scrunching along frequency channels. Taking the derivative of

Equation 8.2.3 as follows:

∂ f
∂t

= −1
2

[
t

4149DM
+ f−2

0

]− 3
2
(

1
4149DM

)
, (8.2.4)

∂ f =

(
− 1

2× 4149DM

) [
t

4149DM
+ f−2

0

]− 3
2

∂t, (8.2.5)

where ∂t = ∆t = tmax − tmin and therefore

∂t =
1

fmax − fmin
. (8.2.6)

Replacing Equation 8.2.6 in Equation 8.2.5, we obtain the derived solution for the MSDP

as,
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∂ f =

∣∣∣∣ 1
2×4149DM

[ t
4149DM + f−2

0

]− 3
2

∣∣∣∣
fmax − fmin

. (8.2.7)

We found an approximation model of MSDP by taking the dispersion equation,(
∆t = 4149× DM

[
f−2 − f−2

0

])
, solving the latter for f and then we compute ∂ f . We

found that the derivative is a good model that characterises the bow-tie in the DM-time

plane. Using this concept, we are able to reconstruct the bow-tie shape of a pulse and this

is further detailed in the next section.

8.2.4 Pseudo-code for Automatic Annotation of FRB candidates

We provide a pseudo-code on the process of generating the bow-tie shape of a single pulse

candidate.

Step 1: Function to compute the derivative of frequency, f .

The following is a Python code to perform the derivative of frequency f using Equation 8.2.7

for the MSDP. The function takes as inputs an array of time (t), a reference frequency (f0),

the true dispersion measure of the FRB candidate (dm) and the lowest and highest frequency

(fmin, fmax). These variables are stored in the candidate header file.

def derivative_frequency(t,f0,dm,fmin,fmax):

t0 = 4149*dm*(fmin**(-2)-f0**(-2)) # Time limits

t1 = 4149*dm*(fmax**(-2)-f0**(-2)) # Time limits

tmin = np.min([t0,t1])

tmax = np.max([t0,t1])

# Derivative

d = np.absolute((2*4149*dm)**(-1)*( f0**(-2)+t/(4149*dm))**(-1.5) )/(fmax-fmin)

# Apply time limits

d = np.where((t>=tmin) & (t<tmax),d,0)

return d

Step 2: Load the variables from the candidate header file.

We load a candidate file stored in hdf5 format. We read in the header file to have the appro-

priate information to compute the analytical and the MSDP shape. A filterbank file defines

the frequencies as follows: fch1 is the frequency of the top of the band. foff is the channel

width, which will always be negative. So the frequency of channels are fmax = fch1 and fmin
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= fch1+nchan×foff. For de-dispersion we are free to choose the reference frequency (f0 in

∆t = 4149×DM
[

f−2 − f−2
0

]
). Most software packages choose the top of the band. The choice

of this frequency changes the shape of the bow-tie. Here, we choose f0 = fmax. The pseudo-

code shows how to extract the appropriate parameters describing the pulse in the candidate

file. Here, f0 is the reference frequency used for de-dispersion. ‘t0’ is the location of the bow-

tie centre, and ‘a’ is the flux.

# Read the header information

with h5py.File(h5_file,’r’) as f:

filename = os.path.basename(h5_file) # The filename of the candidate

labels = check_word_snr(filename) # The labels of the candidate: FRB

dm_time = np.array(f["data_dm_time"])

if labels == "FRB":

dm = f.attrs["dm"] # in cm-3 pc

tsamp = f.attrs["tsamp"]; tstart = f.attrs["tstart"]; w = 2*tsamp # in s

nchan = f.attrs["nchans"]; nsamp = 2000

fmax = f.attrs["fch1"]; channel_width = f.attrs["foff"] # in MHz

fmin = fmax + (nchan*channel_width); f0 = fmax;

t0 = 4149*dm*( (fmax**-2) - (f0**-2) )

# Intensity of highest pixel

a = dm_time[np.unravel_index(dm_time.argmax(),dm_time.shape)]

Step 3: Compute the derivative of frequency, f

In the code below, we compute the derivative of the frequency, f , as illustrated in Equation

8.2.7. We obtain a pulse shape when computing the derivative of f that looks similar to the

analytical dispersed pulse when summing and scrunching along frequency channels. This is

shown in Figure 8.3 when we plot ‘za’ and ‘d’ variables against ‘t’ in the pseudo code below.

t = np.linspace(-0.5*nsamp*tsamp,0.5*nsamp*tsamp,nsamp,endpoint=False) # time

f = np.linspace(fmax,fmin,nchan,endpoint=False) # frequency

tm,fm = np.meshgrid(t,f) # 2D grid of frequency and time

dtm = 4149*dm*(fm**(-2)-f0**(-2)) # Dispersion Equation

z = a*np.exp(-0.5*((tm-t0-dtm)/w)**2)/(w*np.sqrt(2*np.pi))# Analytical

dispersed pulse

# Computing derivatives of the analytical dispersed pulse and MSDP

za = np.sum(z,axis=0)/nchan # Analytical pulse collapsed in freq space

d = derivative_frequency(t,f0,dm,fmin,fmax)*a # derive dedispersed pulse
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Step 4: Compute the bow-tie shape of the pulse.

The bow-tie shape can be obtained by using the following pseudo-code. The candidate file we

used in this work is 256 × 256 pixels and the true DM is almost always found at the centre of

the image. The ‘mask’ variable in the code below is the bow-tie shape of the pulse. The mask

is obtained when the derivative of f is computed at different DM values. The middle panel in

Figure 8.4 illustrates an example of the mask computed at different DM values. As we note,

the algorithm has successfully reconstructed the bow-tie shape of the pulse in the real DM-

time image plane (Figure 8.4 left panel). The mask variable creates a binary matrix with zeros

and ones as shown in Figure 8.4. Zeros represent the background noise and ones illustrate the

region where the pulse resides.

# Compute the mask

n = nchan

time = np.linspace(-0.5*n*tsamp,0.5*n*tsamp,n,endpoint=False)

dm_values = np.linspace(2*dm,0,256)

mask = np.zeros(n*n).reshape(256,n)

for i in range(len(dm_values)):

mask[i] = derivative_frequency(time,f0,dm_values[i]-dm,fmin,fmax)

Step 5: Extract the contours of the bow-tie shape of the pulse

For the FABLE algorithm, we only need the contours of the bow-tie shape or the mask computed

above. We first find the coordinates where the pixels > 0.

# Find the coordinates whose pixel values greater than 0

snr = np.where(mask>0.0)

y_pix = snr[0]; x_pix = snr[1]

ymin = []; ymax = []; x = []

image = mask

for i in range(image.shape[0]):

white_pix = np.array(np.where(image[i,:]>0.0))

if (white_pix.shape[1]==0):

first_pix = (image.shape[0]/2)

last_pix = (image.shape[0]/2)

else:

first_pix = min(white_pix[0,:])

last_pix = max(white_pix[0,:])

x.append(i/1.); ymin.append(first_pix); ymax.append(last_pix)
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Then, for each channel, we find the coordinate of the first pixel > 0 and the coordinate of the

last pixel > 0. We know from the data that the FRB is located at the centre of the 256×256 pixels.

Therefore at the centre, the white pixel list would be zero, then we put the coordinate manually

to be 256/2.
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Figure 8.4 – Automatic annotation of single pulse candidate. The left panel shows the original DM-
time image of a single pulse candidate. The middle panel illustrates the masking process of the
bow-tie shape of the single pulse which is in a binary format. The right panel presents an overlay
of a derived approximation of the bow-tie shape and this is shown as a contouring in red on top
of the DM-time image. The polygon region indicates the region of interest and is an approximate
computation of the bow-tie shape to facilitate the annotation process.

shift_pixel = 8

ymin[:] = [ymin_ - shift_pixel for ymin_ in ymin]

ymax[:] = [ymax_ + shift_pixel for ymax_ in ymax]

# we add all the x-pixel and y-pixel. We reverse the right x-pixel and y-pixel of

the FRB, so that the list become continuous and then add the first coordinate

of the left part of the FRB to complete the loop.

time_coor = x + x[::-1] + [x[0]]

dm_coor = ymin + ymax[::-1] + [ymin[0]]

# When performing the shifting of the pixel to the left and the right, the mask

will become larger than the image size, so we need to crop those pixels<0 and

>255 by the following command:

dm_coordinates = []

for l in dm_coor:

if l < 0: dm_ = 0

elif l > 255: dm_ = 255

else: dm_ = l

dm_coordinates.append(dm_/1.)

After deriving the MSDP, we obtain the bow-tie shape of the pulse in DM-time space. We then

convert the DM-time space into pixel coordinates and we shift the right and left extent by 8
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pixels so that we can capture full the entire FRB bow-tie shape without losing information.

When performing the shifting of the pixels to the left and the right, the mask will become lar-

ger than the image size, so we need to crop those at pixel locations < 0 and > 255. The contours

after applying an 8 pixel shift and cropping are illustrated in Figure 8.4.

Step 6: Store the contouring coordinates of the bow-tie shape in JSON format.

We need to save those contouring coordinates of the bow-tie shape of the pulse candidate in a

JSON file. In addition, we store the filename, the size of the file, the x-y coordinates of the bow-

tie and the label of the candidate (for e.g in this case ‘SP’). This file is known as the ‘annotation’

file of the data. The code to prepare for the annotation file in JSON format is shown below.

if h5_file.endswith(’.h5’):

size = os.path.getsize( h5_file)

filesize = str(size)

filename = h5_file[len(images_folder_name)::]

img_annotation_key = filename + filesize

x_coor = dm_coordinates; y_coor = time_coor; id="SP"; x = x_coor; y = y_coor;

region =

{’shape_attributes’:{’name’:’polygon’,’all_points_x’:x,’all_points_y’:y},\

’region_attributes’:{’name’:id}}

img_annotation =

{img_annotation_key:{’filename’:filename,’size’:size,’regions’:[region]}}

8.3 FABLE algorithm based on Deep Learning

In this chapter, we employ an instance segmentation algorithm to identify a ‘single pulse’ from

background noise. Compared to other computer vision task, it is the hardest possible task. We

want the algorithm to output the location of the FRB/SP, the probability it is an FRB/SP, and

the pixels that belong to the candidate.

8.3.1 Mask R-CNN Methods

We chose Mask R-CNN (He et al., 2017) to implement detection, segmentation and classifica-

tion of candidate files due to its simplicity and effectiveness (Pešek, 2018). Mask R-CNN is a

convolutional neural network technique and is an extended algorithm based on Faster R-CNN

(a fast and effective segmentation algorithm for object detection (Ren et al., 2015)). The stages
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of Mask R-CNN for processing candidate files is illustrated in Figure 8.5.

Input	Data FPN	Network RPN	Network

Foreground

Features	at	various	scale

Anchors

Background

Foreground

L	bounding	box

SP		0.98

L	Class

L	Mask

FC

FC

Mask	Network

Detection	and	Classification	Network

Figure 8.5 – The workflow of instance FRB/SP detection, classification and segmentation. There are
four modules: Feature pyramid network, Region proposal network, Detection network and Mask
network. The DM-time image and the annotation (contour coordinates of the bow-tie shape along
with its label) act as input to the FPN. The FPN acts as a feature extractor and the feature maps act
as input to RPN. The latter scans region of interest (RoI) and outputs anchors. The final proposal
anchors act as input to the detection and classification network. The last stage predicts the class of
the object in the RoI and refine further the size and the location of the bounding box to encapsulate
the object.

The Mask R-CNN algorithm is a two-stage methodology. (I) Mask R-CNN creates propos-

als (area likely to contain the object), that is, it generates bounding boxes of the candidate file

after scanning the image; (II) It also classifies the bounding boxes as FRB/SP, outputs binary

mask for the region of interest (RoI) and the class of the detected candidate (He et al., 2017).
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Residual Network (ResNet-110) Feature Pyramid Network (FPN)

Feature Pyramid Network on top of ResNet-110

Predict

Predict

Predict

Figure 8.6 – Illustration of the Feature Pyramid Network. FPN consists of two pyramid networks.
The second pyramid network uses high level features from the first pyramid network and passes
them down to lower layers. This allows better representation of objects at multiple scales.

The structure of Mask R-CNN is described as follows:

• Feature Pyramid Network

Feature Pyramid Network (FPN, Lin et al. (2017)) is made up of a backbone architecture,

in our case, we use Residual Learning Network (ResNet) (He et al., 2016), for feature ex-

traction. This is a standard convolutional neural network (CNN). The top layers detect

low level features (edges) and the lower layers successively detect higher level features

(SP). The candidate files pass through the backbone architecture where the image is con-

verted from 256×256×3 to a feature map of shape 32×32×512. The feature will act as

input for the following stages in the Mask R-CNN network. FPN is a standard feature ex-

traction pyramid by adding a second pyramid network to achieve better representation

of objects at multiple scales. The second pyramid network takes high level features from

the first pyramid (the backbone architecture, ResNet101) and passes them down to lower

layers. This enables features at all levels to have access to both higher and lower level

features. The feature pyramid network is illustrated in Figure 8.6.

• Region Proposal Network (RPN)

RPN is a lightweight convolutional neural network that scans the candidate image in

a sliding-window way and locates areas of interest (that is the areas that contain the

FRB/SP). These regions that the RPN scans over are known as anchors. Anchors are

bounding boxes of various sizes and aspect ratios, distributed over the candidate file/im-
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Figure 8.7 – The Region Proposal Network (RPN) runs a lightweight binary classifier on a lot of
boxes (anchors) over the image shown in the left panel. Then the intersection of union (IoU) metrics
of the anchors with ground truth object is computed. Positive anchors are those that have an IoU
≥ 0.7 with any ground truth object, and negative anchors are those that do not cover any object by
more than 0.3 IoU. To train the RPN regressor, the shift and resizing needed are computed to make
the anchor cover the ground truth object completely as illustrated in the right panel. Anchors with
high objectness score (positive anchors) are passed to the stage two to be classified.

age as shown in Figure 8.7. The sliding window scanning is carried out by the convolu-

tional nature of the RPN and this process is handled in parallel on a GPU. This process

is fast since the RPN scans over the backbone feature map instead of the image directly,

thus allows the reuse of the extracted features from the backbone architecture. Two out-

puts are generated from the RPN for each anchor: (i) the Anchor class- either of the two

classes: background (BG) or foreground (FG). The FG class means that there is likely an

FRB/SP in that box; (ii) Bounding Box Refinement: a FG anchor (also known as positive

anchor) might not be centred perfectly over the FRB/SP. Therefore, the RPN computes an

estimate of a percentage change in x, y, width and height to refine the anchor box to better

fit the FRB/SP. Then, using the RPN prediction, the top anchors containing the FRB/SP

are chosen and their sizes and locations are refined. If there are too much overlapping

between anchors, the anchor with the highest foreground score is kept and the rest are

discarded. This process is known as Non-max suppression. At the end of the stage, the

final proposals anchor (region of interest) are passed to the next stage (see Figure 8.7 and

Figure 8.8 for illustrations).

• RoI classifier and Bounding Box Regressor (BBR)

This process works on the regions of interest (RoIs) proposed by the RPN network. Sim-

ilar to the RPN, it generates two outputs for each RoI: (i) Class: It predicts the class of the

object in the RoI. This network is deeper and has the ability to classify regions to specific
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Figure 8.8 – Illustration of the proposal classification of anchors from the RPN network. The clas-
sifier head runs on proposals to generate class probabilities and bounding box regressions. Out of
1000 ROIs, we found three valid proposals, that is 997 are classified as background and 3 ROIs are
classified as ‘FRB/single pulse’. Then the ROIs which show confidence less than 0.5 are removed
and this is illustrated in the left panel. Finally, a non-max suppression is applied per-class and the
ROI with the best confidence is kept as shown in the right panel.

class, in this case, FRB/SP or background class. (ii) Bounding refinement: It refines fur-

ther the size and the location of the bounding box to encapsulate the object. One problem

encountered by the RoI classifier is that it requires a fixed input size. However, due to the

bounding box refinement step in RPN, bounding boxes have different sizes. Therefore,

an important step is necessary to refine the feature map to a fixed size, also known as

RoI Alignment (RoIAlign) (He et al., 2017) or RoI pooling. It refers to as cropping a region of

a feature map, apply a bilinear interpolation and resize it to a fixed size.

• Segmentation Masks

This stage involves a convolutional network that takes as input the positive regions se-

lected from the RoI classifier and constructs masks for those regions. The mask branch

is implemented with 4 convolutional layers with kernel size 3 × 3 and 256 feature maps

for each layer. The binary cross entropy loss is used to train the mask network. During

training, these masks are scaled to low resolution (28×28 pixels) to compute the loss and

during inferencing, the predicted mask are scaled up to the size of the RoI bounding box

and this gives us the final masks, one per object/class. An illustration of the predicted

mask is shown in Figure 8.9.

8.3.2 Implementation of FABLE

FABLE is based on the Mask R-CNN algorithm. As input to the FABLE model, we used 256×256

pixels DM-time images and we provide a JSON file consisting of the annotation (region of the
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bow-tie shape and its labels)

Figure 8.9 – Illustration of the segmentation mask. The training target for the mask branch is illus-
trated in the left panel. This stage takes the detections (refined bounding boxes and class IDs) from
the previous layer and runs the mask head to generate segmentation masks for every instance. The
predicted mask is shown in the right panel.

of each candidate file used for training and validation. We implement the Mask R-CNN al-

gorithm using an open-source package built on Tensorflow and Keras, which is publicly avail-

able on Github: Mask R-CNN for Object Detection and Segmentation†. We conducted various

experiments on a server equipped with Nvidia GeForce GTX 1080Ti 11GB GPU. In the training

process, the GPU was used to train the adopted ResNet-101 backbone with a mini-batch size

of 2 images, 100 steps per epoch, learning momentum of 0.9, and a weight decay of 0.0001.

We modified the loading dataset function for our customized training data and left other para-

meters at the default settings. Instead of training the Mask R-CNN from scratch, we apply

a transfer learning approach where we trained our model using the pre-trained weights for

the COCO dataset (http://cocodataset.org/#home) as the latter has a large amount of training

data for the Mask R-CNN to learn common and discriminative features. We then train our net-

work in several stages using stochastic gradient descent (Kingma & Ba, 2015), where the latter

updates the weights (model parameters, wj) by minimizing the loss function J (w),

wj+1 = wj − λ
∂

∂wj
J
(
wj
)

, (8.3.1)

where λ is the learning rate. λ is a fine-tuned hyperparameter used to prevent the model from

falling into ’local minima’ and hence achieves convergence rapidly. At first, we train the head

layers of the model with λ = 10−3 for 30 epochs. We then re-trained the full model with all

layers with λ = 10−4 for 45 epochs and then progressively decreasing the learning rate from

†https://github.com/matterport/Mask_RCNN
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λ = 10−5 to λ = 10−6 for 80 epochs.

In order to ensure the accuracy and stability of the model, we utilized a set of valida-

tion datasets fed to the most generalized Mask R-CNN. The value of the loss function L =

Lclass + Lbox + Lmask, in Mask R-CNN was minimized, and the most suitable model through

the minimization of the loss function on the training data was used as the best model. We

record the full learning curve of the model as shown in Fig. 8.10. As can be seen from the

plots, progressively adjusting the learning rate makes the training and validation loss values

consistent with each other and reached their lowest at 80 epochs without overfitting.

In the inference/testing process, we use the optimized, trained model and set a detection

confidence threshold at 50% (i.e., detections with confidence less than 50% were ignored).

8.4 Metrics for performance evaluation of FABLE

In this chapter, we used different evaluation metrics to evaluate FABLE compared to Chapters

4, 5, 6 & 7. The metrics are based on Intersection over Union (IoU) and Average Precision (AP).

8.4.1 Intersection over Union (IoU)

Intersection over Union (IoU) is commonly used in the evaluation of semantic segmentation

and is simply a normalized intersection of the ground-truth and the detected segmentation.

More specifically, given gti and dti to be the ground-truth and detected segmentation, respect-

ively,

IoUc (ŷ, y∗) =
| {ŷ = c} ∩ {y∗ = c} |
| {ŷ = c} ∪ {y∗ = c} | ; (8.4.1)

=
area (gti ∩ dti)

area (gti ∪ dti)

where c is either the FRB/SP or background class, y∗i ∈ {1, 2} is the ground-truth label of pixel

i. y∗i = 1 means pixel i is in the FRB/SP area while for y∗i = 2 means pixel i is in the background

area. ŷi ∈ {1, 2} is the prediction for pixel i of whether it belongs to class c. IoU is fundamental

when we want to evaluate the overlapping percentage of two objects. It is also used in the next

subsection when we compute the average precision.
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Figure 8.10 – The loss functions for FABLE optimization. The loss values for the different networks
in FABLE during training and validation process are recorded. From the plots, using progressively
decreasing learning rate help the optimization process.

8.4.2 Average Precision (AP)

For the detection and classification task, there are two stages we need to carry out:

1. Determine whether the object of interest (FRB/SP ) exists in the candidate file/image;

2. Find the corresponding location of the object of interest if it exists.

The IoU serves as a good indicator for segmentation, however it will not quantify how accurate

our detection results are. Therefore, we use the average precision (AP) to measure the perform-

ance and quality of our detection algorithm. Let us assume there are two sets: set of labelled

objects Sl and set of predicted objects Sp. Given an IoU threshold TIoU , if the object labelled in

Sl matched the object prediction in Sp such that IoU(Sl , Sp) > TIoU , then this is either considered

as True Positive (TP, if the label = 1) or True Negative (TN, if the label = 2). For instance, when

the threshold is set to 0.6, for each detection i that TIoUi ≥ 0.6, the detection counts as a true

positive or true negative.

Average Precision, or AP, is an approximation of the area under the curve of precision (P

= TP
TP+FP ) against recall

(
R = TP

TP+FN

)
. As the model progress in its classification of objects,

recall always increases by occasional incorrect classifications, setting recall as the x-axis and

monitoring the relative changes of precision could be summarized by the area under the curve.
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This value could then be averaged over all categories and depending on the chosen t ∈ TIoU , it

can be denoted by APIoU=t,

AP =
1

Ntest
∑

t∈{0,0,01,...,1.0}
p(t). (8.4.2)

We average the precision–recall curves and mean AP scores for all Ntest images in the test data

set. This procedure is then done for IoU thresholds TIoU ∈ {0.5, 0.55, . . . , 0.95}.
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(b) Precision-recall curves on test set

Figure 8.11 – Precision-recall curves and mean AP scores calculated at varying IOU thresholds
averaged over the validation and test data set for FRB/SP. We find IOU = 0.5 gives a mean AP score
of 99.9.

8.4.3 Model Optimization and Accuracy of FABLE

We conducted a two-step assessment for the trained FABLE model. First, we assessed the av-

erage precision (mAP: the mean of average precision values of each class) of the trained FABLE

model with the hold-out validation dataset (comprising of FRB/SP candidates). Second, we

make inference of the trained FABLE model on a test data.

8.5 Analysis and Discussion of FABLE results

To validate our trained FABLE network, we test its performance against DM-time images from

the validation and test data set. The test set is not used during the training process, thus it can

be utilized to provide an unbiased estimate of the performance of FABLE. The validation is used

for optimizing the network while training the network.

To quantify the performance of our FABLE’s classification capability, we calculate the pre-

cision and recall for each image in the validation and test data set. A detection is considered

positive if the detection confidence is greater than a given threshold. In this work, we varied
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Figure 8.12 – Prediction examples in the test set using the trained FABLE model. The outputs are
a generated mask indicating the exact shape of the FRB/SP. Also, a bounding box is produced
to find the boundary location of the source of interest and the probability that it is an FRB/SP. The
predicted DM and time values have been determined by using the mask that allows us to determine
the brightest pixel of the candidates.
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Table 8.5.1 – Summary table of our AP score metrics calculated on the test data set. Although FABLE
performs well for small TIoU , its performance rapidly decreases for larger TIoU . This is likely due to
the low SNR of candidates in the test images.

Class AP50 AP60 AP70 AP80 AP90 AP95

FRB/SP 0.999 0.996 0.987 0.957 0.713 0.119

the intersection over union (IOU) thresholds TIoU ∈ {0.5, 0.55, . . . , 0.95}. We evaluate the pre-

cision and recall for FRB/SP classes and used the average precision (AP) for all 1121 and 3357

images in the validation set and test data set respectively.

The results presented in Figure 8.11 summarize the performance of our FABLE network on

ground truth images in the validation and test data. In Table 8.5.1 and Figure 8.11, we calculate

the AP metrics to evaluate the performance of FABLE for FRB/SP detection. As we note from

the plots and table, we expect fewer positive detections of FRB/SP at greater TIoU and more

FRB/SP candidates are detected at lower TIoU . The best performance of FABLE is obtained

at TIoU = 0.5 with an AP value of 0.999. In addition, we also show some examples of the

detection of FRB/SP on the DM-time images in the test set at TIoU = 0.5 in Figure 8.12. FABLE

has successfully detected all the FRB/SP present in the test set at TIoU = 0.5. During prediction,

as can be noted in Figure 8.12, the FABLE model outputs a mask indicating the exact shape of

the FRB/SP. Also, a bounding box is generated to find the location boundary of the source of

interest and the probability that it is an FRB/SP. The mask has been useful to find the brightest

pixel of the FRB/SP detected. Using the index/coordinates of the brightest pixel, we can work

out the DM value and time of the candidate file. During prediction, we obtain information

about the predicted class, the probability of the candidate being a FRB/SP, calculated DM and

time and the position of the brightest pixel of the FRB/SP. This information is detailed on the

right side of each candidate file.

8.6 Concluding Remarks

In this work, we develop a new deep-learning method for detecting, localizing and classifying

FRB/SP sources in radio images. We used data from Agarwal et al. (2020) as a ground truth

comparison for supervised machine learning. Our code, FABLE efficiently performs all tasks of

FRB/SP detection, localizing and classification in one pipeline. The network is robust enough

and we are able to use the generated mask of the bow-tie shape to locate the brightest pixel

coordinate of the detected FRB/SP to compute an approximate DM and time for the detected

candidate.
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We briefly describe the contributions of this work: We

1. establish a novel technique for instance segmentation in radio images for Fast Radio

Burst/single pulse searches,

2. demonstrate how existing deep learning techniques in the field of computer vision can

be utilised to solve challenging problems such as detection, localization and classification

in radio astronomy,

3. use of the DM-time image of a candidate, extracting the bow-tie shape information to

perform FRB/SP classification, detection and localization,

4. develop an open-source software, available on GitHub: FABLE: Fast rAdio Burst Local-

ization and dEtection using Mask R-CNN‡.

We evaluate the performance of FABLE using the AP score metric, and show the precision

and recall curves for FRB/SP against background noise. FABLE shows good performance at

moderate IOU thresholds TIoU . We measure a precision of 99.9 per cent at 90 per cent recall

for FRB/SP with a minimum detection confidence threshold of 0.5. The proposed method can

improve the consistency and accuracy of FRB/SP against background noise classification. In

the future, the number of cases in the image database is expected to increase and the FABLE

model can serve as a new tool for real-time pipeline that can automatically detect FRB/SP.

‡https://github.com/Zafiirah13/FABLE
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CONCLUSIONS & FUTURE WORK

With the advent of the largest telescopes, the MeerLICHT, BlackGEM, Catalina Sky Survey

(CSS), MeerKAT and SKA telescopes, we found that it is hard to perform classification of tran-

sients not because they cannot be detected by optical and radio telescopes, but rather because

of the data deluge received per second that makes it difficult to sift through them quickly. As

an avalanche of data is being processed, there is no way of knowing beforehand which are most

likely to be certain types of variable stars, or likely to be interesting candidates, and which are

most likely to be noise or interference in both optical and radio data. As analysing these data is

expensive, both in terms of human effort and financially, it is important to develop automated

techniques to sift through the enormous volumes of data as quickly and accurately as possible.

Hence, this thesis aimed to devise several automated machine learning techniques that are cap-

able of overcoming the classification problems for both optical and radio astronomy. Here we

summarize the work accomplished and illustrate how these techniques can be, or are being

used in real-time surveys.

This thesis approached jointly complementary domains of optical transients (variable stars),

radio transients (single pulses, pulsars, fast radio bursts) and machine learning. In Chapter 1,

the aims, objectives and contributions of this study are detailed. Chapter 2 introduced the tran-

sients phenomena in both optical and radio astronomy. A review of various types of variable

stars, pulsars, fast radio burst candidates were conducted. As this study deals mostly with

classification problems, Chapter 3 provided a review of several machine learning techniques

for classification. Based upon the review of machine learning research, various ML classifiers

were identified as promising avenues of investigation for variable light curves and image do-

main classification. The classifiers developed in this study, are able to process large volumes

of data rapidly and efficiently. The characteristics demonstrated by these ML classifiers are
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attractive to current surveys.

9.1 Contributions

This work set out to develop transient classification algorithms for use during MeerLICHT and

MeerKAT transient and single pulse searches. Not only have such algorithms been created,

but they have been actively deployed to both MeerLICHT and MeerKAT surveys. The primary

aims of this study have been achieved, and thus this research can be viewed a success in that

regard. From this study, some general conclusions can be drawn from this study and these are

summarised below.

1. The research hypothesis proposed that there existed some salient features of each type

of variable stars, which differentiate them from other types of variable stars. Based on

the results presented in this thesis, we made this conclusion in Chapter 4. The levels of

classification performance achieved using a Random Forest classifier, can only be attained

if the data possessed features that characterise well the separation between the various

types of variable stars.

2. In Chapter 4, we identify a set of features which can be used in ML algorithms, that are

capable of learning a separation between various types of variable stars. During this

work, we provide evidence of the separability of features using various statistical tech-

niques, such as point-biserial correlation test and the use of information theory. In this

study, we found that using these salient features with a ‘flat multi-class’ classifier, we en-

counter several drops in performance for certain types of variable stars which has been

attributed to the imbalanced learning problem.

The imbalanced learning problem is encountered more often when we deal with data-

sets that are strongly dominated by certain majority classes. When using such data, there

are three factors that contribute to the challenging task of differentiating between minor-

ity and majority class examples. The first factor is associated with class-overlap - which

causes a lack of separation between classes. In addition, small-disjuncts and small sample

size data are the remaining two factors, that make it difficult for ML algorithms to per-

form accurately. These factors lead classifiers to becoming biased towards predicting the

majority class label and thus exhibit poor performance in terms of recall on the minor-

ity class. In attempting to overcome the imbalanced learning problem when using the

Catalina Real-Time surveys of variable stars (CRTS), we developed a hierarchical ML
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classifier based on Random Forest, that classifies variable stars based on their astrophys-

ical properties. We found that this hierarchical concept of classification greatly improved

our classifier recall on minority classes. We recently found that similar ideas have been

adopted for variable star classification in the Zwicky Transient Factory (ZTF, Bellm et al.

2019).

3. For further mitigation of the effects of the imbalanced learning problem on the CRTS

data, there likely exists other methods which have the potential to greatly improve clas-

sification performance. In Chapter 5, we therefore develop three independent methods

of balancing the sample size of CRTS data in the hierarchical classifier. At each level in

the hierarchical tree, we balance the sample size of the minority class to the sample size

of the majority class. This balancing of the data can be achieved either at the feature-level

or directly on the raw-data (light curves). We therefore used SMOTE as a first approach

that works directly on features extracted from the light curves. And in the second ap-

proach, we simulated examples of light curves using Gaussian Process (GpFit) or RASLE.

We found that balancing the sample size of minority classes at each level in the hierarchy,

improves recall on minority classes.

4. Chapter 6, 7 & 8 studied the problem of noise candidates for both optical and radio sur-

veys, and their increasing volumes in more details. While in the past it may have been

easy to filter out noise candidates (bogus or RFI) using S/N cuts assuming that most

noise candidates possess a low S/N. However, this approach is not reliable nowadays as

survey specifications are much improved and getting better. In recent surveys, noise can-

didates have high S/N, which implies that we require a high S/N threshold to be able to

remove them. However, with the application of a high S/N threshold, the algorithm will

reject weak legitimate candidates (real sources, pulsars, or fast radio bursts). In addition,

with great improvements in telescope design and survey specifications, it becomes more

difficult to select candidates in more practical ways. Firstly, the data deluge captured by

sensitive telescopes is becoming impractical to store. Secondly, the rate of data capture

is increasing at a rapid pace, thus great emphasis is made on rapid selection decisions,

so that interesting and promising candidates can be prioritised for storage, viewing and

science follow-up. These practical problems, similar to candidate classification and selec-

tion, are difficult to solve. Therefore, in Chapter 6, 7 & 8, we introduced the application

of machine learning techniques to perform automatic candidate classifications for both

optical and radio telescopes.
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5. In Chapter 6, we presented MeerCRAB, a deep learning algorithm to classify between real

and bogus candidates for the MeerLICHT telescope facility. As elaborated above, it is

important to develop automated algorithms that are capable of selecting interesting can-

didates rapidly and efficiently. MeerCRAB is based on a convolutional neural network that

works on image data directly. The MeerLICHT transient pipeline characterises a can-

didate with four images, New, Reference, Difference, and Significance. These images act

as inputs to MeerCRAB, along with the labels provided by vetters. In this Chapter, we

demonstrate the importance of having good labelling that is representative of the data by

applying two methods: thresholding and latent class model, Llcm. We found that MeerCRAB

yields an accuracy of 99.5 % and MCC value of 0.989. This performance achieves an

acceptable false positive and false negative rate for the real-time MeerLICHT transient

detection pipeline. In addition, MeerCRAB can be adapted to be a system that disentangles

interesting objects from a noisy background. We implemented a similar model to perform

candidate selection for radio astronomy in Chapter 7.

6. In Chapter 7, we illustrate a user-friendly open-source python package FRBID: Fast Radio

Burst Intelligent Distinguisher. We provide a short overview of a single stage in the Meer-

TRAP pipeline, that is, the design, implementation and exploitation of state-of-the-art

machine learning techniques to classify between single pulses (can be periodic pulsars

(1ms - 30s), rotating radio transients (RRATs), FRBs) and Radio Frequency Interference

(RFI) in real time at the MeerKAT telescope. The input of FRBID is a candidate file with

the DM-time and frequency-time data. The output of FRBID is the probability of a can-

didate of being an FRB in a range of [0;1]. After training FRBID, we obtain a perform-

ance achieving an accuracy of > 99.8% on the test data with a false positive rate of less

than 1%. With such a performance, FRBID has been integrated to the single pulse search

pipeline, MeerTRAP, for real-time classification of candidates. To date, FRBID has recently

discovered more than half a dozen of new real candidates.

7. In Chapter 8, we provide a first proof of concept of an implementation of localization,

detection and segmentation algorithm using Artificial Intelligence for Fast Radio Bursts

or single pulses. The main aim of Chapter 8 is to provide a general idea of detecting and

localizing sources in astronomical sources images. We develop FABLE: Fast Radio Burst

Localization & detection using Mask R-CNN that efficiently performs all tasks of FRB/SP

detection, localizing and classification in one pipeline. The network is robust enough

and we are able to use the generated mask of the bow-tie shape to locate the brightest
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pixel coordinate of the detected FRB/SP to compute an approximate DM and time for the

detected candidate. We evaluate the performance of FABLE using the Average-Precision

(AP) score metric and we obtain a precision of 99.9% at 90% recall for FRB/SP with a

minimum detection confidence threshold of 0.5. With the success of FABLE, this auto-

mated ML algorithm can be adopted in other domains in astronomy, for instance source

extraction software.

9.2 Future work

Machine learning is becoming increasingly useful in astronomy as it helps astronomers to

identify interesting sources/candidates in large surveys. However, these learning algorithms

(especially supervised methods) require a large amount of labelled data. As we have seen in

this thesis, the process of labelling data is expensive both in terms of time, human labour and

precision. If the labelling process is performed in an illogical way, ML algorithms tend to be-

come biased, hence affecting performance. Therefore, there is a need to develop algorithms

that eliminate human annotations and learn directly with larger data sets. These algorithms

will potentially mitigate some of the biases that come into play with data curation. Below we

detail recommendations for future work in terms of semi-supervised and unsupervised learn-

ing algorithms that would be useful to explore for future surveys.

1. Semi-supervised learning approach for classification

Semi-supervised learning can be applied where data consists of a few labelled examples

and a large fraction of unlabelled examples. The ML model must learn directly from the

small fraction of labelled examples and somehow learn on the additional larger dataset

of unlabelled examples. This concept allows the model to generalise by improving the

performance of the supervised task and is capable of classifying new unlabelled examples

in the future.

The semi-supervised GAN (Generative Adversarial Network, Goodfellow et al. 2016) is

an example of a model that can be used to address semi-supervised learning problems. In

a traditional GAN model, the discriminator is trained to predict whether an image is real

(arises from the same distribution as the training data set) or fake (generated by the gener-

ator). This concept allows the model to learn features from unlabelled images. Hence, via

a transfer learning approach the discriminator can be utilized when developing a clas-

sifier for similar dataset, thus enabling the supervised prediction task to make the most
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from the unsupervised training of the GAN.

In a semi-supervised GAN, the discriminator is updated in such a way that it can predict

N + 1 classes, where N is the number of class labels in the classification task and the extra

class label is added for a new ‘fake’ class. The concept of semi-supervised GAN involves

training the discriminator simultaneously for both the unsupervised GAN problem and

the supervised classification problem.

Hence, the discriminator is trained in two ways: a supervised and unsupervised ap-

proaches.

• Unsupervised training mode: The training process of the discriminator works sim-

ilarly as in a traditional GAN and the model is used to predict whether an example

is either ‘real’ or ‘fake’.

• Supervised training mode: The training process of the discriminator allows it to

predict the class label of real examples.

The unsupervised training approach allows the model to learn useful feature extraction

capabilities from a large unlabelled dataset. Hence, using a semi-supervised approach

for classification could in principle achieve state-of-the-art results when trained on a few

labelled examples, such as hundreds or thousands of subjects. In addition, the training

process of a semi-supervised GAN can also produce better quality images output by the

generator model.

In practice, as we noted in this thesis, the number of available labelled examples for cer-

tain classes of variable stars or number of interesting candidates or pulsar detections is

small. We have learnt from the literature review, that other practitioners either under-

sampled or over-sampled the training data to avoid biasing the ML model. In this prac-

tical scenario, a semi-supervised or unsupervised approach would be helpful to over-

come deficiencies in these workarounds.

2. Unsupervised learning approach for classification

Unsupervised or self-supervised learning is another approach that works directly on a

vast amount of data without labels. This approach could allow us to build AI models that

work well in real-time surveys and adapt quickly to changing noise levels in data streams.

The elimination of human annotation will not only reduce the need for human labour, but

also it will allow models to be created and deployed much quicker, thus enabling more

rapid and more accurate responses to evolving real-time surveys.
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An example of a self-supervised model is the SEER*(SElf-supERvised) model. It is a self-

supervised computer vision model that can learn from any random group of images -

without the need for careful curation and labels during training (Goyal et al., 2021). SEER

is based on two new algorithms known as SwAV (Caron et al., 2020) and RegNets (Radosa-

vovic et al., 2020). SwAV is a clustering algorithm that rapidly group images with similar

visual concepts and leverages their similarities. And RegNets are ConvNet models that

show the ability to scale billions or even trillions of parameters, and the model can be

optimized such that it can fit different runtime and memory limitations. With the com-

bination of these models, SwAV and RegNets in SEER, the model shows an improvement

over the previous state-of-the-art in self-supervised learning - and did so with 6 times

less training time (Goyal et al., 2021).

Therefore, with the SKA coming online soon, such an unsupervised learning algorithm is

an avenue of research that may be worth exploring.

*https://github.com/facebookresearch/vissl
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