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Abstract 

The study of genomic variation is vital for our understanding of the gene dosage changes 

which occur widely in cancer.  These dosage changes are a key alteration to the cancer cell 

whereby tumours bypass protective cellular mechanisms in order to grow and proliferate. 

In order to accurately determine the gene dosage changes in a representative range of 

cancers we used sequencing data for the NCI-60 cell lines to create a high-resolution map of 

copy number variants (CNVs).  Our analysis of CNV hotspots in the cancer genome suggests 

novel candidate cancer driver genes.  These driver genes are enriched for roles in 

proliferation, angiogenesis and apoptosis, consistent with the hypothesis that tumour cells 

must escape various protective mechanisms before they gain the hallmarks of cancer. 

The presence of paralogs associated with heritable dominant diseases in the human 

genome is a paradox, since purifying selection would be expected to remove them, and yet 

they are found throughout the metazoa.  To study the role of whole genome duplications 

(WGDs) in the persistence of these disease-associated genes we implemented a new gene 

dating method, which provides a more detailed perspective on gene duplications than has 

been previously possible.  We propose that the WGDs in the vertebrate ancestor led to a 

switch from recessive to dominant disease specifically because of the haploinsufficiency of 

the retained ohnologs, rather than due to more general dosage sensitivity. 

Tumour cells survive gene dosage alterations which are lethal to normal cells, so buffering 

mechanisms such as miRNAs must be key to these processes.  A handful of miRNAs have 

been annotated with oncogenic and tumour suppressor roles.  The most important of these 

is the mir-17~92 cluster, also called Oncomir-1.  We find widespread derepression of cancer-

related processes and pathways caused by the frequent loss of tumour suppressor miRNAs, 

as well as by global miRNA depletion resulting from the disruption of miRNA biogenesis.  We 

propose a novel mechanism whereby transient C-MYC elevation leads to TP53 repression via 

mir-663a/1228, which then allows Oncomir-1 to repress TP53 and PTEN in a sustained 

manner.  This bistable switch could potentially be reversed with Oncomir-1 antagonists. 

The work presented in this thesis advances our understanding of the role of miRNAs in 

buffering gene dosages changes in cancer and points the way to possible new interventions 

for Oncomir-1-dependent tumours.  
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Journal format 

This thesis is presented in journal format and consists therefore of a general introduction 
(Chapter 1), three manuscripts (Chapters 2-4) and a general discussion of the findings and 
significance of the work (Chapter 5). 

Chapter 1 introduces miRNAs and covers the discovery, biogenesis, evolution, function and 
effects of miRNAs.  We then discuss gene variation at both evolutionary and somatic levels, 
followed by gene dosage considerations and how dosage changes result in disease. 

Chapter 2 is a manuscript in preparation, focussing on the creation and analysis of a high-
resolution map of copy number variations (CNVs) in cancer-derived cell lines.  We 
characterise the CNVs and resulting gene dosage changes and show that cancer genomes 
are dominated by partial losses, mainly affecting tumour suppressors, with less frequent 
gains affecting oncogenes.  We develop a statistical framework for assessing the likelihood 
of CNVs affecting cancer genes and derive a list of novel candidate driver genes. 

Chapter 3 is a manuscript in preparation, where we use our detailed map of cancer CNVs to 
investigate how miRNA buffering of gene dosage changes is disrupted in cancer.  We find 
widespread derepression of cancer-related processes, caused both by specific mutations as 
well as by a more general depletion of miRNAs caused by disruption to the miRNA 
biogenesis machinery.  We propose a new mechanism whereby transient oncogene-
mediated repression of TP53 can enable activation of well-known miRNA cluster Oncomir-1, 
leading to consistent and sustained repression of TP53 and PTEN by Oncomir-1. 

Chapter 4 is a manuscript in preparation, building as acknowledged above on prototype 
work carried out during my MSc (Reardon 2016), where we investigate the origins of 
heritable diseases over evolutionary timescales.  We develop a novel gene paralog dating 
method and use it to distinguish ancient from more recent evolutionary events, leading to a 
more parsimonious explanation for the presence of dominant disease-associated genes 
than previously advanced. 

Chapter 5 interprets the conclusions of the earlier chapters in the context of our current 
understanding of gene dosage buffering, both across evolutionary timescales and as 
mediated by miRNAs in cancer. 
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1 Introduction 

1.1 MicroRNAs 

1.1.1 The discovery of miRNAs 

It was reported in 1991 that the downregulation of the levels of protein lin-14, which is 

implicated in the timing of cell fate decisions during larval transitions in Caenorhabditis 

elegans, was dependent on negative regulatory elements in the 3’UTR region of the lin-14 

gene, with deletion of several regions of the 3’UTR resulting in accumulation of the lin-14 

protein in cells in later larval stages than in wild type C. elegans (Wightman et al. 1991).  The 

same study also found that the levels of lin-14 mRNA were not altered in cells with 

inappropriate levels of lin-14 protein and the authors proposed that this implied an 

unknown post-transcriptional process of protein downregulation (Wightman et al. 1991). 

Two years later it was found that lin-4, another gene involved in the timing of cell fate 

decisions in C. elegans, encoded a pair of small RNAs instead of a protein, one of which had 

a region that was anti-sense complementary to the regions of the lin-14 3’UTR previously 

shown to be implicated in negative post-transcriptional gene regulation (Lee et al. 1993; 

Wightman et al. 1993).  The sites in the 3’UTR region of the lin-14 mRNA with this 

complementarity to the smaller lin-4 RNA were shown to be necessary for the post-

transcriptional downregulation of lin-14 protein levels (Wightman et al. 1993) and were also 

shown to be conserved in closely related species C. briggsae, C. remanei and C. vulgaris (Lee 

et al. 1993; Wightman et al. 1993).  The two RNAs produced from the lin-4 gene were found 

to be 22 and 61 nucleotides long, with the longer RNA predicted to form the stem loop 

precursor of the shorter RNA (Lee et al. 1993). 

For seven years the lin-4 RNA was thought to be specific to nematodes as well as being the 

only gene of its type but then, seven years after the discovery of lin-4, another gene in C. 

elegans called let-7 was also found to encode a similar RNA with complementarity to a 

region in the 3’UTR of lin-41 that regulated the transition from late-larval to adult cell types 

(Reinhart et al. 2000; Slack et al. 2000).  In addition to this discovery, lin-4 was found to also 

target lin-28 (Moss et al. 1997) and homologs of let-7 were discovered in humans and 

Drosophila melanogaster among other bilaterian animals (Pasquinelli et al. 2000). 
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The 22 nt lin-4 RNA is now known as the first member to be discovered of a class of small 

RNAs called microRNAs or miRNAs (Lagos-Quintana et al. 2001; Lau et al. 2001; Lee and 

Ambros 2001), though they were originally referred to as short temporal RNAs or stRNAs 

due to their involvement in cell fate timing decisions (Lagos-Quintana et al. 2001; Lau et al. 

2001).  The change in nomenclature from stRNAs to miRNAs was prompted by the discovery 

that whereas lin-4 and let-7 were related to developmental timing decisions, the other short 

RNAs with similar features but unknown functions were expressed in specific cell types 

rather than at different developmental stages (Lagos-Quintana et al. 2001; Lau et al. 2001; 

Lee and Ambros 2001).  A registry of the known miRNAs and their sequences called 

miRBase, that also controls the naming of newly discovered miRNA genes before 

publication, was set up to catalogue miRNAs (Griffiths-Jones 2004) and in March 2021 

miRBase listed 38,589 known miRNAs in 271 species (Kozomara et al. 2019). 

1.1.2 Genomics and conservation 

While the majority of miRNA genes are found in intergenic regions of the genome a large 

minority are found in the introns of protein-coding genes, generally with the same 

orientation as the host gene, implying the coordinated expression of proteins and miRNAs 

(Lagos-Quintana et al. 2001; Lau et al. 2001; Lee and Ambros 2001; Aravin et al. 2003; 

Lagos-Quintana et al. 2003; Lai et al. 2003; Lim et al. 2003b; Baskerville and Bartel 2005).  

The genomic relationship between miRNA and host gene in these cases is often deeply 

conserved, such as the miRNA mir-7 which is found in the intron of hnRNP K in mammals 

and insects, implying that the association between miRNA and host gene is evolutionarily 

ancient (Aravin et al. 2003). 

In contrast to the miRNA genes of D. melanogaster, over half of which are clustered 

together in the genome (Aravin et al. 2003), only about 1/3 of miRNAs in humans and 

nematodes are expressed from clusters (Lim et al. 2003a; Lim et al. 2003b).  Exceptions to 

these include the orthologs of the C. elegans lin-4 and let-7 genes in humans which are 

clustered and indeed expressed from the same transcript, suggesting that the separation of 

these genes is nematode-specific (Aravin et al. 2003).  MicroRNA genes in a cluster are in 

general however not necessarily related to each other in this way with little correlation 

between miRNA family and genomic location (Lagos-Quintana et al. 2001; Lau et al. 2001).  
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Among the clusters of human miRNAs are mir-23~27 and mir-17~92 (Lagos-Quintana et al. 

2001). 

MicroRNAs have since been found in plants (Reinhart et al. 2002), viruses (Cullen 2006) and 

green algae (Molnar et al. 2007; Zhao et al. 2007) as well as in a wide range of animals 

(Grimson et al. 2008; Shabalina and Koonin 2008).  Genomic methods for predicting new 

miRNA genes include simple homology searches based on multiple sequence alignments 

(Pasquinelli et al. 2000; Lagos-Quintana et al. 2001; Lau et al. 2001), searching for potential 

stem loops in the vicinity of known miRNAs (Lau et al. 2001; Aravin et al. 2003) and the 

identification of conserved regions outside the known protein-coding genes that could also 

form stem loops when expressed as RNA (Lai et al. 2003; Lim et al. 2003a; Lim et al. 2003b). 

The majority of miRNA orthologs are conserved between species to a degree proportional 

to their evolutionary distance so that, for example, most human and mouse orthologs and 

most C. elegans and C. briggsae orthologs are conserved (Lagos-Quintana et al. 2003; Lim et 

al. 2003a; Lim et al. 2003b).  The let-7 miRNA family (where each member has the same 

‘seed’ sequence between 5’ nucleotides 2 and 8) on the other hand has fifteen members in 

humans, four in C. elegans and just one in D. melanogaster (Pasquinelli et al. 2000; Aravin et 

al. 2003; Lai et al. 2003).  Only one miRNA, mir-100, is known to be conserved in both 

bilaterians and cnidarians (Grimson et al. 2008), whereas across Bilateria there are an 

estimated 34 conserved miRNA families (Christodoulou et al. 2010).  Despite this relative 

lack of deep conservation for miRNAs each significant eumetazoan clade acquired its own 

characteristic novel miRNAs, with large numbers of novel miRNA families at the split of the 

protostomes and deuterostomes and at the bases of the vertebrates and the primates 

(Sempere et al. 2006; Heimberg et al. 2008; Peterson et al. 2009; Berezikov 2011). 

More conserved miRNAs tend to evolve at a slower rate than lineage-specific miRNA 

families (Meunier et al. 2013; Lyu et al. 2014; Ninova et al. 2014), with novel miRNAs coming 

into existence frequently but rapidly degenerating unless they gain a beneficial function 

(Nozawa et al. 2010; Lyu et al. 2014).  Novel miRNAs are usually expressed in a tissue-

specific pattern at low levels (Meunier et al. 2013) and only once a miRNA is fixed in a 

population and has a beneficial function does it tend to be expressed more widely and at 

higher levels (Chen and Rajewsky 2007; Meunier et al. 2013), presumably once target genes 
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for which increased repression by the novel miRNA would be deleterious have been 

modified by purifying selection. 

1.1.3 Biogenesis and biological function 

The transcription of the majority of miRNAs that reside in the introns of protein-coding 

genes is regulated by the promotors and enhancers that regulate the expression of the host 

gene, but around a third of intronic miRNAs have independent promotors, as do all the 

intergenic miRNAs (Ozsolak et al. 2008). 

RNA genes are variously transcribed by three RNA polymerases with, for example, ribosomal 

RNA genes transcribed by pol-I, short nucleolar RNAs by pol-II and transfer RNAs by pol-III 

(Ohler et al. 2004).  MicroRNA genes have been shown to be expressed in vitro by both pol-

II and pol-III (Zeng et al. 2002), but as the miRNA primary transcripts are often longer than 

those known to be processed by pol-III (Lee et al. 2002), it is likely that the majority of 

miRNAs are transcribed in vivo by pol-II (Lee et al. 2004) (Figure 1.1). 

 

 

Figure 1.1 - MicroRNA biogenesis 

MicroRNA genes are transcribed by RNA pol II into miRNA primary transcripts (pri-miRNAs) and then cleaved by Drosha 
into miRNA precursor hairpins (pre-miRNAs).  The precursor is exported from the nucleus to the cytoplasm by Exportin 
5/Ran-GTP where it is cleaved again by Dicer before the mature miRNA strand is incorporated into the RISC/Argonaut 
complex and bound to its target site in the 3’UTR of the mRNA.  Mature miRNA strands are shown in red, miRNA* in blue 
and proteins in yellow. 

Unlike small interfering RNAs (Reinhart and Bartel 2002; Ambros et al. 2003) and Piwi-

interacting RNAs (Aravin et al. 2007), both of which are also small RNAs that provide target 

specificity to the RNA silencing machinery, miRNAs are processed from hairpin-like RNA 

stem loops called miRNA precursors (pre-miRNAs) (Grishok et al. 2001; Lee et al. 2002; Lee 

et al. 2003) (Figure 1.1).  These stem loop precursors of miRNAs are processed from much 

longer primary transcripts called pri-miRNAs that can contain several miRNA encoding stem 
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loops (Lee et al. 2002; Zeng et al. 2003), as first suggested by the co-expression of clustered 

miRNAs (Lagos-Quintana et al. 2001; Lau et al. 2001) and the genomic overlap of large 

regions of expressed sequence tags and miRNA clusters (Lagos-Quintana et al. 2002).  

Further evidence for the existence of pri-miRNA as a primary transcript prior to processing 

into pre-miRNA stem loops came from an in vitro processing system developed in (Lee et al. 

2002) which was used to show, both for clusters of miRNA genes and for single miRNA 

genes, that PCR products containing the pri-miRNAs are processed into ~65 and ~23 

nucleotide RNA fragments, that the ~65 nt fragments are the precursors of the ~23 nt 

fragments and finally that the ~23 nt fragments are indeed the mature miRNAs (Lee et al. 

2002). 

The pre-miRNAs are processed from the pri-miRNAs in the nucleus by RNase III 

endonuclease Drosha in complex with dsRNA-binding DGCR8 (Figure 1.1), as shown both by 

the in vitro cleavage of pri-miRNA into pre-miRNA by Drosha and by the increase of pri-

miRNA and decrease of pre-miRNA in vivo when Drosha is subject to RNA interference (Lee 

et al. 2003; Gregory et al. 2004; Han et al. 2004; Han et al. 2006).  In addition to recognising 

the secondary hairpin structure of the pre-miRNA, in bilaterians Drosha also recognises 

primary sequence elements upstream and downstream of the hairpin in order to distinguish 

the pre-miRNAs from the many other hairpin-like secondary structures (Auyeung et al. 

2013).  Drosha cleavage of the pri-miRNA leaves the 2 nt 3’ overhang that is characteristic of 

RNase III endonucleases and which forms the base of the pre-miRNA stem loop (Lee et al. 

2003; Han et al. 2004).  Some intronic miRNAs called mirtrons bypass Drosha cleavage and 

are instead processed by the intronic splicing machinery into pre-miRNAs (Okamura et al. 

2007).  The pre-miRNAs are then exported from the nucleus to the cytoplasm by the 

enzymes Exportin-5 and Ran-GTP (Yi et al. 2003) (Figure 1.1). 

The PAZ domain of the cytoplasmic enzyme Dicer recognises the Drosha-cleaved 2 nt 

overhang of the pre-miRNA (Macrae et al. 2006), after which Dicer cleaves both strands of 

the pre-miRNA stem loop at a distance of approximately two helical turns from the base, to 

leave an RNA duplex about 22 nt long containing the mature miRNA and the corresponding 

fragment from the other arm of the pre-miRNA, known as the miRNA* (Hutvagner et al. 

2001; Lee et al. 2003) (Figure 1.1). 
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The mature miRNA strand of the duplex is usually the strand with the 5’ end which can be 

most easily unwound from the duplex due to its relative internal instability within the RNA 

duplex (Khvorova et al. 2003; Kawamata et al. 2009), which is then incorporated into a 

protein complex called the RNA-induced silencing complex or RISC (Hammond et al. 2000; 

Kim et al. 2009; Kawamata et al. 2009) (Figure 1.1).  The RISC contains a protein from the 

Argonaute family (Hammond et al. 2001) which, once bound to the mature miRNA, 

recognises the complementary sequence in the mRNA (Figure 1.1) and either cleaves and 

degrades the mRNA if the match between the entire miRNA and mRNA is nearly exact 

(Hutvagner and Zamore 2002) or inhibits ribosomal translation by remaining bound to the 

mRNA and interfering with ribosomal activity if the match is only exact in the miRNA seed 

region between nucleotides 2 and 8 at the miRNA 5’ end, sometimes with additional 

adjacent complementary and compensatory sites (Zeng et al. 2002; Zeng et al. 2003; Lim et 

al. 2005).  These two mechanisms are known as mRNA cleavage and translational repression 

respectively. 

Even in the case of translational repression however, there is still widespread degradation 

of mRNAs which are targeted by miRNAs (Baek et al. 2008; Selbach et al. 2008).  The GW182 

protein bound to the RISC inhibits translation during the initiation phase by binding to the 

PABPC complex bound in turn to the mRNA poly(A) tail and thus preventing ribosome 

assembly (Ding and Grosshans 2009; Zdanowicz et al. 2009).  GW182 then directs the mRNA 

towards deadenylation by CAF1/CCR4/NOT (Behm-Ansmant et al. 2006).  The deadenylated 

mRNA is then de-capped by enzyme DCP2 (Rehwinkel et al. 2005) and finally degraded by 

the 5ʹ-to-3ʹ exonuclease XRN1 (Behm-Ansmant et al. 2006). 

A possible explanation for the importance of seed region pairing is that the Argonaute 

protein presents these nucleotides pre-formed into an alpha helix to increase efficiency of 

binding to the cognate mRNA site (Bartel 2004; Mallory et al. 2004; Elkayam et al. 2012; 

Schirle and MacRae 2012).  Seven nucleotide seed regions are the optimal length in this 

model as any longer and the RNA would present more than one complete alpha helix for 

binding to the mRNA with the attendant topological difficulties and any shorter seed would 

lead to reduced target site specificity (Bartel 2009).  This mRNA-binding structure is also the 

basis for the enrichment of uracil and adenosine nucleotides at the start of the 5’ end of the 

mature miRNA in bilaterians (Hu et al. 2009). 
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MicroRNA targets in plants tend to have nearly perfect full-length complementarity 

(Rhoades et al. 2002) and have been shown to result therefore in mRNA cleavage (Llave et 

al. 2002; Rhoades et al. 2002).  The targets found in (Rhoades et al. 2002) were mainly 

transcription factors that are associated with cell differentiation, implying a general 

mechanism in plant cell differentiation whereby miRNAs cleave the mRNA in order to 

sharpen the transition to a differentiated cell fate by stopping the production of the related 

protein more quickly (Rhoades et al. 2002).   

The RISC-bound mature miRNA continues to function after mRNA cleavage has occurred and 

so can cleave additional mRNA molecules (Hutvagner and Zamore 2002).  The presence of 

multiple mRNA target sites has little effect in the case of mRNA cleavage since, once cleaved 

at any site, the mRNA is rapidly degraded and so additional cleavages would have little 

effect on mRNA levels and hence gene expression (Doench et al. 2003).  In contrast, multiple 

mRNA target sites in the cases of translational repression or transcript destabilisation result 

in the cooperative action of more than one RISC per mRNA, with the effects proportional to 

the number of sites, thus allowing the fine tuning of gene expression levels (Doench et al. 

2003) and explaining the prevalence of protein-coding genes with multiple 3’UTR miRNA 

target sites.   

1.1.4 Target prediction, verification and interactions 

In contrast to the behaviour of miRNAs in plants, while a few animal miRNAs initiate mRNA 

cleavage, such as the mir-196 cleavage of HOXB8, HOXC8 and HOXD8 (Yekta et al. 2004) or 

the mir-127/136 cleavage of Rtl1/Peg11 (Davis et al. 2005), animal miRNAs tend not to have 

such complete complementarity to their mRNA target sites and so miRNA target prediction 

methods additionally take into account inter-species conservation of the seed region 

(Enright et al. 2003; Lewis et al. 2003; Stark et al. 2003).  Despite the greater noise from 

these methods many of the predictions have been experimentally validated (Lewis et al. 

2003; Stark et al. 2003) but, unlike in plants, are found to be less likely to target 

transcription factors and more likely to target a wider range of biological processes and so 

have further-reaching effects than simply increasing the speed of the cessation of protein 

production (Stark et al. 2003). 

The first miRNA to be found, lin-4 in C. elegans, was found to be complementary at its 5’ 

end to its target site in the lin-14 3’UTR (Wightman et al. 1993).  It has since been shown 
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that not only is perfect complementarity to nucleotides 2 to 8 from the 5’ end of the miRNA 

predictive of translational repression (Lai 2002) but also that these seed regions are highly 

conserved in the ortholog mRNAs of other metazoan species (Lewis et al. 2003; Lim et al. 

2003b; Stark et al. 2003) and target prediction using these regions is more effective than 

using any other region of the same length (Lewis et al. 2003).  While the majority of 

functional miRNA target sites are in mRNA 3’UTRs, target sites also exist in 5’UTRs and open 

reading frames, with the latter more common (Kloosterman et al. 2004; Lytle et al. 2007). 

The earliest methods of miRNA target site prediction searched for mRNA sites with near-

perfect complementarity to the entire miRNA (Rhoades et al. 2002), an approach that 

largely succeeded in plant genomes, but which rarely works in animal genomes.  Requiring 

complementarity to just six or seven contiguous nucleotides of the seed region between 

nucleotides 2 and 8 at the 5’ end of the miRNA (Figure 1.2A-D), restricting mRNA candidate 

sites to those with high interspecies conservation and ranking candidate sites by the folding 

free energy of the miRNA/target site duplex resulted in greatly improved detection of 

miRNA target sites, albeit with wide disagreement between the results from each algorithm 

due to the allowance of RNA ‘wobble-pairing’ (Enright et al. 2003; Lewis et al. 2003; Stark et 

al. 2003; John et al. 2004; Kiriakidou et al. 2004). 

A subsequent refinement to the TargetScan algorithm of (Lewis et al. 2003) restricted seed 

matching to strict Watson-Crick pairing and replaced the use of folding free energy to rank 

target candidates with the consideration of conserved nucleotides adjacent to the seed 

region, specifically an ‘anchoring’ adenosine residue at the 3’ end of the seed’s cognate 

region in the mRNA 3’UTR (Figure 1.2A/C) (Lewis et al. 2005).  The adoption of similar 

refinements to those in TargetScan (Lewis et al. 2005) by other algorithms such as PicTar 

(Lall et al. 2006) and EMBL (Stark et al. 2005) have led to much less disagreement between 

the results from each.  Experimental confirmation of the importance of strict Watson-Crick 

base-pairing of the miRNA seed region was provided by an analysis using quantitative mass 

spectrometry of mRNA and protein levels after miRNA transfections and knockdowns (Baek 

et al. 2008) and also by a microarray-based analysis of mRNA levels after similar 

manipulation of miRNA levels (Selbach et al. 2008). 
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Figure 1.2 - Conserved miRNA target sites 

Types of conserved miRNA target sites, with matched seed nucleotides shown in red, additional matching nucleotides in 
black, anchoring adenosine residues in blue, matched 3’-supplementary nucleotides in green and matched 3’-
compensatory nucleotides in yellow.  (A) 7 nt site with six seed nucleotide matches and an anchoring adenosine residue.  
(B) 7 nt site with six seed nucleotide matches and an additional matching nucleotide at 5’ position 8.  (C) 8 nt site with six 
seed nucleotides matching as well as both an anchoring adenosine and an additional position 8 match.  (D) Marginal six 
nucleotide target site.  (E) Marginal six nucleotide target site with 3’-supplementary matches.  (F) Mismatched seed 
region with 3’-compensatory matches. 

Crucially, restricting the mRNA sites to those that are conserved across multiple species 

(Lewis et al. 2003) increased the chances that these sites are biologically functional and so 

facilitated the development of algorithms that did not depend on a training set of known 

targets (Lewis et al. 2003; Lewis et al. 2005).  This also allowed the common features of 

miRNA target recognition to be defined, primarily the conserved Watson-Crick pairing 

between nucleotides 2-8 at the 5’ end of the miRNA, consistent with the observations that 

the 5’ end of the miRNA is the most highly conserved (Lim et al. 2003b) and that mutations 

in these regions were the most likely to disrupt miRNA regulation (Doench and Sharp 2004; 

Brennecke et al. 2005; Lai et al. 2005a). 

The conserved strict Watson-Crick pairing of the seed alone raises the specificity signal 

above false positive noise (Brennecke et al. 2005; Lewis et al. 2005) though false positives 

still occur and, while the specificity can be further improved by requiring eight nucleotide 

seed matches (Figure 1.2C), this results in greatly decreased sensitivity to valid target sites 

(Lewis et al. 2005).  Conversely, the target prediction sensitivity can be increased by 

reducing the length of the conserved seed match to just six nucleotides (Figure 1.2D/E) but 

only at the cost of reduced specificity caused by an increase in false positive matches (Lewis 

et al. 2005). 

A further refinement to the TargetScan algorithm (Friedman et al. 2009) that incorporated 

more genomes and had a more sophisticated model of conservation found that when six 
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nucleotide targets were included in addition to seven and eight nucleotide targets, more 

than 60% of human protein-coding genes have been under negative selection pressure to 

maintain targeting by miRNAs with an average of more than 400 conserved targets per 

miRNA family (Friedman et al. 2009).  Confirmation that this level of miRNA targeting of 

protein-coding genes is observed in vivo is provided by the finding that when miRNAs are 

transfected into HeLa cells, the expression profile of hundreds of genes is shifted towards 

that observed in cells of the tissues in which the miRNAs are preferentially expressed (Lim et 

al. 2005).  Similar results were seen in a study that used chemically modified 

oligonucleotides complementary to miRNAs to silence the regulatory effect of miRNAs in 

mice (Krutzfeldt et al. 2005). 

In addition to the predominant miRNA seed-based mRNA target sites there are conserved 

3’-supplementary sites (Figure 1.2E) where Watson-Crick pairing of 5’ miRNA nucleotides 

13-16 increases efficacy of miRNA/mRNA binding (Grimson et al. 2007).  Further sites known 

as 3’-compensatory sites (Figure 1.2F) are longer regions of miRNA nucleotide pairing at 5’ 

miRNA nucleotides 13-18, at least six nucleotides long and in some cases long enough to 

induce mRNA cleavage (Yekta et al. 2004), that compensate for single nucleotide 

mismatches in the seed region (Grimson et al. 2007).  These 3’-compensatory sites are 

thought to be conserved despite their rarity because they allow a 3’UTR site with slightly 

mismatched seed pairing to different members of a miRNA family to be targeted by 

different family members that are expressed during different stages of development, 

facilitating greater temporal refinement of miRNA regulation (Brennecke et al. 2005; Lewis 

et al. 2005). 

The relatively high false-positive rates of in silico miRNA target prediction methods have 

motivated the recent development of in vivo high-throughput methods for the experimental 

discovery of target sites, using the cross-linking immunoprecipitation (CLIP) (Darnell 2010; 

Hafner et al. 2010; Grosswendt et al. 2014) and cross-linking, ligation and sequencing of 

hybrids (CLASH) (Kudla et al. 2011; Helwak et al. 2013) methods to discover the actual 

binding sites of miRNA-incorporating RISCs. 

1.1.5 Expression and selective avoidance 

The first miRNAs to be discovered, lin-4 and let-7, along with their homologs in other 

species, are expressed at different stages of development (Lee et al. 1993; Moss et al. 1997; 
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Pasquinelli et al. 2000; Reinhart et al. 2000; Slack et al. 2000).  Other miRNAs are tissue-

specific, such as mir-122 which is expressed in liver cells (Lagos-Quintana et al. 2002) and 

mir-1 which is expressed in the heart (Lee and Ambros 2001; Lagos-Quintana et al. 2002).  

Different regions and developmental stages of organs can have distinct miRNA expression 

patterns, such as in the mammalian brain (Krichevsky et al. 2003).  The numbers of miRNA 

molecules expressed in a given cell can vary widely, from less than 1000 miR-124 per adult 

nematode cell to more than 50,000 miR-2, miR-52 and miR-58 (Lim et al. 2003b). 

The necessity of the use of inter-species conservation as well as seed region 

complementarity in all successful target prediction methods (Lewis et al. 2003; Stark et al. 

2003; Lall et al. 2006; Friedman et al. 2009), which is not a mechanism available to cells, 

implies that there must be other determining features of miRNA targeting in vivo, such as 

relying on co-expression to limit the possible targets as with transcription factors (Rhoades 

et al. 2002; Farh et al. 2005).  The effects of the combinations of different miRNA target 

sites on each mRNA (Lewis et al. 2003) and the effects of additional features adjacent to the 

seed-based target site (Grimson et al. 2007) act to increase the specificity of miRNA 

translational repression. 

Even non-conserved target sites in mRNAs are functional when the cognate miRNA is 

present simultaneously in the cell (Farh et al. 2005; Krutzfeldt et al. 2005; Baek et al. 2008; 

Selbach et al. 2008) and are ten times more prevalent in 3’UTRs than conserved sites (Farh 

et al. 2005), yet the expression profiles of non-conserved mRNA targets and their cognate 

miRNAs are strongly anti-correlated in vivo (Farh et al. 2005).  Over sufficient evolutionary 

time 7 nt regions of 3’UTRs will accumulate mutations that make them a match for miRNAs 

expressed in the same cell, causing immediate down-regulation by the co-expressed 

targeting miRNA, with the result that the mutation often fails to become fixed in the 

population due to selective disadvantage, in a process known as selective avoidance (Farh et 

al. 2005; Stark et al. 2005). 

Protein-coding genes with 3’UTRs under evolutionary pressure to selectively avoid a co-

expressed miRNA are known as ‘anti-targets’ of that miRNA (Bartel and Chen 2004) and 

have significantly fewer sites complementary to that miRNA than would be expected by 

chance (Farh et al. 2005).  The numbers of conserved targets and anti-targets are of similar 
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magnitude and so miRNAs have probably had an impact on most mammalian genes via one 

or other of these mechanisms (Farh et al. 2005). 

1.1.6 Loss of function 

The widespread targeting of mRNA 3’UTRs by multiple miRNAs (Friedman et al. 2009), 

whether from the same seed-based family or not, is one possible explanation for the 

observation that knockout of any given miRNA rarely results in an obvious phenotypical 

difference (Miska et al. 2007).  This targeting redundancy, as exhibited for example by the 

co-targeting in C. elegans of hbl-1 by three members of the let-7 family (mir-48, mir-84 and 

mir-241), where it was shown that at least two of the three miRNAs had to be deleted 

before a phenotypical difference to the wildtype was observed (Abbott et al. 2005), means 

that it might be necessary to silence not just an entire miRNA family but also all members of 

the co-targeting miRNAs’ families in order for the targeted mRNA to experience significantly 

reduced miRNA-induced repression and hence exhibit a phenotype. 

An additional explanation for the frequent lack of miRNA loss-of-function phenotype is that 

the regulation of expression levels by a given miRNA might only be essential when there are 

environmental stresses that the miRNA regulation would otherwise counteract.  An example 

of this occurs in the development of the Drosophila eye where mir-7, in a negative feedback 

loop with transcription factor Yan, controls the change from progenitor cell to 

photoreceptor cell (Li and Carthew 2005).  It was shown that in normal developmental 

conditions there is no phenotypical consequence of mir-7 knockout but, when the 

temperature was fluctuated during the larval stage, mir-7 knockout Drosophila had sensory 

organ defects (Li et al. 2009). 

1.1.7 Regulatory motifs 

Genes expressed in specific tissues have longer 3’UTRs with more miRNA target sites than 

genes associated with core cellular processes (Stark et al. 2005) and miRNA expression 

becomes more varied both during the development of embryos (Ji et al. 2009; Thomson et 

al. 2006) and in more complex organisms (Heimberg et al. 2008; Lee et al. 2007).  Together 

with the observation that the expression profiles of miRNAs and their targets are anti-

correlated across neighbouring tissues (Farh et al. 2005), this suggests that miRNAs increase 
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the robustness of developmental transitions and aid in the maintenance of cell fate 

decisions via the mechanism of selective avoidance (Farh et al. 2005; Stark et al. 2005). 

A regulatory network that can reinforce such anti-correlated tissue-specific expression is the 

coherent feed-forward loop in conjunction with a feedback loop (Mangan et al. 2003).  In 

the coherent feed-forward loop an intermittently expressed transcription factor inhibits the 

transcription of a target gene and activates a miRNA that also inhibits the translation of the 

target gene, thus reinforcing the decision against transient fluctuations in the levels of the 

transcription factor due to the relatively long-lasting nature of the miRNA (Figure 1.3A) 

(Mangan et al. 2003).  A tissue in which the transcription factor is expressed will therefore 

have reliably little target gene expression.  The addition of a feedback loop where the target 

gene inhibits the miRNA reverses the effect such that a tissue in which the target gene is 

already expressed will not be able to express the miRNA and so the intermittent expression 

of the transcription factor will not be able to robustly inhibit the target gene (Figure 1.3A) 

(Mangan et al. 2003).  An example of this type of composite network occurs in 

granulopoiesis in bone marrow, where C/EBPα inhibits the transcription of E2F1 and 

activates mir-223 which inhibits the translation of E2F1, with the feedback loop component 

coming from the inhibition of mir-223 by E2F1 (Figure 1.3A) (Pulikkan et al. 2010).  Another 

variant of coherent feed-forward loop occurs when a transcription factor activates the 

transcription of the target gene and inhibits a miRNA which is an inhibitor of the target 

gene, thus reinforcing the activation of the target gene (Mangan and Alon 2003). 

Robustness to extrinsic noise such as transcription factor levels can be provided by 

incoherent feed-forward loops in which a transcription factor activates the transcription of a 

target gene at the same time as activating a miRNA that inhibits the translation of the target 

gene (Figure 1.3B), with the effect that transient fluctuations in the transcription factor 

levels are counteracted by the corresponding increase or decrease in the levels of the 

miRNA, thus decoupling expression levels of the target gene from the levels of the 

transcription factor (Mangan and Alon 2003).  An example of this occurs when C-MYC is 

expressed which activates expression of miR-17-5p and miR-20a, both of which inhibit 

translation of E2F1 which is also activated by C-MYC (Figure 1.3B) (O'Donnell et al. 2005).  

Incoherent feed-forward loops have also been characterised as ‘sign-sensitive accelerators’ 

that increase the speed of transition of expression levels in just one direction, from off to on 
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for example, in contrast to coherent feed-forward loops which act as ‘sign-sensitive delays’ 

(Mangan and Alon 2003). 

A simpler mechanism for increasing robustness to transcriptional noise known as ‘weak 

buffering’ is the interaction between miRNA and mRNA copy numbers in the cell (Mukherji 

et al. 2011).  When there are sufficiently more miRNA molecules than mRNA transcripts the 

protein output is negligible since the mRNA are all silenced, but when the level of miRNA 

decreases or the mRNA level increases past a threshold the protein output not only 

increases from zero but does so in a manner dependent on the rate of transcription 

(Paulsson 2004), thus avoiding oversensitivity to transcriptional noise at low levels of 

transcription when the noise in relative terms would be expected to be highest (Mukherji et 

al. 2011). 

Another type of network which reinforces cell fate decisions in conjunction with the feed-

forward/feedback network is the mutual negative feedback loop, where two elements 

inhibit each other (Figure 1.3C).  In the example of granulopoiesis discussed above there is 

an additional mutual negative feedback loop involving mir-223 and another transcription 

factor NFI-A which competes with C/EBPα to bind to the mir-223 promoter and, prior to 

granulopoiesis, inhibits expression of mir-223 (Figure 1.3C) (Fazi et al. 2005).  After retinoic 

acid causes the cell to transition into a granulocyte, C/EBPα out-competes NFI-A to bind to 

the mir-223 promoter and activates mir-223 expression, which in turn represses 

transcription factor NFI-A expression and reinforces the cellular decision (Fazi et al. 2005). 

In addition to the robustness conferred by miRNAs to developmental transitions and cell 

fate decisions, miRNAs also buffer some of the intrinsic variation in gene expression that 

arises from the stochastic nature of both transcription and translation events (Ozbudak et 

al. 2002; Raser and O'Shea 2005; Blake et al. 2006).  Elevated transcription rates reduce the 

noise in transcription over time with translation only linearly amplifying any noise and so an 

increase in transcription events with a simultaneous decrease in translation events smooths 

expressed protein levels over time (Paulsson 2004).  The mutual negative feedback loop has 

this buffering effect against the stochastic nature of transcription where increased 

transcription of a transcription factor leads to increased transcription of the transcription 

factor’s inhibitory miRNA, such as in the homeostatic regulation of MeCP2 levels in neurons 
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where MeCP2 activates BDNF which activates mir-132, an inhibitor of MeCP2 (Klein et al. 

2007). 
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Figure 1.3 - MicroRNA regulatory motifs 

Transcription factor, miRNA and target gene regulatory motifs with activation shown as an arrowhead and repression 
shown as a bar.  (A) Coherent feed-forward loop with additional negative feedback loop (dotted line).  (B) Incoherent 
feed-forward loop.  (C) Mutual negative feedback loop.  (D) Indirect positive feedback loop. 

Similar in structure to the mutual negative feedback loop is the indirect positive feedback 

loop in which a transcription factor activates a miRNA that inhibits the translation of a 

second transcription factor which is an inhibitor of the first transcription factor (Figure 

1.3D), a regulatory motif in which a miRNA can indirectly increase rather than decrease 

expression levels.  This occurs during the differentiation of C. elegans vulval cells when 

LIN12 activates mir-61 which inhibits Vav-1 which in turn inhibits LIN12, with the 

consequence that LIN12 activation is self-reinforcing (Figure 1.3D) (Yoo and Greenwald 

2005). 

While these bi-stable feedback loops are beneficial during development they can also be 

detrimental when the miRNA expression is lost, as can occur in the negative feedback loop 

between transcription factor ZEB1 and the mir-200 family of miRNAs that reinforces the 

transitions between epithelial and mesenchymal cell types during development (Bracken et 

al. 2008; Burk et al. 2008; Paterson et al. 2008).  When mir-200 expression is lost, as occurs 

in some carcinomas, the cell can switch back to a mesenchymal state resulting in an 

increased propensity to metastasize (Paterson et al. 2008; Gibbons et al. 2009). 
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Diploid organisms are able to tolerate many single copy recessive loss-of-function mutations 

and yet, despite the similarly small change in expression level of a miRNA’s target of less 

than 2-fold (Baek et al. 2008), miRNAs and their cognate mRNA target sites are clearly under 

selective pressure to maintain or avoid interactions.  This apparent contradiction can be 

explained by the observations that some miRNAs have more than one target site in a 3’UTR, 

such as let-7 and its target HMGA2 (Mayr et al. 2007), and also that multiple co-expressed 

miRNAs often have the same target and so increase the repressive effect (Friedman et al. 

2009), additively if with sufficiently widely spaced target sites in the 3’UTR but 

multiplicatively when the target sites are in close proximity (Bartel 2009; Mukherji et al. 

2011).  Additional mechanisms for multiplying the repressive effect of a miRNA are positive 

feedback loops (Yoo and Greenwald 2005) and the targeting of multiple components of a 

complex or pathway (Linsley et al. 2007). 
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1.2 Genetic variation 

1.2.1 Evolutionary variation 

The largest-scale mutation known to occur is the addition of an entire set of chromosomes, 

known as polyploidization, with the resulting species or individual organisms being referred 

to as triploid (three sets of chromosomes), tetraploid (four sets of chromosomes) and so on 

(Otto and Whitton 2000).  Most eukaryotic organisms are diploid although their gametes 

are generally haploid with just one set of chromosomes (Otto and Whitton 2000).  

Polyploidy is much more common in plants than in animals, occurring in more than 30% of 

plant species (Masterson 1994) with only occasional examples in animals (Lewis 1979).  

Polyploidy in animals occurs more frequently in invertebrates than in vertebrates (Otto and 

Whitton 2000).  When polyploidy arises as the result of the combination of chromosomes 

from more than one species it is known as allopolyploidy and polyploids that are formed 

from multiple sets of chromosomes from the same species are known as autopolyploids 

(Otto and Whitton 2000). 

Autopolyploidy occurs relatively frequently in mammals with 5% of spontaneously aborted 

human foetuses showing triploidy or tetraploidy, which rarely leads to viable foetuses 

(Creasy et al. 1976). In contrast, the rate of single gene duplications has been estimated at 

around 10-8 per gene per generation (Lynch 2007).  Aneuploidy, the variation in the number 

of a single chromosome as opposed to the entire set of chromosomes, is four times more 

common than polyploidy in spontaneously aborted human foetuses (Creasy et al. 1976). 

Two rounds of whole genome duplications (WGDs), where an error during meiosis leads to 

twice the usual number of chromosomes, are thought to have occurred in early vertebrate 

history (Ohno 1970).  The retained gene copies resulting from WGD events, now known 

after their definition by Sasumu Ohno as ohnologs (Wolfe 2000), have been shown to be 

more essential, in that their deletion causes embryonic sterility or lethality, than genes 

arising from small-scale duplications (SSDs) (Makino et al. 2009).  Genes that are not known 

to have been duplicated by either mechanism are known as singletons and have been 

shown to be as essential as ohnologs (Makino et al. 2009). 

In addition to being more essential than SSDs, ohnologs have been shown to have more 

interaction partners and to occupy a more central position in the genome’s interaction 
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network than SSDs (Huminiecki and Heldin 2010), as well as being more conserved (Lynch 

and Hagner 2015), with SSDs tending to be on the periphery of the interaction network at 

first and only gradually acquiring interactions and increasing in pleiotropy and essentiality 

(Zhang et al. 2015).  A gene’s position within the interaction network is also predictive of 

disease association, with peripheral, co-expressed and interacting SSDs tending to be 

associated with similar diseases (Goh et al. 2007) and the more central ohnologs tending to 

be associated with somatic cancers (Garcia-Alonso et al. 2014). 

Retained genes that are duplicates of other genes in the same species, known as paralogs in 

contrast to the orthologs that are duplicated by speciation events (Fitch 1970), tend to 

experience asymmetrical pressure from purifying selection after duplication.  A duplicate 

can continue to support the ancestral function with the other copy acquiring a completely 

new function over time in a process called neofunctionalisation (Rastogi and Liberles 2005).  

Alternatively, one copy splits aspects of the function with the other copy in a process called 

subfunctionalisation (Braun and Liberles 2003) or the duplicate simply becomes non-

functionalised as mutations cause pseudogenisation (Lynch and Conery 2000). 

In order to analyse the shared evolutionary history of genes that have undergone 

duplication and speciation using inter-species comparative genomics, phylogenetic trees are 

created from multiple sequence alignments by a variety of methods such as the maximum 

likelihood approach (Felsenstein 1981) and the neighbour-joining method (Saitou and Nei 

1987).  In conjunction with the fossil record and theories of molecular substitution rates 

during genetic drift (Benton and Ayala 2003; Benton and Donoghue 2007; Archibald 2003), 

the approximate divergence ages of taxa in the phylogenetic trees can be derived, forming 

the basis for the assignment of approximate dates to gene duplication events despite these 

events having occurred in the distant past and in species that are mostly extinct. 

A variety of methods have been used to deal with the ambiguity inherent in assigning dates 

to genes that have undergone repeated duplication and speciation events.  One such 

method assigns to each gene the age of its last common ancestor (LCA) with the 

consequence that the ages of all genes in a paralog family are weighted to the most 

evolutionarily ancient date in the tree (Domazet-Loso and Tautz 2008).  A similar approach, 

the duplicate common ancestor (DCA) method, assigns the date of the oldest duplication in 

a gene’s history (Dickerson and Robertson 2012).  A method that is instead weighted to 
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evolutionarily recent dates assigns the date of the most recent duplication (MRD) in each 

gene’s history (Dickerson and Robertson 2012).  A drawback of the DCA and MRD methods 

is that they rely on the presence of duplications in the genes’ histories and so must fall back 

to the LCA method or not assign a date for singleton genes. 

1.2.2 Germline and somatic variation 

In addition to the genetic variation that humans have inherited from ancestral species there 

are frequent and often heritable copy number variations (CNVs) from the usual two copies 

of each autosomal gene, with an average of 11 CNVs in each healthy human individual 

(Sebat et al. 2004).  These CNVs are caused by deletions, duplications and movements of 

DNA that encompass entire genes and range in size from a few thousand bases to millions of 

bases long (Sebat et al. 2004).  In March 2021 the Database of Genomic Variation 

catalogued nearly 10 million different human CNVs, covering the majority of every 

chromosome (MacDonald et al. 2014). 

CNVs are caused by errors during meiosis, mitosis and DNA repair with a general mechanism 

for the creation of non-repeating CNVs called microhomology-mediated break-induced 

replication (MMBIR) (Slack et al. 2006).  In MMBIR a stall occurs during DNA replication 

causing disengagement of the DNA replication fork from the template DNA strand, followed 

by annealing to another nearby fork in the genome that has homology at the 3’ end (Slack et 

al. 2006).  This will result in a deletion if the new fork is upstream of the stall or a duplication 

if downstream, with the orientation of the newly incorporated DNA of a duplication 

determined by whether the new fork incorporates the lagging strand, leading to the copied 

DNA having its original orientation, or the leading strand, in which case the duplicated DNA 

is reversed (Slack et al. 2006). 

The existence of proximate duplicated regions of DNA with very high sequence identity, 

such as those arising from a CNV duplication, can catalyse the creation by the DNA 

replication machinery of other repeated CNVs between the two duplicated regions in 

another mechanism called nonallelic homologous recombination (NAHR) (Stankiewicz and 

Lupski 2002).  If the two duplicated regions have the same orientation, then duplications or 

deletions of the intervening region can occur, whereas regions with opposite orientations 

will cause the inversion of the region between the two duplications (Stankiewicz and Lupski 

2002). 
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The smallest scale variation that can occur is the single nucleotide polymorphism (SNP), 

thought to be the most common genetic variation in humans, with at least 11 million SNPs 

occurring in the human population with a minor allele frequency (MAF) of >1%, 7 million of 

which have a MAF of >5% (Kruglyak and Nickerson 2001). 

Alleles of SNPs that are close to each other in the genome are often correlated, due to their 

relatively high frequency of occurrence when compared to recombination crossover points 

during DNA replication, in a process known as linkage disequilibrium (LD) (Slatkin 2008).  

The International HapMap Project found in 2004 that most of the SNPs with a MAF of >5% 

were correlated in this way and could be grouped into LD ‘bins’, with about half a million 

such LD bins observed in individuals of European or Asian descent and about a million in 

individuals with African ancestry (International HapMap et al. 2007). 
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1.3 Dosage compensation 

1.3.1 Gene dosage balance hypothesis 

Early studies investigating the difference between the consequences of the addition of one 

chromosome versus the addition of an entire set of chromosomes found that creating an 

aneuploid genotype by adding just one chromosome was generally deleterious and yet 

adding an entire set of chromosomes to create a polyploid genotype had little phenotypic 

effect (Blakeslee et al. 1920).  These aneuploid phenotypes were later shown to be due to 

the disturbance of the stoichiometric relationships of macromolecular complexes, signalling 

pathways and transcription factors (Birchler and Newton 1981), in a phenomenon now 

known as the gene dosage balance hypothesis (Papp et al. 2003). 

Most of the expression levels of the genes affected by aneuploidy were varied by an amount 

directly or inversely proportional to the change in copy number although some varied 

considerably more (Birchler and Newton 1981), consistent with the concept of a critical 

concentration and hence sigmoidal relationship between genotype and phenotype 

discussed below in relation to haploinsufficiency (Birchler and Newton 1981).  Also 

supporting the gene dosage balance hypothesis is the finding that the likelihood of the 

maintenance of a copy number variation in the human population is negatively correlated 

with the number of protein domains in the affected genes that interact with other proteins, 

suggesting again the deleterious effects of interfering with the stoichiometric relationships 

between interacting proteins (Schuster-Bockler et al. 2010). 

1.3.2 Dosage compensation 

Dosage compensation occurs in macromolecular complexes, regardless of absolute 

expression level, if a copy number variation with an inverse effect on a gene’s expression 

level also affects the gene’s interaction partners, so that the effects of decreasing (or 

increasing) the levels of an inverse regulator at the same time as decreasing (or increasing) 

the levels of the interactors cancels out (Birchler and Newton 1981). 

Similarly, an α-β-γ trimer can experience reduced yield due to an increase in β since 

unfinished α-β or β-γ dimers will sequester the available α and γ monomers (Veitia 2002).  

Therefore, if the normally expressed levels of β are indeed limiting the levels of α-β-γ by 

titration (Figure 1.4A), then a loss-of function in a β allele will be compensated for by an 
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increase in α-β-γ trimers as the limiting factor is reduced (Figure 1.4B), a phenomenon 

known as the inverse dosage effect, which has been observed in monosomic aneuploids 

with doubled expression levels and trisomic aneuploids with two-thirds expression levels 

(Guo and Birchler 1994). 

Another mechanism for avoiding excessive and potentially titrating levels of a monomer is if 

the aggregation into oligomers or macromolecular complexes masks a degradation signal on 

the monomer and so the bound monomer avoids degradation by the proteasomes and the 

excess free monomer is degraded (Asher et al. 2006).  This is consistent with the 

observation that the protein abundances in trisomic and tetrasomic cells were similar to 

diploid cells even though the mRNA levels varied proportionally with copy number (Stingele 

et al. 2012). 
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Figure 1.4 - Stoichiometric imbalance in dosage compensation 

Stoichiometric imbalance scenarios for protein complexes, with leading α monomers shown in blue, bridging β 
monomers in red and trailing γ monomers in yellow.  (A) The normally expressed levels of β limit by titration the yield of 
α-β-γ trimers.  (B) A heterozygous null mutation in β produces the same yield of α-β-γ by reducing the titrating α-β or β-γ 
dimers.  

The inverse dosage effect also occurs in transcription but only when the copy numbers of 

the negatively regulating gene and its target are co-varied, either if the α-β-γ trimer 

described above is a transcription factor and so the increase in β leads to a decrease in α-β-γ 

and hence in transcription (Veitia 2002) or if a transcriptional repressor such as a miRNA and 

its target experience the same copy number variation.  Additionally, if the level of a 

transcription factor is limiting on the expression of the activated gene, then a heterozygous 

deletion of the target gene will lead to increased transcription of the remaining allele due to 

the reallocation of the available transcription factors (Veitia et al. 2013). 
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1.3.3 Canalisation and morphological complexity 

As reviewed above, miRNA-based coherent feedforward loops act as a failsafe in cell fate 

decisions (Stark et al. 2005) and help to enforce different expression patterns in 

neighbouring cells of different tissue types (Farh et al. 2005) by the mechanism of selective 

avoidance (Bartel and Chen 2004).  Robustness to extrinsic noise and the fine tuning of 

expression levels are provided by miRNA-based incoherent feedforward loops (Mangan et 

al. 2003). 

The overall effect of these various miRNA-mediated forms of robustness to noise, together 

with the buffering effects of protein-folding chaperones such as Heat Shock Protein 90 

(Queitsch et al. 2002), is one of canalisation where phenotypical outcomes become more 

consistent despite fluctuations in both intrinsic and extrinsic signals (Waddington 1959).  

More formally, canalisation is defined as a reduction in the variance of phenotypic traits and 

hence stabilisation of the overall phenotype, caused by buffering at a genetic level that has 

evolved under the pressure of natural selection (Gibson and Wagner 2000). 

One consequence of canalisation is that so-called cryptic genetic variations can accumulate 

without affecting phenotype until the canalization-conferring network is disrupted, thus 

contributing to evolutionary innovation by acting as a store of variability until mutation, the 

weakening of protein-folding chaperone activity or environmental changes disrupt the 

canalisation (Gibson and Dworkin 2004).  An example of this disruption of canalisation 

occurs in D. melanogaster when the mir-9a/senseless network is disrupted, either by 

mutation-induced mir-9a homozygosity or by mutation of the miR-9a binding sites in the 

senseless 3’ UTR, with the reduction in copy number of miR-9a being sufficient to lead to a 

two- or three-fold decrease in the heritability, and so an increase in the variance, of the 

number of bristles on the scutellum (Cassidy et al. 2013). 

Over evolutionary time this canalisation, and therefore increased heritability of phenotype, 

has been proposed as an explanation for the sudden appearance and stability of the 

metazoan body plans that appear in the fossil record around 550 million years ago in the 

Cambrian explosion (Peterson et al. 2009).  A phylogenetic analysis of 24 invertebrate and 

vertebrate taxa with a common ancestor 800 million years ago found that miRNA families 

were acquired at every node in the tree and that each lineage had at least one novel miRNA 

family (Peterson et al. 2009).  Together with the discovery that morphological variation 
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decreases within taxa over geological time (Webster 2007), it was argued that this meant 

that the miRNA-induced canalisation of phenotypical traits allows increases in 

morphological complexity by increasing the heritability of phenotypical traits via the 

increased robustness of gene expression levels to noise (Peterson et al. 2009). 

This model of miRNA acquisition acting to increase the heritability of phenotypical traits and 

therefore allowing for evolutionary innovation is distinct from the scenario of cryptic 

genetic variations being released and subjected to selection when canalisation is disrupted 

and suggests an explanation for the seeming contradiction between this model and miRNA 

loss-of-function (LOF) and gain-of-function (GOF) studies.  GOF studies often show that 

acquiring a novel miRNA or expressing it in different tissues or at different developmental 

stages is detrimental due to the alteration of the expression levels of many genes (Farh et 

al. 2005) and that losing miRNAs or entire families often has no phenotypic effect due to 

targeting redundancy (Miska et al. 2007).  However, it is important to note that these are 

the effects on individuals; when the effect of acquiring miRNA families at a population level 

and over evolutionary time is understood to be one of increased precision of heritable 

traits, then there is no reason that fixing of a novel miRNA family in a population should be 

deleterious, so long as the novel miRNA is initially expressed at a low level in a tissue-

specific manner (Meunier et al. 2013), until it gains a beneficial function and can then start 

to increase in pleiotropy (Chen and Rajewsky 2007; Meunier et al. 2013).  Similarly, the loss 

of a miRNA would only be visible at the population level as an increase in the variance of the 

phenotypical traits which had been under the influence of the lost miRNA, even if it became 

fixed in the population (Peterson et al. 2009). 
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1.4 Disease 

1.4.1 Dominant and recessive disease 

The classical theory of dominant and recessive traits was proposed in the 19th century to 

explain how the ‘factors’ influencing a trait, the colour of flowers for example, were 

expressed in a dominant or recessive manner, with the recessive factor’s influence hidden 

by that of the dominant factor (Mendel 1866).  Diseases associated with mutations to a 

single gene are now known as Mendelian diseases.  Genes where a mutation to a single 

allele causes the disease are known as dominant disease genes and genes where both 

alleles have to be mutated before a phenotype occurs are referred to as recessive (Furney 

et al. 2006).  For example, diseases where the mutation is to a transcription factor gene are 

mainly dominant and so a mutation to a single allele is sufficient to cause the phenotype, 

whereas diseases caused by mutations to enzyme genes are generally recessive and so both 

alleles need to be mutated before the disease occurs (Jimenez-Sanchez et al. 2001). 

Unsurprisingly given that the theory was proposed before modern genetic theory, the 

classical theory of dominance is a qualitative simplification of the actual quantitative 

situation, where co-dominant alleles are the result of a linear relationship between 

genotype and phenotype and dominance and recessiveness occur as the result of a non-

linear sigmoidal relationship (Figure 1.5A) (Veitia 2002).  The levels of phenotypic 

penetrance and expressivity for a heterozygous mutation, respectively the percentage of 

individuals that exhibit the phenotype and the severity of the expressed phenotype, depend 

on how close the genotype is to the inflexion point of the sigmoidal curve and on the 

influence of the environment or other genes in the affected gene’s network (Figure 1.5B) 

(Veitia 2002). 

Apparently healthy humans can have thousands of SNPs affecting protein-coding genes and 

dozens of heterozygous mutations (1000 Genomes Project et al. 2010) including loss-of-

function mutations or ‘dominant-negative’ mutations where, for example, a mutant protein 

deleteriously affects a protein complex (Herskowitz 1987).  The dominant-negative effect 

offers an explanation for the preferential retention of multi-domain protein paralogs after 

whole genome duplication (Gibson and Spring 1998), since a protein A and its paralog B that 

form dimers would form 100% active dimers (16 out of 16 combinations of A and B) if all 
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four paralogs were functional, 56% active dimers (9 out of 16) if only three paralogs were 

functional and just 25% active dimers (4 out of 16) if only two paralogs were functional, with 

the increasingly deleterious effects being actively selected against (Perez-Perez et al. 2009). 
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Figure 1.5 - Non-linear relationships between genotype and phenotype 

(A) The relationships between genotype dosage and phenotypic trait when alleles A and A’ are co-dominant and have 
equal effect on the phenotype (straight green line), when allele A’ is recessive and so the heterozygote has a similar 
phenotype to AA (sigmoidal blue line) and when allele A’ is dominant and so the heterozygote has a similar phenotype to 
A’A’ (sigmoidal red line).  (B) A small change in genotype dosage, ΔG, resulting from environmental influence or other 
interacting genes, can result in a large change in phenotype, ΔP, when the genotype is near the sigmoidal inflexion point. 

Mutations at different loci can also combine their effects such that while each mutation is 

recessive their combined phenotype exhibits a dominant trait, such combined effects are 

known as digenic inheritance for mutations in two loci, trigenic for three loci and, generally, 

oligogenic (Stearns and Botstein 1988). 

1.4.2 Haploinsufficiency 

In contrast to the recessive disease-causing mutations in enzyme-encoding genes, 

heterozygous loss-of-function in loci that encode monomers of macromolecular complexes 

or that encode transcription factors can result in dominant phenotypes in a phenomenon 

known as haploinsufficiency (Seidman and Seidman 2002). 

The assembly of a macromolecular complex from a monomer, whether it occurs by building 

successively larger oligomers or by nucleation, implies a critical concentration of the 

monomer for the reactions to occur (Oosawa and Kasai 1962) and hence a sigmoidal 

relationship between genotype and phenotype, leading to dominant haploinsufficiency 
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when the expressed level of monomer from just one allele is below the critical 

concentration (Veitia 2002).  Haploinsufficiency can also occur in complexes if one of the 

molecules acts as a bridge between multiple instances of another, such as in the trimer α-β-

α (Figure 1.6A) where a heterozygous loss-of-function mutation in β leads to a proportional 

decrease in the trimer (Figure 1.6B) but a similar mutation in α leads to much lower trimer 

expression because incomplete α-β and β-α dimers sequester the available α molecules 

(Figure 1.6C) (Veitia 2003a). 
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Figure 1.6 - Stoichiometric imbalance in haploinsufficiency 

The effects of heterozygous null mutations in monomers of α-β-α trimers.  (A) Balanced production of the monomers.  
(B) A null mutation in bridge monomer β.  (C) A null mutation in flanking monomer α.  Flanking α monomers are shown 
in blue and bridging β monomers are shown in red. 

A similar sigmoidal relationship exists between transcription levels of a gene and the 

concentration of its activating transcription factors when there are multiple transcription 

factor binding sites (Veitia 2003b).  This sigmoidal relationship results not only in 

cooperativity between the transcription factors as the bound ones attract the others, but 

also results in transcriptional synergy as the transcription factors cooperate to attract the 

transcription machinery, resulting however in haploinsufficiency if the loss-of-function 

mutation causes the concentration of the transcription factor to fall below the sigmoidal 

inflexion point (Veitia 2003b).  An increase in the number of binding sites moves the 

threshold to a lower transcription factor concentration and so, if a heterozygous mutation 

causes loss of function in one allele of the transcription factor, only the target genes with a 

threshold above the reduced concentration will exhibit haploinsufficiency (Veitia 2003b). 

Haploinsufficiency can also occur in tissues and at developmental stages where one of the 

two alleles at a locus is randomly silenced in a process called monoallelic gene expression, 

leading to tissues with a mosaic of cells expressing each allele and with the consequence 

that a heterozygous loss-of-function mutation would either have no effect in a cell that is 
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not expressing that allele or lead to total loss of gene product in a cell that has not silenced 

that allele (Nutt and Busslinger 1999).  Genomic imprinting is a similar process where either 

the maternal or paternal allele is silenced, with the same susceptibility to haploinsufficiency 

as in monoallelic gene expression, and is thought to provide a selective advantage in a 

population in a rapidly changing environment (Beaudet and Jiang 2002). 
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1.5 Summary and aims of project 

Cancer cells frequently have widespread gene dosage changes caused by copy number 

variations and these dosage changes disrupt a wide range of cellular processes, leading to 

the cancer phenotype.  Accurate determination of the endpoints of CNVs and of the 

resulting dosage changes is essential for understanding the causes of cancer.  Previous 

studies of the CNVs occurring in the cell lines of the well-characterised NCI-60 panel have 

been based on relatively low-resolution aCGH assays or whole exome sequencing analyses 

and so we will use read depth analysis of whole genome sequencing data to produce a 

higher-resolution map of the CNVs in the NCI-60 cell lines than has been previously 

calculated from aCGH assays. 

We will use this more accurate map of cancer CNVs to comprehensively characterise the 

CNV landscape in the NCI-60 cancer cell lines and to investigate the effects of gene dosage 

changes on cancer-related processes.  We will develop statistical methods for determining 

the CNVs which are causal in oncogenesis and compare the genes found by these analyses 

to those already known to be cancer driver genes in the hope of discovering novel cancer 

drivers. 

Cancer cells survive widespread dosage changes which are deleterious to normal cells and 

so we will investigate the roles of miRNAs in buffering the effects of CNVs in cancer-derived 

cell lines.  We will use our high-resolution NCI-60 CNV map to look for global patterns of 

miRNA gain and loss in cancer genomes and we will analyse the effects of these CNVs on the 

regulation by miRNAs of cancer processes and pathways. 

The gene dosage buffering mechanisms available to cancer cells have evolved over long 

timescales since the advent of multicellularity and so we will also investigate the 

evolutionary histories of gene dosage compensation mechanisms.  We will analyse the 

surprisingly common retention of multiple copies of disease-associated genes in metazoan 

genomes in an effort to understand gene dosage compensation at an evolutionary level. 

This project aims to increase our understanding of the gene dosages changes which occur 

widely in cancer, both at a cellular level and over evolutionary timescales, in order to 

advance our knowledge of the roles which miRNAs play in gene dosage compensation. 
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2 High-resolution CNVs reveal potential novel cancer driver genes 

2.1 Abstract 

Tumour cells and the cell lines derived from them are characterised by widespread gene 

dosage changes caused by point mutations, copy number variations (CNVs) and 

aneuploidies.  The accurate determination of CNV endpoints and absolute copy numbers is 

essential for understanding the causes of cancer and for its treatment.  Efforts to do so in 

the well-characterised NCI-60 cell line panel have so far been limited to relatively low-

resolution array-based comparative genomic hybridisation or whole exome sequencing 

methods.  We have used more accurate whole genome sequencing alignment read depths 

to produce a higher-resolution map of CNVs in the NCI-60 cell lines. 

We find the CNV landscape in cancer-derived cell lines to be dominated by partial losses, 

primarily affecting tumour suppressors, alongside less frequent gains affecting oncogenes.  

The high resolution of our data allows us to accurately determine the locations of CNV 

‘hotspots’: regions that are gained or lost in many cell lines, and which could therefore 

possibly be under the influence of selective pressure in cancer.  We have also developed a 

statistical measure of how likely each gene’s copy number is in each cell line.  We 

determined the gained oncogenes and lost tumour suppressors occurring in CNV hotspots 

more than expected by chance and, by comparison to genes which are known to be drivers 

of oncogenesis, derived a list of candidate novel driver genes.   

These candidate novel driver genes are enriched for involvement in cancer-related 

processes such as increased cell growth and proliferation, angiogenesis, upregulated gene 

transcription, control of the cell cycle and apoptosis.  Our results are consistent with the 

hypothesis that tumour cells must escape the constraints of various cellular mechanisms 

that ordinarily protect against cancer before they can gain the various hallmarks of cancer.  

The more accurate map of CNVs in cancer cell lines that we have created will form the basis 

of ongoing work to understand gene dosage changes in cancer. 
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2.2 Introduction 

Somatic mutations that affect genes involved in cell growth and survival are frequently 

implicated in the development of cancer (Hanahan and Weinberg 2000, 2011; Li et al. 2011; 

Budczies et al. 2016).  At the smallest scales, these mutations include single nucleotide 

polymorphisms (SNPs) and short insertions and deletions (indels) (International HapMap 

2003).  Larger mutations affecting entire genes include amplifications and deletions known 

as copy number variations (CNVs), inversions and gene fusion events (Yang et al. 2016).  

Often observed at the chromosome scale are the gains and losses of chromosome arms or 

entire chromosomes called aneuploidies (Torres et al. 2008) and wide-scale rearrangements 

collectively known as chromothripsis, consisting of multiple inversions, amplifications and 

deletions caused by a single disruptive event (Cortes-Ciriano et al. 2020). 

At the time of the completion of the first drafts of the human reference genome (Lander et 

al. 2001; Venter et al. 2001) it was thought that SNPs were the main causes of cancer 

development (Sachidanandam et al. 2001; International HapMap 2003), but it was soon 

recognised that CNVs and aneuploidies, leading to altered dosage of entire genes and the 

resulting stoichiometric disruption of gene interaction networks, are key to understanding 

the genesis and progression of cancer (Iafrate et al. 2004; Henrichsen et al. 2009).  Gene 

dosage changes disrupt and vary protein interactions and so affect biological processes 

involved in cancer such as cell cycle progression, DNA damage detection and repair, 

apoptosis and cell proliferation (Conrad et al. 2006; Henrichsen et al. 2009; Kalluri and 

Weinberg 2009; Chaffer and Weinberg 2011).  Common mechanisms of this disruption 

include the loss of tumour suppressor genes and the gain of genes which, when 

upregulated, lead to cancer and are thus known as oncogenes (Santarius et al. 2010; 

Budczies et al. 2016; Zhao and Zhao 2016). 

However, not all dosage changes lead to cancer development and so it is important to 

distinguish between ‘driver’ CNVs that are causal in oncogenesis and ‘passenger’ CNVs that 

become fixed in a tumour clonal population due to the coincidental presence of a driver 

mutation (Greenman et al. 2007).  A common method for differentiating drivers from 

passengers is to analyse mutations in a wide range of tumours or tumour-derived cell lines 

from different tissues under the hypothesis that genomic regions containing drivers will 

experience a higher frequency of CNVs than regions predominantly containing passenger 
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CNVs (Beroukhim et al. 2010; Bignell et al. 2010; Pleasance et al. 2010; Martincorena et al. 

2017; Rheinbay et al. 2020). 

The extensive heterogeneity of mutations that occur in tumours derived from different 

tissues means that moving beyond a tumour- or tissue-specific characterisation of cancer 

processes to a more general understanding requires a representative range of cancer 

genomes.  The NCI-60 panel of cell lines (Shoemaker 2006), derived from human tumour 

samples from nine tissue types, has been extensively analysed and so is a resource which is 

well-suited to integrative analysis due to its detailed characterisation by many previous 

studies (Lorenzi et al. 2009; Li et al. 2011; Varma et al. 2014). 

Previous panel-wide NCI-60 CNV studies have used array-based comparative genomic 

hybridisation (aCGH) to determine CNVs by the comparison of the relative intensities of 

fluorophores bound to specific regions of DNA in matched tumour/normal samples (Lorenzi 

et al. 2009; Beroukhim et al. 2010; Bignell et al. 2010; Varma et al. 2014).  aCGH-based 

methods require a matched normal sample and can only achieve a CNV endpoint resolution 

of about 105 nucleotides (Lai et al. 2005b; Yoon et al. 2009).  The endpoints and copy 

numbers of CNVs can be determined at much higher resolution from the relative read 

depths of short reads from whole genome sequencing of a single tumour sample aligned to 

a reference genome (Chiang et al. 2009; Duan et al. 2013; Bishara et al. 2015; Cortes-Ciriano 

et al. 2020).  Previous sequencing-based analyses of NCI-60 CNVs have used only whole 

exome sequencing reads (Reinhold et al. 2014) and so are unable to determine the copy 

number of regions outside of the exons of protein-coding genes. 

We reanalysed previously published NCI-60 whole genome sequencing datasets (Turner et 

al. 2017) and used the varying read depths of the sequencing reads when aligned to the 

reference genome (Miller et al. 2011) to create a CNV map of the NCI-60 cell line genomes 

with both higher endpoint resolution and more accurate copy numbers than previously 

calculated from aCGH assays (Varma et al. 2014).  We show that this method finds a variety 

of additional and smaller CNVs than can be detected with aCGH.  Even with relatively low-

coverage sequencing of between 0.4x and 3.2x, we achieve an order of magnitude better 

resolution than aCGH, leading to a higher-confidence map of CNVs in the NCI-60 cell lines.  

We also find that most NCI-60 cell lines are affected by aneuploidy, consistent with earlier 

studies (Torres et al. 2008). 
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We show that CNVs preferentially occur in regions of high gene density with frequent losses 

of tumour suppressor genes and gains of oncogenes.  We identify putative novel 

oncogenesis driver genes by focussing on cancer-related genes that are located in CNV 

‘hotspots’ and which are affected by CNVs more than expected by chance, and we show 

that these driver genes are enriched for cancer-related processes and pathways associated 

with the ‘hallmarks’ of cancer (Hanahan and Weinberg 2000, 2011). 
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2.3 Methods 

2.3.1 Construction of a high-resolution NCI-60 CNV map 

2.3.1.1 Cell line read mapping 

Previously published Illumina sequencing data derived from the NCI-60 cell lines, deposited 

under project accession PRJNA338012 (Turner et al. 2017), were obtained from the 

Sequence Read Archive (SRA) (Sayers et al. 2020), using SRA Toolkit v2.8.2 (Sayers et al. 

2020).  Five of these cell lines, MDA-MB-435, MDA-N, MCI-ADR-RES, SNB19 and U251, have 

been reported as being misidentified (Garraway et al. 2005; Lorenzi et al. 2009), and so 

were excluded from this study.  Each dataset was aligned to the reference human genome 

(GRCh38.p12) with BWA v0.7.15 (Li and Durbin 2010) and the alignments were checked with 

FastQC v0.11.7 (Andrews 2018), with all sequence quality checks passed. 

2.3.1.2 Mapability and GC content annotation 

All possible reads of the same length as the NCI-60 reads (50 bp for MCF7 and 100 bp for 

the rest) were generated from the reference genome and aligned back to the reference 

genome with BWA.  The mapability annotation was calculated by counting the proportion of 

positions in each 100 bp window where a uniquely mapped read starts.  The GC content 

annotation was also calculated in 100 bp windows across the genome by counting the 

number of uniquely mapped guanine or cytosine bases in each 100 bp window. 

2.3.1.3 CNV detection with readDepth 

CNVs were calculated for each cell line with R package readDepth v0.9.8.5 with default 

parameters (Miller et al. 2011).  The first step of the readDepth algorithm calculated raw 

read depths which were then scaled by the mean mapability score for each bin to obtain the 

mapability-corrected read depths, discarding bins with a mean mapability score below 75%.  

The readDepth algorithm then scaled the mapability-corrected read depths by the 

difference between the mean LOESS-fitted number of reads for bins at each level of GC 

content and an adjusted genome-wide median, iteratively calculated such that the 

adjustments have no effect on the actual genome-wide median (see section 2.4.1 for an 

illustration of the method). 
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The mapability- and GC-corrected read depths for contiguous bins were then coalesced by 

readDepth into segments of similar read depth using the circular binary segmentation (CBS) 

method (Olshen et al. 2004).  The segments’ read depths were converted into absolute copy 

numbers relative to the genome-wide median read depth to obtain a list of putative CNVs 

for the cell line.   

We observed occasional false positive low mapability CNVs spanning centromeres and 

extending from telomeres and so we developed a custom post-readDepth step (discussed 

further in section 2.4.1) which removed CNVs with a mean mapability score below 75% and 

split the remaining CNVs at unmappable bins to obtain a conservative CNV list.  Finally, the 

loss and gain thresholds, also converted into absolute copy numbers relative to the 

genome-wide median read depth, were applied in a custom final step to classify the 

conservative CNVs as losses, unaffected regions or gains. 

2.3.2 Characterisation of CNVs 

Human protein-coding gene locations were downloaded from Ensembl on 29/9/20 (release 

100) (Yates et al. 2020).  The overlaps between CNV locations and gene locations were 

calculated using R package GenomicRanges v1.40 (Lawrence et al. 2013).  Aneuploidies were 

defined as the chromosome arms with more than 75% of their mappable genome affected 

by CNVs in the same direction (i.e., at least 75% lost or 75% gained).  CNV gene densities 

were calculated as the number of protein-coding genes in each CNV divided by the CNV 

length.  Centromere locations were taken from the R package GWASTools v1.36 (Gogarten 

et al. 2012), telomeres from the UCSC genome annotation downloads on 13/6/20 

(Haeussler et al. 2019) and fragile sites from the HumCFS database on 24/6/20 (Kumar et al. 

2019). 

2.3.3 Well-known cancer-related genes 

A dataset of protein-coding genes that are known to be involved in cancer-related processes 

as tumour suppressors and/or oncogenes was downloaded from the COSMIC Cancer Gene 

Census (CGC) at the Wellcome Sanger Institute on 7/5/20 (release 91) (Sondka et al. 2018).  

Analyses were performed using ‘tier 1’ CGC genes only (genes with strong evidence of 

functional involvement in cancer-related processes and with concordant mutations in 

cancer samples).  Heatmaps of the copy numbers of CGC genes across the NCI-60 cell line 
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panel were generated using the heatmap.2 function of R package gplots v3.0.3 (Warnes et 

al. 2020). 

2.3.4 Calculation of metrics with a range of ‘sliding window’ sizes 

Various metrics were calculated for adjacent regions of the genome for window sizes 10 kb, 

100 kb, 1 Mb, 2 Mb, 5 Mb, 10 Mb, 20 Mb and 50 Mb.  CNV frequencies were calculated as 

the number of cell lines in which a gain or loss started in each contiguous window.  Gene 

densities were calculated as the number of genes starting in each contiguous window 

divided by the window length.  Median gene lengths were calculated as the median length 

of the genes which started in each contiguous window. 

2.3.5 Determining empirical significance of copy numbers by permutation testing 

The significance of genes’ CNVs across the NCI-60 cell line panel were determined by 

permutation testing.  The CNVs in each cell line’s chromosomes were randomly shuffled 

1000 times and the resulting copy numbers of the GCG genes were recorded, generating a 

1000-value distribution of copy numbers for each gene in each cell line.  An empirical two-

sided p-value was then derived for the actual copy number of each gene in each cell line 

from the location of the actual copy number in its distribution of permutated copy numbers.  

The false discovery rate was controlled with the Benjamini & Hochberg method (Benjamini 

and Hochberg 1995). 

2.3.6 Enrichment analyses of cancer-related genes significantly affected by CNVs 

Gene Ontology (GO) biological process term and Reactome pathway enrichment analyses 

were performed using the PANTHER tool at http://geneontology.org with default 

parameters (Fishers’ exact test and calculated false discovery rate) on 30/12/20 (Mi et al. 

2020). 

2.3.7 Statistical analyses 

All statistical analyses were performed in R.  Correlations were calculated using the Pearson 

product-moment correlation test.  Distributions were compared with the Kolmogorov-

Smirnov test.  Contingency table tests and goodness of fit tests were performed with the C2 

test. 
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2.4 Results 

2.4.1 A high-resolution NCI-60 CNV map reveals widespread heterogeneity 

We downloaded previously published (Turner et al. 2017) whole genome sequencing reads 

for 55 of the cell lines (Supplementary Table 6.1) in the NCI-60 panel (Shoemaker 2006) 

from NCBI’s Sequence Read Archive (SRA) (Kodama et al. 2012) and aligned them to the 

GRCh38 human reference genome.  These alignments were processed with the readDepth R 

package (Miller et al. 2011) to determine regions with statistically significant CNVs at a 

much higher resolution than has been previously calculated from aCGH assays (Varma et al. 

2014). 

The readDepth algorithm uses a binning procedure on the aligned reads to determine the 

relative read depth across the genome because the coverage of the whole genome 

sequencing data used is too low for base pair-level resolution.  A model distribution of read 

depth frequencies containing haploid, diploid and triploid peaks is generated from the 

actual distribution of read depths and readDepth then iteratively determines the smallest 

bin size that leads to optimal separation of the model peaks while controlling the false 

discovery rate, specified as FDR = 0.01 in this project (Figure 2.1A).  Within the 55 datasets, 

the chosen bin size decreases with increasing sequencing coverage, approaching 10.3 Kb for 

cell lines with a coverage of 3x (median bin size 20.6 Kb, maximum 41.2 Kb, Figure 2.1B).   

The read depth thresholds for loss and gain relative to the median depth across the genome 

are then calculated by readDepth as the read depths that are midway between the 

haploid/diploid and diploid/triploid peaks respectively (Figure 2.1A).  Once the optimal bin 

size and the loss and gain thresholds have been determined the raw read depths are 

calculated by readDepth by counting the uniquely mapped reads starting in each bin.   

The readDepth algorithm then scales these raw read depths by the mean mapability score 

for each bin to obtain the mapability-corrected read depths, discarding those for bins with a 

mean mapability score below 75% to avoid distortions caused by repetitive regions to which 

short sequencing reads cannot be uniquely aligned (Chiang et al. 2009).  The bias caused by 

GC content in the number of reads generated by the sequencing platform (Bentley et al. 

2008) is estimated in readDepth by LOESS local regression and the read depths are then 

scaled by the difference between the mean LOESS-fitted number of reads for bins at each 
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level of GC content and an adjusted genome-wide median, iteratively calculated such that 

the adjustments have no effect on the actual genome-wide median (Figure 2.1C/D). 

A B 

 

 
C D 

  

Figure 2.1 - readDepth models, bin sizes and GC content correction 

(A) The distribution of actual read depth frequencies (outlined white bars) and model read depth frequencies (black 
bars) for the MCF7 cell line with the optimal bin size of 39.5 Kb.  The haploid, diploid and triploid peaks in the model 
distribution are negative binomial distributions based on the mean, variance and number of reads in the actual 
distribution.  The diploid peak in the model distribution is at a greater read depth (378) than the median actual read 
depth (311) because the model distribution is calculated on the expectation that the cell line would be entirely diploid in 
the absence of CNVs, as it is female-derived, but MCF7 has more losses than gains.  The red vertical lines are the loss and 
gain thresholds between the model peaks.  (B) The bin sizes (y axis) for the NCI-60 cell lines of various levels of 
sequencing coverage between 0.4x and 3.2x (x axis) as calculated by the readDepth package.  The fitted curve is a third 
order polynomial that asymptotically approaches a bin size of approximately 10 Kb as coverage increases past 3x.  MCF7 
is the cell line indicated by a red dot.  (C) The mean mapability-corrected read depths in MCF7 for bins with GC content 
in increments of 0.1%, with a LOESS regression line in green indicating the GC content-derived bias in the number of 
reads generated by the sequencing platform.  (D) The LOESS-corrected mean read depths in MCF7 with the green 
regression line now showing that most of the bias from GC content has been removed.  The red horizontal lines 
represent an adjusted genome-wide median read depth iteratively calculated such that the LOESS correction has no 
effect on the actual genome-wide median read depth. 

The mapability- and GC-corrected read depths for contiguous bins are then coalesced by 

readDepth into segments of similar read depth using the circular binary segmentation (CBS) 

method (Olshen et al. 2004).  The segments’ read depths are converted by readDepth into 
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absolute copy numbers relative to the genome-wide median read depth to obtain a list of 

putative CNVs for the cell line.   

Close inspection of the putative CNVs in each cell line revealed that the CBS method used by 

readDepth introduced occasional false positive CNVs, generally spanning centromeres or 

extending from telomeres, caused by segment boundaries adjacent to regions of low 

mapability.  We developed a custom post-readDepth processing step that removed CNVs 

with a mean mapability score below the aforementioned 75% mapability threshold, so 

removing all the false positive CNVs, and split the remaining CNVs at unmappable bins to 

obtain a conservative CNV list. 

Finally, the loss and gain thresholds, also converted into absolute copy numbers relative to 

the genome-wide median read depth, were applied in a custom final step to classify the 

conservative CNVs as losses, unaffected regions or gains.  CNVs with an absolute copy 

number of less than half the loss threshold for diploid chromosomes or less than the loss 

threshold for haploid chromosomes were designated as complete losses.  CNVs in diploid 

chromosomes with an absolute copy number between the loss threshold and half of the 

loss threshold are partial losses, CNVs with an absolute copy number between the loss and 

gain thresholds are unaffected regions and CNVs with an absolute copy number above the 

gain threshold are gains. 

When the CNVs for the entire NCI-60 panel are viewed together it is immediately apparent 

that there is widespread heterogeneity, with gains and losses varying from single bins (the 

smallest distinguishable region in each cell line) to whole chromosome arm aneuploidies 

(Figure 2.2).  There are distinct differences between the individual cell lines with, for 

example, colon cancer-derived cell line HCT15 the least affected and a breast cancer cell 

line, T47D, the most affected by CNVs (Figure 2.2).  In addition, the chromosomes have 

widely varying numbers of CNVs with, for example, chromosome 4 being mostly affected by 

losses and chromosome 7 mostly by gains (Figure 2.2).  The sex chromosomes are affected 

differently than autosomes, with female X chromosomes experiencing frequent partial loss 

of the majority of the chromosome, unlike the male X chromosomes which have far fewer 

CNVs (Figure 2.2). 
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Figure 2.2 - High resolution NCI-60 panel-wide CNV map 

NCI-60 panel-wide CNV map with rows that represent individual cell lines and columns for each chromosome.  The cell 
line rows are grouped by tissue.  Dark and light red areas represent complete and partial losses of the genome 
respectively, blue areas are gains with darker blues representing greater fold changes, grey areas are unchanged and 
white areas are where the cell lines’ genomes are unmappable due to repetitive sequences or where regions with a low 
mean mapability have been removed.  The vertical yellow lines represent the centromeres.  The green marker on the left 
edge indicates cell line T47D and the orange marker indicates cell line HCT15.  The cell lines derived from female patient 
tumour samples are indicated by a grey marker on the right edge. 

Zooming in to show chromosome 17 at a higher resolution (Figure 2.3A) illustrates how 

much more detail is available when determining CNVs from whole genome sequencing data 

rather than from array-based comparative genomic hybridization (aCGH) as in previous 

studies such as (Varma et al. 2014).  At this level of detail, the CNV heterogeneity is even 

more apparent with the short arm of chromosome 17 frequently experiencing partial loss 

(light red regions in the left quarter of Figure 2.3A) next to the unmappable centromeric 

region (white).  There are also regions of complete loss detected (dark red) as well as widely 

varying levels of gains (shades of blue).  Intriguing regions of possible CNV ‘hotspots’ are 

also visible, such as the small region just to the left of the centromere that is gained in most 

of the cell lines. 
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Figure 2.3 - Chromosome 17 CNVs 

(A) Same as Figure 2.2 but now zoomed to show just chromosome 17 to illustrate the level of detail available.  The blue 
marker on the left edge indicates cell line MCF7.  (B) CNVs for chromosome 17 of the breast cancer-derived cell line 
MCF7.  The x axis is the genomic position within chromosome 17 and the y axis is the absolute copy number.  CNVs are 
drawn from the expected diploid read depth (grey dashed line at y = 2) to the measured read depth.  Grey regions are 
those between the gain and loss thresholds and so statistically indistinguishable from diploid, red regions are losses and 
blue regions are gains (with >4 and >8-fold gains as progressively darker blues).  The loss threshold is shown as a red 
dashed line (at approximately y = 1.3) and the gain threshold as a blue dashed line (at approximately y = 2.6).  Selected 
unaltered genes are labelled grey circles, lost tumour suppressors are labelled red downwards-pointing triangles and 
gained oncogenes are labelled blue upwards-pointing triangles. 

When looking at the detailed CNVs for a single chromosome in a cell line, such as 

chromosome 17 in breast cancer-derived cell line MCF7 (Figure 2.3B), the scale of copy 

number variation in cell line genomes is evident.  While the short arm of this chromosome 

(between 0 and approximately 22 Mb) is unaffected by CNVs the longer arm has a wide 
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range of variation, with a region of partial loss between 30 and 47 Mb followed by a region 

of gains that vary from a single extra copy at 70 Mb to a peak of 33 extra copies at 62 Mb.   

A variety of cancer-related genes are affected by CNVs in MCF7 chromosome 17, including 

tumour suppressors NF1 and BRCA1 which are partially lost and oncogenes PPM1D and 

DDX5 which have 25 and three extra copies respectively (Figure 2.3B).  Oncogene USP6 and 

tumour suppressor TP53 are unaltered in this cell line while the gene with the most gains 

(33 extra copies) on chromosome 17 of MCF7 is tumour suppressor BRIP1, an interaction 

partner of BRCA1 (Figure 2.3B).  BRCA1 is lost in three of the breast cancer-derived cell lines 

and two of the ovarian cancer cell lines (Figure 2.3A), consistent with its known role in 

susceptibility to these cancers (Futreal et al. 1994). 

2.4.2 Whole genome sequencing read depth analysis finds finer-detailed CNVs than aCGH 

Previous studies of CNVs in the NCI-60 cell lines used aCGH microarrays and we wanted to 

compare our results to these.  We extracted two measures of genomic instability, the 

proportion of the genome gained and lost and the number of gains and losses, from Table 1 

of (Varma et al. 2014) and compared these metrics with our results (Figure 2.4). 

When comparing the total proportion of the mappable genome affected by CNVs from our 

results to the total proportion of the genome gained and lost as calculated by (Varma et al. 

2014) we find that the results are well-correlated (Pearson product-moment correlation, r 

(53) = 0.792, p = 6.2 x 10-13, Figure 2.4C).  We find however that we detect somewhat less of 

the genomes as being gained (r (53) = 0.778, p = 2.6 x 10-12, Figure 2.4A) but more as being 

lost (r (53) = 0.559, p = 9.24 x 10-6, Figure 2.4B). 
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Figure 2.4 - Comparison of whole genome sequencing-based CNVs to aCGH-based CNVs 

Comparisons between the results of our method and the results in (Varma et al. 2014).  In each graph the x axis is the 
value from (Varma et al. 2014), the y axis is the result from our method and each point is a cell line, coloured by tissue of 
origin (see legend).  The red line is the slope as calculated by Pearson's product moment correlation, the value and p-
value of which are embedded in each plot.  (A-C) The proportions of the genome gained, lost and in total.  (D-F) The 
numbers of gains, losses and all CNVs.  (G-I) The proportions of the genome gained, lost and in total for the largest 50% 
of CNVs detected by our method.  (J-L) The numbers of gains, losses and all CNVs for the largest 50% of CNVs detected 
by our method.   
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Looking at the total number of gains and losses instead however (Figure 2.4F), we detect 

both more gains than the previous study (r (53) = 0.414, p = 1.65 x 10-3, Figure 2.4D) and 

more losses (r (53) = 0.277, p = 4.04 x 10-2, Figure 2.4E).  We hypothesised that with our 

high-resolution approach we might be detecting smaller CNVs than is possible with aCGH 

and so we repeated the comparison after removing progressively more of the smaller CNVs 

from our results up to the smallest 50% of CNVs. 

Removing the smallest half of our CNVs resulted in improved correlation with the data from 

(Varma et al. 2014) (Figure 2.4G-L) as did removing the smallest 10%, 20%, 30% and 40% 

smallest CNVs, albeit with intermediate effects (data not shown), thus supporting the 

hypothesis that our method can detect smaller CNVs than aCGH-based methods. 

2.4.3 Cell lines are affected more by losses than by gains 

To quantify the degree to which cell lines are affected by CNVs we plotted the proportions 

of the mappable genome affected by CNVs and the numbers of CNVs for the cell line 

genomes grouped by tissue of origin (Figure 2.5).  While there is considerable variation of 

losses and gains within and between the tissue groups, both for the proportion of the 

mappable genome affected (Figure 2.5A/B) and the number of CNVs (Figure 2.5C/D), it is 

clear that on both measures the cell lines are more affected by losses (Figure 2.5B/D) than 

by gains (Figure 2.5A/C). 

To further investigate the differences seen between the autosomes and sex chromosomes 

in the NCI-60 panel-wide CNV map (Figure 2.2) we separated the CNVs by chromosome type 

and compared for each the proportions of the mappable genome affected by gains and 

losses (Figure 2.6A).  The overall pattern of more losses than gains is seen for each type of 

chromosome except for male X chromosomes, which are much less affected by either gains 

or losses (Figure 2.6A).  While the maximum proportion of the mappable genome on 

autosomes affected by losses is 0.33 (median 0.14), the female X chromosomes have much 

higher proportions of the mappable genome lost, up to partial loss of the entire 

chromosome in some cases (Figure 2.6A).  Male X chromosomes on the other hand are 

almost entirely unaffected by gain or loss, though the male Y chromosomes experience a 

similar range of losses (maximum 0.85) to the female X chromosomes, albeit with a much 

lower median proportion of 0.04 (Figure 2.6A). 
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Figure 2.5 - CNV frequencies and the proportion of the mappable genome affected 

The proportion of mappable genome (A) gained and (B) lost and the number of (C) gains and (D) losses for cell lines 
grouped by tissue. 

When the proportions of the different types of chromosomes that are affected by CNVs are 

separated by tissue of origin (Figure 2.6B-E) we see a broadly similar pattern to the panel-

wide results, with the caveat that not all the cell lines have both male and female-derived 

variants.  On the autosomes, for each tissue of origin, the median proportion of the 

mappable genome lost is higher than that gained, and for each tissue apart from brain, 

ovary, prostate and skin the losses have much higher variance than the gains (Figure 2.6B).  

A similar pattern is exhibited by the female X chromosomes though the gains are practically 

non-existent with a maximum gain proportion of 0.017 for ovarian gains (Figure 2.6C). 

Male X chromosomes on the other hand have much lower proportions of their mappable 

genomes affected by CNVs with a maximum gain proportion of just 0.08 for renal-derived 

cell lines being very much an outlier (Figure 2.6D).  The patterns of more losses than gains 

still hold for male X chromosomes however, except for lung cancer and renal-derived cell 

lines where the pattern is reversed (Figure 2.6D).  Interestingly, male Y chromosomes 

experience a similar range of CNVs to the female X chromosomes with losses again affecting 

a much higher proportion of the mappable genome than gains (Figure 2.6E). 
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Figure 2.6 - Sex chromosomes are affected differently by CNVs to autosomes 

(A) The proportions of the mappable genomes gained and lost for, from left to right, autosomes, female X chromosomes, 
male X chromosomes and male Y chromosomes.  The p-values are from two-sided Kolmogorov-Smirnov tests and are 
black when significant at a = 0.05 and light grey otherwise.  When grouped by tissue of origin, the proportions of the 
mappable genomes gained and lost for (B) autosomes, (C) female X chromosomes, (D) male X chromosomes and (E) 
male Y chromosomes. 
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Cancer cells are known to be affected by widespread aneuploidies that are lethal to normal 

cells (Torres et al. 2008; Sheltzer and Amon 2011) and so we wanted to see how prevalent 

aneuploidy is in the NCI-60 panel.  We defined aneuploid as chromosome arms with more 

than 75% of their mappable genome consistently affected by CNVs (i.e., at least 75% lost or 

75% gained).  We find that across different chromosomes there is considerable variation in 

the number of cell lines with aneuploidies and that the majority of aneuploidies are losses 

rather than gains (Figure 2.7).  The short arm of chromosome 21 is the most affected with 

gains in 26 out of 55 cell lines and it is also the only acrocentric autosome with short arm 

aneuploidies (Figure 2.7).  In 9 out of 13 submetacentric autosomes the short arm has more 

aneuploidies than the long arm (Figure 2.7).  All but three of the cell lines (HCT15, HCC2998 

and SR) had at least one aneuploidy (Supplementary Figure 6.2). 

 

 

Figure 2.7 - Aneuploidy frequencies 

The number of aneuploidies affecting each chromosome arm across the NCI-60 cell line panel.  For each chromosome 
the left bar is the short arm (lowest genomic coordinates) and the right bar is the long arm (highest genomic 
coordinates).  Gains are shown in blue and losses in red.  Metacentric chromosomes are marked with green triangles and 
acrocentric chromosomes are marked with orange circles. 
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2.4.4 Losses are longer than gains and more gene-dense 

The distributions of the lengths of CNVs across the entire NCI-60 panel are skewed with 

outlier lengths of up to 73 Mb but median lengths of just 0.35 Mb for gains and 0.49 Mb for 

losses.  This pattern of losses being longer than gains holds when the CNV lengths are 

grouped by tissue of origin (Figure 2.8A) except for CNVs in brain, breast and ovarian 

cancer-derived cell lines, though the distributions of gains and losses for each tissue except 

brain are significantly different overall by the two-sided Kolmogorov-Smirnov test (Figure 

2.8A). 

The gene density distributions of CNVs, defined as the number of protein-coding genes that 

start in each CNV divided by the CNV length, are also skewed across the entire NCI-60 panel.  

Gains have a median gene density of 6.07 genes/Mb with outliers up to 291 genes/Mb and 

losses have a similar distribution with a median gene density of 6.94 genes/Mb and outliers 

up to 378 genes/Mb.  CNVs in general however, whether gains or losses, are in regions of 

higher gene density than the rest of the genome, which has a background median gene 

density of 5.75 genes/Mb.  The gene density distributions of CNVs when grouped by tissue 

of origin follow a similar pattern of higher gene density in CNVs than in the rest of the 

genome (Figure 2.8B) though not all tissues have similar gene densities for gains and losses.  

In cell lines derived from breast and ovarian cancer the losses have higher gene density than 

the gains but in lung cancer the opposite is the case with higher gene density gains than 

losses (Figure 2.8B). 
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Figure 2.8 - CNV lengths and gene densities 

(A) The length distributions of CNVs affecting each tissue of origin and, within each tissue, gains and losses from left to 
right.  (B) The gene density distributions of CNVs affecting each tissue of origin (with a ‘plus one prior’ in order to use a 
log scale with zero densities) and, within each tissue, gains, losses and unaffected from left to right.  The p-values from 
two-sided Kolmogorov-Smirnov tests between the pairs of distributions are shown as black stars and bars when 
significant at a = 0.05 and light grey bars otherwise. 
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2.4.5 CNV hotspots preferentially occur in regions of higher gene density 

Having observed the frequently gained region of the short arm of chromosome 17 next to 

the centromere (Figure 2.3A), we hypothesised that there might be CNV ‘hotspots’ 

throughout the genome where multiple cell lines are similarly affected by gains or losses.  

We further hypothesised that these hotspots might preferentially occur in regions of high 

gene density because such CNVs would tend to lead to wider perturbations in gene 

interaction networks and so to a higher possibility of disrupting tumour-suppressive 

mechanisms. 

We performed a sliding window analysis with various window sizes of the number of cell 

lines affected by CNVs and the gene density in each window.  We calculated the number of 

cell lines affected by CNVs, the protein-coding gene density and the median protein-coding 

gene length across the genome for adjacent windows sized between 0.01 Mb and 50 Mb, 

comprising window resolutions chosen to range from slightly smaller than the smallest 

detectable CNVs (0.013 Mb in renal cell line 786-0) to slightly larger than the smallest 

chromosome (chromosome 21 with a length of 46.7 Mb). 

When we plot these measures for chromosome 1 at 1 Mb resolution as an example, we can 

see that most of the regions that are gained or lost in many cell lines occur in fragile sites, 

23 of which from the HumCFS dataset cover 140 Mb of chromosome 1 alone (Figure 2.9A), 

and coincide with regions of high gene density (Figure 2.9B) but low median gene length 

(Figure 2.9C), especially in the peri-centromeric and peri-telomeric regions.  Similar patterns 

are observed for the other chromosomes and, apart from the first 1Mb window on 

chromosome 4 which is gained in ten cell lines and lost in 29, none of the gain or loss 

hotspots occurred in the same location (data not shown). 

We defined as CNV hotspots the top 100 most frequently gained and top 100 most 

frequently lost regions at each resolution, and we observed that most of these hotspots 

occurred in the same place irrespective of window size (data not shown).  The pattern of 

gain and loss hotspots across the chromosomes is similar to the pattern of gains and losses 

observed when viewing the entire CNV map (Figure 2.2) with, for example, losses 

predominant on chromosomes 4, 13, 18 and X.   
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Figure 2.9 - Sliding window analyses reveal possible CNV hotspots 

1 Mb sliding window analyses of chromosome 1 with a light orange background for fragile sites, yellow background for 
centromeres and grey background for unmappable poly N regions (hard masked as N in the reference genome).  
Windows in the top 100 most gained and lost are marked with blue and red triangles respectively.  (A) The number of 
cell lines with CNVs in each 1 Mb window, with gains in blue above the zero line and losses in red below the zero line.  
The lowest number of gains in a CNV hotspot is shown as a blue dashed line at y = 10 and the lowest number of losses in 
a CNV hotspot is shown as a red dashed line at y = -17.  (B) The gene density in each 1 Mb window, calculated as the 
number of protein-coding genes starting in each window.  (C) The median protein-coding gene length in each 1 Mb 
window. 

Regions at the highest resolution of 0.01 Mb can only contain a handful of genes at most 

and the lowest resolution of 50 Mb means that such regions are likely to have large 

numbers of cell lines with both gains and losses.  Accordingly, we chose to focus on the 

intermediate 1 Mb sliding window resolution as the smallest window size and so highest 
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resolution which clearly showed the prevailing pattern of CNV hotspots.  At this scale there 

are 3,102 windows across the genome (including 24 partial windows, one at the end of each 

chromosome) and defining CNV hotspots as the top 100 most frequently gained or lost of 

these windows resulted in very conservative thresholds of 10 cell lines gained and 17 cell 

lines lost, allowing us to focus on the regions most affected by CNVs (Figure 2.9A, 

Supplementary Figure 6.1). 

To further investigate our hypothesis that CNVs preferentially occur in regions of higher 

gene density we compared the distributions of the number of cell lines with gains or losses 

in regions of low, medium and high protein-coding gene density.  We chose the lower (9 

genes/Mb) and upper (26 genes/Mb) interquartile values of the distribution of gene 

densities at the 1 Mb resolution as the cut-offs between low and medium gene density 

regions and medium and high gene density regions respectively.  The comparisons of the 

distributions of the number of cell lines affected by gains and losses in regions of low, 

medium and high gene density show clearly that high gene density regions have more cell 

lines with CNVs, both gains and losses, than low gene density regions (Figure 2.10).   

 
Figure 2.10 - Gene-dense regions are gained more and lost more than low density regions 

The distributions of the number of cell lines affected by gains (blue) and losses (red) for regions of low, medium and high 
protein-coding gene density when calculated with a 1 Mb window size.  The distributions are, from left to right, the 
number of cell lines with gains in low, medium and high gene density regions and the number of cell lines with losses in 
low, medium and high gene density regions.  The p-values are from two-sided Kolmogorov-Smirnov tests and are black 
when significant at a = 0.05 and light grey otherwise.   
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These distributions are significantly different as calculated by the Kolmogorov-Smirnov test 

for both gains and losses at sliding window resolutions between 0.1 Mb and 10 Mb (results 

shown only for 1 Mb, Figure 2.10).  For example, at the 1 Mb window size, the median 

number of cell lines affected by gains are 0, 1 and 2 for low, medium and high gene 

densities respectively whereas the median number of cell lines affected by losses are 1, 2 

and 5 for low, medium and high gene densities respectively, suggesting that losses affect 

regions of high protein-coding gene density more than gains do (Figure 2.10). 

2.4.6 NCI-60 cell lines experience tumour suppressor loss and oncogene gain 

The NCI-60 cell lines are all derived from cancers and so we hypothesised that the 

evolutionary driver for the prevalence of CNVs in gene-dense regions could be the presence 

of cancer-related genes in these regions.  We downloaded expert-curated lists of known 

protein-coding oncogenes and tumour suppressor genes from the COSMIC Cancer Gene 

Census (CGC) at the Wellcome Sanger Institute (Sondka et al. 2018) and determined the 

copy numbers of these genes across the NCI-60 panel. 

The distributions of the copy numbers of genes that are solely oncogenes (n = 209) and 

solely tumour suppressors (n = 197) across the NCI-60 panel are similarly skewed with a 

median oncogene copy number of 1.83 (maximum 32.8) and a median tumour suppressor 

copy number of 1.78 (maximum 35.7) (Figure 2.11A).  The panel-wide oncogene and tumour 

suppressor distributions are however significantly different (two-sided Kolmogorov-Smirnov 

test, D = 0.06, p < 2.2 x 10-16) with the tumour suppressors’ lower median copy number 

indicating that, on a panel-wide basis, they are lost more than oncogenes (Figure 2.11A).  

When the copy number distributions are examined per-tissue, tumour suppressors are lost 

significantly more than oncogenes for all tissues of origin except colon and ovary (Figure 

2.11B). 

We plotted the NCI-60 panel-wide oncogene and tumour suppressor CNVs as a clustered 

heatmap and calculated the largest column clusters of mainly losses and gains (Figure 2.12).  

There is a statistically significant relationship (C2 (1, N = 143) = 14.7, p = 1.24 x 10-4) 

between the numbers of genes that are oncogenes or tumour suppressors (Table 2.1) in the 

two column clusters underlined in Figure 2.12, with tumour suppressors more likely to be in 

the column cluster dominated by losses (underlined in red in Figure 2.12) and oncogenes 
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more likely to be in the column cluster dominated by gains (underlined in blue in Figure 

2.12). 

A 

 

B 

 

Figure 2.11 - Tumour suppressors are lost more often than oncogenes 

(A) The panel-wide distributions of the copy numbers of cancer-related genes that are solely oncogenes (light grey) and 
solely tumour suppressors (dark grey).  (B) The per-tissue distributions of the copy numbers of cancer-related genes that 
are solely oncogenes (light grey) and solely tumour suppressors (dark grey).  The p-values are from two-sided 
Kolmogorov-Smirnov tests and are black when significant at a = 0.05 and light grey otherwise.  The red and blue dashed 
horizontal lines are the mean loss and gain thresholds respectively. 
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Figure 2.12 - Consistently gained genes are more likely to be oncogenes 

A clustered heatmap of the copy numbers affecting 475 cancer-related genes (columns) from the Cancer Gene Census 
across 55 cell lines (rows) from the NCI-60 cell line panel.  The row colours in the y axis dendrogram correspond to the 
tissue of origin and the column colours in the x axis dendrogram correspond to the genes’ known cancer functions, with 
light grey for oncogenes, dark grey for tumour suppressors and intermediate grey for genes with both functions.  The 
heatmap colours are red for losses, blue for gains and white for unaltered.  The largest rooted column cluster of mostly 
losses is underlined in red and the largest rooted column cluster of mostly gains is underlined in blue. 

 

 

 Column cluster 
Losses Gains 

Oncogene 16 61 
Tumour suppressor 35 31 

Table 2.1 - Oncogene and tumour suppressor clusters 

The contingency table of the numbers of genes that are solely oncogenes or tumour suppressors in each of the 
underlined column clusters in Figure 2.12. 
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2.4.7 The majority of gene copy numbers are not significant by permutation testing 

With significant numbers of oncogenes commonly affected by gains as well as significant 

numbers of tumour suppressors commonly lost, we hypothesised that these cancer-related 

genes with CNVs in many cell lines could indicate common mechanisms of oncogenesis or 

cell line immortalisation.  However, given the large number of genes and cell lines under 

consideration, there is a possibility of genes being gained or lost in many cell lines entirely 

by chance and so we wanted to know which genes in which cell lines had copy numbers 

which were significantly different to expectation. 

To determine the significance of each copy number we performed a permutation test by 

randomly shuffling the CNVs on each cell line’s chromosomes 1,000 times and recording the 

resulting copy numbers of the CGC genes.  This resulted in a distribution of 1,000 copy 

numbers for each gene in each cell line and we derived a two-sided p-value from each 

actual copy number’s location in its distribution of permutated copy numbers.  We used the 

Benjamini & Hochberg method to control the false discovery rate of these p-values. 

The majority (81%) of FDR-corrected copy numbers of cancer-related genes across the NCI-

60 panel are not significantly different from what would be expected at a = 0.05 by this test 

(Table 2.2).  For example, of the 30 cancer-related genes on chromosome 17, 22 are 

affected by CNVs in the MCF7 cell line (12 gained and 10 lost) but only two of these, BRIP1 

and PPM1D, have FDR-corrected copy numbers that are significant at a = 0.05 on the 

permutation test (Figure 2.13).  Interestingly, while both of these genes are gained in MCF7, 

with 35 and 27 copies respectively, BRIP1 (Figure 2.13A) is a tumour suppressor whereas 

PPM1D (Figure 2.13B) is an oncogene.  Only the latter gene’s increased copy number in 

MCF7 therefore makes sense as a putative driver of oncogenesis or cell line immortalisation. 

 

 Oncogene Both Tumour suppressor 
Complete loss 37 (53%) 25 (64%) 90 (68%) 
Partial loss 200 (12%) 99 (15%) 273 (15%) 
Unaltered 1,559 (18%) 582 (21%) 1,578 (19%) 
Gain 237 (28%) 77 (30%) 173 (30%) 

Table 2.2 - Some significant cancer-related gene CNVs are putative drivers of oncogenesis 

The numbers of cancer-related gene copy numbers that are significant on the permutation test at a = 0.05 (with the 
percentage of the total number of gene copy numbers in each category in brackets).  In total, 4,930 gene copy numbers 
out of 26,125 (19%) are significant on the permutation test. 



70 

A 

 
B 

 
Figure 2.13 - Empirically significantly gained genes on MCF7 chromosome 17 

The distributions of copy numbers that arise from 1,000 permutations of CNVs for (A) tumour suppressor BRIP1 and (B) 
oncogene PPM1D on chromosome 17 of cell line MCF7 are shown as a frequency histogram, with black vertical dashed 
lines at the significance thresholds of p = 0.025 and p = 0.975 (two-sided significance at a = 0.05) and red and blue 
vertical dashed lines at the loss and gain thresholds respectively.  The actual copy numbers of the genes in MCF7 are 
shown as green vertical dashed lines.  
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2.4.8 Genes with significant copy numbers in CNV hotspots are possible driver genes 

Having established that there are hotspots of gain and loss in the NCI-60 cell line genomes 

and also that there are cancer-related genes with copy number changes unlikely to have 

occurred by chance, we tested if the intersection of these hotspots and significantly affected 

cancer genes could indicate putative drivers of oncogenesis or cell line immortalisation.  We 

calculated the intersection of the top 100 most gained and lost 1 Mb regions of the cell line 

genomes (Figure 2.14A) with the locations of the cancer-related genes with FDR-corrected 

empirically significant copy number changes (Table 2.2).  We find that 16 of the gain 

hotspots and 21 of the loss hotspots intersected with cancer-related genes with significant 

copy numbers in at least one cell line, with the gains concentrated on chromosomes 6, 7, 8 

and 17 and the losses mainly on chromosomes 16, 22 and X (Figure 2.14B). 

Out of the 17 cancer-related genes with significant copy number changes that are gained 

and 27 that are lost in these hotspots, there are ten gained oncogenes and 17 lost tumour 

suppressors. These genes are potential drivers of cancer (Table 2.3).  Of these, five out of 

ten of the gained oncogenes and 11 out of 17 of the lost tumour suppressors are not 

already known to be driver genes (Martincorena et al. 2017), and we therefore suggest 

these could be novel cancer driver genes. 

 

Gained oncogenes Lost tumour suppressors 
CDK6 ATP2B3 
DDX5 AXIN1 
FCGR2B BMPR1A 
H3C12 CDKN2A 
IRF4 FOXO4 
MET GATA1 
MYC LZTR1 
PPM1D MED12 
RAC1 NCOR1 
RAD21 NCOR2 
 PML 
 PPARG 
 RPL10 
 SMAD2 
 TNFRSF14 
 TRAF7 
 TSC2 

Table 2.3 - Gained oncogenes and lost tumour suppressors 

The oncogenes that are gained and the tumour suppressors that are in lost in hotspots.  Genes in red are those which 
are not known driver genes according to (Martincorena et al. 2017) and so are potentially novel cancer driver genes. 
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Figure 2.14 - CNV hotspots with significant cancer gene copy number changes 

(A) The frequencies of gain and loss hotspots on each chromosome and (B) the frequencies of gain and loss hotspots on 
each chromosome which contain cancer-related genes which are significantly affected by CNVs.  The frequency of gain 
hotspots is shown in blue, the frequency of loss hotspots is in red. 

Notable among the gained oncogenes are the tyrosine kinase receptor MET and GTPase 

RAC1 (Table 2.3), both associated with increased cell motility, epithelial-mesenchymal 

transition (EMT) and metastasis (Stallings-Mann et al. 2012).  Also gained in a CNV hotspot 

on chromosome 8 is the transcription factor MYC (Table 2.3), the over-expression of which 
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leads to increased expression of genes involved in cell proliferation, cell growth, apoptosis 

and DNA replication (Dominguez-Sola et al. 2007; Mannava et al. 2008). 

The lost tumour suppressors include the bone morphogenetic protein receptor BMPR1A, 

cyclin-dependent kinase inhibitor CDKN2A and signal transducer SMAD2 (Table 2.3), 

members of the TGF-b signalling pathway that in healthy cells controls the cell cycle to 

promote apoptosis or prevent proliferation, but the loss of which in cancer causes increased 

cell proliferation and angiogenesis (Blobe et al. 2000). 

In order to refine our understanding of the cancer-related processes affected by CNVs we 

performed enrichment analyses of the Gene Ontology (GO) terms and Reactome pathways 

associated with our putative drivers of cancer (Table 2.3). Ten biological process GO terms 

are enriched with an FDR-corrected P value of less than 0.05 for the ten gained oncogenes 

under consideration, including terms associated with regulation of cellular response to 

stress, chromosome organisation, response to external stimulus and gene transcription and 

expression (Supplementary Table 6.2).  When analysed at the pathway level, these ten 

gained oncogenes are enriched for 11 Reactome pathways, including pathways involved in 

cell attachment and motility, MAPK family signalling cascades, Wnt signalling and the cell 

cycle (Supplementary Table 6.3). 

The 17 lost tumour suppressors have 42 enriched biological process GO terms, including 

multiple terms associated with apoptosis, gene silencing by miRNAs, BMP signalling, cellular 

senescence, cell cycle arrest, cell growth, cell proliferation and response to stress 

(Supplementary Table 6.4).  The 18 enriched Reactome pathways for the 17 lost tumour 

suppressors include pathways related to TGF-b signalling, the cell cycle and gene 

transcription and expression (Supplementary Table 6.5). 
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2.5 Discussion 

Cancer cells experience widespread gene dosage changes caused by point mutations, copy 

number variations and aneuploidies. Clarifying the causes and effects of these dosage 

changes is key to understanding and treating cancer (International HapMap 2003; Torres et 

al. 2008; Yang et al. 2016).  The high variability of cancer genomes means that a 

representative range of cancers in different tissues must be analysed in order to move 

closer to elucidating general mechanisms of oncogenesis (Iafrate et al. 2004; Henrichsen et 

al. 2009).  Whereas previous studies used array-based comparative genomic hybridisation 

(Lorenzi et al. 2009; Beroukhim et al. 2010; Bignell et al. 2010; Varma et al. 2014) or whole 

exome sequencing analyses (Reinhold et al. 2014) to characterise copy number variations in 

cancer, we have used whole genome sequencing datasets to build a more detailed picture 

of CNVs in the NCI-60 panel (Figure 2.2, Figure 2.3) than has been previously presented.  

While the analyses of extrachromosomal DNA oncogene copy numbers presented in (Turner 

et al. 2017) were based on CNVs calculated from the same Illumina data as our analyses and 

with the same readDepth software, their raw NCI-60 CNVs have not been published and, 

moreover, were calculated with a less stringent false discovery cut-off than our NCI-60 CNVs 

(FDR = 0.05 instead of our FDR = 0.01) and with a model overdispersion set to a value less 

well-suited to Illumina data (overdispersion = 1 instead of our overdispersion = 3).  Our 

analyses of the ‘hotspots’ in this higher-resolution CNV map allow us to identify possible 

novel oncogenesis driver genes (Table 2.3). 

Consistent with previous studies (Beroukhim et al. 2010; Varma et al. 2014), we found wide 

variation in levels of copy number variations across tissues and chromosomes, ranging from 

small 10 Kb gains and losses to aneuploidies of entire chromosome arms (Figure 2.7, 

Supplementary Figure 6.2).  While complete loss of regions of the genome is rare in our 

data, partial losses dominate the CNV map, along with peaks of gains with tens of extra 

copies of genes (Figure 2.6, Figure 2.8A).  Many of these CNVs coincide with known cancer-

related genes. We find that partial losses of tumour suppressor genes and gains of 

oncogenes dominate (Figure 2.11), as one would intuitively expect in cancer and as 

previously found by others (Lorenzi et al. 2009; Beroukhim et al. 2010; Bignell et al. 2010; 

Varma et al. 2014).  Unlike earlier aCGH-based results, our sequencing-based approach 

means that we can detect smaller CNV hotspots, such as the common short arm aneuploidy 
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on chromosome 21 (Figure 2.7) that was undetected by (Varma et al. 2014).  By focussing on 

regions that are similarly affected in many cell lines (Figure 2.9) and on cancer-related genes 

that are affected more than expected by chance (Figure 2.13), we determined a list of 

candidate oncogenesis driver genes, which includes known driver genes (Martincorena et al. 

2017), but also suggests potentially novel cancer drivers (Table 2.3). 

The functions of the gained candidate driver genes are enriched for multiple cancer-related 

processes such as increased cell growth, motility and proliferation leading to metastasis as 

well as cellular responses to stress and external stimuli (Supplementary Table 6.3).  The lost 

tumour suppressors on the other hand are enriched for processes associated with control of 

the cell cycle such as TGF-b and Wnt signalling cascades, apoptosis and cellular senescence, 

in addition to processes associated with angiogenesis and miRNA-mediated gene silencing 

(Supplementary Table 6.5).  Taken together, these results support the hypothesis that cells 

must bypass multiple protective mechanisms in order to gain the various ‘hallmarks’ of 

cancer and so develop into full-blown metastasising tumours (Hanahan and Weinberg 2000, 

2011). 

In addition to looking at significantly affected cancer-related genes with concordant copy 

number changes (gained oncogenes and lost tumour suppressors) in CNV hotspots, we 

intend also to investigate the CNV hotspots which do not contain possible driver genes as 

defined with our current criteria.  For example, hotspots with cancer-related genes that are 

not significantly affected and also hotspots with genes which are not currently known to be 

cancer-related are worthy of consideration since these regions are consistently gained and 

lost across the NCI-60 cell lines, presumably under the influence of somatic selection 

(Bignell et al. 2010). 

Our definition of CNV hotspots as the top 100 most gained or lost 1 Mb regions of the 

genome is probably both overly conservative and prone to false positives.  An analysis based 

on susceptibility to nonallelic homologous recombination (NAHR) events would allow us to 

predict regions prone to genomic instability (Stankiewicz and Lupski 2002), since these are 

known to be a prominent source of CNVs (Mills et al. 2011).  The presence of low copy 

repeats (LCRs) can catalyse the formation of CNVs (Liu et al. 2012), especially if the LCRs 

have a high density of PMDR9-binding motifs and are thus likely to cause crossover events 

(Myers et al. 2008).  Future work will redefine CNV hotspots as regions flanked by 
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paralogous LCRs containing frequent PMDR9-binding motifs and repeat the intersection 

with the cancer-related genes affected more than expected by chance (Figure 2.13) to 

investigate how this affects the selection of candidate driver genes. 

The low coverage, 0.4x to 3.2x, of the sequencing data used in this study means that the 

resolution of the detected CNV breakpoints varies from just 41.2 kb to at best 10.3 kb 

respectively when analysed with readDepth (Miller et al. 2011).  This could be greatly 

improved by using deeper sequencing, such as the 32x coverage used in a recent study 

which discovered a range of much smaller novel CNVs in nearly 15 thousand individual 

genomes (Collins et al. 2020). 

Another limitation of our sequencing data is that it is all derived from the Illumina short 

read sequencing platform and so we are unable to detect CNVs accurately in repetitive 

regions of the genome (Chiang et al. 2009) and cannot detect inversions or translocations at 

all.  Recently developed single-molecule platforms generate much longer contiguous reads 

up to hundreds of kilobases long, enabling the direct detection of CNVs in repetitive regions, 

nucleotide-level resolution of CNV breakpoints and the detection of inversions and 

translocations (Goodwin et al. 2016).  These technologies include two competing long-read 

sequencing platforms developed by Pacific Biosciences (Chaisson et al. 2015) and Oxford 

Nanopore Technologies (Cretu Stancu et al. 2017), as well as an ‘optical mapping’ system 

developed by Bionano (Lam et al. 2012), which uses restriction enzymes to cleave at known 

sites an immobilised single DNA molecule which can then be imaged and compared to a 

reference restriction map.  The investigation of the NCI-60 cell lines with these technologies 

would lead to a much more accurate picture of the perturbations to gene interaction 

networks in these cancer-derived cell lines. 

We chose the readDepth algorithm primarily because it was shown to result in more 

accurate breakpoint and copy number estimations when compared to other available short-

read algorithms (Duan et al. 2013), a choice subsequently validated by a study which found 

readDepth to have high precision for duplications (>89%) and deletions (>95%) across a 

range of CNV sizes (Kosugi et al. 2019).  However, we have not yet formally quantified the 

precision (true positives / calls) or recall (true positives / actual positives) for either 

duplications or deletions in our data.  Such sensitivity analyses could be implemented either 

by reference to a simulated genome, where the locations and copy numbers of introduced 
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CNVs are known, or by comparison to previously well-characterised CNV datasets such as 

those for NA12878, a well-studied patient genome with matching parental genomes, 

together with derived lymphoblastoma genome GM12878 (1000 Genomes Project et al. 

2010).  We will also compare our CNV calls to those for the NCI-60 cell lines which are now 

available in the Database of Genomic Variants (MacDonald et al. 2014).  All CNV detection 

algorithms have characteristic biases and consequently none detect all CNVs of all sizes 

accurately (Pabinger et al. 2014), and so future work will merge the CNVs from our 

readDepth-based short-read analyses with CNVs called using other algorithms, leading in 

principle to increased precision, albeit probably at the cost of decreased recall (Kosugi et al. 

2019). 

There is little available data on the stage of tumour from which the NCI-60 cell lines were 

taken.  The widespread aneuploidy that is seen in our data could be a late-stage 

consequence of, for example, TP53 inactivation, rather than causal in oncogenesis (Torres et 

al. 2008).  If so, it would be interesting to subtract the aneuploidies from the CNV map to 

see what difference that would make to the candidate driver genes and related analyses.  In 

addition, normal tissue samples are not available for the NCI-60 cell lines to the best of our 

knowledge and consequently we are unable to determine germline CNVs from somatic 

CNVs.  Reanalysis either with matched tumour/normal samples or by constructing a model 

of statistically significant germline CNVs that could be subtracted from the signal in our data 

(Bignell et al. 2010) could be used to resolve this question. 

We have shown that 55 datasets across nine tissues allows us new insight into the role of 

CNVs and cancer genes.  The application of our processing pipeline to work on much larger 

sets of cell line reads, such as the Cancer Cell Line Encyclopedia with its 1,457 cell lines (as of 

3/1/21) derived from tumours in a much wider range of tissues (Ghandi et al. 2019), would 

be very exciting. 
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3 Transient TP53 repression could lead to Oncomir-1 activation 

3.1 Abstract 

Despite the wide variation in gene content in cancer cells caused by copy number variations 

and aneuploidies, tumour cells survive dosage changes that cause normal cells to undergo 

apoptosis, often exhibiting enhanced fitness, suggesting that buffering mechanisms must be 

key to cancer cells’ tolerance of these dosage changes.  One such dosage compensation 

mechanism occurs through the repressive activities of miRNAs, which negatively regulate as 

much as 60% of human protein-coding genes via post-transcriptional repression of mRNAs. 

We have used a detailed map of CNVs affecting the NCI-60 cell lines which we generated in 

chapter 2 to investigate CNVs containing miRNAs in cancer-derived cell lines.  Our findings 

include the widespread derepression of cancer-related processes and pathways caused by 

the frequent loss of pleiotropic miRNA clusters as well as by more global miRNA depletion 

resulting from disruption of miRNA biogenesis.  We also observe surprisingly frequent loss 

of non-redundant miRNAs which ordinarily regulate cancer-associated processes, which 

further suggests that cancer cells benefit from escaping miRNA-mediated regulation. 

Our investigation of the CNVs affecting the oncomir cluster mir-17~92 on chromosome 13, 

also known as Oncomir-1, together with its paralogs and the related transcription factors, 

leads us to propose a new mechanism by which TP53 and PTEN repression could be 

sustained in a range of cancers.  The transient C-MYC-induced repression of TP53 via mir-

663a and mir-1228 implied by the copy number changes in NCI-60 cell lines could lead to 

sufficient temporary derepression of Oncomir-1 that C-MYC activation of Oncomir-1 can 

become dominant, leading to stable repression of TP53 and PTEN and the avoidance of C-

MYC-induced apoptosis by elevated Oncomir-1. 
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3.2 Introduction 

Tumour cells and cell lines derived from them are characterised by widespread genomic 

instability with frequent copy number variants (CNVs) and aneuploidies causing large 

changes in gene dosage (Iafrate et al. 2004; Torres et al. 2008; Henrichsen et al. 2009; Yang 

et al. 2016).  However, despite these changes being ordinarily lethal to normal cells (Torres 

et al. 2008; Sheltzer and Amon 2011), cancerous cells not only survive but often do so with 

enhanced fitness (Sheltzer and Amon 2011).  This suggests there must be mechanisms 

buffering the effects of these dosage changes. 

MicroRNAs (or miRNAs) are short non-coding RNAs that function as post-transcriptional 

regulators, normally repressors, of protein-coding genes (Bartel 2004).  MicroRNAs are 

transcribed in the nucleus as primary miRNA transcripts containing short hairpin loops, both 

from the introns of protein-coding genes and from intergenic loci (Lee et al. 2002).  The 

hairpin loops are excised from the primary transcripts by the enzyme Drosha (Lee et al. 

2002; Lee et al. 2003; Zeng et al. 2003) and exported as precursor miRNAs from the nucleus 

to the cytoplasm by RanGTP/Exportin-5 (Yi et al. 2003), where they are further cleaved by 

the Dicer enzyme into a short RNA duplex (Lee et al. 2003).  One arm of this duplex is then 

selected as the mature miRNA (Hammond et al. 2000) to guide the RNA-induced silencing 

complex (RISC) to bind by sequence complementarity to protein-coding mRNAs (Lewis et al. 

2003), primarily in the 3’UTR region, leading then to either inhibition of mRNA translation 

into protein (Olsen and Ambros 1999; Ding and Grosshans 2009; Zdanowicz et al. 2009) or 

to the degradation of the mRNA by the 5’-to-3’ mRNA decay pathway (Rehwinkel et al. 

2005; Behm-Ansmant et al. 2006; Baek et al. 2008). 

The primary target recognition site (or seed) of the mature miRNA is only six to eight 

nucleotides long and so an individual miRNA can have target sites in many mRNAs and thus 

function pleiotropically (Miska et al. 2007).  While the effects of post-transcriptional 

repression by individual miRNAs are relatively small, often with only around a two-fold 

decrease in expression (Baek et al. 2008), the co-operative effects of multiple co-expressed 

miRNAs mean that miRNAs influence most developmental processes (Bartel 2004).  The 

results of miRNA repression of protein-coding gene expression include tuning of gene 

expression levels to reduce the influence of transcriptional noise (Miska et al. 2007), cell 

fate decisions and tissue differentiation (Stark et al. 2005), stabilizing or increasing the 
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precision of phenotype inheritance through a process known as canalisation (Hornstein and 

Shomron 2006; Peterson et al. 2009) and, more generally, dosage compensation (Sheltzer 

and Amon 2011). 

Using the high-resolution CNV map generated in chapter 2 we have analysed the CNVs 

containing miRNAs across the NCI-60 cell line panel.  MicroRNAs are often expressed from 

polycistronic loci (Lee et al. 2002), and these miRNAs are likely to be affected by the same 

CNVs purely because of their genomic proximity to each other.  We have therefore 

developed a novel method of avoiding the multiple counting of miRNA CNVs that groups the 

miRNAs by their seed sequence as well as by their genomic locations into seed/locus 

families. 

We show that miRNAs in multi-precursor families are lost more frequently and gained less 

often than those in single-precursor families, consistent with the greater disruption to the 

cell that gains of multiple pleiotropically acting miRNAs would cause.  Counterintuitively, we 

find however that miRNA families with members expressed from genes in multiple loci in 

the genome (duplicated miRNAs) and which are therefore functionally redundant are lost 

less than non-redundant families. 

We infer global depletion of miRNAs from our observations of partial losses of components 

of the miRNA biogenesis pathway in many cell lines, consistent with earlier studies and with 

the genomic instability characteristic of cancer (Lin and Gregory 2015).  We find that 

miRNAs which are consistently gained across the NCI-60 panel are enriched for cancer-

related processes and pathways. 

The CNVs of well-known oncomir cluster mir-17~92, also known as Oncomir-1, together 

with the CNVs of the related oncogenic transcription factors, are indicative of tumorigenesis 

in the vast majority of cell lines.  We propose that Oncomir-1 and its paralogs integrate the 

CNV signals from their transcription factors and, acting via mir-663a/1228, ensure that TP53 

and PTEN expression remains low once Oncomir-1 expression has been elevated. 
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3.3 Methods 

3.3.1 Seed/locus miRNA families 

Human protein-coding gene locations were downloaded from Ensembl on 29/9/20 (release 

100) (Yates et al. 2020) and human miRNA locations and sequences were downloaded from 

miRBase on 12/8/20 (release 22.1) (Kozomara et al. 2019).  The overlaps between CNV 

locations and gene locations were calculated using R package GenomicRanges v1.40 

(Lawrence et al. 2013).  In analyses where a gene overlapped more than one CNV and a 

single effective copy number was required then the lowest copy number was used, since 

loss of part of a gene means it is likely to be non-functional and gain of part of a gene means 

that if it is transcribed/translated at all then there will just be extra fragments of the 

protein. 

Heatmaps were generated using the heatmap.2 function of R package gplots v3.0.3 (Warnes 

et al. 2020).  Heatmap clusters were extracted by parsing the heatmap layout returned by 

the heatmap.2 function and combining adjacent and identical columns and rows into 

clusters. 

MicroRNA seeds were calculated from 5’ nucleotides two to eight inclusive.  MicroRNA seed 

CNVs were calculated by comparing the actual number of mature miRNAs with the seed to 

the expected number for each cell line, taking the patient sex into account for miRNAs on 

chromosomes X and Y. 

To avoid multiple counting precursor miRNAs which are affected by the same CNVs purely 

because of their genomic proximity, adjacent miRNA precursors were combined into loci if 

the precursors were less than a ‘maximum gap size’ apart (see section 3.4.2 for an 

illustration of the construction of loci).  A range of maximum gap sizes were investigated 

between one nucleotide and 108 nucleotides; the median CNV length (6.2 x 105 nucleotides) 

was chosen as the maximum gap size to focus on so as to relate the loci to the CNVs that 

affect them.  The distinct miRNA seeds in each resulting locus were then split into miRNA 

‘seed/locus’ families containing the precursor miRNAs with those seeds in each locus. 

3.3.2 GO and pathway enrichment 

The mappings of Gene Ontology terms (Ashburner et al. 2000; Consortium 2021) to genes 

for cellular compartments, molecular functions and biological processes were downloaded 
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from Ensembl on 6/2/21 (release 103).  The mappings of Reactome pathways (Jassal et al. 

2020) to genes were downloaded from Ensembl on 6/2/21 (release 103).  Verified 

miRNA/target interactions were downloaded from miRTarBase (Chou et al. 2018) on 6/2/21. 

A pipeline was constructed for miRNA functional enrichment analyses (discussed further in 

section 3.4.4): 

a) Genes in each ontology category were additionally mapped to all higher categories 

to reduce the influence of genes of uncertain function.  

b) Genes mapped to each category were replaced with the miRNAs experimentally 

confirmed in miRTarBase to target the category’s genes. 

c) Fisher’s Exact test was performed with the miRNAs of interest and each category’s 

targeting miRNAs to find over-represented categories and p-values were corrected 

for multiple testing with the Benjamini & Hochberg method (Benjamini and 

Hochberg 1995). 

d) The enriched categories were summarised by counting the matches to lists of 

keywords associated with metastasis, cell cycle, expression, signalling and 

development (Supplementary Table 6.9).  

3.3.3 Cancer-related miRNAs and transcription factors 

Lists of miRNAs which act as oncomirs and/or tumour suppressors were manually curated 

by extensive literature search (Motofeanu 2019). 

Transcription factors confirmed to bind to miRNAs were downloaded from the 

supplementary information of an experiment in the ENCODE project on 24/2/21 (Gerstein 

et al. 2012). 

3.3.4 Statistical analyses 

All statistical analyses were performed in R.  Correlations were calculated using the Pearson 

product-moment correlation test.  Distributions were compared with the Kolmogorov-

Smirnov test.  Contingency table tests and goodness of fit tests were performed with the C2 

test.  
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3.4 Results 

3.4.1 Individual miRNA CNV profiles are confounded by genomic proximity effects 

We downloaded locations and sequences for precursor and mature miRNAs from miRBase 

(Kozomara et al. 2019) and calculated the overlaps of these with the CNVs of the NCI-60 cell 

line panel which we generated in chapter 2.  The CNVs of individual miRNAs are calculated 

by comparing the actual copy number determined by overlap with CNVs to that expected 

for the chromosome in each cell line (2 for autosomal and female X chromosomes, 1 for 

male X and Y chromosomes).  When these individual miRNA CNVs are viewed as a 

hierarchically clustered heatmap (Figure 3.1A) it is clear that there is no clustering by tissue 

of origin, as shown by the mixing of row colours, but there are obvious column clusters of 

miRNAs with identical CNV profiles across the NCI-60 panel (Figure 3.1A, clusters ‘a’ to ‘d’ 

among others).  The only noticeable row-based pattern is the horizontal white band of 

mainly unaltered miRNAs; this consists however of the cell lines which generally have only 

very sparse CNVs anyway and so it is not surprising that the miRNAs in these cell lines are 

also mainly unaltered. 

There are 1,216 distinct loss and gain patterns of individual miRNA precursor CNVs, 305 of 

which form column clusters which contain more than one miRNA.  The largest of these 

clusters (Figure 3.1A, cluster ‘d’) consists of 73 precursor miRNAs which are in regions of the 

genome which are unmappable and so are indistinguishable from the expected copy 

numbers.  The next three largest miRNA clusters (Figure 3.1A, clusters ‘a’, ‘b’ and ‘c’), 

consisting of 22, 42 and 37 miRNAs respectively with the same CNVs across all the cell lines 

and are all in close genomic proximity to each other.  MicroRNA precursors that are in close 

genomic proximity will tend to be affected by the same CNVs and hence no biological or 

functional implications can be inferred just from their identical CNV profiles. 
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The CNVs of individual miRNAs are thus confounded by these genomic proximity effects and 

so we looked next at the effective dosage of each miRNA seed, as this relates more closely 

to the cumulative repressive effects of the miRNAs.  We calculated the seed CNVs as the 

differences between the actual and expected total counts of mature miRNAs with each seed 

in each cell line, based on the underlying miRNA precursor CNVs.  As with the individual 

miRNAs, seed CNVs do not cluster by tissue of origin but there are again clusters of seeds 

with identical CNV profiles across the cell lines (n = 399) (Figure 3.1B).  The unmappable 

miRNAs’ seeds group together again, this time as the third largest group (Figure 3.1B, 

cluster ‘g’), and the two largest clusters (Figure 3.1B, clusters ‘e’ and ‘f’), consisting of 28 

seeds on chromosome 19 and 52 seeds on chromosome 14 respectively, are again in close 

genomic proximity within each cluster. 

There are however 11 groups of two or three seeds which have identical seed CNV profiles, 

but which are spread across more than one chromosome and so cannot be affected directly 

by the same CNVs (Figure 3.1B, clusters marked with triangles; Supplementary Table 6.6).  

Taking the mir-30 paralog seeds as an example, while the two seeds in the cluster occur on 

three different chromosomes, they do so in the same three adjacent pairs of loci across the 

chromosomes (Figure 3.1B, green triangle; Figure 3.2A; Supplementary Table 6.6).  The six 

mir-30 paralogs all have the same 5’ seed of GUAAACA and one paralog in each pair of loci 

also has the 3’ seed of UUUCAGU (Figure 3.2A).  Importantly, neither seed occurs anywhere 

else in the genome and so, since the instances of each seed are relatively close together on 

each chromosome (Figure 3.2A), they experience the same set of CNVs across the three 

chromosomes and hence have the same seed dosage profile across the NCI-60 panel. 

The mir-103 paralog seeds on the other hand each occur in different loci but, crucially, these 

loci are not just in close genomic proximity again within each chromosome but actually 

overlap on different DNA strands and so they also have the same CNV and seed dosage 

profiles (Figure 3.2B; Figure 3.1B, orange triangle; Supplementary Table 6.6). 

We quantified this idea of genomic proximity as the maximum ‘per-chromosome inter-locus 

spread’, defined as the largest region spanned by any two adjacent miRNA precursors on 

each chromosome, ranging from just 78 nucleotides for the mir-103a/b paralogs in the 

same location but on opposite strands (Figure 3.2B) to 6.48 x 105 nucleotides for the mir-

33/6777/6889 group (Supplementary Table 6.6).  In order to relate this metric to the CNVs 



87 

that affect the cell lines we chose the median CNV length of 6.2 x 105 nucleotides as a 

conservative threshold below which we would consider two loci to be in close genomic 

proximity. 

 

A B 

  

Figure 3.2 - Multi-chromosome genomic proximity explains some CNV clusters 

The genomic locations, orientations and seed sequences of (A) the mir-30 paralogs and (B) the mir-103 paralogs.  The 5’ 
and 3’ mature miRNA seeds are coloured according to their seed sequences.  hsa-mir-103b-1 and hsa-mir-103b-2 do not 
have 3’ mature miRNAs annotated in miRBase. 

To narrow our focus to miRNAs with seeds which cluster together without confounding 

genomic proximity effects we removed clusters where all the seeds are either unmappable, 

in the same locus (n = 1,099) or have a maximum per-chromosome inter-locus spread below 

the median CNV length of 6.2 x 105 nucleotides (n = 1,200), resulting in 36 seed CNV clusters 

with identical CNV profiles which cannot be explained by the variants of genomic proximity 

effect discussed above (Supplementary Table 6.7, analysed further in section 3.4.4). 

The repressive effects of miRNAs on their targets are determined in part by the effective 

concentration of the miRNAs and, since the miRNAs’ targets are determined by their seed 

sequence, we wanted to see how CNVs altered the effective dosage of each miRNA seed.  
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We calculated the copy number ratio for each miRNA seed as the ratio of actual to expected 

seeds in each cell line.  The maximum copy number ratio generally decreases with 

increasing number of expected copies (Figure 3.3A), which is unsurprising as a randomly 

gained miRNA represents a larger relative gain for smaller seed families.   

 

A 

 

B 

 

Figure 3.3 - Seed copy number ratios confirm bias against sex chromosome gains 

(A) The copy number ratios of miRNA seed families (y axis) plotted against the expected number of copies (x axis).  Gains 
with a copy number ratio above one are shown in blue, unaltered in grey, partial losses in light red and complete losses 
as dark red diamonds.  The grey dashed line indicates a copy number ratio of 1 (unaltered) and the red dashed line 
indicates complete loss.  The black triangles mark the seed families with an odd number of expected copies.  (B) The 
distributions of miRNA seed family copy number ratios when grouped by the chromosome types on which they occur. 

Seeds families with more than eight expected copies are never completely lost, consistent 

with the lower chances of larger families losing all their copies (Figure 3.3A).  Strikingly, 

seeds with an odd number of expected copies are gained much less than those with an even 

number of expected copies and, apart from the seeds with only a single expected copy (on 

chromosomes X or Y in male cell lines), are never completely lost (Figure 3.3A). 

Since the only way that a seed can have an odd number of expected copies is to have at 

least one copy on a sex chromosome in a male-derived cell line, we grouped the copy 
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number ratios of miRNA seed families by the types of chromosomes on which they occur 

(Figure 3.3B).  While seed families that have copies only on autosomes have copy number 

ratios of up to 16.5, the seeds that occur only on sex chromosomes never have a copy 

number ratio of more than 2.5 (Figure 3.3B).  As we saw in section 2.4.3, the sex 

chromosomes are affected much less by gains than the autosomes (Figure 2.6A), thus 

explaining the lower gains of miRNA seed families with an odd number of expected copies 

(Figure 3.3A). 

3.4.2 Seed/locus families enable CNV analyses without genomic proximity bias 

We wanted to be able to investigate if miRNAs with redundant seeds are affected by CNVs 

differently than singleton miRNAs and to understand the dosage changes that occur in 

cancer-derived cell lines without double or multiple counting miRNAs with the same seed 

that are in close genomic proximity.  We also wanted to be able to analyse genomic 

proximity and seed dosage independently.  We therefore combined miRNA precursor loci 

that are adjacent by comparing the gaps between them to a range of maximum gap sizes 

and then considered these combined loci with the distinct mature miRNA seeds within them 

to be ‘seed/locus’ miRNA families (Figure 3.4).  This allows us to differentiate between 

copies of a seed which are in the same effective location (seed ‘B’ in locus 1 in Figure 3.4 for 

example), which we therefore expect to be affected by the same CNVs, and between copies 

of a seed which are in different effective locations (such as seed ‘A’ in loci 1, 2 and 4 in 

Figure 3.4) but still have the same CNV profile, which could be evidence of selection for gain 

and/or loss of the genes containing these seeds.  As well as taking genomic location into 

account and so avoiding multiple counting of seeds in genomic proximity, this method also 

allows us to determine accurately the effective dosage of each seed within the cancer 

genome. 
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Figure 3.4 - Seed/locus miRNA family construction avoids genomic proximity bias 

The mock genes a-1 to e-1 contain the seeds A to D in various combinations and their loci are combined when the gap 
between them is less that the maximum gap, such that the loci of genes b-1 and c-1 are combined in the example above.  
The seeds are then allocated to the combined loci in which they occur, resulting in seed/locus families with different 
seeds such as A/1 and B/1, both in locus 1, or families with the same seed, like A/1, A/2 and A/4, which are spread across 
three loci.  Seed/locus B/1 is an example of a non-redundant seed/locus as its seed, B, does not occur in any other 
combined loci.  The other seed/loci are all redundant as there are copies elsewhere in the genome of their seeds. 

The proportion of miRNA precursors that are allocated to multi-precursor loci by this 

method varies considerably with the chosen gap size (Figure 3.5A).  Even with the smallest 

possible gap size of one nucleotide there are 58 loci (6%) which contain more than one 

precursor because the precursors overlap on different DNA strands.  As the gap size 

increases the proportion of loci which contain more than one precursor also increases until, 

with a gap size of 108 nucleotides, all the precursors are grouped together into one locus per 

chromosome (Figure 3.5A).  There is a small excess above the sigmoidal random expectation 

background of multi-precursor loci for gap sizes between about 1 kb and 10 kb (Figure 3.5A, 

red dots), reflecting presumably the precursors which are transcribed from the same 

primary transcripts or host genes. 

The total number of loci for the various gap sizes ranges from 1,859 loci for a gap size of one 

nucleotide to 24 loci (one per chromosome) for a gap size of 108 nucleotides (Figure 3.5B).  

When these loci are combined with the 2,090 distinct miRNA seeds to form seed/locus 

miRNA families the number of families which result for each gap size is dominated by the 

number of seeds and so the resulting seed/loci vary much less in number than the loci, from 

2,843 seed/loci for a gap size of one nucleotide down to 2,582 seed/loci for a gap size of 108 

nucleotides (Figure 3.5B).  We wanted to avoid multiple counting miRNAs with the same 

seed that are affected by the same CNVs and so we chose the median CNV length of 6.2 x 
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105 nucleotides as the gap size to focus on, resulting in 923 loci and 2,677 distinct 

seed/locus families (Figure 3.5B). 

We calculated the CNVs affecting each seed/locus family in a similar way as for the CNVs of 

the seed-based families, by comparing the actual and expected numbers of mature miRNAs 

with each seed in each cell line.  We used the overlap between the combined loci and the 

CNVs to determine the actual copy numbers for each seed/locus and so a given seed can 

now have multiple CNV profiles if it occurs in different loci (Figure 3.5C).  Once again, we see 

little to no clustering by tissue of origin but there are clear clusters of miRNA seed/loci with 

identical CNV profiles (Figure 3.5C).  The five largest such clusters include a cluster of the 

seed/loci containing the miRNAs in unmappable regions of the genome again (Figure 3.5C, 

cluster ‘e’), as well as a cluster dominated by partial and complete losses (Figure 3.5C, 

cluster ‘d’), which was not apparent in the individual miRNA precursor or seed-based 

heatmaps discussed earlier.  As with the two largest clusters (Figure 3.5C, clusters ‘b’ and 

‘c’), the seed/locus families in this cluster of complete and partial losses occur in a single 

locus and so it is not surprising that the miRNAs have the same CNV profile. 

The fifth largest cluster however (Figure 3.5C, cluster ‘a’) consists of 26 miRNA seed/locus 

families spread across four non-adjacent loci and, importantly, the miRNAs in this cluster 

are not always affected by the same CNV in each cell line and so, despite the miRNAs 

occurring across 2.2 x107 nucleotides of chromosome X, the cluster cannot be explained 

simply by the length of the CNVs (Supplementary Figure 6.3).  After removing the cluster of 

unmappable miRNAs, 799 single-locus clusters and 808 clusters where the miRNAs are 

affected by the same CNVs in each cell line, there are 36 clusters of seed/locus families 

which have identical CNVs across the NCI-60 panel (Supplementary Table 6.8) and which 

might therefore be evidence of selection for gain or loss of particular miRNAs in cancer.  

Interestingly, there is considerable though incomplete overlap between the groups of 

miRNAs in these clusters and the miRNAs in the 36 seed based CNV profile clusters 

discussed in the previous section (overlaps highlighted in Supplementary Table 6.8, analysed 

further in section 3.4.4). 
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3.4.3 Multi-precursor and non-redundant seed/loci are lost more than expected 

We hypothesised that seed/locus families which contain multiple precursors would be more 

likely to contain miRNAs with different seeds and therefore repress a greater range of 

targets than single precursor seed/locus families and we wanted to see if this would affect 

their copy numbers.  We divided the seed/locus families’ CNVs in the NCI-60 cell lines into 

those for families with just one precursor (n = 138,875) and those with more than one 

precursor (n = 8,360).   

There is a significant relationship between CNV type and whether a seed/locus family has 

multiple precursors (C2 (3, N = 147,235) = 100, p < 2.2 x 10-16), with multi-precursor 

seed/locus families lost more and gained less than expected (Figure 3.6A).  The single-

precursor seed/locus families on the other hand not only exhibit the inverse relationship 

with CNV type of being lost less and gained more often than expected (Figure 3.6A), but also 

have a much wider range of gains than do the multi-precursor seed/locus families (two-

sided Kolmogorov-Smirnov test, D = 0.04, p = 9.26 x 10-11, Figure 3.6B).   

 

A    B   
  C2 residuals 

 

 Single Multi 

 

Complete loss 1,848 157 
Partial loss 25,991 1,845 
Unaltered 104,120 6,054 
Gain 6,916 304 
   

Figure 3.6 - Multi-precursor seed/loci are lost more than expected with fewer gains 

(A) The numbers of single and multi-precursor seed/locus family CNVs.  The cells are shaded from blue for over-
represented to red for under-represented, based on the C2 residuals of the contingency table, which are calculated as 
!"#$%&$'($)*$+,$'

-$)*$+,$'
.  (B) Copy number ratios (actual / expected seed copies) for single and multi-precursor seed/locus 

families.  The dashed line at y = 1 indicates that actual copies = expected copies. 

Both results are consistent with selection pressure on cancer cells not only to avoid the 

increased disruption that gains of multiple miRNAs would cause but also to benefit from the 

widespread derepression that results from the loss of multi-precursor seed/locus families, 

similar to the known advantages to cancer cells of the global depletion of miRNAs caused by 

partial Dicer knockdown (Lin and Gregory 2015). 
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Having investigated how the broadness of miRNA targeting affects CNVs by dividing miRNA 

seed/locus families into single and multi-precursor families, we wanted to then address the 

related hypothesis that cells should be able to tolerate loss of miRNAs with redundant seeds 

more readily than loss of miRNAs without a copy of their seed elsewhere in the genome, 

since this would result in a reduction of miRNA-mediated repression rather than a total loss.  

In addition to this we wanted to quantify the effects of using our novel miRNA seed/locus 

family concept to avoid biases arising from the multiple counting of miRNAs in close 

genomic proximity.  We realised that we could compare the effects of seed redundancy on 

CNVs calculated for miRNA precursors irrespective of their genomic proximity to the effects 

of seed redundancy on CNVs for miRNA seed/locus families where, by definition, the 

seed/loci are unlikely to be affected by the same CNVs merely due to their location in the 

genome. 

Accordingly, we divided individual precursor miRNA CNVs into those for miRNA precursors 

without a copy of their seeds elsewhere in the genome (n = 89,877) and those with a 

redundant seed (n = 68,703).  We similarly partitioned miRNA seed/locus family CNVs into 

those for families without a redundant seed in another locus (n = 94,820) and those with a 

redundant seed (n = 52,415). 

Surprisingly and counterintuitively, we found both for miRNA precursors (C2 (3, N = 

158,580) = 45.3, p = 7.8 x 10-10, Figure 3.7A) and for miRNA seed/locus families (C2 (3, N = 

147,235) = 110, p < 2.2 x 10-16, Figure 3.7B) that while seed redundancy does indeed have a 

significant effect on CNV type, those without a redundant seed elsewhere in the genome 

are lost more and gained less than expected.  However, by investigating the NCI-60 cell lines 

we have selected for cells which have already become cancerous, and so perhaps the 

inversion of our initial hypothesis is to be expected since these cells are already radically 

altered from the norm, making miRNAs with non-redundant seeds which are nevertheless 

lost worthy of further study. 
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A   B  
    C2 residuals 
 Non-redundant Redundant  Non-redundant Redundant 

 

Complete loss 631 413     Complete loss 1,376 629 
Partial loss 5,709 4,234     Partial loss 18,604 9,232 
Unaltered 15,657 11,219     Unaltered  70,201 39,973 
Gain 67,880 52,837     Gain 4,639 2,581 
      

Figure 3.7 - Seed/locus families without redundant seeds are lost more than expected 

(A) The numbers of CNVs for miRNA precursors with and without copies of the miRNA seeds elsewhere in the genome.  
(B) The numbers of CNVs for miRNA seed/locus families with and without copies of the seed/loci seeds in other loci 
which are not in close genomic proximity.  The cells are shaded from blue for over-represented to red for under-
represented, based on the C2 residuals of the contingency tables, which are calculated as !"#$%&$'($)*$+,$'

-$)*$+,$'
.   

The effects of grouping miRNA precursors into miRNA seed/locus families can also be clearly 

seen, with a much sharper separation of over-represented losses from under-represented 

unaltered/gained for non-redundant miRNA seed/loci (Figure 3.7B) when compared to 

miRNA precursors (Figure 3.7A).  This suggests that the seed/locus method designates some 

CNVs that would have been unaltered as partially lost instead, because in combined CNVs 

losses dominate unaltered and gains (see method in section 3.3.1). 

3.4.4 Seed/locus clusters are enriched for cancer-related processes 

We have identified several sets of miRNAs with potentially significant CNVs (36 seed 

clusters, 36 seed/locus clusters and non-redundant seed/loci which are lost more than 

expected).  We wanted to see if they are functionally related in order to test the hypothesis 

that selection pressure is driving cancerous cells to gain or lose miRNAs which regulate 

specific relevant processes or pathways. 

A ‘standard’ gene ontology or pathway over-representation analysis of the targets of a list of 

miRNAs, where the union of the miRNAs’ targets are compared to the genes in Gene 

Ontology (GO) categories or to genes known to participate in pathways, has been shown to 

produce false positives (Bleazard et al. 2015), with many cancer-related categories 

consistently shown as over-represented even with randomly chosen miRNAs.  A subsequent 

study showed that this ‘miRNA targeting bias’, whether due to an underlying biological 

reason or due to sampling bias in the pathways studied, can be avoided by ‘inverting’ the 

methodology and converting the GO categories’ or pathways’ genes into lists of miRNAs 

that target these genes, so that the hypergeometric over-representation test of the miRNAs 
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of interest can then be performed directly against targeting miRNAs (Godard and van Eyll 

2015). 

An over-representation analysis cannot be performed simply using the annotation of genes 

to GO categories as downloaded from Ensembl as genes are mapped only to their most 

specific known GO category.  Genes whose biological processes are completely unknown are 

mapped simply to the root term of the ontology and genes with uncertain function are 

mapped to the top layers of the ontologies, leading to over-representation of these 

categories in enrichment results, which we will call ‘ontological uncertainty bias’.  This could 

at least partially explain why multiple online miRNA over-representation tools, such as 

DIANA-miRPath (Vlachos et al. 2015), often show high-level terms such as the root term 

‘biological process’ itself to be enriched irrespective of the query gene list. 

We downloaded the gene/GO annotations from Ensembl and, to reduce this ontological 

uncertainty bias, we traversed the ontologies’ directed acyclic graphs (DAGs) depth-first and 

assigned the genes annotated to each category recursively to their ancestral categories, 

resulting in a gene/GO mapping which is ‘cascaded’ up to the root node according to the 

structure of each ontology’s DAG (Supplementary Figure 6.4).  This has the effect of 

reducing the influence of the genes of more uncertain function at the top of the ontologies 

because these high-level terms now also contain the genes from lower, more specific terms.   

We additionally downloaded the annotation of genes to Reactome pathways (Jassal et al. 

2020) from Ensembl as another source of functional information on which to perform 

enrichment analyses.  While the pathways in Reactome are organised hierarchically in a 

similar manner to the GO ontologies, the genes annotated to any particular pathway by 

Ensembl are also annotated to the parent pathways and so these Reactome annotations do 

not suffer from the equivalent of GO ontological uncertainty bias. 

We created a miRNA functional enrichment pipeline that avoids the miRNA targeting and 

ontological uncertainty biases described above.  The pipeline first converts the lists of genes 

assigned to each cascaded GO category or Reactome pathway into lists of miRNAs that are 

experimentally confirmed to target the genes, using the results of experiments curated by 

the online resource miRTarBase (Chou et al. 2018).  The pipeline then performs the 

hypergeometric over-representation test on the miRNAs of interest directly against the 
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experimentally confirmed targeting miRNAs for each category or pathway, followed by 

correction for multiple testing. 

We processed the miRNA sets identified at the start of this section through the pipeline and 

summarised the resulting enriched GO terms and Reactome pathways by counting the 

number of times various cancer-related keywords (Supplementary Table 6.9) occurred in 

the enriched terms and pathways (Table 3.1). 

 

Description Number of enriched terms (median depth) Number of enriched terms containing functional keywords 
CC MF BP Reactome Metastasis Cell cycle Expression Signalling Development 

 
Seed/locus cluster miRNAs 
X (118 - 140) 27 (4) 20 (7) 1,017 (5) 192 17 54 39 75 28 
X (146 - 147) 7 (5) 1 (4) 43 (4) 43 - - - 2 - 
1 (220 - 226) 1 (5) - - - - - - - - 
X (151 - 152) - - 3 (5) - - - - - - 
13 (50 - 52) - - 173 (6) - 2 - 1 2 3 
3 (159 - 160) - 49 (5) - 1 - - 1 - - 
 
Multi-precursor seed/locus miRNAs 
Complete loss 187 (4) 281 (6) 1,645 (5) 209 21 68 35 93 38 
Partial loss 527 (4) 886 (5) 3,847 (6) 665 65 140 95 269 56 
Unaltered 461 (4) 770 (5) 3,649 (6) 635 63 136 92 256 54 
Gain 276 (4) 494 (5) 3,482 (6) 522 54 131 87 229 59 
 
Redundant seed/locus miRNAs 
Complete loss 302 (4) 304 (5) - - - - - - - 
Partial loss 648 (4) 870 (5) 2,660 (5) 343 38 67 48 146 81 
Unaltered 623 (4) 829 (5) 2,622 (5) 367 33 88 52 148 82 
Gain 430 (4) 491 (4) 3,221 (6) 498 46 110 74 222 45 

Table 3.1 - Seed/locus clusters are enriched for cancer-related processes 

The enriched GO terms and Reactome pathways for various sets of miRNAs.  The seed/locus cluster descriptions show 
the genomic location as chromosome name followed by the start and end locations in millions of nucleotides in brackets.  
Seed/locus clusters discussed further in the main text are highlighted with a grey background.  The number of enriched 
GO terms are shown in three columns: CC = cellular compartment, MF = molecular function and BP = biological process, 
with the number of enriched terms followed by the median term depth in brackets.  The Reactome column lists the 
number of enriched pathways.  The functional enrichment columns (metastasis, cell cycle, expression, signalling and 
development) show the number of enriched GO terms at the median term depth and the Reactome pathways containing 
at least one keyword for each cancer-related functional category (Supplementary Table 6.9).  There were no seed 
clusters, single-precursor seed/loci or non-redundant seed/loci with any enriched terms. 

The largest seed/locus cluster with enriched terms extends over approximately 22 Mb on 

chromosome X, is partially lost in 13 cell lines and is enriched for the most biological process 

terms and pathways in this particular analysis, with an emphasis on terms and pathways 

related to signalling and the cell cycle (Table 3.1).  Notable miRNAs in this region on 

chromosome X include the mir-106a~363 oncomir cluster, a paralog of the well-known 

Oncomir-1 on chromosome 13. 
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The other seed/locus cluster with multiple enriched cancer-related terms, on chromosome 

13, is characterised by partial losses in 9 cell lines and contains mir-15a and mir-16-1, which 

in normal cells are apoptosis-related tumour suppressors which target BCL-2 (Cimmino et al. 

2005). 

There were no enriched terms or pathways at all for any of the 36 seed clusters, any of the 

single-precursor seed/loci or for any of the non-redundant seed/loci (Table 3.1).  However, 

in the single/multi-precursor and non/redundant seed/locus analyses we have only divided 

the seed/locus CNVs into 8 different groups and we note that the stratifications with no 

enriched terms at all (single precursor and non-redundant seed/loci) comprise the 

majorities of the CNVs in those analyses (Figure 3.6A and Figure 3.7B).  This suggests that 

the sensitivity of our enrichment method is greatly reduced for larger groups of miRNAs, 

because of the inclusion of the majority of terms and pathways due to pleiotropic miRNA 

targeting of protein-coding genes, and hence the relative enrichment of none. 

3.4.5 Partial loss of miRNA biogenesis pathway genes suggests global miRNA depletion 

We determined that multi-precursor seed/loci are lost more often than expected (Figure 

3.6A), suggesting that cancer cells are selecting for the wider miRNA derepression that the 

loss of multiple miRNAs implies (Kumar et al. 2007; Lin and Gregory 2015), and so we 

wanted to see if we could identify more general global miRNA derepression in the copy 

number variations in cancer-derived cell lines. 

We calculated the CNVs for the main components of the miRNA biogenesis pathway - RNA 

polymerase II, Drosha, Exportin-5, Dicer and Argonaute - along with the CNVs for these 

complexes’ known interaction partners (Figure 3.8). 

RNA polymerase II subunits (RBP1-12) experience widespread partial loss and occasional 

complete loss, especially affecting RBP1, RBP5, RBP6 and RBP10 (Figure 3.8).  The RBP11-

a/b/c subunits are expressed from a 2 x 105 nucleotide region of chromosome 7 and so the 

fact that the CNV patterns of RBP11-b/c are identical is not surprising, though it is 

interesting that RBP11-b/c are the only RNA polymerase II subunits that are never affected 

by CNVs (Figure 3.8) unlike the adjacent RBP11-a.  Further investigation reveals however 

that the three RBP11 genes are mainly in regions of chromosome 7 that are unmappable 

(Table 3.2), with RBP11-b and RBP11-c unmappable in all cell lines and RBP11-a unmappable 
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in 12 out of 55 cell lines because of unmappable regions extending further in those cell lines 

due to differing readDepth bin sizes and removal of unmappable CNVs (see CNV detection 

method in section 2.3.1.3). 

 

 

Figure 3.8 - MicroRNA biogenesis gene CNVs indicate global miRNA depletion 

The CNVs of miRNA biogenesis genes on one row per cell line, grouped into rows by tissue of origin (‘Hemat.’ = 
Hematopoietic) and by columns into, from left to right, genes associated with RNA polymerase II, Drosha, Exportin, Dicer 
and Argonaute.  Complete losses are dark red, partial losses are light red, unaltered (or unmappable) are white and gains 
are shades of blue from light blue for doubled, medium blue for four-fold gain and dark blue for eight-fold gain or more. 

The two components of the nuclear Microprocessor complex, Drosha and DGCR8, are also 

affected by CNVs across the NCI-60 panel, with partial Drosha loss in two cell lines and gains 

in six cell lines (Figure 3.8).  Interestingly, both under and over-expression of Drosha occur in 

cancer with increased expression known to promote cell migration (Sugito et al. 2006; 

Muralidhar et al. 2011) and decreased expression correlated with globally decreased miRNA 

expression (Kumar et al. 2007).  DGCR8 is also at least partially lost in the majority and 

completely lost in three of the NCI-60 cell lines (Figure 3.8), consistent with studies showing 

that increased tumour growth is correlated with DGCR8 knockdown (Kumar et al. 2007). 

Both Exportin-5 and the associated protein RanGTP, together responsible for the export of 

precursor miRNAs from the nucleus to the cytoplasm, are also partially lost in the majority 

of cell lines (Figure 3.8).  Down-regulation of these proteins reduces export of miRNA 
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precursors and leads to a build-up of miRNA precursors in the nucleus which interferes with 

miRNA biogenesis (Melo et al. 2010). 

 

 RBP11-a RBP11-b RBP11-c 
Unmappable 12 55 55 
Complete loss 1 0 0 
Partial loss 6 0 0 
Unaltered 30 0 0 
Gain 6 0 0 

Table 3.2 - RBP11-a/b/c subunits are mainly in unmappable regions of the genome 

The numbers of cell lines in which the three variants of RBP11 are either in unmappable regions of the genome or are 
affected by detectable CNV types. 

The next step in miRNA biogenesis, the processing of miRNA precursors into RNA duplexes 

by Dicer in association with TRBP, PACT and ADAR1, is also widely affected by CNVs with 

Dicer partially lost in 16 and gained in four cell lines and TRBP, PACT and ADAR1 only 

sparsely affected by CNVs, mainly by gains (Figure 3.8).  These losses of Dicer in particular 

are known to increase the growth rate of cells and are implicated more generally in 

tumorigenesis (Kumar et al. 2007). 

In addition to its role in processing miRNA precursors into RNA duplexes, Dicer aids in the 

formation of the RNA-induced silencing complex (RISC) along with the Argonaute and 

GW182 proteins (Gregory et al. 2005).  In contrast to the majority of the primary elements 

of the miRNA biogenesis pathway that we’ve examined here so far, Argonaute-2 is 

predominately gained rather than lost, though its cofactor GW182 is partially lost in several 

cell lines (Figure 3.8).  It is possible that these gains of Argonaute-2 go some way to 

compensating for the otherwise fairly consistent loss of the other miRNA biogenesis 

pathway components, at least in the 40 out of 55 cell lines in which the other miRNA 

biogenesis-specific components (Drosha, Exportin-5, Dicer and associated cofactors) are 

affected by losses (Figure 3.8).  The three other Argonaute proteins in the human genome, 

Argonaute-1, Argonaute-3 and Argonaute-4 are adjacent in a 2.6 x105 nucleotide region of 

chromosome 1, which explains their identical CNV profile (Figure 3.8). 

Taken together, these various CNVs affecting the miRNA biogenesis pathway are indicative 

of global miRNA depletion in cancer-derived cell lines, consistent with earlier studies (Kumar 
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et al. 2007; Lin and Gregory 2015), and implying a general relaxation of miRNA constraints, 

leading to loss of cell differentiation, increased proliferation and tumour growth. 

3.4.6 Consistent-gain miRNAs are enriched for cell cycle control and signalling 

In the previous chapter we observed that there are distinct hotspots of gains and losses 

across the cell lines which preferentially occur in gene-dense regions of the genome (Section 

2.4.5) and we hypothesised that the regions which are mostly gained or mostly lost in the 

majority of cell lines might be under selection pressure because of the miRNAs in these 

regions. 

Accordingly, we defined miRNAs which are mostly gained as those whose seed/locus CNVs 

across the cell lines have a ratio of losses to gains of 0.05 or less and similarly defined mostly 

lost miRNAs as those with a gain to loss ratio of less than 0.05 (Figure 3.9).  So that we could 

distinguish between miRNAs meeting these criteria which are affected in few cell lines from 

those which are affected in many cell lines we further divided the mostly gained and mostly 

lost miRNAs into four groups each along the ranges of gains (0 – 22) and losses (0 – 44) 

respectively (Figure 3.9). 

To see if the mostly gained and mostly lost miRNAs are functionally related, we used our 

miRNA functional enrichment method developed above (Section 3.4.4) to analyse each of 

the mostly gained and mostly lost groups of miRNAs, both as separate groups and as 

combined groups with miRNAs with fewer gains or losses successively removed. 

None of the mostly lost miRNAs were functionally enriched for any GO terms or Reactome 

pathways, either as separate groups or when combined into all, top 75%, top 50% or top 

25% most lost (Table 3.3).  The groups of mostly gained miRNAs with between six and ten 

gains and between six and 21 gains were both enriched for multiple cancer-related GO 

terms and Reactome pathways, though none of the other combinations of mostly gained 

miRNA groups were (Table 3.3).  Neither group of mostly gained miRNAs were enriched for 

any cellular compartment or molecular function GO terms (Table 3.3). 
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Figure 3.9 - MicroRNAs with consistent gains are enriched for cancer-related processes 

The numbers of cell lines in which miRNA seed/locus families are lost (x axis) and gained (y axis) with miRNAs which are 
mostly gained (losses / gains < 0.05) highlighted in blue and miRNAs which are mostly lost (gains / losses < 0.05) 
highlighted in red.  The dashed blue line at y = 20x is the cut-off for mostly gained and the red dashed line at y = x / 20 is 
the cut-off for mostly lost.  The ranges of mostly gained and mostly lost are further divided into quarters with dashed 
lines and the colouring of the miRNAs in each quarter are increasingly saturated to indicate increasing number of gains 
and losses.  The blue diamond at 10 gained and 0 lost indicates mir-15b/mir-16-2. 

 

Description Number of enriched terms (median depth) Number of enriched terms containing functional keywords 
CC MF BP Reactome Metastasis Cell cycle Expression Signalling Development 

 
Mostly gained miRNAs 
6 – 10 gains - - 1,737 (6) 379 25 106 47 121 23 
6 – 21 gains - - 297 (6) 150 5 63 27 39 2 
 
Mostly lost miRNAs 
- - - - - - - - - - 

Table 3.3 - Enriched terms and pathways for mostly gained miRNAs 

The enriched GO terms and Reactome pathways for mostly gained miRNAs.  The number of enriched GO terms are 
shown in three columns: CC = cellular compartment, MF = molecular function and BP = biological process, with the 
number of enriched terms followed by the median term depth in brackets.  The Reactome column lists the number of 
enriched pathways.  The functional enrichment columns (metastasis, cell cycle, expression, signalling and development) 
show the number of enriched GO terms at the median term depth and Reactome pathways containing at least one 
keyword for each cancer-related functional category (Supplementary Table 6.9).  There were no other groups of mostly 
gained miRNAs and no groups of mostly lost miRNAs with any enriched GO terms or Reactome pathways. 

Notable among the miRNAs which are mostly gained and enriched for cancer-related 

processes are mir-15b and mir-16-2 on chromosome 3, which are gained in ten cell lines but 

lost in none (Figure 3.9).  We saw the paralogs of these miRNAs, mir-15a and mir-16-1, in 

the seed/locus CNV profile cluster on chromosome 13 (Table 3.1) but, interestingly, the 

chromosome 13 paralogs are partially lost in nine cell lines and gained in only three.  The 

losses of mir-15a and mir-16-1 on chromosome 13 are potentially compensated for by gains 
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of mir-15b and mir-16-2 on chromosome 3 in three of the cell lines - RPMI-8226, OVCAR3 

and UACC62.  Both mir-15/16 clusters have several upstream TP53 binding sites and have 

also been confirmed to target the TP53 3’ UTR (Fabbri et al. 2011), forming a feedback 

regulatory loop, in addition to targeting BCL2 and hence acting as tumour suppressors in 

normal cells (Cimmino et al. 2005). 

3.4.7 Target-increasing miRNA/target interactions are enriched for signalling 

In order to investigate the net effects of CNVs on motifs involving miRNAs, such as the mir-

15/16 and TP53 feedback loop identified in the previous section, it is necessary to 

understand the interplay between miRNA and target CNVs.  We used the dataset of strongly 

functional miRNA/target interactions (MTIs) curated by miRTarBase (Chou et al. 2018) to 

match miRNAs to their targets and we added the CNVs for each MTI’s miRNA and target in 

each cell line so that we could investigate the correlation between miRNA and target CNVs 

on an NCI-60 panel-wide basis. 

The MTIs’ target CNVs extend over a greater range of gains than the miRNA CNVs, up to a 

maximum of 390 copies for DNA mismatch repair protein MSH3, unlike the miRNA CNVs 

which have a maximum copy number of just 19 copies for mir-301a (Figure 3.10A).  The bulk 

of MTIs have both miRNA and target CNVs which vary between partial loss and five copies 

(Figure 3.10A), with outliers extending to complete loss as well as the aforementioned 

maximum gains. 

Focusing on the bulk of the MTIs, between partial loss and five copies, there is a striking 

pattern of MTIs with the same CNV type for both miRNA and target between the mean loss 

and gain thresholds, primarily the MTIs where both miRNA and target are unaltered (Figure 

3.10B).   

Separating out the MTIs with the same CNV type for both miRNA and target, or consistent-

CNV MTIs, clearly shows that there are additional groups of consistent-CNV MTIs where 

both miRNA and target are gained (above the mean gain threshold in both dimensions) and 

where both are lost (below the mean loss threshold in both dimensions) (Figure 3.10C).   
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Figure 3.10 - The majority of miRNAs and their targets have the same CNV type 

(A) The copy numbers of miRNAs (y axis) and their targets (x axis) for all strongly functional verified miRNA/target 
interactions (MTIs) in all cell lines.  Both axes are log scale.  The mean gain threshold for all cell lines is shown as blue 
dashed lines and the mean loss threshold is shown as red dashed lines.  MTIs where the miRNA CNV type is different to 
the target CNV type are shown as orange dots, MTIs where the miRNA CNV type is the same as the target CNV type are 
purple and MTIs where the miRNA copy number is identical to the target copy number are yellow.  (B) Zoomed plot to 
show the main bulk of MTIs.  (C) Zoomed plot to show just the MTIs with the same CNV type as well as MTIs with 
identical miRNA and target copy numbers.  (D) Zoomed plot to show just the MTIs with different CNV types. 

There are also sparser regions of consistent-CNV MTIs where the miRNA copy number is less 

than the mean loss threshold and the target copy number is between the mean loss and 

gain thresholds, which nevertheless have the same CNV type: these are the haploid miRNAs 

(on chromosome X and Y in male-derived cell lines) which target diploid protein-coding 

genes, and so both miRNA and target can have a CNV type of ‘unaltered’ despite having 

different miRNA and target copy numbers (Figure 3.10C).  There is a similar group of 

consistent-CNV MTIs where a diploid miRNA with a CNV type of unaltered targets a haploid 

protein-coding gene which is also unaltered, these lie between the mean loss and gain 
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thresholds in the miRNA CNV dimension but below the mean loss threshold in the target 

CNV dimension (Figure 3.10C).   

Additionally, there is a straight line of MTIs with identical copy numbers for both miRNA and 

target, caused by MTIs where the miRNA and protein-coding target are in the same genomic 

region and so are affected by the same CNVs (Figure 3.10C).  There are no consistent-CNV 

MTIs which are above the mean gain threshold in one dimension but below the mean loss 

threshold in the other dimension (Figure 3.10C). 

When we consider only the MTIs with different CNV types for miRNA and target, the 

inconsistent-CNV MTIs, the regions of miRNA/target CNV space which had lots of consistent-

CNV MTIs are relatively sparse (Figure 3.10D), though the consistent-CNV and inconsistent-

CNV MTIs overlap to an extent.  In the central region between the mean loss and gain 

thresholds in both dimensions there are two crossing straight lines of inconsistent-CNV MTIs 

at a copy number of exactly two, these are the inconsistent-CNV MTIs where one or both of 

the miRNA or target are in an unmappable diploid region of the genome in that particular 

cell line and so are assigned the expected diploid copy number as a default since we have no 

evidence that they are altered from the norm (Figure 3.10D).  There are no inconsistent-CNV 

MTIs which are above the mean gain threshold in both dimensions (Figure 3.10D). 

In total there are 435,001 MTI CNVs across the cell lines, 266,829 (61.3%) have the same 

CNV type for both miRNA and target CNVs and 4,438 (1.02%) have identical copy numbers 

for both miRNA and target CNVs.  Despite the apparent correlation implied by the structure 

of the data as visualised (Figure 3.10A), there is no statistically significant correlation 

between miRNA and target copy numbers (Pearson’s product-moment correlation, 

r(434,999) = 2 x 10-3, p = 0.18).  There are however only 5,689 MTI CNVs with either a 

miRNA or target copy number not between 0.5 and five (the range of the zoomed plots in 

Figure 3.10B/C/D); without these outliers there is a weak but statistically significant 

correlation between miRNA and target copy numbers (Pearson’s product-moment 

correlation, r(429,310) = 7.2 x 10-3, p = 2.6 x 10-6). 

Not all of these MTI CNVs would be expected to produce a net change in protein level, for 

example when a gain of both miRNA and target cancels out, and we hypothesised that it is 

the MTIs which do lead to a net increase or decrease in protein level which would be under 

selection pressure in cancer-derived cell lines.  We observed that the vast majority of 
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consistent-CNV MTIs have both miRNA and target copy numbers between 0.5 and five 

(Figure 3.10A/B/C) and that only inconsistent-CNV MTIs extend beyond this range in either 

the miRNA or target CNV dimension (Figure 3.10A).  These observations led us to allocate 

the MTIs into two groups that would be expected to lead to an increase in protein levels and 

two groups that would be expected to lead to a decrease, corresponding to the four ‘arms’ 

of MTIs with excess copy numbers of just one of either miRNA or target (Figure 3.10A, Table 

3.4). 

 

‘Arm’ of Figure 3.10A Target copy number miRNA copy number Expected change in protein 
Right > 5 < mean gain threshold Increase 
Lower > mean loss threshold < 0.5 Increase 

Left < 0.5 > mean loss threshold Decrease 
Upper < mean gain threshold > 5 Decrease 

Table 3.4 - Defining MTIs which are expected to have a net effect on protein levels 

The parameters for defining the ranges of target and miRNA copy numbers to divide the MTIs into subsets which would 
be expected to have a net effect on protein levels. 

We extracted the unique mature miRNAs for the MTIs expected to lead solely to an increase 

in protein levels (n = 136) and those expected to lead solely to a decrease in protein levels 

(n = 119) from the MTI groups expected to have a net effect on protein levels and, to see if 

they are functionally related, we analysed these miRNAs with our functional enrichment 

pipeline (Section 3.4.4). 

The miRNAs for MTIs expected to lead to an increase in protein levels are enriched for 

biological process GO terms and Reactome pathways related to cancerous processes, as are 

the miRNAs for MTIs expected to lead to a decrease in protein levels (Table 3.5).  Both sets 

of miRNAs are enriched for more signalling terms than the other categories but, while the 

miRNAs from MTIs expected to lead to an increase in protein levels have more enriched 

terms for each functional category than the miRNAs expected to decrease protein levels, 

the higher number of terms is not statistically significant (C2 (4, N = 605) = 4.70, p = 0.32), 

suggesting that both groups of miRNAs are equally relevant to cancerous processes (Table 

3.5). 
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Expected 
protein change 

Number of enriched terms (median depth) Number of enriched terms containing functional keywords 
CC MF BP Reactome Metastasis Cell cycle Expression Signalling Development 

Increase - - 2,276 (5) 398 31 80 48 159 78 
Decrease - - 1,654 (5) 161 20 56 24 75 34 

Table 3.5 - Enriched GO terms and Reactome pathways for net protein change MTIs 

The enriched GO terms and Reactome pathways for miRNAs involved in MTIs expected to have a net effect on protein 
levels.  The number of enriched GO terms are shown in three columns: CC = cellular compartment, MF = molecular 
function and BP = biological process, with the number of enriched terms followed by the median term depth in brackets.  
The Reactome column lists the number of enriched pathways.  The functional enrichment columns (metastasis, cell 
cycle, expression, signalling and development) show the number of enriched GO terms at the median term depth and 
Reactome pathways containing at least one keyword for each cancer-related functional category (Supplementary Table 
6.9). 

3.4.8 C-MYC repression of TP53 could be required for sustained Oncomir-1 activation 

We have previously identified groups of miRNAs which are enriched for cancer-related 

processes, many of which are oncomirs and tumour suppressors, frequently including 

Oncomir-1 and its two paralogs (Table 3.1).  Furthermore, there are groups of paralogs, mir-

15/16 for example, where one group is mostly gained (Figure 3.9) and the other mostly lost 

(Table 3.1) despite having almost identical seeds.  We decided therefore to narrow our 

focus to oncomirs and tumour suppressor miRNAs and curated a list of these miRNAs by 

literature search.  We then calculated the CNVs of these oncomirs and tumour suppressor 

miRNAs across the NCI-60 cell lines (Figure 3.11). 

There are no obvious tissue-based row patterns in the heatmap, conforming to the overall 

CNV patterns we’ve seen so far, but there are several column clusters of between three and 

six miRNAs with identical CNV profiles across the cell lines (Figure 3.11, clusters ‘a’ to ‘f’).  

The largest two clusters are Oncomir-1 and its main paralog on chromosomes 13 and X 

(Figure 3.11, clusters ‘d’ and ‘a’ respectively).  Oncomir-1’s other partial paralog on 

chromosome 7 is also one of the oncomir clusters (Figure 3.11, cluster ‘f’).  The three 

Oncomir-1 paralog clusters, together with the other three highlighted clusters (Figure 3.11, 

clusters ‘b’, ‘c’ and ‘e’), all oncomirs or capable of behaving as either oncomirs or tumour 

suppressors depending on the context, are all polycistronic and so it is unsurprising that 

they have identical CNV profiles.  The other 14 clusters of two miRNAs each are also either 

polycistronic or from adjacent loci, again explaining their clustering (Figure 3.11). 
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                                                                a                  b                    c                                                                             d                  e                f 

Figure 3.11 - Oncomir and tumour suppressor CNV profile clusters include Oncomir-1 

Heatmap indicating oncomir and tumour suppressor miRNA CNVs, clustered by CNV profile across the NCI-60 panel 
(columns) and by cell line (rows).  The row colours indicate the tissue of origin and the column colours indicate whether 
the miRNA is an oncomir (orange), a tumour suppressor (green) or both (purple).  Losses are red, unaltered or 
unmappable miRNAs are white and gains are blue.  Clusters discussed in the text are outlined in black. 

Focusing now specifically on the CNVs of Oncomir-1 on chromosome 13 and its paralogs on 

chromosomes X and 7, we can see that while the two main paralogs of six oncomirs each 

are partially lost in a total of 25 cell lines, they are never lost at the same time (Figure 3.12).  

The chromosome X Oncomir-1 paralogs are partially lost only in female-derived cell lines 

along with, interestingly, the partial loss of Xist, the primary non-coding RNA involved in X-

inactivation in placental mammals, in every case (Figure 3.12).  This occurs despite Xist at 

approximate location on chromosome X of 74 Mb being affected by different CNVs to the 

Oncomir-1 paralog at 134 Mb (Figure 3.12) and implies that the partial loss of Xist might 

lead to derepression of X transcription and may lead to compensation for the partial loss of 

the Oncomir-1 paralog to some extent.  Taken together, these results are suggestive of 

selection pressure to retain at least one of the two main Oncomir-1 paralogs in cell lines. 
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Figure 3.12 - Oncomir-1 CNVs imply selection pressure to retain Oncomir-1 function 

Heatmap indicating Oncomir-1 paralog and Xist CNVs, clustered by Oncomir-1 CNV profile across the NCI-60 panel 
(columns) and by cell line (rows).  The row colours indicate the tissue of origin and the column colours indicate whether 
the gene is an oncomir (orange) or non-coding RNA (white).  Losses are red, unaltered or unmappable genes are white 
and gains are blue.  The cell lines derived from cancers in female patients are marked with ‘XX’ to the right of the 
oncomir-1 paralogs.  The three Oncomir-1 column clusters are, from left to right, Oncomir-1 paralog on chromosome X, 
Oncomir-1 on chromosome 13 and Oncomir-1 partial paralog on chromosome 7.  The Xist CNVs on the right are not 
influencing the heatmap’s column dendrogram.  The cell lines outlined in black are those with partial loss in both the 
Oncomir-1 paralog on chromosome X and with partial loss of Xist (also on chromosome X). 

The Oncomir-1 paralogs form complex feedback loops of repression and activation with 

various oncogenic transcription factors (Mogilyansky and Rigoutsos 2013) and so 

understanding why the two main Oncomir-1 paralogs are never lost at the same time 

requires knowledge of the network of Oncomir-1’s interaction partners and how these are 

affected in cancer-derived cell lines.  We derived an interaction network for Oncomir-1 and 

its activating and inactivating transcription factors based on data from an experiment in the 

ENCODE project that mapped the transcription factors that bind to miRNAs (Gerstein et al. 

2012) and integrated this with verified miRNA-to-transcription factor interactions from 

miRTarBase (Figure 3.13A).  The specificity of the interactions of the oncomir-1 paralogs’ 

miRNAs is determined by their seed sequences, which vary considerably in the three 

Oncomir-1 paralogs, and which can be grouped into the miR-17, miR-18, miR-19 and miR-92 

seed families (Figure 3.13A).  The two main Oncomir-1 paralogs on chromosomes 13 and X 

each contain members of all four seed families, albeit at varying dosages, but the 
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chromosome 7 partial Oncomir-1 paralog only contains members of the miR-17 and miR-92 

families and so interacts with fewer of the transcription factors (Figure 3.13A). 

 

A B 

 

 

Figure 3.13 - Oncomir-1 seed families form feedback loops with transcription factors 

(A) A map of selected interactions between members of Oncomir-1 paralogs, other oncomirs and related transcription 
factors.  Transcription factors are shown as ellipses and miRNAs as rectangles.  The mature miRNAs are grouped by 
dotted outlines into the three oncomir-1 paralog polycistronic genes, labelled at the top with the chromosome name, 
and the colours of the mature miRNAs match to the seed sequence shown in the bottom line of miRNA seeds.  
Activation is shown as blue arrows based on data from ENCODE and repression is shown as red crossbars based on data 
from ENCODE and miRTarBase.  If a red repression line extends from a seed to a transcription factor, then all miRNAs 
with that specific seed target the transcription factor.  If a red repression line extended from a polycistronic gene to a 
transcription factor, then all miRNAs in that gene target the transcription factor.  (B) Auto-regulatory loops where a 
miRNA represses a transcription factor which also activates the miRNA.  The miRNA seeds are shown as coloured 
rectangles and transcription factors are shown as ellipses.  A line between a miRNA seed and a transcription factor 
shows the existence of an auto-regulatory loop between miRNAs with that seed and the transcription factor. 

The transcription factor-to-miRNA interactions from the ENCODE data show not only that 

multiple oncogenic transcription factors and cofactors such as C-MYC, BCL3 and the E2Fn 

family bind upstream of the Oncomir-1 clusters and activate transcription but also show that 

tumour suppressors such as NKX3 and TP53 can inactivate Oncomir-1 (Figure 3.13A).  These 

interactions between transcription factors and miRNAs form feedback loops where a miRNA 

represses a transcription factor which in turn activates the miRNA, which we will call ‘auto-
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regulatory loops’ (Figure 3.13B).  The four different seed families present in the Oncomir-1 

paralogs form auto-regulatory loops with the related transcription factors to differing 

degrees, ranging from a single feedback loop between TP53 and members of the miR-18 

seed family to the more central miR-17 seed family which has direct auto-regulatory 

feedback loops with all the transcription factors except the coactivator BCL3 (Figure 3.13B). 

To understand therefore how these interaction networks are perturbed in cancer cell lines it 

is necessary to integrate detailed seed dosage patterns for the Oncomir-1 paralogs together 

with the CNVs of the related transcription factors.  Based on the CNVs of the Oncomir-1 

paralogs we calculated the actual dosage of each of the four seed families in each cell line 

and derived an effective ‘seed dosage CNV’ from the comparison of the actual dosage to the 

expected dosage (Figure 3.14).  We can see from the single cell line where the chromosome 

X paralog is lost and the chromosome 13 paralog is gained that the two main Oncomir-1 

paralogs partially compensate for each other, leading to no change in the dosage of the 

miR-17 and miR-18 seed families (Figure 3.14). 

Gains of the chromosome 7 paralog can also partially compensate for seed dosage loss of 

either main Oncomir-1 paralog by compensating for losses of members of the miR-17 and 

miR-92 seed families in the other paralogs (Figure 3.14).  Even partial loss of both 

chromosome 13 and chromosome X paralogs together would lead to a halving of the miR-18 

and miR-19 seed families’ dosage (Figure 3.13A, Supplementary Figure 6.5), which would 

lead to considerable derepression of TP53 (Figure 3.13B), which is possibly why this 

combination of losses never occurs in the actual cell line CNVs (Figure 3.12 and Figure 3.14).  

The absence of cell lines where both main Oncomir-1 paralogs lose a copy implies that the 

Oncomir-1 paralogs together are effectively haploinsufficient. 
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Figure 3.14 - CNVs lead to an increase in Oncomir-1 seed dosage in nearly all cell lines 

CNVs of Oncomir-1 paralogs, other oncomirs and related transcription factors with partial losses in light red, complete 
losses in dark red, unaltered in white and gains in blue.  The rows are the CNVs in each cell line, shown in the same order 
as Figure 3.12 for comparison, and the columns are grouped from left to right into CNVs for the Oncomir-1 paralogs, the 
seeds contained in the paralogs (with the same seed colours as Figure 3.13), other oncomirs, the activating and 
inactivating transcription factors and summary columns.  The seed CNVs are calculated by comparing the exact actual 
seed dosage, based on the Oncomir-1 paralogs’ CNVs, to the expected seed dosage in each cell line and are blue if 
increased and red if decreased.  The activating and inactivating transcription factors (TFs) are based on data from 
ENCODE and are blue if gained and red if lost.  The ‘Seed +’ summary column is blue if any Oncomir-1 seed is gained in 
that cell line and white otherwise.  The ‘Act. +’ summary column is blue if any activating transcription factor is gained in 
that cell line and the ‘Inact. -‘ summary column is red if any inactivating transcription factor is lost in that cell line.  The 
final ‘Onco. +’ summary column integrates the preceding summary columns and is purple if any of the preceding 
summary columns is red or blue and indicates whether the cell line’s CNVs would be expected to lead to an increase in 
expression of any Oncomir-1 paralog seed families.  The arrow on the right indicates prostate cancer cell line DU145. 

The most striking pattern in the activating transcription factor CNVs is that C-MYC is gained 

in 25 of the cell lines but never lost (Figure 3.14).  E2F1 is gained in nine cell lines and lost 

only once, N-MYC on the other hand is lost in 12 cell lines but never gained and the other 

activating transcription factors have sparser patterns of both gain and loss (Figure 3.14).  

The frequent gains of C-MYC are interesting because this transcription factor, as well as 

directly activating the chromosome 13 Oncomir-1 paralog, also activates mir-663a and mir-

1228, which then repress TP53 and so reduce TP53’s repression of the chromosome 13 

Oncomir-1 paralog (Figure 3.13A).  It is possible that gain of C-MYC is therefore required to 

relax TP53 repression of Oncomir-1 via mir-663a or mir-1228 before activation of Oncomir-1 

can be initiated or sustained.  There are no cell lines where both mir-663a and mir-1228 are 

completely lost (Figure 3.14), meaning that this potential mechanism is available in all the 

cell lines, and additionally mir-663a and mir-1228 are directly gained in six and three cell 
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lines respectively (Figure 3.14), directly repressing TP53 further.  The mir-15a/16-1 and mir-

15b/16-2 paralogs also repress TP53 and there are gains of one or both of these oncomir 

paralogs in 13 out of 55 cell lines (24%) (Figure 3.14). 

In addition to the indirect repression of TP53 via mir-663a/1228 caused by C-MYC gains and 

the direct repression by the mir15/16 paralogs, TP53 is also directly affected by partial 

losses in 18 cell lines and completely lost in another (Figure 3.14).  The other transcription 

factor which in normal cells represses the chromosome 13 Oncomir-1 paralog, NKX3, is also 

lost in 21 cell lines and completely lost in another (Figure 3.14).  These CNVs together lead 

to the derepression of Oncomir-1 in a total of 31 out of 55 cell lines (Figure 3.14), in addition 

to the other direct oncogenic effects of TP53 loss, such as a reduction in the ability to 

initiate apoptosis in cancerous cells (Bernstein et al. 2002). 

In summary, none of the four miRNA seed families are completely lost and where any are 

partially lost there is almost always a compensatory gain of an activating transcription factor 

or loss of an inactivating transcription factor, the one exception being prostate cancer cell 

line DU145 (Figure 3.14, arrowed).  There is a net increase in dosage of at least one seed 

family by direct CNV gain in 13 out of 55 cell lines (24%), indirectly by gain of an activating 

transcription factor in 41 out of 55 cell lines (75%) and indirectly by loss of an inactivating 

transcription factor in 31 out of 55 cell lines (56%) (Figure 3.14).  In total, 50 out of 55 cell 

lines (91%) have CNVs that would be expected to lead to an increase in the expression of at 

least one of the four miRNA seed families found in the Oncomir-1 paralogs and so lead to a 

decrease in TP53 (Figure 3.14). 
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3.5 Discussion 

Tumour cells and cell lines experience widespread changes to gene dosage caused by copy 

number variations (Iafrate et al. 2004; Torres et al. 2008; Henrichsen et al. 2009; Yang et al. 

2016) and yet, unlike normal cells, not only survive but even thrive (Sheltzer and Amon 

2011), which implies the existence of mechanisms which buffer the ordinarily deleterious 

effects of these dosage changes.  In this study we’ve examined miRNA-mediated post-

transcriptional buffering of the protein-coding gene dosage changes caused by CNVs in the 

NCI-60 cancer-derived cell line panel.  We used a new method to avoid double-counting 

miRNAs with CNVs which are identical across the cell lines merely because of their genomic 

proximity and were able therefore to determine accurately which cancer-related processes 

involving miRNAs are consistently affected in cell lines, leading us to propose a novel TP53 

repression mechanism mediated by mir-17~92, better known as Oncomir-1. 

The large clusters of miRNA precursors with identical CNVs across the NCI-60 panel (Figure 

3.1A) are caused primarily by the genomic proximity of the precursors in each cluster, which 

means that they experience the same CNVs.  The dosage changes of each distinct miRNA 

seed are also confounded in a similar manner (Figure 3.1B, Figure 3.2) and so it is clearly 

necessary to remove or at least reduce this bias before it is possible to see if any miRNAs are 

consistently perturbed in cell lines.  Our method of combining miRNA precursors into loci 

which are expected to be affected by similar CNVs due to their proximity and then splitting 

these loci into distinct ‘seed/locus families’ (Figure 3.4) allows us to detect groups of 

miRNAs which have identical CNVs for reasons other than genomic proximity (Figure 3.5C), 

and which might therefore be evidence of consistent somatic selection pressure on miRNAs 

in cancer.  In total we found 36 such groups of miRNAs which are in distinct loci, affected by 

different CNVs and which contain miRNAs known to be associated with cancer 

(Supplementary Table 6.8). 

We also found that seed/locus families containing multiple miRNA precursors, such as the 

Oncomir-1 paralog on chromosome X mentioned above, are lost significantly more often but 

have a lower range of gains than seed/locus families with just one precursor (Figure 3.6), 

consistent with selection pressure to deregulate a wide range of processes (Kumar et al. 

2007).  Similarly, we observed that the miRNA biogenesis pathway is disrupted in the 

majority of cell lines (Figure 3.8), which would imply widespread derepression of protein-
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coding genes caused by global miRNA depletion, changes known to lead to a loss of cell 

differentiation, the promotion of cell migration and increased tumour growth (Sugito et al. 

2006; Kumar et al. 2007; Muralidhar et al. 2011; Lin and Gregory 2015).  Surprisingly 

however, we found that seed/locus families without functional redundancy are lost more 

than expected (Figure 3.7B), further suggesting that the loss of miRNA regulation of 

processes is advantageous for tumour cells. 

The largest of the clusters of seed/locus family CNVs with enriched GO terms, spread across 

22 Mb of chromosome X and with partial losses in 13 cell lines (Table 3.1), contains mir-

106a~363 which is a paralog of the well-known chromosome 13 oncomir cluster mir-17~92.  

The miRNAs in this cluster are enriched for many cancer-related processes, especially those 

related to signalling and control of the cell cycle (Table 3.1), as is another cluster of frequent 

losses on chromosome 13 containing mir-15a and mir-16-1 (Table 3.1), which are apoptosis-

related tumour suppressors which target BCL2 (Cimmino et al. 2005).  Interestingly, the mir-

15/16 paralogs, mir-15b and mir-16-2 on chromosome 3, are similarly enriched for 

processes associated with signalling and control of the cell cycle (Table 3.3) but are 

differently affected by CNVs, being gained in ten cell lines but never lost (Figure 3.9).  Also 

enriched for cancer-related processes are the miRNAs with CNVs which, together with the 

miRNAs’ targets’ CNVs, would be expected to lead to large net changes in expression (Figure 

3.10, Table 3.5). 

A limitation of this study is that we have only considered copy number variations and have 

not yet incorporated expression data in the NCI-60 cell lines, so we are assuming that gene 

expression is linearly proportional to gene copy number.  While mRNA abundance has been 

shown to be broadly correlated with CNVs in aneuploid cell lines (Stingele et al. 2012; 

Dephoure et al. 2014; Zhao and Zhao 2016; Shao et al. 2019), as has protein abundance for 

the majority of genes (Stingele et al. 2012; Dephoure et al. 2014), approximately 20% of 

protein-coding genes affected by copy number gains are detected at near disomic levels 

(Stingele et al. 2012; Dephoure et al. 2014), mainly protein kinases and subunits of 

macromolecular complexes.  This protein buffering is mediated primarily by protein 

degradation (Stingele et al. 2012; Dephoure et al. 2014), with p62-dependent autophagy a 

dominant factor (Stingele et al. 2012).  Other post-translational buffering mechanisms 

include the inverse dosage effect (Guo and Birchler 1994), where the formation of 
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complexes is limited by monomer titration caused by the sequestration of excess monomers 

by incomplete complexes, and by the masking of degradation signals on monomers only 

when incorporated into the mature complex, leaving the unincorporated monomers 

vulnerable to protein degradation (Asher et al. 2006). 

At a post-transcriptional level, miRNA-mediated tuning of protein expression levels (Sheltzer 

and Amon 2011) is another frequent cause of protein levels which are decoupled from gene 

copy numbers, a mechanism which is partially accounted for in our analyses.  We also need 

to more thoroughly investigate the ability of miRNA paralogs to compensate for each 

other’s CNVs, since we’ve seen that mir-15/16 paralogs for example have very different 

patterns of gain and loss despite having broadly the same targets. 

Our analyses could be improved therefore by the incorporation of NCI-60 mRNA and miRNA 

expression levels derived from RNA-seq experiments in addition to protein levels derived 

from mass spectrometry.  Rather than assuming a linear relationship between gene and 

expressed copy numbers, we would be able to refine our models by using actual copy 

numbers at the transcriptomic, regulatory and proteomic levels.  Such data is now readily 

available, such as those provided by a recent study which integrated RNA-seq data for the 

NCI-60 cell lines into online resource CellMiner (Reinhold et al. 2019), but there is an 

important caveat to add regarding the integration of cell line data from different studies.  

Cancer-derived cell lines are genomically unstable, varying dramatically across laboratories 

and even between cell line passages within the same laboratory (Kleensang et al. 2016; Liu 

et al. 2019), and so it would be preferable, though much more expensive, to perform the 

analyses at each ‘omics’ layer on the same cell line cultures, to ensure that the genomic, 

transcriptomic and proteomic data are from the same biological entities and so directly 

relatable. 

In order to understand the conflicting CNV patterns affecting oncomirs and tumour 

suppressor miRNAs we narrowed our focus to the CNVs of just these miRNAs and found that 

Oncomir-1 and its paralog on chromosome X are never lost at the same time (Figure 3.12), 

suggesting that the expression of the four distinct miRNA seeds in these oncomir clusters is 

essential for cell lines.  In every female-derived cell line in which the chromosome X 

Oncomir-1 paralog is lost there are different CNVs also causing partial loss of Xist (Figure 

3.12), the main long non-coding RNA involved in X-inactivation in placental mammals, 
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leading to possible compensation for the loss of genes on one copy of chromosome X by the 

reduction of X-inactivation of the other X chromosome.  While this implies selection 

pressure in cancer cells to maintain dosage of X chromosome genes it does not however 

explain why the two main Oncomir-1 paralogs are never lost simultaneously.  In future 

studies we intend to investigate whether Dicer CNVs coincide with Xist CNVs since, in mice 

at least, Dicer deletion also prevents the accumulation of Xist (Ogawa et al. 2008). 

To understand why the two Oncomir-1 paralogs are never even partially lost at the same 

time we constructed a detailed network of the Oncomir-1 paralogs together with the 

transcription factors known to activate and inactivate the Oncomir-1 paralogs (Figure 

3.13A).  We grouped the distinct Oncomir-1 miRNA seeds into four families – miR-17, miR-

18, miR-19 and miR-92 – and found that they form ‘auto-regulatory’ feedback loops with 

their transcription factors (Figure 3.13B).  Of these feedback loops, the most central to the 

network are the negative feedback loops involving TP53 (Figure 3.13B), which is also 

repressed by the mir-15/16 paralogs discussed earlier.  As the partial Oncomir-1 paralog on 

chromosome 7 can be lost at the same time as either of the main paralogs on chromosomes 

13 and X (Figure 3.12) this suggests that rather than the overall TP53-repressing seed 

dosage from all the Oncomir-1 paralogs, it is the seeds which do not occur on the 

chromosome 7 paralog which are under the most selection pressure to be maintained in 

cancer cells, specifically the miR-18 and miR-19 seed families, the latter being the second 

most central miRNA seed in the auto-regulatory loop network (Figure 3.13B).  Interestingly, 

the miR-19 seed family members are known to specifically target the tumour suppressor 

PTEN (Mu et al. 2009; Olive et al. 2009), which negatively regulates the Akt signalling 

pathway, indicating that this is one of the many tumorigenic consequences of increased 

Oncomir-1 expression. 

Further analysis of oncomirs and tumour suppressor miRNAs activated by the same 

transcription factors as those that activate the Oncomir-1 paralogs revealed that C-MYC 

activates two more miRNAs which also repress TP53: mir-663a and mir-1228 (Figure 3.13A).  

C-MYC is gained in 25 out of 55 cell lines but is never lost (Figure 3.14) and so it is possible 

that the gain of C-MYC is required in those cell lines in order to transiently repress TP53 via 

mir-663a and/or mir-1228 before Oncomir-1 activation can be initiated or sustained, leading 

in turn to sustained TP53 repression.  It is also possible that C-MYC-induced TP53 repression 
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is limited to specific cancer types since our findings here conflict with recent studies which 

found that mir-663a acts as a tumour suppressor in hepatocellular carcinomas (Zhang et al. 

2018) and colon cancer (Kuroda et al. 2017).  As well as being activated by C-MYC, Oncomir-

1 also represses C-MYC in a negative feedback loop (Figure 3.13A) which, since C-MYC over-

expression can trigger apoptosis (Hoffman and Liebermann 2008), could mean that 

Oncomir-1 protects the cancer cell against C-MYC-induced apoptosis while preserving the 

oncogenic trigger from transient C-MYC activation. 

We intend in future work to model the Oncomir-1 paralogs and transcription factors (Figure 

3.13A) as a system of ordinary differential equations in order to model the system’s 

dynamic response to various perturbations such as CNVs and miRNA-mediated repression, 

and to investigate whether transient C-MYC repression of TP53 via mir-663a/1228 could 

indeed lead to a switch from steady-state TP53 repression of Oncomir-1 to the reverse, as 

our results so far suggest.  As an initial experimental test of this hypothesis we will transfect 

NCI-60 cell line cultures with miRNA ‘sponges’ (Ebert et al. 2007) to sequester Oncomir-1-

derived miRNAs.  If these cell lines are indeed Oncomir-1-dependent, then we would expect 

to observe widespread apoptosis caused by the restoration of the TP53 and PTEN pathways. 

The centrality of Oncomir-1 and its paralogs to TP53 repression is further indicated by the 

balancing of even partial loss of any Oncomir-1 miRNA seed by the gain of an activating 

transcription factor or loss of an inactivating transcription factor in all but one cell line 

(prostate cancer-derived DU145, Figure 3.14).  Furthermore, in the vast majority of cell lines 

(50 out of 55) there are CNVs affecting either Oncomir-1 or its interacting transcription 

factors (Figure 3.14) which would be expected to lead to increased Oncomir-1 expression 

and consequently to increased TP53 and PTEN repression. 
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4 Haploinsufficiency explains the heritable dominant disease burden 

Statement on previous work 

The paralog dating method used in this chapter, Furthest from Singleton (FFS), is based on 
an original algorithm developed for my MSc dissertation (Reardon 2016) and extensively 
modified here as described below. 

 

Work carried out during MSc 

• Prototype tree building and age allocation algorithms developed. 
• Comparison of gene ages resulting from FFS to gene ages resulting from last 

common ancestor (LCA) and most recent duplication (MRD) algorithms. 
• Comparison of gene ages by duplication type (ohnolog, small-scale duplication (SSD) 

and singleton). 
• Comparison of miRNA/target ages based on predicted miRNA/target interactions. 

 

Work carried out during PhD 

• Refined FFS tree building algorithm to remove speciation, dubious duplication and 
non-bifurcating duplication events before building trees, resulting in trees 
topologically similar to Ensembl’s gene trees. 

• Presented FFS method as a poster at SMBE 2019. 
• Rebuilt ages with latest Ensembl data. 
• Repeated comparison of gene ages resulting from FFS, LCA and MRD methods. 
• Repeated comparison of gene ages by duplication type. 
• Repeated comparison of miRNA/target ages but this time with verified miRNA/target 

interactions from miRTarBase. 
• New analyses of gene ages and haploinsufficiency for terminal paralog pairs and by 

disease association. 
• New analyses of gene ages for sets of genes identified earlier in this thesis. 
• New analyses of haploinsufficiency and disease over evolutionary time. 

 

Repeats of results from MSc dissertation with new data 

• Figure 4.4 - The choice of paralog dating algorithm greatly influences the gene ages 
• Figure 4.5 - The FFS age allocation algorithm applied to the Tetraspanin paralog 

family 
• Figure 4.6 - FFS identifies the ohnologs and separates the miRNA/protein-coding 

ages 
• Figure 4.7 - MicroRNAs mostly target protein-coding genes originating in Vertebrata 
• Supplementary Table 6.10 - Unique Ensembl Compara taxon names and approximate 

ages 
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4.1 Abstract 

The presence in the human genome of multiple copies of ancient non-essential genes 

associated with heritable genetic diseases is a paradox, since purifying selection would be 

expected to remove these genes, and yet they are found throughout the metazoa.  

Understanding the origins and persistence of genes associated with heritable disease is 

clearly an important aspect of disease aetiology and has been extensively studied.  Several 

related theories based on dosage sensitivity or compensating paralogs have been previously 

advanced to explain the persistence of non-essential disease genes in the context of whole 

genome duplications, two rounds of which occurred in our early vertebrate ancestors. 

The study of disease over evolutionary timescales requires the accurate dating of the origins 

of the genes implicated in disease but the methods of determining the approximate age of 

genes developed so far have suffered from characteristic biases towards ancient or recent 

taxa, depending on the approach used.  We have developed a novel method of dating genes 

which takes into account likely similarity to ancestral function as well as the topology of 

evolutionary events inferred from the cross-species gene tree to avoid these biases, leading 

to a more nuanced perspective on the evolution of inheritable diseases. 

The increased temporal resolution afforded by our new method allows us to clearly 

distinguish between evolutionary events such as the inheritance of ancient core 

transcriptional machinery and the more recent miRNA-specific processes necessary for 

metazoan tissue differentiation and stable body plans.  We show that more newly created 

genes associated with recessive disease than dominant disease are retained until the time 

of the whole genome duplications, after which there is an excess of dominant disease genes 

caused by biased retention of haploinsufficient ohnologs and a subsequent paucity of new 

haploinsufficient genes.  Together with our observation that far more of the ohnologs are 

subsequently duplicated than previous shown, this leads us to propose that the 

haploinsufficiency of the retained ohnologs alone is a more parsimonious explanation for 

the retention of the dominant disease-associated genes than general dosage sensitivity or 

the masking of deleterious mutations by compensating paralogs. 
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4.2 Introduction 

Following on from our investigations in the preceding chapters into copy number variation 

and the roles of miRNAs in buffering the somatic dosage changes that occur in cancer-

derived cell lines, we wanted to also investigate the dosage compensation that occurs on 

evolutionary timescales and relate this to inheritable diseases.   

Recent large-scale whole exome and whole genome sequencing efforts have made it clear 

that the modern human population harbours many structural variants (SVs) greater than 50 

nucleotides long, including gene dosage-affecting copy number gains and losses (Karczewski 

et al. 2020).  Surprisingly high variation was discovered by the Genome Aggregation 

Database (gnomAD) project (Karczewski et al. 2020) - the median human genome was found 

to have more than seven thousand SVs, mostly small and rare (allele frequency less than 

1%), with deletions, duplications and insertions comprising the majority of variants and 

leading to the alteration by SV of a median 180 genes per genome (Collins et al. 2020).  

Overall, 37% of autosomal genes are affected by at least one loss-of-function variation and 

24% by at least one copy number gain (Collins et al. 2020). 

This population-level copy number variation forms a large part of the raw material that 

natural selection can operate on, leading to fixation or loss of paralogs in a population 

caused by the advantageous or deleterious effects respectively of gene dosage changes.  

Early theories of gene dosage compensation over evolutionary time proposed that duplicate 

genes confer redundancy and thus can compensate for loss-of-function mutations in 

paralogous genes (Gu et al. 2003; Hsiao and Vitkup 2008; Plata and Vitkup 2014; Su et al. 

2014).  However, duplications of genes such as oncogenes in which gain-of-function is 

deleterious are also seen in the human genome (McLysaght et al. 2014), and so these simple 

compensation models are clearly incomplete.  Indeed, multiple studies have shown that 

there are many dominant disease-associated genes which are ancient and have multiple 

paralogs in the human genome (Domazet-Loso and Tautz 2008; Cai et al. 2009; Dickerson 

and Robertson 2012), despite the purifying selection which would be expected to remove 

these genes from the genome (Furney et al. 2006; Cai et al. 2009).  One possible explanation 

for this could be co-dependence between interacting paralogs that together support the 

ancestral function, increasing fragility rather than robustness since mutation of one paralog 
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would also disrupt the other, and so leading to selection against the loss of either paralog 

(Diss et al. 2017). 

Later work explored the differences between genes duplicated by small-scale duplications 

(SSDs) and genes duplicated by whole genome duplication (WGD), two rounds of which 

occurred in our early vertebrate ancestors (Ohno 1970; Makino and McLysaght 2010; Singh 

et al. 2012).  Genes created by WGD, known as the ohnologs, are by definition initially 

dosage-balanced since the genes are duplicated along with all their interacting genes, thus 

preserving interaction stoichiometry.  It has also been hypothesised that WGD could confer 

an immediate fitness increase by reducing stochastic noise in expression rates, because the 

presence of duplicates would reduce the net effects of transient alterations to expression of 

one copy of a gene (Pires and Conant 2016). 

Whole genome duplication therefore offers possible explanations for the presence of 

multiple copies of genes of ancient origin which have the potential for deleterious gain-of-

function mutations.  One such explanation is that dosage-balanced genes were safely 

duplicated by WGD along with their interaction partners and it was the subsequent loss of 

non-dosage-balanced genes which led to an excess of dosage-balanced dominant disease-

associated genes in the human genome which cannot safely be gained or lost (Makino and 

McLysaght 2010).  Another related theory is that because the WGD event was effectively a 

speciation event, caused by the inability of the tetraploid offspring to breed with diploids in 

the surrounding population, this led to a population bottleneck followed by retention of 

ohnologs prone to deleterious mutations because the continued presence of a functional 

copy of the gene masked the deleterious mutation (Singh et al. 2012). 

A clear understanding of the evolution of genes over evolutionary timescales requires an 

accurate assignment of ages to genes.  One such method of gene dating involves the use of 

gene conservation to find the last common ancestor (LCA) of gene orthologs across extant 

species followed by the assignment of the approximate age of the taxon in which the 

common ancestor occurred (Domazet-Loso and Tautz 2008).  Another method assigns to 

each gene the age of the gene’s most recent duplication (MRD) in the cross-species tree 

(Dickerson and Robertson 2012).  However, these methods weight the assigned ages to 

ancient and recent taxa respectively and do not take into account the entire duplication 
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history of a family of paralogs nor the sequence divergence and hence likely similarity of 

genes to the inferred ancestral gene.   

Consequently, we have developed a new method of dating gene paralogs based for the first 

time on all the relevant information in the cross-species gene tree, which we call Furthest 

from Singleton (FFS).  The first stage of our method extracts human-centric duplication trees 

from the cross-species gene tree in Ensembl Compara (Yates et al. 2020), preserving 

normalised branch lengths so that similarity to the inferred ancestral sequence can be 

ascertained in addition to the duplication topology.  The second stage allocates the ages of 

the taxa of the common ancestor and the subsequent duplications to the extant paralogs, 

starting with the gene which is most diverged from the common ancestor (which would 

have been a singleton had it not diverged, hence the algorithm’s name). 

FFS assigns more genes to the taxa around the time of the two rounds of whole genome 

duplication than the other paralog dating methods and allows us to distinguish genes which 

are effectively ancestral in function from those which have diverged.  We find that most 

miRNA/target interactions are also between genes created at the time of WGD in the taxon 

of Vertebrata, consistent with the avoidance of the widespread disruption which would 

otherwise be caused by widespread miRNA duplications without concurrent duplication of 

their targets. 

The greater temporal resolution that comes from using sequence divergence together with 

duplication topology means the FFS method assigns ages to genes on the autosomes and 

allosomes which are broadly consistent with the evolution of therian sex determination at 

the split of the eutherian mammals and the monotremes (Veyrunes et al. 2008).  In 

addition, FFS assigns ages to genes specific to mRNA silencing in general and miRNA post-

transcriptional silencing in particular which are more recent than the ages assigned to the 

core cellular processes of transcription and nuclear RNA export, consistent with the 

evolution of metazoan tissue differentiation and stable body plans occurring later in 

evolutionary time than the core transcriptional processes necessary for the single-celled 

eukaryotic ancestors of the metazoa. 

We show that the ohnologs are more likely to be haploinsufficient when mutated than SSDs 

or singleton genes, consistent with haploinsufficient genes leading to dominant phenotypes 

in the context of heterozygous loss-of-function and with the ohnologs’ association with 
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dominant disease (Makino and McLysaght 2010).  Unlike previous studies however, we 

show that the majority of ohnologs have in fact been subsequently duplicated (Makino and 

McLysaght 2010).  We also find that genes associated with recessive diseases are slightly 

older than those associated with dominant diseases and we have used the increased 

accuracy of FFS gene dating to show that there is a shift from recessive to dominant disease 

association at Vertebrata as well as showing that the haploinsufficiency of newly created 

genes decreases sharply after Euteleostomi. 

These results lead us to propose that it is specifically the haploinsufficiency enrichment of 

the retained ohnologs that explains the excess of dominant disease-associated genes 

originating in whole genome duplication, rather than post-WGD retention of dosage-

balanced genes more generally (Makino and McLysaght 2010) or the retention of ohnologs 

prone to deleterious mutations by paralogous compensation (Singh et al. 2012). 
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4.3 Methods 

4.3.1 Building human-centric paralog trees from cross-species gene trees 

The Furthest from Singleton (FFS) paralog dating method is a two-phase algorithm, 

consisting of the building of human-centric paralog trees for each gene family followed by 

the allocation of duplication ages to the genes. 

The duplication and speciation event histories in the Ensembl Compara cross-species gene 

tree (release 103) were downloaded on 7/3/21 for all human protein-coding and miRNA 

genes using the Ensembl Perl API (Yates et al. 2020).  The event history for each gene was 

downloaded by starting with the gene’s node in the cross-species gene tree and traversing 

the events in the tree, parent node by parent node, up to the root of the gene tree and 

recording each event’s taxon, approximate age as calculated by Ensembl and phylogenetic 

branch length (Figure 4.1A).   
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Figure 4.1 - Building human-centric paralog trees 
from cross-species gene tree events 

The stages of building a human-centric paralog tree, 
illustrated by the merging of three model gene’s event 
histories.  Human genes are shown as yellow nodes, 
speciation events are red, duplication events are blue, 
dubious duplication events are outlined and root events, 
which can be either speciations or duplications, are 
purple.  The distances between the nodes represent 
phylogenetic branch length or sequence divergence.  (A) 
The event histories for each gene in a paralog family are 
downloaded from the gene up to the root.  (B) The event 
histories are stripped of all but duplication events, 
retaining the branch lengths of the removed events, apart 
from the root event which is retained whether it is a 
speciation or duplication.  (C) The duplication histories are 
combined into a single paralog tree by merging events 
where identical and branching where different. 

 

 

Each gene’s event history was then stripped of speciation and ‘dubious’ duplication events 

(the latter being events where Ensembl are not sure if the event was a speciation or 

duplication event), preserving the overall branch lengths between retained events by adding 
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the branch lengths of the removed events to the next youngest event (Figure 4.1B).  The 

root event is never removed and can be a speciation instead of a duplication (Figure 4.1B). 

Each gene’s paralogs, if any, were downloaded from Ensembl on 7/3/21 and grouped into 

families.  The duplication histories for the genes in each paralog family were then combined 

into a single human-centric paralog tree started by merging the oldest event in every event 

history, the root event, and then merging events from each event history where both the 

event type and the branch length to the next youngest event are identical in every gene 

history and branching where different (Figure 4.1C).  Non-bifurcating duplication nodes in 

the resulting tree were then removed, preserving the removed nodes’ branch lengths as 

before (Figure 4.1C).  Each pair of genes with a duplication as the shared parent node were 

saved as a list of terminal paralog pairs. 

The genes’ event histories were also processed to calculate the genes’ ages by the last 

common ancestor (LCA) and the most recent duplication (MRD) methods, by taking for each 

gene the age of the root event and the age of the youngest duplication event in each event 

history respectively.  The distinct taxon names and ages from the genes’ events were 

extracted as the list of unique taxa in Ensembl (Supplementary Table 6.10). 

4.3.2 Allocating duplication ages to genes in paralog families 

The human-centric paralog tree for each gene family was then traversed in order to assign 

the ages from the root node and internal duplication nodes to the leaf gene nodes, taking 

into account not only the topological structure of the tree but also the relative branch 

lengths as a proxy for sequence divergence. 

The assignment of duplication ages to the genes starts with the undated gene with the 

longest total branch length between it and the root node, which is the gene most diverged 

from the inferred ancestral sequence (Algorithm 4.1).  The tree is then traversed towards 

the root considering each duplication in turn and, if the duplication has any undated genes 

apart from the current gene, then the current gene is assigned the duplication’s age 

(Algorithm 4.1).  This is repeated for each undated gene in order of decreasing total branch 

length until they have all been given an age, with the least diverged gene taking the age of 

the root event (Algorithm 4.1). 
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while there are genes in the paralog tree without ages... 
  set the subject to be the most diverged undated gene 
  for each duplication from the subject’s ancestor back up to the root... 
    if the duplication has other undated genes...  
      the subject takes the duplication's age 
  if the subject is still undated... 
    the subject takes the root event’s age 

Algorithm 4.1 - Allocation of duplication ages to genes 

The FFS age allocation algorithm allocates the ages of the root and subsequent duplication events in each paralog tree to 
the genes, starting with the gene which most diverged from the inferred ancestral sequence. 

Whereas the LCA method assigns the oldest event’s age to every gene and so weights the 

overall age distribution to more ancient taxa (Figure 4.2A), the MRD method weights 

paralog ages to more recent taxa (Figure 4.2B), and neither method uses all the duplication 

nodes in the tree nor takes sequence divergence into account.   

 

A B C 

   

Figure 4.2 - Paralog dating methods assign a wide range of ages to genes 

A model phylogenetic tree for a family of five paralogs illustrating the (A) Last Common Ancestor, (B) Most Recent 
Duplication and (C) Furthest from Singleton gene dating methods.  The small circular nodes are the root event or 
subsequent duplication events, and the large circular nodes are genes, with matching colours showing which event’s 
ages are assigned to which genes (the small empty circles are events which are unused in the method). 

The FFS method on the other hand allocates a wider range of ages to genes (Figure 4.2C), 

based on their inferred similarity to the ancestral form as well as their duplication topology, 

allowing paralogs that are effectively ancestral in function to be distinguished from those 

which have diverged.  Both paralogs created by a duplication have the same origin and 

duplication date but, because of subsequent divergence, one is less related to the ancestor 

and so the FFS method gives the more diverged paralog a new origin date at the time of 

duplication (Figure 4.2C).  Conversely, the less diverged paralog of a pair which result from a 

duplication will be assigned an older age if one is available in the topology (Figure 4.2C). 



128 

4.3.3 Disease association, haploinsufficiency, verified miRNA targets and duplications 

Gene disease association status was downloaded on 21/3/21 from the Online Mendelian 

Inheritance in Man (OMIM) database (Hamosh et al. 2002; McKusick-Nathans Institute of 

Genetic Medicine 2021).  Each gene was annotated as dominant or recessive by searching 

for the keywords ‘dominant’ and ‘recessive’ respectively in the OMIM dataset’s phenotype 

field.  Haploinsufficiency scores were downloaded on 8/3/21 from Decipher (Firth et al. 

2009; Huang et al. 2010).  Verified miRNA/target interactions were downloaded from 

miRTarBase (Chou et al. 2018) on 6/2/21 and filtered to those flagged as strongly functional. 

The gene paralogs which are likely to have arisen in the two rounds of whole genome 

duplication (WGD) thought to have occurred in ancestral vertebrate species were 

downloaded on 7/3/21 from the online Ohnologs database (Singh and Isambert 2020).  The 

genes in the ‘strict’ ohnolog category were annotated as ohnologs, ohnologs which have a 

subsequent duplication later than Vertebrata (approximately 615 million years ago 

according to current Ensembl data) were annotated as ‘ohnolog/SSD’, genes with no 

duplications were annotated as singletons and the rest were annotated as small-scale 

duplications (SSDs). 
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4.4 Results 

4.4.1 FFS gene ages are based on sequence divergence as well as duplications 

The somatic evolution that occurs in cancer is mediated to a large degree by copy number 

variations and aneuploidies.  To complement our analyses in earlier chapters of these 

somatic mutations we wanted to investigate the germline evolutionary histories of the 

genes involved in cancer as well as in other inheritable diseases.  The methods used to 

assign approximate ages to genes in previous studies vary widely in approach and result in 

gene age distributions with characteristic weightings to either ancient or recent taxa for the 

last common ancestor (LCA) or most recent duplication (MRD) methods respectively. 

Our new method of paralog dating is called Furthest from Singleton (FFS) because its age 

allocation phase starts with the gene which is most diverged from the inferred ancestral 

sequence of the gene which would have been a singleton had it not been duplicated (see 

methods).  By considering the paralogs from most diverged to least, in the context of the 

remaining unallocated duplication ages in the paralog tree as each gene is considered, we 

guarantee as far as possible that within the confines of the topology the paralogs’ ages are 

inversely correlated with their divergence from the ancestral form.  The insight behind this 

algorithm came from the consideration of the scale-invariant nature of bifurcating paralog 

trees. 

Briefly, the algorithm parses human gene event histories from the Ensembl Compara cross-

species tree and then processes and combines these histories for each paralog group to 

reconstruct human-centric paralog duplication trees.  The approximate ages of the taxa for 

the root event and subsequent duplication events are then assigned to the genes based on 

their divergence from the inferred ancestor and on the duplication topology, allowing us to 

distinguish between genes likely to be supporting the ancestral function and those which 

have diverged to support other functions. 

We calculated the ages of the protein-coding and miRNA genes using the LCA, MRD and FFS 

methods, which resulted in ages from each method for 19,806 protein-coding genes and for 

1,002 miRNA genes, comprising the genes with gene trees in Ensembl Compara.  The genes’ 

ages vary from zero for genes which are novel in Homo sapiens to 1,105 million years for 

genes originating in the Opisthokonta taxon at the split of animals and fungi (Figure 4.3). 
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Figure 4.3 - The phylogenetic tree of the Ensembl Compara cross-species gene tree taxa 

The phylogenetic tree of the unique duplication events ancestral to humans in the Ensembl Compara cross-species gene 
tree, generated from the FFS gene histories.  The names of the taxa are on the right.  The approximate age in millions of 
years (x axis) of each divergence is shown next to the divergence node (see also Supplementary Table 6.10). 

The different dating algorithms result in very different distributions of gene ages.  As 

expected, the LCA method dates many genes to the most ancient taxa in the Ensembl 

Compara tree of Opisthokonta (6,120 genes, 1,105 mya) and Bilateria (8,189 genes, 797 

mya) (Figure 4.4).  The MRD method on the other hand results in very few genes at 

Opisthokonta or Bilateria but instead allocates most genes to taxa around Gnathostomata 

(2,055 genes, 473 mya) and Eutheria (2,119 genes, 106 mya) (Figure 4.4).  The MRD method 

does not assign any age to genes which have not been created by duplication (6,448 genes).  

FFS is intermediate between LCA and MRD at Opisthokonta (1,803 genes) and Bilateria 

(3,332 genes) and has the most genes at the next three ancient taxa of Chordata (1,796 

genes, 676 mya), Vertebrata (3,974 genes, 615 mya) and Gnathostomata (3,222 genes) 

(Figure 4.4).  All three algorithms have smaller peaks in the resulting age distributions at 

Eutheria and both MRD and FFS also have peaks around Amniota (312 mya), 

Simiiformes/Catarrhini (43/29 mya), Homininae (9 mya) and Homo sapiens (Figure 4.4). 

Taking the Tetraspanin paralog family, one of the larger families, as an illustrative example, 

we can see clearly the effects of using the FFS algorithm to assign gene ages (Figure 4.5).   
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Figure 4.4 - The choice of paralog dating algorithm greatly influences the gene ages 

The numbers of genes (y axis) dated to each taxon (x axis in millions of years) for the Last Common Ancestor (red), Most 
Recent Duplication (blue) and Furthest from Singleton (green) dating methods.   

 

 

Figure 4.5 - The FFS age allocation algorithm applied to the Tetraspanin paralog family 

The phylogenetic tree of the human Tetraspanin paralog family, annotated to show how the ages of the duplication 
nodes are assigned by the FFS algorithm to the genes. The colour of each gene’s history line represents the taxon and 
approximate age (in millions of years, value from Ensembl shown in legend) assigned by Ensembl Compara to the 
duplication event (at the left-hand end of each line) that sets the age of the gene (at the right-hand end of each line).  
The branch lengths are proportional to the sequence divergence. 
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Pairs of genes which both originated from the same duplication event, such as TSPAN5 and 

TSPAN17, are assigned ages such that the less diverged gene is assigned an older age if one 

is available in the topology, consistent with its assumed greater similarity to the ancestral 

form of the gene (Figure 4.5).  TSPAN10 on the other hand has only Bilateria duplication 

events in its history and so must be at least this age, despite being the most diverged 

paralog in the tree (Figure 4.5). 

4.4.2 Genes originating from whole genome events are clearly visible with FFS 

Genes are created by a variety of processes, such as the ohnologs (n = 4,918) created by 

whole genome duplication (WGD) of which a majority in our data experience later 

duplication (n = 3,303), small-scale duplications (SSDs) (n = 10,587) or the singletons created 

by de novo mutations, inversions and gene fusions (n = 5,410).  The LCA method 

counterintuitively dates most of the ohnologs to between Opisthokonta and Bilateria 

despite the WGD events from which they originated occurring later at approximately 

Vertebrata (Singh and Isambert 2020) and simply ignores duplication events entirely (Figure 

4.6A).  The MRD method dates the ohnologs that have since duplicated (ohnolog/SSDs) to 

much more recently than the WGD events, along with the SSDs, and cannot assign an age to 

singleton genes at all (Figure 4.6B). 

FFS clearly dates the retained ohnologs to a median age of Vertebrata whether they have 

subsequently been duplicated or not (Figure 4.6C), consistent with the origins of these 

genes in the two whole genome duplication events which occurred in an early ancestor of 

the vertebrates (Singh and Isambert 2020).  The median FFS-derived age of the genes which 

originated from small-scale duplications is also at Vertebrata (Figure 4.6C), making this the 

taxon with the most genes assigned to it by this dating method (Figure 4.4).  The singleton 

genes have a median age of Gnathostomata and an interquartile range of Chordata to 

Mammalia (Figure 4.6C). 

The LCA and MRD dating methods give very different results for the ages of protein-coding 

genes and miRNAs, with the MRD method dating both sets of genes mainly between 

Eutheria and Euteleostomi (Figure 4.6E), whereas LCA assigns most miRNA to Eutheria and 

the protein-coding genes to between Chordata and Opisthokonta (Figure 4.6D).  FFS dates 

the miRNAs mainly to Eutheria, similar to the LCA miRNA ages, but dates the bulk of the 

protein-coding genes to between Bilateria and Euteleostomi with a median age of 
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Vertebrata (Figure 4.6F).  Interestingly, none of the dating methods assign any miRNAs to 

taxa between Homininae and Boreoeutheria, which is possibly related to the fact that 46% 

of miRNAs (837 out of 1,839 miRNAs with entries in Ensembl as well as miRBase) do not 

have a gene tree in Ensembl 103, unlike protein-coding genes where only 0.4% (86 out of 

19,806) do not have a gene tree. 
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Figure 4.6 - FFS identifies the ohnologs and separates the miRNA/protein-coding ages 

The distributions of ages for each duplication type (ohnolog, ohnolog/SSD, SSD and singleton) as calculated by the (A) 
Last Common Ancestor (LCA), (B) Most Recent Duplication (MRD) and (C) Furthest from Singleton paralog dating 
methods.  Also shown are the distributions of ages for miRNAs and protein-coding genes as calculated by the (D) LCA, (E) 
MRD and (F) FFS paralog dating methods. 

Our novel FFS paralog dating method assigns ages to the ohnologs which are consistent with 

their origins, unlike the other methods, and is able to clearly distinguish miRNAs from 

protein-coding genes.  As this new method takes into account the gene trees’ topologies as 

well as the likely similarity to the ancestral form it is more able to distinguish genes which 

are effectively ancestral in function from those which have diverged; consequently, all 

further analyses in this chapter will be based on gene ages derived from the Furthest from 

Singleton method. 
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4.4.3 The peak of miRNA/target interactions are between genes from Vertebrata 

We have observed the very different distributions of ages for miRNAs and protein-coding 

genes, with median ages at Eutheria and Vertebrata respectively (Figure 4.6F), and we 

wanted to see whether miRNAs and their protein-coding targets tend to be created at the 

same time.  Alternative scenarios to contemporaneous miRNA/target creation include new 

miRNAs repressing pre-existing targets and new targets being repressed by pre-existing 

miRNAs.  We took the confirmed miRNA/target interactions from miRTarBase and plotted 

the number of interactions at each miRNA and target age as a 3D surface (Figure 4.7). 

 

Figure 4.7 - MicroRNAs mostly target protein-coding genes originating in Vertebrata  

A 3D surface of the number of miRNA/target interactions (vertical axis) at each miRNA age and target age (horizontal 
axes). 

Despite there being four peaks in the creation rate of miRNAs with a main peak at Eutheria 

(747 miRNAs) and secondary peaks at Homo sapiens (61 miRNAs), Euteleostomi (51 miRNAs) 

and Vertebrata (67 miRNAs), only three of these peaks are visible in the miRNA/target 
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interaction surface, with just one confirmed interaction for miRNAs which originated in 

humans meaning that there is no visible interaction peak at Homo sapiens (Figure 4.7). 

The largest peak of miRNA/target interactions occurs for both miRNAs and targets from 

Vertebrata (615 mya) with secondary peaks of miRNA from Euteleostomi (435 mya) and 

Eutheria (106 mya) interacting with targets from Vertebrata (Figure 4.7).  The similarity of 

shape of these peaks at each miRNA age is caused by the overall age distribution of protein-

coding genes, with the majority originating between Bilateria and Euteleostomi with a 

median age of Vertebrata (Figure 4.6F).  The creation of large numbers of miRNAs is likely to 

cause widespread disruption unless the stoichiometric balance of the interactions is 

maintained, and so it is likely that the peak of interactions occurring between both miRNAs 

and targets originating at Vertebrata is a consequence of the two rounds of whole-genome 

duplication which occurred in that era, which by definition create stoichiometrically 

balanced interaction networks. 

4.4.4 FFS clearly shows cellular processes in their evolutionary context 

The LCA and MRD paralog dating methods can’t be used for fine-grained temporal analyses 

because of their weighting of gene ages to ancient and recent taxa respectively and so are 

only useful for relatively limited genome-wide analyses.  FFS on the other hand uses 

sequence divergence as well as duplication topology in order to assign ages to the paralogs 

from internal nodes in the paralog tree and so we hypothesised that we might be able to 

use this increased temporal resolution to see process-specific evolutionary histories. 

We preface this narrowing of focus however with a genome-wide analysis of miRNA and 

protein-coding gene ages based on the type of chromosome on which they occur.  We saw 

in section 2.4.3 that the sex chromosomes rarely experience gains in cancer, consistent with 

their effectively haploid dosage, but can often have aneuploid X chromosome loss in 

female-derived cell lines because of the redundant copy of chromosome X and can also 

experience loss of chromosome Y in male-derived cell lines since there are relatively few 

genes on chromosome Y (Figure 2.6).  We see an equally striking difference in the FFS-

derived ages of the genes on the autosomes and sex chromosomes with the autosomal 

genes having an older median age of Vertebrata compared to genes on chromosome X 

(median age Gnathostomata, inter-quartile range Eutheria to Chordata) and to genes on 

chromosome Y (median age Homininae) (Figure 4.8A).  The ages of the sex chromosome 
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genes are broadly consistent with the origins of the X/Y system of therian sex determination 

in the divergence of a pair of autosomes at the split of eutherian mammals and the 

monotremes (Veyrunes et al. 2008), followed by subsequent degeneration of the Y 

chromosome (Graves 2006). 

In another genome-wide analysis we investigated the ages of genes which experience CNVs 

across the NCI-60 panel and found that the age distributions of genes which are lost, 

unaltered and gained are practically identical, with a median age of Vertebrata and an inter-

quartile range of Euteleostomi to Opisthokonta for all types of CNV, though the means vary 

slightly by around 18 million years (Figure 4.8B).  This analysis however simply exposes a 

limitation of dating genes to only a limited quantised range of 22 distinct ages from Ensembl 

Compara: the large number of gene CNV values across the NCI-60 panel (1.3 x 106 gene 

CNVs) means that on a panel-wide basis the age distributions of large numbers of entities 

converge in the limit to the overall gene age distribution (Figure 4.4).  There is some 

variation in the ages of genes affected by different CNV types on a per-cell line basis 

(Supplementary Figure 6.6) but not enough to influence the genome and panel-wide result 

(Figure 4.8B). 

Narrowing our focus now to genes with oncogenic or tumour suppressive effects we find 

that while the protein-coding oncogenes and tumour suppressors have the same median 

age of Vertebrata the ranges vary a little with tumour suppressors having a greater inter-

quartile range of Gnathostomata to Bilateria compared to the oncogenes which have only 

outliers older than Vertebrata (Figure 4.8C).  The miRNAs associated with cancer on the 

other hand exhibit the opposite pattern with both oncomirs and tumour suppressor miRNAs 

again having a median age of Vertebrata but the tumour suppressors having an inter-

quartile range which extends to the younger taxon of Euteleostomi (Figure 4.8D).  The vast 

majority (96%) of miRNAs are not associated with cancer and these miRNAs have a median 

age of Eutheria (Figure 4.8D), which is the same age distribution as all miRNAs in general 

(Figure 4.6F). 
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Figure 4.8 - FFS gene ages differentiate the evolutionary histories of cellular processes 

The age distributions assigned by the Furthest from Singleton paralog dating method to various sets of genes.  (A) The 
ages of genes which are located on autosomes and sex chromosomes.  (B) The ages of genes which are affected by 
various types of CNV.  (C). The age of protein-coding genes which are associated with cancer.  (D) The ages of miRNAs 
which are associated with cancer.  (E) The ages of genes which form components of the miRNA biogenesis pathway.  (F). 
The ages of genes associated with Oncomir-1 and its paralogs (shown as ‘Onco.’ followed by the name of the 
chromosome), miRNAs which repress TP53 (‘TP53 –‘), transcription factors which activate Oncomir-1 and/or its paralogs 
(‘Onco. +’) and transcription factors which inactivate Oncomir-1 and/or its paralogs (‘Onco. –‘). 

While the miRNAs associated with cancer have a median age of Vertebrata (Figure 4.8D), 

the same as the protein-coding genes associated with cancer (Figure 4.8C), the genes which 

form the various components of the miRNA biogenesis pathway are generally much older 

(Figure 4.8E).  The genes for the 12 subunits of RNA polymerase II and the genes necessary 

for export of RNA hairpin loops from the nucleus to the cytoplasm (Exportin-5 and RanGTP) 

are almost all dated to Opisthokonta (Figure 4.8E).  Genes associated with the nucleus-

located Drosha and the cytoplasm-located Dicer and RISC complexes on the other hand are 

younger, with median ages of Bilateria, Vertebrata and Gnathostomata respectively (Figure 

4.8E).  The ages of the genes associated with the miRNA biogenesis pathway indicate that 

the mRNA silencing mechanism in general and miRNA-mediated mRNA repression in 

particular have been under selection pressure later than the more core cellular processes of 

transcription and export of RNA from the nucleus to the cytoplasm, consistent with the 
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latter’s necessity in the single-celled ancestor of Opisthokonta and the former’s necessity 

for tissue differentiation and stable body plans in metazoa. 

In contrast to the wide range of gene ages that we see in the miRNA biogenesis pathway 

(Figure 4.8E) the ages of the genes in Oncomir-1, its paralogs and its interaction partners are 

more tightly clustered around Vertebrata (Figure 4.8F).  Of the six precursor miRNAs in 

Oncomir-1, mir-92a-1 is dated to Chordata and the rest to Vertebrata (Figure 4.8F), 

consistent with the more ancient origins of mir-92a-1 which is conserved in flies unlike the 

other Oncomir-1 members which are conserved only in vertebrates (Wang et al. 2016).  The 

dating to Chordata of mir-92a-1, rather than to Bilateria as implied by its conservation in 

flies, is caused by the Ensembl gene tree for this miRNA not currently (in Ensembl version 

103) having any events older than Chordata.  The Oncomir-1 paralog on chromosome X has 

a wider range of ages with two precursors (mir-19b-2 and mir-92a-2) assigned an age of 

Vertebrata, two precursors (mir-20b and mir-363) assigned an age of Euteleostomi and two 

undatable (mir-106a and mir-18b) because they lack gene trees in the current version of 

Ensembl Compara (Figure 4.8F).  These slightly more recent ages for the members of the 

chromosome 13 Oncomir-1 paralog are consistent with the presumed creation of the 

chromosome X and chromosome 7 paralogs during the two rounds of whole genome 

duplication in vertebrates (Tanzer and Stadler 2004). 

4.4.5 Less diverged paralogs are older and more haploinsufficient 

We have observed so far that the genes associated with cancer are dated to around 

Vertebrata (Figure 4.8C/D), which is when two rounds of whole genome duplication are 

thought to have occurred (Singh and Isambert 2020), and we wanted to see what else we 

could determine about disease over evolutionary time using our new paralog dating 

method.  Using the pairs of paralogs (n = 3,384) which are leaf nodes of a duplication in the 

FFS duplication trees, which we call terminal paralog pairs, we calculated the relative branch 

length of each member of a terminal paralog pair by comparison to the other member’s 

branch length as either short, long or the same (a difference of < 10-6 normalised to the 

paralogs’ tree’s unitless maximum branch length). 

Paralogs which are less diverged than their partner have the shorter branch length of the 

pair and so are much more likely to be assigned an older age by the FFS age allocation 

algorithm if an older age is available in the duplication topology.  Unsurprisingly we 
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therefore find that, at least in part as a consequence of the FFS age allocation algorithm, 

paralogs with the shorter branch length of a terminal paralog pair are indeed older than 

their sibling paralogs, with a median age of Vertebrata for short branch paralogs compared 

to Gnathostomata for long branch paralogs, which also have an inter-quartile range which 

extends to more recent taxa (Figure 4.9A).  Terminal paralog pairs with the same branch 

length have much more recent FFS-assigned ages (median Homo sapiens), consistent with 

being created by duplication relatively recently and so having not had the evolutionary time 

necessary to have diverged (Figure 4.9A). 
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Figure 4.9 - Less diverged paralogs are older and more haploinsufficient 

(A) The gene age distributions of members of terminal paralogs pairs which have shorter, longer or the same relative 
branch length.  The haploinsufficiency prediction scores, where zero is completely haplosufficient and 100 is completely 
haploinsufficient, of (B) members of terminal paralogs pairs which have shorter, longer or the same relative branch 
length and of (C) genes which are ohnologs, ohnolog/SSDs, SSDs or singletons. 

The age distribution of the short branch paralogs with a median age of Vertebrata (Figure 

4.9A) is strikingly similar to that of the ohnologs, whether or not they have subsequently 

been duplicated (Figure 4.6C).  The ohnologs have been shown to be enriched for dosage-

balanced genes (Makino and McLysaght 2010), and so we hypothesised that as the short 

branch paralogs have a similar age distribution to the ohnologs, the short branch paralogs 

would be more haploinsufficient than the longer branch paralogs.  We used the 

haploinsufficiency prediction scores from Decipher (Firth et al. 2009; Huang et al. 2010) to 

calculate how likely members of terminal paralog pairs are to be haploinsufficient and found 

that the paralogs with the shorter relative branch length are indeed more likely to be 

haploinsufficient than paralogs with the longer relative branch length (Figure 4.9B).  



140 

Paralogs with the same branch length are much less likely to be predicted to be 

haploinsufficient (Figure 4.9B), consistent with having the same interaction partners as each 

other because of their sequence similarity.  We then directly compared the 

haploinsufficiency prediction scores for genes designated as ohnologs to those which are 

SSDs or singletons and confirmed that the ohnologs, whether subsequently duplicated or 

not, are predicted to be more likely to be haploinsufficient than SSDs or singletons (Figure 

4.9C), consistent with earlier studies (Makino and McLysaght 2010). 

Haploinsufficient genes lead to a dominant phenotype in the context of heterozygous loss-

of-function (Kondrashov and Koonin 2004) and so we hypothesised that, as the more 

conserved short branch paralogs are older (Figure 4.9A) and more likely to be 

haploinsufficient (Figure 4.9B), genes associated with dominant disease should be similarly 

older and more haploinsufficient.  We investigated the FFS-derived ages for genes 

annotated as dominant or recessive in the phenotypes downloaded from OMIM (McKusick-

Nathans Institute of Genetic Medicine 2021) and found that while the ages of genes 

associated with dominant or recessive disease are fairly similar it is in fact the recessive 

disease-associated genes which are slightly older, with a median age of Chordata versus 

Vertebrata for the dominant disease-associated genes (Figure 4.10A).   
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Figure 4.10 - Dominant disease genes are the most haploinsufficient 

(A) The FFS-assigned age distributions for genes associated with dominant and recessive diseases.  (B) The predicted 
haploinsufficiency scores for genes associated with dominant and recessive diseases. 

Genes associated with disease in general are predicted to be more likely to be 

haploinsufficient than genes not associated with disease (Figure 4.10B) and, as we 

hypothesised above, genes associated with dominant disease are the most likely to be 

haploinsufficient (Figure 4.10B), consistent with earlier work (Kondrashov and Koonin 2004; 

Makino and McLysaght 2010).  Interestingly, genes associated with recessive disease are 
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also predicted to be more haploinsufficient than genes not associated with disease, albeit 

less so than genes associated with dominant disease (Figure 4.10B). 

4.4.6 WGD is correlated with a sudden decrease in haploinsufficiency of new genes 

Our results so far are consistent with the contribution of the ohnologs to the bulk of 

inheritable dominant disease, as a consequence of the biased retention of haploinsufficient 

genes, and we’ve also shown that genes associated with recessive disease are slightly older 

than the ohnologs.  Consequently, we wanted to see if the increased temporal resolution of 

the FFS gene dating method could determine whether there is an increase in the rate of 

retention of genes associated with dominant diseases relative to recessive diseases at the 

time of the ohnologs. 

The median haploinsufficiency prediction scores of the ohnologs at each distinguishable 

taxon are consistently high over evolutionary time from Opisthokonta to approximately 

Euteleostomi, at which time they start to decline in predicted haploinsufficiency (Figure 

4.11A).  SSDs and singleton genes on the other hand start with a similarly high 

haploinsufficiency score at Opisthokonta but decline fairly steadily over time to the present, 

with the exception of the dramatic spike in the singleton median haploinsufficiency score at 

Haplorrhini (Figure 4.11A). 

Interestingly, it is at Gnathostomata/Euteleostomi, the taxa after the two rounds of whole 

genome duplication at Vertebrata, that the rate of gene retention decreases sharply 

irrespective of the dating method used (Figure 4.4) and we see a corresponding decrease in 

the retention of disease-associated genes at Euteleostomi (Figure 4.11B).  For both 

dominant and recessive disease-associated genes there is a fairly constant rate of increase 

in the cumulative frequency of genes retained until Euteleostomi when the rate plateaus 

(Figure 4.11B).  There are more genes associated with recessive disease than with dominant 

at all taxa, primarily as a consequence of the excesses in recessive disease-associated gene 

retention over dominant disease-associated genes at Opisthokonta, Bilateria and Chordata, 

after which the retention rates of dominant and recessive disease-associated genes track 

each other more closely (Figure 4.11B). 
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Figure 4.11 - The overall burden of dominant disease plateaus after WGD 

(A) The median haploinsufficiency scores (y axis) over evolutionary time (x axis) for ohnologs (green line), ohnolog/SSDs 
(orange), SSDs (blue) and singletons (magenta).  (B) The cumulative frequency of genes (y axis) associated with dominant 
disease (green) and recessive disease (yellow) over evolutionary time (x axis).  (C) The ratio of gene creation (y axis) 
between dominant and recessive disease-associated genes over evolutionary time (x axis), with the red horizontal 
dashed line at y = 1 indicating balanced creation of dominant and recessive disease-associated genes.  The black vertical 
dashed line in each pane indicates the Euteleostomi  taxon at approximately 435 million years ago. 

We can see the change from an excess of recessive disease-associated genes to a deficit 

between Chordata and Vertebrata more clearly in the ratio of dominant to recessive 

disease-associated genes retained from each taxon (Figure 4.11C).  The rate of disease gene 

retention after Euteleostomi decreases by an order of magnitude to single digits per taxon 
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for both dominant and recessive disease genes, and as a consequence the sharper 

oscillations in the ratio of dominant to recessive gene retention after this era are likely 

dominated by stochastic fluctuations (Figure 4.11C). 

In summary, because our novel FFS algorithm uses duplication topology in conjunction with 

subsequent paralog divergence, we are able to elucidate the consequences of whole 

genome duplication with more temporal accuracy than in previous studies.  Genes created 

after whole genome duplication decrease sharply in predicted haploinsufficiency (Figure 

4.11A) and it is striking that cancer-associated genes in general (Figure 4.8D) and more 

specifically genes related to Oncomir-1 in particular (Figure 4.8F) date to around Vertebrata, 

adding further evidence to the hypothesis that some cancers are associated with dominant 

disease mutations of the haploinsufficient ohnologs, which are retained because they are 

dosage-balanced. 
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4.5 Discussion 

Various systems of gene dosage compensation have been proposed to evolve over time, 

such as redundant paralogs compensating for loss-of-function mutations (Gu et al. 2003; 

Hsiao and Vitkup 2008; Plata and Vitkup 2014; Wang et al. 2016) and stoichiometrically 

balanced duplication of dosage-sensitive genes in the context of whole genome duplications 

(WGD) (Makino and McLysaght 2010; Singh et al. 2012).  Many of these ohnologs originating 

from the two rounds of WGD in early vertebrates are associated with dominant diseases 

(Domazet-Loso and Tautz 2008; Cai et al. 2009; Dickerson and Robertson 2012), despite the 

purifying selection that would be expected to purge these genes from the genome over 

time (Furney et al. 2006; Cai et al. 2009). 

Accurate dating of genes allows the evolution of dosage compensation to be investigated 

and multiple dating methods have been proposed, such as dating the genes to the taxon of 

the last common ancestor (LCA) of the genes’ orthologs in other species or to the taxon of 

each gene’s most recent duplication (MRD) (Domazet-Loso and Tautz 2008; Dickerson and 

Robertson 2012).  These methods distort the evolutionary picture however by weighting 

gene ages towards ancient or recent taxa respectively, leaving a dearth of genes around the 

period of interest near the time of the two rounds of WGD.  Our new Furthest from 

Singleton (FFS) gene dating method takes account of the entire paralog duplication topology 

as well as the relative divergence of each gene from the inferred ancestor, resulting in a 

more nuanced distribution of gene ages with increased temporal resolution, based on all 

the relevant evidence in the cross-species gene tree.  Our analyses of this new perspective 

on gene evolution leads us to propose a subtly different explanation to previous studies for 

the association of the retained ohnologs with dominant diseases, namely that ohnolog 

haploinsufficiency is a more parsimonious hypothesis than those previously advanced. 

FFS dates more genes to Chordata, Vertebrata and Gnathostomata, the taxa from just 

before to just after the two WGD events in vertebrate evolutionary history (Singh and 

Isambert 2020), than do the previously described LCA and MRD methods (Figure 4.4).  FFS 

dates the majority of the ohnologs, whether subsequently duplicated or not, to the taxon 

Vertebrata (Figure 4.6C), consistent with the synteny-based work which defined the 

ohnologs (Singh and Isambert 2020).  As FFS assigns ages based on sequence divergence 

within the duplication topology, the dating of the ohnologs to Vertebrata is evidence that 
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FFS is assigning ages to genes based on their ‘functional age’, rather than assuming in effect 

that the genes’ functions must be ancestral (LCA) or novel (MRD).  This does not explain 

however why there are some outliers in the FFS-derived pure ohnolog ages (i.e., ohnologs 

which have not subsequently duplicated) which appear younger than Vertebrata (Figure 

4.6C); none of these ‘young ohnologs’ have event trees which go back as far as Vertebrata in 

Ensembl 103 whereas they presumably did in Ensembl 84, the version with which the 

ohnolog designation was calculated (Singh and Isambert 2020).  This will be investigated 

further in future work. 

We find that miRNAs with confirmed target protein-coding gene interactions originate 

mainly at Vertebrata, as do these miRNAs’ targets, with smaller groups of miRNAs 

originating at Euteleostomi and Eutheria and also predominately targeting the protein-

coding genes dated to Vertebrata (Figure 4.7).  Interestingly, this is a similar but temporally 

shifted view of bursts of miRNA creation to that shown in a study examining the sudden 

creation of the majority of metazoan body plans during the so-called Cambrian explosion 

(Peterson et al. 2009).  Unlike our focus on individual miRNAs, this previous work dated the 

peak bursts of miRNA family creation to around Bilateria/Chordata (at the base of the 

protostomes and deuterostomes), Vertebrata and Primates, using an LCA-like algorithm 

(Peterson et al. 2009).  It is possible that the FFS method provides a finer-detailed view than 

was available with the data or LCA-like approach used in the previous study and so we’re 

now seeing evidence for the divergence of the miRNAs since the origins of their families.  

Another explanation for the discrepancy is our use of a human-centric ‘slice’ of the Ensembl 

Compara cross-species gene tree rather than all known clades.  More significantly, our data 

lacks any of the primate-specific miRNAs apart from those dated to Homo sapiens and so we 

cannot yet tell for certain how the distribution of miRNA/target interactions which we 

observe relates to this earlier work (Peterson et al. 2009).  Obtaining the primate-specific 

miRNA gene trees from Ensembl Compara will clearly be a priority in our future work. 

The ‘functional ages’ assigned by the Furthest from Singleton method mean that we can 

shed some light on process-specific evolutionary histories.  We observe that while the genes 

on the autosomes have a median age of Vertebrata, the X chromosome genes originate 

mainly in Gnathostomata and the Y chromosome genes are much more recent, dating to 

Homininae at the common ancestor of humans and chimpanzees (Figure 4.8A), consistent 
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with the origins of therian X/Y sex determination (Veyrunes et al. 2008) and Y chromosome 

degeneration respectively (Graves 2006).  Both miRNAs (Figure 4.8D) and protein-coding 

genes (Figure 4.8C) associated with cancer date to around Vertebrata in our analyses, as do 

the genes associated with Oncomir-1 and its related transcription factors and paralogs 

(Figure 4.8F), similar to the results from the earlier analyses of Cambrian-era miRNAs mir-

15/16 and mir-17~92 (Peterson et al. 2009).  We also see an interesting distinction between 

ancient core cellular processes such as transcription and nuclear RNA export and more 

recent miRNA silencing-specific complexes (Figure 4.8E), indicating that the miRNA-specific 

machinery has been under selection pressure much more recently than the basal 

transcription processes, also at around the time of the Cambrian explosion in the taxon of 

Vertebrata, when it would be necessary for tissue differentiation and the canalisation 

leading to stable body plans (Peterson et al. 2009). 

The consistent dating of genes associated with cancer, a group of diseases often associated 

with dominant mutations, to around the time of the two rounds of whole genome 

duplication in the taxon Vertebrata led us to investigate the distribution of dominant 

disease over time.  It has been previously suggested that the enrichment of the ohnologs for 

dominant disease associations is because of the higher post-WGD retention of dosage-

sensitive genes (Makino and McLysaght 2010; Singh et al. 2012) and so we wanted to see 

how haploinsufficiency varies at around the time of the two rounds of WGD in our early 

vertebrate ancestors.  We observe that as well as being older (partially at least as a 

consequence of the FFS age allocation algorithm) (Figure 4.9A), the less diverged paralogs 

are predicted to be more likely to be haploinsufficient when mutated (Figure 4.9B), as are 

the ohnologs (Figure 4.9C), consistent with earlier studies (Makino et al. 2009; Makino and 

McLysaght 2010) and with our observations of the ohnologs’ dominant disease enrichment. 

The initially identical paralogs which resulted from whole genome duplications, in 

conjunction with the increased precision of heritability that the evolution of the miRNAs 

enabled, allowed natural selection the freedom to rapidly explore morphological space 

during the Cambrian explosion (Peterson et al. 2009).  This would appear however to have 

been at the cost of an increased dominant disease burden, in large part due to the biased 

retention of haploinsufficient genes as previously discussed.  We unsurprisingly find that 

genes associated with dominant diseases are the most highly predicted to be 
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haploinsufficient (Figure 4.10B) but, while the less diverged paralogs with higher predictions 

of haploinsufficiency are older (Figure 4.9A), we find the recessive disease-associated genes 

in general are slightly older than the dominant disease-associated genes, dating to Chordata 

as opposed to a median age of Vertebrata (Figure 4.10A). 

In this study we have defined the disease association status of genes by reference to the 

genes’ OMIM phenotypes (McKusick-Nathans Institute of Genetic Medicine 2021) and have 

only classified the disease-associated genes as dominant or recessive.  Our results would be 

more nuanced if the dominant disease-associated genes were stratified further into those 

that are known to be haploinsufficient, dominant-negative or prone to gain-of-function 

mutations.  A related improvement would be to take the type of gene product into account, 

since mutations to enzymes are generally recessive and mutations to transcription factors 

and monomers of multimeric complexes are usually dominant (Jimenez-Sanchez et al. 

2001). 

We have used the Decipher (Huang et al. 2010) predictions of haploinsufficiency in our 

analyses, which are derived from a linear discriminant analysis of several genomic and 

evolutionary properties of known haploinsufficient and presumed haplosufficient genes 

(genes with heterozygous loss but no phenotypical change in multiple control individuals in 

genome-wide association studies).  Of the properties considered by this model, proximity in 

the network of gene interactions to known haploinsufficient genes was the most predictive 

of haploinsufficiency, followed by promotor conservation, embryonic expression and 

human/macaque dN/dS ratios (Huang et al. 2010).  We will repeat our haploinsufficiency-

based analyses with another continuous predictive measure of haploinsufficiency developed 

by the Genome Aggregation Database (gnomAD), the loss-of-function observed/expected 

upper bound fraction (LOEUF) metric (Karczewski et al. 2020).  This metric, derived from the 

analysis of 125,748 whole exome sequences and 15,708 whole genome sequences, is 

applicable to all protein-coding genes, unlike the Decipher scores which are applicable only 

to the 12,443 genes with values for the four properties selected by Decipher (Huang et al. 

2010).  The LOEUF metric is calculated from the ratio of observed to expected loss-of-

function variants and the large sample sizes of gnomAD mean that the LOEUF metric can be 

calculated for all the protein-coding genes (Karczewski et al. 2020). 
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Interestingly, the ohnologs are consistently highly predicted to be haploinsufficient from 

Opisthokonta past the likely time of the two rounds of WGD until Euteleostomi, at which 

point the predicted likelihood of haploinsufficiency decreases fairly steadily until the 

present (Figure 4.11A).  The rate of gene retention also decreases sharply from Euteleostomi 

irrespective of the gene dating method used (Figure 4.4), leading to a plateauing of the 

cumulative frequencies of both dominant and recessive disease-associated genes at that 

time, with consistently more genes associated with recessive disease than with dominant 

disease at all taxa because of the early enrichment for recessive diseases in ancient taxa 

(Figure 4.11B).   

The excess of recessive over dominant disease-associated gene retention switches to a 

deficit at Vertebrata (Figure 4.11C), consistent with the biased retention of dosage-sensitive 

genes post-WGD previously suggested (Makino and McLysaght 2010; Singh et al. 2012).  

However, unlike previous studies which found that ohnologs rarely experience SSDs post-

WGD (Makino et al. 2009; Makino and McLysaght 2010), we find that when analysed in the 

context of the modern cross-species gene tree, which is based on the sequences of far more 

species than available to the previous studies, together with the more functionally based 

gene dating of the FFS algorithm, 67% of the ohnologs are in fact subsequently duplicated 

after Vertebrata (3,303 out of 4,918) and so are not as sensitive to dosage gains as 

previously thought.  In conclusion therefore, while the study of extant human genes in the 

context of the cross-species gene tree cannot definitively explain the paradox of inheritable 

disease-associated paralogs, we propose that the haploinsufficiency of the ohnologs is a 

more parsimonious explanation than more general dosage sensitivity for the biased 

retention of the ohnologs associated with dominant disease. 
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5 Discussion 

We have focussed in this thesis on understanding how gene dosage changes are buffered by 

miRNAs in cancer cells and how dominant diseases caused by dosage imbalances evolved 

across evolutionary timescales. 

Efforts to map the gene dosage changes arising from copy number variations in the well-

characterised NCI-60 cell line panel have to date been conducted using relatively low-

resolution array-based comparative genomic hybridisation methods or whole exome 

sequencing analyses.  We have used short read alignments from whole genome sequencing 

data to generate in Chapter 2 a higher-resolution map of CNVs in cancer than has been 

previously calculated from aCGH assays.  Our analyses of these CNVs show inter alia that 

tumour suppressor genes are lost more than expected and we derive a list of candidate 

novel driver genes which are enriched for involvement in multiple cancer-related processes. 

Tumour cells survive large variations in gene dosage which cause non-tumour cells to 

undergo apoptosis and so there must be mechanisms in cancer which buffer the 

consequences of the gene dosage alterations.  We hypothesised that miRNA-mediated 

buffering might be one such mechanism.  We investigated the CNVs of miRNAs in the cancer 

cell lines in Chapter 3 and found that widespread losses of miRNAs lead to the derepression 

of genes involved in multiple cancer-related processes and pathways.  Our analyses of the 

mir-17~92 cluster of miRNAs lead us to propose a novel mechanism, which potentially 

occurs generally in cancer cells.  We suggest that transient C-MYC-induced repression of 

TP53 can, acting via mir-17~92 and other miRNAs, result in sustained TP53 and PTEN 

repression while shielding the cancer cell from the apoptosis which would normally result 

from C-MYC overexpression. 

In addition to investigating gene dosage changes in cancer cells, we wanted to see if the 

evolutionary history of disease genes could explain the surprising persistence of such genes 

in metazoan genomes.  We developed in Chapter 4 a novel method for assigning ages to 

paralogs based on their duplication history and subsequent divergence.  We then used this 

new perspective to investigate evolutionarily distinct processes such as the inheritance of 

basal cellular processes and the metazoan evolution of miRNA gene repression.  We also see 

a change from recessive to dominant disease association around the time of the whole 
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genome duplications that occurred in our vertebrate ancestors.  We suggest a subtly 

different model of disease gene retention in the human genome to those previously 

advanced. 

5.1 CNVs affect a wide range of cancer-related processes 

Widespread gene dosage changes caused by copy number variations and aneuploidies are 

characteristic of the cancer cell and understanding the causes of these dosage changes is 

key to understanding and treating the cancer phenotype (International HapMap et al. 2007; 

Torres et al. 2008; Yang et al. 2016).  It is necessary to study a representative range of 

cancers in order to elucidate general features of cancer cells and so we have analysed copy 

number variations in the often-studied NCI-60 cell line panel (Iafrate et al. 2004; Shoemaker 

2006; Henrichsen et al. 2009).  Unlike the previous such work to date, which used aCGH 

assays or whole exome sequencing to determine the end points and copy numbers of 

gained and lost regions of the genome in cancer (Lorenzi et al. 2009; Beroukhim et al. 2010; 

Varma et al. 2014), we have used the relative read depths of aligned short reads from whole 

genome sequencing data to create a more accurate map of CNVs in the NCI-60 cell lines 

than previously seen. 

Unsurprisingly given that the cell lines under investigation were derived from tumour cells, 

and consistent with earlier studies (Beroukhim et al. 2010; Varma et al. 2014), we find that 

there are frequent dosage changes to genes associated with cancer processes.  The CNV 

landscape is dominated by losses of tumour suppressors with less frequent gains of 

oncogenes and there are aneuploidies affecting the majority of chromosomes.  There are 

few regions where the cell line genomes are completely lost however, indicating that the 

dosage changes are mainly perturbations to existing interaction stoichiometries rather than 

complete disruptions to interaction networks.  Unlike previous studies (Lorenzi et al. 2009; 

Bignell et al. 2010; Varma et al. 2014), we are able to detect smaller CNVs with an endpoint 

resolution of just 104 nucleotides even with relatively low coverage sequencing and 

moreover we can calculate accurate absolute copy numbers instead of just the fold changes 

characteristic of aCGH-based studies. 



151 

5.2 Novel candidate cancer driver genes 

Mutations occur in all cells undergoing mitosis and it is important to distinguish between 

the driver mutations which are causal in oncogenesis and positively selected for because of 

the growth advantages they provide to the cell and the passenger mutations which become 

fixed in a tumour clonal population simply because of driver gene proximity (Greenman et 

al. 2007).  It was previously suggested that driver mutations could be identified by 

calculating CNV frequencies under the hypothesis that more CNVs will affect regions 

dominated by driver mutations than regions containing mainly passengers (Beroukhim et al. 

2010; Bignell et al. 2010; Pleasance et al. 2010; Martincorena et al. 2017; Rheinbay et al. 

2020).  We therefore focused on the regions of the genome which were the most affected 

by CNVs across the NCI-60 panel, defining the 100 most often gained and 100 most often 

lost as CNV hotspots.  We analysed the genes in the resulting gain and loss hotspots by 

performing a permutation test on the CNVs affecting the genes in each hotspot in order to 

focus on cancer-related genes which are affected by CNVs more than expected by chance.  

These candidate oncogenesis driver genes include previously known driver genes 

(Martincorena et al. 2017) but we also find potentially novel cancer drivers, which are 

enriched for cancer-related processes. 

The candidate driver genes which are tumour suppressors and lost more than expected by 

chance are enriched for processes such as apoptosis, senescence and the Wnt and TGF-b 

cell cycle signalling cascades whereas the gained oncogene drivers are more associated with 

enhanced cell growth, proliferation and metastasis.  For example, the tumour suppressor 

FOXO4, which is lost in 15 cell lines, regulates cell cycle progression and its expression levels 

are inversely correlated with severity of non-small cell lung cancer (Xu et al. 2014).  Gains of 

cell division protein kinase CDK6 on the other hand are associated with increased 

proliferation and angiogenesis (Diaz-Moralli et al. 2013) and are commonly upregulated in 

medulloblastomas (Silber et al. 2013), though in our data the CDK6 gains are predominantly 

in cell lines derived from renal, hematopoietic and skin cancers.  These results are consistent 

with the widely held hypothesis that for cancer cells to gain the various hallmarks of cancer 

they must disrupt a range of protective mechanisms in order to attain the cancer phenotype 

(Hanahan and Weinberg 2011). 
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Our analyses so far implicitly assume that the prominent aneuploidies which we observe 

across the cell lines are a cause of cancer but, since we do not know the tumour stages from 

which the NCI-60 cell lines were taken, we cannot be sure that these are not in fact a late-

stage consequence of, for example, TP53 inactivation (Torres et al. 2008).  It would be 

interesting to reanalyse our data after removing the aneuploidies from the CNV map as this 

would remove the influence of the aneuploidies from the calculation of CNV hotspot 

locations, thereby changing the regions of the genome from which we draw our candidate 

novel driver genes.  A subsequent comparison of the number of known driver genes found 

with and without the influence of the aneuploidies would indicate whether removing the 

aneuploidies could increase the sensitivity of our method in determining cancer driver 

genes.  We have also only analysed the 55 NCI-60 cell lines which are derived from cancers 

in just nine tissues and so future work to apply our pipeline to the much larger set of cell 

lines in the Cancer Cell Line Encyclopedia (Ghandi et al. 2019) will be extremely interesting. 

5.3 Haploinsufficiency leads to dominant disease gene retention 

We have observed widespread gene dosage changes in cancer, changes which in normal 

cells trigger apoptosis.  That cancer cells survive suggests the existence of mechanisms that 

buffer the ordinarily deleterious consequences of dosage imbalance (Torres et al. 2008; 

Sheltzer and Amon 2011).  The buffering mechanisms available to cancer cells arose in large 

part over evolutionary timescales and so we have investigated the evolutionary histories of 

gene dosage compensation mechanisms which buffer dominant disease mutations such as 

those associated with cancer. 

We wanted to understand the evolutionary histories of disease-associated genes without 

the weightings to ancient or recent taxa caused by previously proposed paralog dating 

methods and so we developed a novel method which takes into account paralog divergence 

as well as the topology of paralog duplication trees when calculating gene ages.  Our new 

method, Furthest from Singleton, results in gene ages which correspond better to their 

known origins, such as dating the ohnologs to Vertebrata, consistent with their creation by 

whole genome duplication events (Singh and Isambert 2020). 

MicroRNAs mediate post-transcriptional buffering of gene dosage changes by providing 

targeting specificity to the mRNA silencing machinery, but miRNA gains are often 
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deleterious because of the widespread resulting disruption to expression levels, unless they 

are duplicated along with their targets and so overall interaction stoichiometry is preserved.  

We calculated the ages of the miRNAs and their verified protein-coding targets and found 

that the majority of the miRNAs with experimentally confirmed target interactions are 

dated by FFS to Vertebrata, as are the majority of their targets, consistent with these 

miRNAs and target genes being created by whole genome duplication events. 

In further evidence that FFS assigns sensible ages to genes, the ages assigned to the miRNAs 

by our method result in a similar distribution of miRNA ages to that shown by a study which 

found that novel miRNA families were created at the divergences of the major metazoan 

lineages, especially during the Cambrian explosion (Peterson et al. 2009).  This analysis is 

currently limited however by the lack of primate-specific miRNA gene trees in Ensembl 

Compara v103 and so we will pursue this in our future work. 

In addition to analysing the evolutionary history of miRNA-mediated gene dosage buffering 

we were able to determine the ages of genes involved in specific processes and systems, 

such as the more ancient origins of the genes on the autosomes with a median taxon of 

Vertebrata compared to the X chromosome genes which have a younger median taxon of 

Gnathostomata, consistent with the origins of sex determination in therian mammals 

(Veyrunes et al. 2008).  As expected, the genes associated with transcription and nuclear 

export during miRNA biogenesis are much older than those associated specifically with 

mRNA silencing and miRNA biogenesis, indicating that the miRNA-specific machinery has 

been shaped by more recent selection pressures than the basal transcription processes, 

because of its association with miRNAs during the Cambrian explosion and increased 

morphological complexity which arose at that time (Peterson et al. 2009). 

The majority of genes associated with cancer, whether miRNA or protein-coding, also date 

to around the time of the vertebrate common ancestor.  Since cancer is often triggered by 

dominant mutations, we analysed the ages of genes associated with dominant diseases.  

Previous studies suggested that the enrichment of the ohnologs for dominant diseases was 

caused by the post-WGD retention of dosage-sensitive genes while the non-dosage-

balanced genes could be more safely lost (Makino and McLysaght 2010; Singh et al. 2012), 

and so we also incorporated analysis of how haploinsufficiency varies over evolutionary 

timescales.  Our analysis shows that the older and more conserved paralogs are more likely 
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to be haploinsufficient, as are the ohnologs.  The ohnologs are consistently predicted to be 

likely to be haploinsufficient until two taxa after the whole genome duplications at 

approximately Euteleostomi, after which the predicted haploinsufficiency of newly created 

genes decreases sharply.  The cumulative frequencies of retained genes associated with 

recessive and dominant diseases also plateau at this time because the overall rate of gene 

retention falls significantly, but the ratio of dominant to recessive disease-associated genes 

changes at Vertebrata from an excess of recessive diseases to a deficit, consistent with the 

post-WGD retention of dominant disease-associated ohnologs. 

These changes in the relative burdens of recessive and dominant diseases are consistent 

with the previously advanced theories of post-WGD retention of dominant disease genes 

due to dosage sensitivity (Makino et al. 2009; Makino and McLysaght 2010).  However, 

unlike these earlier studies which found that few ohnologs experienced subsequent 

duplications, we find instead that two thirds of the ohnologs have been duplicated in taxa 

more recent than Vertebrata.  It will be interesting to investigate this further in an effort to 

understand whether this is because of the now much greater number of species in the 

Ensembl cross-species gene tree than available to the previous studies or whether this is 

because FFS assigns ages based on sequence divergence in addition to paralog duplication 

topology.  However, since it seems that the ohnologs do experience frequent duplications 

after all, they are not therefore generally sensitive to dosage gains.  We propose instead 

that the greater haploinsufficiency of the ohnologs is sufficient to explain their retention 

rather than a more general dosage sensitivity, a subtly different and more parsimonious 

explanation than previous hypothesised (Makino and McLysaght 2010). 

5.4 MicroRNA derepression occurs widely in cancer 

We have already seen that buffering of gene dosage changes must be key to the survival of 

cancer cells.  Our finding that the bulk of experimentally confirmed miRNA/target 

interactions are between genes created in the whole genome duplications 

contemporaneously with the dominant disease-associated ohnologs led us to focus on 

miRNA-mediated buffering of gene dosage changes in the cancer cell. 

We reasoned that miRNAs which are pivotal in oncogenesis would tend to be consistently 

affected by dosage changes such as CNVs, but we also realised that miRNAs expressed from 
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adjacent loci would tend to experience the same CNVs simply as a function of their close 

genomic proximity.  We grouped the miRNAs into distinct seed/locus families to avoid 

multiple counting miRNAs and were therefore able to accurately determine which miRNAs 

are consistently affected by CNVs in cell lines and so might be under selective pressure in 

cancer. 

Seed/locus families containing multiple miRNA precursors are lost significantly more often 

than families with just one precursor but have a lower range of gains, consistent with 

selection pressure acting to deregulate a wide variety of processes in cancer cells (Kumar et 

al. 2007).  We also observe miRNA biogenesis pathway disruption in the majority of cell lines 

which implies a widespread deregulation of processes caused by global miRNA depletion, 

previously shown to lead to increased cell migration and tumour growth (Kumar et al. 2007; 

Lin and Gregory 2015).  Additionally, seed/locus families without redundant copies of their 

precursors elsewhere in the genome are lost more often than expected, also consistent with 

the hypothesis that tumour cells benefit from relaxing miRNA regulation. 

We have so far only considered CNVs in cell lines and have not yet added transcriptomic 

data to our models, because we wanted to carefully consider the effects of CNVs alone. 

Adding expression data is a priority for future work.  While we expect CNVs to broadly 

correlate with mRNA levels in cell lines (Stingele et al. 2012), the level of expressed protein 

is frequently decoupled from the number of copies of a gene, not least because of miRNA-

mediated post-transcriptional tuning of protein expression (Sheltzer and Amon 2011). 

5.5 Oncomir-1 plays a significant role in sustaining the cancer phenotype 

The largest group of miRNA seed/locus families with an identical pattern of CNVs across the 

cell lines that is not explained by genomic proximity contains mir-106a~363 on chromosome 

X.  This cluster is a paralog of the mir-17~92 oncomir cluster on chromosome 13, which is 

better known as Oncomir-1.  The miRNAs in these oncomir clusters are enriched for cancer-

related processes such as control of the cell cycle, apoptosis and signalling.  Another cluster 

on chromosome 13, which contains mir-15a and mir-16-1, tumour suppressor miRNAs 

which target BCL2 and induce apoptosis (Cimmino et al. 2005), is similarly mainly affected 

by losses.  Interestingly, while the paralogs of these miRNAs, mir-15b and mir-16-2 on 
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chromosome 3, are also enriched for signalling and cell cycle control, they are differently 

affected by CNVs with gains in ten cell lines but with no losses. 

In order to understand these seemingly contradictory CNV patterns we narrowed our focus 

to the CNVs of just oncomirs and tumour suppressor miRNAs.  The most striking result is 

that Oncomir-1 on chromosome 13 and its paralog on chromosome X are never lost 

together in the same cell line, suggesting that at least some of the miRNAs expressed from 

these polycistronic miRNA clusters are essential to cancer cells.  While we found potentially 

compensatory losses of Xist in every female-derived cell line in which the chromosome X 

Oncomir-1 paralog was also partially lost, this only offers a possible explanation for selection 

pressure in cancer cells to maintain X chromosome gene dosage, and does not address the 

question of why the two Oncomir-1 paralogs are never simultaneously lost even partially. 

We constructed a detailed interaction network of the Oncomir-1 paralogs, including an 

additional partial paralog on chromosome 7, together with the transcription factors known 

to interact with these miRNA clusters.  Grouping the miRNAs into four seed-based families 

revealed that the transcription factors and seed families form auto-regulatory feedback 

loops, where a transcription factor activates transcription of a miRNA, but the miRNA 

represses the translation of the transcription factor.  The most central to the Oncomir-1 

interaction network of these auto-regulatory loops are those involving TP53, which is also 

repressed by the mir-15/16 paralogs discussed above.   

Even partial loss of any Oncomir-1 miRNA seed is balanced by the gain of an Oncomir-1 

activating transcription factor or the loss of an Oncomir-1 inactivating transcription factor in 

all but one of the cell lines (prostate cancer-derived DU145), further indicating the centrality 

of Oncomir-1 and its paralogs to TP53 repression.  Furthermore, there are CNVs affecting 

Oncomir-1 either directly or via its transcription factors which are consistent with increased 

Oncomir-1 expression and hence TP53 repression in the vast majority of cell lines (91%). 

The partial Oncomir-1 paralog on chromosome 7 only contains precursors of miRNAs with 

the miR-17 and miR-92 seeds.  The chromosome 7 paralog can be lost at the same time as 

the two main paralogs on chromosomes 13 and X, which suggests that it is the miRNAs with 

the seeds which are not expressed from the chromosome 7 paralog, miR-18 and miR-19, 

which are under the most selection pressure to be retained in cancer cells.  The miR-19 

family miRNAs contain the second-most central seed in the auto-regulatory network and 
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miRNAs containing this seed, in addition to targeting TP53, are also known to target PTEN, a 

tumour suppressor which negatively regulates the Akt signalling pathway (Mu et al. 2009; 

Olive et al. 2009). 

C-MYC is the most consistently affected transcription factor in Oncomir-1’s interaction 

network, gained in 25 out of 55 cell lines, and further analysis of C-MYC’s interactions 

revealed that in addition to directly activating transcription of Oncomir-1, C-MYC also 

activates mir-663a and mir-1228 which, indirectly via TP53 repression, act to derepress 

Oncomir-1.  Since full TP53 expression would prevent the activation of Oncomir-1 it seems 

likely that transient C-MYC expression would, acting via mir-663a/1228, repress TP53 while 

simultaneously activating Oncomir-1, thus converting a transient oncogenic signal from C-

MYC overexpression into sustained TP53 repression by Oncomir-1.  Furthermore, while C-

MYC overexpression can trigger apoptosis (Hoffman and Liebermann 2008), the resulting 

consistent expression of Oncomir-1 would lead to down-tuning of C-MYC levels via the miR-

17, miR-19 and miR-92 family miRNAs, protecting the cancer cell from the otherwise 

potentially apoptotic effects of C-MYC overexpression. 

We therefore propose a novel mechanism whereby transient C-MYC elevation leads to TP53 

repression via mir-663a/1228 for long enough that Oncomir-1 can then repress TP53 in a 

sustained manner, in addition to repressing PTEN via the miR-19 family miRNAs and 

avoiding C-MYC-induced apoptosis.  This network forms a bistable switch in the majority of 

cancers which once activated by C-MYC leads to sustained repression of TP53 and PTEN, but 

which could be potentially reversed with Oncomir-1 antagonists such as miRNA ‘sponges’ 

(Ebert et al. 2007), in order to sequester the miRNAs expressed from Oncomir-1 and its 

paralogs. 

Future work could investigate this mechanism on two fronts.  Firstly, as a proof-of-concept, 

we will transfect tumour cell line cultures and matching normal tissue cell cultures with 

miRNA sponges which sequester various combinations of the miRNAs expressed from 

Oncomir-1, to confirm whether the mechanism functions as we expect in vivo.  In parallel 

with these experiments, we will construct a system of ordinary differential equations to 

model the network’s response to various perturbations such as CNVs and miRNA sponges.  

This systems biology approach will guide the experimental investigation, which can in turn 
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be used to update the theoretical model, enabling us to refine our knowledge of this system 

of Oncomir-1 interactions in a broad range of cancers. 

5.6 Conclusions 

Taken as a whole, the work presented in this thesis advances our understanding of the role 

of miRNAs in buffering the gene dosage changes which arise from copy number variations in 

cancer.  We have shown that read depth analysis of whole genome sequencing data reveals 

detailed CNVs and hence gene dosage changes in the NCI-60 cell lines, and we have derived 

a list of candidate novel driver genes for further investigation.  We have also been able to 

add to the understanding of the mechanisms behind the retention of ancient disease-

associated paralogs in the human genome.  Our investigation of the dosage changes 

affecting miRNAs and their targets has enabled us to propose a novel mechanism, 

potentially widespread across cancer types, whereby the interplay between Oncomir-1 and 

its paralogs, transcription factors and other miRNAs comprise a bistable switch in 

oncogenesis.  When this system is in the conformation favourable to cancer progression it 

sustains TP53 and PTEN repression and enables the avoidance of apoptosis.  We believe this 

switch could be potentially reversed with Oncomir-1 antagonists, leading to regained 

control over the cell cycle and thereby inducing apoptosis in Oncomir-1-dependent cancer 

cells. 
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6 Supplementary Information 

Accession Name Read 
length 

Sex Tissue Disease Age Coverage 

SRR4009203 UACC62 100 female Skin Melanoma  0.82 
SRR4009225 H322M 100 male Lung Lung 52 2.2 
SRR4009236 OVCAR4 100 female Ovary Ovary 42 1.6 
SRR4009238 MDA-MB-231 100 female Breast Breast 51 1.4 
SRR4009239 HOP62 100 female Lung Lung 60 1.8 
SRR4009240 RPMI-8226 100 male Hematopoietic Hematopoietic 61 0.92 
SRR4009241 RXF-393 100 male Renal Renal 54 1.5 
SRR4009242 SF539 100 female Brain Glioblastoma 34 1.8 
SRR4009243 BT549 100 female Breast Breast 72 1.9 
SRR4009245 CAKI-1 100 male Renal Renal 49 2.2 
SRR4009246 OVCAR5 100 female Ovary Ovary 67 0.97 
SRR4009247 H23 100 male Lung Lung 51 1.4 
SRR4009248 H460 100 male Lung Lung  2.1 
SRR4009249 Hs578T 100 female Breast Breast 74 1.4 
SRR4009250 SNB75 100 female Brain Glioblastoma 78 1.7 
SRR4009251 TK10 100 male Renal Renal 43 1.1 
SRR4009252 SF268 100 female Brain Glioblastoma 24 1.9 
SRR4009253 M14 100 female Skin Melanoma  2.3 
SRR4009254 SKMEL2 100 male Skin Melanoma 60 1.9 
SRR4009256 786-0 100 male Renal Renal 58 2.8 
SRR4009258 UACC257 100 female Skin Melanoma  2.9 
SRR4009259 T47D 100 female Breast Breast 54 1.9 
SRR4009260 SKMEL-28 100 male Skin Melanoma 51 1.4 
SRR4009261 UO31 100 female Renal Renal  0.94 
SRR4009262 HCC2998 100 female Colon Colon  1.1 
SRR4009263 OVCAR3 100 female Ovary Ovary 60 0.76 
SRR4009265 H522 100 male Lung Lung 60 2.6 
SRR4009267 KM12 100 female Colon Colon  1.2 
SRR4009270 DU145 100 male Prostate Prostate 69 0.81 
SRR4009272 SKMEL5 100 female Skin Melanoma 24 1.1 
SRR4009273 MCF7 50 female Breast Breast 69 0.41 
SRR4009274 HOP92 100 female Lung Lung 62 2.4 
SRR4009275 OVCAR8 100 female Ovary Ovary 64 1.7 
SRR4009277 PC3 100 male Prostate Prostate 62 2 
SRR4009278 SKOV3 100 female Ovary Ovary 64 0.94 
SRR4009279 H226 100 male Lung Lung  2.9 
SRR4009280 Sw620 100 male Colon Colon 51 1.7 
SRR4009281 IGROV1 100 female Ovary Ovary 47 1.1 
SRR4009282 A549 100 male Lung Lung 58 0.97 
SRR4009283 MOLT-4 100 male Hematopoietic Hematopoietic 19 1.1 
SRR4009284 HT29 100 female Colon Colon 44 0.83 
SRR4009286 HCT15 100 male Colon Colon  1.1 
SRR4009287 HCT116 100 male Colon Colon  1 
SRR4009289 SN12C 100 male Renal Renal 43 2.2 
SRR4009290 HL-60 100 female Hematopoietic Hematopoietic 36 1.1 
SRR4009291 CCRF-CEM 100 female Hematopoietic Hematopoietic 4 1.2 
SRR4009292 A498 100 female Renal Renal 52 0.86 
SRR4009293 COLO205 100 male Colon Colon 70 1 
SRR4009294 LOXIMVI 100 male Skin Melanoma 58 1.1 
SRR4009295 ACHN 100 male Renal Renal 22 2.4 
SRR4009296 SR 100 male Hematopoietic Hematopoietic 11 1.1 
SRR4009297 K562 100 female Hematopoietic Hematopoietic 53 1.1 
SRR4009310 EKVX 100 male Lung Lung  3.2 
SRR4009321 MALME3M 100 male Skin Melanoma 43 2.3 
SRR4009329 SF295 100 female Brain Glioblastoma 67 1.9 

Table 6.1 - NCI-60 cell lines 

The 55 NCI-60 cell lines analysed in this thesis.  The accession numbers refer to sequencing runs deposited in the 
Sequence Read Archive (Sayers et al. 2020) under project accession PRJNA338012 (Turner et al. 2017).  The name, read 
length, sex, tissue of origin, disease type, age and sequencing coverage fields were curated by manual inspection of the 
SRA information pages for each sequencing run. 
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Figure 6.1 - The distributions of cell line gains and losses for 1 Mb sliding windows 

The distributions of cell line gains (A) and losses (B) for 1 Mb sliding windows across the entire genome.  The vertical 
dashed lines are the thresholds at or above which the 1 Mb windows contain enough cell lines with gains (A) or losses 
(B) to be included in the top 100 gain or loss CNV hotspots. 
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GO term Enrichment 
negative regulation of monocyte differentiation (GO:0045656) > 100 
hepatocyte growth factor receptor signaling pathway (GO:0048012) > 100 
positive regulation of microtubule polymerization (GO:0031116) > 100 
positive regulation of binding (GO:0051099) 34.91 
regulation of cellular response to stress (GO:0080135) 14.92 
chromosome organization (GO:0051276) 9.71 
negative regulation of gene expression (GO:0010629) 7.14 
interspecies interaction between organisms (GO:0044419) 6.78 
response to external stimulus (GO:0009605) 5.69 
regulation of transcription by RNA polymerase II (GO:0006357) 5.51 

Table 6.2 - Enriched biological process GO terms for gain hotspots 

The biological process GO terms that are enriched for gain hotspots in the NCI-60 cell lines.  All terms are significant at 
FDR P < 0.05. 

 

 

Reactome pathway Enrichment 
Sema4D mediated inhibition of cell attachment and migration (R-HSA-416550) > 100 
MET activates RAP1 and RAC1 (R-HSA-8875555) > 100 
Transcriptional regulation of granulopoiesis (R-HSA-9616222) 71.02 
Estrogen-dependent gene expression (R-HSA-9018519) 69.81 
Formation of the beta-catenin:TCF transactivating complex (R-HSA-201722) 68.65 
Constitutive Signaling by Aberrant PI3K in Cancer (R-HSA-2219530) 66.44 
RHO GTPases activate PKNs (R-HSA-5625740) 65.38 
MAPK family signaling cascades (R-HSA-5683057) 22.39 
Cell Cycle, Mitotic (R-HSA-69278) 16.68 
Cytokine Signaling in Immune system (R-HSA-1280215) 10.01 
Generic Transcription Pathway (R-HSA-212436) 8.61 

Table 6.3 - Enriched Reactome pathways for gain hotspots 

The Reactome pathways that are enriched for gain hotspots in the NCI-60 cell lines.  All terms are significant at FDR P < 
0.05. 
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GO term Enrichment 
common-partner SMAD protein phosphorylation (GO:0007182) > 100 
dorsal/ventral axis specification (GO:0009950) > 100 
paraxial mesoderm morphogenesis (GO:0048340) > 100 
negative regulation of telomerase activity (GO:0051974) > 100 
embryonic brain development (GO:1990403) > 100 
positive regulation of smooth muscle cell apoptotic process (GO:0034393) > 100 
negative regulation of production of miRNAs involved in gene silencing by miRNA (GO:1903799) > 100 
negative regulation of androgen receptor signaling pathway (GO:0060766) > 100 
retinoic acid receptor signaling pathway (GO:0048384) > 100 
granulocyte differentiation (GO:0030851) 86.53 
response to immobilization stress (GO:0035902) 83.55 
ribosomal large subunit assembly (GO:0000027) 80.76 
cellular senescence (GO:0090398) 75.72 
endoderm development (GO:0007492) 48.46 
positive regulation of cell cycle arrest (GO:0071158) 43.27 
activation of cysteine-type endopeptidase activity involved in apoptotic process (GO:0006919) 40.38 
transforming growth factor beta receptor signaling pathway (GO:0007179) 36.71 
negative regulation of angiogenesis (GO:0016525) 34.61 
regulation of BMP signaling pathway (GO:0030510) 34.61 
transcription initiation from RNA polymerase II promoter (GO:0006367) 26.63 
stem cell population maintenance (GO:0019827) 25.78 
negative regulation of transmembrane receptor protein serine/threonine kinase signaling pathway 
(GO:0090101) 

25.59 

cell cycle arrest (GO:0007050) 25.42 
regulation of ubiquitin-dependent protein catabolic process (GO:2000058) 22.16 
negative regulation of cell growth (GO:0030308) 19.54 
cell fate commitment (GO:0045165) 19.46 
rhythmic process (GO:0048511) 17.75 
negative regulation of catabolic process (GO:0009895) 15.48 
negative regulation of cell population proliferation (GO:0008285) 13.89 
gland development (GO:0048732) 11.65 
heart development (GO:0007507) 11.56 
chordate embryonic development (GO:0043009) 9.87 
tube morphogenesis (GO:0035239) 9.12 
regulation of cellular response to stress (GO:0080135) 8.78 
negative regulation of transcription by RNA polymerase II (GO:0000122) 7.87 
regulation of protein phosphorylation (GO:0001932) 7.45 
protein modification by small protein conjugation or removal (GO:0070647) 7.08 
positive regulation of transcription by RNA polymerase II (GO:0045944) 6.99 
positive regulation of protein modification process (GO:0031401) 6.82 
epithelium development (GO:0060429) 6.48 
positive regulation of developmental process (GO:0051094) 5.69 
regulation of intracellular signal transduction (GO:1902531) 4.77 

Table 6.4 - Enriched biological process GO terms for loss hotspots 

The biological process GO terms that are enriched for loss hotspots in the NCI-60 cell lines.  All terms are significant at 
FDR P < 0.05. 
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Reactome pathway Enrichment 
Loss of MECP2 binding ability to the NCoR/SMRT complex (R-HSA-9022537) > 100 
NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis (R-HSA-9623433) > 100 
Downregulation of SMAD2/3:SMAD4 transcriptional activity (R-HSA-2173795) > 100 
FOXO-mediated transcription of cell cycle genes (R-HSA-9617828) > 100 
Constitutive Signaling by AKT1 E17K in Cancer (R-HSA-5674400) 93.19 
Nuclear Receptor transcription pathway (R-HSA-383280) 88.64 
Notch-HLH transcription pathway (R-HSA-350054) 86.53 
Regulation of MECP2 expression and activity (R-HSA-9022692) 80.76 
FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes (R-HSA-9615017) 80.76 
NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflux (R-HSA-9029569) 67.30 
Transcriptional regulation of white adipocyte differentiation (R-HSA-381340) 58.38 
NOTCH1 Intracellular Domain Regulates Transcription (R-HSA-2122947) 53.84 
PPARA activates gene expression (R-HSA-1989781) 42.51 
HCMV Early Events (R-HSA-9609690) 36.71 
SUMO E3 ligases SUMOylate target proteins (R-HSA-3108232) 23.15 
PIP3 activates AKT signaling (R-HSA-1257604) 19.54 
Ub-specific processing proteases (R-HSA-5689880) 17.82 
Transcriptional regulation by RUNX1 (R-HSA-8878171) 17.82 

Table 6.5 - Enriched Reactome pathways for loss hotspots 

The Reactome pathways that are enriched for loss hotspots in the NCI-60 cell lines.  All terms are significant at FDR P < 
0.05. 

 

 

Figure 6.2 - Chromosome arm-level aneuploidies 

The arm-level aneuploidies affecting each cell line of the NCI-60 panel with gains shown in blue and losses in red.  The 
three cell lines with no aneuploidies, HCC2998, HCT15 and SR, are marked with purple, orange and green arrows 
respectively. 
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miRNAs Chromosomes Seeds # Precursors Max Spread 
miR-23/24 9, 19 GCCUACU, GGCUCAG, GGGUUCC 4 881 
miR-193/365 16, 17 AAUGCCC, ACUGGCC, GGGACUU 4 15,526 
miR-4253/4684/6862 1, 16 GGGCAUG, GUUGCAA, UCUCUAC 4 333,340 
miR-33/6777/6889 17, 22 CGGGGAG, UGCAUUG 4 648,021 
miR-744/10396 17, 21 GCGGGGC, UGUUGCC 2 98 
miR-9 1, 5, 15 CUUUGGU, UAAAGCU 3 90 
miR-192/194/215 1, 11 GUAACAG, UGACCUA 4 389 
miR-19 13, X GUGCAAA, GUUUUGC 3 388 
miR-6784/6862 16, 17 CCGGGGC, CUCACCC 3 333,340 
miR-103 5, 20 CAUAGCC, GCUUCUU 4 78 
miR-30 1, 6, 8 GUAAACA, UUUCAGU 6 26,662 

Table 6.6 - miRNA seed clusters on different chromosomes 

Groups of mature miRNA seeds with identical CNV profiles across the NCI-60 panel with precursor miRNAs that occur on 
different chromosomes and so cannot be directly affected by the same CNVs.  The field ‘Max Spread’ is the largest region 
spanned by any two adjacent miRNA precursors on each chromosome. 

  



165 

miRNAs Chromosomes # Seeds # Precursors Max Spread 
miR-548/4779 2 2 2 50,721,704 
miR-561/4785/6888 2 5 3 14,555,377 
miR-3126/3682/5000 2 4 3 10,620,896 
miR-3936/6830/12130 5 4 3  8,054,928 
miR-4477 9 2 4  7,528,633 
miR-1303/3141/12125 5 3 3  6,784,959 
miR-146/5003/10523 5 4 3  6,214,904 
miR-448/504/764/1264/1298/1911/1912 X 9 7  4,004,726 
miR-4431/4433/5192 2 6 4  3,879,442 
miR-579/580 5 3 2  3,753,611 
miR-548/583/2277 5 4 3  3,597,935 
miR-215/664/6741 1 4 3  2,902,145 
miR-1225/6511 16 3 7  2,708,981 
miR-3691/5683/5689 6 4 3  2,645,781 
miR-558/4263/4765 2 3 3  2,319,482 
miR-218/12115 4 2 2  1,987,111 
miR-18/20/92/106/424/450/503/505/542/934/1277 X 18 13  1,794,820 
miR-3655/5197/6831 5 4 3  1,558,150 
miR-449/582/5687 5 5 4  1,511,019 
miR-339/4648 7 3 2  1,504,213 
miR-4636/10397 5 3 2  1,348,616 
miR-4259/5187 1 3 2  1,327,283 
miR-101/4665 9 2 2  1,157,608 
miR-4772/5696 2 3 2  1,122,917 
miR-15/3919 3 2 2  1,122,040 
miR-3925/5690 6 3 2    957,796 
miR-4451/4452/5705 4 3 3    789,058 
let-7, miR-548/6125/10527 12 4 4    787,416 
miR-3679/5590 2 2 2    730,749 
miR-6782/6783 17 3 2    726,911 
miR-630/12135 15 2 2    712,763 
miR-5584/6079 1 3 2    706,931 
miR-198/5682 3 2 2    654,048 
miR-33/6777/6889 17, 22 2 4    648,021 
miR-3121/12116 1 3 2    634,467 
miR-567/9900 3 2 2    624,381 

Table 6.7 - High-spread miRNA seed clusters with precursors in different loci 

Groups of mature miRNA seeds with identical CNV profiles across the NCI-60 panel with precursor miRNAs that occur in 
different loci and are far enough apart that they are unlikely to be directly affected by the same CNVs.  The field ‘Max 
Spread’ is the largest region spanned by any two adjacent miRNA precursors on each chromosome. 
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Figure 6.3 - A cluster of seed/locus families affected by different CNVs 

The CNVs that affect the fifth largest cluster (in Figure 3.5C) of 26 miRNA seed/locus families with identical CNV profiles 
on chromosome X despite being in four non-adjacent loci spread across 2.2 x 107 nucleotides and despite being affected 
by different CNVs in some of the cell lines.  The rows are individual cell lines (in the same order as in Figure 3.5C) with 
regions that are completely lost shown in dark red, partially lost in light red, unaffected in grey and unmappable in white 
(there are no gains in this area of chromosome X).  The four seed/locus family loci are shown as green highlights topped 
with green indicator triangles at the midpoint and the actual miRNA precursors that form the boundaries of the loci are 
indicated with red triangles below the loci.  The x axis is the genomic position within chromosome X. 
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miRNAs Chromosome # Seed/loci # Loci Spread 
miR-18/19/20/92/106/363/424/450/503/505/542/934/1277 X 26 4 21,537,838 
miR-506/507/508/509/510/513/514/888/890/891/892 X 26 2  1,291,979 
miR-448/504/764/1264/1298/1911/1912/3672 X 12 3 24,028,359 
miR-194/215/320/664/4742/6741 1 10 3  5,804,290 
miR-325/374/384/421/545 X 10 2  2,787,125 
miR-449/548/582/5687 5 9 3  4,533,172 
miR-105/224/452/767/4330 X 9 2  1,226,271 
miR-1285/4431/4433/4434/5192 2 8 4 17,550,484 
miR-15/16/3613/4703/5693 13 8 2  1,556,253 
miR-4315/6782/6783/6784 17 7 2  1,267,665 
miR-548/4430/4435/4771/4780 2 6 3 54,664,084 
miR-3126/3682/5000 2 6 3 21,241,793 
miR-568/4446/4796/8076 3 6 2  1,311,408 
miR-561/4785/6888 2 5 3 29,110,754 
miR-1289/3936/6830/12130 5 5 3 17,171,964 
miR-3691/5683/5689/7853 6 5 3  5,291,562 
miR-3655/5197/6831 5 5 2  3,116,301 
miR-548/559/4264/8080 2 4 3 32,488,909 
miR-874/3661/5692 5 4 3  3,421,893 
miR-4462/5690/7111 6 4 2  2,084,915 
miR-361/548/1321 X 4 2  1,677,956 
miR-101/4665 9 4 2  1,157,608 
miR-640/3188/3189 19 4 2  1,153,082 
miR-15/16/3919 3 4 2  1,122,180 
miR-554/4257/6878 1 4 2  1,053,547 
miR-198/5682/6529 3 4 2    965,152 
miR-4779/6071/8485 2 3 2 35,496,937 
miR-558/4263/4765 2 3 2  4,638,965 
miR-3124/3916 1 3 2  1,624,477 
miR-4259/5187 1 3 2  1,327,283 
miR-4772/5696 2 3 2  1,122,917 
miR-5586/9718 14 3 2  1,001,750 
miR-613/614/1244 12 3 2    803,967 
miR-320/548 X 2 2 34,286,418 
miR-630/12135 15 2 2    712,763 
miR-567/9900 3 2 2    624,381 

Table 6.8 - Seed/locus families with the same CNV profile despite differing CNVs 

Groups of miRNA seed/locus families with identical CNV profiles across the NCI-60 panel but with precursor miRNAs that 
occur in different loci and are far enough apart that they are unlikely to be directly affected by the same CNVs and which 
are also affected by different CNVs in each cell line.  The miRNAs highlighted in red also occur in the seed-based miRNA 
clusters detailed in Supplementary Table 6.7. 
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Figure 6.4 - Gene/GO mappings as annotated in Ensembl and after ‘cascading’ 

The numbers of genes allocated to categories at each depth of the cellular compartment gene ontology, (A) as 
annotated by Ensembl and (B) after traversing the ontology depth-first and assigning genes to their ancestral categories 
as well, resulting in a ‘cascaded’ ontology.  (C) Annotated and (D) cascaded gene counts at each depth of the molecular 
function gene ontology.  (E) Annotated and (F) cascaded gene counts at each depth of the biological process gene 
ontology. 
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Category Keywords 
Metastasis metastasis, migration, proliferation, epithelial to mesenchymal transition, motility, cell adhesion 
Cell cycle cell cycle, apoptosis, apoptotic, cell death, mitotic, mitosis, checkpoint, transforming growth 

factor, cell growth, meiosis, meiotic, DNA repair, p53, DNA replication, senescence, PTEN, AKT, 
checkpoint 

Expression expression, transcription, translation 
Signalling signaling, BMP, Wnt, SMAD, MAPK, TGF, transforming growth factor 
Development development, angiogenesis, axonogenesis, morphogenesis, vasculogenesis 

Table 6.9 - GO and Reactome functional keywords 

Selected keywords occurring in GO term and Reactome pathway descriptions related to five broad cancer-related 
categories.  Keyword spellings are American to match the descriptions. 

 

 

Figure 6.5 - Seed dosage of Oncomir-1 paralogs in various CNV conditions 

The numbers of copies of each distinct seed in the Oncomir-1 paralogs under different CNV conditions.  Each group is 
labelled with the names of the chromosomes on which the paralogs occur, followed with a minus sign to indicate which 
paralog has lost a single copy.  The red bars indicate miR-17 seed copies, blue are miR-18 seed copies, green are miR-19 
seed copies and orange are miR-92 seed copies. 
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Name Age (years x 106) 
Opisthokonta 1,105.1 
Bilateria 796.6 
Chordata 676.4 
Vertebrata 615 
Gnathostomata 473.3 
Euteleostomi 435.3 
Sarcopterygii 413 
Tetrapoda 351.8 
Amniota 311.9 
Mammalia 176.9 
Theria 158.6 
Eutheria 105.5 
Boreoeutheria 96.5 
Euarchontoglires 82.1 
Primates 73.8 
Haplorrhini 67.1 
Simiiformes 43.2 
Catarrhini 29.4 
Hominoidea 20.2 
Hominidae 15.8 
Homininae 9.1 
Homo sapiens 0 

Table 6.10 - Unique Ensembl Compara taxon names and approximate ages 

The unique taxon names and approximate duplication ages (as determined by Ensembl) extracted from the gene event 
histories downloaded from Ensembl Compara as part of the FFS tree building algorithm. 
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Figure 6.6 - Examples of cell lines with gene ages which vary with CNV type 

(A) Genes which are completely lost in renal cancer cell line CAKI-1 are younger than the rest.  (B) Genes which are 
partially lost in colon cancer cell line KM12 are younger than the rest.  (C) Genes which are gained in prostate cancer cell 
line PC3 are younger than the rest.  (D) Genes which are completely lost or gained in ovarian cancer cell line IGROV1 are 
younger than the rest.   
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