ASPECTS OF ABSTRACT REGULAR POLYTOPES AND THE COMBINATORICS OF COXETER GROUPS

A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering

Robert Nicolaides

Contents

Declaration 10
Copyright 11
Acknowledgements 12
Introduction 13
1 Background on abstract regular polytopes and Coxeter groups 15
1.1 The main definitions 16
1.2 Specific details concerning Coxeter groups 21
1.3 A familiar example 26
1.4 Unfamiliar examples 28
1.5 An overview of string C-groups 28
2 An introduction to unravelled polytopes 32
2.1 Introduction 32
2.2 A detailed example 34
2.3 Some small computed examples 35
2.3.1 $G \sim 3: \operatorname{Sym}(7)$ 35
2.3.2 $G \sim 3 \cdot \mathrm{M}_{22}: 2$ 36
2.3.3 $G \sim 2^{4}: \operatorname{Sym}(6)$ 37
2.3.4 G of order $1296=2^{4} .3^{4}$. 38
3 Two families of unravelled polytopes 39
3.1 Some notation 40
3.2 C-strings with Schläfli symbol $[4, q+1,4]$ 40
3.3 C-strings with Schläfli symbol [4, $p, 4$] 50
4 Two families of unravelled polytopes for type B Coxeter groups 58
4.1 Preliminary results 59
4.2 Rank 4 unravelled C-strings 59
4.3 Rank $n-4$ unravelled C-strings 66
5 An introduction to Elnitsky's tilings 75
5.1 The type A tiling 75
5.2 The type B tilings 82
5.3 The type D tilings 82
6 The Bruhat order on Elnitsky's tilings 87
6.1 E-polygons 87
6.2 Proof of Theorem 6.0.1 93
7 E-embeddings and tiling bijections 99
7.1 Definitions and results 99
7.2 Proofs 101
8 Strategies for creating E-embeddings 105
8.1 A Strategy for constructing new tilings 105
8.2 A labelling algorithm 107
8.3 Examples of Algorithm 8.2.1 110
8.4 Permutation representations derived from \ll 126
8.5 Tilings produced 134
8.5.1 An Arbitrary Attempt 142
9 Subtilings and admissible partitions 144
9.1 W_{Σ} of type B_{n}, W of type $\mathrm{A}_{2 n-1}$ 146
$9.2 \quad W_{\Sigma}$ of type B_{n}, W of type $\mathrm{A}_{2 n}$ 147
$9.3 W_{\Sigma}$ of type B_{n-1}, W of type D_{n} 148
$9.4 W_{\Sigma}$ of type H_{3}, W of type D_{6} 150
10 Suggestions for further research 152
10.1 A sketch of an alternative construction for Elnitsky's tilings 152
10.2 R-Polynomials 154
A Magma code 155

Bibliography 165

List of Tables

1.1 Some admissible partitions for the finite irreducible Coxeter groups. 25
1.2 The elements of $\operatorname{Sym}(3)$ and their reduced words. 27
1.3 The number of abstract regular polytopes of $\operatorname{Sym}(n)$ up to duality. 30
1.4 The number of abstract regular polytopes of $\operatorname{Alt}(n)$ up to duality. 30
2.1 The C-strings for $3 . \operatorname{Sym}(6)$ and $\operatorname{Sym}(6)$ respectively denoted by their Schläfli symbols and the coverings between them. 34
2.2 Number of C-strings and those which unravel. 36
2.3 Unravelled C-strings for $3^{\circ} \mathrm{M}_{22}: 2$. 37
2.4 Unravelled C-strings for $2^{4}: \operatorname{Sym}(6)$. 37
8.1 The \ll-ordering on B_{3}. From left to right: the L value and the \ll - normal form. 113
8.2 The \ll-ordering on $\operatorname{Sym}(5)$. From left to right for each column: the L value, the one-line form of the permutation and the \ll-normal form. 116
8.3 The \ll-ordering on B_{3}. From left to right: the L value, the one-line form of the permutation and their induced \ll-normal form. 119
8.4 The \ll-order and \ll-normal form for elements of H_{3}. 123

List of Figures

1.1 The containment of C-groups, Coxeter groups string C-group and string Coxeter groups. 15
1.2 The Coxeter diagram of type A with rank $n-1$. 17
1.3 The Coxeter diagrams for the finite irreducible Coxeter groups. 22
1.4 The regular triangle (left) and its Hasse diagram (right) as $\mathcal{P}(\operatorname{Sym}(3))$. 26
1.5 The Hasse diagrams of the weak order (left) and strong Bruhat order (right) of $\mathcal{P}(\operatorname{Sym}(3))$. 27
1.6 The number of abstract regular polytopes for sporadic simple groups up to duality. 31
5.1 The polygon $\mathrm{Y}((1,6)(2,4,5))$ in $\operatorname{Sym}(6)$. 76
5.2 $\mathrm{Y}(w)$ for all $w \in \operatorname{Sym}(3)$. 77
5.3 All rhombic tilings of $\mathrm{Y}((1,4)(2,3))$. 78
5.4 The tiling of $\mathrm{Y}((1,5,2))$ associated to the reduced word $s_{4} s_{1} s_{2} s_{3} s_{2} s_{4}$ and the sequence in which the tiles were placed. 80
5.5 The tiling of $\mathrm{Y}((1,5,2))$ associated to the reduced word $s_{1} s_{2} s_{4} s_{3} s_{2} s_{4}$ and the sequence in which the tiles were placed. Ultimately, this creates the same tiling as in Figure 5.4. 81
5.6 Two of Elnitsky's type B tilings associated to reduced words of the longest element in B_{3}. 82
5.7 $\mathrm{Y}(w)$ for $w= \pm(1,-2,-4,3)$. 83
5.8 Two Elnitsky tilings for D_{4} with $\delta= \pm(1,-2,-4,3)$. 85
5.9 Elnitsky's type D tilings for the reduced word $s_{3} s_{4} s_{5} s_{2} s_{3} s_{4} s_{5} s_{1} s_{2} s_{3} s_{1}$ using the usual round representation (left) and ensuring that the an- gles of each edge constructed in the starting border are at least $\pi / 3$ from the horizontal (right). 86
6.1 The set \mathcal{B}_{6}^{α} for $\alpha=\pi / 4$ and $\pi / 12$ respectively. 88
6.2 The borders $\mathrm{B}_{n}^{\alpha}(i d)$ and $\mathrm{B}_{n}^{\alpha}((1,2)(4,5,6))$ in $\operatorname{Sym}(6)$ with $\alpha=\pi / 4$. 89
$6.3 \quad \mathrm{P}_{3}^{\alpha}(u, v)$ for all $u, v \in \operatorname{Sym}(3)$ with $\alpha=\pi / 4$. 90
$6.4 \quad \mathrm{P}_{3}^{\alpha}(u, v)$ for all $u, v \in \operatorname{Sym}(3)$ with $\alpha=\pi / 6$. 91
6.5 For $W=\operatorname{Sym}(3)$, (left) $\mathrm{P}_{3}^{\pi / 4}((2,3),(1,3,2))$ is a tile and (right) $\mathrm{P}_{3}^{\pi / 4}((2,3),(1,2))$ is not. 92
6.6 For $W=\operatorname{Sym}(4)$, (left) $\mathrm{P}_{4}^{\pi / 4}((1,2,3),(1,2,4))$ is a tile and (right) $\mathrm{P}_{4}^{\pi / 8}((1,2,3),(1,2,4))$ is not. 93
6.7 For $W=\operatorname{Sym}(4), \mathrm{P}_{4}((1,3,2),(1,2,4))$ 93
6.8 The borders $\mathrm{B}_{n}(w)$ and $\mathrm{B}_{n}(w t)$. 94
6.9 The difference vector between two underlying vectors. 95
6.10 The rhombic region labelled R_{2} for which the lower vertex of $\mathrm{B}_{n}(w)_{i}$ lies in if and only if $\mathrm{B}_{n}(w)_{i+1}$ and $\mathrm{B}_{n}(w t)_{i}$ intersect. 96
6.11 The heights concerning the $|i-j| \geq 2$ case. 97
8.1 The colours used to represent each generator in our Coxeter groups. The $i^{\text {th }}$ colour (read from left to right) represents the generator s_{i}. 105
8.2 The Cayley graph of $\operatorname{Sym}(3)$ with the permutations viewed in one-line form. 110
8.3 Applying Algorithm 8.2.1 to the Cayley graph of Sym(3), step-by-step. 111
8.5 The Cayley graph of $\operatorname{Sym}(4)$ labelled by L. 113
8.6 The \ll-spanning tree formed from applying Algorithm 8.2.1 to the Cayley graph of Sym(4). 114
8.7 The Cayley graph of $\operatorname{Sym}(5)$ labelled by L. 117
8.8 The \ll-spanning tree formed from applying Algorithm 8.2.1 applied to the Cayley graph of $\operatorname{Sym}(5)$. 118
8.9 The Cayley graph of B_{3} labelled by L. 120
8.10 The \ll-spanning tree formed from applying Algorithm 8.2.1 applied to the Cayley graph of B_{3}. 121
8.11 The Cayley graph of H_{3} labelled by L. 124
8.12 The \ll-spanning tree of H_{3}. 125
8.13 The CPR graph of ϕ_{\ll}^{J} for $\operatorname{Sym}(5)$. 127
8.14 The CPR graph of ϕ_{\ll}^{J} for B_{3}. 127
8.15 The CPR graph of ϕ_{\ll}^{J} for B_{4}. 128
8.16 The CPR graph of ϕ_{\ll}^{J} for D_{4}. 128
8.17 The CPR graph of ϕ_{\ll}^{J} for F_{4}. 128
8.18 The CPR graph of ϕ_{\ll}^{J} for E_{6}. 129
8.19 The CPR graph of ϕ_{\ll}^{J} for E_{7}. 130
8.20 The CPR graph of ϕ_{\ll}^{J} for E_{8} with the labelling of vertices omitted. 132
8.21 The CPR graph of ϕ_{\ll}^{J} for H_{3}. 132
8.22 The CPR graph of ϕ_{\ll}^{J} for H_{4}. 133
8.23 Tilings for $\operatorname{Sym}(5), \mathrm{B}_{3}$ and B_{4} (above, left-to-right), and $\mathrm{D}_{4}, \mathrm{~F}_{4}$ and, H_{3} (below, left-to-right) with $\alpha=\pi / 4$. 135
8.24 Tilings for (left) E_{6} and (right) E_{7} with $\alpha=\pi / 4$. 136
8.25 Tilings for H_{4} with $\alpha=\pi / 4$. 137
8.26 Tilings for E_{8} with $\alpha=\pi / 4$. 138
8.27 Tilings for $\operatorname{Sym}(5), \mathrm{B}_{3}, \mathrm{~B}_{4}, \mathrm{D}_{4}, \mathrm{~F}_{4}$ and, H_{3} (read left-to-right then top-to-bottom) with $\alpha=\pi / n$. 139
8.28 Tilings for (above) E_{6} and (below) E_{7} with $\alpha=\pi / n$. 140
8.29 Tiling of H_{4} with $\alpha=\pi / n$. 141
8.30 Tiling of E_{8} with $\alpha=\pi / n$. 142
8.31 A somewhat arbitrarily chosen permutation representation for F_{4}, ψ, acting on W_{J}. 143
8.32 The 'tilings' produced for the bipartite alternating word by placing tile after tile (read from left-to-right then top-to-bottom) for the per- mutation representation of Figure 8.31. 143
9.1 The admissible partition of B_{n} into $\mathrm{A}_{2 n-1}$. 146
9.2 A tiling for B_{3} viewed as a subtiling of A_{5}. 146
9.3 The admissible partition of B_{n} into $\mathrm{A}_{2 n-1}$. 147
9.4 A tiling for B_{3} viewed as a subtiling of A_{6}. 148
9.5 The admissible partition of B_{n-1} into D_{n} 149
9.6 A tiling for B_{3} viewed as a subtiling of the type D_{4} tiling. 149
9.7 The admissible partition of D_{6} into H_{3} 150
9.8 A tiling for H_{3} viewed as a subtiling of the type D_{6} tiling. 151
10.1 Projecting paths on the cube on to its Petrie polygon to form rhombic tilings. 153

University of Manchester

Robert Nicolaides

Doctor of Philosophy
Aspects of Abstract Regular Polytopes and the Combinatorics of Coxeter groups
October 10, 2022

In this thesis, we examine abstract regular polytopes and some combinatorics of Coxeter groups.

For abstract regular polytopes, we define the notion of when such polytopes are unravelled. We then go on to examine and catalogue examples of these abstract regular polytopes. We construct four different non-trivial infinite families and analyse some small interesting examples. Chapter 2 gives an introduction, some concrete examples and a bird's-eye-view of the existence of such polytopes before Chapters 3 and 4 construct the specific non-trivial families.

In Chapter 5 we move on to Coxeter groups. Here we examine a neat combinatorial bijection between classes of reduced words of Coxeter groups and certain tilings of polygons known as Elnitsky's tilings. Chapter 6 examines the Bruhat order in relation to Elnitsky's tilings. In Chapter 7 we define E-embeddings; embeddings of Coxeter groups into the symmetric group that we show also give rise to bijections between tilings and reduced words. Chapter 8 provides an outline for a strategy to create E-embeddings but does not deliver an actual proof that this strategy indeed works. Chapter 9 examines the notions of 'subtilings' of tilings in the context of our E-embeddings. Chapter 10 provides some suggestions for further research.

Declaration

No portion of the work referred to in this thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning.

Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns certain copyright or related rights in it (the "Copyright") and s/he has given The University of Manchester certain rights to use such Copyright, including for administrative purposes.
ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in accordance with licensing agreements which the University has from time to time. This page must form part of any such copies made.
iii. The ownership of certain Copyright, patents, designs, trade marks and other intellectual property (the "Intellectual Property") and any reproductions of copyright works in the thesis, for example graphs and tables ("Reproductions"), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property and/or Reproductions.
iv. Further information on the conditions under which disclosure, publication and commercialisation of this thesis, the Copyright and any Intellectual Property and/or Reproductions described in it may take place is available in the University IP Policy (see
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420), in any relevant Thesis restriction declarations deposited in the University Library, The University Library's regulations (see
http://www.library.manchester.ac.uk/about/regulations/) and in The University's policy on presentation of Theses.

Blank page

Acknowledgements

My time at Manchester has been an overwhelmingly positive experience and I would like to thank the people who helped make this so. There are more people I would like to thank personally than is sensible to mention, so we mention just a few.

Firstly, my academic supervisor, Professor Peter Rowley: thank you for all of your encouragement and going above and beyond of what was expected of you. I have enjoyed our collaboration immensely, especially when it was done in good weather.

I have been blessed to have such a large and loving family. Thank you all for bringing me up to be the person I am today and filling my life with joy. I have valued greatly my mother's unashamed sense of playfulness and creativity, my father's kindness and curiosity, and Max's bravery and compassion.

Thank you to my friends who I have met along the way and for all the great memories. Elliot McKernon has been like a brother to me. And thanks to Cesare, Claudio, Jake, Jacob, Mahah, Martin, Joanna, Anya, Mike, Micheal, Josh, Daniel and Zoltan for your friendship.

My partner, Fandy Chang, deserves a special mention for having the Herculean task of living with me during this PhD. Thank you for being a constant source of love and laughter in my life. I have cherished our time together so much.

Thank you to my examiners for their kindness, patience and suggestions.
Finally I would like to thank the late Gilbert Baumslag and the Baumslag family for funding this PhD studentship. I am extremely grateful for this support and the opportunities it has provided.

Introduction

This is a thesis of two parts. The first examines abstract regular polytopes in Chapters 2,3 and 4 and considers them in a mostly group theoretic light. These chapters summarise joint work with my supervisor Professor Peter Rowley, specifically [39] and [40]. The second half concerns Coxeter groups and explores some combinatorial objects associated to them. This is also all joint work with Professor Rowley and contains the work of [37] and [38].

The definitions of abstract regular polytopes and Coxeter groups are intimately related and Chapter 1 introduces them both together. Abstract regular polytopes are generalisations of the beloved Platonic solids and also admit a group theoretical characterisation as described by a wonderful correspondence theorem in [34]. We will cover this correspondence in some detail and provide a friendly example for clarification. Suffice it to say that the interplay between Abstract Geometry and Group Theory is naturally always present, explicitly or otherwise. We also list a number of fundamental objects associated to Coxeter groups here too. No matter which other chapters one wishes to read, this one should be a prerequisite.

In Chapter 2 we start our examination of abstract regular polytopes in earnest. Our main focus in Chapters 2, 3 and 4 is to provide a new property that an abstract regular polytope might have. We call this property unravelledness. These chapters focus mostly of computing examples and providing a total of four different non-trivial families of these so-called unravelled polytopes.

The remaining chapters, Chapters 5, 6, 7, 8, 9 and 10, focus on some combinatorics of Coxeter groups. These chapters can be read independently of Chapters 2, 3 and 4 and contain more exposition. Specifically, we focus on the work of Elnitsky ([11]) that creates three bijections between classes of reduced words of some given families of Coxeter groups and, rather surprisingly, tilings of polygons. Due to the inherent visual nature of this work we try provide many diagrams to illustrate examples. We give this work a detailed introduction in Chapter 5 and generalise this
to all finite irreducible Coxeter groups in Chapter 7 by using an insight into the relationship of such tilings and the Bruhat orders. We then show some attempts to construct new tilings in Chapter 8 where we outline a a strategy for making new tilings. However, we are not able to prove this strategy indeed works. In Chapter 9 we make new tilings form old by considering the notion of a subtiling. We then finish on some more ideas for future generalisations and alternative constructions in Chapter 10.

Chapter 1

Background on abstract regular polytopes and Coxeter groups

We will spend this chapter gently introducing the main objects used in this thesis. Most of the core ideas lie somewhere in the intersection of Group Theory, Abstract Geometry and Combinatorics. The core objects we study are all C-groups. The C here stands for Coxeter but we make the distinction between C-groups and Coxeter groups as names. There are three special cases of C-groups that interest us: Coxeter groups, string C-groups and their intersection, string Coxeter groups. The containments are demonstrated in the following diagram where each arrow denotes that the source contains the target.

Figure 1.1: The containment of C-groups, Coxeter groups string C-group and string Coxeter groups.

1.1 The main definitions

In this section we define the main objects of this thesis and discuss some of their elementary properties. Three books cover all of the elementary definitions involved here unless otherwise stated: [1], [26] and [34].

Definition 1.1.1 (C-group). Let G be a group and S some subset of involutions of G. Let $G_{I}=\langle s \mid s \in I\rangle$ for all $I \subseteq S$. We call G a C-group with respect to S, denoted (G, S), if $G=\langle S\rangle$ and

$$
G_{I} \cap G_{J}=G_{I \cap J}
$$

for all $I, J \subseteq S$.
If G has such a set S then we call G a C-group. We call $|S|$ the rank of (G, S).
Although S may be infinite, in this thesis, we limit ourselves to the case that S is finite. A group G may have many generating sets S such that (G, S) forms a C-group.

Definition 1.1.2 (Words, Count and Length). Let (G, S) be a C-group. We call a finite sequence with entries in S, a word of (G, S) and denote the set of all such words as S^{*}. Suppose $s_{i_{1}}, s_{i_{2}}, \ldots, s_{i_{n}}$ is a word, then we say it evaluates to $g \in G$ exactly when $g=s_{i_{1}} s_{i_{2}} \ldots s_{i_{n}}$ (as the product of generators) and we denote the set of such words as $S^{*}(g)$. In practice, we often write the word $s_{i_{1}}, s_{i_{2}}, \ldots, s_{i_{n}}$ in the form $s_{i_{1}} s_{i_{2}} \ldots s_{i_{n}}$ where such a lack of distinction causes little ambiguity. Let $c: S^{*} \rightarrow \mathbb{Z}_{\geq 0}$ be the function that takes the word $g^{*}=s_{i_{1}} s_{i_{2}} \ldots s_{i_{n}}$ and returns n. We call this the count function of (G, S). Then we define the length function of (G, S) to be $l: G \rightarrow \mathbb{Z}_{\geq 0}$ such that $l(g)=\min \left(\left\{c\left(g^{*}\right) \mid g^{*} \in S^{*}(g)\right\}\right)$. So the length function tells us the minimum number of generators needed to construct an element of our group as a word. We describe words of this minimum length as reduced and denote the set of all reduced words evaluating to g by $\mathcal{R}(g)=\left\{g^{*} \in S^{*}(g) \mid c\left(g^{*}\right)=l(g)\right\}$ along with $\mathcal{R}(G)=\bigsqcup_{g \in G} \mathcal{R}(g)$.

Next, we define what a Coxeter group is. We will see that these are special cases of C-groups.

Definition 1.1.3 (Coxeter system). Let S be some set and m an $S \times S$ symmetric matrix whose entries are either positive integers, or (the symbol) ∞ subject to the
conditions that $m_{s, s}=1$ and $m_{s, r}=m_{r, s}$ for all $r, s \in S$. Then we say that m is a Coxeter matrix. We define W to be the group presentation whose generating set is S subject to the relations of the form $(s r)^{m_{s, r}}=i d$ for all (not necessarily distinct) generators $s, r \in S$ if $m_{s, r}$ is an integer (we omit relations corresponding to pairs for which $\left.m_{s, r}=\infty\right)$. That is,

$$
\left.W=\langle S|(s r)^{m_{s, r}}=i d \text { for all } r, s \in S \text { such that } m_{s, r} \neq \infty\right\rangle .
$$

We call W equipped with S a Coxeter system and denote it by (W, S). We call W a Coxeter group if for some $S \subseteq W,(W, S)$ is a Coxeter system.
We call $|S|$ the rank of (W, S). For this thesis, we will assume that S is finite. It is convention to use the letter T to denote the set of conjugates of S in W, $T=S^{W}$, and call these the reflections of the group.

Since a Coxeter system is determined by its Coxeter matrix m, such a concise definition allows us to capture all of the information determining the system in a labelled graph. In what follows, and the rest of the thesis, for a positive integer n we will use $[n]$ to denote $\{1, \ldots, n\}$ for brevity.

Definition 1.1.4 (Coxeter diagram). Let (W, S) be a Coxeter system. The Coxeter diagram of (W, S) is the labelled graph Γ whose vertex set is S along with an edge labelled from s to r if $m_{s, r}>2$. It is convention to omit labels when $m_{s, r}=3$. We refer to the primitive Coxeter diagram to be the underlying, unlabelled graph induced from Γ.

Example 1.1.5. Let S be the set of $n-1$ elements denoted by $\left\{s_{1}, \ldots, s_{n-1}\right\}$. Define m to be the $S \times S$ matrix such that $m_{s_{i}, s_{j}}=1$ if $i=j, m_{s_{i}, s_{j}}=3$ if $|i-j|>2$ and $m_{s_{i}, s_{j}}=2$ otherwise.
Let W be the Coxeter group induced from m. One can prove that $W \cong \operatorname{Sym}(n)$ by sending s_{i} to the adjacent transposition $(i, i+1)$ and the corresponding Coxeter diagram is given by Figure 1.2.

Figure 1.2: The Coxeter diagram of type A with rank $n-1$.

Such a Coxeter system is of special importance and is said to be of type A.

Definition 1.1.6 (Irreducible Coxeter group). We call a Coxeter system (W, S) irreducible if and only if its primitive Coxeter diagram is connected.

Proposition 1.1.7. Let (W, S) be a Coxeter system. Then $W \cong W_{1} \times \ldots \times W_{k}$ and $S=S_{1} \sqcup \ldots \sqcup S_{n}$ where $\left(W_{i}, S_{i}\right)$ are each irreducible Coxeter systems.

Definition 1.1.8 (Standard parabolic subgroups). Let (W, S) be a Coxeter system and let $I \subseteq S$. Define $W_{I}=\langle s \mid s \in I\rangle$. We call such subgroups parabolic.

We state some well-established facts about parabolic subgroups.
Proposition 1.1.9. Let (W, S) be a Coxeter system. Then for all $I \subset S$, $\left(W_{I}, I\right)$ is a Coxeter system in its own right.

Proposition 1.1.10. For all $w \in W$ and for all $s \in S, l(w s)=l(w) \pm 1$.
Define $I^{ \pm}(w)=\{s \in S \mid l(w s)=l(w) \pm 1\}$.
Proposition 1.1.11 (The intersection property). Let (W, S) be a Coxeter system. Then

$$
W_{I} \cap W_{J}=W_{I \cap J}
$$

for all $I, J \subseteq S$.
C-groups are smooth quotients of Coxeter groups; these are quotients of Coxeter groups that preserve the orders of the products of pairs of generators as well at the intersection property. This allows us to consider the underlying Coxeter group of a C-group and speak of its properties. We make this precise below.

Definition 1.1.12 (Underlying Coxeter group). Let (G, S) be a C-group. Let m be the $|S| \times|S|$ matrix such that $m_{s, r}$ is the order of sr for all $s, r \in S$. We call the Coxeter group, $\left(W_{G}, S_{G}\right)$, whose corresponding Coxeter matrix is m, the underlying Coxeter group of G.

All Coxeter groups are C-groups but the converse is not true.
We now discuss the adjective string.
Definition 1.1.13 (string C-groups). We give the adjective string to a C-group (G, S) with respect to some $S=\left\{s_{1}, \ldots, s_{n}\right\}$, (equiped with some implicit total order on the generators) if for all $s_{i}, s_{j} \in S,|i-j| \geq 2$ implies that $s_{i} s_{j}=s_{j} s_{i}$. This is equivalent to requesting the underlying Coxeter group has a primitive Coxeter diagram that is a path graph:

Although it is not standard notation, we call S itself a C-string in this context as it is a useful object to name.
For convenience, given $\{i, j, \ldots, k\} \subseteq[|S|]$, we will write $G_{i j \ldots k}=\left\langle s_{i}, s_{j}, \ldots, s_{k}\right\rangle$ along with $G_{i}=\left\langle s_{a} \mid a \neq i\right\rangle$.
The Schläfli symbol (or Schläfli type) of a C-string $\left\{s_{1}, \ldots, s_{n}\right\}$ is the sequence $\left[\tau_{12}, \tau_{23}, \ldots, \tau_{n-1 n}\right]$ where $\tau_{j j+1}$ is the order of $s_{j} s_{j+1}$. We will often display this information as the labels on the underlying Coxeter diagram.
The $i^{\text {th }}$ Betti number of a C-string is given by $\beta_{i}=\left|G / G_{\bar{i}}\right|$ and the Betti numbers are given by the sequence $\left[\beta_{1}, \ldots, \beta_{n}\right]$ (in the standard notation the indices are each decreased by 1 but this will not affect this thesis).
Reversing the order of the generators of S produces another C-string. We call this the dual C-string to S.
Let (G, S) and (H, T) with $S=\left\{s_{1}, \ldots, s_{m}\right\}$ and $T=\left\{t_{1}, \ldots, t_{k}\right\}$. We say (G, S) and (H, T) are isomorphic as string C-groups if and only if $m=k$ and the map sending s_{i} to t_{i} for each $i=1, \ldots, m$ is a group isomorphism between G and H.

C-strings are in correspondence with abstract regular polytopes - an abstract geometrical generalisation of the beloved Platonic Solids. Below we give an overview of the geometric definition of an abstract regular polytope. We do not focus on the geometric properties of these polytopes in this thesis; our focus in on their more group theoretic properties as C-strings. The precise definition, and further background, may be found in Sections 2B and 2E of [34].

Definition 1.1.14 (Abstract regular polytopes). An abstract polytope is a certain kind of poset. Let \mathcal{P} be a set and $\prec a$ (strict) partial order; a transitive, anti-symmetric, anti-reflexive binary operation on \mathcal{P}. Let \preceq denote the reflexive closure of \prec. Typically, we call the elements of \mathcal{P} faces in this context and say two faces $F, G \in \mathcal{P}$ are incident if $F \preceq G$ or $G \preceq F$. We start by describing the conditions for \mathcal{P} to be an abstract n-polytope for some non-negative integer, n. Our first requirement is that \mathcal{P} has both a minimum and maximum face. That is, there exists a unique pair of faces we call F_{-1} and F_{n}, such that for all $G \in \mathcal{P}$, $F_{-1} \preceq G$ and $G \preceq F_{n}$.

An ordered set of faces $H_{1}, H_{2}, \ldots, H_{k} \in \mathcal{P}$ forms a flag if

$$
H_{1} \prec H_{2} \prec \ldots \prec H_{k} .
$$

More concisely, a flag is a totally ordered subset of \mathcal{P}. Naturally, a flag is
described as being maximal if it is not a proper subset of another flag. Our second requirement for \mathcal{P} to form an abstract n-polytope is that all maximal flags contain exactly $n+2$ elements.
In the literature, the term flag is sometimes used to denote what we have called a maximal flag here (and the word chain for what we have called flag). We will assume a flag is maximal unless otherwise stated.
Let $\mathcal{F}(\mathcal{P})$ denote the set of all flags of \mathcal{P}. An elementary property of each flag is that F_{-1} and F_{n} always appear as the minimum and maximum faces. Moreover, each face has a fixed position in each flag that contains it: if $F \in \mathcal{P}$ is the $i^{\text {th }}$ least face in a flag then we say it has rank $i-2$, which we denote by writing $\operatorname{rank}(F)=i-2$.
For our next requirement, we consider a notion of connectedness associated to these flags. For $\mathcal{H}, \mathcal{G} \in \mathcal{F}(\mathcal{P})$ we say \mathcal{H} and \mathcal{G} are adjacent if \mathcal{H} and \mathcal{G} differ in exactly one face respectively. Necessarily, the faces which they differ must be of the same rank, i say. More specifically, in this case, we describe \mathcal{G} and \mathcal{H} as being i-adjacent. We call \mathcal{P} strongly flag connected if for all flags $\mathcal{H}, \mathcal{G} \in \mathcal{F}(\mathcal{P})$ there exists a finite sequence of flags $\mathcal{F}_{0}, \ldots, \mathcal{F}_{k}$ such that $\mathcal{F}_{0}=\mathcal{H}, \mathcal{F}_{k}=\mathcal{G}$ where $\mathcal{H} \cap \mathcal{G} \subseteq \mathcal{F}_{j}$ and \mathcal{F}_{j-1} is adjacent to \mathcal{F}_{j} for all $j=1, \ldots, k$. To be an abstract n-polytope, \mathcal{P} must be strongly flag connected.
Our final condition is known as the diamond condition: for all faces $F, G \in \mathcal{P}$ such that $\operatorname{rank}(G)-\operatorname{rank}(F)=2$, there exist exactly two faces $H_{1}, H_{2} \in \mathcal{P}$ such that $F \prec H_{1} \prec G$ and $F \prec H_{2} \prec G$.
If \mathcal{P} satisfies these four conditions, it is an abstract n-polytope.
To be an abstract regular n-polytope, one needs to examine the automorphism group of \mathcal{P}. Let $\Gamma(\mathcal{P})$ be the subset of permutations of $\mathcal{P}, \operatorname{Sym}(\mathcal{P})$, that preserves \prec. That is,

$$
\Gamma(\mathcal{P})=\{\delta \in \operatorname{Sym}(\mathcal{P}) \mid \text { for all } F, H \in \mathcal{P}, F \prec H \text { if and only if } \delta(F) \prec \delta(H)\}
$$

The induced group action of $\Gamma(\mathcal{P})$ on \mathcal{P} can be extended to $\mathcal{F}(\mathcal{P})$ by defining $\delta(\mathcal{F}):=\left\{\delta\left(F_{-1}\right), \delta\left(F_{0}\right), \ldots, \delta\left(F_{n}\right)\right\}$ for all flags $\left\{F_{-1}, F_{0}, \ldots, F_{n}\right\}=\mathcal{F} \in \mathcal{F}(\mathcal{P})$. An abstract n-polytope is called regular, and thus an abstract regular n-polytope, if the action of $\Gamma(\mathcal{P})$ on $\mathcal{F}(\mathcal{P})$ is a regular group action. That is, for all $\mathcal{G}, \mathcal{H} \in \mathcal{F}(\mathcal{P})$ there exists a unique $\delta \in \Gamma(\mathcal{P})$ such that $\delta(\mathcal{G})=\mathcal{H}$.
Note that for any (not necessarily regular) abstract polytope there is at most one $\delta \in \Gamma(\mathcal{P})$ such that $\delta(\mathcal{G})=\mathcal{H}$. So abstract regular polytopes are exactly those with
most amount of symmetry available in this sense. In a truly beautiful correspondence theorem, abstract regular polytopes are completely characterised by their automorphism groups which are exactly the string C-groups (see Section 2 E of [34] for details). We describe a very brief overview of this correspondence for context omitting the justifications.
Given an abstract regular polytope, we obtain a C-string by choosing some distinguished flag of \mathcal{P}, Φ say, let g_{i} be that automorphism that sends Φ to the unique i-adjacent flag. Then $\operatorname{Aut}(\mathcal{P})$ is a string C-group with respect to $\left\{g_{1}, \ldots g_{n}\right\}$.
How do we derive an abstract regular polytope from string C-group? Given $G=\left\langle g_{1}, \ldots g_{n}\right\rangle$, we create the poset whose elements consist of the cosets of $G_{\widehat{i}}=\left\langle g_{j} \mid j \neq i\right\rangle$ for $i=\{0, \ldots, n+1\}$ with $G_{\widehat{0}}:=G$ and $G_{\widehat{n+1}}:=G$ being considered distinct elements in our poset despite being equal as groups. We define the partial order relation \prec so that for all $i, j \in I$ and $g, h \in G, g G_{\vec{i}} \prec h G_{\widehat{j}}$ if and only if $i<j$ and $g G_{\widehat{i}} \cap h G_{\widehat{j}} \neq \emptyset$. We denote this abstract regular polytope as $\mathcal{P}(G)$. The $i^{\text {th }}$ Betti number as defined in Definition 1.1.13 counts the number of rank- i faces in the corresponding abstract regular polytope for a given C-string. If (G, S) is a rank n C-string, then we also have a correspondence between $G_{\overparen{i}}$ and the stabilizer of (any) rank i face. In this vein we will sometimes call $G_{\widehat{1}}$ the vertex group of G and $G_{\widehat{n}}$ the facet group of G.

Given any poset, P, \prec, we may display its data in the form of a Hasse diagram. The covering relations of a poset are those of the form $x \prec y$ such that there is no intermediate $z \in P$ with $x \prec z \prec y$. For each element of P and assign it a node in the plane such that x is vertically higher than y if $x \prec y$ is a covering relation and draw a line between the elements. If P is graded then we choose to draw the elements of the same rank are the same height. We may assign a direction to each line to point from x to y exactly when $x \prec y$ and call this the Hasse graph and consider it as a directed graph. These are standard ways of viewing the information of an abstract polytope and we will provide an example shortly.

1.2 Specific details concerning Coxeter groups

Here we add some specific details to the theory of Coxeter groups. The main definitions and results in this section are essential in the theory of Coxeter groups can all be found between [1] and [26] which introduce the subjects. We will make
clear those results that lie outside these books scope and we may change notation slightly in places to suit our purposes.
In this thesis, we are mostly concerned with finite groups. Of particular importance are the finite irreducible Coxeter groups: those finite Coxeter groups whose primitive Coxeter diagrams are connected.

Theorem 1.2.1 (The classification of finite irreducible Coxeter groups). The following is a complete classification of the irreducible Coxeter systems whose Coxeter groups are finite.
A_{m}

B_{m}

H_{4}

Figure 1.3: The Coxeter diagrams for the finite irreducible Coxeter groups.

Proposition 1.2.2. W is finite if and only if it has a unique element of longest length, ω_{0}. Moreover, ω_{0} is an involution.

Now we concern ourselves with the properties of reduced words in Coxeter groups. In particular, the structure of reduced words in Coxeter groups. Let $w^{*}=s_{i_{1}} s_{i_{2}} \ldots s_{i_{m}}$ be a reduced word in $\mathcal{R}(W)$ as in Definition 1.1.2. For all $s, r \in S$, let us use the notation $[s r]^{k}=\underbrace{s r s \ldots}_{k}$. We may also extend this to other words also where it is not ambiguous.
Then we can define the (s, r)-braid relation, $\alpha_{s, r}$ to be the relation that interchanges the consecutive subsequences in words, $[s r]^{m_{s, r}} \rightarrow[r s]^{m_{r, s}}$ for finite $m_{s, r}$. So we have

$$
\begin{aligned}
& s_{i_{1}} s_{i_{2}} \ldots s_{i_{l}} \underbrace{s r s \ldots}_{m_{s, r}} s_{i_{k}} \ldots s_{i_{m}} \longrightarrow \alpha_{s, r} s_{i_{1}} s_{i_{2}} \ldots s_{i_{l}} \underbrace{\underbrace{s r}_{m_{s, r}} \ldots}_{m_{s, r}} s_{i_{r}} \ldots s_{i_{k}} \ldots s_{i_{m}} \\
& s_{i_{1}} s_{i_{2}} \ldots s_{i_{l}}^{r s r \ldots} s_{i_{k}}^{r} \ldots s_{i_{m}} \longrightarrow \alpha_{r, s} s_{i_{1}} s_{i_{2}} \ldots s_{i_{l}}^{s r s \ldots} s_{i_{r}}^{s} \ldots s_{i_{k}} \ldots s_{i_{m}}
\end{aligned}
$$

We also define the s-nil relation to be the relation, η_{s} that exchanges adjacent instances of s as a consecutive subsequence in a word with the empty word;

$$
s_{i_{1}} s_{i_{2}} \ldots s_{i_{l}}(r r) s_{i_{k}} \ldots s_{i_{m}} \longrightarrow \eta_{r} s_{i_{1}} s_{i_{2}} \ldots s_{l} s_{i_{k}} \ldots s_{i_{m}}
$$

The word property in Coxeter groups can the be stated as follows.
Theorem 1.2.3 (The word property). For all $w^{*} \in S^{*}(w)$ there exists a sequence of nil and braid relations that sends w^{*} to a reduced word w^{\circledast} evaluating to the same element.

Moreover, for any two reduced words evaluating to the same element, there exists a sequence of braid relations sends one to the other.

We note that the second part of the theorem is often also known as Matsumoto's Theorem ([32]) and can provide a useful alternative presentation of Coxeter groups in terms of the braid relations.
We now describe the Bruhat order.
Definition 1.2.4 (The Bruhat order). The Bruhat order is the poset whose underlying set is W with partial relation $<_{B}$ such that the following are equivalent for all $u, v \in W$:
(i) $u<_{B} v$,
(ii) there exists a sequence $t_{1}, \ldots, t_{k} \in T$ such that $v=u t_{1} \ldots t_{k}$ and $l(u)<l\left(u t_{1}\right)<\ldots<l\left(u t_{1} \ldots t_{k}\right)$.

Corollary 2.2.3 of [1] shows us the following characterisation of the Bruhat order in terms of subwords. If u^{*} and v^{*} are words in S^{*} then we say u^{*} is a subword of v^{*} if underlying sequence for u^{*} is a subsequence of that of v^{*}.

Corollary 1.2.5 (Corollary 2.2.3 of [1]). For all $u, v \in W$, the following are equivalent:
(i) $u<_{B} v$,
(ii) Every reduced word for v has a subword that is a reduced word for u.
(iii) Some reduced word for v has a subword that is a reduced word for u.

Definition 1.2.6 (The weak order). The weak (right) order is the poset whose underlying set is W with binary relation $<_{R}$ such that the following are equivalent:
(i) $u<_{R} v$,
(ii) there exists a sequence $s_{1}, \ldots, s_{k} \in S$ such that $v=u s_{1} \ldots s_{k}$ and $l\left(u s_{1} \ldots s_{i}\right)=l(u)+i$ for each $i=1, \ldots k$.

Proposition 3.1.2 of [1] shows us that the weak order can be characterised in terms of 'prefixes' of reduced words. Note that the weak order is a subposet of the strong Bruhat order since $S \subseteq T$. For the finite irreducible Coxeter groups, the strong order satisfies all of the axioms of being an abstract polytope.
We mention one last piece of information we will refer back to for Coxeter groups. It seems this result is much less frequently used in the literature but appears in [36] and is ripe for applications. We edit the notation and presentation to suit our own purposes.

Definition 1.2.7 (Admissible partitions [36]). Let (W, S) be a Coxeter system and $\Sigma=\left\{\Sigma_{i} \mid i \in I\right\}$ a partition of S (indexed by some set I). If for each $i \in I$, $W_{\Sigma_{i}}=\left\langle s \in S \mid s \in \Sigma_{i}\right\rangle$ is a finite parabolic subgroup of W, then we call Σ spherical. When this is the case, for each $\Sigma_{i} \in \Sigma$ we set $s_{\Sigma_{i}}$ to be the longest element of $W_{\Sigma_{i}}$ and choose some fixed reduced word x_{i} for $s_{\Sigma_{i}}$ over S. Note that if Σ_{i} consists of pairwise commuting generators, then

$$
s_{\Sigma_{i}}=\Pi_{s \in \Sigma_{i}} s
$$

and so x_{i} is just some ordering of Σ_{i}. Set $S_{\Sigma}=\left\{s_{\Sigma_{i}} \mid i \in I\right\}$ and $W_{\Sigma}=\left\langle s_{\Sigma_{i}} \mid \quad i \in I\right\rangle$.

We say $w \in W$ is Σ-consistent if $w \in W_{\Sigma}$ also.
We call Σ admissible at $w \in W_{\Sigma}$ if for all $i \in I$, we have either $\Sigma_{i} \subseteq I^{+}(w)$ or $\Sigma_{i} \subseteq S \backslash I^{+}(w)$. Then we call Σ admissible if it is admissible at all $w \in W_{\Sigma}$. When this is the case, we obtain an embedding of W_{Σ} into W and denote this by $W_{\Sigma} \leftarrow_{\Sigma} W$.

We now coalesce many of the main results of [36] into one statement, relevant to this thesis.

Theorem 1.2.8 (Mühlherr, [36]). Suppose (W, S) is a Coxeter system and Σ an admissible partition of S. Then
(i) $\left(W_{\Sigma}, S_{\Sigma}\right)$ is itself a Coxeter System in its own right,
(ii) If $s_{\Sigma_{i_{1}}} \ldots s_{\Sigma_{i_{k}}}$ is a reduced word in W_{Σ}, then $x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}}$ is reduced word in W,
(iii) The partitions in Table 1.1 are admissible.

Type of W	Type of W_{Σ}	Σ
$\mathrm{A}_{2 n-1}(n \geq 2)$	B_{n}	$\{\{i, 2 n-i\},\{n\} \mid i=1, \ldots, n-1\}$
$\mathrm{A}_{2 n}(n \geq 2)$	B_{n}	$\{\{i, 2 n-i\} \mid i=1, \ldots, n\}$
$\mathrm{D}_{n+1}(n \geq 2)$	B_{n}	$\{\{1,2\},\{i\} \mid i=3, \ldots, n+1\}$
E_{6}	$\mathrm{~F}_{4}$	$\{\{1,6\},\{3,5\},\{2\},\{4\}\}$
D_{6}	H_{3}	$\{\{1,4\},\{2,6\},\{3,5\}\}$
E_{8}	H_{4}	$\{\{1,8\},\{2,5\},\{3,7\},\{4,6\}\}$

Table 1.1: Some admissible partitions for the finite irreducible Coxeter groups.

We note that the list in Table 1.1 is not claimed to be exhaustive (and no exhaustive list seems to exist in the literature). We have deliberately omitted those known admissible partitions involving the dihedral group. Also, we have only taken examples up to automorphisms the Coxeter diagram (to avoid repetitions). A natural consequence of Theorem 1.2.8 (ii) is that for all $u, v \in W_{\Sigma}, u<_{B} v$ implies $u^{\prime}<{ }_{B} v^{\prime}$ where u^{\prime} and v^{\prime} are the image of u and v in the embedding of W_{Σ} in W. This can be seen by applying the subword characterisation of the Bruhat order from Corollary 1.2.5.

1.3 A familiar example

Consider $W=\operatorname{Sym}(3)$. We saw in Example 1.1.5 that this we can think of this as a Coxeter when generated by $s_{1}=(1,2)$ and $s_{2}=(2,3)$. Then $\mathcal{P}(W)$ represents the regular triangle as Figure 1.4:

Figure 1.4: The regular triangle (left) and its Hasse diagram (right) as $\mathcal{P}(\operatorname{Sym}(3))$.

We note that the Hasse diagram of $\operatorname{Sym}(n-1)$ is indeed isomorphic to the (directed) n-hypercubic graph

The elements of $\operatorname{Sym}(3)$ are of course the permutations $\{i d,(1,2),(2,3),(1,3),(1,2,3),(1,3,2)\}$. We multiply our permutations from left to right and when dealing with $w \in \operatorname{Sym}(n)$, write the image of $i \in[n]$ by (i)w. Given a permutation w we may write it in one-line form where we write the numbers $(1) w,(2) w, \ldots,(n) w$ in the order. So $(1,3,2)$ is written as 312 . The reduced words of each element are given by

w		$\mathcal{R}(w)$
id	123	
$(1,2)$	213	s_{1}
$(2,3)$	132	s_{2}
$(1,3,2)$	312	$s_{1} s_{2}$
$(1,2,3)$	231	$s_{2} s_{1}$
$(1,3)$	321	$s_{1} s_{2} s_{1}, s_{2} s_{1} s_{2}$

Table 1.2: The elements of $\operatorname{Sym}(3)$ and their reduced words.

Note that $s_{1} s_{2} s_{1}$ and $s_{2} s_{1} s_{2}$ are indeed connected by a braid relation as Matsumoto's theorem suggests. Using the subword criterion for reduced words, we can now readily compute the weak order and Bruhat order.

Figure 1.5: The Hasse diagrams of the weak order (left) and strong Bruhat order (right) of $\mathcal{P}(\operatorname{Sym}(3))$.

As observed in [1], the strong Bruhat Order on $\operatorname{Sym}(n)$ reduces to a nice characterisation: given $u \in \operatorname{Sym}(n)$ and transposition $t=(a, b) \in T$ (a reflection), $u<_{B} u t$ if and only if $a<b$ and $(a) u^{-1}<(b) u^{-1}$.

1.4 Unfamiliar examples

We give an example of two distinct (up to isomorphism) abstract regular polytopes whose automorphism groups are equal as groups. Consider Sym(4). The regular tetrahedron is a familiar abstract regular polytope whose corresponding C-string is given by the adjacent transpositions $\{(1,2),(2,3),(3,4)\}$. However, the following three involutions also produce a C-string: $\{(1,2)(3,4),(2,3),(3,4)\}$. This C-string corresponds to the abstract regular polytope known as the hemi-cube. One can check that the Schläfli types of the two strings are $[3,3]$ and $[4,3]$. This shows they are not isomorphic as C-strings.
This serves an example of a Coxeter group having a C-string which is not a Coxeter system. We also note that there exist groups that are not Coxeter groups but are C-groups. M_{12}, the sporadic simple group, is a good example of this. It is shown in [25] that it does indeed contain C-strings. Since it is simple, if it is a Coxeter group, it would be required to be both irreducible and finite. The order of the finite irreducible Coxeter groups is well-known due to the classification. The only finite irreducible Coxeter group of order $\left|M_{12}\right|=95040$ is $\mathrm{I}_{2}(47520)$. But clearly $\mathrm{I}_{2}(47520)$ is not isomorphic to M_{12} since it is a dihedral group and therefore not simple.

1.5 An overview of string C-groups

In this section we provide a brief overview of some of the recent literature surrounding string C-groups. This includes cataloguing all the C-strings for certain families of groups such as the symmetric, alternating and sporadic simple groups. We'll also highlight some very useful theoretical results that are of general use when trying to prove that some set of involutions of a group are indeed a C-string. One theorem that is often used in practice for proving the existence of a C-string is the following (edited slightly to be more consistent with our notation).

Theorem 1.5.1 (Theorem 2E16 of [34]). Suppose that $G=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ with $\left\{s_{1}, \ldots, s_{n}\right\}$ a generating set of G with each s_{i} an involution. Suppose that $G_{[2, n]}:=\left\langle s_{2}, \ldots, s_{n}\right\rangle$ is string C-group.
(i) If $G_{[n-1]}=\left\langle s_{1}, \ldots, s_{n-1}\right\rangle$ is a string C-group also, then

$$
G_{[2, n]} \cap G_{[n-1]}=\left\langle s_{2}, \ldots, s_{n-1}\right\rangle
$$

implies G is a string C-group with respect to $\left\{s_{1}, \ldots, s_{n}\right\}$.
(ii) If

$$
G_{[2, n]} \cap\left\langle s_{1}, \ldots, s_{k}\right\rangle=\left\langle s_{2}, \ldots, s_{k}\right\rangle
$$

for all $k \in\{1, \ldots, n-1\}$ then G is also a string C-group.

Theorem 1.5.1 really does serve as a staple in enumerating all C-strings of a given Group. For example, one can use it to exhaustively find all C-strings of a given group. A depth-first algorithm describing this procedure is found in [29] and we have implemented this in MAGMA for our own investigations (see Appendix A).

In [23], Hartley produces an Atlas of C-strings for groups of order at most 2000. This originally excluded those with groups of order 1024 and 1536. There about 10,000 non-degenerate, abstract regular polytopes of order 1536. Those of order 1024 were later classified in [18] using different techniques leveraging some knowledge of Coxeter groups.

In [31], Leemans and Vauthier classified the C-strings for the almost simple groups up to a certain order. In particular, for every C-string of a group G such that $S \leq G \leq \operatorname{Aut}(S)$ and S is a simple group of order less than 900,000 has been listed.

Hartley and Hulpke enumerated all of the abstract regular polytopes for the sporadic simple groups of up to the Held Group of order 4030387200 in [25]. This has been extended to include the smallest Conway group Co_{3} in [29] and impressive partial results for $O N$ in [7]. This is still an ongoing area of enquiry and soon to be released work concerns itself with more enumeration for large finite simple groups with new, more effective algorithms (see [30]) where the data for $O N$ is completed.

A lot of work on symmetric, alternating and transitive permutation groups has been carried out. Some noticeable examples include [4], [5], [14], [16] and [17]. We present some of the relevant tables enumerating the abstract regular polytopes of the symmetric groups from [15].

Group \Rank	3	4	5	6	7	8	9	10	11	12	13
$\operatorname{Sym}(4)$	2	0	0	0	0	0	0	0	0	0	0
$\operatorname{Sym}(5)$	4	1	0	0	0	0	0	0	0	0	0
$\operatorname{Sym}(6)$	2	4	1	0	0	0	0	0	0	0	0
$\operatorname{Sym}(7)$	35	7	1	1	0	0	0	0	0	0	0
$\operatorname{Sym}(8)$	68	36	11	1	1	0	0	0	0	0	0
$\operatorname{Sym}(9)$	129	37	7	7	1	1	0	0	0	0	0
$\operatorname{Sym}(10)$	413	203	52	13	7	1	1	0	0	0	0
$\operatorname{Sym}(11)$	1221	189	43	25	9	7	1	1	0	0	0
$\operatorname{Sym}(12)$	3346	940	183	75	40	9	7	1	1	0	0
$\operatorname{Sym}(13)$	7163	863	171	123	41	35	9	7	1	1	0
$\operatorname{Sym}(14)$	23126	3945	978	303	163	54	35	9	7	1	1

Table 1.3: The number of abstract regular polytopes of $\operatorname{Sym}(n)$ up to duality.

And information for the alternating groups can be found in [31].

Group \Rank	3	4	5	6	7	8	9	10	11	12	13
Alt(5)	2	0	0	0	0	0	0	0	0	0	0
Alt(6)	0	0	0	0	0	0	0	0	0	0	0
Alt(7)	0	0	0	0	0	0	0	0	0	0	0
Alt(8)	0	0	0	0	0	0	0	0	0	0	0
Alt(9)	41	6	0	0	0	0	0	0	0	0	0
Alt(10)	94	2	4	0	0	0	0	0	0	0	0
Alt(11)	64	0	0	3	0	0	0	0	0	0	0
Alt(12)	194	90	22	0	0	0	0	0	0	0	0
$\operatorname{Alt(13)~}$	1558	102	25	10	0	0	0	0	0	0	0
$\operatorname{Alt}(14)$	4347	128	45	9	0	0	0	0	0	0	0
$\operatorname{Alt}(15)$	5820	158	20	42	6	0	0	0	0	0	0

Table 1.4: The number of abstract regular polytopes of $\operatorname{Alt}(n)$ up to duality.

From [25] with the addition of complete data of $O N$ from [30] we have the following table for the sporadic simple groups.

Group	Order	3	4	5	≥ 6
M_{11}	7920	0	0	0	0
M_{12}	95040	23	14	0	0
J_{1}	175560	148	2	0	0
M_{22}	443520	0	0	0	0
J_{2}	604800	137	17	0	0
M_{23}	10200960	0	0	0	0
${ }^{2} F_{4}(2)^{\prime}$	17971200	244	31	0	0
$H S$	44352000	252	57	2	0
J_{3}	50232960	303	2	0	0
M_{24}	244823040	490	155	2	0
$M c L$	898128000	0	0	0	0
$H e$	244823040	1188	76	0	0
$O N$	6536	16	0	0	0

Figure 1.6: The number of abstract regular polytopes for sporadic simple groups up to duality.

Another useful tool gaining more popularity is the CPR graph.
Definition 1.5.2 (CPR graph). Let (G, S) be a C-group and $\phi: G \hookrightarrow \operatorname{Sym}(n)$ an embedding into the symmetric group on n elements. Then the CPR graph of G with respect to ϕ is the labelled multi-graph (more than one edge may exist between the same two vertices) whose vertex set is $[n]$ and there exists a label from i to j labelled k if and only if $\phi\left(s_{k}\right)$ transposes i and j.

This definition comes from Pellicer in [41] where it is explained that CPR stands for C-group permutation representation. It gives some useful theorems that allow one to deduce whether some group is a (low ranking) C-group from graph theoretic facts and has influenced the methods involved for classifying polytopes as in [17].

Chapter 2

An introduction to unravelled polytopes

Here we focus on the ideas of quotients in abstract regular polytopes. There already exists a vast literature with some surprising results (see [20]) for general abstract polytopes. Of particular relevance for this section is Hartley's work on so-called semisparse subgroups and quotients, see [22]. For a detailed exposition of a quotient polytope, we suggest [34].
The work on these unravelled polytopes (Chapters 2, 3 and 4) is a collaboration with my PhD supervisor, Professor Peter Rowley. This work is edited and adapted from our paper in progress, [40].

2.1 Introduction

Definition 2.1.1 (Quotient of a polytope). Let \mathcal{P} be an abstract polytope of rank n, with partial ordering \prec and automorphism $\operatorname{group} \operatorname{Aut}(\mathcal{P})$. For a given subgroup $\Sigma \leq \operatorname{Aut}(\mathcal{P})$, let \mathcal{P} / Σ denote the set of orbits of Σ acting on \mathcal{P} as order-preserving permutations on the faces. We define the new partial ordering, denoted \prec_{Σ}, on \mathcal{P} / Σ as follows: for all $\widehat{F}, \widehat{G} \in \mathcal{P} / \Sigma$ we say $\widehat{F} \prec_{\Sigma} \widehat{G}$ exactly when there exists some $F \in \widehat{F}$ and $G \in \widehat{G}$ for which $F \prec G$. So \mathcal{P} / Σ equipped with \prec_{Σ} defines a new poset which we call the quotient of \mathcal{P} with respect to Σ.

Notice that we have not called this new poset a polytope; the reason being, that it may not be one. When this is the case, we call the resulting polytope the quotient polytope.

The set of subgroups for which the quotient of an abstract polytope is again an abstract polytope are the so-called semisparse subgroups. The group theoretic conditions for being a semisparse subgroup are quite complex and we do not take the diversion to study them in this thesis; Proposition 12 of [33] and the further work of Hartley in [21] and [22] give a thorough account of them.
If we restrict ourselves to examining when an abstract regular polytope quotients to another abstract regular polytope, matters simplify somewhat. Specifically, since we must send C-strings to C-strings, the subgroups we quotient by must be normal. So we need to check that if (G, S) is a string C-group with respect to $S=\left\{s_{1}, \ldots, s_{n}\right\}$ and $N \unlhd G$, then $\left\{s_{1} N, \ldots, s_{n} N\right\}$ is a C-string for G / N. We consider adding an extra condition to this already well studied phenomena: what if we require that we preserve the rank of the abstract regular polytopes also. We use this as inspiration to define what we call unravelled polytopes.

Definition 2.1.2 (Unravelled polytopes and C-strings). Let $G=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ be a rank n string C-group. If for all non-trivial normal subgroups of G, N, it is true that $G / N=\left\langle s_{1} N, \ldots, s_{n} N\right\rangle$ is not a rank n string C-group, we call G, and its corresponding abstract regular polytope, unravelled.

If for any particular $N, G / N=\left\langle s_{1} N, \ldots, s_{n} N\right\rangle$ is not a rank n string C-group, then we say G is N-unravelled.

From a geometric perspective this serves as a filter to find those abstract regular polytopes that can never be quotiented to form another abstract regular polytope of the same rank. One could go further, naturally, by considering what else we might strengthen or weaken and this certainly merits further enquiry. From a group theoretic perspective, these unravelled polytopes offer a natural focus on the interaction between the C-strings of a group and the normal subgroups. So, heuristically, we might expect it to be harder to find unravelled polytopes in some groups than others. Our first observation concerns the triviality of unravelled C-strings for simple groups.

Proposition 2.1.3. If G is a simple group then every C-string for G is unravelled.

To the best of my knowledge, unravelled polytopes have not been studied in isolation in the literature. The remaining sections will highlight some first steps in understanding the landscape of these polytopes and finding noticeable examples.

2.2 A detailed example

Let us consider the triple cover of $\operatorname{Sym}(6), G=3 . \operatorname{Sym}(6)$: that group that when quotiented by its normal cyclic group of order $3, \mathrm{C}_{3}$, gives $\operatorname{Sym}(6)$. A construction and examination of the group can be found in [47]. Of importance to us is that G has exactly two non-trivial normal subgroups: the normal C_{3} of index 120 and the triple cover of $\operatorname{Alt}(6), 3$. $\operatorname{Alt}(6)$ of index 2.
Note that since $N=3$. $\operatorname{Alt}(6)$ has index 2 , if $\left\{r_{1}, \ldots r_{n}\right\}$ is a C-string for G with $n>1$ then $\left\{r_{1} N, r_{2} N, \ldots, r_{k-1} N\right\}$ is not a rank n C-string for $G / N \cong \mathrm{C}_{2}$ since C_{2} only has one involution. Since 3.Alt(6) is not generated by a single involution (otherwise it'd be isomorphic to C_{2} !), it is always impossible for any C -string to preserve its rank and regularity when quotiented by 3 .Alt(6). Hence, for this group, we only need to test if this is the case for when $N=\mathrm{C}_{3}$.
With the help of Magma ([2]) we can exhaustively find all such C-strings of G up to automorphism. We also do the same for $G / \mathrm{C}_{3} \cong \operatorname{Sym}(6)$. Both groups happen to have exactly 11 C -strings and we list these by their Schläfli types (which happen to be unique to each C-string for these groups respectively). We check if a C-string from 3.Sym(6) is sent to one of $\operatorname{Sym}(6)$ by quotienting by C_{3} in Table 2.1. Absent from this list are the C-strings with Schläfli type $[4,5,4]$ in $3 . \operatorname{Sym}(6)$ and $[3,3,3,3]$ in $\operatorname{Sym}(6)$ since $[4,5,4]$ does not quotient to any C-string in $\operatorname{Sym}(6)$, nor does any C-string in $3 . \operatorname{Sym}(6)$ quotient to $[3,3,3,3]$.

$3 . \operatorname{Sym}(6)$	Covers	$\operatorname{Sym}(6)$
$[4,12,4]$	\rightarrow	$[4,4,4]$
$[3,6,4]$	\rightarrow	$[3,6,4]$
$[4,6,3]$	\rightarrow	$[4,6,3]$
$[3,12,4]$	\rightarrow	$[3,4,4]$
$[4,12,3]$	\rightarrow	$[4,3,3]$
$[4,6,4]$	\rightarrow	$[4,6,4]$
$[4,6,4]$	\rightarrow	$[4,6,4]$
$[6,5]$	\rightarrow	$[6,5]$
$[5,6]$	\rightarrow	$[5,6]$
$[6,6]$	\rightarrow	$[6,6]$

Table 2.1: The C-strings for $3 . \operatorname{Sym}(6)$ and $\operatorname{Sym}(6)$ respectively denoted by their Schläfli symbols and the coverings between them.

We can see explicitly from Table 2.1 that the only C-string of $3 . \operatorname{Sym}(6)$ that is not a C-string of the same rank for $\operatorname{Sym}(6)$ is that with symbol $[4,5,4]$ and so is the only unravelled C-string for $3 . \operatorname{Sym}(6)$. Let $G=\left\langle s_{1}, s_{2}, s_{3}, s_{4}\right\rangle$ denote this C-string. We mention a charming fact: as groups, $G_{123} \cong G_{234} \cong \operatorname{Sym}(5)$ yet they are not conjugate in G. One is that of usual permutation representation of $\operatorname{Sym}(5)$ within $\operatorname{Sym}(6)$ and the other is of the exotic transitive permutation representation. According to Hartley's atlas ([23]) there is only one abstract regular polytope of $\operatorname{Sym}(5)$ with Schläfli types $[4,5]$ and $[5,4]$ respectively. They are both locally spherical, non-orientable, compact quotients of hyperbolic space.
Since G is the only C-string of its Schläfli type, it is necessarily self-dual. By computation, one can check that the Betti numbers for G are $[1,18,135,135,18,1]$.
Let Δ_{i} denote the number of elements of length $i=0,1 \ldots$ in (G, S). We often refer to these as the disc sizes in the chamber graph due to their connection to buildings. They are given by

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\left\|\Delta_{i}\right\|$	4	9	18	34	61	108	162	218	303	358	373	276	154	70	9	2

The two elements of maximal distance are also mutually equidistant and so there exists a triangle between the identity and these two elements - which also happen to form our central C_{3}.

2.3 Some small computed examples

In Table 2.2 we present the existence of unravelled polytopes (computed again via Magma) for a selection of groups. An entry for the group G of the form $x(y)[z]$ is used to denote that there exists exactly x C-strings (up to automorphism) for G, of which, y are self-dual and z are unravelled. We highlight a few more chosen unravelled polytopes from this selection, examining their Schläfli type, Betti numbers and number of elements of a given length.

2.3.1 $G \sim 3: \operatorname{Sym}(7)$

Just as in Subsection 2.2, G has, up to isomorphism, exactly one unravelled C-string. Again, it has rank 4, while its Schläfli symbol is $[4,6,4]$ and Betti

Group	Total	Rank 3	Rank 4	Rank 5	Rank 6	Rank 7	Rank 8
3.Sym(6)	$11(3)[1]$	$3(1)[0]$	$8(2)[1]$	0	0	0	0
$3 . \operatorname{Sym}(7)$	$167(5)[1]$	$142(4)[0]$	$23(1)[1]$	2	0	0	0
3. PSL $_{3}(7): 2$	$3256(48)[1]$	$3240(44)[0]$	$16(4)[1]$	0	0	0	0
3. PSL $_{3}(13): 2$	$38594(174)[1]$	$38534(166)[0]$	$60(8)[1]$	0	0	0	0
$3 . \mathrm{M}_{22}: 2$	$727(13)[5]$	$550(10)[0]$	$177(3)[5]$	0	0	0	0
$3 . G_{2}(3): 2$	$725(25)[0]$	$705(25)[0]$	$20(0)[0]$	0	0	0	0
$2^{4}: \operatorname{Sym}^{2}(6)$	$22(2)[11]$	$6(0)[0]$	$8(0)[4]$	$8(2)[7]$	0	0	0
$\mathrm{~B}_{3}$	$8(0)[0]$	$8(0)[0]$	0	0	0	0	0
$\mathrm{~B}_{4}$	$14(2)[0]$	$6(2)[0]$	$8(0)[0]$	0	0	0	0
$\mathrm{~B}_{5}$	$165(0)[0]$	$63(0)[0]$	$88(0)[0]$	$14(0)[0]$	0	0	0
$\mathrm{~B}_{6}$	$130(0)[0]$	$24(0)[0]$	$76(0)[0]$	$20(0)[0]$	$10(0)[0]$	0	0
$\mathrm{~B}_{7}$	$2965(21)[14]$	$1031(21)[0]$	$1428(0)[10]$	$400(0)[4]$	$84(0)[0]$	$22(0)[0]$	0
$\mathrm{~B}_{8}$	$3051(3)[38]$	$1020(32)[0]$	$1494(0)[32]$	$304(0)[8]$	$192(0)[0]$	$27(1)[0]$	$14(0)[0]$
D_{3}	$3(1)[3]$	$3(1)[3]$	0	0	0	0	0
D_{4}	0	0	0	0	0	0	0
D_{5}	$39(1)[16]$	$21(1)[0]$	$16(0)[14]$	$2(0)[2]$	0	0	0
D_{6}	$132(0)[2]$	$24(0)[0]$	$48(0)[2]$	$60(0)[0]$	0	0	0
D_{7}	$628(16)[210]$	$348(16)[0]$	$226(0)[166]$	$42(0)[36]$	$10(0)[6]$	$2(0)[2]$	0
D_{8}	$3537(27)[24]$	$887(19)[0]$	$1598(8)[14]$	$826(0)[10]$	$172(0)[0]$	$54(0)[0]$	0

Table 2.2: Number of C-strings and those which unravel.
numbers are $[1,63,945,945,63,1]$. The disc sizes of the chamber graph are

i	1	2	3	4	5	6	7	8	9	10	11
$\left\|\Delta_{i}\right\|$	4	9	18	34	62	113	204	366	601	963	1454
12	13	14	15	16	17	18	19	20	21	22	
2036	2562	2696	2005	1219	514	188	57	10	4	1	

So we have a unique element of maximum length 22 . This element is an involution. Both G_{123} and G_{234} are isomorphic to $\mathbb{Z}_{2} \times \operatorname{Sym}(5)$ and are named as $\{4,6\} * 240 a$ in Hartley's atlas ([23]).

2.3.2 $G \sim 3 \cdot \mathrm{M}_{22}: 2$

In this case, there are five unravelled C-strings, all of rank 4, with details given in Table 2.3.

Schläfli symbol	Betti numbers
$[4,5,4]$	$[1,2016,166320,166320,8316,1]$
$[4,5,4]$	$[1,8316,166320,166320,2016,1]$
$[4,6,4]$	$[1,693,166320,166320,693,1]$
$[4,6,4]$	$[1,693,166320,166320,6930,1]$
$[4,6,4]$	$[1,6930,166320,166320,693,1]$

Table 2.3: Unravelled C-strings for $3 \mathrm{M}_{22}: 2$.

We note that the five abstract regular polytopes in Table 2.3 consists of a dual pair of $[4,5,4]$ abstract regular polytopes and a dual pair of $[4,6,4]$ abstract regular polytopes and one self-dual $[4,6,4]$ abstract regular polytope.

2.3.3 $G \sim 2^{4}: \operatorname{Sym}(6)$

Here in Table 2.4 we find eleven unravelled C-strings, four of which have rank 4 and the remainder rank 5 .

Schläfli symbol	Betti numbers
$[6,6,4]$	$[1,60,720,480,16,1]$
$[4,6,6]$	$[1,16,480,720,60,1]$
$[6,5,4]$	$[1,72,720,480,16,1]$
$[4,5,6]$	$[1,16,480,720,72,1]$
$[4,4,6,3]$	$[1,16,120,240,90,6,1]$
$[3,6,4,4]$	$[1,6,90,240,120,16,1]$
$[4,4,4,3]$	$[1,16,120,240,90,10,1]$
$[3,4,4,4]$	$[1,10,90,240,120,16,1]$
$[3,6,4,3]$	$[1,6,120,320,120,16,1]$
$[3,4,6,3]$	$[1,16,120,320,120,6,1]$
$[3,4,4,3]$	$[1,16,120,320,120,16,1]$

Table 2.4: Unravelled C-strings for $2^{4}: \operatorname{Sym}(6)$.

Only two of the eleven, namely those with symbols $[4,5,6]$ and $[6,5,4]$, decrease in rank when quotienting, whereas the others have at least one case of the intersection property failing. We also note that the only self-dual C-string in Table 2.4 is the one with symbol $[3,4,4,3]$.

2.3.4 G of order $1296=2^{4} .3^{4}$.

The more normal subgroups a group has, the more stringent the unravelled condition becomes. We close this section including an example of a soluble group which possess an unravelled C-string. Let $s_{1}, s_{2}, s_{3}, s_{4}$ be the elements of $\operatorname{Sym}(27)$ as follows.

$$
\begin{aligned}
& s_{1}=(4,10)(7,15)(9,17)(12,20)(14,22)(16,23)(19,25)(21,26)(24,27), \\
& s_{2}=(2,4)(5,10)(6,9)(11,17)(12,15)(13,16)(18,23)(19,22)(24,26), \\
& s_{3}=(2,3)(5,8)(7,9)(11,13)(12,16)(15,17)(19,21)(20,23)(25,26) \text { and } \\
& s_{4}=(1,3)(2,6)(4,9)(5,11)(7,14)(10,17)(12,19)(15,22)(20,25) .
\end{aligned}
$$

Set $G=\left\langle s_{1}, s_{2}, s_{3}, s_{4}\right\rangle$. Then $\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ is an unravelled C-string for G with
 vertex group and facet groups of this abstract regular polytope are isomorphic to the Coxeter group B_{3} as their automorphism groups. For the lengths of the elements we have the following.

i	1	2	3	4	5	6	7	8	9
$\left\|\Delta_{i}\right\|$	4	9	17	28	42	60	81	105	129
10	11	12	13	14	15	16	17	18	
147	157	155	138	109	71	33	9	1	

Chapter 3

Two families of unravelled polytopes

In this chapter and Chapter 4, we aim to find some non-trivial families of unravelled C-strings. This follows some of the work contained in [40] and so is joint work with Professor Peter Rowley. Here we concentrate on the matrix groups of the form $\mathrm{SL}_{3}(q) \rtimes\langle t\rangle \sim 3 L_{3}(q): 2$, where t acts upon $\mathrm{SL}_{3}(q)$ as the transpose inverse automorphism and q a prime power. These examples demonstrate that being unravelled is not too restrictive a property as to force the C-strings to be uninteresting in nature and that infinite non-trivial examples exist. For the small groups of this form, it seems that those C-strings that unravel are often the exception: $\mathrm{SL}_{3}(7) \rtimes\langle t\rangle$ has 3256 abstract regular polytopes but only one of which is unravelled, for example.
We will prove two main theorems in this chapter. Both concern the existence of infinite families of polytopes. Our first theorem shows a method to construct rank 4 unravelled C-strings.

Theorem 3.0.1. Suppose that q is a prime power and $G=\mathrm{SL}_{3}(q) \rtimes\langle t\rangle$ where t acts upon $\mathrm{SL}_{3}(q)$ as the transpose inverse automorphism. Assume that
(i) $q \equiv 7(\bmod 24)$;
(ii) at least one of $-3^{-1}+\left(3^{-2}-1\right)^{1 / 2}$ and $-3^{-1}-\left(3^{-2}-1\right)^{1 / 2}$ has order $q+1$ in $\mathrm{GF}\left(q^{2}\right)^{*}$.

Then G possesses an unravelled rank $4 C$-string with Schläfli symbol $[4, q+1,4]$.
We comment now on the conditions imposed: there are infinitely many q satisfying (i) of Theorem 3.0.1 (for example, taking $q=p$, a prime with $p \equiv 1(\bmod 3)$ and
$p \equiv 7(\bmod 8)$ gives infinitely many q by Dirichlet's Theorem). However we do not know if there are infinitely many q satisfying both conditions in the theorem. Of the 157 primes p less than or equal to 10000 with $p \equiv 1(\bmod 3)$ and $p \equiv 7$ $(\bmod 8), 20$ of them do not satisfy (ii) (and they are 199, 343, 919, 1039, 1063, 2239, 3079, 3919, 4423, 4759, 4783, 5167, 6967, 7039, 7759, $7879,8287,8887,9511,9679)$.
We also note that (i) is equivalent to having $q \equiv 1(\bmod 6)$ and the existence of some $\lambda, \mu \in \operatorname{GF}(q)$ such that $2 \lambda^{2}=1$ and $2 \mu^{2}-\lambda^{2}=0$. This fact is an indirect consequence of the second supplementary law of Gauss's quadratic reciprocity. Condition (ii), we will see, determines the Schläfli symbol $q+1$ for the desired C-strings. This fact is essential in our proof that that C-strings are unravelled. Our second theorem is targeted at only on those $G=\mathrm{SL}_{3}(q) \rtimes<t>$ with q being prime (with some additional congruence conditions imposed) but aims to prove a similar statement in Section 3.3.

Theorem 3.0.2. Let p be a prime with $p \equiv 1(\bmod 3)$ and $p \equiv 5(\bmod 8)$. Then $G=\mathrm{SL}_{3}(p) \rtimes\langle t\rangle$, where t is the transpose inverse automorphism of $\mathrm{SL}_{3}(p)$, has an unravelled rank $4 C$-string with Schläfli symbol $[4, p, 4]$.

3.1 Some notation

Recall that we will be investigating C-strings in the group $G=\mathrm{SL}_{3}(q) \rtimes\langle t\rangle$ where q is some prime power with $3 \mid q-1$ and t is the transpose inverse automorphism of $\mathrm{SL}_{3}(q)$. We establish some relevant notation. Put $H=\mathrm{SL}_{3}(q)$ and let U be the natural 3-dimensional $\mathrm{GF}(q) H$-module. Set $V=U \oplus U^{*}$, where U^{*} is the dual of U . Choosing a basis for U and a dual basis for U^{*} (viewing U and U^{*} as subspaces of V) we may take t to be $t=\left(\begin{array}{l|l} & I_{3} \\ \hline I_{3} & \end{array}\right)$. We note that G has two conjugacy classes of involutions, namely t^{G} and s^{G} where $s \in G^{\prime}=H$. These classes may be easily distinguished as $\operatorname{dim} C_{V}(t)=3$ whereas $\operatorname{dim} C_{V}(s)=2$. Also, since $3 \mid q-1$, G has shape $3 L_{3}(q): 2$, where the multiplicative group is cyclic.

3.2 C-strings with Schläfli symbol $[4, q+1,4]$

In this section we prove Theorem 3.0.1 in a series of steps. We use the set up given at the end of Section 3.1. Since $6 \mid q-1$, we may select $\rho \in \operatorname{GF}(q)^{*}$ such that ρ has
multiplicative order 6 . Further, we have $\lambda, \mu \in \mathrm{GF}(q)$ for which $2 \lambda^{2}=1$ and $2 \mu^{2}-\lambda^{2}=0$. We now introduce five other elements of $\mathrm{GF}(q)$.

Definition 3.2.1.

$$
\begin{aligned}
& \alpha=3^{-1} \\
& \beta=2 \alpha \lambda \mu^{-1} \\
& \xi=\rho^{2}+\left(1-\rho^{2}\right) 2^{-1} \\
& \eta=\left(1-\rho^{2}\right) 2^{-1} \\
& \tau=\rho^{4}
\end{aligned}
$$

Note that $\alpha=\left(\mu^{-2}-1\right)^{-1}$. From $2 \mu^{2}=\lambda^{2}=2^{-1}$ we get $2^{-1} \mu^{-2}=2$, and so $\mu^{-2}=4$. Therefore $\alpha=\left(\mu^{-2}-1\right)^{-1}=3^{-1}$. Also, since $\beta=2 \alpha \lambda \mu^{-1}$, $\beta^{2}=4 \alpha^{2} \lambda^{2} \mu^{-2}=8 \alpha^{2}$.

Hence $\alpha^{2}+\beta^{2}=9 \alpha^{2}=9\left(3^{-1}\right)^{2}=1$. Thus $\alpha^{2}+\beta^{2}=1$.
Using these elements we now define our C-string, $\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$. We shall show that $\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ is an unravelled C-string for G where the t_{i} are specified as follows.

Definition 3.2.2.

$$
\begin{aligned}
& t_{1}=\left(\begin{array}{rrr|rrr}
& & & \mu & \lambda & \mu \\
& 0 & & \lambda & 0 & -\lambda \\
& & & \mu & -\lambda & \mu \\
\hline \mu & \lambda & \mu & & & \\
\lambda & 0 & -\lambda & & 0 & \\
\mu & -\lambda & \mu & & &
\end{array}\right) \\
& t_{2}=\left(\begin{array}{ccc|ccc}
-1 & & & & & \\
& 1 & & & 0 & \\
& & -1 & & & \\
\hline & & & -1 & & \\
& 0 & & & 1 & \\
& & & & -1
\end{array}\right)=\operatorname{diag}(-1,1,-1,-1,1,-1)
\end{aligned}
$$

$$
\begin{aligned}
& t_{3}=\left(\begin{array}{rrr|rrr}
\alpha & \beta & 0 & & & \\
\beta & -\alpha & 0 & & 0 & \\
0 & 0 & -1 & & & \\
\hline & 0 & \alpha & \beta & 0 \\
\beta & -\alpha & 0 \\
0 & 0 & -1
\end{array}\right) \\
& t_{4}=\left(\begin{array}{ccc|ccc}
& & & \xi & 0 & \eta \\
& 0 & & 0 & \tau & 0 \\
& & & \eta & 0 & \xi \\
\hline \xi \rho^{-2} & 0 & \eta \rho & & \\
0 & \tau \rho^{-2} & 0 & 0 \\
\eta \rho & 0 & \xi \rho^{-2} & &
\end{array}\right)
\end{aligned}
$$

Lemma 3.2.3. For $i=1,2,3,4, t_{i}$ are involutions with $t_{1}, t_{4} \in t^{G}$ and $t_{2}, t_{3} \in s^{G}$.

Proof. The diagonal blocks of t_{2} and t_{3} are easily seen to be involutions, and so t_{2} and t_{3} are involutions. Since

$$
\left(\begin{array}{ccc}
\mu & \lambda & \mu \\
\lambda & 0 & -\lambda \\
\mu & -\lambda & \mu
\end{array}\right)^{2}=\left(\begin{array}{ccc}
2 \mu^{2}+\lambda^{2} & 0 & 2 \mu^{2}-\lambda^{2} \\
0 & 2 \lambda^{2} & 0 \\
2 \mu^{2}-\lambda^{2} & 0 & 2 \mu^{2}+\lambda^{2}
\end{array}\right)
$$

the conditions on μ and λ imply that t_{1} is an involution.
Moving on to t_{4}, we look at the product

$$
\left(\begin{array}{ccc}
\xi & 0 & \eta \\
0 & \tau & 0 \\
\eta & 0 & \xi
\end{array}\right)\left(\begin{array}{ccc}
\xi \rho^{-2} & 0 & \eta \rho \\
0 & \tau \rho^{-2} & 0 \\
\eta \rho & 0 & \xi \rho^{-2}
\end{array}\right)=\left(\begin{array}{ccc}
\xi^{2} \rho^{-2}+\eta^{2} \rho & 0 & \xi \eta \rho+\eta \xi \rho^{-2} \\
0 & \tau^{2} \rho^{-2} & 0 \\
\eta \xi \rho^{-2}+\xi \eta \rho & 0 & \eta^{2} \rho+\xi^{2} \rho^{-2}
\end{array}\right)=A
$$

Note that ρ^{3} has multiplicative order 2 , and so $\rho^{3}=-1$. Now

$$
\begin{aligned}
\eta \xi \rho^{-2}+\xi \eta \rho & =\eta \xi \rho^{-2}\left(1+\rho^{3}\right) \\
& =\eta \xi \rho^{-2}(1+-1)=0,
\end{aligned}
$$

and using Definition 3.2.1 we have

$$
\tau^{2} \rho^{-2}=\rho^{8} \rho^{-2}=\rho^{6}=1
$$

Again, from Definition 3.2.1

$$
\begin{aligned}
\xi & =\rho^{2}+\eta \\
\xi^{2} & =\rho^{4}+2 \rho^{2} \eta+\eta^{2} \\
\xi^{2} \rho^{-2} & =\rho^{2}+2 \eta+\eta^{2} \rho^{-2} \\
\xi^{2} \rho^{-2}+\eta^{2} \rho & =\rho^{2}+2 \eta+\eta^{2} \rho^{-2}+\eta^{2} \rho \\
& =\rho^{2}+\left(1-\rho^{2}\right)+\eta^{2} \rho^{-2}+\eta^{2} \rho
\end{aligned}
$$

as $2 \eta=1-\rho^{2}$. Then, as $\eta^{2} \rho^{-2}+\eta^{2} \rho=\eta^{2} \rho^{-2}\left(1+\rho^{3}\right)=0$, we get

$$
\xi^{2} \rho^{-2}+\eta^{2} \rho=1 .
$$

Hence $A=I_{3}$, whence t_{4} is also an involution. Since $\operatorname{dim} C_{V}\left(t_{i}\right)=3$ for $i=1,4$ and $\operatorname{dim} C_{V}\left(t_{i}\right)=2$ for $i=2,3$, Lemma 3.2.3 is proved.

Lemma 3.2.4.

$$
C_{G}(t)=\langle t\rangle \times C_{H}(t) \cong 2 \times \mathrm{SO}_{3}(q) \cong 2 \times \mathrm{PGL}_{2}(q) .
$$

Proof. Because t acts by inverse conjugation on $H, C_{H}(t)$ consists of all orthogonal matrices of determinant 1. The well-known isomorphism $\mathrm{SO}_{3}(q) \cong \mathrm{PGL}_{2}(q)$ (see [44]) now gives Lemma 3.2.4.

We define

$$
r=\left(\begin{array}{ccc|ccc}
& & & \rho & 0 & 0 \\
& 0 & & 0 & \rho & 0 \\
& & & 0 & 0 & \rho^{-2} \\
\hline \rho^{-1} & 0 & 0 & & \\
0 & \rho^{-1} & 0 & & 0 & \\
0 & 0 & \rho^{2} & &
\end{array}\right) .
$$

Observe that $r \in t^{G}$ and so $C_{G}(r) \cong 2 \times \operatorname{PGL}_{2}(q)$.

Lemma 3.2.5. $\operatorname{tr}=\operatorname{diag}\left(\rho^{-1}, \rho^{-1}, \rho^{2}, \rho, \rho, \rho^{-2}\right) \in H$ has order 6 and $(t r)^{2} \in Z(H)$. Further, $C_{G}(t) \cap C_{G}(r) \leq C_{G}(t r)=C_{H}(t r) \cong \mathrm{GL}_{2}(q)$.

Proof. Since $[G: H]=2$, we have $t r \in H$ and, as ρ has multiplicative order 6 , tr has order 6 with $(\operatorname{tr})^{2} \in Z(H)$. Thus $C_{G}(t r)=C_{H}(\operatorname{tr})=C_{H}\left((\operatorname{tr})^{3}\right) \cong \mathrm{GL}_{2}(q)$.

Lemma 3.2.6. We have $t_{1}, t_{2}, t_{3} \in C_{G}(t)$ and $t_{2}, t_{3}, t_{4} \in C_{G}(r)$.
Proof. It is straightforward to check Lemma 3.2.6, though for $t_{4} r=r t_{4}$ we use the fact that $\rho^{2}=\rho^{-4}$.

Lemma 3.2.7. $C_{G}(t) \cap C_{G}(r) \cong \operatorname{Dih}(2(q+\epsilon))$ where $\epsilon= \pm 1$.
Proof. First we observe that $C_{G}(t) \cap C_{G}(r)=C_{C_{G}(t r)}(t)$. Since
$C_{G}(t r)=C_{H}(t r) \cong \mathrm{GL}_{2}(q)$ by Lemma 3.2.5 and t acts by transpose inverse upon
$C_{H}(\operatorname{tr}), C_{C_{G}(t r)}(t) \cong \mathrm{O}_{2}^{\epsilon}(q)$ (the 2-dimensional orthogonal group of type ϵ). Since $\mathrm{O}_{2}^{\epsilon}(q) \cong \operatorname{Dih}(2(q-\epsilon))$, (see [44]), we have Lemma 3.2.7.

Lemma 3.2.8. The order of $t_{1} t_{2}$ is 4 .
Proof. We have $t_{1} t_{2}=\left(\begin{array}{c|c} & A \\ \hline A & \end{array}\right)$ where $A=\left(\begin{array}{rrr}-\mu & \lambda & -\mu \\ -\lambda & 0 & \lambda \\ -\mu & -\lambda & -\mu\end{array}\right)$. Now $A^{2}=\left(\begin{array}{ccc}2 \mu^{2}-\lambda^{2} & 0 & 2 \mu^{2}+\lambda^{2} \\ 0 & -2 \lambda^{2} & 0 \\ 2 \mu^{2}+\lambda^{2} & 0 & 2 \mu^{2}-\lambda^{2}\end{array}\right)$ and hence $A^{2}=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0\end{array}\right)$.
Therefore $t_{1} t_{4}$ has order 4 .
Lemma 3.2.9. $t_{1} t_{3}=t_{3} t_{1}$.
Proof. Let $A=\left(\begin{array}{rrr}\mu & \lambda & \mu \\ \lambda & 0 & -\lambda \\ \mu & -\lambda & \mu\end{array}\right)$ and $B=\left(\begin{array}{rrr}\alpha & \beta & 0 \\ \beta & -\alpha & 0 \\ 0 & 0 & -1\end{array}\right)$. Then $t_{1} t_{3}=t_{3} t_{1}$ provided $A B=B A$. Now

$$
\begin{aligned}
& A B=\left(\begin{array}{ccc}
\mu \alpha+\lambda \beta & \mu \beta-\alpha \lambda & -\mu \\
\lambda \alpha & \lambda \beta & \lambda \\
\mu \alpha-\lambda \beta & \mu \beta+\alpha \lambda & -\mu
\end{array}\right) \\
& B A=\left(\begin{array}{ccc}
\alpha \mu+\beta \lambda & \alpha \lambda & \alpha \mu-\beta \lambda \\
\beta \mu-\alpha \lambda & \beta \lambda & \beta \mu+\alpha \lambda \\
-\mu & \lambda & -\mu
\end{array}\right) .
\end{aligned}
$$

So we need to know that

$$
\begin{aligned}
\alpha \lambda & =\mu \beta-\alpha \lambda, \\
-\mu & =\alpha \mu-\beta \lambda \quad \text { and } \\
\lambda & =\beta \mu+\alpha \lambda .
\end{aligned}
$$

Since $\mu \beta=\mu 2\left(\mu^{-2}-1\right)^{-1} \lambda \mu^{-1}=2\left(\mu^{-2}-1\right)^{-1} \lambda=2 \alpha \lambda$, we have $\alpha \lambda=\mu \beta-\alpha \lambda$. From $\lambda \beta=\lambda 2\left(\mu^{-2}-1\right)^{-1} \lambda \mu^{-1}=\left(\mu^{-2}-1\right)^{-1} \mu^{-1}=\alpha \mu^{-1}$, we get

$$
\begin{aligned}
\mu \alpha-\lambda \beta & =\mu \alpha-\alpha \mu^{-1} \\
& =\mu \alpha\left(1-\mu^{-2}\right) \\
& =\mu\left(\mu^{-2}-1\right)^{-1}\left(1-\mu^{-2}\right) \\
& =-\mu .
\end{aligned}
$$

Finally we show $\lambda=\beta \mu+\alpha \lambda$. Using $\beta=2 \alpha \mu^{-1}$, we have

$$
\begin{aligned}
\mu \beta+\alpha \lambda & =2 \alpha \lambda+\alpha \lambda \\
& =3 \alpha \lambda \\
& =3\left(\mu^{-2}-1\right)^{-1} \lambda \\
& =3.3^{-1} \lambda=\lambda,
\end{aligned}
$$

as $4 \mu^{2}=1$ implies $\mu^{-2}-1=3$. Hence Lemma 3.2.9 holds.

Lemma 3.2.10. The order of $t_{2} t_{3}$ is $q+1$ and $C_{G}(t) \cap C_{G}(r)=\left\langle t_{2}, t_{3}\right\rangle$

Proof. We use that

$$
t_{2} t_{3}=\left(\begin{array}{c|c}
X & \\
\hline & X
\end{array}\right) \text { where } X=\left(\begin{array}{ccc}
-\alpha & -\beta & 0 \\
\beta & -\alpha & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Hence the order of $t_{2} t_{3}$ is the same as the order of Y where $Y=\left(\begin{array}{cc}-\alpha & -\beta \\ \beta & -\alpha\end{array}\right)$.

Recalling that $\alpha^{2}+\beta^{2}=1$, the characteristic polynomial of Y is

$$
x^{2}+2 \alpha x+1
$$

Therefore the eigenvalues of Y are $-\alpha \pm\left(\alpha^{2}-1\right)^{1 / 2}=-3^{-1} \pm\left(3^{-2}-1\right)^{1 / 2}$. If these two eigenvalues are equal, then $2\left(\alpha^{2}-1\right)^{1 / 2}=0$ which implies the impossible $\alpha^{2}=1$. So the two eigenvalues of Y are different. Consequently Y is diagonalizable in $\mathrm{GL}_{2}\left(q^{2}\right)$ and hence, by assumption (ii) of Theorem 3.0.1, Y has order $q+1$. Hence, using Lemmas 3.2.6 and Lemma 3.2.7, we obtain $C_{G}(t) \cap C_{G}(r)=\left\langle t_{2}, t_{3}\right\rangle$.

Lemma 3.2.11. $\left[t_{2}, t_{4}\right]=1$

Proof. Since t_{2} is a diagonal matrix with 1 and -1 as its only diagonal entries, a matrix commutes with t_{2} if and only if it is of the form

$$
\left(\begin{array}{ccc|ccc}
* & 0 & * & * & 0 & * \\
0 & * & 0 & 0 & * & 0 \\
* & 0 & * & * & 0 & * \\
\hline * & 0 & * & * & 0 & * \\
0 & * & 0 & 0 & * & 0 \\
* & 0 & * & * & 0 & *
\end{array}\right),
$$

and t_{4} is of this form.

Lemma 3.2.12. $\left[t_{1}, t_{4}\right]=1$
Proof. Writing $t_{1}=\left(\begin{array}{l|l} & A \\ \hline A & \end{array}\right)$ and $t_{4}=\left(\begin{array}{l|l} & C \\ \hline D & \end{array}\right)$, Lemma 3.2.12 will hold if we show that $A D=C A$ and $A C=D A$. Calculating gives

$$
\begin{aligned}
A D & =\left(\begin{array}{ccc}
\mu \xi \rho^{-2}+\mu \eta \rho & \lambda \tau \rho^{-2} & \mu \eta \rho+\mu \xi \rho^{-2} \\
\lambda \xi \rho^{-2}-\lambda \eta \rho & 0 & \lambda \eta \rho-\lambda \xi \rho^{-2} \\
\mu \xi \rho^{-2}+\mu \eta \rho & -\lambda \tau \rho^{-2} & \mu \eta \rho+\mu \xi \rho^{-2}
\end{array}\right) \quad \text { and } \\
C A & =\left(\begin{array}{ccc}
\xi \mu+\eta \mu & \xi \lambda-\eta \lambda & \xi \mu+\mu \eta \\
\tau \lambda & 0 & -\tau \lambda \\
\eta \mu+\xi \mu & \eta \lambda-\xi \lambda & \eta \mu+\xi \mu
\end{array}\right)
\end{aligned}
$$

Therefore $A D=C A$ holds provided

$$
\begin{aligned}
\mu \xi \rho^{-2}+\mu \eta \rho & =\xi \mu+\eta \mu, \\
\lambda \xi \rho^{-2}-\lambda \eta \rho & =\tau \lambda \quad \text { and } \\
\lambda \tau \rho^{-2} & =\xi \lambda-\eta \lambda .
\end{aligned}
$$

Since $\lambda \neq 0$ and $\mu \neq 0$ this is equivalent to showing that

$$
\begin{aligned}
\xi \rho^{-2}+\eta \rho & =\xi+\eta, \\
\xi \rho^{-2}-\eta \rho & =\tau \quad \text { and } \\
\tau \rho^{-2} & =\xi-\eta .
\end{aligned}
$$

First we observe that $\xi=\rho^{2}+\eta$, and recall that $\rho^{3}=-1$. Hence

$$
\begin{aligned}
\xi+\eta & =\rho^{2}+2 \eta \\
& =\rho^{2}+2\left(1-\rho^{2}\right) 2^{-1} \\
& =\rho^{2}+1-\rho^{2}=1 .
\end{aligned}
$$

While

$$
\begin{aligned}
\xi \rho^{-2}+\eta \rho & =\left(\rho^{2}+\eta\right) \rho^{-2}+\eta \rho \\
& =1+\eta \rho^{-2}+\eta \rho \\
& =1+\eta \rho^{-2}\left(1+\rho^{3}\right) \\
& =1+\eta \rho^{-2}(1-1)=1
\end{aligned}
$$

Next,

$$
\begin{aligned}
\xi \rho^{-2}-\eta \rho & =\left(\rho^{2}+\eta\right) \rho^{-2}-\eta \rho \\
& =1+\eta \rho^{-2}-\eta \rho \\
& =\rho^{4}\left(\rho^{2}+\eta-\eta \rho^{-3}\right) \\
& =\rho^{4}\left(\rho^{2}+2 \eta\right),
\end{aligned}
$$

and substituting for η yields

$$
\begin{aligned}
\xi \rho^{-2}-\eta \rho & =\rho^{4}\left(\rho^{2}+2\left(1-\rho^{2}\right) 2^{-1}\right) \\
& =\rho^{4}=\tau
\end{aligned}
$$

Since $\xi-\eta=\rho^{2}+\eta-\eta=\rho^{2}=\rho^{4} \rho^{-2}=\tau \rho^{-2}$, we have shown that $A D=C A$. Similar considerations verify that $A C=D A$, whence Lemma 3.2.12 holds.

Lemma 3.2.13. $t_{3} t_{4}$ has order 4 .

Proof. Let

$$
\begin{aligned}
X & =\left(\begin{array}{ccc}
\alpha & \beta & 0 \\
\beta & -\alpha & 0 \\
0 & 0 & -1
\end{array}\right), \\
A & =\left(\begin{array}{ccc}
\xi & 0 & \eta \\
0 & \tau & 0 \\
\eta & 0 & \xi
\end{array}\right) \text { and } \\
B & =\left(\begin{array}{ccc}
\xi \rho^{-2} & 0 & \eta \rho \\
0 & \tau \rho^{-2} & 0 \\
\eta \rho & 0 & \xi \rho^{-2}
\end{array}\right) .
\end{aligned}
$$

To show that $t_{3} t_{4}$ has order 4 we verify that $\left(t_{3} t_{4}\right)^{2}$ is an involution. Now

$$
\left(t_{3} t_{4}\right)^{2}=\left(\begin{array}{l|l}
X A X B & \\
\hline & X B X A
\end{array}\right)
$$

We will see in a moment that the $(3,2)^{t h}$-entry of XBXA is non-zero, so $\left(t_{3} t_{4}\right)^{2} \neq 1$. Thus recalling that $X=X^{-1}$ and $A^{-1}=B$, we must show

$$
\begin{aligned}
X A X B & =(X A X B)^{-1}=A X B X \text { and } \\
X B X A & =(X B X A)^{-1}=B X A X
\end{aligned}
$$

Observe that $X B X A=B X A X$ implies

$$
A(X B X A) B=A(B X A X) B
$$

giving $A X B X=X A X B$. Hence it suffices to show that $X B X A=B X A X$.
We calculate that

$$
\begin{aligned}
& B X A X=\left(\begin{array}{ccc}
\alpha^{2} \xi^{2} \rho^{-2}-\alpha \eta^{2} \rho+\beta^{2} \xi \tau \rho^{-2} & \alpha \beta \xi^{2} \rho^{-2}-\beta \eta^{2} \rho-\alpha \beta \xi \tau \rho^{-2} & \eta \xi \rho-\alpha \xi \eta \rho^{-2} \\
\alpha \beta \xi \tau \rho^{-2}-\alpha \beta \tau^{2} \rho^{-2} & \beta^{2} \xi \tau \rho^{-2}+\alpha^{2} \tau^{2} \rho^{-2} & -\beta \eta \tau \rho^{-2} \\
\alpha^{2} \xi \eta \rho-\alpha \xi \eta \rho^{-2}+\beta^{2} \tau \eta \rho & \alpha \beta \xi \eta \rho-\beta \xi \eta \rho^{-2}-\alpha \beta \tau \eta \rho & \eta^{2} \rho^{-2}-\alpha \xi^{2} \rho
\end{array}\right) \text { and } \\
& X B X A=\left(\begin{array}{ccc}
\alpha \xi^{2} \alpha \rho^{-2}-\alpha \eta^{2} \rho+\beta^{2} \tau \rho^{-2} \xi & \alpha \xi \rho^{-2} \beta \tau-\beta \tau^{2} \rho^{-2} \alpha & \alpha^{2} \xi \rho^{-2} \eta-\alpha \eta \rho \xi+\beta^{2} \tau \rho^{-2} \eta \\
\beta \xi^{2} \alpha \rho^{-2}-\beta \eta^{2} \rho-\alpha \tau \rho^{-2} \beta \xi & \beta^{2} \xi \rho^{-2} \tau+\alpha^{2} \tau^{2} \rho^{-2} & \beta \xi \rho^{-2} \alpha \eta-\beta \eta \rho \xi-\alpha \tau \rho^{-2} \beta \eta \\
-\eta \rho \alpha \xi+\xi \rho^{-2} \eta & \eta \rho \beta \tau & -\eta^{2} \rho \alpha+\xi^{2} \rho^{-2}
\end{array}\right) .
\end{aligned}
$$

First we note that $X B X A$ and $B X A X$ have the same diagonal entries. For the $(2,1)^{t h}$-co-ordinate of $X B X A$ and $B X A X$ we require

$$
\alpha \beta \xi \tau \rho^{-2}-\alpha \beta \tau^{2} \rho^{-2}=\beta \xi^{2} \alpha \rho^{-2}-\beta \eta^{2} \rho-\alpha \tau \rho^{-2} \beta \xi
$$

Multiplying through by $\beta \rho^{2}$ this is equivalent to

$$
\tau \xi \alpha-\alpha \tau^{2}=\xi^{2} \alpha+\eta^{2}-\alpha \tau \xi
$$

using $\beta^{3}=-1$. Since $-2 \xi=\tau$, this is equivalent to

$$
-2 \alpha \tau^{2}=\xi^{2} \alpha+\eta^{2} .
$$

Substituting for ξ, η and $\alpha=3^{-1}$ reduces this to

$$
0=1+\rho^{2}+\rho^{4},
$$

which holds. Therefore $X B X A$ and $B X A X$ have the same $(2,1)^{\text {th }}$-co-ordinate. Similarly we may check all the off-diagonal entries of $X B X A$ and $B X A X$ are equal. Therefore $X B X A=B X A X$ and hence Lemma 3.2.13 holds.

Lemma 3.2.14. $\left\langle t_{1}, t_{2}, t_{3}\right\rangle=C_{G}(t)$ and $\left\langle t_{2}, t_{3}, t_{4}\right\rangle=C_{G}(r)$.

Proof. Since $t_{1}, t_{2} \in C_{G}(t)$ with $t_{2} \in C_{H}(t) \unlhd C_{G}(t),\left[t_{1}, t_{2}\right] \in C_{H}(t) \cong \mathrm{PGL}_{2}(q)$.

Now, from Lemma 3.2.8,

$$
\left[t_{1}, t_{2}\right]=\left(t_{1} t_{2}\right)^{2}=\left(\right)
$$

A quick calculation reveals that $\left[t_{1}, t_{2}\right] \notin C_{G}(r)$, and so $\left[t_{1}, t_{2}\right] \notin C_{G}(t) \cap C_{G}(r)$. By Lemma 3.2.7 and [43], $C_{G}(t) \cap C_{G}(r)$ is a maximal subgroup of $C_{H}(t)$, whence, as $t_{1} \notin C_{H}(t)$, we infer that $\left\langle t_{1}, t_{2}, t_{3}\right\rangle=C_{G}(t)$. Similar considerations show that $\left\langle t_{2}, t_{3}, t_{4}\right\rangle=C_{G}(r)$.

Proposition 3.2.15. $\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ is a C-string for G with Schläfli symbol $[4, q+1,4]$.

Proof. This comes from combining the fact that $C_{H}(t)$ is a maximal subgroup of H (see [35]) with Lemmas 3.2.8, 3.2.9, 3.2.10, 3.2.11, 3.2.12 and 3.2.13.

Proposition 3.2.16. $\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ is an unravelled C-string of G.
Proof. The only non-trivial proper normal subgroups of G are $H, Z(H)$. Since $[G: H]=2$, we only need show $\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ is $Z(H)$-unravelled. Put $G_{123}=\left\langle t_{1}, t_{2}, t_{3}\right\rangle, G_{234}=\left\langle t_{2}, t_{3}, t_{4}\right\rangle$ and $\bar{G}=G / Z(H)$. Since $Z(H)=\left\langle\operatorname{diag}\left(\rho^{-2}, \rho^{-2}, \rho^{-2}, \rho^{2}, \rho^{2}, \rho^{2}\right)\right\rangle$, we see that $\left|\left\{\overline{t_{1}}, \overline{t_{2}}, \overline{t_{3}}, \overline{t_{4}}\right\}\right|=4$. Also $\left\langle\overline{t_{2}}, \overline{t_{3}}\right\rangle \cong C_{G}(t) \cap C_{G}(r) \cong \operatorname{Dih}(2(q+1))$ as $\left\langle t_{2}, t_{3}\right\rangle \cap Z(H)=1$. Now $\bar{G}_{123}=C_{\bar{G}}(\bar{t})$ and $\bar{G}_{234}=C_{\bar{G}}(\bar{r})$, as the orders of t and r are coprime to $|Z(H)|$. From Lemma 3.2.5 $\bar{t} \bar{r}=\bar{r} \bar{t}$ has order 2. That is \bar{t} and \bar{r} commute. So $\bar{t}, \bar{r} \in \bar{G}_{123} \cap \bar{G}_{234}$ and therefore $\bar{G}_{123} \cap \bar{G}_{234} \supsetneqq\left\langle\overline{t_{2}}, \overline{t_{3}}\right\rangle$. Consequently, the intersection property fails for $\left\{\overline{t_{1}}, \overline{t_{2}}, \overline{t_{3}}, \overline{t_{4}}\right\}$.

Together, Propositions 3.2.15 and 3.2.16 prove Theorem 3.0.1.

3.3 C-strings with Schläfli symbol $[4, p, 4]$

In this section we are concerned with proving Theorem 3.0.2. We re-use the notation used in the previous section. Here, $G=\mathrm{SL}_{3}(p) \rtimes\langle t\rangle$ where p is a prime such that $p \equiv 1(\bmod 3)$ and $p \equiv 5(\bmod 8)$. Because $p \equiv 1(\bmod 3)$ we may
choose, and keep fixed, $\rho \in \operatorname{GF}(p)$ of multiplicative order 3. Further, $p \equiv 5$ $(\bmod 8)$ means we may choose $\iota \in \operatorname{GF}(p)$, also now to be fixed, such that $\iota^{2}=-1$. Set $\alpha=\sqrt{\left(1+\rho^{2}\right)^{-1}}$, again making a choice from the (at most) two possibilities. Now we define a slew of elements in $\operatorname{GF}(p)$.

Definition 3.3.1.

$$
\begin{aligned}
\lambda & =\alpha(\iota+1)\left(-1+\rho-\iota \rho^{2}\right) \\
\epsilon & =-\iota \lambda \\
\beta & =-2^{-1} \lambda^{2} \iota \\
\gamma & =2^{-1} \lambda^{2}-1 \\
\delta & =-1-2^{-1} \lambda^{2} \\
\mu & =1-\rho .
\end{aligned}
$$

Note that $\lambda \neq 0$ and $\lambda^{2}=-\epsilon^{2}$. Also recall that $1+\rho+\rho^{2}=0$ and so $\alpha^{2}=-\rho^{2}$. Hence $\alpha \neq 0$.

The elements in Definition 3.3.1 appear as entries in $\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$, elements of G, which we now define.

Definition 3.3.2.

$$
\begin{aligned}
& t_{1}=\left(\begin{array}{ccc|ccc}
& & & 0 & \alpha & -\alpha \rho \\
& 0 & & \alpha & \rho & 1 \\
& & -\alpha \rho & 1 & \rho^{2} \\
\hline 0 & \alpha & -\alpha \rho & & & \\
\alpha & \rho & 1 & & 0 & \\
-\alpha \rho & 1 & \rho^{2} & &
\end{array}\right) \\
& t_{2}=\left(\begin{array}{lll|lll}
1 & & & & & \\
& -1 & & & 0 & \\
& & -1 & & \\
\hline & 0 & & 1 & & \\
& & -1 & \\
& & & & -1
\end{array}\right)=\operatorname{diag}(1,-1,-1,1,-1,-1)
\end{aligned}
$$

$$
\begin{aligned}
& t_{3}=\left(\begin{array}{ccc|ccc}
1 & \lambda & \epsilon & & & \\
\lambda & \gamma & \beta & & 0 & \\
\epsilon & \beta & \delta & & \\
\hline & & & 1 & \lambda & \epsilon \\
& 0 & & \lambda & \gamma & \beta \\
\epsilon & \beta & \delta
\end{array}\right) \\
& t_{4}=\left(\begin{array}{ccc|rcc}
& & & -\rho & 0 & 0 \\
& 0 & & 0 & 0 & \rho \\
0 & \rho & -\mu \rho^{2} \\
\hline-\rho^{2} & 0 & 0 & & & \\
0 & \mu & \rho^{2} & 0 & \\
0 & \rho^{2} & 0 & &
\end{array}\right) .
\end{aligned}
$$

In order to define a further element in t^{G}, we introduce more elements in $\operatorname{GF}(p)$.

Definition 3.3.3.

$$
\begin{aligned}
& a=2\left(2 \rho^{2}+(1-\rho) \iota\right)^{-1} \\
& x=-2^{-1} a \rho(1-\rho) \\
& y=-x \rho \\
& b=a^{-1}\left(\rho^{2}+x^{2}\right) \\
& c=a^{-1}\left(1+x^{2} \rho\right) \\
& d=a \rho
\end{aligned}
$$

Observe that $a \neq 0$, so b and c are well-defined. Now set

$$
r=\left(\right) .
$$

Lemma 3.3.4.

(i) $t_{1}, t_{2}, t_{3}, t_{4}$ and r are involutions.
(ii) $t_{1}, t_{4}, r \in t^{G}$ and $t_{2}, t_{3} \in s^{G}$.

Proof. To show that t_{1} is an involution, we must verify that $X^{2}=I_{3}$ where
$X=\left(\begin{array}{ccc}0 & \alpha & -\alpha \rho \\ \alpha & \rho & 1 \\ \alpha \rho & 1 & \rho^{2}\end{array}\right)$.
Now $X^{2}=\left(\begin{array}{ccc}\alpha^{2}+\alpha^{2} \rho & 0 & 0 \\ 0 & \alpha^{2}+\rho^{2}+1 & -\alpha^{2} \rho+\rho+\rho^{2} \\ 0 & -\alpha^{2} \rho+\rho+\rho^{2} & \alpha^{2} \rho+1+\rho^{4}\end{array}\right)$ and using $\alpha^{2}=-\rho^{2}$, we
see $X^{2}=I_{3}$. Similarly, using Definition 3.3.1, we may show t_{3} is an involution.
While it is straightforward to check that t_{2} and t_{4} are involutions, for r it suffices, using Definition 3.3.3, to show that

$$
\left(\begin{array}{ll}
a & x \\
x & b
\end{array}\right)^{-1}=\left(\begin{array}{ll}
c & y \\
y & d
\end{array}\right)
$$

so proving (i). Since, by calculation, $\operatorname{dim} C_{V}\left(t_{1}\right)=\operatorname{dim} C_{V}\left(t_{4}\right)=\operatorname{dim} C_{V}(r)=3$ and $\operatorname{dim} C_{V}\left(t_{2}\right)=\operatorname{dim} C_{V}\left(t_{3}\right)=2$, we have part (ii).

Lemma 3.3.5. $t_{1} t_{3}=t_{3} t_{1}, t_{1} t_{4}=t_{4} t_{1}$ and $t_{2} t_{4}=t_{4} t_{2}$.
Proof. Checking $t_{1} t_{4}=t_{4} t_{1}$ uses $\mu=1-\rho$ whereas $t_{1} t_{3}=t_{3} t_{1}$ requires the definitions of $\lambda, \epsilon, \beta, \gamma$ and δ. That $t_{2} t_{4}=t_{4} t_{2}$ is easily seen.

Lemma 3.3.6.

(i) $t_{1} t_{2}$ and $t_{3} t_{4}$ both have order 4 .
(ii) $t_{2} t_{3}$ has order p.

Proof. Part (i) can be checked following the same strategy as in 3.2.13.
Now $t_{2} t_{3}=\left(\begin{array}{c|c}X & \\ \hline & X\end{array}\right)$ where $X=\left(\begin{array}{ccc}1 & \lambda & \epsilon \\ -\lambda & -\gamma & -\beta \\ -\epsilon & -\beta & -\delta\end{array}\right)$.
We demonstrate that X has order p, from which (ii) will follow. Consider X acting on the 3-dimensional vector space U , setting $U_{1}=C_{U}(X)$ and letting U_{2} be
the inverse image of $C_{U / U_{1}}(X)$ in U . For $(u, v, w) \in U,(u, v, w) \in U_{1}$ if and only if

$$
\begin{aligned}
u-\lambda v-\epsilon w & =u \\
\lambda u-\gamma v-\beta w & =v \\
\epsilon u-\beta v-\delta w & =w
\end{aligned}
$$

The first equation gives $v=-\lambda^{-1} \epsilon w=\left(-\lambda^{-1}\right)(-\iota \lambda w)=\iota w$, and then the second yields

$$
\lambda u=(\gamma \iota+\beta+\iota) w=0
$$

using the definitions of γ and β. Since $\lambda \neq 0, u=0$. Thus
$U_{1}=\{(0, \iota w, w) \mid w \in \operatorname{GF}(p)\}$. Similar calculations show that
$U_{2}=\{(u, \iota w, w) \mid u, w \in \operatorname{GF}(p)\}$. Now $(0,0,1) X-(0,0,1)=(-\epsilon,-\beta,-\delta-1) \in U_{2}$, as $\iota(-\delta-1)=-\beta$. Hence as $(0,0,1) \notin U_{2}, X$ acts nilpotently on U , whence X has p-power order. Since Sylow p-subgroups of $\mathrm{SL}_{3}(p)$ have exponent p and $X \neq I_{3}, X$ has order p. This completes the proof of Lemma 3.3.6.

Let $g_{0}=\left(\begin{array}{rrrrr} & & & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 & & \\ 0 & 1 & 0 & 0\end{array}\right)$ and $z=\operatorname{diag}\left(\rho, \rho, \rho, \rho^{2}, \rho^{2}, \rho^{2}\right)$. Note that $z \in Z(H)$, and straightforward calculation gives

Lemma 3.3.7.

(i) $g_{0} \in C_{G}(t)$ and $z g_{0} \in C_{G}(r)$,
(ii) $g_{0}^{2}=t_{2}=\left(z g_{0}\right)^{2}$.

Proof. Set $L_{123}=G_{123} \cap C_{H}(t)^{\prime}$ and $L_{234}=G_{234} \cap C_{H}(t)^{\prime}$. Note that $L_{123} \cong \operatorname{PSL}_{2}(p) \cong L_{234}$.

Lemma 3.3.8.

(i) $C_{G}(t) \geq G_{123}$ and $C_{G}(r) \geq G_{234}$,
(ii) $G_{123}=\left\langle t_{1}\right\rangle L_{123}$ and $G_{234}=\left\langle t_{4}\right\rangle L_{234}$,
(iii) $G_{123} \cong \mathrm{PGL}(2, p) \cong G_{234}$.

Proof. First, calculation reveals that t_{1}, t_{2} and t_{3} commute with t and t_{2}, t_{3} and t_{4} commute with r, so part (i) holds.
Observe that, as $C_{G}(t)=\langle t\rangle \times C_{H}(t)$ with $C_{H}(t) \cong \mathrm{PGL}(2, p), C_{G}(t)=\langle t\rangle \times C_{H}(t)$ with $C_{H}(t) \cong \mathrm{PGL}(2, p), C_{G}(t) / L_{123}$ is elementary abelian of order 4, Lemma 3.3.7 implies that $t_{2} \in L_{123}$. Clearly we also have $t_{2} t_{3} \in L_{123}$, so $G_{23}=\left\langle t_{2}, t_{3}\right\rangle \leq L_{123}$. Since by Lemma 3.3.6 $(i i), \operatorname{Dih}(2 p) \cong G_{23}$ is a maximal subgroup of $L_{123} \cong \operatorname{PSL}(2, p)$ and t_{1} does not normalize $G_{23}, G_{123}=\left\langle t_{1}\right\rangle L_{123}$. A similar argument establishes $G_{234}=\left\langle t_{4}\right\rangle L_{234}$.
Since $p \equiv 5(\bmod 8)$, Lemma 3.3.6 (i) implies that $\left\langle t_{1}, t_{2}\right\rangle \in \operatorname{Syl}_{2}\left(G_{123}\right)$. Hence $t \notin G_{123}$ and so, by $(i i), G_{123} \cong \operatorname{PGL}(2, p)$. Likewise we have $G_{234} \cong \operatorname{PGL}(2, p)$, so proving Lemma 3.3.8.

Proposition 3.3.9. $G=\left\langle t_{1}, t_{2}, t_{3}, t_{4}\right\rangle$.

Proof. Put $\bar{G}=G / Z(H)$. Then $\bar{H} \cong \operatorname{PSL}_{3}(p)$ and \bar{G}_{123} contains a subgroup isomorphic to $\mathrm{PSL}_{2}(p)$ by Lemma 3.3.7. Since $\overline{C_{G}(t)}$ is the only maximal subgroup of \bar{G} containing \bar{G}_{123} and $\bar{t}_{4} \notin \overline{C_{G}(t)}, \bar{G}=\left\langle\bar{G}_{123}, \bar{t}_{4}\right\rangle$. Now H being a non-split central extension this then implies Proposition 3.3.9.

Lemma 3.3.10. $G_{23}=G_{123} \cap G_{234}=C_{G}(t) \cap C_{G}(r)$.

From Lemma 3.3.7 $G_{23} \leq G_{123} \cap G_{234} \leq C_{G}(t) \cap C_{G}(r)$. Now

$$
\operatorname{tr}=\left(\begin{array}{ccc|ccc}
\rho^{2} & 0 & 0 & & & \\
0 & c & y & & 0 & \\
0 & y & d & & \\
\hline & & & \rho & 0 & 0 \\
& 0 & 0 & a & x \\
& & 0 & x & b
\end{array}\right)
$$

Let $g=z \operatorname{tr}$ (recall that $z=\operatorname{diag}\left(\rho, \rho, \rho, \rho^{2}, \rho^{2}, \rho^{2}\right)$. Then

$$
g=\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & & & \\
0 & \rho c & \rho y & & 0 & \\
0 & \rho y & \rho d & & & \\
\hline & & & 1 & 0 & 0 \\
& 0 & & 0 & \rho^{2} a & \rho^{2} x \\
& & & 0 & \rho^{2} x & \rho^{2} b
\end{array}\right) .
$$

Investigating the action of g on V we discover that g acts nilpotently on V, and therefore g has order p. Hence $\operatorname{tr}=z^{-1} g$ has order $3 p$ with $\langle z\rangle \leq\langle t r\rangle$.
Consequently $C_{G}(t r) \leq C_{G}(z)=H$. So $C_{G}(t r)=C_{H}(g)$. Since
$G_{23} \leq C_{G}(t) \cap C_{G}(r) \leq C_{G}(t r), C_{G}(t r)$ has even order by Lemma 3.3.6 (i). Thus from centralizers of p-elements in $\mathrm{SL}_{3}(p)$ we have $C_{G}(\operatorname{tr})=C_{H}(g) \sim p^{3}:(p-1)$. Let $P \in \operatorname{Syl}_{p} C_{H}(g)$. Then $P \unlhd C_{H}(g)$. Also t acts upon $C_{H}(g) / P \cong p-1$. If t centralizes $C_{H}(g) / P$, then $C_{H}(g)=C_{C_{H}(g)}(t) P$. Now $\left\langle t_{2} t_{3}\right\rangle \leq C_{H}(t)$ and from $C_{H}(t) \cong \mathrm{PGL}_{2}(p)$ we have $N_{C_{H}(t)}\left(\left\langle t_{2} t_{3}\right\rangle\right) \sim p: p-1$, so $C_{C_{H}(g)}(t)$ normalizes $\left\langle t_{2} t_{3}\right\rangle$ which contradicts the structure of $C_{H}(g)$. Therefore t does not centralize $C_{H}(g) / P$. Since $C_{H}(g) / P$ is a cyclic group, t must act by inverting which implies $C_{C_{G}(t r)}(t)$ has order dividing $2 p^{3}$. But the largest power of p dividing $\left|\mathrm{PGL}_{2}(p)\right|$ is p and so $\left|C_{C_{G}(t r)}(t)\right|=2 p$. Now we infer that $C_{G}(t) \cap C_{G}(r)=C_{C_{G}(t r)}(t)=G_{23}$.

Proposition 3.3.11. $\left\{t_{1}, t_{2}, t_{3}, t_{3}\right\}$ is an unravelled C-string for G with Schläfi symbol $[4, p, 4]$.

Proof. Combining Lemma 3.3.4(i), 3.3.6, Proposition 3.3.9 and Lemma 3.3.10 gives that $\left\{t_{1}, t_{2}, t_{3}, t_{3}\right\}$ is a C-string with Schläfli symbol $[4, p, 4]$. We now show it is unravelled.

Since $L_{123} \cong \operatorname{PSL}(2, p)$ and, by assumption $p \equiv 5(\bmod 8)$, the Sylow 2-subgroup of L_{123} are elementary abelian. In particular, L_{123} contains no elements of order 4. Hence, if h is an element of G_{123} of order $4, G_{123}=\langle h\rangle L_{123}$. As a consequence any G_{123}-conjugate of h is L_{123}-conjugate. By Lemma 3.3.8(iii) $G_{123} \cong \operatorname{PGL}(2, p)$ and so, as its Sylow 2-subgroups are isomorphic to $\operatorname{Dih}(8)$, has only one
G_{123}-conjugacy class of elements of order 4. Now

$$
t_{1} t_{2}=\left(\begin{array}{c|c}
0 & * \\
\hline * & 0
\end{array}\right) .
$$

Thus we conclude, as $L_{123} \leq H$, that all order 4 elements of G_{123} must have this shape. From 3.3.7(i) $g_{0} \in C_{G}(t)$ and, since $C_{G}(t)=\langle t\rangle G_{123}$, either g_{0} or $t g_{0}$ are in G_{123}. But $t g_{0}$ has shape $\left(\begin{array}{c|c}* & 0 \\ \hline 0 & *\end{array}\right)$, whence we deduce that $g_{0} \in G_{123}$. Because of Lemma 3.3.7, a similar argument yields that $z g_{0} \in G_{234}$. Let $\bar{G}=G / Z(H)$. Then, as $z \in Z(H)$, we have

$$
\overline{g_{0}}=\overline{z g_{0}} \in \bar{G}_{123} \cap \bar{G}_{234},
$$

but $\overline{g_{0}} \notin \bar{G}_{23}=\left\langle\bar{t}_{2}, \bar{t}_{3}\right\rangle$ as $\overline{g_{0}}$ has order 4. Thus $\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ is an unravelled C-string, so proving Proposition 3.3.10.

Chapter 4

Two families of unravelled polytopes for type B Coxeter groups

This chapter consists of the work of joint work with Professor Rowley in [39]. We have cut certain parts out that were repeated within the previous chapters and lightly edited some of the results for consistency and added some exposition for motivation.
Our main concern in this chapter is to find unravelled C-strings for the type B Coxeter groups. Table 2.2 showed that B_{7} and B_{8} do contain unravelled C-strings whereas for $n<7$ they did not. We will produce to infinite families of C-strings: one rank 4 family within B_{n} with n odd, and one rank $n-4$ family within B_{n} with n even. This shows that non-trivial unravelled C-strings exist for unbounded ranks also.

Our theorems are as follows.
Theorem 4.0.1. Suppose that $G=\mathrm{B}_{n}$ where n is odd and $n \geq 5$. Then G has a rank $4 C$-string $\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ with Schläfli symbol

which is unravelled when $n>5$. Further $G_{123} \cong \operatorname{Sym}(n)$ and $G_{234} \cong \mathbb{Z}_{2} \times \operatorname{Sym}(5)$.
Theorem 4.0.2. Suppose that $G=\mathrm{B}_{n}$ where $n \geq 8$, and set $m=n-4$. Then G has a rank m-string $\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$ with Schlafli symbol

Further, when n is even, this C-string is unravelled.

4.1 Preliminary results

This short section contains the results we need in the two following sections. The first of these results is one which identifies the Coxeter groups of type B_{n}. For a set $\Omega=\{1, \ldots, n\}, \operatorname{Sym}(n)=\operatorname{Sym}(\Omega)$ denotes the symmetric group of degree n defined on Ω.

Lemma 4.1.1. Suppose that $\Omega=\{1,2 \ldots, n, n+1, \ldots, 2 n\}$. Let $\beta_{0}=(1, n+1)$ and $\beta_{i}=(i, i+1)(n+i, n+i+1)$ for $1 \leq i<n$. Then $\left\langle\beta_{0}, \beta_{1}, \ldots, \beta_{n-1}\right\rangle$ is isomorphic to B_{n}.

Proof. See (2.10) of [26].

In a similar vein to Lemma 4.1.1, we have the well-known characterization of $\operatorname{Sym}(n)$.

Lemma 4.1.2. Suppose that H is a group with presentation
$\left.\left.\left\langle r_{1}, \ldots, r_{n-1}\right|\left(r_{i} r_{j}\right)^{m_{i j}}\right)\right\rangle$. If $m_{i i}=1$ for $i=1, \ldots, n-1, m_{i j}=3$ if $|i-j|=1$ and $m_{i j}=2$ if $|i-j|>1$, then $H \cong \operatorname{Sym}(n)$.

Proof. See (6.4) of [26].

4.2 Rank 4 unravelled C-strings

Here we establish Theorem 4.0.1. So we are assuming that n is odd and $n \geq 5$. We shall construct the C-string for B_{n} working in $\operatorname{Sym}(2 n)$. First we define the involutions $t_{i}, i=1,2,3,4$ in $\operatorname{Sym}(2 n)=\operatorname{Sym}(\Omega)$, where $\Omega=\{1, \ldots, 2 n\}$.

Definition 4.2.1.

$$
\begin{aligned}
& t_{1}=\prod_{i=0}^{\left\lfloor\frac{n-2}{2}\right\rfloor}(1+2 i, 2+2 i)(n+1+2 i, n+2+2 i) \\
& t_{2}=\prod_{i=1}^{\left\lfloor\frac{n-3}{2}\right\rfloor}(2+2 i, 3+2 i)(n+2+2 i, n+3+2 i) \\
& t_{3}=(1,3)(2,4)(n+1, n+3)(n+2, n+4) \\
& t_{4}=(1,2)(n+1, n+2) \prod_{i=1}^{n-2}(2+i, n+2+i)
\end{aligned}
$$

Observe that $t_{1} t_{2}$, when written as a product of pairwise disjoint cycles, has two of length 2 and two of length $n-2$. Hence, as $n-2$ is odd, $t_{1} t_{2}$ has order $2 n-4$. It is easy to check that $t_{2} t_{3}$ has order 6 and $t_{3} t_{4}$ has order 4 . Also we see that $t_{1} t_{3}=t_{3} t_{1}$ and $t_{2} t_{4}=t_{4} t_{2}$.
Put $G=\left\langle t_{1}, t_{2}, t_{3}, t_{4}\right\rangle$. We will show in Proposition 4.2.10 that $G \cong \mathrm{~B}_{n}$, after we have first investigated the subgroups $G_{123}=\left\langle t_{1}, t_{2}, t_{3}\right\rangle$ and $G_{234}=\left\langle t_{2}, t_{3}, t_{4}\right\rangle$. Beginning with G_{234} and setting

$$
\begin{aligned}
& \Delta_{1}=\{1,2,3,4,5, n+1, n+2, n+3, n+4, n+5\} \\
& \Delta_{6}=\{6,7, n+6, n+7\} \\
& \Delta_{8}=\{8,9, n+8, n+9\} \\
& \vdots \\
& \Delta_{n-1}=\{n-1, n, 2 n-1,2 n\} .
\end{aligned}
$$

Lemma 4.2.2. The G_{234} orbits of the Ω are $\Delta_{1}, \Delta_{6}, \Delta_{8}, \ldots, \Delta_{n-1}$.

Lemma 4.2.3. The induced action of $\left\langle t_{2}, t_{4}\right\rangle$ on each of $\Delta_{6}, \Delta_{8}, \ldots, \Delta_{n-1}$ is identical to its action on $\Delta_{4}=\{4,5, n+4, n+5\}$.

Set $s_{2}=(4,5)(9,10), s_{3}=(1,3)(2,4)(6,8)(7,9)$ and
$s_{4}=(1,2)(3,8)(4,9)(5,10)(6,7)$ (these are t_{2}, t_{3}, t_{4} for the case $\left.n=5\right)$, and $H=\left\langle s_{2}, s_{3}, s_{4}\right\rangle$.

Lemma 4.2.4. $G_{234} \cong H \cong \mathbb{Z}_{2} \times \operatorname{Sym}(5)$ with $\left\{t_{2}, t_{3}, t_{4}\right\}$ a C-string for G_{234}.
Further $\left\langle\left(t_{2} t_{3} t_{4}\right)^{5}\right\rangle=Z\left(G_{234}\right)$.
Proof. Restricting G_{234} to Δ_{1} yields a homomorphism from G_{234} to H, and then Lemma 4.2.3 implies $G_{234} \cong H$. Employing Magma[2] quickly reveals the structure of H and that $\left\{s_{2}, s_{3}, s_{4}\right\}$ is a C-string for H. This proves Lemma 4.2.4.

We now turn our attention to G_{123}.

$$
\Lambda_{n+1}=\{n+1, \ldots, 2 n\} .
$$

(ii). For $j \in \Lambda_{1}$ and $g \in G_{123},(j) g=k$ if and only if $(j+n) g=k+n$.

Lemma 4.2.6. For $1 \leq i<n$, we have $(i, i+1)(n+i, n+i+1) \in G_{123}$.
Proof. In view of Lemma 4.2.5(ii) it will be sufficient to look at the action of elements of G_{123} on Λ_{1}. So, for $i=1,2,3$, let \hat{t}_{i} denote the induced action of t_{i} on Λ_{1}. Hence

$$
\begin{aligned}
& \hat{t}_{1}=\prod_{i=0}^{\left\lfloor\frac{n-2}{2}\right\rfloor}(1+2 i, 2+2 i), \\
& \hat{t}_{2}=\prod_{i=1}^{\left\lfloor\frac{n-3}{2}\right\rfloor}(2+2 i, 3+2 i) \text { and } \\
& \hat{t}_{3}=(1,3)(2,4) .
\end{aligned}
$$

Consequently

$$
\hat{t}_{1} \hat{t}_{2}=(1,2)(3,5,7, \ldots, n, n-1, n-3, \ldots, 6,4) .
$$

Since $n-2$ is odd, $\left(\hat{t}_{1} \hat{t}_{2}\right)^{n-2}=(1,2)$. Therefore, $(1,2)(n+1, n+2) \in G_{123}$. Also

$$
\begin{aligned}
\hat{t}_{3} \hat{t}_{1} \hat{t}_{2} & =(1,3)(2,4)(1,2)(3,5,7, \ldots, n, n-1, n-3, \ldots, 6,4) \\
& =(1,5,7, \ldots, n, n-1, n-3, \ldots, 6,4)(2,3)
\end{aligned}
$$

which is in disjoint cycle form. Again, since $n-2$ is odd, we have
$\left(\hat{t}_{3} \hat{t}_{1} \hat{t}_{2}\right)^{n-2}=(2,3)$. Hence $(2,3)(n+2, n+3) \in G_{123}$. Now $(3,4)=(1,2)^{\hat{t}_{3}}$, so $(3,4)(n+3, n+4) \in G_{123}$.
Now we recursively construct the remaining $(i, i+1)(n+i, n+i+1)$ for all i, with $3<i<n$. Supposing we have $(i, i+1)(n+i, n+i+1) \in G_{123}$ for all $3 \leq i \leq k$.
We show that $(k+1, k+2)(n+k+1, n+k+2) \in G_{123}$. If k is even, then

$$
(k, k+1)(n+k, n+k+1)^{t_{1}}=(k-1, k+2)(n+k-1, n+k+2) .
$$

Since
$(k-1, k+2)(n+k-1, n+k+2)^{(k-1, k+1)(n+k-1, n+k+1)}=(k+1, k+2)(n+k+1, n+k+2)$
and
$(k-1, k+1)(n+k-1, n+k+1)=(k-1, k)(n+k-1, n+k)^{(k, k+1)(n+k, n+k+1)} \in G_{123}$,
we deduce that $(k+1, k+2)(n+k+1, n+k+2) \in G_{123}$. When k is odd, a similar calculation using t_{2} in place of t_{1}, also yields the same conclusion, so proving Lemma 4.2.6.

Proposition 4.2.7. $G_{123} \cong \operatorname{Sym}(n)$.
Proof. From Lemma 4.2.6

$$
K=\langle(i, i+1)(n+i, n+i+1) \mid 1 \leq i<n\rangle \leq G_{123},
$$

with the generators of K satisfying the Coxeter relations for $\operatorname{Sym}(n)$. Thus, by Lemma 4.1.2, K is isomorphic to a quotient of $\operatorname{Sym}(n)$ and hence $K \cong \operatorname{Sym}(n)$. The action of G_{123} on $\left\{\{i, n+i\} \mid i \in \Lambda_{1}\right\}$ forces $K=G_{123}$, so giving Proposition 4.2.7.

Proposition 4.2.8. $\left\{t_{1}, t_{2}, t_{3}\right\}$ is a C-string for G_{123}.
Proof. We only need check $\left\langle t_{1}, t_{2}\right\rangle \cap\left\langle t_{2}, t_{3}\right\rangle=\left\langle t_{2}\right\rangle$, the other intersections being clear. Now $\left\langle t_{2} t_{3}\right\rangle$ has $\{1,3\}$ and $\{2,4,5\}$ as orbits on Ω and so $\left\langle\left(t_{2} t_{3}\right)^{2}\right\rangle$ has $\{2,4,5\}$
as an orbit and $\left\langle\left(t_{2} t_{3}\right)^{3}\right\rangle$ has $\{1,3\}$. Since $\left\langle t_{1} t_{2}\right\rangle$ has $\{1,2\}$ as an orbit and $t_{2} t_{3}$ has order 6 , we conclude that $\left\langle t_{1}, t_{2}\right\rangle \cap\left\langle t_{2}, t_{3}\right\rangle=\left\langle t_{2}\right\rangle$. So Proposition 4.2 .8 holds.

Set $\omega_{0}=\prod_{i=1}^{n}(i, n+i)$.

Proposition 4.2.9. $\omega_{0}=\left(t_{1} t_{2} t_{3} t_{4}\right)^{n}$.
Proof. We calculate that

$$
\begin{aligned}
& t_{1} t_{2}=(1,2)(3,5,7, \ldots, n, n-1, \ldots, 6,4) \\
&(n+1, n+2)(n+3, \ldots, 2 n, 2 n-1, \ldots n+4), \\
& t_{1} t_{2} t_{3}= t_{1} t_{2}(1,3)(2,4)(n+1, n+3)(n+2, n+4) \\
&=(1,4)(3,5, \ldots, n, n-1, \ldots, 8,6,2) \\
&(n+1, n+4)(n+3, \ldots, 2 n, 2 n-1, \ldots, n+4), \\
& t_{1} t_{2} t_{3} t_{4}= t_{1} t_{2} t_{3}(1,2)(n+1, n+2) \prod_{i=1}^{n-2}(2+i,(n+2)+i) \\
&=(\underbrace{1, n+4, n+2,3, n+5,7, \ldots, n, 2 n-1, n-3,2 n-5, \ldots, n+6, n+1}_{n+1,}, \\
&\underbrace{4,2, n+3, \ldots, 6}_{n-1}) \\
& \text { when } n \equiv 1 \bmod 3 \text { and } \\
&= \underbrace{1, n+4, n+2,3, n+5,7, \ldots, 2 n, n-1,2 n-3, n-5, \ldots, n+6, n+1}_{n+1}, \\
&\underbrace{4,2, n+3, \ldots, 6}_{n-1})
\end{aligned}
$$

when $n \equiv 3 \quad \bmod 3$.

Therefore $t_{1} t_{2} t_{3} t_{4}=\prod_{i=1}^{n}(i, n+i)$.

Proposition 4.2.10. $G \cong \mathrm{~B}_{n}$.
Proof. Set $\beta_{0}=(1, n+1)$ and, for $1 \leq i<n, \beta_{i}=(i, i+1)(n+i, n+i+1)$. Put $L=\left\langle\beta_{0}, \beta_{1}, \ldots, \beta_{n-1}\right\rangle$. By Lemma 4.1.2 $L \cong \mathrm{~B}_{n}$.
Directly from their definitions, we have

$$
\begin{aligned}
& t_{1}=\prod_{i=0}^{\left\lfloor\frac{n-2}{2}\right\rfloor} \beta_{1+2 i} \text { and } \\
& t_{2}=\prod_{i=0}^{\left\lfloor\frac{n-3}{2}\right\rfloor} \beta_{2+2 i} .
\end{aligned}
$$

An easy check shows $t_{3}=\beta_{1}{ }^{\beta_{2}} \beta_{2}{ }^{\beta_{3}}$. Since

$$
\begin{aligned}
t_{4} & =(1,2)(n+1, n+2) \prod_{i=1}^{n-2}(2+i, n+2+i) \\
& =\beta_{1} \prod_{i=2}^{n} \beta_{0}^{\prod_{j=i}^{i} \beta_{j}}
\end{aligned}
$$

we infer that $G \leq L$.

By Lemma 4.2.6 $\beta_{i} \in G$ for $1 \leq i<n$. Thus to complete the proof of Proposition 4.2.10 we need to demonstrate that $\beta_{0} \in G$. Now

$$
\begin{aligned}
t_{2}{ }^{t_{3}} & =\left(\prod_{i=1}^{\left\lfloor\frac{n-3}{2}\right\rfloor}(2+2 i, 3+2 i)(n+2+2 i, n+3+2 i)\right)^{(1,3)(2,4)(n+1, n+3)(n+2, n+4)} \\
& =(2,5)(n+2, n+5) t_{2}(4,5)(n+4, n+5)
\end{aligned}
$$

and

$$
t_{2}{ }^{t_{3} t_{4}}=(1, n+5)(n+1,5) t_{2}(4,5)(n+4, n+5) .
$$

Hence

$$
\begin{aligned}
t_{2}{ }^{t_{3}} t_{2}{ }^{t_{3} t_{4}}= & (2,5)(n+2, n+5) t_{2}(4,5)(n+4, n+5) \\
& (1, n+5)(n+1,5) t_{2}(4,5)(n+4, n+5) \\
= & (2,5)(n+2, n+5)(1, n+5)(n+1,5) \\
= & (2, n+1,5)(1, n+5, n+2) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
t_{1} t_{2}^{t_{3}} t_{2}{ }^{t_{3} t_{4}} & =t_{1} t_{2}(2, n+1,5)(1, n+5, n+2) \\
& =(1, n+1)(2, n+5, n+7, \ldots, 2 n, 2 n-1, \ldots, n+4, n+3,
\end{aligned}
$$

$$
n+2,5,7,9, \ldots, n, n-1, \ldots, 6,4,3)
$$

and so

$$
\left(t_{1} t_{2}^{t_{3}} t_{2}{ }^{t_{3} t_{4}}\right)^{n-1}=\prod_{i=2}^{n}(i, n+i),
$$

Hence, using Proposition 4.2.9,

$$
\beta_{0}=\prod_{i=1}^{n}(i, n+i)\left(t_{1} t_{2}^{t_{3}} t_{2}{ }^{t_{3} t_{4}}\right)^{-n+1} \in G,
$$

which proves Proposition 4.2.10.

Proposition 4.2.11. $\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ is a C-string for G.
Proof. From Lemma 4.2.4 $G_{234} \cong \mathbb{Z}_{2} \times \operatorname{Sym}(5)$ and $\left\langle\left(t_{2} t_{3} t_{4}\right)^{5}\right\rangle=Z\left(G_{234}\right)$. If $G_{123} \cap G_{234}>G_{23}$, then, as $G_{23} \cong \operatorname{Dih}(12)$, we must have either $\left(t_{2} t_{3} t_{4}\right)^{5} \in G_{123} \cap G_{234}$ or $G_{123} \cap G_{234}$ has index at most 2 in G_{234} (and so $t_{3} t_{4} \in G_{123}$). Either of these possibilities would contradict Lemma 4.2.5(i) as $\left(t_{2} t_{3} t_{4}\right)^{5}: 1 \rightarrow n+1$ and $t_{3} t_{4}: 5 \rightarrow n+5$. Thus $G_{123} \cap G_{234}=G_{23}$. Using Lemma 4.2.4 and Proposition 4.2.8 we now obtain Proposition 4.2.11.

Proposition 4.2.12. When $n \geq 7,\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ is an unravelled C-string for G.
Proof. Let $M_{1}=\langle(i, n+i) \mid 1 \leq i \leq n\rangle\left(=\mathrm{O}_{2}(G)\right)$ and $M_{2}=\langle(1, n+1)(i, n+i) \mid 1<i \leq n\rangle$. From Proposition 4.2.10 $G \cong \mathrm{~B}_{n}$ and hence for $N \unlhd G, 1 \neq N \neq G$, we either have $[G: N] \leq 4$ or $N=\left\langle\omega_{0}\right\rangle, M_{1}$ or M_{2}. Set $\bar{G}=G / N$. Since $\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ has rank 4 , we are only required to check that $\left\{\bar{t}_{1}, \bar{t}_{2}, \bar{t}_{3}, \bar{t}_{4}\right\}$ is not a C-string for $N=\left\langle\omega_{0}\right\rangle, M_{1}$ and M_{2}.
Suppose $N=M_{1}$ or M_{2}. Then

$$
g=\left(t_{3} t_{4}\right)^{2}=(1, n+2)(2, n+1)(3, n+4)(4, n+3) \in G_{234} .
$$

Also, using Lemma 4.2.6,

$$
h=(1,2)(3,4)(n+1, n+2)(n+3, n+4) \in G_{123} .
$$

Since

$$
g h^{-1}=(1, n+1)(2, n+2)(3, n+3)(4, n+4) \in M_{2} \leq M_{1},
$$

we get $\bar{g}=\bar{h} \in \bar{G}_{123} \cap \bar{G}_{234}$. The non-trivial elements of M_{1} either fix an element of Λ_{1} or maps it to an element of Λ_{2}. Hence, as $\{1,3\}$ is a G_{23}-orbit, $\bar{h} \notin \bar{G}_{23}$. Thus $\bar{G}_{123} \cap \bar{G}_{234}>\bar{G}_{23}$ when $N=M_{1}$ or M_{2}. Now suppose $N=\left\langle\omega_{0}\right\rangle$. This time we take

$$
\begin{gathered}
g=\prod_{i=1}^{5}(i, n+i) \prod_{j=1}^{\left\lfloor\frac{n-5}{2}\right\rfloor}(4+2 j, n+5+2 j)(5+2 j, n+4+2 j) \text { and } \\
h=\prod_{j=1}^{\left\lfloor\frac{n-5}{2}\right\rfloor}(4+2 j, 5+2 j)(n+4+2 j, n+5+2 j) .
\end{gathered}
$$

Then $g \in G_{234}, h \in G_{123}$ and $g h^{-1}=\omega_{0}$. Therefore $\bar{g}=\bar{h} \in \bar{G}_{123} \cap \bar{G}_{234}$. It is straightforward to also see that $\bar{g} \notin \bar{G}_{23}$, and consequently Proposition 4.2.12 is proven.

Combining Propositions 4.2.10, 4.2.11 and 4.2.12 completes the proof of Theorem 4.0.1.

4.3 Rank $n-4$ unravelled C-strings

This final section is devoted to the proof of Theorem 4.0.2. Thus we assume $n \geq 8$ and we set $m=n-4$.

Just as in the proof of Theorem 4.0.1 we construct $\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$ as a subset of $\operatorname{Sym}(2 n)$ and then show that it is a C-string for B_{n}. Finally, when n is even, we prove that it is an unravelled C-string. So again, let $\Omega=\{1, \ldots, 2 n\}$ and define the t_{i} as follows.

Definition 4.3.1.

$$
\begin{aligned}
& t_{1}=(2,3)(n+2, n+3)(4,5)(n+4, n+5) \prod_{i=6}^{n}(i, n+i) \\
& t_{2}=(1,2)(n+1, n+2)(3,4)(n+3, n+4)(5,6)(n+5, n+6) \prod_{i=7}^{n}(i, n+i) \\
& t_{3}=(2,3)(n+2, n+3)(6,7)(n+6, n+7)
\end{aligned}
$$

and for $k=4, \ldots, m$,

$$
t_{k}=(k+3, k+4)(n+k+3, n+k+4) .
$$

Set $I=\{1,2, \ldots, m\}$.

Lemma 4.3.2. $t_{3} t_{4}=(2,3)(n+2, n+3)(6,8,7)(n+6, n+8, n+7)$.

Next we show that

Lemma 4.3.3. $\left(t_{1} t_{2} \ldots t_{m} t_{3} t_{4}\right)^{n}=\prod_{i=1}^{n}(i, n+i)$.

Proof.

We calculate that

$$
t_{4} t_{5} \ldots t_{m}=(7, n, n-1, n-2, \ldots, 9,8)(n+7,2 n, 2 n-1, \ldots, n+8)
$$

and

$$
t_{1} t_{2} t_{3}=(1,3)(n+1, n+3)(2,4,7,6, n+5, n+2, n+4, n+7, n+6,5) .
$$

Hence

$$
\begin{aligned}
t_{1} t_{2} \ldots t_{m}= & (1,3)(n+1, n+3)(2,4, n, n-1, \ldots, 9,8,7,6, n+5, \\
& n+2, n+4,2 n, 2 n-1, \ldots, n+8, n+7, n+6,5) .
\end{aligned}
$$

Using Lemma 4.3.2 we now get

$$
\begin{aligned}
t_{1} t_{2} \ldots t_{m} t_{3} t_{4}= & (1,2,4, n, n-1, \ldots, 9,7,8,6, n+5 \\
& n+3, n+1, n+2, n+4,2 n, \ldots, n+9, n+7, n+8, n+6,5,3),
\end{aligned}
$$

which yields Lemma 4.3.3.

Lemma 4.3.4. $\left(t_{1} t_{2} \ldots t_{m-1} t_{3} t_{4}\right)^{n-1}=\prod_{i=1}^{n-1}(i, n+i)$.

Proof.

First we have

$$
\begin{aligned}
t_{1} t_{2} \ldots t_{m-1}= & (1,3)(n+1, n+3)(2,4, n-1, n-2, \ldots, 6, \\
& n+5, n+2, n+4,2 n-1, \ldots, n+7, n+6,5),
\end{aligned}
$$

then, using Lemma 4.3.2,

$$
\begin{aligned}
t_{1} t_{2} \ldots t_{m-1} t_{3} t_{4}= & (1,2,4, n-1, \ldots, 9,7,8,6, n+5, n+3 \\
& n+1, n+2, n+4,2 n-1, \ldots, n+9, n+7, n+8, n+6,5,3)
\end{aligned}
$$

This gives the desired expression for $\left(t_{1} t_{2} \ldots t_{m-1} t_{3} t_{4}\right)^{n-1}$.

Combining Lemmas 4.3.3 and 4.3.4, we observe that

Lemma 4.3.5. $\left(t_{1} t_{2} \ldots t_{m-1} t_{3} t_{4}\right)^{n-1}\left(t_{1} t_{2} \ldots t_{m} t_{3} t_{4}\right)^{n}=(n, 2 n)$.

Lemma 4.3.6. For $i, j \in\{1,2, \ldots, m\}$, the order of

$$
t_{i} t_{j} \text { is } \begin{cases}1 & \text { if } i=j \\ 2 & \text { if }|i-j| \geq 2 \\ 12 & \text { if } i=1, j=2 \text { or } i=2, j=3 \\ 6 & \text { if } i=3, j=4 \\ 3 & \text { otherwise. }\end{cases}
$$

Proof. It is evident that each t_{i} is an involution as they are defined as the products of pairwise disjoint transpositions. Since

$$
t_{1} t_{2}=(1,2,4,6, n+5, n+3, n+1, n+2, n+4, n+6,5,3),
$$

$t_{1} t_{2}$ has order 12. Similarly we have

$$
t_{2} t_{3}=(1,3,4,2)(n+1, n+3, n+4, n+2)(5,7, n+6, n+5, n+7,6) \prod_{i=8}^{n}(i, n+i)
$$

and so $t_{2} t_{3}$ also has the order 12. From Lemma 4.3.2 we see that order of $t_{3} t_{4}$ is 6 . If, $|i-j|=1$ and $4 \leq i<j \leq m$, then

$$
t_{i} t_{j}=(3+i, 5+i, 4+i)(n+3+i, n+5+i, n+4+i)
$$

has order 3 . That t_{i} and t_{j} commute when $|i-j| \geq 2$ is readily checked, so verifying Lemma 4.3.6.

Put $G=\left\langle t_{1}, t_{2}, \ldots, t_{m}\right\rangle$.
Proposition 4.3.7. $G \cong \mathrm{~B}_{n}$.

Proof. We again employ Lemma 4.1.1 to identify G. So set $\beta_{0}=(1, n+1)$, $\beta_{i}=(i, i+1)(n+i, n+i+1)$, for $1 \leq i<n$, and $L=\left\langle\beta_{0}, \beta_{1}, \ldots, \beta_{n-1}\right\rangle \leq \operatorname{Sym}(2 n)$. Also set $\eta_{i}=(i, n+i)$ for $1 \leq i \leq n$. Note that $\eta_{1}=\beta_{0}$ and $\eta_{i}=\beta_{0} \Pi_{j=1}^{i-1} \beta_{j}$ for $i=2, \ldots, n$. Therefore $\eta_{i} \in L$ for $i=1, \ldots, n$. Because

$$
\begin{aligned}
& t_{1}=\beta_{2} \beta_{4} \prod_{i=6}^{n} \eta_{i}, \\
& t_{2}=\beta_{1} \beta_{3} \beta_{5} \prod_{i=7}^{n} \eta_{i}, \\
& t_{3}=\beta_{2} \beta_{6} \text { and, for } 4 \leq i \leq m, \\
& t_{i}=\beta_{i+3}
\end{aligned}
$$

we conclude that $G \leq L$.
From Lemma 4.3.5, $\eta_{n}=(n, 2 n) \in G$. Now let $g=t_{m} t_{m-1} \ldots t_{4} t_{3} t_{2} t_{1} t_{2} t_{1} t_{2} \in G$.
Then we see that $\eta_{n}{ }^{g}=\eta_{1}=\beta_{0}$, whence $\beta_{0} \in G$. Since $\beta_{i}=t_{i-3}$ for
$i=7, \ldots, n-1$, it remains to show that $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}$ and β_{6} are in G.
Employing Lemma 4.3.2 again we have

$$
\begin{aligned}
& \beta_{2}=\left(t_{3} t_{4}\right)^{3}, \\
& \beta_{6}=t_{3}\left(t_{3} t_{4}\right)^{3}, \\
& \beta_{1}=\beta_{6}{ }^{t_{2} t_{3} t_{1} t_{2} t_{1} t_{2} t_{3}} \\
& \beta_{3}=\beta_{6}{ }^{t_{2} t_{3} t_{1} t_{2} t_{1} t_{3}} \\
& \beta_{4}=\beta_{6}{ }^{t_{2} t_{1} t_{2} t_{1} t_{3} t_{2}} \text { and } \\
& \beta_{5}=\beta_{6}{ }^{t_{2} t_{3} \eta_{6}} .
\end{aligned}
$$

Since $\eta_{6}=\eta_{n}{ }^{h}$ where $h=t_{m} t_{m-1} \ldots t_{4} t_{3}$, we have now shown that $\beta_{i} \in G$ for $i=0, \ldots, n-1$. Thus $G=L$, and Proposition 4.3.7 is proven.

We now turn our attention to showing that $\left\{t_{1}, \ldots, t_{m}\right\}$ is a C-string.
For t_{1}, \ldots, t_{m} if we wish to highlight that they are permutations in $\operatorname{Sym}(2 n)$ we shall write $t_{1}^{(n)}, \ldots, t_{m}{ }^{(n)}$. Set $G_{1234}^{(n)}=\left\langle t_{1}^{(n)}, t_{2}^{(n)}, t_{3}^{(n)}, t_{4}^{(n)}\right\rangle, G_{123}^{(n)}=\left\langle t_{1}^{(n)}, t_{2}^{(n)}, t_{3}^{(n)}\right\rangle$, $G_{234}^{(n)}=\left\langle t_{2}^{(n)}, t_{3}^{(n)}, t_{4}^{(n)}\right\rangle$ and $G_{23}^{(n)}=\left\langle t_{2}^{(n)}, t_{3}^{(n)}\right\rangle$.
Proposition 4.3.8. For $n \geq 8,\left\{t_{1}^{(n)}, t_{2}^{(n)}, t_{3}^{(n)}, t_{4}^{(n)}\right\}$ is a C-string for $G_{1234}^{(n)}$.
Proof. First we may verify Proposition 4.3 .8 for $n=8$ using Magma. Then we may define $\mu \in \operatorname{Sym}(2 n)$ by
$\mu: \omega \rightarrow \omega-n+8$ for $\omega \in \Lambda=\{n+1, n+2, n+3, n+4, n+5, n+6, n+7, n+8\}$
$: \omega \rightarrow \omega$ for $\omega \in \Omega \backslash \Lambda$.

For $i=1,2,3,4$ define

$$
\phi\left(t_{i}^{(n)}\right)=\widehat{\left(t_{i}^{(n)}\right)^{\mu}}
$$

where - denotes the induced action upon the set $\Phi=\{1, \ldots, 16\}$. When we write equalities in this context, it is as a permutation of Φ. Observe that ϕ extends to a homomorphism from $G_{1234}^{(n)}$ to $\operatorname{Sym}(\Phi)$ with $\phi\left(G_{1234}^{(n)}\right)=G_{1234}^{(8)}$.
Because

$$
\phi\left(G_{23}^{(n)}\right) \leq \phi\left(G_{123}^{(n)} \cap G_{234}^{(n)}\right) \leq \phi\left(G_{123}^{(n)}\right) \cap \phi\left(G_{234}^{(n)}\right)=G_{123}^{(n)} \cap G_{234}^{(n)}
$$

and Proposition 4.3.8 holds for $n=8$, we have

$$
\phi\left(G_{123}^{(n)} \cap G_{234}^{(n)}\right)=G_{23}^{(8)}
$$

We now investigate the structure of $H=G_{234}^{(n)}$. Set $s_{2}=t_{2}^{(n)}, s_{3}=t_{3}^{(n)}, s_{4}=t_{4}^{(n)}$ and $R=\left\langle\left(s_{2} s_{3}\right)^{3},\left(s_{3} s_{4}\right)^{3}\right\rangle$. Now $\left(s_{3} s_{4}\right)^{3}$ inverts $\left(s_{2} s_{3}\right)^{3}$ which has order 4. Therefore $R \cong \operatorname{Dih}(8)$. Calculation shows that s_{2}, s_{3} and s_{4} normalize R and hence $R \unlhd H$. Set $C=C_{H}(R)$. Further calculation shows that $s_{2}, s_{3}, s_{2} s_{3} \notin C$ but $s_{4},\left(s_{2} s_{3}\right)^{2} \in C$. Therefore, as $H=\left\langle s_{2}, s_{3}, s_{4}\right\rangle, H=\left\langle s_{2}, s_{3}\right\rangle C$ with $H / C \cong 2^{2}$. Also we have $\left(s_{2} s_{3}\right)^{6} \in Z(H)$ with $s_{4}\left(s_{2} s_{3}\right)^{4}$ of order 4 . Thus, as $\left(s_{2} s_{3}\right)^{4}$ has order 3 and s_{4} has order $2,\left\langle\left(s_{2} s_{3}\right)^{4}, s_{4}\right\rangle \cong \operatorname{Sym}(4)$. Thus $S=\left\langle\left(s_{2} s_{3}\right)^{2}, s_{4}\right\rangle \cong 2 \times \operatorname{Sym}(4)$ with $S \leq C$. Since s_{2} and s_{3} normalize S, we infer $C=S$. In particular, we have shown $G_{234}^{(n)}=H$ has order $2^{6} .3$ for all $n \geq 8$.

Consequently ϕ restricted to $G_{234}^{(n)} \rightarrow G_{234}^{(8)}$ is an isomorphism. So calculation in $G_{234}^{(n)}$ may be performed in $G_{234}^{(8)}$ and, using ϕ, we may keep track of the action on Ω. Now $G_{234}^{(n)}$ has orbit $\{5,6,7,8, n+5, n+6, n+7, n+8\}$ on Ω and $G_{123}^{(n)}$ has $\{8, n+8\}$ as an orbit. Thus

$$
\left.G_{23}^{(n)} \leq G_{123}^{(n)} \cap G_{234}^{(n)} \leq \operatorname{Stab}(5,6,7, n+5, n+6, n+7\}\right)=T^{(n)} .
$$

Calculation shows that $T^{(n)}=\left\langle G_{123}^{(n)},(6,7)(n+6, n+7)\right\rangle$ with $\left[T^{(n)}: G_{23}^{(n)}\right]=2$. If $G_{23}^{(n)}<G_{123}^{(n)} \cap G_{234}^{(n)}$, then $G_{123}^{(n)} \cap G_{234}^{(n)}=T^{(n)}$ must contain a normal subgroup of order 2 intersecting $G_{23}^{(n)}$ trivially (the kernel of ϕ, restricted to $G_{123}^{(n)} \cap G_{234}^{(n)}$), but it does not. Thus $G_{23}^{(n)}=G_{123}^{(n)} \cap G_{234}^{(n)}$. That $\left\{t_{2}^{(n)}, t_{3}^{(n)}, t_{4}^{(n)}\right\}$ is a C-string for $G_{234}^{(n)}$ follows from $G_{234}^{(n)}$ and $G_{234}^{(8)}$ being isomorphic and the fact that ϕ maps generator to generator. Observe that the G_{23}-orbits of Ω are
$\{1,2,3,4\},\{5,6,7, n+5, n+6, n+7\},\{n+1, n+2, n+3, n+4\},\{i, n+i\}(i=8, \ldots, n)$.
If $G_{12} \cap G_{23}>G_{2}$ then one of

$$
\begin{aligned}
& \left(t_{1} t_{2}\right)^{4}=(1, n+5, n+4)(2, n+3, n+6)(4, n+1,5)(6, n+2,3) \text { and } \\
& \left(t_{2} t_{3}\right)^{6}=(1, n+1)(2, n+2)(3, n+3)(4, n+4)(5, n+5)(6, n+6)
\end{aligned}
$$

would be in G_{23}. But then 1 and $n+1$ would be in the same G_{23}-orbit, a contradiction. Therefore $G_{12} \cap G_{23}=G_{2}$. Appealing to Theorem 1.5.1 this now proves Proposition 4.3.8.

Lemma 4.3.9. Let $4 \leq k \leq m$ and set $J_{k}=I_{k} \backslash\{1,2\}$. Then
(i) $G_{J_{k}} \cong \operatorname{Sym}(k-2)$ and
(ii) $\left\{t_{4}, \ldots, t_{k}\right\}$ is a C-string for $G_{J_{k}}$.

Proof. Since $G \cong \mathrm{~B}_{n}$ by Proposition 4.3.7, $\left\langle t_{4}, \ldots, t_{k}\right\rangle=\left\langle\beta_{1}, \ldots, \beta_{k+3}\right\rangle$ is a standard parabolic subgroup of G. Hence Lemma 4.3.9 (i) and (ii) follow.

Lemma 4.3.10. Let $4 \leq k \leq m$ and set $J_{k}=I_{k} \backslash\{1,2\}$. Then
(i) $G_{J_{k}} \cong \mathbb{Z}_{2} \times \operatorname{Sym}(k-1) ;$ and
(ii) $\left\{t_{3}, \ldots, t_{k}\right\}$ is a C-string for $G_{J_{k}}$.

Proof. Recall that $t_{3}=\beta_{2} \beta_{6}$, and that $t_{i}=\beta_{i+3}$ for $4 \leq i \leq k$. Since $\left(\beta_{2} \beta_{6} \beta_{7}\right)^{3}=\beta_{2}$, we have

$$
\begin{aligned}
\left\langle t_{3}, \ldots, t_{k}\right\rangle & =\left\langle\beta_{2} \beta_{6}, \beta_{7} \ldots, \beta_{k+3}\right\rangle \\
& =\left\langle\beta_{2}, \beta_{6}, \beta_{7} \ldots, \beta_{k+3}\right\rangle \\
& \cong \mathbb{Z}_{2} \times \operatorname{Sym}(k-1),
\end{aligned}
$$

so giving part (i). Further, as $\left\langle t_{3}, \ldots, t_{k}\right\rangle$ is a Coxeter group,

$$
\begin{aligned}
\left\langle t_{3}, t_{4}, \ldots, t_{k-1}\right\rangle \cap\left\langle t_{4}, \ldots t_{k}\right\rangle & =\left\langle\beta_{2}, \beta_{6}, \beta_{7}, \ldots, \beta_{k+2}\right\rangle \cap\left\langle\beta_{7}, \ldots \beta_{k+3}\right\rangle \\
& =\left\langle\beta_{7}, \ldots, \beta_{k+2}\right\rangle \\
& =\left\langle t_{4}, \ldots, t_{k-1}\right\rangle .
\end{aligned}
$$

To prove ($i i$) we may argue by induction on $k, k=4$ being covered by Proposition 4.3.8. Thus $\left\{t_{3}, t_{4}, \ldots, t_{k-1}\right\}$ is a C-string for $G_{\{3, \ldots, k-1\}}$ and, as $\left\{t_{4}, \ldots, t_{k}\right\}$ is a C-string for $G_{\{4, \ldots, k\}}$, Theorem 1.5.1 yields (ii).

Set $t_{0}=t_{4}^{\left(t_{3} t_{4} t_{2} t_{3}\right)} t_{2}$.
Lemma 4.3.11. For $4 \leq k \leq m$, set $J_{k}=I_{k} \backslash\{1\}$. Then

$$
\begin{aligned}
G_{J_{k}} & =\left\langle t_{0}, \beta_{2}\right\rangle \times\left\langle\beta_{5}, \beta_{6}, \ldots, \beta_{k+3}\right\rangle \\
& \cong \operatorname{Dih}(8) \times \operatorname{Sym}(k) .
\end{aligned}
$$

Proof. Clearly $t_{0} \in G_{J}$ and calculation reveals that

$$
t_{0}=(1,2)(n+1, n+2)(3,4)(n+3, n+4) \prod_{i=7}^{n}(i, n+i) .
$$

Hence $t_{0} \beta_{5}=t_{2}$.
Set $H=\left\langle t_{0}, \beta_{2}, \beta_{5}, \beta_{6}, \ldots, \beta_{k+3}\right\rangle$. Observing that t_{0} and β_{2} commute with each of $\beta_{5}, \beta_{6}, \ldots, \beta_{k+3}$, we have

$$
H=\left\langle t_{0}, \beta_{2}\right\rangle \times\left\langle\beta_{5}, \beta_{6}, \ldots, \beta_{k+3}\right\rangle
$$

We show that $G_{J_{k}}=H$. Recalling that $\beta_{i+3}=t_{i}, 4 \leq i \leq m$ and $t_{3}=\beta_{2} \beta_{6}$, $t_{2}=t_{0} \beta_{5}$ implies $G_{J_{k}} \leq H$. Since $t_{0}=t_{2} \beta_{5}, \beta_{5}=t_{0} t_{2}, \beta_{6}=t_{3}\left(t_{3} t_{4}\right)^{3}$ and $\beta_{2}=t_{3} \beta_{6}$, we also have $H \leq G_{J_{k}}$. Because $t_{0} \beta_{2}$ has order 4 and $\left\langle\beta_{2}, \beta_{6}, \ldots, \beta_{k+3}\right\rangle$ is a
standard parabolic subgroup of B_{n}, we deduce that $G_{J_{k}} \cong \operatorname{Dih}(8) \times \operatorname{Sym}(k)$.
Lemma 4.3.12. For $J_{k}=I_{k} \backslash\{1\}$ where $4 \leq k \leq m,\left\{t_{2}, \ldots, t_{k}\right\}$ is a C-string for $G_{J_{k}}$.

Proof. We argue by induction on k. By our induction hypothesis we have that $\left\{t_{2}, t_{3}, \ldots, t_{k-1}\right\}$ is a C-string for $G_{J_{k} \backslash\{k\}}$. From Lemma 4.3.10 $\left\{t_{3}, \ldots, t_{k}\right\}$ is a C-string for $G_{J_{k} \backslash\{2\}}$. Also, from Lemma 4.3.10,

$$
\begin{aligned}
G_{J_{k} \backslash\{2, k\}} & \cong \mathbb{Z}_{2} \times \operatorname{Sym}(n-6) \quad \text { and } \\
G_{J_{k} \backslash\{k\}} & \cong \mathbb{Z}_{2} \times \operatorname{Sym}(n-5) .
\end{aligned}
$$

Hence $G_{J_{k} \backslash\{2, k\}}$ is a maximal subgroup of $G_{J_{k} \backslash\{k\}}$. So, if $G_{J_{k} \backslash\{k\}} \cap G_{J_{k} \backslash\{2\}}>G_{J_{k} \backslash\{2, k\}}$, then $G_{J_{k} \backslash\{k\}} \leq G_{J_{k} \backslash\{2\}}$ which means $t_{2} \in G_{J_{k} \backslash\{2\}}$. But $G_{J_{k} \backslash\{2\}}$ fixes 1 whereas t_{2} does not, a contradiction. Therefore $G_{J_{k} \backslash\{k\}} \cap G_{J_{k} \backslash\{2\}}=G_{J_{k} \backslash\{2, k\}}$. Thus, using Theorem 1.5.1, we get Lemma 4.3.12.

Proposition 4.3.13. For $4 \leq k \leq m,\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ is a C-string for $G_{I_{k}}$.
Proof. We again argue by induction on k, with Proposition 4.3 .8 starting the induction. So $k>4$ and $\left\{t_{1}, t_{2}, \ldots, t_{k-1}\right\}$ is a C-string for $G_{I_{k-1}}$. By Lemma 4.3.12 we have that $\left\{t_{2}, \ldots, t_{k-1}\right\}$ is a C-string for $G_{I_{k-1} \backslash\{1\}}$. Then, using Lemma 4.3.11 we have that

$$
\begin{aligned}
G_{I_{k} \backslash\{1\}} & \cong \operatorname{Dih}(8) \times \operatorname{Sym}(k) \quad \text { and } \\
G_{I_{k-1} \backslash\{1\}} & \cong \operatorname{Dih}(8) \times \operatorname{Sym}(k-1) .
\end{aligned}
$$

Hence $G_{I_{k-1} \backslash\{1\}}$ is a maximal subgroup of $G_{I_{k} \backslash\{1\}}$. So, if $G_{I_{k} \backslash\{1\}} \cap G_{I_{k-1}}>G_{I_{k-1} \backslash\{1\}}$, then $G_{I_{k} \backslash\{1\}} \leq G_{I_{k-1}}$. But then $t_{k} \in G_{I_{k-1}}$, which is not the case as t_{k} moves $k+3$ to $k+4$ which are in different $G_{I_{k-1}}$-orbits. Therefore $G_{I_{k} \backslash\{1\}} \cap G_{I_{k-1}}=G_{I_{k-1} \backslash\{1\}}$. Thus, using Theorem 1.5.1, we get Proposition 4.3.13.

Proposition 4.3.14. $\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ is a C-string for G.
Proof. Taking $m=k$ in Proposition 4.3.13 gives Proposition 4.3.14.
Proposition 4.3.15. If n is even, then $\left\{t_{1}, \ldots, t_{m}\right\}$ is an unravelled C-string.
Proof. Set $w_{0}=\prod_{i=1}^{n}(i, n+i), g=\left(t_{3}\left(t_{3} t_{4}\right)\right)^{3}\left(=\beta_{6}\right)$ and

$$
h=\left(t_{1} t_{2}\right)^{2} t_{1}\left(t_{3} t_{2} t_{1}\right)^{3} t_{3}^{t_{2}}\left(t_{1} t_{3} t_{2}\right)^{4} .
$$

Then

$$
h=\prod_{i=1}^{5}(i, n+i)(6,7, n+6, n+7) \prod_{i=8}^{n}(i, n+i) .
$$

Hence $g h=w_{0}$, and $g \in G_{\{3,4\}}, h \in G_{\{1,2,3\}}$.
Put $M_{1}=\langle(i, n+i) \mid 1 \leq i \leq n\rangle$ and $M_{2}=\langle(1, n+1)(i, n+i) \mid 1<i \leq n\rangle$. Since n is even, $\left\langle w_{0}\right\rangle \leq M_{2} \leq M_{1}$. Let $\bar{G}=G / N$ where N is one of $\left\langle w_{0}\right\rangle, M_{2}, M_{1}$. Then $\bar{g} \overline{h^{-1}} \in \bar{G}_{\{1,2,3\}} \cap \bar{G}_{\{3,4\}}$ with $\bar{g} \neq \overline{t_{3}}$ whence $\bar{G}_{\{1,2,3\}} \cap \bar{G}_{\{3,4\}}>\bar{G}\{3\}$, which proves Proposition 4.3.14.

Chapter 5

An introduction to Elnitsky's tilings

In his PhD dissertation ([12]), Elnitsky gives an elegant bijection between rhombic tilings of $2 n$-gons and commutation classes of reduced words in the Coxeter group of type A_{n-1}. An accessible and streamlined description of this is found in [11]. Moreover, similar systems of tilings were given for type B and D Coxeter groups. In consequent chapters we will describe efforts to generalise this work to further finite irreducible Coxeter groups.

5.1 The type A tiling

We follow Elnitsky's original construction in [11]. We have added some minor changes for the sake of consistency and brevity.
Let (W, S) denote our type A Coxeter system of rank $n-1$ (so $W=\operatorname{Sym}(n)$ and $S=\left\{s_{1}, \ldots, s_{n-1}\right\}$ with each $\left.s_{i}=(i, i+1)\right)$. Let $w \in W$ be some permutation, then we construct $\mathrm{Y}(w)$, a (possibly degenerate) $2 n$-gon. We describe the so-called regular construction of $\mathrm{Y}(w)$ before mentioning the degrees of freedom we have at our disposal that preserve the relevant mathematical properties.
(i) To construct $Y(w)$, we first declare M to be its lowermost vertex.
(ii) Construct the first n edges clockwise from M so that they have form a set of n consecutive, unit length edges of a regular $2 n$-gon. We label these edges consecutively from M in clockwise order with the labels $i=1, \ldots, n$.
(iii) Construct and label the first n edges anti-clockwise from M consecutively, so that the $j^{\text {th }}$ edge from M is again unit length whilst also being parallel to, and labelled as, the edge labelled $(j) w^{-1}$ in $(i i)$.

See Example 5.1.1 for reference. Later, in Chapter 6 we will provide an equivalent, more rigorous construction of $Y(w)$.
As Elnitsky remarks, the choice of angles and side lengths for the edges constructed in (ii) do not actually matter, so long as the vertices formed produce a convex set. When examining these polygons in this chapter, we will keep to this regular construction. We denote those edges constructed in $(i i i), \mathrm{B}(w)$, and call this the border of w. We denote its $i^{\text {th }}$ edge from M (and thus labelled (i) w^{-1}) by $B(w)_{i}$. This naturally gives us a bijection between $\operatorname{Sym}(n)$ and $\mathrm{B}(W)=\{\mathrm{B}(w) \mid w \in W\}$ and $\mathrm{Y}(W)=\{\mathrm{Y}(w) \mid w \in W\}$.

Example 5.1.1. We show an example here for the permutation $(1,6)(2,4,5)$ in Sym(6).

Figure 5.1: The polygon $\mathrm{Y}((1,6)(2,4,5))$ in $\operatorname{Sym}(6)$.

And the set of all such polygons for $\operatorname{Sym}(4)$ is given in Figure 5.2.

Figure 5.2: $\mathrm{Y}(w)$ for all $w \in \operatorname{Sym}(3)$.

We now consider tilings of $\mathrm{Y}(w)$ by rhombi. Implicitly, by a rhombic tiling we mean a covering of $\mathrm{Y}(w)$ by regions of rhombi with unit edge lengths that intersect only on their boundaries. Call the set of all such rhombic tilings of $\mathrm{Y}(w)$ by $T(w)$. We will see that such tilings are associated to (equivalence classes of) reduced words in (W, S).

Example 5.1.2. Consider the permutation $(1,4)(2,3)$ in $\operatorname{Sym}(4)$. We can exhaustively find all such tilings:

Figure 5.3: All rhombic tilings of $\mathrm{Y}((1,4)(2,3))$.

Let $\mathrm{J}=\left\{\left\{s_{i}, s_{j}\right\} \subseteq S| | i-j \mid \geq 2\right\}$. Elnitsky proves that if two reduced words are connected by braid relations between pairs of generators in J, then the rhombic tilings associated to these words are identical. Let $\mathcal{R}_{J}(w)$ denotes the set of reduced words of w over our generators S, up to commuting generators. Quite directly, Elnitsky is able to prove the following elegant fact.

Theorem 5.1.3 (Theorem 2.2. of [11]). For all $w \in W$, there exists a bijection between $T(w)$ and $\mathcal{R}_{J}(w)$.

We give an outline of Elnitsky's proof of Theorem 5.1.3 to give a flavour of the methods involved. We edit this to be consistent with our notation. Elnitsky's proof is more detailed and contains helpful diagrams and examples.

Proof. Suppose $w \in W$ and $s_{i} \in S$. Observe that $B\left(w s_{i}\right)$ is identical to $\mathrm{B}(w)$ except that their $i^{\text {th }}$ and $(i+1)^{\text {th }}$ edges (from the lowermost vertex, M) have been transposed. Therefore, the region enclosed by these borders is necessarily a rhombus. Either this rhombus is contained in $Y(w)$ or it is not. It is not contained in $Y(w)$ if and only if the exterior angle of vertex common to $B(w)_{i}$ and $B(w)_{i+1}$ (when viewed as part of $Y(w)$) have an angle less than π. Due to our construction of $B(w)$, this is equivalent to requiring that $(i) w^{-1}<(i+1) w^{-1}$. But this is exactly the condition for s_{i} to belong to $I^{+}(w)$ (see page 67 of [1], for example). Given a reduced word, $w=s_{j_{1}} \ldots s_{j_{k}}$, we show how one can form a rhombic tiling of $Y(w)$. Starting with $B(i d)$, place a rhombus that shares its edges with $B(i d)_{j_{1}}$
and $B(i d)_{\left(j_{1}+1\right)}$. Next, place a rhombus that shares its edges with $B\left(s_{j_{1}}\right)_{j_{2}}$ and $B\left(s_{j_{1}}\right)_{\left(j_{2}+1\right)}$. Continue in this fashion for each $i=1, \ldots k$. Since $w=s_{j_{1}} \ldots s_{j_{k}}$ is reduced, $s_{j_{i}} \in I^{+}\left(s_{j_{1}} \ldots s_{j_{i-1}}\right)$ for each $i=1, \ldots k$. Thus, by our previous discussion, none of these rhombi overlap and the final set of rhombi is a tiling of $Y(w)$.
Note that if $|i-j| \geq 2$ then the rhombi associated to $s_{j_{i}}$ and $s_{j_{i}+1}$ can never share any edges. Thus, the in which we place these rhombi on a given border produces the same ultimate tiling of $Y(w)$.
Conversely, given a tiling of $Y(w)$, we can extract a reduced word for w like so:
(i) Choose some rhombus that shares two edges with $B(i d)$.
(ii) If these edges are the $j_{1}{ }^{\text {th }}$ and $\left(j_{1}+1\right)^{t h}$ (from the lowermost vertex, M) then let the first generator in our reduced word for w be $s_{j_{1}}$.
(iii) Choose some rhombus that shares two edges with $B\left(s_{j_{1}}\right)$.
(iv) If these edges are the $j_{2}{ }^{\text {th }}$ and $\left(j_{2}+1\right)^{\text {th }}$ (from the lowermost vertex, M), then let the second generator in our reduced word for w be $s_{j_{2}}$.
(v) Continue in this fashion until all rhombi in the tiling have been chosen.

At the $i^{\text {th }}$ step, say, the rhombus we choose shares two edges with, but is not contained in $Y\left(s_{j_{1}} \ldots s_{j_{i-1}}\right)$. By our previous discussion, this is equivalent to requiring that $s_{j_{i}} \in I^{+}\left(s_{j_{1}} \ldots s_{j_{i-1}}\right)$ for each $i=1, \ldots k$. Thus we indeed have a reduced word. There may be more than one reduced word we may obtain in this manner given a fixed tiling of $Y(w)$. However, given a choice of two rhombi at some step, our procedure ensures that these rhombi share no common edges and thus correspond to commuting generators again.
Therefore we have a bijection between rhombic tilings and reduced words up to commutations.

We provide a detailed example of how to transform some reduced word into a rhombic tiling.

Example 5.1.4. We consider the reduced word $(1,5,2)=s_{4} s_{1} s_{2} s_{3} s_{2} s_{4}$ in $\operatorname{Sym}(5)$. We imagine placing our rhombic tiles, tile-by-tile in sequence, starting with border $B(i d)$. Since the first generator in our word is s_{4}, the first rhombus we place is that sharing the $4^{\text {th }}$ and $5^{\text {th }}$ edges of $B(i d)$ from the lowermost vertex, M. The
resulting border after swapping the edges is $B\left(s_{4}\right)$. Our next generator is s_{1}. So we place the tile that shares edges of $B\left(s_{4}\right)$ that are $1^{\text {st }}$ and $2^{\text {nd }}$ from the M. The new border formed is $B\left(s_{4} s_{1}\right)$. Carrying on in this manner produces the tiling displayed in Figure 5.4.

Figure 5.4: The tiling of $\mathrm{Y}((1,5,2))$ associated to the reduced word $s_{4} s_{1} s_{2} s_{3} s_{2} s_{4}$ and the sequence in which the tiles were placed.

In Figure 5.4, the tiles labelled 1 and 2 both share no edges with that of label 3. This means we could place the third tile before the first two and produce the same final tiling. This ordering of tiling would correspond to the word $s_{1} s_{2} s_{4} s_{3} s_{2} s_{4}$ and has the analogous sequences in Figure 5.5. This reflects the fact that we have a bijection between the commutation classes of words as opposed to the set of all reduced words: indeed, by applying commutation relations we see

```
s}\mp@subsup{\mp@code{1}}{2}{}\mp@subsup{s}{2}{}\mp@subsup{s}{4}{}\mp@subsup{s}{3}{}\mp@subsup{s}{2}{}\mp@subsup{s}{4}{}=\mp@subsup{s}{1}{}\mp@subsup{s}{4}{}\mp@subsup{s}{2}{}\mp@subsup{s}{3}{}\mp@subsup{s}{2}{}\mp@subsup{s}{4}{}=\mp@subsup{s}{4}{}\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}\mp@subsup{s}{3}{}\mp@subsup{s}{2}{}\mp@subsup{s}{4}{}
```


Figure 5.5: The tiling of $\mathrm{Y}((1,5,2))$ associated to the reduced word $s_{1} s_{2} s_{4} s_{3} s_{2} s_{4}$ and the sequence in which the tiles were placed. Ultimately, this creates the same tiling as in Figure 5.4.

Through this guise, one is able to translate facts about these rhombic tilings to those of the commutation classes of reduced words in (W, S). This has lead to some fruitful cross-pollination of ideas. See [45] and [46] for recent examples. In [11], Elnitsky goes on to describe such ideas for these tilings giving some wonderful combinatorial insights and some enumerative identities.

It is worth noting that the study of commutation classes of reduced words of $\operatorname{Sym}(n)$ has a rich and vibrant literature in its own right. But these classes of words have given rise to many other strange and charming bijections too. Some examples of these bijections are listed in [10].

5.2 The type B tilings

Elnitsky's tilings of type B are exactly his tilings of type A that are horizontally symmetric - they can be flipped about the horizontal line that is equidistant from the uppermost and lowermost vertex of the polygon. Here, rhombi which are reflections of one another in this horizontal line are considered belonging to the same 'tile'. Elnitsky gives an analogous bijection between commutation classes of reduced words of type B Coxeter groups and his type B tilings in Theorem 6.1. of [11]. We do not explore this in any detail here but acknowledge its existence; it will inspire the work in Chapter 9 where we will re-examine it in from the perspective of Mühlherr's admissible partitions [36].

Figure 5.6: Two of Elnitsky's type B tilings associated to reduced words of the longest element in B_{3}.

5.3 The type D tilings

We now remark on Elnitsky's construction for type D Coxeter groups. As is typical in the literature, it seems type D tilings have received considerably less attention than their type A counterparts.

Let (W, S) be ($\left.\mathrm{D}_{n},\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}\right)$, a standard embedding of D_{n} into $\operatorname{Sym}(\{-n, \ldots,-1,1, \ldots, n\})$ with $s_{1}=(1,-2)(2,-1)$ and $s_{i}=(i-1, i)(-(i-1),-i)$ for each $i \in\{2, \ldots, n\}$. In this setting, Elnitsky describes a similar construction for tilings of a $4 n$-gon that again are in a correspondence with classes of reduced words.

Here is the regular construction of the type D polygon $\mathrm{Y}(w)$ for all $w \in W$. We assume that $\mathrm{Y}(w)$ is a $4 n$-gon with unit length edges.
(i) Let U be the uppermost vertex of our $4 n$-gon, L the lowermost vertex and M the vertex that is an equal distance from both.
(ii) Construct the first n edges clockwise from L so that they have form a set of $2 n$ consecutive, unit length edges of a regular $4 n$-gon. We label these edges consecutively from L in clockwise order with the labels
$i=-n, \ldots,-1,1, \ldots, n$.
(iii) For each $i=1, \ldots, n$, we now construct and label the first n edges anti-clockwise from L consecutively so that the $i^{\text {th }}$ edge from L is parallel to, and labelled as, that edge with label $(-(n+1-i)) w^{-1}$ constructed in $(i i)$. Similarly, for $i=n+1, \ldots, 2 n$, we construct the next n edges anti-clockwise from L consecutively so that the $i^{\text {th }}$ edge from L is parallel to, and labelled as, that edge with label $(i-n) w^{-1}$ constructed in (ii).

We are allowed certain modifications in angles and edge length for the edges constructed in step (ii) although we do not explore here.

Example 5.3.1. We present an example of such a polygon for D_{4}.

Figure 5.7: $\mathrm{Y}(w)$ for $w= \pm(1,-2,-4,3)$.

Let us reuse the language of $\mathrm{B}(w)$ to denote the edges of $\mathrm{Y}(w)$ constructed in step (iii). This time we consider a new set of tiles which are more complex than that of type A. In particular, we now have a set of megatiles at our disposal. The megatiles are a subset of octagons with unit edge lengths which can be constructed. Its uppermost vertex, U^{\prime}, and lowermost vertex, L^{\prime}, must lie on a vertical line. Its first four edges anti-clockwise from U^{\prime} must be symmetric through the horizontal line passing through the middle vertex. Call these edges E. Then to make the remaining edges perform the following on E :
(i) Reflect E through the vertical line passing through U^{\prime} and L^{\prime}.
(ii) Next, transpose the first and second resulting edges below U^{\prime} and the third and fourth resulting edges below U^{\prime} respectively.

In order to obtain a tiling bijection, to each generator, we associate the action of placing certain tiles. Given $w \in W$, for each s_{i} with $i=2, \ldots, n$, if $s_{i} \in I^{+}(w)$ then $\mathrm{B}\left(w s_{i}\right)$ is obtained by transposing the $i^{\text {th }}$ and $(i-1)^{\text {th }}$ edges of $\mathrm{B}(w)$ above M as well as transposing the $i^{\text {th }}$ and $(i-1)^{t h}$ edges of $\mathrm{B}(w)$ below M too. Effectively, this results in appending two rhombi. If $s_{1} \in I^{+}(w)$, then $\mathrm{B}\left(w s_{i}\right)$ is obtained from $\mathrm{B}(w)$ by placing the megatile.

Example 5.3.2. We present two different tilings for the polygon of Example 5.3.1.

Figure 5.8: Two Elnitsky tilings for D_{4} with $\delta= \pm(1,-2,-4,3)$.

We call the set of all such tilings for $\mathrm{Y}(w), T(w)$. The relation set, J, is determined by whether or not the tiles associated to each generators may share an edge. In this case, it is $\left\{s_{i}, s_{j}\right\}$ for $i, j \in\{1, \ldots, n\}$ with $|i-j| \geq 2$ but excluding $\left\{s_{1}, s_{3}\right\}$.

Theorem 5.3.3 (Theorem 7.1. of [11]). For all $w \in W$ with W of type D, there is a bijection between $T(w)$ and $\mathcal{R}_{J}(w)$.

Elnitsky's proof of Theorem 5.3.3 is analogous to that of Theorem 5.1.3. Elnitsky notices that, given this regular construction, certain tilings may have self-intersections. Fortunately, he also provides a remedy for these intersections: if the angles from the horizontal of each edge in the border created in step (ii) of the construction are at least $\pi / 3$, then these self-intersections are removed. We present an example in D_{5}.

Example 5.3.4. We consider the reduced word $s_{3} s_{4} s_{5} s_{2} s_{3} s_{4} s_{5} s_{1} s_{2} s_{3} s_{1}$ in D_{5}. We present one tiling using the usual round construction and one using edges with angles at least $\pi / 3$ in Figure 5.9.

Figure 5.9: Elnitsky's type D tilings for the reduced word $s_{3} s_{4} s_{5} s_{2} s_{3} s_{4} s_{5} s_{1} s_{2} s_{3} s_{1}$ using the usual round representation (left) and ensuring that the angles of each edge constructed in the starting border are at least $\pi / 3$ from the horizontal (right).

We can see that the left-hand-side contains a self-intersection whereas the right does not.

Elnitsky's proof of this fact is very direct using geometric observations. We will show later that one should be able to relax this bound slightly, by requiring edges of at least $\pi / 4$ from the horizontal instead.

Chapter 6

The Bruhat order on Elnitsky's tilings

Theorem 5.1.3 shows that for all $u \in W, s \in S$ we have $u<_{R} u s$ if and only if $\mathrm{Y}(u s)$ is obtained by appending a rhombus to $\mathrm{Y}(u)$. This gives the weak order a succinct interpretation in the context of Elnitsky's type A tiling. What about the Bruhat order? Is this also reflected visually in Elnitsky's tilings? In this chapter, we will develop some notation for constructing these tilings before answering this question.

Theorem 6.0.1. For all $u, v \in W(=\operatorname{Sym}(n)), u<_{B} v$ implies $\mathrm{B}^{\pi / 4}(u) \prec \mathrm{B}^{\pi / 4}(v)$.
We will see later that $\mathrm{B}^{\pi / 4}(u)$ denotes some modified border of u. The relation \prec is used to capture the notion of one border not 'crossing' another; this will be defined precisely later. To the best of my knowledge, the observations in this chapter do not appear in the literature. The work in this chapter is a lightly edited version of joint work with Professor Peter Rowley from the paper a preparation [37].

6.1 E-polygons

Let $(W, S)=\left(\operatorname{Sym}(n),\left\{s_{1}, \ldots, s_{n-1}\right\}\right)$ and fix some $\alpha \in(0, \pi / 2)$.
Definition 6.1.1. Let $\beta_{n}^{k}(\alpha)$ denote the 2-dimensional, real, unit vector

$$
\beta_{n}^{k}(\alpha)=\binom{-\cos \left(\frac{(k-1)(\pi-2 \alpha)}{n-1}+\alpha\right)}{\sin \left(\frac{(k-1)(\pi-2 \alpha)}{n-1}+\alpha\right)}
$$

for $k=1, \ldots, n$. We will sometimes refer to upper and lower entries of the vectors as the x and y coordinates respectively. We call $\mathcal{B}_{n}^{\alpha}=\left\{\beta_{n}^{1}(\alpha), \ldots, \beta_{n}^{n}(\alpha)\right\}$ the set of underlying vectors.

When α is clearly fixed from context, we will write $\beta_{n}^{k}(\alpha)$ more simply as β_{n}^{k}.
Visually, these vectors are distributed evenly on the upper half of the unit circle whose absolute angles from the horizontal axis is at least α, see Figure 6.1. In practice, the angles do not need to be evenly distributed - we just need the angle of β_{n}^{i} measured anti-clockwise from $\binom{1}{0}$ to be greater than that of β_{n}^{j} whenever $i>j$.

Figure 6.1: The set \mathcal{B}_{6}^{α} for $\alpha=\pi / 4$ and $\pi / 12$ respectively.

Definition 6.1.2. For all $w \in W$ we define the ordered set

$$
\mathcal{B}_{n}^{\alpha}(w):=\left\{\beta_{n}^{(1) w^{-1}}, \ldots \beta_{n}^{(n) w^{-1}}\right\}
$$

to be the w-image of \mathcal{B}_{n}^{α}.
Definition 6.1.3. Given $w \in W$, for $i=1, \ldots, n$, we define $\mathrm{B}_{n}^{\alpha}(w)_{i}$ to be the unit length line segment whose end points are $\sum_{j=1}^{i-1} \beta_{n}^{(j) w^{-1}}$ and $\Sigma_{j=1}^{i} \beta_{n}^{(j) w^{-1}}$. Here it is understood that $\sum_{j=1}^{0} \beta_{n}^{(j) w^{-1}}$ is the zero-vector. We call

$$
\mathrm{B}_{n}^{\alpha}(w)=\bigcup_{i=1}^{n} \mathrm{~B}_{n}^{\alpha}(w)_{i}
$$

the border of w and $\mathrm{B}_{n}^{\alpha}(w)_{i}$ its edge in $i^{\text {th }}$ position.

The borders $\mathrm{B}_{n}^{\alpha}(i d)$ and $\mathrm{B}_{n}^{\alpha}((1,2)(4,5,6))$ in $\operatorname{Sym}(6)$ are displayed in Figure 6.2:

Figure 6.2: The borders $\mathrm{B}_{n}^{\alpha}(i d)$ and $\mathrm{B}_{n}^{\alpha}((1,2)(4,5,6))$ in $\operatorname{Sym}(6)$ with $\alpha=\pi / 4$.

Definition 6.1.4. For all $u, v \in \operatorname{Sym}(n)$, we define the E-polygon of (u, v) (with respect to n and α), denoted $\mathrm{P}_{n}^{\alpha}(u, v)$, to be the $2 n$-gon formed from the union of $\mathrm{B}_{n}^{\alpha}(u)$ and $\mathrm{B}_{n}^{\alpha}(v)$:

$$
\mathrm{P}_{n}^{\alpha}(u, v)=\mathrm{B}_{n}^{\alpha}(u) \bigcup \mathrm{B}_{n}^{\alpha}(v) .
$$

Consequently, $\mathrm{P}_{n}^{\alpha}(u, v)=\mathrm{P}_{n}^{\alpha}(v, u)$. If $u=i d$, we simplify $\mathrm{P}_{n}^{\alpha}(u, v)$ to $\mathrm{P}_{n}^{\alpha}(v)$.
$u / v \quad i d$
(23)
(12)
(123)
(132)
id

(23)

(12)

(123)

(132)

(13)

Figure 6.3: $\mathrm{P}_{3}^{\alpha}(u, v)$ for all $u, v \in \operatorname{Sym}(3)$ with $\alpha=\pi / 4$.
$u / v \quad i d$
(2 3)
(12)
(123)
(132)
id

(2 3)

$<$

(12)

(123)

(132)

(13)

Figure 6.4: $\mathrm{P}_{3}^{\alpha}(u, v)$ for all $u, v \in \operatorname{Sym}(3)$ with $\alpha=\pi / 6$.

Note that, by construction, for all $u, v \in \operatorname{Sym}(n), \mathrm{B}_{n}^{\alpha}(u)=\mathrm{B}_{n}^{\alpha}(v)$ if and only if $u=v$.

It would be desirable to be able to define a sensible notion of when a pair of borders produce a tile - when does it make sense to do so? We give a crude but general notion of this. Given fixed n and α, all borders have the same maximal y-coordinate any point may achieve, namely,
$h_{n}^{\alpha}:=\sum_{k=1}^{n} \sin \left(\frac{(k-1)(\pi-2 \alpha)}{n-1}+\alpha\right)$. For each $0 \leq y \leq h_{n}^{\alpha}$, there is a unique point for each border with that y-coordinate. Denote the x-coordinate of this point by $\mathrm{H}\left(\mathrm{B}_{n}^{\alpha}(w), y\right)$ for $w \in W$ and $0 \leq y \leq h_{n}^{\alpha}$.

Definition 6.1.5. For all $u, v \in W$ we say $\mathrm{B}_{n}^{\alpha}(u)$ precedes $\mathrm{B}_{n}^{\alpha}(v)$, denoted $\mathrm{B}_{n}^{\alpha}(u) \prec \mathrm{B}_{n}^{\alpha}(v)$, if for all $0 \leq y \leq h_{n}^{\alpha}$,

$$
\mathrm{H}\left(\mathrm{~B}_{n}^{\alpha}(u), y\right) \leq \mathrm{H}\left(\mathrm{~B}_{n}^{\alpha}(v), y\right) .
$$

One can define the interior of any $\mathrm{P}_{n}^{\alpha}(u, v)$ to be the union of the set of all line segments whose endpoints are $\mathrm{H}\left(\mathrm{B}_{n}^{\alpha}(u), y\right)$ and $\mathrm{H}\left(\mathrm{B}_{n}^{\alpha}(v), y\right)$ for all $0 \leq y \leq h_{n}^{\alpha}$. We use the notion of precedence to determine when we assign the word tile to some E-polygon for reasons that will become apparent in Chapter 7.

Definition 6.1.6. For all $u, v \in W$ we call $\mathrm{P}_{n}^{\alpha}(u, v)$ a tile if either $\mathrm{B}_{n}^{\alpha}(u) \prec \mathrm{B}_{n}^{\alpha}(v)$ or $\mathrm{B}_{n}^{\alpha}(v) \prec \mathrm{B}_{n}^{\alpha}(u)$.

Figure 6.5: For $W=\operatorname{Sym}(3)$, (left) $\mathrm{P}_{3}^{\pi / 4}((2,3),(1,3,2))$ is a tile and (right) $\mathrm{P}_{3}^{\pi / 4}((2,3),(1,2))$ is not.

We also note here that being a tile is dependent on the choice of α as Figure 6.6 shows.

Figure 6.6: For $W=\operatorname{Sym}(4)$, (left) $\mathrm{P}_{4}^{\pi / 4}((1,2,3),(1,2,4))$ is a tile and (right) $\mathrm{P}_{4}^{\pi / 8}((1,2,3),(1,2,4))$ is not.

6.2 Proof of Theorem 6.0.1

The examples presented in the previous section show that self-intersections are dependent on the choice of the minimum angle of edges from the horizontal. Moreover, when this minimum is at least $\pi / 4$ for $\operatorname{Sym}(3)$, these self-intersections are in bijection with incomparable elements in the strong Bruhat order. However, in general this is not the case as we observe in Figure 6.7 where we have $W=\operatorname{Sym}(4)$ and elements $(1,2,3)$ and $(1,4,2)$ which are not comparable in the Bruhat order. This is the only such pair (up to inverses) amongst the 87 non-comparable elements of $\operatorname{Sym}(4)$ exhibiting this behaviour.

For what follows, when $\alpha=\pi / 4$ we omit α from our notation.

Figure 6.7: For $W=\operatorname{Sym}(4), \mathrm{P}_{4}((1,3,2),(1,2,4))$.

We recall the following characterisation of the covering relations of the Bruhat order for the symmetric group.

Theorem 6.2.1. Let $w \in W=\operatorname{Sym}(n)$, and let $t=(a, b) \in T$ with $a<b$. Then $w<{ }_{B} w t$ if and only if $(a) w^{-1}<(b) w^{-1}$.

Proof. See Lemma 2.1.4 of [1] (note that we write permutations on the right here).

We are now ready to prove Theorem 6.0.1 which by way of contrast demonstrates that any two Bruhat comparable elements of $\operatorname{Sym}(n)$ forms an E-polygon which is a tile. We emphasise that the proof is not dependent on consecutive edges of \mathcal{B}^{α} being spaced apart by angles of equal measure: they all need only to have absolute angle $\pi / 4$ from the horizontal.

Proof. It is enough to observe this statement for a covering set of relations of the Bruhat order. That is, for all $w \in \operatorname{Sym}(n)$ and $t \in T$, if $w<_{B} w t$ and $l(w)<l(w t)$, then $\mathrm{B}_{n}(w) \prec \mathrm{B}_{n}(w t)$. But, by Theorem 6.2.1, this is equivalent to the condition that $t=(a, b)$ with $a<b$ and $(a) w^{-1}<(b) w^{-1}$. Let us suppose this is the case. Then the images of $\mathcal{B}_{n}(w)$ and $\mathcal{B}_{n}(w t)$ must be identical apart from the transpositions of the vectors, $\beta_{n}^{(a) w^{-1}}$ and $\beta_{n}^{(b) w^{-1}}$. Since $a<b, \beta_{n}^{(a) w^{-1}}$ appears in a lower position to $\beta_{n}^{(b) w^{-1}}$ as line segment in $\mathrm{B}_{n}^{\alpha}(w)$. From $(a) w^{-1}<(b) w^{-1}$, $\beta_{n}^{(a) w^{-1}}$'s x coordinate is more negative than that of $\beta_{n}^{(b)} w^{-1}$ - intuitively meaning that $\beta_{n}^{(a) w^{-1}}$ points further left. Hence, $w<_{B} w t$ implies Figure 6.8 is a sufficiently accurate representation of the situation.

Figure 6.8: The borders $\mathrm{B}_{n}(w)$ and $\mathrm{B}_{n}(w t)$.

We define the critical region to be the union of the edges $\mathrm{B}_{n}(w)_{i}$ and $\mathrm{B}_{n}(w t)_{i}$ for $a \leq i \leq b$. We will show that $\mathrm{B}_{n}(w)_{i} \cap \mathrm{~B}_{n}(w t)_{j}=\emptyset$ for all $i, j \in\{a, \ldots, b\}$, excluding the common points of $\mathrm{B}_{n}(w)_{a}$ and $\mathrm{B}_{n}(w t)_{a}$ (the unique point of least y-coordinate) and $\mathrm{B}_{n}(w)_{b}$ and $\mathrm{B}_{n}(w t)_{b}$ (the unique point of largest y-coordinate). This is sufficient to prove $\mathrm{B}_{n}(w) \prec \mathrm{B}_{n}(w t)$.
Given two distinct vectors $\beta_{n}^{i}, \beta_{n}^{j} \in \mathcal{B}_{n}$ with $i<j$, we call the difference between them, $\beta_{n}^{j}-\beta_{n}^{i}$, their difference vector. We extend this notion to $\mathrm{B}_{n}(w)$ and $\mathrm{B}_{n}(w t)$ by defining the difference vector of these borders to be the difference vector of $\beta_{n}^{(a) w^{-1}}$ and $\beta_{n}^{(b) w^{-1}}$. Note that this difference vector is equal to the difference of $\Sigma_{j=1}^{c} \mathcal{B}_{n}^{\alpha}(w)_{j}$ and $\Sigma_{j=1}^{c} \mathcal{B}_{n}^{\alpha}(w t)_{j}$ for all $a \leq c<b$ respectively.
We examine some of the properties our difference vectors may possess. Consider two distinct vectors in this region and let γ and θ denote their angles from $\binom{1}{0}$ measured in an anticlockwise rotation, with $\gamma<\theta$ say. By construction, the angles for each β_{n}^{i} can possibly take is within the range $\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right)$. The gradient of the chord is the same as the tangent to the circle at the point that intersects the bisector of the chord. The bisector is that vector with angle $\frac{\gamma+\theta}{2}$ and hence the tangent has angle $\frac{\gamma+\theta}{2}-\frac{\pi}{2}$. So the range of gradients a difference vector can take is contained in the open interval $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$.

Figure 6.9: The difference vector between two underlying vectors.

Suppose we do have an non-empty intersection of $\mathrm{B}_{n}(w)_{i}$ and $\mathrm{B}_{n}(w t)_{j}$. Without
loss of generality, we may assume $a \leq i \leq b$. We consider the three cases of $|i-j|=0,|i-j|=1$ and $|i-j| \geq 2$ separately.
If $|i-j|=0$, then $\mathrm{B}_{n}(w t)_{i}=\mathrm{B}_{n}(w)_{i}$ and hence they are non-equal, parallel edges and so do not intersect. If $i=a$ or $i=b$ then the vectors only intersect in their common vertices. All other vectors are equal and not in the critical region.

Next, we now show that if $|i-j|=1$ we still have no intersections in the critical region. Suppose, without loss of generality, that $\mathrm{B}_{n}(w)_{i}$ intersects $\mathrm{B}_{n}(w t)_{i+1}$ giving us the scenario described in Figure 6.10:

Figure 6.10: The rhombic region labelled R_{2} for which the lower vertex of $\mathrm{B}_{n}(w)_{i}$ lies in if and only if $\mathrm{B}_{n}(w)_{i+1}$ and $\mathrm{B}_{n}(w t)_{i}$ intersect.

Let U and V be the upper and lower vertices of $\mathrm{B}_{n}(w)_{i+1}$ respectively and X be the lower vertex of $\mathrm{B}_{n}(w t)_{i}$. Note that U is in the rhombic region labelled R_{1} if and only if $\mathrm{B}_{n}(w)_{i+1}$ and $\mathrm{B}_{n}(w t)_{i}$ intersect. Equivalently, this is true exactly when V is in the region labelled R_{2}. Observe that the line segment from V to X is equivalent to the difference vector of $\mathrm{B}_{n}(w)$ and $\mathrm{B}_{n}(w t)$. But then V is in R_{2} if
and only if the difference vector has angle from $\binom{1}{0}$ strictly between $\beta_{n}^{a^{-1}(w)}$ and $\beta_{n}^{b^{-1}(w)}$. But this is a contradiction as we saw the angles of $\beta_{n}^{a^{-1}(w)}$ and $\beta_{n}^{b^{-1}(w)}$ lie in $[\pi / 4,3 \pi / 4]$ whereas the angles of difference vectors lie in the disjoint, open interval $(-\pi / 4, \pi / 4)$.
For $|i-j| \geq 2$ we first consider $|i-j|=2$ where the situation pictured in Figure 6.11 applies.

Figure 6.11: The heights concerning the $|i-j| \geq 2$ case.
Note that $\mathrm{B}_{n}(w t)_{i}$ is a translation of $\mathrm{B}_{n}(w)_{i}$ since i is in the critical strip. If the y-coordinate of $\mathrm{B}_{n}(w)_{i}$ is less than that of $\mathrm{B}_{n}(w t)_{i+2}$, then an intersection between $\mathrm{B}_{n}(w t)_{i+2}$ and $\mathrm{B}_{n}(w)_{i}$ is impossible. So we consider the inequality $h_{d}+h_{i}<h_{i}+h_{i+1}$, or equivalently, $h_{d}<h_{i+1}$. Note that h_{d} is bounded above by $1-\frac{\sqrt{2}}{2}$ and h_{i+1} is bounded below by $\frac{\sqrt{2}}{2}$. But $1-\frac{\sqrt{2}}{2}<\frac{\sqrt{2}}{2}$ and so $h_{d} \leq 1-\frac{\sqrt{2}}{2}<\frac{\sqrt{2}}{2} \leq h_{i+1}$. Therefore, $\mathrm{B}_{n}(w)_{i}$ and $\mathrm{B}_{n}(w t)_{i+1}$ certainly do not intersect. But since the y-coordinate is strictly increasing in borders we know that no intersection can occur for all $|i-j| \geq 2$ also.

Taking $\alpha=\pi / 4$ ensures that for the case $|i-j|=1, \mathrm{~B}_{n}(w)_{i}$ and $\mathrm{B}_{n}(w t)_{j}$ have an empty intersection. However if $\alpha<\pi / 4$, a non-trivial intersection can occur for
some sufficiently large n. So $\alpha=\pi / 4$ is sharp precisely in this sense. When $|i-j| \geq 2$, the least α needed to ensure that $\mathrm{B}_{n}(w)_{i}$ and $\mathrm{B}_{n}(w t)_{j}$ have an empty intersection in the critical region for all n is $\alpha=\pi / 6$.
An important corollary evident from the proof of Theorem 6.0.1 is that $\mathrm{B}_{n}(w) \cap \mathrm{B}_{n}(w t)$ differ on exactly those points on edges in the so-called critical region. Furthermore, in that region, the points on $\mathrm{B}_{n}(w t)$ have an x-coordinate greater than their $\mathrm{B}_{n}(w)$ counterparts of the same y-coordinate. Putting this more precisely, we have Corollary 6.2.2.

Corollary 6.2.2. Suppose $w, t \in \operatorname{Sym}(n)$ with $t \in T$ and $w<_{B} w t$. Write $t=(a, b)$ for some $1 \leq a<b \leq n$. Then $\mathrm{H}\left(\mathrm{B}_{n}(w), y\right)<\mathrm{H}\left(\mathrm{B}_{n}(w t), y\right)$ for all y satisfying

$$
\sum_{k=1}^{a-1} \sin \left(\frac{\left((k-1) w^{-1}\right)(\pi-2 \alpha)}{n-1}+\alpha\right)<y<\sum_{k=1}^{b} \sin \left(\frac{\left((k-1) w^{-1}\right)(\pi-2 \alpha)}{n-1}+\alpha\right)
$$

(declaring $\sum_{k=1}^{a-1} \sin \left(\frac{\left((k-1) w^{-1}\right)(\pi-2 \alpha)}{n-1}+\alpha\right)=0$ for when $a=1$), and $\mathrm{H}\left(\mathrm{B}_{n}(w), y\right)=\mathrm{H}\left(\mathrm{B}_{n}(w t), y\right)$ otherwise.

Chapter 7

E-embeddings and tiling bijections

In this chapter, we aim to use Theorem 6.2.1 as inspiration to create definitions that will be conducive to forming bijections between classes of reduced words and certain tilings of polygons for all finite irreducible Coxeter groups. Let (W, S) denote a finite irreducible Coxeter group. The main definition we examine is a map that sends comparable elements in the weak order of one Coxeter group to comparable maps in the Bruhat order of the symmetric group. This does not seem to appear in the literature.

Definition 7.0.1. Suppose that $\varphi: W \hookrightarrow \operatorname{Sym}(n)$ is an embedding. Then φ is an E-embedding for W if for all $w_{1}, w_{2} \in W$

$$
w_{1}<_{R} w_{2} \text { implies } \varphi\left(w_{1}\right)<_{B} \varphi\left(w_{2}\right) .
$$

We call these E-embeddings in homage of Elnitsky. There are two main theorems for this chapter. The first, Theorem 7.1.3, shows how an E-embedding associates reduced words to tilings of polygons. The second, Theorem 7.1.8, shows how the set of all such tilings associated to a given element is in bijection with the set of reduced words of said element up to a certain subset of braid relations.
This is a lightly edited version of more joint work with Professor Peter Rowley from [37]. We first state all the relevant definitions and theorems before proving them in the final section.

7.1 Definitions and results

We start developing various objects associated to an E-embedding.

Definition 7.1.1. Let $\varphi: W \hookrightarrow \operatorname{Sym}(n)$ be an E-embedding. Then we define $\mathrm{B}_{\varphi}^{\alpha}(w)$ to be $\mathrm{B}_{n}^{\alpha}(\varphi(w))$ and we set $\mathrm{P}_{\varphi}^{\alpha}(u, v)$ to be $\mathrm{P}^{\alpha}(\varphi(u), \varphi(v))$ for all $u, v, w \in W$.

We define the tiling of a reduced expression.
Definition 7.1.2. Let $\varphi: W \hookrightarrow \operatorname{Sym}(n)$ be an E-embedding. Let $s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}$ be a reduced expression of some $w \in W$. Then we define the tiling of $s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}$ to be

$$
\mathrm{T}_{\varphi}\left(s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}\right)=\bigcup_{j=0}^{k} \mathrm{~B}_{\varphi}^{\alpha}\left(s_{i_{1}} \ldots s_{i_{j}}\right)
$$

where it is agreed that when $j=0, \mathrm{~B}_{\varphi}^{\alpha}\left(s_{i_{1}} \ldots s_{i_{j}}\right)=\mathrm{B}_{\varphi}^{\alpha}(i d)$.
Our first main theorem is as follows.
Theorem 7.1.3. Suppose $\varphi: W \hookrightarrow \operatorname{Sym}(n)$ is an E-embedding and $\alpha \in[\pi / 4, \pi / 2)$. Then for all $w \in W$ and all reduced expressions $w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}$,

$$
\mathrm{B}_{\varphi}^{\alpha}(i d) \prec \mathrm{B}_{\varphi}^{\alpha}\left(s_{i_{1}}\right) \prec \mathrm{B}_{\varphi}^{\alpha}\left(s_{i_{1}} s_{i_{2}}\right) \prec \ldots \prec \mathrm{B}_{\varphi}^{\alpha}\left(s_{i_{1}} \ldots s_{i_{k}}\right) .
$$

The significance of this theorem is that what we call tilings in Definition 7.1.2 are indeed deserving of their name. Since $\mathrm{B}_{\varphi}(\mathrm{id}) \prec \mathrm{B}_{\varphi}\left(s_{i_{1}}\right) \prec \ldots \prec \mathrm{B}_{\varphi}\left(s_{i_{1}} \ldots s_{i_{k}}\right)$ for each reduced word, each of $\mathrm{P}_{\varphi}\left(\mathrm{id}, s_{i_{1}}\right), \mathrm{P}_{\varphi}\left(s_{i_{1}}, s_{i_{1}} s_{i_{2}}\right), \ldots, \mathrm{P}_{\varphi}\left(s_{i_{1}} \ldots s_{i_{k-1}}, s_{i_{1}} \ldots s_{i_{k}}\right)$ forms a tile and set of the interiors of these tiles partition the interior of the polygon $\mathrm{P}_{\varphi}\left(s_{i_{1}} \ldots s_{i_{k}}\right)$.

Definition 7.1.4. Let $\varphi: W \hookrightarrow \operatorname{Sym}(n)$ be an E-embedding and $w \in W$. Let $\mathcal{T}_{\varphi}^{\alpha}(w)$ be the set consisting of all $\mathrm{T}_{\varphi}\left(s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}\right)$ for all reduced words $s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}$ evaluating to w.

Our next definition is an extension of relation set J from Chapter 5 .
Definition 7.1.5. Let $\varphi: W \hookrightarrow \operatorname{Sym}(n)$ be an E-embedding. Let $r, s \in S$, then we define J_{φ} so that $\{r, s\} \in J_{\varphi}$ if and only if for all reduced words containing a consecutive subword of $\underbrace{\text { srs..., }}_{m_{s, r}}$, we have

$$
\mathrm{T}_{\varphi}(s_{i_{1}} \ldots s_{i_{\ell}} \underbrace{s r s \ldots}_{m_{s, r}} s_{i_{r}} \ldots s_{i_{j}})=\mathrm{T}_{\varphi}(s_{i_{1}} \ldots s_{i_{\ell}} \underbrace{r s r \ldots}_{m_{s, r}} s_{i_{r}} \ldots s_{i_{j}}) .
$$

Surprisingly, J_{φ} admits an easily computed description. To describe this, we define the support interval of a permutation as follows.

Definition 7.1.6. Let φ is an embedding of W in $\operatorname{Sym}(n)$ and $s \in S$. We define the support interval of s to be

$$
\mathrm{I}_{\varphi}(s)=\bigcup_{i=1}^{k}\left\{a_{i}, a_{i}+1, \ldots, b_{i}-1, b_{i}\right\}
$$

where $\varphi(s)=\prod_{i=1}^{k}\left(a_{i}, b_{i}\right)$ with $a_{i}<b_{i}$.
Necessarily, there must exists a unique choice of subsets
$\left\{a_{1}^{\prime}, \ldots, a_{k^{\prime}}^{\prime}\right\} \subseteq\left\{a_{1}, \ldots, a_{k}\right\}$, and $\left\{b_{1}^{\prime}, \ldots, b_{k^{\prime}}^{\prime}\right\} \subseteq\left\{b_{1}, \ldots, b_{k}\right\}$ such that

$$
\mathrm{I}_{\varphi}(s)=\bigcup_{m=1}^{k^{\prime}}\left\{a_{m}^{\prime}, a_{m}^{\prime}+1, \ldots, b_{m}^{\prime}\right\}
$$

and that the intervals in this union are pairwise disjoint. We call this the disjoint form of $\mathrm{I}_{\varphi}(s)$ and a_{i}^{\prime} and b_{i}^{\prime} its $i^{\text {th }}$ disjoint representatives.

Lemma 7.1.7. Let $\varphi: W \hookrightarrow \operatorname{Sym}(n)$ be a E-embedding. Then

$$
J_{\varphi}=\left\{\{r, s\} \subseteq S \mid \mathrm{I}_{\varphi}(s) \cap \mathrm{I}_{\varphi}(r)=\emptyset\right\} .
$$

Recall that $\mathcal{R}_{J_{\varphi}}(w)$ is the set of all reduced words of w up to those braid relations for pairs in J_{φ}. Now we can state the final final theorem of this chapter.

Theorem 7.1.8. Suppose that φ is a E-embedding of W. Then for all $w \in W$ there exists a bijection between $\mathcal{T}_{\varphi}(w)$ and $\mathcal{R}_{J_{\varphi}}(w)$.

7.2 Proofs

We start with a proof of Theorem 7.1.3.
Proof. Suppose $w=s_{i_{1}} \ldots s_{i_{k}}$ is a reduced word for some element $w \in W$.
Necessarily, we have

$$
\mathrm{id}<_{R} s_{i_{1}}<_{R} \ldots<_{R} s_{i_{1}} \ldots s_{i_{k}}
$$

Since φ is an E-embedding, we know

$$
\varphi(\mathrm{id})<_{B} \varphi\left(s_{i_{1}}\right)<_{B} \ldots<_{B} \varphi\left(s_{i_{1}} \ldots s_{i_{k}}\right)
$$

and then Theorem 6.0.1 implies

$$
\mathrm{B}_{\varphi}(\mathrm{id}) \prec \mathrm{B}_{\varphi}\left(s_{i_{1}}\right) \prec \ldots \prec \mathrm{B}_{\varphi}\left(s_{i_{1}} \ldots s_{i_{k}}\right) .
$$

We now prove an auxiliary lemma. This is an extension of Corollary 6.2.2.

Lemma 7.2.1. Let $\varphi: W \hookrightarrow \operatorname{Sym}(n)$ be an E-embedding. Let $w \in W$ and $s \in S$ be such that $w<_{R}$ ws. Suppose $\mathrm{I}_{\varphi}(s)=\bigcup_{m=1}^{k^{\prime}}\left\{a_{m}^{\prime}, a_{m}^{\prime}+1, \ldots, b_{m}^{\prime}\right\}$ in disjoint form. Then $\mathrm{H}\left(\mathrm{B}_{\varphi}(w), y\right)<\mathrm{H}\left(\mathrm{B}_{\varphi}(w s), y\right)$ if and only if for some $m \in\left\{1, \ldots, k^{\prime}\right\}$,

$$
\begin{aligned}
& \sum_{i=1}^{a_{m}^{\prime}-1} \sin \left(\frac{\left((i-1) \varphi\left(w^{-1}\right)\right)(\pi-2 \alpha)}{n-1}+\alpha\right)<y, \\
& \sum_{i=1}^{b_{m}^{\prime}} \sin \left(\frac{\left((i-1) \varphi\left(w^{-1}\right)\right)(\pi-2 \alpha)}{n-1}+\alpha\right)>y,
\end{aligned}
$$

and $\mathrm{H}\left(\mathrm{B}_{\varphi}(w), y\right)=\mathrm{H}\left(\mathrm{B}_{\varphi}(w s), y\right)$ otherwise.

Proof. Since $w<_{R} w s$ and φ is an E-embedding, $\varphi(w)<_{B} \varphi(w s)$. By Theorem 2.26 of [1], there exists a sequence of (not necessarily pairwise commuting) transpositions in $\operatorname{Sym}(n), t_{1}, \ldots, t_{\ell}$, such that $\varphi(s)=t_{1} \ldots t_{\ell}$ and

$$
\varphi(w)<_{B} \varphi(w) t_{1}<_{B} \ldots<_{B} \varphi(w) t_{1} \ldots t_{\ell-1}<_{B} \varphi(w) t_{1} \ldots t_{\ell} \quad(=\varphi(w s))
$$

where $\ell\left(\varphi(w) t_{1} \ldots t_{j}\right)=\ell(\varphi(w))+j$.
Consider $\varphi(s)$ restricted to a given part of the discjoint form of $\mathrm{I}_{\varphi}(s)$, $\left\{a_{m}^{\prime}, \ldots, b_{m}^{\prime}\right\}$, and call this induced permutation $\varphi_{\left.\right|_{m}}(s)$. This is an element of the symmetric group $\operatorname{Sym}\left(\left\{a_{m}^{\prime}, \ldots, b_{m}^{\prime}\right\}\right)$, itself a parabolic subgroup of $\operatorname{Sym}(n)=\operatorname{Sym}(\{1, \ldots, n\})$. Using Corollaries 1.4.4 and 1.4.8 of [1], we know that any reduced expression of $\varphi_{\left.\right|_{m}}(s)$ is the product of adjacent transpositions using only those in $\operatorname{Sym}\left(\left\{a_{m}^{\prime}, \ldots, b_{m}^{\prime}\right\}\right)$. Furthermore, each t_{i}^{\prime} is in $\operatorname{Sym}\left(\left\{a_{m}^{\prime}, \ldots, b_{m}^{\prime}\right\}\right)$ also. Since $\left\{a_{m}^{\prime}, \ldots, b_{m}^{\prime}\right\}$ is an interval in the disjoint form of the interval support of s, for each $a_{m}^{\prime} \leq c \leq b_{m}^{\prime}$, there must exist some $t_{i}^{\prime}=\left(a^{\prime}, b^{\prime}\right)$ with $a^{\prime} \leq c \leq b^{\prime}$.

Therefore, applying Corollary 6.2.2 to each t_{i}^{\prime} for $i=1, \ldots, \ell^{\prime}$ tells us that

$$
\begin{aligned}
& \sum_{i=1}^{a_{m}^{\prime}-1} \sin \left(\frac{\left((i-1) \varphi\left(w^{-1}\right)\right)(\pi-2 \alpha)}{n-1}+\alpha\right)<y \quad \text { and } \\
& \sum_{i=1}^{b_{m}^{\prime}} \sin \left(\frac{\left((i-1) \varphi\left(w^{-1}\right)\right)(\pi-2 \alpha)}{n-1}+\alpha\right)>y
\end{aligned}
$$

Repeating this for all $m=1, \ldots, k^{\prime}$ gives the result.

We now prove Lemma 7.1.7.

Proof. Let $s, r \in S$ and take some reduced word containing $\underbrace{\operatorname{rsr} \ldots}_{m_{s, r}}$ as a consecutive subword, $w=s_{i_{1}} \ldots s_{i_{\ell}} \underbrace{r s r \ldots}_{m_{s, r}} s_{i_{r}} \ldots s_{i_{j}}$. Since φ is an embedding, s and r are distinct if and only if $\varphi(s)$ and $\varphi(r)$ are distinct also. Moreover, we must have $\mathrm{B}_{\varphi}(u s) \neq \mathrm{B}_{\varphi}(u r)$ for all $u \in W$.
Write $v=s_{i_{1}} \ldots s_{i_{\ell}}$. Lemma 7.2 .1 shows that support intervals determine exactly the points at which $\mathrm{B}_{\varphi}(v s)$ and $\mathrm{B}_{\varphi}(v r)$ differ from $\mathrm{B}_{\varphi}(v)$ respectively. Let

$$
\begin{aligned}
& \mathrm{I}_{\varphi}(s)=\bigcup_{m=1}^{k^{\prime}}\left\{a_{m}^{\prime}, a_{m}^{\prime}+1, \ldots, b_{m}^{\prime}\right\} \\
& \mathrm{I}_{\varphi}(r)=\bigcup_{j=1}^{h^{\prime}}\left\{c_{j}^{\prime}, c_{j}^{\prime}+1, \ldots, d_{j}^{\prime}\right\}
\end{aligned}
$$

be the disjoint forms of $\mathrm{I}_{\varphi}(s)$ and $\mathrm{I}_{\varphi}(r)$ respectively.
Suppose $\mathrm{I}_{\varphi}(s) \cap \mathrm{I}_{\varphi}(r) \neq \emptyset$. First we consider the case that $\left\{a_{m}^{\prime}, a_{m}^{\prime}+1, \ldots, b_{m}^{\prime}\right\}=\left\{c_{j}^{\prime}, c_{j}^{\prime}+1, \ldots, d_{j}^{\prime}\right\}$ for some m and j, and that the restricted permutations, $\varphi(s)_{\left.\right|_{m}}$ and $\varphi(r)_{\left.\right|_{j}}$, are equal. Then $\varphi(v r s)_{\left.\right|_{m}}=\varphi(v)_{\left.\right|_{m}}$. Now consider those edges of $\mathrm{B}_{\varphi}(v), \mathrm{B}_{\varphi}(v s)$ and $\mathrm{B}_{\varphi}(v s r)$ indexed by $\left\{a_{m}^{\prime}, a_{m}^{\prime}+1, \ldots, b_{m}^{\prime}\right\}$: they are identical for $\mathrm{B}_{\varphi}(v)$ and $\mathrm{B}_{\varphi}(v s r)$. Hence it cannot be true that $\mathrm{B}_{\varphi}(v) \prec \mathrm{B}_{\varphi}(v s) \prec \mathrm{B}_{\varphi}(v s r)$, contradicting Theorem 7.1.3 since $v<_{R} v s<_{R} v s r$. Now suppose there exists some m and j such that $\left\{a_{m}^{\prime}, a_{m}^{\prime}+1, \ldots, b_{m}^{\prime}\right\} \cap\left\{c_{j}^{\prime}, c_{j}^{\prime}+1, \ldots, d_{j}^{\prime}\right\} \neq \emptyset$ but that the restricted permutations, $\varphi(s)_{\left.\right|_{m}}$ and $\varphi(r)_{\left.\right|_{j}}$, are not equal (they may not even be restricted to the same set). Since they are not equal, we must have points at which they differ. More
specifically, Lemma 7.2 .1 shows there must exist some y satisfying

$$
\begin{gathered}
\sum_{i=1}^{\min \left(a_{m}^{\prime}, c_{j}^{\prime}\right)-1} \sin \left(\frac{((i-1) \varphi(v))(\pi-2 \alpha)}{n-1}+\alpha\right)<y \quad \text { and } \\
\sum_{i=1}^{\min \left(b_{m}^{\prime}, d_{j}^{\prime}\right)} \sin \left(\frac{((i-1) \varphi(v))(\pi-2 \alpha)}{n-1}+\alpha\right)>y
\end{gathered}
$$

where, without loss of generality, $\mathrm{H}\left(\mathrm{B}_{\varphi}(v), y\right)<\mathrm{H}\left(\mathrm{B}_{\varphi}(v s), y\right)<\mathrm{H}\left(\mathrm{B}_{\varphi}(v r), y\right)$. We know that $v<_{R}$ vs and $v<_{R} v r$.
Now consider the consequences if
$\mathrm{T}(s_{i_{1}} \ldots s_{i_{\ell}} \underbrace{r s r}_{m_{s, r}} \ldots s_{i_{r}} \ldots s_{i_{j}})=\mathrm{T}(s_{i_{1}} \ldots s_{i_{\ell}} \underbrace{s r s \ldots}_{m_{s, r}} s_{i_{r}} \ldots s_{i_{j}})$. There must be some prefix of the word $w=s_{i_{1}} \ldots s_{i_{\ell}} \underbrace{r s r \ldots}_{m_{s, r}} s_{i_{r}} \ldots s_{i_{j}}$, say $w_{\gamma}:=s_{i_{1}} \ldots s_{i_{\gamma}}$, such that $\mathrm{H}\left(\mathrm{B}_{\varphi}\left(w_{\gamma}\right), y\right)=\mathrm{H}\left(\mathrm{B}_{\varphi}(v s), y\right)$. Necessarily, $\gamma \neq \ell, \ell+1$. If $\gamma<\ell$, then this contradicts Theorem 7.1.3 as $w_{\gamma}<_{R} v$ but

$$
\mathrm{H}\left(\mathrm{~B}_{\varphi}(v), y\right)<\mathrm{H}\left(\mathrm{~B}_{\varphi}(v s), y\right) \quad\left(=\mathrm{H}\left(\mathrm{~B}_{\varphi}\left(w_{\gamma}\right), y\right)\right) .
$$

If $\gamma>\ell+1$, then this contradicts Theorem 7.1.3 again as $v r<_{R} w_{j}$ but

$$
\left(\mathrm{H}\left(\mathrm{~B}_{\varphi}\left(w_{\gamma}\right), y\right)=\right) \quad \mathrm{H}\left(\mathrm{~B}_{\varphi}(v s), y\right)<\mathrm{H}\left(\mathrm{~B}_{\varphi}(v r), y\right) .
$$

So far, we have proved if $\{s, r\} \in \mathrm{J}_{\varphi}$, then $\mathrm{I}_{\varphi}(s) \cap \mathrm{I}_{\varphi}(r) \neq \emptyset$. To see that the converse is true, suppose $\mathrm{I}_{\varphi}(s) \cap \mathrm{I}_{\varphi}(r)=\emptyset$. Lemma 7.2 .1 shows that for all y, only one of $\mathrm{H}\left(\mathrm{B}_{\varphi}(v s), y\right)$ and $\mathrm{H}\left(\mathrm{B}_{\varphi}(v r), y\right)$ can differ from $\mathrm{H}\left(\mathrm{B}_{\varphi}(v), y\right)$. Hence the order in which we place the tiles corresponding to $\mathrm{P}(v, v s)$ and $\mathrm{P}(v, v r)$ does matter and produces the same ultimate tiling of w.

The proof of Lemma 7.1.7 shows that the $\{s, r\}$ braid relations of the Coxeter group either always preserve a tiling or always alter it, regardless of the choice of reduced words. It is now evident that the necessary bijection for Theorem 7.1.8 follows.

Chapter 8

Strategies for creating E-embeddings

This chapter consists of a first attempt at creating E-embeddings for all finite irreducible Coxeter groups. Unfortunately, we do not obtain a proof that what we create is indeed an E-embedding. However, we provide an algorithm for creating certain CPR graphs and show that they exhibit promising behaviour; they behave consistently with E-embeddings when examining a certain tiling. The images in this chapter were produced using Wolfram Language in Mathematica ([49]). The colour scheme used in this chapter colours objects associated to different generators of a given Coxeter groups by different colours. In particular, Figure 8.1 serves as a guide.

Figure 8.1: The colours used to represent each generator in our Coxeter groups. The $i^{t h}$ colour (read from left to right) represents the generator s_{i}.

8.1 A Strategy for constructing new tilings

We start by trying to recognise some common patterns in the CPR graphs associated with Elnitsky's type A, B and D tilings. We do not prove these patterns do indeed hold true. Let (W, S) denote either a type A, B or D Coxeter group.
(i) There exists an embedding $\varphi: W \hookrightarrow \operatorname{Sym}(n)$ such that, if it were an E-embedding, then $\mathrm{B}_{\varphi}\left(w s_{i}\right)$ is obtained from $\mathrm{B}_{\varphi}(w)$ by appending the tile
associated to s_{i} in Elnitsky's construction for each $s_{i} \in S$.
(ii) Viewing these embeddings as CPR graphs, we recognise that they are the action of the group permuting the cosets of some maximal proper parabolic subgroup of W. That is, there exists some $s \in S$ such that for $J=S \backslash\{s\}, \varphi$ is the action of permuting the coset of W_{J}. This s is s_{n}, s_{1} and s_{1} for when W is type A, B or D respectively.
(iii) It is known that each coset of any parabolic subgroup (of any Coxeter group), W_{I} say, has a unique element of minimal length (Corollary 2.4.5 of [1]). These form a set of representatives of the cosets of W_{I} which we denote by W^{I}.
(iv) Now consider the nodes in the CPR graph of φ as the minimal representatives W^{J}.
(v) The labelling of the nodes in this CPR graph, is given by some function $\mathrm{L}: W^{J} \rightarrow\left[\left|W^{J}\right|\right]$. We strongly suspect (but do not prove) that labelling L associated to each of Elnitsky's tilings is such that $u<_{B} v$ implies $\mathrm{L}(u)<\mathrm{L}(v)$.

Our last observation imposes a total order on W^{J} by the function L. Recall a total order is a reflexive, anti-symmetric, transitive, binary relation in which all pairs of elements are comparable. We say that this function is 'Bruhat preserving' exactly because $u<_{B} v$ implies $\mathrm{L}(u)<\mathrm{L}(v)$ for all $u, v \in W^{J}$.
Given these observations, we propose the following strategy to create candidate E-embeddings:
(i) Create a total order on W, \ll, that also refines the Bruhat order.
(ii) Choose some proper $J \subset S$ and consider the CPR graph induced by W permuting the cosets of W_{J} by group multiplication.
(iii) Label the nodes by the relative position of their unique minimal length representatives in W^{J} with respect to \ll.
(iv) See if the induced embedding produces something resembling an appropriate tiling of a polygon when tested on some chosen reduced word.

Restricting ourselves to those CPR graphs that are the action of these cosets is confessedly an artificial choice.
Before moving on we should clarify and define some helpful notation.

Definition 8.1.1. Let (W, S) be a finite irreducible Coxeter group.
Let $<_{S}$ denote total order on S and let \prec denote a total order on W. Implicitly, we will write $s_{i}<_{S} s_{j}$ if and only if $i<j$. We say \prec is a refinement of the Bruhat order if $u<_{B} v$ implies $u \prec v$ for all $u, v \in W$.
Given some total order \prec on W, let $\mathrm{L}_{J}: W^{J} \hookrightarrow\left\{1, \ldots,\left|W^{J}\right|\right\}$ be the bijection so that for all $w \in W^{J}, \mathrm{~L}_{J}(w)=i$ if and only if w is the $i^{\text {th }}$ least element with respect to \prec when restricted to W^{J}. We call L_{J} the labelling of W^{J} with respect to \prec. Finally, we define $\phi_{\prec}^{J}: W \hookrightarrow \operatorname{Sym}\left(\left|W^{J}\right|\right)$ so that $(i) \phi_{\prec}^{J}(w)=j$ if and only if w sends that coset labelled i to that j by L_{J}. We call ϕ_{\prec}^{J} the induced embedding of \prec on J. If $J=\emptyset$ then we simply write ϕ_{\prec}^{J} as ϕ_{\prec}.

We can now state a conjecture:

Conjecture 8.1.2. $\phi_{\prec}: W \rightarrow \operatorname{Sym}(|W|)$ is an E-embedding if and only if \prec is a refinement of the Bruhat order.

After some computer experimentation, the above conjecture seems more sensible than it might at a first glance. It is our hope that if this is true, then a general characterisation of E-embeddings on CPR graphs will become apparent.

8.2 A labelling algorithm

We now proceed to describe an algorithm to produce a total order \ll. The reason for considering this total order is that it seems to refine the Bruhat order (though we do not prove that in this thesis), is somewhat natural, is consistent with the CPR graphs associated to Elnitsky's tilings, and is easily implemented by computer.

An overview of the algorithm is as follows:
(i) Let C denote the Cayley graph of (W, S) and $<_{S}$ be a total order on S.
(ii) We inductively define the total order \ll on W by first defining $i d$ to be the least element.
(iii) Suppose we know the order of the $k^{\text {th }}$ least elements in W with respect to \ll. To choose the $(k+1)^{\text {th }}$ least element, consider all those elements $w \in W$ such that $w=x s$ where $\mathrm{L}(x) \leq k<\mathrm{L}(w)$.
(iv) Amongst these candidates, consider those that $w=x s$ such that $s \in S$ such that s is maximal with respect to $<_{S}$.
(v) If more than one candidate satisfies this criterion, choose that $w=x s$ such that L is minimal.

We provide a more precise and computer-friendly description. In the algorithm we construct an ordered list of the elements W. From the list L we may induce the total order \ll by saying $u \ll v$ if and only if the position (the integer i such that u appears as the $i^{\text {th }}$ element in L) of u is less than that of v. We use $*$ to denote the group binary operation.

Algorithm 8.2.1.

Inputs:
(W,S): a finite irreducible Coxeter group generated by S
<_S: a total order on S

Outputs:

L: an ordered list of the elements of W

T: a spanning tree of the Cayley graph of (W,S)

Algorithm:

Step 0:

```
Set L = [ id ], the ordered list of elements of W
```

Set $T=\{ \}$, the set of edges that will form our tree

```
Step i > 1:
```

```
    Set C = {[g,s ] | g in L, s in S and g*s not in L }
Set r to be that maximum element in S with respect to
    <_S such that [ g, r ] in C for some g in L
Set h to be that minimal element of W with respect to
its position in L such that [ h, r ] in C
Append h*r to L
Add { h, h*r } to T
If i != |W| then
    Go to Step i+1
Else
    Stop
```

The algorithm is very elementary. We expect it must exist somewhere in the wider literature yet have not found it yet despite searching. It is only in our ignorance that we refer to it only as Algorithm 8.2.1. Note that, with some very minor alterations, it can be implemented on any finite graph with an edge-colouring.

We know that T is a tree notice the edges appended to T contain exactly one element in L. Implicitly, we produce a canonical word for each element of the group: since T is a tree there is a unique path from $i d$ to w for all $w \in W$. We denote that word as $\overline{\mathrm{NF}}(w)$.

8.3 Examples of Algorithm 8.2.1

Example 8.3.1. We give a detailed example for running Algorithm 8.2.1 on $\operatorname{Sym}(3)$. For all $\delta \in \operatorname{Sym}(n)$, we write δ in one-line notation so that

$$
\delta=\delta(1) \delta(2) \ldots \delta(n)
$$

The Cayley graph of $\operatorname{Sym}(3)$ is shown in Figure 8.2 where we represent each permutation in this form:

Figure 8.2: The Cayley graph of $\operatorname{Sym}(3)$ with the permutations viewed in one-line form.

We start with the step 0: Set $\mathrm{L}=[123]$ and $\mathrm{T}=\{ \}$. When an element is added to L we will label it on the Cayley graph by its position in L .

For step 1: we start by setting $\mathrm{C}=\left\{\left[123, s_{1}\right],\left[123, s_{2}\right]\right\}$ since the edges of the Cayley graph that contain exactly one labelled node are those of type s_{1} and s_{2} containing 123. We have emboldened these edges in the left-most diagram of Figure 8.3.

Figure 8.3: Applying Algorithm 8.2.1 to the Cayley graph of Sym(3), step-by-step.

Now $r=s_{2}$ since s_{2} is maximal (with respect to $<_{S}$) amongst those second entries in each element of C. Since there is only one element of C whose second entry is $r=s_{2},\left[123, s_{2}\right]$, we append $123 * s_{2}=132$ to L . We also add the edge $\{123,132\}$ to T and give 132 the label 2.
For step $2, \mathrm{C}=\left\{\left[123, s_{1}\right],\left[132, s_{1}\right]\right\}$. Necessarily, $r=s_{1}$ since it is the only $s \in S$ that appears as the second entry of an element in C. What is h? This time there are two elements of C whose second entry is $r=s_{1}$. So we choose that element of C whose first entry has lesser position in L (equivalently, lesser label on our Cayley graph). So $h=123$ and we append $h * r=123 * s_{1}=213$ to L, label 213 with 3 on the Cayley graph and append $\{123,213\}$ to T.
For steps 3, 4 and 5, at the end of each step we have

$$
\begin{array}{ll}
\mathrm{C}=\left[\left[132, s_{1}\right],\left[132, s_{2}\right]\right], & \mathrm{L}=[123,132,213,231] \\
\mathrm{C}=\left[\left[132, s_{1}\right],\left[231, s_{1}\right]\right], & \mathrm{L}=[123,132,213,231,312] \\
\mathrm{C}=\left[\left[231, s_{1}\right],\left[312, s_{2}\right]\right], & \mathrm{L}=[123,132,213,231,312,321]
\end{array}
$$

respectively. After the fifth and final step we have

$$
\mathrm{T}=[\{123,132\},\{123,213\},\{213,231\},\{132,312\},\{312,321\}] .
$$

Running this algorithm has implicitly determined the \ll order, spanning tree and normal forms: the labels determine the order, the spanning tree consists of those edges selected at each step and the normal forms corresponds to paths from the identity to each element within this spanning tree. See Figure 8.3.1 below.

$\mathrm{L}(w)$	w	$\overline{\mathrm{NF}}(w)$
1	123	
2	132	s_{2}
3	213	s_{1}
4	312	$s_{1} s_{2}$
5	231	$s_{2} s_{1}$
6	321	$s_{2} s_{1} s_{2}$

(a) The <<-ordering on Sym(3). From left to right: the L value, the one-line form of the permutation and the \ll-normal form.

(b) The Cayley graph of Sym(3) labelled by L.

(c) The \ll spanning tree, T , for $\operatorname{Sym}(3)$.

Our purpose for computing the order for \ll is to try create ϕ_{\ll}^{J} for all $J \subseteq S$. In practice, taking some $J=S \backslash\{s\}$ for some $s \in S$ as this will produce permutation groups of a lesser degree. But thinking of our Cayley graph as the group action on W_{\emptyset}, we can construct $\phi_{\ll}: \operatorname{Sym}(3) \rightarrow \operatorname{Sym}(6)$ such that

$$
\begin{aligned}
& s_{1} \xrightarrow{\phi_{<}}(1,3)(2,5)(4,6)=a_{2} a_{1} a_{4} a_{3} a_{2} a_{5} a_{4} \\
& s_{2} \xrightarrow{\phi_{<}}(1,2)(3,4)(5,6)=a_{1} a_{3} a_{5}
\end{aligned}
$$

where $a_{i}=(i, i+1)$ denotes a generator of the codomain.

We now repeat this process for some more selected Coxeter groups so that we can produce some suitable ϕ_{\ll}^{J}.

For $\operatorname{Sym}(4)$ we have:

1	1234		13	2314
2	1243	s_{3}	$s_{2} s_{1}$	
3	1324	s_{2}	2413	$s_{2} s_{1} s_{3}$
4	1423	$s_{2} s_{3}$	15	3214
5	1342	$s_{3} s_{2}$	16	4213
$s_{2} s_{1} s_{2}$				
6	1432	$s_{3} s_{2} s_{1} s_{2} s_{3}$		
7	2134	s_{1}	17	3412
8	2143	$s_{1} s_{3}$	18	4312
$s_{2} s_{1} s_{3} s_{2}$				
9	3124	$s_{2} s_{2} s_{3} s_{3} s_{3}$		
10	4123	$s_{1} s_{2} s_{3}$	19	2341
11	3142	$s_{1} s_{3} s_{2}$	20	2431
12	4132	$s_{1} s_{3} s_{2} s_{3}$	21	3241
$s_{3} s_{2} s_{1} s_{3}$				
$s_{3} s_{2} s_{1} s_{2}$				
1	22	4231	$s_{3} s_{2} s_{1} s_{2} s_{3}$	
1				

Table 8.1: The \ll-ordering on B_{3}. From left to right: the L value and the \ll-normal form.

Figure 8.5: The Cayley graph of $\operatorname{Sym}(4)$ labelled by L.

Figure 8.6: The \ll-spanning tree formed from applying Algorithm 8.2.1 to the Cayley graph of Sym(4).

1	12345		11	14253	$s_{2} s_{4} s_{3}$
2	12354	s_{4}	12	15243	$s_{2} s_{4} s_{3} s_{4}$
3	12435	s_{3}	13	13425	$s_{3} s_{2}$
4	12534	$s_{3} s_{4}$	14	13524	$s_{3} s_{2} s_{4}$
5	12453	$s_{4} s_{3}$	15	14325	$s_{3} s_{2} s_{3}$
6	12543	$s_{4} s_{3} s_{4}$	16	15324	$s_{3} s_{2} s_{3} s_{4}$
7	13245	s_{2}	17	14523	$s_{3} s_{2} s_{4} s_{3}$
8	13254	$s_{2} s_{4}$	18	15423	$s_{3} s_{2} s_{4} s_{3} s_{4}$
9	14235	$s_{2} s_{3}$	19	13452	$s_{4} s_{3} s_{2}$
10	15234	$s_{2} s_{3} s_{4}$	20	13542	$s_{4} s_{3} s_{2} s_{4}$

21	14352	$s_{4} s_{3} s_{2} s_{3}$	31	31245	$s_{1} s_{2}$
22	15342	$s_{4} s_{3} s_{2} s_{3} s_{4}$	32	31254	$s_{1} s_{2} s_{4}$
23	14532	$s_{4} s_{3} s_{2} s_{4} s_{3}$	33	41235	$s_{1} s_{2} s_{3}$
24	15432	$s_{4} s_{3} s_{2} s_{4} s_{3} s_{4}$	34	51234	$s_{1} s_{2} s_{3} s_{4}$
25	21345	s_{1}	35	41253	$s_{1} s_{2} s_{4} s_{3}$
26	21354	$s_{1} s_{4}$	36	51243	$s_{1} s_{2} s_{4} s_{3} s_{4}$
27	21435	$s_{1} s_{3}$	37	31425	$s_{1} s_{3} s_{2}$
28	21534	$s_{1} s_{3} s_{4}$	38	31524	$s_{1} s_{3} s_{2} s_{4}$
29	21453	$s_{1} s_{4} s_{3}$	39	41325	$s_{1} s_{3} s_{2} s_{3}$
30	21543	$s_{1} s_{4} s_{3} s_{4}$	40	51324	$s_{1} s_{3} s_{2} s_{3} s_{4}$

41	41523	$s_{1} s_{3} s_{2} s_{4} s_{3}$	51	24135	$s_{2} s_{1} s_{3}$
42	51423	$s_{1} s_{3} s_{2} s_{4} s_{3} s_{4}$	52	25134	$s_{2} s_{1} s_{3} s_{4}$
43	31452	$s_{1} s_{4} s_{3} s_{2}$	53	24153	$s_{2} s_{1} s_{4} s_{3}$
44	31542	$s_{1} s_{4} s_{3} s_{2} s_{4}$	54	25143	$s_{2} s_{1} s_{4} s_{3} s_{4}$
45	41352	$s_{1} s_{4} s_{3} s_{2} s_{3}$	55	32145	$s_{2} s_{1} s_{2}$
46	51342	$s_{1} s_{4} s_{3} s_{2} s_{3} s_{4}$	56	32154	$s_{2} s_{1} s_{2} s_{4}$
47	41532	$s_{1} s_{4} s_{3} s_{2} s_{4} s_{3}$	57	42135	$s_{2} s_{1} s_{2} s_{3}$
48	51432	$s_{1} s_{4} s_{3} s_{2} s_{4} s_{3} s_{4}$	58	52134	$s_{2} s_{1} s_{2} s_{3} s_{4}$
49	23145	$s_{2} s_{1}$	59	42153	$s_{2} s_{1} s_{2} s_{4} s_{3}$
50	23154	$s_{2} s_{1} s_{4}$	60	52143	$s_{2} s_{1} s_{2} s_{4} s_{3} s_{4}$

61	34125	$s_{2} s_{1} s_{3} s_{2}$	71	45132
62	35124	$s_{2} s_{1} s_{3} s_{2} s_{4}$	72	54132

81	42315	$s_{3} s_{2} s_{1} s_{2} s_{3}$	91	34512	$s_{3} s_{2} s_{1} s_{4} s_{3} s_{2}$
82	52314	$s_{3} s_{2} s_{1} s_{2} s_{3} s_{4}$	92	35412	$s_{3} s_{2} s_{1} s_{4} s_{3} s_{2} s_{4}$
83	42513	$s_{3} s_{2} s_{1} s_{2} s_{4} s_{3}$	93	43512	$s_{3} s_{2} s_{1} s_{4} s_{3} s_{2} s_{3}$
84	52413	$s_{3} s_{2} s_{1} s_{2} s_{4} s_{3} s_{4}$	94	53412	$s_{3} s_{2} s_{1} s_{4} s_{3} s_{2} s_{3} s_{4}$
85	34215	$s_{3} s_{2} s_{1} s_{3} s_{2}$	95	45312	$s_{3} s_{2} s_{1} s_{4} s_{3} s_{2} s_{4} s_{3}$
86	35214	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{4}$	96	54312	$s_{3} s_{2} s_{1} s_{4} s_{3} s_{2} s_{4} s_{3} s_{4}$
87	43215	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{3}$	97	23451	$s_{4} S_{3} s_{2} s_{1}$
88	53214	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{4}$	98	23541	$s_{4} s_{3} s_{2} s_{1} s_{4}$
89	45213	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{4} s_{3}$	99	24351	$s_{4} s_{3} s_{2} s_{1} s_{3}$
90	54213	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{4} s_{3} s_{4}$	100	25341	$s_{4} s_{3} s_{2} s_{1} s_{3} s_{4}$

101	24531	$s_{4} s_{3} s_{2} s_{1} s_{4} s_{3}$	111	43251	$s_{4} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3}$
102	25431	$s_{4} s_{3} s_{2} s_{1} s_{4} s_{3} s_{4}$	112	53241	$s_{4} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{4}$
103	32451	$s_{4} s_{3} s_{2} s_{1} s_{2}$	113	45231	$s_{4} s_{3} s_{2} s_{1} s_{3} s_{2} s_{4} s_{3}$
104	32541	$s_{4} s_{3} s_{2} s_{1} s_{2} s_{4}$	114	54231	$s_{4} s_{3} s_{2} s_{1} s_{3} s_{2} s_{4} s_{3} s_{4}$
105	42351	$s_{4} s_{3} s_{2} s_{1} s_{2} s_{3}$	115	34521	$s_{4} s_{3} s_{2} s_{1} s_{4} s_{3} s_{2}$
106	52341	$s_{4} s_{3} s_{2} s_{1} s_{2} s_{3} s_{4}$	116	35421	$s_{4} s_{3} s_{2} s_{1} s_{4} s_{3} s_{2} s_{4}$
107	42531	$s_{4} s_{3} s_{2} s_{1} s_{2} s_{4} s_{3}$	117	43521	$s_{4} s_{3} s_{2} s_{1} s_{4} s_{3} s_{2} s_{3}$
108	52431	$s_{4} s_{3} s_{2} s_{1} s_{2} s_{4} s_{3} s_{4}$	118	53421	$s_{4} s_{3} s_{2} s_{1} s_{4} s_{3} s_{2} s_{3} s_{4}$
109	34251	$s_{4} s_{3} s_{2} s_{1} s_{3} s_{2}$	119	45321	$s_{4} s_{3} s_{2} s_{1} s_{4} s_{3} s_{2} s_{4} s_{3}$
110	35241	$s_{4} s_{3} s_{2} s_{1} s_{3} s_{2} s_{4}$	120	54321	$s_{4} s_{3} s_{2} s_{1} s_{4} s_{3} s_{2} s_{4} s_{3} s_{4}$

Table 8.2: The \ll-ordering on $\operatorname{Sym}(5)$. From left to right for each column: the L value, the one-line form of the permutation and the \ll-normal form.

Figure 8.7: The Cayley graph of $\operatorname{Sym}(5)$ labelled by L.

1		25	$s_{1} s_{2} s_{1}$
2	s_{3}	26	$s_{1} s_{2} s_{1} s_{3}$
3	s_{2}	27	$s_{1} s_{2} s_{1} s_{2}$
4	$s_{2} s_{3}$	28	$s_{1} s_{2} s_{1} s_{2} s_{3}$
5	$s_{3} s_{2}$	29	$s_{1} s_{2} s_{1} s_{3} s_{2}$
6	$s_{3} s_{2} s_{3}$	30	$s_{1} s_{2} s_{1} s_{3} s_{2} s_{3}$
7	s_{1}	31	$s_{1} s_{3} s_{2} s_{1}$
8	$s_{1} s_{3}$	32	$s_{1} s_{3} s_{2} s_{1} s_{3}$
9	$s_{1} s_{2}$	33	$s_{1} s_{3} s_{2} s_{1} s_{2}$
10	$s_{1} s_{2} s_{3}$	34	$s_{1} s_{3} s_{2} s_{1} s_{2} s_{3}$
11	$s_{1} s_{3} s_{2}$	35	$s_{1} s_{3} s_{2} s_{1} s_{3} s_{2}$
12	$s_{1} s_{3} s_{2} s_{3}$	36	$s_{1} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3}$
13	$s_{2} s_{1}$	37	$s_{2} s_{1} s_{3} s_{2} s_{1}$
14	$s_{2} s_{1} s_{3}$	38	$s_{2} s_{1} s_{3} s_{2} s_{1} s_{3}$
15	$s_{2} s_{1} s_{2}$	39	$s_{2} s_{1} s_{3} s_{2} s_{1} s_{2}$
16	$s_{2} s_{1} s_{2} s_{3}$	40	$s_{2} s_{1} s_{3} s_{2} s_{1} s_{2} s_{3}$
17	$s_{2} s_{1} s_{3} s_{2}$	41	$s_{2} s_{1} s_{3} s_{2} s_{1} s_{3} s_{2}$
18	$s_{2} s_{1} s_{3} s_{2} s_{3}$	42	$s_{2} s_{1} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3}$
19	$s_{3} s_{2} s_{1}$	43	$s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}$
20	$s_{3} s_{2} s_{1} s_{3}$	44	$s_{1} s_{2} s_{1} s_{3} s_{2} s_{1} s_{3}$
21	$s_{3} s_{2} s_{1} s_{2}$	45	$s_{1} s_{2} s_{1} s_{3} s_{2} s_{1} s_{2}$
22	$s_{3} s_{2} s_{1} s_{2} s_{3}$	46	$s_{1} s_{2} s_{1} s_{3} s_{2} s_{1} s_{2} s_{3}$
23	$s_{3} s_{2} s_{1} s_{3} s_{2}$	47	$s_{1} s_{2} s_{1} s_{3} s_{2} s_{1} s_{3} s_{2}$
24	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{3}$	48	$s_{1} s_{2} s_{1} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3}$
10			

Table 8.3: The \ll-ordering on B_{3}. From left to right: the L value, the one-line form of the permutation and their induced \ll-normal form.

Figure 8.9: The Cayley graph of B_{3} labelled by L .

Figure 8.10: The \ll-spanning tree formed from applying Algorithm 8.2.1 applied to the Cayley graph of B_{3}.

1		36	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{3}$
2	s_{3}	37	$s_{3} s_{2} s_{1} s_{2} s_{3} s_{2}$
3	S_{2}	38	$s_{3} s_{2} s_{1} s_{2} s_{3} s_{2} s_{3}$
4	$s_{2} s_{3}$	39	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2}$
5	$s_{3} s_{2}$	40	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{3}$
6	$s_{3} s_{2} s_{3}$	41	$s_{2} s_{3} s_{2} s_{1}$
7	$s_{2} s_{3} s_{2}$	42	$s_{2} s_{3} s_{2} s_{1} s_{3}$
8	$s_{2} s_{3} s_{2} s_{3}$	43	$s_{2} s_{3} s_{2} s_{1} s_{2}$
9	$s_{3} s_{2} s_{3} s_{2}$	44	$s_{2} s_{3} s_{2} s_{1} s_{2} s_{3}$
10	$s_{3} s_{2} s_{3} s_{2} s_{3}$	45	$s_{2} s_{3} s_{2} s_{1} s_{3} s_{2}$
11	s_{1}	46	$s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3}$
12	$s_{1} s_{3}$	47	$s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2}$
13	$s_{1} s_{2}$	48	$s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2} s_{3}$
14	$s_{1} s_{2} s_{3}$	49	$s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2}$
15	$s_{1} s_{3} s_{2}$	50	$s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{3}$
16	$s_{1} s_{3} s_{2} s_{3}$	51	$s_{3} s_{2} s_{3} s_{2} s_{1}$
17	$s_{1} s_{2} s_{3} s_{2}$	52	$s_{3} s_{2} s_{3} s_{2} s_{1} s_{3}$
18	$s_{1} s_{2} s_{3} s_{2} s_{3}$	53	$s_{3} s_{2} s_{3} s_{2} s_{1} s_{2}$
19	$s_{1} s_{3} s_{2} s_{3} s_{2}$	54	$s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3}$
20	$s_{1} s_{3} s_{2} s_{3} s_{2} s_{3}$	55	$s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2}$
21	$S_{2} S_{1}$	56	$s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3}$
22	$s_{2} s_{1} s_{3}$	57	$s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2}$
23	$s_{2} s_{1} s_{2}$	58	$s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2} s_{3}$
24	$s_{2} s_{1} s_{2} s_{3}$	59	$s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2}$
25	$s_{2} s_{1} s_{3} s_{2}$	60	$s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{3}$
26	$s_{2} s_{1} s_{3} s_{2} s_{3}$	61	$s_{1} s_{2} s_{3} s_{2} s_{1}$
27	$s_{2} s_{1} s_{2} s_{3} s_{2}$	62	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{3}$
28	$s_{2} s_{1} s_{2} s_{3} s_{2} s_{3}$	63	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{2}$
29	$s_{2} s_{1} s_{3} s_{2} s_{3} s_{2}$	64	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3}$
30	$s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{3}$	65	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2}$
31	$s_{3} s_{2} s_{1}$	66	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3}$
32	$s_{3} s_{2} s_{1} s_{3}$	67	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2}$
33	$s_{3} s_{2} s_{1} s_{2}$	68	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2} s_{3}$
34	$s_{3} s_{2} s_{1} s_{2} s_{3}$	69	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2}$
35	$s_{3} s_{2} s_{1} s_{3} s_{2}$	70	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{3}$

71	$s_{1} s_{3} s_{2} s_{3} s_{2} s_{1}$	96	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3}$
72	$s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3}$	97	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2}$
73	$s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2}$	98	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2} s_{3}$
74	$s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3}$	99	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2}$
75	$s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2}$	100	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{3}$
76	$s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3}$	101	$s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1}$
77	$s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2}$	102	$s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3}$
78	$s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2} s_{3}$	103	$s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2}$
79	$s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2}$	104	$s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3}$
80	$s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{3}$	105	$s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2}$
81	$s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1}$	106	$s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3}$
82	$s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3}$	107	$s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2}$
83	$s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2}$	108	$s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2} s_{3}$
84	$s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3}$	109	$s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2}$
85	$s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2}$	110	$s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{3}$
86	$s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3}$	111	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1}$
87	$s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2}$	112	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3}$
88	$s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2} s_{3}$	113	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2}$
89	$s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2}$	114	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3}$
90	$s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{3}$	115	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2}$
91	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1}$	116	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3}$
92	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3}$	117	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2}$
93	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2}$	118	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2} s_{3}$
94	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{2} s_{3}$	119	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2}$
95	$s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2}$	120	$s_{1} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{1} s_{3} s_{2} s_{3} s_{2} s_{3}$

Table 8.4: The \ll-order and \ll-normal form for elements of H_{3}.

Figure 8.11: The Cayley graph of H_{3} labelled by L.

Figure 8.12: The \ll-spanning tree of H_{3}.

Some striking patterns emerge that we tentatively note down as speculation and conjecture. These are not statements we claim to have proven but are just those
patterns which are apparent within these examples that we would aim to prove in further investigation:
(i) Repeating earlier claims: \ll refines the Bruhat Order and ϕ_{\ll}^{J} is an E-embedding.
(ii) $\overline{\mathrm{NF}}(w)$ seems to be the lexicographic normal form for w^{-1} but read in reverse and with respect to the reverse order of $<_{S}$; equivalently, read from right-to-left, $\overline{\mathrm{NF}}(w)$ uses the $<_{S}$-maximal generator available in each position. Consequently, if this is genuinely true, then (see Section 3.4 of [1]) for all $w \in W$ there exists a unique choice of $x_{i}, \in W_{\{i, \ldots, n\}}^{\{i+1, \ldots, n\}}$ for $i=1, \ldots, n$ such that $w=x_{1} \ldots x_{n}$ and $\overline{\mathrm{NF}}(w)=\overline{\mathrm{NF}}\left(x_{1}\right) \ldots \overline{\mathrm{NF}}\left(x_{n}\right)$.
(iii) Let $\mathrm{L}_{0}: W \rightarrow \mathbb{Z}$ be given by $\mathrm{L}_{0}(w)=\mathrm{L}(w)-1$. That is, $\mathrm{L}_{0}(w)=i$ if and only if w is the $(i+1)^{\text {th }}$ least element in W with respect to \ll. Then

$$
\mathrm{L}_{0}(w)=\mathrm{L}_{0}\left(x_{1}\right)+\mathrm{L}_{0}\left(x_{2}\right)+\ldots+\mathrm{L}_{0}\left(x_{n}\right)
$$

surprisingly seems to holds for all $w \in W$ in our examples. No such analogous formula exists for the usual lexicographical order.
(iv) For all $w \in W, \mathrm{~L}(w)+\mathrm{L}\left(\omega_{0} w\right)=|W|+1$. Equivalently, \ll preserves the anti-automorphism of the Bruhat order of multiplication by ω_{0}.
(v) Algorithm 8.2.1 does not make use of the length function of the group.
(vi) If we extend Algorithm 8.2.1 to the Cayley graph of any Coxeter group then it will eventually label every node if and only if $W_{\left\{s_{2}, \ldots, s_{n}\right\}}$ (with respect to $\left.<_{S}\right)$ is finite. If this is indeed true then the algorithm terminates regardless of choice of $<_{S}$ if and only if every proper parabolic subgroup is finite; such groups are classified as being those finite, affine or compact hyperbolic Coxeter groups in [26].

8.4 Permutation representations derived from

From \ll we produce the permutation groups ϕ_{\ll}^{J} for the finite irreducible Coxeter groups. For each (W, S) we take $J=S \backslash\left\{s_{n}\right\}$. We will use these permutation groups to test if we produce anything resembling sensible tilings from them.

For $\operatorname{Sym}(5)$ we have

$$
\begin{aligned}
& s_{1}=(4,5) \\
& s_{2}=(3,4) \\
& s_{3}=(2,3) \\
& s_{4}=(1,2)
\end{aligned}
$$

Figure 8.13: The CPR graph of ϕ_{\ll}^{J} for $\operatorname{Sym}(5)$.

Note that this is the reverse order of the emebedding corresponding to Elnitsky's tiling.

For B_{3} we have

$$
\begin{aligned}
& s_{1}=(3,5)(4,6) \\
& s_{2}=(2,3)(6,7) \\
& s_{3}=(1,2)(3,4)(5,6)(7,8)
\end{aligned}
$$

Figure 8.14: The CPR graph of ϕ_{\ll}^{J} for B_{3}.

For B_{4} we have

$$
\begin{aligned}
& s_{1}=(5,9)(6,10)(7,11)(8,12) \\
& s_{2}=(3,5)(4,6)(11,13)(12,14) \\
& s_{3}=(2,3)(6,7)(10,11)(14,15) \\
& s_{4}=(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)
\end{aligned}
$$

Figure 8.15: The CPR graph of ϕ_{\ll}^{J} for B_{4}.

For D_{4} we have

$$
\begin{aligned}
& s_{1}=(3,5)(4,6) \\
& s_{2}=(2,3)(6,7) \\
& s_{3}=(3,4)(5,6) \\
& s_{4}=(1,2)(7,8)
\end{aligned}
$$

Figure 8.16: The CPR graph of ϕ_{\ll}^{J} for D_{4}.

For F_{4} we have

$$
\begin{aligned}
& s_{1}=(4,7)(5,8)(6,9)(16,19)(17,20)(18,21) \\
& s_{2}=(3,4)(8,10)(9,11)(14,16)(15,17)(21,22) \\
& s_{3}=(2,3)(4,5)(7,8)(10,12)(11,14)(13,15)(17,18)(20,21)(22,23) \\
& s_{4}=(1,2)(5,6)(8,9)(10,11)(12,13)(14,15)(16,17)(19,20)(23,24)
\end{aligned}
$$

Figure 8.17: The CPR graph of ϕ_{\ll}^{J} for F_{4}.

For E_{6} we have

$$
\begin{aligned}
& s_{1}=(5,11)(7,12)(8,13)(9,14)(10,15)(26,27) \\
& s_{2}=(4,6)(5,7)(11,12)(19,22)(20,23)(21,24) \\
& s_{3}=(4,5)(6,7)(13,16)(14,17)(15,18)(25,26) \\
& s_{4}=(3,4)(7,8)(12,13)(17,19)(18,20)(24,25) \\
& s_{5}=(2,3)(8,9)(13,14)(16,17)(20,21)(23,24) \\
& s_{6}=(1,2)(9,10)(14,15)(17,18)(19,20)(22,23)
\end{aligned}
$$

Figure 8.18: The CPR graph of ϕ_{\ll}^{J} for E_{6}.

For E_{7} we have

$$
\begin{aligned}
s_{1}= & (6,13)(8,14)(9,15)(10,16)(11,17)(12,18) \\
& (39,45)(40,46)(41,47)(42,48)(43,49)(44,51) \\
s_{2}= & (5,7)(6,8)(13,14)(23,29)(24,30)(25,31) \\
& (26,32)(27,33)(28,34)(43,44)(49,51)(50,52) \\
s_{3}= & (5,6)(7,8)(15,19)(16,20)(17,21)(18,22) \\
& (35,39)(36,40)(37,41)(38,42)(49,50)(51,52) \\
s_{4}= & (4,5)(8,9)(14,15)(20,23)(21,24)(22,25) \\
& (32,35)(33,36)(34,37)(42,43)(48,49)(52,53) \\
s_{5}= & (3,4)(9,10)(15,16)(19,20)(24,26)(25,27) \\
& (30,32)(31,33)(37,38)(41,42)(47,48)(53,54) \\
s_{6}= & (2,3)(10,11)(16,17)(20,21)(23,24)(27,28) \\
& (29,30)(33,34)(36,37)(40,41)(46,47)(54,55) \\
s_{7}= & (1,2)(11,12)(17,18)(21,22)(24,25)(26,27) \\
& (30,31)(32,33)(35,36)(39,40)(45,46)(55,56)
\end{aligned}
$$

Figure 8.19: The CPR graph of ϕ_{\ll}^{J} for E_{7}.
For E_{8} we have

$$
\begin{aligned}
s_{1}= & (7,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(57,79)(58,80)(59,81)(60,82) \\
& (61,83)(62,84)(63,85)(64,86)(65,87)(66,88)(67,89)(68,90)(69,91)(70,92) \\
& (71,93)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,163)(136,164) \\
& (137,165)(138,166)(139,167)(140,168)(141,169)(148,170)(149,171)(150,172) \\
& (151,173)(152,174)(153,175)(154,176)(155,177)(156,178)(157,179)(158,180) \\
& (159,181)(160,182)(161,183)(162,184)(220,227)(221,228)(222,229)(223,230) \\
& (224,231)(225,232)(226,234)
\end{aligned}
$$

$s_{2}=(6,8)(7,9)(15,16)(27,37)(28,38)(29,39)(30,40)(31,41)(32,42)(33,43)(34,44)$ $(35,45)(36,46)(67,72)(68,73)(69,74)(70,75)(71,76)(89,100)(90,101)(91,102)$ $(92,103)(93,104)(94,106)(95,107)(96,108)(97,109)(98,110)(99,142)(131,143)$ $(132,144)(133,145)(134,146)(135,147)(137,148)(138,149)(139,150)(140,151)$ $(141,152)(165,170)(166,171)(167,172)(168,173)(169,174)(195,205)(196,206)$ $(197,207)(198,208)(199,209)(200,210)(201,211)(202,212)(203,213)(204,214)$ $(225,226)(232,234)(233,235)$
$s_{3}=(6,7)(8,9)(17,22)(18,23)(19,24)(20,25)(21,26)(47,57)(48,58)(49,59)(50,60)$ $(51,61)(52,62)(53,63)(54,64)(55,65)(56,66)(77,78)(89,94)(90,95)(91,96)$ $(92,97)(93,98)(100,106)(101,107)(102,108)(103,109)(104,110)(105,136)$ $(131,137)(132,138)(133,139)(134,140)(135,141)(143,148)(144,149)(145,150)$ $(146,151)(147,152)(163,164)(175,185)(176,186)(177,187)(178,188)(179,189)$ $(180,190)(181,191)(182,192)(183,193)(184,194)(215,220)(216,221)(217,222)$ $(218,223)(219,224)(232,233)(234,235)$

$$
\begin{aligned}
s_{4}= & (5,6)(9,10)(16,17)(23,27)(24,28)(25,29)(26,30)(41,47)(42,48)(43,49)(44,50) \\
& (45,51)(46,52)(63,67)(64,68)(65,69)(66,70)(76,77)(85,89)(86,90)(87,91) \\
& (88,92)(98,99)(104,105)(106,111)(107,112)(108,113)(109,114)(110,131) \\
& (127,132)(128,133)(129,134)(130,135)(136,137)(142,143)(149,153)(150,154) \\
& (151,155)(152,156)(164,165)(171,175)(172,176)(173,177)(174,178)(189,195) \\
& (190,196)(191,197)(192,198)(193,199)(194,200)(211,215)(212,216)(213,217) \\
& (214,218)(224,225)(231,232)(235,236)
\end{aligned}
$$

$s_{5}=(4,5)(10,11)(17,18)(22,23)(28,31)(29,32)(30,33)(38,41)(39,42)(40,43)(50,53)$ $(51,54)(52,55)(60,63)(61,64)(62,65)(70,71)(75,76)(82,85)(83,86)(84,87)$ $(92,93)(97,98)(103,104)(109,110)(111,115)(112,116)(113,117)(114,127)$ $(124,128)(125,129)(126,130)(131,132)(137,138)(143,144)(148,149)(154,157)$ $(155,158)(156,159)(165,166)(170,171)(176,179)(177,180)(178,181)(186,189)$ $(187,190)(188,191)(198,201)(199,202)(200,203)(208,211)(209,212)(210,213)$ $(218,219)(223,224)(230,231)(236,237)$
$s_{6}=(3,4)(11,12)(18,19)(23,24)(27,28)(32,34)(33,35)(37,38)(42,44)(43,45)(48,50)$ $(49,51)(55,56)(58,60)(59,61)(65,66)(69,70)(74,75)(80,82)(81,83)(87,88)$ $(91,92)(96,97)(102,103)(108,109)(113,114)(115,118)(116,119)(117,124)$ $(122,125)(123,126)(127,128)(132,133)(138,139)(144,145)(149,150)(153,154)$ $(158,160)(159,161)(166,167)(171,172)(175,176)(180,182)(181,183)(185,186)$ $(190,192)(191,193)(196,198)(197,199)(203,204)(206,208)(207,209)(213,214)$ $(217,218)(222,223)(229,230)(237,238)$

$$
\begin{aligned}
s_{7}= & (2,3)(12,13)(19,20)(24,25)(28,29)(31,32)(35,36)(38,39)(41,42)(45,46)(47,48) \\
& (51,52)(54,55)(57,58)(61,62)(64,65)(68,69)(73,74)(79,80)(83,84)(86,87) \\
& (90,91)(95,96)(101,102)(107,108)(112,113)(116,117)(118,120)(119,122) \\
& (121,123)(124,125)(128,129)(133,134)(139,140)(145,146)(150,151)(154,155) \\
& (157,158)(161,162)(167,168)(172,173)(176,177)(179,180)(183,184)(186,187) \\
& (189,190)(193,194)(195,196)(199,200)(202,203)(205,206)(209,210)(212,213) \\
& (216,217)(221,222)(228,229)(238,239) \\
s_{8}= & (1,2)(13,14)(20,21)(25,26)(29,30)(32,33)(34,35)(39,40)(42,43)(44,45)(48,49) \\
& (50,51)(53,54)(58,59)(60,61)(63,64)(67,68)(72,73)(80,81)(82,83)(85,86) \\
& (89,90)(94,95)(100,101)(106,107)(111,112)(115,116)(118,119)(120,121) \\
& (122,123)(125,126)(129,130)(134,135)(140,141)(146,147)(151,152)(155,156) \\
& (158,159)(160,161)(168,169)(173,174)(177,178)(180,181)(182,183)(187,188) \\
& (190,191)(192,193)(196,197)(198,199)(201,202)(206,207)(208,209)(211,212) \\
& (215,216)(220,221)(227,228)(239,240)
\end{aligned}
$$

Figure 8.20: The CPR graph of ϕ_{\ll}^{J} for E_{8} with the labelling of vertices omitted.

For H_{3} we have

$$
\begin{aligned}
& s_{1}=(3,4)(5,7)(6,8)(9,10) \\
& s_{2}=(2,3)(4,5)(8,9)(10,11) \\
& s_{3}=(1,2)(5,6)(7,8)(11,12)
\end{aligned}
$$

Figure 8.21: The CPR graph of ϕ_{\ll}^{J} for H_{3}.

For H_{4} we have

$$
\begin{aligned}
s_{1}= & (4,5)(6,9)(7,10)(8,11)(12,15)(13,16)(14,17)(24,27)(25,28)(26,29)(33,39) \\
& (34,40)(35,41)(36,42)(37,43)(38,44)(45,51)(46,52)(47,53)(48,55)(49,56) \\
& (50,57)(54,67)(64,71)(65,72)(66,73)(68,74)(69,75)(70,76)(77,83)(78,84) \\
& (79,85)(80,86)(81,87)(82,88)(92,95)(93,96)(94,97)(104,107)(105,108) \\
& (106,109)(110,113)(111,114)(112,115)(116,117)
\end{aligned}
$$

$$
s_{2}=(3,4)(5,6)(10,12)(11,13)(15,18)(16,19)(17,24)(22,25)(23,26)(27,30)(28,33)
$$

$$
(29,34)(31,35)(32,36)(41,45)(42,46)(43,48)(44,49)(47,50)(53,54)(55,58)
$$

$$
(56,59)(57,64)(62,65)(63,66)(67,68)(71,74)(72,77)(73,78)(75,79)(76,80)
$$

$$
(85,89)(86,90)(87,92)(88,93)(91,94)(95,98)(96,99)(97,104)(102,105)
$$

$$
(103,106)(108,110)(109,111)(115,116)(117,118)
$$

$s_{3}=(2,3)(6,7)(9,10)(13,14)(16,17)(18,20)(19,22)(21,23)(24,25)(27,28)(30,31)$ $(33,35)(34,37)(36,38)(39,41)(40,43)(42,44)(46,47)(49,50)(52,53)(56,57)$ $(58,60)(59,62)(61,63)(64,65)(68,69)(71,72)(74,75)(77,79)(78,81)(80,82)$ $(83,85)(84,87)(86,88)(90,91)(93,94)(96,97)(98,100)(99,102)(101,103)$ $(104,105)(107,108)(111,112)(114,115)(118,119)$
$s_{4}=(1,2)(7,8)(10,11)(12,13)(15,16)(18,19)(20,21)(22,23)(25,26)(28,29)(31,32)$ $(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(48,49)(51,52)(55,56)$ $(58,59)(60,61)(62,63)(65,66)(69,70)(72,73)(75,76)(77,78)(79,80)(81,82)$ $(83,84)(85,86)(87,88)(89,90)(92,93)(95,96)(98,99)(100,101)(102,103)$ $(105,106)(108,109)(110,111)(113,114)(119,120)$

Figure 8.22: The CPR graph of ϕ_{\ll}^{J} for H_{4}.

8.5 Tilings produced

We mention here what conventions we will use for each such example; we will need a choice of embedding for each group and some reduced word for which we will display its associated tiling.

For the embedding: we use ϕ_{J}^{\ll} for each group from Section 8.4.

For the word: we take the bipartite alternating word of the longest element of the group.

Definition 8.5.1. One can see directly from the classification that the Coxeter diagram for finite irreducible Coxeter group is bipartite. Partition the generators into these induces equivalence classes, $S=A \sqcup B$. Write $A=\left\{a_{1}, \ldots, a_{p}\right\}$ and $B=\left\{b_{1}, \ldots, b_{q}\right\}$ and say that $s_{1} \in A$. Then define $\alpha=a_{1} \ldots a_{p}$ and $\beta=b_{1}, \ldots, b_{q}$ and fix some ordering for each to produce a reduced word for the elements. We say the bipartite alternating word for ω_{0} is

$$
\omega_{0}=\underbrace{\alpha \beta \alpha \ldots}_{h}
$$

where h is the Coxeter number as defined in Section 3.16 of [26]. We know, by [42] for example, that this word is reduced for all finite irreducible Coxeter groups.

Figure 8.23: Tilings for $\operatorname{Sym}(5), \mathrm{B}_{3}$ and B_{4} (above, left-to-right), and $\mathrm{D}_{4}, \mathrm{~F}_{4}$ and, H_{3} (below, left-to-right) with $\alpha=\pi / 4$.

Figure 8.24: Tilings for (left) E_{6} and (right) E_{7} with $\alpha=\pi / 4$.

Figure 8.25: Tilings for H_{4} with $\alpha=\pi / 4$.

Figure 8.26: Tilings for E_{8} with $\alpha=\pi / 4$.

We also display the corresponding regular polygon constructions $(\alpha=\pi / n)$.

Figure 8.27: Tilings for $\operatorname{Sym}(5), \mathrm{B}_{3}, \mathrm{~B}_{4}, \mathrm{D}_{4}, \mathrm{~F}_{4}$ and, H_{3} (read left-to-right then top-to-bottom) with $\alpha=\pi / n$.

Figure 8.28: Tilings for (above) E_{6} and (below) E_{7} with $\alpha=\pi / n$.

Figure 8.29: Tiling of H_{4} with $\alpha=\pi / n$.

Figure 8.30: Tiling of E_{8} with $\alpha=\pi / n$.

8.5.1 An Arbitrary Attempt

We note that these do visually look like tilings in the sense that we do not obviously see self-intersections. It is for this reason that we consider ϕ_{\ll}^{J} a sensible candidate to be an E-embedding. To appreciate what would happen if we arbitrarily label the nodes for the same CPR graph for F_{4}, we present example 8.5.2.

Example 8.5.2. Consider the embedding, ψ, of F_{4} conjugate to ϕ_{\ll}^{J} with the following CPR of F_{4} graph:

Figure 8.31: A somewhat arbitrarily chosen permutation representation for F_{4}, ψ, acting on W_{J}.

Write $\omega_{0}=s_{i_{1}} \ldots s_{i_{24}}$ to be the bipartite alternating word of the longest element $\omega_{0} \in F_{4}$. Displaying the sequence of tilings for the partial words $\mathrm{T}_{\psi}\left(s_{i_{1}}\right), \mathrm{T}_{\psi}\left(s_{i_{1}} s_{i_{2}}\right), \ldots \mathrm{T}_{\psi}\left(s_{i_{1}} \ldots s_{i_{24}}\right)$ (with the false assumption that ψ is an E-embedding) we produce the following:

Figure 8.32: The 'tilings' produced for the bipartite alternating word by placing tile after tile (read from left-to-right then top-to-bottom) for the permutation representation of Figure 8.31.

Chapter 9

Subtilings and admissible partitions

Mühlherr's admissible partitions of Definition 1.2.7 and Table 1.1 necessarily play a crucial role. Again, this chapter consists of results from joint work with Professor Peter Rowley in [38]. It has been edited for this thesis to make use of the definition of an E-embedding, which does not appear in [38]. We will reuse the notation used in Definition 1.2.7.

Our main theorem for this section is Theorem 9.0.1. It shows how one can form a 'subtiling' of an E-embedding when we have an admissible partition.

If $\phi: W \hookrightarrow \operatorname{Sym}(n)$ is an E-embedding and Σ an admissible partition of W, then denote the embedding of $W_{\Sigma} \zeta_{\Sigma} W$ by the map $\psi_{\Sigma}: W_{\Sigma} \rightarrow W$. Given the part $\Sigma_{i} \in \Sigma$, partition this again (with indexing set J, say) into subsets of S that are connected in the primitive Coxeter diagram of $W, \Sigma_{i}=\left\{\Omega_{i, j} \mid j \in J\right\}$. Let $\omega_{i, j}$ denote the longest element in $W_{\Omega_{i, j}}$. Then

$$
\phi\left(\psi_{\Sigma}\left(s_{\Sigma_{i}}\right)\right)=\prod_{j \in J} \phi\left(\omega_{i, j}\right) .
$$

Hence, if $\left(\phi \circ \psi_{\Sigma}\right)$ is an E-embedding then, the tiles associated to each $s_{\Sigma_{i}}$ are formed by taking union the tiles associated each $\omega_{i, j}$. In the case that each $\Omega_{i, j}$ contains a single generator (equivalently, the generators in Σ_{i} mutually commute), then $\phi\left(\psi_{\Sigma}\left(s_{\Sigma_{i}}\right)\right)$ is simply the union of the tiles associated to each $r \in s_{\Sigma_{i}}$. So the support interval of each $s_{\Sigma_{i}}$ is given by the union of the support intervals of each
$r \in \Sigma_{i}$. That is,

$$
\mathrm{I}_{\left(\phi \circ \psi_{\Sigma}\right)}\left(s_{\Sigma_{i}}\right)=\bigcup_{r \in \Sigma_{i}} \mathrm{I}_{\phi}(r)
$$

Theorem 9.0.1. Suppose that (W, S) has an admissible partition Σ, so that $W_{\Sigma} \triangleleft_{\Sigma} W$. If $\phi: W \hookrightarrow \operatorname{Sym}(n)$ is an E-embedding then $\left(\phi \circ \psi_{\Sigma}\right)$ is an E-embedding also.
Moreover, the relation set $J_{\left(\text {中o }_{\Sigma}\right)}$ is given by

$$
J_{\left(\phi o \psi_{\Sigma}\right)}=\left\{\left\{s_{\Sigma_{i}}, s_{\Sigma_{j}}\right\} \subseteq S_{\Sigma} \mid \text { for all } s \in \Sigma_{i}, r \in \Sigma_{j},\{s, r\} \in J_{\phi}\right\} .
$$

Proof. To prove that $\left(\phi \circ \psi_{\Sigma}\right)$ is an E-embedding, we need to show that for all $u, v \in W_{\Sigma}, u<_{R} v$ implies $\left(\phi \circ \psi_{\Sigma}\right)(u)<_{B}\left(\phi \circ \psi_{\Sigma}\right)(v)$. Suppose that $u<_{R} v$. Since Σ is an admissible partition, ψ_{Σ} preserves the Bruhat order ($w_{1}<_{B} w_{2}$ implies $\psi_{\Sigma}\left(w_{1}\right)<_{B} \psi_{\Sigma}\left(w_{2}\right)$ for all $\left.w_{1}, w_{2} \in W_{\Sigma}\right)$ and therefore the weak order too $\left(w_{1}<_{R} w_{2}\right.$ implies $\psi_{\Sigma}\left(w_{1}\right)<_{R} \psi_{\Sigma}\left(w_{2}\right)$ for all $\left.w_{1}, w_{2} \in W_{\Sigma}\right)$. Hence $\psi_{\Sigma}(u)<_{R} \psi_{\Sigma}(v)$. Now, since ϕ is an E-embedding, $\phi\left(\psi_{\Sigma}(u)\right)<_{B} \phi\left(\psi_{\Sigma}(v)\right)$, giving the desired result. Now we address $J_{\left(\phi \circ \psi_{\Sigma}\right)}$. We know, by Lemma 7.1.7, the pair $\left\{s_{\Sigma_{i}}, s_{\Sigma_{j}}\right\}$ is in $J_{\left(\phi \circ \psi_{\Sigma}\right)}$ if and only if $\mathrm{I}_{\left(\phi \circ \psi_{\Sigma}\right)}\left(s_{\Sigma_{i}}\right) \cap \mathrm{I}_{\left(\phi \circ \psi_{\Sigma}\right)}\left(s_{\Sigma_{j}}\right)=\emptyset$. But

$$
\begin{aligned}
\mathrm{I}_{\left(\phi \circ \psi_{\Sigma}\right)}\left(s_{\Sigma_{i}}\right) \cap \mathrm{I}_{\left(\phi \circ \psi_{\Sigma}\right)}\left(s_{\Sigma_{j}}\right) & =\left(\bigcup_{s \in \Sigma_{i}} \mathrm{I}_{\phi}(s)\right) \cap\left(\bigcup_{r \in \Sigma_{j}} \mathrm{I}_{\phi}(r)\right) \\
& =\bigcup_{s \in \Sigma_{i}, r \in \Sigma_{j}} \mathrm{I}_{\phi}(s) \cap \mathrm{I}_{\phi}(r)
\end{aligned}
$$

whence the result.

We note that the same result can be obtained without mention of E-embeddings if one wanted to just consider subtilings of Elnitsky's three tilings.
This gives us an easy way to make new tilings from old. For example, Theorem 9.0.1 tells us that every tiling for E_{8} induces a subtiling for H_{4}, or that every tiling for a type A group induces a tiling for a type B group.
We focus only on those subtilings for Elnitsky's original tilings for the remainder of this chapter. We use x_{0} to denote the longest element of W_{Σ} and $K=J_{\left(\phi \circ \psi_{\Sigma}\right)}$ for what follows. When displaying the subtilings in this chapter we will write the corresponding words so that $s_{i_{1}} \ldots s_{i_{k}}$ is expressed as $\left[i_{1} i_{i} \ldots i_{k}\right]$.

9.1 W_{Σ} of type B_{n}, W of type $\mathrm{A}_{2 n-1}$

First we reevaluate Elnitsky's tiling of type B and notice that it is formed from the following admissible partition:

Figure 9.1: The admissible partition of B_{n} into $\mathrm{A}_{2 n-1}$.

So for our subtiling we are implicitly using the embedding, $s_{\Sigma_{1}}=s_{n}=(n, n+1)$ while $s_{\Sigma_{i+1}}=s_{n-i} s_{n+i}=(n-i, n-i+1)(n+i, n+i+1)$ for $i \in\{1, \ldots, n-1\}$. In this case, the relation set K is $\left\{\left\{s_{\Sigma_{i}}, s_{\Sigma_{j}}\right\}||i-j| \geq 2\}\right.$. This gives us the tilings of type A that are symmetric about the horizontal line equidistant from the upper and lowermost vertices of the polygon. These are exactly Elnitsky's tilings of type B in Section 6 of [11].
We demonstrate some of the examples for $\mathcal{T}\left(x_{0}\right)$ when $n=3$.

Figure 9.2: A tiling for B_{3} viewed as a subtiling of A_{5}.

We present two more tilings for the type B groups. Neither of these seem to have appeared in the literature. In particular, these can be seen to be subtilings of Elnitsky's original tilings and could have, in hindsight, been discovered in a similar manor.

9.2 W_{Σ} of type B_{n}, W of type $A_{2 n}$

The other admissible partition of type A groups that induce a Coxeter group of type B is the following. Here $s_{\Sigma_{1}}$ is sent to the longest element in the parabolic subgroup of $\left\{s_{n}, s_{n+1}\right\}$, which is $s_{\Sigma_{1}}=s_{n} s_{n+1} s_{n}=s_{n+1} s_{n} s_{n+1}=(n, n+2)$, while the others are $s_{\Sigma_{i+1}}=s_{n-i} s_{n+1+i}=(n-i, n-i+1)(n+1+i, n+2+i)$ for $i=1, \ldots, n-1$. See Figure 9.3 below.

Figure 9.3: The admissible partition of B_{n} into $\mathrm{A}_{2 n-1}$.

Since $s_{\Sigma_{1}}$ is not the product of disjoint transpositions, the corresponding tile is necessarily formed by placing the sequence of tiles corresponding to either $s_{1} s_{2} s_{1}$ or $s_{2} s_{1} s_{2}$ in Elnitstky's type A tiling. We identifying the placement of these equivalent sequences as one so-called megatile which itself is a hexagon. Again, we observe that $K=\left\{\left\{s_{\Sigma_{i}}, s_{\Sigma_{j}}\right\}| | i-j \mid \geq 2\right\}$ and we again consider what $\mathcal{T}\left(x_{0}\right)$ looks like for the case $n=3$ - see Figure 9.4.

Figure 9.4: A tiling for B_{3} viewed as a subtiling of A_{6}.

We observe that the existence of this particular tiling given that of Elnitsky's type B tiling is, in hindsight, very intuitive; as it has horizontal symmetry, if we were to insert the constant vertical edge in place of the middle vertex we will preserve the tiling and words. Similar observations can be found in [11] and [19], when studying strips.

9.3 W_{Σ} of type B_{n-1}, W of type D_{n}

We consider the final admissible partition that induces B_{n-1}. This time it is a partition of D_{n} as seen in Figure 9.5.

Figure 9.5: The admissible partition of B_{n-1} into D_{n}.

In this case we have $s_{\Sigma_{1}}=s_{1} s_{2}=(-1,1)(-2,2)$ along with
$s_{\Sigma_{i+1}}=s_{i+2}=(i+1, i+2)(-i-1,-i-2)$ for $1 \leq i \leq n-2$. Yet again, we look at the reduced words of longest element of B_{3}. Note that the relation set K is $\left\{\left\{s_{\Sigma_{i}}, s_{\Sigma_{j}}\right\}||i-j| \geq 2\}\right.$.

[1 24311233123]

[13 3211321132]

[2 $\left.23112 \begin{array}{llllll} & 3 & 1 & 2 & 3 & 1\end{array}\right]$

Figure 9.6: A tiling for B_{3} viewed as a subtiling of the type D_{4} tiling.

We note that if one were to transpose the labelling of s_{1} and s_{2} in the Coxeter diagram of D_{n} we would get an alternative tiling for this admissible partition. Interestingly, this would also change the relation set.

9.4 W_{Σ} of type H_{3}, W of type D_{6}

Finally, we consider the tiling for H_{3} as a subtiling for D_{6} induced from the following admissible partition.

Figure 9.7: The admissible partition of D_{6} into H_{3}.

For this tiling we have an empty relation set, which, as luck would have it, gives us genuine bijections between reduced words w of H_{3} and subtilings in $\mathcal{T}(w)$. That is, $K=\emptyset$. There are 286 reduced words for the longest element of H_{3}, we highlight a selected sample of six corresponding tilings in Figure 9.8.

[1 24312231231123123]

[2 34123112312311231$]$

[1322132132132132]

[3221332133213213321]

[2113221332132113213]

[3112331231123112312]

Figure 9.8: A tiling for H_{3} viewed as a subtiling of the type D_{6} tiling.

Chapter 10

Suggestions for further research

We conclude the thesis by indulging in some ideas for avenues of further work. As in Chapter 8, we do not aim to formally prove anything here. We first sketch a strategy for an alternative construction for Elnitsky's type A tilings in terms of abstract regular polytopes. This strategy seems ripe for generalisation so we want to include it and give an example of trying to use these ideas to define an affine analogue of the work of Chapter 7.

10.1 A sketch of an alternative construction for Elnitsky's tilings

For an alternative construction of Elnitsky's tilings we start with the following well-known observation: regular n-Simplex, as an abstract regular polytope has $\operatorname{Sym}(n)$ as it is automorphism group. Furthermore, its Hasse diagram is isomorphic to a (directed) n-hypercubic graph and its automorphism group is $\operatorname{Sym}(n)$. We saw an instance of this in Section 1.3.
Suppose the associated Hasse graph is embedded into \mathbb{R}^{n} with the coordinates of its 2^{n} vertices having entries of the form $[0,0 \ldots, 0],[1,0 \ldots, 0], \ldots,[1,1, \ldots, 1]$. Then Theorem 1.5.1 tells us then that $\operatorname{Sym}(n)$ acts regularly on the set of paths of from $[0,0 \ldots, 0]$ to $[1,1, \ldots, 1]$ where two paths are adjacent if and only if they differ only in one vertex. Hence adjacent flags in the $\mathcal{P}(\operatorname{Sym}(n))$ are in bijection with the 2D-faces of the n-hypercubic graph. This, in turn, gives a bijection between (commutation classes of) reduced words in $\operatorname{Sym}(n)$ and connected sets of faces of the n-cube. Then if one can find a suitable faithful projection on to some \mathbb{R}^{k} for $1 \leq k \leq n$ then we obtain a bijection between these projections and our

Figure 10.1: Projecting paths on the cube on to its Petrie polygon to form rhombic tilings.
words. These projections are where the difficulty is hidden. A Petrie polygon of a polytope (introduced properly in [9]) is some (possibly skew) polygon for which every consecutive ($n-1$) edges lies on some rank $n-1$ face but no consecutive n edges do. Projections on to a carefully chose Petrie polygon seems to do just the trick needed though this is speculation only and where the complexity is hidden. We summarise this in Figure10.1. This suggests two directions for generalisation:

1. Find those abstract regular polytopes whose Hasse graph is also the 1 -skeleton of some real polytope equipped with some 'nice' projection.
2. Find those groups that have a regular group action on the Petrie polygon of some convex regular polytope.

A specific instance of $(i i)$ that actually seems promising is to try define a natural affine generalisation. Let \bar{A}_{n} denote the Coxeter group whose Coxeter diagram is the unlabelled circuit graph. The other affine Coxeter groups are classified in [26]. Then a natural definition to consider is:

Definition 10.1.1. Suppose for irreducible, affine, W that $\phi: W \hookrightarrow \bar{A}_{n}$ is an embedding. Then ϕ is an Affine E-Embedding if, for all $u, v \in W$,

$$
u<_{R} v \quad \text { implies } \phi(u)<_{B} \phi(v) .
$$

In order to capture the geometric side of the definition one might suggest examining Petrie polygons on cubic lattices in place of paths on the cube. Then one might attempt to find to find 'nice' faithful projections in order to create similarly 'nice' tilings.
One might want bijections between (some classes of) reduced in \bar{A}_{n} and some set of geometrical object. We naively suggest one such candidate by examining the Petrie polygon of an n-hypercubic Lattice and attempting to derive a regular group action on it. Then the examination of faithful projections is what is required to find meaningful bijections of such objects. Would we be able to have bijections between zonotopal surfaces in \mathcal{R}^{3} and reduced words of affine groups? I expect this is too good to be true but something similar might work.
And one might want to examine extensions to C-groups in general: a first candidate might be to study those C-groups with a linear CPR graph. An interpretation of E-embeddings on to CPR graphs of Coxeter groups does certainly seem achievable. This might naturally extend to all CPR graphs as a natural extension.

10.2 R-Polynomials

One last question that is forthcoming and irresistible is this: can one interpret the R-polynomials on the type A tilings? The R-Polynomial of a Coxeter group is determined by the following initial conditions and recursions (Theorem 5.1.1. of [1]) and is of central importance in the combinatorics of Coxeter groups and an entry-point into studying the celebrated Kazhdan-Lusztig polynomials:

Theorem 10.2.1 (Theorem 5.1.1 in [1]). There is a unique family of polynomials $\left\{R_{u, v}(q)\right\}_{u, v} \in W \subseteq \mathbb{Z}[q]$ satisfying:
(i) $R_{u, v}(q)=0$ if u and v are not comparable in $<_{B}$,
(ii) $R_{u, v}(q)=1$ if $u=v$,
(iii) if $s \in I^{-}(v) \cap I^{-}(u)$ then $R_{u, v}(q)=R_{u s, v s}(q)$,
(iv) if $s \in I^{-}(v) \backslash I^{-}(v)$ then $R_{u, v}(q)=q R_{u s, v s}(q)+(q-1) R_{u, v s}(q)$.

Does there exist a direct characterisation of these polynomials in terms of the tilings?

Appendix A

Magma code

Here we attach some of the relevant code used in this thesis. In particular, we have included the algorithms implemented to find all the C-strings associated to a given group as well as checking that they are unravelled. The main algorithm we use to find all abstract regular polytopes is an implementation of that described in [25].

```
// Implementation of the depth-first algorithm as described in
    Hartley and Hulpkes POLYTOPES DERIVED FROM SPORADIC SIMPLE
    GROUPS paper (see references).
// Also including further code on testing unravelledness.
makeInvolutionsPermutations := function(G)
    // Function for extracting the action of a group G on its
    involutions by conjugation.
    // {@ @} denotes an ordered set in Magma.
    involutionsOfG := {@ g : g in G | Order(g) eq 2 @};
    // We index the involutions so that we act on these indices.
    involutionsOfGIndices :={1..#involutionsOfG};
    involutionsOfGIndicesxG := CartesianProduct(
    involutionsOfGIndices,G);
    // This creates the actual map.
    indexPermutationOfInvolutionsMap := map<involutionsOfGIndicesxG
    -> involutionsOfGIndices | x :-> Position(involutionsOfG,
    involutionsOfG[x[1]]^x[2])>;
    return GSet(G, involutionsOfGIndices,
    indexPermutationOfInvolutionsMap);
end function;
makeInvolutionsPermutationsInvolutionsProvided := function(G,
    involutionsOfG)
```

```
// The same function as before, except we may take the
    involutions as an input as we might have a more efficient way of
        computing them.
    involutionsOfG := {@g : g in involutionsOfG @};
    involutionsOfGIndices := {1..#involutionsOfG};
    involutionsOfGIndicesxG:= CartesianProduct(
    involutionsOfGIndices,G);
    indexPermutationOfInvolutionsMap:=map<involutionsOfGIndicesxG
    -> involutionsOfGIndices|x :-> Position(involutionsOfG,
    involutions0fG[x[1]]^x[2]) > ;
    return GSet(G, involutionsOfGIndices,
    indexPermutationOfInvolutionsMap);
end function;
checkStringConditionInduction := function( ancestoryString,
    InvolutionsOfG )
    // An auxiliary function that will check the string condition
    for an (ordered) set of involutions.
        // The ancestoryString is an indexing set determining a set of
        involutions.
        // offspring is the last generator we have added to this list
        of involutions. By induction, we only need to check the string
    condition holds correctly for calculations involving the
    offspring.
        offspring := InvolutionsOfG[ancestoryString[#ancestoryString]];
        for i in [1..(#ancestoryString-1)] do
            // ord checks if our new generator commutes with the
        others by computing the order of their product.
            // Note that offspring^2 is just the identity. Its easy
        to access this way.
            ord := (InvolutionsOfG[ancestoryString[i]]*offspring)^2
    ne offspring`2;
        // This checks the commutation requirements.
            if i le #ancestoryString-2 and ord then
                return false;
            end if;
    end for;
    return true;
end function;
checkStringConditionInductionIrreducible := function(
    ancestoryString, InvolutionsOfG )
```

```
    // This is essentially the same function as the previous one
    but also rules out adjacent involutions commuting for efficiency
    offspring := InvolutionsOfG[ancestoryString[#ancestoryString]];
    for i in [1..(#ancestoryString-1)] do
            ord := (InvolutionsOfG[ancestoryString[i]]*offspring)^2
        ne offspring`2;
            if i le #ancestoryString-2 and ord then
                return false;
            end if;
            // Here is the additional condition we add.
                    if i eq #ancestoryString-1 ne ord then
                                    return false;
            end if;
    end for;
    return true;
end function;
checkIntersectionConditionInstance := function( I, J,
    ancestorString, setOfAllInvolutionsOfG, G )
            // This is an auxiliary function for testing the
    intersection condition on a specific instance of distinguished
    groups.
            // meet is an intersection function in Magma.
            if sub< G | [setOfAllInvolutionsOfG[ancestorString[i]] : i
    in I] > meet sub< G | [setOfAllInvolutionsOfG[ancestorString[j
    ]] : j in J] > eq sub< G | [setOfAllInvolutionsOfG[
    ancestorString[ij]] : ij in I meet J]> then
            return true;
            end if;
            return false;
end function;
checkIntersectionConditionInduction := function(ancestorString,
    setOfAllInvolutions, G)
    // Using the previous function, we can produce an inductive
    test for the intersection condition based on the number of
    generators.
    // We only need to check the intersection condition with
    those sets containing the offspring.
    // In hindsight this could be made more efficient by
    excluding certain trivial cases.
```

```
    // This checks Intersection condition with just one
    appearance of the offspring.
        for I in Subsets({1..#ancestorString-1}) do
            for J in Subsets({1..#ancestorString-1}) do
                                    if checkIntersectionConditionInstance(I,
```

 Include(J,\#ancestorString), ancestorString, setOfAllInvolutions
 , G) eq false then
 return false;
 end if;
 end for;
 end for;
 // Now we check when we have two appearances of the
 offspring.
 // SetToIndexedSet is an inbuilt function to extract the
 indexing set.
 for IJ in [SetToIndexedSet(IJ): IJ in Subsets (Subsets (\{1..\#
 ancestorString-1\}),2)] do
 if checkIntersectionConditionInstance(Include(IJ
 [1], \#ancestorString), Include(IJ[2],\#ancestorString),
 ancestorString, setOfAllInvolutions, G) eq false then
 return false;
 end if;
 end for;
 return true;
 end function;
cStringProcedure := procedure(ancestorString, ancestorStabiliser,
G, involutionsOfG, ~setOfPolytopesFound)
// A depth-first algorithm for finding all ordered subsets
of involutions that are C-strings up to automorphism.
// We will now assume that ancestorStabaliser is a subgroup
of Aut (G) under a homo of looking at how Aut (G) permutes the
indices of the involutions.
// We usually use a faster (almost identical) algorithm
searching just for those irreducible polytopes given below.
// A procedure doesnt return a value but this is
potentially altering the value of setOfPolytopesFound
recursively.
youngestInvolution := ancestorString[\#ancestorString];
newAncestorStabaliser := Stabiliser(ancestorStabiliser,
youngestInvolution);

```
    // We make the new potential generators to add, assuring
    they are not redundant by choosing them up to automorphism.
    offsprings := {@ {@involution: involution in orbit |
    involution notin ancestorString @}[1] : orbit in Orbits(
    newAncestorStabaliser ) | orbit notsubset ancestorString @};
        // Now we see if adding a new potential generator satisfies
    the string and intersection conditions.
    // If it does, we recurse by adding yet more generators
    immediately.
    for newOffspring in offsprings do
        newAncestorString := Include( ancestorString,
        newOffspring);
        newAncestorInvolutions := {@ involutionsOfG[k] : k
    in newAncestorString @};
                            newAncestorStringDistinguishedGroup := sub< G |
    newAncestorInvolutions >;
                                    // Now we check the conditions.
                                    if checkStringConditionInduction( newAncestorString
    , involutionsOfG ) and checkIntersectionConditionInduction(
    newAncestorString,involutionsOfG, G) then
                                    // Now we check if weve generated the whole
    group. If yes, then we keep this data. Else we recurse forward,
    increasing the depth of the search.
                                    if #newAncestorStringDistinguishedGroup eq
    # G then
    polytopes found. We print to see progress.
                                    Append( ~setOfPolytopesFound,
    newAncestorString );
                else
                            // Double Dollars refers to calling
        the same function recursively in Magma.
                            // The ~ symbol ensures that
    setOfPolytopesFound remembers the new polytopes found
    independent of each instance of calling itself.
                    $$( newAncestorString,
    newAncestorStabaliser, G, involutionsOfG, ~setOfPolytopesFound )
    ;
                                    end if;
            end if;
        end for;
end procedure;
```

cStringProcedureIrreducible := procedure (ancestorString
ancestorStabiliser, G, involutionsOfG, ~setOfPolytopesFound)
// A slightly faster algorithm compared to the one above
that finds only those irreducible polytopes. Its almost
identical to the above procedure.
youngestInvolution $:=$ ancestorString [\#ancestorString];
newAncestorStabaliser $:=$ Stabiliser (ancestorStabiliser,
youngestInvolution) ;
offsprings $:=\{@$ \{@involution: involution in orbit |
involution notin ancestorString @\}[1] : orbit in Orbits (
newAncestorStabaliser) | orbit notsubset ancestorString @\};
for newOffspring in offsprings do
newAncestorString $:=$ Include (ancestorString,
newOffspring) ;
newAncestorInvolutions : = \{@ involutionsOfG[k] : k
in newAncestorString @\};
newAncestorStringDistinguishedGroup := sub< G |
newAncestorInvolutions > ;
if checkStringConditionInductionIrreducible (
newAncestorString, involutionsOfG) and
checkIntersectionConditionInduction (newAncestorString,
involutionsOfG, G) then
if \#newAncestorStringDistinguishedGroup eq
\# G then
newAncestorString) ;
else
\$\$ (newAncestorString,
newAncestorStabaliser, G, involutionsOfG, ~setOfPolytopesFound) ;
end if;
end if;
end for;
end procedure;
findAllARPsOfGroupWithAutGActionImageProvided := function (G,
AutGActionImage, involutionsOfG)
// Here is one example of how we can use the algorithm to find
all polytopes of a given automorphism group.
//This is the most general (and slowest!) version taking in an
input of a group, its automorphism group and involutions.
// We assume that AutGActionImage is the permutation group
defined by the homo of how autG permutes the indices of
InvolutionsOfG.
ordG := \#G;
setOfPolytopesFound := [];
// Take representatives of involutions up to automorphism.
involutionRepresentatives := \{@ orbit[1] : orbit in Orbits(
AutGActionImage) @\};
for involutionIndex in involutionRepresentatives do
cStringProcedure (\{@ involutionIndex @\}, AutGActionImage, G
, involutionsOfG, ~setOfPolytopesFound);
end for;
return setOfPolytopesFound;
end function;
findAllARPsOfGroupGivenAutGIsoToGIrreducible := function(G)
// Another version of the above function that uses
specialisations to be faster.
// Uses nice facts about the Automorphism group only having
inner automorphisms and allowing ourselves to only consider
irreducible polytopes.
ordG := \#G;
autG := G;
setOfPolytopesFound := [];
involutionsOfG := \{@ g : g in $G \mid \operatorname{Order}(\mathrm{g})$ eq 2 @\};
involutionsGset := makeInvolutionsPermutations (G);
AutGActionImage := ActionImage (G,involutionsGset);
involutionRepresentatives := \{@ orbit[1] : orbit in Orbits(
AutGActionImage) @\};
for involutionIndex in involutionRepresentatives do
cStringProcedureIrreducible(\{@ involutionIndex @\},
AutGActionImage, G, involutionsOfG, ~setOfPolytopesFound);
end for;
return setOfPolytopesFound;
end function;
checkIntersectionConditionQuotient:=function (G,N)
// An auxiliary function for checking the intersection condition
when checking if a group is unravelled.
// Indexing here is only to be stylistically consistent with
literature. This is essentially just taking the power sets of
sets of generators.

```
    leftSubsets := [set : set in Subsets({0..Ngens(G)-1})| #
        set gt 0 ];
            rightSubsets := [set : set in Subsets({0..Ngens(G)-1})| #
        set gt 0 ];
            count := 2;
            for I in leftSubsets do
                    for J in rightSubsets[count..#leftSubsets] do
        // Checks the intersection condition for all pairs without
        repetitions. This could be optimised better.
                    if sub<G|N,{G.(i+1) : i in I}> meet
    sub<G|N,{G.(i+1) : i in J}> ne sub<G|N,{G.(i+1) : i in (I meet J
    )}> then
                                    return false;
                                    end if;
                end for;
                    count := count +1;
            end for;
    // Only returns true if it never returned false when checking
    each instance.
    return true;
end function;
quotientElementOrder := function(g, N)
    // An auxilliary finction for checking the order of elements in
        the quotient group.
    // This is used in the string condition test.
            power := 1;
            currentg := g;
            while power lt Order(g)+1 do
                if currentg in N then
                                    return power;
                                    else
                                    currentg:= currentg*g;
                                    end if;
                                    power:= power+1;
            end while;
end function;
checkStringConditionQuotient := function(G,N)
            // Checking the string condition in the quotient.
    // Works similar to the original function but now makes use of
        the quotient order function.
    // First we check if the rank decreases in the quotient.
```

```
        for i in [1..(Ngens(G))] do
                        if G.i in N then
                                    return false;
                                    end if;
    // Now we just check the string condition.
            for j in [i..(Ngens(G))] do
                        ord := quotientElementOrder(G.i*G.j,N);
                    if Abs(i - j) ge 2 and not ord eq 2 then
                    return false;
                    end if;
            end for;
        end for;
    return true;
end function;
checkCStringGroupQuotientGroup := function( polytopeGroup, N)
    // This amalgamates the previous functions to check if the
        quotient is a C group.
            if checkStringConditionQuotient(polytopeGroup, N) then
                    if checkIntersectionConditionQuotient(polytopeGroup
        , N) then
                                    return true;
                                    end if;
            end if;
            return false;
end function;
checkUnravelledGroup := function(polytopeGroup)
    // Checks if a group is unravelled by cycling over the normal
        subgroups and checking if rhey are c strings.
            normalSubgroups := [N`subgroup : N in NormalSubgroups(
        polytopeGroup)];
    // If only two normal subgroups exist then its simple so we can
        ignore it.
            if #normalSubgroups eq 2 then
                                    return true;
                    else
        // Otherwise we need to check if we have a quoteint C string.
                                for i in [2..#normalSubgroups - 1] do
                                    N:= normalSubgroups[i];
                                    if checkCStringGroupQuotientGroup (
        polytopeGroup,N) eq true then
                                    return false;
```

246
247
248
249 \quad end for; end if;

Bibliography

[1] Björner, A; Brenti, F. Combinatorics of Coxeter groups. Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005.
[2] Bosma, W; Cannon, J; Playoust, C. The Magma algebra system. I. The user language. J. Symbolic Comput., 24 (1997), no.3-4, 235-265.
[3] Brooksbank, P. A.; Leemans, D. Polytopes of large rank for PSL(4, $\left.\mathbb{F}_{q}\right)$. J. Algebra, 452 (2016), 390-400.
[4] Cameron, P. J.; Fernandes, M. E.; Leemans, D.; Mixer, M. String C-groups as transitive subgroups of S_{n}. J. Algebra, 447 (2016), 468-478.
[5] Cameron, P. J.; Fernandes, M. E.; Leemans, D.; Mixer, M. Highest rank of a polytope for A_{n}. Proc. Lond. Math. Soc., 115 (2017), no.1, 135-176.
[6] Connor, T.; De Saedeleer, J.; Leemans, D. Almost simple groups with socle $\operatorname{PSL}(2, q)$ acting on abstract regular polytopes. J. Algebra, 423 (2015), 550-558.
[7] Connor, T.; Leemans, D.; Mixer, M. Abstract regular polytopes for the O'Nan group. Internat. J. Algebra Comput. 24 (2014), no. 1, 59-68.
[8] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A. and Wilson, R. A. Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups. With computational assistance from J. G. Thackray. Oxford University Press, Eynsham, 1985.
[9] Coxeter, H. S. M. Regular Polytopes. 3rd ed., Dover, New York, 1973.
[10] Denoncourt, H.; Ernst, D.; Story, D. On the number of commutation classes of the longest element in the symmetric group. Open Problems in Mathematics, 4 (2016), no. 02.
[11] Elnitsky, S. Rhombic tilings of polygons and classes of reduced words in Coxeter groups. J. Combin. Theory Ser. A, 77 (1997), no. 2, 193-221.
[12] Elnitsky, S. Rhombic tilings of polygons and classes of reduced words in Coxeter groups. PhD dissertation, University of Michigan, 1993.
[13] Escobar, L.; Pechenik, O.; Tenner, B. E.; Yong, A. Rhombic tilings and Bott-Samelson varieties.. Proc. Amer. Math. Soc, 146 (2018), no. 5, 1921-1935.
[14] Fernandes, M. E.; Leemans, D. Polytopes of high rank for the symmetric groups. Adv. Math. 228 (2011), no. 6, 3207-3222.
[15] Fernandes, M. E.; Leemans, D.; Mixer, M. An extension of the classification of high rank regular polytopes. Transactions of the American Mathematical Society, 370 (2018), no. 12, 8833-8857.
[16] Fernandes, M. E.; Leemans, D.; Mixer, M. All alternating groups A_{n} with $n \geq 12$ have polytopes of rank $\left\lfloor\frac{n-1}{2}\right\rfloor$. SIAM J. Discrete Math, 26 (2012), no. 2, 482-498.
[17] Fernandes, M. E.; Leemans, D.; Mixer, M. Polytopes of high rank for the alternating groups. J. Combin. Theory Ser. A, 119 (2012), no. 1, 42-56.
[18] Gomi, Y.; Loyola, M.L.; De Las Peñas, M.L.A.N. String C-groups of order 1024. Contrib. Discrete Math. 13 (2018), no. 1, 1-22.
[19] Hamanaka, H.; Nakamoto, A.; Suzuki, Y. Rhombus Tilings of an Even-Sided Polygon and Quadrangulations on the Projective Plane. Graphs and Combinatorics, 36 (2020), 561-571.
[20] Hartley, M. I. All polytopes are quotients, and isomorphic polytopes are quotients by conjugate subgroups. Discrete Comput. Geom, 21 (1999), no.2, 289-298.
[21] Hartley, M. I. More on quotient polytopes. Aequationes Math, 57 (1999), no. 1, 108-120.
[22] Hartley, M. I. Simpler tests for semisparse subgroups. Ann. Comb., 10 (2006), no. 3, 343-352.
[23] Hartley, M. I. An Atlas of Small Regular Abstract Polytopes. Period Math Hung, 53, 149-156 (2006).
[24] Hartley, M. I. Covers \mathcal{P} for abstract regular polytopes \mathcal{Q} such that $\mathcal{Q}=\mathcal{P} / \mathbf{Z}_{p}^{k}$. Discrete Comput. Geom., 44 (2010), no. 4, 844-859.
[25] Hartley, M. I.; Hulpke, A. Polytopes derived from sporadic simple groups. Contrib. Discrete Math., 5 (2010), no. 2, 106-118.
[26] Humphreys, J. E. Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics, 29. Cambridge University Press, Cambridge, 1990.
[27] Kiefer, A.; Leemans, D. On the number of abstract regular polytopes whose automorphism group is a Suzuki simple group $\mathrm{Sz}(q)$. J. Combin. Theory Ser. A, 117 (2010), no. 8, 1248-1257.
[28] Leemans, D. Almost simple groups of Suzuki type acting on polytopes. Proc. Amer. Math. Soc., 134 (2006), no. 12, 3649-3651.
[29] Leemans D.; Mixer, M., Algorithms for classifying regular polytopes with a fixed automorphism group. Contrib. Discrete Math., 7 (2012), no. 2, 105-118.
[30] Leemans D.; Mulpas, J. The String C-group representations of the Suzuki, Rudvalis and O'Nan sporadic simple groups. The Art of Discrete and Applied Mathematics, (2021), to appear.
[31] Leemans, D.; Vauthier, L. An atlas of abstract regular polytopes for small groups. Aequationes Math., 72 (2006), no. 3, 313-320.
[32] Matsumoto, H. Générateurs et relations des groupes de Weyl généralisés. C. R. Acad. Sci. Paris, 258 (1964), 3419-3422.
[33] McMullen, P.; Schulte, E. Quotients of polytopes and C-groups. Discrete Comput. Geom., 11 (1994), no. 4, 453-464.
[34] McMullen, P.; Schulte, E. Abstract regular polytopes. Encyclopedia of Mathematics and its Applications, 92. Cambridge University Press, Cambridge, 2002.
[35] Mitchell, H. H. Determination of the Ordinary and Modular Ternary Linear Groups. Transactions of the American Mathematical Society, 12 (1911) no.2, 207-242.
[36] Mühlherr, B. Coxeter groups in Coxeter groups. Finite geometry and combinatorics (Deinze, 1992), 277-287, London Math. Soc. Lecture Note Ser., 191, Cambridge Univ. Press, Cambridge, 1993.
[37] Nicolaides, R.; Rowley, P. Finite Coxeter groups and Generalized Elnitsky Tilings. Paper in preparation, 2021.
[38] Nicolaides, R.; Rowley, P. Subtilings of Elnitsky's Tilings for Finite Irreducible Coxeter groups. Paper in preparation, 2021.
[39] Nicolaides, R.; Rowley, P. Two Families of unravelled abstract regular polytopes in B_{n}. preprint, 2020.
[40] Nicolaides, R.; Rowley, P. Unravelled Abstract Regular Polytopes. Paper in preparation, 2020.
[41] Pellicer, D. CPR graphs and regular polytopes. European Journal of Combinatorics, 29 (2008), no. 1, 59-71.
[42] Speyer, D. E. Powers of Coxeter elements in infinite groups are reduced. Proc. Amer. Math. Soc., 137 (2009), no. 4, 1295-1302.
[43] Suzuki, M. Group theory. v. 1, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, 1982.
[44] Taylor, D.E. The geometry of the classical groups, Sigma series in pure mathematics. (1992), Heldermann Verlag.
[45] Tenner, B. E. Enumerating in Coxeter groups. (Survey), Advances in Mathematical Sciences, Association for Women in Mathematics Series, Springer (2020), no. 21, 75-82.
[46] Tenner, B. E. Tiling-based models of perimeter and area. Adv. in Appl. Math., 119 (2020), 102059.
[47] Wilson, R.A. The finite simple groups. Graduate Texts in Mathematics, 251., Springer, London, 2009.
[48] Wilson, R.; Walsh, P.; Tripp, J.; Suleiman, I.; Parker, R.; Norton, S.; Nickerson, S.; Linton, S.; John J.; Abbot, R. Atlas of finite group representations. Version, 3 http: //brauer.maths.qmul.ac.uk/Atlas/v3/.
[49] Wolfram Research, Inc., Mathematica, Version 12.2.0.0, Champaign, IL (2021).

