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Abstract

CHALLENGES AND TECHNIQUES FOR TRANSPARENT
ACCELERATION OF UNMODIFIED BIG DATA APPLICATIONS
Maria Nektaria Xekalaki
A thesis submitted to The University of Manchester
for the degree of Doctor of Philosophy, 2022

The ever-increasing demand for high-performance Big Data analytics and data pro-
cessing has paved the way for heterogeneous hardware accelerators, such as Graphics
Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs), to be inte-
grated into modern Big Data platforms. Currently, this integration comes at the cost
of programmability, as the end-user Application Programming Interface (API) of Big
Data frameworks must be altered in order to access the underlying heterogeneous hard-
ware. In some cases, it is even required by developers to provide their application code
in a low-level programming language that targets specific hardware accelerators (e.g.,
CUDA, OpenCL, etc.).

The purpose of this thesis is to identify the current barriers in the automatic accel-
eration of Big Data applications and to propose techniques that can lift the emerged re-
strictions. Specifically, this thesis presents the first Big Data platform that can dynam-
ically take advantage of GPUs and FPGAs for the acceleration of unmodified applica-
tions in a completely agnostic manner to the user. This novel heterogeneous platform
has been prototyped in the context of Apache Flink, a widely used Big Data platform,
and TornadoVM, an open-source framework that automatically compiles and executes
Java applications on GPUs, FPGAs, and multi-core CPUs. The techniques that will be
presented are not bound to the frameworks used, and can also be applied to other soft-
ware platforms with slight modifications. The performance evaluation of the proposed

solution has been conducted on both standard benchmarks and industrial use cases,



showcasing performance speedups of up to 65x on GPUs and 184x on FPGAs, against
vanilla Apache Flink running on traditional multi-core CPUs.
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Chapter 1

Introduction

Over the last few years, the amount of data that is being created, captured and repli-
cated globally has been increasing at a rapid pace. Specifically, it is estimated that
from 33 zettabytes, in 2018, the amount of data the requires processing will reach the
staggering size of 163 zettabytes by 2025 [RGR18]. This trend imposes several new
challenges and opportunities regarding high-performance and energy-efficient data an-
alytics. To adhere to the performance Service Level Agreements (SLAs) defined for
Big Data applications despite this trend, heterogeneous hardware accelerators, such as
Graphic Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs) have
been put forward as a means to achieve higher data processing throughput and energy
efficient execution. Specifically, hardware accelerators can now be found in almost
all modern cloud providers, such as AWS [Ser], Google Cloud [Clo], and Microsoft
Azure [Azu], complementing the conventional CPU-only execution for accelerating

suitable workloads.

In order to exploit these hardware accelerators, developers must write their code
in non-managed programming languages and frameworks, such as CUDA [Cor21b],
OpenCL [SGS10], and OneAPI [INT22]. However, in the domain of Big Data analyt-
ics, established systems that are typically written in managed programming languages
(e.g. Java or Scala) and run on top of the Java Virtual Machine (JVM) [Ora22] are
traditionally used. Since the development of Big Data platforms preceded the hetero-

geneity of clusters, they were designed with CPU-only execution in mind.

14



1.1. CHALLENGES 15

1.1 Challenges

With the exception of NVIDIA GPU acceleration for Apache Spark 3.x [RE20] via
the RAPIDS API [rap21] and for Flink [Fou22b] via JCuda [Hut22b] and/or JCublas
[Hut22a], the remaining of existing works are mostly academic efforts to bring het-
erogeneous hardware acceleration on various Big Data frameworks (e.g., [SCNT15,
CLOL18, GBS16]). A common denominator of the current state-of-the-art, both on
the academic and industrial side, is that new APIs, which are often specific to the
target accelerator, have to be used and/or an implementation of the computation in a
low-level programming language has to be provided. These characteristics have sev-
eral disadvantages.

First of all, having multiple implementations of the user code, both in high-level
and low-level languages, leads to code fragmentation. Naturally, a fragmented code-
base is difficult to maintain and expand. For instance, with multiple implementations
of the user function existing, for every minor change in the algorithm, all the versions
of the code have to be updated. This is an error-prone and time-consuming process.
Moreover, on systems that rely on pre-compiled kernels, the user function support is
limited, as it is not viable to have a kernel implementation for every possible user func-
tion. (It is important to note at this point that, throughout this thesis, the word kernel
will be used to refer to a method compiled for high throughput devices, such as GPUs
and FPGAs.) Furthermore, in many cases, the kernels used by the system (generated
or pre-compiled) might not be portable across different platforms. This could be the
case if, for example, the kernels contain optimizations that are specific to their target
device. Last but not least, some kernel implementations might lead to vendor lock-in
(e.g. CUDA kernels can only target NVIDIA GPUs).

By studying the current approaches for heterogeneous execution of Big Data appli-
cations, the vision that motivated this thesis emerged: to enable Big Data frameworks
to utilize heterogeneous accelerators transparently, without breaking the programming
norms or requiring any hardware knowledge from the developers.

However, at the initial development stages of this vision platform, several chal-
lenges were identified. Firstly, the API exposed by Big Data frameworks is in high-
level programming languages such as Java, Scala or Python, which cannot be directly
used to program devices like GPUs and FPGAs. One way to target such devices from
Java is to make a JNI call to precompiled C/C++ code. However, this approach requires
multiple versions of the code to be implemented and developers have to become famil-

iar with low-level architectural details for each target platform in order to write efficient
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kernels. Thankfully, there are some frameworks that enable the compilation of Java
programs on heterogeneous devices, with the most prevalent being Aparapi [apal6]
and TornadoVM [FPZ* 19, tor]. Nevertheless, the APIs of both of these frameworks
are not compatible with the APIs of Big Data platforms. Exposing either the API of
TornadoVM or Aparapi to the developers would break our vision to provide seamless
acceleration.

Moreover, both have some crucial limitations. Aparapi is limited to multi-cores and
GPUs and does not support Java Objects, which are the cornerstone of Object Oriented
Programming (OOP). TornadoVM can target a plethora of heterogeneous devices but
it is also restricted to primitive data types. Therefore, it is evident that in order to use
any of these frameworks in combination with Big Data platforms - without imposing

programming restrictions - they have to be extended first.

1.2 Research Questions

The research questions that this thesis explores are the following.

RQ1. What are the main challenges in transparent acceleration of Big Data appli-
cations?

RQ?2. Is it possible to accelerate Big Data applications without breaking the existing
Big Data programs or introducing new APIs?

RQ3. What are the preconditions of hardware acceleration and the performance trade-

offs of seamless execution of Big Data applications on GPUs and/or FPGAs?

1.3 Research Methodology

The methodology presented below was followed in order to successfully answer the

research questions of this thesis.

1. A comprehensive survey of the literature was performed, to identify the tech-

niques that are currently used for acceleration of Big Data applications.

2. The architecture and execution models of the frameworks that were selected for
this implementation were thoroughly analysed. Through this analysis, the main

incompatibilities and challenges for transparent acceleration were identified.
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3. A set of techniques that bridge the gap between the Big Data stack and hetero-

geneous computing were designed and implemented.

4. The proposed system was evaluated across a wide set of benchmarks to identify
whether speedup can be obtained against scale-out CPU execution and under

what conditions.

1.4 Contributions

The contributions of this thesis, classified based on the research questions they answer,

are presented below.
¢ Research Question 1.

— It performs a comprehensive analysis of the whole execution stack of the
Big Data framework of choice and discusses the challenges of heteroge-

neous execution for each layer.
¢ Research Question 2.

— It presents a novel approach for enabling automatic and transparent GPU
and FPGA acceleration for existing Big Data applications written in Java.
To achieve that, two novel techniques are introduced: 1) automatic code
and data morphing, and 2) Just-In-Time (JIT) compilation for heteroge-

neous hardware, in the context of TornadoVM.
¢ Research Question 3.

— It performs a comprehensive performance evaluation of the proposed sys-
tem across a variety of benchmarks and real-world industrial use cases

against the CPU-only version of the Big Data framework.

— It discusses the merits of heterogeneous hardware acceleration, while also
highlighting the pre-conditions that must exist in order to achieve perfor-
mance improvements when running on GPUs and FPGAs compared to

scale-out CPU only configurations.
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1.5 Thesis Layout

The remainder of this thesis is organized as follows:

* Chapter 2 introduces background concepts and technologies that will be used

throughout this thesis.

* Chapter 3 presents how the map-reduce model, which is adopted by most Big
Data platforms, has been used in heterogeneous programming over the years.
Additionally, it provides an in-depth analysis of the current advances in aug-

menting Big Data frameworks with heterogeneous devices.

* Chapter 4 discusses the challenges of implementing the vision platform of this
thesis and presents an initial prototype that was developed. This prototype does
not have much innovation compared to the state-of-the-art, however, its develop-
ment illuminated the reasons why the gaps in the state-of-the-art exists. More-

over, it was used as a stepping stone for the implementation of the final platform.

* Chapter S proposes an innovative Big Data platform, that can seamlessly utilize
various hardware accelerators by performing JIT compilation. Following a thor-
ough research on the relevant literature, it is believed that this is the first time
that a Big Data framework can automatically target different types of devices
(i.e. GPU and FPGAs) without providing new APIs or requiring any interven-

tion from the user.

* Chapter 6 presents an exhaustive experimental analysis of the proposed plat-
form. During this analysis, the pre-conditions that should exist so that Big Data
applications can gain performance are highlighted, by running on heterogeneous
hardware devices. This thesis aspires to provide insights that will be invaluable
for any future development of Big Data frameworks designed with heterogeneity

in mind.

* Chapter 7 provides a summary of the insights gained throughout this work, as

well as proposals for future research.

1.6 Publications

The work presented in Chapter 4 has been published in the following venue.
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* Maria Xekalaki, Juan Fumero, and Christos Kotselidis. Challenges and pro-
posals for enabling dynamic heterogeneous execution of big data frameworks.
In 2018 IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), pages 335-341, 2018. [ XFK18a]

In addition, part of the work of Chapter 4 and Chapter 5 has been presented in the
following poster sessions.

* Maria Xekalaki, Juan Fumero, and Christos Kotselidis. Dynamic acceleration
of big data applications on heterogeneous hardware resources. 14th International
Summer School on Advanced Computer Architecture and Compilation for Em-
bedded Systems, ACACES 2018, Poster abstracts, 2018. [XFK18b]

e 6th Compiler and Programming Language Summit in Munich, Germany, 3-5
December 2018.

* 7th Compiler and Programming Language Summit in Munich, Germany, 9-11
December 2019.

Moreover, the following papers have been produced in the process of maturing
TornadoVM.

* James Clarkson, Juan Fumero, Michail Papadimitriou, Maria Xekalaki, and
Christos Kotselidis. Towards practical heterogeneous virtual machines. In Con-
ference Companion of the 2nd International Conference on Art, Science, and
Engineering of Programming, Programming’ 18 Companion, page 46—48, New
York, NY, USA, 2018. Association for Computing Machinery. [CFP*18a]

* James Clarkson, Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak, Maria
Xekalaki, Christos Kotselidis, and Mikel Lujan. Exploiting high-performance
heterogeneous hardware for java programs using graal. In Proceedings of the
15th International Conference on Managed Languages Runtimes, ManLang ’18,
New York, NY, USA, 2018. Association for Computing Machinery. [CFP " 18b]

* Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak, Maria Xekalaki, James
Clarkson, and Christos Kotselidis. Dynamic application reconfiguration on het-
erogeneous hardware. In Proceedings of the 15th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE 2019, page
165-178, New York, NY, USA, 2019. Association for Computing Machinery.
[FPZ119]
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Finally, the paper below, which contains the contributions of Chapter 5, has been
accepted for publication in PVLDB vol. 15 and will be presented in VLDB 2023.

* Maria Xekalaki, Juan Fumero, Athanasios Stratikopoulos, Katerina Doka, Chris-
tos Katsakioris, Constantinos Bitsakos, Nectarios Koziris, Christos Kotselidis.
Enabling Transparent Acceleration of Big Data Frameworks Using Heteroge-

neous Hardware.

1.7 Summary

This chapter motivated this thesis by elaborating on the necessity to take advantage of
heterogeneous devices to perform Big Data computations. Moreover, it summarized
the four key contributions presented this thesis, which are: (i) an extensive analysis of
current Big Data platforms and the design features that make the adaption of heteroge-
neous execution challenging, (i1) the introduction of a novel Big Data platform that can
dynamically run existing applications on multiple different devices in a user-agnostic
way, (iii) detailed evaluation of the proposed platform using multiple use cases, and
(iv) an in-depth analysis of the preconditions that should exist to get optimal perfor-
mance out of heterogeneous execution compared to the CPU scale-out. Additionally,
a list of the publications produced in the scope of this work was provided as well as a

brief outline of the chapters of this thesis.



Chapter 2
Background

This chapter covers the concepts and programming models that will be used throughout
this thesis. Specifically, Section 2.1 provides a general overview of Big Data frame-
works, focusing on Apache Flink, Apache Spark, and Hadoop, three of the most widely
used platforms among Big Data developers. Emphasis is given on their processing
models (subsection 2.1.1) and their architecture (subsection 2.1.2). Additionally, sub-
section 2.1.3 specifies the positioning of the work presented in this thesis in the uni-
verse of these artefacts. Furthermore, Section 2.3 introduces heterogeneous computing
and provides information about hardware accelerators, specifically GPUs and FPGAs.

Finally, Section 2.4 overviews the concepts introduced in this chapter.

2.1 Big Data Frameworks

As the amount of data that is being produced globally keeps growing, processing it
in single-machine, monolithic systems is becoming increasingly inefficient - if not
impossible. Distributed computing is an efficient solution to this bottleneck, as the
computational load is shared among several machines. However, it imposes plenty of
challenges, including load balancing among the machines, fault tolerance, scheduling,
synchronization and more. Big Data frameworks were developed as a way to formalize
solutions to these challenges.

Some of the most popular Big Data frameworks at the moment are Hadoop, Apache
Spark and Apache Flink. All three of these systems are written in managed program-
ming languages, i.e. languages that are built on top of a managed runtime system (e.g.,
the Java Virtual Machine). The next subsections will provide a general overview of

their processing models and their architecture. Scheduling and fault tolerance are out

21



22 CHAPTER 2. BACKGROUND

of the scope of this thesis.

2.1.1 Processing Models

The term processing model refers to the way that the computation is modeled and the
data is processed. Khalid et al. [KY21] classify the data processing models of Big
Data frameworks into three categories. The first category consists of those frame-
works that process data in batches. Batch processing refers to computations applied
on a set of data collected over a specific time frame. Hadoop belongs in this category.
The second contains the frameworks that are used for stream processing, e.g. Apache
Storm [Fou2lc] and Samza [Fou22a]. In stream processing, the computations are per-
formed on the data in real time, as it is generated. Finally, the third category includes
frameworks that support both batch and stream processing such as Apache Spark and
Apache Flink.

Regarding the way that the computation is modeled among Big Data frameworks,
the task are most commonly expressed through map-reduce functions (e.g. Hadoop)
or they can by represented by a directed acyclic graph (DAG) (e.g. Apache Spark,

Apache Flink). Next, a brief overview of each computational model is provided.

Map-Reduce Model

The map and the reduce programming patterns were originally introduced by Mur-
ray Cole [Col89]. Cole presented a new way of parallelizing distributed computations,
which was to use a set of templates, referred to as algorithmic skeletons. By abstracting
the parallelism, these skeletons shift the focus from the way that each system facili-
tates parallel execution to the actual computation to be performed. Several skeleton
functions were presented by Cole (e.g. stencil, scan, etc.) which are out of the scope
of this thesis.

A formal description of the map and reduce skeletons is the following. The map
skeleton applies a function f on an input set of type x to produce an output set of type
y.

map(f) : x[} = ¥l
Similarly, the reduce skeleton applies a function f on an input set of type x to produce

a single element of type v.

reduce(f) : x[| =y
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For both the map and the reduce skeletons, the types x and y can be identical.

Several years later, Google advocated using the map and reduce skeletons for pro-
cessing large datasets [DG04]. The map-reduce programming model, as proposed in
this work, consists of three parts:

* A map function that applies a user-defined computation on each element of a
<key, value> input set and produces a new set of <key, value> intermediate

results.

* A process called shuffling, during which the results of the map are split into
groups, one for every unique key. Each group is then provided as input to the

reduce function.

* A reduce function that merges the values of each key group, in a way that is

specified by the user, and returns a dataset containing a single element.

Figure 2.1 illustrates how a word count computation is executed with the map-
reduce programming model, following the three stages described above. In the first
stage, each word is mapped with a counter that has the value of one. In this example,
the words are considered the keys, so during the shuffling eight groups are created,
one for each word. Then, each of these groups is passed to a reduce function which
increments the counters. The final output contains the words and their number of
occurrences in the text.

Hadoop [Fou2la] has been among the frameworks that have adopted the map-

reduce programming model.

Dataflow Model

Although the map-reduce processing model is established in parallel computing, it can
be restrictive, as computations are only expressed using two operators, map and reduce.
An extension of the map-reduce programming model is the dataflow [Thal8]. In the
dataflow model, the computations are expressed using a directed acyclic graph. The
vertices represent the computational tasks (which can be operators like map,reduce
filter, join etc.) and the edges represent the flow of the data across the operators.
Figure 2.2 illustrates an exemplary dataflow graph. In the computation represented
by this graph, the input dataset is consumed by two map operators. The result of each
map operator is then passed as input to a filter operator. Finally, the results of the two

filter operators are aggregated using a join operator.
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Figure 2.1: A WordCount Map-Reduce Example.
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Figure 2.2: A Dataflow Graph Example.

The distributed dataflow system (e.g. Apache Flink) can parallelise the tasks repre-
sented in the dataflow graph by creating a parallel version of the initial dataflow graph,
with one vertex per parallel task. The edges of the parallel dataflow graph represent the
flow of the partitioned data across the parallel instances of the operators. Figure 2.3
presents the parallel version of the dataflow of Figure 2.2, with a degree of parallelism
of two.

As illustrated in Figure 2.3, there are operators (e.g. map) that can process data
independently, while others (e.g. join) require the whole dataset to be present. The
distinction is based on the computation that each operator performs. Parallel instances

of a map operator can be applied on random partitions of the dataset, as each element
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Figure 2.3: A Parallel Dataflow Graph Example.

is processed individually. In contrast, reduce and join operators, merge elements based
on a key value, so they require the whole dataset in order to perform the merging
correctly. Such operators are known as pipeline-breaking operators.

Although pipeline-breaking operators require synchronization, since all previous
tasks have to be completed before they can be executed, once the whole dataset is
available they can run in parallel just like any other task. However, the data has to
be partitioned so that each parallel instance operates on data with the same key value,

using a partitioning algorithm.

2.1.2 Architecture

Big Data frameworks typically apply the master-worker model of execution on a clus-
ter. The term cluster refers to a set of computers (nodes) that are connected in the same
network and communicate to perform a computation. Figure 2.4 illustrates a descrip-
tion of this execution flow. As shown on the left side of this figure, developers express
the workflow of their applications using an Application Programming Interface (API)
that is provided by the framework (Client side). The API contains multiple operators,
such as map, reduce, groupBy, etc. The master node of the cluster (Cluster Manager) is
primarily responsible for monitoring and coordinating the execution among the worker
nodes. YARN [VMD™13] is one of the most popular choices for scheduling among
Big Data frameworks, however, some frameworks offer additional scheduling mech-
anisms in standalone mode (e.g. FIFO and Fair Scheduler for Spark [Spa], eager/all
at once scheduling for Flink [Zag20] etc.). Finally, each compute node performs the

execution assigned to it and returns the results.
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Figure 2.4: Overview of Big Data Frameworks.

2.1.3 Defining the Basis of this Thesis and Discussions

The Venn diagram in Figure 2.5 classifies Apache Flink, Apache Spark and Hadoop
based on their processing model (computation representation and data processing) and
places the work presented in this thesis. As shown in the diagram, the focus of this
work is on distributed dataflow systems on batch processing mode. Specifically, the
novel techniques for transparent acceleration that will be presented in Chapter 5, were
prototyped on Apache Flink on batch processing mode.

Dataflow

Map-Reduce

Stream
Processing

Figure 2.5: Venn Diagram Illustrating the Positioning of this work

Batch processing was chosen as it is a more natural fit for hardware accelerators. In
batch processing, the data is bounded, therefore, the dataset can be provided in bulk to
hardware devices such as GPUs and FPGAs making it easier to limit underutilization
and to gain performance (e.g. by configuring the number of threads suitable for the

data load). In contrast, in unbounded data streams, efficiently allocating resources
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among heterogeneous hardware is a more challenging task. The data again would have
to be split in bulks, to avoid hardware underutilization, however, deciding the bulk size
without knowing the full dataset size can be arduous. Nevertheless, enabling hardware
acceleration in stream processing could be a rewarding and exciting field for future
research. For example, configuring the bulk size in such a way that optimal utilization
is obtained, without the data becoming obsolete in the meantime, is not trivial and

could offer great value to the community.

2.2 Apache Flink

Apache Flink follows the same execution model that was presented in Figure 2.4. In
Flink terminology, the Big Data Engine is called Job Manager and the Compute Nodes
are referred to as Task Managers. It is a highly sophisticated system and it consists of
multiple layers that ensure fault tolerance, communications handling, and other neces-
sary operations. This subsection focuses on two aspects of Flink which are the most
relevant to this work. The first one is the programming model of Flink for batch pro-
cessing (Dataset API) and the second is how the computation is represented throughout

the execution via Flink’s dataflow model.

2.2.1 DataSet API

Using the DataSet API of Flink, developers specify the transformations (map, reduce,
filtering, etc.) that will be applied on their data. Some of these transformation op-
erators, including map and reduce, require a user-defined function (UDF’), which ex-
presses how they will be applied to their input dataset. Since this thesis focuses on
map and reduce, from this point on, the word operator will be used interchangeably for
these two transformations.

Typically, the Flink UDF is written in a user class that implements an operational
interface (e.g., MapFunction, ReduceFunction, etc.). On the left side of Figure 2.6,
the UML for such a user class is presented. Nevertheless, for certain applications, the
user function might require additional information (e.g., extra parameters, broadcasted
datasets, etc.). In this case, the user-defined class can extend an abstract class instead,
which is characterized as rich (right side of Figure 2.6). Apart from the user function,

rich classes also contain a runtime context, which consists of information such as the
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Figure 2.6: UML Representing the Flink API.

degree of parallelism, the additional parameters, the broadcasted datasets etc. More-
over, two auxiliary functions can be implemented by a rich user class in order to setup
the context (open ()) and to perform the cleanup after the computation is completed
(close()).

An Example of A Flink Program

Listing 2.1 presents an example of a Flink computation using the DataSet API. First,
the input, which can either be read from a file or a Java Collection (e.g. ArrayList,
LinkedList, etc.), is stored in a DataSet object (lines 2 and 3). Next, two transforma-
tions are applied on this data; a map along with a reduction.

As discussed above, Flink provides interfaces and abstract classes that developers
can implement or extend to express their computation for each transformation. In
this example, the classes that contain the user implementation (MapUserClass and
ReduceUserClass, presented in Listings 2.2 and 2.3) extend the MapFunction and
ReduceFunction interfaces respectively. As shown in line 4 of Listing 2.2, the map
operator of the MapUserClass receives an input a set of Tuple2 objects and returns
Tuple3 objects that consist of two Double fields and one Integer field. Then, for every

input Tuple2, the map operator creates a new Tuple3 object, which contains the two
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Listing 2.1: DataSet Transformations using the Flink API.

public static void main (String[] args) {
List<Tuple2<Double, Double>> list;
DataSet <Tuple2<Double, Double>> input = getInput (list);

DataSet <Tuple3<Double, Double, Integer>> res = input
.map (new MapUserClass ())
.reduce (new ReduceUserClass());

res.collect ();

fields of the input Tuple and, additionally, the Integer value of 1 (line 5 of Listing 2.2).
The reduce operator of the ReduceUserClass, as presented in Listing 2.3, receives a
set of Tuple3 objects, which consist of two Double fields and one Integer field, and
sums up all the Integer fields of the input data set (line 5 of Listing 2.3).

An instance of each of the MapUserClass and the ReduceUserClass classes is
passed as a parameter to the corresponding DataSet transformation function (lines 6
and 7 of Listing 2.1).

Listing 2.2: MapUserClass Implementation.

public static final class MapUserClass implements MapFunction
<Tuple2<Double, Double>, Tuple3<Double, Double, Integer>>

{

@Override

public Tuple3<Double, Double, Integer> map (Tuple2<Double,
Double> value) {
return new Tuple3<>(value.f0, value.fl, 1);

After all the transformations are declared, a function that triggers the execution and
indicates how the developer wishes to receive the output data has to be called. This
function is known as sink. There are many different sink functions, with some of the
most common being collect (), which returns a list with the results and print () that
prints the results on the console. In the example of Listing 2.1 the sink that is called is

collect (), in line 9.
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Listing 2.3: MapUserClass Implementation.

public static class Red implements ReduceFunction <Tuple3<

Double, Double, Integer>> {

@Override
public Tuple3<Double, Double, Integer> reduce (Tuple3<
Double, Double, Integer> valuel, Tuple3<Double, Double
;, Integer> value2) throws Exception ({
return new Tuple3<>(valuel.f0, valuel.fl, valuel.f2 +
value2.£f2);

2.2.2 The Representation of a Flink Computation Throughout Ex-

ecution

As Flink is dataflow system, it represents the computation by creating a graph of de-

pendencies between the operations, in order to distribute them among the compute

nodes. This subsection will describe how this graph, named Execution Graph in Flink,

is derived from the user program.

side.

First of all, following the data sink call, three graphs are constructed on the Client

1. The Plan: contains a description of all the data sources, data sinks and operators

that compose the computation.

. The Optimized Plan: contains the nodes for the input/output data and the op-

erators expressed in the Plan. Each node additionally stores information about
how the execution will take place, such as shipping policies that define how data
will be distributed to the next operator (e.g. forward, redistribute, shuffle
etc.). The nodes of the Optimized Plan do not have a one-to-one relationship
with those of the Plan, meaning that, in some cases, new nodes might be intro-

duced (the example presented later illustrates one such case).

. The Job Graph: is a directed acyclic graph that is constructed from the Opti-

mized Plan and it has two different types of nodes. The first category has nodes
that represent the operators (Job Vertices), whereas the second consists of nodes
that represent the intermediate datasets (Intermediate Datasets) which are pro-

duced by each operator. The Job Graph Generator, using information such as the
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shipping strategy, might chain some operators together. If two or more operators
are chained, it means that the computations they represent will be executed by
the same thread, reducing communication costs, unnecessary context switching,

serialization and other overheads.

Next, the Job Graph is deployed to the Job Manager to create the Execution Graph.
The Execution Graph is essentially the parallel version of the Job Graph. Each Job
Vertex is represented in the Execution Graph by an Execution Job Vertex. To express
the parallelism of the computation, every Execution Job Vertex encapsulates one or
more Execution Vertices. Each Execution Vertex, therefore, represents one parallel
task. Finally, the Intermediate Dataset nodes of the Job Graph are represented in the
Execution Graph by Intermediate Result nodes, that contain the results of each parallel
partition.

The tasks that are described in the Execution Graph are then scheduled to be ex-
ecuted on the Task Managers. The number of parallel tasks that each Task Manager
can execute is defined through the task slots. The task slots express how the hardware
resources will be divided within a Task Manager. For example, if a Task Manager has
four task slots, then each will obtain 1/4 of the managed memory for its computation.
Moreover, by specifying the number of task slots, the users specify how the subtasks
are isolated from each other. For example, if multiple task slots are used, then multiple
subtasks share the same JVM instance. If only one task slot is used, then each group
of tasks is executed on a separate JVM instance.

Figure 2.7 presents the workflow of a Flink user program, with the graphs discussed

above in their corresponding components of the Flink cluster.

Example

To gain a better understanding of the graphs described above, the dataflow graphs
(Plan, Optimized Plan, Job Graph and Execution Graph) that would be generated for
the code in Listing 2.1 will be presented.

This example assumes that the parallelism of the map and reduce operators is set
to two, meaning that the computation will be split among two parallel Java threads.

The first dataflow graph is the Plan (Figure 2.8). It is a minimal representation of
the computation, containing information such as the parallelism of each operator and
the execution flow between them. As seen, the Plan consists of four nodes, a node that
represents the reading of the input (DataSource), a node for the map function, a node

for the reduction and finally one for the output (DataSink).
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Figure 2.7: An Overview of the Workflow in a Flink Cluster.
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Figure 2.8: The Flink Plan for the Operations in Listing 2.1.

Next, the Optimized Plan (Figure 2.9) is constructed. During the creation of this
plan, the operators are analyzed and the distribution strategies are decided. Given the
operators of the example and their parallelism, it is assumed that Flink would choose
the following distribution strategies. The first one is Redistribution, which indicates
to the system to partition randomly the dataset among the subtasks. The second is
Forward, which signifies that the data will be send locally to memory. The last strat-
egy is typically chosen to transfer data between tasks that have the same degree of
parallelism. Next, a possible way that these strategies could be assigned among the
vertices of the Optimized Plan will be discussed, and the purpose of each vertex will
be described.

As shown in Figure 2.9, the Optimized Plan for this example contains five nodes
instead of four that the Plan had. The first node is the DataSource, which represents
the input source, as in the Plan. The next node expresses the map operator. Since
this transformation will be executed by two parallel threads, the input data of this

operator will be distributed among each parallel instance (redistribution policy). The
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node that follows represents the reduction. The reduction has the same parallelism as
the previous task, so in this case the results of the map operator can be forwarded in a
one-to-one fashion, from each map subtask to a reduce subtask (forward policy). The
next node in the Optimized Plan is an extra reduction node. This node indicates that
after the parallel reduction has been executed, a final reduction has to be performed to
merge the results of each thread. This is defined by the nature of the computation, since
reductions return a single element on Flink. As the parallelism of the two reduction
nodes is not the same, the redistribute policy is used to send the data. Finally, the

single-threaded reduction forwards the final results to the DataSink node.

Optimized Plan

DataSource Rl Map Realislanie Reduce DataSink

parallelism: 1 parallelism: 2 ism: parallelism: 1 parallelism: 1

Figure 2.9: The Flink Optimized Plan for the Operations in Listing 2.1.

Using the Optimized Graph described above, the Job Graph (Figure 2.10) is con-
structed. The Job Graph consists of two types of nodes, the Job Vertices (purple) that
represent the operators expressed in the Optimized Plan and the Intermediate Datasets
(yellow) that depict the datasets that are produced after each operator. In this example,
it is assumed that the map and first reduce can be chained, since they have the same
degree of parallelism. This means that each subtask of these two operators will be

executed by the same thread, on the same task slot of the Task Manager.

Job Graph

A P A SR T
/ NN\ 7N /N
[ DataSource | Intermediate ( Map Reduce | Intermediate [ Reduce | Intermediate [ DataSink |
‘\parallelismﬂ /,w‘ Dataset \parallelism: 2 \parallelism: 2/ Dataset \Tallelism: 1’/‘ Dataset \parallelism: 1/

Figure 2.10: The Flink Job Graph for the Operations in Listing 2.1.

Finally, the Job Manager, using the Job Graph, constructs the Execution Graph, as
presented in Figure 2.11. As mentioned above, this is a parallel representation of the
Job Graph. It consists of Execution Job Vertices and Intermediate Result nodes. Each
of these two types of nodes encapsulates their degree of parallelism by having multiple

Execution Vertices and Intermediate Result Partitions, respectively.
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Figure 2.11: The Flink Execution Graph for the Operations in Listing 2.1.
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2.3 Hardware Accelerators and Heterogeneous Execu-
tion

Hardware accelerators are devices that appear to be particularly efficient in executing
certain tasks. This thesis examines how Big Data applications can gain performance
by exploiting two types of accelerator devices, GPUs and FPGAs. The architecture of
GPUs differs from the architecture of FPGAs, so different workloads and/or algorith-
mic patterns perform better on one or the other. For example, GPUs deliver fine-grain
execution and data parallelism due to their ability to utilize thousands of threads con-
currently, in which physical cores execute the same instructions with different input
data items (SIMD) [OHL'08]. On the other hand, FPGAs offer coarse-grain exe-
cution and pipeline parallelism, as they can combine various on-device resources (i.e.,
blocks of memory, registers, logic slices) to compose diverse hardware blocks [CHO2].
Therefore, GPUs are suitable for accelerating applications, such as computer vision
[FMO05, KCR"17] and deep learning (DL) [GCS™, GZYE20, SOV *20], that inher-
ently offer a large number of operations that can execute in parallel; whereas FPGAs
are used in applications, such as financial technology [Xil21], for accelerating math
operations (e.g., sine and cosine).

The term heterogeneous execution refers to computations that take place using
different types of processing devices (e.g., CPUs, GPUs, FPGAs, etc.). In order to
program heterogeneous hardware accelerators several programming models with dif-
ferent characteristics can be used (e.g., OpenCL [Gro21, SGS10], CUDA [Cor21b],
OneAPI [INT22]). The prime goal of these models is to ease programming by exposing
a unified way of coding that is applicable to every device type. Typically, the execution
of a program is separated in two code segments: (i) the host code that runs on the main
CPU:; and (ii) the kernel code that is offloaded on the hardware co-processors that are
connected to the CPUs via PCle. Through these programming models, developers can

explicitly orchestrate the execution of the two code segments in three steps: (i) the
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host code copies the input data to the on-device memory (e.g., GPU DRAM, FPGA
DRAM); (ii) the kernel code is launched to perform a computation over the input data;
and (iii) the result of the computation is copied from the on-device memory to the CPU
main memory. Additionally, these programming models allow developers to explicitly
utilize the memory hierarchy of a device type in order to increase the performance
of memory accesses for compute kernels (e.g., global, local, and private memory on
GPUgs).

2.4 Summary

This chapter introduced the main concepts that constitute the background of this the-
sis. First, an overview of Big Data frameworks was provided, focusing on their pro-
cessing model and architecture. The processing models that were presented were the
map-reduce (used by Hadoop) and the dataflow (used by Apache Flink and Apache
Spark). Then a discussion section followed, that introduced the focus of this thesis,
which is distributed dataflow systems in batch processing mode. Furthermore, Apache
Flink, which is the distributed dataflow system that was used for prototyping, was pre-
sented. Two parts of Flink were discussed in detail, its programming model and the
representation of the computation throughout its layers. Finally, some basic terminol-
ogy regarding the heterogeneous execution and hardware accelerators was established.
The next chapter will present the most prominent advances in accelerating map-reduce

computations and Big Data applications using hardware accelerators.



Chapter 3

Related Work

This chapters presents the related work of this thesis. Specifically, Section 3.1 elabo-
rates on the most notable map-reduce frameworks that use GPUs and/or FPGAs for
acceleration, with subsection 3.1.1 providing a critical overview for each of them.
Additionally, Section 3.2 presents the current state-of-the-art Big Data Platforms that
support execution on devices such as GPUs and FPGAs. This thesis separates these
platforms into two categories. The first category consists of frameworks that rely on
pre-compiled kernels (subsection 3.2.1) and the second category has platforms that
generate the kernels dynamically (subsection 3.2.2). Subsection 3.2.3 reflects on these
implementations and evaluates them in terms of their programming overhead and de-

vice coverage. Finally, Section 3.3 summarizes the presented frameworks.

3.1 Map-Reduce on GPUs and FPGAs

Due to the highly parallel nature of the map-reduce programming model, a lot of re-
search has been conducted on incorporating it to GPU and FPGA programming.

Catanzaro et al. [CSKO8] presented a framework that supports the execution of
map-reduce functions on GPUs. To use the proposed framework, the developers have
to write the map-reduce functions in CUDA and to tune low-level parameters, includ-
ing the number of threads per block, the number of registers used for every function etc.
Glasswing [EHHB14a, EHHB 14b] exposes a map-reduce OpenCL API to developers.
To optimize performance, the authors proposed a pipeline that coordinates between
all the activities involved in the map-reduce work-flow (computation, communication
between cluster nodes, memory transfers etc.).

Grex [BK13], is another significant map-reduce framework for GPU execution. In

36
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Grex, the applications are written in CUDA. The developers are responsible for mem-
ory management and can specify if the data is read-only or read-write. Additionally,
the authors considered several challenges for efficient execution (including optimal
data split, memory management, etc.), and introduced the lazy emit. The lazy emit is
an optimization during which the values of <key, value> pairs are stored in mem-
ory only if the developer indicates that they will be used during the execution. This was

implemented based on the observation that, in some cases, only the keys are utilized.

MapCG [HCC'10] exposes a C-like map-reduce API to developers. The memory
allocations and the communications are handled by the system. Mars [HFL108] is
an optimized framework for GPU execution that provides a C/C++ map-reduce API.
MATE-GC [JA12] provides a CUDA map-reduce API. The data management between
the host and the device is handled by the developers. Additionally, this framework uses
generalized reductions. During the generalized reductions, as defined in this work,
for each input element, the map and the reduce are performed in a single step, in
order to avoid the overheads due to sorting and grouping the data. MGMR [CQJ " 13]
was developed in CUDA and C++. This framework can target NVIDIA Fermi GPUs.
NVIDIA GPUDirect [Cor21a] is used to enable remote GPU memory access without
going through CPU memory.

Stuart et al. [SCMO10, SO11] also worked extensively on accelerating map-reduce
operations using GPUs. In [SCMO10], a map-reduce volume rendering implementa-
tion was proposed, which can be executed on multi-GPU clusters. Then, in [SO11]
the same authors presented GPMR, a map-reduce library written in C++ and CUDA.
In order to obtain optimal performance, the authors performed several optimizations,
such as applying the maps and reductions on large chunks of data to get optimal GPU
utilization and overlapping communication with computation. Chen et al. [CA12] and
Jiet al. [JM11] also provided a map reduce framework for GPU execution. The main
innovation of their work was that they utilized GPU’s shared memory for optimal per-

formance.

StreamMR [ELcFS11] is an OpenCL map-reduce framework optimized for AMD
GPUs. Soren [MAKAI11] is a another novel map-reduce framework for GPU execu-
tion. It uses a training dataset to extract monitoring information (i.e. number of <key,
value> pairs, number of unique keys etc.) which is used for system tuning. The

authors also proposed a technique to incrementally combine reduction results and a
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mechanism that handles memory overflows. Ravi et al. [RMCA10] created an LLVM-
based [LA04] compiler and a runtime to run reductions on GPUs. Their system pro-
vides an annotated-C API to the developers. Moreover, the authors evaluated various
load distribution schemes between GPUs and CPUs.

SkePU [SI09] and SkelCL [SKGI11] are C++ template libraries that target multi-
GPU systems. SkelCL generates OpenCL code for a set of skeleton functions (i.e.
map, reduce, scan and zip). SkePU exposes an API that consists of a set of macros,
which are used to generate CUDA and OpenCL code. Lift [SRD17] is a compiler
that generates OpenCL code for algorithmic skeletons which are written in C/C++. To

achieve that, it uses an intermediate representation (named LiftIR).

Chen et al. [CHA12] introduced an OpenCL map-reduce API that targets integrated
CPU-GPU chips. Xie et al. [XKB13] presented Moim, a map-reduce framework that
distributes the execution among CPUs and GPUs. It utilizes Thrust [BH12], which is a
parallel programming library for CPU and GPU execution. In Moim, the user code has
to be written in CUDA. Additionally, the authors of Moim explored how to perform
efficient load balancing among the reducers and among the mappers.

Tsoi et al. [TL10] implemented a map-reduce framework which targets clusters
with heterogeneous nodes, i.e. nodes that potentially consist of multiple processing el-
ements of different types, such as CPUs, GPUs, and FPGAs. OpenMPI [Pro21] is used
to transfer data between the cluster nodes. Furthermore, the kernels for each different
type of device have to be provided by the developer. In [YTT'08] the authors pre-
sented a C map-reduce library that can run on both GPUs and FPGAs. The functions
are manually translated to HyperStreams for FPGA execution and CUDA for GPU

execution.

The FPMR framework [SWY 10] enables developers to target FPGAs by provid-
ing RTL map and reduce modules. Task scheduling, communication, and data syn-
chronization are performed automatically. Additionally, Choi et al. [CS14] presented a
version of KMeans developed specifically for FPGAs using the map-reduce program-
ming model. The map-reduce functions are implemented using FPGA fabrics. The
system has a inter-FPGA communication channel to enable data movements between
FPGAs and a management layer that performs tasks like handling job requests and
monitoring the cluster. Finally, Spatial [KKO™ 18] is a Domain Specific Language
(DSL) and compiler that provides high-level abstractions for FPGAs and CGRAs. The
API of Spatial consists of dataflow operators (e.g. Reduce) and methods that develop-

ers can implement for memory management.
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3.1.1 Discussion

Although, the works discussed above, enable developers to take advantage of the map-
reduce abstraction of parallelism for hardware acceleration, they focus more on per-
formance and less on programmability. Specifically, in many of the implementations
proposed, the developers have to write code in a low-level programming language (e.g.
[CSKO08, BK13, JA12, CQJ™13, CHA12, SWY T10]). Moreover, in some works, de-
velopers have to handle low-level details (e.g. to define the number of registers used
[CSKO08] or to perform memory management [BK13, JA12, KKO™'18]).

Furthermore, most of the works presented are solely focused on GPU execution
[CSKO08, EHHB14a, EHHB14b, BK13, HCC*10, HFL 108, JA12, CQJ ™13, SCMO10,
SO11, CA12, IM11, ELcFS11, MAKA11, RMCA10, SI09, SKG11, SRD17], while
some of them [CSKO08, BK13, JA12, CQJ"13, ELcFS11, XKB13, YTT'08, SO11]
can only target devices from specific vendors. In some implementations, even though
the proposed frameworks can target both GPUs and FPGAs, they require developers
to write and maintain multiple versions of the applications, one for each target device
(i.e. [TL10]).

The target audience for all the works discussed above, is developers that are famil-
iar with the architecture and programming model of hardware accelerators. Making
heterogeneous devices accessible to high-level developers is one of the main chal-

lenges that this thesis strives to overcome.

3.2 Big Data Frameworks on GPUs and FPGAs

This section includes the most prominent research conducted on accelerating Big Data
Platform using GPUs and/or FPGAs. Table 3.1 summarizes the current state-of-the-
art and presents for each implementation whether it fulfills the criteria presented in
Section 1.1, specifically: (i) if it leads to code fragmentation, (i1) if the low-level code
is generated on-demand or if pre-compiled kernels are required, (iii) if a vendor lock-in
is imposed, and finally (iv) what the possible target devices are. As shown in Table 3.1,
there is currently no Big Data framework that can target CPUs, GPUs and FPGAs
on demand, without fragmenting the codebase or locking on a specific vendor. The
framework that will be presented in this thesis will differentiate from the current state-
of-the-art, as it will be able to dynamically target CPUs, GPUs and FPGAs without

any restrictions or new APIs.
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Table 3.1: The related work on hardware acceleration of Big Data frameworks.

Implementation |Big Data Framework | Code Fragmentation |Code Generation |Vendor Device Coverage
lock-in
[HCJ17], Spark Yes Pre-compiled Yes GPUs (NVIDIA)
[LLZC15],
[LHWW21],
[MT16],
[OMM 6],
[HCI21],
[YSHT16]
[GC16], [GC19],|Spark Yes Pre-compiled Yes FPGAs (Xilinx)
[HZK 18],
[HWY*16]
[SKKS18] Spark Yes Pre-compiled No FPGAs
[VAA19] Spark Yes Pre-compiled No CPUs, GPUs, FP-
GAs
[GS16] Spark Yes On-demand No CPUs, GPUs, FP-
GAs
[SCNT15] Spark Yes On-demand No CPUs, GPUs, FP-
GAs, APUs, DSPs
[GIS15] Spark Yes On-demand No GPUs
[CJ15], [RE20] Spark Yes On-demand Yes GPUs (NVIDIA)
[HCL*15] Hadoop Yes Pre-compiled No GPUs
[RSAT17], Hadoop Yes Pre-compiled Yes GPUs (NVIDIA)
[ZLH"14]
[AKA12] Hadoop Yes Pre-compiled Not GPUs
defined
[FVCCO09] Hadoop Yes Pre-compiled Yes GPUs (NVIDIA)
[TLHC12] Hadoop Yes Pre-compiled Yes CPUs, GPUs
(NVIDIA)
[LC13], Hadoop Yes Pre-compiled Yes FPGAs (Xilinx)
[NMGH15],
[NMG™*15],
[NMH15],
[NSH16]
[GBS13], Hadoop Yes On-demand No GPUs
[GBS16],
[LOR12]
[SSE15] Hadoop Yes On-demand Yes GPUs (NVIDIA)
[CLOT 16, Flink Yes Pre-compiled Yes GPUs (NVIDIA)
Fou22b]
[COTL17] Flink Yes Pre-compiled Yes CPUgs, GPUs
(NVIDIA)
[CLOL18] Flink Yes On-demand No CPUs, GPUs
[CXT*15] Storm Yes Pre-compiled Yes GPUs (NVIDIA)
[WHIT19] Storm Yes Pre-compiled Yes FPGAs (Intel)
[[SBK20] [Ignite [Yes [Pre-compiled  [Yes |GPUs (NVIDIA)
This thesis Flink (although | No On-demand No CPUs, GPUs,
transferable to FPGAs
other frameworks)
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The next two subsections describe in detail the works presented in Table 3.1, clas-
sifying them into two categories. Specifically, subsection 3.2.1 presents the imple-
mentations that require a pre-compiled kernel to be provided by the developer and
subsection 3.2.2 all the works where the code is compiled at runtime. In both sub-
sections, the implementations that are presented, are further categorized depending on
their basis framework. Finally, subsection 3.2.3 provides further discussion on the cur-
rent state-of-the-art in Big Data acceleration, in the context of the criteria presented in
Table 3.1

3.2.1 OpenCL/CUDA Pre-built kernel
Apache Spark

Below are presented some of the most notable efforts of accelerating Spark using pre-
built kernels. Hou et al. [HZK " 18] proposed using Python ctypes on Apache Spark
to invoke pre-compiled OpenCL kernels on Xilinx FPGAs. Stamelos et al. [SKKS18]
enabled FPGA acceleration on Spark for machine learning applications. In this work,
JNI is used for kernel invocations. Ghasemi and Chow [GC16, GC19] also accelerated
Spark with FPGAs but, in their framework, the map and reduce functions have to be
written in RTL. Ohno et al. [OMM16] augmented Spark workers to launch CUDA
kernels using JCUDA for data-intensive operators.

Hong et al. [HCJ21, HCJ17] also worked extensively on enabling GPU execution
on Spark. In [HCJ21] the authors augmented Spark with an OpenGL/CUDA APL
Additionally, several inter and intra node communication optimizations were deployed
and MPI was used to enable direct communication between nodes. In [HCJ17], the
authors exposed a Python API on Spark. In this implementation, the GPU kernels are
launched using pyCUDA. To further optimize the execution, it was proposed to store
the data off-heap, in order to skip the deserialization/deserialization process. Manzi
and Tompkins [HCJ21] utilized pyCUDA wrappers to distribute the execution on the
GPUs.

In HeteroSpark [LLZC15], the developers provide pre-built CUDA kernels, which
are deployed on NVIDIA GPUs using JNI. Blaze [HWY *16] is a framework that uses
Hadoop YARN as the resource management tool. In this work, the software and the
hardware code implementations are decoupled, meaning that a software developer can

utilize an API to indicate the request of performing a computation to an FPGA, while
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a hardware expert is responsible for implementing the actual FPGA design. Addition-
ally, this work provides custom serializers/deserializers for primitive data types and
provides the functionality for users to implement their own serializers in order to use
arbitrary data types.

Chen et al. [CCF'16] also suggest abstracting FPGAs as a service. In their pro-
posed framework, FPGA execution is triggered using JNI. Rathore et al. [RSAT17]
presented a real-time stream system that integrates Hadoop with Spark and GPUs.
Spark is used for capturing the data and distributing it among the Hadoop nodes and
each worker node is equipped with a GPU that executes a pre-compiled CUDA kernel.

ShadowVM [LHWW?21] proposes the decoupling of the Spark control plane from
the data plane. The control plane consists of a virtual RDD (vVRDD) that specifies the
pipeline of computations and the dependencies between them, while the data plane
contains the actual data and performs the computation on either a CPU, a GPU or
both. ShadowVM supports kernel implementations written in CUDA, and the loading
of the data does not go through the JVM. Instead, it takes place directly on the data
plane via the invocation of CPU native code and system calls. To further improve
performance the authors also propose a passive prefetcher, that overlaps data transfers
with computation and loads data from the main memory to the GPU memory only
when they are about to be consumed by the kernel. This was implemented is based
on the observation that, in some cases, not the entire dataset is consumed by certain
computations (e.g. queries that are not applied on all columns).

Spark-GPU [YSH™ 16] provides a custom RDD data structure, named GPU-RDD,
that consists of two interfaces: (i) a standard interface that enables the integration of
GPU-RDD with existing Spark data flows; and (ii) a block interface that returns the
address of the buffered data. The buffered data is stored in the native memory instead
of the Java heap. Furthermore, Spark-GPU offers a Scala interface that wraps a kernel
implementation written in OpenCL or CUDA by the users. The kernel is invoked via
JNI. Another framework that can facilitate the execution offloading from Spark on
CPUs, GPUs, or FPGAs, is SparkJNI [VAA19]. This is a Spark plugin that enables
developers to submit blank Java user functions that can be used for native execution
and integration with user-defined pre-built kernels.

Apache Flink

This class of research work consists frameworks built on top of Flink that enable GPU

acceleration using pre-compiled kernels. Currently, Apache Flink offers developers
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the option to run their applications on NVIDIA GPUs. This is achieved by invoking
CUDA kernels through JCuda [Hut22b] or by using JCublas [Hut22a] to perform linear
algebra operators on vertices and matrices. Developers have to explicitly handle data
transfers from the host to device and vice versa using JCuda. Chen et al. [CLO™16]
propose GFlink, which allows users to write their code in Java using a specific API of
the platform. In this work, developers have to provide the pre-compiled CUDA kernels
that will be executed, while also utilizing a particular data structure for defining the
input data. Chen et al. [COTL17] present an extension of GFlink that showcases the
acceleration of variants of the extreme machine learning algorithm (ELM). This work
augments GFlink with a heterogeneous task manager in order to enable efficient hybrid
execution between CPUs and GPUs.

Hadoop

Next, the most prominent efforts on accelerating Hadoop with a user-provided kernel
are presented. Pamar [TLHC12] supports the execution on CPUs or GPUs and offloads
the execution of functions on GPUs via JCUDA. Users can annotate their code to indi-
cate to which device it should be executed (CPU or GPU). Apart from that, the paper
also presents a heterogeneous scheduler which uses a first-come-first-served policy.

Surena [AKA12] uses JNI code to execute the user functions on GPUs and to copy
the data (in a byte array form) to the GPU memory. To determine how the compu-
tation should be distributed among the CPU and the GPU, the platform monitors the
execution on both units by deploying each computation with a small subset of data
on them. Then, the rest of the computation is deployed on the hardware unit that re-
sulted in higher performance. Surena uses JNI to deploy the kernels on the GPU. This
framework also supports several scheduling optimizations to limit GPU idleness.

Neshatpour et al. [NMGH15, NMH15, NSH16, NMG ™ 15] use Hadoop Streaming
to write C-like map/reduce functions which are converted to RTL using the Xilinx
Vivado HLS. Zhu et al. [ZLH"14] enable Hadoop users to target GPUs by writing
their code on Java and CUDA. Hadoop+ [HCL15] focuses on managing resources
between CPUs and GPUs in heterogeneous execution. This work provides two metrics
(execution time and cost) as well as a formula to aid users tuning the migration of the
execution between a CPU and a GPU. Nonetheless, users are responsible for providing
the implementation of the kernels in OpenCL or CUDA.

Shirahata et al. [SSM10] propose a platform built on top of Hadoop. They present
three ways to deploy the user-provided CUDA kernel, Hadoop Streaming, Hadoop
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Pipes and JNI but eventually choose Hadoop Pipes. Finally, in Mithra [FVCC09] the
developers have to also provide an implementation using Hadoop’s API in order to
take advantage of the data distribution mechanism of Hadoop and provide the CUDA

kernel which is invoked using Hadoop Streaming.

Apache Storm & Apache Ignite

The works described below have studied the integration of heterogeneous execution
on other distributed frameworks, such as Apache Storm [Fou2lc] and Apache Ig-
nite [Fou21b]. G-Storm [CXT*15] targets GPUs via JCUDA to offload PTX kernels
provided by the users. F-Storm [WHI' 19] requires developers to write their OpenCL
kernels which are then passed to the FPGAs via a JNI function call. Finally, Ignite-
GPU [SBK20] uses JCUDA to load and execute CUDA kernels on GPUs from Apache
Ignite.

3.2.2 Runtime Compilation

This subsection presents Big Data frameworks that do not rely on pre-built kernels, but
compile the code at runtime instead. Again these frameworks are classified based on

their basis platform (i.e., Spark, Flink and Hadoop).

Apache Spark

This category consists of Big Data frameworks, implemented using Spark, that can dy-
namically target heterogeneous devices. Grossman et al. [GIS15] provide support for
JVM object types (e.g., Tuple2, SparseVector and DenseVector) on GPUs by mod-
ifying Aparapi [apal6] to handle objects as structs in C. In addition, this work provides
custom serializers that serialize objects so that their byte layout matches that of the cor-
responding structs. However, the fields of the serialized objects have to be primitives.
As an extension, Grossman and Sarkar [GS16] present SWAT, a system that compiles
JVM bytecodes to OpenCL kernels that can execute on hardware accelerators. SWAT
also provides support for multi-GPU memory handling by implementing an internal
library that performs caching of data on OpenCL devices.

SparkCL [SCN™15] provides a Java API, in which the users have to implement
two functions that corespond to how the pre-processing and post-processing of the
data should be performed. The system uses a fork of Aparapi, Aparapi Ucores, which

supports binary execution flow accelerator types (for FPGAs) and enables execution
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on FPGAs, GPUs, APUs and DSPs. Furthermore, Choi and Jeong [CJ15] propose
Vispark, a Python-like language that translates the source code to execute on GPUs.
The authors introduce an extension of RDD that instead of applying the computation
iteratively, it copies the chunk data into the GPU and launches a CUDA kernel that can
operate in parallel. Lastly, Apache Spark 3.x is accelerated on NVIDIA GPUs [RE20]
using the RAPIDS API [rap21].

Apache Flink

Chen et al. [CLOL18] present FlinkCL, which requires developers to use a Java-based
API, however they do not need to provide the CUDA kernel. Instead, the system
uses Aparapi to JIT compile the Java user functions to OpenCL kernels. Moreover,
this work proposes a data mapping scheme to avoid serialization and deserialization
between the JVM objects and the OpenCL structs. This scheme allows users to define
the preferred memory layout (Structure-of-Arrays or Arrays-of-Structures). Moreover,
an auto-tuning partitioning scheme and a dynamic load balancing scheme for GPU-
CPU execution are proposed. Some extra optimizations compared to GFlink include
the ability to execute the same tasks on both CPUs and GPUs simultaneously, and the
memory optimizations regarding the avoidance of transferring intermediate results to

main memory.

Hadoop

Lastly, heterogeneous frameworks that are based on Hadoop and can generate low-
level code on-demand are presented. Okur et al. [LOR12] introduce Hadoop+Aparapi
(HAPI), a framework that requires developers to implement three functions: (i) preprocessing
which makes data GPU-compatible, (i1) gpu (), which contains the computation, and
(iii) postprocessing (), which is responsible for retrieving the results of a kernel.
HAPI provides this interface only for mappers. HadoopCL [GBS13] is a framework
that employs Aparapi to compile Java map and reduce functions to OpenCL. In addi-
tion, extra communication threads are used to maximize the utilization of bandwidth.
HadoopCL2 [GBS16] is another framework that provides a Java map-reduce-combine

API. The system uses a modified Aparapi software to target GPUs, which supports
dynamic memory management. HadoopCL2 provides a runtime layer that manages
memory as well as an offline debugger to check for correctness and performance. An-
other work on running Hadoop operations on GPUs is HeteroDoop [SSE15]. In this

work, the developers have to annotate the code with HeteroDoop directives to enable
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source-to-source translation by using the Cetus compiler. This work also proposes a
tail scheduling scheme. A GPU-first policy is used until the final tasks are deployed,
which are forced on the GPU.

3.2.3 Discussion

The research works discussed in the previous subsections share one crucial shortcom-
ing; they all lead to code fragmentation. This is self-evident for the implementa-
tions that require prebuilt kernels (e.g., [HZK"18, SKKS18, GC16, GC19, CLO* 16,
Fou22b, COTL17, TLHC12, AKA12]), as the existing programs have to be translated
to a low-level representation, be it CUDA, OpenCL or PTX. However, even though
solutions that provide dynamic code generation alleviate Big Data developers of the
burden to familiarize themselves of the programming language and architecture of
each target device, the existing programs still have to be rewritten to adhere to the API
of each of these frameworks. Therefore, utilizing these systems leads once again to

fragmented code bases.

Additionally, some implementations can only target one type of hardware acceler-
ator (i.e. only GPUs [HCJ21, HCJ17, LLZC15, LHWW?21, HCJ21, OMM16, RE20,
CJ15, RSA*T17, FVCC09, SSE15, ZLH" 14, CLO"16, Fou22b, CXT"15, SBK20,
YSH*16, HCL'15, AKA12, GBS13, GBS16, LOR12] or only FPGAs [SKKS18,
WHI' 19, GC16, GC19, LC13, NMGH15, NMH15, NSH16, NMG ™ 15]), which is
restrictive, as these frameworks cannot harvest the full potential of heterogeneous
computing. Making matters worse, some works can only target devices from spe-
cific vendors (i.e. only NVIDIA GPUs [HCJ21, HCJ17, LLZC15, LHWW21, HCJ21,
OMM16, RE20, CJ15,RSAT17, FVCC09, SSE15,ZLH" 14, CLO" 16, Fou22b, CXT*15,
SBK20] or only Xilinx [GC16, GC19, LC13, NMGH15, NMH15, NSH16, NMG ™ 15]
or Intel [WHIT19] FPGAs), leading to vendor lock-in.

By studying the current state-of-the-art, it becomes evident that there is a big gap in
Big Data acceleration that needs to be filled, since there is currently no uniform solu-
tion for fully transparent and hardware-agnostic acceleration of Big Data applications.
This thesis strives to fill this gap by investigating the main challenges in integrating het-
erogeneous accelerators on Big Data frameworks (Chapter 4) and by proposing a set of
techniques that tackle these challenges and enable automatic acceleration of Big Data
applications on both GPUs and FPGAs, without breaking the programming norms or

requiring any user intervention (Chapter 5).
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3.3 Summary

This chapter presented efforts to offload map-reduce computations on GPUs and FP-
GAs as well as the most notable advancements on enabling heterogeneous execution
for Big Data execution. The map reduce frameworks that were presented rely on the
developers to provide an implementation in a low-level programming language and re-
quire expertise in the architectural details of each target device. Regarding accelerated
Big Data Frameworks, which use the map-reduce programming model, the current
literature consists of two classes of works.

In the first category, belong platforms that require from developers to write their
implementation in OpenCL or CUDA. The disadvantages of this approach are the same
as above. The second category consists of platforms that enable allow developers to
express their implementation in a high-level language and use a compilers (mostly
Aparapi) to deploy the computation on different devices. However, in all of these
approaches the developers have to write their implementation in an API that is enforced
by the platform leading to code fragmentation. The proposed framework of this thesis,
which will be presented in Chapter 5, goes beyond the state-of-the-art, as it does not
require from the developers neither to write their code using a new API nor to provide
a CUDA or OpenCL implementation. The next section will present the challenges that

were identified when trying to develop the proposed platform.



Chapter 4
Understanding the Challenges

As explained in the related work presented in Chapter 3, to enable GPU and/or FPGA
execution it is necessary to provide a low-level representation of the code, either by
writing the kernel by hand or by generating a kernel via JIT compilation. Providing
an efficient pre-compiled kernel implementation in languages like OpenCL or CUDA
requires a deep understanding of the architectural details of each target device. More-
over, multiple versions of the kernels have to be provided to allow targeting different
accelerators. Naturally, this leads to having a code-base that is difficult to maintain and
to expand, since a lot of effort is required to support new use cases.

Using a tool that can directly target hardware accelerators from a high-level pro-
gramming language alleviates these issues. Looking at the current state-of-the-art, the
most popular framework for JIT compilation of Big Data applications to low-level
code is Aparapi. However, Aparapi cannot target FPGAs and is limited to multi-core
systems and GPUs instead.

An alternative to Aparapi is TornadoVM. TornadoVM has being gaining traction
over the last few years with plenty of research revolving around it [PFSK21, PMF 21,
BSFK22, PFS*21, SOV20]). In contrast to Aparapi, it provides support for multiple
backends (OpenCL, SPIR-V, PTX) and can target FPGAs, which is crucial for the
purposes of the proposed implementation. Moreover, it offers several features which
could be used to optimize acceleration of Big Data applications in future works. One
of these features is its ability to perform live mitigation of tasks on the best device
based on specific policies [FPZ19]. Consequently, TornadoVM was chosen for the
implementation of the proposed heterogeneous Big Data platform.

This chapter provides an introduction of TornadoVM and explores the feasibility

of integrating it with Flink. Specifically, Section 4.1 presents the architecture and API
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Figure 4.1: TornadoVM Execution Flow.

of TornadoVM. Section 4.2 identifies the incompatibilities between Flink and Tor-
nadoVM and highlights the challenges of integrating the two. Section 4.3 presents an
initial, naive integration of Flink and TornadoVM. This first version of the integration
does not have much novelty, as it relies on techniques used by the current state-of-
the-art (i.e. providing a new API). However, developing it served two purposes. The
first was to prove that enabling Flink to dynamically target GPUs and FPGA via Tor-
nadoVM is attainable. The second was to gain the insight necessary to develop the
final platform, which can seamlessly offload Big Data computations on heterogeneous
devices in a user-agnostic manner (presented in Chapter 5). Section 4.4 pinpoints the
limitations of this initial system and identifies the gaps that need to be filled to develop

the end-goal platform. Finally, Section 4.5 summarizes the contents of this chapter.

4.1 TornadoVM

TornadoVM is a plugin to OpenJDK that enables programmers to dynamically offload
and run Java programs on multi-device platforms. As depicted in Figure 4.1, it con-
sists of a specialized Java API and a runtime engine that analyzes the user programs,

compiles them with a heterogeneous JIT compiler and deploys them for execution.
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TornadoVM API: The API exposed by TornadoVM is fask-based, meaning that the
methods to be accelerated are written in tasks. The Java programs that can be acceler-
ated with TornadoVM have to use primitive types, since Java objects are not supported
(with the exception of some specific types provided by the framework). Moreover,
the API exposes two annotations that can be used. The first is @Parallel, which is
used to indicate that there are no dependencies in the loop code and, therefore, that it
can be parallelized. The second annotation is €Reduce, which marks the variable that
will store the results of a reduction. This serves as a hint to the TornadoVM compiler,
since reductions have dependencies that need to be taken into account during the paral-
lelization. The TornadoVM tasks are encapsulated in Task Schedules. If multiple tasks
are grouped in the same Task Schedule then the runtime can analyze the dependencies

between them and perform data transfer optimizations automatically.

Listing 4.1: Computations Using TornadoVM API.

public class Computation {
private static void mult (int[] inl, int[] in2, int[] out)
{
for (@Parallel int i = 0; 1 < out.length; i++) {
out[i] = inl[i] * in2[i];

private static void sum(int[] in, @Reduce int[] out) {
for (@Parallel int i = 0; 1 < out.length; 1i++) {
out [1] += in[i];

14 public static void main(int[] inl, int[] in2, int[] tmp,
int[] out) {
TaskSchedule ts = new TaskSchedule ("sO0")
16 .task ("t0", Computation::mult, inl, in2, tmp)
17 .task ("tl", Computation::sum, tmp, out)
18 .streamOut (out)
19 .execute () ;

Listing 4.1 provides an example of a Java program written with TornadoVM’s API.
There are two Java methods in this example. The first one, in lines 2-6, performs a mul-

tiplication of two int vectors. The second method in lines 8-12 sums up the results
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of the first function into a single value. As this function essentially performs a reduc-
tion, the €Reduce is used to annotate the output array (line 8). Both methods use the
@Parallel annotation in their for-loops (lines 3 and 9), to indicate to the TornadoVM
compiler that the enclosed code is a candidate for parallelization. In line 15, a Task
Schedule which contains two tasks, each for every Java method, is declared. Both
the Task Schedule and each task have a String identifier ("s0" for the Task Schedule,
"t0" for the first task and "t1" for the second task). The purpose of these identifiers
is so that they can be referenced at runtime. The streamOut in line 18 indicates to
TornadoVM that the out array has to be copied from the device memory to the host
memory. Finally, the execute command in line 19 triggers the execution of the Task
Schedule.

TornadoVM Engine: Next, using the Task Schedule, a data-flow graph is constructed,
which is passed to the TornadoVM Optimizer to identify any read-write data dependen-
cies between the tasks of the Task Schedule. This analysis is performed mainly for two
reasons. The first is to prevent unnecessary data transfers from the device to the host
and vice-versa. The second is to ensure that the scheduling order will respect any read-
write dependencies [CFPT18b]. For instance, in the example of Listing 4.1, the results
of the task "t 0" do not have to be copied to host memory. Instead, they can persist in
the device memory to be used directly as an input for the task "t1". Moreover, since
there is a read after write (RAW) dependency, TornadoVM ensures that the second task
will not be executed before the first.

Following the dependency analysis of the Optimizer, the TornadoVM bytecodes

[FPZ"19] are generated and interpreted to produce an Intermediate Representation for
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each Java method in a task. TornadoVM extends GraalVM [WWS10, WWW ™ 13] for
heterogeneous compilation. Specifically, the Graal IR [DWS™13] is expanded with in-
formation essential for parallel execution (e.g. whether global, shared or local memory
is used, which loop is marked with the annotation Parallel etc.) to build a com-
mon TornadoVM IR. Then, TornadoVM, following the three-tier optimization model
of Graal, includes phases in each tier (high, mid and low) to construct an optimized
IR per target architecture. Finally, specialized code (OpenCL C, PTX or SPIR-V bi-
nary) is generated and sent to the corresponding driver to be dispatched for execution.

Figure 4.2 summarizes the compilation process explained above.

4.2 Identifying the Incompatibilities

Integrating Flink with TornadoVM would enable the former to target a plethora of
heterogeneous devices transparently. Nevertheless, there are some key incompatibil-
ities between the two frameworks that have to be dealt with to make this integration
possible.

Regarding their programming models, the API of Flink (presented in Chapter 2,
section 2.2) differs from that of TornadoVM in the following ways. Firstly, in the
TornadoVM user methods, the parallelism is expressed explicitly (with the for-loop
inside the method). However, the parallelism of Flink is implicit, since user specifies
the computation that will be applied per element. Secondly, Flink operates on Java
objects, while TornadoVM only supports primitive types.

To highlight these differences, Listing 4.3 illustrates how a user function that is im-
plemented using Flink’s API (labeled (a)) would have to be rewritten to be compatible
with TornadoVM’s API (labeled (b)). The TornadoVM-compatible method has as in-
put two float arrays, since the Tuple? type is not supported. Additionally, a for-loop
with the @Parallel annotation surrounds the computation to indicate that this code is
a candidate for parallel execution. Finally, in (b), the array that will store the results is
passed as a function argument, and the return type is void instead of Float.

However, these are not the only incompatibilities between Flink TornadoVM. As
mentioned above, Flink executes its operations in a fine-grained way. This means that,
when a Flink computation is scheduled to the Task Manager, the pipeline of operators
is defined to be executed element by element. This flow of execution allows Flink to
have fine-grain control over checkpoints and failures. Nevertheless, this does not agree

with the execution model of TornadoVM, which is coarse-grained. Last but not least,
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public Float map (Tuple2<Float, Float> in) {
(a) return in.f0 + in.fl;

}
public void map (float[] inl, float[] in2, float[] out) {

for (@Parallel int i = 0; i < out.lenght; i++) {
(b) out [i] = inl[i] + in2[i];

Figure 4.3: A Flink User Function Written with the API of TornadoVM.

since Java objects are not supported by TornadoVM, the data has to be converted from
an object representation to primitive types in a process known as marshalling.
Therefore, the challenges to overcome in order to integrate the two frameworks can

be summarized as follows:

* #1 Challenge: The APIs of TornadoVM and Flink are not compatible.
TornadoVM exposes a task-based API, while, in Flink, the computations are ex-
pressed in the context of the DataSet, as explained in 2.2.1. Additionally, the
parallelism is expressed on a different level through the two APIs. Specifically,
in TornadoVM the parallelism is explicit, contrary to Flink, where the paral-

lelism is implicit.

* #2 Challenge: Flink relies heavily on Java objects but TornadoVM supports

only primitive types.

* #3 Challenge: Flink provides a fine-grained model of execution which does not
match that of TornadoVM.

Even though, initially, it might seem that the challenges described above are im-
posed only due to the specific frameworks of choice, this is actually not the case. These
challenges stem from the design decisions that were followed when these frameworks
were developed, so as to better fulfill their objectives. Similar design principles are
shared among their equivalent systems as well.

Specifically, Flink was developed to execute large applications on CPU clusters in
a scale-out manner. Consequently, both its API and execution model were designed

with that consideration. A fine-grained model of computation was deemed suitable for
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several reasons, such as that it is efficient for high-throughput devices (i.e. CPUs), it
makes recovery from failures easier and so on. Since essentially all Big Data platforms
share the same objectives as Flink, these design decisions are also followed by other
frameworks, such as Spark. Furthermore, most Big Data platforms expose APIs in
high-level programming languages, with Java being a quite common choice, so Java
objects are used frequently in Big Data applications. Thus, even if a different Big
Data framework were selected, the challenges of integrating it with TornadoVM, or
any other similar framework, would be equivalent.

Similarly, the limitations and design decisions of TornadoVM are actually imposed
by its target devices. When executing a kernel on hardware accelerators, the size of the
dataset has to be known in advance to determine the parallelism of the computation,
i.e the number of threads with which the kernel will be launched. Moreover, without
knowing the exact size of the input dataset it is difficult to decide if an application is
actually a good candidate for heterogeneous execution. For instance, if a very light
computation is deployed on a GPU, the device will be underutilized and, thus, no
performance will be gained. Additionally, Java object allocation and management is
not supported on accelerators such as GPUs and FPGAs, so in reality, this restriction
is also not imposed by TornadoVM but by the target platforms (and for that reasons it
is shared among other heterogeneous frameworks as well, such as Aparapi).

Hence, a more generic description of the challenges discussed above could be the

following:

* #1 Challenge: How to enable the execution of applications that are written using
a specific API of a Big Data framework on GPUs and FPGAs.

* #2 Challenge: How to handle Java object types on GPUs and FPGAs.

* #3 Challenge: How to use a coarse-grained model of execution on a Big Data

platform, while developers write their code in a fine-grained model.

Figure 4.4 presents a high-level overview of the challenges described above. In the
example illustrated in the figure, a Big Data framework deploys the execution on two
worker nodes. The first worker targets a CPU and the second a hardware accelerator
(i.e. GPU or FPGA). The first worker node receives the task, and executes the user
code on the CPU. The code is executed in a fine-grained way, for each element of the
input dataset. However, the second worker cannot execute the code on the available
hardware because it is written in a high-level language (challenges 1 and 2). Addi-

tionally, launching the execution on a hardware accelerator on an element-to-element
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Figure 4.4: Challenges of Enabling Heterogeneous Execution on Big Data Frame-
works.

basis (i.e. following the fine-grained model of execution) would severely impact per-
formance, as the costs of initializing the device and copying the data would strip any

performance gains (challenge 3).

4.3 Enabling Heterogeneous Execution: A Prototype

To verify that these, in fact, are the incompatibilities between the two frameworks, a
quick integration of Flink and TornadoVM was implemented as proof-of-concept. Fig-
ure 4.5 illustrates the extensions that were applied on Flink (colored green) to construct
this prototype. Subsections 4.3.1 and 4.3.2 will provide a description of how each of

these extensions handles the aforementioned challenges.

4.3.1 Extending the API of Flink

In this initial version of the integration, the API of Flink was extended, as demonstrated
on the Client component of Figure 4.5. Specifically, a new set of classes and interfaces
was provided to bridge the gap between the API of Flink and that of TornadoVM. The



56 CHAPTER 4. UNDERSTANDING THE CHALLENGES

Task Manager

Client task
Program Big Data Engine slot

Functions Data
- Execution Graph Buffer Buffer

Scheduler

task
slot

Optimized Plan
Job Graph

Figure 4.5: The First Version of the Flink-TornadoVM Integration.

UML diagram in Figure 4.6 (left side) presents a new class hierarchy for TornadoVM-
compatible Flink operators, while on the right side of Figure 4.6, is the class hierarchy
of the Flink operators as presented in 2.2.1. The purple components of the left-side
UML diagram shows the extensions over the existing operator interfaces of Flink. For
simplicity, in the discussed UMLs, p[] represents primitive arrays and [Operator]
is used to represent either a map or a reduce operator, as these were the ones mainly
studied in this thesis.

Specifically, for each operator, a new interface called TornadoFunction is pro-
vided with a set of typed and non-generic new methods, named tornadoOperator.
The abstract class TornadoFunctionBase implements the tornadoOperator meth-
ods with a common template. Therefore, if a user class extends the TornadoFunction-
Base, the code of the application can be written - in a TornadoVM-compatible way - in-
side the compute function that is exposed. Note that the whole stack of Flink operates
under the assumption that user functions are applied on Java objects, not on primitives.
Therefore, the DataSets are declared as in the programs written in the original Flink

version.

4.3.2 Invoking Execution

To make the execution flow of Flink compatible with TornadoVM the following ap-
proach is used. Whenever a task is deployed to the Task Manager, its data (i.e. its

function if it is an operational task, or its input dataset if is it a DataSource task) is
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stored in internal buffers - which in Figure 4.5 are marked as Function Buffers and
Data Buffers. When the data sink task is deployed, the heterogeneous execution takes
place. The input datasets stored in the internal buffers are converted to primitive arrays
and the Task Schedules for the user functions are created and executed. Finally, the
results of execution are converted to the object type that is expected by Flink and are
collected. Listing 4.2 illustrates this process for a program with a single Flink oper-
ator. If the deployed task is an operational task or a data source task, its information
is stored. Otherwise, if the task is a DataSinkTask, the input dataset is converted to
primitive arrays (line 6) and the Task Schedule is created and executed (lines 7-10).
The results of the Task Schedule are then converted to Objects (line 11) and are passed
to the output collector (lines 12-14).

4.4 Limitations of The Initial Integrated Platform

As mentioned before, the version of the Flink-TornadoVM integration presented in
this chapter is very close to the current state of the art. A new API is exposed to the
developers, meaning that they need to be familiar with the programming model of Tor-
nadoVM and the limitations of it. Moreover, the classes and interfaces provided, have
to be extended for every new benchmark to contain methods with signatures that have
the required input and output arguments. Therefore, this implementation is difficult to

maintain and restricts greatly the programmability.
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Listing 4.2: Computations Using the TornadoVM API.

public class Task implements Runnable {
run () {

if (this instanceof DataSinkTask) {
float[] in, in2, out;
marshalling (data, in, in2, out);
TaskSchedule ts = new TaskSchedule ("sO")
.task ("t0", compute, in, in2, out)
.streamOut (out)

.execute () ;
List<T> results = unmarshalling (out);
for (T record : results) {

collector (record);

}
} else {
// store input data and functions 1in internal
buffers

In Table 4.1, this integrated framework is evaluated using the criteria that were
deemed essential for a modern heterogeneous Big Data platform, as they were de-
scribed in Chapter 3. It is evident that the main challenge to overcome in order to con-
struct a hardware-agnostic Big Data platform, is to lift any programming restrictions
that currently exist in this version. Specifically, the gap between the two APIs needs to
be filled without any user intervention and object type support has to be provided, to

enable the heterogeneous execution of existing applications.

Table 4.1: The criteria that the prototype fulfills.

Implementation |Big Data Framework | Code Fragmentation |Code Generation |Vendor Device Coverage
lock-in

Flink- Flink Yes On-demand No CPUs, GPUs,

TornadoVM FPGAs

Integration-v1

Moreover, in this version, all the computations are performed when the data sink
task is deployed, in order to change the granularity of the execution. However, this
approach is not suitable for distributed execution, during which it should be possible
to split the computational tasks among different Task Manager nodes, equipped with

various hardware resources.
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4.5 Summary

This chapter introduced the main challenges in accelerating Big Data applications with
heterogeneous devices. Section 4.1 presented TornadoVM, which is the framework
that is used in this work to enable heterogeneous execution of Big Data applications.
Section 4.2 identified the main challenges in developing a heterogeneous Big Data plat-
form. As it was discussed in this section, the obstacles to overcome are independent
of the platforms of choice. Then, Section 4.3 presented a naive approach of integrat-
ing Flink with TornadoVM. This development had mostly educational purposes, as it
verified that the connection of the two frameworks is feasible and that the challenges
identified were correct. Finally, Section 4.4 highlighted the limitations of the presented
integration and illuminated the main challenges for developing the vision platform. In
the next chapter a set of novel techniques that were used to dynamically offload and

accelerate existing Big Data applications without any user intervention are presented.



Chapter 5

Seamless Heterogeneous Execution on

Big Data Frameworks

This chapter proposes a set of techniques to enable the transparent execution of Big
Data applications on heterogeneous hardware accelerators, i.e., CPUs, GPUs and FP-
GAs. The methodology that was followed will be presented in the context of Flink and
TornadoVM, however, with slight modifications, it could be applied to other Big Data
frameworks and heterogeneous compilers as well.

In the platform presented in this chapter, the challenges discussed in Section 4.2
are addressed using three modules. First of all, regarding the API incompatibilities be-
tween Flink and TornadoVM, a code morphing module is introduced, which is respon-
sible for transforming the Flink UDF into a TornadoVM-compatible function. Sec-
ondly, to change the granularity of execution, the data is extracted in bulk from the
Flink serialization buffers by a data morphing module. This module is also respon-
sible for performing the essential transformations on the data to turn it into a format
that is compatible with hardware accelerators. Finally, a code generation module is
responsible for dynamically JIT-compiling the user code for heterogeneous devices.

The proposed platform, containing the aforementioned modules, is presented in
Figure 5.1. Each extension is marked with a number, that indicates the order in which
it is invoked during heterogeneous execution as well as a label that states the section
in which it will be described. Specifically, Section 5.1 introduces the code morph-
ing module, which receives as input the Flink user function and transforms it into a
TornadoVM-compatible function. Section 5.2 presents how the data morphing module
extracts the input data from the serialization buffers and manipulates it to turn it into

a format compatible for heterogeneous accelerators. Section 5.3 presents the dynamic
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Figure 5.1: Proposed Heterogeneous Big Data Framework.

code generator, which contains an extended version of TornadoVM to enable trans-
parent compilation. Each of these three sections follows the same structure. First, an
high-level overview of the module presented. Then, any essential background informa-
tion is provided. Finally, the details of the implementation are discussed. Following,
Section 5.4 elaborates on how the proposed systems handles operators that are not at
the moment supported for heterogeneous execution. Finally, Section 5.5 provides an
overview of the contributions presented in this chapter and how the proposed frame-

work compares with the current state-of-the-art.



62CHAPTER 5. SEAMLESS HETEROGENEOUS EXECUTION ON BIG DATA FRAMEWORKS

_ X Client
class Compute implements MapFunction<T, R>
R D R T e PR Program
[ Rmap(T in) € ; Job Manager
! // computation ' < APl Execution Graph
LI b I @ o) ©
code morphing a0 5 s ©

class TornadoMap<T, R>
map(T[] in, R[] out) {
for @Parallel i, [0,N]:
out[i] = map(in[i]); <«—
¥

Job Graph

configuration data

configuration data

Figure 5.2: An Overview of the Code Morphing Module.

5.1 Code Morphing

As explained in Chapter 4, even though both Flink and TornadoVM have Java APIs,
there are some key differences between the user functions that are executed on each
system. The first version of the integration followed a naive approach to address this
challenge, which was to extend the API of Flink so that developers can express their
computations in a TornadoVM-compatible way. However, changing the API of Flink
has a number of disadvantages.

First of all, this technique reduces usability, since Big Data developers have to be
familiar with TornadoVM and its APIL. Secondly, the codebase gets fragmented, as
existing programs have to be rewritten with this new API. Finally, this API does not
allow developers to write their applications using Java objects, which are extremely
significant in OOP; therefore it is very limiting.

To alleviate these drawbacks, a code morphing module is employed, that dynami-
cally adapts Flink user functions to TornadoVM-compatible code via on-the-fly byte-
code rewriting. An overview of this module is presented in Figure 5.2. As shown in
Figure 5.2, the code morphing module receives the Flink user function and transforms
it into a method that is compatible with the API of TornadoVM. This transformation
is performed using ASM [Obj22]. ASM is a Java bytecode manipulation framework
that is used for the generation, transformation, or analysis of Java classes. An ASM-
generated class is stored in a byte array, which can either be loaded for immediate use
or it can be written in a file for future executions. The proposed implementation goes
for the former option, therefore, the byte array is transferred to the Task Manager to
be dynamically loaded. The way that this generated class reaches the Task Manager
is by taking advantage of the Flink configuration data. Specifically, after the class
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transformation is completed, the byte array containing the user class is stored in the
configuration data of the Job Vertices. As this configuration data is transferred by Flink
from the Job Graph to the Execution Graph and eventually the to the Task Managers,
the altered user function reaches the Flink driver class (e.g. MapDriver, ChainedMap-
Driver, ReduceDriver, etc.) that has been assigned to execute the operator. At this
point, it can be loaded using a classloader instance and passed to a TornadoVM Task
Schedule for heterogeneous execution.

The next subsections will provide background information about the framework
used for class bytecode manipulation and details about the internals of the code mor-
phing module. Specifically, subsection 5.1.1 will briefly introduce ASM and subsec-

tion 5.1.2 will explain how ASM was used in this context.

5.1.1 ASM

ASM is a widely used bytecode manipulation library that operates on compiled classes.
Its API is based on the Visitor design pattern and consists of three core components, a
ClassVisitor, a ClassReader and a ClassWriter.

The abstract class ClassVisitor is the basis of this APIL. It contains visitor functions

for each of the components of a compiled class (methods, fields, annotations etc.).

Listing 5.1: The ClassVisitor class.

1 public abstract class ClassVisitor {

2 public ClassVisitor ();

3

4 // Visit the header of a class

5 public void visit ();

6 // Visit the source file of the compiled class

7 public void visitSource () ;

g // Visit the annotations of a class

9 public AnnotationVisitor visitAnnotation ();

10 // Visit the class fields

1 public FieldVisitor wvisitField();

12 // Visit the class methods

13 public MethodVisitor visitMethod();

14 // Visit the end of the class. It is used to inform the
visitor that all the class attributes have been
visited

15 volid visitEnd () ;
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A simplified version of the ClassVisitor class, containing only some of the most
important methods, is presented in Listing 5.1. The complete class with a detailed
description about each method can be found in the ASM guide [Bru]. By providing
an implementation to the visit methods of this class, the user can extract information
about the compiled class elements or specify a set of actions that will be applied to
them. Apart from the three main classes (ClassVisitor, ClassReader and ClassWriter),
the ASM API contains specialized visitor classes for some of the class components.
For instance, there is the FieldVisitor class, which has its own methods for visiting the

annotations and attributes of class fields.

The ClassReader class is used for analyzing a compiled class. It accepts a ClassVis-
itor instance and executes its visit methods to inspect the compiled class components.
The ClassWriter extends the ClassVisitor class and is used for generating classes from
scratch or for modifying existing classes. The resulting class is stored in a byte way

which can be instantiated with a class loader instance or written in a file for future use.

5.1.2 Class Rewriting at Runtime

This subsection will provide the implementation details about how the ASM library
is used in this work to bridge the gap between the APIs of TornadoVM without user

intervention.

To facilitate the code morphing process, a set of classes is introduced, which ad-
here to the programming model of TornadoVM. At runtime, the Flink user function is
patched automatically into the appropriate function of these classes using ASM. Then,
the TornadoVM-compatible function, that contains the Flink user code, is provided to
a Task Schedule.

These new classes are TornadoMap, TornadoReduce, MiddleMap, MiddleReduce,
MapASMSkeleton and ReduceASMSkeleton. The classes TornadoMap and TornadoRe-
duce, which are presented in Listings 5.2 and 5.3, contain functions that match the
programming model of TornadoVM. In each of these two classes, there are map/re-
duce functions for various input and output types (e.g. primitive, Flink Tuples etc.).
In addition, the TornadoMap class contains a field of type MiddleMap, while the Tor-
nadoReduce class a field of type MiddleReduce. This field is used to invoke, inside
the for-loop of the class methods, a MiddleMap/MiddleReduce function of matching
input and output types (as can be seen in lines 10 and 16 of Listing 5.2 and in line 11
of Listing 5.3).
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Listing 5.2: The TornadoMap class.

1 public class TornadoMap {

65

2 private MiddleMap mdm;
3
4 public TornadoMap (MiddleMap mdm)
5 this.mdm = mdm;
6 }
7
8 public void map (int[] in, int[] out) {
9 for (@Parallel int i = 0; i < in.length; i++) {
10 out[i] = mdm.mapintint (inf[i]);
1 }
12 }
13
14 public void map (Tuple2[] in, Tuple2[] out) {
15 for (@Parallel int i = 0; i < in.length; 1i++) {
16 out[1] = mdm.maptupleZ2tuple2 (inf[i]);
17 }
18 }
19
20
21}
Listing 5.3: The TornadoReduce class.
1 public class TornadoReduce {
2 public MiddleReduce mdr;
3
4 public TornadoReduce (MiddleReduce mdr) {
5 this.mdr = mdr;
6 }
;
8 public void reduce (int[] input, @Reduce int[] result) {
9 result[0] = 0;
10 for (@Parallel int i = 0; 1 < input.length; i++) |
1 result [0] = mdr.redintint (input[i], result[0]);

The abstract classes MiddleMap and MiddleReduce (depicted in Listing 5.4), con-
tain typed methods that match fine grained API of Flink. Specifically, the functions
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Listing 5.4: The MiddleMap and MiddleReduce classes.

public abstract class MiddleMap {
public abstract int mapintint (int in);
public abstract Tuple2 maptupleZ2tuple2 (Tuple2 t);

[ T N O N

}

public abstract class MiddleReduce {
public abstract int redintint (int x, int y);

N

Listing 5.5: The MapASMSkeleton and Reduce ASMSkeleton classes.

public class MapASMSkeleton {
public int mapintint (int in) {
return O0;

}

public Tuple2 maptupleZ2tuple2 (Tuple2 t) {
return null;

}

o R - N T O U R S R

S
—

public class ReduceASMSkeleton {
public int redintint (int x, int y) {
return 0;

}

[ Y T N e N

of the MiddleMap class have a single input and output value, similarly to Flink map
functions. Similarly, the MiddleReduce methods have two input arguments and return
a single value just like the reduce function of Flink.

Finally, the classes MapASMSkeleton and ReduceASMSkeleton, as presented in
Listing 5.5 extend MiddleMap and MiddleReduce respectively. Both classes pro-
vide a dummy implementation for the abstract methods, which is to return zero or
null depending on the output type. The MapASMSkeleton and ReduceASMSkele-
ton classes are the ones that are manipulated with ASM. Specifically, at runtime, the
MapASMSkeleton or ReduceASMSkeleton function that matches the Flink user code
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is identified using an ASM ClassReader. Then, this function is altered by an ASM
ClassWriter instance to return the Flink user function call instead of zero or null.

At this point, it is natural to wonder why a more straight-forward approach was
not followed; what is the purpose of having the MiddleMap/MiddleReduce and Ma-
pASMSkeleton/ReduceASMSkeleton classes, instead of directly modifying the Tor-
nadoMap/TornadoReduce classes with ASM? To explain this, some insight into the
way that Java performs class loading has to be provided. During the JVM initialization
all classes are loaded with the system classloader. For every class, the system class-
loader makes sure that it has not already been loaded and, only then, loads it. Since
the TornadoMap class is loaded upon the JVM initialization, it cannot be reloaded at
runtime with the system classloader. Therefore, to reload a class at runtime, a different
classloader instance has to be utilized.

However, loading the ASM-generated class with a classloader other than the system
classloader causes the following issue. Every Java class is identified by its full name
(package and class name) and the classloader that loaded it. Therefore, attempting to

load the ASM-generated class like below would cause an illegal casting exception.

AsmClassLoader loader = new AsmClassLoader ();
TornadoMap tmap = loader.loadClass ("org.apache.flink.api.
asm.TornadoMap", ASMbytes);

The reason is that the variable tmap is not considered by the system to be of the
same type as the loaded class instance.

As a work-around, the intermediate classes MiddleMap/MiddleReduce and Ma-
pASMSkeleton/Reduce ASMSkeleton were introduced. The ASMSkeleton classes ex-
tend the Middle classes. This means that, for example, even though an ASM-generated
MapASMSkeleton instance cannot be cast to a variable of type MapASMSkeleton due
to the classloader issue, the following cast is legal, since both versions extend the same
MiddleMap class.

AsmClassLoader loader = new AsmClassLoader () ;

MiddleMap md = loader.loadClass ("org.apache.flink.api.asm
.MapASMSkeleton", ASMbytes);

TornadoMap tmap = new TornadoMap (md) ;

Next, an example will be used to showcase how ASM transforms the provided

classes.
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Example

The Flink user class that will be used in this example is presented in Listing 5.6. This
class contains a map function that has an input and an output of type Tuple2. The
map function multiplies the second field of each Tuple by two. Since, in this example,
the user function is a map, the class that will be manipulated with ASM will be the
MapASMSkeleton.

Listing 5.6: A Flink Map User Class.

1 public static final class UserClass implements MapFunction
<Tuple2<Double, Double>, Tuple2<Double, Double>> {

3 @Override
public Tuple2<Double, Double> map (Tuple2<Double, Double>
value) {

IS

return new Tuple2<>(value.f0, wvalue.fl * 2);

® 9 o W

Before any changes are applied to the MapASMSkeleton class, some preprocess-
ing steps have to be followed.
Step 1: A ClassReader instance cr examines the Flink user class to deduce the in-
put and output types of the Flink user function. In this example the function signa-
ture is public Tuple2<Double, Double> map (Tuple2<Double, Double>, so the
input and output types are identified to be Tuple?2.
Step 2: A new ClassReader instance, using the input/output types of the Flink user
function, identifies the function of the MapASMSkeleton that matches the types and
therefore will be modified. Since the ClassReader cr deducted that the input and out-
put types of the Flink UDF are Tuple2, the MapASMSkeleton function that will be

transformed in this example is maptuple2tuple?2, as it has matching types.

Figure 5.3 illustrates how the MapASMSkeleton class is changed to trigger the
Flink user function inside the maptuple2tuple2 method. At the top of the figure (la-
beled (a)), the original Flink class and its bytecode representation is presented. At
the bottom, (labeled (b)) is the resulting class, both in Java and bytecode format. The
bytecodes in blue are the ones inserted by the code morphing module. The process of

transitioning from (a) to (b) can be summarized in the following steps.
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Java Class Bytecode Representation

public class MapASMSkeleton extends MiddleMap{ ! public org.apache.flink.api.asm.MapASMSkeleton() ;
public MapASMSkeleton () {} aload-0

invokespecial // Method MiddleMap.<init >:()V
@Override return
(a) public Tuple2 maptuple2tuple2 (Tuple2 t){
aconst_null

}

I
I
I
I
I
return null; : public Tuple2 maptuple2tuple2 (Tuple2);
|
: areturn
I
I
I

\/

public class MapASMSkeleton extends MiddleMap{ :public org.apache. flink .api.asm.MapASMSkeleton () ;
| aload_0

Inserted with a FieldVisitor

invokespecial // Method MiddleMap.<init >:()V
aload.0
public MapASMSkeleton () { new // class UserClass
this.udf = new UserClass(); dup
(b) } invokespecial // Method UserClass.<init >:()V
putfield // Field udf:UserClass;
@Override return

public Tuple2 maptuple2tuple2 (Tuple2 t){
return this.udf.map(t);

}

public Tuple2 maptuple2tuple2 (Tuple2);
aload.0
getfield // Field udf:UserClass;
iload.1l
invokevirtual // Method udf.map:(Tuple2)Tuple2

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
! areturn

Figure 5.3: Transforming the Skeleton class.

Step 1: A ClassWriter instance cw inserts a new public field named udf in the Ma-
pASMSkeleton class, which will have the same type as the Flink user class. In this
case the field will be of type UserClass (blue box in Figure 5.3).

Step 2: Then, the constructor of the MapASMSkeleton class is visited by cw. The visit
method initializes the udf field with an instance of the Flink user class. To achieve
that, the visitor inserts the bytecode instructions that represent the initialization of the
udf field with an instance of the Flink user class.

Step 3: Finally, the maptuple2tuple? function is visited by cw. The aconst_null
bytecode, which represents the null value, is replaced by a set of bytecode instruc-
tions that represent the invocation of the udf map. The input of the maptuple2tuple?2

function is also provided as input to the udf map.

Finally, this transformed instance of the MapASMSkeleton class is stored in a byte
array. This byte array is then saved in the configuration data of the Job Graph vertices
to be distributed across the cluster. Note that all the steps described above are generic,
meaning that they are followed for all input and output type combinations. Regarding
Flink reductions, equivalent actions are applied to the ReduceASMSkeleton class. This

whole transformation process takes place without any user knowledge or intervention.
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5.1.3 Invocation of Heterogeneous Execution

After the deployment of a task to the Task Manager, the execution is directed to the
appropriate Flink driver class. This example assumes that the driver that is used is the

ChainedMapDiriver, presented in Listing 5.7.

Listing 5.7: Executing the Flink User Class on TornadoVM.

1 public class ChainedMapDriver {

2 void collect () {

3 byte[] bytesMsk = this.configuration.
getSkeletonMapBytes () ;

4 AsmClassLoader loader = new AsmClassLoader ();

5 MiddleMap md = loader.loadClass ("org.apache.flink.
api.asm.MapASMSkeleton", bytesMsk);

6 TornadoMap tmap = new TornadoMap (md) ;

;

8

9

10 TaskSchedule ts = new TaskSchedule ("sO0")

11 .task ("t0O", tmap::map, in, out)

12 .streamOut (out)

13 .execute () ;

Firstly, the byte array containing the transformed MapASMSkeleton class is re-
trieved from the configuration data (line 3). Using a classloader instance, this class is
loaded and assigned to a MiddleMap variable md (lines 4 and 5). Then, a TornadoMap
variable tmap is initialized, which takes md in its constructor. It is reminded that the
TornadoMap functions have a for loop that is marked with the TornadoVM (Parallel
annotation and iterates over an input array. Inside each loop, the MiddleMap func-
tion of the same input/output type is called on each input element (Listing 5.2). This
means that, by passing md to the TornadoMap class, the appropriate TornadoMap map
method will call the Flink user function in its for-loop for all the input elements. This
map method can be provided to a Task Schedule to be deployed for heterogeneous
execution.

This section presented a way that the Flink user code can be deployed to Tor-
nadoVM in a completely agnostic way to the user and without any changes to the

existing API of Flink. In the next section, the data morphing module will be presented.
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Figure 5.4: An Overview of the Data Morphing Module.

5.2 Data Morphing

Following the code transformation, the next challenge that needs to be overcome has
to do with the data types. Java objects are an integral part of OOP, however, they are
not supported in accelerator devices like GPUs and FPGAs. In the first implementa-
tion (Chapter 4), the object types (e.g. Tuples) were converted to primitive arrays -
one array for each field. Nevertheless, on closer inspection of the Flink system, the
following was observed. On Flink the data already undergoes a type of marshalling in
order to be distributed among the cluster. This marshalling regards the transformation
of object types to bytes through serialization. Since byte arrays can be allocated on
GPU/FPGA memory, this implementation explores the idea of directly getting the data
in byte form and writing to device memory instead of deserializing it and converting it
to primitive arrays. Moreover, if Big Data systems were developed with heterogeneity
in mind, the marshalling could be avoided altogether by getting the data in byte form.

However, the data stored in the serialization buffers cannot be directly forwarded
to the hardware accelerator memory for the following reasons. First of all, the se-
rialization buffers contain header bytes which are essential to maintain the serializa-
tion semantics. Nevertheless, in this context, they increase significantly the memory

footprint, without adding any value as they do not contain actual computational data.
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Secondly, the majority of commercial hardware accelerators are Little Endian architec-
tures, in contrast to the Big Endian data serialization mechanism of the JVM. There-
fore, in order to read data correctly, the bytes of each value have to be reversed. Lastly,
in case objects consist of fields that have a different size (e.g., an int value is repre-
sented with four bytes, while a double value with eight), padding has to be included
in order to avoid unaligned memory accesses. Unaligned memory accesses can yield
undefined results [NVI22] in NVIDIA GPUs, and reduce the overall performance in
Intel GPUs.

To transform the serialized data in a format that is suitable for hardware devices,
the data morphing module was introduced. Figure 5.4 illustrates an overview of this
module and how it transforms the byte representation of a set of Tuple2 elements, that
consist of a Double and an Integer field. As it is depicted in the figure, the module
operates as follows:

1. It extracts raw data, excluding the header bytes.

2. It reverse the endianess of the bytestream so that the little-endian ordering is

followed.

3. If the serialized values are of different size (which they are in this example), it
adds extra bytes for padding.

The remainder of this section is split into three subsections. Subsections 5.2.1
and 5.2.2 provide essential background information by presenting how various data
types are serialized on Flink and what the format of the serialized data is when it
reaches the Flink operators. Subsection 5.2.3 describes in detail how the data morph-
ing module accesses the serialized data and modifies it to be valid for heterogeneous

execution.

5.2.1 Flink Serialization

Flink has specific software components that are dedicated to handling data types. Ini-
tially, when an operator is declared on a dataset, the user code is analyzed by Flink
to extract the input and output types. Next, Flink examines these types and stores in-
formation relevant to their serialization in an instance of the Typelnformation class.
All Flink data types are associated with a Typelnformation class. For instance, Tuple
objects store type information in a TupleTypelnfo class instance, boxed primitives in a

BasicTypelnfo class instance, etc.
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Each Typelnformation class has a function which assigns a serializer class to the
data type. There are several different serializer classes in Flink which contain functions
that define how the data should be copied, serialized, deserialized, etc. In this thesis,
the way that Tuples, boxed primitives, arrays of primitives, and arrays of objects are

serialized will be discussed.

Serialization of Boxed Primitives

Flink provides serializer classes (e.g., IntSerializer, FloatSerializer, DoubleSerializer,
etc.) for all boxed primitive types. Before diving into the Flink serialization details,
some background on how Java serializes primitives and boxed primitives has to be
provided. Depending on their type, primitive values are represented with one (boolean,
byte), two (short, char), four (int, float), or eight (long, double) bytes. Nevertheless, all
boxed values regardless of their type require 16 bytes in total. The first 8 bytes store
information that is essential to memory management. The rest are dedicated to the
actual data. Even though most primitive values can actually be represented with less
than 8 bytes, boxed values are always stored using 8 bytes due to JVM specifications
(object sizes must always be a multiple of 8 for aligned memory accesses). Moreover,
it is important to note that all Java types are serialized in a Big Endian order, meaning
that the most significant byte is stored at a lowest memory address compared to the
least significant.

However, in order to optimize memory allocations, Flink uses a different approach
for boxed primitive serialization. Specifically, for each boxed value, only the raw
primitive data is serialized. This means that in Flink, a set of 16 Integer values takes
up 64 bytes (4 bytes for each value * 16), while with the original Java serialization
process it would take 256 bytes (16 bytes for each value and the header * 16). These
primitive values are serialized using Java serialization, so the same semantics discussed
above apply (about their size, their endianess etc.). Figure 5.5 illustrates how a set of
Integer records is serialized in Flink. For each record the IntSerializer class converts

its int value to four bytes, using Java serialization.

Serialization of Tuples

For Tuple serialization, Flink tries once again to serialize the data as compactly as
possible. Therefore, no extra header bytes are included. For a Tuple to get serialized,
the serializer of each field is called. Figure 5.6 presents how a Tuple2 record that

contains an Integer and a Double field is serialized. First the record is sent to the
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Figure 5.5: Serialization of Integers in Flink.

TupleSerializer. For each field, the TupleSerializer invokes the serialization function of
its data type class. For Integers, the IntSerializer is called like in the previous example.
For Doubles, the DoubleSerializer is called. These serializers, in conjunction with
Java serialization functions, convert the Integers and Doubles to four and eight bytes
respectively. Therefore, in this example each serialized record comprises of 12 bytes

(four for the Integer and eight for the Double).

Tuple2(Integer(1), Double(2.2))
Tuple2(Integer(2), Double(2.3))

TupleSerialize

Integer(1) Double(2.2)
Integer(2) l Double(2.3)
IntSerialize DoubleSerialize

Java
Serialization

int double int i double

[o]o]o]1 ];4] 1]»103]-103]-103]-103[-103[»1;2] ofofo]2 ]g4] 2 [102[ 102 102 [ 102 ] 102 ]16;[~~

Low memory address High memory address

Figure 5.6: Serialization of Tuple2<Integer, Double>types on Flink.

Serialization of Primitive Arrays

Flink also provides serializers for primitive arrays. Each type of primitive arrays has
its own dedicated serializer class. For example, integer arrays are serialized using the
IntPrimitiveArraySerializer class, double arrays are serialized using the DoublePrimi-

tiveArraySerializer and so on. In all of these classes, prior to the serialization the data,
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an integer value with the length of the array is serialized. Then, each primitive array
element is serialized using the default Java serialization. Figure 5.7 illustrates how a
dataset that consists of integer arrays is serialized. First, the length of each array is
converted to four bytes. In this example each array has three elements, so the length
value is three. Then, each integer is converted to four bytes. This is repeated for all

array records.

int[ {0,1,2}
int] 1{3.4,5) >>< IntPrimitiveArraySerializer ‘
L
‘ Java
Serialization

array int[0]
length

array J int[0] int[1] int[2]

Iength) int[1] int[2]

S A N

It 1 [ Al
[o]ofo]3JoJofofoJo]o o[1]ofo]o]2]ofo]o]s]ofo]o]s]ofo]o]a]o]o]o]5].]

Low memory address _ High memory address

Figure 5.7: Serialization of int arrays on Flink.

Serialization of Arrays of Objects

The last data type examined in this thesis is the object arrays type. The dedicated class
for this serialization type is the GenericArraySerializer class. Just like for the primitive
arrays, the length of the array is serialized first. Then a bit that is set to zero if the array
element is null and one otherwise is written. Finally each array element is serialized
with its corresponding serialization technique. If an element is null, zeros are inserted
in the serialized buffer instead. Figure 5.8 presents how arrays of Integer values are
serialized. First the length of the arrays is serialized (which is this case is two). Then,
one byte set to 1 (true) signifies that the value that follows is not null. Finally, the

Integer is serialized using the IntSerializer class like in the previous examples.

5.2.2 How The Flink Tasks Are Accessing Serialized Data

The reason Flink serializes the data is to distribute it the across the cluster, therefore,
next it is be described how the serialized data is actually accessed by the operators.
DataSource tasks are the tasks that represent the input dataset of a computational
pipeline. If the input comes from a file, e.g., a csv file, then the DataSource stores
information about how the data should be read (how the values are seperated, the type
of the file etc.). However, if the input is a Java Collection, the serialized data is stored

in its configuration. Specifically, in this case the serialized data is written in a Java
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Figure 5.8: Serialization of Integer arrays on Flink.

ObjectOutputStream stream. The first few bytes of the stream contain some header
bytes for the collection class. Next, four bytes are written to indicate the size of the

collection.

Then, the data follows. For primitive data, the ObjectOutputStream splits serialized
bytes in blocks of 1024 bytes. Each block contains a header and the serialized data.
The header consists of five bytes unless the data block has less than than 256 bytes.
In this case the block is prefixed with a two-byte header. Since in Flink serialization
the serialized buffers, for all the types we discuss above, contain data in primitive
form (the unboxed values) the output stream is split in blocks as described above.
Figure 5.9 presents the format of an ObjectOutputStream that contains a serialized
dataset of Tuple2 records. As can be seen in the figure, the stream consists first of
some header bytes for the collection. Then, the size of the input is written in the next
four bytes. After that follow the serialized data by Flink, split among block of 1024
bytes which are preceded by two or five header bytes.

Block 1 Block n
e

collection header bytes | 4 bytes for size [header byteslro I 0 I 0 I 1 l64| 1 |—103l—103|—103|—103|—103|—102| --?Iheader bytesl ‘

Low memory address High memory address

Figure 5.9: DataSource Bytes.
When a pipeline of tasks is distributed among the cluster, the first task that gets ex-

ecuted is the DataSourceTask. In the original Flink implementation, this task extracts

the ObjectOutputStream data from its configuration, deserializes it and then provides it
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to a collector. If a computational task (map, reduce etc.) is chained to the DataSourc-
eTask, then the collector is this task and, therefore, the materialized data is directly
passed to the user function of this operator. This is safe to do, in this case, because
the DataSourceTask instance is executed by the same thread as the computational task
(since they are chained).

If the DataSourceTask is not chained to another, then this data is written in mem-
ory. Flink uses the SpanningRecordSerializer class, which writes the data in the
following way. First, it writes the number of bytes of each record and then serializes
again the data and writes them in byte format. Figure 5.10 illustrates how a Tuple2
with an Integer and a Double field would be written. The first four bytes represent the
size of the Tuple, which is 12 in this case (4 for the Integer and 8 for the Double). Then
the serialized bytes are written.

The reason why, in this case, the number of bytes per record is written is ex-
plained by the Flink memory management. In Flink, memory is represented by Memory
Segments, which essentially are regions of memory with a fixed size. Depending on
the size of the records and the size of the memory segments, records might span across
multiple memory segments. The memory system needs to be aware of how many bytes
there are per record so that the complete data is read even if they are stored in separate

memory segments.

record record
e e

record size = 12 bytes [ro [ofo[1]e4]1 1-103l-103l-103l-103l-103l-10;lrecord size [ro [o[o[2]e4]2]102]102]102]102]102] 102[---‘

Low memory address High memory address

Figure 5.10: Memory Record Bytes.

Since chained and non-chained operators access the serialized buffers in different

formats, we need to perform different actions in each case to get the byte data.

5.2.3 Data Conversion

As explained in Subsection 5.2.2, the way that the data is accessed by each computa-
tional task depends on whether it is chained with its predecessor or not. If it is, the
task gets its input data materialized (either from a DatasourceTask or from a previous
operational task). If it is not, it reads data from memory. Therefore, in order to extract
the data in byte form to provide it as input to a TornadoVM TaskSchedule, different

approaches have to be followed for chained and non-chained operators.
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Consequently, the data morphing module operates in the following way. If it identi-
fies that the DataSourceTask is chained with an operational task, it gets the byte stream
from the configuration data and, instead of materializing it, it extracts the raw serialized
data, without the extra bytes that were inserted during the creation of the ObjectOutput-
Stream buffer. This data will then be forwarded to the computational operator in byte
format. Otherwise, the DataSourceTask writes the data in memory like the original

implementation of Flink so that they can be consumed by the next operator.

If a task reads the data from memory, instead of materializing each individual
record from memory, all the data is extracted from the memory segments and stored
in a single buffer. The extra bytes that specify the size of each record are removed
since they are not necessary for the computation and they only lead to larger memory

allocation.

Even though, by following the steps described above, the raw serialized data can be
extracted, there are still two main obstacles to overcome before being able to delegate
this data to TornadoVM. First of all, as mentioned in 5.2.1, the data is written in the
serialization buffers using Big Endian ordering. However, the vast majority of com-
mercial hardware accelerators have Little Endian architectures. Therefore, the bytes
of each value have to be reversed. Secondly, as explained in 5.2.1, Flink serialized
buffers can contain data of different sizes. For instance, if the data consists of Tuple2
records and the first field is an Integer while the second a Double, then the first field
takes up four bytes while the second eight. In a byte array like that the accesses of the
fields inside the byte buffer would be unaligned with respect to the memory alignment
requirements of the underlying architecture. To solve this problem, padding has to be

included in the byte data when the sizes of the object fields are not homogeneous.

Figure 5.11 presents an example of the transformations described above. The array
at the top contains the raw serialized data for Tuple2 records. In this example the first
field is an Integer and the second is a Double. The array at the bottom is the array
that is passed to TornadoVM. As can be seen in the figure, the ordering of the bytes of
each field has been reversed and four extra bytes have been added to the Integer field as
padding. It is important to note, that in order to have a uniformed representation of data
and also to make our byte arrays as compact as possible, all the extra bytes that exist
in the serialized buffers for object and primitive array types are removed. Specifically,
the bytes that are removed are the boolean bytes that specify if an array of objects has

null data and the bytes that indicate the size of serialized arrays.

After the data morphing is completed, the byte array is ready to be passed as input
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Figure 5.11: A Data Morphing Example.

to TornadoVM. However, as mentioned in Section 5.1, the TornadoMap functions are
typed as the Flink user functions. The reason it has to be this way because the input
of the TornadoMap function is provided to the Flink user function that is inside the
for-loop, so the types have to match. Therefore, the Task Schedule API of TornadoVM
was augmented with an extra function. This function receives an object that contains
the input array in bytes and a byte array that will store the output. If the computation
comes from Flink, TornadoVM will ignore the arguments of the Task Schedule and
use these byte arrays for reading and writing instead. Listing 5.8 presents such a Task
Schedule. In lines 5 and 6 the byte arrays are initialized. Then two dummy arrays are
created to keep the TornadoVM task semantics. Then in line 11 the byte data is stored
in an instance of the F1inkBytes class. This is a class that resides on the TornadoVM
side and is dedicated to store byte data coming from Flink. This FlinkBytes object is
passed to the Task Schedule through a new function called f1inkData.

5.3 Dynamic Code Generation for Hardware Acceler-

ators

By transforming the Flink user function into a TornadoVM-compatible method and
by getting the data in a format that is suitable for heterogeneous execution, a Flink
computation can be deployed to heterogeneous devices through TornadoVM. However,
at this point the code would not compile. The reason is that, the developers write
their application under the assumption that they are operating on objects and not byte
arrays. Therefore, modifications at the compiler level have to be made to ensure that

the generated OpenCL kernels will access the data correctly.
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Listing 5.8: Executing the Flink User Class on TornadoVM with Extended Task Sched-
ule.

public class ChainedMapDriver ({
void collect () {

1

2

3

4 // make the byte dataset ready for TornadoVM
5 byte[] inputBytes = datamorphing () ;

6 byte[] outBytes = new bytel];

;
8
9

Tuple2[] in = new Tuple2[1l];

Tuple2[] out = new Tuple2[1l];
10 // store the data in a new TornadoVM class
1 FlinkBytes fdata = new FlinkBytes ()

13 TaskSchedule ts = new TaskSchedule ("sO")

14 // provide the byte arrays to TornadoVM
15 .flinkData (fdata)

16 .task ("t0O", tmap::map, 1in, out)

17 .streamOut (out)

18 .execute () ;

For this reason, the code generation module was integrated with Flink. This module
contains TornadoVM, extended with a set of compiler phases specialized for Flink user
functions. An overview of the code generation module is presented in Figure 5.12. As
shown in the figure, this module receives three inputs: (i) the TornadoVM-compatible
user function, (ii) the byte datasets and, (iii) the Typelnformation for the function. The
Typelnformation it is essential to perform the the compiler transformation that will be
described next. As discussed in subsection 5.2.1, the Typelnformation is produced by
Flink during the serialization phase. To access it from the Task Manager, the same
technique that was applied for the ASM-generated functions is followed. Specifically,
the Typelnformation objects for all the methods are placed in a HashMap, which is
serialized and stored in the configuration data of the Job Graph along the byte arrays
that contain the ASM generated classes.

The TornadoVM compiler has been augmented with six compiler phases. Half of
these phases are included in the high-tier and the other half in the low-tier. These
phases are responsible for making the data accesses in the user code match the data

layout imposed by the data morphing module. Specifically:
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Figure 5.12: Dynamic Code Generation for Heterogeneous Accelerators.

1. The Object Replacement phase replaces the loads/stores for accessing object
field, with the equivalent loads and stores for accessing the data from a byte

array.

2. The Padding Offset Calculation phase calculates the exact addresses from which

each value should be read, if the byte array has padding.

3. The Replacement Of Java Collections phase replaces the actions of common
Java Collection function calls with the corresponding array operations. For in-

stance, a call to the get() function is replaced with an array load.

4. The Array Handling phase provides support for objects where one of their fields
is an array (e.g. types such as Tuple2<double[], Long>). This phase specifies

how such data is accessed and copied.

5. The Matrix Flattening phase is functions that operate on matrices. As men-
tioned in Subsection 5.2.3, for all data types, the data morphing module removes
all header bytes to keep the data as compact as possible, and returns a linear byte
array. Therefore, this compiler phase transforms the multi-dimensional matrix

accesses to one-dimensional array accesses.

6. The Matrix Offset Calculation phase specifies the exact offsets of the byte array

from which each matrix element should be read.

Subsection 5.3.1 will provide background information about the GraalVM com-

piler, which is the basis of the TornadoVM compiler, and describe the format of the
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Figure 5.13: The Generated GraalVM IR for the code in Listing 5.9.
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Graal IR graphs. In Subsection 5.3.2, each of the aforementioned compiler phase will
be presented in detail, with examples of the changes on the IR that each phase ap-
plies. The nodes of the IR that are colored red are nodes that are being deleted by
the compiler phase, while the green ones are newly inserted nodes. Finally, Subsec-
tion 5.3.3 will discuss how the output results are distributed across the system after the

computation has completed.

5.3.1 GraalVM Compiler

The GraalVM compiler [WWS10, WWW ™ 13] is a high-performance JIT compiler that
replaces or complements the JVM HotSpot existing compilers. It is integrated to the
JVM through the JVM Compiler Interface (JVMCI) [Ros]. One of its main advantages
is that it is written in Java, unlike the client (C1) and server (C2) compilers, which are
written in C++. Due to this fact, the GraalVM compiler is less prone to crashes, since
there are no segmentation faults and errors can be handled with exceptions. Moreover,
it is easier to maintain and extend using the numerous tools of the Java ecosystem (e.g.
profilers, debuggers etc.). Just like the other JIT compilers, the GraalVM compiler
generates machine code from the JVM bytecodes. To carry out this task, it creates
an intermediate representation (IR) using the bytecodes, which is known as Graal IR.
Several tiers of compilation are then applied to the IR to generate machine code that is

optimized for the target device.
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Graal IR

The GraalVM IR consists of control-flow and data-flow nodes. The control-flow nodes
are connected to their successor and represent the flow of execution, while the data-
flow nodes are connected to their input. The nodes can also be categorized as fixed or
floating. Floating nodes can be moved around the graph, as long as the semantics of the
program do not change. On the other hand, fixed nodes cannot change positions in the
graph. Nodes that represent an If condition (e.g. IfNode) or a loop (e.g. LoopBegin)
are examples for fixed nodes.

Figure 5.13 presents the IR that would be produced for the code in Listing 5.9.
This code receives two input parameters and returns their difference, if the first value
is larger than the second, or their summation otherwise. In this IR graph (Figure 5.13),

the data-flow nodes are colored blue and the control-flow nodes yellow.

Listing 5.9: A Simple Java Program.

public int m (int in, int out) {
if (in > out) {
return in - out;
} else {
return in + out;

}

5.3.2 JIT Compilation Phases
Object Replacement

This phase resides at the high tier of the compilation and replaces the default way that
TornadoVM loads/stores data from/to the fields of a Java object with a memory access
to a byte array. In essence, the load/store operations emitted by the TornadoVM JIT
compiler correspond to the instructions that load/store data from global memory to a
physical register on the device. Then, to obtain the position of each input/output field

within a Tuple object, the following formula is used:
field = tuplelndex x numberO fFields + fieldPos

The formula uses the following inputs: (i) tuplelndex indicates which Tuple in the

dataset is being accessed; (i1) the numberOfFields specifies how many fields exist in
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Figure 5.14: Object Replacement for Load Nodes.

the indexed Tuple object and (iii) fieldPos, corresponds to the position of the field that
is being accessed from the Tuple, counting from zero (e.g., if the first field is accessed

this value is 0, for the second field is 1 and so on).

Figure 5.14 illustrates the changes that this compiler phase applies to the IR for the
loading of a Tuple2. Specifically, on the left side of the figure the original representa-
tion is provided while on the right side is presented the graph after the actions of this
compiler phase are applied. The LoadIndexedNode#Tuple2 node signifies the loading
of the Tuple2 from an array of the same type. The index of the Tuple array (purple box)
is constructed by TornadoVM and it essentially signifies how the computation will be
split among parallel threads. From this point on, this will be referred as Parallel
Index. The two LoadField nodes that follow represent the loading each Tuple field.
During the Object Replacement compilation phase, these loading nodes are removed
and replaced with one LoadIndex node per field (right side of the figure). These new
load nodes are indexed with the formula provided above. Specifically, the first and the
second value are accessed with the index parallelIndex * 2 and parallelIndex

* 2 + 1 respectively.

Regarding the store nodes, on the left side of Figure 5.15 is presented the creation
of a new Tuple2 object that is being stored in a Tuple2 array. The nodes that represent
this allocation and store in the object array are replaced with one store node per field
of the return Tuple. Since in this example a Tuple2 is returned, there are two new Stor-
elndexed nodes which are indexed using the same formula as the load nodes described

in the previous example.
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Figure 5.15: Object Replacement for Store Nodes.

Padding Offset Calculation

The aforementioned Object Replacement does not take into account the padding that is
inserted if a byte array consists of heterogeneous elements (values that are represented
with a different size of bytes). The reason is that this phase resides at the high tier,
where the specific read/write addresses are not specified yet. Therefore, a new phase
named Padding Offset Calculation was included at the low tier of the compilation,

which is only invoked if the input or output byte arrays are padded.

Parallel Index Parallel Index

Read#Array: int BaseAddress Read#Array: int BaseAddress

[ [

Read#Array: double Read#Array: double

Figure 5.16: Offset calculation for Fields of Different Sizes.

During the lowering, the specific offsets from where to read and write data are
calculated by the compiler. If the compiler comes across a loading node for an int
or a float value, it specifies that four bytes should be read/written, so the indexing is
multiplied by 4. Similarly, for a double and a long, it is calculated that eight bytes
should be read/written from memory, therefore the index is multiplied by 8 in this

case.
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The left graph on Figure 5.16 illustrates how the graph on the right side of Fig-
ure 5.14 would look like after lowering. The LoadIndexed nodes have been replaced
with ReadArray nodes that have as input the memory base address (in the accelerator)
where the data resides in memory. In this example, and in accordance with the indices
that were calculated in the Object Replacement phase, the int value is being read from
the position parallelIndex * 2 * 4, while the double value is being read from the
position (parallelIndex * 2 + 1) * 8. However, since with the padding all array
elements take up eight bytes, the size four is replaced with eight (right side of the graph
in Figure 5.16).

Array Handling

In some cases, the Flink Tuple object can contain arrays of primitive values as fields.
Therefore, a new compiler phase was created, that takes into account the following
scenarios.

If this array is directly copied to the output (as in the left side of Figure 5.17), the
load and the store nodes that represent this action are replaced with a new node named
CopyArrayTupleField. This node generates code that perform this copying, taking
into account the specific offsets in the byte buffer.

Parallel Index BaseAddress

BaseAddress

BaseAddress

Read#Array: double[]

BaseAddress

—>

CopyArrayTupleField

Write#Array: double[]

Figure 5.17: Introduce Node that Copies The Array Values of a Tuple Field.

In case specific elements of the array field are being accessed, similar actions as
in the phase Padding Offset Calculation are performed. The formula to calculate the
positions from/to which the data will be read/written is the following:

arrayElement = sizeO f PreviousFields + sizeO fArrayElement x innerIndex+

totalSizeO fTuple x outerIndex

regularField = sizeO f PreviousFields +totalSizeO fTuple x outerIndex

In these formulas, the sizeOfPreviousFields represents the number of bytes of
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all the Tuple fields that proceed it. For instance, if the field in question were the third
field in a Tuple3<Integer, Double, long[]> then, the value of the sizeOfPrevious-
Fields would be 4 + 8 = 12. The sizeOfArrayElement represents the number of
bytes each array element takes in the byte buffer (eight if it is a double or a long array or
if there is padding between the array elements, four otherwise). The totalSizeOfTuple
is the size in bytes for all the elements of each Tuple. For example, in a Tuple2<double[],
Double> with the double array having 4 elements, the value of this variable would be
8*4 + 8 = 40. Finally, the innerIndex represents the index that iterates over the inner
array, while the outerIndex the index that iterates over the whole data.

Figure 5.18 presents how the default offsets (produced from the indexing per-
formed during the Object Replacement phase) are replaced with offsets that adhere to
the formulas described above. In this example the input consists of Tuple2<double[],
Double> values. The value totalBytes in the graph represents the total size of the
Tuple, while the arrayFieldBytes the number of bytes that each array element has.
Since this is a double array this value is actually eight. In this example the outer index
is the ParallelIndex.

Inner Index
C(totalBytes)

C(arrayfieldTotalBytes) i

BaseAddress

BaseAddress
BaseAddress
Read#Array: double[]

Read#Array: double[] BaseAddress
Read#Array: double

Read#Array: double

Figure 5.18: Calculate Array Offsets.

Replacement of Java Collections

A second group of objects that is widely used in Apache Flink, and other Java-based
frameworks, is derived from the Java collections library. Dynamic (e.g., LinkedList)
or semi-dynamic (e.g., ArrayList) data structures of this library can potentially gen-
erate function calls or dynamic memory allocation during runtime (e.g., size (), resize (),
etc.). Since hardware accelerators do not support such dynamic calls or memory allo-

cations, a special compilation phase is added to replace all those calls with equivalent
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operations on static arrays.

For example, as seen in Figure 5.19, the nodes that represent a get() operation on a
collection of Tuples will be replaced with a load node. During the Object Replacement
phase, this load node will then also be removed and replaced with loads for each raw

Tuple value as has been explained.

P(2)
LoadField#Tuple2.f0

LoadField#Tuple2.f1
LoadField#Tuple2.f0 oadFiel uple!

LoadField#Tuple2.f1

Figure 5.19: Replace a Collection get() function call with a Load.

Figure 5.20 illustrates how a function call to get the collection size is replaced with

a single constant node with the size of the collection.

E'*_

Figure 5.20: Replace a Collection size() function call with the actual size.

Matrix Flattening

Apart from Tuples, support for matrices has also been introduced. As explained in
Subsection 5.2.3, the data morphing module strives to make the data as compact as
possible. For matrices, this translates to having the data flattened, meaning that the
raw values of the matrix dataset are stored in an one-dimensional array. Therefore,

the memory accesses have to be adapted to be compatible with this data layout. To



5.3. DYNAMIC CODE GENERATION FOR HARDWARE ACCELERATORS 89

that end, this compiler phase replaces all the nodes that correspond to the original
memory accesses, with nodes that access one-dimensional arrays stored in the global
memory of a heterogeneous device. Figure 5.21 illustrates how the loading nodes that
are generated to access a single matrix element are replaced in the graph with a loading

node that accesses the same data in the linear byte array.

Outer Index

Inner Index

Inner Index

LoadIndexed#Float(] ,1:

LoadIndexed#float

v

LoadIndexed#Float

Figure 5.21: Matrix Flattening.

Matrix Offset Calculation

The Matrix Offset Calculation phase computes the offsets for accessing the memory
addresses of the flattened matrices and it is used for both writing and reading operations
to/from a matrix. For example, to access an element (m[1] [7]) of a matrix m pointed

by indices i and 7j, the following formula is used:
matrixElement = rowByteSize i + element Size * j

In this formula, the rowByteSize corresponds to the size of bytes that each matrix
row has (for a example, if each row consists of eight float values, then the value of the
rowByteSize is 32 bytes). The elementSize stores the size of the matrix element
in bytes (i.e., 4 bytes for representing int and float values, whereas 8 bytes for
representing long and double values). Finally, i and j are the indices that point to a

particular row and column to be accessed.

Figure 5.22 illustrates how the default offsets are replaced using the formula pre-
sented above. In this example, the matrix consists of float values, so the elementSize

is four.
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Figure 5.22: Calculating the Matrix Offsets.

5.3.3 Reverse Endianess & Padding of Data

Once a generated OpenCL kernel is executed, the output data which resides in the
serialized byte array is returned from TornadoVM to the Flink runtime. At this stage,
the order of the bytes is reversed to cope with the endianness (i.e., Big Endian) of Flink
and the padding is removed. Since the results are in byte format, they can be directly
patched to the serialized byte array in order to be distributed over the network by Flink.

5.4 Handling Hybrid Execution

The compiler extensions explained in the previous subsection essentially bridge the
gap between the API of Apache Flink (or other Java-based Big Data frameworks) and
the computational capabilities of heterogeneous hardware accelerators. However, the
ability to transparently JIT compile Flink user functions to heterogeneous accelera-
tors correlates with the capability of TornadoVM (or any other JVM of similar nature)
to identify computational patterns (e.g., map, reduce, etc.) and generate functionally
correct high performance OpenCL or PTX code. To that end, there are cases (opera-
tors) that either do not have inherent parallelism or they are not currently supported by
TornadoVM. For example, in KMeans, which is one of the applications that we used
to evaluate the proposed system (the evaluation will be presented in Chapter 6), one
such operator exists. This operator is the groupBy, which is part of the computational
pipeline as presented in Listing 5.10.

A closer inspection of the Flink Job Graph reveals that the groupBy and the consec-

utive reduce operator are being chained together in one function called Sort AndCombine
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Listing 5.10: KMeans pipeline

1 DataSet<> results = data

2 .map () //Assign each point to closest centroid

3 .map () //Appends a counter to the results of the first
map

4 .groupBy () //Groups data based on the centroid ID

5 .reduce () //Adds the counters to calculate num points
per centroids

6 .map (); //Calculates new centroid coordinates for each
cluster

via the ChainedReduceCombineDriver. When trying to compile the SortAndCom-
bine function with TornadoVM, a failure occurs during the QuickSort function that is
being internally used. On the other hand, the reduce operation can be compiled and

executed on the hardware accelerator.

Hence, to be able to run KMeans - and other use cases that contain a groupBy - in
the proposed platform two options exist: a) manually code a GPU/FPGA compatible
QuickSort kernel and plug it in to TornadoVM, or b) support hybrid execution where
a pipeline can be transparently executed partially on the CPU and on the hardware
accelerators. Although the first solution would yield the best performance results since
all execution would take place on a hardware accelerator, it would violate the code
portability and transparency, which have been very crucial during the development of
heterogeneous Big Data system. In addition, this solution is not universal as there are
kernels which should not be executed at all on a GPU or an FPGA due to their limited

parallelism.

Hence, the second solution was selected, which enables transparent hybrid execu-
tion of a data pipeline between a CPU and hardware accelerators. Consequently, all
the operators of KMeans, besides that sorting function, are executed on the accelera-
tor. To perform sorting, data is being copied back to the CPU, unmarshaled, and then
marshaled again for continuing execution of the reduce and consequent operators on

the accelerator.

Naturally, as more operators are supported by TornadoVM the need to transition

execution between the CPU and the hardware accelerators will be minimized.
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5.5 Summary

This chapter presented the proposed Big Data system, which can seamlessly and dy-
namically target hardware accelerators. To enable Flink to transparently deploy execu-

tion on hardware accelerators, it was extended with three modules.

1. A code morphing module, which uses a bytecode manipulation library (ASM) to
transform the Flink user function call into a skeleton function that is compatible
with the API of TornadoVM.

2. A data morphing module, that extracts the input data from the Flink serialization
buffers and performs some essential modifications on it to make it compatible

with hardware architectures.

3. A code generation module, which includes the TornadoVM compiler extended

with a number of compiler phases that help accessing the data in the correct way.

The proposed platform can execute existing user Flink programs that contain var-
ious data types, (e.g., Tuples, matrices) and can easily be extended to support more
types following the techniques discussed above.

Table 5.1: The criteria that our proposed implementation fulfills.

Implementation |Big Data Framework | Code Fragmentation |Code Generation |Vendor Device Coverage
lock-in

Flink- Flink No On-demand No CPUs, GPUs,

TornadoVM FPGAs

Integration - Final

As shown in Table 5.1, the proposed platform fulfills all the criteria that were
deemed crucial for modern heterogeneous Big Data systems. Specifically, it does not
fragment the API since the same user code that is executed by the original Flink can be
executed by the proposed system. The generated kernels are JIT-compiled, therefore
no pre-compiled code is necessary. Finally, because TornadoVM can target a plethora

of different hardware accelerators there is no vendor lock-in.



Chapter 6
Experimental Evaluation

This chapter presents the evaluation of the proposed framework against the baseline
CPU-only Apache Flink. A brief description of the benchmarks that were used for this
evaluation 1s provided in Table 6.1, along with information about the operators they
consist of, whether they were executed on hybrid mode and their input data sizes.

The remainder of this chapter is organized as follows. Section 6.1 elaborates on
the methodology followed to evaluate each use case. Sections 6.2 and 6.3 present the
performance evaluation of benchmarks that are executed by the proposed system on
GPUs and FPGAs respectively. Section 6.4 provides the performance assessment of
KMeans and IoT Analytics, which utilize the hybrid execution of operators (described
in Section 5.4). Finally, Section 6.5 summarizes the conclusions that were drawn from

this evaluation.

6.1 Experimental Methodology

For the experimental evaluation two testbeds were used, which exhibit different soft-
ware and hardware specifications, as presented in Tables 6.3 and 6.2. Testbed-1 is a
cluster that contains two compute nodes with two discrete NVIDIA GPUs; one per
compute node, while Testbed-2 is a server that contains an Intel FPGA.

The experimental methodology that was applied for all benchmarks is the follow-

ing:

1. An Flink cluster was launched to initiate the Job Manager and the Task Manager

nodes.
2. The benchmarks were executed and performance is measured. To ensure fair

93
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Table 6.1: The benchmarks along with their configuration with regards to the utilized

CHAPTER 6. EXPERIMENTAL EVALUATION

Apache Flink operators, hybrid execution and data sizes.

Name Description Operators Used |Accelerated |[Hybrid |Data  Sizes &
Operators Execution [Ranges
Matrix Multipli- Mathematical operation| map map no Range: 128x128 -
cation (MxM) widely used
in Machine Learning 4096x4096
and Deep Learning
workloads.
Logistic Regres-|Standard regression || map, reduce map, reduce |no Training DS: 1 GB,
sion (LR) analysis, which, in this
paper, is used to
predict the likelihood of Test DS: 147 MB
patients’ re-admission in
public hospitals.
Discrete  Fourier| Commonly found in dig- || map map no Range: 2048 -
Transformation  |ital signal processing ap- 65536
(DFT) plications.
KMeans Widely used clustering ||map, groupBy, |map, reduce |yes Centroids: 2,
algorithm.
reduce Points: 16K - 16M
IoT Analytics Encompasses standard ||reduce, reduce yes 346 MB
operations (e.g., sums, ||groupRe-
average, etc.) on [oT duce
collected data which, in (Data from IoT Sen-
this paper, have been Sors)
collected by sensors
operating on buildings
providing metrics (e.g.,
temperature, humidity,
etc.)
Table 6.2: Software Setup.
Common Software Characteristics
Flink | Apache Flink 1.11
JVM | OpenJDK 1.8.0_308, JVMCI 21.2.0
TornadoVM |TornadoVM v0.11
JVM Heap Size |32 GB
Testbed-1
OS |Debian 10, Linux-4.19.0-11
OpenCL Version | OpenCL 1.2
NVDIA Driver|418.152.00
Testbed-2
OS|CentOS 7.4.1708
OpenCL Version |OpenCL 1.0
FPGA Driver Intel FPGA SDK 17.1

comparison between the proposed and baselined systems, all reported results are

the averages of ten consecutive end-to-end executions. In addition, the execution
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Table 6.3: Hardware Setup.
Testbed-1 Characteristics
Node 1, Node 2
CPU |Intel(R) Core(TM) i7-4820K @ 3.70GHz
Main Memory|64 GB
GPU |NVIDIA GeForce GTX 1060
GPU RAM |4 GB

Testbed-2 Characteristics
CPU |Intel(R) Core(TM) i7-7700K @ 4.20 GHz
Main Memory |64 GB
FPGA |Nallatech 385a
FPGA RAM |4 GB

times are obtained by the Flink API (Flink Job Runtime). That means that the
end-to-end execution time of an application that runs via the proposed system
on a heterogeneous device encompasses: a) the time for performing the data
transfers from the host (CPU) to the device (GPU or FPGA), and vice-versa;
b) the kernel execution time on the device, and c) the time spent in the Flink
runtime to orchestrate the execution. Furthermore, to analyze the scalability of
the proposed system, each benchmark was executed using various input sizes, as

presented in the last column of Table 6.1.

The baseline Flink was tested in six different configurations, three were run on a single
Task Manager, with the task slots (parallel CPU threads) scaling up from one to two
and four, and remaining three configurations were run on two Task Managers, where
each of them scaled up again from one up to four CPU threads. Regarding the accel-
erated system, the performance was analyzed using two configurations, in which the
number of Task Managers scaled up from one to two and each Task Manager deployed
one parallel CPU thread. Table 6.4 summarizes the configurations used to test the two
systems. From this point on, when discussing the different configurations, the follow-

ing naming convention will be applied:

(N)-Number of physical nodes - (TS-CPU/GPU)-Number of Task Slots per node

For example, a configuration marked as N-2 TS-CPU-4, indicates that two physical
nodes were utilized, each running four CPU threads, and the execution was deployed to
the CPU. Similarly, a configuration labeled N-1 TS-GPU-1 signifies that one physical

node with one CPU thread was utilized and the execution was deployed to the available
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Table 6.4: Execution Configurations.

Configuration Name |Physical Nodes|CPU Threads Per Physical Node | Target Device
N-1 TS-CPU-1 1 1 CPU
N-1 TS-CPU-2 1 2 CPU
N-1 TS-CPU-4 1 4 CPU
N-2 TS-CPU-1 2 1 CPU
N-2 TS-CPU-2 2 2 CPU
N-2 TS-CPU-4 2 4 CPU
N-1 TS-GPU-1 1 1 GPU
N-2 TS-GPU-1 2 1 GPU

GPU. The terms <CPU parallel thread>and <task slot>will be used interchangeably.

6.2 Performance Evaluation on GPUs

This section presents the performance comparison of two benchmarks that were exe-
cuted by the proposed system on a GPU (without hybrid mode) compared to the base-
line Apache Flink implementations. The first benchmark is a matrix multiplication
between two two-dimensional matrices (Subsection 6.2.1). The second benchmark is
an industrial use case that predicts the likelihood of patients to be re-admitted in public

hospitals (Subsection 6.2.2) by using logistic regression on patient data.

6.2.1 Matrix Multiplication

The matrix multiplication benchmark uses a map operator to multiply two matrices,
of two dimensions, on Testbed-1. Figure 6.1 presents the relative performance of ma-
trix multiplication executed by the proposed system against the six configurations of
the baseline system, which scale out the number of physical nodes and the number of
threads per node. The left-size plot of Figure 6.1 presents the speedups of the Flink-
TornadoMV integration while running on the GPU of a single Task Manager node. On
the right size of Figure 6.1 are illustrated the speedups acquired when running the in-
tegration on two Task Manager nodes, each equipped with a GPU. The horizontal axis
groups the experiments for different matrix sizes ranging from 128 to 4096 elements
per dimension of each matrix. Specifically, the size of the input datasets ranges from
171KB to 170MB. The vertical axis shows the relative performance speedup of the

proposed system against the baseline implementations (six bars) in logarithmic scale.
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Figure 6.1: Matrix Multiplication: Performance speedup of the proposed system
against the baseline Apache Flink configurations. The higher, the better.

The red horizontal line illustrates the reference point that shows equal performance

between the compared systems.

As shown in Figure 6.1, the performance of matrix multiplication in the proposed
system for sizes smaller than 512 elements (per dimension) does not outperform the
execution of the baseline Flink non-accelerated implementation. However, as the data
size increases, the proposed system outperforms the non-accelerated Flink by up to
33.53x (Figure 6.1-left) and 65x (Figure 6.1-right). The highest performance improve-
ment is observed against the Flink non-accelerated configuration that runs with two
Task Managers and one task slot per Task Manager (N-2 TS-CPU-1) and is depicted in
purple. On the other hand, the least performance improvement, for the largest dataset,
is 7.1x (Figure 6.1-left) and 13.8x (Figure 6.1-right); and it is observed against the
baseline configuration that operates with four threads on a single node (N-1 TS-CPU-4
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Matrix Multiplication: Cost Breakdown
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Figure 6.2: A Breakdown Analysis of The Matrix Multiplication Use Case for Matrices
of Dimensions 4096x4096.

- red bar). In addition, as the number of CPUs is scaled in the baseline configuration,

the measured relative speedup achieved by a single GPU is decreasing.

Additionally, Figure 6.2 presents a breakdown analysis of the execution for the
largest dataset (4096 elements per matrix dimension). As shown in this figure, the
cost of the code morphing module (purple segment) is almost insignificant (17 ms).
In this experiment, the Task Schedule time dominates the execution (green segment),
while the transformations applied by the data morphing module (blue segment) take
up approximately 4.5% of the total job time. The red segment in the figure represents

the remaining job time.

Conclusion: As expected, the results of this evaluation indicate that in order to ben-
efit from GPU acceleration, a particular data size threshold must be met to offset the
overheads of data transfers to the GPU. The reason is that, when the input data size is
small, the cost of transferring low volume of data to the GPU exceeds the actual execu-

tion gains of the computation on the GPU, thereby penalizing the overall performance.
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. Evaluation of Logistic Regression (LR)
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Figure 6.3: Execution runtime of Logistic Regression for the baseline Apache Flink
configurations and the proposed solution that executes on a GPU. The lower, the better.

6.2.2 Logistic Regression (LR)

The Logistic Regression use case deploys a Machine Learning model that is trained
with a data set of 1 GB size, while the testing of the trained model is performed with
147 MB of data. The benchmarking of this use case includes both the training and
testing phases of the ML model. Each phase consists of three operators, which are
executed in the following order: map, reduce, and map. Figure 6.3 presents the overall
end-to-end execution time for both systems, as reported by Flink. Similar to the previ-
ous experiment, the Flink baseline configurations that were tested using various threads
per node, as follows: a) one task slot (blue bar), b) two task slots (green bar), and c)
four task slots (red bar). This figure groups the systems in the horizontal axis based on
the number of Task Managers and the device that they target. For instance, execution
times of the baseline configurations that were run on the CPU of one physical node
belong to the group labeled N-1 CPU, the same configurations that were executed on
two physical nodes belong to the group labeled N-2 CPU and so on.

As shown in Figure 6.3, in this benchmark it was observed that the proposed system

performs slower than all baseline configurations. In particular, the N-1 TS-CPU-1
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Table 6.5: Testbed-3.
Testbed-3 Characteristics

CPU |Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz
Main Memory 256 GB
GPU|NVIDIA Tesla V100-SXM?2
GPU RAM (32 GB

configuration is up to approximately 2.5x faster than the equivalent configuration that
is offloaded on the GPU (N-1 TS-GPU-1). Additionally, the fastest configuration of the
baseline (which is in this case is four task slots on either one or two Task Managers) is
up to 4.7x faster compared to the best configuration of the proposed system (two Task

Manager nodes).

Further Investigation

To understand better the reasons why the GPU implementations perform significantly
worse than the baseline implementations, a complementary study was performed. This
study includes the breakdown analysis of the end-to-end job time for the proposed sys-
tem while running on a single physical node (N-1 TS-GPU-1). Figure 6.4 presents the
breakdown of the overall job time while running (i) on Testbed-1, which is equipped
with the GTX 1060 GPU and, (ii) on a testbed equipped with a Tesla V100 GPU, which
a is high-end GPU that offers more compute threads and higher memory capacity. The
characteristics of this testbed (Testbed-3) are presented in 6.5.

The execution breakdown consists of four main segments: a) the cost of data mar-
shaling (blue segment), b) the execution time of the map operator on the GPU (green
segment), ¢) the execution time of the reduce operator on the GPU (red segment), and
d) the rest of the job run time (purple).

As shown on the left bar of Figure 6.4, the marshaling cost along with the execu-
tion of the map and reduce operators dominate the overall time of the Flink job. In
particular, the marshaling time takes up to 30743 milliseconds, while the execution
time of the two operators on the GPU take up to 33319 and 24787 milliseconds for
map and reduce, respectively. However, the breakdown shown on the right bar of Fig-
ure 6.4 indicates that, when running on a faster GPU, the job time is dominated by the
marshaling cost, which takes more than 80% of the overall time (47088 milliseconds).

Even though the previous breakdown analysis identified the mashalling as a big
overhead, this was not the only bottleneck; high execution times were also observed.
Specifically, for this benchmark, the performance on the GTX 1060 GPU would still



6.2. PERFORMANCE EVALUATION ON GPUS 101

Performance of LR on 2 GPUs: Cost Breakdown

I Marshalling
s Map-GPU
80000 I Reduce-GPU
Il Rest
60000
@
£
W
E
= 40000
20000

GTX 1060 V100

Figure 6.4: Performance breakdown of Logistic Regression on two GPUs a GTX 1060
(left bar) and a Tesla V100 (right bar).

be lower compared to the baseline even if the marshalling cost was completely elim-
inated. The total execution time on the GTX 1060, removing the marshalling cost is
approximately 57933 milliseconds, which is still larger than the equivalent baseline
configuration execution time, which is 34599 milliseconds. An initial hypothesis on
why in this particular case the computation is slow, even though the application is
highly-parallelizable, could be that the GPU is overutilized due to the size of the load
(1 GB), which the largest used in this evaluation.

To examine this hypothesis, an additional experiment was implemented. In this ex-
periment, the use case was run on the GTX 1060 GPU of Testbed-1 for datasets ranging
from 1GB to 56MB, and the performance of the computation deployed on TornadoVM
was measured using the TornadoVM profiler. The TornadoVM profiler returns the to-
tal time of all Task Schedules - which includes data deployment and kernel execution
times. Table 6.6 presents the results of this experiment. Specifically, this table contains
the total TaskSchedule time, which encompasses: a) the time for transferring data from
the main memory to the GPU memory (Copy-In Time), (b) the kernel execution time

(Kernel Time), and (c) the time to move data from the device memory back to the main
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Table 6.6: Evaluation of Logistic Regression for various Input Sizes.
Data Size
1GB | 888MB | 111 MB | 56 MB

TaskSchedule Breakdown

TaskSchedule Time 58021 41603 5748 3577

Copy-In Time 44922 31827 4000 2012
Copy-Out Time 9731 6816 850 425
Kernel Time 2726 2255 284 143

Copy-In over TaskSchedule (%) | 77.4% 76.5% 69.6% 56.2%
Overall Comparison

Flink N-1 TS-CPU-1 34559 25506 3286 1792
Proposed System N-1 TS-GPU-1 | 88876 64407 8801 5336
Slow-down 0.39 0.39 0.37 0.33

memory (Copy-Out Time). Moreover, it contains the overall execution time of the pro-
posed system (N-1 TS-GPU-1) and the baseline implementation (N-1 TS-CPU-1). All
times are reported in milliseconds.

As shown in Table 6.6, for 1 GB of input, the kernel execution time is 2726 mil-
liseconds, which is very low compared to the end-to-end times reported. However, it
appears that what dominates the execution time is the time to transfer data from the
main memory to the GPU memory (Copy-In Time). This takes up around 77% of the
total Task Schedule execution time. The same trend was observed for smaller datasets
as well. The kernels’ execution times are consistently low, ranging from 2726 mil-
liseconds (1 GB) to 143 milliseconds (56 MB). On the other hand, the transferring of
data from the main memory to the GPU memory takes up to 77.4% and 56.2% of the
overall TaskSchedule time for large (1 GB) and small (56 MB) sizes, respectively.

Conclusion: The performance evaluation of this benchmark illuminated two crucial
factors that should be taken into consideration when striving to achieve the highest
performance.

First of all, it showcased that the marshaling cost poses a significant overhead that
can severely impact performance. The marshaling cost is attributed to the transforma-
tion performed by the data morphing module (presented in Section 5.2), that is, the
changes made on the serialized buffer in order to preserve the endianess and aligned
memory accesses. This overhead is present in all the experiments discussed in this
chapter, however, it becomes visible here due to the large size of the input dataset
(1GB). The design decision of the JVM to use big endian serialized buffers while the
majority of acceleration hardware uses little-endian can be only addressed via changes

to the core runtime system itself. However, if Flink could process information directly
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Figure 6.5: DFT: Performance speedup of the proposed system against the baseline
Apache Flink configurations. The higher, the better.

for native buffers (not JVM heap-allocated) which can also be directly used by accel-
erators, the marshaling process would be circumvented and this potential performance
gains would be higher. A more immediate solution to this problem would be to use
off-heap memory allocation via Project Panama [aia], for example, in order to format
data appropriately. Nevertheless, such a solution would impose programmability and
memory maintenance challenges at the Apache Flink (or any Big Data framework)

side.

However, the data marshalling was not the only overhead contributing to the per-
formance of this benchmark. High data transfer cost was also observed. One possible
factor that could be contributing to the fact that the data transfer cost is so high in this
use case - but was not in the others benchmarks - could be that this benchmark con-
sists of the most operators. At the current implementation of the proposed platform,
each operator is executed by a separate TornadoVM Task Schedule, therefore, there are
more data exchanges between operators compared to other use cases. In a future itera-
tion of the proposed system, if these operators were placed on the same Task Schedule,

this cost could be much lower.
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6.3 Performance Evaluation on FPGAs

Due to the interoperability with TornadoVM, the proposed system can target not only
GPUs but also FPGAs. This section evaluates the performance of a Discrete Fourier

Transformation (DFT) algorithm implemented with a map operator in Apache Flink.

6.3.1 Discrete Fourier Transformation (DFT)

Figure 6.5 presents the relative performance of the proposed system running on an Intel
FPGA versus six baseline configurations. This experiment is executed on a single node
of Testbed-2. The horizontal axis shows six bars that correspond to a baseline configu-
ration for various input sizes ranging from 2048 ~ 50KB to 65536 ~ 1.6MB elements
for the input arrays. As shown in Figure 6.5, the execution on the FPGA for small
input sizes (up to 4096 elements) does not result in performance improvement over the
baseline implementations. The only exception where the FPGA execution outperforms
the baseline for 4096 input size is observed against the single thread configurations that
operate on one (N-1 TS-CPU-1, blue bar) or two (N-2 TS-CPU-1, purple bar) nodes.
In this case, the performance improvement is up to 1.55x and 1.57x higher than N-1
TS-CPU-1 and N-2 TS-CPU-1, respectively. For input sizes greater than 4096, the
proposed system accelerates all baseline configurations by up to 184x (N-2 TS-CPU-
1 for 65536 elements). Additionally, the performance trend shown in Figure 6.5 for
all baseline configurations is consistent across all input sizes. For example, the maxi-
mum performance between all baseline configurations for the maximum input size is
achieved by N-2 TS-CPU-4 (light blue bar), which outperforms up to 3.07x and 3.1x
the N-1 TS-CPU-1 (blue bar) and N-2 TS-CPU-1 (purple bar) configurations.

Conclusion: Similarly to other works [PFS™21], the execution of parallel workloads
that have small data size on FPGAs may not result in acceleration. However, when
the amount of data to be processed is sufficient, acceleration is possible. In particular,
applications, such as DFT, that can utilize specific hardware units integrated on the
FPGA hardware for digital signal processing are good candidates. The capability to
transparently utilize both GPUs and FPGAs from the same unmodified Apache Flink
code base enables device selection based on the workload characteristics which is the

strength of the proposed system.
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6.4 Performance Evaluation of Hybrid Execution

This section presents the performance comparison of two benchmarks that use the
hybrid execution of Apache Flink operators on both the CPU and GPU, against the
baseline Apache Flink implementations. The first benchmark is KMeans (Section 6.4),
while the second benchmark is an industrial use case that performs analytics on data

obtained from IoT sensors (Section 6.4).

KMeans

Figure 6.6 shows the performance of KMeans on the proposed system against six con-
figurations of the baseline Flink non-accelerated implementations. As shown in Fig-
ure 6.6, the execution with the proposed solution on the GPU of Testbed-1 outperforms
all the baseline Flink configurations for various input sizes ranging from small (i.e.,
32768 elements ~ 1.3MB) to large (i.e., 16777216 elements ~ 649MB). The Flink
accelerated version on the GPU performs up to 17.86x (Figure 6.6-left, 4194304 ele-
ments, purple bar) and 21.12x (Figure 6.6-right, 16777216 elements, purple bar) faster
than the N-2 TS-CPU-1 Flink configuration. Additionally, the proposed system out-
performs the fastest baseline Flink configuration for the maximum input size by 4x
(Figure 6.6-left, red bar) and 5x (Figure 6.6-right, red bar) against the N-1 TS-CPU-4
and N-2 TS-CPU-4 configurations, respectively.

Note that the KMeans benchmark uses various operators, including map, reduce
and group-by. In this experiments, the map and the reduce were deployed on the GPU,
while the groupBy operator was executed on the CPU. Figure 6.7 presents a breakdown
analysis of the total execution time for the largest dataset (16777216 points). In this
figure, the green segment represents the GPU execution time (Task Schedule time),
the red segment the CPU execution time (groupBy time), the blue segment the data
marshalling cost and finally the purple segment the remaining of the job time. For this
use case, it appears that Flink has a lot of internal overhead, since the purple segment

dominates the total job time.

Conclusions: As shown in Figure 6.6, the proposed system is faster than the baseline
for all the configurations and datasets used in this evaluation. This showcases that the
cost of having hybrid execution is not necessarily prohibitive, which is a very positive
outcome. Through mixed execution of operators across different types of devices (e.g.,

by using the recommendations of a heterogeneous scheduler [MBD"18]) the system
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Figure 6.6: KMeans: Performance speedup of the proposed system against the baseline
Apache Flink configurations. The higher, the better.

can achieve a higher level of heterogeneity.

IoT Analytics

The IoT Analytics use case is a benchmark that deploys four reduce operators to cal-
culate min, max, mult, and sum operations on the input datasets. This benchmark con-
tains also a reduceGroup operator, which is currently not supported for acceleration,
and therefore, was executed on the CPU. The datasets are obtained from a network of

IoT sensors.

Figure 6.8 contains five plots; each plot presents the comparative evaluation of
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Figure 6.7: A Breakdown Analysis of the KMeans Benchmark for Matrices for
16777216 Points.

a configuration that uses the proposed system to execute on GPUs, against six non-
accelerated Flink configurations that have been used as baseline in previous experi-
ments. In this benchmark, the proposed platform was tested in three additional con-
figurations compared to the previous experiments. These additional configurations
are on one Task Manager running on the GPU with two (N-1 TS-GPU-2), four (N-1
TS-GPU-4) and eight (N-1 TS-GPU-8) parallel threads. The reason that these extra
configurations were examined was that with the original configurations, not enough
performance was reported (up to 1.23x on the configuration N-1 TS-GPU-1 and 1.43x
on the configuration N-2 TS-GPU-1). Therefore, they served to prove whether under-
utilization of the GPU was the root of the problem.

The results presented in Figure 6.8 show that although performance increases with
more threads, it does not scale further for more than four threads. In particular, it
is shown that the maximum performance improvement is 2.54x and it is achieved by
N-1 TS-GPU-4 against the N-1 TS-CPU-1 baseline (purple bar). When the number
of threads on the same node is increased to eight threads, the overall performance is
increased up to 2.48x against N-1 TS-CPU-1 which indicates saturation.
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Figure 6.8: IoT Analytics: Performance speedup of the proposed system against the
baseline Apache Flink configurations. The higher, the better.

Table 6.7: GPU Utilization on Testbed-1 for the IoT Use Case.

Task Slots | Utilization Percentage
1 100%
2 100%
4 88%
8 92%

Table 6.8: Testbed-4.

Testbed-4 Characteristics

CPU

Main Memory
GPU

GPU RAM

64 GB
NVIDIA Quadro GP100
16 GB

Intel(R) Core(TM) 17-7700K CPU @ 4.20GHz

Further Investigation

Upon further inspection of the GPU utilization using nvidia-smi, it was observed for

this use case, the GPU was getting overutilized (up to 100% utilization) even when

running with one and two threads. Table 6.7 presents the utilization percentages as

calculated by nvidia-smi for each thread.

The same experiment was repeated on a testbed equipped with a Quadro GP100
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Figure 6.9: IoT Analytics: Performance speedup of the proposed system against the
baseline Apache Flink configurations, while running on a faster GPU. The higher, the
better.

GPU (Testbed-4, presented in Table 6.8). The GPU of Testbed-4 is considerably faster
compared to GTX 1060. The speedups of this experiment are presented in Figure 6.9.
As seen in this figure, the accelerated platform performs consistently better compared
to the previous results observed (Figure 6.8), with up to 3.8x speedup for eight threads
(N-1 TS-GPU-8). With this faster GPU, the utilization is much lower and, therefore,
the performance can scale up with more than four threads. Table 6.9 presents the
percentage of the GPU utilization on Testbed-4, with the task slots ranging from one
to eight. As presented in Table 6.9, the GPU utilization remains below 10% despite the
increase in the number of task slots. This could be attributed to the computing power
of the GP100 GPU.
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Table 6.9: GPU Ultilization on Testbed-4 for the IoT Use Case.

Task Slots | Utilization Percentage
1 5%
2 9%
4 4%
8 4%

Conclusions: Overutilization of GPUs can cause performance degradation [MO16].
As the amount of threads increased to four and eight, the utilization percentage dropped
to 88% and 92% respectively. The reason that this drop of utilization was observed

could be that the GPU driver put pending work in a queue to handle saturation.

6.5 Summary

This section presented the evaluation of the proposed platform across a diverse set of
applications. The presented framework was tested in three execution different setting;
on a GPU, an FPGU and mixed CPU/GPU execution. The largest speedup observed
against the Flink baseline on GPUs was 65x for the Matrix Multiplication case, and on
the FPGA 184x for the Discrete Fourier Transformation.

This experimental study also identifies the preconditions to gain the most perfor-

mance out of the hardware accelerators. These can be summarized as follows:

1. The first precondition is to have the correct utilization of the hardware acceler-
ator, both regarding the computational load and the parallel pipelines that are
executed. Although this issue might seem trivial, there is no panacea in config-
uring the right data size and the number of threads to get optimal performance.
Instead, the correct configuration highly depends on the application and the un-
derlying hardware resources. As this experimental evaluation showcased, it is
imperative to have integrated tools that can automatically perform data parti-
tioning and configure the appropriate degree of parallelism for each application

to take full advantage of heterogeneous Big Data platforms.

2. Secondly, it is crucial to limit the data copies from the CPU main memory to the
device memory as much as possible, since this process can significantly deterio-

rate per formance.

3. Lastly, it was observed that the marshalling cost, which is imposed by the data

transformations of the data morphing module (Section 5.2) is a considerable
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overhead for large datasets. To avoid this cost, the runtime system should be
augmented to store the data in a format that is friendly to hardware accelerators

so as to avoid these transformations.



Chapter 7
Conclusions and Future Work

As the amount of data that requires processing keeps increasing at a rapid pace, ad-
ditional computational power is required to maintain low execution times. To that
end, major cloud providers (e.g. AWS) have equipped their cluster nodes with high-
throughput devices, such as GPUs and FPGAs, which are known to be performant in
intensive computations. However, taking advantage of such hardware accelerators is
not trivial, since the de-facto Big Data frameworks (e.g. Apache Flink, Apache Spark,
etc.) were designed to run on CPU-only clusters.

Over the last few years, both the industry and the academia have worked exten-
sively on filling the gaps between Big Data frameworks and hardware accelerators, and
several solutions for heterogeneous execution of Big Data applications have emerged.
However, these solutions have some characteristics that make their wide adoption by
Big Data developers challenging. Specifically, in order to accelerate Big Data ap-
plications with any of the currently available frameworks, the developers have to ei-
ther (i) provide a low-level implementation of their application in a programming lan-
guage like OpenCL, (i1) rewrite their application to match a platform-specific API, or
(iii) both. Apart from the programmability constrains, many of the existing heteroge-
neous Big Data frameworks are restricted to devices of specific vendors (e.g. NVIDIA)
and/or they can only target specific accelerator devices (e.g. GPUs only).

This thesis provided an extensive analysis of the current obstacles in seamless het-
erogeneous execution of Big Data applications and introduced a set of techniques that
enable the dynamic execution of Big Data loads on GPUs and FPGAs without user
interference. Section 7.1 will provide a summary of the contributions made in this
thesis, as they were presented in each chapter. Section 7.2 will present how this the-

sis addressed each of the research questions and draw the final conclusions. Finally,

112
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Section 7.3 will suggest future research directions.

7.1 Summary

The content of this thesis is summarized as follows:

Chapter 2 provided the essential background on the core concepts of this thesis.
Specifically, it introduced Big Data frameworks, presented a general overview of their
architecture, and classified them based on their programming model (i.e., map-reduce
and dataflow). Additionally, it defined the focus of this thesis, which is on distributed
dataflow systems, and provided a deep analysis of Apache Flink, which is the platform
that was used for prototyping. Lastly, it elaborated on the terms hardware accelera-
tors and heterogeneous execution and provided a high-level description of GPUs and
FPGAs.

Chapter 3 scrutinized the current state-of-the art and presented a detailed analy-
sis of the most prominent efforts to introduce GPU and FPGA acceleration into both
Big Data frameworks and map-reduce programming in general. The acceleration of
map-reduce applications using GPUs and FPGAs has been widely studied. However,
most the map-reduce frameworks in the relevant literature expose low-level APIs and
often require a deep understanding of the hardware architectures from the developers.
Regarding the works on accelerating Big Data applications, they can be classified into
two categories. The first category consists of frameworks that rely on precompiled
kernels. The second category contains frameworks that employ dynamic compilation.
Regardless of the category they fall into, all these heterogeneous frameworks were
evaluated based on the following criteria: (i) if they cause code fragmentation, (ii) if
their kernels are pre-compiled or generated on-demand, (iii) if they impose any vendor
lock-in, and (iv) if they can target CPUs, GPUs and FPGAs. As demonstrated in this
chapter, there is currently no implementation that can target CPUs, GPUs and FPGAs
on demand, without causing the fragmentation of the codebase. This is the gap that
this thesis studies and fills.

Chapter 4 discussed the challenges of enabling transparent heterogeneous execu-
tion on Big Data frameworks. First, it elaborated on the need to use a heterogeneous
programming framework in order to avoid pre-compiled kernels and presented Tor-
nadoVM, which is the heterogeneous framework of choice for this thesis. Following,
three major challenges that stand in the way of transparent acceleration of Big Data

applications were identified. The first challenge is to enable the execution of Big Data
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applications, which are written using a specific API, on GPUs and FPGAs, without
modifying the user code. The second challenge refers the granularity of execution fol-
lowed by Big Data platforms versus the granularity of execution that is suitable for
hardware accelerators. The last challenge is how to handle dynamic types (i.e. JVM
objects) on GPUs and FPGAs so as not to break the OOP norms. Additionally, this
section also presented a quick and naive integration of Flink and TornadoVM. This
integration does not have much novelty value, however, it served two purposes. The
first was to establish that an integration of Flink and TornadoVM is possible and the
second was to verify the challenges discussed above.

Chapter 5 presented a set of techniques that enable dynamic execution of Big Data
applications on heterogeneous hardware devices without breaking the programming
norms. The techniques used were split into three modules. First, a code morphing
module adapts the user functions at runtime to make them compatible with the API
of the heterogeneous compiler (in this case, TornadoVM). Secondly, a data morphing
module was presented, that collects the data from the Flink serialization buffers and
performs a set of transformations to make it suitable for hardware acceleration. These
transformations are performed with respect to endianess and the alignment of mem-
ory accesses. Lastly, a code generator module was introduced, which consists of an
extended version of TornadoVM. Specifically, the compiler of TornadoVM was aug-
mented with a set of compiler phases that enable the user function to access the data
correctly. This chapter also discussed how the proposed framework handles operators

that are not currently supported.

Finally, Chapter 6 presented an extensive evaluation of the proposed implemen-
tation using a wide set of benchmarks. During this evaluation it was showcased that
indeed, in most cases, Big Data applications can benefit greatly from hardware accel-
erators (achieving speedups up 65x on GPUs and up to 184x on FPGAs over Flink
CPU scaleout). This evaluation also highlighted a set of preconditions that need to be
satisfied to ensure that a Big Data application gains the most out of GPU and FPGA
execution. These are (i) to minimize the copying from the host to the device as much
as possible, (ii) to ensure proper utilization of devices, because both under and over
utilization can lead to performance degradation, and (iii) to design future Big Data
platforms in such a way as to minimize or eliminate marshalling, since this can be a

significant overhead.
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7.2 Conclusions

This section presents the conclusions that can be drawn for each of the research ques-
tions presented in Section 1.2.

RQ1. What are the main obstacles in transparent acceleration of Big Data appli-
cations?

Through the analysis of the programming and execution models of the two basis sys-
tems, Apache Flink and TornadoVM, and the initial efforts to integrate them, the fol-
lowing challenges were identified:

* #1 Challenge: How to enable the execution of applications that are written using
a specific API of a Big Data framework on GPUs and FPGAs.

* #2 Challenge: How to handle Java object types on GPUs and FPGAs.

* #3 Challenge: How to use a coarse-grained model of execution on a Big Data

platform, while developers write their code in a fine-grained model.

RQ?2. Is it possible to accelerate Big Data applications without breaking the exist-
ing Big Data programs or introducing new APIs?

Chapter 5 proved that it is indeed possible to offer hardware acceleration of Big Data
applications, without introducing new APIs or requiring any user intervention. This
thesis proposed three techniques to achieve that, (i) code morphing, with the user ap-
plication being made compatible with the API of a heterogeneous compiler on-the-fly,
(i1) data morphing, where the data is transformed automatically by the system into a
format that is friendly to hardware accelerators and, (iii) a set of compiler phases that
ensure correct memory accesses.

RQ3. What are the preconditions of hardware acceleration and the performance
tradeoffs of seamless execution of Big Data applications on GPUs and/or FPGAs?
As demonstrated through the experimental evaluation of the proposed framework (Chap-
ter 6), the ability to automatically target heterogeneous hardware devices can, in some
cases, put a strain on performance instead of offering speedup.

The experimental analysis showcased that, sometimes, these costs can occur by the
misusage of the hardware resources, for instance by running with the wrong number
of threads leading to over/under-utilization, or by having multiple data transfers from
the host to the device and vice versa. Therefore, to obtain performance and keep the
system agnostic to the user, special tools that can automatically configure the execution

should be integrated. Moreover, another large overhead that was observed had to do
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with data marshalling. This overhead exists mainly because Big Data frameworks were
not designed with hardware accelerators in mind. Therefore, even though their format
of data is natural for high-level, object oriented programming, it is not suitable for
low-level heterogeneous devices.

In conclusion, this thesis identified the following preconditions should be satisfied

in order to make the most of the hardware accelerators:

1. First of all, the correct utilization of the hardware accelerator is essential, both
regarding the computational load and the parallel pipelines that are executed.
Tools that can automatically perform data partitioning and thread configuration
should ideally be used, for the system to remain hardware-agnostic and to avoid

human error.

2. Secondly, it is crucial to limit the data copies from the CPU main memory to the
device memory as much as possible, since this process can significantly deterio-

rate performance.

3. Lastly, the runtime system should be augmented to store the data in a format that

is friendly to hardware accelerators so as to avoid these transformations.

7.3 Future Work

The development of the proposed framework laid the ground for numerous exciting
research questions to be explored. Moreover, if further extended, it could potentially
revolutionize Big Data execution by making heterogeneous acceleration the new norm.
Some of the future directions that could be followed to extend the presented heteroge-

neous platform are the following.

1. Identify more operators that can be benefited from hardware acceleration and

enhance the compiler framework to support them.

2. Provide a mechanism that can automatically determine the optimal data parti-
tioning strategy among hardware accelerators. As demonstrated in the experi-
mental evaluation, combining the decision about on which device an operator
should be executed with the correct granularity of data can have a huge impact

on performance.
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3. Develop a fault-tolerance mechanism suitable for heterogeneous execution. Most
Big Data platforms are equipped with mechanisms that ensure recovery from
failures on CPU clusters. Nevertheless, these mechanisms were not designed
with heterogeneous accelerators in mind. As an example, if a Flink computa-
tion crashes, Flink checkpoints help resume the computation without losing the
whole progress. However, if a GPU goes offline during a long-running compu-
tation, as there is no context switching between GPU and CPU threads, all the
progress made will be lost. Since it is not realistic to assume that real-world
Big Data applications will not suffer from crashes, it is imperative to provide an
error-handling mechanism that is also efficient for hardware accelerators in the

future.

4. Re-design the existing Big Data frameworks to eliminate the overheads the were
identified during the experimental evaluation process. Specifically, first of all,
enhance Big Data platforms to store the data internally in a format that is friendly
to hardware accelerators. Secondly, include a hardware-aware scheduler, that
distributes the computations among the hardware resources in a way that mini-

mizes the copying costs.
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