
USING MACHINE LEARNING
ALGORITHMS FOR CLASSIFYING

NON-FUNCTIONAL
REQUIREMENTS - RESEARCH AND

EVALUATION

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2021

Manal Khalid M Binkhonain

Department of Computer Science

Contents

Abstract 16

Declaration 17

Copyright 18

List of Publications 19

List Of Abbreviations 20

Acknowledgements 21

1 Introduction 23
1.1 Research Context and Motivation . 23

1.2 Research Aim and Questions . 26

1.3 Research Methodology . 27

1.4 Research Contributions . 29

1.5 Thesis Structure . 31

2 Background 33
2.1 Requirement Engineering . 33

2.1.1 Definition of a Requirement 33

2.1.2 Non-Functional Requirements 34

2.1.3 Requirement Engineering Concept and Processes 37

2.2 Machine Learning in Automated Text Classification: An Overview . 40

2.2.1 Concepts and Processes . 40

2.2.2 Classification Algorithms 43

2.2.3 Evaluation Techniques and Metrics 46

2.2.4 Model Diagnosis and Tuning 50

2

2.3 Summary . 52

3 A Systematic Review of Machine Learning Methods for or Identification
and Classification of Non-Functional Requirements 54
3.1 Motivation and Research Questions 55

3.2 Related Reviews . 55

3.3 Review Method and Process . 56

3.3.1 Identification of the Start Set 57

3.3.2 Backward Snowballing . 59

3.3.3 Forward Snowballing . 59

3.3.4 Extracting and Synthesizing the Data 61

3.4 Results . 61

3.4.1 General Overview . 62

3.4.2 ML Algorithms (RQ1) . 64

3.4.3 Process of Using ML Algorithms to Identify NFRs (RQ2) . . 72

3.4.4 Performance of the Reported ML Algorithms (RQ3) 93

3.5 Key Findings, Limitations, and Open Challenges 100

3.5.1 Key Findings . 100

3.5.2 Limitations . 101

3.5.3 Open Challenges . 102

3.6 Threats to the Review Validity . 104

3.6.1 Study Identification . 104

3.6.2 Inclusion and Exclusion . 105

3.6.3 Data Extraction . 105

3.7 Conclusion . 105

4 A comprehensive Analysis and Review of the Problems and Solutions in
NFR Classification 107
4.1 High Dimensionality . 108

4.1.1 Learning with High Dimensional Dataset 108

4.1.2 Overview of Solutions for High Dimensionality 110

4.1.3 Techniques for Handling High Dimensionality in NFR Classi-
fication . 112

4.2 Imbalanced Data . 115

4.2.1 Skewed Distribution of Training Dataset 115

4.2.2 Solutions for Imbalanced Data 117

3

4.2.3 NFR Classification with Class Imbalance Problem 120
4.3 Short Text Classification . 121

4.3.1 Short Text Characteristics and Impacts on Supervised Learning 121
4.3.2 Solutions for Short-Text Classification 122
4.3.3 Short Text in NFRs Classification 124

4.4 Discussion . 125
4.4.1 Small and High-dimensional Requirement Datasets 125
4.4.2 Imbalanced Multi-Class Requirements Classification 126
4.4.3 Feature Extension in Requirements Classification 127

4.5 Summary, Main Conclusions, and Findings 128

5 Dealing with Imbalanced, High Dimensional and Short Text Data in Ma-
chine Learning-Based Requirements Classification 130
5.1 The ML4RC Method . 131

5.1.1 Dataset Decomposition . 132
5.1.2 Text Pre-Processing . 132
5.1.3 Feature Selection . 134
5.1.4 Feature Extension . 137
5.1.5 Classifier Training . 141
5.1.6 Classifier Testing . 142

5.2 Training and Testing ML Algorithms for ML4RC 145
5.2.1 Dataset and Experimental Settings 145
5.2.2 Training and Testing Process 150
5.2.3 Results . 151

5.3 Experimental Comparison of Related Methods 154
5.3.1 Experiment Execution . 155
5.3.2 Experimental Results . 163

5.4 Key Techniques Evaluation . 166
5.4.1 Comparison with the Baseline Method 166
5.4.2 Comparison with Other Techniques 171

5.5 Discussion . 177
5.5.1 On Class Imbalances . 177
5.5.2 On Feature Selection . 178
5.5.3 On Feature Extension . 179
5.5.4 On Evaluation Practices and Performance Benchmarks 180

5.6 Threats to Validity . 182

4

5.6.1 Construct Validity . 182

5.6.2 Internal Validity . 183

5.6.3 External Validity . 183

5.7 Summary . 184

6 Semantic Expansion For Short-text Requirements Classification 185
6.1 Overview of Text Similarity Approaches 186

6.1.1 Approaches to Short-Text Similarity Measures 186

6.1.2 Approaches to Requirements Similarity Measure 188

6.1.3 Word Embedding to Measure Text Similarity 189

6.2 The SE4RC Method . 190

6.2.1 Text Pre-Processing . 190

6.2.2 Requirements Expansion . 191

6.2.3 Feature Representation . 192

6.2.4 Classifier Training . 192

6.2.5 Classifier Testing . 192

6.3 Evaluation of Requirements Similarity Measures 193

6.3.1 Evaluation Procedure . 193

6.3.2 Implementation Environment 197

6.3.3 Implementation Steps . 197

6.4 Experimental Comparison with Baseline Method 199

6.4.1 Implementation Environment 200

6.4.2 Implementation Steps . 200

6.4.3 Results . 201

6.5 Experimental Comparison of Related Methods 205

6.5.1 Experiment Execution . 206

6.5.2 Experimental Results . 208

6.6 Discussion . 212

6.6.1 Measuring Requirements Similarity 212

6.6.2 Semantic Expansion in NFRs Classification 213

6.7 Limitations and Threats to Validity 215

6.8 Summary . 215

7 An Evaluation of the Proposed ML Methods in Usability Requirements
Classification - A Case Study 217
7.1 Background . 218

5

7.1.1 Usability Concept and Classification Models 218

7.1.2 Usability Requirements . 221

7.1.3 Usability Requirements Classification 222

7.2 Case Study Methodology . 224

7.2.1 Scoping: Establishing Aims and Objectives 224

7.2.2 Case Study Planning . 224

7.2.3 Data Collection, Analysis, and Validation 225

7.2.4 Machine Learning Application 228

7.3 Results . 229

7.3.1 The Common Usability Aspects and their Relation with URs . 229

7.3.2 The Effectiveness of Detecting and Classifying URs 233

7.4 Lessons Learned . 240

7.4.1 Usability Aspects According to Usability Requirements . . . 240

7.4.2 Using ML to Classify URs 243

7.5 Threats to Validity . 245

7.6 Summary . 245

8 Conclusion and Future Direction 247
8.1 Contributions . 247

8.2 Main Findings . 248

8.3 Future Work . 251

8.3.1 More Empirical Experiments and Analysis 251

8.3.2 Extrinsic Evaluation of NFRs Classifiers 252

8.4 Conclusion Remarks . 253

Bibliography 254

A A Supplement for Chapter 3 300
A.1 Overview . 300

A.2 The 51 Selected Studies . 301

A.3 A Comprehensive Overview of the 51 Studies 310

A.4 Detailed Information about the Studies 332

B A Supplement for Chapter 4 340
B.1 Detailed Information about the Studies 340

B.2 Initial Experiment to Build wor2vec Model 340

6

C A Supplement for Chapter 7 343
C.1 Related Work . 343
C.2 Review Method and Process . 344

C.2.1 Identification of the Start Set 344
C.2.2 Backward Snowballing . 346
C.2.3 Forward Snowballing . 346
C.2.4 Extracting and Synthesizing the Data 347

C.3 Results . 348
C.3.1 Existing Classification Models 348
C.3.2 Common Aspects . 353

Word Count: 68,361

7

List of Tables

2.1 Examples of related requirements having different requirements types,
based on their representation. These requirements were provided by
Glinz to shows the notion of NFRs is representation-dependent [Gli07]. 35

2.2 The most frequent NFRs identified by Mairiza et al. [MZN10] 38

3.1 PICOC criteria to define the search string for the start set 58

3.2 The initial start set of the relevant papers for snowballing 60

3.3 Data extraction form . 61

3.4 The main goals of selected studies; a study could have more than a goal 63

3.5 ML algorithms applied in the selected studies grouping by learning
types: supervised learning (SL), semi-supervised learning (SSL) and
unsupervised learning (USL). 65

3.6 Overview of datasets used in the selected studies 73

3.7 An overview of the publicly-available datasets used by the selected
studies . 75

3.8 Distribution of the selected studies by classification tasks addressed by
the studies . 79

3.9 Distribution of the studies by data validation methods 80

3.10 The distribution of studies by predefined data type to build unsuper-
vised NFRs classifier . 81

3.11 Distribution of the studies per NLP technique used for text pre-processing 84

3.12 Distribution of the studies per feature selection technique 86

3.13 Distribution of the studies per feature extraction technique 86

3.14 Feature representation techniques used in the selected studies for text
processing . 87

3.15 The distribution of the studies by learning Tasks 88

3.16 The distribution of studies by statistical validation methods. 92

3.17 The distributions of the studies by evaluation measures 95

8

3.18 Performance measures and results in 51 selected studies 98

5.1 The semantic roles used for feature selection in the ML4RC method . 138

5.2 The categories of requirements in PROMISE-exp dataset 148

5.3 Summary of the PROMISE-exp dataset 149

5.4 Top 10 features used by the three ML4RC classifiers 151

5.5 Test results of the SVM, NB, DT, and KNN algorithms with the ML4RC
method based on 10-fold cross-validation 152

5.6 Related Methods Used to Compare ML4RC 156

5.7 Test results of the basic [CHSZS07] and ML4RC methods using Leave-
P-Out Cross-Validation . 158

5.8 Test results of the four related methods: Kurtanović & Maalej [KM17],Yin
et al. [YGX+13], Lu abd Liang [LL17] and ML4RC based on 10-fold
cross-validation . 162

5.9 10-Fold Cross-Validated Test Results for the Four Classifiers 168

5.10 10-Fold Cross-Validated test results for the classifiers handling the
class imbalance problem using over-sampling (OS), under-sampling
(US) and Dataset Decomposition (DD) techniques. 173

5.11 10-Fold Cross-Validated test results for the two classifiers applying
different feature selection methods 175

5.12 The changes of F-score for Security and overall performance of a base-
line classifier, using different evaluation settings and learning types
(binary, multi-class with 12 classes, and multi-class with 4 classes).
Note: the dataset used is PROMISE-exp. 182

6.1 Examples of the requirements before and after applying requirement
expansion technique. The most similar requirements added after ex-
pansion are highlighted, and each requirement has a different color. . . 192

6.2 Proportion of similar pairs according to annotation results within dif-
ferent similarity thresholds. 198

6.3 Correlation, p-value and execution time (exec. time) between the sim-
ilarity measures and human-assigned similarity scores. Interpretation
of raw correlation values given in brackets: w+ (weak positive) and
m+ (moderate positive). All p-values significant at the 0.05 level. . . . 199

6.4 10-Fold Cross-Validated Test Results for the Four Classifiers 202

9

6.5 Examples of the requirement that are added to the original ones and
the changes that expansion made in the classification prediction 203

6.6 Related Methods Used to Compare SE4RC 207
6.7 The number of extracted frequent term sets using different values of α

and β by applying Man’s method . 208
6.8 10-Fold Cross-Validated Test Results for the three Classifiers 209
6.9 Examples of requirements before and after expanding them using dif-

ferent methods. The first requirement is labeled as Portability and the
second as Look and Feel in PROMISE-exp. 210

7.1 Usability requirements classification proposed by Kale et al.[KMMM10]222
7.2 The six styles of usability requirements (URs) provided by Lauesen

and Younessi [LY98] . 223
7.3 The sources and number of requirements collected for validating the

model . 228
7.4 User goals versus system features 234
7.5 Common Usability Requirements Templates 235
7.6 Summary of the URs dataset . 235
7.7 10-Fold Cross-Validated Test Results for the baseline classifier, ML4RC

and SE4RC in classifying usability requirements 236
7.8 10-Fold Cross-Validated Test Results for the baseline classifier and the

classifiers applying the techniques of ML4RC separately (Dataset De-
composition, Feature Selection, and Feature extension) 238

7.9 Top 10 most frequent features for each usability class in UR_databaset 239

A.1 The 51 selected studies . 309
A.2 A comprehensive overview of the included 51 studies in the systematic

review . 331
A.3 Distribution of studies by dataset size and a number of classes 335
A.4 NFR categories and their identification in the selected studies 338
A.5 The distribution of studies by the score estimation methods illustrated

in Figure 3.11 . 339
A.6 The distribution of the studies by ML tools used to draw Figure 3.10 . 339

B.1 Distribution of supervised ML-methods per feature reduction technique 340
B.2 The size of minority and majority classes and balance level (majority’s

size divided by minority’s size) per study 341

10

B.3 The semantic similarity score of different pairs of words using two
variant word2vec models trained on 3009 requirements 342

C.1 PICOC criteria to define the search string for the start set 345
C.2 Details of search terms in Google Scholar to identify the start set . . . 345
C.3 The initial start set of the relevant papers for snowballing 346
C.4 Data extraction form . 347
C.5 The usability models and definitions used to identify the common set . 352
C.6 The appearance of the common usability aspects in in the 33 existing

models studied . 357

11

List of Figures

1.1 Research methodology, which follows the evidence-based software en-
gineering approach [DKJ05]. The arrows between steps mean that the
findings of the first step are used by the other. 27

1.2 Summary of the contributions . 29

1.3 Thesis structure . 32

2.1 Quality characteristics of software product in ISO/IEC 9126 [II04] . . 36

2.2 Systems and software Quality Requirements by ISO/IEC 25010 [fSEC+11] 36

2.3 RE processes . 39

2.4 Process of text classification by supervised learning. During the train-
ing phase, a text classifier is trained on a training set, whose data have
been classified in advance. During the testing phase, the trained clas-
sifier is applied to the new, unseen data. Both training and testing data
will undergo a series of text preparation operations. 41

2.5 Feature representation of two requirements in a vector (or feature)
space, in which "1" indicates the presence of the corresponding fea-
ture in a requirement and "0" means the absence. 43

2.6 Illustration of Four Machine Learning Algorithms that are Commonly
Used to Classify Non-functional Requirements. These Algorithms are
Support Vector Machine, Naïve Byes, Decision Tree and K-Nearest
Neighbors. 44

2.7 K-fold cross-validation . 49

2.8 Nested cross-validation for tuning hyper-parameters 51

2.9 Learning curves of three models, , where m is training data size.. The
first model suffers from overfitting due to low basie and high variance.
The second model shows a good-fitting (low basie and low variance).
The third model is underfiring (high bias and high variance). 51

12

3.1 The process of studies selection based on Wohlin’s snowballing method
[Woh14] . 57

3.2 Distribution of the 51 selected studies from the beginning of 2007
when the first study was reported to early 2021 (i.e., 30 February 2021)
when our search was completed. 62

3.3 Distribution of the 51 selected studies by learning types 64

3.4 Illustrations of different types of NN architecture 68

3.5 Illustrations of ensemble classifiers 69

3.6 A general process of applying ML algorithms to classify NFRs, in-
cluding key topics to be discussed in RQ2 72

3.7 Distribution of studies by dataset size and a number of classes 76

3.8 Distribution of the selected studies by each NFR type 77

3.9 Distribution of the selected studies by three groups of NFRs 78

3.10 The distribution of studies by ML tools 90

3.11 The distribution of studies by the score estimation methods 92

3.12 The performances of existing NFR classifiers according to learning
type and task. The number between braces "()" represents the number
of studies involved. 99

4.1 An example of requirements document 109

4.2 The distribution of studies per feature selection technique 113

4.3 Imbalance levels of the studies identified in the previous chapter . . . 120

5.1 Overview of ML4RC - A decomposition-based machine learning method
for requirements classification . 132

5.2 The dataset decomposition process. The original dataset is decom-
posed into two subsets: one with the majority classes and one with the
minority classes. The superset is the union of the two subsets. The
superset and two subsets are structured as a class hierarchy. 134

5.3 An example of flat and hierarchical structure of a training dataset; be-
fore and after dataset decomposition technique 134

5.4 Examples of how an input requirements are processed by feature ex-
tracting. The outputs of these Inputs are: "product allow user select
language countries" , "website easy 90% users successfully reserve
room 5 minutes", "application ensure only authorized users access in-
formation". 139

13

5.5 Classifier training process. The ML4RC classifier consists of one super-
classifier and two sub-classifiers, which are trained respectively on the
three decomposed datasets. 142

5.6 Classifier testing process. Three sub-classifiers are tested respectively
on the three decomposed datasets. 144

5.7 Learning Curves of the SVM, NB, DT, and KNN Algorithms Based on
Macro F1-score using 10-Fold Cross-Validation. 153

5.8 Learning curves of the basic and ML4RC methods Based on Leave-P-
Out Cross-Validation. 159

5.9 Learning Curves of Kurtanović and Maalej [KM17], Yin et al. [YGX+13],
Lu and Liang [LL17], and ML4RC Methods Based on 10-Fold Cross-
Validation. 161

5.10 Overall performance comparison between basic and ML4RC. 163

5.11 Overall performance comparison between four related methods. . . . 165

5.12 Learning curves of the Baseline, DD, FS, and FE classifiers under 10-
Fold Cross-Validation. 169

5.13 Learning Curves of the over-sampling (OS), under-sampling (US) and
dataset decomposition (DD) Classifiers Based on 10-Fold Cross-Validation.174

5.14 Learning Curves of the over-sampling (OS), under-sampling (US) and
dataset decomposition (DD) Classifiers Based on 10-Fold Cross-Validation.176

6.1 Overview of SE4RC-Semantic Expansion For Supervised Requirement
Classification . 190

6.2 Requirements expansion step . 191

6.3 The procedure of the comparison of different similarity measures . . . 193

6.4 An example of the hyponym taxonomy in WordNet. It is shown in
this figure that Least Common Subsumer (LCS) of "boat" and "car" is
"vehicle", bath between " car" and "Boat" is 4 , maxim depth of "car"
is 4. 196

6.5 Learning Curves of the Baseline and SE4RC methods Based on 10-
Fold Cross-Validation. 204

6.6 The results of our preliminary experiments aim to set the similarity
threshold (α) of SE4RE and comparing the performance of expanding
the requirements in the training and testing dataset or only expanding
the testing dataset (i.e., SE4RC). 205

14

6.7 An example of double terms set obtained by applying Man’s method
on PROMISE-exp . 208

6.8 Overall performance comparison between three related methods . . . 211
6.9 Learning Curves of Lu and Liange [LL17], Man [Man14] and SE4RC

Based on 10-Fold Cross-Validation. 211

7.1 Four Categories of Usability Standards (from Bevan [Bev01]). Quality
in Use and Product Quality are defined from the consumer perspective,
whereas Process Quality and Organizational Capacity are from the de-
veloper/producer perspective. 220

7.2 Phases in the Case Study Methodology 225
7.3 The process of identifying common aspects: collecting, analyzing, and

validation data required to answer the first research question 226
7.4 The frequency of each aspect in the 33 studied models 229
7.5 The relations between the usability aspects. This figure does not in-

clude all the indicators; however, it gives a general idea about how
the relationships between the indicators and aspects, and among the
indicators themselves, are created. 232

7.6 Learning curves of the baseline, ML4RC and SE4RC methods in us-
ability requirements classification based on 10-fold cross-validation. . 238

7.7 Learning Curves of the baseline, DD, FS, and FE classifiers Based on
10-Fold Cross-Validation . 239

7.8 The layered model proposed by Welie et al [VWVDVE99] 242

C.1 The process of usability models selection based on Wohlin’s snow-
balling method [Woh14] . 344

C.2 Distribution of the selected publication in the period from 1990 to
2020. IF the year does not appear in Y-aix, that means there is no
related publication identified in this year. 347

C.3 The frequency number of selected publications per database 348

15

Abstract

Requirements classification, the process of assigning requirements to classes, is essen-
tial to requirements engineering, as it serves to define and organize the requirements
for application systems, to determine the boundaries of the systems, to establish the re-
lationships among the requirements, and to ensure the correct kinds of functionality are
implemented in the systems. As most requirements are written in natural language, the
manual classification of textual requirements can be time consuming and error prone.
Aiming to reduce the burden on the human analyst, the machine-learning (ML) ap-
proach has been used since the early 2000s for automatic requirements classification.
The ML approach faces three problems in non-functional requirements (NFRs) classi-
fication: imbalanced classes, short text, and the high dimensionality of feature space.
Although these problems are widely addressed in various classification tasks, they are
less frequently considered in requirements classification.

In this thesis, we present two ML methods for automatically classifying NFRs.
The main novelty of these methods lies in applying techniques that address the clas-
sification problems mentioned earlier. The first method integrates three techniques—
dataset decomposition, semantic role-based feature selection, and feature extension—
to address the three problems. The second method addresses short-text classification
by adding the most similar requirements (i.e., the requirement extension technique).
Both methods were evaluated on a publicly available NFRs dataset. The results of
each method are compared with related methods, baseline methods, and state-of-the-
art solutions to the problems. The results demonstrate the usefulness of addressing
problems with NFR classifications and the effectiveness of the proposed methods, sug-
gesting that these solutions could improve different requirements classification tasks.

To assess the generalization of the results of the proposed methods, we present a
case study on the use of ML methods in sub-class NFRs classification. In particular,
we reapply the proposed methods for classifying usability requirements according to
usability aspects. This study includes the identification of the most common aspects
of usability by systematically reviewing existing usability models. It also includes
building usability requirements datasets. The results of applying ML methods in clas-
sifying usability requirements are similar to those provided by NFRs, confirming the
usefulness of addressing problems with requirements classification.

16

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

17

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=24420), in any relevant Thesis restriction declarations deposited in the
University Library, The University Library’s regulations (see http://www.library.
manchester.ac.uk/about/regulations/) and in The University’s policy on
presentation of Theses

18

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/
http://www.library.manchester.ac.uk/about/regulations/

List of Publications

• Binkhonain, Manal & Zhao, L.. (2019). A Review of Machine Learning Al-
gorithms for Identification and Classification of Non-Functional Requirements.
Expert Systems with Applications.

• Binkhonain, Manal & Zhao, L.. Dealing with Imbalanced Class, Short Text
and High Dimensionality Problems in Machine Learning-Based Requirements
Classification: Method Development and Evaluation. Under Review.

19

List Of Abbreviations

RE Requirements Engineering

NFR Non-functional Requirements

FR Functional Requirements

UR Usability Requirements

ML Machine learning

NL Natural Language

NLP Natural Language processing

SVM Support Vector Machine

DT Decision Tree

NB Naïve Bayes

KNN k-Nearest Neighbors

POS Part-Of-Speech tagging

NER Named Entity Recognition

TF-IDF Term Frequency–Inverse Document Frequency

20

Acknowledgements

Doing a PhD is hard, especially for a mom of two who started her PhD with a newborn
baby and ended it with the Coronavirus pandemic, and much in between. Without the
encouragement and support of others, this would be impossible. I would like to thank
everyone who helped and encouraged me to make it possible.

The first and deepest acknowledgement goes to my supervisor, Dr Liping Zhao,
one of the kindest people I have ever met. Liping is always available, helpful, and
encouraging. I often feel like she is a part of my family as a supportive and an advisor.
Thank you Liping for all the roles you have played. Beyond the thesis subject, I have
learned a lot from working with her; most importantly is that when I work on a task,
I should perform it in a perfect manner, no matter how important the task is. Her
comments, ideas, and actions were lessons for me to help me become a better person
and to improve my research. I will always appreciate what I have learned from you.
Thank you, Liping.

I am very grateful to know Dr Sarah Clinch (my co-supervisor) and to have been
her student. In addition to her kind personality, Sarah is a supportive person who is
always around when I need her and is available to help when I ask. Thank you, Sarah.

My thanks and appreciation go to my examiners Prof. Peter Sawyer and Dr Lucas
Cordeiro for their valuable comments and suggestions, which were helpful to improve
this thesis and my knowledge in the RE field.

Special gratitude goes to my sponsor, King Saud University, and the Saudi Cultural
Bureau in London for their financial support and continuous help during my research.
A special thanks goes to Arwa AlAmoudi at King Saud University for providing me
with the requirements I needed for building my dataset.

Around me there are a lot of people who are willing to support me without ever
being paid for it. A big thank you to those who took part in validating the datasets
used during my research, even those that are not reported in this thesis. Thank you
Amal Alsuwaidan for annotating a big dataset professionally and honestly. I really

21

appreciated your midnight calls to understand the tasks and improve the quality of the
dataset. Thank you Dr Areeb Alowisheq for your help; I still remember that when I
asked you, you came to my office to take the papers and annotate them quickly and
professionally. Thank you Hadeel Alshabanat, Asma Alotaibi, Dr Waad Alhoshan,
Dr Seetah Alsalamah, Ruba Alassaf, Dr Alaa Alahmadi, Dr Deemah Alqahtani, Dr
Mariam Alqasab, and Haifa Alrdahi for your support when I needed and for all the
good memories I have with you; you are very kind people that anyone would be grate-
ful to meet.

My small family is my biggest source of love, happiness, and support. My deepest
thanks go to my husband, Mohamed Alsmari, for joining me on this journey, giving me
everything I needed without asking, and understanding my stress and busyness. Thank
you Mohammed for your unconditional and genuine love that made the completion
of this thesis possible. My princess (Deemah) and my superhero (Abdulaziz) made
this journey full of happiness and activity. Thank you for your pure love, interesting
discussions, amazing pictures, beautiful cards, and much more. Your laughs were
life-giving; playing with you was the most enjoyable time in my day and seeing your
sleepy, small faces was the best ending to each day. Even during lockdown, you were
full of energy and love, always saying “do not worry mommy” and cuddling me with
your small arms when you saw me in a bad mood. You did a lot on this journey; I love
you most Deemah and Abdulaziz.

I would not be who or where I am today without my parents. A big thanks to you
Khalid and Munnerah Binkhonain for your continued support and encouragement. I
really appreciate each call, unexpected shipment, prayer, and message. My sisters
(Maha and Hyay) and my brothers (Mohammed, Faisal, Rashed, and Abdullah) were
also sources of strong encouragement who were always there for care and support.
Thank you for everything, including visiting me during your holidays and taking care
of my children when I was extremely busy. I am lucky to have you, always.

I have friends who have become a part of my family. I would like to thank my life-
long friends Shatha Bin Dawood and Amani Aldous for everything, including caring,
calling, always being a shoulder to cry on, and making a hard time easier. I am very
lucky to be your friend.

The final acknowledgment goes to everyone I met during this journey, who made
big or small differences, giving me everything from nice smiles in the corridors to
useful discussions anywhere. Thank you to my officemates, all Saudi girls, and all of
the staff in the Kilburn building.

22

Chapter 1

Introduction

"The first step in solving a problem is

to recognize that it does exist."

Zig Ziglar

1.1 Research Context and Motivation

Developing any software system starts with the requirements engineering (RE) phase,
the phase that deals with requirements, including specifying and validating user needs
and constraints. It is well known that early phase RE commonly deals with informal
requirements specifications [Yu97, NL03] and such documents are usually written in
natural language (NL) [Rya93, AM81, LMP04, KNL14]. In spite of the flexibility
and ease of understanding NL documents [DFFP18], such documents pose real prob-
lems inherent in NL (e.g., ambiguity, inaccuracy, inconsistency, and lack of structure
[WRH97, TB13]). To overcome such problems, informal requirements specifications
need to be processed/analyzed before they can be used in design and development.
A common approach to processing requirements is via requirements classification
[ZAF+21].

Requirements classification can be defined as the process of assigning predefined
categories to requirements based on their content [FML05]. The primary purpose
of requirements classification, like classifications in other fields [MB02], is to re-
duce the diversity of the requirements into understandable, manageable groups of
related requirements, before further analysis and processing are possible. Typically,
requirements are classified into functional versus non-functional classes (categories),

23

24 CHAPTER 1. INTRODUCTION

with the latter further divided into various subcategories, such as usability, reliabil-
ity, security, etc. [Bro15]. Although there is no consensus in the RE community
on what non-functional requirements (NFRs) are and how they should be classified
[Gli05, CdPL09, Bro15, EVF16], requirements classification remains to be a critical
analytic and organizational task in RE, as a recent survey shows [ZAF+21].

In recent years, the machine learning (ML) approach to text classification [Seb02]
has gained widespread recognition, due to its effectiveness, efficiency, and portability
[Seb02]. In particular, the ML approach has achieved visible successes in a large
number of real-world applications, from fake news detection [AMPG20], to opin-
ion mining [JHS09], spam email filtering [DBC+19], document categorization and
retrieval [KBLK10], and medical diagnosis [SGSG19], just to name a few. At the
same time, developing the ML approach for requirements classification is also gath-
ering pace, with several research efforts being reported in the RE literature (e.g.,
[CHSZS07, ZYWS11, JMJ16, DDAÇ19, AKG+17, HKO08, CGC10, KM17]). Typ-
ically, since most requirements are written in NL documents, the ML approach to
requirements classification is similar to that for text classification [Seb02]: To classify
a set of requirements, we need to build a text classifier first. This involves training a
ML algorithm by feeding to it a set of requirements called a training dataset, where
each requirement in the set has already been pre-assigned a category by human experts.
The trained ML algorithm, known as the text classifier or classifier, is then subject to
validation and testing, to improve its classification accuracy and to ensure it will per-
form and generalize well to new requirements. Afterwards, the classifier can be used to
classify new requirements, by automatically assigning each requirement to a category.

However, due to the nature of requirements text, ML-based requirements clas-
sification suffers from three major learning problems. The first one is imbalanced

classes (also known as class imbalanced learning) [HG09, GFB+11], referring to un-
even distributions of instances among classes. This problem is prevalent in require-
ments classification, as requirements categories are naturally imbalanced, with an un-
even distribution of the requirements among different categories. For example, the
functional requirements (FRs) are often the largest category; the distribution of re-
quirements in different non-functional requirements (NFR) categories is also uneven
[CHSZS07, EVF16]. The fundamental issue with this problem is that imbalanced cat-
egories can significantly compromise the performance of most standard learning algo-
rithms because such algorithms assume or expect balanced class distributions [HG09],
and when given the imbalanced classes, these algorithms will not be able to properly

1.1. RESEARCH CONTEXT AND MOTIVATION 25

recognize the distributive characteristics of these classes. Furthermore, some algo-
rithms, such as support vector machines (SVMs), are inherently biased toward the
majority classes in order to minimize the high error rates of mis-classification, as such
classes are more prevalent than minor classes [HG09]. Such biased classification can
be dangerous in real-world applications. For example, in medical diagnosis, rare dis-
eases are often present in minor classes, and biased classification can lead to misdiag-
nosis of such diseases [ASR+15, Wei04, LLS09].

The second problem is short-text classification. This problem arises because guide-
lines and advice on writing requirements often advocate that requirements should be
brief and concise [Mey93]. For example, IEEE guidance for developing system re-
quirements specifications [Com98] states that a well-formed requirement is "a neces-
sary, short, definitive statement of need". Wilson [Wil99] also suggests that an effective
requirement writing style is the one that uses "short declarative sentences" and "sim-
ple sentence structures". It was calculated that the average length of a FR is about 20
words, whereas the average length of a NFR is between 14 and 28 words [KM17]. The
fundamental issue with the short-text classification is feature sparsity [SHA12, AG19],
i.e., lack of relevant features - distinct words or terms - in a dataset. Feature sparsity
can significantly affect the performance of most standard learning algorithms because
such algorithms perform classification by establishing a correlation between features
and categories [AG19].

Third, requirements classification also suffers from a common text classification
problem known as high dimensional feature space, [PP14, LJ98]. This problem is
concerned with the presence of a large number of features in text data [IKT05], which
can easily reach the tens of thousands in a single text document, and most of them
are irrelevant to the classification task. Irrelevant features are the noise, which can
mislead standard ML algorithms and reduce the accuracy of text classifiers [Seb02,
LY05, AZ12, DLWZ19]. Taking a NFR statement provided by Glinz [Gli07] as an
example, “The system shall prevent any unauthorized access to the customer data,”
only three words (features) in this statement (i.e., prevent, unauthorized, and access)
are relevant to classification, whereas the remaining words are irrelevant.

Clearly, these three problems are of high importance to ML-based requirements
classification and have wide-ranging implications on the real-world applications of
automatic requirements classification. However, due to the relatively young age of
the application of ML in RE, to date, most proposed ML-based requirements clas-
sification methods have only focused on the high dimensionality problem [JMJ16,

26 CHAPTER 1. INTRODUCTION

DDAÇ19, HKO08], with relatively few methods have considered addressing the im-
balanced classes and short text problems [KM17, LL17].

This research focuses on investigating and addressing issues related to the auto-
nomic classification of NFRs in particular for many reasons. First, considering that
these requirements contribute to driving the architectural design, they need to be de-
fined early [CHSZS07]. Addressing NFRs at a later stage may lead to an increase
in the probability of project failure and an escalation in the cost of software develop-
ment [HKO08, SW13, ROW13]. Second, the difficulty of identifying NFRs as they
are spread throughout different parts of the requirements documents (since most re-
quirements specifications are organized by functionality)[CHSZS07]. In addition, the
confliction, dependency, and interaction among different NFRs further complicate the
classification task [BDCD19]. Third, the identification and classification of NFRs
are important for successful development by, for example, improving the quality of
requirements by reviewing them with particular experts (e.g., reviewing security re-
quirements with security experts) and helping in matching developers and tasks (e.g.,
performance and maintainability should be dealt with by developers with different ex-
pertise) [BDCD19, RR12].

1.2 Research Aim and Questions

The research presented in this thesis is motivated by a desire to investigate the impact
of the three aforementioned problems (i.e., high dimensionality, imbalance class, short
text classification) in NFRs classification. In doing so, we propose new, potential so-
lutions to handle these problems and explore the impact of addressing these problems
in different NFRs classification tasks.

In order to achieve this aim, the research seeks to answer the following research
questions:

RQ1: What are the current methods for handling the three aforementioned prob-
lems in the context of NFRs classification? And where are the research gaps?

RQ2: What kinds of (new) solutions would be suitable to address these problems
in NFRs classification?

RQ3: How effective and efficient are those solutions in comparison with the
baseline and the state-of-the-art methods?

1.3. RESEARCH METHODOLOGY 27

Figure 1.1: Research methodology, which follows the evidence-based software engi-
neering approach [DKJ05]. The arrows between steps mean that the findings of the
first step are used by the other.

RQ4: Can the results of the proposed solutions be generalized to several NFRs
classification tasks (e.g. detecting sub-classes of NFRs)?

Additional secondary questions are provided through the thesis, where these ques-
tions are introduced and handled separately within a single chapter. The secondary
research questions help to construct and develop the potential solutions the main re-
search questions aimed to explore and investigate.

The first part of the research questions (RQ1 & RQ2) is for understanding the exist-
ing literature on using ML for NFRs classification, which is addressed in the first part
of this thesis. The remaining research questions (RQ3 &RQ4) are about developing
and evaluating the solutions, and they are addressed in the second part of this thesis.
This ensures the following research objectives are fulfilled:

1. To conduct a systematic literature review on the use of ML in NFRs classifica-
tion.

2. To develop new potential solutions for addressing the NFRs classification prob-
lems.

3. To demonstrate the impact of these solutions against related works and similar
solutions/methods proposed within the current literature.

4. To further evaluate the effectiveness of the proposed solutions by examining
them across several NFRs classification tasks.

1.3 Research Methodology

Five research steps (see Figure 1.1) are followed in order to fulfill the aim of this thesis
and address the research questions identified in the previous section. These steps are
based on the evidence-based software engineering approach (EBSE), [DKJ05] which

28 CHAPTER 1. INTRODUCTION

contains specifying research questions, collecting evidence, evaluating the evidence,
identifying new solutions, and evaluating the solutions.

Step 1: specifying a set of answerable questions that describe the need for informa-
tion or the problem. This step includes formulating the research questions mentioned
in the previous section. These questions are determined after our reading in ML with
text classification and NFRs characteristics.

Step 2: conducting a review of the literature to find the best available evidence.
This including conducting a systematic review to understand how ML is used and
evaluated in NFRs classification. Moreover, this step involves reviewing other clas-
sification tasks to understand how the problems are commonly addressed in different
classification tasks.

Step 3: critically evaluating the collected evidence in terms of applicability, impact,
and validity. This includes deeply analyzing ML methods used in NFRs classification,
identifying gaps, and highlighting limitations in these methods. In particular, this step
involves focusing on the three classification problems by assessing the attempts to
address these problems in NFRs classification and comparing them with those used in
other classification tasks.

Step 4: combining the evaluated evidence to identify a new solution or determine
best practices. Based on the analysis in the previous step, we identified new solu-
tions to address the three problems in NFRs classification. In particular, we developed
two methods known as ML4RC (machine learning for requirement classification) and
SE4RC (semantic extension for requirement classification). The first method addresses
the three problems using three different techniques (feature selection for high dimen-
sionality, data decomposition for imbalanced class, and feature extension for short text
classification). The second method addresses the short text classification using a re-
quirements expansion technique.

Step 5: evaluating the performance resulting from the proposed solution and look-
ing for ways to improve it. The proposed solutions are evaluated in two different
classification tasks. The first task is to detect and classify NFRs, while the second one
is to classify NFRs into further sub-classes. In the second task, we classified usabil-
ity requirements according to usability attributes (e.g., efficiency, effectiveness, and
satisfaction).

1.4. RESEARCH CONTRIBUTIONS 29

Figure 1.2: Summary of the contributions

1.4 Research Contributions

The work described in this thesis makes four major contributions (see Figure 1.2), as
follows.

Conducted a systematic review of the use of ML in NFRs classification. This
review provides a better understanding of the field, including technical details of how
ML classifiers are built and evaluated. It also includes a report on the general limita-
tions of the reviewed literature and discusses the open challenges of using ML in NFR
classification. The review’s results helped us to analyze the most common classifica-
tion problems (impacts and solutions) and evaluate the impacts of potential solutions.
Part of the results of this review was published in [BZ19].

Developed and evaluated a new ML method for addressing the three classi-
fication problems. We have designed, implemented, and evaluated a ML method,
Machine Learning for Requirements Classification (ML4RC). This method includes
three key techniques, each of which addresses a single problem: data decomposition,
for class imbalance problems; semantic role-based feature selection, for high dimen-
sionality; and feature extension, for short text classification. To assess the effectiveness
of ML4RC, we conducted two main studies:

• An empirical comparison of the entire ML4RC method with closely related
methods.

30 CHAPTER 1. INTRODUCTION

• An evaluation study to compare the performance of ML4RC’s three key tech-
niques individually against a baseline method and related solutions (techniques).

These studies showed that ML4RC performs better than its peers, and the three
techniques also achieve better classification results than a baseline method and com-
mon related solutions.

Developed and evaluated an ML method for addressing the short-text clas-
sification problem. Previous evaluation studies revealed that addressing short-text
classification using the feature extension technique is a promising approach. For this
reason, and due to the lack of application of such a technique in NFR classification, we
proposed a new solution for handling this problem, Semantic Expansion for Require-
ments Classification (SE4RC). This technique expanded requirements with the most
semantically similar requirements (not words, as with ML4RC). Two main evaluation
studies have been conducted related to this contribution:

• An empirical performance evaluation of nine semantics-based similarity mea-
sures among NFR

• An empirical comparison of the SE4RC against baseline and two related meth-
ods

The first study was conducted in light of the scant attention paid to the semantic
similarity measure among NFR, while the second study aimed to assess the perfor-
mance of SE4RC. The findings of the first study (e.g., the most effective measure) were
applied in SE4RC. The second study showed that SE4RC outperforms other methods,
confirming the effectiveness of feature expansions in NFR classification. In addition,
based on an in-depth analysis of the two studies’ results, we highlighted a significant
difficulty in measuring the similarity among NFR, since, for example, such require-
ments could have both implicit and explicit information. Such information not only
hinders the process of automatically measuring similarities among requirements, but
also manual measurements conducted by non-experts (e.g., requirements analysts).

Evaluated the proposed methods within the context of usability requirements
(UR) classification. The systematic review (the first contribution) showed a lack of
focus for analyzing UR, compared with other types of NFR (i.e., security). Thus, to
further evaluate the proposed solutions, we applied them to the classification of UR
according to usability aspects. In an initial step to achieve this, we conducted an-
other systematic review to identify the common usability aspects and deeply analyzed

1.5. THESIS STRUCTURE 31

the interrelationships among them. Then, we built and validated a UR dataset that
was collected from different resources and application domains. The dataset was used
to train and evaluate the proposed solutions (ML4RC and SE4RC). The evaluation
study included a comparison of the performance of the proposed solution with base-
line methods. The results were similar to those obtained by applying the methods in
NFR classification, thus we concluded that the proposed solutions would be effective
for other requirements/text classification tasks.

1.5 Thesis Structure

The overall structure of the thesis is illustrated in Figure 1.3 and outlined below.
Chapter 1 introduces an overview of the research problem, objectives, research

questions, and contributions.
Chapter 2 establishes the necessary background to the work presented in this the-

sis. This chapter is divided into two parts: RE and text classification using ML. Each
part describes relevant techniques and concepts, with emphasis on those adapted in the
thesis.

Chapter 3 reports a systematic review of the related work (ML methods in NFRs
classification), in which findings, limitations, and open challenges are discussed. Ap-
pendix A provides a comprehensive overview of the studies included in the review and
data sources (tables) used to draw figures in this chapter.

Chapter 4 illustrates the three classification problems. For each problem, this
chapter identifies the problem, briefly describes common solutions, and reviews the
solution in NFRS classification using the studies identified in the previous chapter.
Following this, it discusses limitations and gaps in the solutions and highlights the
proposed methods’ motivations. Appendix B tables and descriptions of preliminary
experiments mentioned in this chapter.

Chapter 5 presents a proposed ML method (ML4RC) and the description of a
series of experiments conducted to evaluate this method. This chapter presents these
experiments’ results and discusses the main findings, limitations, and strengths of that
method.

Chapter 6 describes a proposed method (SE4RC). Since this method relies on the
similarity between requirements, it provides an overview of text semantic similarity
and requirements similarity. This chapter includes two main experimental studies. The
first study is about measuring semantic similarity between requirements, including

32 CHAPTER 1. INTRODUCTION

Figure 1.3: Thesis structure

an empirical study comparing different semantic similarity methods to measure the
similarity between NFRs. The second study is about using requirements similarity
in expanding requirements for NFRs classification (SE4RC), including assessing the
performance of SE4RC in relation to baseline method and related work. Finally, the
chapter discusses the findings, highlighting limitations and strengths.

Chapter 7 presents a case study of the use of ML methods (Chapter 5 and Chapter
6) in URs classification (i.e., classify URs according to usability aspects). Due to the
lack of available URs models or datasets, this chapter uses the results of a systematic
review on usability (reported in Appendix C) to identify common usability aspects
and build the URs dataset. Moreover, the chapter provides some necessary usability
background, case study methodology, results, and lessons learned.

Chapter 8 presents the conclusions from the research, including addressing the
research questions, reviewing the findings of the thesis, and discussing directions for
future work.

Chapter 2

Background

"Student: Dr. Einstein, aren’t these

the same questions as last year’s final

exam?

Dr. Einstein: Yes; But this year the

answers are different."

Albert Einstein

This chapter provides a foundation for understanding the key areas of the thesis:
RE and ML. Each of which is illustrated in a separate section—Section 2.1 describes
system requirements, NFRs, and RE processes, and Section 2.2 provides an overview
of the use of ML in text classification: building, evaluation, and analysis.

2.1 Requirement Engineering

The general process to develop a software system (i.e., system development life cycle)
starts with requirements, moving into system design, implementation, testing, deploy-
ment, and maintenance. The first phase, which deals with requirements, is known as
RE. This section provides an overview of the RE phase, starting with requirements
definition, NFRs description, and RE concept and processes.

2.1.1 Definition of a Requirement
Requirements, which are the basis for every project, define what a potential new system
should be or should do to satisfy stakeholders’ needs (users, customers, suppliers,
developers, businesses) [AS02, Lap17, HJD11]. Requirements are widely expressed

33

34 CHAPTER 2. BACKGROUND

in NL; however, they can have different representations (e.g., formal, mathematically
rigorous, specification) based on stakeholder needs [Lap17]. Although NL is flexible
and easy to understand, it raises challenges to capture the problem and user’s needs
completely and unambiguously [YDRG+11].

The quality of requirements plays a critical role in a project’s success. Since such
requirements are addressed in the initial step for defining problem scope and control
project activities, each subsequent development information is connected with require-
ments [AS02, HJD11]. Low-quality requirements lead to late delivery, go over bud-
get, and consequently, project failure [AS02]. Nasir and Sahibuddin in 2011 [NS11]
conducted a comprehensive study to analyze the critical success factors of different
project sizes, domains in multiple countries. By analyzing 43 case studies, they found
that within a list of 26 factors, "clear requirements and specifications" is the first criti-
cal factor identified in 26 studies (60.5%). Another survey conducted by the Standish
Group in 2014 [Cla14] showed that a "Clear Statement of Requirements" is the third
reason for project success, whereas "Incomplete Requirements & Specifications" is the
second factor of a project to be challenged (over-budget, over the time estimate) and
first factor for a project to be impaired and canceled.

Several criteria are used to characterize "a good requirement". Examples of these
criteria are completeness—fully described requirements with no missing elements;
unambiguous—having a clear and single understanding; consistency —no mismatch or
contradict among requirements; traceability —linking requirements to system artifacts
(models, tests, and code) in both forwards and backward direction, and testability–
being quantified by providing a basis for a pass/fail test for an end product [Boe00,
HJD11].

2.1.2 Non-Functional Requirements

Requirements can be either functional—specifying what a system must do, or non-
functional—describing how well a system will do it [CdPL09]. Although the defini-
tions may seem straightforward, there are many ways of understanding them, often
leading to overlapping—when NFRs add functionality to a system. For example, se-
curity requirements, which ensure only specific users can alert data, may represent
functionality. However, it is needed for a non-functional reason (i.e., security) [RR12].
According to Glinz [Gli07], the notion of NFR is representation-dependent; our clas-
sification of a requirement depends on the way we represent it. For example, Table 2.1
shows different representations provided by Glinz for a requirement that means "only

2.1. REQUIREMENT ENGINEERING 35

Requirement Type
The system shall prevent any unauthorized access to the
customer data

NFR

The probability for successful access to the customer data
by an unauthorized person shall be smaller than 10-5

NFR

The database shall grant access to the customer data only
to those users that have been authorized by their user
name and password

FR

Table 2.1: Examples of related requirements having different requirements types,
based on their representation. These requirements were provided by Glinz to shows
the notion of NFRs is representation-dependent [Gli07].

authorized users can access a specific function or data". Although these requirements
are related, the first and second requirements are NFRs, while the third is functional.
Robertson and Robertson [RR12] distinguished NFR by their relation to a system’s
essential functions—not altering these functions, but adding properties to them.

NFRs are referred to by different terminology, including soft goals, quality require-
ments, constraints, extra FRs, and non-behavioral requirements [CNYM12]. More-
over, they have been characterized and classified differently in the literature. For ex-
ample, ISO/IEC 9126 [II04], one of the most widespread quality standards [BBC+04],
describes and measures a software system’s quality. This standard distinguishes exter-
nal and internal quality; external quality measures the quality of executable software
in testing, while internal for measuring non-executable software during designing and
coding. There are six external and internal quality characteristics, which are further di-
vided into sub-characteristics and related metrics (see Figure 2.2). The ISO/IEC 9126
standard also introduces the so-called quality in use: user’s view of quality, including
effectiveness, productivity, safety, and satisfaction.

Another example of NFRs classification is provided by ISO/IEC 25010 [fSEC+11]
(Figure 2.2), which consists of two parts. The first part is the software product quality
model composed of eight characteristics (functional suitability, performance efficiency,
compatibility, usability, reliability, security, maintainability, and portability), which are
further subdivided into sub-characteristics. The second part is the system quality in use
model composed of five characteristics (effectiveness, efficiency, satisfaction, freedom
of risk, and context coverage).

Mairiza et al. [MZN10] conducted a systematic analysis of the extant literature
of NFRs, including the analysis of NFRs types. They found that there are 252 types
of NFRs, including quality attributes such (e.g., performance and reliability), external

36 CHAPTER 2. BACKGROUND

Figure 2.1: Quality characteristics of software product in ISO/IEC 9126 [II04]

Figure 2.2: Systems and software Quality Requirements by ISO/IEC 25010 [fSEC+11]

2.1. REQUIREMENT ENGINEERING 37

interfaces requirements (look & feel and user interface), development constraints (tim-
ing and cost), business rules (e.g., production life span), and others (e.g., cultural and
environmental). In addition, their analysis includes identifying the five most frequent
NFRs types: performance, reliability, usability, security, and maintainability. Table 2.2
provides detailed definitions of these types.

The literature indicates that errors related to NFRs are among the most expen-
sive and difficult to correct errors [CY04]. Ineffective handling of NFRs does not
only affect the system under development but also the development process itself
[KS96, SGR09]. NFRs are contributed to driving architectural design, detecting risks,
and scheduling needs [KO14, CHSZS07]. Therefore, inappropriate handling of these
requirements can lead to several potential problems, including increase maintenance
costs, considerable delays in delivering a system, users’ dissatisfaction, or, in the
worst case, project failure [MCN92, SGR09, MZN10]. An example of projects that
fail due to a lack of NFRs is the U.S. Army intelligence sharing application. This ap-
plication has cost $2.7 billions, but due to performance and usability issues, it failed
[Hos11]. Electronic health record (EHR) systems have also failed due to a lack of
usability [BSA10]. London Ambulance System was deactivated after its deployment
for different reasons, including neglecting NFRs during the system developments (e.g.,
reliability, usability, and performance) [FD96].

Early addressing of requirements in RE help to avoid the aforementioned prob-
lems [CY04]. The classification of NFRs by their type is useful in the early analysis
for different reasons [RR12]. First, grouping requirements by type helps in discov-
ering conflict, missed, and duplicated requirements. Second, understanding a type of
requirement helps to write an appropriate fit criterion, which improves the quality of
the requirement. Third, identifying requirements type helps in specifying stakeholder
involvement, by, for example, reviewing security requirements with a security expert.

2.1.3 Requirement Engineering Concept and Processes

The early dealing with requirements (i.e., RE) is crucial for software success [NE00].
It is argued that the term "engineering" was added to "requirements" to emphasize that
dealing with requirements is an important part of each engineering process, and RE is a
subset of system engineering in general, not just software engineering [NE00, HJD11].
RE has been considered among the most important phases of a system development
life cycle[CBAB12]. Because errors identified in this phase are less costly to fix—may
only require a quick discussion and a small amount of editing [AS02]. However, errors

38 CHAPTER 2. BACKGROUND

NFRs Definition Attributes
Performance Requirements that determine soft-

ware’s ability to provide appropriate
performance using required resources
and under specific conditions.

response time, space, capacity, la-
tency, throughput, computation, execu-
tion speed, transit delay, workload, re-
source utilization, memory usage, ac-
curacy, efficiency compliance, modes,
delay, miss rates, data loss, concurrent
transaction processing

Reliability Requirements that specify software ca-
pability to operate without failure dur-
ing a given time and with specified nor-
mal conditions.

completeness, accuracy, consistency,
availability, integrity, correctness, ma-
turity, fault tolerance, recoverability,
reliability, compliance, failure rate/crit-
ical failure

Usability Requirements that specify the interac-
tion between system and end-users, in-
cluding the efforts required to learn,
operate, and interpret the system’s out-
puts.

learnability, understandability, oper-
ability, attractiveness, usability com-
pliance, ease of use, human engineer-
ing, user friendliness, memorability, ef-
ficiency, user productivity, usefulness,
likeability, user reaction time

Security Requirements that prevent and protect
a system from, for example, unautho-
rized access to the system.

confidentiality, integrity, availability,
access control, authentication

Maintainability Requirements that describe a soft-
ware’s ability to be modified by, for ex-
ample, correcting defects, upgrading,
or changing the software.

testability, understandability, modifia-
bility, analyzability, changeability, sta-
bility, maintainability compliance

Table 2.2: The most frequent NFRs identified by Mairiza et al. [MZN10]

discovered later are more costly to be fixed as many other subsequent decisions have
been made depending on RE phase [CBAB12]. Thus, the successful development of a
system is critically related to RE [NE00].

RE is a series of activities that help understanding system capabilities and at-
tributes, starting from recognizing a problem to be solved to a detailed specification
of the problem for both the stakeholders and developers involved in the system devel-
opment [WB13, Som05]. Figure 2.3 shows RE processes (also known as tasks or ac-
tivities): elicitation/discovery, analysis and reconciliation, documentation/representa-
tion, verification and validation, and requirements management [Lap17]. The first four
activities are classified under requirement development, aiming to identify, capture,
document, and confirm product requirements [WB13]. The last one is requirement
management which deals with changes in requirements during a system development
[WB13].

Requirement elicitation. This activity is conducted to discover requirements of the
system to be developed [Som05]. The information on these requirements comes from

2.1. REQUIREMENT ENGINEERING 39

Figure 2.3: RE processes

various sources, examples of which include external data, applicable standards, and
stakeholders (from whom requirements are gathered using well-defined approaches,
such as brainstorming, card sorting, and prototyping [Lap17]). Elicitation includes
determining NFRs, which might be a challenge, as some NFRs are not as clear in
stakeholders’ minds as FRs [CY04].

Requirements analysis and reconciliation. This activity is undertaken to under-
stand the requirements collected from stakeholders. It includes addressing problems
with the requirements (e.g., conflicts, vagueness, incorrectness, inconsistencies, and
incompleteness), negotiating priorities, building a prototype, and evaluating feasibility
[Lap17, WB13].

Requirements documentation/representation. The aim of this activity is to docu-
ment the analyzed requirements consistently and understandably. To facilitate com-
municating these requirements and converting them into system architecture, different
representations may be used [Lap17, WB13]. Examples of these representations are
sketches, NL, and formal mathematical representation [Lap17].

Requirements verification and validation. This is the process of determining whether
the requirements/specifications satisfy the users’ needs [Lap17, WB13]. It involves go-
ing back to stakeholders with the specification and asking them to review it [CY04].
If there are any problems, they should be fixed until the stakeholders’ complete agree-
ment is obtained [WB13].

Requirements management. This activity is conducted to control changes to the
requirements that occur during system development [CY04]. It includes evaluating the
effects of the changes (cost and time), making appropriate business decisions regarding
them, tracking the changes, and maintaining traceability [Lap17, WB13].

40 CHAPTER 2. BACKGROUND

2.2 Machine Learning in Automated Text Classifica-
tion: An Overview

Text classification, also known as text categorization, is the task of assigning one or
more predefined categories to text documents based on their content [FML05]. ML
algorithms, particularly supervised ML algorithms, have become increasingly used
for performing this task [AZ12, IKT05, KJMH+19]. Requirements classification can
be seen as a particular instance of text classification, in that text documents contain
requirements statements. Thus, we can use the concepts and methods of ML-based text
classification, which are well-established, to inform our understanding of requirements
classification, which is still a relatively young area. In this section, we attempt to build
such understanding and use it as the background for our work.

2.2.1 Concepts and Processes

According to Deng et al., [DLWZ19], text classification can be formally defined as
follows: Given a collection of N documents D = {d1,d2, ...,dN} and a set of k prede-
fined categories C = {c1,c2, ...,ck} , the problem of text classification can be modeled
as finding a mapping F from the Cartesian product D×C to a set {True,False}, i.e.,
F : D×C→ {True,False}. Based on this mapping, for a document di ∈ D and a
category c j ∈ C, if F(di,c j) = True, then di belongs to category c j, otherwise di

does not belong to c j.
However, since F has no knowledge of the relationship between the content of a

document in D and its category in C, the first step in text classification is to train F by
feeding to it a training set containing m documents D′ = {d′1,d′2, ...,d′m} where every
document d′i ∈D′ is associated with a category c j ∈C. The objective of F ′ is to learn
F ′(d′i ,c j) = True. After learning, F ′ can be applied to classify D, by automatically
assigning every requirement di ∈ D with a category c j ∈ C , such that F ′(di,c j) =

True. F ′ is called the text classifier or classifier.
The process of text classification as described above is called supervised learning

[HTF09], as it involves training a classifier to learn the mapping between the docu-
ments in a training set and their intended categories. Because of this, text classification
is also called supervised classification [BKL09]. Supervised learning is sometimes
referred to as predictive modeling [Bro16] and the classifier is called the predictive

model, since classification in ML is essentially a predictive task that makes predictions

2.2. ML OVERVIEW 41

Figure 2.4: Process of text classification by supervised learning. During the training
phase, a text classifier is trained on a training set, whose data have been classified in
advance. During the testing phase, the trained classifier is applied to the new, unseen
data. Both training and testing data will undergo a series of text preparation operations.

of correct categories for new documents [SGSG19].
Figure 2.4 provides a general process for text classification, which consists of two

distinct phases: training and testing. The training phase is concerned with training
and validating a text classifier whereas the testing phase is for an unbiased evaluation
of the trained classifier, to ensure it can generalize well to new documents [Bro14].
As shown in Figure 2.4, before we train or test the classifier, the text documents in the
input data need to undergo a series of transformations called text processing, to remove
irrelevant words and to represent the text documents in a form that can be directly
interpreted by the learning algorithm. Generally, text processing entails three distinct
tasks, namely, text pre-processing, feature selection, and feature representation. These
tasks are briefly described as follows.

Text pre-processing: This task performs a series of text cleaning operations on the
text data, such as tokenization (splitting a sentence into a series of words), stop-words
removal (removing auxiliary verbs, conjunctions, and articles in sentences), lowercase
conversion (converting all letters into lowercase), and lemmatization (determining the
infinitive form of verbs, and the singular form of nouns and adjectives of each word).
These operations help remove the noise on the text, such as unnecessary words (i.e.,
stop words) and unnecessary characters (e.g., punctuation and special characters). Text
pre-processing thus reduces the number of words in the text and, in doing so, paves
the way for effective feature selection [KJMH+19] and helps improve classification
accuracy [UG14].

Features selection: This step is concerned with eliminating irrelevant, less infor-
mative and redundant features, so as to further reduce the number of text features in the

42 CHAPTER 2. BACKGROUND

learning space, thus improving classification efficiency and accuracy [DLWZ19]. Fea-
ture selection has been extensively studied by researchers from diverse communities,
resulting in an abundance of methods (see, for example, [DL97, DLWZ19, TAL14]).
Feature selection methods can be broadly divided into three categories, namely, fil-

ter, wrapper, and embedded [DLWZ19, CHTQ09]. The methods commonly used for
text classification are filter methods, due to their simplicity and efficiency [DLWZ19].
Filter methods select features independently of ML algorithms by looking only at the
intrinsic properties of the data, such as information, distance, consistency, and corre-
lation [Seb02]. Traditional filter methods are based on statistical information retrieval
techniques, such as term frequency (TF), term frequency inverse document frequency
(TF-IDF), information gain (IG), and Chi-squared [DLWZ19, For03]. In recent years,
new filter methods based on language features have been developed. Such linguis-

tic based filter methods employ natural language processing (NLP) techniques such as
part-of-speech (POS) tagging, syntactic parsing [KWM11, MMS13], and semantic role
labelling [FDSSVA19] to extract important syntactic features from the text [MKIZ14].
A more detailed overview of feature selection methods is presented in Section 4.1.2.

Feature representation: This step converts the selected features from each docu-
ment into a vector of feature weights that can be processed by the learning algorithm.
The feature weights are calculated using a suitable weighting method, such as TF, that
determines the frequency of each feature in the document.

To illustrate the text processing tasks, consider a simple training set with two re-
quirements:

Req1: The systems shall be easy to use by casual users.

Req2: The system shall be easy to use by realtors with no training.

The first step of text processing is to pre-process these requirements, by removing
stop words in them (e.g., the, shall, be, to, by, with, no). Then, the relevant features
of these requirements are selected using part of speech (POS) tags, resulting in a set
of seven features system, easy, use, casual, users, relators, and training. Finally, this
feature set is represented as a feature space model as shown in (Figure 2.5), with each
requirement represented as a seven-dimensional feature vector. The size of the fea-
ture space is 14 = 7 features x 2 requirements. This is an overly simplified example
to illustrate how text preparation works; in practice, however, ML algorithms need
to be trained on a large number of preclassified documents in order to achieve high
classification accuracy.

2.2. ML OVERVIEW 43

Figure 2.5: Feature representation of two requirements in a vector (or feature) space,
in which "1" indicates the presence of the corresponding feature in a requirement and
"0" means the absence.

2.2.2 Classification Algorithms

Under supervised learning, ML algorithms are broadly divided into two categories:
those which produce discrete categories are referred to as a classification algorithms,
whereas those which return continuous values are called regression algorithms [SGSG19].
Classification is viewed as the analogue of regression when the variable being predicted
is discrete, rather than continuous [PMB09]. Both classification and regression algo-
rithms can be applied to text classification [AZ12]. In RE, however, as requirements
are typically classified into discrete categories (e.g., functional, non-functional, us-
ability, security, etc.), current ML approaches to requirements classification have been
mainly based on classification algorithms [AAS+19].

Classification algorithms can be further grouped into Support Vector Machine (SVM)
Based, Tree Based, Neural Network Based, Bayesian, and Proximity Based [AZ12].
SVM-based algorithms gained popularity among the ML community for their high
performance and flexibility [For03, SGSG19], as they can be used for both classifica-
tion and regression. Tree-based algorithms, such as Decision Tree (DT) and Random
Forests (RF), are fast and accurate for document categorization [KJMH+19]. Most re-
cently, neural network-based algorithms such as Deep Neural Networks (DNN), CNN,
RNN, deep belief network (DBN), hierarchical attention networks (HAN), and combi-
nation techniques, have been applied in a wide range of domains for classification
purposes [AZ12]. Proximity-based algorithms, such as Naïve Bayes (NB) and K-
Nearest Neighbour (KNN), are more traditional but still commonly used in the sci-
entific community [KJMH+19]. Comprehensive surveys of the state of the art text
classification algorithms are provided by Aggarwal and Zhai [AZ12], and Kowsari et
al. [KJMH+19].

In RE, classification algorithms that have been widely used and produced good

44 CHAPTER 2. BACKGROUND

Figure 2.6: Illustration of Four Machine Learning Algorithms that are Commonly Used
to Classify Non-functional Requirements. These Algorithms are Support Vector Ma-
chine, Naïve Byes, Decision Tree and K-Nearest Neighbors.

results are SVM, NB, DT, and KNN [BZ19]. These four algorithms are illustrated in
Figure 2.6 and briefly described as follows.

Support Vector Machine (SVM)

SVM is a statistical-based algorithm that operates by defining the best decision bound-
ary which separates training data points belonging to different categories. The best
decision boundary is assumed to be obtained when the distance between data points
belonging to different classes is maximal. Only those data points that are close to the
decision boundary (known as support vectors) are used in classification tasks, while
the rest of the training data points are ignored [CV95].

SVMs were originally designed for linear two-class classifications (i.e., binary
classifications). However, they could be implemented in multi-class classifications by
applying well-known techniques one-versus-one, or by using the one-versus-rest tech-
nique [KJMH+19]. The one-versus-rest technique constructs K SVM models, where K
is the number of classes; the training for each model assumes that one class is positive,
while all others are negative (e.g., class 1 against non-class1) [LZ05]. The new data
point is classified based on the binary SVM that shows the best performance (i.e. high
accuracy). The one-versus-one technique trains a classifier for each pair of classes,
thus, K (K-1)/2 binary SVMs are trained. A voting strategy is then used to combine

2.2. ML OVERVIEW 45

the outputs and predict the final decision of a new data point.
The main advantage of SVM is the ability to handle high dimensional input space

(e.g., text) and pick out irrelevant features [KBLK10]. Therefore, it is less prone to
overfitting. However, the major drawback of SVM is that it is computationally expen-
sive, especially when the size of a training dataset grows [KBLK10].

Naïve Baye (NB)

NB is a simple probabilistic method that uses Bayes’ theorem with a strong assumption
of independence between features [SY19]. Although this assumption is unrealistic,
the NB classifier is remarkably successful in practice, especially in text classification
[PS03]. NB computes the probability that an input document belongs to different pre-
defined classes; the class with the highest probability will be predicted. Assuming
that R is an NFR represented by a vector of K dimensions, R= (w1, w2, .., wK), the
probability of R belonging to label C would be computed as follows [PS03]:

P(C|R) = P(C)×P(∑k
i=1 wi|C)

P(∑k
i=1 wi

(2.1)

The strengths of this method are that it is easy to implement and compute and requires
a small amount of training data to learn. However, this method performs poorly with
highly correlated features due to the independence assumption [KBLK10]. Figure 2.6
(b) shows an example of Naive Bayes; each feature node has no parent except the class
node. A lack of arrows between features indicates the independence of features. The
arrows in this figure refer to the probability of having a specific feature with a specific
class (i.e. parent).

Decision Tree (DT)

DT [Qui86] operates by constructing trees based on features in a training dataset. Each
node is a decision node representing a feature in an instance to be classified, the edges
represent the possible values for a particular feature, while leaves are predicted class
labels[KZP07]. Classifying a new sample is straightforward—following a path start-
ing from the root node through the tree to a leaf [SWK09]. The popular decision
tree algorithms are ID3 (Iterative Dichotomiser) [Qui86], C4.5 [Qui93], CART (Clas-
sification And Regression Trees)[BFOS84]. Each algorithm uses different splitting
techniques for splitting the data node at each level. For example, ID3 uses Information

46 CHAPTER 2. BACKGROUND

Gain, C4.5 uses Gain Ratio, while CART uses the Gini Index as the splitting crite-
rion [PARS13, SG14]. The main advantage of decision tree algorithms is that they are
easy to understand and interpret, even for non-experts [Phy09]. However, the disad-
vantages are overfitting and poor generalization as decision tree classifiers are built to
classify training datasets effectively, neglecting the performance of classifying other
documents [KBLK10].

K-Nearest Neighbors (KNN)

KNN is based on the principle that similar instances in the dataset generally exist close
to each other. This algorithm classifies a new instance by observing the K-nearest
neighbours and identifying the most frequent class label [KZP07, KBLK10]. During
the training phase, KNN does not need the use of a training dataset. Therefore, KNN
is known as lazy ML algorithms, as it defers the decision of generalizing the training
data until a new query is encountered [Seb02]. However, the training examples will
be used during the testing (evaluation). This algorithm is easy to understand and easy
to implement. However, it takes a long time to execute because it uses all features in
distance computation [KBLK10].

2.2.3 Evaluation Techniques and Metrics

The performance of a supervised ML classifier is measured through three primary
steps: (1) choosing an evaluation metrics (i.e., scores); (2) deciding the method for
score estimation; and (3), performing statistical significance tests to compare the re-
sults of different classifiers [SIL15, Stą17].

Evaluation Metrics

A wide variety of metrics (also known as score and measures) have been used to eval-
uate supervised classifiers [SIL15, Stą17]. This section provides an overview of the
metrics used (or frequently mentioned) in this thesis.

Precision, recall, and f-score are among the most frequent measures used in eval-
uating ML classifiers’ performance, in general [SIL15, Stą17], and requirements clas-
sifiers, in particular [BZ19]. These measures are more appropriate for imbalanced
datasets, compared to accuracy and classification error [SIL15, Stą17]. Recall is the

2.2. ML OVERVIEW 47

percentage of instances that are correctly retrieved and classified. It is defined as fol-
lows:

Recall =
true positives

true positives+ f alse negatives
(2.2)

Precision is the percentage of correctly classified instances in relation to the total
number of instances retrieved. It is defined as:

Precision =
true positives

true positives+ f alse positives
(2.3)

F-score is a harmonic mean between recall and precision. It is defined as

F− score =
(1+β2)× Recall.Precision

β2×Recall +Precision
(2.4)

In Formula 2.2 and 2.3, true positive is the number correctly classified require-
ments, while false positive is the number of incorrectly classified requirements, and
false negative is the number of requirements that incorrectly not classified. In Formula
2.4, β is to weight harmonic mean of precision and recall for emphasizing either preci-
sion or recall. For example, if both recall and precision have the same importance in a
classification task, β = 1 and F− score is referred to as F1− score. β = 2 emphasize
recall over precision, while β = 0.5 emphasize precision over recall.

The equations mentioned above measure the performance of a single class. To
extend these measures to multiple classes, two types of average are commonly used:
micro and macro [PZZ12]. For macro-averaging, each score is computed locally for
each class. Then, the average of all classes is calculated. For example, macro precision
for k classes is computed as the following.

P(Macro) =
1
k
.

k

∑
i=1

Precision (2.5)

For micro-averaging, the score is computed globally over all the classes (i.e., the
average of true positives, false positives, and false negatives for all classes). For exam-
ple, the equations to compute micro precision for k classes is as the following:

P(micro) =
∑

k
i=1 T Pi

∑
k
i=1(T Pi +FPi)

(2.6)

Micro average does not handle rare classes as major ones; it gives equal importance
to each instance; therefore, a class with more instances contributes more to the final
score. In contrast, Macro average treats each class equally; thus, it is widely used in

48 CHAPTER 2. BACKGROUND

classification and retrieval problems [NPK+16]. Besides, in multi-class classification,
the micro-averages of precision, recall, and f-score have the same value as they are
computed over all classes; the incorrectly predicated samples represent both false pos-
itive and false negative. For example, in the case of "A is misclassified as B", it is false
positive for B and false negative for A.

The values of precision, recall, and f-score are in the range of {0-1}. The perfect
precision value is 1.0 means that each requirement is labelled in a class is indeed belong
to this class. The perfect recall value is 1.0 means that every requirement that belongs
to a class is classified into this class.

Recall is favoured over precision for requirements engineering tools in general and
for requirements classification problems in particular [BGST12, CHSZS07, RDPM19].
According to Cleland-Huang et al. [CHSZS07], recall is more important than precision
in NFR classification, since searching for a false positive in the output is significantly
easier than manually browsing the entire document looking for entirely missed NFRs.
However, the precision is also important to lower the false positives and the levels of
user frustration. Thus, in this thesis, we consider both recall and precision.

Score Estimation Methods

Several methods are regularly used to estimate ML classifier scores, including holdout
and K-fold cross-validation. Holdout divides a dataset randomly into training and
testing subsets according to a given proportion (e.g., 70%-30%). The training dataset
is used for building a classifier, while the testing dataset is for evaluating the classifier.
This technique provides a biased error estimate as it depends on a particular division
of the dataset; thus, much of the data is not used in training a prediction model (i.e.,
statistically inefficient) [TMHM16].

K-fold cross-validation (Figure 2.7) is widely used in the ML community and for
requirements classification in the RE domain [BZ19]. This method creates a K-fold
partition of the dataset and runs the classifier K times using (k-1) folds for training
and one-fold for testing. The classification performance is estimated as the average of
the performance scores obtained from the K experiments (K iterations). K-fold cross-
validation is less biased than holdout [TMHM16], as it does not rely on a particular
partitioning of a dataset. In addition, each instance in a dataset is used for both training
and testing [TMHM16]. Nonetheless, it is computationally expensive since the training
process must be executed K times.

2.2. ML OVERVIEW 49

Figure 2.7: K-fold cross-validation

The choice of K is a trade-off; a larger K leads to less bias (fewer errors in train-
ing data), as the number of training instances is closer to the total instances and high
variance (more errors in a testing dataset). Consequently, the risk of overfitting and
execution costs (time) of a model are increased. The popular value of K is K = 10
[TMHM16], which is recommended by Han et al.[HKP12] due to its relatively low
bias and variance. In this thesis, we used K-fold cross-validation with k = 10 to esti-
mate precision, recall, and the f1-score.

Statistical Comparisons of Classifiers

To determine if the observed differences between classifiers are real or random, espe-
cially when the differences are unclear, statistical assessments are used [Stą17, Dem06,
SIL15]. Examples of these tests that are applicable with k-fold cross-validation are
Friedman’s Aligned Ranks [SIL15] and Wilcoxon signed-rank test [Wil92]. Stąpor
[Stą17] recommended the use of Friedman’s Aligned Ranks test to compare the per-
formances of multiple classifiers (less than five classifiers) with non-normal distribu-
tion data. However, this test does not provide pairwise comparisons of the classifiers.
Therefore, Wilcoxon signed-rank test [Wil92] can be used instead, as recommended
by Demšar [Dem06], to compare the performances between two classifiers with non-
normal distribution data. The normality test can be conducted using a QQ plot [WG68]
or KolmogorovSmirnov test [MJ51].

50 CHAPTER 2. BACKGROUND

2.2.4 Model Diagnosis and Tuning

Hyperparameter tuning and learning curve analysis are two steps applied during build-
ing a ML classifier or analyzing the classification results. These steps are not manda-
tory to build or evaluate a prediction model; however, it helps to maximize classifica-
tion accuracy (hyperparameter tuning) or examine ML models’ generalizability (learn-
ing curve analysis). As these steps are used in this research, they are briefly described
here.

Hyperparameter Tuning

ML algorithms have a set of hyper-parameters that need to be estimated from a dataset
to maximize the performance score. The optimal values of hyper-parameters (e.g., K
in KNN) cannot be estimated manually. Thus, the best way to choose these optimal
values is to empirically try different parameter values and choose the best combination
of values [Swa19].

There are two standard methods for hyperparameter tuning: grid search and ran-
dom search [Swa19]. A list of predefined values for each parameter is required by the
grid search. Then, all possible combinations of given values are used to train an ML
model, where the best combination is chosen to build the final prediction model. In
contrast, a given range of values of each hyperparameter is required by random search.
Different combinations of hyperparameter values are empirically tested, the values that
lead to high results are used to build the final model. The parameter values are selected
randomly from a given range during the tuning process, where not all possible com-
binations are tested. Therefore, in comparison with grid search, random search is less
computationally expensive. However, it may miss the optional combination since not
all combinations are tested.

The hyperparameters are tuned during a training phase (before building an ML
model) using a part of the training dataset in which an ML algorithm is evaluated
against different values using the other part of the training dataset. The values that lead
to the best performance are then used to build the model.

The evaluation methods and metrics used for tuning hyperparameters are the same
as those used for testing an ML model. Varma and Simon[VS06] and Cawley and
Talbot [CT10] recommended nested K-fold cross-validation for tuning the hyperpa-
rameters of small training datasets. Nested cross-validation re-applies K-fold cross-
validation within the outer cross-validation training set (see Figure 2.8), where the K

2.2. ML OVERVIEW 51

Figure 2.8: Nested cross-validation for tuning hyper-parameters

of inner cross-validation is different from outer cross-validation. The performance of
an ML model in inner cross-validation is measured first, and hyperparameters are cho-
sen for use in building a model for outer cross-validation. This process is repeated for
each iteration in outer cross-validation, as shown in Figure 2.8.

Learning Curve

Learning curve plots are commonly used to analyze trained classifiers’ performance
with different sizes of training data, and diagnose classifiers problems (e.g., overfitting
or underfitting [Gér19]). The horizontal axis indicates the number of instances sam-
pled that selected randomly from a training dataset. The vertical axis represents the
performance metrics (e.g., errors rate and F-score) of the trained model. Figure 2.9
shows examples of learning curves.

(a) Overfitting (b) Good-fitting (c) Under-fitting

Figure 2.9: Learning curves of three models, , where m is training data size.. The first
model suffers from overfitting due to low basie and high variance. The second model
shows a good-fitting (low basie and low variance). The third model is underfiring (high
bias and high variance).

52 CHAPTER 2. BACKGROUND

As Figure 2.9 shows, there are two curves in each plot: the training curve and the
cross-validation curve. The training curve shows the performance of a trained model in
classifying the training dataset used to build that model, illustrating how well the model
fits the training dataset. A large number of errors in the training curve means that the
model suffers from high bias, while small errors indicate low bias. The cross-validation
curve shows the cross-validation results of the trained model. Large numbers of errors
indicate that a model suffers from high variance, while a small number means low
variance. If the model performs well on training data but generalizes poorly according
to cross-validation metrics, the model suffers from overfitting [Gér19]. Overfitting
can be addressed by adding more examples until the validation errors are equal to
training errors. If both training and cross-validation curves perform poorly, that model
is underfitting. Underfitting a model means: it is simple and not appropriate for a
classification task. Adding more examples cannot help to improve the model, but
using a complex model or different features could do [Gér19].

2.3 Summary

This chapter presents an overview of two main areas of this research: RE and text
classification using ML algorithms. The review of RE illustrates the importance of
requirements to the success of the system to be developed and the development process
itself. It also shows the disagreement in defining and naming NFRs, and describes the
process of handling requirements (including NFRs) in RE processes. The review of
supervised learning aims to improve the understandability of the use of ML in text
classification, with a focus on techniques applied in this thesis.

The main findings of this chapter can be summarized as follows:

• Addressing NFRs early is essential to reduce maintenance costs.

• There is no consensus regarding NFRs, for example, in their definition and clas-
sification.

• Textual inputs need to be processed before including them in the ML algorithm.

• Text processing includes preprocessing, feature selection, and representation.

• Evaluating the performance of a supervised ML classifier involves choosing
measures evaluation metrics, score estimation methods, and statistical signifi-
cance tests.

2.3. SUMMARY 53

• Hyperparameter tuning methods are used to choose the optimal value for the
hyperparameter of the ML algorithms.

• Learning curves are applied to check whether the ML models work correctly or
need improvement and diagnose biases and variance.

The next chapter (Chapter 3) provides a more detailed overview of how these mod-
els were used and evaluated in NFRs classification.

Chapter 3

A Systematic Review of Machine
Learning Methods for or Identification
and Classification of Non-Functional
Requirements

"If I have seen further than others, it

is by standing upon the shoulders of

giants."

Isaac Newton

Since the middle of 2000, many ML methods have been proposed to automatically
identify and classify NLRs from NL documents. To understand how ML models have
been used and evaluated in NFRs classification, we conducted a systematic literature
review. The first version of this review was published in the Expert system with an
Application Journal in 2019 [BZ19]. That version reviewed 26 studies published be-
tween 2007-2017. This chapter, however, presents an updated version of the review,
including 51 studies published between 2017- early 2021.

The sections of this chapter are organized as follows: Section 3.1 shows the mo-
tivation and review questions, Section 3.2 provides an overview of related reviews,
Section 3.3 illustrates the review method and process, Section 3.4 shows results, Sec-
tion 3.5 discusses our key research findings and open challenges, threats to the review
validity is in Section 3.6, followed by Section 3.7 for the summary.

54

3.1. MOTIVATION AND RESEARCH QUESTIONS 55

3.1 Motivation and Research Questions

As indicated in Chapter 1, due to the difficulty of manually analyzing NFRS (time-
consuming and error-prone), RE researchers have been proposing automatic or semi-
automatic approaches for identifying NFRs in requirements documents [SRS14, VR11,
SLRR05]. ML algorithms have been integrated into these approaches, with promis-
ing results being reported [CHSZS07]. However, a systematic understanding of these
emerging methods is currently inadequate in the literature. This review aims to fill this
gap.

Specifically, this chapter reports on a systematic review of 51 current ML-based
methods. The review intends to determine what ML algorithms have been used to
classify NFRs, how these algorithms work, and how they are evaluated. These findings
will enable us to identify what challenges need to be addressed to improve the state of
ML-based methods. Our review is driven by the following research questions (RQ):

• RQ1: What machine learning algorithms have been applied in the selected stud-
ies? Which ones are the most popular?

• RQ2: What are the processes that the reported ML-based approaches follow to
identify and classify NFRs in requirements documents?

• RQ3: What measures have been used to evaluate the performance of the ML
algorithms applied in these methods? What are the performance results of these
algorithms?

3.2 Related Reviews

A few related reviews are available in the literature. To the best of our knowledge,
only one review was published before the first version of our review in 2019. This
review was conducted by Meth et al. [MBM13] to explore the tools used for elicit-
ing automatic requirements from textual documents. That review included 36 studies
that were published between January 1992 and March 2012. Those studies have been
analyzed by adopting two perspectives: design, which focuses on the technical con-
cepts adopted in each tool, and evaluation, which describes methods for evaluating the
effectiveness of those tools. From the design perspective, the studies involved in that
review were classified into four categories: identifying both FRs and NFRs, generating

56 CHAPTER 3. SYSTEMATIC REVIEW

models, analyzing quality requirements by defining defects, and finding key abstrac-
tions. Besides, that review examined the degree of automation for each tool (full or
semi-automation) and the approaches used to generate knowledge for the reuse of ei-
ther requirements or knowledge related to requirements. Conversely, the evaluation
perspective contains evaluation approaches, concepts, and measures used to evaluate
tool performance. Identifying requirements automatically is a small part of that review,
and these requirements might be either NFRs or FRs, regardless of the techniques used.
By contrast, our review focuses only on identifying NFRs via ML algorithms.

Recently, more similar reviews were published [PVSGOH20, AFK+20, IEL18].
Besides the fact that these reviews were published after the first version of our review,
they also were conducted for different purposes than this review. For example, Pérez-
Verdejo et al. in 2020 [PVSGOH20] conducted a review on using ML for automated
requirement classification. Their review aims at identifying the applications of ML
techniques in software requirements classification to provide insight into state-of-the-
art in this field. Their review is restricted to studies published between 2010 to 2019,
containing only 13 studies. In contrast, our review includes 51 studies published from
2007 to early 2021. Whereas their review addresses ML in requirement classification
in general, our review particularly focuses on NFRs.

Other examples of recently published related reviews are those conducted by Ah-
mad et al. [AFK+20] and Iqbal et al. [IEL18]. Ahmad et al.’s review aims to identify
the ML algorithms applied to identify software requirements on the Stack Overflow
platform. Iqbal et al. [IEL18] conducted a (traditional) related review to provide an
overview of ML algorithms used to support RE tasks, including requirement classifi-
cation. Both reviews have different aims than ours. Ahmed et al.’s review is limited to
StackOverflow 1 as a source of requirements, whereas our reviews include any textual
sources. Iqbal et al. include all ML learning applications in RE, while our review fo-
cuses on a specific task, which is NFR classification. Moreover, Iqbal et al. concluded
a traditional review while we do a systematic review.

3.3 Review Method and Process

To answer our research questions, we have adopted the snowballing approach proposed
by Wohlin [Woh14] to identify relevant studies. Snowballing is an alternative to the
traditional systematic literature review (SLR) approach [KC07]. The idea is to use

1https://stackoverflow.com/

3.3. REVIEW METHOD AND PROCESS 57

Figure 3.1: The process of studies selection based on Wohlin’s snowballing method
[Woh14]

the reference list of a paper and the paper’s citations to identify additional papers sys-
tematically. Snowballing consists of two steps: backward snowballing (looking at the
reference lists of a paper) and forward snowballing (looking at the citations in which
the paper is actually cited). Figure 3.1 depicts the process of snowballing [Woh14].

The starting point of the snowballing approach is the identification of a start set of
relevant papers. Based on each paper in the start set, one can then conduct backward
and forward snowballing. In the following subsections, we detail how we used the
snowballing approach to identify the relevant papers for our review.

3.3.1 Identification of the Start Set

The start set was identified through the traditional SLR search method, in which search
strings are formulated to query relevant online databases. To avoid bias towards a spe-
cific publisher, Wohlin [Woh14] advises to use Google Scholar to search for the start
set. However, we found that the search engine of Google Scholar is too general to
be really useful. For example, the search string “(‘non-functional requirements’ OR

58 CHAPTER 3. SYSTEMATIC REVIEW

Criterion Description Main keywords Alternatives

Population Requirements
Engineering (RE)

Non-Functional Re-
quirement

Non-functional require-
ments OR NFRs OR
Quality Requirements
OR Quality Attributes

Requirements Elici-
tation, Requirements
Analysis, Require-
ments Specification

Requirements Extraction
OR Requirements Anal-
ysis OR Requirements
Specification OR Re-
quirements Categoriza-
tion OR Requirements
Classification

Intervention Machine Learning (ML)
approaches for RE

Machine Learning Machine Learning OR
Supervised learning OR
Unsupervised learning
OR Semi-supervised
learning

Comparison Not applicable Not applicable
Outcome An understanding of the

ML approaches for iden-
tifying and classifying
non-functional require-
ments (NFRs) from natural
language documents

Contex Requirements Engineering
(RE)

Table 3.1: PICOC criteria to define the search string for the start set

NFRs) AND ‘classification’ AND ‘machine learning’ ” returned 26,700 results. We
have therefore decided to conduct searches on online databases that are known to us.
Our search string was defined by breaking down the research questions according to
the PICOC criteria (population, intervention, comparison, outcome, and context), as
recommended by Kitchenham and Charters, 2007 [KC07]. These terms were con-
nected using Boolean operators; the operator OR was used for synonyms (alternative
terms) and AND was used for linking the search terms, as illustrated in Table 3.1.

By manually inspecting the search results (18,712 records), we selected 120 papers
for further selection. This entailed (1) reading the title and abstract of each paper and
(2) reading the full text of each remaining paper. The following inclusion and exclusion
criteria were used for study selection:

Inclusion:

• All the papers that present the primary studies on using ML algorithms for iden-
tifying NFRs are included.

3.3. REVIEW METHOD AND PROCESS 59

• If the same method is reported by more than one paper, the paper that provides
the most detailed description of the ML method is included.

Exclusion:

• Grey literature and non-English written paper are excluded.

• Papers that present secondary studies, such as surveys and literature reviews, are
excluded.

At the end of the selection process, we identified 13 relevant papers, which were
then included in our start set (see Table 3.2).

3.3.2 Backward Snowballing

For each paper in the start set, we conducted a backward snowballing search on the
paper’s references. The process of backward snowballing, as shown in Figure 3.1, is
detailed as follows.

First, the title and reference context of each referenced paper was reviewed, and
in some cases, additional sections of the referenced paper, such as the abstract and
keywords, were evaluated. Reference context was based on the text surrounding the
reference in the paper.

Second, the inclusion and exclusion criteria were applied based on a full-text read-
ing. Papers identified as relevant were added to the starting set, and this process was
repeated until no new papers were identified. During four iterations of this process,
1474 referenced papers were examined, 31 of them were identified as relevant, but
only 12 were added to the start set. The start set now consists of 25 papers.

3.3.3 Forward Snowballing

For each paper in the start set, we conducted a forward snowballing search on the pa-
per’s citations. The citations of each paper in the start set were identified on Google
Scholar. Each citation paper was reviewed as follows: first, the title, abstract, key-
words, and reference context (i.e., the context of text surrounding each citation) of
each study were reviewed. Relevant papers were added to the starting set, and this
process was repeated until no new papers were identified. During four iterations, 766
studies were examined, 65 studies were identified, and 26 relevant studies were added
to the start set based on the inclusion and exclusion criteria.

60 CHAPTER 3. SYSTEMATIC REVIEW

No Author Year Title Publication
venue

Database Citation
counts*

1 Casamayor et
al.

2010 Identification of
non-functional requirements
in textual specifications: A
semi-supervised learning
approach

Information
and
Software
Technol-
ogy

Science
Direct

149

2 Slankas and
Williams

2013 Automated extraction of
non-functional requirements
in available documentation

NaturaLiSE IEEExplore 96

3 Kurtanović
and Maalej

2017 Automatically Classifying
Functional and
Non-functional
Requirements Using
Supervised Machine
Learning

RE Con-
ference

IEEExplore 86

4 Lu and Liang 2017 Automatic Classification of
Non-Functional
Requirements from
Augmented App User
Reviews

EASE ACM 56

5 Abad et al. 2017 What Works Better? A
Study of Classifying
Requirements

RE Con-
ference

IEEExplore 55

6 Hussain et al. 2008 Using linguistic knowledge
to classify non-functional
requirements in SRS
documents

NLDB Springer
Link

51

7 Knauss et al. 2011 Supporting Requirements
Engineers in Recognising
Security Issues

REFSQ Springer
Link

39

8 Jindal et al. 2016 Automated classification of
security requirements

ICACCI IEEExplore 19

9 Deocadez et
al.

2017 Automatically Classifying
Requirements from App
Stores: A Preliminary Study

RE Con-
ference

IEEExplore 10

10 Gokyer et al. 2008 Non-functional
requirements to
architectural concerns: ML
and NLP at crossroads

ICSEA IEEExplore 14

11 Nguyen et al. 2015 Rule-based extraction of
goal-use case models from
text

ESEC/FSE ACM 12

12 Malhotra et
al.

2016 Analyzing and evaluating
security features in software
requirements

ICICCS-
INBUSH

IEEExplore 7

13 Knauss and
Ott

2014 (Semi-) automatic
Categorization of Natural
Language Requirements

REFSQ Springer
Link

5

* Collected in February 2021

Table 3.2: The initial start set of the relevant papers for snowballing

3.4. RESULTS 61

Data item Description

Bibliographic
information

Authors, title, publication venue, and publication
year

Study goal/Contribution The main purpose of the selected paper

ML algorithm Type of ML algorithm used to identify or classify the
textual requirements

Requirements document The source and size of requirements documents

Types of NFRs Types of NFRs that automatically identified by the
studies

ML approach The process and techniques used for identifying the
NFRs

Evolution methods and
results

How the effectiveness of the algorithm was measured
in the selected paper and what were the results

Table 3.3: Data extraction form

At the end of forwarding snowballing, 51 relevant papers were selected as the final
set for our review. This set of papers is listed in Appendix A (Table A.1), numbered as
S1, S2, etc., in chronological order.

3.3.4 Extracting and Synthesizing the Data

The required data were extracted from each of the 51 selected studies. The data ex-
traction form (see Table 3.3) was used to record the data for each study. Two types
of data were extracted: the data required for answering the research questions and the
data required for displaying the bibliographic information of the study. The extracted
data were stored in an Excel file.

The data synthesis method used in this review was based on the constant compar-
ison method (CCM), a core element of grounded theory [GS17] that has been widely
used for qualitative analysis [DWAJ+05, Har18]. CCM focuses on finding the similar-
ities and differences between the data extracted from the studies. The CCM method
can be used independently [Har18] or combined with summarization. In our case, we
applied both CCM and summarization to synthesize the extracted data.

3.4 Results

This section presents an overview of studies and answers our review research ques-
tions.

62 CHAPTER 3. SYSTEMATIC REVIEW

Figure 3.2: Distribution of the 51 selected studies from the beginning of 2007 when
the first study was reported to early 2021 (i.e., 30 February 2021) when our search was
completed.

3.4.1 General Overview

The 51 studies were categorized according to their main goal(s) (i.e., their contribu-
tions), as shown in Table 3.4. A comprehensive description of the studies is provided
in Table A.2 in Appendix A. Figure 3.2 shows the distribution of the selected primary
studies published between 2007 and 2021. The number of studies published each year
fluctuated significantly, with the largest number of studies published in 2019 (13 stud-
ies) and 2017 (9 studies). Studies were published in different databases, including
IEEEXplore (26 studies), Springer Link (10 studies), ACM Digital Library (7 studies),
Science Direct (6 studies), Semantic Scholar (one study), and MDPI (one study). The
ratio between conference papers and journal articles was 38:13. Most conference pa-
pers were published in the Requirements Engineering Conference (8 studies), Founda-
tion for Software Quality Conference (3 studies), Evaluation and Assessment in Soft-
ware Engineering Conference (2 studies), and International Conference on Advances
in Computing, Communications and Informatics (2 studies). Most journal articles were
published by Requirements Engineering Journals (2 studies), Empirical Software En-
gineering (2 studies), Journal of Systems and Software (2 studies), Information and
Software Technology (2 studies), and Journal of Industrial Information Integration (2
studies).

3.4. RESULTS 63

Study goal Study ID No. studies

To automatically annotate require-
ments

S30 1

To extract and classifying NFRs
from the uncommon form of re-
quirements (i.e., textual require-
ments), such as user comments,
commit messages and use case

S8, S10 ,S13, S14 ,S19, S24, S29,
S33, S35 , S41, S42, S43, S44

13

To process textual requirement
(e.g., feature selection, extraction,
extension or representation)

S2, S18, S19, S22, S23, S31, S34,
S45, S48

9

To build ML models using new, un-
used or modified algorithms

S1, S4, S7, S9, S15, S20, S21, S25,
S26, S27, S33, S36, S37, S38, S40,
S47, S51

17

To compare the performance of dif-
ferent text processing techniques or
learning algorithms in NFR classi-
fication (i.e., comparison)

S5, S12, S20, S21, S32, S28, S39,
S49, S50

9

To use the extracted requirements
in another context (e.g., supporting
other RE tasks)

S3 , S11, S24, S43 4

To extract and classify security re-
quirements.

S6, S11, S16, S17, S27, S45, S46,
S48, S49

9

Table 3.4: The main goals of selected studies; a study could have more than a goal

64 CHAPTER 3. SYSTEMATIC REVIEW

Figure 3.3: Distribution of the 51 selected studies by learning types

3.4.2 ML Algorithms (RQ1)

RQ1: What machine learning algorithms have been applied in the selected studies?

Which ones are the most popular?

Out of 51 studies, 38 (74.5%) applied supervised learning, 5 (9.8%) unsupervised,
and 4 (7.8%) semi-supervised learning. The rest are either combined supervised with
unsupervised (3 studies, 5.8%) or semi-supervised and supervised methods (one study,
1.9%). Figure 3.3 shows the distribution of the studies by learning types.

In detail, a total of 36 various ML algorithms were found in the 51 selected studies:
23 out of 36 are supervised learning (SL) algorithms, 6 unsupervised learning (UL)
algorithms and 7 semi-supervised learning (SSL) algorithms, as summarized in Table
3.5. Table 3.5 confirms that supervised learning is the most used type of ML and
indicates that SVM is overall the most popular ML algorithm, found in 20 studies
(39.2%).

In the following subsections, we introduce the 37 ML algorithms found in our
review.

Supervised Learning Algorithms

The twenty-four supervised learning algorithms found in our review are briefly de-
scribed in this section. These algorithms include seven ensemble learning algorithms,
six neural-network-based algorithms and one optimization algorithm. We briefly de-
scribe all the SL algorithms in this section, except SVM, NB, KNN, and DT, which are

3.4. RESULTS 65

Type ML algorithms Study ID No.
Stud-
ies

SL

SVM S3, S5, S8, S9, S10, S11, S12, S20, S21, S22,
S28, S30, S31, S34, S35, S39, S44, S49, S50,
S51

20

NB S4,S6, S7, S9, S11, S19, S20, S21, S31, S33,
S41, S44, S48, S49, S50, S51

16

DT S2, S16, S17, S19, S20, S23, S28, S33,S39,
S41, S48, S49

12

KNN S9, S14, S20, S21, S28, S30, S33, S36, S39,
S49, S50

11

Logistic Regression S28, S31, S45, S48, S49, S50, S51 7
Convolutional neural networks S25*, S26, S38, S42, S46*, S49*, S51* 7
Multinomial NB S7, S10, S11, S26, S28, S39 6
Bagging S11, S19, S33, S49 4
Bernoulli NB S23, S28, S39 3
Gaussian NB S28, S39 2
Recurrent Neural Networks S40*, S49 2
Random forest S30, S31 2
Stochastic Gradient Descent S29, S39 2
Discriminative Multinomial NB S7 1
Rule-Based S18 1
Artificial Neural Network S38 1
Binary Relevance S44 1
BERT S47 1
Bossting S49 1
Random Subspace S49 1
RUSBoosted Trees S51 1
Extra Tree S28 1
Multi-Layer Perceptron S28 1

UL

LDA S7, S23, S24, S32, S43 5
k-means S15, S23 2
Hierarchical agglomerative
clustering (HAC)

S15, S23 2

Biterm Topic Modeling S23 1
One-Class SVM S27 1
Word2vec S37 1

SSL

Expectation Maximization S4 1
Self-Training S20 1
Rel-RASCO S20 1
RASCO S20 1
Active learning S21 1
Label Propagation S28 1
Label Spreading S28 1

* Clearly mentioned that deep learning was applied

Table 3.5: ML algorithms applied in the selected studies grouping by learning types:
supervised learning (SL), semi-supervised learning (SSL) and unsupervised learning
(USL).

66 CHAPTER 3. SYSTEMATIC REVIEW

already explained in Chapter 2.
Logistic Regression. This is a probabilistic classifier with a decision boundary that

predicts probability values which are then mapped into two or more discrete classes
[KJMH+19]. It uses the logistic function (i.e., logistic sigmoid function) to estimate
a probability value of a discrete class (i.e., dependent variable) based on a specific
feature (i.e., independent variable) [MBW+19].

Rule-Based (RB). This is similar to DT where the dataset is modeled by collections
of rules. However, RB classifiers allow overlaps in decision space, while DT uses a
strictly hierarchical approach [KZP06]. The left side of these rules consists of condi-
tions, while the right side contains the classes. These rules are derived from the dataset
[KZP06].

Multinomial NB (MNB), Bernoulli NB, Gaussian NB are variants of classical NB
classifier (described in section 2.3). The main difference between these classifiers is
based on the assumption regarding the distribution (i.e., representation) of features
[Xu18]. Instead of representing a document as a set of features doc= { f1, f2, ..
fdoc_length}, such as classical NB classifier, MNB represents an input document as a
frequency vector, where each element represents a word/phrase frequency in the docu-
ment. Bernoulli NB represents each document as a vector of binary features; each ele-
ment has either 0 or 1 (1 means the document contains a specific word, while 0 means
does not). GNB is used when the features have continuous values (e.g., TF-IDF). In
this case, a typical assumption is that continuous values associated with each class are
represented in Gaussian distribution (i.e., normal distribution) [Xu18]. Discriminative
Multinomial Naive Bayes (DMNV) is a discriminative version of MNB that adds a
discriminative element to the frequency estimate in order to discriminatively compute
the appropriate frequencies from the data [SZLM08].

Artificial Neural Network (ANN). This is a biologically driven model that is in-
spired by the operation of biological neural networks. This model builds a network
with nodes (known "neurons") and lines connecting the nodes (see Figure 3.4a). The
neurons are segmented into three layers: the first layer represents the inputs, and the
last layer contains the outputs. The layer between them is called a "hidden layer,"
which performs transformations of inputs into the output layer through neurons [Zho12].
NNs with many hidden layers (usually more than one [KG18] or two [ZWL18]) are
known as deep NNs (or deep learning), whereas those with fewer layers are known
as shallow NNs [KG18]. Each node in the hidden and output layer is a functional

3.4. RESULTS 67

unit with inputs and outputs; the output value is obtained by doing some mathemati-
cal operation (i.e., activation functions) using the inputs. Each node in the input layer
corresponds to one element of a feature vector [Zho12]. All nodes, except those in the
output layer, are connected to all the next layer nodes. A connection line represents
the weight of the connection between two distinct neurons, reflecting the importance
of the communication between neurons in the network.

Multi-Layer Perceptron (MLP). This is an example of ANN, which contains one or
more hidden layers for enhancing classification accuracy. The neurons in MLP are in-
terconnected unidirectionally, from the input layer to the output layer (i.e., feedforward
neural network) [TM18].

Convolutional neural networks (CNNs). CNN is a type of NN that is commonly
applied to image processing [KJMH+19]. It is different from other NN by having hid-
den layers called "convolutional layers". These layers take a batch of the dimensions
(spatial structure) and moves it through the network instead of taking a single dimen-
sion (Figure 3.4b). In NN, each neuron is fully connected to all neurons in the previous
layer; however, CNN layers do not connect to all but a small region of neurons.

Recurrent Neural Networks (RNN). It is another type of NN architecture used for
temporal (sequential) data (i.e., data that requires past experience to predict new out-
comes). The main difference between RNN and other NN architectures is that it has a
feedback loop, which means it feeds previous time steps into the current step (Figure
3.4c). Thus, each node in RNN acts as a memory cell during the computation to allow
for the comparison (or use) of the previous value within computing the current one
[Swa19].

Bidirectional Encoder Representations from Transformers (BERT). BERT is a lan-
guage transformation model that learns the deep representation of texts by considering
both the left and right contexts (“bidirectional”). The fundamental idea behind BERT
is to overcome NN models’ key limitations (i.e., requiring a large dataset and being
time-consuming) by using a pre-trained model for two steps: pre-training and fine-
tuning. In pre-training, a model is trained using a large unlabeled dataset and an NN
algorithm. During fine-tuning, the pre-trained model is modified by changing the out-
put layer using fine-tuning methods and a small labeled dataset [DCLT18].

Binary Relevance (BR). BR is the most intuitive solution for handling a multi-
labeling classification task [ZLLG18]. This algorithm builds a binary classifier for
each class; the outcome of each classifier is used to determine the final prediction(s).

Bagging algorithm (or bagged tree). This is an ensemble-based model, a model

68 CHAPTER 3. SYSTEMATIC REVIEW

(a) ANN (b) CNN

(c) RNN (d) MLP

Figure 3.4: Illustrations of different types of NN architecture

that builds by combining multiple ML models to obtain optimal predictions (see Figure
3.5a). Bagging algorithm samples subsets of training instances (rows) to be fed to
different ML models. A new instance’s classification decision is then made based on
the majority voting of all models results [Zho12].

Subspace ensemble method (also known as attribute bagging [BGOQ03]). This
method randomly selects a subset of features before applying an ML algorithm, where
each classifier is trained in a different feature set [ZZYZ21]. The final prediction is
determined by majority votes.

Random forest (RF). This is an extension of the Bagging algorithm by integrating
features sampling (columns) to the instances sampling (rows) (i.e., a combination of
bagging and subspace ensemble methods) [Zho12]. RF is implemented by randomly

3.4. RESULTS 69

(a) Bagging (b) Bossting

Figure 3.5: Illustrations of ensemble classifiers

selecting a subset of features and then carrying the conventional split selection proce-
dure of bagging within the selected features [Zho12].

Extremely Randomized tree (Extra Tree). This algorithm is similar to RF in terms of
combining multi trees and uses majority voting to determine the final decision. How-
ever, the difference consists in the use of the whole training set in training each clas-
sifier, instead of samples [GEW06]. Besides, whereas RF uses a specific measure to
determine an optimal split point for the decision tree (e.g., Gini index) [EBdS20], the
Extra tree selects such a point randomly [GEW06].

Boosting (or Boosted Trees). Boosting is similar to the bagging ensemble method.
However, it trains in sequence with a focus on miss classification instances (Figure
3.5b). For example, data that misclassified in the previous classifier is used by the next
classifier. The majority votes of the models from each iteration are used to make the
final classification decision [Zho12].

Random undersampling boosting tree (RUS Boosted Trees). This is an extension
of the boosting method, incorporating random undersampling with boosting method
[SKVHN09]. The under-sampling strategy is mainly proposed to handle the class
imbalance problem by removing instances/samples from the majority (large) classes
to obtain a balanced classes distribution. We will go back to this strategy in Chapter 4.

Stochastic Gradient Descent (SGD). This is an optimization algorithm that uses
only a part of the data to optimize lost function (errors between the actual values and
predicted value) on training data [GBC16]. This optimization algorithm can be used
with different ML algorithms, including (linear) SVM, logistic regression, and deep

70 CHAPTER 3. SYSTEMATIC REVIEW

learning algorithms [GBC16]. S39 clearly explained using SVM with SGD, but S29
did not.

Un-Supervised Learning Algorithms

The six unsupervised learning algorithms identified in the selected studies are briefly
described as follows:

Latent Dirichlet Allocation (LDA). This is a generative probabilistic model used
to automatically identify topics that documents contain based on certain probabilities
[ZXY+17, BNJ03].

K-means. This is an iterative algorithm, which classifies documents randomly into
certain numbers of clusters (K). K-means work iteratively to assign each data point in
the space into the nearest single cluster of K-clusters [AKG+17, MW16].

Hierarchical Agglomerative Clustering (HAC). This is an iterative algorithm merg-
ing the similar elements of a dataset into a large cluster until the entire dataset forms
a single cluster. In contrast to K-means, HAC does not need to determine the number
of clusters up front. This algorithm includes three categories: complete linkage, single
linkage, and average linkage. The difference between these categories is the method
used to measure the distance between two clusters for each iteration. For example, sin-
gle linkage uses the most similar pair of elements, while complete linkage chooses the
most dissimilar pair of elements; average linkage defines the distance as the average
between the pairs in the data element [AKG+17, MW16].

Biterm Topic Modelling (BTM). This approach identifies topics by modeling word-
to-word co-concurrence patterns [YGLC13]. Such patterns are called biterms, which
are unordered pairs of words that appear frequently together in a dataset [YGLC13].

One-Class SVM . This is similar to the SVM algorithm; however, it focuses on one
class. Instead of using a hyperplane to separate two classes of instances, it determines
a boundary to encompass all instances of only one class [MY01]. New observations
are classified based on their position in relation to the boundary (inside or outside).
This algorithm is considered an unsupervised learning process because only instances
of one class are used to train a model. The other class can be predicted during the
testing. For example, S27 used general (non-domain specific) descriptions of security
requirements to classify requirements as security and non-security requirements.

Word2vec is an unsupervised learning model that does not require labeled data. It
uses an large unlabeled dataset to learn a vector representation where similar words
appear close to each other, and dissimilar words are located far from each other. The

3.4. RESULTS 71

similarity distance measures (e.g., cosine) is then used to measure the similarity be-
tween two words (i.e., the distance between two words). S37 measured the similarity
between indicator keywords of each NFR category and requirement statements to iden-
tify the type of NFRs.

Semi-Supervised Learning Algorithms

The seven SSL algorithms identified in the selected studies are briefly described as
follows:

Expectation Maximisation (EM). This is an iterative approach using probabilistic
functions for maximum likelihood estimation in problems with missing data [NMM06].
Unlabeled documents are handled as missing data due to a lack of labels.

Self-training. It is incremental semi-supervised training [RHS05], where the la-
beled datasets are used to train a supervised classifier, which then is used to classify
unlabelled data. The most confidently labeled data are added to the training set, and
the classifier is re-trained [Zhu05].

Active learning. It is aimed to achieve high accuracy by choosing the labeled
dataset carefully, which will derive high confidence/accuracy. The instance which has
the least confidence will be manually labeled and added to the training set [LHG+18].

RAndom Subspace Method for Co-training (RAS-CO). It is used both a random
subspace method and a co-training method. Co-training consists of two classifiers that
are trained with different parts of a labeled dataset [Zhu05]. RAS-CO basically selects
a random subspace from the featured spaces and trains the classifier of each subspace.
The idea behind this algorithm is that each classifier is sensitive to different features
and can complement the other classifier [WLZ08].

Relevant Random Subspace Method for Co-training (Rel-RASCO). This is similar
to RAS-CO; however, the aim of this algorithm is to select a random subspace that
contains relevant features’ subspaces [DHR17].

Label Propagation is a graph-based algorithm that builds a graph of connected
nodes where nodes are data points (labeled and unlabeled), and edges represent the
similarity between points. Labeled data points are used to iteratively label all nodes by
propagating information through the graph using the edges [alm06]. Label Spreading

is similar to label propagation; however, it used a normalized graph (i.e., a normalized
weight of the edge) to be more robust to noise [alm06].

72 CHAPTER 3. SYSTEMATIC REVIEW

Figure 3.6: A general process of applying ML algorithms to classify NFRs, including
key topics to be discussed in RQ2

3.4.3 Process of Using ML Algorithms to Identify NFRs (RQ2)

RQ2: What are the processes that the reported ML-based approaches follow to identify

and classify NFRs in requirements documents?
Our analysis of the 51 selected studies has revealed a general process pattern for

applying ML-based methods to identify and classify NFRs from a textual document.
This process consists of four major steps: data preparation, text processing, learning,
and testing. Figure 3.6 shows these steps and indicates the key topics (techniques or
strategies) that have been frequently discussed in the context of each step. The four
steps are similar to those applied for supervised ML in text classification (Chapter 2).
Therefore, in this section, we will not redescribe them in detail. Instead, we report how
these steps have been implemented in NFRS classification, common techniques, and
key observations.

Dataset Preparation

Dataset Types. Dataset collection is a very initial required step for building an ML
model. Many datasets have been used by the selected studies. These datasets came
from three main sources: 1) academic—where the requirements were written by aca-
demic students and researchers, 2) industrial—where they were written to describe or
simulate industrial products and 3) untraditional—where they were written by end-
users as App reviews, Q&A posts, user stories or user requests in open-source commu-
nities (e.g., sourceforge.net). The academic datasets were used the most in the selected

3.4. RESULTS 73

Dataset
Type

Dataset Name Study IDs No of
Studies

Total

Academic

PROMISE * S1, S2, S4, S5, S8, S9, S13,
S16, S18, S22, S23, S25, S26,
S28, S29, S31, S34, S35, S36,
S37, S38, S39, S40, S47, S48

25

25

Relabeled
PROMISE*

S34, S47 2

Expanded Promise* S50 1
Concordia S8, S18 2

Industrial

Multiple domains S15, S34*, S36, S46, S51 5

16
Healthcare Domain S9*, S11*, S36, S37* 4
SecReq* S6, S26,S27, S48, S49 4
Automotive domain S10, S12 2
Archive file formats S32 1
Requirements
definitions/standards

S27 1

Untraditional
Agile & open-source
software development

S7, S21,S41,S42, S43, S45 6
11

App reviews S19*, S20, S22, S33*, S44* 5
Q&A website S24 1

* Available Datasets, a more detailed description is provided in Table 3.7

Table 3.6: Overview of datasets used in the selected studies

studies (25 studies), followed by the industrial dataset (16 studies) and then the in-
formal dataset (11 studies). Table 3.6 shows the studies’ distribution according to the
dataset type, where some studies use multiple dataset types (e.g., S8, S18, S22, S26,
S36, S37, and S48). Four studies have not been included in the table (i.e., S3, S14,
S17, S30), as there is not enough information about a dataset or dataset domain.

Although there are many different datasets used by the studies, few are publicly
available (see Table 3.7). As the table shows, PROMISE and SecReq datasets were
used most frequently, and both were provided for the RE’17 Data Challenge2. Besides
the datasets mentioned in Table 3.7, there are datasets that are no longer available (e.g.,
Concordia used by S8 and S18), and datasets that are partially available—the original
text is publicly available, but the labeled version is not. For example, user stories
collection 3 used by S42, security requirements 4 by S45, and NFRs 5 in S51.

2http://ctp.di.fct.unl.pt/RE2017/pages/submission/data_papers/, Last accessed
February 2021

3https://data.mendeley.com/datasets/7zbk8zsd8y/1, last accessed February 2021
4https://goo.gl/qr8Y4W, last accessed February 2021
5http://fmt.isti.cnr.it/nlreqdataset/, last accessed February 2021

http://ctp.di.fct.unl.pt/RE2017/pages/submission/data_papers/
https://data.mendeley.com/datasets/7zbk8zsd8y/1
https://goo.gl/qr8Y4W
http://fmt.isti.cnr.it/nlreqdataset/

74
C

H
A

PT
E

R
3.

SY
ST

E
M

A
T

IC
R

E
V

IE
W

Dataset
Name

Description Introduced
by

Reused by URL

PROMISE NFR dataset that includes 625 requirements and 12 classes and;
255 FRs and 370 NFRs labeled in 11 different categories.
These requirements are collected from 15 software
development projects and manually annotated by MS students
at DePaul University.

S1 S2, S4, S5, S8, S9,
S13, S16, S18, S22,
S23, S25, S26, S28,
S29, S31, S34, S35,
S36, S37, S38, S39,
S40, S47, S48

https://doi.org/10.5281/

zenodo.268542

Dalpiaz et
al. data set

It consists of 877 requirements collected from multiple
domains, including PROMISE, and labeled as functional or
quality aspects.

S34 S47* https://github.com/

explainable-re/

RE-2019-Materials

PROMISE-
exp

It comprises 47 requirements documents, 15 of which belong to
the original PROMISE dataset, whereas 34 are collected from
requirements documents over the Internet. Altogether, there are
444 FRs and 525 NFRs assigned to the same 11 categories as in
PROMISE.

[LVC+19] S50 https://tinyurl.com/

PROMISE-exp

SecReq A security requirements dataset consisting of 511 requirements
collected from three industrial specifications: Common
Electronic Purse (ePurse), Customer Premises Network (CPN),
and Global Platform Specification (GPS). The requirements are
classified into three classes: security, non-security, and
unknown.

S6 S26, S27, S48, S49 http://ctp.di.fct.unl.

pt/RE2017//downloads/

datasets/SecReq.zip

Slankas and
Williams
Dataset

A multi-labels NFRs dataset consists of 11876 sentences,15
classes, collected manually from 11 documents related to the
electronic healthcare domain and PROMISE.

S9 S37* https://github.com/

RealsearchGroup/

NFRLocator

https://doi.org/10.5281/zenodo.268542
https://doi.org/10.5281/zenodo.268542
https://github.com/explainable-re/RE-2019-Materials
https://github.com/explainable-re/RE-2019-Materials
https://github.com/explainable-re/RE-2019-Materials
https://tinyurl.com/PROMISE-exp
https://tinyurl.com/PROMISE-exp
http://ctp.di.fct.unl.pt/RE2017//downloads/datasets/SecReq.zip
http://ctp.di.fct.unl.pt/RE2017//downloads/datasets/SecReq.zip
http://ctp.di.fct.unl.pt/RE2017//downloads/datasets/SecReq.zip
https://github.com/RealsearchGroup/NFRLocator
https://github.com/RealsearchGroup/NFRLocator
https://github.com/RealsearchGroup/NFRLocator

3.4.
R

E
SU

LT
S

75

Dataset
Name

Description Introduced
by

Reused by URL

Riaz-
Dataset

A security requirements data set consisting of 10963 sentences
collected from 6 different Healthcare domains. These sentences
are classified according to six security objectives.

S11 N/A http://go.ncsu.edu/

securitydiscoverer/

User
reviews

1278 user review sentences collected from two Apps iBooks
(iOS) and WhatsApp (Android). These reviews are classified
into five NFRs classes.

[WLL18] S19, S33 https://tinyurl.com/

y7tj9lkq

Jha &
Mahmoud
Dataset

6000 user reviews collected from different apps in the Apple
App Store. 2346 of these reviews labeled with at least one out
of four NFR classes. The remaining reviews are labeled as Mis,
which means, according to the authors, miscellaneous.

S44 N/A http://seel.cse.lsu.edu/

data/emse19.zip

* Used only a part of the available database

Table 3.7: An overview of the publicly-available datasets used by the selected studies

http://go.ncsu.edu/securitydiscoverer/
http://go.ncsu.edu/securitydiscoverer/
 https://tinyurl.com/y7tj9lkq
 https://tinyurl.com/y7tj9lkq
http://seel.cse.lsu.edu/data/emse19.zip
http://seel.cse.lsu.edu/data/emse19.zip

76 CHAPTER 3. SYSTEMATIC REVIEW

Figure 3.7: Distribution of studies by dataset size and a number of classes

Data Labels and Sizes. The number of requirements in datasets varies greatly in
the selected studies. For example, S16 used 58 requirements (with four categories)
to train a ML classifier, and S9 use 11876 (with fifteen categories). Figure 3.7 shows
the distribution of classes according to the number of requirements and classes. More
details about the studies IDs and class names are provided in Table A.3. A signifi-
cant finding in S1 is that an ML classifier performs better with a large training set in
classifying NFRs.

NFRs Classes. In total, there are 46 different NFRs classes used by the studies:
Figure 3.8 shows the frequency of the 46 NFRs classes in the selected studies, indicat-
ing that Security is the most frequent class, followed by Usability and Performance.
The classes in Figure 3.9 are grouping based on their name. For example, Security and
Authorization- Authentication are separated classes. Figure 3.9, on the other hand,
shows the frequency of classes by grouping them as security-related, performance-
related, and usability-related requirements. The figure shows that Security is the most
frequently used group, followed by Performance, and finally, Usability. Table A.4 in
Appendix A provides more details by showing the NFRs classes for each study.

Classification Tasks. The datasets used for the selected studies were applied to
five different classification tasks:

3.4. RESULTS 77

Figure 3.8: Distribution of the selected studies by each NFR type

78 CHAPTER 3. SYSTEMATIC REVIEW

Figure 3.9: Distribution of the selected studies by three groups of NFRs

1. NFR identification—classifying requirements into two classes: NFRs and non-
NFRs (e.g., FRs)

2. NFR classification—classifying NFRs into non-functional classes in which the
dataset is annotated with only NFR classes (e.g., security, usability, and legal).

3. NFR identification and classification—a combination of the two aforementioned
tasks in which the dataset is annotated according to NFRs and other classes (e.g.,
FRs).

4. Sub-class NFR classification—classifying NFRs into further categories (e.g.,
classifying security requirements based on security objectives).

5. Identifying a single class of NFRs by, for example, annotating requirements into
security or non-security.

Table 3.8 shows the frequency of studies applied to each task. As the table shows,
some studies performed more than one task (i.e., S4, S22, S26, S31, S47, and S50).
The classification of NFRs into NFR classes is the most commonly addressed classifi-
cation task.

Pre-required Data by Learning Type. As there are different types of ML al-
gorithms applied in NFRs classification (i.e., supervised and unsupervised learning),
dataset preparation is slightly different in each type. For example, supervised learning
methods require a set of NFRs correctly classified according to their categories. To

3.4. RESULTS 79

Classification Task Study ID No Studies
Classifying NFRs into NFR classes S3, S4, S5, S7, S13, S21, S23, S24,

S28, S29, S30, S35, S36, S38, S40,
S42, S44, S47, S50, S51

20

Identifying/detecting NFRs S2, S4,S20, S22, S23, S26, S31,
S32, S34, S41, S43, S47,S50

13

Identifying and classification NFRs S1, S4, S8, S9, S14, S15, S19, S25,
S33, S37, S39, S50

12

Identifying a single non-functional
class

S6, S22, S26, S27, S31, S45, S46,
S48, S49

9

Classifying NFRs into NFRs sub-
classes

S11,S16,S17, S18 4

Table 3.8: Distribution of the selected studies by classification tasks addressed by the
studies

do so, datasets were labeled manually in all of the selected studies (apart from S30).
Thus, two possible threats are posed: the subjectivity of the labeling process (i.e., an-
notations) and incorrectly labeling. The key method applied by the studies to overcome
such threats is to annotate requirements separately by different annotators and used one
of the following validation methods:

• Percent Agreement (two studies): A simple method that computes the percentage
of agreement between annotators (i.e., the number of agreements in observations
divided by the total number of observations).

• Kappa measurements (8 studies): Statistic measures are widely used to assess
the reliability of agreement between raters on nominally scaled data. Examples
of kappa measures are Cohen Kappa [Coh60] which measures the agreement
between two raters (S7, S10, S12, and S45), Fleiss’ kappa [Fle71] assess the
agreement between multiple raters (S24), and Randolph’s kappa [Ran05] (S9) is
for multiple annotators with no restrictions on the distribution of instances into
different categories.

• Krippendorff’s (alpha) [Kri11] (one study): A reliability coefficient used to mea-
sure the agreement among annotators.

• Spearman correlation [CF14] (one study): A correlation coefficient used to mea-
sure the strength of a non-linear relationship between two variables.

• Majority voting (four studies): It is to select a label used the most frequently in
annotating a single requirement.

80 CHAPTER 3. SYSTEMATIC REVIEW

Data validation methods No Studies Studies IDs
Annotators
reviewing/discussion

9 S8, S10, S12, S19, S33,
S34,S42, S44, S45

Kappa measurements 8 S7, S9, S10, S11, S12, S24,
S45

Majority voting 3 S21, S44, S51
An additional annotator for
resolving the conflict

3 S11, S19, S34

Percent Agreement 2 S19, S33
Krippendorff’s alpha 1 S34
Spearman correlation 1 S7
Annotators’ experience and
confidence

1 S51

Table 3.9: Distribution of the studies by data validation methods

• An additional annotator for resolving the conflict (three studies): It is to resolve
the disagreements in observation by an additional annotator who makes the final
decision.

• Annotators reviewing/discussion (9 studies): It is to discuss the disagreements
between annotators until a consensus is achieved.

• Annotators’ experience and confidence (one study). It is to use an annotator’s
experience and confidence in resolving conflicts. For example, S51 asked each
annotator about their experience and confidence in annotating each requirement.
In case of conflict, the labels provided by high experienced annotators or with
high confidence levels were selected.

Table 3.9 shows the frequency of each data validation method. It can be seen from
the table that some studies (e.g., S11, S19, S34, S51) use more than one method, in
which one method determines the agreement level, the other resolves the conflict. For
example, S11, S19, S34 reported the agreement score, and resolved the conflict (e.g.,
when kappa < a threshold) using other methods (e.g., discussion). S51 applied majority
voting, but in cases of disagreement, another method is used (annotators’ experience
and confidence).

The unsupervised learning algorithms are simply about portioning text documents
into different parts or categories. Thus, in general, the unsupervised learning algo-
rithms do not require any prerequisites where a given document is classified based on
its content without any pre-defined categories. However, some of the studies used some
pre-defined data in NFRs classification. Using the data is not necessary to perform the

3.4. RESULTS 81

Pre-defined data type No Studies Studies IDs
Pre-defined wordlists 6 S7, S15, S24, S32, S37, S43
Requirement
definition/description

1 S27

Table 3.10: The distribution of studies by predefined data type to build unsupervised
NFRs classifier

unsupervised learning algorithms; however, it improves the classification performance
of the NFRs. For example, S23 used unsupervised learning without pre-defined data
and got the worst performance than other studies that used pre-defined data. Two
types of pre-defined data were used by the studies applying unsupervised learning al-
gorithms, which are as follows:

• Pre-defined wordlists. Several domain-independent word lists have been derived
from different sources such as ontology for software quality measurement (S7),
ISO/IEC 9126-1 Software Quality Characteristics (S7, S24, S43), keywords in
Cleland-Huang et al. work [CHSZS07] (S37), simple words that containing NFR
categories and their representative words (S15), or NFRs characteristics—e.g.,
the behavior of systems such as speed and size (S32).

• Requirement definition/description. A domain-independent definition of require-
ments has been used to train an unsupervised classifier. For example, S27 uses a
description of weaknesses in the Common Weakness Enumeration database 6 in
training an unsupervised classifier (one-class SVM).

Table 3.10 shows the distribution of studies based on pre-defined data used in
building unsupervised NFRS classifiers. The table indicates that keywords are most
frequently used with unsupervised classifiers.

Text Processing Step

This step consists of four different sub-steps: pre-processing, feature selection, feature
extraction, and feature representation.

Text Pre-Processing. This step takes a textual requirements document as input and
then applies different natural language processing (NLP) techniques to pre-process the
input document. A total of 20 NLP techniques were found in the selected studies.
Table 3.11 shows which study used which NLP technique. These 20 techniques are
briefly summarized as follows.

6https://cwe.mitre.org/data/definitions/416.html, last accessed March 2021

https://cwe.mitre.org/data/definitions/416.html

82 CHAPTER 3. SYSTEMATIC REVIEW

• Tokenization: splitting a sentence into a series of words [KBLK10].

• Sentence splitting: splitting a text into a set of sentences.

• Stop-words removal: removing auxiliary verbs (be, do and have), conjunctions
(and, or) and articles (the, a, and an) in sentences [KBLK10]

• Slang and abbreviation transformation: converting slang words or abbreviations
into their basic form (e.g., change "don’t" to "do not").

• Spelling correction: fixing typos error is a requirements specification. Many
techniques are proposed in the literature (e.g., hashing-based and context-sensitive
spelling correction techniques [KJMH+19]). However, the studies that applied
this technique (S36 and S41) did not clearly show how this technique is per-
formed.

• Lowercase conversion: converting all letters into lowercase.

• Noise removal: removing unnecessary characters (e.g., punctuation and special
characters). It is argued that these characters can be detrimental to classifica-
tion algorithms [KJMH+19]. Fourteen studies explicitly indicated that they ap-
plied noise removal, while one study (S26) implicitly showed that. This study
discarded such noise by adding space around punctuation, which was then dis-
carded using the word embedding technique.

• Digits removal: removing digits from requirements (5 studies) or converting
numbers to words (e.g., converting 3 to "three") in S40.

• Restricting the size of words: removing words with a specific number of charac-
ters (e.g., less than three characters).

• Compound splitting: decomposing words into compound parts. This technique
was only applied by the studies (S10 and S12) that classified requirements writ-
ten in German, which may have more compound words than English.

• N-gram: separating each given string into subsequent N items, where the items
can be words, letters, or statements [CT+94].

• Stemming: reducing inflected (or sometimes derived) words to their word stem,
base or root form. For example, the words ‘goes’, ’gone’ and ‘going’ will map
to ‘go’, and the word ’mice’ will map to ’mice’.

3.4. RESULTS 83

• Lemmatization: determining lemma (the infinitive form of verbs and the singular
form of nouns and adjectives) of each word. For example, the words ‘goes’,
’gone’ and ‘going’ will map to ‘go’, and the words ‘mice’ will map to ‘mouse’.

• Part of speech (POS) Tagging: assigning tags to words based on their part of
speech (e.g., noun, verb, and preposition) in a sentence [CGC10].

• Dependency parsing: identifying the grammatical relationships between words
in a sentence to recognize the important parts and ignore unimportant parts in
the sentence [DMM08].

• Noun chunker: using the structural properties of a sentence to extract noun
phrases (NP).

• Named entity recognition (NER): detecting name entities in documents and clas-
sifying them to pre-defined categories, such as date, time, percent, money, and
cardinal [AKG+17].

• Temporal tagging: recognizing and normalizing temporal expression (e.g., time
and duration in S23) [AKG+17].

• Thematic role tagging: annotating words according to their semantic roles (e.g.,
Agent, Theme, and Instrument).

• Regular expressions: matching a defined expression that describes string pat-
terns. This expression contains specialized notations, such as the character (∧)
means ‘not’ [AKG+17].

• Words augmentation: extending words with more related words. This technique
is used to enhance the similarity between requirements (S37) and handle the
short text classification (S19).

Feature Selection. This step is to select features that have high importance or
weight (i.e., most relevant) to predict output variables. It is applied by 27 studies that
used 9 different techniques, as shown in Table 3.12. In the following, we summarize
the 9 techniques.

• Term frequency: ranking words, phrases, or word characteristics (e.g., POS tags)
according to their frequency in a given document.

84 CHAPTER 3. SYSTEMATIC REVIEW

NLP technique No.
stud-
ies

Studies IDs

Stop-words removal 31 S1, S2, S3, S4, S5, S7, S9, S13, S14, S15, S16,
S17, S19, S22, S24, S26, S28, S29, S30, S32, S33,
S35, S36, S37, S38, S39, S40, S41, S44, S50, S51

Stemming 19 S1, S2, S4, S5, S8, S15, S16, S17, S18, S20, S28,
S30, S32, S33, S35, S36, S38, S41, S44

Tokenization 17 S8, S16, S17, S18, S20, S21, S23, S24, S30, S31,
S36, S37, S39, S40, S41, S44, S51

Noise removal 15 S4, S7, S13, S20, S22, SS26,28, S29, S31, S35,
S36, S37, S39, S40, S51

Lemmitization 14 S9, S13, S14, S15, S19, S21, S22, S29, S31, S33,
S37, S40, S50, S51

Lowercase conversion 13 S4, S7, S20, S34, S26, S29, S31, S36, S38, S39,
S41, S44, S51

POS tagging 11 S2, S3, S9, S14, S18, S22, S23, S30, S34, S37,
S51

Digits removal 6 S4, S13, S20, S31, S40, S51
N-gram 5 S10, S12, S29,S35, S41
Named entity recognition 4 S9, S14, S18, S23
Sentence splitting 3 S8, S18, S19
Dependency parsing 3 S9, S34, S48
Spelling correction 2 S36, S41
Words augmentation 2 S37, S19
Slang and abbreviation
transformation

2 S19, S26

Restricting the size of words 2 S5, S20
Compound splitting 1 S10
Noun chunker 1 S18
Temporal tagging 1 S23
Thematic role 1 S18
Regular expressions 1 S23

Table 3.11: Distribution of the studies per NLP technique used for text pre-processing

3.4. RESULTS 85

• TF-IDF: weighting words based on the frequency that a word appears in a docu-
ment inverse of the number of times the word appears in the corpus.

• Information Gain: measuring the features’ importance based on the presence and
absence of each feature in each category within training documents

• CHI: using the Chi-Square test to assess the independence between two variables
(feature and classes).

• ML-based technique: computing the importance of a feature using machine
learning algorithms (e.g., tree-based classifiers), where a high value of a feature
means that the feature is relevant to a specific class.

• LDA (unsupervised-based technique): extracting main topics (themes) within
texts. This technique is also used for the unsupervised classification of NFRs
(section 3.4.2).

• Pre-defined Keywords: using a list of predefined keywords (either domain-specific
or non-domain-specific) as features. This includes replacing existing features
with a list of predefined keywords (e.g., keywords matching in S48).

• Cleland-Huang et al.’ technique [CHSZS07]: a probability-based feature selec-
tion technique was proposed by Cleland-Huang et al. (S1) to select keywords
(known as indicator terms). S45 reuses this technique.

• Linguistic heuristics: defining rules at the syntactic or semantic level to select
features. For example, selecting specific POS groups (e.g. adjectives and ad-
verbs) or particular order of dependency parsing tags (e.g., adverb followed by a
noun).

Feature Extraction. This step creates (i.e., synthesize) new features by analyzing
a corpus. Three different methods have been applied to extract features in the studies.
These methods are illustrated in Table 3.13 and defined below.

• Sentiment analysis: using the result of sentiment analyzing the requirements
(i.e., sentiment score) as features by assuming that different NFRs are expressed
using different sentiments.

• ML results: using the results of ML models as features. Each model either has
a different type of features (S45) or a different representation (S51). The results

86 CHAPTER 3. SYSTEMATIC REVIEW

Feature selection
technique

No.
stud-
ies

Studies ID

Term frequency 8 S2,S3, S7,S23, S27,S34, S35, S50
TF-IDF 5 S9, S20, S33, S41, S50
Pre-defined keywords 4 S21, S29, S44, S48
Information Gain 3 S5, S11, S16
Cleland-Huang et al.’
technique

2 S1, S45

Linguistic heuristics 2 S37, S48
CHI 2 S19,S50
ML-based techniques 1 S22

Table 3.12: Distribution of the studies per feature selection technique

Feature extraction No. stud-
ies

Studies ID

Heuristic property 7 S2, S21, S22, S23, S34,
S45, S48

ML-based results 2 S45, S51
Sentiment analysis 1 S44

Table 3.13: Distribution of the studies per feature extraction technique

of these methods are then fed to a ML model to provide the final classification
decision.

• Heuristic property: manually or automatically analyzing the characteristics of
requirements (e.g., average a specific POS tag, text length, and specific syntactic
patterns). These characteristics are used as features, representing as columns of
feature space.

Feature Representation. This step converts the textual features into a format that
ML algorithms can understand (i.e., set of vectors). Seven different techniques have
been used in the selected studies: Table 3.14 shows the frequency of using each tech-
nique. The first four techniques (i.e.,TF, TF-IDF, word2vec, BERT) have been also
used for feature selection (see Section 3.7) or requirement classification (see section
3.4.2). The remaining 3 techniques are described in the following:

• Boolean (binary representation) represents a feature based on its appearance.
The value of an element vector is 1 if a document contains the feature and 0 if it
does not.

• Doc2vec is similar to word2vec in terms that it is a NN-learning-based method.
However, it learns numerical representations of documents, instead of words.

3.4. RESULTS 87

Feature representation No. stud-
ies

Studies ID

TF-IDF 13 S4, S16, S27, S28, S29, S30, S31,
S33, S36, S39, S41, S50, S51

TF 13 S15, S19, S20, S21, S23, S29, S31,
S34, S38, S39, S44, S50, S51

word2vec 7 S25, S62, S31, S40, S46, S49, S51
Boolean 4 S5, S21, S23, S48
BERT 1 S51
Doc2vec 1 S31
Sparse Composite
Document Vectors
(SCDV)

1 S31

Table 3.14: Feature representation techniques used in the selected studies for text pro-
cessing

• Sparse Composite Document Vectors (SCDV) is similar to word2vec, but it has
the ability to distinguish the semantic meaning of words when the same words
have a different meaning. Thus, it incorporates word2vec with a clustering algo-
rithm called Gaussian Mixture Model (GMM).

Table 3.14 shows that TF-IDF is the most frequently used method for requirements
representation. Despite that, S5 argued that Boolean is better for representing require-
ments, as the requirements are short and do not need complex representation. S26
argued that using word embedding (i.e., word2vec) helps to overcome the challenge of
having a small dataset with NN models.

Learning

Learning Process by Learning Type. This step involves the application of ML algo-
rithms to build the NFRs model using the processed text. Each type of ML learning
has a slight difference in the learning step. For example, supervised learning algo-
rithms use NFRs’ labeled datasets, which have been manually classified by type, to
learn certain parameters (features, patterns, or functions) of each type of NFR. In other
words, these algorithms find the relationships between NFR statements (input) and
their labels (output) for building a model that uses these relations for further NFR clas-
sification tasks. Unsupervised learning, in contrast, uses input requirement documents
to drive structure (i.e., groups of requirements) by looking at the relationship between
the inputs (i.e., textual requirements) themselves. Semi-supervised learning algorithms
apply supervised learning iteratively with both labeled and unlabelled data. Labeled

88 CHAPTER 3. SYSTEMATIC REVIEW

Learning task No. stud-
ies

Studies ID

Binary-class 26 S2, S5 , S6, S8, S10, S16,
S18, S20, S21,S22, S23,
S26, S27, S29, S31, S34,
S39, S41,S42, S43, S45,
S46, S47, S48, S49, S50

Multi-class 24 S1, S3, S4, S9, S12, S13,
S14, S17, S19, S21, S22,
S23, S24, S28, S29, S33,
S35, S37, S38, S40,S42,
S47, S50, S51

Multi-labels 9 S7, S8, S10, S11, S15, S30,
S32, S36, S44

Table 3.15: The distribution of the studies by learning Tasks

data are used to train the model to classify further unlabelled requirements.
Learning Tasks. NFRs classifiers applied three different learning tasks: binary,

Multi-class, and Multi-labels classification task. Binary classification refers to tasks in
which an input data point into one of two classes is classified. Multiclass tasks have
more than two class labels, and each data point is classified into one out of K classes
(where K > 2). In the multilabel classification task, each data point is classified into
one or more class labels. For example, a single requirement could be Functional and
Security at the same time. Table 3.15 shows the distribution of the studies by learning
tasks. As the table shows, binary learning is most widely applied, followed by Multi-
class, and finally Multi-labels learning task.

Learning Tools. Seven tools have been used to build NFRs classifiers by the se-
lected studies. These tools are briefly described as the following:

• Weka 7 is a publicly available ML workbench, which provides easy access to
state-of-the-art ML algorithms for data mining [FHH+09]. It has graphical user
interfaces, which facilitate the whole data mining process, including preparing
the input data, building and evaluating the learning models, and visualizing the
inputs and results [FHH+09]. Weka’s main drawback is its lack of flexibility
for customizing feature selection methods. Thus, some studies, such as S2, have
built their own feature selection programs and use Weka for training and evaluat-
ing their ML model. On the other hand, one of Weka’s main strengths is its user
friendliness and its large number of implemented text classification algorithms
[JBB14].

7https://www.cs.waikato.ac.nz/ml/weka/, Last accessed March 2021

https://www.cs.waikato.ac.nz/ml/weka/

3.4. RESULTS 89

• Scikit-learn 8 is a free Python package, which must be used by skilled Python
programmers due to its command-line interface. Scikit-learn provides variously
supervised and unsupervised learning algorithms and supports several ML pro-
cess steps, including dimensionality reduction, feature extraction, feature selec-
tion, parameter tuning, and evaluation. It is more flexible than Weka; however, it
required python programming language skills to run a command-line interface,
as mentioned earlier.

• GATE (General Architecture for Text Engineering) 9 is a Jave-based tool de-
veloped at the University of Sheffield. GATE provides extensive multilingual
extraction techniques [AC06]. However, according to Adeva and Calvo [AC06],
it does not offer direct access to text classification functions. Nevertheless, some
plug-ins have been developed and used to perform NFR classification, such as
Machine_Learning used by S8.

• SVMlight framework [Joa99] is developed by researchers at Cornell University.
SVMlight is an open-source implementation of SVM in C, with a fast optimiza-
tion algorithm. However, it requires C programming language skills to run SVM
through a command-line interface.

• LIBSVM [CL11] is an open-source library for SVM to perform both classifi-
cation and regression tasks. It has been widely used by researchers to fulfill
different tasks and integrate into WEKA as a default SVM module [AW15].

• Gensim 10 is an open-source Python-based library for unsupervised document
indexing and similarity techniques with large corpora. Three studies used this
library (i.e., S26, S37 andS51) for generating word2vec embedding, which is
then used to predict NFR class with semantic similarity method (S37) or to be
fed to NN classifiers (S26 and S51).

• TensorFlow 11 is an open-source Python-based library used for developing ML,
with a focus on deep learning (i.e., NN models). It was developed by Google
to be applied to different kinds of data, including text . Three studies used this
library for building NN classifiers (i.e., S26, S38, and S51).

8https://scikit-learn.org/stable/, Last accessed March 2021
9https://gate.ac.uk, Last accessed March 2021

10https://pypi.org/project/gensim/, Last accessed March 2020
11https://www.tensorflow.org/, Last accessed March 2012

https://scikit-learn.org/stable/
https://gate.ac.uk
https://pypi.org/project/gensim/
https://www.tensorflow.org/

90 CHAPTER 3. SYSTEMATIC REVIEW

Figure 3.10: The distribution of studies by ML tools

• Mallet 12 is a Java-based package for NLP, document classification, clustering,
information extraction, and other ML applications to text. Mallet is a Multi-
Language support package that running via a command-line interface.

Figure 3.10 shows the distribution of the studies by tools. As the figure shows,
Weka has been used more often than other NFR classification tools. The user-friendly
interface of Weka and the diversity of ML algorithms could be a reason behind the
widespread use of Weka, not only in NFRS classification but in different data mining
tasks [JBB14]. Scikit-learn is the second most used tool, followed by GATE, Gensim,
TensorFlow, Mallet, SVMlight, and LIBSVM.

Evaluation

In this step, an NFR classifier’s evaluation is conducted using various methods to de-
termine the effectiveness of trained ML classifiers. Generally speaking, ML classi-
fiers’ effectiveness is measured by comparing the human-based labels against those
predicted by ML models. This, as mentioned in Chapter 2, is generally done through
three steps: score estimation methods, evaluation measures, and statistical validation
methods. Evaluation measures and results will be discussed in Section 3.4.4. In this
section, we review the score estimation and statistical validation methods. Also, we
highlight the differences between evaluating supervised and unsupervised methods.

12http://mallet.cs.umass.edu/topics.php, Last accessed March 2020

http://mallet.cs.umass.edu/topics.php

3.4. RESULTS 91

Scores Estimation Methods. Scores estimation methods determine how to deal
with available data to estimate the performance scores (evaluation measures). The
studies used six different scores estimation techniques; the distribution of the studies
by the techniques is shown in Figure 3.11. This figure indicates that K-fold cross-
validation and holdout (illustrated in Chapter 2) are the most frequently used tech-
niques. The remaining four techniques are illustrated as follows.

• Project-level cross-validation (Pflod). It is similar to the K-fold cross-validation;
however, it divides data according to the projects instead of instances (data size).
Thus, data is separated into K folds, where each fold has a similar number of
projects. The learning algorithm is run K times, and the average of K results is
calculated to produce a single result.

• A new testing domain. It is like the holdout technique in that there are two
separate datasets: one for training and the other for testing. However, the testing
dataset comes from different domains than the training data.

• Out-of-sample bootstrap. It randomly selects samples with replacement from a
dataset to train a ML model. The samples that are not included in the training
are used to evaluate the model. This bootstrap process is repeated M times, and
the average performance is calculated [TMHM16].

• Train fitness: This is the reuse of a training dataset to evaluate a trained classifier
for measuring how well it fits its training data.

Statistically Validation Methods. These methods assess whether there are sta-
tistically significant differences between the results of different learners. Only five
studies (9.8%) have adapted these methods and each study uses a different statistical
test. These tests are :

1. Student’s T-test used by S7. It is a test for continuous data that investigate if the
values of two groups are the same. It assumes that data are normally distributed
with equal variance [DPRHB10].

2. Welch’s t-test used by S22. It is similar to Student’s T-test; however, it does not
assume equal variance (i.e., homoscedasticity) or sample sizes [Sak16].

3. Analysis of Variance (ANOVA) used by S21. It is similar to Student T-test;
however, it is used to compare the means among three or more groups.

92 CHAPTER 3. SYSTEMATIC REVIEW

Figure 3.11: The distribution of studies by the score estimation methods

Statistically validation
methods

No. stud-
ies

Studies ID

Student’s T-test 1 S7
ANOVA 1 S21
Welch’s t-test 1 S22
Scott-Knott test 1 S31
Wilcoxon statistical 1 S51

Table 3.16: The distribution of studies by statistical validation methods.

4. Scott-Knott test by S31. It is a hierarchical clustering algorithm designed for
ANOVA to partition samples into distinct homogeneous groups. Similar to
ANOVA, it assumes normality and homoscedasticity [SK74].

5. Wilcoxon statistical Test by S51 for ordinal or continuous data. In contrast to the
Student’s T-test, the Wilcoxon test does not assume the normality distribution of
data.

Clusters Quality in Unsupervised Learning. Besides measuring the correctness
of predicted labels against the true ones, some of the studies that applied unsupervised
learning also measured the quality of clusters before predicting their classes (S15 and
S23). The cluster’s quality includes cohesion (members in each cluster are close to
each other) and separation (members of a cluster are far away from other clusters)

3.4. RESULTS 93

methods. S15 measures cluster cohesion and separation using semantic similarity be-
tween words in each cluster (i.e., pairwise semantic similarity). S23 computed silhou-
ette coefficient for measuring cluster cohesion and separation. These techniques are
related to the internal quality of each cluster, not their final output (i.e., the predicated
categories).

3.4.4 Performance of the Reported ML Algorithms (RQ3)

Q3: What measures have been used to evaluate the performance of the ML algorithms

applied in these methods? What are the performance results of these algorithms?

Of the 51 selected studies, 47 studies (92%) have reported classification results.
In total, 13 different measures have been used to assess classifier performance. Table
3.17 shows the distributions of the studies by measures. The table shows that precision,
recall, and f1-score, illustrated in Chapter 2, are the most frequent measures. Besides
these measures, there are 10 measures which are briefly described below.

• Accuracy. This is the measure of the number of correct classifications divided
by the total number of classifications. It is defined as accuracy = (true positives +
true negatives)/(true positives + true negatives + false positives + false negatives).
This measure was applied by 11 studies; however, none provided a reason for
computing the accuracy of their work.

• Confusion matrix. This is used to analyze the classification results showing the
number of correct classifications (true positive, true negative) and incorrect clas-
sifications (false positive, false negative). Only six studies provide the confusion
matrix for their classifiers (S1, S2, S8, S18, S25, and S4). S1 and S8 mentioned
that the reasons for computing this matrix were to provide useful classification
results and identify room for more improvement.

• ROC values. Sometimes known as the "area under the curve" or AUC, this
method visualizes the performance of classifiers as graphs; the x-axis represents
‘1-specificity’ (false positive rate), while the y-axis represents sensitivity (true
positive rate). ROC represents the accuracy of the performance in relation to
new instances. Only five studies adopted this method to compute their classi-
fiers’ performance (S7, S16, S34, S46, and S49). The authors of S7 argued that
ROC suffers from less bias than other measures, which skews toward the positive
class, especially in the case of an imbalanced class.

94 CHAPTER 3. SYSTEMATIC REVIEW

• F2− Score. It is a weighted harmonic mean of recall and precision, with β =
2 in equation 2.4. The studies that applied this measure emphasized recall over
precision. The main assumption is that false positives tend to be easier than false
negatives. In other words, searching for a false positive in the output is easier
than manually browsing the entire document looking for missed NFRs.

• Loss. It measures the absolute difference between the prediction and actual val-
ues. Practically, the lower value of the loss, the better an algorithm performs.
Four studies used this measure: S1 (Mean Absolute Error), S2 (Cross-entropy
Loss), S3 (test loss), and S44 (Hamming Loss).

• Kappa metric. This metric is often used to assess the agreement between raters
(see Section 3.4.3). It is also used to assess a classifier’s performance by mea-
suring the agreement between predicted labels and truth labels. Two studies (S2
and S23) used Kappa to assess classifier performance, however, none of these
studies specified which Kappa measure was used.

• Transductive and inductive accuracy. Transductive accuracy measures the ac-
curacy of predicting unlabelled instances in training, while inductive accuracy
measures the accuracy of predicting unseen test data (testing data) [DHR17].
Both of these values were used to measure the accuracy of the semi-supervised
learning algorithms in one study S20 as the authors of this study argued that
there were two types of learning in semi-supervised learning: one with testing
data and the other with unlabelled data.

• Subset Accuracy (SA) and Hamming Score (HS) are both used by S44 to evalu-
ate a multi-labels classifier’s performance due to their commonly used for such
learning tasks. Subset Accuracy, known as Exact Math, is rigorous metric com-
puting the number of completely correct predictions divided by the total number
of classified instances. Hamming Score is the number of correctly predicted la-
bels divided by the total number of identified labels (predicted and actual) for a
data instance.

Table 3.18 shows studies’ evaluation measures and the corresponding results (the
confusion matrix is not included in that table as it is hard to be reported in one cell).
The results reported in the table are the highest results achieved by each study in the
case of using multiple datasetes or classifiers. Therefore, the table shows the corre-
sponding classification setting for each study. As some studies did not provide the

3.4. RESULTS 95

Evaluation measures No. studies Studies ID
Precision & Recall 38 S1, S2, S4, S6, S8, S9, S10, S11,

S13, S15, S18, S19, S21, S22, S23,
S24, S25, S26, S27, S28, S29, S31,
S33, S34, S35, S36, S37, S38, S39,
S40, S41, S42, S44, S45, S47, S48,
S50, S51

F1−Score 30 S4, S5, S6, S7, S8, S9, S11,S12,
S18, S19, S21, S22, S25, S26, S27,
S28, S29, S31, S33, S34, S35, S37,
S38, S39,S40, S42, S47, S48, S50,
S51

Accuracy 11 S4, S21, S26, S30, S34, S36, S39,
S40, S41, S46, S49, S51

ROC values 5 S7, S16, S34, S46,S49,
F2−Score 4 S15, S26, S44, S45
Confusion matrix 6 S1, S2, S8, S18, S25, S41
Loss 4 S2, S26, S46, S44
Kappa 2 S2, S23
Transductive accuracy 1 S20
Inductive accuracy 1 S20
Subset Accuracy (SA) 1 S44
Hamming Score (HS) 1 S44

Table 3.17: The distributions of the studies by evaluation measures

overall performance (average), we report the results as a range by showing minimum
and maximum results (min,max).

Among supervised classifiers shown in Table 3.18, SVM is reported more than
other algorithms. However, the performance of SVM classifiers, and other classifiers,
vary from studies to another. For example, the SVM classifier in S8 performed higher
than the SVM classifier applied in S9. Therefore, it is hard to determine which algo-
rithms are more promising in NFRs. The classification type, number of classes, dataset
size, quality of requirements, algorithm configuration setting, evaluation methods all
affect the final results. For example, DT outperforms NB in S48, while NB outper-
forms DT in S48. Besides, the comparison of 13 supervised classifiers in S28 shows
that MNB is better than SVM, while S10 found that SVM is better than MNB.

96
C

H
A

PT
E

R
3.

SY
ST

E
M

A
T

IC
R

E
V

IE
W

ID #Class ML Type P R F Acc. TA IA AUC Sen. Kappa Loss SA HS
S1 10 Own SL 0.14 0.76 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

S2 2 DT SL 1.0 0.98 0.99 0.98 N/A N/A N/A N/A 0.97 0.09 N/A N/A

S3 NOT Provided

S4 10 NB +EM SSL 0.80-
1.0

(0.35-
1.0)

(0.48,1.0) (0.80,
0.97)

N/A N/A N/A N/A N/A N/A N/A N/A

S5 3 SVM SL N/A N/A (0.40,
0.65)

N/A N/A N/A N/A N/A N/A N/A N/A N/A

S6 2 NB SL 0.79 0.91 0.84 N/A N/A N/A N/A N/A N/A N/A N/A N/A

S7 6 Bayesian
learners

SL N/A N/A N/A N/A N/A N/A (0.55,
0.89)

N/A N/A N/A N/A N/A

S8 7 SVM SL 0.84 0.84 0.84 N/A N/A N/A N/A N/A N/A N/A N/A N/A

S9 14 SVM SL 0.54 0.73 0.62 N/A N/A N/A N/A N/A N/A N/A N/A N/A

S10 unknown SVM SL (0.80,
0.83)

(0.64,
0.66)

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

S11 6 Combined
(KNN,
NB,SVM)

SL 0.8 0.76 0.78 N/A N/A N/A N/A N/A N/A N/A N/A N/A

S12 unknown SVM SL N/A N/A (0.35,
0.55)

N/A N/A N/A N/A N/A N/A N/A N/A N/A

S13 11 not clear SL (0.23,
0.70)

(075,
0.95)

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

S14 NOT Provided

S15 12 HAC+TSS +
NGD_Wiki

USL (0.50,
0.52)

(0.74,
0.88)

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

S16 4 DT SL N/A N/A N/A (0.69,
0.83)

N/A N/A (0.69,
0.83)

(0.65,
0.80)

N/A N/A N/A N/A

S17 NOT Provided

S18 8 Rule-based SL 0.98 0.96 0.97 N/A N/A N/A N/A N/A N/A N/A N/A N/A

S19 6 Bagging SL 0.71 0.72 0.72 N/A N/A N/A N/A N/A N/A N/A N/A N/A

S20 2 Self-
Training(SVM)

SSL N/A N/A N/A N/A 0.75 0.76 N/A N/A N/A N/A N/A N/A

S21 7 SVM-B + ac-
tive Learning

SSL (0.58,
0.94)

(0.20,
0.83)

(0.11,
0.82)

(0.67,
0.71)

N/A N/A N/A N/A N/A N/A N/A N/A

3.4.
R

E
SU

LT
S

97

ID #Class ML Type P R F Acc. TA IA AUC Sen. Kappa Loss SA HS
S22 2 SVM SL 0.87 0.87 0.87 N/A N/A N/A N/A N/A N/A N/A N/A N/A

S23 2 NB SL 0.95 0.94 0.94 N/A N/A N/A N/A N/A 0.89 N/A N/A N/A

S24 6 LDA USL 0.68 0.76 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

S25 12 NN SL 0.80 0.78 0.77 N/A N/A N/A N/A N/A N/A N/A N/A N/A

S26 2 CNN SL 0.93 0.92 0.92 N/A N/A N/A N/A N/A N/A N/A N/A N/A

S27 2 One-class
SVM

USL (0.61,
0.73)

(0.64,
0.79)

(0.61,
0.74)

N/A N/A N/A N/A N/A N/A N/A N/A N/A

S28 10 MNB SL 0.84 0.68 0.72 N/A N/A N/A N/A N/A N/A N/A N/A N/A

S29 3 SGD SL (0.57,
0.89)

(0.62,
0.72)

(0.62,
0.76)

N/A N/A N/A N/A N/A N/A N/A N/A N/A

S30 12 SVM SL N/A N/A N/A 0.91 N/A N/A N/A N/A N/A N/A N/A N/A

S31 2 SVM, LR or
NB

SL (0.44,
0.93)

(0.44,
0.70)

(0.52,
0.76)

N/A N/A N/A N/A N/A N/A N/A N/A N/A

S32 2 LDA USL N/A N/A N/A 0.90 N/A N/A N/A N/A N/A N/A N/A N/A

S33 6 NB SL N/A N/A (0.60,
0.63)

N/A N/A N/A N/A N/A N/A N/A N/A N/A

S34 4 SVM-CV SL (0.59,
0.88)

(0.17,
0.93)

(0.59,
0.81)

N/A N/A N/A (0.57,
0.86)

N/A N/A N/A N/A N/A

S35 3 SVM SL (0.78,
0.98)

(0.62,
0.85)

(0.73,
0.91)

N/A N/A N/A N/A N/A N/A N/A N/A N/A

S36 7 KNN SL (0.45,
0.68)

(0.28,
0.56)

N/A (0.21,
0.43)

N/A N/A N/A N/A N/A N/A N/A N/A

S37 12 Word2vec USL 0.75 0.56 0.64 N/A N/A N/A N/A N/A N/A N/A N/A N/A

S38 5 CNN SL (0.82,
0.94)

(0.76,
0.97)

(0.82,
0.92)

N/A N/A N/A N/A N/A N/A N/A N/A N/A

S39 not
clear

SGDSVM SL 0.66 0.61 0.61 0.76 N/A N/A N/A N/A N/A N/A N/A N/A

S40 10 RNN (LSTM) SL 0.97 0.97 0.96 N/A N/A N/A N/A N/A N/A N/A N/A N/A

S41 2 NB SL 0.65 0.71 N/A 0.97 N/A N/A N/A N/A N/A N/A N/A N/A

S42 7 CNN SL 0.74 0.41 0.53 N/A N/A N/A N/A N/A N/A N/A N/Av
N/A

S43 2 LDA USL N/A N/A N/A 0.09* N/A N/A N/A N/A N/A N/A N/A N/A

S44 4 BR-SVM SL 0.64 0.54 0.56 N/A N/A N/A N/A N/A N/A 0.18 0.40 0.49

98
C

H
A

PT
E

R
3.

SY
ST

E
M

A
T

IC
R

E
V

IE
W

ID #Class ML Type P R F Acc. TA IA AUC Sen. Kappa Loss SA HS
S45 2 LR SL (0.88,

0.95)
(0.57,
0.67)

(0.81,
0.88)

N/A N/A N/A N/A N/A N/A N/A N/A N/A

S46 2 CNN SL N/A N/A N/A (0.65,
0.71)

N/A N/A (0.50,
0.75)

N/A N/A (0.8,
5.2)

N/A N/A

S47 10 BERT SL N/A N/A 0.82 N/A N/A N/A N/A N/A N/A N/A N/A N/A

S48 2 J48 SL 0.80 0.76 0.78 N/A N/A N/A N/A N/A N/A N/A N/A N/A

S49 2 RNN SL N/A N/A N/A 0.84 N/A N/A (0.33,
0.87)

N/A N/A N/A N/A N/A

S50 12 LR SL 0.78 0.79 0.78 N/A N/A N/A N/A N/A N/A N/A N/A N/A

S51 7 CNN + LR SL 0.95 0.95 0.94 N/A N/A N/A N/A N/A N/A N/A N/A N/A

*The accuracy of S34 is computed manually using the number of correctly classified requirements / a total number of requirements, provided by the authors.
F in S44 and S45 is F2

Table 3.18: Performance measures and results in 51 selected studies

3.4. RESULTS 99

Figure 3.12 shows an overview performance of the studies, that reported the over-
all performance (nor range) of an ML classifier. These studies are grouped based on
learning types (supervised or unsupervised) and learning tasks (binary or multi-class
learning). The figure indicates that supervised classifiers generally show higher per-
formance than unsupervised. This is similar to the finding of S23, which compares
supervised learning performance with multiple unsupervised learning. Besides, the
figure shows that binary supervised classification is better than multi-classes classifi-
cation, more likely due to the simplicity of binary tasks.

(a) Supervised-Binary (b) UnSupervised-Binary

(c) Supervised-Multi-class (d) UnSupervised-Multi-class

Figure 3.12: The performances of existing NFR classifiers according to learning type
and task. The number between braces "()" represents the number of studies involved.

100 CHAPTER 3. SYSTEMATIC REVIEW

3.5 Key Findings, Limitations, and Open Challenges

In this section, we derive the key research findings from our review results and discuss
the limitations of the surveyed approaches and open challenges.

3.5.1 Key Findings

The key findings that we have identified from our review are:

• Classifying NFRs using ML has got much attention in the last 3 years, where
about 22 out of the 51 studies were published between 2018-2020.

• ML-based methods have generally performed well, achieving an accuracy of
more than 70% in detecting and classifying NFRs.

• Supervised learning applied most frequently in NFR classification, and SVM
being the most frequently used algorithm.

• NN models are used less frequently due to the lack of availability of large la-
belled datasets. However, the use of pre-trained models (e.g., word embedding)
or transfer learning (e.g., BERT) helped overcome the small size of datasets.

• Supervised learning methods performed better than unsupervised learning meth-
ods. Additionally, binary supervised classifiers showed higher performance than
multi-class classifiers.

• A pre-defined data (e.g., keywords) is required for building an effective NFR
classifier using unsupervised learning.

• Validating the manual annotation of datasets is frequently applied by the studies,
and a discussion of the disagreements is the common method to address the
conflict between annotators.

• Binary learning-based classification is commonly applied, while multi-label clas-
sification is less frequently used in building NFRs classifiers.

• NFRs classification into further classes (e.g., security and usability) is the most
frequently addressed task, followed by NFRs identification (i.e., distinguish NFRs
from other requirements).

3.5. KEY FINDINGS, LIMITATIONS, AND OPEN CHALLENGES 101

• Security requirements are mostly discussed and analyzed requirement type among
46 classes identified in the studies.

• Preprocessing and features representation steps are applied more often than fea-
ture selection or feature extraction steps.

• Stop-word removal is the widely used pre-processing technique, and TF-IDF is
the widely used feature representation technique.

• Most of the feature selection techniques are Frequently-based techniques.

• Statistically significant validation methods are used less often in NFRS classifi-
cation.

• Weka used most frequently in building NFRs classifiers.

• The cross-validation technique is widely used to assess NFRs classifiers.

• Precision, recall, and F-score are the most common measures used in evaluating
NFRs classifier, with a slight focus on the importance of recall over precision.

These findings show that, despite being still in the early stage of research, ML-
based approaches have already produced promising results and key investigations in
identifying and classifying NFRs. This is a positive prospect.

3.5.2 Limitations

During our review, we have observed a number of limitations specific to reporting and
evaluating ML approaches. These limitations are described as follows.

Lack of Reporting Standards

Both supervised and unsupervised algorithms require pre-defined data: supervised
learning requires labeled data, while unsupervised learning needs pre-defined cate-
gories and associated terms to achieve high performance. Before applying ML (su-
pervised or unsupervised) algorithms, ML approaches must take some steps to process
input requirements and identify relevant features for the ML algorithms. After that,
these methods are evaluated and results are reported. However, this process has not
been clearly described in the reviewed approaches. Many of the studies treat ML
methods as "black boxes" and provide no details on how these methods work or are

102 CHAPTER 3. SYSTEMATIC REVIEW

evaluated. This makes our review quite difficult. Additionally, the replicability of the
methods will not be possible.

To ensure review consistency, we used a general process (Figure 3.6) as a common
structure to assess individual studies. The main topics of each step shown in the figure
are extracted by carefully examining the studies. Since we use the CCM method, we
defined these topics iteratively by analyzing the studies’ similarities and differences.
The contents (topics or techniques) that frequently appeared are reviewed and reported.

Lack of Evaluation Standards

Although the majority of the studies provided evaluation results (47 out of 51), 76% of
them (36 out 47) did not explain how and why they used a certain evaluation method.
For example, regarding precision and recall, these studies did not mention which was
more important: high precision and low recall, or high recall and low precision. Fur-
thermore, they did not say why they provided F-Score and not accuracy, or vice versa.
In addition, some studies reported that they used a weighted average (e.g., S8, S47),
micro (e.g., S50), or macro averages (e.g., S1) without specifying the reasons behind
such choice.

Based on the above, it can be concluded that the majority of the studies did not
know why they used a specific method that was different from the others or how to
explain their results. This raises threats to the validity of the reported results and,
consequently, findings. An example of such a threat is bias. For example, it is well
known that accuracy measure is biased to the majority class on the imbalanced dataset
[Wei04, SWK09], and holdout method is a more biased and least stable validation
technique compared with cross-validation [TMHM16].

3.5.3 Open Challenges

Through our reflection on the review, we have identified three open challenges faced
by researchers, elaborated as follows.

Lack of Shared Training Datasets

One open challenge of the current research is the lack of training data. Developing an
accurate ML required a sufficient amount of high-quality training dataset. The dataset
should be correctly pre-classified for supervised learning. Developing such a dataset is

3.5. KEY FINDINGS, LIMITATIONS, AND OPEN CHALLENGES 103

time-consuming and requires much effort. It requires collecting real-life NFRs, man-
ually classifying these requirements, and validating this classification. Unfortunately,
few shared datasets are available (shown in Table 3.7), where much of them are of
relatively small size, developed by academic communities, and suffering from validity
issues. For example, PROMISE was critically reviewed by Li et al. [LHM+14] who
found some issues of requirements in the PROMISE dataset such as vagueness and
unmeasurable NFRs. Building a shared requirement corpus with a sufficient amount
of high-quality requirements can encourage the researchers to conduct more experi-
ments, improve the quality of investigations, and provide good benchmarks for future
performance.

Lack of Standard Definition, Classification, and Representation of NFRs

As stated in Chapter 2, although NFRs are critical for the success of a system and
system development, there is still no consensus in the RE community on what non-
functional requirements are and how they should be classified and represented [Gli07].
Consequently, there is a diverse range of terms to define NFRs (e.g., property, char-
acteristic, attribute, quality, constraint, and performance), leading to not only termi-
nological but also major conceptual discrepancies [Gli07]. Therefore, the diversity of
NFR definitions inevitably leads to a divergent classification of NFRs. As our review
results show (Figure 3.8), each of the 51 studies uses a different set of NFR categories
(46 types), and there is little agreement between them.

These definition and classification problems make ML algorithms extremely chal-
lenging, due to the difficulty of distinguishing requirement categories with a lack of
agreement on category names or requirement classes. Thus, ML classifier cannot be
easily generalized to data or classes that were not used for training, which makes the
automated classification of requirements more complex and error-prone. Furthermore,
these problems also make it difficult to compare the performance of similar methods
and to set performance benchmarks.

The Overlapping Nature of NFRs

All ML methods applied by the 51 studies, except NN methods, includes selecting/ex-
tracting useful features from requirements. The selection of such features helps in
avoiding optional noise and reducing overfitting. However, it is challenging, as words
that are often associated with a particular NFR tend to be scattered over the other NFRs
(e.g., security and performance [CHSZS07], performance, and scalability [SRS14]).

104 CHAPTER 3. SYSTEMATIC REVIEW

Consequently, the feature selection or extraction techniques do not always provide
meaningful features.

Although the proposed classifiers showed high performance, many of the features
used by these classifiers were either insufficient or not appropriate. These features were
either meaningless or shared between different NFR categories. For example, in S1,
’take’ and ’user’ under the performance category were meaningless features and the
word ’product’ was identified in operational, scalability, and security categories. Also,
S10 included many trivial features, such as ’10’, ’0’ and ’increase’ in performance,
’word’, ’let’ and ’voice’ in usability. On the other hand, in unsupervised approaches,
the features were either too abstract or meaningless. Examples of abstract features
are adapted by S15, such as ’security and ’secure’ for security. Furthermore, in S7,
’human’ can be considered meaningless features for the usability category.

These meaningless features can significantly increase the number of false positives
and affect the performance of the classifiers. In addition, this indicates that the pro-
posed classifiers were limited in recognizing and retrieving NFRs from the domain for
which they had been trained (i.e., overfitting). Therefore, we believe that overlapping
nature poses a great challenge in identifying useful features and developing an accurate
ML classifier. Further investigations are needed to address this issue.

3.6 Threats to the Review Validity

In this section, the threats to the results of this review are discussed. To organize this
section the threats are classified according to the review process as described below:

3.6.1 Study Identification

In this review, we used the snowballing approach rather than the traditional approach
to identify the primary studies (database search). The main reason behind avoiding the
traditional approach is due to a large number of false-positive results returned, which
required a lot of time to select and screen. The snowballing approach allows us to
carefully select a seed set and then use snowballing to identify further relevant studies
around this set. This may produce a more targeted set of papers. Nevertheless, there
is still the possibility of misidentifying important studies. To overcome this threat, we
formulated different search strings to identify the initial set in such a way as to return
highly cited papers. We used different online databases for ensuring diversity in studies

3.7. CONCLUSION 105

identified and avoiding publisher bias.

3.6.2 Inclusion and Exclusion

Some of the primary studies did not clearly describe their objectives, contribution, and
research design. This made the inclusion/exclusion process difficult and increased the
possibility of excluding relevant studies. In addition, some studies used difficult and
complicated ways to describe their objectives, adopted approaches, and results. This
could have led to misunderstandings and an inaccurate selection of studies. In order
to mitigate these threats, the decision regarding which studies to include in this review
was discussed with my supervisor.

3.6.3 Data Extraction

In some of the primary studies, important information was not clear for answering the
research questions. Therefore, other resources were analyzed to ensure that the correct
data were extracted. These resources included related research that was mentioned in
these studies or written by the same authors about similar topics or publicly available
material of the studies (e.g., code or dataset).

3.7 Conclusion

This chapter provides a systematic review of 51 carefully selected ML methods used
for identifying and classifying NFRs from requirements documents. This review sys-
tematically answers a number of research questions related to which ML algorithms
have been used in these methods and how these methods worked and were evaluated.
The overall conclusion that stems from our review results is that using ML algorithms
to identify NFRs is not an easy task, as it requires appropriate methods to process and
classify the text. This review also found that ML algorithms, especially supervised
learning, hold great promise in NFR classification, as they can achieve a high level of
performance.

This review’s key findings will be continuously applied to our research. By an-
alyzing the 51 studies, we noticed that much of the studies’ contribution was about
applying new techniques or using new datasets, with a lack of focus on potential prob-
lems posed by NFRs to build or evaluate an ML classifier. Thus, in the following

106 CHAPTER 3. SYSTEMATIC REVIEW

chapter, we review the key issues commonly appearing in NFRs that related studies
have rarely addressed by comprehensively analyzing related work.

Chapter 4

A comprehensive Analysis and Review
of the Problems and Solutions in NFR
Classification

"If I had an hour to solve a problem,

I’d spend 55 minutes thinking about

the problem and 5 minutes thinking

about solutions."

Albert Einstein

The previous chapter systematically reviewed existing ML methods proposed for
identifying and classifying NFRs. Although there is a great focus on applying recent
techniques and datasets, there is a lack of understanding about analyzing the problems
raised by the NFR’s descriptions to standard ML classifiers. As stated in chapter 1, the
classification of NFR using supervised learning tends to suffer from three problems:
high dimensionality, class imbalance, and short text classification.

This chapter illustrates these problems; by separately explaining what each prob-
lem is and how it hinders supervised ML classifiers’ effectiveness. Furthermore, it
reviews the common solutions applied to these problems in general, and in NFRs clas-
sification, in particular. The supervised NFRs classifiers identified in the previous
chapter (listed in Table A.1) are included in this review. We only include the super-
vised methods since they are more promising in NFRs classification, and, therefore,
they are applied in this thesis.

The chapter is organized as follows: Section 4.1 provides an overview of a high

107

108 CHAPTER 4. PROBLEMS AND SOLUTIONS

dimensionality problem, including 1) a description of the problem, 2) an overview of
common solutions, and 3) a review of existing solutions used for NFRs classification.
Similarly, Section 4.2 presents an imbalanced class problem, and Section 4.3 is for
a short text classification problem. Section 4.4 discusses the limitations of existing
solutions in the context of requirements classification and introduces the techniques
used to address each problem in this thesis. Section 4.5 provides a summary of the
chapter.

4.1 High Dimensionality

4.1.1 Learning with High Dimensional Dataset

High-dimensionality is a well-known problem that appears in different tasks, including
text classification, face recognition, speech recognition, and many other tasks that deal
with data described by too many attributes (input variables) and, consequently, repre-
sented in a high-dimensional vector space. Requirements are often represented as texts
having many unique words that can easily number in the hundreds or even thousands.
For example, Figure 4.1 shows that even a small example of a requirements document
contains 74 unique words. Each unique word or phrase in the document is a potential
feature treated as a single dimension in the data space. Therefore, each textual doc-
ument (a requirement in our case) is represented by an extensive number of features,
which are used to build classification models.

Several problems may arise in supervised classification due to high dimensional-
ity. For example, the extensive number of words can lead to high complexity in the
time and memory of the classification process [KJMH+19]. Moreover, a small num-
ber of samples in high-dimensional data will be prone to overfitting (i.e., the model
is overfit to the training data), leading to poor generalization and increased difficulty
comprehending the model [PP14]. High-dimension low-sample dataset has been char-
acterized by a large number of features p and a small number of samples n, (i.e., p»n)
[PP14]. High-dimension low-sample dataset is prevalent in NFRs since requirements
are written in NL documents, and most of the requirements datasets are small (see
Table 3.7). For example, PROMISE, most frequent used dataset in NFRs classifica-
tion, is a high-dimension low-sample dataset, containing of n = 626 requirements and
p = 2204 unique words, where p >> n.

Another problem that may arise due to high dimensionality is that high-dimensional

4.1. HIGH DIMENSIONALITY 109

Figure 4.1: An example of requirements document

datasets often contain a high degree of irrelevant and redundant information [YL03].
For example, by analyzing the second requirement provided in Figure 4.1, "The sys-
tem provides an easy-to-use interface for designing queries against all record types",
we found that only a few words are necessary to represent the category type (e.g., pro-
vides easy-to-use interface). Keeping all the features increases the difficulty of identi-
fying the relationships between variables and eventually deteriorating the accuracy of
many classification algorithms [YL03].

The impact of learning from a high-dimensional space differs from one ML al-
gorithm to another. For example, SVMs are less affected by this problem as they
can discard some data points and reduce dimensionality [Joa98]. However, NBs are
heavily affected, as they deal with all features equally; that is, they give the same
importance to all features when making classifications, which is hard to hold in high
dimensional data. Moreover, high dimensional space contains noise features, which do
not contribute to class prediction, and redundant features, which are not conditionally
independent, increasing the difficulty of using NB in learning from high dimensional
data [CW12]. This noise also affects DTs’ classification performance, as noise leads
to generate noisy trees that make wrong predictions for new instances [LWDD10]. In
addition, noise can decrease the generalization performance of DTs [LT16]. Similarly,
high dimensional space poses difficulties for KNNs distinguishing relevant and irrele-
vant data points, which affects the accuracy of KNN [TM11].

110 CHAPTER 4. PROBLEMS AND SOLUTIONS

4.1.2 Overview of Solutions for High Dimensionality

Dimensionality reduction methods are commonly used to address the high-dimensionality
problem. These methods can include feature selection or feature extraction [IKT05].
Both methods are briefly described in the previous chapter (2 & 3); a detailed descrip-
tion is provided in the following subsections.

Feature Selection Methods

Feature selection methods select a (best) subset of the original features; the subset has
fewer dimensions and contributes most to learning accuracy. In mathematical terms,
feature selection can be defined as |t| � |T |, where t represents terms in the original
dataset (i.e., T) [Seb02]. The main advantages of feature selection are its simplicity
and accuracy in text classification [JGDE08]; however, important information might
be lost, where some features have to be omitted [KKN14].

Feature selection methods have been broadly classified into three groups, depend-
ing on how the feature selection search is combined with the classification model:
filter, wrapper, and embedded approaches.

The filter approach selects features independently of the ML algorithm by looking
only at the data’s intrinsic properties, such as information, distance, consistency, and
correlation [Seb02]. Examples of filter methods are TF, TF-IDF, information gain, and
CHI-Square. The main advantage of the filter approach is that it is computationally
fast and simple. Moreover, due to the separation between feature selection methods
and classifiers, this approach is performed once and can be applied in many different
classifiers. However, this separation ignores the interaction with classifiers (i.e., the
effect of a selected feature on ML algorithms’ performance), leading to worse classifi-
cation performance [SIL07].

The wrapper approach uses a learning algorithm to select a good subset of fea-
tures, and the goodness is determined according to a classifier’s effectiveness. In other
words, this approach searches for various subsets of the whole feature set and evaluates
each subset by training and testing a specific classifier. The main advantages of wrap-
pers are that they consider the interaction between feature subset and model induction
algorithm, leading to better classification accuracy than filter methods. However, the
wrapper approach is more prone to overfitting than the filter approach and is more
time-consuming and computationally intensive, especially with a high number of fea-
tures [SIL07]. Thus, wrappers are not considered to be suitable for text classification

4.1. HIGH DIMENSIONALITY 111

[CHTQ09].
The embedded approach is similar to wrapper methods; however, feature section

is built into the classifier construction (i.e., guided by the learning model). Embed-
ded methods have the advantage of both the wrapper approach—in that they interact
with the classification model—and filter models—in that they are less computationally
intensive than wrapper methods [SIL07].

Feature Extraction Methods

Feature extraction methods constructs (synthesizes) new features based on the original
ones. In practice, feature extraction methods transform original input spaces into low-
dimensional spaces that preserve most of the relevant information in the original set
[KKN14, Seb02]. In mathematical terms, feature extraction was defined by Sebastiani
[Seb02] as |T ′| � |T | ; T represents terms in the original dataset, while T’ "synthetic"
terms that maximize effectiveness. T’ and T are not the same types (e.g., if T are words,
T’ may not be words at all); however, they are a combination or transformation of the
original ones. The main advantage of feature extraction is reducing the dimensions
(features) without losing information from the original feature space. However, the
synthesized features are often not intuitively interpretable, and the original features are
often lost [KKN14].

The terms "feature extraction" and "dimensionality reduction" have been used in-
terchangeably in the literature. For example, Kowsari et al. [KJMH+19] used "fea-
ture extraction" to define vector representation (i.e., converting unstructured data space
into structured data space using mathematical modeling). In contrast, they used "di-
mensionality reduction" to describe feature extraction (i.e., synthesizing new features
from original ones). Sebastiano [Seb02] divided the process of extract features for
text classification tasks into two steps: 1) extracting new features from old ones and
2) converting the extracted features into new representations. Sebastiano provided two
examples of feature extraction methods: terms clustering and latent semantic indexing.
Terms clustering methods group semantically related terms together, where the groups
(or their centroids, or their representatives) are used as dimensions of the vector space
instead of original terms. Latent semantic indexing produces new concepts (dimen-
sions) that are latent in a text. These new features are obtained by analyzing word co-
occurrence patterns in a corpus to capture the hidden related meaning. Latent semantic
indexing is developed to address the problems deriving from using synonymous and
polysemous words as dimensions of document representations. More common feature

112 CHAPTER 4. PROBLEMS AND SOLUTIONS

extraction methods are provided in a recent review by Kowsari et al., [KJMH+19],
such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA),
and non-negative matrix factorization (NMF).

Word embedding techniques can also be considered a feature extraction technique
as they can dramatically reduce dimension size. An example of these techniques is the
word2vec technique proposed by Mikolov et al. [MCCD13]. This technique takes a
corpus with an N-dimensional space, applying a NN model to learn word representa-
tion and creating a semantic space with a lower K-dimensional space (N > K). For
example, word vectors trained on a part of Google News dataset (about 100 billion
words) contains only 300-dimensional vectors 1. Word2vec is also categorized as a
text representation method and unsupervised learning method to measure text simi-
larity, as shown in Chapter 3. We will back to define and uses Word2vec in Chapter
6.

4.1.3 Techniques for Handling High Dimensionality in NFR Clas-
sification

This section reviews feature reduction techniques applied to address the high dimen-
sionality problem in supervised NFRs classification. Out of 45 studies that applied
supervised learning, 27 studies applied feature reduction techniques. These techniques
can be divided into three categories, statistical-based (also known as ranked-based or
ML-based) techniques, linguistic-based (also known as rule-based or NLP-based) tech-
niques, and a combination of linguistic and statistical-based techniques. Figure 4.2
shows the distribution of studies per each category. The description of each category
is provided in the following subsections.

Statistical-Based Techniques

Statistics-based methods analyze feature frequency using functions (or metrics) that
score the importance of terms in the classification task and then select those with the
highest score. An intuitive example of this method is term frequency, where the most
common words or phrases are selected. Term frequency has been used by S3, S7, S27,
S35, and S50. Another example of a statistical-based technique is TF-IDF used by
S9, S20, S33, S41, S50. CHI-Square and information gain are also statistical-based
techniques used by S19, S50 for CHI, and S5 and S11 and S16 for information gain.

1https://code.google.com/archive/p/word2vec/, last accessed March 2021.

https://code.google.com/archive/p/word2vec/

4.1. HIGH DIMENSIONALITY 113

Figure 4.2: The distribution of studies per feature selection technique

All the studies above selected features from a training dataset. However, some stud-
ies selected features from another resource. For example, S29 conducted a mapping
study to systematically extracted the most frequent keywords from Softgoal Interde-
pendency Graph (SIG) catalogues for each NFRs category. In total, they found 87
words for three requirement classes (usability, security, and performance); each cate-
gory has 29 words.

Besides using existing methods (such as term frequency), some RE researchers
have developed their statistics-based methods to select features used in requirements
classification. For example, Cleland-Huang et al.[CHSZS07] (S1) proposed a prob-
ability function that selects a set of features for each NFR class (known as indicator
terms) based on their occurrence. S45 has reused this technique for detecting security
requirements.

Seven studies (S25, S62, S31, S40, S46, S49, and S51) used word2ve. Apart
from S31, all the studies used word2vec for NN-based classifiers. Word2vec, or NN-
based classifier in general, required the availability of a large, domain-related dataset
[LLHZ16, KJMH+19]. Thus, the studies used pre-trained models, by Google news
(e.g., S31 and S51) or Wikipedia articles (e.g., S7 and S46), to generate semantic space
for representing requirements. Among all those studies, only S25 and S40 clearly men-
tioned that they used wor2vec techniques to capture enough features for the automatic
NFR classification method.

114 CHAPTER 4. PROBLEMS AND SOLUTIONS

Statistics-based techniques can be effective and flexible in different domains, lan-
guages, and writing styles. However, the main drawback of these methods is the need
for a large document to perform some statistical functions effectively.

Linguistic-Based Techniques

Linguistic-based methods select features based on syntax or semantic relationships in
requirements using NLP techniques. Syntactic relationships are extracted based on the
structure of a dataset (i.e., grammatical relationships). Examples of these techniques
are dependency parsing, POS tagging, and entity name extraction. Comparatively, se-
mantic relationships are usually extracted using an external source, such as WordNet
in S48, to identify semantically related words. A simple example of a linguistic-based
technique is selecting features with particular POS tags (i.e., noun, adjective, and deter-
miner). This technique was applied by S37; however, this study applied unsupervised
learning.

Only one linguistic-based technique has been used with a supervised NFRs clas-
sifier. This technique was proposed by S48 to select features in security requirement
classification. The technique is started by extracting security keywords from security
taxonomies and security standards. Then, they replaced the matched words in the train-
ing dataset with the extracted keywords using WordNet. Besides, they used a syntactic
structure of requirement through linguistic rules to define a set of syntactic patterns.
In total, they defined 35 linguistic rules and the 140 keywords as linguistic features
of security requirements. By evaluating their method, they found a higher F1-score
is achieved when a training dataset and a testing dataset come from different applica-
tion domains. This finding confirms the benefit of reducing the number of features in
generalizing the classifier’s performance.

Linguistic-based methods can extract good features from small corpora by exploit-
ing morphological structures in a text. However, these methods are challenging as they
often require manual or automatic analysis to generate patterns or set linguistics rules.
In addition, most of these methods require proper use of grammar and language syntax
to match such patterns.

Both Statistical and Linguistic -Based Techniques

The last category of feature reduction techniques applied in NFRs classification is a
combination of statistical and linguistic techniques. Several methods used these tech-
niques with supervised learning. For example, Hussain et al. [HKO08] (S2) extracted

4.2. IMBALANCED DATA 115

a POS tag for each term and computed the probability of POS tags occurrence in a
training dataset. S23 used Hussain et al.’s method with an additional pre-processing
step that included removing the inconsistency in a requirement description by replac-
ing words that have the same meaning with a single term. S22 used NLP techniques
(e.g., POS and n-gram) to identify features that were then ranked based on importance
scores. The importance scores of features were calculated using an ensemble of tree
classifiers, and the top features are selected. S34 also used probability based on lin-
guistic features (e.g., dependency types) to extract three lists of features. Then, they
applied interpretable ML techniques that provide linguistic rules to analyze predictions
made by each set of features. Finally, 15 significant types of features were selected to
classify requirements into Functional and Quality requirements.

This combined technique minimizes the disadvantages of each technique. For ex-
ample, in a small dataset, the frequency of a specific POS tag is more likely to be higher
than the frequency of a specific word. Thus, it might work better, in a small dataset,
than statistical-based techniques. Besides, the combined techniques would reduce the
need for manual analysis or proper use of language required for linguistic-based tech-
niques.

4.2 Imbalanced Data

4.2.1 Skewed Distribution of Training Dataset

An imbalanced dataset occurs when one of a target class (known as majority class)
contains a significantly greater number of examples than another class (minority class)
[SWK09]. Learning from imbalanced datasets poses a serious problem to the ML
models for two reasons: 1) the prevalence of this problem in many domains, includ-
ing requirements classification [KM17]; and 2) the inadequacy of ML algorithms for
dealing with this problem [SWK09]. Imbalanced datasets hinder learning algorithms’
effectiveness by increasing their bias toward the large classes because these classes are
well-defined, while the minority classes are not well-defined; thus, they are ignored.
In most cases, the class with the lowest number of instances is the class of interest.
Misclassifying these classes is more serious than misclassifying the majority classes,
which have the largest number of instances. For example, in cancer diagnoses, the
number of patients with cancer is less than the number of healthy people. Misdiag-
nosing healthy people to be sick can cause a huge amount of stress and more payment

116 CHAPTER 4. PROBLEMS AND SOLUTIONS

for further diagnosis; however, it is much less than misdiagnosing sick people to be
healthy, which could lead to losing patients’ lives.

The main characteristic of an imbalanced dataset that influences classification per-
formance is the rarity (rare classes). However, rare class (skewed data distribution)
is not the only parameter that hinders ML models’ capability to predict rare classes.
Rare case (known as within-class imbalances or small disjuncts) is another important
factor in the difficulty of learning from smaller classes [Wei04, SWK09]. Rare cases
could be a subset, sub-concept, or subclass that infrequently occurs within a single
class (e.g., diagnosing rare forms of cancer). Jo and Japkowicz [JJ04] found that the
skewed distribution is not the main issue; rather, small and complex data combined
with rare cases are responsible for the degradation in performance of standard classi-
fiers. Overlapping among imbalanced classes is also an important factor hindering the
performance of ML classifier [PBM04, SWK09, GSM07]. It increases the difficulty
of separating the minority class from the majority classes, leading to an overlapping
feature space. Such space loses the intrinsic properties of minority cases, making them
redundant or irrelevant to help recognize good decision boundaries between classes
[SWK09].

Imbalance classes pose a problem not only during classifier building but also in
performance evaluation. Classification accuracy, referring to the fraction of examples
correctly classified over all the examples, is the most common metric for assessing a
classification task’s performance. This metric is not proper with a class imbalanced
problem as it is biased toward the majority classes [Wei04, SWK09]. For example, in
the case where only 1% of the training dataset represents a rare class, the classification
accuracy could achieve 99% only by correctly classifying all examples from the ma-
jority class while few examples of the minority class are misclassified. Thus, accuracy
is meaningless to some applications when rare cases are a major concern. In general,
metrics that cannot distinguish between the numbers of corrected labels from different
classes are less effective with an imbalanced dataset. Alternatively, receiver operating
characteristics (ROC), G-mean, and F-score are the prominent performance metrics for
models on imbalanced datasets because they have less bias toward the majority class
[SWK09, Les04, Cha09, WY13].

Most learning algorithms face difficulties due to imbalanced data. For example,
learning from imbalanced data increases the probability of test instances being as-
signed to the majority class in NBs [ZSM15], as it is hard to decode dependency
patterns in small classes [SWK09]. Imbalance data also increases the probability of

4.2. IMBALANCED DATA 117

the majority class being the dominant class in the leaf nodes in DTs [BPM04], and
the leaves predicating small classes are prone to be pruned [SWK09]. Therefore, to
distinguish the small classes in DT, many splits (conditions) are required [SWK09].
KNNs are also affected by learning from imbalanced datasets, as the high majority
vote (or K) will go to the sample of major classes, while the samples of the small
class occur sparsely [SWK09]. SVMs suffer from a lack of small class samples at the
margin; consequently, the decision boundary is inherently biased toward the majority
classes to minimize the high error rates of misclassification, as such classes are more
prevalent than minor classes [HG09]. However, it is believed that SVMs are less af-
fected by imbalanced classes than other classification learning algorithms, as they only
consider a few training samples to identify boundaries between classes, and class size
may have little effect on class boundary [SWK09]. However, if the imbalance ratio of
large classes to small classes is too high (e.g., 10,000:1), SVMs might be ineffective at
determining class boundaries [SWK09].

4.2.2 Solutions for Imbalanced Data

A number of solutions have been proposed to address the imbalanced classification
problem. These solutions could be categorized into two major groups: data-level (in-
ternal) and algorithm-level (external) [ASR+15, SWK09, LD13].

Data Level

A data-level method is a preprocessing step that is applied to balance class distribu-
tion by either adding new instances to the minority classes (oversampling strategy)
or removing existing instances from the majority classes (undersampling strategy)
[ASR+15]. Both sampling techniques are independent of the classifiers, easy to im-
plement and understand, and flexible enough to be applied to any algorithm. The main
weakness of undersampling strategies is low performance because of the probability
of discarding useful majority-class examples that could be important for the learn-
ing process [Wei04, Ste16]. Meanwhile, oversampling strategies increase computation
costs and memory usage because of the addition of new training cases. Furthermore,
oversampling increases the risk of overfitting due to the new cases, which are exact
copies of examples from minority classes. [Wei04]. Synthetic minority oversampling
technique (SMOTE) is an advanced oversampling strategy proposed to overcome the
overfitting of oversampling. SMOTE basically creates new minority class examples

118 CHAPTER 4. PROBLEMS AND SOLUTIONS

synthetically rather than duplicating them as random oversampling. However, there is
no guarantee that new samples belong to minority classes, especially when there is an
overlap between the minority and majority classes [DKC14].

Feature selection methods have also been considered as a solution to address the
imbalance problem at pre-processing steps [ASR+15]. These methods [Gro99, ZWS04,
CW08, WC09, YL03] aim at handling the biases in selecting features from an imbal-
ance dataset since most traditional feature selection methods are mainly influenced by
the majority class. This bias could lead to more classification errors by selecting fea-
tures rather than by not selecting features [YGX+13]. An example of feature selection
methods that especially address imbalanced class distribution is the decomposition-
based method by Yin et al. [YGX+13]. They applied traditional feature selection
methods on an imbalance dataset where the majority class is decomposed into smaller
pseudo-subclasses with relatively uniform sizes and pseudo-class labels. They also
demonstrated a new Hellinger distance-based method for selecting features in an im-
balanced dataset. Zheng et al. [ZWS04] proposed a feature selection method that
separately combines positive and negative features for each class by simply adjust-
ing existing techniques (e.g., information gain, chi-square, correlation coefficient, and
odds ratio).

Algorithm Level

Algorithm-level solutions aim to fine-tune algorithm bias to improve the learning task,
especially relative to the smaller class [ASR+15]. These solutions could be categorized
into 1) algorithm modification, 2) one-class learning classifications, 3) cost-sensitive
learning, and 4) ensemble methods [ASR+15, SWK09].

Algorithm modification method. This category modifies classification algorithms
to learn directly from imbalanced data distribution. The methods that belong to this
category are developed by first learning the impact of imbalance distribution on an al-
gorithm and an application domain (i.e., the importance of correctly classifying minor-
ity classes in a specific domain) [ASR+15]. Next, the inductive algorithm is adjusted
to extract important information, which is used to build a model based on the target
objective (i.e., predicting the minority class). An example of these methods is z-SVM,
proposed by Imam et al. [ITK06] to adjust the hyperplane position using a new pa-
rameter z, which maintains a good margin from the data of both classes (minority and
majority). Li and Zhang [LZ11] proposed KNN with exemplar generalization (i.e.,

4.2. IMBALANCED DATA 119

kENN) to selectively enlarge the minority instances and generalize them using Gaus-
sian balls. These main weakness of this method is the complexity since it requires
extensive knowledge about the training algorithms and the application domain.

One-class learning method. These methods (known as recognition-based) create
a classifier model based only on examples of the minority class (or a target class)
[ASR+15]. These methods establish boundaries surrounding the minority examples
rather than separating positive from negative examples [ASR+15]. A boundary thresh-
old plays an important role in the effectiveness of one-class learning methods [ASR+15].
In classification tasks, these methods basically measure the similarity between query
objects and the minority class and make a classification based on a predefined thresh-
old on the similarity value [SWK09]. These methods have been applied with SVM
[MY01], and neural network [MY07], but they are less effective with other approaches,
such as decision trees, NB, and KNN [SWK09, ASR+15]. This drawback makes these
methods less popular and limits their use in certain learning algorithms.

Cost-sensitive learning method. Cost-sensitive learning considers the cost of mis-
classification during the training of ML models. Each class (or instance) is given a
misclassification cost (or weight), where the misclassification cost of the minority class
is higher than that of the majority class, to change the bias of the learning algorithm to
favor the minority class [LD13]. This method can be applied at the data level by assign-
ing the cost as a sample weight [LD13]. It can also be incorporated with the process
of optimizing the algorithm by, for example, using misclassification cost to choose the
best feature to split the data in building a DT classifier [SWK09]. The main problem of
cost-sensitive learning is the difficulty of obtaining an accurate misclassification cost
[GFB+11]. Moreover, cost-sensitive learning may cause overfitting [ASR+15].

Ensemble method. These methods combine several classifiers to make a new clas-
sifier that outperforms each individual classifier [GFB+11]. Bootstrap aggregation
(bagging) and boosting are two main examples of the ensemble method (both are il-
lustrated in Section 3.4.2 and Figure 3.5) [ASR+15, SWK09]. Although bagging was
not developed to handle the skewed class distribution, it performs well with an im-
balanced dataset [GFB+11]. The same with boosting, where each sub-classifier is
built according to the previous classifier’s output, and, in each iteration, the weight
of incorrectly classified samples is increased. The incorrectly classified samples are
commonly the minority classes [Wei04]. The main weakness of boosting is the dif-
ficulty of understanding the classifier error diversity, especially with the use of more
classifiers [ASR+15]. In addition, standard ensembles, such as AdaBoost (Adaptive

120 CHAPTER 4. PROBLEMS AND SOLUTIONS

Figure 4.3: Imbalance levels of the studies identified in the previous chapter

Boosting), boosting, and bagging, are accuracy oriented, when the class distribution
is uneven, these techniques bias the learning (the weights) toward the majority class
since it contributes more to the overall accuracy [GFB+11]

4.2.3 NFR Classification with Class Imbalance Problem

The imbalance problem is prevalent in requirements classification, as requirements
categories are naturally imbalanced, with an uneven distribution of the requirements
among different categories [CHSZS07, EVF16]. Figure 4.3 shows the imbalance levels
of the studies identified in the previous chapter; only the studies that showed clearly
the distribution of a training dataset are included. Imbalance level is the relation of
the majority class size to the minority class (i.e., the size of the majority class divided
by that of the minority class) [LWZ08]. More details are illustrated in Table B.2 in
appendix B . As the figure shows, the smallest imbalance level was 1.2 (67: 54) by
S22 and S29, and the highest imbalance level was 255 (255:1) by S25.

Among these studies, only five studies (S22, S30, S40, S47, and S51) clearly ad-
dress the imbalanced class problem. All these studies applied re-sampling techniques
(i.e., data-level techniques) to handle the imbalance problem. For example, S22 used
over-and under-sampling techniques with an SVM classifier to classify requirements
into usability and performance. This study also evaluated the usefulness of using user
reviews as a resource for oversampling technique, where the additional samples are
extracted from Amazon software reviews. S47 applied under- and oversampling strate-
gies with BERT to classify requirements into FN and NFRs. S51 used undersampling
and oversampling (i.e., SMOTE) on an imbalanced dataset of 6 classes, with an im-
balance level =1119: 62. S30 also used SMOTE to handle the class imbalance with

4.3. SHORT TEXT CLASSIFICATION 121

SVM, NB, and KNN. S40 mentioned that they applied a re-sampling strategy without
specifying which strategy they used.

As mentioned in the previous section, one-class learning methods and ensemble
methods are among the common solutions to imbalance problems. Although these
methods have been used in NFRs classification, the purpose of their use was not for
handling the problem. For example, S27 used one-class SVM to classify requirements
into security and non-security requirements. However, this method aims to evaluate
the effectiveness of using a domain-independent dataset in building a security classi-
fier, not handling the class imbalance problem. S11, S19, S28, S33, and S48 used
ensemble learning for different classification tasks: identifying security requirements
(S48), classifying security requirements (S11), or classify requirements into multiple
NFRs (S19, S28 and S33). However, the use of this learning method in all the stud-
ies was to compare such method with other ML methods empirically; and select the
method with high performance.

Besides the studies that used well-known solutions for different purposes, some
studies handle this problem differently (not well-known solutions). For example, S5
selected only three classes from a detest (i.e., PROMISE) to build binary classifiers
to reduce the imbalance between classes. S45 argued the purpose of their use of the
10-fold strategy is to have a balanced training set. Although such attempts are not
well-known solutions, they show an awareness of the problem among the researchers.

4.3 Short Text Classification

4.3.1 Short Text Characteristics and Impacts on Supervised Learn-
ing

Short text classification has recently gained great interest coincided with an increase in
short texts available in many fields such as mobile short messages, news titles, product
reviews, tweets, and Q&A scripts [CJS11]. The shortness is the principal difference
between short text than normal (traditional) text. Short texts consist of very few words,
from a dozen words to a few sentences [SYD+14]. Conversely, normal (traditional)
texts have more text, including entire web pages, email contents, or news articles.
Thus, normal texts provide clear enough context for automatic analysis, whereas short
text does not. Due to a few words in short texts, there are no enough information or
sufficient word co-occurrences to allow meaningful statistics to be gathered or a strong

122 CHAPTER 4. PROBLEMS AND SOLUTIONS

linkage to certain topics to be established [LHW+17, SYD+14]. Moreover, due to the
nature of the diversification of language, the same concept can be expressed in different
ways, therefore, the possibility of certain features frequently appearing in different
short text is reduced [WHYL12]. This increases the difficulty of extracting invalid
features and fails to improve classification accuracy [WHYL12, SYD+14, ZW15].

As short texts have not enough contextual information, they suffer from sparseness
(i.e., a given short text span over a wide range of words). The sparsity in feature space
means, that the feature matrix is very sparse, each document contains a small percent-
age of a total number of terms that appeared at least once in a full set of documents
[SYD+14]. Technically speaking, sparseness means that there is a lot of zeros ele-
ments in a vector space [SFHA14]. The sparseness of features increases the difficulty
in managing and analyzing the features based on simple text representation (such as
BOW) which regards each word as a separated individual. This affects the performance
of standard ML classifiers since most of them perform classification by establishing a
correlation between features and categories [SFHA14, AG19].

Sparse data has various impacts on ML algorithms, with some performing bet-
ter than others, such as SVM and NB. SVMs can reduce the dimensions of train-
ing datasets by discarding instances that are not close to the boundary; this reduction
might reduce data sparseness [Joa98]. NBs assume the independency of features; thus,
they simply ignore the zero elements when making probability estimate calculations
[RRSK10]. However, DTs have difficulty learning from sparse data, as such data al-
ways leads to imbalanced and extremely deep trees [SZK+17]. KNNs also find it
difficult to measure the similarity between two data points in a sparse dataset, which
leads to unreliable neighborhoods due to the lack of overlapping values [GMFG05].

4.3.2 Solutions for Short-Text Classification

As the main problem of short texts is feature sparsity, most existing solutions address
this problem through feature extension [SHA12]. As the name suggests, feature exten-
sion solves the feature sparsity problem by augmenting the feature space model with
additional features extracted from internal or external language resources. This may
involve adding more features to the feature space or replacing features in the feature
space with a richer set of new features [SHA12]. The techniques for identifying ad-
ditional features vary; in the following, we review some techniques grouped by the
resources of additional features (i.e., external and internal sources).

Internal resources include a training dataset (e.g., the dataset used to build the

4.3. SHORT TEXT CLASSIFICATION 123

model), where additional features are extracted from a training dataset based on a
semantically or statistical analysis of this dataset. Different methods have been used to
extract related features from an internal dataset. For example, Man (2014) [Man14],
Fan et al. (2010) [FH10], and Zhang et al. (2015) [ZW15] expanded short text with
the most related terms. The related terms were extracted based on an analysis of word
occurrence in a training dataset. Krzywicki et al. (2018) [KHB+18] expanded rare
words in a short text with semantically similar words in a training dataset using word
embedding (i.e., word2vec). [ZLS+18]

In contrast, external resources are outside knowledge resources (not training dataset).
The methods that belong to these resources can be divided into four categories. The
first category is web search-based methods (e.g., web search results are added to short
texts). An example of this category is the web search results used by Sahami and
Heilman in 2006 [SH06] to provide greater context for short text. They treated each
short text as a query in a web search engine and then used the returned documents
to expand the short text. The second category is a short text’s context. For exam-
ple, Jiang et al. (2010) [JYZ+11] used related tweets in tweet classification. The
related tweets could be replied tweets, retweeted tweets, or tweets by the same person
published in a short timeframe. The third example of external resources methods are
taxonomy-based methods. For example, Hu et al. in 2009 [HSZC09] used Wikipedia
and WordNet for expanding short texts. They extracted seed features from short texts
to generate new features based on the semantic similarity of the data in the external
resources (Wikipedia and WordNet). The new features were then integrated with the
original feature to build the feature space. The forth category are corpus-based meth-
ods (analyzing external datasets to discover relevant features). For example, Phan et
al. [PNH08] built large-scale external data (called “universal dataset”) in their method,
and used topic-model (LDA) to inferred hidden topics from the external dataset. The
extracted topics were integrated with the original documents. Chen et al. [CJS11] used
the same external dataset to generate multi-granularity topics that are combined with
word features to address the sparseness in short-text classification.

Among these methods, internal resources methods are easy to implement, less
time-consuming and less prone to noise [LHW+17, WWZY17]. However, they may
not have enough features, especially when training datasets are small [LHW+17]. Con-
versely, external language resources offer large text corpora and can handle feature
sparseness better than internal resources [SH06, HSZC09, CJS11, PNH08]. Never-
theless, external resources are generic, and thus contain more noises and irrelevant

124 CHAPTER 4. PROBLEMS AND SOLUTIONS

features than internal resources. Per the experiments of Dave et al. [DLP03] and Bol-
legala et al. [BAMK18], using an external resource (i.e., WordNet) produces more
noise, which leads to an unmanageable number of features and low classification ac-
curacy. Thus, most of the methods that use external resources either go through a long
vetting process to select the related features [SH06, HSZC09] or require large, rich, and
relevant datasets that are consistent with the training dataset (e.g., [CJS11, PNH08]).

To handle such threats, a combination of different resources or methods has been
used. For example, Wang et al. [WWZY17], applied a hybrid of feature extension
methods; taxonomy-based and corpus-based methods. Their method first carries out
feature selection and feature extension and then combines the selected and expanded
features with pre-trained word vectors, to capture additional features through multiple
degrees of similarity between pairs of words [MYZ13]. Zeng et al. (2018) [ZLS+18]
extracted latent topics from an internal resource. The extracted topics were then in-
tegrated with short-text embedding to generate the feature space. Although such an
approach has been achieved significant improvement over state-of-the-art methods for
short text classification, using word embedding models for short-text classification re-
quires the availability of a large, domain-related dataset [LLHZ16], as they perform
poorly with new or rare data [WWZY17].

4.3.3 Short Text in NFRs Classification

Most requirements statements are written in a short and concise form to support their
understandability [Mey85]. According to Hooks [Hoo94], over-specification and un-
necessary descriptions of requirements could result in cost overruns on a software
project. The average length of requirements used in NFRs classification, as reported
by S22 and S31, was about 20 words for FRs, and between 14 and 28 for NFRs. Nev-
ertheless, little attention has been paid to handling this problem in classifying NFRs
using supervised learning.

To the best of our knowledge, only one study (S19 by Lu and Liang) has clearly
handled this problem. S19 proposed a feature extension method for classifying user
reviews based on NFR types (reliability, usability, portability, and performance). They
expanded each user review with the most K semantic similar words, extracted using
word embedding (i.e., Word2vec). They found that the feature extension method with
a Bagging classifier outperformed the other existing techniques (e.g., TF, TF-IDF, and
CHI).

4.4. DISCUSSION 125

Besides S19, few studies consider this problem in determining text processing tech-
niques. For example, S5 used a Boolean weighting schema due to the short length
of requirements. The authors of S5 argued that NFRs are very short; thus, there is
no need for a complex weighting schema such as TF-IDF. S37 concatenates each re-
quirement by itself to enhance the process of measuring semantic similarity between
requirements. However, S37 classified NFRs based on their similarity using Word2Vec
(unsupervised method).

4.4 Discussion

This section discusses the existing solutions, identifies existing researches limitations
and gaps, and highlights our research motivations.

4.4.1 Small and High-dimensional Requirement Datasets

High dimensionality is a prevalent problem in NFRs classifications. Although the
statistical-based methods have been widely used to address this problem in NFRs clas-
sification, their shortcomings have also become apparent. First, their accuracy depends
on the input of a large training corpus of annotated texts, as they use word frequencies
in the text to establish the relevance of the words to the categories [DLWZ19]. In
the domains like RE, this is not always possible due to the scarcity of the datasets
[FDE+17, ZAF+21]. Second, these methods are semantically weak, as they ignore
the morphological structures and semantic relationships in the text and only consider
isolated, unconnected words present in a document text. Therefore, they do not ac-
count for semantic relationships and similarity of the words [KJMH+19]. For exam-
ple, words “airplane,” “aeroplane,” “plane,” and “aircraft” are often used in the same
context, but TF-IDF cannot account for the similarity between these words in the doc-
ument since each word is independently presented as an index [KJMH+19].

Word embedding methods, such as word2vec, has been used instead to reduce fea-
ture space size and discovering semantic relationships in the text corpus. However,
such method is also statistical-based methods requiring large related dataset, as they
rely on word co-occurrence frequencies to identify the syntactic and semantic sim-
ilarity between words. Most of requirements datasets are too small (see Table 3.7)
for word embedding. We tried to train a word embedding model on PROMISE-exp,
but its performance was very poor. We also collected 3009 unlabeled requirements

126 CHAPTER 4. PROBLEMS AND SOLUTIONS

randomly from the internet and used them to train an embedding model, but also
did not produce good performance in measuring similarity between words, and con-
sequently to learn feature for feature selection (more in Appendix 2). We noticed
that a small dataset, coupled with short-text requirements, leads to insufficient word
co-occurrences in the dataset—increasing the difficulty of selecting informative fea-
tures; this consequently hinders the effectiveness of the statistics-based feature selec-
tion method [MKIZ14, SYD+14].

Another drawback of word embedding methods is that they are computationally
expensive for training. For example, using one CPU, a word2vec model was trained
on a subset of the Google News data in about a day to three days [MCCD13].

Despite the weaknesses of statistical-based methods, they were used most fre-
quently than linguistic-based methods (see Figure 4.2). Linguistic-based feature se-
lection methods could be the more suitable choice for selecting features for NFRs
classification since these methods are more effective with small datasets and can un-
derstand the relationships between words. Motivated by these observations, we address
high dimensionality by using a linguistically-based feature selection technique: a sub-
set of features are selected based on the semantic and syntactic analysis of a set of
requirements.

. This technique is described and evaluated in Chapter 5.

4.4.2 Imbalanced Multi-Class Requirements Classification

Although the diversity of solutions proposed to handle imbalance learning problems,
most of the existing solutions are designed to address binary-class problems (i.e.,
imbalances exist between two classes) [HG09]. These solutions are less effective
when dealing with multi-class classification tasks. Per experiments of Wang and Yao
[WY12], resampling techniques (i.e., under- and over- sampling) showed strong neg-
ative effects in multi-class imbalanced classification. Oversampling causes overfitting
the minority classes with low recall and high precision, while undersampling leads to
loss of the performance of majority classes.

Resampling techniques have been used widely to handle the imbalance problem
in NFRs classification. In many cases, these techniques were applied to the binary
classification task. However, some studies applied such techniques in multi-class clas-
sification. These studies (S30, S40, and S51) did not provide detailed results (i.e.,
minority classes performance or overfitting level). Thus, according to Wang and Yao
experiments [WY12], these techniques are more likely ineffective for multi-class NFRs

4.4. DISCUSSION 127

classification.
One of the methods applied to address the multi-class imbalance problem is to

use class decomposition, which converts a multiclass imbalance problem into a series
of binary-class sub-problems. Then, a set of binary classifiers are applied to classify
these sub-problems [GFB+11]. Each classifier is individually trained without full data
knowledge. Consequently, class decomposition can cause ambiguity in classification
or uncovered data regions [WY12]. Besides, it might lead to an extremely uneven
distribution in sub-problems. For example, by applying the one-versus-all class de-
composition method, the combination of all classes that are not the most minor class
causes the highest imbalance level [LSZS20].

Originally designed for classification with hierarchical class structures, hierarchi-
cal classification [KMNF06] has also shown promise for class imbalance problems in
text classification [GIS10, ZZ20]. In hierarchical classification, classes are organized
into a tree structure with levels and nodes [KMNF06]. Accordingly, the classification
task is also divided into a set of sub-tasks corresponding to the number of nodes. The
construction of a classification hierarchy can be informed by domain knowledge (e.g.,
relationships between the classes [GIS10]) or constraints (e.g., cost-sensitive factor
[ZZ20]), with an aim to address the class imbalance problem. Ghazi et al. [GIS10]
compared the performance of the flat and hierarchical classification approaches to an
emotional classification in blog sentences. In the hierarchical approach, they used a
two-level method. The first level contained the emotional and non-emotional cate-
gories, and the second represented six categories of emotional classes, e.g., happiness,
sadness, and anger. They found that the hierarchical classification approach was better
at dealing with highly imbalanced data.

Due to the difficulty of algorithm-level solutions, the ineffectiveness of data-level
solutions, and the promising results of a hierarchical classification in handling the im-
balanced class problem, we propose a hierarchical classification technique (i.e., data
decomposition technique) to address the imbalanced multi-class NFRs classification.
To the best of our knowledge, such a technique has not yet been applied in the con-
text of requirements classification. Chapter 5 describes our technique and evaluation
details.

4.4.3 Feature Extension in Requirements Classification

Requirements are short; expanding requirements have improved some RE tasks, such
as requirement similarity (S37) and requirements classification (S19). Moreover, the

128 CHAPTER 4. PROBLEMS AND SOLUTIONS

idea of expanding requirements semantically has been widely used to handle problems
with mismatches in requirements tracing [GF94, GCCH10, BDLO+13, GCCH17]. For
example, the requirements (or trace query) were expanded with new terms that were re-
trieved from web-mining results [GCCH10, BDLO+13], domain knowledge and ontol-
ogy [GMPCH14], and/or others [MN15, GCCH17]. These techniques were designed
with the primary intent of adding terms to the original dataset to link two system ar-
tifacts together (e.g., the source code and requirement description). However, feature
explanation in short text classification aims to add features that link requirements to
each other with less noise; this handles sparsity and improves classification accuracy.

Expanding requirements from external resources would not be effective in require-
ment classification. As requirements documents are domain-specific texts, finding rel-
evant terms from generic texts is difficult. For example, in WordNet, the terms "sys-
tem" and "organization" are synonymous, but in requirement text, the term "system" is
normally referred to as "software system", "software", and "application." In addition,
using external resources (e.g., WordNet) for identifying synonyms can contribute to
negative correlations between different terms in different requirements categories and
thus lead to misclassification. For example, adding "late" as a synonym of "recent" can
lead to the misclassification of an FR as an NFR and vice versa. To avoid these prob-
lems, techniques using external resources need to go through a careful vetting process
to identify suitable datasets and suitable features.

Due to the difficulty of effectively use an external resource for handling the short
text problem in NFRs classification, we use an internal resource instead. This thesis
reports two proposed (internal-resource based) feature extension techniques: the first
technique is reported in (Chapter 5), while the second technique in (Chapter 6). Each
technique addresses the problem differently; however, both use the internal resource to
expand features.

4.5 Summary, Main Conclusions, and Findings

This section provides an overview of three problems in NFRs classification. These
problems are high dimensionality, imbalanced class problem, and short text classifi-
cation. Each problem has specific causes and techniques of being addressed. For ex-
ample, large numbers of words in the corpus cause high dimensionality, skewed class
distribution causes a bias toward the majority class, while short requirements cause
sparsity. To handle high dimensionality problem, existing methods are roughly based

4.5. SUMMARY, MAIN CONCLUSIONS, AND FINDINGS 129

on feature reduction by either applying feature selection or feature extraction meth-
ods. Existing solutions for imbalance problems can be divided into two major groups:
data sampling and classifier modification. Most of the existing solutions of short text
classification focus on feature extension to overcome the sparseness problem.

The review of existing NFRs classifiers identified in the previous chapter shows
that the high dimensionality problem is the problem that has been most commonly
addressed, where statistical-based feature selection methods are the widely used solu-
tion. Followed by the imbalanced classes problem, which is clearly addressed by class
data resampling techniques. In contrast, short text classification gets less attention with
only one study that clearly addresses this problem.

In analyzing existing techniques and solutions applied in NFRs classification, we
found that statistical-based methods for selecting features in NFRs classification are
not often effective due to the small labeled requirements datasets. Data sampling tech-
niques can also negatively affect requirement classification, as they cause loss of per-
formance and overfitting. Finally, semantic expansion is useful to support several RE
tasks (e.g., measuring semantic similarity and generating traceability links); however,
using external resources is difficult, as requirements are domain-specific and naturally
overlapped.

Based on this chapter’s findings, the following chapter describes a proposed method
that consists of three techniques, each of which addresses a single problem. High-
dimensionality is addressed based on the linguistic-based feature selection method,
class imbalance by using hierarchical classification, and semantic expansion using in-
ternal resources for short text classification problem.

Chapter 5

Dealing with Imbalanced, High
Dimensional and Short Text Data in
Machine Learning-Based
Requirements Classification

"Problems Are Not Stop Signs, They

Are Guidelines."

Robert Schuller

The previous chapter reviews three important problems related to ML-based re-
quirements classification—high dimensionality, short text, and class imbalance proble-
ms—indicating the gaps in the existing solutions. Motivated by these gaps, we propose
a decomposition-based requirements classification method to solve the three problems.
The proposed method, called "ML4-RC" (Machine Learning For Requirements Clas-
sification), integrates three techniques: dataset decomposition, feature selection, and
feature extension. Each technique is designed to address a single problem. For exam-
ple, dataset decomposition for the class imbalance problem, feature selection for high
dimensionality, and feature extension for short text problem. To assess the effective-
ness of ML4RC, we conducted two experimental studies. The first study compares the
entire ML4RC method with four closely related methods and the second evaluates the
three key techniques individually against a baseline method, related NFRs classifiers,
and common solutions.

This chapter is organized as follows: Section 5.1 introduces the ML4RC method in

130

5.1. THE ML4RC METHOD 131

detail, explaining its processes and techniques. Section 5.2 implements ML4RC using
four different algorithms and selects the ML algorithm with the best performance. Sec-
tion 5.3 presents the experiment conducted to evaluate the performance of the ML4RC
method as a whole against related work, and Section 5.4 evaluates each ML4RC tech-
nique to show how each technique works individually. Based on the experimental
results, Section 5.5 discusses the key findings together with the opportunities and chal-
lenges for requirements classification. Section 5.6 discusses threats to validity. Finally,
Section 5.7 presents a summary of this chapter.

5.1 The ML4RC Method

The ML4RC method is purposely designed to deal with the three problems—high
dimensionality, short text and imbalanced data in requirements classification. It solves
these problems using three key techniques, which are summarized below:

1. Dataset Decomposition: This technique aims to solve the imbalanced class prob-
lem by decomposing a given training dataset into two subsets, one containing
the majority classes and another with the minority classes. In doing so, it breaks
down the classification problems into two smaller problems. The hierarchical
classification technique is then applied to perform the classification task.

2. Semantic Role-based Feature Selection: This technique aims to address the high
dimensionality problem by identifying a small number of semantic roles to select
the most relevant features from the requirements.

3. Feature Extension: This technique handles the short text problem by extending
the features identified for each requirement with additional semantically related
features.

These techniques are integrated into a coherent process depicted in Figure 5.1.
The process resembles the text classification process shown in Figure 2.4 but with two
additional steps: dataset decomposition in the training phase and feature extension in
both the training and testing phases. The process steps of the ML4RC method and their
enabling techniques are detailed in the sections below.

132 CHAPTER 5. ML4RC METHOD

Figure 5.1: Overview of ML4RC - A decomposition-based machine learning method
for requirements classification

5.1.1 Dataset Decomposition

This step, which only applies to the training phase, is to decompose the input training
dataset into two subsets and one superset. The method for performing this decom-
position is sketched in Algorithm 1. The input to this algorithm consists of a set of
preassigned requirement-category pairs and the size of each category (i.e., the num-
ber of requirements in each category). Based on this input, the algorithm first sorts
the requirements classes in descending order based on the category size. Then, the
largest requirement-category pair (the one with the most number of requirements) are
assigned to the subset Sma j (called the major class subset). This is repeated until the
size of the major subset is greater or equal to half of the size of the training dataset for
getting a relatively similar size for each subset. The remaining requirement-categories
pairs (those with the smallest number of requirements) are assigned to the subset Smin

(called the minor class subset).
After the subsets are divided, the algorithm assigns the subset-label (ma j or min) to

each requirement based on which subset it belongs to in order to identify the location
of the original category. The created pairs (requirements, subset-label) are used to
produce a superset Ssuper, as Figure 5.2 shows. These three sets, i.e., Sma j, Smin and
Ssuper , will be used to train three classifiers for requirements classification. Figure
5.3 shows an example of applying the decomposition dataset technique on a training
dataset.

5.1.2 Text Pre-Processing

This step applies to the training and testing phases. As described in Section 2.2, text
pre-processing involves the application of various NLP techniques to the text data to
remove unwanted, redundant, and superfluous words, and in doing so, to improve the

5.1. THE ML4RC METHOD 133

Algorithm 1: Dataset Decomposition Algorithm
Input :

S={(r’1,c1),(r’2c2),(r’m,ck)}
The set of preassigned requirement-category pairs in the training set.

D={c1=d1,c2=d2,....,ck=dk, }
The size of each category in the training set.

Output:
Smin ⊂ S and Sma j ⊂ S

Smin is the subset of the requirements in the minority categories in S and Sma j is the subset of
the requirements in the majority categories in S.
Smin∩Sma j = {Φ} and Smin∪Sma j = {S}

Ssuperset = {(r’1,c’),(r’2,c’),(r’m,c’)}, c’ ∈{maj,min}
Ssuperset is a superset of all requirements associated with subset labels

1 h = m/2
Compute h,which is the potential size of each subset.

2 Smin = { }, Sma j = { }.
Initialize two subsets.

3 D = ∑
k
i=1 d,{d ∈ D : di ≥ di+1}

Sort D in descending order.
4 for i=1 to i=k do
5 if |Sma j|> h then
6 Sma j = Sma j ∪∑

D[ci]
d=1 (r

′,ci).
7 end
8 else
9 Smin = Smin∪∑

D[ci]
d=1 (r

′,ci).
10 end
11 end
12 end For.
13 Ssuper = { }.

Initialize a super-set .
14 for j=1 to j=m do
15 if c from (r’,c) j ∈ Sma j then
16 Ssuper= Ssuper ∪ (r’ j,maj)
17 end
18 else
19 Ssuper= Ssuper ∪ (r’ j,min)
20 end
21 end
22 end For.
23 Return Ssuper, Smin and Sma j

* Time complexity = O(n2), Space complexity = O(n)

performance of feature selection and classification. Some commonly used NLP tech-
niques are described in Chapter 3. In the ML4RC method, we apply the following
NLP techniques to text pre-processing in order: tokenization, POS tagging, named
entity recognition (NER), dependency parsing, lowercase conversion, lemmatization,

134 CHAPTER 5. ML4RC METHOD

Figure 5.2: The dataset decomposition process. The original dataset is decomposed
into two subsets: one with the majority classes and one with the minority classes. The
superset is the union of the two subsets. The superset and two subsets are structured as
a class hierarchy.

Figure 5.3: An example of flat and hierarchical structure of a training dataset; before
and after dataset decomposition technique

stop-words removal, and finally, short-words removal (i.e., removing the words con-
taining fewer than three characters). Dependency parser and POS tagger are applied
here and before lemmatization and stop word removal to ensure the proper use of the
grammatical structure of requirements.

5.1.3 Feature Selection

This step aims to select the most relevant features for each requirement. Each set of
the selected features, known as a feature set [BKL09], should capture the basic infor-
mation about the corresponding requirement. They can, therefore, be used to classify
the requirement. Based on the findings of chapter 3 and 4, feature selection methods
commonly used for requirements classification are based on statistical analysis tech-
niques. Our feature selection method, on the other hand, is based on the identification
of semantic roles in the requirements sentences.

In linguistics, semantic roles are shallow semantic representations that express the
role of arguments or adjuncts of a predicate take in some event [JM20]. Arguments

5.1. THE ML4RC METHOD 135

of a predicate are subjects and objects of verbs, whereas adjuncts of a predicate are
adverbs, adjectives, and prepositional phrases. Semantic roles provide a level of rep-
resentation for capturing the semantic commonality between sentences and help gen-
eralize over different surface realizations of predicate arguments or adjuncts [JM20].
Although there is no universally agreed-upon set of semantic roles, most of today’s
semantic role labeling methods [GJ02, Xue08] are based on the semantic roles used in
FrameNet [BDCD19] and PropBank [PGK05]. To illustrate semantic roles, consider
the following examples:

1. The system sent a message to the user.

2. The system should be easy-to-use.

3. The system should be available 24/7.

In the first sentence, the three arguments of the verb "sent" respectively play three
semantic roles AGENT ("the system"), THEME ("a message") and GOAL ("the user").
In the second sentence, "the system" takes the semantic role AGENT, whereas the ad-
junct "easy-to-use" is an adjective playing the role MANNER. In the third sentence,
"the system" takes the semantic role AGENT, whereas "available" is an adjective play-
ing the role MANNER and "24/7" is an adverb playing the role DEGREE. These ex-
amples show that we can identify semantic roles through their grammatical features:

• AGENT/Subject

• GOAL/Object

• THEME/Object

• MANNER/Adverb, Adjective, Proposition

• DEGREE/Adjective, Number

We notice that the above five semantic roles are sufficient to answer the question
“Who (AGENT) did what (THEME) to whom (GOAL), how (MANNER) and how much

(DEGREE)”. This question is central in understanding natural language [JM20] as it
explains semantic relationships between a verb and its constituents. Such understand-
ing is also key to requirements analysis. To assess the sufficiency of these roles for
predicting requirement type, we manually analyze a set of requirements to identify

136 CHAPTER 5. ML4RC METHOD

the main element of each requirement. This analysis considers the predefined com-
ponents of NFRs types (e.g., usability [GWSH09] and security [Fir04]) and lessons
learned from related work to identify the main syntactic elements of each requirement
[HKO08, AKG+17]. The results of such analysis confirmed that these five semantic
roles are relevant to feature selection.

However, the above five roles do not explicitly describe the event itself as none of
them are realized by verbs—indeed, current semantic roles do not explicitly include
verb roles. In RE, verbs that refer to actions, states, and events are central to functional
requirements as these requirements specify what the system should do. Such action

verbs are, therefore, the most relevant to requirements classification. Thus, we intro-
duce ACTION as an additional role to our feature selection method. In total, we use
six semantic roles for feature selection. These are:

1. AGENT - the volitional causer of an event [JM20]. This role is realized by the
subjects. We notice that, in requirements modeling, the AGENT is also some-
times called ACTOR [RP92]. For example, in the requirement "The system
shall send a verification email to the user when they log on to their account from
an unfamiliar computer", "the system" plays the AGENT role.

2. ACTION - the cause of an action, event, or state. This role is realized by the
verbs. For example, in the requirement "The system shall send a verification
email to the user when they log on to their account from an unfamiliar com-
puter", both "send" and "log on" play the ACTION role.

3. THEME - the participant most directly affected by an event [JM20] or who
undergoes a change of state [Xue08]. In requirements modeling, THEME is
referred to as key object; the subject matter of the essential system transaction,
therefore, undergoes state change [SM98]. This role is realized by direct objects.
For example, in the requirement "The system shall send a verification message
to the user when they log on to their account from an unfamiliar computer",
"message" takes the THEME role.

4. GOAL - the destination of an object of a transfer event [JM20] or a new state.
In requirements modeling, GOAL describes a future, a required state which the
system should satisfy, maintain, or sometimes avoid [SM98]. This role is re-
alized by indirect objects. For example, in the requirement "The system shall
send a verification email to the user when they log on to their account from an
unfamiliar computer", "user" is the GOAL.

5. MANNER - the manner in which an action takes place [Xue08]. This role is

5.1. THE ML4RC METHOD 137

realized by adjectives, adverbs, determiners, or preposition phrases. For exam-
ple, in the requirement "The system should be easy-to-use", "easy-to-use" is
MANNER.

6. DEGREE - the degree of control exerted by the stimulus [JM20]. This role is
typically realized by adverbs (e.g., rather) or numbers (e.g., 99%). For example,
in the requirement "The system must be available to the users 98 % of the time
every month during business hours," 98 % is DEGREE.

These six roles can be automatically extracted using the combination of a POS tagger, a
dependency parser, and NER tagger. In particular, the POS tagger is used to identify the
part-of-speech tags of each requirement, the dependency parser produces a syntax tree
for the requirement, and the NER tagger identifies special terms of the requirement.
The syntactical features obtained from these tools can then be used to extract the six
semantic roles as follows: POS tags for extracting these five roles: AGENT/ related to
verbs, ACTION/action verbs, THEME/related to verbs, MANNER/adjectives, adverbs
and preposition, and DEGREE/adverbs. Dependency parser helps in extracting all the
six roles. For example, subject is used for extracting AGENT, object for both THEME
and GOAL, and head-dependent relation for ACTION, MANNER, and DEGREE. The
NE tagger is only used to extract DEGREE by identifying predefined entities such as
date, time, number, and percent.

Table 5.1 summarizes these six semantic roles, their grammatical features and ex-
traction rules for automatic identification. Figure 5.4 shows examples of how each
main element of NFRs is selected.

However, in some cases, the same words may have more than one semantic role,
and the extraction rules may result in the same words being extracted more than once.
For example, “within 2 minutes” in “User can successfully register within 2 minutes”
could be extracted as a MANNER (within) or DEGREE (within 2 minutes). To avoid
to have duplicate features, we remove duplicate words from the selected features.

For the training phase, this step will be applied to each of the three decomposed
datasets (Sma j, Smin and Ssuper), whereas for the testing phase, as the testing data are
not decomposed, this step is applied only once to the entire testing set.

5.1.4 Feature Extension

This step aims to extend each feature set (the set of features selected for each require-
ment) with additional features to address the problem of feature sparsity caused by the

138 CHAPTER 5. ML4RC METHOD

Role Grammatical
Features

Extraction Rules Explanation

AGENT Subjects Identified as the subjects
of the main verbs (the
verbs with the head
verbs)

If a term is the subject of the
head verb, then, this subject is
AGENT.

ACTION Action verbs Identified as the verbs
with the head verb

If a term is the head verb, then
this term is ACTION.

THEME Direct
objects

Identified as the objects
of ACTION (main verbs)

If a term is the direct object of
the main verb, then this object is
THEME.

GOAL Indirect
objects

Identified as the objects
of a dative preposition

If a term is an indirect object
that its head is dative, then this
object is GOAL.

MANNER
Adverbs,
adjectives,
determiners,
proposition
phrases

Identified as adjectives,
adverbs, and determiners
with their headwords, or
prepositions with their
dependents (i.e., children)

If a term is an adjective, adverb,
or determiner, then this term
and its headwords represents
MANNER;
otherwise, if a term is a
preposition (e.g., from, with,
without, after), then the
preposition and all its
dependents are MANNER.

DEGREE Adverbs,
numbers

Identified as the numbers
and all its dependents
(i.e., children) or adverbs
and their headwords

If a term is a named entity (e.g.,
data, time, percent, money, and
cardinal), then the term and all
its dependents represents
DEGREE;
otherwise, if the term is an
adverb, then this term and its
headwords are DEGREE.

Table 5.1: The semantic roles used for feature selection in the ML4RC method

5.1. THE ML4RC METHOD 139

Figure 5.4: Examples of how an input requirements are processed by feature extract-
ing. The outputs of these Inputs are: "product allow user select language countries"
, "website easy 90% users successfully reserve room 5 minutes", "application ensure
only authorized users access information".

short text nature of the requirement. Ideally, the extended features should have a strong
relationship with the original features [PNH08, SYD+14]. Thus, in this step, the ex-
tended features are synonyms of the original features; they are words with either the
same or a highly semantically similar meaning that do not alter the general meaning of
the requirement [MBF+90]. These synonyms are extracted using WordNet, a popular
lexical database (thesaurus) for the English language. Examples of synonyms provided
by WordNet for error are mistake, erroneousness, computer error, and fault.

Since not all the synonyms extracted from WordNet are relevant to requirements,
our feature extension only uses the synonyms of a feature if they are also present in
the training dataset. Practically, each word in the requirement tagged as a verb, noun,
adjective, or adverb is used by WordNet to obtain its synonyms. Then, the extracted
synonyms are assessed on whether they meet the condition of being present in the
training dataset. If yes, they will be added at the end of each requirement.

Moreover, WordNet often repeats the synonyms retrieved for a particular term. For
example, the synonyms extracted for the noun "System" are system, system, arrange-

ment, organization, habit, and system. Keeping all these synonyms has a detrimental
effect on classification accuracy as this redundancy might increase the weight of unim-
portant features and ignore important ones. Therefore, our feature extension technique
ensures that duplicate synonyms are not added to the feature set.

To illustrate our feature extension method, assume that we have a very small train-
ing dataset consisting of two requirements:

1. "The system must be usable for people with visual impairment."

140 CHAPTER 5. ML4RC METHOD

2. "The system shall provide handicap access."

An original requirement to be expanded with additional features is:

• "The system shall conform to the Americans with Disabilities Act."

The synonyms of each unique feature in this requirement are extracted from Word-
Net. These synonyms are then filtered by removing duplicates and selecting only those
that exist in a training dataset. The selected synonyms will be added at the end of the
original requirements to be:

• The system shall comply with the Americans with Disabilities Act system hand-
icap impairment

"System" is a synonym of system, and "handicap" and "impairment" are synonyms
of disability.

For the training phase, this step will be applied separately to each of the three
decomposed datasets (Sma j, Smin and Ssuper). In the testing phase, this step is also
applied by expanding the testing data with the synonyms of the training data used to
train a specific classifier (either Sma j, Smin or Ssuper). The testing phase is detailed in
Section 5.1.6.

Feature Representation

The features obtained in the previous steps need to be transformed into a vector rep-
resentation that can be directly interpreted by a ML algorithm. This entails convert-
ing the features obtained from each requirement j into a vector of numerical features
~Vj = (wt1, j,wt2, j,wt3, j, ...,wtk, j). In this vector, wtk, j is the weight of feature t in require-
ment j, and k is the total number of unique features in a dataset. The feature weight
wtk, j is calculated using TF-IDF as follows:

wtk, j = t ftk, j× log
N
nt1

(5.1)

where t fk, j is the frequency of feature t in requirement j, N is the total number of
the requirements in a dataset, and nt1 is the number of requirements containing feature
t.

In the training phase, since we have three training datasets (Ssuper, Sma j, and Smin),
we need to represent them separately. The resulting feature vectors from each dataset
are arranged into a feature matrix. This leads us to three matrices Msuper, Mma j, and

5.1. THE ML4RC METHOD 141

Mmin. In these matrices, each row represents an individual instance (i.e., a particular
requirement) in the corresponding training set with the columns being populated with
the feature weights. As the three matrices represent three datasets, they have different
sizes (i.e., different numbers of rows and columns) depending on the number of re-
quirements and of features in their corresponding dataset. Clearly, Msuper is the largest
as it contains all the requirements combined from Mma j and Mmin.

In the testing phase, the three training matrices are used to represent the testing data
separately to form three corresponding testing matrices (Tsuper, Tma j, and Tmin). Each
testing matrix contains the same number of columns as the corresponding training ma-
trix, but has a different number of rows, as the rows in the testing matrix represent the
specific testing requirements in the testing data. The cells or elements of each matrix
are populated by the TF-IDF weights of the features extracted from the testing require-
ments. Each feature weight is calculated by multiplying the feature frequency (TF) in
a testing requirement by the feature IDF weight computed from the training dataset.
The features in a testing requirement that have not been seen during the training phase
are discarded and will not be represented in the testing matrices.

5.1.5 Classifier Training

This step is to train a hierarchical classifier F using a specific ML algorithm. The
classifier consists of one super-classifier Fsuper, and two sub-classifiers Fma j and Fmin,
which are trained on the three feature matrices Msuper, Mma j, and Mmin, respectively.
Fsuper is a binary classifier for classifying each requirement into either a major class
subset (Sma j) or a minor class subset (Smin), whereas Fma j and Fmin are two multi-

class classifiers for predicting individual requirements categories. We will show how
we select a ML algorithm for training in Section 5.2; here, we focus on the training
process (see Figure 5.5)

The three classifiers are trained individually using a separate feature matrix as fol-
lows:

1. Fsuper: This binary classifier is trained on matrix Msuper to learn the associations
between the requirements in dataset Ssuper and their subset labels (i.e., ma j and
min). Based on the learning, this classifier is then applied to assigning a label
"ma j" or "min" to each requirement in the new data (e.g., the testing or applica-
tion data). In doing so, this classifier divides the new data into two categories:

142 CHAPTER 5. ML4RC METHOD

Figure 5.5: Classifier training process. The ML4RC classifier consists of one super-
classifier and two sub-classifiers, which are trained respectively on the three decom-
posed datasets.

ma j and min. This classifier thus performs the dataset decomposition conceptu-
ally.

2. Fma j: This multi-class classifier is trained on matrix Mma j to learn the associa-
tions between the requirements in dataset Sma j and their preassigned categories
(i.e., the requirement-category pairs). Based on the learning, this classifier is
then used to classify each requirement in the new data (e.g., the testing or appli-
cation data) into a specific category label (e.g., functional, security or usability),
thus performing the classification task on the new data.

3. Fmin: This multi-class classifier is trained on matrix Mmin to learn the associa-
tions between the requirements in dataset Smin and their preassigned categories
(i.e., the requirement-category pairs). Based on the learning, this classifier is
then used to classify each requirement in the new data (e.g., the testing or appli-
cation data) into a specific category label that was not used in training Fma j (e.g.,
legal, portability, or maintenance), thus performing the classification task on the
new data.

5.1.6 Classifier Testing

This step is to test the three pre-trained classifiers using a testing dataset, as illustrated
in Figure 5.6. The testing process is described as follows.

5.1. THE ML4RC METHOD 143

First, the testing set will undergo the same text preparation steps as shown in Figure
5.1. Then the three classifiers will be tested as follows:

1. Fsuper is used to assign a label "ma j" or "min" to each requirement in the testing
set represented by matrix Tsuper.

2. For the requirements with the label "ma j", Fma j is used to predict their cate-
gories. However, before applying the classifier, the preprocessed and filtered
version of these requirements will undergo the feature extension and feature rep-
resentation steps to ensure the testing data are expanded and transformed in a
similar way as ma j training data. This results in matrix Tma j.

3. Similarly, for the requirements with the label "min", Fmin is used to predict their
categories. As was done above, before applying the classifier, the preprocessed
and filtered version of these requirements will undergo the feature extension and
feature representation steps. This results in matrix Tmin.

4. The predicted category labels from Fma j and Fmin will then be compared with the
original labels in the testing data to establish the performance of the classifiers.
The performance measures used in the ML4RC method will be described in
Section 5.2.

After testing, the three classifiers are ready for use. The application process is
similar to the testing process, except that the application data are completely new and
unrelated to the datasets used to train and test the classifiers.

144
C

H
A

PT
E

R
5.

M
L

4R
C

M
E

T
H

O
D

Figure 5.6: Classifier testing process. Three sub-classifiers are tested respectively on the three decomposed datasets.

5.2. TRAINING AND TESTING ML ALGORITHMS FOR ML4RC 145

5.2 Training and Testing ML Algorithms for ML4RC

Before we can evaluate the ML4RC method and its key techniques, we evaluate ML4RC
with different ML algorithms (SVM, NB, DT, and KNN) to select the most effective
one. SVM, NB, DT and KNN are the most frequent ML algorithms used in NFR
classification (see Table 3.5), which showed promising results (see Table 3.18).

5.2.1 Dataset and Experimental Settings

We used the PROMISE-exp dataset to train the four algorithms. PROMISE-exp is one
of the publicly available NFRs datasets listed in Table 3.7. We chose this dataset as
it was released recently and is publicly available 1. In addition, it is an extended ver-
sion of PROMISE [CHMLP07], a widely used dataset in NFR classification (see Table
3.6). The original PROMISE dataset contains 12 categories and 625 instances (i.e.,
requirements) collected from 15 requirements documents, whereas the PROMISE-exp
dataset has 12 categories and 969 requirements collected from 47 requirements doc-
uments. Table 5.2 illustrates the categories of PROMISE-exp and provides examples
for each category.

A summary of PROMISE-exp statistics is given in Table 5.3. It is worth noting
from Table 5.3 that the PROMISE-exp dataset exhibits the problems of class imbal-
ances, short text, and high dimensionality. More specifically, 1) the requirements in
this dataset are unevenly distributed across different categories, with "Functional" be-
ing the largest category containing 444 instances, and "Portability" being the smallest
with only 12 instances; 2) the average length of the requirements in this dataset is
22.4 words (with a standard deviation of 17.03), which is rather short; 3) the number
of unique features of this dataset is 2129 which results in a high dimensional feature
space of 969×2129.

1https://tinyurl.com/PROMISE-exp

146
C

H
A

PT
E

R
5.

M
L

4R
C

M
E

T
H

O
D

Category Definition Examples of Requirements Statements

Functional (F) Requirements that specify what a sys-
tem or system component should do
[15990].

F1: The user shall be able to download appointments and contact infor-
mation for clients.
F2: The system shall filter data by: Venues and Key Events.
F3: The product shall store new conference rooms.

Security(SE) A system’s ability to protect data and
information against any unauthorized
access or modification while maintain-
ing usability for authorized persons or
systems [II04].

SE1: The system shall prevent malicious attacks including denial of ser-
vice.
SE2: Only authorized users shall have access to clinical site informa-
tion.
SE3: The product shall free of computer viruses.

Usability (US) The capacity of the system to allow
a specific user to effectively and effi-
ciently achieve precise goals with sat-
isfaction [ISO18].

US1: The product shall use a standard navigation menu familiar to most
web users.
US2: The system shall be used by realtors with no training.
US3: The product shall be intuitive and self-explanatory. 90% of new
users shall be able to start the display of Events or Activities within 90
minutes of using the product.

Operational (O) This category (known as environmen-
tal requirements) specifies the environ-
ment in which the system works and
considers some circumstances created
by the environment which might affect
the system operation [RR12].

O1: The product shall run on the existing hardware for all environments.
O2: For estimators, the product shall be able to be operated in a repair
facility during dirty and noisy conditions.
O3: The product must support Internet Explorer 5.5 and above.

5.2.
T

R
A

IN
IN

G
A

N
D

T
E

ST
IN

G
M

L
A

L
G

O
R

IT
H

M
S

FO
R

M
L

4R
C

147

Category Definition Examples of Requirements Statements

Performance(PE) A requirement that specifies the con-
ditions for a certain function, such as
speed, level of accuracy, or memory us-
age [15990].

PE1: The System shall allow for a minimum of 6 users to work at the
same time.
PE2: The product shall respond fast to keep up-to-date data in the dis-
play.
PE3: The product shall synchronize with the office system every hour.

Look and feel
(LF)

Requirements that specify a system’s
appearance and the impression the user
has of the system when using it [RR12].

LF1: The website shall be attractive to all audiences. The website shall
appear to be fun and the colors should be bright and vibrant.
LF2: The website design should be modern clean and concise.
LF3: The system shall have a professional appearance.

Availability (A) A software’s ability to work as required
at a given point in time [II04].

A1: The system shall be available for use between the hours of 8am and
6pm.
A2: All movies shall be streamed on demand at any time of the day.
A3: The software is available for use from the supermarket opening
time to the closing time.

Maintainability
(MN)

A system’s ability to be modified. Ex-
amples of this type of modification can
include corrections, improvements, or
changes to the system’s environment
and requirements [II04].

MN1: Promotional updates to the website should take a day to update.
MN2: The application should be easy to extend. The code should be
written in a way that it favors implementation of new functions.
MN3: Changes made to the Manage My ID website can be adopted
without altering the iOS application.

Scalability (SC) A system’s capacity to tolerate the
differences or scales in certain char-
acteristics that affect its execution
[DRW07].

SC1: The server will support a maximum of 1,000 simultaneous users.
SC2: The system should be able to scale up to 500 concurrent users (if
there is a need in the future) by installing additional hardware compo-
nents.
SC3: The system shall be capable of processing 100% of nursing stu-
dents and their classes for the next 10 years.

148
C

H
A

PT
E

R
5.

M
L

4R
C

M
E

T
H

O
D

Category Definition Examples of Requirements Statements

Fault tolerance
(FT)

A system’s ability to maintain a certain
level of performance in case of failure
[II04].

FT1: The product shall retain user preferences in the event of a failure.
FT2: The website shall continue to operate if the payment gateway goes
down.
FT3: 100% of saved user preferences shall be restored when system
comes back online.

Legal (L) Requirements that specify the laws and
standards that are applied to a system
[RR12].

L1: The product must comply with Sarbanes-Oxley.
L2: The PHP code will comply with PEAR standards.
L3: The product shall comply with insurance regulations regarding
claims processing.

Portability (PO) The ability of a system to run and trans-
fer from one environment to another
[II04].

PO1: The product is expected to run on Windows CE and Palm operat-
ing systems.
PO2: The application should be portable with iOS and Android.
PO3: The system will support mobile users in some way.

Table 5.2: The categories of requirements in PROMISE-exp dataset

5.2. TRAINING AND TESTING ML ALGORITHMS FOR ML4RC 149

Category #Reqs. Percent Avg Len. #Feat.

Functional (F) 444 45.82 16.43 1070

Security (SE) 125 12.90 18.08 554

Usability (US) 85 8.77 21.36 467

Operational (O) 77 7.95 19.12 450

Performance (PE) 67 6.91 22.58 390

Look & feel (LF) 49 5.06 19.57 330

Availability (A) 31 3.20 18.64 186

Maintainability (MN) 24 2.48 25.12 251

Scalability (SC) 22 2.27 19.27 156

Fault tolerance (FT) 18 1.86 18.03 167

Legal (L) 15 1.55 16.08 115

Portability (PO) 12 1.24 13.25 85

Total 969 100.00

Table 5.3: Summary of the PROMISE-exp dataset

We trained these algorithms on a standard laptop with an Intel Core i5 1.6 GHz and
8 GB RAM. The entire process of the ML4RC method was mapped onto a pipeline
system [MKMG97] and each process step onto a software component. The implemen-
tation was carried out using the Python programming language (version 3.6.5), with
the support of Python’s NLP and ML toolkits for performing the following tasks:

• Pre-processing and Feature Extension were implemented by NLTK’s text pro-
cessing module and POS tagger 2.

• Feature Selection implemented by SpaCy’s dependency parser 3.

• Feature Representation, Classifier Training and Classifier Testing implemented
by scikit-learn [PVG+11]4.

The four ML algorithms were implemented using the corresponding scikit-learn’s
pre-trained ML classification models (known as estimators):

• The Linear Support Vector Classification model for the SVM algorithm

• The Gaussian Naive Bayes model for the NB algorithm

• The Decision Tree Classifier (with gini impurity splitting criterion) for the DT
algorithm

2https://www.nltk.org
3https://spacy.io
4https://scikit-learn.org/stable/index.html

150 CHAPTER 5. ML4RC METHOD

• The KNeighbors Classifier (with Euclidean distance measure) for the KNN al-
gorithm

Each of these classification models provides a fit method, which can accept an input
data array and an array of labels for supervised learning as its arguments [PVG+11].
Thus, through this method, each model can be fitted to different training datasets.

5.2.2 Training and Testing Process

We apply a 10-fold cross-validation process [BG04, AC+10] to train and test each of
the four ML model as follows:

1. Apply scikit-learn’s StratifiedKFold tool to divide the PROMISE-exp dataset
randomly into 10 folds (i.e.10 portions), nine portions for algorithm training and
one portion for testing;

2. Decompose each portion of the training data into three training sets (i.e., Ssuper,
Sma j, and Smin), respectively used to train the three classifiers (i.e., Fsuper, Fma j,
and Fmin).

3. Carry out Pre-Processing, Feature Selection, and Feature Extension tasks as de-
tailed in Section 3 (A total of 1365 features were selected from 2129 unique
features; Table 5.4 lists the top 10 features selected for each classifier.)

4. Use scikit-learn’s TfidfVectorizer tool for Feature Representation, which auto-
matically converts each feature set into a TF-IDF vector.

5. Train three classifiers for each algorithm and use scikit-learn’s GridSearchCV
with a 5-fold cross validation to tune the parameters of the model under training
to maximize the performance score of each classifier. These classifiers are then
trained using the optimal parameters chosen in the grid search.

6. Test the trained classifiers on the testing set as described in Section 5.1.6, which
produces the predicted classification results (i.e., a set of predicted category la-
bels).

7. Compare the predicted labels with the true labels provided in the original PROMISE-
exp dataset and measure the difference between the true label and the predicted
label for each category using the Precision (P), Recall (R), and F1-Score (F1)

5.2. TRAINING AND TESTING ML ALGORITHMS FOR ML4RC 151

Table 5.4: Top 10 features used by the three ML4RC classifiers

Classifier Top 10 Features for Each Classifier
Fsuper theft, password, edit, sensitive, easy, feel, environment, error, eth-

nic, confirm
Fma j sensitive, securely, unauthorized, password, transaction, address,

store, feel, feedback, time
Fmin space, support, available, feel, easy, degradation, environment,

time, simultaneous, delay

metrics. The overall performance (P, R, and F1 metrics) of the classifier is then
measured by computing the macro and micro average of all the classes.

This process is repeated 10 times for each algorithm—nine times on the nine por-
tions of the training data and one time on the testing data. Afterwards, the mean P, R,
and F1 values for each category as well as overall macro (mean) and micro averages
for all categories are computed. In Table 5.5, we list both macro and micro averages
of the four algorithms, but only use the macro averages as the basis for comparison of
classification performance. The micro-average of P, R, and F1 are equal in multi-class
classification as it is computed over all classes; thus, the incorrectly predicated sam-
ples represent both false positive and false negative. For example, in the case of "A is
misclassified as B", it is false positive for B and false negative for A. A more detailed
explanation of macro and micro is provided in Section 2.2.3.

During the incremental training of each algorithm, we plotted its training curve to
show how well the algorithm can be adapted to different numbers of training samples
by measuring the performance of the trained algorithm in classifying the training set.
Similarly, we also plotted a testing curve for each algorithm to show how well the
algorithm can generalize to new data [Bro14]. These learning curves are depicted in
Figure 5.7.

In the section below we discuss the performance and learning curves of the SVM,
NB, DT, and KNN algorithms.

5.2.3 Results

Classification Performance

It is clear from Table 5.5 that overall, among the four algorithms used to support the
ML4RC method, SVM has achieved the best test results, with a macro average of P

= 49%, R = 47%, and F1 = 46%. The results confirmed previous findings that SVM

152 CHAPTER 5. ML4RC METHOD

Cat. SVM NB DT KNN
P R F1 P R F1 P R F1 P R F1

F 0.76
±0.07

0.82
±0.13

0.78
±0.08

0.68*
±0.06

0.60*
±0.14

0.63*
±0.10

0.66*
±0.12

0.69*
±0.18

0.67*
±0.14

0.69*
±0.8

0.85
±0.13

0.76
±0.09

SE 0.66
±0.19

0.52
±0.20

0.57
±0.18

0.38*
±0.14

0.53
±0.17

0.43*
±0.12

0.51
±0.12

0.42
±0.19

0.44*
±0.14

0.69
±0.27

0.41
±0.23

0.49
±0.22

US 0.53
±0.14

0.54
±0.19

0.53
±0.16

0.43
±0.22

0.41
±0.17

0.41*
±0.18

0.37*
±0.15

0.39*
±0.17

0.37*
±0.16

0.53
±0.10

0.52
±0.16

0.52
±0.12

O 0.37
±0.12

0.53
±0.19

0.43
±0.12

0.30
±0.16

0.26*
±0.13

0.27*
±0.13

0.20*
±0.16

0.29*
±0.28

0.22*
±0.20

0.36*
±0.16

0.47
±0.27

0.39*
±0.20

PE 0.72
±0.10

0.68
±0.15

0.69
±0.12

0.37*
±0.14

0.50*
±0.17

0.42*
±0.15

0.56
±0.20

0.54
±0.22

0.57
±0.18

0.49*
±0.26

0.42*
±0.27

0.42*
±0.24

LF 0.61
±0.29

0.47
±0.30

0.49
±0.25

0.42*
±0.18

0.42*
±0.18

0.40*
±0.17

0.19
±0.20

0.12
±0.13

0.14
±0.15

0.45
±0.43

0.22*
±0.26

0.28*
±0.29

A 0.74
±0.39

0.67
±0.39

0.67
±0.36

0.72
±0.33

0.36
±0.18

0.45
±0.17

0.35*
±0.25

0.50
±0.37

0.40*
±0.28

0.39*
±0.30

0.60
±0.36

0.45*
±0.30

MN 0.25
±0.34

0.20
±0.26

0.21
±0.27

0.09
±0.18

0.15
±0.32

0.11
±0.21

0.10
±0.15

0.13
±0.22

0.11
±0.17

0.10
±0.03

0.05
±0.15

0.07
±0.20

SC 0.44
±0.42

0.42
±0.42

0.41
±0.39

0.42
±0.42

0.37
±0.33

0.38
±0.35

0.37
±0.44

0.28
±0.33

0.30
±0.35

0.38
±0.38

0.35
±0.33

0.33
±0.28

FT 0.25
±0.40

0.20
±0.33

0.22
±0.35

0.25
±0.40

0.20
±0.33

0.20
±0.31

0.20
±0.33

0.25
±0.40

0.22
±0.35

0.20
±0.40

0.10
±0.20

0.13
±0.27

L 0.45
±0.47

0.40
±0.44

0.40
±0.42

0.43
±0.47

0.35
±0.39

0.37
±0.41

0.18
±0.32

0.20
±0.33

0.17
±0.26

0.10
±0.30

0.05
±0.15

0.07
±0.20

PO 0.05
±0.15

0.10
±0.30

0.07
±0.20

0.28
±0.39

0.35
±0.45

0.30
±0.40

0.02
±0.08

0.05
±0.15

0.3
±0.10

0.00
±0.00

0.00
±0.00

0.00
±0.00

Mic. 0.65
±0.08

0.65
±0.08

0.65
±0.08

0.49
±0.07

0.49
±0.07

0.49
±0.07

0.50
±0.10

0.50
±0.10

0.50
±0.10

0.60
±0.07

0.60
±0.07

0.60
±0.07

Mac. 0.49
±0.22

0.47
±0.21

0.46
±0.20

0.40
±0.17

0.38
±0.13

0.36
±0.13

0.31
±0.19

0.32
±0.18

0.32
±0.17

0.37
±0.22

0.34
±0.25

0.33
±0.22

Ex.
Time

2 Minutes 53.62 Seconds 57.66 Seconds 56.1 Seconds

* The Wilcoxon signed-rank test indicates that the performance of the SVM algorithm is sta-
tistically significantly higher than the other three algorithms in at least 4 categories, with the
probability p < 0.05.

Table 5.5: Test results of the SVM, NB, DT, and KNN algorithms with the ML4RC
method based on 10-fold cross-validation

5.2. TRAINING AND TESTING ML ALGORITHMS FOR ML4RC 153

(a) SVM (b) NB

(c) DT (d) KNN

Figure 5.7: Learning Curves of the SVM, NB, DT, and KNN Algorithms Based on
Macro F1-score using 10-Fold Cross-Validation.

performs better than KNN and NB for requirements classification [SW13, LHG+18].
SVM has also been widely recognized as one of the most effective algorithms for text
classification tasks [YL99].

For individual requirement categories, SVM performs well on Functional, Perfor-
mance, Availability, Security, and Usability, achieving over 60% on the first three cat-
egories across the board and over 50% on the last two categories across the board. For
Look & Feel, SVM achieves a good precision (61%), but with a lower recall (47%)
and, subsequently, a lower F1-score (49%). SVM performs poorly on the remaining
six categories, with the worst performance in Portability (P= 5%, R= 10%, F1= 7%).
We noticed that, among the six poorly performed categories, five are the minor classes
with an average number of instances = 18.2, and one (Operational) is the major class
with 77 instances. We also noticed that the worst-performed category, Portability, is
the smallest class with only 12 instances. These observations suggest that, under the
ML4RC method, SVM performs well on predicting the major classes (except the Op-
erational category) and not well on the minor classes (except the Availability category).
These two exceptional categories are interesting because, while Operational is a ma-
jor class, its features may not be intuitive enough for the classifier; on the other hand,
while Availability is a minor class, its features are the most intuitive. We will return to
this discussion in Section 5.4 when we assess the effectiveness of our feature selection
and feature extension techniques.

154 CHAPTER 5. ML4RC METHOD

To confirm the statistical significance of the performance of the SVM algorithm
over the other three, we use the Wilcoxon signed-rank test [Wil92] to statistically com-
pare the performance metrics between SVM and the other three algorithms. The test
indicates that the performance of SVM is statistically significantly higher than the other
three algorithms on at least four requirements categories, with the probability p < 0.05
(see the stared numbers in Table 5.5).

However, while SVM is more effective than the other three algorithms, it incurs
a slightly higher computational time as it takes more than two minutes to train. By
contrast, the training of the other three algorithms takes less than one minute. There
is, therefore, a trade-off between the effectiveness and efficiency of these algorithms.

Learning Curves

The training curves of the four algorithms (i.e., the red curves) in Figure 5.7 show that
all four algorithms start with a high training score (with F1 = 0.95 for DT; F1 = 1.0
for SVM, NB, and KNN). These curves gradually slide downwards as the training
progresses (i.e., with more training samples), resulting in a slight decrease in F1-score
(with F1 = 0.95 for NB and KNN; F1 = 0.90 for SVM and DT). By contrast, the
testing curves of these algorithms (i.e., the green curves) start with a low score (F1≤
0.20 for SVM, DT, and KNN; F1 = 0.25 for NB) and gradually climb upwards as the
training proceeds (with more training samples). Among them, SVM moves upwards
faster than other algorithms, with F1 > 0.45 for SVM at the end of the training and
F1< 0.40 for the other three algorithms. This suggests that SVM is generalizing better
than the other algorithms. Thus, potentially adding more training examples can help
improve the performance of SVM.

5.3 Experimental Comparison of Related Methods

This section compares the performance of the ML4RC method that incorporates SVM
as the classification algorithm with related methods. It seeks to fulfill the following
research objective:

To investigate the effectiveness and efficiency of ML4RC (i.e., the combination
of the three techniques) compared with closely related methods.

To do so, we compare ML4RC with the following four methods:

1. The method by Cleland-Huang et al. [CHSZS07]

5.3. EXPERIMENTAL COMPARISON OF RELATED METHODS 155

2. The method by Kurtanović and Maalej [KM17]

3. The method by Yin et al. [YGX+13]

4. The method by Lu and Liang [LL17]

There are two main reasons for selecting these four methods for comparison: First,
the process description of these methods is relatively clear or can be inferred from
the description so that we can reconstruct these methods based on their description
and objectively assess the performance of these methods against ours. Second, these
methods are closely related to ours in the following ways: The method by Cleland-
Huang et al. [CHSZS07] has been used as a basic method for evaluating ML-based
requirements classification by the RE community [ROW13, HKO08, ZYWS11]. We
thus use it as our basic method. The methods by Kurtanović and Maalej [KM17], and
Yin et al. [YGX+13] have explicitly addressed the class imbalance problem. Although
the method by Yin et al. [YGX+13] was originally designed for high-dimensional data
classification in general, we re-purposed it for requirements classification as it uses a
class decomposition strategy that complements ours. Finally, the method by Lu and
Liang [LL17] seems to be the only method that has explicitly addressed the short text
problem in the context of requirement classification. These methods are summarized
in Table 5.6.

5.3.1 Experiment Execution

To conduct a fair comparison, we re-implemented all three methods using the same
environment as described in Section 5.2. The PROMISE-exp dataset and 10-fold cross-
validation were used for classifier training and testing. We implemented these methods
from scratch based on their original descriptions [KM17, YGX+13, LL17]. Below, we
present how we execute each of these three methods through software implementation.

Implementing the Basic Method

The basic method by Cleland-Huang et al. [CHSZS07] uses a probability function to
determine the likelihood that each new requirement might belong to a certain NFR
type. A multi-class classifier is trained to classify a given requirement into one of the
10 categories on the original PROMISE dataset. Similar to our method, this method
is also divided into training and testing phases. During the training phase, the proba-
bility function computes a probabilistic weight for each potential indicator term (i.e.,

156 CHAPTER 5. ML4RC METHOD

Ref. Dataset ML Algo-
rithm

Key Techniques Classifier Training & Testing

Basic Method

Cleland-
Huang et
al.
[CHSZS07]

PROMISE
dataset (10
categories,
684
requirements)

Probability
function

Feature selection: a
probability function to
calculate the
probabilistic weight for
each potential indicator
term for each category

A multi-class classifier is
trained to classify a given
requirement into one of the 10
categories; leave-one-out
cross-validation for classifier
training and testing, with an
average of P = 0.14 and
R = 0.77

Addressing the class imbalance problem

Kurtanović
and
Maalej
[KM17]

PROMISE
dataset

SVM with
linear
kernel
(binary
version)

Solution for imbalanced
classes: Over-sampling
used to balance the
major NFR classes;
Feature selection:
Different types of
features (meta-data,
texts, and syntax
features) are selected
according to their
importance.

A multi-class classifier is
trained to classify a
requirement into one of these
four categories: Usability,
Security, Operational, and
Performance; 10-fold CV for
classifier training and testing,
with the highest F1 = 0.74 for
classification of Usability, 0.74
for Security, 0.71 for
Operational, and 0.82 for
Performance.

Yin et al.
[YGX+13]

4 datasets (a
total of 433
samples from
medical
diagnosis
problems &
other sources

SVM with
linear
kernel

Solution for imbalanced
classes: Use k-means
clustering to divide the
major classes into
smaller
pseudo-subclasses with
relatively uniform sizes.

A binary classifier is trained to
classify an input text into one
of two categories; 5-fold CV
for classifier training and
testing, with F1 = 0.65 for
minor classes and F1 = 0.91
for major classes

Addressing the short text classification problem

Lu and
Liang
[LL17]

4000 user
review
sentences
from iBooks
and
WhatsApp

DT with
Bagging
method

Feature extension:
Word2Vec used to
expand each user review
with the most similar
words; Feature
representation: Bag of
Words

A multi-class classifier is
trained to classify a given user
review into one of these four
types of NFRs: Reliability,
Usability, Portability, and
Performance; 10-fold CV for
classifier training and testing,
with P = 0.71 , R = 0.72,
F1 = 0.72

Table 5.6: Related Methods Used to Compare ML4RC

5.3. EXPERIMENTAL COMPARISON OF RELATED METHODS 157

keyword), which represents the importance of the term relative to a particular NFR cat-
egory. The weight given to each term is calculated based on the standard information
retrieval assumption that the term relevant to a certain NFR type must also be present
in the requirements document to be classified. Consequently, the frequency at which
the term occurs in the document is an important factor in determining the weight of the
term.

During the testing phase, each requirement is classified into a certain NFR type if it
contains a certain number of indicator terms belonging to that type. Requirements re-
ceiving the classification scores above a certain threshold for a given NFR type will be
classified into that type, and all unclassified requirements are assumed to be functional
requirements.

Cleland-Huang et al. [CHSZS07] employed leave-p-out cross-validation (LPOCV)
[AC+10] for classifier training and testing (where p = 1). Like k-fold CV, LPOCV
creates k-fold partitions to be fed to the classifier k times; (k− 1) fold for training
and 1 fold for testing. The split of the training and testing in each fold is based on
the number of requirements documents (i.e., projects) in the PROMISE training set,
rather than the number of requirements; thus, k equals the number of requirements
documents.

We implemented this method as faithfully as possible. As no implementation de-
tails were provided by its authors, we used Python as the main implementation tool,
complemented by NLTK for the text pre-processing task (stop-word removal and stem-
ming). The test results of this method are presented in Table 5.7. The learning curves
of this method are plotted in Figure 5.8.

It should be noted that we could not use 10-fold cross-validation for this basic
method due to its probability function’s dependency on the number of requirements
documents. Therefore, we cannot split the dataset based on the number of requirements
in the dataset as we would have done with 10-fold cross-validation. Consequently, we
had to use the same cross-validation technique (LPOCV) as in the original method. To
be able to compare our method with the basic method, we retrained it using LPOCV
(as our method was originally trained using 10-fold cross-validation, as described in
Section 5.2). The test results of our method using LPOCV are presented alongside
those of the basic method in Table 5.7. The learning curves of our method are plotted
in Figure 5.8.

158 CHAPTER 5. ML4RC METHOD

Cat. Basic (Probability-based) ML4RC (SVM-based)
P R F1 P R F1

F 0.46 ±0.44 0.08*±0.14 0.13*±0.02 0.72 ±0.15 0.78 ±0.21 0.71 ±0.15

SE 0.41*±0.20 0.44*±0.18 0.39*±0.16 0.74 ±0.19 0.65 ±0.19 0.68 ±0.16

US 0.18 ±0.16 0.46 ±0.36 0.25 ±0.21 0.35 ±0.31 0.42 ±0.02 0.33 ±0.24

O 0.12*±0.13 0.41 ±0.32 0.16*±0.12 0.27 ±0.17 0.60 ±0.33 0.32 ±0.14

PE 0.47 ±0.38 0.43 ±0.33 0.42 ±0.30 0.49 ±0.38 0.49 ±0.37 0.46 ±0.34

LF 0.15*±0.30 0.16 ±0.23 0.09*±0.12 0.42 ±0.39 0.34 ±0.38 0.33 ±0.32

A 0.29 ±0.29 0.60 ±0.43 0.37*±0.31 0.53 ±0.40 0.55 ±0.42 0.53 ±0.40

MN 0.21 ±0.33 0.19 ±0.31 0.16 ±0.21 0.23 ±0.4 0.18 ±0.31 0.19 ±0.32

SC 0.08 ±0.23 0.02 ±0.08 0.04 ±0.11 0.16 ±0.33 0.07 ±0.14 0.09 ±0.18

FT 0.00 ±0.00 0.00*±0.00 0.00*±0.00 0.21 ±0.33 0.18 ±0.22 0.18 ±0.25

L 0.05 ±0.15 0.02 ±0.05 0.02 ±0.08 0.10 ±0.03 0.01 ±0.04 0.02 ±0.08

PO 0.05 ±0.15 0.10 ±0.30 0.07 ±0.20 0.3 ±0.10 0.10 ±0.30 0.5 ±0.15
Mic. 0.26 ±0.07 0.26 ±0.07 0.26 ±0.07 0.58 ±0.15 0.58 ±0.15 0.58 ±0.15
Mac. 0.21 ±0.16 0.24 ±0.20 0.18 ±0.14 0.38 ±0.20 0.36 ±0.24 0.36 ±0.21
Ex. 39 Minutes 1.8 Minutes

* P-values significant at alpha < 0.05

Table 5.7: Test results of the basic [CHSZS07] and ML4RC methods using
Leave-P-Out Cross-Validation

Implementing the Method by Kurtanović and Maalej [KM17]

This method classifies a given requirement into one of these four categories: Usability,
Security, Operational, and Performance. This method has explicitly addressed the class
imbalance problem. However, in contrast to our method, it only addresses the two-class
imbalanced problem. The two classes were derived from the PROMISE dataset: the
majority class consists of 67 Usability requirements and the minority class consists of
54 Performance requirements. The majority class is reduced through under-sampling,
which randomly removes some samples (i.e., requirements) from the class, whereas
the minority class is enlarged through over-sampling by adding supplementary samples
derived from Amazon software reviews.

For text pre-processing, Kurtanović and Maalej applied NLTK and the Stanford
Parser 5 for removal of punctuation, stop-words, and lemmatization. This method se-
lects 11 types of feature, including textual features (e.g., word collections, such as
bigrams and trigrams), meta-data (e.g., text length), and syntax features (e.g., POS
tags). These features are ranked according to their importance, which is assessed using
an ensemble of tree classifiers, and the top 10 features are selected and used for classi-
fication. The built-in SVM model in scikit-learn is used to train four binary classifiers

5http://nlp.stanford.edu/software/lex-parser.shtml

5.3. EXPERIMENTAL COMPARISON OF RELATED METHODS 159

(a) Basic (b) ML4RC

Figure 5.8: Learning curves of the basic and ML4RC methods Based on Leave-P-Out
Cross-Validation.

and one multi-class classifier that work in unison to classify the four most frequent
NFRs in the PROMISE dataset: Usability, Security, Operational, and Performance.

To implement this method, we adapted the source code provided by Dalpiaz et al.
[DDAÇ19] 6. As this source code was for a binary classification system, we changed
it into a multi-class classification system. We noticed that Dalpiaz et al. made several
modifications to the original method by Kurtanović and Maalej. One was feature selec-
tion, as they could not reproduce one specific type of feature, called CP unigrams, due
to lack of sufficient description on how this type of feature can be identified. Another
modification was the tool for building the parse trees, as they used Berkley’s benepar li-
brary rather than the Stanford parser. The third modification was over-sampling. Since
the Amazon software reviews used for over-sampling in the original method were arti-
ficial, they did not implement this technique. We adapted their first two modifications
in our implementation, but implemented a random over-sampling technique based on
imbalanced-learn, a python package offering different re-sampling techniques 7, due to
the unavailability of the Amazon software reviews dataset used in the original dataset.

We trained the SVM model of Kurtanović and Maalej’s method using 10-fold cross
validation and the test results of this method are presented in Table 5.8.

Implementing the Method by Yin et al. [YGX+13]

This method is closely related to ours in that it is also based on data decomposition.
However, while our method decomposes the dataset, Yin et al.’s method decomposes
the majority classes into relatively balanced pseudo-subclasses. For feature selection,

6https://github.com/explainable-re/RE-2019-Materials, last accessed December 2020
7https://pypi.org/project/imblearn/

https://github.com/explainable-re/RE-2019-Materials

160 CHAPTER 5. ML4RC METHOD

Yin et al. apply the goodness of feature with pseudo-labels (e.g., Fisher-based or mu-
tual information method). Different numbers of features are selected and released from
the pseudo-labels to the original labels. A binary classifier is built using the selected
features and applied to different high-dimensional datasets (including texts).

As this method does not provide implementation details, we made the following
modifications in our implementation:

• Implementation tools: We used Python as the main implementation tool, NLTK
for pre-processing and clustering the major classes with cosine distance (via the
KMeansClusterer module), and scikit-learn for feature selection, representation
and classification.

• Pre-processing: We applied stemming and stop-word removal for pre-processing
and representation, as the original method did not include pre-processing and
transformation steps.

• Feature selection: We use the mutual information method for feature selection
and SVM for classification. These techniques were chosen because they showed
high performance and suitability in our preliminary experiments when compared
to other techniques mentioned in Yin et al.’s study (e.g., Fisher and correlation-
based methods for feature selection, DT and NB for classification).

• Classifier training: We trained a multi-class classifier based on SVM instead of
a binary classifier as in the original method.

Table 5.8 displays the test results of this method.

Implementing the Method by Lu and Liang [LL17]

This method classifies a given user review into one of these four types of NFRs: Reli-
ability, Usability, Portability, and Performance. To the best of our knowledge, it is the
only requirements classification method that has explicitly addressed the issue of short
text classification. It does so by expanding each user review with the most related
words in an external dataset using a word2vec model 8 that has been trained using
21969 user review sentences. Then, top N words that are ranked according to their
similarity values are added to the end of the user review. N is the user review length

8https://code.google.com/archive/p/word2vec/

5.3. EXPERIMENTAL COMPARISON OF RELATED METHODS 161

(a) Kurtan Maalej (b) Yin et al.

(c) Lu and Liang (d) ML4RC

Figure 5.9: Learning Curves of Kurtanović and Maalej [KM17], Yin et al. [YGX+13],
Lu and Liang [LL17], and ML4RC Methods Based on 10-Fold Cross-Validation.

multiplied by θ. This feature extension method is used to classify user reviews into
NFR categories using a DT-based bagging classifier.

The original method was implemented using Weka 9. To be consistent with our
implementations of the other methods (including ours) and due to the unavailability
of its source code, we re-implemented this method using Python complemented with
NLTK and scikit-learn. In addition, as the word2vec model used by Lu and Liang is
not available, we replaced it with a pre-trained Google News word2vec model released
by Mikolov et al. [MCCD13]. This model is publicly available and showed higher per-
formance in our preliminary experiments for classifying NFRs than another available
model that was proposed by Efstathiou et al. [ECS18].

We trained the DT model of this method using 10-fold cross validation and the test
results of this classifier is displayed in Table 5.8.

9https://www.cs.waikato.ac.nz/ml/weka/

162 CHAPTER 5. ML4RC METHOD

C Kurtanović&Maalej Yin et al. Lu & Liang ML4RC
P R F1 P R F1 P R F1 P R F1

F 0.73
±0.11

0.81
±0.11

0.76
±0.05

0.71
±0.07

0.83
±10

0.77
±0.07

0.69*
±0.04

0.88
±0.09

0.77
±0.04

0.76
±0.07

0.82
±0.13

0.78
±0.08

SE 0.72
±0.19

0.56
±0.15

0.61
±0.14

0.69
±0.22

0.60
±0.17

0.63
±0.17

0.63
±0.15

0.56
±0.15

0.57
±0.10

0.66
±0.19

0.52
±0.20

0.57
±0.18

US 0.49
±0.15

0.42
±0.18

0.43
±0.16

0.56
±0.12

0.40*
±0.22

0.44*
±0.19

0.45
±0.20

0.40*
±0.20

0.41*
±0.18

0.53
±0.14

0.54
±0.19

0.53
±0.16

O 0.37
±0.26

0.29*
±0.18

0.28*
±0.14

0.40
±0.18

0.43
±0.24

0.40
±0.17

0.34*
±0.15

0.30*
±0.16

0.31
±0.15

0.37
±0.12

0.53
±0.19

0.43
±0.12

PE 0.59*
±0.11

0.60
±0.12

0.58*
±0.09

0.73
±0.23

0.57
±0.21

0.60
±0.17

0.76
±0.21

0.61
±0.21

0.66
±0.18

0.72
±0.10

0.68
±0.15

0.69
±0.12

LF 0.41
±0.36

0.26*
±0.22

0.28*
±0.21

0.52
±0.21

0.33
±0.20

0.36
±0.13

0.36
±0.39

0.14*
±0.13

0.18*
±0.17

0.61
±0.29

0.47
±0.30

0.49
±0.25

A 0.40*
±0.27

0.44*
±0.31

0.38*
±0.23

0.45
±0.32

0.60
±0.36

0.49
±0.31

0.49
±0.34

0.44*
±0.27

0.34*
±0.26

0.74
±0.39

0.67
±0.39

0.67
±0.36

MN 0.30
±0.31

0.28
±0.24

0.28
±0.24

0.52
±0.45

0.40
±0.38

0.43
±0.37

0.35
±0.45

0.17
±0.21

0.22
±0.28

0.25
±0.34

0.20
±0.26

0.21
±0.27

SC 0.32
±0.38

0.37
±0.40

0.30
±0.32

0.40
±0.38

0.40
±0.38

0.38
±0.35

0.45
±0.47

0.22
±0.22

0.29
±0.30

0.44
±0.42

0.42
±0.42

0.41
±0.39

FT 0.28
±0.39

0.20
±0.24

0.22
±0.28

0.23
±0.40

0.20
±0.33

0.18
±0.28

0.20
±0.40

0.10
±0.20

0.13
±0.27

0.25
±0.40

0.20
±0.33

0.22
±0.35

L 0.43
±0.47

0.40
±0.44

0.41
±0.44

0.28
±0.39

0.35
±0.45

0.28
±0.37

0.38
±0.43

0.40
±0.44

0.37
±0.40

0.45
±0.47

0.40
±0.44

0.40
±0.42

PO 0.03
±0.10

0.10
±0.30

0.05
±0.15

0.10
±0.20

0.20
±0.40

0.13
±0.27

0.00
±0.00

0.00
±0.00

0.00
±0.00

0.05
±0.15

0.10
±0.30

0.07
±0.20

Mic 0.60
±0.06

0.60
±0.06

0.60
±0.65

0.63
±0.08

0.63
±0.08

0.63
±0.08

0.62
±0.04

0.62
±0.04

0.62
±0.04

0.65
±0.08

0.65
±0.08

0.65
±0.08

Mac 0.42
±0.19

0.39
±0.19

0.38
±0.19

0.47
±0.19

0.44
±0.17

0.42
±0.18

0.43
±0.20

0.35
±0.24

0.35
±0.21

0.49
±0.22

0.47
±0.21

0.46
±0.20

Ex.
Time

15.2 minutes 47.7 seconds 3.1 minutes 2 minutes

* Indicates a significant statistical difference between the ML4RC and the other classifiers with p<0.05.
Wilcoxon signed-rank test has been applied.

Table 5.8: Test results of the four related methods: Kurtanović & Maalej [KM17],Yin
et al. [YGX+13], Lu abd Liang [LL17] and ML4RC based on 10-fold cross-validation

5.3. EXPERIMENTAL COMPARISON OF RELATED METHODS 163

Figure 5.10: Overall performance comparison between basic and ML4RC.

5.3.2 Experimental Results

Comparison with the Basic Method

Classification Performance. As shown in Table 5.7, apart from the bottom two cate-
gories (Legal and Portability), ML4RC outperforms the basic method in all the other
categories. ML4RC performs particularly well on the Functional and Security cate-
gories, and produces encouraging results on the Availability category. A comparison
of the overall performance of basic and ML4RC is depicted in Figure 5.10, which
shows that ML4RC has made a substantial improvement over the basic method across
the board with a 17% increase in precision, 12% increase in recall, and 18% increase
in F1-score.

For individual requirement categories, ML4RC performs far better than the basic
method on Functional, Security, and Availability, and slightly better on the Perfor-
mance category. By itself, ML4RC performs well on the major classes (except the
Operational category) and not well on the minor classes (except the Availability cate-
gory). The same observation is reported in Section 5.2.3.

Statistically, the Wilcoxon signed-rank test shows that ML4RC has made a sig-
nificant improvement over the basic method in the F1-score for the Functional, Secu-
rity, Operational, Look & feel, and Availability categories. We noticed that the basic
method was unable to identify any Look & feel requirements, due to the limitation
in its feature selection technique, that is, the relevance of a term (feature) depending
on its occurrence in the number of requirements documents. Finally, in terms of the
execution time, it took about 60 minutes to cross-validate the basic method, whereas it
only took about two minutes for ML4RC.

164 CHAPTER 5. ML4RC METHOD

Learning Curves. When examining the learning curves of the basic method (Figure
5.8a), it can be observed that its training curve starts with a high score (F1 ≥ 0.75%)
and declines gradually to (F1 > 0.4) throughout the training; its validation curve starts
with a low score (F1 ≤ 0.20%) and slightly increases to (F1 ≤ 0.25%). It then stays
fixed. This indicates the inability to learn from the training data (i.e., fit the training
data), known as the underfitting problem. Adding more examples to the basic model
is unlikely to lead to improvement in its performance, but changing the model by, for
example, using a different algorithm, will.

On the other hand, it can be observed in Figure 5.8b that the training curve of the
ML4RC method starts with a high score (F1 <= 0.80) and slightly increases to (F
<= 0.86) as the training progresses (i.e., with more training samples); by contrast, its
validation curve starts at a very low score (F1 = 0.20) but gradually moves upwards
as the training proceeds (F1 > 0.40). This indicates that ML4RC suffers from high
variance (a large gap between training and validation score) and bias (low validation
score), known as the overfitting. Adding more training samples is very likely to lead
to improving ML4RC’s performance.

Comparison with Three Related Methods

Classification Performance. Table 5.8 shows that ML4RC has the best performance,
followed by Yin et al’s method, then Kurtanović and Maalej’s method, and finally Lu
and Liang’s method. This seems to suggest that the two methods with explicit data
decomposition perform better than the two without, as the method by Lu and Liang
is based on DT, whereas the remaining three are SVM-based. The relatively poor
performance of Lu and Liang’s method may also be due to its learning algorithm (see
Section 4 for the discussion on the performance of different algorithms). A comparison
of the overall performance of these methods is depicted in Figure 5.11.

For individual requirement categories, all four methods perform similarly on most
categories. Notably, all four methods are very good at identifying the Functional cate-
gory, with a high recall value (over 80%); ML4RC stands out in classifying the Avail-
ability category and produces good results compatible with Lu and Liang’s method on
the Performance category. Similar to ML4RC, the other three methods also show a ten-
dency toward performing better on the major classes and worse on the minor classes.

Statistically, the Wilcoxon signed-rank test shows that ML4RC has made a sig-
nificant improvement over Kurtanović and Maalej’s method on the Operational, Per-
formance, Look & feel, and Availability categories; it also improves upon Lu and

5.3. EXPERIMENTAL COMPARISON OF RELATED METHODS 165

Figure 5.11: Overall performance comparison between four related methods.

Liang’s method on Usability, Operational, Look & feel, and Availability, and Yin et
al.’s method on the Usability.

In terms of execution time, apart from Yin et al.’s method, which took 48 seconds
to run and is the fastest, ML4RC is more efficient than the other two methods. The ex-
ecution time is based on the time spent on 10-fold cross validation without considering
the time used for tuning the parameter, as some classifiers have more parameters than
others.

Learning Curves. When examining the learning curves of these methods (Figure
5.7), it can be observed that their training curve starts very high (F1 = 1.0); as the
training progresses, the training curve of ML4RC declines gradually, whereas the other
three training curves stay largely unchanged, resulting in a big gap between training
and cross-validation scores (i.e., a high variance), indicating that the other methods
fit the training data very well but are difficult to generalize on the data not used for
training (known as over-fitting).

The testing curves of all the four methods show an upward tendency in model
generalization. The curve of ML4RC, however, is more prominently going upwards,
suggesting that ML4RC has more potential to generalize well, if the size of the training
data continues to increase.

166 CHAPTER 5. ML4RC METHOD

5.4 Experimental Evaluation of the Key Techniques of
ML4RC

In Sections 5.2 and 5.3, we evaluated the performance of the ML4RC method as a
whole, whereas in this section we evaluate the performance of the three key techniques
underpinning ML4RC: Dataset Decomposition (DD), Feature Selection (FS), and Fea-
ture Extension (FE). The main objectives of this evaluation are:

• To investigate the usefulness of the three proposed techniques (HC, FE, and FS)
versus a baseline ML approach applied with no additional technique for address-
ing the three problems (high dimensionality, short-text classification, and class
imbalance).

• To demonstrate the effectiveness of the techniques in in relation to a widely used
technique applied to address the problems of high dimensionality and imbalance
class.

To fulfill these objectives, we incorporate each of these techniques into a multi-
class classifier and then experimentally compared each performance with a baseline
classifier and related techniques. Therefore, our evaluation contains two main parts: a
comparison with the baseline method and one with other widely used techniques. The
following sections are organized based on these parts (aforementioned objectives).

5.4.1 Comparison with the Baseline Method

In this section, we experimentally evaluate each of the three key techniques of ML4RC
against a baseline method to assess the performance of each technique. We implement
the following classification systems to facilitate our evaluation:

1. The Baseline Classifier: This is the baseline classifier for comparisons. This
classifier does not include any of the three key techniques in ML4RC.

2. The DD Classifier: This classifier only includes the dataset decomposition tech-
nique in its implementation.

3. The FS Classifier: This classifier only includes the semantic role-based feature
selection technique in its implementation.

5.4. KEY TECHNIQUES EVALUATION 167

4. The FE Classifier: This classifier only includes the feature extension technique
in its implementation.

In the subsections below, we present this experimental study and the results ob-
tained.

Experiment Execution

The same implementation environment as described in Section 5.2.1 was used. We
implemented the four classifiers individually, each trained and tested using the 10-fold
cross validation process. The implementation process for the Baseline classifier is
given below:

1. PROMISE-exp is randomly divided into 10 folds (nine folds for training and one
for testing).

2. For each fold of the training data, the requirements in that fold are pre-processed
and converted into TF-IDF vectors, i.e., all the words are used as features in the
learning space with no feature selection or extension.

3. The converted requirements and associated labels are used to tune SVM hyper-
parameters (e.g., C parameter) by using grid search with 5-fold cross-validation.
Then, the classifier is trained using the optimal hyperparameters.

4. The testing dataset is also pre-processed, converted into TF-IDF, and used to test
the trained classifier, which produces a set of predicted requirement category
labels.

5. The predicted labels are compared with the true labels provided in the original
PROMISE-exp dataset, and the difference between the true and predicted labels
for each category is measured using P, R, and F1 metrics. Besides, the macro-
average and micro-average of these values (all classes) are calculated.

6. Steps 2-5 are repeated nine times. Afterward, the average P, R, and F1 values
for each category are computed, as well as the mean of these average values.

This process was adapted to the implementation of the remaining three classifiers
by adding a new step appropriate for each classifier, adding a dataset decomposition
step for the DD classifier, a feature selection step for the FS step, etc. The 10-fold
cross validation test results of these classifiers are presented in Table 5.9.

168 CHAPTER 5. ML4RC METHOD

Cat. Baseline Classifier DD Classifier FS Classifier FE Classifier
P R F1 P R F1 P R F1 P R F1

F 0.69
±0.04

0.83
±0.12

0.75
±0.05

0.79*
±0.05

0.74*
±0.17

0.75
±0.09

0.68
±0.03

0.85
±0.01

0.76
±0.05

0.71
±0.05

0.87
±0.12

0.78*
±0.05

SE 0.69
±0.19

0.65
±0.15

0.64
±0.13

0.74*
±0.15

0.63
±0.16

0.66
±0.09

0.64
±0.19

0.60
±0.17

0.60
±0.16

0.66
±0.02

0.63
±0.15

0.62
±0.14

US 0.62
±0.22

0.51
±0.23

0.55
±0.22

0.52
±0.10

0.62
±0.22

0.55
±0.12

0.59
±0.18

0.49
±0.20

0.53
±0.18

0.63
±0.21

0.54
±0.26

0.57
±0.22

O 0.41
±0.13

0.46
±0.26

0.42
±0.17

0.36
±0.15

0.55
±0.24

0.43
±0.16

0.46
±0.14

0.42
±0.21

0.42
±0.15

0.44
±0.15

0.43
±0.26

0.42
±0.20

PE 0.88
±0.13

0.65
±0.22

0.71
±0.18

0.67*
±0.19

0.69
±0.13

0.66
±0.14

0.87
±0.18

0.69
±0.16

0.76
±0.15

0.86
±0.17

0.63
±0.18

0.71
±0.16

LF 0.69
±0.37

0.39
±0.19

0.46
±0.22

0.51
±0.23

0.57
±0.30

0.49
±0.21

0.60
±0.39

0.33
±0.25

0.39
±0.26

0.74
±0.24

0.45
±0.20

0.54
±0.20

A 0.70
±0.38

0.67
±0.37

0.66
±0.35

0.72
±0.38

0.70
±0.38

0.70
±0.36

0.76
±0.40

0.63
±0.38

0.66
±0.36

0.74
±0.39

0.67
±0.37

0.68
±0.35

MN 0.45
±0.47

0.33
±0.39

0.37
±0.40

0.44
±0.42

0.37
±0.37

0.37
±0.35

0.35
±0.39

0.23
±0.24

0.27
±0.28

0.63
±0.46

0.45
±0.39

0.49
±0.39

SC 0.55
±0.47

0.40
±0.38

0.45
±0.40

0.55
±0.45

0.45
±0.42

0.49
±0.43

0.57
±0.47

0.48
±0.42

0.51
±0.44

0.67
±0.45

0.53
±0.39

0.57
±0.39

FT 0.25
±0.40

0.20
±0.33

0.20
±0.31

0.25
±0.34

0.25
±0.34

0.23
±0.29

0.25
±0.40

0.20
±0.33

0.22
±0.35

0.25
±0.40

0.20
±0.33

0.22
±0.35

L 0.45
±0.47

0.40
±0.44

0.40
±0.42

0.45
±0.47

0.40
±0.44

0.40
±0.42

0.47
±0.46

0.45
±0.42

0.43
±0.40

0.45
±0.47

0.45
±0.47

0.43
±0.45

PO 0.00
±0.00

0.00
±0.00

0.00
±0.00

0.05
±0.15

0.10
±0.30

0.07
±0.20

0.10
±0.30

0.10
±0.30

0.10
±0.30

0.00
±0.00

0.00
±0.00

0.00
±0.00

Mic 0.65
±0.07

0.65
±0.07

0.65
±0.07

0.66
±0.05

0.66
±0.05

0.66
±0.05

0.65
±0.05

0.65
±0.05

0.65
±0.05

0.68
±0.06

0.68
±0.06

0.68
±0.06

Mac 0.53
±0.04

0.46
±0.05

0.47
±0.04

0.50
±0.05

0.51
±0.07

0.48
±0.06

0.53
±0.06

0.46
±0.05

0.47
±0.05

0.56
±0.05

0.49
±0.05

0.50
±0.05

Ex.
Time

3.3 minutes 1.3 minutes 2.5 minutes 3.5 minutes

* Indicates a significant statistical difference between the baseline and another classifier with p<0.05. Wilcoxon
signed-rank test has been applied.

Table 5.9: 10-Fold Cross-Validated Test Results for the Four Classifiers

5.4. KEY TECHNIQUES EVALUATION 169

(a) Baseline Classifier (b) DD Classifier

(c) FS Classifier (d) FE Classifier

Figure 5.12: Learning curves of the Baseline, DD, FS, and FE classifiers under 10-Fold
Cross-Validation.

Experimental Results

Classification Performance. The average performance of the four classifiers, as shown
in Table 5.9, is very close, with the Baseline and FS classifiers achieving the same
means. In comparison, the FE classifier has the overall best performance, followed
by the DD classifier, and the Baseline and FS classifiers in joint third place. These
results suggest that, with reference to the Baseline classifier, using feature extension
or dataset decomposition has marginally improved the classification performance, but
using feature selection has neither improved nor worsened the performance.

Specifically, the FE classifier is the most consistent and robust classifier among the
four as it performs well on all but the bottom three categories; in particular, it outper-
forms the other three classifiers by a great amount on the Look & feel, Maintainabil-
ity, and Scalability categories—a clear indication of the benefit of feature extension.
The performance of the DD classifier is also encouraging. Like the FE classifier, the
DD classifier has also made improvements over the Baseline classifier on many minor
classes (i.e., Look & feel, Availability, Maintainability, Scalability, and Legal). This
clearly shows that the dataset decomposition has a positive effect on the classification
of (most) minor classes.

The poorer performance of the FS classifier, in comparison with that of the DD and
FE classifiers, suggests that our feature selection technique is unable to correctly iden-
tify the distinct features that differentiate the types of requirements. There are many
reasons for this failure, including feature sparsity caused by the short text problem

170 CHAPTER 5. ML4RC METHOD

in requirements text and inadequate semantic roles captured in our feature selection
technique.

A detailed analysis of the classification results for the individual requirement cat-
egories brought the same observation reported in Section 5.2.3: the Operational cat-
egory is the only major class that is poorly performed by all four classifiers, whereas
Availability is the only minor class that is well performed by all. As previously noted,
intuitive and distinctive features of the Availability category, such as "available", and
"24/7", help the classifiers detect the requirements in this category despite the small
number of examples in it. By contrast, the features of Operational are not intuitive or
distinctive as they also occur in other categories. For example, the features that are fre-
quently used in Operational requirements include "interface" and "server", and these
are not unique to the Operational category as they are also frequently used in other cat-
egories, such as Look & feel, Functional, and Security. Such indistinguishable features
can misguide the classifiers.

Another reason for the classifiers to perform poorly on the Operational category is
due to lack of clear distinction between the Operational and Portability categories. For
example, the requirement "The system shall be compatible with the Microsoft Win-
dows Operating System" is labeled Portability in the PROMISE-exp dataset, whereas
the requirement "The system shall operate on Unix and Windows operating systems" is
labeled Operational. This problem makes it difficult to train a classifier that can always
correctly classify the requirements in these categories. Perhaps due to this problem, the
Baseline and FE classifiers have completely misclassified the requirements in Portabil-
ity, as their performance metrics all equal zero. It can also be observed that both the
DD and FS classifiers also perform very poorly on the Portability category. Since
Portability is a minor class (the smallest one in our dataset), and Operational is a major
class, test results in Table 5.9 clearly indicate that all four classifiers are biased towards
the major class, with the Baseline and FE classifiers completely misclassifying the re-
quirements in the minor class, whereas the DD and FS classifiers only achieve 5-10%
of classification accuracy on the minor class.

The problem just demonstrated that a combination of class imbalances and class

ambiguity poses a serious threat to the performance of a classifier. In RE, class am-
biguity is referred to as the representation problem [Gli07]; our classification of a
requirement depends on the way we represent it (see Section 2.1.2). This problem
prevails particularly in the requirements concerning a system’s security, as they can
be classified into the Functional or Security category, depending on how we represent

5.4. KEY TECHNIQUES EVALUATION 171

them [Gli07].
Finally, in terms of execution time, the DD classifier is the fastest as it took 1.3

minutes to run, followed by the FS classifier which took 2.5 minutes. The Baseline
classifier took 3.34 minutes, and the FE classifier took 3.5 minutes. The execution
time is based on the time spent on 10-fold cross validation without considering the
time used for tuning the parameter.

Learning Curves. As shown in Figure 5.12, the training curves of all the classifiers
start very high (F1 = 1.0); however, as the training progresses, the training curve of
the Baseline classifier stays largely unchanged, while the other three training curves
slightly decline to F1≤ 0.95. The testing curves of the four classifiers move upwards
gradually with more training examples; however, the testing curve of the Baseline clas-
sifier appears to stagnate when the number of training examples reaches 700, whereas
the testing curves of the DD, FS, and FE classifiers continue to climb up, exhibiting an
upward trend. This seems to suggest that these three classifiers are generalizing well
and their performance may continue to improve if they are fed with more and more
training examples.

5.4.2 Comparison with Other Techniques

In this section, we evaluate the performance of ML4RC techniques against other re-
lated techniques which have been used to address the learning problems in requirement
classification. Due to the lack of techniques used in addressing the short text classifi-
cation problem in requirement classification, our comparison only includes techniques
that are handling imbalance class and high-dimensionality problems. This has been
done through the following two experiments:

• Experiment 1 assesses the effectiveness of the DD technique by comparing the
implementation of a classifier with the DD technique versus two classifiers im-
plementing over-sampling and under-sampling techniques separately.

• Experiment 2 assesses the effectiveness of semantic role-based FS by imple-
menting a classifier with our FS technique versus implementing a classifier with
a widely-used FS technique (i.e., information gain).

The subsections below are organized based on the experiments. Each section discusses
a single experiment by showing its implementation description and results obtained.

172 CHAPTER 5. ML4RC METHOD

Evaluating The Dataset Decomposition Technique

In this experiment, we evaluate the dataset decomposition technique of ML4RC against
under-sampling and over-sampling techniques. These resampling techniques are well-
known solutions for handling the imbalanced classification problem (as discussed in
Chapter 4) and have been used for this purpose in NFR classification [KM17, HKKT20a].
Therefore, they are used to evaluate the effectiveness of the data decomposition tech-
nique of ML4RC in this experiment. The following classifiers are implemented to
facilitate our evaluation:

1. The DD Classifier: This classifier only includes the dataset decomposition tech-
nique in its implementation.

2. The OS Classifier: This classifier only includes over-sampling technique in its
implementation.

3. The US Classifier: This classifier only includes the under-sampling technique in
its implementation.

Experiment Execution
The DD classifier was implemented using the same setup as described in Sec-

tion 5.4.1 with no feature selection or extension. The OS and US classifiers were
implemented similarly to the steps described in section 5.4.1. However, we applied
over-sampling and under-sampling techniques separately after the feature representa-
tion step. The imblearn 10 package was used to over-sample the minority classes by
randomly replicating the minority class examples (over-sampling), and under-sample
the majority classes by randomly discarding samples from the majority classes (under-
sampling). The three classifiers were implemented individually, each trained and tested
using the 10-fold cross-validation process. The results of this experiment are presented
in table 5.10.

Experimental Results
Classification Performance. Table 5.10 shows that average performance of DD is

similar to the OS classifier, the same F1-score (F1 = 0.48), higher Recall (R = 0.51),
but low Precision (P = 0.50). However, the DD classifier clearly outperforms the US
with a difference of 15% in Precision, 7% in Recall and 15% in F1-score.

For individual requirements, generally speaking, the DD classifier and the OS clas-
sifier show similar performance; high performance for the majority classes (except

10https://imbalanced-learn.readthedocs.io/en/stable/api.html

5.4. KEY TECHNIQUES EVALUATION 173

Category OS Classifier US Classifier DD Classifier
P R F1 P R F1 P R F1

F 0.71*
±0.04

0.79
±0.15

0.74
±0.07

0.80
±0.21

0.33*
±0.20

0.44*
±0.21

0.79
±0.05

0.74
±0.17

0.75
±0.09

SE 0.61*
±0.19

0.63
±0.15

0.59*
±0.12

0.52*
±0.26

0.26*
±0.15

0.34*
±0.34

0.74
±0.15

0.63
±0.16

0.66
±0.09

US 0.56
±0.24

0.51
±0.25

0.52
±0.23

0.25*
±0.11

0.44*
±0.21

0.30*
±0.13

0.52
±0.10

0.62
±0.22

0.55
±0.12

O 0.39
±0.13

0.43
±0.27

0.39
±0.18

0.20*
±0.16

0.29*
±0.15

0.22*
±0.15

0.36
±0.15

0.55
±0.24

0.43
±0.16

PE 0.90*
±0.15

0.72
±0.13

0.78
±0.10

0.67
±0.26

0.53*
±0.22

0.55
±0.22

0.67
±0.19

0.69
±0.13

0.66
±0.14

LF 0.72*
±0.32

0.45
±0.20

0.51
±0.20

0.34
±0.30

0.27*
±0.19

0.27 *
±0.19

0.51
±0.23

0.57
±0.30

0.49
±0.21

A 0.72
±0.39

0.67
±0.37

0.68
±0.36

0.30*
±0.21

0.63
±0.41

0.40*
±0.27

0.72
±0.38

0.70
±0.38

0.70
±0.36

MN 0.57
±0.42

0.40
±0.35

0.44
±0.33

0.15*
±0.14

0.47
±0.45

0.22
±0.21

0.44
±0.42

0.37
±0.37

0.37
±0.35

SC 0.45
±0.42

0.40
±0.38

0.40
±0.36

0.37
±0.34

0.67*
±0.39

0.41*
±0.29

0.55
±0.45

0.45
±0.42

0.49
±0.43

FT 0.35
±0.45

0.25
±0.34

0.27
±0.33

0.14
±0.12

0.35
±0.32

0.18
±0.16

0.25
±0.34

0.25
±0.34

0.23
±0.29

L 0.45
±0.47

0.40
±0.44

0.40
±0.42

0.35
±0.39

0.55
±0.47

0.38
±0.40

0.45
±0.47

0.40
±0.44

0.40
±0.42

PO 0.03
±0.10

0.10
±0.30

0.05
±0.15

0.11
±0.13

0.50*
±0.50

0.18
±0.20

0.05
±0.15

0.10
±0.30

0.07
±0.20

Mic. 0.64
±0.06

0.64
±0.06

0.64
±0.06

0.36
±0.11

0.36
±0.11

0.36
±0.11

0.66
±0.05

0.66
±0.05

0.66
±0.05

Mac. 0.54
±0.05

0.48
±0.05

0.48
±0.05

0.35
±0.12

0.44
±0.11

0.33
±0.13

0.50
±0.05

0.51
±0.07

0.48
±0.06

Ex.
Time

14 minutes 5 seconds 1.3 minutes

* Indicates a significant statistical difference between the baseline and another classifier with p<0.05. Wilcoxon
signed-rank test has been applied.

Table 5.10: 10-Fold Cross-Validated test results for the classifiers handling the class
imbalance problem using over-sampling (OS), under-sampling (US) and Dataset De-
composition (DD) techniques.

Operability and Look & feel), and low in minority classes (except Availability). In par-
ticular, DD outperforms OS in the majority of classes except four: Performance, Look
& feel, Maintainability, and Fault tolerance. In addition, the DD classifier outperforms
the US classifier in all the classes, except for the most minority class (portability).

Statistically, the Wilcoxon signed-rank test shows that DD has made a significant
improvement over on Functional (precision) and Security (precision and F1-score),
while the OS classifier significantly improved compared to the DD classifier on Per-
formance (Precision), Look & feel (Precision). In comparison with the US classifier,
the DD classifier has made a significant improvement on at least 10 classes, while the
US classifier significantly outperformed the DD classifier on Portability (Recall).

174 CHAPTER 5. ML4RC METHOD

(a) OS Classifier (b) US Classifier (c) DD Classifier

Figure 5.13: Learning Curves of the over-sampling (OS), under-sampling (US) and
dataset decomposition (DD) Classifiers Based on 10-Fold Cross-Validation.

In terms of execution time, the US classifier is the fastest with 5 seconds, followed
by the DD classifier with 1.3 minutes. Finally, the OS classifier took the longest time
with 13 minutes.

Learning Curves. It can be observed that the training curves of the OS and DD
classifiers start very high (F1 ≈ 1.0); as the training progresses, the training curve
of DD declines slightly (F1 = 0.95), whereas the training curves of OS stay largely
unchanged, resulting in a bigger gap between training and cross-validation curves (i.e.,
a high variance) which leads to overfitting. DD also has a big gap between training and
testing curves; however, its testing is more prominently climbing upwards, suggesting
that the DD classifier has more potential for better generalization if the size of the
training data continues to increase. The learning curve of the US classifier, on the
other hand, indicates that US suffers from the underfitting problem, low training, and
testing scores.

Evaluating the Feature Selection Technique

In this experiment, we evaluate the feature selection technique of ML4RC against in-
formation gain technique. Information gain is a widely used features selection tech-
nique in text classification tasks that shows good classifier performance and has outper-
formed other features’ selection technique in comparative experimental studies [For03,
YP97]. It also frequently used in requirement classification tasks (as shown in Chapter
4); therefore, it has been chosen as the basis for this evaluation. We implement two
classifiers to facilitate our evaluation:

1. The FS Classifier: This classifier only includes the semantic role-based feature
selection technique in its implementation.

2. The Info-gain Classifier: This classifier only includes the information gain fea-
ture selection technique in its implementation.

5.4. KEY TECHNIQUES EVALUATION 175

Cat. Info-Gain Classifier FS Classifier
P R F1 P R F1

F 0.59*±0.04 0.80*±0.10 0.68*±0.06 0.68 ±0.03 0.85 ±0.01 0.76 ±0.05

SE 0.67 ±0.17 0.54 ±0.18 0.58 ±0.15 0.64 ±0.19 0.60 ±0.17 0.60 ±0.16

US 0.57 ±0.30 0.36*±0.21 0.43*±0.24 0.59 ±0.18 0.49 ±0.20 0.53 ±0.18

O 0.35 ±0.17 0.22*±0.16 0.25*±0.15 0.46 ±0.14 0.42 ±0.21 0.42 ±0.15

PE 0.83 ±0.15 0.68 ±0.21 0.73 ±0.16 0.87 ±0.18 0.69 ±0.16 0.76 ±0.15

LF 0.66 ±0.42 0.30 ±0.21 0.36 ±0.25 0.60 ±0.39 0.33 ±0.25 0.39 ±0.26

A 0.31*±0.34 0.25*±0.27 0.27*±0.29 0.76 ±0.40 0.63 ±0.38 0.66 ±0.36

MN 0.38 ±0.43 0.20 ±0.21 0.25 ±0.26 0.35 ±0.39 0.23 ±0.24 0.27 ±0.28

SC 0.62 ±0.43 0.50 ±0.39 0.53 ±0.38 0.57 ±0.47 0.48 ±0.42 0.51 ±0.44

FT 0.55*±0.47 0.40*±0.37 0.45*±0.39 0.25 ±0.40 0.20 ±0.33 0.22 ±0.35

L 0.43 ±0.47 0.45 ±0.45 0.42 ±0.44 0.47 ±0.46 0.45 ±0.42 0.43 ±0.40

PO 0.03 ±0.10 0.10 ±0.30 0.05 ±0.15 0.10 ±0.30 0.10 ±0.30 0.10 ±0.30

Mic. 0.59 ±0.15 0.59 ±0.15 0.59 ±0.15 0.65 ±0.05 0.65±0.05 0.65±0.05

Mac. 0.50 ±0.04 0.40±0.05 0.42±0.04 0.53 ±0.06 0.46±0.05 0.47±0.05

Ex.
Time

10.2 minutes 2.5 minutes

* Indicates a significant statistical difference between the baseline and another classifier with p<0.05. Wilcoxon
signed-rank test has been applied.

Table 5.11: 10-Fold Cross-Validated test results for the two classifiers applying differ-
ent feature selection methods

Experiment Execution FS was implemented using the same setup as described
in Section 5.4.1. The Info-gain classifier was implemented similarly to FS classifier;
however, the features were selected based on their information gain value. We com-
puted an information gain value for term t based on the definition provided by Yang
and Pedersen [YP97] as follows:

IG(D, t) =−∑
k
i=1 P(Ci)logP(Ci)+ [p(t)∑

k
i=1 P(Ci, t)logP(Ci, t)

+P(t)∑
k
i=1 P(Ci, t)LogP(Ci, t)]

(5.2)

where k is the number of classes in the dataset (D), and t is the appearance of term
t, while t is the absence of term t. Then, the terms (features) are ranked in descending
order based on information gain value, and top X out of 2129 features were selected
to represent the NFRs. X is the number of features that are selected by role-based
technique.

The two classifiers were implemented individually, each trained and tested using
the 10-fold cross validation process. The results of this experiment are presented in
table 5.11.

Experimental Results
Classification Performance. Table 5.11 shows that the average performance of the

176 CHAPTER 5. ML4RC METHOD

(a) Info-gain Classifier (b) FS Classifier

Figure 5.14: Learning Curves of the over-sampling (OS), under-sampling (US) and
dataset decomposition (DD) Classifiers Based on 10-Fold Cross-Validation.

FS classifier is higher than that achieved by applying the info-gain classifier with a
precision difference of 3%, recall 6%, and F1-score 5%. For individual requirements,
apart from Fault tolerance and Scalability, the FS classifier outperforms the info-gain
classifier in all the categories. Statistically, the Wilcoxon signed-rank test shows that
the FS classifier has made a statistically significant improvement in Functional, Us-
ability, Operational, and Availability. In contrast, the info-gain classifier has made a
significant improvement in Fault tolerance.

In terms of execution time, FS is faster than the info-gain classifier. Information
gain is a supervised feature selection method (i.e., using requirement types). It thus
requires computing an information gain value for each term in each iteration. However,
FS is an unsupervised feature selection method that can implement one time for all the
iterations.

Learning Curves. As shown in Figure 5.10, the training curves of the classifiers
start very high (F1 = 1.0); however, as the training progresses, the training curve
slightly declines to F1 ≤ 0.95. On the other hand, the testing curves of the two clas-
sifiers start low (F1 = 0.25) and move upwards gradually with more training exam-
ples. The FS testing curve more prominently climbs upwards and ends with a higher
score than the info-gain classifier. This suggests that FS classifiers are generalizing
slightly better than info-gain. Besides, the FS classifier has more potential to improve
by adding more examples as its testing curve moves upward more than info-gain, which
is slowly moved upward when the number of examples =500.

5.5. DISCUSSION 177

5.5 Discussion

Considering the experimental results reported in Sections 5.2-5.4, here we discuss the
strengths and weaknesses of the proposed techniques of ML4RC. Then, we discuss
some research challenges experienced during the development of the ML4RC method.

5.5.1 On Class Imbalances

As shown in Chapter 4, class imbalance problem is commonly address in requirements
classification using data level methods (e.g., over-sampling and under-sampling strate-
gies). Methods belonging to the data level are simple and flexible for any algorithm;
however, they either increase the risk of overfilling (e.g., over-sampling) or discard-
ing useful data (under-sampling). Moreover, such solutions are less effective and even
cause a negative effect in dealing with multi-class classification tasks [WY12]. More-
over, in ML4RC, we proposed a multi-class imbalanced technique that divides the
training dataset into two subsets to reduce class imbalances within each subset. Then,
a hierarchical classification, rather than ensemble-based learning, is employed for its
simplicity and ease in implementation.

Our empirical validation of this technique in Section 5.4 (see Table 5.9) shows that,
in comparison with the Baseline classifier, the classifier based on dataset decomposi-
tion (DD) performs better in terms of classification results as well as execution time.
Moreover, the validation of the dataset decomposition technique with some related
techniques in Section 5.4.2 (see Table 5.10) shows that DD outperforms the classifi-
cation results of the under-sampling classifier. In comparison with the oversampling
technique, although DD shows comparable performance to oversampling, it takes less
execution time and suffers less from the overfitting problem. We deduce that the better
performance of the DD classifier can be attributed to the benefit of dataset decomposi-
tion, as decomposition reduces the feature space and simplifies the classification task,
as also noted by other authors [MR05, GIS10]

Through experimental evaluation of the entire ML4RC method against four closely
related methods (Section 5.3), we show that ML4RC performs better than these meth-
ods (Table 5.8). Significantly, two of these methods also deal with the imbalanced
data problem; in particular, Kurtanović and Maalej’s method [KM17] uses the over-
sampling method whereas Yin et al.’s method [YGX+13] employs class decomposi-
tion. However, over-sampling can cause overfitting in the training data [Die95], mak-
ing the classification model more specific to the training data and therefore less gener-
alizable to the unseen or new data. Class decomposition is also problematic as it leads

178 CHAPTER 5. ML4RC METHOD

to many small classes. Furthermore, specifically in Yin et al.’s class decomposition
method, it uses K-means to cluster the major classes which works well when there are
distinctive features between different classes. As NFR classes are not well-defined,
K-means clustering cannot clearly differentiate between different classes [AKG+17].

However, dataset decomposition is not perfect either, as the decomposition made
in the first level can affect classification performance at the second level. In particular,
since classes are grouped into subsets based on their distribution, their classification
can be misled by the dominating (major) classes in subsets. To address this problem,
Zimek et al. [ZBFK08] suggested decomposing the dataset based on class similarity
and not class distribution. We intend to investigate this approach in our future work.

5.5.2 On Feature Selection

The high dimensionality problem in text classification is commonly solved using filter-
based methods [CHTQ09]. As shown in Chapter 4, filter-based methods are mainly di-
vided into two main categories: statistical-based techniques and linguistic-based tech-
niques. Whereas statistical-based methods are more efficient, it is less effective with
small datasets. Therefore, in this ML4RC, we propose a semantic role-based feature
selection technique which identifies the relevant features from each requirement state-
ment according to six semantic roles. This technique is simple and easy to use, and
can be implemented using existing NLP tools. It can also be applied to other applica-
tion domains, as the semantic roles are generic semantic concepts and not specific to
requirements text.

Our empirical validation of this technique in Section 5.4 (see Table 5.9) illustrates
that, in comparison with the Baseline classifier, the classifier based on feature selec-
tion (FS) performs better in terms of execution time; it is also less prone to over-
fitting. However, it does not outperform the classification results obtained from the
Baseline classifier. This agrees with the findings of Kurtanović and Maalej [KM17],
who showed that the best performance for the best identification of NFRs with SVMs
was achieved by using all the features without selecting a part of them; however, this
strategy does increase the risk of overfitting.

Our empirical comparison of a semantic role-based feature selection technique with
info-gain, that most frequently used feature selection methods in requirement classifi-
cation, shows that our feature selection methods outperform the info-gain in terms of
classification performance and execution time. Information-gain is a method based on
statistics, and, as we previously said, ideal for selecting good features. However, most

5.5. DISCUSSION 179

of the available requirement datasets are relatively small (see Section 3.7).
Through experimental evaluation of the entire ML4RC method against related

methods (see Section 5.3), we show that ML4RC performs better than other methods
that also explicitly address the high dimensionality problem, which are the methods
by Cleland-Huang et al. [CHSZS07], Kurtanović and Maalej [KM17] and Yin et al.
[YGX+13] (Table 5.8 and 5.7). All of these methods used co-occurrence-based meth-
ods. For example, Cleland-Huang et al. used proposed probability-based function to
select the features, Kurtanović and Maalej’s method [KM17] method uses a scoring
function to determine the importance of the top 500 features, and Yin et al.’s method
[YGX+13] applies the mutual information measure to determine the relevance of the
words. Our evaluation also further confirms that feature selection methods based on
statistics cannot perform well in requirements classification due to the short-text re-
quirements and small datasets.

Since our feature selection technique uses existing NLP tools such as the depen-
dency parser and the POS tagger, its performance is bound by the performance of these
tools. In particular, if sentences are poorly formed, NLP tools may incorrectly remove
some relevant features. For example, the requirement "90 of maintenance software
developers are able to integrate new functionality into the product within two working
days" should be classified as a Maintenance requirement, but the feature set selected
by our feature selection technique is {developer new functionality product working
day}, which has removed the most relevant feature "maintenance". Consequently, this
requirement has been misclassified as Operational due to the poor grammar of the orig-
inal requirement. We believe our feature selection technique can be improved by com-
bining semantic roles with RE keywords such as those identified by Cleland-Huang et
al. [CHSZS07].

5.5.3 On Feature Extension

As shown in Chapter 4, the common methods applied to handle the short text clas-
sification is feature extension, where the features are extracted from an internal or
external dataset. Although the use of external sources can handle sparsity more than
internal sources, it is time-consuming and prone to noise. The classification of NFRs,
in particular, is highly sensitive to noise due to the nature of overlapping between re-
quirements [SRS14]. Therefore, in ML4RC, we propose an internal resource feature
extension technique for handling short text problems in NFR classification. This fea-
ture extension method has fewer requirements and can also reduce potential noise that

180 CHAPTER 5. ML4RC METHOD

might be obtained from the expanded features. Due to the overlapping nature among
non-functional categories, we restricted the expanded features to be synonyms that ap-
pear in a training dataset to ensure the least amount of noise. WordNet is used for
identifying the synonyms.

Our empirical validation of this technique in Section 5.4 (see Table 5.9) shows that,
in comparison with the Baseline classifier, the classifier based on feature extension
(FE) performs better in terms of classification results. We posit that the better perfor-
mance of the FE classifier can be attributed to our semantic role-based feature selection
as it helps identify related semantic features (via semantic roles they play). Based on
these related semantic features, our feature extension can identify additional semantic
features that are also related. This helps the ML algorithm to learn the associations
between them and thus improves classification performance. This observation is sim-
ilar to the finding reported in [Man14], which indicates that the performance of SVM
in short text classification can be improved by expanding the text with related terms.
The main limitation of our feature extension technique is that the expanded words are
restricted to only those appearing in the training dataset, which are inadequate.

As shown in Section 5.3, Lu and Liang [LL17] also address the short-text problem.
Their technique differs from ours in that they use word embedding to measure the sim-
ilarity of the words and add similar words as additional features. Since a large number
of potentially similar words can be identified using this measure, Lu and Liang use
term frequency of similar words to rank their relevance to the requirements. This leads
to the identification of a few similar words. Our experimental validation in Section 5.3
(see also Table 5.8) shows that Lu and Liang’s overall method ML4RC performs worse
than ML4RC. Part of the reason for this is that their feature extension technique fails
to identify many relevant words, due to the restriction of their similarity measure.

5.5.4 On Evaluation Practices and Performance Benchmarks

Although ML4RC showed an improvement over other related methods (see sections
5.3), the results are still unsatisfactory (F1 ≤ 50). Based on our understanding of the
difficulty of NFRs classification and the limitations of existing datasets, such perfor-
mance is expected. However. the related works have reported rather high results. For
example, Kurtanovic and Maalej [KM17] showed that their method reached F1 > 70
for all classes, and Lu and Liang’s method [LL17] also reached an F1 average of 72%,
Hey et al.’s [HKKT20a] achieved F1 = 82%.

5.5. DISCUSSION 181

By examining the related works, we discovered four possible reasons for the no-
ticeable differences in our study’s results compared to those reported in other studies.
The reasons are explained as follows.

1. The inappropriate use of evaluation metrics. For example, some evaluation met-
rics used in the others studies were not appropriate assessment measures for
imbalanced datasets due to a bias toward the majority class. For example, a
weighted average was used in [HKKT20a, ROW13], where each class’s perfor-
mance was weighted (multiplied by) the number of class samples, resulting in
high weight for majority classes.

2. The selectivity of the dataset used in the others studies. For example, many
studies used only some of the dataset, for example, the four most frequent NFR
classes (e.g., [KM17, HKKT20a]). This simplifies the classification task and
improves the classification results.

3. The application of a set of separated binary classifiers to perform a multi-class
classification (e.g, [DDAÇ19]). The performance of each class is computed sep-
arately, and the mean of all classes is reported. Such practice might lead to
predicting a requirement differently (multi-label classification), which is possi-
ble and correct. However, the dataset applied in this thesis is annotated with
single labels.

4. A different implementation of k-fold cross-validation, known as micro-averaging
[PA12] or an average of true positives and false positives [FS10]. Instead of sepa-
rately evaluating each fold, the predicted labels were aggregated to be compared
with the true labels after applying a cross-validation method (e.g., as shown in
[DCCM20] and the source code [HKKT20b] of Hey et al.[HKKT20a]).

In contrast, the proposed methods use the macro average as the basis for discus-
sion and analysis; the macro average deals with all classes equally. Also, it pre-
dicts 12 classes, where one is functional and the others are non-functional. These
classes are used, as they are provided in public requirement datasets (i.e., PROMISE
or PROMISE-exp).

Table 5.12 shows the differences of F1-score values for Security class and overall
performance using PROMISE-exp (see Tables 5.3 and 5.2) with different evaluation
approaches. The approach applied in this thesis is multi-class (12 classes) classification
with macro-average cross-validation.

182 CHAPTER 5. ML4RC METHOD

Evaluation Approach Security
F1-score

Overall
(Macro avg.)

Overall
(weighted avg.)

Multi-class
(12 classes)

F1-score -average CV 0.64 0.47 0.62
TP& FP Average CV 0.62 0.51 0.64

Multi-class
(4 classes)

F1-score Average CV 0.75 0.70 0.71
TP& FP Average CV 0.75 0.71 0.71

Binary
SE vs. other NFRs

F1-score Average 0.76 0.84 0.89
TP& FP Average CV 0.77 0.85 0.89

Table 5.12: The changes of F-score for Security and overall performance of a baseline
classifier, using different evaluation settings and learning types (binary, multi-class
with 12 classes, and multi-class with 4 classes). Note: the dataset used is PROMISE-
exp.

5.6 Threats to Validity

In this section, we discuss threats to the validity of the results based on the guidelines
proposed by Shull et al. [SSS07], as well as our mitigation strategies.

5.6.1 Construct Validity

This refers to the extent to which the theoretical constructs are correctly interpreted
and measured (relationship between the theory and the observation). To minimize
threats to construct validity, we employed common performance metrics to measure
classification effectiveness (recall, precision, and F-score) [Seb02]. Nevertheless, there
was a potential threat to construct validity in our implementation of ML classifiers.
All experiments in our research were only conducted in Python, so the results might
vary when applied with another programming language. This threat is intensified in
implementation-related methods, as there might be biases in selecting a language, since
some of them were implemented using another language. However, to mitigate this
threat, we used the same parameters in all experiments conducted; thus, the results
should be valid for other applications.

Another potential threat to construct validity existed in the dataset used to evaluate
the ML models: subjective bias and erroneously labeled data.The dataset used in this
chapter is PROMISE-exp, a public dataset that was already classified and validated
by its builders. PROMISE-EXP is the expansion of PROMISE, a publicly annotated
dataset employed in many related studies (see Table 3.6). PROMISE-exp dataset con-
sists of 47 requirements documents collected from different resources and by different
authors, mitigating expected threats (e.g., bias or misunderstanding). Nevertheless,
we observed during our research: Some requirements may not be correctly labeled
[LHM+14]; the selection of the requirements for the dataset may be biased or mis-
match with the real-world requirements; the number of requirements in the dataset is

5.6. THREATS TO VALIDITY 183

inadequately and too small to represent real software applications, and most of the re-
quirements in the dataset are written by students, so the industrial standards are not
necessarily maintained. Unfortunately, these threats exist in all research using external
datasets and such threats cannot be easily mitigated.

5.6.2 Internal Validity

Threats to internal validity concern confounding factors that can influence the observed
results (without the knowledge of the researchers). To pursue high internal validity, our
research design adhered to the standard experimental design guidelines used in soft-
ware engineering [KPP+02]. A careful analysis was performed to choose the parame-
ters used to build the ML model. However, there is a potential internal validity threat
related to ML models. This threat related to the choice of the independent variables
used while building the ML model. An example of such a threat was overfitting. To
minimize this threat, we used k-fold and p-fold cross-validation and feature selection.
In addition, we drew a learning curve for each classifier to observe the overfitting and
clearly remark upon this threat. Moreover, we applied ML to another small dataset
collected from different sources and annotated externally.

5.6.3 External Validity

This refers to the generalizability of the research and its outcomes in different settings
[KPP+02]. External validity is closely related to the replicability or repeatability of
research results or observations [Gol03].

An example of such a threat is the lack of generalizability of our findings in other
settings. To mitigate this threat, we use a stratified K-fold cross-validation procedure
to train and validate all the classifiers used in this research. This is a well-known
resampling procedure for evaluating ML models on limited data samples [Bro14]. To
further mitigate this threat, we provide a detailed description of this method so that it
can be replicated.

Another external validity threat is due to our reconstruction of related methods. To
mitigate this threat, we carefully selected the methods that have relatively clear de-
scriptions and followed the descriptions faithfully; we clearly state any changes made
to these methods and the rationale behind the changes.

184 CHAPTER 5. ML4RC METHOD

5.7 Summary

In this chapter, we present a NFR classification method called ML4RC. This method
consists of three techniques and each technique addresses a single problem when us-
ing supervised ML for NFR classification. For example, the dataset decomposition
technique is used to address the class imbalance problem. This technique decomposes
the classification problem into sub-classification problems with less imbalance level
among the classes. A semantic role-based feature selection technique selects the key
roles (features) from a requirement to address the high-dimensionality problem. These
roles are then selected to be fed to ML classifier, while other features are discards.
To address the shortness in requirements, the feature extension method is used. This
method extends each feature with synonyms extracted from WordNet.

The method was applied to classify NFRs over PROMISE-exp dataset which con-
sists of 969 requirements, 525 of which are NFRs. It was tested separately over four
supervised learning classifiers that are frequently used in RE and compared with the
other existing NFRs classification approaches. The results show that ML4RC had the
highest performance with SVM and outperformed most of the existing approaches used
in the comparison.

Each technique of ML4RC was evaluated separately and compared with a base-
line classifier that does not apply any technique of ML4RC. These techniques are
also compared with similar techniques that are proposed to address the same prob-
lem. The results show that our feature selection cannot improve the ML performance
of the basic classifier although it outperforms a similar existing technique. In addi-
tion, the results highlight the advantages of the decomposition method in requirement
classification: less overfitting, low time consumption, and a slight improvement in the
classification performance. One of the the valuable findings is that feature extension
shows the highest performance when compared to other techniques and methods, indi-
cating the importance of the short length problem in requirement classification. Based
on this finding, we will conduct further investigations regarding extending features in
requirement classification by developing a new method known as SE4RC (Semantic
Extension for ML classification). This method will be presented and evaluated in the
following chapter.

Chapter 6

Semantic Expansion For Short-text
Requirements Classification

"It is better to solve one problem five

different ways, than to solve five

problems one way."

George Pólya

The previous chapter’s findings provide insight into the effectiveness of address-
ing the short text problem in NFRs classification. Motivated by these findings, we
propose a method called "SE4RC" (Semantic Expansion for Requirement Classifica-
tion) to address the short text classification problem in a novel way. This method
simulates normal length text classification by expanding short requirements with se-
mantically similar requirements extracted from a training dataset. Thus, the main dif-
ference between SE4RC and the feature extension technique in ML4RC is that SE4RC
expands short requirements with similar requirements while ML4RC uses similar fea-
tures (words). In addition, SE4RC uses a corpus-based method (i.e., word embedding)
to measure the similarity of the requirements, while ML4RC uses a knowledge-based
method (i.e.WordNet).

To assess the effectiveness of SE4RC, we conducted three experimental studies.
The first experiment compares the similarity measure of SE4RC with other short text
similarity methods in measuring requirements similarity. The second experiment eval-
uates the performance of SE4RC in relation to a baseline method, and the third com-
pares SE4RC with two related methods.

This chapter is organized as follows: Section 6.1 provides an overview requirement

185

186 CHAPTER 6. SE4RC METHOD

similarity. Section 6.2 introduces SE4RC method. Section 6.3 presents the experiment
carried out to compare the similarity measure of SE4RC with other text similarity
methods. Section 6.4 evaluates the performance of ER4RE, while Section 6.5 com-
pares the performance of SE4RC against related work. Based on the experimental
results, Section 6.6 discusses the key findings together with the opportunities and chal-
lenges for requirements classification, followed by Section 6.7 which discusses limita-
tions and threats to validity. Finally, Section 6.8 provides a summary of this chapter.

6.1 Overview of Text Similarity Approaches

Before reviewing text similarity approaches, it important to provide a clear definition
of similarity and how it differs from relatedness. When it is said that two items are
similar, it means that they can be substituted in a given context without changing the
underlying semantics (e.g., “users” and “person”) [NM19]. The relatedness, on the
other hand, refers to items that are correlated but not substituted. Semantic similar-
ity is considered a special case of semantic relatedness that contains more semantic
relationships between concepts such as is–an–attribute–of, has–part, is made–of, and
is–the–opposite [PBP03, NM19]. Examples of semantically related concepts are email
and password, person and address, or success and failure. As these relationships could
result in unrelated words (i.e. noise for ML classifier), we especially focus on semantic
similarity measures in this chapter.

This section provides an overview of the similarity methods that have been used
to measure short-text similarity in general and requirements similarity in particular. In
addition, it introduces a well-known word embedding model (i.e., Word2vec) which is
used in SE4RC to measure the similarity between requirements.

6.1.1 Approaches to Short-Text Similarity Measures

Many similarity measures (i.e. methods) have been proposed to determine the seman-
tic relation between texts. The obvious solution is using the traditional measures which
are mainly focused on comparing word co-occurrences in the texts (e.g. lexical over-
lapping) [QLL+10]. Such techniques can achieve good results in long texts as long
texts are likely to share common words; however, this is not the case with short texts.
For instance, there is an obvious similarity between the two requirements: “the prod-
uct shall be free of computer viruses,” and “the system must prevent malicious attacks

6.1. OVERVIEW OF TEXT SIMILARITY APPROACHES 187

including the denial of service,” but most co-occurrence–based measures will fail to
identify any kind of connection between these texts [OSDCI11].

The other approaches of measuring text similarity are based on word-to-word sim-
ilarity approaches such as corpus-based and knowledge-based approaches [MCS+06].
A knowledge-based approach uses an external lexical recourse to measure the simi-
larity between words (WordNet is a popular English recourse). The main benefits of
this approach are that it is reliable and less complex as it is based on expert human
judgments. Its drawbacks are its dependence on convergence and its reliance on the
quality of the thesaurus used (e.g. some technical terms tend to be underrepresented by
WordNet [JM00]). In addition, most of the similarity methods belong to this approach
are limited to specific classes of words, only comparing words with others of the same
type (e.g., only comparing nouns- nouns and verbs-verbs) [MCS+06].

The measures that belong to the knowledge-based approach can be classified as
path-based measures and information content measures. Path-based measures esti-
mate the semantic similarity of two concepts based on the short path connecting them
in the WordNet hierarchy [MHG13]. Common examples of path-based measures are
Leacock & Chodorow [LC98], Wu & Palmer [WP94], and Path Length. Content-based
measures, on the other hand, use the information content of each concept included in
WordNet to measure the similarity between concepts; the more common the informa-
tion concept share, the more similar the concept is [MCS+06, II09]. Common exam-
ples of content-based measures are Resnik [Res95], Lin [L+98], and Jiang & Conrath
[JC97].

A corpus-based approach measures the semantic similarity between two words ac-
cording to information derived from a large corpus (i.e, large collections of raw textual
data). This approach exploits the statistical information hidden in the corpus to com-
pute the similarity between terms based on the assumption that the semantic properties
of a word can be inferred by its context [NM19, LWZ+15]. In other words, terms that
have similar co-occurrence behavior in a corpus tend to be semantically similar. The
main benefits of the corpus-based approach are that no prior knowledge is needed and
that it offers the ability to compare numerous units of language (e.g. to compare texts
to words) [JM00]. The limitation of this approach is that the words being compared
must occur at least a few times, since these methods measure the similarity of words
based on the context of those words [JM00].

The methods that belong to corpus-based approach can be classified into two cate-
gories: co-occurrence based methods (i.e., association and probabilistic measures) and

188 CHAPTER 6. SE4RC METHOD

distributional representations methods. Co-occurrence methods quantify the semantic
similarity between words based on the occurrence in the corpus. Common examples of
co-occurrence methods are Pointwise Mutual Information (PMI), Jaccard Index, and
Dice’s coefficient [NM19, MW16]. Distributional representations methods encode the
behavioral use of specific words into vector representation that can either be interpreted
directly (explicit representation) or cannot be interpreted (implicit or latent represen-
tation) [NM19]. The most common examples of these methods are latent semantic
analysis [MCS+06, II09], and Word embeddings (e.g, GloVe [PSM14] and Word2vec
[MSC+13]) [NM19].

Although most of the measures mentioned above are used to measure word-word
similarity [MCS+06], several methods have been proposed to use these measures in
determining short text similarity. These methods can be classified as word-based sim-
ilarity and representation-based similarity. The first group used the similarity between
words to measure text similarity. A well-known example is a semantic metric proposed
by Mihalcea et al. [MCS+06], which combines word-to-word similarity metrics and
word specificity to indicate the semantic similarity of the two input texts. The sec-
ond group convert the sentence into a (single) text representation (e.g., by averaging
the word vectors) and compute the similarity between sentences by using a metric for
measuring distance, such as cosine [KBdR16].

6.1.2 Approaches to Requirements Similarity Measure

Measuring similarity between texts is commonly used for supporting requirement en-
gineering tasks [FDE+17]. For example, Li and Clel and-Huang[LCH13], Lucia et
al. [DLDPO10], Marcus and Maletic [MM03], and Hayes et al. [HDS06] used se-
mantic similarity measures to generate trace links between two software artifacts (i.e.,
tractability). Younas et al. [YJGS20] and Mahmoud and Williams [MW16] discover
and classify NFR by measuring semantic similarity between two textual items. Mat-
suoka and Lepage [ML11] used a semantic similarity measure to detect ambiguity in
software requirements specifications. Och et al. [oDRC+01] measured the similar-
ity between requirements to avoid duplicate identification of requirements. Ilyas and
Kung [IK09] measured similarity between requirements to support design and code
reusability.

None of the semantic similarity measures are primarily used for expanding re-
quirement with additional term(s). Moreover, the quality of the semantic similarity
measure used by most of these studies were evaluated regarding the whole task (e.g.,

6.1. OVERVIEW OF TEXT SIMILARITY APPROACHES 189

traceability and classification). Very few studies measure the effectiveness of seman-
tic similarity measures between requirements. An example of these studies is that
conducted by Alhoshan et al. [ABNZ19] who used Word2Vec to detect similarities
between the requirements based on semantic frames. Although their approach showed
promising results in comparison to the baseline method (averaging word embedding of
requirement words with cosine metric), it is labor-intensive because it entails annotat-
ing requirements manually based on each frame’s elements.

6.1.3 Word Embedding to Measure Text Similarity

Word embedding is a word vector representation that captures both the semantic and
syntactic regularities of words from an unlabeled large corpus. The assumption used
in word embedding is that words occurring in a similar context have similar meanings.
Thus, word embedding methods use a large corpus to generate semantic space (also
known as word embedding space), where each word is presented in a dimensional
vector of real numbers. In the semantic space, the semantically related words, such
as "man" and "moment", are represented close to each other. Besides, it is possible
to compute arithmetic expressions in semantic vectors to detect a relationship between
words such as “King” - “Man” + “Woman”, which results in a vector very close to
“Queen" (known as word analogies) [MYZ13]. Example of word embedding methods
are GloVe [PSM14] (co-occurrence based model) and Word2vec [MSC+13] (neural
network based model).

Word2vec, introduced by Mikolov [MSC+13], is the most popular method to gen-
erate words embedding due to its efficiency and simplicity [LDBT15]. It is built on
a two-layer neural network which learns the vector-based representation of each word
from an unlabeled text dataset [NM19]. Two variants of word2vec have been pro-
posed: a continuous bag-of-words (CBOW) model and the skip-gram model (SGM).
The CBOW model predicts the central word given its context. For example, if the in-
puts of the model are the words "username", "login" and "enter", the output could be
"passwords". The SGM predicts the context given a central word. For example, if the
input word is "login," the outputs could be "password" and "username".

Like any word embedding model, only an unlabeled corpus is needed to train a
word2vec model for generating a representation for any word (i.e., generating word
embedding). The size and domain relevance of the corpus used to train word embed-
ding are important to ensure the quality of the generated word embeddings [LLHZ16].
Mikolov et al. [MCCD13] released a publicly available Word2vec model that is trained

190 CHAPTER 6. SE4RC METHOD

Figure 6.1: Overview of SE4RC-Semantic Expansion For Supervised Requirement
Classification

on the Google News data set with approximately 100 billion words 1. Efstathiou et al.
[ECS18] released a pre-trained word-embedding model for the software engineering
domain. This model was trained by 15 GB of textual data from Stack Overflow posts.

6.2 The SE4RC Method

The SE4RC method is purposely designed to deal with the short text classification
problem by expanding requirements with most semantic similar requirements. Figure
6.1 shows the process of the SE4RC method. This process resembles the text classifi-
cation process shown in Figure 2.4 with a few changes. These are: no feature selection
step in both training and testing phases, and an additional requirements expansion step
in the testing phase. The process steps of the SE4RC method and their enabling tech-
niques are detailed in the sections below.

6.2.1 Text Pre-Processing

This step applies for the both training and testing phases. It involves the application
of several NLP techniques: tokenization, removal of stop words, lowercase transfor-
mation, lemmatization, and short-words removal (i.e., removing the words containing
fewer than three characters). The output of this step is sentences consisting of tokens
which could be numbers or lemma forms of words.

1https://code.google.com/archive/p/word2vec/

6.2. THE SE4RC METHOD 191

Figure 6.2: Requirements expansion step

6.2.2 Requirements Expansion

This step, which only applies to the testing phase, aims to expand each requirement
in the testing dataset with the most similar requirements in a training dataset through
three main sub-steps (as shown in Figure 6.2). Firstly, we compute requirement em-
bedding for each preprocessed requirement. We use weighted averages, generated by
a word2vec model [MSC+13], for all word embeddings to compute requirement em-
bedding. Each word embedding is weighted by the inverse document frequency (IDF)
[Jon72], which is a measure of the specificity of a word. IDF gives importance to spe-
cific words (e.g. reliable and usable) over generic words (e.g. system and product)
[MCS+06]. IDF is calculated as an algorithm of the total number of documents in
the corpus (i.e., a training dataset) divided by the total number of documents includ-
ing a specific word. The use of IDF was derived from the work of Mihalcea et al.
[MCS+06]. By doing so, the representation of each requirement (R) is calculated as
follows:

R− embedding =
∑w∈RVw× id f (w)

∑w∈R id f (w)
(6.1)

In this calculation, (Vw) represented the embedding of word (w) generated by
word2vec (i.e., the representation of w in a word2vec semantic space).

In the second sub-step, we use the cosine of the angle between two embedding
requirements (an original requirement from a testing data set and a requirement in a
training dataset) to measure the similarity between them:

cos(R1,R2) =
VR1×VR2

||VR1||× ||VR2||
(6.2)

In the third sub-step, we compare the semantic similarity score with a pre-defined
threshold (0< α < 1); if the score is greater than the threshold, we add the requirement
extracted from a training dataset at the end of the original requirement. The output of
this step is that the requirements are expanded by adding the most similar requirements,

192 CHAPTER 6. SE4RC METHOD

NO Before After
Pre-processed Requirement No

Words
Extended Pre-processed Requirement No

Words
1 product shall support 2000 concur-

rent user
6
words

product shall support 2000 concurrent user products
shall able support 1000 simultaneous user server sup-
port maximum 1000 simultaneous users

21
words

2 system shall refresh display every
60 second

7
words

system shall refresh display every 60 second interface
user automated system shall maximum response time
second product shall respond fast keep up-to-date
data display audit report shall have returned within
second system shall allow minimum user work time
response time shall fast enough maintain flow game

46
words

3 system back end database shall en-
crypted

6
words

system back end database shall encrypted secure
server required ensure confidentiality customer credit
card detail

15
words

Table 6.1: Examples of the requirements before and after applying requirement expan-
sion technique. The most similar requirements added after expansion are highlighted,
and each requirement has a different color.

as shown in Table 6.1.

6.2.3 Feature Representation

This setup, which applies to both the training and testing phases, transforms textual
requirements into a vector of TF-IDF weights (similar to ML4RC method described in
Section 5.1.4). For training phases, the original requirements are transformed, while in
the testing phase, the extended requirements that were obtained from the requirement
extension step are converted into a vector representation.

6.2.4 Classifier Training

This step is to train a classifier F using the SVM algorithm as it shows the best per-
formance with ML4RC (see Section 5.2). F is a multi-class classifier trained on the
TF-IDF matrix to learn the association between the requirements in the training dataset
and their preassigned categories (i.e., the requirement-category pairs). Based on the
learning, this classifier is then ready to classify each new requirement in the new data
(testing dataset) into a specific category label (e.g., functional, security, or usability).

6.2.5 Classifier Testing

This step is to test the trained classifier obtained from the training phases. It includes
applying the pre-trained ML classifier to the expanded requirements. The outputs of
this classification are the categories of testing requirements (i.e., performance, security,

6.3. EVALUATION OF REQUIREMENTS SIMILARITY MEASURES 193

Figure 6.3: The procedure of the comparison of different similarity measures

usability, etc.).

6.3 Evaluation of Requirements Similarity Measures

Before evaluating the SE4RC method, we evaluate the effectiveness of the similarity
measure used in SE4RC (i.e., weighted word embedding with cosine distance). The
key objective of this evaluation is:

To compare the weighted average word2vec with other popular techniques to
demonstrate the effectiveness of word2vec in measuring similarity between re-
quirements.

To fulfill this objective, we compare the similarity measure of SE4RC with nine dif-
ferent similarity measures that are commonly used to determine the similarity between
short texts [MCS+06, II09]. This section presents the procedure of this evaluation and
the implementation environment, and then provides an analysis of the performance of
these measures.

6.3.1 Evaluation Procedure

Figure 6.3 shows the procedure of evaluating the similarity measures. The input of this
procedure is a set of pairs of requirements. Each pair would have to go through three
main steps: pre-processing, calculating requirement similarity, and validation.

Pre-Processing

We use several NLP techniques described in Section 3.4.3 to pre-process the input
requirements. These techniques are tokenization, stop words removeable, lower cases
transformation, and lemmatization.

194 CHAPTER 6. SE4RC METHOD

Calculating Requirement Similarity

The semantic similarity between pairs of pre-processed requirements is computed us-
ing nine different measures (knowledge-based and corpus-based), which have been
commonly used to measure short-text similarity. Most of these methods were pro-
posed to measure the similarity between words; thus, we applied Eq. 6.3, which was
proposed by Mihalcea in 2006 [MCS+06], to measure the similarity between two re-
quirements (R1,R2) as the following:

sim(R1,R2) =
1
2
(
∑w∈R1

maxSim(w,R2)× id f (w)

∑w∈R1
id f (w)

+
∑w∈R2

maxSim(w,R1)× id f (w)

∑w∈R2
id f (w)

)

(6.3)

This function is based on finding the word that has the highest semantic similarity in
the other requirement (i.e. maximum similarity). The word similarity is then weighted
with its specificity (idf). For knowledge-based measures, maxSim is only used to de-
termine the similarity between nouns and verbs as most of these measures are applied
only on these POS groups[CM05]. However, for adjectives and adverbs, lexical match-
ing was performed (similar to Mihalcea et al.’s work).

The nine similarity methods are mentioned below; the first six methods are knowledge-
based measures, and the rest are corpus-based measures.

1- Path Length (path) measures the similarity between two concepts (i.e. words)
based on the shortest path connecting the concepts in the WordNet taxonomy [MHG13].
The path between one word to another is computed by number of edges between the
word (as shown in Figure 6.4).

2- Wu & Palmer (wup) [WP94] measure the similarity based on the depth of two
concepts in the WordNet taxonomy and the depth of the Least Common Subsumer
(LCS). Figure 6.4 shows an example of LCS.

simwup =
2×depth(LCS)

depth(concept1)+depth(concept2)
(6.4)

3- Leacock & Chodorow (lch) [LC98] measures the similarity between two concepts
based on the shortest path between the concepts in the hierarchy of WordNet (length
in Eq. 6.5). This path is scaled by the maximum depth of the hierarchy in which the
concepts occur (D in Eq. 6.5).

6.3. EVALUATION OF REQUIREMENTS SIMILARITY MEASURES 195

simlch =− log
length
2×D

(6.5)

4- Resnik (res) [Res95] measures the similarity between two concepts based on the
information content of the least common subsumer (i.e. LCS).

simres(w1,w2) = IC(LCS(w1,w2)) (6.6)

where IC is defined as:
simlch =− logP(c) (6.7)

P(c) is the probability of finding an instance of concept c in a given corpus (i.e.,
information content).

5- Lin (lin) [L+98] builds on Resnik’s measure by scaling the information content
of the LCS with the sum of the information content of two input concepts.

simlen(w1,W2) =
2× IC(LCS(w1,w2))

IC(w1)+ IC(w2)
(6.8)

6- Jiang & Conrath (jcn) [JC97] expands on Resnik’s measure by taking the difference
of the sum of the information content of the individual concepts and the information
content of their LCS.

sim jcn(w1,w2) =
1

IC(w1)+ IC(w2)−2× (LCS(w1,w2))
(6.9)

7- Pointwise mutual information and Information Retrieval (PMI-IR) [Tur01] mea-
sures the similarity between two words based on word co-occurrence over a large cor-
pus; the more often words occur together, the higher the similarity achieved. Given
two words, w1 and w2, their PMI-IR is measured as:

PMI− IR(w1,w2) = log2
p(w1&w2)

p(w1)× p(w2)
(6.10)

8- Latent semantic analysis (LSA) [LFL98] assumes that there is some underlying
semantic hidden relationship (i.e., latent) by the diversity of the context of words.
LSA uses singular value decomposition to decompose a term-document matrix with
term frequency-inverse document frequency (TF-IDF) [Jon72] weights into a small
semantic space. The similarity between two words is calculated by transforming a
word representation to LSA representation, and using cosine similarity (see Eq. 6.11)

196 CHAPTER 6. SE4RC METHOD

Figure 6.4: An example of the hyponym taxonomy in WordNet. It is shown in this fig-
ure that Least Common Subsumer (LCS) of "boat" and "car" is "vehicle", bath between
" car" and "Boat" is 4 , maxim depth of "car" is 4.

on the compressed vectors.

cos(θ) =
v1× v2

||V1||× ||V2||
(6.11)

9- Word2vec (w2v)[MSC+13] is measured in two ways: sentence-based and word-
based methods. The first method is based on sentence representation by averaging
weighted word embedding (using IDF) and computing the distance between these em-
beddings using cosine (i.e. weighted average word2vec). This is the method used by
SE4RC. The second way is based on word representation by applying the function
from Mihalcea et al. (Eq. 6.3). The similarity between words is measured directly by
computing the distance (using cosine) between word embeddings.

Validation

This step validates the quality of each measure in determining the similarity between
requirements. The quality of the similarity-measuring methods is based on two main
criteria: human judgment (i.e., the ability to provide an effective simulation of human
judgment) and execution time (i.e., time taken to perform each similarity measure).
Human judgment includes asking the human annotators to measure the similarity be-
tween pairs of requirements used in the previous step. Then, the results obtained by
the annotators are compared with implementing the nine different measures separately.
The measurement method that is more correlated to human judgment performing at a
reasonable time is the best.

6.3. EVALUATION OF REQUIREMENTS SIMILARITY MEASURES 197

6.3.2 Implementation Environment

We implemented all the similarity measures on a standard laptop with an Intel Core
i5 1.6GHz and 8 GB RAM. The implementation was carried out using the Python
programming language with the support of Python’s NLP toolkits for performing the
following tasks:

• Pre-processing was implemented using NLTK’s text pre-processing module.

• Requirements similarity was calculated using different Python toolkits and li-
braries. For example, NLTK was used to implement similarity measures belong-
ing to the knowledge-based approach and PMI. Sklearn (using truncatedSVD
function) was used for implementing LSA, Gensim package for generating word
embedding, Numpy to 2 generate requirements embedding, and Scipy 3 to cal-
culate the cosine similarity between the requirements embedding.

Information Content of WordNet are derived from existing variable corpus such as
Brown [KF68] and SemCor corpus [MLTB93] through NLTK’ corpus package. These
corpora are used for calculating the similarity using Knowledge-based measures (e.g.,
Resnik, Lin, and Jiang & Conrath measures). PROMISE-exp [LVC+19] is used to
implement corpus-based measures and to compute IDF in Eq. 6.3.

The available pre-trained word-embeddings model which was proposed by Efs-
tathiou et al. [ECS18] (see Section 6.1.3), is used in generating word embedding. We
chose this model as it is more relevant than other available models (such as the model
trained using general news articles by Google 4) and it is larger than the available
NFRdataset (i.e., PROMISE-exp).

6.3.3 Implementation Steps

Our implementation of the evaluation procedure as described in Section 6.3.1 is as
follows:

1. We sampled 100 pairs of requirements (FRs and NFRs) from PROMISE-exp and
the book by Robertson and Robertson [RR12]; about 50% were similar and 50%
were dissimilar based on our initial analysis.

2https://numpy.org
3https://www.scipy.org/
4https://code.google.com/archive/p/word2vec/

198 CHAPTER 6. SE4RC METHOD

Threshold Proportion of
similar pairs

Proportion of
non-similar pairs

≥ 0.90 14% 86%
≥ 0.80 27% 73%
≥ 0.70 27% 73%
≥ 0.60 40% 60%
≥ 0.50 40% 60%

Table 6.2: Proportion of similar pairs according to annotation results within different
similarity thresholds.

2. Five human users employing Amazon’s Mechanical Turk5 were asked to to scale
the similarity of each pair as “Similar” or “Not Similar”. The dichotomous scale
is used to get clear and binary answers, avoiding respondents being neutral. It
also reflects the need to determine the semantic similarity; similar requirements
will be used for expansion and non-similar requirements will be discarded.

3. The scales were coded as 1 (“Similar”) or 0 (“Not similar”). As there was more
than one annotator, we calculated inter-rater agreement using Fleiss’s Kappa
[Fle71]. The kappa score was 30, which is considered being fair level of agree-
ment [VG+05].

4. We computed the similarity of each pair separately using ten different similarity
measures. In this way, 100 similarity scores for each measurement method are
obtained. This step is done automatically through the environment described in
the previous section.

5. The correlation between the mean of human-assigned similarity scores and the
similarity score obtained from each similarity method was measured. A QQ
Plot [WG68] suggested non-normal data and a Spearman rank correlation was
therefore used [HK11].

Table 6.2 shows the proportion of similar pairs based on the annotation results
within different similarity thresholds. The table shows that with threshold ≥ 60, the
proportion of similar and dissimilar requirements are close to our initial analysis. This
hints at the differences in measuring requirement similarity between people with and
without RE knowledge. We will revisit this point in section 6.6.1.

5https://www.mturk.com

6.4. EXPERIMENTAL COMPARISON WITH BASELINE METHOD 199

Measures Correlation p-value Exec. time
(s)

Path 0.25 (w+) 0.01 0.86
wup 0.21 (w+) 0.03 2.02
lch 0.24 (w+) 0.02 1.19
res 0.28 (w+) 0.01 0.94
lin 0.28 (w+) 0.01 0.94
jch 0.30 (w+) 0.00 0.94
PMI-IR 0.32 (w+) 0.00 2.43.
LSA 0.25 (w+) 0.01 19.3
word2vec
(words)

0.33 (w+) 0.00 1.25

weighted avg.
word2vec

0.45 (m+) 0.00 1.39

Execution Time was measured on a standard laptop with an Intel Core i5 1.6 GHz and 8 GB RAM.

Table 6.3: Correlation, p-value and execution time (exec. time) between the similarity
measures and human-assigned similarity scores. Interpretation of raw correlation val-
ues given in brackets: w+ (weak positive) and m+ (moderate positive). All p-values
significant at the 0.05 level.

Results

Table 6.3 shows the quality of each similarity measure. It is clearly shown in table 6.3
that the similarity method used by SE4RC (Weighted average word2vec) has the high-
est correction score (0.45), which indicated moderate correlation [Ako18]. Weighted
average word2vec also showed a reasonable execution time (i.e., 1.39 s).

Another key observation from Table 6.3 is that corpus-based methods were better
than knowledge-based methods in determining requirements similarities. This obser-
vation aligns with those of Mahmoud and Williams [MW16], who found that corpus-
based methods are more successful than knowledge-based methods in measuring the
similarity between words that describe FRs. Nevertheless, knowledge-based methods
are more efficient (i.e., incur less execution time) than corpus-based methods. LSA
took the longest time, at 19.3 s for 100 pairs.

6.4 Experimental Comparison with Baseline Method

After evaluating the similarity measure in SE4RC, we evaluate the effectiveness of the
whole ML4RC in this section. This key objective of this evaluation is:

To investigate the effectiveness of our SE4RC in relation to a baseline method
applied with non-expanded requirements (i.e., not using a feature extension tech-
nique).

200 CHAPTER 6. SE4RC METHOD

To fulfill the evaluation objective, we compare the performance of SE4RC with
the baseline classifier. This section presents the details of this evaluation, including the
implementation of the SE4RC and baseline method, and an analysis of the performance
of these methods.

6.4.1 Implementation Environment

We implement the SE4RC using the Python Programming Language with the support
of Python’s NLP and ML toolkits for performing the following tasks:

• Pre-processing was implemented by NLTK’s text pre-processing module.

• Requirement extension was implemented using Gensim (for generating words
embedding), Numpy (for computing requirements embedding), and Scipy (for
calculating the cosine similarity).

• Feature Representation, Classifier Training, and Classifier Testing implemented
by scikit-learn. The Linear Support Vector Classification model (i.e., svm.SVC
6 in scikit-learn) was used for implementing the SVM algorithm.

To conduct a fair comparison, each SVM model (SE4RC and baseline) is trained
and tested using the same dataset (PROMISE-exp detest). PROMISE-exp is described
in Section 5.2.1 and a summary of the dataset is provided in Table 5.3.

6.4.2 Implementation Steps

We validated the ML4RC method in a 10-fold cross-validation process as follows:

1. Apply scikit-learn’s StratifiedKFold tool to divide the PROMISE-exp dataset
randomly into 10 folds (i.e. 10 portions), nine portions for algorithm training
and one portion for testing.

2. Use NLTK to carry out Pre-processing task, scikit-learn’s TfidfVectorizer tool
for Feature Representation.

3. Train SVM classifier with optimal hyper-parameters that have been tuned using
scikit-learn GridSearchCV with 5-fold cross-validation.

6https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

6.4. EXPERIMENTAL COMPARISON WITH BASELINE METHOD 201

4. Apply the requirement extension technique by expanding the testing requirement
set with the most similar requirements used to train the classifier (training dataset
used in the previous step).

5. Test the trained classifier on the testing set to produce the predicated classifica-
tion results (i.e., a set of predicated category).

6. Compare the predicated labels with the true labels provided in the original PROMISE-
exp, and measure the difference between the true and the predicated labels for
each category using the Precision (P), Recall (R) and F1-Score (F1) metrics.
The overall performance (P,R, and F1 metrics) of the current classifier is also
measured by computing the macro and micro average of all the classes.

The process is repeated 10 times with each of the 10 portions used exactly once
as a testing set, while the rest is a training dataset. Afterword, the means P, R. and
F1 values of each category, macro and micro averages are computed. Moreover, the
learning curve of overall F1-score is plotted.

The baseline method was implemented in the same way as the SE4RC, except for
step 4 (requirement extension). Table 6.4 shows the results for SE4RC and baseline
method. Figure 6.5 shows the learning curves for these methods.

6.4.3 Results

Classification Performance

Table 6.4 shows the overall performance of SE4RC (P = 0.55,R = 0.48,F1 = 0.49)
as well as the detailed performance of each class. It can be seen from the table that
that SE4RC performs well on six categories: Function (over 70 %), Security, Perfor-
mance and Availability (over 60%), Usability, and Legal (over than 50%). Two out
of six classes (Legal and Availability) are minority classes, while the remaining are
majority classes. Both of Legal and Availability have intuitive and distinctive features,
e.g., such as "available", and "24/7" for the former, and "regulations" and "law" for
the latter. However, only the results of the Legal class showed an improvement in
comparison with the baseline, indicating the usefulness of SE4RC in classifying Legal
requirements.

In compassion with the baseline method, the overall performance of SE4RC out-
performs the baseline classifier by 0.02% in P,R, and F1 as shown in Table 6.4. For
the individual requirement class, ME4RC has an improvement over the baseline in a

202 CHAPTER 6. SE4RC METHOD

Cat. Baseline Classifier SE4RC
P R F1 P R F1

F 0.69*±0.04 0.83 ±0.12 0.75 ±0.05 0.72 ±0.05 0.84 ±0.13 0.77 ±0.05

SE 0.69 ±0.19 0.65 ±0.15 0.64 ±0.13 0.70 ±0.18 0.65 ±0.15 0.65 ±0.13

US 0.62 ±0.22 0.51 ±0.23 0.55 ±0.22 0.60 ±0.19 0.53 ±0.19 0.55 ±0.17

O 0.41 ±0.13 0.46 ±0.26 0.42 ±0.17 0.42 ±0.13 0.46 ±0.26 0.43 ±0.17

PE 0.88 ±0.13 0.65 ±0.22 0.71 ±0.18 0.80 ±0.17 0.68 ±0.15 0.71 ±0.11

LF 0.69*±0.37 0.39 ±0.19 0.46 ±0.22 0.80 ±0.29 0.41 ±0.13 0.51 ±0.17

A 0.70 ±0.38 0.67 ±0.37 0.66 ±0.35 0.69 ±0.38 0.63 ±0.35 0.65 ±0.35

MN 0.45 ±0.47 0.33 ±0.39 0.37 ±0.40 0.40 ±0.44 0.33 ±0.39 0.34 ±0.37

SC 0.55 ±0.47 0.40 ±0.38 0.45 ±0.40 0.55 ±0.47 0.45 ±0.42 0.49 ±0.43

FT 0.25 ±0.40 0.20 ±0.33 0.20 ±0.31 0.35 ±0.45 0.25 ±0.34 0.27 ±0.33

L 0.45 ±0.47 0.40 ±0.44 0.40 ±0.42 0.55 ±0.47 0.50 ±0.45 0.50 ±0.43

PO 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Mic 0.65 ±0.07 0.65 ±0.07 0.65 ±0.07 0.67 ±0.05 0.67 ±0.05 0.67 ±0.05

Mac 0.53 ±0.04 0.46 ±0.05 0.47 ±0.04 0.55 ±0.04 0.48 ±0.05 0.49 ±0.04

Ex.
Time

3.3 minutes 6.5 minutes

* Indicates a significant statistical difference between the baseline and another classifier
with p<0.05. Wilcoxon signed-rank test has been applied.

Table 6.4: 10-Fold Cross-Validated Test Results for the Four Classifiers

half of classes (6 classes) in which the improvement is in P,R,F1 for Fault tolerance,
Functional, and Legal. The improvement was also noticed in R and F1 for Usability,
Performance, and in P and F1 for Security. The biggest improvements were noticed
in Legal and Fault tolerance, and the statistically significant improvements were in the
precision of Functional and Look and feel. No changes have been observed with Op-
erational, Scalability, and Portability. However, the performance of Maintenance and
Availability was decreased.

It is intuitive to conclude that the improvement and decrease in SE4RC is because
of expanding short requirements with similar requirements because it is the only dif-
ference between the two methods. By observing the prediction of baseline and SE4RC
classifiers, we found that expanding requirements with similar requirements belonging
to different classes increased the noise, resulting to misclassification of the expanded
requirements. For example, although available requirements have distinctive features,
they, as a whole, have many similar requirements belonging to different classes. Exam-
ples of these classes are those with the same fit criteria (e.g., period of time), including
Performance, Maintainability, and Usability. Performance and Usability are majority

6.4. EXPERIMENTAL COMPARISON WITH BASELINE METHOD 203

First Example
Original
Requirement

The product shall be available 99 of the time to avoid service interruption dur-
ing busiest customer service response periods.

Expanded
Requirements

The product shall be able to continue to operate with no interruption in service
due to new resource additions. (MN)
The response time of general student management tasks shall take no longer
than 5 seconds and the response time of schedule generation shall take no
longer than 30 seconds. (PE)
The system must be available for use between 12:00AM and 6:00PM all days
of the year. (A)

Labels True A Baseline A SE4RC MN
Second Example

Original
Requirement

IzognMovies shall meet the licensing requirements set forth by the appropriate
organizations in order to stream African movies.

Expanded
Requirements

The Disputes application must conform to the legal requirements as specified
by the Merchant Operating Regulations. (L)
All business rules specified in the Disputes System shall be in compliance with
the Merchant Operating Regulations. (L)
The product must comply with the intranet page standards and requirements
of ENET Securities. 95% of the product look & feel will be approved by
the Architecture group prior to implementation. The remaining 5% will be
corrected and approved within one month of product release. (LF)

Labels True L Baseline F SE4RC L
Third Example

Original
Requirement

The system shall support the ability to perform a send and receive operation.

Expanded
Requirements

The system shall allow the mediator to send and receive messages from users.
(F)
The system shall allow the initiator to send and receive messages from users.
(F)
The system shall allow users to send and receive messages. (F)

Labels True F Baseline O SE4RC F

Table 6.5: Examples of the requirement that are added to the original ones and the
changes that expansion made in the classification prediction

classes, therefore, they are less affected by the expansion errors as the number of ex-
panded requirements belonging to the same class are more than those belonging to
different classes. Therefore, minor classes (Available and Maintainability) were af-
fected more than the majority classes. Table 6.5 shows the prediction of an available
requirement by the baseline and SE4RC methods.

On the other hand, the requirement that belongs to the minority classes with less
similarity with other classes is significantly improved (e.g., Legal and Fault Toler-
ance). We noticed that most of the similarity expanded requirements were within the
same class, leading to the original requirements being predicted correctly. Table 6.5
shows how requirement expansion improves the classification accuracy of a Legal re-
quirement.

204 CHAPTER 6. SE4RC METHOD

Learning Curves

The training curves of baseline and SE4RC in Figure 6.5 show that all methods start
with a high score (F1 = 1.0), then gradually slide downward as training progress to
(F1 ≥ 0.95), with the SE4RC curve showing a slightly bigger decrease. In contrast,
the testing curves start with a low score (F1 < 0.30), but gradually move upwards
to (F1 ≤ 0.50), where SE4RC has a slightly bigger score. The slight increase in the
testing curve and decrease in training curve of SE4RC indicates that SE4RC is less
prone to suffer from overfitting than the baseline method. The curves also show that
adding more examples might increase the generalization for the methods and that the
probability is slightly higher with SE4RC.

(a) Baseline (b) SE4RC

Figure 6.5: Learning Curves of the Baseline and SE4RC methods Based on 10-Fold
Cross-Validation.

Threshold Setting Change

All the results of SE4RC reported before were based on using (α > 0.80) in require-
ment expansion technique. The similarity threshold value was empirically set based on
our preliminary experiments. These experiments include evaluating the performance
of SE4RC with different values of threshold in the range of 0.30 < α > 0.90, where the
value incrementally increases by 0.10 each time. These experiments also compare the
performance of expanding training and testing requirements against expanding only
testing requirements (i.e., SE4RC) in NFRs classification. Figure 6.6 shows the results
of our preliminary experiments, indicating that expanding only testing results shows
higher performance (especially in R & F1) than expanding both testing and training
datasets, and α > 0.80 has the best performance with only an expanding testing curve
(SE4RC).

6.5. EXPERIMENTAL COMPARISON OF RELATED METHODS 205

(a) Precision (b) Recall

(c) F1-Score

Figure 6.6: The results of our preliminary experiments aim to set the similarity thresh-
old (α) of SE4RE and comparing the performance of expanding the requirements in
the training and testing dataset or only expanding the testing dataset (i.e., SE4RC).

Figure 6.6 also shows that the small value of α leads to low performance of SE4RC
due to the expanding with dissimilar requirement. On the other hand, the high value
of α (i.e., α > 90) does not show a significant change over the baseline, indicating a
lesser number of similar requirements and resulting in a few extended requirements.

6.5 Experimental Comparison of Related Methods

The previous section compared SE4RC with the baseline, whereas this section com-
pares SE4RC with other classifiers. In particular, the key evaluation objective of this
section was the following:

To investigate the effectiveness and efficiency of our approach versus related
methods applied to address the short-text classification problem through the fea-
ture extension method.

206 CHAPTER 6. SE4RC METHOD

To fulfill this objective, we compare the performance of SE4RC with the following
two methods:

1. The method by Lu and Liang [LL17]

2. The method by Man [Man14]

There are two main reasons for selecting these methods for comparison. First,
the process description of these methods is relatively clear or can be inferred from
the description; so, we can reconstruct these methods based on their description and
objectively assess the performance of these methods against SE4RC. Second, these
methods are closely related to ours as they all aim at expanding short text using internal
sources (i.e., training data set) for supervised classification. Lu and Liange’s methods
expand user reviews to be classified according to NFR categories, and Man’s method
expands news titles to be classified according to the article categories (entertainment
support, etc.). The summary of these methods are provided in Table 6.6.

6.5.1 Experiment Execution

To conduct a fair comparison, we used the same dataset used in evaluating SE4RC
(i.e., PROMISE-exp described in section 5.2.1). As the source codes of these methods
are not available, implementing these methods becomes the first necessary step in our
comparison. In the section below, we describe how we implement Man’s method,
where Lu and Liang’s methods are described in section 5.3.1. Then, we compare the
performance of these two methods with SE4RC.

Implementing the Method by Man [Man14]
This method addresses the short text problem through expanding short texts with

additional features that are extracted using the frequent terms set method (also known
as frequent item set) [Bor12]. Man used the frequent terms set method to extract double
terms set from the training dataset; two terms frequently appear together (having co-
occurring relation) within an identical class (having class orientation relations). The
double terms set is then used to build background knowledge as shown in Figure 6.7.
During the expansion task, if the original text has a word showing in a pair(s) of the
double terms set, the second word in this pair(s) will be added to the original features.
In Man’s method, both the training and testing datasets are expanded.

The procedure of Man’s method includes four main steps: 1) pre-possessing (e.g.,
stemming and tokenization), 2) Information Gain for feature selection, 3) term fre-
quency for feature weighting and representation, and 4) SVM for building a classifier.

6.5. EXPERIMENTAL COMPARISON OF RELATED METHODS 207

Dataset ML Algo-
rithm

Key Techniques Classifier Training & Testing

Lu and Liang [LL17]

4000 user
review
sentences
from iBooks
and
WhatsApp

DT with
Bagging
method

Feature extension:
Word2Vec used to
expands each user
review with the most
similar words; Feature
representation: Bag of
Words

A multi-class classifier is
trained to classify a given user
review into one of these four
types of NFRs: Reliability,
Usability, Portability, and
Performance; 10-fold CV for
classifier training and testing,
with P = 0.71 , R = 0.72,
F1 = 0.72

Man [Man14]

News title
containing of
36 K
documents
labelled
according to
9 categories

SVM with
linear
kernel

Feature extension
Frequent term based
method are used to build
background knowledge
which used to expand
short text

A multi-class classifier is
trained to classify news titles
into one of the nine categories
(e.g., Sports, Society and
Entertainment). Holdout
evaluation method, with
P = 0.81,R = 0.80,F1 = 0.81

Table 6.6: Related Methods Used to Compare SE4RC

Man employed the hold-out validation method (70:30 training-test split) over the news
title dataset to train and test the classifier. These titles are labeled according to nine
classes (e.g., International, Sports, Society, and Entertainment), where each class con-
tains 4000 documents. The background knowledge was built based on the content of
the articles.

As this method does not provide implementation details, we made the following
modification:

• Implementation tool: We used Python as the main implementation tool, NLTK
for pre-processing, scikit-learn for feature representation, and ML model train-
ing and testing.

• Pre-processing: We applied stop-word removal in addition to the techniques
mentioned in the original method. Although this technique is not reported in the
study, it is important for our application. Without pre-processing the text, most
of the terms set are stop words and, consequently, the classifier’s performance is
negatively affected.

• Feature selection: we implement information gain based on the equation pro-
vided by Yang and Pedersen [YP97] (Eq. 5.2), more in Section 5.4.2.

208 CHAPTER 6. SE4RC METHOD

Figure 6.7: An example of double terms set obtained by applying Man’s method on
PROMISE-exp

H
HHHα

β 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.01 835 667 474 285 170 132 113 85 67 39
0.02 44 44 39 28 14 11 8 4 3 2
0.03 4 4 4 3 3 4 3 3 2 1
0.04 0 0 0 0 0 0 0 0 0 0
0.05 0 0 0 0 0 0 0 0 0 0

Table 6.7: The number of extracted frequent term sets using different values of α and
β by applying Man’s method

• Classifier training: we build a multi-class classifier based on SVM with a linear
kernel.

• Cross-validation: we used 10-fold cross-validation for training and testing, in-
stead of hold-out.

• Threshold values: we set α = 0.01, (co-occurring relation level) and β = 0.05
(class orientation relations). The β value is extremely less than the value used in
Man’s method (β = 0.6). However, the value used in Man’s method does not
extract any double terms as the dataset we used is smaller than what Man used
(see Table 6.7). Thus, we chose the aforementioned values as they retrieve rea-
sonable double terms (132) to build background knowledge and showed better
performance than the values mentioned in Table 6.7.

The results of this method is represented in Table 6.8.

6.5.2 Experimental Results

Classification Performance. Table 6.8 shows that SE4RC has the best performance,
followed by Man’s method, and finally Lu and Liang’s method. Lu and Liang’s method

6.5. EXPERIMENTAL COMPARISON OF RELATED METHODS 209

Category Lu & Liang Man SE4RC
P R F1 P R F1 P R F1

F 0.69*
±0.04

0.88
±0.09

0.77
±0.04

0.66*
±0.06

0.82
±0.07

0.73
±0.05

0.72
±0.05

0.84
±0.13

0.77
±0.05

SE 0.63
±0.15

0.56*
±0.15

0.57*
±0.10

0.66
±0.21

0.51*
±0.17

0.55*
±0.15

0.70
±0.18

0.65
±0.15

0.65
±0.13

US 0.45*
±0.20

0.40*
±0.20

0.41*
±0.18

0.45*
±0.28

0.42
±0.30

0.42
±0.28

0.60
±0.19

0.53
±0.19

0.55
±0.17

O 0.34
±0.15

0.30
±0.16

0.31
±0.15

0.36
±0.18

0.32
±0.14

0.33
±0.14

0.42
±0.13

0.46
±0.26

0.43
±0.17

PE 0.76
±0.21

0.61
±0.21

0.66
±0.18

0.61*
±0.17

0.57*
±0.23

0.57*
±0.18

0.80
±0.17

0.68
±0.15

0.71
±0.11

LF 0.36*
±0.39

0.14*
±0.13

0.18*
±0.17

0.49*
±0.03

0.29
±0.18

0.32*
±0.15

0.80
±0.29

0.41
±0.13

0.51
±0.17

A 0.49*
±0.34

0.44*
±0.27

0.34*
±0.26

0.25*
±0.27

0.29*
±0.35

0.26*
±0.29

0.69
±0.38

0.63
±0.35

0.65
±0.35

MN 0.35
±0.45

0.17
±0.21

0.22
±0.28

0.45
±0.47

0.30
±0.43

0.35
±0.38

0.40
±0.44

0.33
±0.39

0.34
±0.37

SC 0.45
±0.47

0.22*
±0.22

0.29*
±0.30

0.42
±0.44

0.35
±0.40

0.35
±0.37

0.55
±0.47

0.45
±0.42

0.49
±0.43

FT 0.20
±0.40

0.10
±0.20

0.13
±0.27

0.40
±0.49

0.25
±0.34

0.30
±0.38

0.35
±0.45

0.25
±0.34

0.27
±0.33

L 0.38
±0.43

0.40
±0.44

0.37
±0.40

0.42
±0.48

0.45
±0.47

0.40
±0.44

0.55
±0.47

0.50
±0.45

0.50
±0.43

PO 0.00
±0.00

0.00
±0.00

0.00
±0.00

0.10
±0.03

0.10
±0.03

0.10
±0.03

0.00
±0.00

0.00
±0.00

0.00
±0.00

Mic 0.62
±0.04

0.62
±0.04

0.62
±0.04

0.59
±0.05

0.59
±0.05

0.59
±0.05

0.67
±0.05

0.67
±0.05

0.67
±0.05

Mac 0.43
±0.20

0.35
±0.24

0.35
±0.21

0.44
±0.06

0.39
±0.05

0.39
±0.05

0.55
±0.04

0.48
±0.05

0.49
±0.04

Ex.
Time

3.1 minutes 8.8 minutes 6.5 minutes

* Indicates a significant statistical difference between the baseline and another classifier with p<0.05. Wilcoxon
signed-rank test has been applied.

Table 6.8: 10-Fold Cross-Validated Test Results for the three Classifiers

210 CHAPTER 6. SE4RC METHOD

No Original
Requirement

Expanded Requirement
Lu and Liang Man SE4RC

1 The product is ex-
pected to run on Win-
dows CE and Palm op-
erating systems.

The product is ex-
pected to run on
Windows CE and
Palm operating sys-
tems shall system
system window
product expect shall
oper run

The product is ex-
pected to run on
Windows CE and
Palm operating sys-
tem shall system
week software level

The product is ex-
pected to run on
Windows CE and
Palm operating sys-
tem The system shall
run on Windows
Server 2003.

2 The product shall
have a consistent color
scheme and fonts.

The product shall
have a consistent
color scheme and
fonts color scheme
system product shall
consist

The product shall
have a consistent
color scheme and
fonts product shall
consist color scheme
font system

The product shall
have a consistent
color scheme and
fonts The product
shall comply with
corporate color
scheme

Table 6.9: Examples of requirements before and after expanding them using different
methods. The first requirement is labeled as Portability and the second as Look and
Feel in PROMISE-exp.

is based on a different machine learning algorithm (DT) which might be the reason
behind the poor performance of their method. The performance of Man and SE4RC
seems to suggest that expanding requirements based on corpus-based methods is better
than the occurrence-based method in NFRs classification. Table 6.9 shows examples of
how requirements are expanded using each method, indicating that most of the words
added by SE4RC are similar to those used in the original requirement. In contrast,
the words added by Man’s method could be unrelated to the original ones (e.g., week,
level) in the first example. The words added by Lu and Liang are limited to the words
represented in the original requirement. A comparison of the overall performance of
these methods is depicted in Figure 6.8.

For the individual requirements category, SE4RC outperforms Lu and Liang’s method
in all classes except for PO, the most minority classes, which was not detected by both
methods. Compared with Man’s method, SE4RC shows higher performance in all the
classes except Maintainability, Fault tolerance, and Portability. We noticed that these
classes are minority classes and the biggest change was in precision while the recall
was similar in Fault tolerance and Maintainability. Portability was not detected at all
by SE4RC.

Statistically, the Wilcoxon signed-rank test shows that SE4RC has made a signifi-
cant improvement over Lu and Liang’s method in P,R and F1 of Usability, Look, and
Feel and Availability, R and F1 of Security and Scalability, and only P of Functional.
SE4RC also made a statistically significant improvement over Man’s method in P of

6.5. EXPERIMENTAL COMPARISON OF RELATED METHODS 211

Figure 6.8: Overall performance comparison between three related methods

(a) Lu and Liange (b) Man (c) SE4RC

Figure 6.9: Learning Curves of Lu and Liange [LL17], Man [Man14] and SE4RC
Based on 10-Fold Cross-Validation.

Functional and Usability, P and F1 of Look and Feel, R and F1 of Security, and P, R,
and F1 of Performance and Availability.

Finally, in terms of the execution time, Lu and Liang’s classifier is the fastest as it
took 3.1 minutes to run, followed by the SE4RC classifier which took 6.5 minutes, and
finally Man’s classifier for 8.8 minutes.

Learning Curves. As shown in Figure, the training curves of all classifier start
high (Lu F1 > 0.95, Man F1 > 0.90 and SE4RC F1≈ 1.0). However, as the training
progresses, the training curve of Lu stays mostly unchanged, Man increases to (F1 =
1.0), while SE4RC slightly declines to F1 ≈ 0.95, indicating a low bias (low training
errors) for all the classifiers. The testing curves of the three classifiers start low (Lu
F1 < 0.20, Man F1≤ 20, SE4RC F1≤ 0.30) and move upwards gradually with more
training examples. Among them, SE4RC moves upwards faster than the other clas-
sifiers, with (F1 ≈ 0.50) for SE4RC at the end of the training and F1 ≤ 0.40 for the
other two methods. This indicates that SE4RC has fewer testing errors, suggesting that
SE4RC suffers less from high variance (overfitting) than other classifiers.

212 CHAPTER 6. SE4RC METHOD

6.6 Discussion

Considering the experimental results reported in Sections 6.3-6.5, this section presents
some key findings from these results and discuss some research challenges we experi-
enced throughout the development of the SE4RC method.

6.6.1 Measuring Requirements Similarity

Measuring similarity between requirements is a key part of SE4RC. The main finding
of the first experiments, which determines the best similarity measure, is that corpus-
based methods are better than knowledge-based methods in measuring similarity be-
tween requirements. Some of the methods belonging to the knowledge-based approach
are limited to measuring the similarity between specific POS groups (e.g., nouns and
verbs). This means that the similarity between adjectives and adverbs (e.g., " easy"
and "simple") cannot be determined using these methods. Adjectives and adverbs have
been considered the most probable POS groups used in NFRs [HKO08]. Ignoring such
POS groups is a key reason behind the low quality of these methods in measuring the
similarity between NFRs. Besides, the knowledge-based resource (i.e., WordNet) used
in our experiment is not designed for software descriptions. For example, there is no
relation between system and software but there is one between system and organiza-
tion. Moreover, some technical words and their relations (e.g., programming languages
such as Java and Python) are not defined in such resources (WordNet).

Although the corpus-based approach had better performance, the highest correc-
tion score achieved using this approach was 0.45 (moderate correction), indicating the
difficulty of determining requirement similarities on an automated basis. The diffi-
culty is also noticed in measuring the requirement similarity manually through the low
inter-rater agreement score among the annotators (30), and the significant differences
between our initial annotation for the 100 samples (50%-%50) and those provided by
external annotators (reported in Table 6.2). In the following paragraphs, we discuss
the possible reasons for this difficulty and how these difficulties impact the process of
determining similarity manually (via annotators) or automatically (via implementation
of similarity measures).

As previously stated, requirements are often written as short text which is chal-
lenging in its turn. In addition, besides containing explicit information (i.e., written
text), requirements provide implicit information that cannot be understood in context
[Mey93]; this increases analytical difficulties and thus creates confusion [oDRC+01].

6.6. DISCUSSION 213

Examples of implicit information are perceptions and domain knowledge possessed
by the requirement analyst [oDRC+01]. For example, the requirement: “The product
shall prevent all personal and confidential data from being printed” and “the system
shall optionally allow the user to print the invoice” can be considered semantically
similar statements as they share the same concept (“print”). However, requirement an-
alysts may have different perspectives as they consider the first requirement as security
and the second as functional. Similarly, in our initial analysis of the 100 samples, we
used our knowledge to measure the similarity while the external annotators did not. For
example, we assumed that these two Scalability requirements are similar: "The prod-
uct shall support 2,000 concurrent users." and "The product shall have the capacity for
5,000 roads." However, only one out of five annotators found that they are similar.

Besides the implicit information, different requirement categories have similar com-
ponents (elements) that increase the difficulty of automatically measuring the similar-
ity. For example, most NFR categories include measures (e.g., fit criteria) that can
increase the similarity between dissimilar requirements. Consider, for example, the
similarity scores of these two requirements provided in [RR12]: “The product shall
produce the schedule within 3 seconds of the user’s request” and “The average mu-
sic buyer shall be able to locate any piece of music within 6 seconds using no more
than three actions”. Human annotators assigned to these requirements a score of 0,
while that of the weighted average word2vec was 0.75. The criteria provided in the
two requirements were quite different as the first one (3 seconds) is about how quickly
the system provides the schedule (i.e., performance) while the second one (6 seconds)
is about how quickly the music buyer can determine the location of a piece of mu-
sic (i.e., usability). While the human annotators were able to distinguish these two
requirements, the automated measure could not.

6.6.2 Semantic Expansion in NFRs Classification

The experiments’ results of this chapter confirm our finding of the previous chapter,
demonstrating the effectiveness of expanding requirements in NFRs classification with
SVM. However, this chapter’s results show that the effect of expanding short require-
ments with similar requirements (not words) is relatively slight in the overall classifica-
tion performance. The difficulty of measuring similarity between NFRS is a key reason
for this slight improvement. Besides, the size of the training dataset is small. We no-
ticed a few similar requirements to be expanded in case of a high similarity threshold
(i.e., 80%-90%). On the other hand, in the case with a low similarity threshold, most

214 CHAPTER 6. SE4RC METHOD

of the expanded requirements are less similar and belonging to different requirement
classes, thereby increasing the classification errors. Large datasets can increase the
possibility of having more similar requirements within the same class of requirements
to be expanded. Nevertheless, the requirements expansion technique shows significant
improvement in minority classes that are more distinct than others (i.e., less seman-
tically similar to others), such as Legal and Fault Tolerance. The requirement-based
similarity measures were able to find similar requirements belonging to these classes,
leading to adding more features from the same classes, and, consequently, correctly
predicting requirements.

The findings of the comparisons at Sections 6.5 and 6.4 can be concluded in three
main points. First, expanding only the testing dataset works better, especially when
the similarity measure is a corpus-based method. These methods retrieve different
relations between words (e.g. opposite, part-of etc.) which can consequently bring
the noise in NFRS classification. For example, we noticed that by applying Lu and
Liang’s similarity measure, some similar terms identified by the corpus-based method
do not have a similar meaning (e.g., "schema" + "secure "). Moreover, our preliminary
experiment (see Figure 6.6) shows that expanding only the testing dataset obtained
a higher performance than expanding both training and testing datasets. A similar
finding was made by Krzywicki et al. [KHB+18] in expanding short text for supervised
classification.

The second finding is that expanding methods based on word embedding work is
better than co-occurrence measures due to the nature of overlapping in NFRs classifi-
cation and short text of our dataset. By applying Man’s method, we found that many
of extracted frequent terms set are meaningless, i.e., not contributing to improving the
classification accuracy, such as (’second’, ’connect’) and (’code’, ’easi’) in Figure 6.7.

The third finding is that expanding short text with additional requirements can help
in improving the performance of minority classes (e.g., Legal, Fault Tolerance) as it
increases the relation between the testing and training requirements, leading to correct
classification of the requirements. Nevertheless, the improvement of classifier perfor-
mance is linked with the quality of requirement similarity method.

6.7. LIMITATIONS AND THREATS TO VALIDITY 215

6.7 Limitations and Threats to Validity

In this chapter, we use the same dataset and evaluation measures applied in the previous
chapter. Thus, it exhibits similar limitations and threats to validity in the NFR classi-
fication. This section, however, reviews the threats related to measuring the semantic
similarity among requirements.

Construct validity involves experimenter bias. This threat arises due to the sub-
jectivity or inaccurate understanding resulting from manual construction. To measure
the similarity, we randomly choose 100 pairs of requirements to determine the similar-
ity between requirements. These pairs were annotated by five paid external annotators
who did not have any information about our research goal (i.e., requirements classifi-
cation). Thus, we believe there is little threat to construct validity.

Another potential threat to construct validity is the suitability and accuracy of our
evaluation measures. In our experiments, we used rank correlation to select the opti-
mal similarity method. Rank correlation is also widely used to evaluate the similarity
between short texts [OSDCI11].

Internal validity threats of this study are quite low. In this study, to make any
decision, we considered different attributes, including past applications and resources.
For example, we choose nine similarity techniques to measure requirements similarity.
These techniques are commonly used to measure the similarity of short text. For ML,
as we mentioned in the section, a careful analysis was performed to choose the param-
eters used to build the ML model. This includes using K-fold cross-validation and the
learning curves to measure the overfitting of each ML model.

External validity concerns the generalizability of our findings. To measure re-
quirement similarity, we collected requirements from two different resources (dataset
and a book). However, we applied the SE4RC method in a single dataset and classifi-
cation task. This might threaten the generalizability of the SE4RC method. Thus, in
the next chapter, we apply SE4RC to a different classification task and dataset.

6.8 Summary

In this chapter, we proposed an ML method (called SE4RC) for classifying NFRs
in textual specifications. SE4RC aims to address short text classification by expand-
ing each requirement with the most similar requirements extracted from the training

216 CHAPTER 6. SE4RC METHOD

dataset. We used weighted average word2vec to measure the similarity between re-
quirements. We empirically evaluated SE4RC using PROMISE-exp against the base-
line method (with no feature extension) and related methods that are proposed for short
text classification. The results show that SE4RC outperforms the baseline method and
related work.

One of the main conclusions of this chapter is that expanding the requirements with
the most similar requirements can improve the performance of ML. However, there is
still a need to improve the accuracy of measuring the similarity between requirements.
Most of the misclassified instances in our approach were due to expanding a require-
ment with an unrelated requirement. Nevertheless, determining the similarity between
requirements is extremely difficult due to the multiple forms of information provided
in requirements (explicit and implicit), similar writing styles (i.e. most contain fit cri-
teria), and the short length of the requirements.

In the next chapter, we re-evaluate this method and ML4RC on a different classi-
fication task. This task aims to classify usability requirements into sub-classes (i.e.,
usability goals) using supervised classification.

Chapter 7

An Evaluation of the Proposed ML
Methods in Usability Requirements
Classification - A Case Study

"Simply stated, if the customer can’t

find a product, then he or she will not

buy it."

Jakob Nielsen

Usability is an essential quality of all interactive systems that has to be consid-
ered during software development [FB03, May99, FVGB04]. Like any NFRs, early
consideration for usability (in RE phase) helps in avoiding maintenance costs. The
maintenance costs of usability, in particular, are often significant due to the large num-
ber of usability-related changes that are commonly requested after developing systems
[JBSSA04, FVGB04, JMSS07]. The late adoption of these changes are difficult due
to the incorporation of usability into the early architectural design. This leads to de-
livering systems that are less usable than they could be, which directly affects users’
experience and satisfaction [JBSSA04, AML06].

Usability requirements (URs) are categorized as NFRs [LY98] and written in NL
documents. Thus, the early detection and identification of these requirements are chal-
lenging for many reasons. Besides those mentioned earlier (the ambiguity in NL and
nature of NFRs—scattered across requirement documents), usability is still not an ex-
act concept. A vast number of attempts have been made over the past 30 years or more

217

218 CHAPTER 7. USABILITY CASE STUDY

to define, refine, or classify this concept. Each of these attempts has relied on rele-
vant scientific knowledge and focused on a specific domain and objective, leading to a
lack of agreement on the exact meaning and application of this concept over the years
[Tra18].

This uncertainty is evident in URs, with a lack of consensus on what URs entail
and how they can be measured [LY98, AKSS03]. This perhaps contributes to usability
issues being the source of most unresolved problems within the development com-
munity [ZXY+17]. Study of URs is particularly challenging — few studies provide
real-world examples of usability requirements [LY98], and (as indicated in Chapter 3)
URs are rarely the subject ML classification attempts (compared, for example to other
NFRS, e.g. security).

Motivated by all of the above, in this chapter, we report a case study conducted
in the context of automatically classifying NFRs using the ML classifier, focusing on
the case of classifying URs into further categories. The main aim of this study is
to evaluate the effectiveness and efficiency of the proposed ML models (ML4RC in
Chapter 5 and SE4RC in Chapter 6) in classifying URs. The purpose of this case study
is two-fold: 1) identifying the UR categories in real-life usability requirements and
existing usability definitions, and 2) investigating the effectiveness of ML classifiers in
classifying URs into further categories.

This chapter is organized as follows: Section 7.1 describes the background and pre-
vious works related to usability and URs. Section 7.2 reports the case study method-
ology. Section 7.3 presents the results. Section 7.4 describes the findings and presents
a discussion about them. Section 7.5 presents threats to validity. Finally, Section 7.6
provides a summary of this chapter.

7.1 Background

Many usability classification models have been proposed to define and measure usabil-
ity, and a few models have been built for URs. This section provides an overview of
both usability classification models and URs.

7.1.1 Usability Concept and Classification Models

In 1998, the international standard ISO 9241-11 [Iso98] provided this most cited defi-
nition of usability [ARMRMB14, MRARMB09]:

7.1. BACKGROUND 219

“The extent to which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a specified
context of use.”

According to this definition, usability consists of three distinct aspects [FHH00]:

• Effectiveness—the accuracy and completeness with which users achieve their
goals.

• Efficiency—the relationship between the accuracy and completeness with which
users achieve certain goals, and the resources expended in achieving goals.

• Satisfaction— users’ comfort with, and positive attitudes towards, the use of the
system.

Each usability aspect may have one or more indicators that serve as measures (e.g., ef-
ficiency may be measured by task completion time and learning time [FHH00]). Since
the inception of ISO 9241-11, a series of definitions for usability have been provided
[Bev01] either through international standards or by academic work. Following are
some examples of these definitions:

Usability standards. Bevan [Bev01] divides usability standards into four broad
categories (see Figure 7.1) taken from two stakeholder perspectives: the consumer
perspective and the developer/producer perspective. The two categories that focus on
the consumer perspective are Quality in Use (for supporting software specification,
design, and evaluation) and Product Quality (recommendations, guidelines, and crite-
ria to evaluate the interface). These are both directly concerned with user needs and
requirements [Bev99]. By contrast, Process Quality (methods used for user-center
design activities and how to evaluate them) and Organizational Capacity (guidance
for an organization to apply user-centered design throughout the entire product devel-
opment life cycle) are from the developer/producer perspective as they focus on the
development process. Because our research focuses on user needs and requirements,
we have only studied the usability standards related to the first two categories. An
example of these standards is ISO/International Electro-technical Commission (IEC)
9126- 1 (2001) [II04] which defines usability as Product Quality, which has four as-
pects: understandability, learnability, operability, and attractiveness. ISO/IEC 25010
(2011) [fSEC+11] defines usability as both Product Quality and Quality in Use. The
usability concerning Product Quality has six aspects: appropriateness/recognisability,

220 CHAPTER 7. USABILITY CASE STUDY

Figure 7.1: Four Categories of Usability Standards (from Bevan [Bev01]). Quality in
Use and Product Quality are defined from the consumer perspective, whereas Process
Quality and Organizational Capacity are from the developer/producer perspective.

learnability, operability, user error protection, user interface aesthetics, and accessibil-
ity. The usability related to Quality in Use has five aspects: satisfaction, effectiveness,
efficiency, freedom from risk, and context coverage.

Academic work on usability. Many usability models and definitions contributing
to the development of usable software systems have been proposed by the academic
community. Examples of such models include that proposed by Nielsen [Nie94], who
defined usability through five quality components: efficiency, satisfaction, learnability,
memorability, and errors. Abran et al. [AKSS03] extended the ISO 9241-11 standard
[Iso98] by adding learnability and security to the three original aspects, which are effi-
ciency, effectiveness, and satisfaction. Seffah et al.[SDKP06] proposed a consolidated
mode that contains 10 usability aspects. In addition to the three original aspects of ISO
9241-11 standard, their model defines seven additional aspects, which are learnability,
productivity, safety, accessibility, universality, trustfulness, and usefulness. Shackel
[Sha09] developed a usability framework consisting of four components: effectiveness,
learnability, flexibility, and attitude. Alonso-Ríos et al. [ARVGMRMB09] proposed
a hierarchical model consisting of six main aspects: efficiency, satisfaction, safety,
knowability, operability, and robustness. Hasan and Al-Sarayreh [HAS15] proposed
an integrated model of several existing models, which consists of 11 aspects and 35
sub-aspects. The sub-aspects are basically the measures or indicators of the usabil-
ity aspects, which are effectiveness, efficiency, satisfaction, productivity, universal-
ity, learnability, appropriateness (or recognizability), accessibility, operability, user-
interface aesthetics, and user-error tolerance. They divided their model into two main
parts: usability during a system’s development and usability while using the system.

7.1. BACKGROUND 221

7.1.2 Usability Requirements

URs, like other requirements, are defined in the early phases of project development
and are used as an evaluation framework in later phases [TKV05]. URs specify how
easy a system must be to use under development [LY98]. They, in other words, de-
scribe usability goals along with associated measures (method and acceptance crite-
ria) [CWK05, TKV05], and illustrate how a system should be designed to meet the
usability goals [TKV05]. Examples for usability goals are learnability or efficiency,
examples for measurement methods are user test or questioners, and examples for
acceptance criteria are time to complete task or number of errors. Achieving these
requirements ensures that a system reaches the intended level of usability [LY98].

URs are commonly classified as NFR in Software Engineering and Human Com-
puter Interaction disciplines. However, they could also be functional based on the fact
that usability is an interdisciplinary field, combining interaction design and software
architecture [SS20]. According to Juristo et al. [JMSS07], the requirements that de-
scribe usability goals (e.g., efficiency, effectiveness, and satisfaction) to be achieved
are NFRs. An example of a non-functional UR is “A novice user should learn to use
the system in less than 10 hours”. While such requirements could use as a yardstick at
the evaluation stage, they do not provide the developer with information about the kind
of features to provide to satisfy such requirements. On the other hand, requirements
that describe how usability goals could be achieved are functional usability require-
ments. These requirements are specific functional features that contribute to activate
the usability level specified by non-functional usability requirements. For example,
“The system should provide users with the ability to cancel actions”.

URs differ from other requirements in that they are more strongly related to the
user in specifying, testing, and accepting a system [CWK05]. These requirements are
specified to support a user in performing particular tasks in the sense that the design of
these tasks fulfill the criteria of usability [TKV05]. For example, URs determine the
sequence of inputs and interaction steps that the user must take to perform a particular
function. Therefore, in some cases, URs can interfere with functional requirements,
such as the ability of users to perform a specific task (which can be considered as a
functional requirement and as a usability requirement under the criterion of effective-
ness) [TKV05]. Some usability goals can also interfered with non-functional goals
such as safety and performance [WW97] that are considered a usability aspect in some
usability classification models [ARVGMRMB09, WWD07, DGR12, HH93, Gou95].

Moreover, in some cases, it is difficult to coherently define and determine URs,

222 CHAPTER 7. USABILITY CASE STUDY

Category Definition Second Layer Third Layer

Conceptual
Requirements

Related to the type of
service provided by a
software

Learnability Understandability, Completeness
and Scalability

Practicability Accessibility and Calibrability

Functional
Requirements

Operational features of
the software

Operability Functionality, Interoperability,
Error tolerance and Simplicity

Efficiency Utility, Response time, Behavior,
Sensibility and Stability

Access Control Security and Integrity
Unambiguous Consistency and Clarity

Non-
functional
Requirements

Non-operational
features of the software

Helpfulness Portability, Supportability and
Availability

Validity Accuracy, Correctness and
Availability

Resilience Manageability, Maintainability and
Flexibility

Testability Adaptability

Business
Requirements

Organizational needs
and objective

Customizability Cost& Schedule, Marketability,
Organizational and Economy

Affect Reusability and Extensibility

Table 7.1: Usability requirements classification proposed by Kale et al.[KMMM10]

especially those related to the subjectivity of human experience. For example, the users
need to perform a particular task within a specific amount of time while achieving a
certain degree of satisfaction and a specific level of experience. Therefore, most URs
require involving the users in the defining and testing phases [TKV05]. Moreover, in
some cases (e.g., functional URs [JMSS07]), users might also not be a good source
for completing usability requirements, which increases the need for human–computer
interaction experts in defining these requirements, or alternatively, the use of such
usability guidelines as suggested by Juristo et al. [JMSS07].

7.1.3 Usability Requirements Classification

A few attempts have been made to explicitly classify usability requirements. For exam-
ple, Kale et al. [KMMM10] divided usability requirements into four different classes:
conceptual, functional, non-functional, and business. Each class was further divided
into sub-classes (see Table 7.1), but with poor subclass definition and substantial over-
lap. For example, availability is identified as a sub-class of helpfulness and validity.

Another attempt to classify URs has been made by Lauesen and Younessi [LY98],

7.1. BACKGROUND 223

URs Styles Definition Examples
Performance This style is about defining tasks,

user groups, and the performance ob-
jectives for user groups to perform
these tasks.

Customers without previous ATM experi-
ence: In their first attempt, 90% of them
must be able to withdraw a preset amount
of cash within four minutes.

Defect This style is similar to the perfor-
mance style; however, it determines
usability problems as well as the ac-
cepted level of these problems and
their severity.

In their first attempt to carry out task A,
users may not encounter more usability
problems than task failures (at most, 0.2
per user).

Process This style specifies the usability as-
pects of the design process, not the
product.

In the design, a sequence of three proto-
types must be made. Each prototype must
be usability tested and the most important
defects corrected.

Subjective This style involves defining the crite-
ria of satisfaction with the system.

80% of customers having tried the ATM
at least once must find the system pleas-
ant and helpful. 60% must recommend it
to friends if asked.

Design This is the traditional requirements
style which specifies the screen inter-
face and functions.

The system shall use the screen pictures
shown in App. xx.

Guideline This style defines the interface style
guides and standards used to achieve
high usability

The system shall follow the MS Windows
style guide.

Table 7.2: The six styles of usability requirements (URs) provided by Lauesen and
Younessi [LY98]

who identified six styles of usability requirements: performance, defect, process, sub-
jective, design, and guideline. They also provided several examples as well as the pros
and cons of each style. Table 7.2 summarizes these styles and examples. It is, how-
ever, not clear how these styles can be used to support requirements in the engineering
process.

Apart from the few attempts that explicitly classified usability requirements, several
studies implicitly classified usability requirements for different purposes and contexts
[WW97, BM94, GSWG86, TKV05]. The classification, most often, was based on
usability aspects (goals). For example, Terrenghi et al. [TKV05] used usability aspects
as guidelines for specifying usability requirements in a mobile computing context.
Becker and Berkemeyer [BB02] used requirements aspects for eliciting and testing
usability requirements early using their proposed usability toolset. According to such
studies, it can be concluded that the early classification of URs according to usability
aspects can provide the following benefits:

• Making URs tangible and able to be tested and traced [ARVGMRMB09, WW97].

• Ensuring that the development team has a common understanding of usability

224 CHAPTER 7. USABILITY CASE STUDY

requirements and how to test them [ARVGMRMB09]

• Help in a systematic understanding of the usability problems by, for example,
easily identifying the usability goals that might be missed or ignored

• Improving the communication between developers and usability experts by ana-
lyzing and addressing the usability of systems via these goals.

Motivated by the above, we will classify usability requirements automatically accord-
ing to usability aspects in this case study. The following sections will show how these
aspects are identified and used to automatically classifying usability requirements.

7.2 Case Study Methodology

The methodology of conducting the case study comprises four main steps: scoping,
planning, data collection, and ML application.

7.2.1 Scoping: Establishing Aims and Objectives

The main goal of this case study is to investigate the effectiveness of ML models (i.e.,
ML4RC and SE4RC) for detecting and classifying URs. Thus, the objectives are de-
fined as follows:

1. To define the usability aspects that can classify real-life URs and their interrela-
tionships

2. To evaluate the effectiveness of the proposed ML models in classifying URs

In alignment with the research objectives, the research questions are defined as follows:

RQ1: What are the common categories of usability aspects that reflect and match
real-life examples of URs?

RQ2: How well can the proposed methods classify NL requirements into the
common set of usability aspects?

7.2.2 Case Study Planning

Figure 7.2 shows the overview of the methodology used in this case study consisting
of two main phases: identifying the common usability aspects (to address RQ1), and

7.2. CASE STUDY METHODOLOGY 225

Figure 7.2: Phases in the Case Study Methodology

classifying URs using ML classifiers (to address RQ2). Brief descriptions of each
are provided below, and more detailed descriptions are provided in Sections 7.2.3 and
7.2.4 respectively.

Phase 1: Identifying common aspects. This step aims at identifying common us-
ability aspects that are used to characterize, define, and analyze software usability. The
rationale behind the identification of common usability aspects is to explicitly represent
a possible way of defining and classifying the URs due to a lack of widely accepted
classification. A set of usability requirements is collected and used to identify the
common aspects’ interrelationships and refine the common aspects’ definitions. The
output of this step is the definition of common aspects which address the first research
question in addition to pre-classified URs (i.e., labeled dataset) which will be used to
build and evaluate ML models (phase 2).

Phase 2: Classifying URs using ML methods. This step aims at evaluating the
effectiveness of ML models in classifying URs using the dataset developed in the pre-
vious phase. It includes applying ML methods that are described in Chapters 5 and 6
(i.e., ML4RC and SE4RC) separately to train SVM classifiers for predicting the com-
mon usability aspects identified in the previous step.

7.2.3 Data Collection, Analysis, and Validation

RQ1 requires the collection, analysis and validation of data to determine usability mod-
els and their sub-components (aspects), together with requirements that can be used to
refine the definition of the aspects and build ML models. Figure 7.3 shows an overview
of the method of collecting, analyzing, and validating each data point.

226 CHAPTER 7. USABILITY CASE STUDY

Figure 7.3: The process of identifying common aspects: collecting, analyzing, and
validation data required to answer the first research question

Usability Models and Aspects

A set of usability classification models have been collected, analyzed, and mapped into
a set of common aspects (also known as attributes, criteria, components, characteris-
tics, or usability goals). Analyzing existing usability models is an important step to
not only define the common usability aspects, but also recognize the relation between
these aspects. We believe that the successful understanding of usability concepts (as-
pects) and their interrelationships will contribute to the proper identification and clear
classification of usability requirements.

As shown in figure 7.3, the process of defining the common usability aspects con-
sists of four steps: identify the models, extract the common aspect, refine these aspects,
and validate them.

Step 1: Identifying Usability Models. We applied a snowball approach for perform-
ing the literature review to define usability classification models that provide a general
definition of usability for a software system. We excluded the models proposed for
specific user groups, application domain, context, or place. In order to restrict our
research to more recent studies, we selected models published in the period between
1990 and 2020 (last 30 years when the review was conduced). Appendix C reports the
procedures of the identification of these models in detail. The result of this review is
33 usability models summarized in Table C.5 in Appendix C.

Step 2: Extract the common aspects: We analyzed the identified models by listing
all the usability aspects (around 226 aspects) and grouping the related ones to define
the common aspects. This was not a straightforward step due to inconsistency in as-
pects’ terms and definitions, with one name being assigned to different definitions and

7.2. CASE STUDY METHODOLOGY 227

different names being used with the same definitions. Therefore, we grouped the as-
pects based on the definition (meaning), regardless of their names. We synthesized a
comprehensive definition of each aspect according to the existing ones.

Step 3: Refine the aspects. The common usability aspects extracted from the previ-
ous step were then saved along with the synthesized definition derived from the exist-
ing models and a list of existing aspects that have the same meaning. The synthesized
definition of each aspect was refined during the process of matching a set of URs to
the common aspects. The refinement process includes expanding a definition by, for
instance, adding more examples to clarify the boundary of each aspect. More details
about URs (how they were collected and classified) are provided in the next section.

Step 4: Validate the common aspects. The mapping of existing aspects to the
common ones was validated by an external annotator who has been working in NLP
field for more than 15 years. The external annotator mapped all 226 aspects extracted
from 33 models to the common set of usability aspects, with the option that the aspect
cannot be mapped. Agreement with Step 3 (i.e. the researcher mapping) measured
using Cohen’s Kappa was 91%, which is considered a very good score [Alt90].

Usability Requirements

A set of URs are collected to refine the definition of the common usability aspects
and to evaluate the ML classifiers. The procedure for collecting and validating these
requirements consists of three main steps: collecting URs, annotating, and validating.

Step 1: Collecting the requirements. We gathered a set of requirements from dif-
ferent sources, including research papers, requirements specifications, student course-
work, websites, and NFR datasets; other requirements were derived from existing
guidelines such as content-accessibility guidelines [Con08] and web-usability guide-
lines [Tra16]. In total, 622 requirements are collected from different sources. Table
7.3 shows the distribution of the requirements according to the sources.

Step 2: Annotating the collected requirements. We manually analyzed and clas-
sified the collected requirements based on the common usability aspects identified in
the previous section. All the collected requirements were classified manually with a
primary focus on finding clear relationships between the common aspects and require-
ments. To achieve this, a set of requirements templates (i.e., sentence structures) were
identified. A requirement template has been defined by Withall [Wit07] as "a fill-in-
the-blanks definition for a requirement that is deemed to be typical of the type." For

228 CHAPTER 7. USABILITY CASE STUDY

Requirements Source Source Reference No. of URs

Available Dataset PROMISE_exp 71
Concordia 5

Research Paper [AG17, LY98, CTL09, Que01,
MCI+08, BB02]

38

Lecture Resource
(slides and course work)

[Bac11, Lis10, Chu, Bev00, Cre, est07,
Mac13, Boc10]

38

Collected from SWE students* 57

Books [RR12, Som11, GDR04, Zie08] 12

Web Page [(OP, Usa, Fir, Wah12, usa13, sta09,
Kom20, Soe20, Bir19]

113

Available Requirements (Documents,
Templates or User Manual)

[Tor09, GPM03, Rum12, Yev07,
Com07, ITS, roc, CIC15]

76

Derived from Guidelines [Con08, Tra16] 212

Total 622

* These requirements were collected from undergraduate and master student
coursework in the department of software engineering in King Saud University
and The university of Manchester, respectively.

Table 7.3: The sources and number of requirements collected for validating the model

example, the template for this UR: "90% of users will be able to make an airline reser-
vation in less than five minutes" would be "A case includes <user_average> completed
a task within <a given_time>." We used these templates to simplify the classification
of the requirements, especially if the definition of aspect and the requirements’ goal
are not sufficient to distinguish the requirement class.

Step 3: Validate the annotations. After annotating all the requirements, we vali-
dated the annotations with a third-party annotator who has a master’s degree in soft-
ware engineering. The annotator was provided with the common aspects and their
definitions and asked to classify the requirements based on the given aspects. The an-
notations provided by the external annotator were compared with ours; the inter-rater
agreement, using Cohen’s Kappa, was 64%, which is considered a good score ("Sub-
stantial agreement") [Alt90]. Disagreements (around 184 requirements) were reviewed
again with the annotator until a consensus was reached (three requirements were re-
moved due to lack of agreement).

7.2.4 Machine Learning Application

RQ2 requires development of ML models based on the output of RQ1. ML4RC (il-
lustrated in Chapter 5) and SE4RC (illustrated in Chapter 6) are applied separately to
classify URs. To evaluate these methods’ effectiveness, we compare the classification

7.3. RESULTS 229

Figure 7.4: The frequency of each aspect in the 33 studied models

results obtained by applying these methods with a baseline classifier. We used SVM
algorithm in these experiments as it showed the best performance in NFR classification
(see Section 5.2).

The classifiers are evaluated using the same metrics (P, R, F1) with 10-fold cross-
validation. We used nested 5-fold cross-validation to tune the parameters. Both macro
and micro averages of each method are provided even though we focused on macro
average as the base of comparison and discussion due to less bias torwards majority
classes. We also provide learning curves of F1− score to show bias and variance of
each method.

7.3 Results

This section reports and analyzes the results obtained from each objective/phase.

7.3.1 The Common Usability Aspects and their Relation with URs

We identified eight common usability aspects that appear with high frequency across
the 33 studied usability models (see Figure 7.4 and Table C.6): Efficiency, Effective-

ness, Satisfaction, Safety, Learnability, Adaptability, Users’ error tolerance, and Aes-

thetics. The following paragraphs provide detailed definitions supported by an exam-
ple.

1. Efficiency: This aspect defines what time and effort, resources, and financial
costs required to perform specific tasks should be acceptable. This aspect is mea-
sured quantitatively and composed of three indicators: user efforts (efforts required

230 CHAPTER 7. USABILITY CASE STUDY

to use a system such as training period), task time (the time taken to perform a task),
and economic cost (incurred expenses, including the system itself, human resources,
equipment, and consumables).

Example 1: Users must be able to generate a bank statement within three
minutes.

2. Effectiveness: This aspect is concerned with system functionalities’ ability to
enable users to accomplish specific tasks and achieve desired results. This aspect can
be either measured quantitatively by counting the number of tasks completed, amount
of useful output, and errors rates, or qualitatively by questionnaires [HAS15]. It in-
cludes three indicators: completeness (completing users’ tasks and achieve their goals),
precision (performing tasks correctly with fewer errors), and usefulness (producing a
desired result and useful output).

Example 2: Six out of eight (75%) users should be able to manage their ac-
counts without making any errors.

3. Satisfaction: This describes the system’s ability to provide a pleasant expe-
rience to users. This aspect is measured subjectively, either quantitatively or quali-
tatively, using a rating scale of satisfaction, questionnaires, number of positive and
negative comments during use, and frequency of complaints. Its indicators include
convenience (cognitive and physical satisfaction), likeability (emotional satisfaction),
credibility (trust and confidence), and retention (continuous use).

Example 3: 70% of users must agree that they have a very pleasant experience
while in the system.

4. Safety: This aspect is concerned with the system’s ability to avoid damage
and/or risks from using the system. There are three indicators for this aspect: user
safety (physical safety, legal safeguarding and the safety of material assets), third-
party safety (safety of individuals other than the user or equipment), and environmental
safety (safety of the environment when the system is being used).

7.3. RESULTS 231

Example 4: The system should no longer operate in case of fire (e.g. an eleva-
tor)

5. Adaptability: The adoptability and adaptability by different users to their
needs and preferences. Its indicators include personalization (anticipating users’ pref-
erences), customization (manageable content), universality (diverse backgrounds and
cultures), portability (environment changes), and accessibility (availability to all users
regardless of disabilities). Accessibility can be achieved through two criteria: alterna-
tives and adapting to assistive technologies. Alternatives refer to providing equivalent
options for the content (e.g., text and colors) and control elements (e.g., mouse and
keyboard). Adapting to assistive technologies refers to making system content to be
accessed and understood by users who use assistive technologies (e.g., data sequences).

Example 5: The system shall provide multi language support.

6. Learnability: A system’s ability to enable users to understand and learn its func-
tionalities in order to easily accomplish tasks the first time they encounter the software
applications. Its indicators include clarity (perceivable by the mind and senses), fa-
miliarity (familiar design and functions), consistency, simplicity (straightforwardness
of system features), helpfulness (user documentation and guidance), and navigability
(easy to locate the system’s features).

Example 6: Interface action and elements should be consistent.

7. Users error tolerance: The ability of a system to minimize the occurrence of
users’ errors (i.e., prevention of errors) and ensure that the user can deal with errors
easily and correctly (i.e., users can recover from errors). The indicators of this con-
cept are validating (the validity of the input data), restricting (reducing the possibility
of inputting incorrect data or taking incorrect actions), reversibility (e.g., undo, redo
and cancel), responsively (producing quick, meaningful warnings), and recoverability
(handling an abnormal situation by, for example, providing appropriate instructions to
correct the problems).

232 CHAPTER 7. USABILITY CASE STUDY

Figure 7.5: The relations between the usability aspects. This figure does not include
all the indicators; however, it gives a general idea about how the relationships between
the indicators and aspects, and among the indicators themselves, are created.

Example 7: The actions which cannot be undone should ask for confirmation.

8. Aesthetics: The ability of a system to be communicatively and aesthetically
pleasing to users. The indicators of this aspect are attractiveness (e.g., the interface
color), feedback (keeping a user informed through, for example, interaction feedback,
progress feedback, and system status feedback), reachability (easy to locate the system
itself through, for example, search engines), communicativeness (providing authorita-
tive communication such as importing up-to-date and error-free information and offer-
ing active communication such as facilitating prompt and appropriate communication
with users).

Example 8: The product shall comply with the corporate color scheme

Relationships between the common usability aspects. The most common us-
ability aspects are grouped (see Figure 7.5) into two categories: 1) user goals (i.e.,
usability while using the system); and 2) system features (i.e., usability during system
development). Each group is explained below and summarized in Table 7.4.

Users goal (Usability while using the system): These aspects focus on users

7.3. RESULTS 233

(specifically on how users communicate with a system), as they include goals to be
achieved by users. Examples of such goals include task time (“the ability to complete
tasks within 5 minutes”), number of errors (“the ability to manage users’ accounts
without making any errors”), satisfaction scale (“6 out of 10 users must rate the system
as being either ‘very easy to use’ or ‘easy to use’”), risk impact and its probability
(“avoiding eye strain caused by two hours of continuous use”), or specific contexts
(such as user level [e.g., novice] and usage condition [e.g., no training] in the example,
“Novice users must be able to perform tasks without training”). All the goals men-
tioned in these requirements belong to the first of the four aspects mentioned above
(i.e., Efficiency, Effectiveness, Satisfaction, and Safety). We defined these require-
ments as usability goals, user-focused requirements, and non-functional URs (as they
describe how a user communicates with system). These requirements often begin with
users and measure the communication between users and a system in term of satisfac-
tion and performance. Thus, these requirements must be tested with the users through,
for example, usability testing. The common templates used for this type of requirement
are shown in Table 7.5

System features (Usability during system development): These aspects describe
how a system should be designed (e.g., interface characteristics) to achieve user goals.
The requirements belonging to this group are more about a system’s physical properties
(system features), including specifying what system elements should include and how
they should appear, behave, and interact. Examples of these requirements include “Er-
ror messages should explain how to recover from the error,” “Main system functions
shall be available from the home page,” and “It is possible to accomplish any given
task with just the keyboard, without the need to use the mouse.” These characteristics
belong to the last four aspects discussed above: Adaptability, Learnability, Users error
tolerance, and Aesthetic. They can be identified and tested by a development team
through prototypes. The common templates used for these requirements are shown in
Table 7.5

7.3.2 The Effectiveness of Detecting and Classifying URs

We used URs dataset described in Section 7.2.3 to build and test ML models. Table 7.6
provides a summary of the URs dataset, exhibiting the problems of multiclass imbal-
ances, short text, and high dimensionality. The following section will show the results
of applying ML4RC and SE4RC. After that, we will show the impact of applying each
technique of ML4RC in classifying URs.

234 CHAPTER 7. USABILITY CASE STUDY

User Goals System Features
Meaning Performance and Satisfaction Easy-to-use interface

Evaluating By usability testing By testing a paper or machine proto-
type

Identifying Users and the development team must
all participate in specifying these re-
quirements

The development team defines these re-
quirements for a system being devel-
oped, and users can be involved if they
are available.

Requirements
Examples

The payment process must be com-
pleted within three minutes.
The number of mistakes noted by the
students shall be decreased by 50% in
the first year.

The interface actions and elements
should be consistent.
Error messages should explain how to
recover from the error.

Table 7.4: User goals versus system features

Evaluation of the Proposed Methods (ML4RC and SE4RC)

Classification Performance. Table 7.7 shows the results of applying the baseline,
ML4RC and SE4RC methods in classifying URs. It is clearly seen from the table
that SE4RC has the best performance, followed by the baseline classifier, and finally
ML4RC. These results are similar to those obtained by applying these method in NFRs
classification, confirming the effectiveness of feature extension in requirements clas-
sification. To find which technique(s) of ML4RC negatively affected the accuracy of
classifying URs, we evaluate each technique separately in the next section.

For individual requirement categories, SE4RC outperforms all the other methods
in the three majority classes (i.e., Learnability, Adaptability, and Efficiency) and one
minor class (User error tolerance). SE4RC expands short requirements with the most
similar requirement. The highly similar requirements within one class are more likely
to be retrieved from large classes (those with a high number of instances), and the
classes contain distinct features (e.g., User error tolerance). Therefore, these classes
are improved more with SE4RC; similar observations have been noticed in Chapter 6.
On the other hand, ML4RC outperforms the other methods in three out of five minor
classes: Satisfaction, Effectiveness, and Safety (the most minor class), indicating the
effectiveness of ML4RC in classifying minor classes. ML4RC applied both feature
selection and dataset decomposition, which help improve the performance of minority
classes, especially those with distinctive features (e.g. Safety). This observation has
also been noticed in Chapter 5. Statistically, the Wilcoxon signed-rank test shows that
the baseline has an improvement over the ML4RC method on Efficiency (P and F1),
Learnability (R), Adaptability (R and F), and User Errors Tolerance (P). In contrast,
there is no significant difference between SE4RC and the baseline method.

7.3. RESULTS 235

Aspect type Common Templates Requirements Examples

Goals
(User-related
requirements)

A case includes completing a task
with a given_time

Callers and supervisors must be
able to accomplish any system task
within 2 minutes.

A case includes skill_level user
completed a task with a given_time

Novice users shall perform tasks Q
and R in 15 minutes.

A case includes that user average
agree with a specific-premise

80% of a statistically valid sample
of users shall continue to use it after
an initial 4-week trail usage period.

A case includes user_average
completed a task with spes-
fic_num_errors

Six out of eight users should be able
to manage their accounts without
making any errors.

User interface
(System-related
requirements)

A system_part must contain spe-
cific_constraint

The error message must be dis-
played on the next line of the error
resources to allow users to find and
fix the errors immediately.

A system_part must follow spe-
cific_criteria

All buttons in the system will ad-
here to established button conven-
tion (link to established button con-
vention regarding size, naming, po-
sition, etc.)

A system_part must contain spe-
cific_content

The system must be able to support
users by providing help messages
and guidance.

A system_part must provide a spe-
cific_service

The application must be able to
check inputted data before submis-
sion.

Table 7.5: Common Usability Requirements Templates

Category #Reqs. Percent Avg Len. #Feat.
Learnability 152 24.4 17.27 845
Adaptability 110 17.7 18.61 698
Efficiency 105 16.9 20.74 531
Satisfaction 72 11.6 30.65 437
Effectiveness 59 9.5 28.86 435
Users error tolerance 56 9.0 22.19 465
Aesthetics 51 8.2 15.00 360
Safety 17 2.7 20.52 159

Total 622 100.0

Table 7.6: Summary of the URs dataset

236 CHAPTER 7. USABILITY CASE STUDY

Category Baseline Classifier ML4RC Classifier SE4RC Classifier
P R F1 P R F1 P R F1

Learnability 0.63
±0.11

0.82
±0.13

0.71
±0.10

0.68
±0.21

0.49*
±0.24

0.54
±0.20

0.65
±0.11

0.83
±0.14

0.73
±0.11

Adaptability 0.65
±0.16

0.73
±0.11

0.68
±0.12

0.50
±0.26

0.44*
±0.21

0.46*
±0.21

0.68
±0.16

0.74
±0.09

0.70
±0.12

Efficiency 0.83
±0.12

0.77
±0.17

0.79
±0.13

0.58*
±0.19

0.56
±0.16

0.55*
±0.14

0.85
±0.13

0.78
±0.16

0.80
±0.12

Satisfaction 0.81
±0.14

0.74
±0.18

0.76
±0.14

0.83
±0.11

0.78
±0.17

0.79
±0.11

0.80
±0.13

0.74
±0.18

0.75
±0.13

Effectiveness 0.74
±0.27

0.53
±0.26

0.57
±0.23

0.57
±0.13

0.72
±0.16

0.63
±0.14

0.69
±0.25

0.55
±0.28

0.56
±0.21

Users error
tolerance

0.82
±0.22

0.51
±0.24

0.59
±0.22

0.62*
±0.22

0.44
±0.21

0.46
±0.18

0.84
±0.22

0.53
±0.22

0.62
±0.21

Aesthetics 0.72
±0.26

0.46
±0.16

0.54
±0.16

0.50
±0.45

0.40
±0.37

0.43
±0.39

0.72
±0.26

0.46
±0.16

0.54
±0.16

Safety 0.50
±0.50

0.40
±0.44

0.43
±0.43

0.83
±0.16

0.72
±0.24

0.73
±0.19

0.50
±0.50

0.40
±0.44

0.43
±0.45

Mic. 0.69
±0.01

0.69
±0.01

0.69
±0.01

0.63
±0.09

0.63
±0.01

0.63
±0.01

0.70
±0.01

0.70
±0.01

0.70
±0.01

Mac. 0.71
±0.01

0.62
±0.01

0.63
±0.01

0.64
±0.08

0.57
±0.10

0.58
±0.10

0.72
±0.01

0.63
±0.01

0.64
±0.01

Ex. Time 71 seconds 70 seconds 3 minutes

* Indicates a significant statistical difference between the baseline and another classifier with p<0.05. Wilcoxon
signed-rank test has been applied.

Table 7.7: 10-Fold Cross-Validated Test Results for the baseline classifier, ML4RC
and SE4RC in classifying usability requirements

In terms of execution time, ML4RC is the fastest method, taking 48 seconds to run,
followed by the baseline with 70, and finally the SE4RC method which took 3 minutes.
The execution time is based on the time spent on 10-fold CV without considering the
time used for tuning the parameter, as some classifiers have more parameters than
others.

Learning Curves. Figure 7.6 shows that the training curves of the baseline and
SE4RC methods are similar, both starting with F1 in the range F > 0.95 and moving
slightly upward to F = 1.00 (i.e., high bias). ML4RC also started with a high F1-
score value (F1 = 0.93) and moved slightly up and down until it stopped at F = 0.95.
On the other hand, all the testing curves of all the methods start with a low value (
F ≤ 0.20) and move upwards where the curve of SE4RC and baseline are relatively
similar; however, SE4RC stopped is a slightly higher value. ML4RC testing curve
shows the worst improvement by adding more examples when compared with the curve
of SE4RC and the baseline.

7.3. RESULTS 237

Evaluation of ML4RC Techniques

Classification Performance. Table 7.8 shows that the average performance of the FE
classifier is the highest among the other classifiers, followed by the DD and baseline,
and finally the FS classifier. The DD classifier achieves higher recall but lower preci-
sion than the baseline, and, consequently, the same F1-score value. These results are
similar to those mentioned in Chapter 5 (see Table 5.9). However, in NFRs classifi-
cation, FS shows comparable performance to the baseline, while in URs classification,
it shows lower performance than baseline. This confirms that the features selected us-
ing the semantic role-based feature selection technique are not enough to distinguish
requirements classes.

For individual requirement categories, apart from the adaptability and satisfaction,
the FE classifier achieves the highest classification results for all the classes. In con-
trast, FS shows the lowest performance among all classifiers, apart from Aesthetic. DD
outperform FS and FE classifiers on Satisfaction, and the baseline on Efficiency, User
error tolerance, Safety, and Satisfaction. The overlapping among the class in the mix

set (i.e., Learnability, Adaptability, and Efficiency) and min set (e.g., Effectiveness and
Aesthetic) are a key reason for low performance achieved in these classes. Table 7.9
shows the most frequent feature for each class. The table clearly shows the overlap-
ping between Efficiency and Effectiveness as well as Learnability with Adaptability
and Aesthetic. As Aesthetic has a lower number of examples, it shows the worst per-
formance among all classes using DD. Statistically, the Wilcoxon signed-rank test only
shows that the DD method shows a significant decrease than the baseline in the P and
F1 of Aesthetics.

In terms of execution time, FS is the fastest method, taking 59 seconds to run in
terms of execution time, followed by the DD classifier (61 seconds), and baseline (71
seconds). Finally, the FE classifier took 1.41 minutes to run. The execution time
is based on the time spent on the 10-fold CV without considering the time used for
tuning the parameter as some classifiers have more parameters than others.

Learning Curves. Figure 7.7 shows that the learning curves of the baseline, DD,
and FS classifier start with F1 in the range 1.0 < F > 0.90 and move slightly upward to
F = 1.0, where DD is slightly lower than the others (lower bias). However, the learning
curve of FE starts with F = 100 and stay largely unchanged (high bias). On the other
hand, the testing curve starts with a low value in all the curves (F < 0.20) and moves
upwards, where the curve of FE is more prominently going upwards (lower variance).

238 CHAPTER 7. USABILITY CASE STUDY

(a) Baseline (b) ML4RC Classifier (c) SE4RC

Figure 7.6: Learning curves of the baseline, ML4RC and SE4RC methods in usability
requirements classification based on 10-fold cross-validation.

Category Baseline Classifier DD Classifier FS Classifier FE Classifier
P R F1 P R F1 P R F1 P R F1

Learnability 0.63
±0.11

0.82
±0.13

0.71
±0.10

0.62
±0.13

0.73
±0.15

0.67
±0.13

0.58
±0.11

0.77
±0.17

0.66
±0.12

0.67
±0.12

0.78
±0.14

0.71
±0.12

Adaptability 0.65
±0.16

0.73
±0.11

0.68
±0.12

0.65
±0.11

0.66
±0.11

0.65
±0.09

0.61
±0.10

0.66
±0.20

0.61
±0.11

0.64
±0.16

0.72
±0.10

0.67
±0.11

Efficiency 0.83
±0.12

0.77
±0.17

0.79
±0.13

0.85
±0.12

0.84
±0.09

0.83
±0.05

0.82
±0.12

0.77
±0.18

0.78
±0.13

0.83
±0.14

0.78
±0.15

0.80
±0.13

Satisfaction 0.81
±0.14

0.74
±0.18

0.76
±0.14

0.86
±0.16

0.76
±0.18

0.79
±0.16

0.86
±0.15

0.68
±0.21

0.73
±0.15

0.86*
±0.14

0.75
±0.19

0.78
±0.13

Effectiveness 0.74
±0.27

0.53
±0.26

0.57
±0.23

0.58
±0.28

0.54
±0.26

0.55
±0.24

0.70
±0.25

0.51
±0.26

0.54
±0.21

0.74
±0.23

0.58
±0.24

0.59
±0.17

Users error
tolerance

0.82
±0.22

0.51
±0.24

0.59
±0.22

0.72
±0.17

0.63
±0.24

0.64
±0.18

0.68
±0.28

0.56
±0.27

0.59
±0.24

0.81
±0.15

0.67
±0.21

0.70
±0.16

Aesthetics 0.72
±0.26

0.46
±0.16

0.54
±0.16

0.39*
±0.33

0.34
±0.27

0.35*
±0.27

0.69
±0.23

0.46
±0.19

0.53
±0.18

0.71
±0.33

0.50
±0.24

0.57
±0.26

Safety 0.50
±0.50

0.40
±0.44

0.43
±0.43

0.60
±0.49

0.50
±0.45

0.53
±0.45

0.45
±0.47

0.35
±0.39

0.38
±0.41

0.70
±0.46

0.55
±0.42

0.60
±0.42

Mic. 0.69
±0.01

0.69
±0.01

0.69
±0.01

0.68
±0.09

0.68
±0.01

0.68
±0.01

0.66
±0.09

0.66
±0.09

0.66
±0.09

0.71
±0.01

0.71
±0.01

0.71
±0.01

Mac. 0.71
±0.01

0.62
±0.01

0.63
±0.01

0.66
±0.11

0.63
±0.09

0.63
±0.10

0.67
±0.08

0.59
±0.09

0.60
±0.09

0.75
±0.09

0.67
±0.10

0.68
±0.10

Ex. Time 71 seconds 61 seconds 59 seconds 1.41 minutes

* Indicates a significant statistical difference between the baseline and another classifier with p<0.05. Wilcoxon
signed-rank test has been applied.

Table 7.8: 10-Fold Cross-Validated Test Results for the baseline classifier and the clas-
sifiers applying the techniques of ML4RC separately (Dataset Decomposition, Feature
Selection, and Feature extension)

7.3. RESULTS 239

(a) Baseline (b) DD Classifier

(c) FS Classifier (d) FE Classifier

Figure 7.7: Learning Curves of the baseline, DD, FS, and FE classifiers Based on
10-Fold Cross-Validation

Learnability Adaptability Efficiency Satisfaction Effectiveness Users error
tolerance

Aesthetics Safety

page able able Application perform error website automated
provide accessible minutes easy error message color per
easy screen training sample tasks data message average
help text tasks statistically complete enter interface protect
interface language successfully valid sample actions appear injure
button data perform specifically failures validate attractive case
functions form complete scale enable require content open
navigation reader average rate effective input used lost
screen support seconds neutral easy confirmation data moving
consistent interface learn following increase list information history

Table 7.9: Top 10 most frequent features for each usability class in UR_databaset

240 CHAPTER 7. USABILITY CASE STUDY

7.4 Lessons Learned

In this section, we discuss some lessons learned from this study and link them with
the literature. We organize this section based on the research questions as follows: the
common set of usability aspects (RQ1) and using ML to classify URs (RQ2).

7.4.1 Usability Aspects According to Usability Requirements

Many models have been proposed to classify the usability concept into a set of aspects
(also known as goals and attributes). Very few of these models considered the applica-
tion of these aspects in requirement analysis and classification. Among the 33 models
we studied, only one model, proposed by Hasan and Al-Sarayreh [HAS15], uses the
Softgoal Interdependency Graph (SIG) which is used to visualize non-functional goals
to represent usability aspects. Their SIG model divides usability aspects based on us-
ability evaluation time into two main categories: usability during system development
(e.g., accessibility and learnability) and usability while using the system (e.g., effec-
tiveness, efficiency and satisfaction). However, their model provides neither sufficient
justification for this classification, nor differences between requirements under each
category. This increases the difficulty in understanding how this model could work
correctly in the requirements analysis processes.

In the URs literature, many studies address usability requirements during the sys-
tem development process with a clear focus on requirement elicitation and evaluation
[OPCF+13, GYK04, MT09, BCMA02]. However, very few studies focused on ana-
lyzing and classifying URs (see Section 7.1.3). An example of these studies is the one
conducted by Juristo et al. [JMSS07] who suggested classifying usability requirements
into FR and NFR. Juristo et al. defined non-functional URs as the requirements that
specify the user level of effectiveness, efficiency, or satisfaction that a system should
achieve. These requirements are said to be used as a criterion at the evaluation stage.
On the other hand, they defined functional URs as usability features that have an impact
on software system functionality (e.g., undo and cancel). Such requirements cannot be
well defined by developers or users, as argued, and this increases the need for human-
computer interaction (HCI) knowledge (i.e., HCI experts). Therefore, they proposed
an alternative solution for HCI experts through the use of HCI guidelines. They ex-
tract a set of functional usability features among HCI sources and classify them as the
following: feedback, undo/cancel, user input error prevention/correction, wizard, user
profile, help, and common aggregation. They evaluated the benefits of their approach

7.4. LESSONS LEARNED 241

in developing a software system, finding that their approach reduces ambiguous usabil-
ity details early and helps developers easily apply usability features, thereby enhancing
the usability of the final system.

Our classification of usability aspects is similar to the aforementioned models. For
example, we group the aspect into user goals and system features, similar to Hasan
and Al-Sarayreh’s [HAS15] model. Each group represents different requirements; user
goals are for users while user interface attributes are for developers, similar to Juristo
et al. [JMSS07]. However, compared to Juristo et al. [JMSS07], we add a further
step: grouping usability requirements based on a set of usability aspects (goals) and
linking the aspects with each other to show how they can be achieved and measured
in practice. Moreover, we used these aspects in requirement classification, showing
the relation between aspects and how they can impact each other (achieved by others).
In this way, a requirement analyst could clearly and quickly analyze and validate URs
by, for example, identifying what usability aspect is satisfied or missed, and how a
particular requirement can support system usability (i.e., through any usability aspect).
In comparison with Hasan and Al-Sarayreh’s [HAS15], we provide more details about
how usability aspects can be applied in requirements specification and evaluation. We
also derive the aspects and their interrelationships from collected data (usability models
and URs) and use different aspects (quantity and definitions) than those used in their
model.

The relation between usability aspects derived from the collected requirements is
similar to the layered models proposed by Welie et al. [VWVDVE99]. Welie et al.’s
model breaks down the usability concept into usage indicators and means to achieve
good usability in practice. As shown in Figure 7.8, their model consists of three main
levels: the first contains an abstract definition of the usability aspects of efficiency,
effectiveness, and satisfaction. The second consists of the usage indicators "indica-
tor can be observed in practice when users are at work", such as performance speed.
The third contains the means "cannot be observed in user test and they are not goals
by themselves whereas indicators are observable goals", such as consistency. How-
ever, their model is not complete; some elements are duplicated (e.g., satisfaction) and
others lack clear explanations as to how they can be achieved or evaluated (e.g., learn-
ability). In addition, they haven’t considered the requirements design and evaluation
in developing or defining this model.

Our application in this chapter, on the other hand, focuses on URs and built based
on a deep understanding and analysis of usability URs. Although we paid attention

242 CHAPTER 7. USABILITY CASE STUDY

Figure 7.8: The layered model proposed by Welie et al [VWVDVE99]

to usability aspects that commonly appear in the related models to enhance the gener-
alizability, these aspects might not be enough to be used in some specific application
domains. In addition, to define the relationships between requirements, we classify
real-life examples of URs by taking into account the requirements templates, besides
the semantic meaning of requirements. Although this gives us a clear distinction be-
tween requirement types (i.e., user goals or system features), it poses a difficulty in
automatically classifying URs, especially when the semantic meaning and require-
ment template are inconsistent for predicting the requirements classes. For example,
this requirement: "The average buyer shall be able to learn to find relevant items within
3 minutes" is classified as efficiency, even though it seems to be semantically related
to learnability. This requirement belongs to the temple "A case includes completing
a task with a given_time". Therefore, it will be specified and tested with the end-
user. Unfortunately, this is a common issue in automatically classifying NFRs as we
discussed in Chapter 6 (see Section 6.6.1), thus, such issues are difficult to overcome.

Overlapping is also a common problem in NFR. We notice overlapping among us-
ability concepts and requirement classes which increases the challenges in extracting
the common aspects and classifying requirements. For example, in the usability mod-
els we studied, we noticed that there is overlapping between the aspects themselves
and the aspect with other NFRs such as error tolerance and security. Moreover, there is

7.4. LESSONS LEARNED 243

overlapping between the URs themself and other non-functional requirements such as
performance, error tolerance, and operability. For example, both “time taken by a user
to perform a task” and “time taken by a system to respond" are classified as UR. How-
ever, they are different. The first is related to usability as it is about communication
between users and a system while the second is related to system performance. In ad-
dition, we notice that some aspects that frequently appeared in existing models rarely
appear within URs such as safety. This clearly indicates that addressing usability in
RE (i.e., URs) is still an immature area and much more research is needed.

7.4.2 Using ML to Classify URs

According to the review reported in Chapter 3, ML algorithms are not applied in an-
alyzing and classifying usability requirements, indicating the low effort spent by the
software engineering community to handle usability early in the RE phase. However,
a few methods are proposed in the HCI community [HS13, BG17]. These attempts
applied SVM to classify user reviews according to various usability or user experience
dimensions provided in existing usability models (e.g., BEVAN [Bev08]). The results
of applying these methods showed the effectiveness of ML in classifying user reviews
into major usability classes. However, minor classes have very low results (P= 0.00,
R =0.00, F=0.00). It is argued that the low performance of these classes is due to the
low number of samples. However, the lack of diversity among the classes could also
be a key reason for the low performance of such classes. For example, Satisfaction,
Enjoyment, Fun and Frustration, and Motivation are separate classes. The main differ-
ence between our method and these methods is, besides the differences in classes, that
they used user reviews which contain more distinct features than requirements. For ex-
ample, "favorite", "disappoint", "fun", "nice", "cool" have been identified as common
terms used for the satisfaction class. These features are distinct and intuitive; however,
they appear less frequently in requirements. The other difference between our model
and these models is that they classify the reviews without considering the system de-
velopment process. We classified requirements based on the usability aspect that was
organized based on a system development process.

In this chapter, the result of applying SVM to classify URs according to common
usability aspects is promising (F = 0.63). However, more effort is required to handle
the similarity among the aspects (e.g, Effectiveness with Efficiency, Aesthetics with
Learnability and Adaptability). To illustrate, Effectiveness and Efficiency have very
common cases. For example, “A case including user_average completed task with a

244 CHAPTER 7. USABILITY CASE STUDY

given_time” could be categorized under efficiency (i.e., focusing on the time taken to
complete the task) or effectiveness (i.e., the ability to complete a task of user_average).
However, as Efficacy is a major class, it reaches a higher classification performance
than effectiveness. Therefore, handling overlapping among URs can be through either
adding more examples to the minor classes or considering multi-label classification
where each requirement can be classified into more than one category. We will leave
this to future work.

The application of the proposed method ML4RC and SE4RC in URs classification
made changes over the baseline classifier. Although ML4RC could not outperform the
baseline, its techniques (Dataset Decomposition and Feature Extension) have made an
improvement over the baseline. For example, as shown in section 7.3.2, the DD classi-
fier improves the recall of SVM but decreases precision. Moreover, it is more efficient
than the baseline. For the FS classifier, the efficiency of the SVM classifier is enhanced
(less execution time). However, it has not improved the classification results. Finally,
extending requirements with synonyms extracted from WordNet significantly improves
the classification results for all classes, except those with very few samples; not many
similar features belong to such classes. On the other hand, expanding requirement
with a similar requirement (i.e., SE4RC) shows a slight improvement over the base-
line. This technique’s big improvement goes to the majority classes (more likely to
find similar requirement within the same class), and minor with district features (more
like to retrieve similar requirements with the same class). However, ML4RC is more
costly in execution time than the baseline.

Most of the findings reported on applying ML4RC and SE4RC in URs classifica-
tion are similar to those mentioned in NFR classification. This increases the gener-
alizability of these findings on other requirements classification tasks. However, the
overall average of URs is better than those achieved by NFRs (F1 of baseline in NFR
= 0.47, and in URs = 0.63). The simplicity of the classification task (less number of
classes) is one of the main reasons. Moreover, the deep analyzing and understand-
ing of the classification problem (i.e., dataset) is another important factor. In URs
classification, we analyse the usability concept and the interrelationships between re-
quirements deeply to reduce class ambiguity and understand the classification task.
This understanding of the problem can improve the quality of a dataset, which, in its
turn, enhances classification performance [KBLK10].

7.5. THREATS TO VALIDITY 245

7.5 Threats to Validity

In this section, we discuss the threats to the validity of this chapter, as well as our
mitigation strategies.

Construct validity. A potential threat to construct validity is related to incorrectly
understanding usability. To mitigate this threat, we conducted a systematic review of
the definition of usability to identify common usability characteristics. We validated
our understanding with an external annotator by mapping a set of existing characteris-
tics to the common ones. Another threat is personal bias in the manual classification
of URs. To minimize this threat, two annotators classified the requirements separately
and then discussed and resolved any disagreements on the classification results. The
third threat is insufficient URs to draw reasonable conclusions. To reduce this threat,
we extracted URs from different sources and domains.

Internal validity. There are minimal threats to internal validity as a careful analy-
sis was performed while choosing the independent variables used by ML, and in iden-
tifying and grouping usability attributes. For example, each task for identifying and
grouping usability attributes was validated with an external annotator, before moving
to the next task. To mitigate the overfitting threat in ML models, we applied K-fold
cross-validation and showed learning curves.

External validity. A potential threat to external validity is the lack of generalizabil-
ity of our findings. This chapter is designed to mitigate this threat since it demonstrates
the application of the proposed methods to a different classification task. This task has
a different dataset, which is collected from different sources and labeled with different
classes. Moreover, we used the K-fold cross-validation procedure to train and validate
all the classifiers.

7.6 Summary

This chapter reports a case study to evaluate the proposed ML methods (ML4RC and
SE4RC) in classifying UR into other classes. The case study consists of two main
phases: 1) identifying the usability aspect used to guide ML models, and 2) evaluating
the effectiveness of using ML to automatically classify URs. To identify usability as-
pects, we conducted a snowball-based review to extract the common aspects from 33
existing usability models. These aspects are refined through the process of classifying

246 CHAPTER 7. USABILITY CASE STUDY

a set of usability requirements collected from various sources. To evaluate ML mod-
els in UR classification, we use the pre-classified requirements (622 requirements) to
build and test ML models. We apply the proposed methods (SE4RC and ML4RC) and
compare their performance with a baseline method. In this way, we compare the effec-
tiveness of addressing the three problems (i.e., high dimensionality, class imbalance,
and short text) in classing URs.

The results shows that there are eight common usability aspects: Efficiency, Ef-

fectiveness, Satisfaction, Safety, Learnability, Adaptability, Users error tolerance, and
Aesthetics. These aspects are grouped into two categories: user goal and system fea-
tures; requirements belonging to each group have different specification and evaluation
methods. Moreover, applying ML to classify URs into these aspects shows encourag-
ing results. However, more efforts are needed to improve classification accuracy. These
efforts could comprise adding more instances to minor classes or applying multi-label
classification. We will leave that to future work.

Applying ML4RC and SE4RC shows similar classification performance to those
obtained with NFRs classification (in Chapter 5 and 6). This confirms the previous
chapter’s findings, including the effectiveness of feature extension and data decompo-
sition in requirement classification. In the next chapter, we conclude the thesis and
discuss future directions.

Chapter 8

Conclusion and Future Direction

"There is no end to learning, but

there are many beginnings."

Tim Johnson

The work presented in this thesis focuses on using ML to automatically classify
requirements early in the RE phase, where most of the requirements are written in
NL documents. Specifically, it investigates the impact of three classification problems
(high dimensionality, class imbalanced, and short text classification) in detecting and
classifying textual NFRs using standard ML algorithms. This includes proposing two
solutions (ML4RC in Chapter 5, SE4RC in Chapter 6), which were evaluated in two
different classification tasks (identifying and classifying NFRs in Chapters 5 and 6,
and classifying URs in Chapter 7). This chapter concludes the research by reiterating
contributions (Section 8.1), summarising the findings (Section 8.2), and highlighting
future works 8.3.

8.1 Contributions

The key contributions of this research are summarized as follows:

• A systematic review provided a comprehensive understanding of ML algorithms’

use in NFR classification (what and how). This review can be used by other
researchers as a roadmap for developing this area by, for example, exploring
new solutions or improving existing ones.

• A new ML classifier (ML4RC) to handle the three classification problems. This

247

248 CHAPTER 8. CONCLUSION AND FUTURE DIRECTION

method consists of three new key techniques, data decomposition, semantic role-
based feature selection, and features extension. We conducted evaluation studies
showing the ML4RC is an improvement over related methods, and its key tech-
niques outperform existing solutions and a baseline method.

• Expanding short requirements with similar requirements (not words) to handle

short-text classification in the SE4RC method. This expansion performs com-
petitively well with respect to related work and a baseline method in different
classification tasks.

• An empirical comparison of several similar semantic methods for measuring the

similarity of NFR requirements, illustrating the difficulties of measuring NFR
similarity and the effectiveness of corpus-based measures in measuring NFR
similarity.

• Identifying common usability aspects based on conducting a systematic review
of usability definitions and classification models.

• Application of ML in UR classification to investigate the effectiveness of pro-
posed solutions (ML4RC and SE4RC) in a different classification task. The
results confirmed previous findings, suggesting the effectiveness of the proposed
solutions in various text classification tasks.

8.2 Main Findings

This research contains different empirical studies, critical assessment, and systematic
reviews, making many findings and providing new insights. This section reviews the
most salient findings, organized by the key thesis chapters: chapter 3,4,5, 6 and 7.

Chapter 3. This chapter, which presents a systematic review on using ML in NFRs
classification, indicates many findings, including the following:

• Using ML in NFRs classification has received increasing attention in the last
years.

• Supervised learning works better than unsupervised in NFRs classification, where
SVM is the most frequently used algorithm.

• ML is effective in NFRs classification, with an accuracy of more than 70%.

8.2. MAIN FINDINGS 249

• The most addressed non-functional requirements are security requirements.

• Cross-validation technique is more frequently used to evaluate NFRs classifier,
and precision, recall, F1-score are the most used measures.

• Lack of sufficient reporting of ML methods and findings.

• Lack of clarification and justifications on the use of specific evaluation methods.

• A few shared training datasets—most of them are relatively small.

• Lack of standard definition, classification, and representation of NFRs

• The difficulty of selecting relevant features and classifying NFRs, due to many
shared contexts and high similarity among different non-functional classes.

Chapter 4, which provides an overview of the three problems and analyzes the
existing solutions in the context of NFRs classification, includes the following findings:

• High dimensionality, class imbalance, and short text classification problems are
critical for supervised ML classifiers’ effectiveness and generalizability.

• Insufficient solutions to handle these problems in NFRs classification.

• High dimensionality is the most addressed problem, followed by class imbal-
ance, while short text classification problem is clearly handled by one study.

• Most feature selection methods applied to handle high dimensionality in NFRs
are statistical-based methods.

• Most of the solutions applied for an imbalance class problem in NFRs classifi-
cation are data-level solutions.

• Feature extension is the common solution to address short text classification, and
it is applied once in NFRs classification.

Chapter 5, which presents the first solution (ML4RC), includes the following find-
ings:

• Data decomposition technique can improve the performance of NFRs classifiers,
outperforming oversampling and undersampling techniques.

250 CHAPTER 8. CONCLUSION AND FUTURE DIRECTION

• Feature selection methods cannot improve the overall performance of NFRs clas-
sifiers; however, they enhance the generalizability of the classifiers.

• Linguistics feature selection methods outperform statistical-based methods with
relatively small datasets in requirements classification.

• Feature extension is very promising in requirements classification, outperform-
ing baseline methods; however, it less efficient (i.e., it took more time).

• By applying each technique separately, feature extension shows the highest per-
formance, while feature selection is the lowest.

• Addressing all the problems by applying ML4RC is less effective than separately
performing dataset decomposition or feature extension techniques. Feature se-
lection is the reason for the lower performance of ML4RC.

Chapter 6, which presents the second method (SE4RC), includes the following
findings:

• Corpus-based methods are better than knowledge-based methods in determining
the similarity between two requirements.

• It is difficult to determine requirement similarity on an automated basie due to
the short length of requirements, shared context in NFRs (e.g., fit-criteria), and
containing both implicit and explicit information.

• Expanding requirements with additional requirements shows an improvement in
NFRs classification. However, it is less effective than word expansion due to the
difficulty in measuring requirements similarity.

Chapter 7: which presents the application of the proposed methods in URs classi-
fication, includes the following findings:

• Lack of attempts in classifying URs, while great variant in defining usability
concept.

• URs can be functional (system attributes) or non-functional (user goals).

• There are 8 common usability aspect, namely Efficiency, Effectiveness, Satisfac-

tion, Safety, Learnability, Adaptability, Users error tolerance, and Aesthetics.

8.3. FUTURE WORK 251

• Applying the proposed methods with URs shows the same performance as NFRs.

• The overall performance of URs classification is higher than NFRs classification.
The reasons behind this observation are likely to be the simplicity (8 class against
12 classes), and a comprehensive understanding of the classification task before
applying ML (e.g., analyzing requirements templates and usability concepts).

8.3 Future Work

There are many possible research directions for the work presented in the thesis. These
directions can be broadly grouped into two categories: 1) empirical experiment and
analysis, which aims to improve the present work performance, and 2) extrinsic evalu-
ation, aiming to use or evaluate the proposed method in supporting RE tasks.

8.3.1 More Empirical Experiments and Analysis

Considering Class Content when Decomposing Data. The data decomposition method
shows encouraging results in handling class imbalance problems. However, this method
divides the dataset only based on class distribution without considering the logical re-
lation between classes or features. Consequently, the performance of the classes that
have less distinct features is low in the first layer and all subsequent layers. Thus,
in our future work, we investigate how to improve the performance of the first layer
by either 1) considering both class content and class distribution in decomposing a
training dataset or 2) defining different classification setting to improve the process of
distinguishing classes of the first level (e.g., apply a diffident ML algorithm or create a
rule-based technique).

Beyond textual features. Feature selection methods, either statistical-based or
linguistic-based methods, cannot improve the classifier performance. In addition to
the short length of these requirements, words often associated with a particular NFR
tend to be scattered over the other NFRs (e.g., security and performance e [CHSZS07],
performance, and scalability [CHSZS07]. The literature shows that using keywords is
not enough (based on the experiment of Cleland-Huang et al. [CHSZS07]). ML4RC
shows that detailed structure analysis is prone to error due to removing relative fea-
tures. Multi-words feature (e.g., 2-gram, 3-gram, and multi-word expressions) have
also been shown to be ineffective in NFR classification [ZYWS11]. Therefore, in our
future work, we plan to investigate the use of different types of features in addition

252 CHAPTER 8. CONCLUSION AND FUTURE DIRECTION

to textual features. Potential directions for this line of research include: 1) using sev-
eral learners where each one is trained using a specific type of features, 2) combining
different types of features with training a single classifier.

More Types and methods in Feature Extension. Feature extension methods show
promising results in NFRs classification. Thus, further investigation on the use of
feature extension is needed. The investigation will include using different sources and
methods of extended features. The sources could be those describing non-functional
classes, such as standards and glossary. The measures could include using different
similarity methods and/or background knowledge.

Different Classification Techniques. This research applied the widely-used ma-
chine learning algorithms in NFRs classification (i.e., SVM, NB, DT, and KNN). An-
other potential area for future work could be investigating the use of different classifi-
cation methods, including advanced learning models such as transfer learning.

Generalization to Non-Requirements Context. Although two different datasets
have been used in this research, both are requirements datasets. Therefore, another
potential area for future work could be to explore whether methods for classifying
NFRs can be transferred to other domains such as tweets, user reviews, and comments
classification. This may include the case of analyzing the usability concerns of a pro-
duct/application through classifying user reviews based on the eight identified classes
and measuring their satisfaction for each class by applying sentiment analysis.

8.3.2 Extrinsic Evaluation of NFRs Classifiers

Supporting manual analysis of requirements. An optional direction of future work
is to demonstrate the practical usefulness of NFRs classifiers in the analysis of re-
quirements at the early stage of RE. This includes comparing requirements analysis
workload (e.g., analysis time and defects in requirements documents) with and with-
out using such classifiers. Winkler et al. [WGV19] conducted a similar empirical
study, but they evaluated the usefulness of ML in classifying elements of requirements
documents into requirements and non-requirements. However, our future work will
focus on NFRs.

Supporting other RE tasks. Another direction of future work could be to utilize
the classified NFRs to support different RE tasks. For example, identifying require-
ment type can use in generating traceability links, rewriting requirements, analyzing
the quality of requirements by detecting the missing parts, and visualizing the system
goals and others.

8.4. CONCLUSION REMARKS 253

8.4 Conclusion Remarks

This thesis has contributed towards understanding the impact of three classification
problems in requirements classification (i.e. high dimensionality, class imbalance, and
short text classification problems). In addition to the deep understanding of the prob-
lems and existing solutions, this research proposed two new solutions to address these
problems (i.e. ML4RC and SE4RC). The application of these solutions in two clas-
sification tasks (NFRs and UR classification) shows their effectiveness in classifying
requirements using standard ML algorithms.

The experimental studies in this research have also revealed other issues, making
NFR classification a very challenging task. These problems include shared context,
overlap, bi-meaning (implicit and explicit), and a lack of consensus in definitions and
representations of NFRs. Tackling such issues will improve not only the accuracy of
proposed solutions but also the understanding of these requirements. Therefore, based
on an analysis of the results, this research has suggested further investigations and
directions for future work.

The novelty of this research is not limited to the proposed solutions and experi-
mental studies; it also provides a systematic understanding of the use of ML in the
classification of NFRs, analyses related work, identifies and fills gaps, and highlights
challenges and opportunities. Therefore, this research has established a better founda-
tion for future investigations in this field.

Bibliography

[15990] IEEE Standard Glossary of Software Engineering Terminology.
IEEE Std 610.12-1990, pages 1–84, Dec 1990.

[AAS+19] Sallam Abualhaija, Chetan Arora, Mehrdad Sabetzadeh, Lionel C
Briand, and Eduardo Vaz. A machine learning-based approach
for demarcating requirements in textual specifications. In 2019

IEEE 27th International Requirements Engineering Conference

(RE), pages 51–62. IEEE, 2019.

[ABNZ19] Waad Alhoshan, Riza Batista-Navarro, and Liping Zhao. Using
frame embeddings to identify semantically related software re-
quirements. 2019.

[AC06] JJ García Adeva and Rafael Calvo. Mining text with pimiento.
IEEE internet computing, 10(4):27–35, 2006.

[AC+10] Sylvain Arlot, Alain Celisse, et al. A survey of cross-validation
procedures for model selection. Statistics surveys, 4:40–79, 2010.

[AFK+20] Arshad Ahmad, Chong Feng, Muzammil Khan, Asif Khan, Ayaz
Ullah, Shah Nazir, and Adnan Tahir. A systematic literature re-
view on using machine learning algorithms for software require-
ments identification on stack overflow. Security and Communica-

tion Networks, 2020, 2020.

[AG17] TP Anjos and Leila Amaral Gontijo. Usability tool to support
the development process of e-commerce website. In Interna-

tional Conference on Human-Computer Interaction, pages 11–18.
Springer, 2017.

254

BIBLIOGRAPHY 255

[AG19] Issa Alsmadi and Keng Hoon Gan. Review of short-text classifi-
cation. International Journal of Web Information Systems, 2019.

[AKG+17] Zahra Shakeri Hossein Abad, Oliver Karras, Parisa Ghazi, Martin
Glinz, Guenther Ruhe, and Kurt Schneider. What works better?
a study of classifying requirements. In 2017 IEEE 25th Inter-

national Requirements Engineering Conference (RE), pages 496–
501. IEEE, 2017.

[Ako18] Haldun Akoglu. User’s guide to correlation coefficients. Turkish

journal of emergency medicine, 18(3):91–93, 2018.

[AKSS03] Alain Abran, Adel Khelifi, Witold Suryn, and Ahmed Seffah. Us-
ability meanings and interpretations in iso standards. Software

quality journal, 11(4):325–338, 2003.

[alm06] Semi-supervised learning. Adaptive computation and machine
learning. MIT Press, Cambridge, Mass, 2006.

[Alt90] Douglas G Altman. Practical statistics for medical research. CRC
press, 1990.

[AM81] Russell J Abbott and DK Moorhead. Software requirements and
specifications: A survey of needs and languages. Journal of Sys-

tems and Software, 2(4):297–316, 1981.

[AM06] Sisira Adikari and Craig McDonald. User and usability modeling
for hci/hmi: a research design. In 2006 International Conference

on Information and Automation, pages 151–154. IEEE, 2006.

[AML06] Sisira Adikari, Craig McDonald, and Neil Lynch. Usability in
requirements engineering. 2006.

[AMPG20] Aman Agarwal, Mamta Mittal, Akshat Pathak, and Lalit Mohan
Goyal. Fake news detection using a blend of neural networks: An
application of deep learning. SN Computer Science, 1:1–9, 2020.

[ARMRMB14] David Alonso-Ríos, Eduardo Mosqueira-Rey, and Vicente Moret-
Bonillo. A taxonomy-based usability study of an intelligent speed
adaptation device. International Journal of Human-Computer In-

teraction, 30(7):585–603, 2014.

256 BIBLIOGRAPHY

[ARVGMRMB09] David Alonso-Ríos, Ana Vázquez-García, Eduardo Mosqueira-
Rey, and Vicente Moret-Bonillo. Usability: a critical analysis and
a taxonomy. International Journal of Human-Computer Interac-

tion, 26(1):53–74, 2009.

[AS02] Ian F Alexander and Richard Stevens. Writing better requirements.
Pearson Education, 2002.

[ASR+15] Aida Ali, Siti Mariyam Shamsuddin, Anca L Ralescu, et al. Clas-
sification with class imbalance problem: a review. Int. J. Advance

Soft Compu. Appl, 7(3):176–204, 2015.

[AW15] Abdiansah Abdiansah and Retantyo Wardoyo. Time complexity
analysis of support vector machines (svm) in libsvm. International

journal computer and application, 128(3):28–34, 2015.

[AZ12] Charu C Aggarwal and ChengXiang Zhai. A survey of text classi-
fication algorithms. In Mining text data, pages 163–222. Springer,
2012.

[Bac11] Karen Bachmann. Collaborative techniques for developing usabil-
ity requirements, 2011.

[BAMK18] Danushka Bollegala, Vincent Atanasov, Takanori Maehara, and
Ken-ichi Kawarabayashi. Classinet–predicting missing features
for short-text classification. ACM Transactions on Knowledge Dis-

covery from Data (TKDD), 12(5):1–29, 2018.

[BB02] Shirley A. Becker and Anthony Berkemeyer. Rapid application
design and testing of web usability. IEEE MultiMedia, 9(4):38–
46, 2002.

[BBC+04] Pere Botella, X Burgués, JP Carvallo, X Franch, G Grau, J Marco,
and C Quer. Iso/iec 9126 in practice: what do we need to know. In
Software Measurement European Forum, volume 2004. Citeseer,
2004.

[BCMA02] Nigel Bevan, Nigel Claridge, Martin Maguire, and Maria
Athousaki. Specifying and evaluating usability requirements using

BIBLIOGRAPHY 257

the common industry format. In IFIP World Computer Congress,

TC 13, pages 149–159. Springer, 2002.

[BDCD19] Cody Baker, Lin Deng, Suranjan Chakraborty, and Josh Dehlinger.
Automatic multi-class non-functional software requirements clas-
sification using neural networks. In 2019 IEEE 43rd Annual Com-

puter Software and Applications Conference (COMPSAC), vol-
ume 2, pages 610–615. IEEE, 2019.

[BDLO+13] Gabriele Bavota, Andrea De Lucia, Rocco Oliveto, Annibale
Panichella, Fabio Ricci, and Genoveffa Tortora. The role of arte-
fact corpus in lsi-based traceability recovery. In 2013 7th Interna-

tional Workshop on Traceability in Emerging Forms of Software

Engineering (TEFSE), pages 83–89. IEEE, 2013.

[Bev99] Nigel Bevan. Quality in use: Meeting user needs for quality. Jour-

nal of systems and software, 49(1):89–96, 1999.

[Bev00] Nigel Bevan. Iso and industry standards for user centred design,
2000. Available at https://rauterberg.employee.id.tue.

nl/lecturenotes/0H420/Usability_standards.pdf, last ac-
cessed October 2020.

[Bev01] Nigel Bevan. International standards for hci and usability. Interna-

tional journal of human-computer studies, 55(4):533–552, 2001.

[Bev08] Nigel Bevan. Classifying and selecting ux and usability measures.
In International Workshop on Meaningful Measures: Valid Useful

User Experience Measurement, volume 11, pages 13–18, 2008.

[BFOS84] Leo Breiman, Jerome Friedman, Richard A Olshen, and Charles J
Stone. Classification and regression trees chapman & hall. New

York, 1984.

[BG04] Yoshua Bengio and Yves Grandvalet. No unbiased estimator of the
variance of k-fold cross-validation. Journal of machine learning

research, 5(Sep):1089–1105, 2004.

[BG17] Elsa Bakiu and Emitza Guzman. Which feature is unusable? de-
tecting usability and user experience issues from user reviews. In

https://rauterberg.employee.id.tue.nl/lecturenotes/0H420/Usability_standards.pdf
https://rauterberg.employee.id.tue.nl/lecturenotes/0H420/Usability_standards.pdf

258 BIBLIOGRAPHY

2017 IEEE 25th International Requirements Engineering Confer-

ence Workshops (REW), pages 182–187. IEEE, 2017.

[BGOQ03] Robert Bryll, Ricardo Gutierrez-Osuna, and Francis Quek. At-
tribute bagging: improving accuracy of classifier ensembles by
using random feature subsets. Pattern recognition, 36(6):1291–
1302, 2003.

[BGST12] Daniel Berry, Ricardo Gacitua, Pete Sawyer, and Sri Fatimah
Tjong. The case for dumb requirements engineering tools. In
International Working Conference on Requirements Engineering:

Foundation for Software Quality, pages 211–217. Springer, 2012.

[Bir19] Alex Birkett. 8 ways to measure satisfaction (and improve ux),
2019.

[BKL09] Steven Bird, Ewan Klein, and Edward Loper. Natural language

processing with Python: analyzing text with the natural language

toolkit. " O’Reilly Media, Inc.", 2009.

[BKM91] Nigel Bevana, Jurek Kirakowskib, and Jonathan Maissela. What
is usability. In Proceedings of the 4th International Conference on

HCI. Citeseer, 1991.

[BM94] Nigel Bevan and Miles Macleod. Usability measurement in con-
text. Behaviour & information technology, 13(1-2):132–145,
1994.

[BNJ03] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirich-
let allocation. the Journal of machine Learning research, 3:993–
1022, 2003.

[Boc10] Gregor Bochmann. Non-functional requirements, 2010.
Available at http://www.eiti.uottawa.ca/~bochmann/

SEG3101/Notes/SEG3101-ch3-4%20-%20Non-Functional%

20Requirements%20-%20Qualities.pdf, last accessed October
2020.

[Boe00] Barry Boehm. Requirements that handle ikiwisi, cots, and rapid
change. Computer, 33(7):99–102, 2000.

http://www.eiti.uottawa.ca/~bochmann/SEG3101/Notes/SEG3101-ch3-4%20-%20Non-Functional%20Requirements%20-%20Qualities.pdf
http://www.eiti.uottawa.ca/~bochmann/SEG3101/Notes/SEG3101-ch3-4%20-%20Non-Functional%20Requirements%20-%20Qualities.pdf
http://www.eiti.uottawa.ca/~bochmann/SEG3101/Notes/SEG3101-ch3-4%20-%20Non-Functional%20Requirements%20-%20Qualities.pdf

BIBLIOGRAPHY 259

[Bor12] Christian Borgelt. Frequent item set mining. Wiley interdisci-

plinary reviews: data mining and knowledge discovery, 2(6):437–
456, 2012.

[BPM04] Gustavo EAPA Batista, Ronaldo C Prati, and Maria Carolina
Monard. A study of the behavior of several methods for balanc-
ing machine learning training data. ACM SIGKDD explorations

newsletter, 6(1):20–29, 2004.

[Bro14] Jason Brownlee. Machine learning mas-
tery. https://machinelearningmastery.com/

discover-feature-engineering-how-to-engineer-features\

protect\@normalcr\relax-and-how-to-get-good-at-it/,
2014. Online; accessed March 2020.

[Bro15] Manfred Broy. Rethinking nonfunctional software requirements.
Computer, (5):96–99, 2015.

[Bro16] Jason Brownlee. Deep learning and time series forecasting: Ma-
chine learning mastery. https://machinelearningmastery.

com/supervised\protect\@normalcr\

relax-and-unsupervised-machine-learning-algorithms/,
2016. Online; accessed August 2020.

[BSA10] JONATHAN Bertman, NEIL Skolnik, and JANE Anderson.
Ehrs get a failing grade on usability. Internal Medicine News,
43(11):50, 2010.

[BZ19] Manal Binkhonain and Liping Zhao. A review of machine learning
algorithms for identification and classification of non-functional
requirements. Expert Systems with Applications, 2019.

[C+98] Software & Systems Engineering Standards Committee et al.
Ieee std 1061-1998—ieee standard for a software quality metrics
methodology. IEEE Computer Society, Tech. Rep, 1998.

[CBAB12] Abhijit Chakraborty, Mrinal Kanti Baowaly, Ashraful Arefin, and
Ali Newaz Bahar. The role of requirement engineering in software
development life cycle. Journal of emerging trends in computing

and information sciences, 3(5):723–729, 2012.

https://machinelearningmastery.com/discover-feature-engineering-how-to-engineer-features\protect \@normalcr \relax -and-how-to-get-good-at-it/
https://machinelearningmastery.com/discover-feature-engineering-how-to-engineer-features\protect \@normalcr \relax -and-how-to-get-good-at-it/
https://machinelearningmastery.com/discover-feature-engineering-how-to-engineer-features\protect \@normalcr \relax -and-how-to-get-good-at-it/
https://machinelearningmastery.com/supervised\protect \@normalcr \relax -and-unsupervised-machine-learning-algorithms/
https://machinelearningmastery.com/supervised\protect \@normalcr \relax -and-unsupervised-machine-learning-algorithms/
https://machinelearningmastery.com/supervised\protect \@normalcr \relax -and-unsupervised-machine-learning-algorithms/

260 BIBLIOGRAPHY

[CdPL09] Lawrence Chung and Julio Cesar Sampaio do Prado Leite. On
non-functional requirements in software engineering. In Con-

ceptual modeling: Foundations and applications, pages 363–379.
Springer, 2009.

[CF14] Gregory W Corder and Dale I Foreman. Nonparametric statistics:

A step-by-step approach. John Wiley & Sons, 2014.

[CGC10] Agustin Casamayor, Daniela Godoy, and Marcelo Campo. Iden-
tification of non-functional requirements in textual specifications:
A semi-supervised learning approach. Information and Software

Technology, 52(4):436–445, 2010.

[Cha09] Nitesh V Chawla. Data mining for imbalanced datasets: An
overview. In Data mining and knowledge discovery handbook,
pages 875–886. Springer, 2009.

[CHMLP07] Jane Cleland-Huang, Sepideh Mazrouee, Huang Liguo, and Dan
Port. nfr, March 2007. Available at https://doi.org/10.5281/
zenodo.268542, last accessed March 2021.

[CHSZS07] Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, and Peter
Solc. Automated classification of non-functional requirements.
Requirements Engineering, 12(2):103–120, 2007.

[CHTQ09] Jingnian Chen, Houkuan Huang, Shengfeng Tian, and Youli Qu.
Feature selection for text classification with naïve bayes. Expert

Systems with Applications, 36(3):5432–5435, 2009.

[Chu] Lawrence Chung. Non-functional requirements (slides). Avail-
able at https://personal.utdallas.edu/~chung/SYSM6309/
NFR-18-4-on-1.pdf, last accessed November 2017.

[CIC15] Cic building information modelling standards (phase one),
2015. Available at http://www.cic.hk/files/page/51/CIC%
20BIM%20Standards_FINAL_ENG_v1.pdf, last accessed Novem-
ber 2020.

https://doi.org/10.5281/zenodo.268542
https://doi.org/10.5281/zenodo.268542
https://personal.utdallas.edu/~chung/SYSM6309/NFR-18-4-on-1.pdf
https://personal.utdallas.edu/~chung/SYSM6309/NFR-18-4-on-1.pdf
http://www.cic.hk/files/page/51/CIC%20BIM%20Standards_FINAL_ENG_v1.pdf
http://www.cic.hk/files/page/51/CIC%20BIM%20Standards_FINAL_ENG_v1.pdf

BIBLIOGRAPHY 261

[CJS11] Mengen Chen, Xiaoming Jin, and Dou Shen. Short text classifi-
cation improved by learning multi-granularity topics. In Twenty-

Second International Joint Conference on Artificial Intelligence.
Citeseer, 2011.

[CL99] Larry L Constantine and Lucy AD Lockwood. Software for use:

a practical guide to the models and methods of usage-centered

design. Pearson Education, 1999.

[CL11] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for sup-
port vector machines. ACM transactions on intelligent systems and

technology (TIST), 2(3):1–27, 2011.

[Cla14] Tom Clancy. The standish group report. Chaos report, 2014.

[CM05] Courtney D Corley and Rada Mihalcea. Measuring the semantic
similarity of texts. In Proceedings of the ACL workshop on em-

pirical modeling of semantic equivalence and entailment, pages
13–18, 2005.

[CNYM12] Lawrence Chung, Brian A Nixon, Eric Yu, and John Mylopoulos.
Non-functional requirements in software engineering, volume 5.
Springer Science & Business Media, 2012.

[Coh60] Jacob Cohen. A coefficient of agreement for nominal scales. Ed-

ucational and psychological measurement, 20(1):37–46, 1960.

[Com98] IEEE Computer Society. Software Engineering Technical Com-
mittee. Ieee guide for developing system requirements specifica-

tions. IEEE, 1998.

[Com07] Adriano Comai. Requirements-by-example, 2007.
Available at https://fdocuments.in/document/

requirements-by-example.html, last accessed October
2020.

[Con08] W. W. W. Consortium. Web content accessibility guidelines
(wcag) 2.0, 2008.

https://fdocuments.in/document/requirements-by-example.html
https://fdocuments.in/document/requirements-by-example.html

262 BIBLIOGRAPHY

[Cre] Armin Cremers. Chapter 9, non-functional requirements.
Available at https://www.yumpu.com/en/document/view/

7895175/chapter-9-non-functional-requirements, last
accessed October 2020.

[CT+94] William B Cavnar, John M Trenkle, et al. N-gram-based text cat-
egorization. In Proceedings of SDAIR-94, 3rd annual symposium

on document analysis and information retrieval, volume 161175.
Citeseer, 1994.

[CT10] Gavin C Cawley and Nicola LC Talbot. On over-fitting in model
selection and subsequent selection bias in performance evaluation.
The Journal of Machine Learning Research, 11:2079–2107, 2010.

[CTL09] Chaomei Chen, Kaushal Toprani, and Natasha Lobo. Human fac-
tors in the development of trend detection and tracking techniques.
In Human Computer Interaction: Concepts, Methodologies, Tools,

and Applications, pages 1678–1686. IGI Global, 2009.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks.
Machine learning, 20(3):273–297, 1995.

[CW08] Xue-wen Chen and Michael Wasikowski. Fast: a roc-based feature
selection metric for small samples and imbalanced data classifica-
tion problems. In Proceedings of the 14th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, pages
124–132, 2008.

[CW12] Lifei Chen and Shengrui Wang. Automated feature weighting in
naive bayes for high-dimensional data classification. In Proceed-

ings of the 21st ACM international conference on Information and

knowledge management, pages 1243–1252, 2012.

[CWK05] Luiz Marcio Cysneiros, Vera Maria Werneck, and Andre Kush-
niruk. Reusable knowledge for satisficing usability requirements.
In 13th IEEE International Conference on Requirements Engi-

neering (RE’05), pages 463–464. IEEE, 2005.

https://www.yumpu.com/en/document/view/7895175/chapter-9-non-functional-requirements
https://www.yumpu.com/en/document/view/7895175/chapter-9-non-functional-requirements

BIBLIOGRAPHY 263

[CY04] Luiz Marcio Cysneiros and Eric Yu. Non-functional requirements
elicitation. In Perspectives on software requirements, pages 115–
138. Springer, 2004.

[DBC+19] Emmanuel Gbenga Dada, Joseph Stephen Bassi, Haruna Chiroma,
Adebayo Olusola Adetunmbi, Opeyemi Emmanuel Ajibuwa, et al.
Machine learning for email spam filtering: review, approaches and
open research problems. Heliyon, 5(6):e01802, 2019.

[DCCM20] Edna Dias Canedo and Bruno Cordeiro Mendes. Software require-
ments classification using machine learning algorithms. Entropy,
22(9):1057, 2020.

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional transform-
ers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[DDAÇ19] Fabiano Dalpiaz, Davide Dell’Anna, Fatma Basak Aydemir, and
Sercan Çevikol. Requirements classification with interpretable
machine learning and dependency parsing. In 2019 IEEE 27th

International Requirements Engineering Conference (RE), pages
142–152. IEEE, 2019.

[DDF+03] Alan Dix, Alan John Dix, Janet Finlay, Gregory D Abowd, and
Russell Beale. Human-computer interaction. Pearson Education,
2003.

[Dem06] Janez Demšar. Statistical comparisons of classifiers over multi-
ple data sets. Journal of Machine learning research, 7(Jan):1–30,
2006.

[DFFP18] Fabiano Dalpiaz, Alessio Ferrari, Xavier Franch, and Cristina
Palomares. Natural language processing for requirements engi-
neering: The best is yet to come. IEEE software, 35(5):115–119,
2018.

[DGR12] Sanjay Kumar Dubey, Anubha Gulati, and Ajay Rana. Integrated
model for software usability. International Journal on Computer

Science and Engineering, 4(3):429, 2012.

264 BIBLIOGRAPHY

[DHR17] Roger Deocadez, Rachel Harrison, and Daniel Rodriguez. Auto-
matically classifying requirements from app stores: A preliminary
study. In 2017 IEEE 25th International Requirements Engineering

Conference Workshops (REW), pages 367–371. IEEE, 2017.

[Die95] Tom Dietterich. Overfitting and undercomputing in machine learn-
ing. ACM computing surveys (CSUR), 27(3):326–327, 1995.

[DKC14] Barnan Das, Narayanan C Krishnan, and Diane J Cook. Racog
and wracog: Two probabilistic oversampling techniques. IEEE

transactions on knowledge and data engineering, 27(1):222–234,
2014.

[DKJ05] Tore Dyba, Barbara A Kitchenham, and Magne Jorgensen.
Evidence-based software engineering for practitioners. IEEE soft-

ware, 22(1):58–65, 2005.

[DL97] Manoranjan Dash and Huan Liu. Feature selection for classifica-
tion. Intelligent data analysis, 1(3):131–156, 1997.

[DLDPO10] Andrea De Lucia, Massimiliano Di Penta, and Rocco Oliveto. Im-
proving source code lexicon via traceability and information re-
trieval. IEEE Transactions on Software Engineering, 37(2):205–
227, 2010.

[DLP03] Kushal Dave, Steve Lawrence, and David M Pennock. Mining the
peanut gallery: Opinion extraction and semantic classification of
product reviews. In Proceedings of the 12th international confer-

ence on World Wide Web, pages 519–528, 2003.

[DLWZ19] Xuelian Deng, Yuqing Li, Jian Weng, and Jilian Zhang. Feature
selection for text classification: A review. Multimedia Tools and

Applications, 78(3):3797–3816, 2019.

[DMM08] Marie-Catherine De Marneffe and Christopher D Manning. The
stanford typed dependencies representation. In Coling 2008: pro-

ceedings of the workshop on cross-framework and cross-domain

parser evaluation, pages 1–8, 2008.

BIBLIOGRAPHY 265

[DPRHB10] Jean-Baptist Du Prel, Bernd Röhrig, Gerhard Hommel, and Maria
Blettner. Choosing statistical tests: part 12 of a series on evalua-
tion of scientific publications. Deutsches Ärzteblatt International,
107(19):343, 2010.

[DRS10] Sanjay Kumar Dubey, Ajay Rana, and Arun Sharma. Usability and
development environment for software applications: An integrated
model. international journal of Advanced Research in Computer

Science, 1(2), 2010.

[DRW07] Leticia Duboc, David Rosenblum, and Tony Wicks. A framework
for characterization and analysis of software system scalability. In
Proceedings of the the 6th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering, pages 375–384. ACM, 2007.

[DWAJ+05] Mary Dixon-Woods, Shona Agarwal, David Jones, Bridget Young,
and Alex Sutton. Synthesising qualitative and quantitative evi-
dence: a review of possible methods. Journal of health services

research & policy, 10(1):45–53, 2005.

[EBdS20] Khadija El Bouchefry and Rafael S de Souza. Learning in big
data: Introduction to machine learning. In Knowledge Discovery

in Big Data from Astronomy and Earth Observation, pages 225–
249. Elsevier, 2020.

[ECS18] Vasiliki Efstathiou, Christos Chatzilenas, and Diomidis Spinellis.
Word embeddings for the software engineering domain. In Pro-

ceedings of the 15th International Conference on Mining Software

Repositories, pages 38–41, 2018.

[est07] E-store project software requirements specification,
2007. Aviable at https://www.studocu.com/

in/document/lovely-professional-university/

software-engineering/other/

estore-software-requirement-specification-srs/

3071299/view, last accessed September 2020.

https://www.studocu.com/in/document/lovely-professional-university/software-engineering/other/estore-software-requirement-specification-srs/3071299/view
https://www.studocu.com/in/document/lovely-professional-university/software-engineering/other/estore-software-requirement-specification-srs/3071299/view
https://www.studocu.com/in/document/lovely-professional-university/software-engineering/other/estore-software-requirement-specification-srs/3071299/view
https://www.studocu.com/in/document/lovely-professional-university/software-engineering/other/estore-software-requirement-specification-srs/3071299/view
https://www.studocu.com/in/document/lovely-professional-university/software-engineering/other/estore-software-requirement-specification-srs/3071299/view

266 BIBLIOGRAPHY

[EVF16] Jonas Eckhardt, Andreas Vogelsang, and Daniel Méndez Fernán-
dez. Are" non-functional" requirements really non-functional? an
investigation of non-functional requirements in practice. In Pro-

ceedings of the 38th International Conference on Software Engi-

neering, pages 832–842, 2016.

[FB03] Eelke Folmer and Jan Bosch. Usability patterns in software archi-
tecture. In Proc. 10th Int. Conf. on Human-Computer Interaction

(HCII2003) Volume I, pages 93–97, 2003.

[FD96] Anthony Finkelstein and John Dowell. A comedy of errors: the
london ambulance service case study. In Proceedings of the 8th In-

ternational Workshop on Software Specification and Design, pages
2–4. IEEE, 1996.

[FDE+17] Alessio Ferrari, Felice Dell’Orletta, Andrea Esuli, Vincenzo Ger-
vasi, and Stefania Gnesi. Natural language requirements process-
ing: a 4d vision. IEEE Software, 34(6):28–35, 2017.

[FDSSVA19] Yair Fogel-Dror, Shaul R Shenhav, Tamir Sheafer, and Wouter
Van Atteveldt. Role-based association of verbs, actions, and senti-
ments with entities in political discourse. Communication Methods

and Measures, 13(2):69–82, 2019.

[FH10] Xinghua Fan and Hongge Hu. Construction of high-quality fea-
ture extension mode library for chinese short-text classification.
In 2010 WASE International Conference on Information Engineer-

ing, volume 2, pages 87–90. Ieee, 2010.

[FHH00] Erik Frøkjær, Morten Hertzum, and Kasper Hornbæk. Measur-
ing usability: are effectiveness, efficiency, and satisfaction really
correlated? In Proceedings of the SIGCHI conference on Human

Factors in Computing Systems, pages 345–352, 2000.

[FHH+09] Eibe Frank, Mark Hall, Geoffrey Holmes, Richard Kirkby, Bern-
hard Pfahringer, Ian H Witten, and Len Trigg. Weka-a machine
learning workbench for data mining. In Data mining and knowl-

edge discovery handbook, pages 1269–1277. Springer, 2009.

BIBLIOGRAPHY 267

[Fir] Usability First. Requirements specification. Avilable
at http://www.usabilitynet.org/trump/methods/

recommended/requirements.htm, last accessed September
2017.

[Fir04] Donald Firesmith. Specifying reusable security requirements. J.

Object Technol., 3(1):61–75, 2004.

[FJWC01] Xavier Ferré, Natalia Juristo, Helmut Windl, and Larry Constan-
tine. Usability basics for software developers. IEEE software,
18(1):22–29, 2001.

[Fle71] Joseph L Fleiss. Measuring nominal scale agreement among many
raters. Psychological bulletin, 76(5):378, 1971.

[FML05] Dimitris Fragoudis, Dimitris Meretakis, and Spiridon Likothanas-
sis. Best terms: an efficient feature-selection algorithm for text
categorization. Knowledge and Information Systems, 8(1):16–33,
2005.

[For03] George Forman. An extensive empirical study of feature selec-
tion metrics for text classification. Journal of machine learning

research, 3(Mar):1289–1305, 2003.

[FS10] George Forman and Martin Scholz. Apples-to-apples in cross-
validation studies: pitfalls in classifier performance measurement.
Acm Sigkdd Explorations Newsletter, 12(1):49–57, 2010.

[fSEC+11] International Organization for Standardization/International Elec-
trotechnical Commission et al. Iso/iec 25010; systems and soft-
ware engineering-systems and software quality requirements and
evaluation (square)-system and software quality models". 2011.

[FVGB04] Eelke Folmer, Jilles Van Gurp, and Jan Bosch. Software archi-
tecture analysis of usability. In IFIP International Conference

on Engineering for Human-Computer Interaction, pages 38–58.
Springer, 2004.

http://www.usabilitynet.org/trump/ methods/recommended/requirements.htm
http://www.usabilitynet.org/trump/ methods/recommended/requirements.htm

268 BIBLIOGRAPHY

[GAS14] Deepak Gupta, Anil Ahlawat, and Kalpna Sagar. A critical analy-
sis of a hierarchy based usability model. In 2014 international con-

ference on contemporary computing and informatics (IC3I), pages
255–260. IEEE, 2014.

[GBC16] I Goodfelow, Y Bengio, and A Courville. Deep learning (adaptive
computation and machine learning series). DOI, 10:1762–1766,
2016.

[GCCH10] Marek Gibiec, Adam Czauderna, and Jane Cleland-Huang. To-
wards mining replacement queries for hard-to-retrieve traces. In
Proceedings of the IEEE/ACM international conference on Auto-

mated software engineering, pages 245–254, 2010.

[GCCH17] Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. Semantically
enhanced software traceability using deep learning techniques. In
2017 IEEE/ACM 39th International Conference on Software En-

gineering (ICSE), pages 3–14. IEEE, 2017.

[GDR04] Thomas Geis, Wolfgang Dzida, and Wolfgang Redtendbacher.
Specifying usability requirements and test criteria for interactive

systems. Citeseer, 2004.

[Gér19] Aurélien Géron. Hands-on machine learning with Scikit-Learn,

Keras, and TensorFlow: Concepts, tools, and techniques to build

intelligent systems. O’Reilly Media, 2019.

[GEW06] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely ran-
domized trees. Machine learning, 63(1):3–42, 2006.

[GF94] Orlena CZ Gotel and CW Finkelstein. An analysis of the require-
ments traceability problem. In Proceedings of IEEE International

Conference on Requirements Engineering, pages 94–101. IEEE,
1994.

[GFB+11] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto
Bustince, and Francisco Herrera. A review on ensembles for the
class imbalance problem: bagging-, boosting-, and hybrid-based
approaches. IEEE Transactions on Systems, Man, and Cybernet-

ics, Part C (Applications and Reviews), 42(4):463–484, 2011.

BIBLIOGRAPHY 269

[GIS10] Diman Ghazi, Diana Inkpen, and Stan Szpakowicz. Hierarchical
versus flat classification of emotions in text. In Proceedings of

the NAACL HLT 2010 workshop on computational approaches to

analysis and generation of emotion in text, pages 140–146. Asso-
ciation for Computational Linguistics, 2010.

[GJ02] Daniel Gildea and Daniel Jurafsky. Automatic labeling of seman-
tic roles. Computational linguistics, 28(3):245–288, 2002.

[Gli05] Martin Glinz. Rethinking the notion of non-functional require-
ments. In Proc. Third World Congress for Software Quality, vol-
ume 2, pages 55–64, 2005.

[Gli07] Martin Glinz. On non-functional requirements. In 15th IEEE

International Requirements Engineering Conference (RE 2007),
pages 21–26. IEEE, 2007.

[GMFG05] Miha Grčar, Dunja Mladenič, Blaž Fortuna, and Marko Grobelnik.
Data sparsity issues in the collaborative filtering framework. In In-

ternational Workshop on Knowledge Discovery on the Web, pages
58–76. Springer, 2005.

[GMPCH14] Jin Guo, Natawut Monaikul, Cody Plepel, and Jane Cleland-
Huang. Towards an intelligent domain-specific traceability solu-
tion. In Proceedings of the 29th ACM/IEEE international confer-

ence on Automated software engineering, pages 755–766, 2014.

[Gol03] Nahid Golafshani. Understanding reliability and validity in quali-
tative research. The qualitative report, 8(4):597–607, 2003.

[Gou95] John D Gould. How to design usable systems (excerpt). In
Readings in Human–Computer Interaction, pages 93–121. Else-
vier, 1995.

[GPM03] Global personal marketplace, 2003. Available at https://www.
it.uu.se/edu/course/homepage/pvt/SRS.pdf, last accessed
September 2020.

[Gra92] Robert B Grady. Practical software metrics for project manage-

ment and process improvement. Prentice-Hall, Inc., 1992.

https://www.it.uu.se/edu/course/homepage/pvt/SRS.pdf
https://www.it.uu.se/edu/course/homepage/pvt/SRS.pdf

270 BIBLIOGRAPHY

[Gro99] Marko Grobelnik. Feature selection for unbalanced class distri-
bution and naive bayes. In International conference on machine

learning. Citeseer, 1999.

[GS17] Barney G Glaser and Anselm L Strauss. Discovery of grounded

theory: Strategies for qualitative research. Routledge, 2017.

[GSM07] Vicente García, Jose Sánchez, and Ramon Mollineda. An empir-
ical study of the behavior of classifiers on imbalanced and over-
lapped data sets. In Iberoamerican Congress on Pattern Recogni-

tion, pages 397–406. Springer, 2007.

[GSWG86] Michael Good, Thomas M Spine, John Whiteside, and Peter
George. User-derived impact analysis as a tool for usability en-
gineering. In Proceedings of the SIGCHI Conference on Human

factors in computing systems, pages 241–246, 1986.

[GWSH09] David Grosse-Wentrup, Alexandra Stier, and Uvo Hoelscher. Sup-
porting tool for usability specifications. In World Congress on

Medical Physics and Biomedical Engineering, September 7-12,

2009, Munich, Germany, pages 845–847. Springer, 2009.

[GYK04] Karin Garmer, Jessica Ylvén, and IC MariAnne Karlsson. User
participation in requirements elicitation comparing focus group in-
terviews and usability tests for eliciting usability requirements for
medical equipment: a case study. International Journal of Indus-

trial Ergonomics, 33(2):85–98, 2004.

[Har18] Jamie Harding. Qualitative data analysis: From start to finish.
SAGE Publications Limited, 2018.

[HAS15] Lina A Hasan and Khalid T Al-Sarayreh. An integrated measure-
ment model for evaluating usability attributes. In Proceedings of

the International Conference on Intelligent Information Process-

ing, Security and Advanced Communication, pages 1–6, 2015.

[HDS06] Jane Huffman Hayes, Alex Dekhtyar, and Senthil Karthikeyan
Sundaram. Advancing candidate link generation for requirements
tracing: The study of methods. IEEE Transactions on Software

Engineering, 32(1):4, 2006.

BIBLIOGRAPHY 271

[HG09] Haibo He and Edwardo A Garcia. Learning from imbalanced
data. IEEE Transactions on knowledge and data engineering,
21(9):1263–1284, 2009.

[HH93] Deborah Hix and H Rex Hartson. Developing user interfaces: En-

suring usability through product and process. Wiley, 1993.

[HJD11] Elizabeth Hull, Ken Jackson, and Jeremy Dick. Introduction,
pages 1–23. Springer London, London, 2011.

[HK11] Jan Hauke and Tomasz Kossowski. Comparison of values of pear-
son’s and spearman’s correlation coefficients on the same sets of
data. Quaestiones geographicae, 30(2):87–93, 2011.

[HKKT20a] Tobias Hey, Jan Keim, Anne Koziolek, and Walter F Tichy. Nor-
bert: Transfer learning for requirements classification. In 2020

IEEE 28th International Requirements Engineering Conference

(RE), pages 169–179. IEEE, 2020.

[HKKT20b] Tobias Hey, Jan Keim, Anne Koziolek, and Walter F. Tichy. Sup-
plementary Material of "NoRBERT: Transfer Learning for Re-
quirements Classification", May 2020. Online; accessed 3 August
2020.

[HKO08] Ishrar Hussain, Leila Kosseim, and Olga Ormandjieva. Using lin-
guistic knowledge to classify non-functional requirements in srs
documents. In International Conference on Application of Nat-

ural Language to Information Systems, pages 287–298. Springer,
2008.

[HKP12] Jiawei Han, Micheline Kamber, and Jian Pei. 8 - classification:
Basic concepts. In Jiawei Han, Micheline Kamber, and Jian Pei,
editors, Data Mining (Third Edition), The Morgan Kaufmann Se-
ries in Data Management Systems, pages 327–391. Morgan Kauf-
mann, Boston, third edition edition, 2012.

[Hoo94] Ivy Hooks. Writing good requirements. In INCOSE International

Symposium, volume 4, pages 1247–1253. Wiley Online Library,
1994.

272 BIBLIOGRAPHY

[Hos11] C Hoskinson. Army’s faulty computer system hurts operations.
Politico, 2011.

[HS13] Steffen Hedegaard and Jakob Grue Simonsen. Extracting usability
and user experience information from online user reviews. In Pro-

ceedings of the SIGCHI Conference on Human Factors in Com-

puting Systems, pages 2089–2098, 2013.

[HSZC09] Xia Hu, Nan Sun, Chao Zhang, and Tat-Seng Chua. Exploiting in-
ternal and external semantics for the clustering of short texts using
world knowledge. In Proceedings of the 18th ACM conference on

Information and knowledge management, pages 919–928, 2009.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Overview
of supervised learning. In The elements of statistical learning,
pages 9–41. Springer, 2009.

[IEL18] Tahira Iqbal, Parisa Elahidoost, and Levi Lucio. A bird’s eye view
on requirements engineering and machine learning. In 2018 25th

Asia-Pacific Software Engineering Conference (APSEC), pages
11–20. IEEE, 2018.

[II04] ISO ISO and TR IEC. Iso/iec 9126, software engineering - product
quality, parts 1-4. International Organization for Standardization,

Geneva, Switzerland. Switzerland, 1999-2004.

[II09] Aminul Islam and Diana Inkpen. Semantic similarity of short
texts. Recent Advances in Natural Language Processing V,
309:227–236, 2009.

[IK09] Muhammad Ilyas and Josef Kung. A similarity measurement
framework for requirements engineering. In 2009 Fourth Interna-

tional Multi-Conference on Computing in the Global Information

Technology, pages 31–34. IEEE, 2009.

[IKT05] M Ikonomakis, Sotiris Kotsiantis, and V Tampakas. Text classi-
fication using machine learning techniques. WSEAS transactions

on computers, 4(8):966–974, 2005.

BIBLIOGRAPHY 273

[Iso98] W Iso. 9241-11. ergonomic requirements for office work with vi-
sual display terminals (vdts). The international organization for

standardization, 45(9), 1998.

[ISO18] W ISO. 9241–11: 2018 ergonomics of human-system interaction–
part 11. Usability: Definitions and Concepts, 2018.

[ITK06] Tasadduq Imam, Kai Ming Ting, and Joarder Kamruzzaman. z-
svm: An svm for improved classification of imbalanced data.
In Australasian Joint Conference on Artificial Intelligence, pages
264–273. Springer, 2006.

[ITS] Information Technology Service Management(ITSM)
Tool Implementation Services. Available at https:

//buyandsell.gc.ca/cds/public/2019/01/24/

9af871f99ba35e239bc6bf564e733d02/itsm_annex_a_sow_

en.pdf, last accessed November 2020.

[JBB14] A. Jovic, K. Brkic, and N. Bogunovic. An overview of free soft-
ware tools for general data mining. In International Convention

on Information and Communication Technology, Electronics and

Microelectronics (MIPRO), pages 1112–1117, May 2014.

[JBSSA04] Bonnie E John, Len Bass, Maria-Isabel Sanchez-Segura, and Rob J
Adams. Bringing usability concerns to the design of software ar-
chitecture. In IFIP International Conference on Engineering for

Human-Computer Interaction, pages 1–19. Springer, 2004.

[JC97] Jay J Jiang and David W Conrath. Semantic similarity based
on corpus statistics and lexical taxonomy. arXiv preprint cmp-

lg/9709008, 1997.

[JGDE08] Andreas Janecek, Wilfried Gansterer, Michael Demel, and Ger-
hard Ecker. On the relationship between feature selection and clas-
sification accuracy. In New challenges for feature selection in data

mining and knowledge discovery, pages 90–105, 2008.

[JHS09] Wei Jin, Hung Hay Ho, and Rohini K Srihari. Opinionminer: a
novel machine learning system for web opinion mining and ex-
traction. In Proceedings of the 15th ACM SIGKDD international

https://buyandsell.gc.ca/cds/public/2019/01/24/9af871f99ba35e239bc6bf564e733d02/itsm_annex_a_sow_en.pdf
https://buyandsell.gc.ca/cds/public/2019/01/24/9af871f99ba35e239bc6bf564e733d02/itsm_annex_a_sow_en.pdf
https://buyandsell.gc.ca/cds/public/2019/01/24/9af871f99ba35e239bc6bf564e733d02/itsm_annex_a_sow_en.pdf
https://buyandsell.gc.ca/cds/public/2019/01/24/9af871f99ba35e239bc6bf564e733d02/itsm_annex_a_sow_en.pdf

274 BIBLIOGRAPHY

conference on Knowledge discovery and data mining, pages 1195–
1204, 2009.

[JJ04] Taeho Jo and Nathalie Japkowicz. Class imbalances versus small
disjuncts. ACM Sigkdd Explorations Newsletter, 6(1):40–49,
2004.

[JM00] Daniel Jurasky and James H Martin. Speech and language pro-
cessing: An introduction to natural language processing. Compu-

tational Linguistics and Speech Recognition. Prentice Hall, New

Jersey, 2000.

[JM20] Daniel Jurafsky and H. James Martin. Speech and language pro-

cessing. Pearson Education India, third edition, 2020.

[JMJ16] Rajni Jindal, Ruchika Malhotra, and Abha Jain. Automated clas-
sification of security requirements. In 2016 International Confer-

ence on Advances in Computing, Communications and Informatics

(ICACCI), pages 2027–2033. IEEE, 2016.

[JMSS07] Natalia Juristo, Ana Moreno, and Maria-Isabel Sanchez-Segura.
Guidelines for eliciting usability functionalities. IEEE Transac-

tions on Software Engineering, 33(11):744–758, 2007.

[Joa98] Thorsten Joachims. Text categorization with support vector ma-
chines: Learning with many relevant features. In European con-

ference on machine learning, pages 137–142. Springer, 1998.

[Joa99] Thorsten Joachims. Svmlight: Support vector machine. SVM-

Light Support Vector Machine http://svmlight. joachims. org/, Uni-

versity of Dortmund, 19(4), 1999.

[Jon72] Karen Sparck Jones. A statistical interpretation of term specificity
and its application in retrieval. Journal of documentation, 1972.

[JYZ+11] Long Jiang, Mo Yu, Ming Zhou, Xiaohua Liu, and Tiejun Zhao.
Target-dependent twitter sentiment classification. In Proceedings

of the 49th annual meeting of the association for computational

linguistics: human language technologies, pages 151–160, 2011.

BIBLIOGRAPHY 275

[KBdR16] Tom Kenter, Alexey Borisov, and Maarten de Rijke. Siamese
cbow: Optimizing word embeddings for sentence representations,
2016.

[KBLK10] Aurangzeb Khan, Baharum Baharudin, Lam Hong Lee, and Khair-
ullah Khan. A review of machine learning algorithms for text-
documents classification. Journal of advances in information tech-

nology, 1(1):4–20, 2010.

[KC07] Barbara Kitchenham and Stuart Charters. Guidelines for perform-
ing systematic literature reviews in software engineering. 2007.

[KF68] Henry Kučera and W. Nelson Francis. Computational analysis

of present-day American English. Providence, Brown University
Press., 1968.

[KG18] Daniel E Kim and Mikhail Gofman. Comparison of shallow and
deep neural networks for network intrusion detection. In 2018

IEEE 8th Annual Computing and Communication Workshop and

Conference (CCWC), pages 204–208. IEEE, 2018.

[KHB+18] Alfred Krzywicki, Bradford Heap, Michael Bain, Wayne Wobcke,
and Susanne Schmeidl. Using word embeddings with linear mod-
els for short text classification. In Australasian Joint Conference

on Artificial Intelligence, pages 819–827. Springer, 2018.

[KJMH+19] Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa,
Sanjana Mendu, Laura Barnes, and Donald Brown. Text classifi-
cation algorithms: A survey. Information, 10(4):150, 2019.

[KKN14] Samina Khalid, Tehmina Khalil, and Shamila Nasreen. A survey
of feature selection and feature extraction techniques in machine
learning. In 2014 Science and Information Conference, pages 372–
378. IEEE, 2014.

[KM17] Zijad Kurtanović and Walid Maalej. Automatically classifying
functional and non-functional requirements using supervised ma-
chine learning. In 2017 IEEE 25th International Requirements

Engineering Conference (RE), pages 490–495. IEEE, 2017.

276 BIBLIOGRAPHY

[KMMM10] K.V. Kale, S.C. Mehrotra, R.R. Manza, and R.R. Manza. Com-

puter Vision and Information Technology: Advances and Applica-

tions. I.K. International Publishing House Pvt. Limited, 2010.

[KMNF06] Svetlana Kiritchenko, Stan Matwin, Richard Nock, and A Fazel
Famili. Learning and evaluation in the presence of class hierar-
chies: Application to text categorization. In Conference of the

Canadian Society for Computational Studies of Intelligence, pages
395–406. Springer, 2006.

[KNL14] Mohamad Kassab, Colin Neill, and Phillip Laplante. State of prac-
tice in requirements engineering: contemporary data. Innovations

in Systems and Software Engineering, 10(4):235–241, 2014.

[KO14] Eric Knauss and Daniel Ott. (semi-) automatic categorization of
natural language requirements. In International Working Con-

ference on Requirements Engineering: Foundation for Software

Quality, pages 39–54. Springer, 2014.

[Kom20] Andreas Komninos. An introduction to usability, 2020. Avail-
able at https://www.interaction-design.org/literature/
article/an-introduction-to-usability, last accessed Oc-
tober 2020.

[KPP+02] Barbara A Kitchenham, Shari Lawrence Pfleeger, Lesley M
Pickard, Peter W Jones, David C. Hoaglin, Khaled El Emam, and
Jarrett Rosenberg. Preliminary guidelines for empirical research
in software engineering. IEEE Transactions on software engineer-

ing, 28(8):721–734, 2002.

[Kri11] Klaus Krippendorff. Computing krippendorff’s alpha-reliability.
2011.

[KS96] Gerald Kotonya and Ian Sommerville. Requirements engineering
with viewpoints. Software Engineering Journal, 11(1):5–18, 1996.

[KWM11] Efthymios Kouloumpis, Theresa Wilson, and Johanna Moore.
Twitter sentiment analysis: The good the bad and the omg! In
Fifth International AAAI conference on weblogs and social media.
Citeseer, 2011.

https://www.interaction-design.org/literature/article/an-introduction-to-usability
https://www.interaction-design.org/literature/article/an-introduction-to-usability

BIBLIOGRAPHY 277

[KZP06] Sotiris B Kotsiantis, Ioannis D Zaharakis, and Panayiotis E Pinte-
las. Machine learning: a review of classification and combining
techniques. Artificial Intelligence Review, 26(3):159–190, 2006.

[KZP07] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised ma-
chine learning: A review of classification techniques. Emerg-

ing artificial intelligence applications in computer engineering,
160:3–24, 2007.

[L+98] Dekang Lin et al. An information-theoretic definition of similarity.
In Icml, volume 98, pages 296–304, 1998.

[Lap17] Phillip A Laplante. Requirements engineering for software and

systems. CRC Press, 2017.

[LC98] C Leacock and M Chodorow. Combining local context and word-
net sense similarity for word sense identification. wordnet, an elec-
tronic lexical database. The MIT Press, 1998.

[LCH13] Yonghua Li and Jane Cleland-Huang. Ontology-based trace re-
trieval. In 2013 7th International Workshop on Traceability in

Emerging Forms of Software Engineering (TEFSE), pages 30–36.
IEEE, 2013.

[LD13] Rushi Longadge and Snehalata Dongre. Class imbalance problem
in data mining review. arXiv preprint arXiv:1305.1707, 2013.

[LDBT15] Wang Ling, Chris Dyer, Alan W Black, and Isabel Trancoso.
Two/too simple adaptations of word2vec for syntax problems. In
Proceedings of the 2015 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Human Lan-

guage Technologies, pages 1299–1304, 2015.

[Les04] Stefan Lessmann. Solving imbalanced classification problems
with support vector machines. In IC-AI, volume 4, pages 214–
220, 2004.

[LFL98] Thomas K Landauer, Peter W Foltz, and Darrell Laham. An in-
troduction to latent semantic analysis. Discourse processes, 25(2-
3):259–284, 1998.

278 BIBLIOGRAPHY

[LHG+18] Chuanyi Li, Liguo Huang, Jidong Ge, Bin Luo, and Vincent Ng.
Automatically classifying user requests in crowdsourcing require-
ments engineering. Journal of Systems and Software, 138:108–
123, 2018.

[LHM+14] Feng-Lin Li, Jennifer Horkoff, John Mylopoulos, Renata SS Guiz-
zardi, Giancarlo Guizzardi, Alexander Borgida, and Lin Liu. Non-
functional requirements as qualities, with a spice of ontology. In
2014 IEEE 22nd International Requirements Engineering Confer-

ence (RE), pages 293–302. IEEE, 2014.

[LHW+17] Peipei Li, Lu He, Haiyan Wang, Xuegang Hu, Yuhong Zhang, Lei
Li, and Xindong Wu. Learning from short text streams with topic
drifts. IEEE transactions on cybernetics, 48(9):2697–2711, 2017.

[Lis10] Pen Lister. Usability evaluation formative techniques, 2010.
Available at https://www.slideshare.net/PenLister/

uid-formative-evaluation, last accessed October 2017.

[LJ98] Yong H Li and Anil K Jain. Classification of text documents. The

Computer Journal, 41(8):537–546, 1998.

[LL17] Mengmeng Lu and Peng Liang. Automatic classification of non-
functional requirements from augmented app user reviews. In Pro-

ceedings of the 21st International Conference on Evaluation and

Assessment in Software Engineering, pages 344–353, 2017.

[LLHZ16] Siwei Lai, Kang Liu, Shizhu He, and Jun Zhao. How to generate
a good word embedding. IEEE Intelligent Systems, 31(6):5–14,
2016.

[LLS09] Ying Liu, Han Tong Loh, and Aixin Sun. Imbalanced text classifi-
cation: A term weighting approach. Expert systems with Applica-

tions, 36(1):690–701, 2009.

[LMP04] Mich Luisa, Franch Mariangela, and Novi Inverardi Pierluigi.
Market research for requirements analysis using linguistic tools.
Requirements Engineering, 9(1):40–56, 2004.

https://www.slideshare.net/PenLister/uid-formative-evaluation
https://www.slideshare.net/PenLister/uid-formative-evaluation

BIBLIOGRAPHY 279

[Löw93] Jonas Löwgren. Human-computer interaction: What every system

developer should know. Studentlitteratur, 1993.

[LP98] Andreas Lecerof and Fabio Paternò. Automatic support for us-
ability evaluation. IEEE transactions on software engineering,
24(10):863–888, 1998.

[LSZS20] Qianmu Li, Yanjun Song, Jing Zhang, and Victor S Sheng.
Multiclass imbalanced learning with one-versus-one decomposi-
tion and spectral clustering. Expert Systems with Applications,
147:113152, 2020.

[LT16] Weiwei Liu and Ivor W Tsang. Sparse perceptron decision tree
for millions of dimensions. In Proceedings of the Thirtieth AAAI

Conference on Artificial Intelligence, pages 1881–1887, 2016.

[LVC+19] Márcia Lima, Victor Valle, Estevão Costa, Fylype Lira, and
Bruno Gadelha. Software engineering repositories: Expanding the
promise database. In Proceedings of the XXXIII Brazilian Sympo-

sium on Software Engineering, pages 427–436, 2019.

[LWDD10] Hong Bo Li, Wei Wang, Hong Wei Ding, and Jin Dong. Trees
weighting random forest method for classifying high-dimensional
noisy data. In 2010 IEEE 7th International Conference on E-

Business Engineering, pages 160–163. IEEE, 2010.

[LWZ08] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory un-
dersampling for class-imbalance learning. IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2):539–
550, 2008.

[LWZ+15] Peipei Li, Haixun Wang, Kenny Q Zhu, Zhongyuan Wang, Xue-
gang Hu, and Xindong Wu. A large probabilistic semantic network
based approach to compute term similarity. IEEE Transactions on

Knowledge and Data Engineering, 27(10):2604–2617, 2015.

[LY98] Søren Lauesen and Houman Younessi. Six styles for usability re-
quirements. In REFSQ, volume 98, pages 155–166, 1998.

280 BIBLIOGRAPHY

[LY05] Huan Liu and Lei Yu. Toward integrating feature selection al-
gorithms for classification and clustering. IEEE Transactions on

knowledge and data engineering, 17(4):491–502, 2005.

[LZ05] Yi Liu and Yuan F Zheng. One-against-all multi-class svm clas-
sification using reliability measures. In Proceedings. 2005 IEEE

International Joint Conference on Neural Networks, 2005., vol-
ume 2, pages 849–854. IEEE, 2005.

[LZ11] Yuxuan Li and Xiuzhen Zhang. Improving k nearest neighbor with
exemplar generalization for imbalanced classification. In Pacific-

Asia Conference on Knowledge Discovery and Data Mining, pages
321–332. Springer, 2011.

[Mac13] Lucas Machado. Usability requirements and
their elicitation, 2013. Available at https:

//www.slideshare.net/sirlucasmachado/

usability-requirements-and-their-elicitation, last
accessed October 2020.

[Man14] Yuan Man. Feature extension for short text categorization us-
ing frequent term sets. Procedia Computer Science, 31:663–670,
2014.

[May99] Deborah J Mayhew. The usability engineering lifecycle. In
CHI’99 Extended Abstracts on Human Factors in Computing Sys-

tems, pages 147–148, 1999.

[MB02] Ernst Mayr and Walter J Bock. Classifications and other order-
ing systems. Journal of Zoological Systematics and Evolutionary

Research, 40(4):169–194, 2002.

[MBF+90] George A Miller, Richard Beckwith, Christiane Fellbaum, Derek
Gross, and Katherine J Miller. Introduction to wordnet: An on-line
lexical database. International journal of lexicography, 3(4):235–
244, 1990.

[MBM13] Hendrik Meth, Manuel Brhel, and Alexander Maedche. The state
of the art in automated requirements elicitation. Information and

Software Technology, 55(10):1695–1709, 2013.

https://www.slideshare.net/sirlucasmachado/usability-requirements-and-their-elicitation
https://www.slideshare.net/sirlucasmachado/usability-requirements-and-their-elicitation
https://www.slideshare.net/sirlucasmachado/usability-requirements-and-their-elicitation

BIBLIOGRAPHY 281

[MBW+19] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre GR
Day, Clint Richardson, Charles K Fisher, and David J Schwab.
A high-bias, low-variance introduction to machine learning for
physicists. Physics reports, 810:1–124, 2019.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Ef-
ficient estimation of word representations in vector space. arXiv

preprint arXiv:1301.3781, 2013.

[MCI+08] Jennifer Marlow, Paul Clough, Neil Ireson, J Cigarrán Recuero,
Javier Artiles, and Franca Debole. The multimatch project: Multi-
lingual/multimedia access to cultural heritage on the web. In Mu-

seums on the Web Conference (MW2008): Proceedings, J. Trant

and D. Bearman (eds). Toronto: Archives & Museum Informatics,
2008.

[MCN92] John Mylopoulos, Lawrence Chung, and Brian Nixon. Represent-
ing and using nonfunctional requirements: A process-oriented ap-
proach. IEEE Transactions on software engineering, 18(6):483–
497, 1992.

[MCS+06] Rada Mihalcea, Courtney Corley, Carlo Strapparava, et al. Corpus-
based and knowledge-based measures of text semantic similarity.
In Aaai, volume 6, pages 775–780, 2006.

[Mey85] B. Meyer. On formalism in specifications. IEEE Softw., 2(1):6–26,
January 1985.

[Mey93] Bertrand Meyer. On formalism in specifications. In Program Ver-

ification, pages 155–189. Springer, 1993.

[MHG13] Lingling Meng, Runqing Huang, and Junzhong Gu. A review of
semantic similarity measures in wordnet. International Journal of

Hybrid Information Technology, 6(1):1–12, 2013.

[MJ51] Frank J Massey Jr. The kolmogorov-smirnov test for goodness of
fit. Journal of the American statistical Association, 46(253):68–
78, 1951.

282 BIBLIOGRAPHY

[MKIZ14] Hamid Mousavi, Deirdre Kerr, Markus Iseli, and Carlo Zaniolo.
Mining semantic structures from syntactic structures in free text
documents. In 2014 IEEE International Conference on Semantic

Computing, pages 84–91. IEEE, 2014.

[MKMG97] Robert T Monroe, Andrew Kompanek, Ralph Melton, and David
Garlan. Architectural styles, design patterns, and objects. IEEE

software, 14(1):43–52, 1997.

[ML11] Jin Matsuoka and Yves Lepage. Ambiguity spotting using word-
net semantic similarity in support to recommended practice for
software requirements specifications. In 2011 7th International

Conference on Natural Language Processing and Knowledge En-

gineering, pages 479–484. IEEE, 2011.

[MLTB93] George A Miller, Claudia Leacock, Randee Tengi, and Ross T
Bunker. A semantic concordance. In HUMAN LANGUAGE

TECHNOLOGY: Proceedings of a Workshop Held at Plainsboro,

New Jersey, March 21-24, 1993, 1993.

[MM03] Andrian Marcus and Jonathan I Maletic. Recovering
documentation-to-source-code traceability links using latent se-
mantic indexing. In 25th International Conference on Software

Engineering, 2003. Proceedings., pages 125–135. IEEE, 2003.

[MMS13] Megha Mishra, Vishnu Kumar Mishra, and HR Sharma. Question
classification using semantic, syntactic and lexical features. Inter-

national Journal of Web & Semantic Technology, 4(3):39, 2013.

[MN15] Anas Mahmoud and Nan Niu. On the role of semantics in
automated requirements tracing. Requirements Engineering,
20(3):281–300, 2015.

[Mon02] Andrew F Monk. Fun, communication and dependability: ex-
tending the concept of usability. In People and Computers XVI-

Memorable Yet Invisible, pages 3–14. Springer, 2002.

[MR05] Oded Maimon and Lior Rokach. Decomposition methodology for
knowledge discovery and data mining. In Data mining and knowl-

edge discovery handbook, pages 981–1003. Springer, 2005.

BIBLIOGRAPHY 283

[MRARMB09] Eduardo Mosqueira-Rey, David Alonso-Ríos, and Vicente Moret-
Bonillo. Usability taxonomy and context-of-use taxonomy for us-
ability analysis. In 2009 IEEE International Conference on Sys-

tems, Man and Cybernetics, pages 812–817. IEEE, 2009.

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. Distributed representations of words and phrases and
their compositionality. In Advances in neural information process-

ing systems, pages 3111–3119, 2013.

[MT09] Fernando Molina and Ambrosio Toval. Integrating usability re-
quirements that can be evaluated in design time into model driven
engineering of web information systems. Advances in Engineering

Software, 40(12):1306–1317, 2009.

[MW16] Anas Mahmoud and Grant Williams. Detecting, classifying, and
tracing non-functional software requirements. Requirements En-

gineering, 21(3):357–381, 2016.

[MY01] Larry M Manevitz and Malik Yousef. One-class svms for doc-
ument classification. Journal of machine Learning research,
2(Dec):139–154, 2001.

[MY07] Larry Manevitz and Malik Yousef. One-class document classifi-
cation via neural networks. Neurocomputing, 70(7-9):1466–1481,
2007.

[MYZ13] Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic
regularities in continuous space word representations. In Proceed-

ings of the 2013 conference of the north american chapter of the

association for computational linguistics: Human language tech-

nologies, pages 746–751, 2013.

[MZN10] Dewi Mairiza, Didar Zowghi, and Nurie Nurmuliani. An investi-
gation into the notion of non-functional requirements. In Proceed-

ings of the 2010 ACM Symposium on Applied Computing, pages
311–317, 2010.

[Nas12] Victor Nassar. Common criteria for usability review. Work,
41(Supplement 1):1053–1057, 2012.

284 BIBLIOGRAPHY

[NE00] Bashar Nuseibeh and Steve Easterbrook. Requirements engineer-
ing: a roadmap. In Proceedings of the Conference on the Future

of Software Engineering, pages 35–46, 2000.

[Nie94] Jakob Nielsen. Usability engineering. Morgan Kaufmann, 1994.

[NL03] Colin J Neill and Phillip A Laplante. Requirements engineering:
the state of the practice. IEEE software, 20(6):40–45, 2003.

[NM19] Roberto Navigli and Federico Martelli. An overview of word and
sense similarity. Natural Language Engineering, 25(6):693–714,
2019.

[NMM06] Kamal Nigam, Andrew McCallum, and Tom M Mitchell. Semi-
supervised text classification using em., 2006.

[NPK+16] Harikrishna Narasimhan, Weiwei Pan, Purushottam Kar, Pavlos
Protopapas, and Harish G Ramaswamy. Optimizing the multiclass
f-measure via biconcave programming. In 2016 IEEE 16th inter-

national conference on data mining (ICDM), pages 1101–1106.
IEEE, 2016.

[NS11] Mohd Hairul Nizam Nasir and Shamsul Sahibuddin. Critical suc-
cess factors for software projects: A comparative study. Scientific

research and essays, 6(10):2174–2186, 2011.

[oDRC+01] J Natt och Dag, Björn Regnell, Pär Carlshamre, Michael Ander-
sson, and Joachim Karlsson. Evaluating automated support for
requirements similarity analysis in market-driven development. In
Proc. 7th Int. Workshop on Requirements Engineering: Founda-

tion for Software Quality (REFSQ’01). Citeseer, 2001.

[(OP] OPEN Process Framework Repository Organization (OPFRO).
Usability requirements. Available at http://www.opfro.org/
index.html?Components/WorkProducts/RequirementsSet/

Requirements/UsabilityRequirements.html~Contents, last
accessed September 2020.

http://www.opfro.org/index.html?Components/WorkProducts/ RequirementsSet/Requirements/UsabilityRequirements. html~Contents
http://www.opfro.org/index.html?Components/WorkProducts/ RequirementsSet/Requirements/UsabilityRequirements. html~Contents
http://www.opfro.org/index.html?Components/WorkProducts/ RequirementsSet/Requirements/UsabilityRequirements. html~Contents

BIBLIOGRAPHY 285

[OPCF+13] Yeshica Isela Ormeño, Jose Ignacio Panach, Nelly Condori-Fern,
Óscar Pastor, et al. Towards a proposal to capture usability require-
ments through guidelines. In IEEE 7th International Conference

on Research Challenges in Information Science (RCIS), pages 1–
12. IEEE, 2013.

[OSDCI11] Jesús Oliva, José Ignacio Serrano, María Dolores Del Castillo, and
Ángel Iglesias. Symss: A syntax-based measure for short-text se-
mantic similarity. Data & Knowledge Engineering, 70(4):390–
405, 2011.

[PA12] David MW Powers and Adham Atyabi. The problem of cross-
validation: averaging and bias, repetition and significance. In
2012 Spring Congress on Engineering and Technology, pages 1–5.
IEEE, 2012.

[PARS13] Anuja Priyam, GR Abhijeeta, Anju Rathee, and Saurabh Srivas-
tava. Comparative analysis of decision tree classification algo-
rithms. International Journal of current engineering and technol-

ogy, 3(2):334–337, 2013.

[PBM04] Ronaldo C Prati, Gustavo EAPA Batista, and Maria Carolina
Monard. Class imbalances versus class overlapping: an analysis of
a learning system behavior. In Mexican international conference

on artificial intelligence, pages 312–321. Springer, 2004.

[PBP03] Siddharth Patwardhan, Satanjeev Banerjee, and Ted Pedersen. Us-
ing measures of semantic relatedness for word sense disambigua-
tion. In International Conference on Intelligent Text Processing

and Computational Linguistics, pages 241–257. Springer, 2003.

[PBU93] Jenny Preece, David Benyon, and Open University. A guide to us-

ability: Human factors in computing. Addison-Wesley Longman
Publishing Co., Inc., 1993.

[PGK05] Martha Palmer, Daniel Gildea, and Paul Kingsbury. The proposi-
tion bank: An annotated corpus of semantic roles. Computational

linguistics, 31(1):71–106, 2005.

286 BIBLIOGRAPHY

[Phy09] Thair Nu Phyu. Survey of classification techniques in data mining.
In Proceedings of the International MultiConference of Engineers

and Computer Scientists, volume 1, pages 18–20, 2009.

[PMB09] Francisco Pereira, Tom Mitchell, and Matthew Botvinick. Ma-
chine learning classifiers and fmri: a tutorial overview. Neuroim-

age, 45(1):S199–S209, 2009.

[PNH08] Xuan-Hieu Phan, Le-Minh Nguyen, and Susumu Horiguchi.
Learning to classify short and sparse text & web with hidden top-
ics from large-scale data collections. In Proceedings of the 17th

international conference on World Wide Web, pages 91–100, 2008.

[PP14] Vijay Pappu and Panos M Pardalos. High-dimensional data clas-
sification. In Clusters, Orders, and Trees: Methods and Applica-

tions, pages 119–150. Springer, 2014.

[PRS+94] Jenny Preece, Yvonne Rogers, Helen Sharp, David Benyon, Si-
mon Holland, and Tom Carey. Human-computer interaction.
Addison-Wesley Longman Ltd., 1994.

[PS03] Fuchun Peng and Dale Schuurmans. Combining naive bayes and
n-gram language models for text classification. In European Con-

ference on Information Retrieval, pages 335–350. Springer, 2003.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D Manning.
Glove: Global vectors for word representation. In Proceedings

of the 2014 conference on empirical methods in natural language

processing (EMNLP), pages 1532–1543, 2014.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[PVSGOH20] J Manuel Pérez-Verdejo, Angel J Sánchez-García, and Jorge Oc-
tavio Ocharán-Hernández. A systematic literature review on ma-
chine learning for automated requirements classification. In 2020

BIBLIOGRAPHY 287

8th International Conference in Software Engineering Research

and Innovation (CONISOFT), pages 21–28. IEEE, 2020.

[PZZ12] Piyaphol Phoungphol, Yanqing Zhang, and Yichuan Zhao. Robust
multiclass classification for learning from imbalanced biomedical
data. Tsinghua Science and technology, 17(6):619–628, 2012.

[QLL+10] Xiaojun Quan, Gang Liu, Zhi Lu, Xingliang Ni, and Liu Wenyin.
Short text similarity based on probabilistic topics. Knowledge and

information systems, 25(3):473–491, 2010.

[Que01] Whitney Quesenbery. What does usability mean: Looking beyon-
dease of use’. In Annual conference-society for technical commu-

nication, volume 48, pages 432–436. Citeseer, 2001.

[Qui86] J. Ross Quinlan. Induction of decision trees. Machine learning,
1(1):81–106, 1986.

[Qui93] JR Quinlan. C4. 5: Programs for machine learning. morgan kauf-
mann, san francisco. C4. 5: Programs for machine learning. Mor-

gan Kaufmann, San Francisco., 1993.

[Ran05] Justus J Randolph. Free-marginal multirater kappa (multirater k
[free]): An alternative to fleiss’ fixed-marginal multirater kappa.
Online submission, 2005.

[RDPM19] Alejandro Rago, J Andres Diaz-Pace, and Claudia Marcos. Do
concern mining tools really help requirements analysts? an empir-
ical study of the vetting process. Journal of Systems and Software,
156:181–203, 2019.

[Res95] Philip Resnik. Using information content to evaluate semantic
similarity in a taxonomy. arXiv preprint cmp-lg/9511007, 1995.

[RHS05] Chuck Rosenberg, Martial Hebert, and Henry Schneider-
man. Semi-supervised self-training of object detection models.
Carnegie Mellon University, 2005.

[roc] FactoryTalk View Site Edition User’s Guide. Available at https:
//literature.rockwellautomation.com/idc/groups/

https://literature.rockwellautomation.com/idc/groups/literature/documents/um/viewse-um006_-en-e.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/um/viewse-um006_-en-e.pdf

288 BIBLIOGRAPHY

literature/documents/um/viewse-um006_-en-e.pdf, last
accessed November 2020.

[ROW13] Abderahman Rashwan, Olga Ormandjieva, and René Witte.
Ontology-based classification of non-functional requirements in
software specifications: a new corpus and svm-based classifier.
In 2013 IEEE 37th Annual Computer Software and Applications

Conference, pages 381–386. IEEE, 2013.

[RP92] Colette Rolland and Christophe Proix. A natural language ap-
proach for requirements engineering. In International Conference

on Advanced Information Systems Engineering, pages 257–277.
Springer, 1992.

[RR12] Suzanne Robertson and James Robertson. Mastering the require-

ments process: Getting requirements right. Addison-wesley, 2012.

[RRSK10] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kan-
tor. Recommender Systems Handbook. Springer-Verlag, Berlin,
Heidelberg, 1st edition, 2010.

[Rum12] Nikolaus Rumm. Intelligent tools for policy design,
2012. Available at https://cordis.europa.eu/

docs/projects/cnect/9/287119/080/deliverables/

001-D31SoftwareRequirementsSpecificationandUseCases.

pdf, last accessed October 2020.

[Rya93] Kevin Ryan. The role of natural language in requirements engi-
neering. In [1993] Proceedings of the IEEE International Sympo-

sium on Requirements Engineering, pages 240–242. IEEE, 1993.

[Sak16] Tetsuya Sakai. Two sample t-tests for ir evaluation: Student or
welch? In Proceedings of the 39th International ACM SIGIR con-

ference on Research and Development in Information Retrieval,
pages 1045–1048, 2016.

[SCM+19] Juan Salas, Alberto Chang, Lourdes Montalvo, Almendra Núñez,
Max Vilcapoma, Arturo Moquillaza, Braulio Murillo, and Freddy
Paz. Guidelines to evaluate the usability and user experience of

https://literature.rockwellautomation.com/idc/groups/literature/documents/um/viewse-um006_-en-e.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/um/viewse-um006_-en-e.pdf
https://cordis.europa.eu/docs/projects/cnect/9/287119/080/deliverables/001-D31SoftwareRequirementsSpecificationandUseCases.pdf
https://cordis.europa.eu/docs/projects/cnect/9/287119/080/deliverables/001-D31SoftwareRequirementsSpecificationandUseCases.pdf
https://cordis.europa.eu/docs/projects/cnect/9/287119/080/deliverables/001-D31SoftwareRequirementsSpecificationandUseCases.pdf
https://cordis.europa.eu/docs/projects/cnect/9/287119/080/deliverables/001-D31SoftwareRequirementsSpecificationandUseCases.pdf

BIBLIOGRAPHY 289

learning support platforms: A systematic review. In Iberoameri-

can Workshop on Human-Computer Interaction, pages 238–254.
Springer, 2019.

[SDKP06] Ahmed Seffah, Mohammad Donyaee, Rex B Kline, and Harkirat K
Padda. Usability measurement and metrics: A consolidated model.
Software Quality Journal, 14(2):159–178, 2006.

[Seb02] Fabrizio Sebastiani. Machine learning in automated text catego-
rization. ACM computing surveys (CSUR), 34(1):1–47, 2002.

[SFHA14] Hassan Saif, Miriam Fernández, Yulan He, and Harith Alani. On
stopwords, filtering and data sparsity for sentiment analysis of
twitter. In LREC 2014, Ninth International Conference on Lan-

guage Resources and Evaluation. Proceedings., pages 810–817,
2014.

[SG14] Sonia Singh and Priyanka Gupta. Comparative study id3, cart
and c4. 5 decision tree algorithm: a survey. International Jour-

nal of Advanced Information Science and Technology (IJAIST),
27(27):97–103, 2014.

[SGR09] Richard Berntsson Svensson, Tony Gorschek, and Björn Regnell.
Quality requirements in practice: An interview study in require-
ments engineering for embedded systems. In International Work-

ing Conference on Requirements Engineering: Foundation for

Software Quality, pages 218–232. Springer, 2009.

[SGSG19] Jenni AM Sidey-Gibbons and Chris J Sidey-Gibbons. Machine
learning in medicine: a practical introduction. BMC medical re-

search methodology, 19(1):64, 2019.

[SH06] Mehran Sahami and Timothy D Heilman. A web-based kernel
function for measuring the similarity of short text snippets. In
Proceedings of the 15th international conference on World Wide

Web, pages 377–386, 2006.

[Sha09] Brian Shackel. Usability–context, framework, definition, design
and evaluation. Interacting with computers, 21(5-6):339–346,
2009.

290 BIBLIOGRAPHY

[SHA12] Hassan Saif, Yulan He, and Harith Alani. Alleviating data spar-
sity for twitter sentiment analysis. CEUR Workshop Proceedings
(CEUR-WS.org), 2012.

[SIL07] Yvan Saeys, Iñaki Inza, and Pedro Larrañaga. A review of
feature selection techniques in bioinformatics. bioinformatics,
23(19):2507–2517, 2007.

[SIL15] Guzman Santafe, Iñaki Inza, and Jose A Lozano. Dealing with
the evaluation of supervised classification algorithms. Artificial

Intelligence Review, 44(4):467–508, 2015.

[SK74] Andrew Jhon Scott and M Knott. A cluster analysis method for
grouping means in the analysis of variance. Biometrics, pages
507–512, 1974.

[SKVHN09] Chris Seiffert, Taghi M Khoshgoftaar, Jason Van Hulse, and Amri
Napolitano. Rusboost: A hybrid approach to alleviating class im-
balance. IEEE Transactions on Systems, Man, and Cybernetics-

Part A: Systems and Humans, 40(1):185–197, 2009.

[SL09] Jeff Sauro and James R Lewis. Correlations among prototypical
usability metrics: evidence for the construct of usability. In Pro-

ceedings of the SIGCHI conference on human factors in computing

systems, pages 1609–1618, 2009.

[SLRR05] Américo Sampaio, Neil Loughran, Awais Rashid, and Paul
Rayson. Mining aspects in requirements. In Early Aspects 2005:

Aspect-Oriented Requirements Engineering and Architecture De-

sign Workshop, 2005.

[SM98] Alistair Sutcliffe and Neil Maiden. The domain theory for require-
ments engineering. IEEE Transactions on Software Engineering,
24(3):174–196, 1998.

[Soe20] Mads Soegaard. Usability: A part of the user
experience, 2020. Available at https://www.

interaction-design.org/literature/article/

usability-a-part-of-the-user-experience, last accessed
October 2020.

https://www.interaction-design.org/literature/article/usability-a-part-of-the-user-experience
https://www.interaction-design.org/literature/article/usability-a-part-of-the-user-experience
https://www.interaction-design.org/literature/article/usability-a-part-of-the-user-experience

BIBLIOGRAPHY 291

[Som05] Ian Sommerville. Integrated requirements engineering: A tutorial.
IEEE software, 22(1):16–23, 2005.

[Som11] Ian Sommerville. Software engineering 9th edition. ISBN-10,
137035152:18, 2011.

[SP04] Ben Shneiderman and Catherine Plaisant. Designing the User In-

terface: Strategies for Effective Human-Computer Interaction (4th

Edition). Pearson Addison Wesley, 2004.

[SRS14] Vibhu Saujanya Sharma, Roshni R Ramnani, and Shubhashis Sen-
gupta. A framework for identifying and analyzing non-functional
requirements from text. In Proceedings of the 4th international

workshop on twin peaks of requirements and architecture, pages
1–8, 2014.

[SS17] Kalpna Sagar and Anju Saha. A systematic review of software
usability studies. International Journal of Information Technology,
pages 1–24, 2017.

[SS20] Alberto Rodrigues da Silva and Carolina Lisboa Sequeira. To-
wards a library of usability requirements. In Proceedings of

the 35th Annual ACM Symposium on Applied Computing, pages
1371–1378, 2020.

[SSS07] Forrest Shull, Janice Singer, and Dag IK Sjøberg. Guide to ad-

vanced empirical software engineering. Springer, 2007.

[sta09] What is the best way of formally express-
ing usability requirements?, 2009. Available at
https://stackoverflow.com/questions/513230/

what-is-the-best-way-of-formally-expressing-usability-\

protect\@normalcr\relaxrequirements, last accessed Octo-
ber 2020.

[Stą17] Katarzyna Stąpor. Evaluating and comparing classifiers: Review,
some recommendations and limitations. In International Confer-

ence on Computer Recognition Systems, pages 12–21. Springer,
2017.

https://stackoverflow.com/questions/513230/what-is-the-best-way-of-formally-expressing-usability-\protect \@normalcr \relax requirements
https://stackoverflow.com/questions/513230/what-is-the-best-way-of-formally-expressing-usability-\protect \@normalcr \relax requirements
https://stackoverflow.com/questions/513230/what-is-the-best-way-of-formally-expressing-usability-\protect \@normalcr \relax requirements

292 BIBLIOGRAPHY

[Ste16] Jerzy Stefanowski. Dealing with data difficulty factors while learn-
ing from imbalanced data. In Challenges in computational statis-

tics and data mining, pages 333–363. Springer, 2016.

[SW13] John Slankas and Laurie Williams. Automated extraction of non-
functional requirements in available documentation. In 2013 1st

International Workshop on Natural Language Analysis in Software

Engineering (NaturaLiSE), pages 9–16. IEEE, 2013.

[Swa19] Manohar Swamynathan. Mastering machine learning with python

in six steps: A practical implementation guide to predictive data

analytics using python. Apress, 2019.

[SWK09] Yanmin Sun, Andrew KC Wong, and Mohamed S Kamel. Clas-
sification of imbalanced data: A review. International Journal of

Pattern Recognition and Artificial Intelligence, 23(04):687–719,
2009.

[SY19] Mucahid Mustafa Saritas and Ali Yasar. Performance analysis of
ann and naive bayes classification algorithm for data classification.
International Journal of Intelligent Systems and Applications in

Engineering, 7(2):88–91, 2019.

[SYD+14] Ge Song, Yunming Ye, Xiaolin Du, Xiaohui Huang, and Shifu
Bie. Short text classification: A survey. Journal of Multimedia,
9:635–643, 2014.

[SZK+17] Si Si, Huan Zhang, S Sathiya Keerthi, Dhruv Mahajan, Inderjit S
Dhillon, and Cho-Jui Hsieh. Gradient boosted decision trees for
high dimensional sparse output. In Proceedings of the 34th In-

ternational Conference on Machine Learning-Volume 70, pages
3182–3190. JMLR. org, 2017.

[SZLM08] Jiang Su, Harry Zhang, Charles X Ling, and Stan Matwin. Dis-
criminative parameter learning for bayesian networks. In Proceed-

ings of the 25th international conference on Machine learning,
pages 1016–1023, 2008.

BIBLIOGRAPHY 293

[TAL14] Jiliang Tang, Salem Alelyani, and Huan Liu. Feature selection
for classification: A review. Data classification: Algorithms and

applications, page 37, 2014.

[TB13] Sri Fatimah Tjong and Daniel M Berry. The design of sree—a pro-
totype potential ambiguity finder for requirements specifications
and lessons learned. In International Working Conference on Re-

quirements Engineering: Foundation for Software Quality, pages
80–95. Springer, 2013.

[TKV05] Lucia Terrenghi, Marcus Kronen, and Carla Valle. Usability re-
quirements for mobile service scenarios. Human Computer Inter-

action, pages 1–10, 2005.

[TM11] Nenad Tomasev and Dunja Mladenic. Nearest neighbor voting in
high-dimensional data: Learning from past occurrences. In 2011

IEEE 11th International Conference on Data Mining Workshops,
pages 1215–1218. IEEE, 2011.

[TM18] H Taud and JF Mas. Multilayer perceptron (mlp). In Geomatic Ap-

proaches for Modeling Land Change Scenarios, pages 451–455.
Springer, 2018.

[TMHM16] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan,
and Kenichi Matsumoto. An empirical comparison of model vali-
dation techniques for defect prediction models. IEEE Transactions

on Software Engineering, 43(1):1–18, 2016.

[Tor09] Gessica Tortolano. Usability requirements tem-
plate, 2009. Aviable at https://sites.

google.com/site/superuserfriendly/templates/

usability-requirements-template, last accessed September
2020.

[Tra16] David Travis. 247 web usability guideline, 2016. Available
at https://www.userfocus.co.uk/resources/guidelines.

html, last accessed October 2017.

[Tra18] Noam Tractinsky. The usability construct: a dead end? Human–

Computer Interaction, 33(2):131–177, 2018.

https://sites.google.com/site/superuserfriendly/templates/usability-requirements-template
https://sites.google.com/site/superuserfriendly/templates/usability-requirements-template
https://sites.google.com/site/superuserfriendly/templates/usability-requirements-template
https://www.userfocus.co.uk/resources/guidelines.html
https://www.userfocus.co.uk/resources/guidelines.html

294 BIBLIOGRAPHY

[Tur01] Peter D Turney. Mining the web for synonyms: Pmi-ir versus lsa
on toefl. In European conference on machine learning, pages 491–
502. Springer, 2001.

[UG14] Alper Kursat Uysal and Serkan Gunal. The impact of preprocess-
ing on text classification. Information Processing & Management,
50(1):104–112, 2014.

[Usa] UsabilityNet. Recommended methods: 5. usability requirements.
Avilable at http://www.usabilitynet.org/trump/methods/

recommended/requirements.htm, last accessed September
2017.

[usa13] With measurable usability goals – we all score, 2013. Avilable
at https://www.usability.gov/get-involved/blog/2013/

09/measurable-usability-goals.html, last accessed October
2020.

[VG+05] Anthony J Viera, Joanne M Garrett, et al. Understanding interob-
server agreement: the kappa statistic. Fam med, 37(5):360–363,
2005.

[VR11] Radu Vlas and William N Robinson. A rule-based natural lan-
guage technique for requirements discovery and classification in
open-source software development projects. In 2011 44th Hawaii

International Conference on System Sciences, pages 1–10. IEEE,
2011.

[VS06] Sudhir Varma and Richard Simon. Bias in error estimation when
using cross-validation for model selection. BMC bioinformatics,
7(1):91, 2006.

[VWVDVE99] Martijn Van Welie, Gerrit C Van Der Veer, and Anton Eliëns.
Breaking down usability. In Interact, pages 613–620, 1999.

[Wah12] Kathy Wahlbin. How to write user stories for web accessibilit,
2012.

[WB13] Karl Wiegers and Joy Beatty. Software requirements. Pearson
Education, 2013.

http://www.usabilitynet.org/trump/ methods/recommended/requirements.htm
http://www.usabilitynet.org/trump/ methods/recommended/requirements.htm
https://www.usability.gov/get-involved/blog/2013/09/measurable-usability-goals.html
https://www.usability.gov/get-involved/blog/2013/09/measurable-usability-goals.html

BIBLIOGRAPHY 295

[WC09] Mike Wasikowski and Xue-wen Chen. Combating the small sam-
ple class imbalance problem using feature selection. IEEE Trans-

actions on knowledge and data engineering, 22(10):1388–1400,
2009.

[Wei04] Gary M Weiss. Mining with rarity: a unifying framework. ACM

Sigkdd Explorations Newsletter, 6(1):7–19, 2004.

[Wei18] Paweł Weichbroth. Usability attributes revisited: a time-framed
knowledge map. In 2018 Federated Conference on Computer

Science and Information Systems (FedCSIS), pages 1005–1008.
IEEE, 2018.

[Wei20] Paweł Weichbroth. Usability of mobile applications: a systematic
literature study. IEEE Access, 8:55563–55577, 2020.

[WG68] Martin B Wilk and Ram Gnanadesikan. Probability plotting meth-
ods for the analysis for the analysis of data. Biometrika, 55(1):1–
17, 1968.

[WGV19] Jonas Paul Winkler, Jannis Grönberg, and Andreas Vogelsang. Op-
timizing for recall in automatic requirements classification: An
empirical study. In 2019 IEEE 27th International Requirements

Engineering Conference (RE), pages 40–50. IEEE, 2019.

[WHYL12] Bing-kun Wang, Yong-feng Huang, Wan-xia Yang, and Xing Li.
Short text classification based on strong feature thesaurus. Journal

of Zhejiang University SCIENCE C, 13(9):649–659, 2012.

[Wil92] Frank Wilcoxon. Individual comparisons by ranking methods. In
Breakthroughs in statistics, pages 196–202. Springer, 1992.

[Wil99] William M Wilson. Writing effective natural language require-
ments specifications. Naval Research Laboratory, 1999.

[Wit07] Stephen Withall. Software requirement patterns. Pearson Educa-
tion, 2007.

296 BIBLIOGRAPHY

[WLL18] Tianlu Wang, Peng Liang, and Mengmeng Lu. What aspects do
non-functional requirements in app user reviews describe? an ex-
ploratory and comparative study. In 2018 25th Asia-Pacific Soft-

ware Engineering Conference (APSEC), pages 494–503. IEEE,
2018.

[WLZ08] Jiao Wang, Si-wei Luo, and Xian-hua Zeng. A random subspace
method for co-training. In 2008 IEEE International Joint Con-

ference on Neural Networks (IEEE World Congress on Computa-

tional Intelligence), pages 195–200. IEEE, 2008.

[Woh14] Claes Wohlin. Guidelines for snowballing in systematic literature
studies and a replication in software engineering. In Proceedings

of the 18th international conference on evaluation and assessment

in software engineering, pages 1–10, 2014.

[WP94] Zhibiao Wu and Martha Palmer. Verbs semantics and lexical se-
lection. In Proceedings of the 32nd annual meeting on Associ-

ation for Computational Linguistics, pages 133–138. Association
for Computational Linguistics, 1994.

[WRH97] William M Wilson, Linda H Rosenberg, and Lawrence E Hyatt.
Automated analysis of requirement specifications. In Proceed-

ings of the 19th international conference on Software engineering,
pages 161–171, 1997.

[WW97] Dennis Wixon and Chauncey Wilson. The usability engineering
framework for product design and evaluation. In Handbook of

human-computer interaction, pages 653–688. Elsevier, 1997.

[WWD07] Sebastian Winter, Stefan Wagner, and Florian Deissenboeck. A
comprehensive model of usability. In IFIP International Con-

ference on Engineering for Human-Computer Interaction, pages
106–122. Springer, 2007.

[WWZY17] Jin Wang, Zhongyuan Wang, Dawei Zhang, and Jun Yan. Combin-
ing knowledge with deep convolutional neural networks for short
text classification. In IJCAI, volume 350, 2017.

BIBLIOGRAPHY 297

[WY12] Shuo Wang and Xin Yao. Multiclass imbalance problems: Anal-
ysis and potential solutions. IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), 42(4):1119–1130, 2012.

[WY13] Shuo Wang and Xin Yao. Using class imbalance learning for
software defect prediction. IEEE Transactions on Reliability,
62(2):434–443, 2013.

[Xu18] Shuo Xu. Bayesian naïve bayes classifiers to text classification.
Journal of Information Science, 44(1):48–59, 2018.

[Xue08] Nianwen Xue. Labeling chinese predicates with semantic roles.
Computational linguistics, 34(2):225–255, 2008.

[YDRG+11] Hui Yang, Anne De Roeck, Vincenzo Gervasi, Alistair Willis, and
Bashar Nuseibeh. Analysing anaphoric ambiguity in natural lan-
guage requirements. Requirements engineering, 16(3):163, 2011.

[Yev07] Ilyin Yevgeniy. Software requirements specification for project
management system project, 2007.

[YGLC13] Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. A
biterm topic model for short texts. In Proceedings of the 22nd

international conference on World Wide Web, pages 1445–1456,
2013.

[YGX+13] Liuzhi Yin, Yong Ge, Keli Xiao, Xuehua Wang, and Xiaojun
Quan. Feature selection for high-dimensional imbalanced data.
Neurocomputing, 105:3–11, 2013.

[YJGS20] Muhammad Younas, Dayang NA Jawawi, Imran Ghani, and
Muhammad Arif Shah. Extraction of non-functional requirement
using semantic similarity distance. Neural Computing and Appli-

cations, 32(11):7383–7397, 2020.

[YL99] Yiming Yang and Xin Liu. A re-examination of text categorization
methods. In Proceedings of the 22nd annual international ACM

SIGIR conference on Research and development in information re-

trieval, pages 42–49, 1999.

298 BIBLIOGRAPHY

[YL03] Lei Yu and Huan Liu. Feature selection for high-dimensional data:
A fast correlation-based filter solution. In Proceedings of the 20th

international conference on machine learning (ICML-03), pages
856–863, 2003.

[YP97] Yiming Yang and Jan O Pedersen. A comparative study on fea-
ture selection in text categorization. In Icml, volume 97, page 35.
Nashville, TN, USA, 1997.

[Yu97] Eric SK Yu. Towards modelling and reasoning support for early-
phase requirements engineering. In Proceedings of ISRE’97:

3rd IEEE International Symposium on Requirements Engineering,
pages 226–235. IEEE, 1997.

[ZAF+21] Liping Zhao, Waad Alhoshan, Alessio Ferrari, Keletso J Letsholo,
Muideen A Ajagbe, Erol-Valeriu Chioasca, and Riza T Batista-
Navarro. Natural language processing for requirements engi-
neering: A systematic mapping study. ACM Computing Surveys

(CSUR), 54(3):1–41, 2021.

[ZBFK08] Arthur Zimek, Fabian Buchwald, Eibe Frank, and Stefan Kramer.
A study of hierarchical and flat classification of proteins.
IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics, 7(3):563–571, 2008.

[Zho12] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms.
CRC press, 2012.

[Zhu05] Xiaojin Jerry Zhu. Semi-supervised learning literature survey.
University of Wisconsin-Madison Department of Computer Sci-

ences, 2005.

[Zie08] Peter Zielczynski. Requirements Management Using IBM Ratio-

nal RequisitePro. IBM Press/Pearson plc, 2008.

[ZLLG18] Min-Ling Zhang, Yu-Kun Li, Xu-Ying Liu, and Xin Geng. Bi-
nary relevance for multi-label learning: an overview. Frontiers of

Computer Science, 12(2):191–202, 2018.

BIBLIOGRAPHY 299

[ZLS+18] Jichuan Zeng, Jing Li, Yan Song, Cuiyun Gao, Michael R Lyu, and
Irwin King. Topic memory networks for short text classification.
arXiv preprint arXiv:1809.03664, 2018.

[ZSM15] Shu Zhang, Samira Sadaoui, and Malek Mouhoub. An empirical
analysis of imbalanced data classification. Computer and Infor-

mation Science, 8(1):151, 2015.

[ZW15] Xinwei Zhang and Bin Wu. Short text classification based on fea-
ture extension using the n-gram model. In 2015 12th International

Conference on Fuzzy Systems and Knowledge Discovery (FSKD),
pages 710–716. IEEE, 2015.

[ZWL18] Lei Zhang, Shuai Wang, and Bing Liu. Deep learning for senti-
ment analysis: A survey. Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery, 8(4):e1253, 2018.

[ZWS04] Zhaohui Zheng, Xiaoyun Wu, and Rohini Srihari. Feature selec-
tion for text categorization on imbalanced data. ACM Sigkdd Ex-

plorations Newsletter, 6(1):80–89, 2004.

[ZXY+17] Jie Zou, Ling Xu, Mengning Yang, Xiaohong Zhang, and Dan
Yang. Towards comprehending the non-functional requirements
through developers’ eyes: An exploration of stack overflow using
topic analysis. Information and Software Technology, 84:19–32,
2017.

[ZYWS11] Wen Zhang, Ye Yang, Qing Wang, and Fengdi Shu. An empiri-
cal study on classification of non-functional requirements. In The

twenty-third international conference on software engineering and

knowledge engineering (SEKE 2011), pages 190–195, 2011.

[ZZ20] Weijie Zheng and Hong Zhao. Cost-sensitive hierarchical classi-
fication for imbalance classes. Applied Intelligence, pages 1–11,
2020.

[ZZYZ21] Shengli Zhang, Fu Zhu, Qianhao Yu, and Xiaoyue Zhu. Identify-
ing dna-binding proteins based on multi-features and lasso feature
selection. Biopolymers, page e23419, 2021.

Appendix A

A Supplement for Chapter 3

A.1 Overview

This Appendix provides a supplement to Chapter 3: A systematic review of ML meth-
ods for identification and classification NFRs. It contains Table A.1, which lists the
51 studies, and Table A.2, which provides a comprehensive overview of the studies
identified in the review. Besides, it contains tables (A.3, A.4, A.5, A.6) that used to
generate figures (3.7, 3.8, 3.9, 3.11, and 3.10) to show which studies were involved
clearly.

300

A
.2.

T
H

E
51

SE
L

E
C

T
E

D
ST

U
D

IE
S

301

A.2 The 51 Selected Studies

Study
ID

Authors Name Year Paper Title Paper
type

Publisher Venue Publisher
Name

DOI

S1 Cleland-Huang,
Settimi, Zou &
Solc

2007 Automated classification of non-
functional requirements

Journ. RE Springer https:

//doi.org/10.1007/

s00766-007-0045-1

S2 Hussain,
Kosseim &
Ormandjieva

2008 Using linguistic knowledge to clas-
sify non-functional requirements in
SRS documents

Conf. International Conference
on Application of
Natural Language to
Information Systems

Springer https:

//doi.org/10.1007/

978-3-540-69858-6_

28

S3 Gokyer, Cetin,
Sener & T.
Yondem

2008 Non-functional requirements to ar-
chitectural concerns: ML and NLP
at crossroads

Conf. International
Conference on Software
Engineering Advances

IEEE 10.1109/ICSEA.2008.

28

S4 Casamayor,
Godoy &
Campo

2010 Identification of non-functional re-
quirements in textual specifications:
A semi-supervised learning ap-
proach

Journ. Information and
Software Technology

Science-
Direct

https://doi.org/10.

1016/j.infsof.2009.

10.010

S5 Zhang, Yang,
Wang & Shu

2011 An empirical study on classifica-
tion of non-functional requirements

Conf. International
Conference on Software
Engineering &
Knowledge Engineering

Knowledge
Systems
Institute
Graduate
School 1

N/A

1 we accessed this paper via Semantic Scholar

https://doi.org/10.1007/s00766-007-0045-1
https://doi.org/10.1007/s00766-007-0045-1
https://doi.org/10.1007/s00766-007-0045-1
https://doi.org/10.1007/978-3-540-69858-6_28
https://doi.org/10.1007/978-3-540-69858-6_28
https://doi.org/10.1007/978-3-540-69858-6_28
https://doi.org/10.1007/978-3-540-69858-6_28
10.1109/ICSEA.2008.28
10.1109/ICSEA.2008.28
https://doi.org/10.1016/j.infsof.2009.10.010
https://doi.org/10.1016/j.infsof.2009.10.010
https://doi.org/10.1016/j.infsof.2009.10.010

302
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
Study
ID

Authors Name Year Paper Title Paper
type

Publisher Venue Publisher
Name

DOI

S6 Knauss,
Houmb,
Schneider,
Islam & Jürjens

2011 Supporting Requirements Engi-
neers in Recognising Security
Issues

Conf. Requirements
Engineering:
Foundation for Software
Quality

Springer https:

//doi.org/10.1007/

978-3-642-19858-8_2

S7 Hindle, Ernst,
Godfrey. &
Mylopoulos

2012 Automated topic naming Journ. Empirical Software
Engineering

Springer https:

//doi.org/10.1007/

s10664-012-9209-9

S8 Rashwan,
Ormandjieva, &
Witte

2013 Ontology-based classifica-
tion of non-functional require-
ments in software specifications:
a new corpus and svm-based
classifier

Conf. Computer Software and
Applications Conference

IEEE 10.1109/COMPSAC.

2013.64

S9 Slankas and
Williams

2013 Automated extraction of non-
functional requirements in available
documentation

Conf.-
WS

Natural Language
Analysis in Software
Engineering

IEEE 10.1109/NAturaLiSE.

2013.6611715

S10 Ott 2013 Automatic requirement categoriza-
tion of large natural language spec-
ifications at Mercedes-Benz for re-
view improvements.

Conf. Requirements
Engineering:
Foundation for Software
Quality

Springer https:

//doi.org/10.1007/

978-3-642-37422-7_4

S11 Riaz, King,
Slankas &
Williams

2014 Hidden in plain sight: Automat-
ically identifying security require-
ments from natural language arti-
facts

Conf. RE IEEE 10.1109/RE.2014.

6912260

https://doi.org/10.1007/978-3-642-19858-8_2
https://doi.org/10.1007/978-3-642-19858-8_2
https://doi.org/10.1007/978-3-642-19858-8_2
https://doi.org/10.1007/s10664-012-9209-9
https://doi.org/10.1007/s10664-012-9209-9
https://doi.org/10.1007/s10664-012-9209-9
10.1109/COMPSAC.2013.64
10.1109/COMPSAC.2013.64
10.1109/NAturaLiSE.2013.6611715
10.1109/NAturaLiSE.2013.6611715
https://doi.org/10.1007/978-3-642-37422-7_4
https://doi.org/10.1007/978-3-642-37422-7_4
https://doi.org/10.1007/978-3-642-37422-7_4
10.1109/RE.2014.6912260
10.1109/RE.2014.6912260

A
.2.

T
H

E
51

SE
L

E
C

T
E

D
ST

U
D

IE
S

303

Study
ID

Authors Name Year Paper Title Paper
type

Publisher Venue Publisher
Name

DOI

S12 Knauss and Ott 2014 (Semi-) automatic Categorization
of Natural Language Requirements

Conf. Requirements
Engineering:
Foundation for Software
Quality

Springer https:

//doi.org/10.1007/

978-3-319-05843-6_4

S13 Nguyen,
Grundy,
Almorsy

2015 Rule-based extraction of goal-use
case models from text

Conf. European Software
Engineering Conference
and Symposium on the
Foundations of Software
Engineering

ACM https:

//doi.org/10.1145/

2786805.2786876

S14 Maiti,
Mitropoulos

2015 Capturing, eliciting, predicting and
prioritizing (CEPP) non-functional
requirements metadata during the
early stages of agile software devel-
opmen

Conf. Southeastcon IEEE 10.1109/SECON.2015.

7133007

S15 Mahmoud and
Williams

2016 Detecting, classifying, and trac-
ing non-functional software re-
quirements

Journ. RE Springer https:

//doi.org/10.1007/

s00766-016-0252-8

S16 Jindal and
Malhotra

2016 Automated classification of secu-
rity requirements

Conf. International
Conference on
Advances in Computing,
Communications and
Informatics

IEEE 10.1109/ICACCI.

2016.7732349

https://doi.org/10.1007/978-3-319-05843-6_4
https://doi.org/10.1007/978-3-319-05843-6_4
https://doi.org/10.1007/978-3-319-05843-6_4
https://doi.org/10.1145/2786805.2786876
https://doi.org/10.1145/2786805.2786876
https://doi.org/10.1145/2786805.2786876
10.1109/SECON.2015.7133007
10.1109/SECON.2015.7133007
https://doi.org/10.1007/s00766-016-0252-8
https://doi.org/10.1007/s00766-016-0252-8
https://doi.org/10.1007/s00766-016-0252-8
10.1109/ICACCI.2016.7732349
10.1109/ICACCI.2016.7732349

304
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
Study
ID

Authors Name Year Paper Title Paper
type

Publisher Venue Publisher
Name

DOI

S17 Malhotra,
Chug,
Hayrapetian &
Raje

2016 Analyzing and evaluating security
features in software requirements

Conf. Innovation and
Challenges in Cyber
Security

IEEE 10.1109/ICICCS.

2016.7542334

S18 Singh, Singh,
Sharma

2016 Rule-Based System for Automated
Classification of Non-Functional
Requirements from Requirement
Specifications

Conf. International
Conference on
Advances in Computing,
Communications and
Informatics

IEEE 10.1109/ICACCI.

2016.7732115

S19 Lu and Liang 2017 Automatic Classification of Non-
Functional Requirements from
Augmented App User Reviews

Conf. The Evaluation and
Assessment in Software
Engineering Conference

ACM https:

//doi.org/10.1145/

3084226.3084241

S20 Deocadez,
Harrison,
Rodriguez

2017 Automatically Classifying Require-
ments from App Stores: A Prelimi-
nary Study

Conf.-
WS

RE Workshops IEEE 10.1109/REW.2017.58

S21 Li, Huang, Ge,
Luo, Ng

2017 Automatically classifying user re-
quests in crowdsourcing require-
ments engineering

Journ. Journal of Systems and
Software

Science-
Direct

https:

//doi.org/10.1016/

j.jss.2017.12.028

S22 Kurtanović and
Maalej

2017 Automatically Classifying Func-
tional and Non-functional Require-
ments Using Supervised Machine
Learning

Conf. RE IEEE 10.1109/RE.2017.82

10.1109/ICICCS.2016.7542334
10.1109/ICICCS.2016.7542334
10.1109/ICACCI.2016.7732115
10.1109/ICACCI.2016.7732115
https://doi.org/10.1145/3084226.3084241
https://doi.org/10.1145/3084226.3084241
https://doi.org/10.1145/3084226.3084241
10.1109/REW.2017.58
https://doi.org/10.1016/j.jss.2017.12.028
https://doi.org/10.1016/j.jss.2017.12.028
https://doi.org/10.1016/j.jss.2017.12.028
10.1109/RE.2017.82

A
.2.

T
H

E
51

SE
L

E
C

T
E

D
ST

U
D

IE
S

305

Study
ID

Authors Name Year Paper Title Paper
type

Publisher Venue Publisher
Name

DOI

S23 Abad, Karras,
Ghazi,Glinz,
Ruhe,
Schneider

2017 What works better? a study of clas-
sifying requirements

Conf. RE IEEE 10.1109/RE.2017.36

S24 Zou,Xu,
Yang, Zhang,
Yang

2017 Towards comprehending the non-
functional requirements through
Developers’ eyes: An exploration
of Stack Overflow using topic
analysis

Journ. Information and
Software Technology

Science-
Direct

https://doi.org/10.

1016/j.infsof.2016.

12.003

S25 Navarro-
Almanza,
Juarez-Ramirez,
Licea

2017 Towards supporting software engi-
neering using deep learning: A case
of software requirements classifica-
tion

Conf. International Conference
in Software Engineering
Research and Innovation

IEEE 10.1109/CONISOFT.

2017.00021

S26 Dekhtyar and
Fong

2017 Re data challenge: Require-
ments identification with word2vec
and tensorflow

Conf. RE IEEE 10.1109/RE.2017.26

S27 Munaiah,
Meneely,
Murukannaiah

2017 A Domain-Independent Model for
Identifying Security Requirements

Conf. RE 20 IEEE 10.1109/RE.2017.79

S28 Tóth, Vidács 2018 Study of Various Classifiers for
Identification and Classification of
Non-functional Requirements

Conf. International
Conference on
Computational Science
and Its Applications

Springer https:

//doi.org/10.1007/

978-3-319-95174-4_

39

10.1109/RE.2017.36
https://doi.org/10.1016/j.infsof.2016.12.003
https://doi.org/10.1016/j.infsof.2016.12.003
https://doi.org/10.1016/j.infsof.2016.12.003
10.1109/CONISOFT.2017.00021
10.1109/CONISOFT.2017.00021
10.1109/RE.2017.26
10.1109/RE.2017.79
https://doi.org/10.1007/978-3-319-95174-4_39
https://doi.org/10.1007/978-3-319-95174-4_39
https://doi.org/10.1007/978-3-319-95174-4_39
https://doi.org/10.1007/978-3-319-95174-4_39

306
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
Study
ID

Authors Name Year Paper Title Paper
type

Publisher Venue Publisher
Name

DOI

S29 Marinho,
Arruda,
Wanderley, Lins

2018 A Systematic Approach of Dataset
Definition for a Supervised Ma-
chine Learning Using NFR Frame-
work

Conf. International
Conference on the
Quality of Information
and Communications
Technology

IEEE 10.1109/QUATIC.

2018.00024

S30 Hakim and
Rochimah

2018 Oversampling Imbalance Data:
Case Study on Functional and Non
Functional Requirement

Conf. Electrical Power,
Electronics,
Communications,
Controls and
Informatics Seminar

IEEE 10.1109/EECCIS.

2018.8692986

S31 Amasaki 2018 The Effects of Vectorization Meth-
ods on Non-Functional Require-
ments Classification

Conf. Euromicro Conference
on Software
Engineering and
Advanced Applications

IEEE 10.1109/SEAA.2018.

00036

S32 Alhindawi 2018 Information Retrieval - Based So-
lution for Software Requirements
Classification and Mapping

Conf. International Conference
on Mathematics and
Computers in Sciences
and Industry

IEEE 10.1109/MCSI.2018.

00042

S33 Wang, Zhang,
Liang, Daneva,
Sinderen

2018 Can App Changelogs Improve Re-
quirements Classification from App
Reviews? An Exploratory Study

Conf. International
Symposium on
Empirical Software
Engineering and
Measurement

ACM https:

//doi.org/10.1145/

3239235.3267428

10.1109/QUATIC.2018.00024
10.1109/QUATIC.2018.00024
10.1109/EECCIS.2018.8692986
10.1109/EECCIS.2018.8692986
10.1109/SEAA.2018.00036
10.1109/SEAA.2018.00036
10.1109/MCSI.2018.00042
10.1109/MCSI.2018.00042
https://doi.org/10.1145/3239235.3267428
https://doi.org/10.1145/3239235.3267428
https://doi.org/10.1145/3239235.3267428

A
.2.

T
H

E
51

SE
L

E
C

T
E

D
ST

U
D

IE
S

307

Study
ID

Authors Name Year Paper Title Paper
type

Publisher Venue Publisher
Name

DOI

S34 Dalpiaz,
Dell’Anna,
Aydemir

2019 Requirements Classification with
Interpretable Machine Learning
and Dependency Parsing

Conf. RE IEEE 10.1109/RE.2019.

00025

S35 Abad, Gervasi,
Zowghi, Far

2019 Supporting Analysts by Dynamic
Extraction and Classification of
Requirements-Related Knowledge

Conf. International Conference
on Software Engineering

IEEE 10.1109/ICSE.2019.

00057

S36 Raharja and
Siahaan

2019 Classification of Non-Functional
Requirements Using Fuzzy Similar-
ity KNN Based on ISO / IEC 25010

Conf. International Conference
on Information &
Communication
Technology and System

IEEE 10.1109/ICTS.2019.

8850944

S37 Younas,
Jawawi,Ghani,
Shah

2019 Extraction of non-functional re-
quirement using semantic similarity
distance

Journ. Neural Computing and
Applications

Springer https:

//doi.org/10.1007/

s00521-019-04226-5

S38 Baker, Deng,
Chakraborty,
Dehlinger

2019 Automatic multi-class non-
functional software requirements
classification using neural networks

Conf. Computer Software and
Applications Conference

IEEE 10.1109/COMPSAC.

2019.10275

S39 Haque,
Rahman, Siddik

2019 Non-Functional Requirements
Classification with Feature Extrac-
tion and Machine Learning: An
Empirical Study

Conf. International Conference
on Advances in Science,
Engineering and
Robotics Technology

IEEE 10.1109/ICASERT.

2019.8934499

S40 Rahman,
Haque, Tawhid,
Siddik

2019 Classifying non-functional require-
ments using RNN variants for qual-
ity software development

Conf.-
WS

Machine Learning
Techniques for Software
Quality Evaluation

ACM https:

//doi.org/10.1145/

3340482.3342745

10.1109/RE.2019.00025
10.1109/RE.2019.00025
10.1109/ICSE.2019.00057
10.1109/ICSE.2019.00057
10.1109/ICTS.2019.8850944
10.1109/ICTS.2019.8850944
https://doi.org/10.1007/s00521-019-04226-5
https://doi.org/10.1007/s00521-019-04226-5
https://doi.org/10.1007/s00521-019-04226-5
10.1109/COMPSAC.2019.10275
10.1109/COMPSAC.2019.10275
10.1109/ICASERT.2019.8934499
10.1109/ICASERT.2019.8934499
https://doi.org/10.1145/3340482.3342745
https://doi.org/10.1145/3340482.3342745
https://doi.org/10.1145/3340482.3342745

308
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
Study
ID

Authors Name Year Paper Title Paper
type

Publisher Venue Publisher
Name

DOI

S41 Taj, Arain,
Memon, Zubedi

2019 To apply Data Mining for Classifi-
cation of Crowd sourced Software
Requirements

Conf. International Conference
on Software and
Information Engineering

ACM https:

//doi.org/10.1145/

3328833.3328837

S42 Gilson, Galster,
Georis

2019 Extracting Quality Attributes from
User Stories for Early Architecture
Decision Making

Conf. International
Conference on Software
Architecture Companion

IEEE 10.1109/ICSA-C.

2019.00031

S43 Bhowmik and
Do

2019 Refinement and resolution of just-
in-time requirements in open source
software and a closer look into non-
functional requirements

Jour. Journal of Industrial
Information Integration

Science-
Direct

https:

//doi.org/10.1016/

j.jii.2018.03.001

S44 Jha and
Mahmoud

2019 Mining non-functional require-
ments from app store reviews

Journ. Empirical Software
Engineering volume

Springer https:

//doi.org/10.1007/

s10664-019-09716-7

S45 Wang,
Mahakala,
Gupta, Hussein,
Wang

2019 A linear classifier based approach
for identifying security require-
ments in open source software de-
velopment

Jour. Journal of Industrial
Information Integration

Science-
Direct

https:

//doi.org/10.1016/

j.jii.2018.11.001

S46 Palacio,
McCrystal,
Moran

2019 Learning to Identify Security-
Related Issues Using Convolutional
Neural Networks

Conf. IEEE International
Conference on Software
Maintenance and
Evolution

IEEE 10.1109/ICSME.2019.

00024

S47 Hey, Keim,
Koziolek, Tichy

2020 NoRBERT: Transfer learning for
requirements classification

Conf. RE IEEE 10.1109/RE48521.

2020.00028

https://doi.org/10.1145/3328833.3328837
https://doi.org/10.1145/3328833.3328837
https://doi.org/10.1145/3328833.3328837
10.1109/ICSA-C.2019.00031
10.1109/ICSA-C.2019.00031
https://doi.org/10.1016/j.jii.2018.03.001
https://doi.org/10.1016/j.jii.2018.03.001
https://doi.org/10.1016/j.jii.2018.03.001
https://doi.org/10.1007/s10664-019-09716-7
https://doi.org/10.1007/s10664-019-09716-7
https://doi.org/10.1007/s10664-019-09716-7
https://doi.org/10.1016/j.jii.2018.11.001
https://doi.org/10.1016/j.jii.2018.11.001
https://doi.org/10.1016/j.jii.2018.11.001
10.1109/ICSME.2019.00024
10.1109/ICSME.2019.00024
 10.1109/RE48521.2020.00028
 10.1109/RE48521.2020.00028

A
.2.

T
H

E
51

SE
L

E
C

T
E

D
ST

U
D

IE
S

309

Study
ID

Authors Name Year Paper Title Paper
type

Publisher Venue Publisher
Name

DOI

S48 Li and Chen 2020 An ontology-based learning ap-
proach for automatically classify-
ing security requirements

Journ. Journal of Systems and
Software

Science-
Direct

https:

//doi.org/10.1016/

j.jss.2020.110566

S49 Kobilica, Ayub,
Hassine

2020 Automated Identification of Secu-
rity Requirements: A Machine
Learning Approach

Conf. Evaluation and
Assessment in Software
Engineering

ACM https:

//doi.org/10.1145/

3383219.3383288

S50 Canedo and
Mendes

2020 Software Requirements Classifica-
tion Using Machine Learning Algo-
rithms

Jour. Entropy MDPI https://doi.org/10.

3390/e22091057

S51 Shreda and
Hanani

2021 Identifying Non-functional Re-
quirements from Unconstrained
Documents using Natural Lan-
guage Processing and Machine
Learning Approaches

Journ. IEEE Access IEEE 0.1109/ACCESS.2021.

3052921

Table A.1: The 51 selected studies

https://doi.org/10.1016/j.jss.2020.110566
https://doi.org/10.1016/j.jss.2020.110566
https://doi.org/10.1016/j.jss.2020.110566
https://doi.org/10.1145/3383219.3383288
https://doi.org/10.1145/3383219.3383288
https://doi.org/10.1145/3383219.3383288
https://doi.org/10.3390/e22091057
https://doi.org/10.3390/e22091057
0.1109/ACCESS.2021.3052921
0.1109/ACCESS.2021.3052921

310
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
A.3 A Comprehensive Overview of the 51 Studies

ID. Main Contribution Technique Dataset Evaluation Method
S1 Used a probability-based

method (i.e., supervised learn-
ing) in NFR classification.

Extracted "indicator terms" of
each NFR category from a
training dataset. These terms
are then used to compute the
likelihood of an input
requirement belonging to a
specific NFR type. The
likelihood score is compared
against a threshold; if it above,
the input requirement will be
classified into a specific NFR
type; otherwise, it will be
classified as FR.

Two different datasets:
academic (small and large) and
industrial dataset. The small
academic dataset contains 15
student term projects (684
requirements), Known as
PROMISE. The large dataset
has 30 student project. The
industrial dataset contains
2,064 sentences.

Used 5-fold cross-validation to
evaluate the classification
precision and recall using
different numbers of features,
data sizes, and domains
(industrial vs academic).

S2 Used linguistic analysis (POS)
to select features.

Used DT (C4.5) to classify
requirements into F and NFR.
The features were selected
based on the probability of the
occurrence of their POS groups
in NFR sentences.

PROMISE Used 10-fold cross-validation
and train-test-split (holdout) to
evaluate the method through
TP, FP, precision and recall.
Additionally, compared the
method with the
Cleland-Huang et al. method.

A
.3.

A
C

O
M

PR
E

H
E

N
SIV

E
O

V
E

RV
IE

W
O

F
T

H
E

51
ST

U
D

IE
S

311

ID. Main Contribution Technique Dataset Evaluation Method
S3 Used the extracted NFRs to

construct the Utility Concern
Spaces

Used SVM to classify NFRs,
which then used to construct
the Utility Concern Spaces (a
matrix for the correlation of
architectural aspects [AA] and
quality attributes [QA])

N/A Compared the accuracy of
matrix produced by the method
(cells) to the one generated by
an expert system architect.

S4 Used a semi-supervised classi-
fier in NFR classification.

Used a semi-supervised
classifier (MNB and
Expectation Maximization
strategy) for classifying NFRs.

PROMISE Used 10-fold cross-validation
to evaluate the classification
accuracy, recall, precision, and
F-measure. Additionally,
compared the proposed method
with supervised algorithms
(KNN, and Rocchio algorithm).

S5 Investigated different index
terms to find the most appropri-
ate one for NFR classification

Compared to the performance
of different index terms
(N-grams, individual words,
and multi-word expressions)
with information gain and
SVM.

PROMISE Used a 10-fold cross-validation
technique to measure precision
and recall of each NFR type.
Additionally, compared their
results with Cleland-Huang et
al. work.

312
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
ID. Main Contribution Technique Dataset Evaluation Method
S6 Investigated the feasibility

of automatically identifying
security-relevant requirements
using a NB classifier.

Used NB classifiers to identify
security-relevant requirements.

SecReq is an available security
requirements dataset consisting
of 510 requirements (187 are
security) from three industrial
requirements documents.

Used 10-fold cross-validation
to mesure precision, recall, and
f-mesure of the method.
Additionally, compared the
performance in different
domains and with the baseline,
which is classifying all
requirements as security
requirements.

S7 Proposed a cross-project topic
extraction method to extract and
classify topics (themes) accord-
ing to NFR type.

Extracted topics from
commit-log comments using
LDA. Additionally, used
supervised learning (NB) and
semi-unsupervised learning
(through three lists of
domain-independent keywords)
to classifying the extracted
topic according to NFR labels.

Commit comments of three
open-source database systems
(MySQL, MaxDB,
PostgreSQL)

Used 10-fold cross-validation
to measure F-measure and ROC
for semi-unsupervised and
(single-label, multi-label)
supervised classifiers.

S8 Build an annotated gold stan-
dard NFRs dataset based on a
requirements ontology (known
as Concordia dataset).

Developed a new dataset based
on a requirements ontology.
Used SVM to to build and test a
NFRs classifier.

Concordia dataset (1021
Requirements from 6 different
sources) and PROMISE

Used 6-fold cross-validation
with Precision, Recall,
F-Measure, and confusion
matrices. Additionally,
compared their classifier
(SVM) with previous work
(Cleland-Huang et al.).

A
.3.

A
C

O
M

PR
E

H
E

N
SIV

E
O

V
E

RV
IE

W
O

F
T

H
E

51
ST

U
D

IE
S

313

ID. Main Contribution Technique Dataset Evaluation Method
S9 Modified the distance metric

(levenshtein distance) of KNN
in NFRs classification.

Modified KNN to extract NFRs
from different NL documents
(i.e., data use agreements,
install manuals, regulations,
request for proposals,
requirements specifications,
and user manuals).

11 documents related to
electronic health records and
PROMISE for providing
comparisons to prior research.

Used 10-fold cross-validation
for measuring the P, R, and
F1-score. Additionally,
compared different ML
algorithms’ performance to find
the best (SVM, NB, modified
KNN). Compared the
performance of different
pre-processing techniques
(original, lema, stop word
removal, and Casamayor et al.’s
technique) with different ML
algorithms (NB and SVM).

S10 Extracted and classified require-
ments from large industrial doc-
uments

Extracted and classified
requirements form large
industrial documents (3,000
pages) using SVM and NB.
Used "topic generalization" and
"recall+" for post-processing
data to correctly assign
requirement to the topic.

Two German automotive
specifications of
Mercedes-Benz (one contains
1087 and the other has 2385
requirements).

Used 10-fold cross-validation
and computed the precision and
recall. Additionally, compared
the performance of the whole
proposed method against
applying each pre-processing
and post-processing technique
separately using different ML
algorithms (SVM and NB).

314
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
ID. Main Contribution Technique Dataset Evaluation Method
S11 Extracted security-relevant sen-

tences and classify them ac-
cording to security objectives.
Translated the extracted sen-
tences into functional security
requirements using requirement
templates.

Used KNN (Levenshtein
distance) to detect and classify
security requirements
according to security objectives
(such as confidentiality,
integrity, availability).
Additionally, the extracted
requirements are rewritten
using requirements templates.

10,963 sentences extracted
from six natural language
artefacts from the electronic
healthcare domain.

Assessed the effectiveness of
the classifier using precision,
recall, F1-score with 10-fold
cross-validation. Additionally,
compared the performance of
multiple ML algorithms (SVM,
KNN, MNB, and combined
method—Which applies the
three algorithms with a
majority voting technique).

S12 Investigated the involvement of
the user in classifying NFRs to
overcome the lack of sufficient
training data.

Built a requirements classifier
with three modus: manual,
semi-automatic, and
fully-automatic modus. These
models are categorized based
on user involvement in
classification decisions. SVM
was used for the automatic and
semi-automatic modus.

2,000 requirements from
Mercedes-Benz specification

Used recall, precision, and
F1-score to compare all modes’
performance against ground
truth (i.e., manual expert
classification). Additionally,
measured the trust in automated
classification through
questioners, while the effort
and reliability of
semi-automatic classification
are measured based on user
choices and questionnaires.

A
.3.

A
C

O
M

PR
E

H
E

N
SIV

E
O

V
E

RV
IE

W
O

F
T

H
E

51
ST

U
D

IE
S

315

ID. Main Contribution Technique Dataset Evaluation Method
S13 Developed a rule-based method

that automatically extracts and
classifies goal-use case models
from NL documents.

Developed rule-based method
to extract use-case goals from
NL requirement documents and
ML algorithms to classify the
goals as (business, functional or
non-functional goals).

PROMISE Used precision and recall with
10-fold cross-validation to
assess the classifier
performance and compare it
with other works (e.g.
Casamayor et al. work and
original version of Mallet).

S14 Captured and classified NFRs
from multiple sources (images
and informal documents) during
the early stages of software de-
velopment.

Used KNN to classify
requirments captured from
multiple sources (images and
informal documents).

N/A N/A

S15 Used unsupervised learning in
classifying NFR requirements.
Additionally, used semantic
similarity between words to
link source code with the
extracted NFRs.

Used unsupervised learning
(cluster techniques and
semantic similarity method) in
classifying NFR requirements.

568 requirements extracted
from three different
requirements documents in
different application domains
(Smartrip, Safe Drink,
BlueWallet).

Used precision and recall to
measure the performance of the
classifier in each system’s
specifications.

S16 Classified security requirements
into four further classes.

Used DT and information gain
to classify security
requirements into their
respective security types.

58 security requirements from
PROMISE

Used Sensitivity and ROC with
10-fold cross-validation to
assess the classifier
performance.

316
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
ID. Main Contribution Technique Dataset Evaluation Method
S17 Used machine learning to clas-

sify security requirements into
four security features. Addi-
tionally, checked the complete-
ness and consistency of the clas-
sified requirements.

Classified security
requirements according to
security features (e.g.,
authentication, encryption,
etc.). Additionally, generated a
concept graph for each feature
to check various properties of
requirements (e.g., consistency,
completeness, etc.).

PROMISE N/A

S18 Used thematic roles and fit cri-
teria to build a rule-based classi-
fier and prioritized the extracted
requirement.

Extracted thematic roles and fit
criteria from requirements to
classify them into NFR
sub-classes with a rule-based
classifier. Additionally,
prioritized the extracted
requirement based on their
occurrence within a document.

PROMISE and Concordia Used precision, recall and
F1-score to assess the classifier
which is trained and test using
PROMISE dataset and verified
using Concordia dataset.

A
.3.

A
C

O
M

PR
E

H
E

N
SIV

E
O

V
E

RV
IE

W
O

F
T

H
E

51
ST

U
D

IE
S

317

ID. Main Contribution Technique Dataset Evaluation Method
S19 Compared a new feature ex-

tension technique using word-
embedding and BOW with other
exciting techniques.

Augmented users review with
most related words and used
bagging to classify the reviews
based on NFR categories

4000 user review sentences
collected form tow Apps
(iBooks and WhatsApp)

Used Recall, Precision,
F1-score to assess the
performance of the classifier.
Compared the classifier
performance with different
features representation
techniques (BOW, TF-IDF,
Chi-Squared) and ML
algorithms (NB, DT, and
Bagging).

S20 Used different semi-supervised
methods to classify NFRS

Applied semi-supervised
learning algorithms
(Self-Training, RASCO,
Rel-RASCO) to classify user
reviews as functional or
non-functional.

300 reviews collected from 40
apps in the app store

Used accuracy metric
(inductive and transductive
accuracy) to evaluate the
performances of the three
semi-supervised learning
algorithms which are separately
executed with four ML
algorithms (NB, DT, SVM, and
KNN) in different ratios of
labelled data.

318
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
ID. Main Contribution Technique Dataset Evaluation Method
S21 Classified user request accord-

ing to requirements categories.
Applied semi-supervised
learning (using active learning)
to classify user requests into
different NFR categories. Two
lists of keywords
(project-specific and
non-project-specific keywords)
are used by the classifier.

3000 user requests from three
projects in sourceforge.net
(KeePass, Mumble,
WinMerge).

Used P, R, F1-score and
accuracy with 5-fold
cross-validation to assess the
classifier performance in each
project separately. The
assessment includes comparing
different representation
techniques (word unigram and
TF-IDF), lists of keywords
(non-project-specific,
project-specific, term frequency
and unigrams), and ML
algorithms (KNN, NB, and
SVM).

S22 Extracted different types of fea-
tures. Used dataset derived from
user comments\reviews to han-
dle the class imbalance problem
(over-sample minority class).

Used SVM with different types
of features in identifying and
classifying NFRs. Additionally,
applied various re-sampling
strategies using a hybrid dataset
(requirements statements and
user reviews) to handle the
imbalanced class problem in
NFRs classification.

PROMISE and user reviews
(Amazon software reviews)

Applied 10-fold
cross-validation to assess the
performance of the classifier
using P, R, F1-score.
Compared the performance of
different classifiers built using
different proportions of
features, learning tasks (binary
and multi-class classifiers), and
re-sampling techniques to
handle the imbalance problem.

A
.3.

A
C

O
M

PR
E

H
E

N
SIV

E
O

V
E

RV
IE

W
O

F
T

H
E

51
ST

U
D

IE
S

319

ID. Main Contribution Technique Dataset Evaluation Method
S23 Proposed a pre-processing

technique that standardizes
and normalizes requirements
before applying classification
algorithms. Further, compared
machine learning methods in
automatically classifying NFRs
(e.g., clustering, NB, topic
model)

Used DT with a proposed
pre-processing technique
(rule-based method) for
standardizing and normalizing
the requirements. Further,
investigated the performance of
several ML methods in
classifying NFRs.

PROMISE Performed a 10-fold-cross
validation to measure FR/NFR
classifier’s performance in
terms of P, R, F1-score, Kappa,
number of correctly and not
correctly classified
requirements in relation to
baseline (un-preprocessed
requirements). Used P and R
with 5-fold-cross validation to
compare various ML
algorithms (LDA, BTM,
hierarchical, K-means, Hybrid,
MNB) in classing NFRs into
further 10 categories.

320
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
ID. Main Contribution Technique Dataset Evaluation Method
S24 Analyzed developers’ discus-

sions (via StackOverflow) based
on NFR types.

Used LDA to extract topics that
are then annotated according to
NFRs types using pre-defined
word lists. Additionally,
analyzed the extracted topics to
explore hot, unresolved, or
trendy NFR categories.

21.7m posts and 32.5 m
comments from Stack Overflow

Measured recall rate and
precision rate aginst a manual
validation for each period
(month). Additionally, the
classifier results were used to
analyze NFRs types (e.g., hot
NFRs by assessing topic
frequency, unresolved NFRs by
analyzing unanswered
questions, and difficult NFR by
measuring successfully
answered questions).

S25 Used deep learning in re-
quirement classification and
word2vec for feature represen-
tation.

Used word2vec to represent
textual features and CNN to
classify requirement.

PROMISE Performed 10 cross-validations
and averaged precision, recall,
f-measure, and confusion
matrix.

A
.3.

A
C

O
M

PR
E

H
E

N
SIV

E
O

V
E

RV
IE

W
O

F
T

H
E

51
ST

U
D

IE
S

321

ID. Main Contribution Technique Dataset Evaluation Method
S26 Used CNN in binary re-

quirements classification and
word2vec for requirements
representation

Used CNN classifier with
Word2Vec representation in
binary requirements
classification.

SecRe + PROMISE Applied 10-fold
cross-validation with accuracy,
precision, recall and F2-score
to evaluate the CNN classifier
in each dataset separately.
Additionally, compared the
classifier performance with
baseline (NB), which separately
applied two different features
selection techniques (word
count and TF-IDF).

S27 Used domain-independent data
sets to identify security require-
ments using an unsupervised
classifier (One-Class SVM).

Used One-Class SVM model,
which trained on
domain-independent data sets
to identify security
requirements.

Two available, unlabeled
datasets (i.e., National
Vulnerability Database and
Common Weakness
Enumeration database) for
training and SecRet for testing.

Evaluated using 10-fold
cross-validation and reported a
weighted average of precision,
recall and F-score for each
specification in SecRec (i.e.,
CPN, ePurse and GPS).
Additionally, compared the
classifier with the NB classifier
in their previous work (S6).

322
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
ID. Main Contribution Technique Dataset Evaluation Method
S28 Evaluated the performance of

sklearn classifiers in NFRs clas-
sification (execution time and
classification performance).

Compared the performance of
various classification methods
(e.g. NB, DT, KNN, and SVM)
in sklearn library.

PROMISE Performed 10 -fold
cross-validation with variance,
precision, recall, and f1-score
to measure the sklearn
classifiers’ performance in
terms of classification results
and execution time.

S29 Used keywords extracted from
SIG (Softgoal Interdependency
Graph) catalogues in NFR clas-
sification.

Applied Stochastic Gradient
Descent (SGD) algorithm to
classify requirement into three
categories (security,
performance and usability).
Additionally, used a set of
keywords obtained from SIG
catalogues (through a mapping
study) and from thesaurus
dictionary using Visuwords 2.

Part of Promise (187 sentences) Assessed precision, recall,
f1-score for both binary and
multi-class classification.
Compared the performance of
the classifiers with and without
the keywords extracted from
the thesaurus dictionary.

2 https://visuwords.com/ last accessed March 2021

 https://visuwords.com/

A
.3.

A
C

O
M

PR
E

H
E

N
SIV

E
O

V
E

RV
IE

W
O

F
T

H
E

51
ST

U
D

IE
S

323

ID. Main Contribution Technique Dataset Evaluation Method
S30 Automated the process of the

labeling requirements and use
SMOTE for the imbalanced-
class problem.

Used supervised learning
(SVM, KNN and Random
Forests) to build multi-label
NFR classifiers. The labels
were automatically generated
using WordNet and cosine
similarity. SMOTE was applied
to handle the imbalanced class
problem.

1366 requirement from two
different datasets (Waterloo and
Geolocation).

Measured the accuracy for each
ML algorithm with and without
using SMOTE.

S31 Investigated the performance
of using different vectoriza-
tion (representation) methods in
NFRs classification

Used supervised learning
(Logistic Regression, NB,
SVM, and Random Forests)
with different vectorization
methods (TF, TF-IDF,
word2vec, Doc2vec, SCDV) in
binary NFRs classification.

PROMISE Performed out-of-sample
bootstrap validation method to
measure precision, recall and
f1-score. Compared the
performance of each
vectorization technique with
each ML algorithm.

S32 Used LDA in requirement
classification and mapping—
linking NFR and FR with
system requirements.

Used LDA to extract topics
from requirements. Used the
extracted topics for requirement
classification.

200 requirements from WARC
(Web ARChive) system

Used accuracy to assess the
classification results.

324
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
ID. Main Contribution Technique Dataset Evaluation Method
S33 Used app change-logs to clas-

sify app reviews according to
NFRs classes.

Used app changelogs for
training NB in classifying user
reviews into NFRs classes.

6000 sentences in user reviews
collected from iBooks (in
Apple App Store), WhatsApp
and TripAdvisor (in Google
Play). Additionally, 2005 app
change-logs collected from 30
apps in the App Store

Performed holdout method
(80%-20%) to measure
precision, recall and f1-score.
Additionally, compared the
performance of the classifiers
with KNN, Bagging and DT.

S34 Used interpretable ML tech-
niques to select features in bi-
nary requirement classification.

Used SVM with linguistic
features to classify
requirements into functional
and quality aspects. The
linguistic features were
extracted using statistical
co-occurrence analyze and
interpretable ML techniques.

1502 requirements collected
from 8 datasets: PROMISE,
ESA Euclid dataset, Helpdesk
system, a user management
application, Dronology dataset
for Unmanned Aerial Systems,
ReqView for requirements
management tool, Leeds
University’s Library online
management system, Web
Architectures for Services
Platforms (WASP).

Performed hold-out method
with precision, recall, F1 score,
accuracy, and ROC to validate
and test the classifier
performance. Additionally,
compared the classifier
performance with the one
proposed by Kurtanović and
Maalej. In this compression,
more evaluation methods were
used, including p-fold, k-fold,
train fitness.

S35 Used external knowledge to ex-
tract n-gram, which is used with
SVM to classify requirements.

Used statistical language
models and external knowledge
to extract relevant terms in
requirements documents.
Additionally, applied SVM
with ration kernel to classify
requirements.

PROMISE and two more
datasets for different
application domains (Ticketing
system and environmental and
road conditions monitor
system).

Assessed the performance of
the classifier using standard
metrics precision, recall, and F
score. Compared the
performance of different length
of n-gram and cost in
non-contiguous n-gram kernels.

A
.3.

A
C

O
M

PR
E

H
E

N
SIV

E
O

V
E

RV
IE

W
O

F
T

H
E

51
ST

U
D

IE
S

325

ID. Main Contribution Technique Dataset Evaluation Method
S36 Used Fuzzy Similarity KNN

(FSKNN) in NFRs classifica-
tion

Used fuzzy similarity measure
with KNN to classify NFRs
according to ISO / IEC 25010
categories.

1342 requirements from
different datasets (including
PROMISE)

Perform holdout method to
measure accuracy, precision,
and recall in different similarity
threshold values.

S37 Used word2vec in NFR classifi-
cation (unsupervised learning).

Used word2vec to measure the
similarity between requirement
statements and NFR classes.
Each NFR class was
represented by a set of indicator
terms taken from the literature.

931 requirements collected
from PROMISE and available
CCHIT ambulatory dataset.

Measured TF, FP, FN, P, R,
F-score for each dataset to
assess the classifier
performance. Compared the
classifier’s performance with
and without apply
pre-processing techniques.

S38 Used two kinds of neural net-
work models ANN and CNN to
classify NFRs.

Used two kinds of neural
network models (ANN and
CNN) to classify NFRs into
four classes (operability,
performance, security, and
usability)

PROMISE Performed 10-cross validation
to measure precision, recall,
F1-score for each class.
Reported the results achieved
by applying each classifier
(CNN and ANN) separately.

S39 Empirical comparison among
feature extraction and classifica-
tion techniques.

An empirical comparison of
four feature extraction methods
(BOW, character-level,
word-level and n-gram level of
TF-IDF technique) with seven
machine learning algorithms
(NB, GNB, BNB, KNN, SVM,
SGD SVM, and DT) in
classifying NFRs.

PROMISE Used precision, recall, and
F1-score to perform the
empirical comparison of
different representation
technique and classification
algorithms.

326
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
ID. Main Contribution Technique Dataset Evaluation Method
S40 Used RNN model to classify

NFRs
Used RNN model to classify
NFRs with word2vec algorithm
for features representation.

PROMISE Performed 10-fold
cross-validation to measure
precision, recall and F-score.
Additionally, compared the
performance of RNN (LSTM)
with CNN, RNN(GRU) for
classifying NFRS into 10
classes.

S41 Collected data using crowd-
sourcing approach3 and used it
in NFRs classification.

Applied DT to classify
requirements into FR and NFR
using a dataset collected using
a crowdsourcing approach.

Requirements collected from
118 people using a
crowdsourcing approach.

Performed the holdout method
(60%-40%) to measure
precision, recall and accuracy.
Compared the performance of
DT with NB algorithms.

S42 Extracted and classified NFRs
from user stories in agile devel-
opment projects.

Used CNN to extract and
classify NFRs from user stories
in agile development projects.

1,675 stories collected from an
available user stories dataset 4,
annotated into 7 NFRs classes.

Performed 10-fold
cross-validation and holdout
(70%-30%) methods separately
to measure precision, recall,
and f-score for each class.
Additionally, reported the
results obtained for different
decision thresholds of CNN
(0.5 and 0.6).

3Using a large number of people in solving a distributed problem. The people (participants) are invited through an open call.
4 https://data.mendeley.com/datasets/7zbk8zsd8y/1 last accessed 23 Feb 2021

https://data.mendeley.com/datasets/7zbk8zsd8y/1

A
.3.

A
C

O
M

PR
E

H
E

N
SIV

E
O

V
E

RV
IE

W
O

F
T

H
E

51
ST

U
D

IE
S

327

ID. Main Contribution Technique Dataset Evaluation Method
S43 Proposed a refinement and res-

olution process for Just in Time
(JIN) requirements5.

Used LDA with a pre-defined
wordlist to extra NFRs from
JIT requirements. The extracted
requirements are used in the
investigation of the suitability
of a proposed refinement and
resolution process for NFRs.

7698 requirements from
open-source software projects
(Firefox, Lucene, and Mylyn).)

Manually: one of the authors
filtered the correct predictions.

S44 Conducted qualitative analysis
to determine the presence of
NFR categories in user reviews
over different application do-
mains. Investigated the per-
formance of ML in classify-
ing user reviews into different
NFRs. Proposed dictionary-
based method to classify user
reviews into different NFRs

Applied Binary Relevance(BR)
with different ML algorithms
(i.e., SVM and NB) to classify
user reviews into NFRs
categories (multi-label
classification). Used domain
names (i.e., app category) and
sentiment analysis score as
classification features.

6,000 reviews sampled from 24
different iOS mobile apps.

Performed holdout method
(70%-30%) to measure Subset
Accuracy, Hamming Score,
Hamming Loss, Recall,
Precision, and F2-Measure.
Additionally, compared the
performance of the classifiers
with different classification
features and pre-processing
techniques.

5The requirements that focus on elaboration when the implementation begins. These requirements are refined frequently by developers through, for example,
writing comments.

328
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
ID. Main Contribution Technique Dataset Evaluation Method
S45 Applied a linear classifier to

detect security requirements in
open source software projects
(JIT RE). Used a new feature
extraction method based on lo-
gistic regression models.

Used linear classifier to detects
security requirements. The
features were calculated using
five regression models: one
applied Cleland-Huang method
(S1), and each model of the
remaining four models
computes the probability of
security requirement based on
the proposed metrics (i.e.,
features): complicity (e.g.,
length and user involvement)
and external resources(
commits and URLs).

4249 requirements collected
from 3 open-source software
projects: web services engine
(Axis2), business rule
management system (Drools),
and a geographic system
(GeoServer).

Performed 10-fold
cross-validation to measure P,
R, F2-score of the proposed
classifier. Compared the
performance of the proposed
classifier as a whole in different
threshold values and against the
performance of each
sub-regression model.

S46 Use CNN for detecting security
issues in tracking systems.

Use CNN to classify
requirements (issues) into
security and non-security.

96,614 requirements selected
from different sources,
including popular projects on
GitLab or GitHub and Cisco
Systems.

Performed holdout method with
test set loss, accuracy, and AUC
to assess the classifier
performance. Compared the
classifier’s performance with
different datasets (open source
issues and industrial user
stories) and different CNN
architecture configuration.

A
.3.

A
C

O
M

PR
E

H
E

N
SIV

E
O

V
E

RV
IE

W
O

F
T

H
E

51
ST

U
D

IE
S

329

ID. Main Contribution Technique Dataset Evaluation Method
S47 Used BERT in NFRs classifica-

tion.
Used BERT in different NFRs
classification tasks.

PROMISE and a relabeled
version of PROMISE provided
by Dalpiaz et al. (S34)

Performed Holdout
(75%-25%), 10-fold
cross-validation, p-fold and a
leave-one-project-out
cross-validation (loPo) methods
in measuring precision, recall
and F-score for each class.
Evaluated the classifier with
different datasets and
classification tasks (binary and
multi-class classification).

S48 Used ontological information in
defining linguistic features of
security requirements (linguis-
tic rules and keywords).

Used DT to identify security
requirements. Extracted
linguistic features by defining a
set of security requirements
linguistic rules and keywords.

PROMISE, and SeqReq Performed 10 cross-validations
with precision, recall, and
f-measure to assess the
classifier performance.
Compared the classifier
performance against two
different ML algorithms (NB
and Logistic Regression) and
with the classifier proposed by
Knauss et al. (S6). Applied
haulout to assess the classifier’s
generalizability by applying it
in another domain.

330
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
ID. Main Contribution Technique Dataset Evaluation Method
S49 Investigated the use of RNN in

security requirement classifica-
tion. Empirically compared dif-
ferent ML algorithms in secu-
rity requirement classification.

Conducted empirical
comparison of the performance
of eight different ML classifiers
with two text representation
techniques (word encoding and
word embedding) in classifying
security requirements.

SecRe Performed 10 cross-validations
with accuracy and execution
time to assess the performance
of the classifiers. Showed the
ROC curve of the classifiers
that have the highest results
(e.g., ensemble-based boosted
tree).

S50 Empirically compared feature
selection techniques with ML
algorithms in NFRs classifica-
tion with a recently released
dataset.

Compared different feature
selection and representation
techniques (BoW, TF-IDF
and CHI with TF-IDF) with
different ML algorithms (LR,
SVM, NB, KNN) in NFRs
classification.

PROMISE_exp Performed 10 cross-validations
with precision, recall, and
f1-score to assess the
performance of the different
classifiers.

A
.3.

A
C

O
M

PR
E

H
E

N
SIV

E
O

V
E

RV
IE

W
O

F
T

H
E

51
ST

U
D

IE
S

331

ID. Main Contribution Technique Dataset Evaluation Method
S51 Proposed a Fusion model that

represents an input requirement
by combining its classification
scores from four different CNN
classifiers, each of which has a
different representation method.
The new representation is used
in NFRs classification with a lo-
gistic regression model.

Built four CNN classifiers, each
of which uses different
representation techniques (TF,
TF-IDF, word2vec, BERT) to
represent an input requirement.
Used logistic regression with
the new representation to
classify the requirement based
on NFRs class.

1846 requirement sentences
from PURE dataset 6

Used holdout method
(70%-30%) with accuracy,
precision, recall, and f-score to
assess the classifier
performance. Compared to the
performance of four classifiers
(CNN, NB, SVM, LR) with
four representation techniques
(TF, TF-IDF, w2v, BERT)
separately to use the best
combination in the proposed
method.

Table A.2: A comprehensive overview of the included 51 studies in the systematic review

6https://zenodo.org/record/1414117#.YDPaFJP7RE4 last accessed 22 Feb 2012

https://zenodo.org/record/1414117#.YDPaFJP7RE4

332
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
A.4 Detailed Information about the Studies

No Size No.classes No
studies

Studies IDs Classes

1 58 4 1 S16 Authentication-authorization, Access control,
cryptography-encryption and data integrity

2 171 3 1 S5 Usability, Security,and Look And Feel

3 183 3 1 S35 Usability, Operational, Performance

4 187 3 1 S29 Security, Performance and Usability

5 200 2 1 S32 FN vs NFRs

6 246 2 1 S31 Operational vs non-Operational, Performance vs
non-Performance, Security vs non-Security, Usability vs
non-Usability

7 300 2 1 S20 FR, NFRs

8 306 2 1 S37 Fn vs NFRs

9 370 11 1 S13 Usability, Security, Operational, Performance, Look and
Feel, Availability, Scalability, Maintainability, Legal,
Fault Tolerance, and Portability

10 369 10 4 S23,S28, S40, S47 Usability, Security, Operational, Performance, Look and
Feel, Availability, Scalability, Maintainability, Legal,
Fault Tolerance

11 510 2 3 S6, S26, S27, S510, S49 Security vs Non-security

13 568 12 1 S15 Security, Performance, Accessibility, Accuracy,
Portability, Safety, Legal, Privacy, Reliability,
Availability, Interoperability, other

A
.4.

D
E

TA
IL

E
D

IN
FO

R
M

A
T

IO
N

A
B

O
U

T
T

H
E

ST
U

D
IE

S
333

No Size No.classes No
studies

Studies IDs Classes

13 625 10 1 S4 Availability, Legal, Look and feel, Maintainability,
Operational ,Performance, Scalability, Security,
Usability, Features

14 625 2 4 S4, S22, S23, S26, S31, S47, S48 FN vs NF or Sec vs non-sec (S48)

15 625 12 2 S25, S37 Functional, Availability, Legal, Look and feel,
Maintainability, Operational, Performance, Scalability,
Security, Usability, Fault tolerance, and Portability

16 684 10 1 S1 Availability, Legal, Look and feel, Maintainability,
Operational,Performance, Scalability, Security,
Usability, Functional

17 765 2 1 S2 FN vs NFR

18 914 5 1 S38 maintainability, operability, performance, security, and
usability.

19 969 2 1 S50 FN vs NFR

20 969 11 1 S50 Availability, Legal, Look & Feel, Maintainability,
Operability, Performance, Scalability, Security,
Usability, Fault Tolerance, Portability

21 969 12 1 S50 Functional, Availability, Legal, Look & Feel,
Maintainability, Operability, Performance, Scalability,
Security, Usability, Fault Tolerance, Portability

22 1,342 7 1 S36 Reliability, performance efficiency, operability, security,
compatibility, maintainability, transferability

334
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
No Size No.classes No

studies
Studies IDs Classes

23 1,366 12 1 S30 Time Behavior, Resource Utilization, Capacity, User
Error Protection, Aesthetic User Interface, Availability,
Operability, Fault Tolerance, Recoverability, Integrity,
Reusability, and Adaptability

24 1,502 2 1 S34 FN , quality aspect

25 1,675 7 1 S42 Performance, Compatibility, Usability, Reliability,
Security, Maintainability, Portability

26 1,846 6 1 S51 Reliability, Performance, Security, Availability,
Usability, others

27 3,000 7 1 S21 Security,Reliability, Performance, Lifecycle, Usability,
Capability, System Interface

28 3,140 7 1 S8 FR, Design Constraints, NFRs (security, efficiency,
reliability, functionality, and usability/utility)

29 3,140 8 1 S18 Suitability, Accuracy, security, perability,
understandability, attractiveness, time behavior, resource
utilization

30 4,000 6 1 S19 NFRs (reliability, usability, portability, and
performance), FR, others

31 6,000 6 1 S33 FRs, Usability, Reliability, Portability, Performance,
others

32 6000 4 1 S44 Dependability, performance, supportability, usability

33 7,698 2 1 S43 NFR vs non-NFRs

34 10,963 6 1 S11 Confidentiality,Integrity,Availability, Identification &
Authentication, Accountability, Privacy.

A
.4.

D
E

TA
IL

E
D

IN
FO

R
M

A
T

IO
N

A
B

O
U

T
T

H
E

ST
U

D
IE

S
335

No Size No.classes No
studies

Studies IDs Classes

35 11,876 15 2 S9, S14 Access control, Audit, Availability, Capacity and
Performance, Legal, Look and feel, Maintainability,
Operational, Privacy, Recoverability, reliability, Security,
Usability, other, non applicable

36 14,249 2 1 S45 Security, Non-security

37 96,614 2 1 S46 Security, Non-security

38 54.2 m 6 1 S24 Maintainability, Functionality, Portability, Efficiency,
Usability, and Reliability

Table A.3: Distribution of studies by dataset size and a number of classes

336
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
Study ID Security related Performance related Usability related
S1 Security Performance, Maintainability, Availability, Scal-

ability, Legal
Usability, Operationality, Look and Feel

S2 N/A N/A N/A

S3 Integrity Performance, Maintainability, Portability, De-
pendability, Deployability

Usability, Desgin

S4 Security Performance, Maintainability, Availability, Scal-
ability, Legal

Usability, Operationality, Look and Feel

S5 Security N/A Usability, Look and Feel

S6 Security N/A N/A

S7 N/A Maintainability, Portability, Efficiency, Reliabil-
ity

Usability, Functionality

S8 Security Efficiency, reliability Functionality, usability/utility

S9 Security, Access control, Audit, Privacy Availability, Capacity and Performance, Legal,
Maintainability, Recoverability, Reliability

Usability, look and feel, Operationality

S10 N/A N/A N/A

S11 Confidentiality, Integrity, Identification & Au-
thentication, Accountability, Privacy

Availability N/A

S12 N/A N/A N/A

S13 N/A N/A N/A

S14 Security Performance, Reliability scalability Usability

S15 Security, Safety, Privacy Performance, Accuracy, Portability, Legal, Reli-
ability, Availability, Interoperability

Accessibility

S16 Authentication-Authorization, Access control,
Cryptography- Encryption, Data integrity

N/A N/A

S17 Authentication-Authorization, Access control,
Cryptography- encryption, Data integrity

N/A N/A

S18 N/A Efficiency (Time behaviour, Resource utilization) Functionality (Suitability, Accuracy, Security),
Usability (Operability, Understandability, Attrac-
tiveness)

S19 N/A Reliability, Portability, Performance Usability

S20 N/A N/A N/A

S21 Security Reliability, Performance, Lifecycle, Capability Usability, System Interface

S22 Security Performance Usability, Operationality

A
.4.

D
E

TA
IL

E
D

IN
FO

R
M

A
T

IO
N

A
B

O
U

T
T

H
E

ST
U

D
IE

S
337

Study ID Security related Performance related Usability related
S23 Security Availability, Maintainability, Operability, Perfor-

mance, Scalability, Fault Tolerance, Legal & Li-
censing

Usability, Look & Feel.

S24 N/A Reliability, Efficiency, Maintainability, Portabil-
ity

Functionality, Usability

S25 Security Availability, Maintainability, Operability, Perfor-
mance, Scalability, Fault Tolerance, Portability,
Legal

Usability, Look & Feel

S26 Security N/A N/A

S27 Security N/A N/A

S28 Security Availability, Maintainability, Operability, Perfor-
mance, Scalability, Fault Tolerance, Legal

Usability, Look & Feel

S29 Security Performance Usability

S30 Integrity Time Behavior, Resource Utilization, Capacity,
Availability, Operability, Fault Tolerance, Recov-
erability, Reusability, Adaptabilit

, User Error Protection, Aesthetic User Interface

S31 Security Operational, Performance Usability

S32 N/A N/A N/A

S33 N/A Reliability, Portability, Performance Usability

S34 N/A N/A N/A

S35 N/A Performance Usability, Operationality

S36 Security Reliability, Performance Efficiency, , Compati-
bility, Maintainability, Transferability

Operability

S37 Security Availability, Maintainability, Performance, Scal-
ability, Fault Tolerance, and Portability, Legal

Operability, Usability, Look & Feel

S38 Security Maintainability, Performance Usability, Operability

S39 N/A N/A N/A

S40 Security Availability, Maintainability,Performance, Scala-
bility, Fault Tolerance, Legal

Usability, Operability, Look & Feel

S41 N/A N/A N/A

S42 Security Performance, Compatibility, Reliability, Main-
tainability, Portability

Usability

S43 N/A N/A N/A

338
A

PPE
N

D
IX

A
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

3
Study ID Security related Performance related Usability related
S44 N/A Dependability, Performance, Supportability Usability

S45 Security N/A N/A

S46 Security N/A N/A

S47 Security Availability, Maintainability, Performance, Scal-
ability, Fault Tolerance, Legal

Usability, Operability, Look & Feel

S48 Security N/A N/A

S49 Security N/A N/A

S50 Security Availability, Maintainability, Performance, Scal-
ability, Fault Tolerance, Portability, Legal

Operability,Usability, Look & Feel.

S51 Security Reliability, Performance, Availability Usability

Frequency 34 31 31

Table A.4: NFR categories and their identification in the selected studies

A.4. DETAILED INFORMATION ABOUT THE STUDIES 339

Score estimation
methods

No. stud-
ies

Studies ID

K-fold cross 29 S2, S4, S5, S6, S7, S8,
S9, S10, S11, S13, S16,
S19, S20, S21, S22, S23,
S25, S26, S27, S28, S34,
S38,S40, S42, S45, S47,
S48, S49, S50

Holdout 10 S33, S34, S36, S41, S42,
S34 S44, S46, S48, S51

Pflod 3 S1, S34, S47
A new testing domain 3 S6, S34, S48
Train fitness 1 S34
Out-of-sample bootstrap 1 S31

Table A.5: The distribution of studies by the score estimation methods illustrated in
Figure 3.11

Tool No. stud-
ies

Studies ID

Weka 12 S2, S7, S8, S9, S11, S16,
S19, S20, S21, S30, S33,
S48

Scikit-learn 10 S22, S26, S27, S29, S31,
S34, S39, S44, S50,S51

GATE 4 S8, S17, S18, S28
SVMlight framework 1 S3
Mallet 2 S13, S24
Gensim 3 S26, S37, S51
TensorFlow 3 S26, S38, S51
LIBSVM 1 S35

Table A.6: The distribution of the studies by ML tools used to draw Figure 3.10

Appendix B

A Supplement for Chapter 4

This Appendix is for Chapter 4. It includes tables used to draw the figures represented
in that chapter 4. Also, it shows the results of our initial exterminate of building a word
embedding model (word2vec) with 3009 requirements. These results are represented
in Table B.3, illustrating that building effective word2vec for requirements requires a
large dataset.

B.1 Detailed Information about the Studies

Tables B.1 and B.2 provide details of Figures 4.3 and 4.2 in Chapter 4, respectively.

Feature reduction
techniques

No Studies IDs

Lingustic 1 S48
Statisical 22 S1, S3, S5, S7, S9, S11, S16, S19,

S20, S25, S26, S29, S31, S33, S35,
S40, S41, S45, S46, S49, S50, S51

Both 4 S2, S22, S23, S34

Table B.1: Distribution of supervised ML-methods per feature reduction technique

B.2 Initial Experiment to Build wor2vec Model

Table B.3 shows the results for measuring similarity between two words using a word2vec
model. The model was trained on 3009 requirements collected from different require-
ment specifications and datasets. We used gensim to build the model and NLTK for
pre-processing requirements. We built two variants word2vec model skip-gram and

340

B.2. INITIAL EXPERIMENT TO BUILD WOR2VEC MODEL 341

Study ID Minority size Majority size Imbalance
level

S1 10 62 6.2
S2 270 495 1.8
S4 10 255 25.5
S5 38 67 1.8
S6 187 323 1.7
S8 9 787 87.4
S9 43 3568 83
S11 204 3787 18.6
S13 10 67 6.7
S16 12 18 1.5
S18 24 214 8.9
S19 121 2183 18
S22 54 67 1.2
S23 255 370 1.5
S25 1 255 255
S26 255 370 1.5
S28 10 67 6.7
S29 54 67 1.2
S30 225 1141 5.1
S31 255 370 1.5
S34 545 938 1.7
S35 255 370 1.5
S38 113 345 3.1
S40 10 67 6.7
S42 25 165 6.6
S35 793 13456 17
S47 255 370 1.5
S48 66 559 8.5
S49 187 323 1.7
S50 12 444 37
S51 62 1119 18

Table B.2: The size of minority and majority classes and balance level (majority’s size
divided by minority’s size) per study

342 APPENDIX B. A SUPPLEMENT FOR CHAPTER 4

Words pairs CBOW Skip-gram
"public", "logout" 0.804 0.949
"quick", "consist" 0.987 0.973
"hotmail", "email" 0.850 0.923
"server", "antivirus" 0.794 0.961
"make", " create" "word ’create’ not in vocabulary"

Table B.3: The semantic similarity score of different pairs of words using two variant
word2vec models trained on 3009 requirements

CBOW (illustrated in Section 6.1.3). Both models showed unreliable results, as the
similarity scores are always high, even when the words are not semantically related
(see table B.3).

Appendix C

A Supplement for Chapter 7

To identify common usability aspects (in Chapter 7), the snowball approach is applied
to conduct the literature review. This appendix reports on a systematic review of 33
usability models used to define or measure usability in software systems. The review
intends to find a common view of how usability is defined (i.e., how the abstract def-
inition of usability can be divided into a set of aspects). These definitions are used to
identify the common aspects of usability, which contribute to building ML classifiers.
Our review is derived from two research questions (RQ):

RQ1: How do existing models classify usability concepts in general?

RQ2: What attributes of software usability are frequently addressed among dif-
ferent usability models and standards?

The following sections are organized as follows: Section C.1 discusses related
work. Section C.2 presents the review process, and Section C.3 analyses the review
results.

C.1 Related Work

Several reviews have been conducted to identify the common aspect of usability. How-
ever, these reviews are either conducted for a specific application domain (e.g., mobile
application [Wei20]), defining the common aspects based on their name [SCM+19,
Wei18], or not clearly showing the process of model selection and commons iden-
tification [SS17]. By contrast, this review extracts the studied general definition of
usability and groups related aspects based on their definition to define the common
aspects.

343

344 APPENDIX C. A SUPPLEMENT FOR CHAPTER 7

Figure C.1: The process of usability models selection based on Wohlin’s snowballing
method [Woh14]

C.2 Review Method and Process

We have adapted a snowball approach to answering our research questions (see Figure
C.1). The snowball approach consists of three main steps: 1) identifying start set,
2) backward snowballing (looking at the reference lists), and 3) forward snowballing
(looking at the citations). Below, each step is explained in detail.

C.2.1 Identification of the Start Set

The start set is identified using Google Scholar to avoid bias towards a specific pub-
lisher [Woh14]. Our search string was defined by breaking down the research questions
according to the PICOC criteria (population, intervention, comparison, outcome, and
context), as recommended by Kitchenham & Charters [KC07]. Table C.1 shows how
the search terms were identified, and Table C.2 illustrates the details of using the search
terms in Google Scholar.

Table C.2 shows that the Google Scholar retrieves 1,580 records. We manually
identified the start set from the Google Scholar results by first reading the title. If the
title was not clear enough to include the paper, the inclusion decision was made after
reading the full text. The following inclusion and exclusion criteria were used for study

C.2. REVIEW METHOD AND PROCESS 345

Criterion Description Main keywords Alternatives
Population Software Usability Usability -
Interventions -
Comparison -
Outcomes Common Aspects Aspects Goals, Attribute,

Component, and
Criteria

Context Usability definition Usability model and
standards

taxonomy

Table C.1: PICOC criteria to define the search string for the start set

Date of search December 2020
Search Terms Usability AND (model OR standard OR taxonomy) AND (Goal

OR Aspect OR attribute OR component OR Criteria)
Search query allintitle: System OR Software OR model OR standard OR tax-

onomy OR Goal OR Aspect OR attribute OR component OR Cri-
teria "Usability"

Filter Year: 1990 - 2020
Words occur: in the Title

No. of records retrieved 1,580

Table C.2: Details of search terms in Google Scholar to identify the start set

selection:
Inclusion:

1. It provides a new usability model that defines usability at a high-level.

2. It is published in the period from 1990 to 2020

Exclusion:

1. It is not in English

2. It is a secondary study (i.e., literature review)

3. It is not peer-reviewed (e.g., thesis, presentations), unless books.

4. It is an analytical or comparative study of software usability aspects.

5. It does not show a difference from existing models (e.g., explicitly mentioned
that it uses a part of an existing one or applies an existing model)

6. It does not provide sufficient definition of the aspects.

7. It proposed for specific users (e.g., children), places (e.g., country), domains (
mobile application or websites), software component (i.e., interface).

346 APPENDIX C. A SUPPLEMENT FOR CHAPTER 7

No References Year Source
Type

Database Ref.
Count

Citation
Counts

1 Hasan and Al-
Sarayreh [HAS15]

2015 Conference
Paper

ACM 16 18

2 Nassa [Nas12] 2015 Journal
Paper

ISOpress 9

3 Gupta et al. [GAS14] 2014 Conference
Paper

IEEE 27 33

4 Dubey et al. [DGR12] 2012 Journal
Paper

ResearchGate 36 41

5 Alonso-Ríos et al.
[ARVGMRMB09]

2009 Journal
Paper

Taylor &
Francis

19 146

6 Winter et al.
[WWD07]

2007 Conference
Paper

Springer 24 86

7 Seffah et al.
[SDKP06]

2006 Journal
Paper

Springer 49 782

Table C.3: The initial start set of the relevant papers for snowballing

8. It is for a specific attribute of usability (e.g., the effectiveness or learnability)

At the end of the selection process, we identified 7 relevant papers, which were
then included in our start set (see Table C.3).

C.2.2 Backward Snowballing

We conducted a backward snowballing search on the references of each paper in the
first set. The process is similar to that used to identify the start set; starting by reviewing
the date and title, then moving to read the full text in case the title is not clear enough
to make the inclusion decision. Relevant papers will be added to the starting set. This
process is repeated until there is no new study in the starting set. In total, 642 papers
were examined by backward snowballing and 14 were selected.

C.2.3 Forward Snowballing

We conducted a forward snowballing search on the citations of each paper in the start
set, including those added by the backward snowballing search. The citations of each
paper in the start set were identified on Google Scholar. Each citation paper was re-
viewed similarly to what we did in the backward snowballing search: checking title
and date first, then the full text to make the inclusion decision. Relevant papers were
added to the starting set. This process was repeated until no new papers were identified.
In total, 45,002 papers were checked and 12 were selected.

C.2. REVIEW METHOD AND PROCESS 347

Data item Description
Bibliographic informa-
tion

Authors, title, database, publication type,and publication
year

Model Name the term used to define the aspect
Aspects & their definition Usability aspects and their definition

Table C.4: Data extraction form

Figure C.2: Distribution of the selected publication in the period from 1990 to 2020. IF
the year does not appear in Y-aix, that means there is no related publication identified
in this year.

At the end of forward snowballing, 33 relevant papers were selected as the final set
for our review.

C.2.4 Extracting and Synthesizing the Data

After selecting the related publications, we extracted data from each one using the data
extraction form (illustrated in Table C.4). As the table shows, two types of data were
extracted: the data required for answering the research questions and for displaying
the bibliographic information of the study. The extracted data were stored in an Excel
file.

Figure 2 shows the distribution of the selected studies published between 1991 and
2015. These publications were listed in 13 different databases. Figure C.3 show the
frequency of studies published in different databases. Most of these publications are
conference papers (10 publications), followed by standards (4 publications), journal
papers (9 publications), books (9 publications), and a handbook (1 publication).

348 APPENDIX C. A SUPPLEMENT FOR CHAPTER 7

Figure C.3: The frequency number of selected publications per database

C.3 Results

This section provides the answers to the review research questions.

C.3.1 Existing Classification Models

RQ1: How do existing models classify the usability concept in general?
We identified 33 unique usability models. In total, these models consist of 222

aspects. Table C.5 lists the models that define usability and usability aspects.

C
.3.

R
E

SU
LT

S
349

No Model Year Model Name Usability Aspects
1 Hasan and

Al-Sarayreh
[HAS15]

2015 Usability
attributes and
measures

Efficiency, Effectiveness, Productivity, Satisfaction, Accessibility,
Universality, Learnability, Operability, Appropriateness
recognizability, User error protection, User interface aesthetics

2 Nassar [Nas12] 2015 Common criteria
for usability

Consistency, User control, Ease of learning, Flexibility, Error
management, Reduction of excess, Visibility of system status

3 Gupta and et al.
[GAS14]

2014 Usability
attributes

Efficiency, Effectiveness, Productivity, Satisfaction, Security,
Universality.

4 Dubey et
al.[DGR12]

2012 An integrated
usability model

Efficiency, Effectiveness, Satisfaction, Safety, Comprehensibility.

5
ISO/IEC 25010
[fSEC+11]

2011
Usability in
quality in use
model

Efficiency, Effectiveness, Satisfaction, Freedom from risk, Context
coverage

Usability in
product quality
model

Accessibility, Operability, Learnability, Appropriateness
recognizability, User error protection, User interface aesthetics.

6 Dubey et al.
[DRS10]

2010 Environment
Integrated
Usability model

Acceptance, Accessibility, Attractiveness, Control, Ease of Use,
Effectiveness, Efficiency, Emotion, Few Errors, Flexibility,
Internationality, Learnability, Likeability, Memorability, Minimal
Action, Minimal Memory load, Operability, Productivity, Safety,
Satisfaction, Trustfulness , Understandability, Usability compliance,
User Guidance

7 Alonso-Ríos et al.
[ARVGMRMB09]

2009 Usability
Taxonomy

Efficiency, Operability, Subjective satisfaction, Safety, Knowability,
Robustness

8 Shackel [Sha09] 2009 Usability
Definition

Effectiveness, Learnability, Flexibility, Attitude

350
A

PPE
N

D
IX

C
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

7
No Model Year Model Name Usability Aspects
9 Sauro and Lewis

[SL09]
2009 Prototypical

usability metrics
Task times, Completion rates, Errors, Post task satisfaction, Post-test
satisfaction.

10 Winter et al.
[WWD07]

2007 2-dimensional
quality model for
usability

Goals (Efficiency, Effectiveness, Satisfaction, Safety). Attributes
(Adaptability, Customizability, Controllability, Consistency,
Simplicity, Relevance, Unambiguousness, Guardedness, Conformity,
Existence)

11 Seffah et al.
[SDKP06]

2006 Usability
measurement
model

Efficiency, effectiveness, productivity, satisfaction, learnability, safety,
trustfulness, accessibility, universality, usefulness.

12 Adikari &
McDonald [AM06]

2006 Conceptual
Usability
Attribute Model

Learnability , Memorability, Functional correctness, Efficiency, Error
Tolerance, Flexibility, and Satisfaction

13 Shneiderman &
Plaisant [SP04]

2004 The criterion of
"user-friendly"

Time for users to learn specific functions, Speed of task performance,
Rate of errors by users, User retention of commands over time,
Subjective user satisfaction.

14 Folmer [FVGB04] 2004 Usability
Attributes

Learnability, the Efficiency of use, Reliability, Satisfaction.

15 Abran et al.
[AKSS03]

2003 An enhanced
usability model

Efficiency, Effectiveness, Satisfaction, Security, Learnability

16 Dix et al. [DDF+03] 2003 Usability design
principles

Flexibility, Learnability, Robustness

17 Monk [Mon02] 2002 Components of
usability

Ease of learning, ease of use, task fit, enjoyment, effective
communication, and dependability.

18 Ferré et al.
[FJWC01]

2001 Usability
attributes

Learnability, Efficiency, User retention over time, Error rate,
Satisfaction.

C
.3.

R
E

SU
LT

S
351

No Model Year Model Name Usability Aspects
19 Quesenbery [Que01] 2001 Usability

Characteristics
Efficiency, Effectiveness, Engaging, Easy to learn, Error tolerant.

20 ISO/IEC 9126-1
[II04]

2001 Usability
Characteristics

Understandability, Learnability, Operability, Attractiveness

21 Frojkaer et
al.[FHH00]

2000 Usability aspects Effectiveness, Efficiency, Satisfaction

22 Constantine et al.
[CL99]

1999 Usability Rules
and Principles

Rules: Access, Efficacy, Progression,Support, Context. Principles:
structure, simplicity, visibility, feedback, tolerance, and reuse.

23 Lecerof et al. [LP98] 1998 Usability
definition

Relevance, Efficiency, Attitude, Learnability and Safety.

24 ISO 9241-11 [Iso98] 1998 Usability
definition

Effectiveness, Efficiency and Satisfaction

25 IEEE Std. 1061
[C+98]

1998 Usability
definition

Understandability, Ease of learning, Operability, Communicativeness

26 Wixon & Wilson
[WW97]

1997 Usability
attributes

Usefulness, Learnability (initial performance), Efficiency (long-term
performance), Error rates, Memorability, First impressions, Advanced
feature usage, Satisfaction or likability, Flexibility, Evolvability.

27 Preece et all.
[PRS+94]

1994 Usability
definition

Throughput, Attitude, Flexibility, Learnability

28 Nielsen [Nie94] 1994 Usability
definition

Efficiency, Satisfaction, Learnability, Memorability, Errors

29 Löwgren [Löw93] 1993 Usability
definition

Relevance, Efficiency, Learnability, Attitude

30 Preece et al.
[PBU93]

1993 Usability aspects Safety, Effectiveness, Efficiency, and Enjoyableness.

352
A

PPE
N

D
IX

C
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

7
No Model Year Model Name Usability Aspects
31 Hix et al [HH93] 1993 Common

usability
attributes

Initial performance, Long-term performance, Learnability,
Retainability, Advanced feature usage, First impression, Long term
user satisfaction.

32 Grady [Gra92] 1992 Measurable goals User Documentation, Consistency, Aesthetics, Human Factors.

33 Bevan et al.
[BKM91]

1991 Usability
Measures

Acceptability, Ease of Use (user performance and satisfaction).

Table C.5: The usability models and definitions used to identify the common set

C.3. RESULTS 353

C.3.2 Common Aspects

RQ2: What attributes of software usability are frequently addressed among different
usability models and standards?

By studying the identified models, we found that there are eight common usabil-
ity aspects: Efficiency, Effectiveness, Satisfaction, Safety, Adaptability, Learnability,
Users error tolerance, and Aesthetics. The common aspects were identified by analyz-
ing the definitions of the aspects discussed in the previous section. Table C.6 shows
the appearance of the common usability aspects of the 33 models studied.

354
A

PPE
N

D
IX

C
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

7
NO Model

Common Aspects
Efficiency Effectiveness Satisfaction Safety Adaptability Learnability Users error

protection
Aesthetics

1 Hasan and
Al-Sarayreh
[HAS15]

Efficiency Effectiveness,
Productivity

Satisfaction - Accessibility,
Universality

Appropriateness
recognizability,
Learnability,
Operability

User error
protection

User interface
aesthetic

2 Nassar [Nas12] - - - - Flexibility Consistency,
Reduction of
excess, Ease of
learning

User control,
Error
management

Visibility of
system status

3 Gupta and et al.
[GAS14]

Efficiency Effectiveness,
Productivity

Satisfaction Security Universality Memorability - Aesthetics
(under
Satisfaction)

4 Dubey et
al.[DGR12]

Efficiency - Satisfaction Safety Effectiveness Comprehensibility - Attractiveness
(under
Satisfaction)

5 ISO/IEC 25010
[fSEC+11]

Efficiency Effectiveness Satisfaction Freedom from
risk

Flexibility,
Operability,
Accessibility

Appropriateness
recognizability,
Learnability

User error
protection

User interface
aesthetics

6 Dubey et al.
[DRS10]

Efficiency Effectiveness,
Productivity

Satisfaction,
Likeability,
Trustfulness

Safety Accessibility,
Control,
Flexibility,
Internationality,
Operability

Minimal Action,
Understandabil-
ity, Learnability,
Memorability
load, Minimal
Memory, User
Guidance

Few Errors Attractiveness,
Emotion

7 Alonso-Ríos et
al.
[ARVGMRMB09]

Efficiency - Subjective
satisfaction

Safety Operability Knowability Robustness Aesthetics
(under
satisfaction).

8 Shackel [Sha09] - Effectiveness Attitude - Flexability Learnability - -

C
.3.

R
E

SU
LT

S
355

NO Model
Common Aspects

Efficiency Effectiveness Satisfaction Safety Adaptability Learnability Users error
protection

Aesthetics

9 Sauro and Lewis
[SL09]

Task time Completion
Rate, & Errors

post-task
satisfaction &
Post-Test
Satisfaction

- - - - -

10 Winter et al.
[WWD07]

Efficiency Effectiveness Satisfaction Safety Adaptability,
Customizability,
Guardedness,
Controllability

Consistency,
Conformity,
Simplicity, Un-
ambiguousness,
Relevance

- -

11 Seffah et al.
[SDKP06]

Efficiency Effectiveness,
Productivity,
Usefulness

Satisfaction &
Trustfulness

Safety Universality,
Accessibility

Learnability - -

12 Adikari &
McDonald
[AML06]

Efficiency Functional
Correctness

Satisfaction - Flexibility Learnability,
Memorability

Error Tolerance -

13 Shneiderman &
Plaisant [SP04]

Speed of
performance

Error rates Subjective
satisfaction

- - Retention over
time

- -

14 Folmer
[FVGB04]

Efficiency of use Reliability Satisfaction - - Learnability - -

15 Abran et al.
[AKSS03]

Efficiency Effectiveness Satisfaction Security - Learnability - -

16 Dix et al.
[DDF+03]

- - - - Flexibility Learnability Robustness -

17 Monk [Mon02] - Effective
communication

- - - Ease-of-use,
task fit,
Ease-of-learning

- Enjoyment

18 Ferré et al.
[FJWC01]

Efficiency Error rate Satisfaction - - Learnability,
User retention
over time

- -

19 Quesenbery
[Que01]

Efficiency Effectiveness - - - Easy to Learn Error tolerant Engaging

356
A

PPE
N

D
IX

C
.

A
SU

PPL
E

M
E

N
T

FO
R

C
H

A
PT

E
R

7
NO Model

Common Aspects
Efficiency Effectiveness Satisfaction Safety Adaptability Learnability Users error

protection
Aesthetics

20 ISO/IEC 9126-1
[II04]

- - - - Operability Understand-
ability,
Learnability

- Attractiveness

21 Frojkaer et
al.[FHH00]

Efficiency Effectiveness Satisfaction - - - - -

22 Constantine et al.
[CL99]

- - - - - Structure,
Simplicity,
Reuse, Visibility

Tolerance Feedback

23 Lecerof et al.
[LP98]

Efficiency Relevance Attitude Safety Flexibility Learnability - -

24 ISO 9241-11
[Iso98]

Efficiency Effectiveness Satisfaction - - Learnability - -

25 IEEE Std. 1061
[C+98]

- - - - Operability Understandability,
Ease of learning

- Communicative-
ness

26 Wixon & Wilson
[WW97]

Efficiency Error rates Satisfaction or
Likability

- Flexibility,
Evolvability

Memorability - First
impressions

27 Preece et all.
[PRS+94]

Throughput Throughput Attitude - Flexibility Memorability - -

28 Nielsen [Nie94] Efficiency - Satisfaction - - Learnability,
Memorability

Errors -

29 Löwgren
[Löw93]

Efficiency Relevance Attitude - - Learnability - -

30 Preece et al.
[PBU93]

Efficiency Effectiveness Enjoyably Safety - - - -

31 Hix et al [HH93] - - First impression
& Long-term
user satisfaction

- - Learnability,
Retainability

- -

32 Grady [Gra92] - - Aesthetics - - Consistency,
User
Documentation

- -

C
.3.

R
E

SU
LT

S
357

NO Model
Common Aspects

Efficiency Effectiveness Satisfaction Safety Adaptability Learnability Users error
protection

Aesthetics

33 Bevan et al.
[BKM91]

- Performance Satisfaction - - - - -

Appearance
Frequency

23 23 26 10 17 30 10 13

Table C.6: The appearance of the common usability aspects in in the 33 existing models studied

	Abstract
	Declaration
	Copyright
	List of Publications
	List Of Abbreviations
	Acknowledgements
	Introduction
	Research Context and Motivation
	Research Aim and Questions
	Research Methodology
	Research Contributions
	Thesis Structure

	Background
	Requirement Engineering
	Definition of a Requirement
	Non-Functional Requirements
	Requirement Engineering Concept and Processes

	Machine Learning in Automated Text Classification: An Overview
	Concepts and Processes
	Classification Algorithms
	Evaluation Techniques and Metrics
	Model Diagnosis and Tuning

	Summary

	A Systematic Review of Machine Learning Methods for or Identification and Classification of Non-Functional Requirements
	Motivation and Research Questions
	Related Reviews
	Review Method and Process
	Identification of the Start Set
	Backward Snowballing
	Forward Snowballing
	Extracting and Synthesizing the Data

	Results
	General Overview
	ML Algorithms (RQ1)
	Process of Using ML Algorithms to Identify NFRs (RQ2)
	Performance of the Reported ML Algorithms (RQ3)

	Key Findings, Limitations, and Open Challenges
	Key Findings
	Limitations
	Open Challenges

	Threats to the Review Validity
	Study Identification
	Inclusion and Exclusion
	Data Extraction

	Conclusion

	A comprehensive Analysis and Review of the Problems and Solutions in NFR Classification
	High Dimensionality
	Learning with High Dimensional Dataset
	Overview of Solutions for High Dimensionality
	Techniques for Handling High Dimensionality in NFR Classification

	Imbalanced Data
	Skewed Distribution of Training Dataset
	Solutions for Imbalanced Data
	NFR Classification with Class Imbalance Problem

	Short Text Classification
	Short Text Characteristics and Impacts on Supervised Learning
	Solutions for Short-Text Classification
	Short Text in NFRs Classification

	Discussion
	Small and High-dimensional Requirement Datasets
	Imbalanced Multi-Class Requirements Classification
	Feature Extension in Requirements Classification

	Summary, Main Conclusions, and Findings

	Dealing with Imbalanced, High Dimensional and Short Text Data in Machine Learning-Based Requirements Classification
	The ML4RC Method
	Dataset Decomposition
	Text Pre-Processing
	Feature Selection
	Feature Extension
	Classifier Training
	Classifier Testing

	Training and Testing ML Algorithms for ML4RC
	Dataset and Experimental Settings
	Training and Testing Process
	Results

	Experimental Comparison of Related Methods
	Experiment Execution
	Experimental Results

	Key Techniques Evaluation
	Comparison with the Baseline Method
	Comparison with Other Techniques

	Discussion
	On Class Imbalances
	On Feature Selection
	On Feature Extension
	On Evaluation Practices and Performance Benchmarks

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Summary

	Semantic Expansion For Short-text Requirements Classification
	Overview of Text Similarity Approaches
	Approaches to Short-Text Similarity Measures
	Approaches to Requirements Similarity Measure
	Word Embedding to Measure Text Similarity

	The SE4RC Method
	Text Pre-Processing
	Requirements Expansion
	Feature Representation
	Classifier Training
	Classifier Testing

	Evaluation of Requirements Similarity Measures
	Evaluation Procedure
	Implementation Environment
	Implementation Steps

	Experimental Comparison with Baseline Method
	Implementation Environment
	Implementation Steps
	Results

	Experimental Comparison of Related Methods
	Experiment Execution
	Experimental Results

	Discussion
	Measuring Requirements Similarity
	Semantic Expansion in NFRs Classification

	 Limitations and Threats to Validity
	Summary

	An Evaluation of the Proposed ML Methods in Usability Requirements Classification - A Case Study
	Background
	Usability Concept and Classification Models
	Usability Requirements
	Usability Requirements Classification

	Case Study Methodology
	Scoping: Establishing Aims and Objectives
	Case Study Planning
	Data Collection, Analysis, and Validation
	Machine Learning Application

	 Results
	The Common Usability Aspects and their Relation with URs
	The Effectiveness of Detecting and Classifying URs

	Lessons Learned
	Usability Aspects According to Usability Requirements
	Using ML to Classify URs

	Threats to Validity
	Summary

	Conclusion and Future Direction
	Contributions
	Main Findings
	Future Work
	More Empirical Experiments and Analysis
	Extrinsic Evaluation of NFRs Classifiers

	Conclusion Remarks

	Bibliography
	A Supplement for Chapter 3
	Overview
	The 51 Selected Studies
	A Comprehensive Overview of the 51 Studies
	Detailed Information about the Studies

	A Supplement for Chapter 4
	Detailed Information about the Studies
	Initial Experiment to Build wor2vec Model

	A Supplement for Chapter 7
	Related Work
	Review Method and Process
	Identification of the Start Set
	Backward Snowballing
	Forward Snowballing
	Extracting and Synthesizing the Data

	Results
	Existing Classification Models
	Common Aspects

