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Abstract 

Introduction: Digital health interventions, such as electronic audit and feedback (e-A&F), are increasingly 

used to improve the quality and safety of healthcare. Where there is limited opportunity to implement 

randomised controlled trials, evidence of effectiveness has to be based on quasi-experimental methods. 

Estimating the health and economic impact of these interventions often relies on the use of process indicators 

rather than patient outcomes. This thesis assesses the economic impact of the Safety MedicAtion daSHboard 

(SMASH), an e-A&F intervention that combines digital case finding with pharmacist-led medication review. In 

particular, it explores the feasibility of conducting an economic analysis as part of a quasi-experimental study 

that relies on electronic health records to measure exposure and outcomes. Effectiveness was measured as 

the reduction in the number of hazardous prescribing events (HPEs). One specific HPE targeted by SMASH, 

prescription of an NSAID to patients with oral anticoagulation, was used as a case study to demonstrate how 

this can be done. The aim of this thesis was to assess the cost-effectiveness of SMASH in reducing this HPE. 

 

Methods: This thesis comprised a series of studies that: (i) estimated the cost of the complex SMASH 

intervention using a micro-costing approach; (ii) quantified the increased likelihood of adverse drug events 

(ADEs) associated with NSAID use in anticoagulated patients in an observational cohort study using routinely 

collected linked primary and secondary care data (Clinical Practice Research Datalink, CPRD GOLD; Hospital 

Episodes Statistics, HES; and Office for National Statistics, ONS); (iii) estimated the incremental costs and 

quality-adjusted life-years (QALYs) associated with the HPE from the perspective of the NHS and Personal 

Social Services by conceptualising a probabilistic state-transition model of potential treatment pathways 

related to ADEs associated with the HPE (cost year: 2019, discount rate: 3.5%, cycle length: 3 months, time 

horizon: lifetime); (iv) estimated the relative cost-effectiveness of SMASH compared with standard care for 

the HPE under investigation based on a probabilistic two-stage decision analytic model that combined the 

results of the earlier studies.  

 

Results: The expected cost of SMASH at 12 months was £2149(2.5% to 97.5% credible interval £487 to £5790), 

and £205 (2.5% to 97.5% credible interval £46 to £559) per HPE avoided. The observational study projected 

an increased risk of serious GI events (HR 2.96, 95% CI 1.60 to 5.46) and stroke (HR 2.48, 95% CI 1.36 to 4.53) 

in the presence of the HPE in patients at risk. An anticoagulated patient with a concomitant NSAID 

prescription was estimated to have £244 (2.5% to 97.5% credible interval -£149 to £1073) higher costs and 

0.04 (2.5% to 97.5% credible interval -0.17 to 0.05) fewer QALYs than a patient without an NSAID based on 

the results of the state-transition model. The decision-analytic model projected the costs and QALYs related 

to NSAID use in anticoagulated patients from the process indicator of HPE reductions. At the threshold used 

to determine cost-effectiveness by the National Institute for Health and Care Excellence (NICE) (£20000 per 

QALY gained), the incremental net monetary benefit of SMASH in reducing the HPE was estimated to be  

-£311 (2.5% to 97.5% credible interval -£542 to £73).  

 

Conclusion: This thesis found that it was feasible to conduct an economic analysis as part of a quasi-

experimental study that relies on electronic health records to measure exposure and outcomes. NSAID use 

in anticoagulated patients increased the risk of ADEs and was associated with a higher cost and lower quality 

of life. SMASH was not cost-effective in reducing this HPE type at the defined WTP threshold. The study 

provides a ‘real world’ estimate of the cost-effectiveness of SMASH based on projected harm from routinely 

collected healthcare data and the methodology is generalisable to other HPEs targeted by SMASH, where no 

data on patient outcomes associated with the HPE are available. Future research is needed to estimate the 

cost-effectiveness of SMASH in reducing other HPEs. 
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Chapter 1 - Introduction 

 

Healthcare systems around the world have to make decisions on how to allocate their 

resources every day. New treatments and procedures, diagnostic technologies, 

interventions or programmes are developed and decisions on which can be reimbursed by 

the healthcare system are required. Decisions to reimburse a new technology will prevent 

the resources required for the implementation of this new technology to be used for 

something else. Many countries, such as Australia (1), Canada (2) and the United Kingdom 

(UK) (3), use economic evaluations to aid their decision making. Economic evaluations 

compare alternative options in terms of their healthcare costs and consequences (4). 

Evidence from economic evaluations allows decision-makers to understand whether the 

health gained from a new intervention is greater than the health forgone (opportunity cost) 

per additional measure of effect gained. The National Institute for Health and Care 

Excellence (NICE) provides guidance on health technologies to inform decision making by 

the National Health Service (NHS) in England. Cost-effectiveness analysis (CEA) 

incorporates the basic principles of an economic analysis as required by NICE in a 

healthcare setting due to a focus on outcomes, such as health improvement or reduction 

of risk.  

 

Extensive methodology exists for undertaking economic evaluations as part of randomised 

studies that are conducted under tightly controlled conditions and incorporate prospective 

data collection (5, 6). In many cases, conducting randomised studies is not ethical or 

feasible (or neither) (7-9), and then evaluations have to rely on evidence from pragmatic 

‘real world’ studies. This is a relatively little explored terrain for health economics and no 

comprehensive guidance exists on how economic evaluations can be conducted alongside 

quasi-experimental studies (10, 11). Only recently, NICE acknowledged quasi-experimental 

studies as a minimum evidence standard for digital health technologies (12). However, 

there is an abundance of quasi-experimental designs and statistical methods for analysis 

(13, 14) and it is not clear from the proposed evidence framework how this evidence should 

be used. Each of these methods relies on different assumptions (7, 10, 13) that could have 

implications for economic evaluations. This thesis explores how a health economic analysis 
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can be done in the context of a pragmatic study that uses a quasi-experimental design and 

relies on routinely collected health data to measure exposure and outcomes. The 

intervention chosen for this dissertation is in the setting of medication safety in primary 

care. The European Union (EU) Council and Commission have highlighted the need for cost-

effectiveness evidence specifically for interventions in the area of patient safety (15, 16). 

 

Medicines are widely used to treat, manage or prevent diseases. In 2019, the overall 

number of prescribed medicines in England reached 1.12 billion prescription items (17). 

The number of prescription items is increasing. Compared with 2018 the number of 

prescription items increased by 2.8% in 2019 (17). Most of the prescribed medicines do not 

cause harm, but there is a residual risk of adverse drug events (ADEs) that can lead to 

hospital admissions (18-21). ADEs can be preventable if they are a result of a medication 

error (22). The World Health Organization (WHO) (23) refers to a statement of the United 

States National Coordinating Council for Medication Error Reporting and Prevention (NCC 

MERP), to define medication errors: ‘A medication error is any preventable event that may 

cause or lead to inappropriate medication use or patient harm while the medication is in 

the control of the healthcare professional, patient, or consumer. Such events may be 

related to professional practice, healthcare products, procedures, and systems, including 

prescribing, order communication, product labelling, packaging, and nomenclature, 

compounding, dispensing, distribution, administration, education, monitoring, and use’ 

(24).  

 

Medication errors are responsible for 59% of drug related hospital admissions (25) and 

3.7% of all hospital admissions worldwide (26). Awareness of the burden of medication 

errors was highlighted in 1999 with the landmark report ‘To Err is Human’ by the United 

States (US) Institute of Medicine (27). The report stimulated discourse and research in 

patient safety and led to an increasing number of publications and research awards in this 

area (28). The UK responded with the publication of ‘An Organisation with a Memory’, 

which looked at how the NHS should change to learn from failures with regards to 

preventable ADEs (29). In the EU, the additional cost to healthcare providers of preventable 

ADEs was estimated to be between 17-38 billion Euros in 2015 (30). For NHS England the 

direct healthcare cost related to medication errors was estimated to be about £89.1 million 
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per year in 2016 (31). In addition to this financial burden, preventable ADEs can introduce 

physical and psychological harm (32, 33). For the EU harm from preventable ADEs was 

estimated to cause a total loss of 1.5 million disability-adjusted life-years (DALYs) (30). In 

accordance with the WHO, the sum of DALYs across a population are used as a measure of 

the disease burden representing the gap between the actual health status and an ideal 

health situation (34).  

 

The WHO’s third global patient safety challenge (2017) calls for commitment of healthcare 

providers and stakeholders to reduce preventable ADEs by 50% over five years (33). The 

United Kingdom (UK) government recently made the reduction of medication errors a 

policy objective (35) following recommendations from the WHO (33) and the European 

Directorate for the Quality of Medicines & Healthcare (EDQM) (36). The policy encourages 

the implementation of interventions that target the reduction of medication errors. 

According to recent findings from a literature review, medication errors that were most 

serious or likely to cause harm were in primary care (31) where prescribing and monitoring 

errors account for more than half of preventable admissions to hospital (37).  

 

So far, the majority of patient safety research has been conducted in secondary care 

settings and most interventions have been developed to reduce medication errors in 

hospitals (38, 39). This thesis focuses on an electronic audit and feedback (e-A&F) 

intervention aiming to reduce potentially hazardous prescribing in primary care, the Safety 

Medication dASHboard (SMASH) (40). Hazardous prescribing, in contrast to prescribing 

errors, describes medication combinations that are not generally accepted practice and 

likely to cause harm, such as the prescription of a non-steroidal anti-inflammatory drug 

(NSAID) to a patient with an oral anticoagulant (OAC) (41). The terms ‘hazardous’ or 

‘potentially inappropriate’ can be used to imply the increased risk of ADEs, such as 

bleeding, without stating that the action was preventable and therefore an error. In the 

example of NSAID use that can contribute to the bleeding risk associated with the OAC, 

the patient might need the NSAID because no alternative treatment is available for the 

patient to manage pain to an appropriate level. Dependent on the patient’s symptoms, 

different hazards are tolerable and the increased risk of not receiving the ‘erroneous` 
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prescription might outweigh the risk of ADEs. That’s why in this thesis the term 

‘hazardous prescribing event’ (HPE) is used preferably compared with ‘medication error’.  

 

The WHO proposes three different intervention formats suitable to reduce error rates: 

medication reviews, automated information systems and education interventions (23). 

SMASH combines aspects of pharmacist-led medication reviews and reconciliation with an 

automated digital component searching electronic health records to identify patients 

potentially at risk due to hazardous prescribing events (40). This type of multifaceted 

intervention has been found to be the most promising approach to reduce hazardous 

prescribing (23).  

 

SMASH focuses on a specific set of hazardous medication use events, referred to as HPEs 

and hazardous monitoring events (HMEs). In order to identify the HPEs and HMEs targeted 

by SMASH, prescribing safety indicators are used. These indicators provide specific 

definitions for each type of hazardous prescribing or monitoring that are associated with 

an increased risk of harm for the patient (42, 43). As described above, NSAID use in 

anticoagulated patients is one type of HPE targeted by SMASH. SMASH is a local 

development of a pharmacist-led information technology intervention (PINCER) that was 

tested in a randomised controlled trial (RCT) compared with simple feedback (44, 45). 

Simple feedback included a report of patients with HPEs but did not include a pharmacist 

service to review the report. PINCER and SMASH aim to reduce a similar set of HPE types. 

The PINCER RCT in Nottinghamshire, Staffordshire and Central and Eastern Cheshire 

showed a significant reduction of the occurrences of HPEs (Odds ratio (OR) 0.71, 95% 

confidence interval (CI) 0.59 to 0.86) and HMEs (OR 0.56, 95% CI 0.44 to 0.70) at six 

months (44). After 12 months this effect waned. While the intervention was still cost-

effective, no further reduction in HPE rates was evident. Compared with the PINCER 

intervention, SMASH provides continuous surveillance by pharmacists, which was hoped to 

target the challenge of diminishing intervention effects. Providing feedback at multiple 

instances was found to be a key design feature required for effective e-A&F interventions, 

such as SMASH and PINCER (46, 47). 
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A study in Salford, Greater Manchester, assessed the effectiveness of SMASH in reducing 

HPEs (48) using a quasi-experimental study design. HPE rates were reduced by 27.9% (95% 

CI 20.3% to 36.8%) at six months and the effect persisted with a reduction of 40.7% (95% 

CI 29.1% to 54.2%) at 12 months. With funding from the Health Foundation and East 

Midlands Academic Health Science Network (AHSN) a large-scale rollout of PINCER to 370 

practices in the East Midlands between 2015 and 2017 was evaluated and demonstrated a 

significant reduction of HPE rates. As a result of these positive findings, PINCER was 

included in the national AHSN innovative network programme and is rolled-out nationally 

momentarily. In Greater Manchester, SMASH is implemented as part of this national 

rollout. 

 

Promising results of interventions aiming to reduce HPE rates were also found in Scotland, 

where a similar set of prescribing and monitoring types was developed and their prevalence 

in 315 Scottish general practices was examined (49, 50). The set of HPEs was used in the 

Data-driven Quality Improvement in Primary Care (DQIP) intervention, and its effectiveness 

in reducing HPE occurrences tested in a stepped wedge RCT, which found a reduction of 

patients at high risk (OR 0.63, 95% CI 0.57 to 0.68) compared with standard care (51, 52).  

 

While evidence on the effectiveness of these interventions in reducing HPE rates is 

available, the impact on patient outcomes and potential cost-savings is sparse. The PINCER 

RCT assessed the cost-effectiveness of the original PINCER study by projecting patient 

outcomes and costs of the different HPE types. However, the set of HPEs included in SMASH 

and PINCER has changed since then and the evidence is comparably old (the RCT was run 

between 2006 and 2008 (45)). A 4.5 year programme grant, ‘Avoiding patient harm through 

the application of prescribing safety indicators in English general practices’ (PROTECT), with 

over £2.4 million awarded by the NIHR Programme Grant for Applied Research is looking 

at building better estimates on harm and economic impact of the HPE types targeted by 

PINCER (53). A qualitative work stream of PROTECT generated recommendations for the 

recently started national rollout of PINCER. The quantitative work stream involves 

estimating the economic impact of each of the HPE types targeted by PINCER. This 

dissertation is imbedded in the PROTECT programme grant. While this programme of work 

investigates the cost-effectiveness of SMASH, not of PINCER, the work on the economic 
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impact of each HPE type can be used interchangeably between the two interventions 

because the set of HPE types targeted is overlapping to a large extent.  

 

In this thesis, the cost of delivering SMASH was estimated and combined with data derived 

from the quasi-experimental study of the effectiveness of SMASH (48). To analyse the 

impact that SMASH has not only on the process indicator of HPE incidence but also on 

patient outcomes, the occurrence of ADEs associated with the HPE types needs to be 

quantified. According to a recent report by the Policy Research Unit in Economic Evaluation 

of Health and Care Interventions (EEPRU) driving the new UK policy implications, evidence 

on quantifiable patient harm related to HPEs is limited (31). There are very few studies 

linking HPEs with patient harm directly. Only reviews of ADEs or hospitalisations exist which 

assessed the preventability of these events retrospectively (20, 37, 54). A recent initiative 

from the NHS developed a dashboard linking a set of the mentioned prescribing safety 

indicators, derived from those used in SMASH and PINCER, with hospitalisation in the UK 

based on secondary care health records (55). The dashboard, however, does not provide 

data on the difference between ADE incidence in the presence and absence of the HPEs. 

Because there are little precise data on patient harm and costs associated with HPEs, and 

because they carry a large potential burden, a key objective for this thesis and the PROTECT 

programme grant was to develop methods to estimate the health related and the economic 

impact of HPEs and how to incorporate this in the economic evaluation of SMASH and 

PINCER respectively. In order to project harm and costs from an HPE, the use of routinely 

collected health data was explored. Estimating harm for each HPE was beyond the scope 

of this dissertation. Therefore, this dissertation focuses on the cost-effectiveness of SMASH 

in reducing one type of HPE targeted by the intervention. As part of PROTECT the other 

HPE types are being investigated. The HPE type investigated in this thesis was used to 

illustrate the methods of how to project the long-term consequences of reducing the HPE 

incidence by using estimates from routinely collected health data.  

 

The HPE type chosen to demonstrate this was the HPE of prescribing an NSAID to a patient 

with concomitant OAC treatment that is associated with an increased gastro-intestinal (GI) 

bleeding risk. OAC treatments include treatment with vitamin-K antagonists (VKAs) and 

direct oral anticoagulants (DOACs). Patients receiving OAC treatment are referred to as 
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anticoagulated patients. This HPE type included two drugs in the prescribing safety 

indicator definition, and it was neither the least nor the most frequent HPE. As a result, the 

HPE type was considered to be representative of the other types of HPEs targeted by 

SMASH.  

 

1.1 Aims and objectives of the dissertation 

The aim of this dissertation was to assess the cost-effectiveness of SMASH in reducing the 

number of patients receiving oral anticoagulation with a concomitant hazardous 

prescription of an NSAID. This HPE type was used as an example to demonstrate how 

observational data from quasi-experimental studies and routinely collected health data can 

be incorporated into an economic evaluation of a system-level digital health intervention 

(DHI). The methods used in this dissertation inform an approach that can be generalised to 

estimate the cost-effectiveness of interventions to reduce different type of HPEs. 

 

The aim is achieved by meeting the following specific objectives: 

1. identify the costs associated with the provision and implementation of the SMASH 

intervention; 

2. incorporate the cost of the intervention with the effectiveness data derived from the 

quasi-experimental study into a decision-analytic model to assess cost per HPE avoided; 

3. quantify patient harm associated with NSAID use in anticoagulated patients by 

measuring the risk difference in related ADEs of patients exposed to the HPE and those 

at risk of the HPE using routinely collected health data; 

4. model potential treatment pathways related to the consequences of NSAID use in 

anticoagulated patients informed by findings on ADEs related to the HPE; 

5. generate input parameters for estimated harm to populate the model on HPE 

consequences to estimate the economic impact of NSAID use in anticoagulated 

patients; 

6. assess the cost-effectiveness of the SMASH intervention in reducing this specific HPE 

by combining results on costs per HPE avoided by the intervention with the modelled 

patient harm and costs associated with the HPE occurrence; 

7. reflect on conducting an economic evaluation as part of a quasi-experimental study that 

relied on routinely collected health data to measure exposure and patient outcomes. 
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1.2 Organisation of the dissertation 

This dissertation begins with an overview of HPEs in general and their prevalence in the UK 

in particular in Chapter Two followed by a summary of evidence on the link between HPEs 

and patient harm or ADEs. Chapter Two also describes the literature on interventions 

aiming to reduce HPEs in primary care and how their cost-effectiveness is assessed. Finally, 

SMASH is described in detail. 

 

Each of the subsequent four chapters describes a separate study, and methods and results 

are reported within each chapter. As was mentioned above, the HPE under investigation is 

the hazardous prescription of an NSAID to a patient with concomitant oral anticoagulation. 

 

Chapter Three reports an economic evaluation of SMASH to estimate the incremental cost 

per HPE avoided compared with standard care. This chapter demonstrates how micro-

costing was used to estimate the cost of delivering SMASH and how the results of the quasi-

experimental effectiveness study were incorporated into the decision-analytic model. 

 

Chapter Four describes a cohort study using a linked dataset from primary care and 

secondary care health records to estimate the relative risk of specific ADEs associated with 

the presence of the HPE (NSAID use in anticoagulated patients). 

 

Chapter Five utilises the results of Chapter Four to conceptualise and populate a state-

transition model and estimate the long-term impact of the presence of the HPE on cost to 

the healthcare system and health related quality of life. 

 

Chapter Six combines the results from the three previous chapters in a cost-utility analysis 

of SMASH in reducing NSAID use in anticoagulated patients. The findings are presented as 

the incremental cost per additional quality-adjusted life-year (QALY) generated by SMASH 

compared with current practice. 

 

Chapter Seven concludes the dissertation by discussing the importance of the findings from 

the four studies and reflects upon the aim of this programme of work. 
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Chapter 2 - Background 

 

This chapter aims to create an understanding of the burden of hazardous prescribing by 

describing how HPEs are measured followed by evidence on the prevalence of HPEs, harm 

associated with HPEs and the economic impact of HPEs. A brief summary of interventions 

that aim to reduce hazardous prescribing is provided leading to a systematic literature 

review of economic evaluations of interventions that were designed to reduce hazardous 

prescribing. Finally, the intervention that is evaluated in this dissertation (SMASH) is 

described in detail. 

 

2.1 Identifying hazardous prescribing events 

This section describes how HPEs are commonly identified by introducing different types of 

criteria used to identify HPEs. Criteria can be generic or describe specific types of HPEs. 

Dean et al. (2000) present a list of what to judge as HPEs, and what is not considered an 

HPE. Drug-drug interactions, for example, are considered HPEs but illegibility of a 

prescription is not. In contrast to these generic criteria, other studies used specific criteria 

defining specific drug combination to be inappropriate or hazardous. Commonly used 

methods are the identification of prescribing safety indicators that describe a specific type 

of an HPE (39, 43, 50, 56) or the use of set criteria to assess potentially inappropriate 

medications (PIMs) (57, 58). 

 

The former, prescribing safety indicators define specific prescribing patterns with specific 

criteria that are associated with an increased risk of harm for the patient (43, 50, 56). The 

difference between the list of generic criteria by Dean et al. (2000) and specific prescribing 

safety indicators are explained by an example. The generic criteria by Dean et al. (2000) 

describe hazardous prescribing situations in general, for instance: ‘prescribing a drug for a 

patient for whom, as a result of a co-existing clinical condition, that drug is contraindicated’ 

(59). The list incorporates generic criteria to guide assessors on how to identify HPEs 

without specific examples of drugs or combinations. Stocks et al. (2015), on the other hand, 

define specific examples for such situations in the set of prescribing safety indicators, for 
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example, a patient with heart failure and a prescription of an NSAID (56). This is a specific 

example of a contraindication. The explicit definition of the prescribing safety indicators 

facilitates researchers to assess the prevalence of HPEs by screening electronic medical 

records. This can reduce confounding of prevalence estimates due to subjective evaluation 

of potentially hazardous situations. Nevertheless, the specific approach does not include 

all situations of hazardous prescribing detected with the situation list by Dean et al. (2000) 

and might underestimate the overall prevalence of HPEs.  

 

The latter set of specific criteria, such as Beers criteria (60, 61) or the Screening Tool of 

Older Persons potentially inappropriate Prescriptions (STOPP criteria) (62) are used to 

identify PIMs. The criteria contain a list of medicines judged not to be appropriate in older 

patients as a result of a higher risk-to-benefit ratio and were developed in the United States 

(US). Beers criteria were not found to be predictive of ADEs, despite an update in 2015 (63). 

This has led to suggestions that the Beers criteria detect PIMs that are of lower clinical 

importance (43, 64). Hamilton et al. (2011) stated that PIMs identified according to Beers 

criteria do not increase the odds for ADEs significantly, in contrast to, PIMs identified by 

STOPP criteria (64). With every PIM identified by the STOPP criteria, the odds of an ADE 

increased by 87% (adjusted OR 1.87, CI 95% 1.51 to 2.26). Of the 235 potentially avoidable 

ADEs in the study, 159 (67.7%) involved a PIM from the STOPP criteria and only 67 (28.5%) 

from Beers criteria. In addition, the Irish STOPP criteria, updated in 2015 (65) fit the English 

prescribing routines better than the Beers criteria. Ble et al. (2015), for instance, found 

33.8% of individual PIMs from the Beers criteria not to be licensed in the UK (66). Beers and 

STOPP criteria were developed to identify hazardous prescriptions in the elderly, not in a 

general population. Therefore, to cover the general UK population the former prescribing 

safety indicators are assumed to be more suitable because they represent HPEs that are 

associated with increased harm for all patients, not only the elderly. 

 

2.2 Methods to measure prevalence of hazardous prescribing 

This section focuses on different methods to measure HPE prevalence in primary care and 

how they might influence prevalence estimates. Four different methods to identify HPEs 
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are now described. The advantages and disadvantages of these four methods are 

summarised in Table 2.1.  

 

Table 2.1: Comparison of methods to detect hazardous prescribing events 

Detection 

method 
Advantages Source Disadvantages Source 

Medical 

record review 

Most appropriate to detect 

prescribing errors 
(67) 

Low yield for administration 

errors 
(67) 

Identified more errors than 

with pharmacist screening  
(68) 

Expensive; time consuming (67-70) 

Requires complete 

documentation 

(67, 68, 

70, 71) 

Dependent on qualification of 

reviewer 

(67, 69, 

70) 

Availability of records (68) 

Incident 

report 

Can detect errors not 

documented in chart 

reviews 

(71) Under-reporting; low specificity 
(67, 69-

73) 

Integrated in daily routine; 

little additional resources 
(68, 71) 

Often no denominator, hence 

prevalence estimates often not 

comparable 

(74) Low rate of false positives (69) 

Suitable for investigating 

error cause 
(69) 

Pharmacy 

screening 

Integrated in daily routine; 

little additional resources 
(68) 

Identifies fewer errors than 

chart review; under-reporting 
(68) 

Less time consuming than 

chart review 
(68) 

Direct 

observation 

Most comprehensive for 

administration or dispensing 

errors 

(69, 70, 

75, 76) 

Requires highly qualified 

observers 
(69-71) 

Most specific (69) 
Fewer errors if staff knows they 

are being watched 
(70, 71) 

Suitable for investigating 

error cause 
(70) 

More expensive than chart 

review 
(69, 71) 

 

The most common method to measure HPEs is the ‘medical record review’ (77). Medical 

records are reviewed retrospectively by researchers to identify HPEs. Medical records can 

be electronic health records or hospital drug charts. In a prospective method, referred to 

as ‘pharmacy screening’, community pharmacists record occasions within their daily 

routine where they needed to intervene due to uncertainties with the prescription. A 

special scenario of pharmacy screening is the ‘incident report’ method, where pharmacists 

use special report forms to report incidents. Such report forms are used, for instance, by 

the National Reporting and Learning System (NRLS), in the UK to record patient safety 
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incidents in all healthcare settings (78). In pharmacy screening, all HPEs identified by the 

pharmacists are recorded. Incident reports include interventions the pharmacist judged to 

be of importance to influence patient safety. In ‘direct observation’, an observer follows 

staff in their daily routine recording HPEs they recognise. For instance, an external 

researcher could join a prescriber during appointments with patients to check for HPEs 

during the prescribing process. Incident reports are a simple retrospective way to detect 

HPEs within the daily routine, but the sensitivity is extremely low due to under-reporting 

(67, 69-73). Franklin et al. (2007) investigated the difference between two measurement 

methods in secondary care: incident report and pharmacist screening (73). Only 4% of the 

errors identified in the pharmacist screening were reported as incidents (73). On the one 

hand, error reporting systems, such as the NRLS, can support root-cause analysis, due to 

comprehensive information required in report forms (69). On the other hand, they are not 

appropriate to be used to detect the actual prevalence of HPEs (68, 79). 

 

Medical record review from charts is one of the most comprehensive measurement 

methods and the most suitable to identify HPEs (67, 68). Manual chart review, compared 

with other retrospective methods, is considerably more costly and time consuming (67-70). 

In a retrospective chart review pilot study by Barber et al. (2006), it took the investigator 

one day to analyse four patients on average (68). The ability to interpret the cause of an 

HPE using the chart review method can be difficult because all relevant information may 

not be available and it may not be possible to talk to the patient, carer or prescriber about 

the HPE retrospectively (68). Crucial for comprehensive prevalence estimates is the 

complete documentation of all relevant information within the charts and the accessibility 

of this information for the reviewer (67, 68, 70, 71).  

 

A less expensive and less time consuming prospective design which can be integrated in 

the daily routine is prescription screening by a pharmacist as part of the normal dispensing 

process (68). Disadvantages for this method occur because of lack of time and limited 

accessibility of health records, which can lead to under-reporting of HPEs (68). On a busy 

day, pharmacists detect about 40% fewer HPEs than on less busy days (80). Some studies 

compared the type of HPEs detected with different measurement methods in the same set 

of patients (68, 81). In Barber et al. (2006), a total number of 134 HPEs were identified with 
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‘pharmacist screening’ (48 out of 134) and ‘chart review’ (93 out of 134) (68). Of the 48 

HPEs detected in the pharmacist’s screening, only seven of these HPEs were detected by 

chart review. 

 

The studies by Barber et al. (2006) and Olsen et al. (2007) agree on the statement that 

different collection methods identify different HPEs, which results in lower prevalence 

estimates in studies using only one measurement method (68, 81). Of the studies identified 

in a systematic review of HPE prevalence in secondary care by Lewis et al. (2009), 27% of 

studies mix different methods to detect HPEs, which impeded the comparability of results 

(72).  

 

The ability of the aforementioned methods to detect HPEs are among other things 

dependent on the qualification and the subjective view of the reviewer. The variation in 

number of detected errors per patient for different reviewers can be statistically significant 

as shown in a pilot study by Barber et al. (2006) (68). The reliability between researchers, 

the inter-rater reliability, varies according to the number of researchers and whether they 

work in teams or individually (82, 83). In order to increase reliability, some studies used 

panel discussions after the identification of HPEs, and only verified situations as HPEs 

where consensus within groups of healthcare professionals and researchers was reached 

(68, 84-87). Even though a high inter-rater reliability might lead to better reproducibility of 

results, this does not show if all important HPEs were detected (88). Inter-rater reliability 

can be high and can still assess only a small proportion of the actual occurrences of HPEs. 

A systematic review on inter-rater reliability of case note reviews by Lilford et al. (2007) 

identified that explicit criteria on reporting forms increased inter-observer agreement 

compared to implicit criteria (88). Consequently, the dependence on subjective judgement 

can potentially be reduced by defining explicit criteria for a specific set of HPEs and HMEs, 

such as the described PSIs. 

Another vital part of the measurement method to identify HPEs, besides the influence of 

different reviewers, is the choice of denominator (72). The denominator is needed to 

express HPEs detected as a proportion of a relevant larger population. Various 

denominators have been used in studies to estimate medication errors: ‘drug order, doses, 

opportunities for errors, patients, nurses, reports and triggers’ (89), ‘patient days, number 
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of admissions and time periods’ (90), or no denominator at all in studies that simply report 

counts of HPEs (74, 89). The selection of younger patient populations with a lower 

prescription rate and fewer comorbidities, for example, might result in a reduced number 

of prescribed items per patient, hence less opportunity for HPEs and a potentially lower 

HPE prevalence. Depending on the objectives for the study it might be more relevant to 

detect the HPE prevalence per patient stay if the study focuses on risk for single patients in 

a hospital. In a study focussing on quality of prescribing of healthcare professionals, HPEs 

per prescribed item might be more appropriate (91). In incident report systems, the 

denominator is often unknown (74, 89). Results are normally presented in time frames, for 

instance errors reported within the last year because the denominator is not recorded (92).  

 

In sum, the method of data collection to measure HPEs affects estimates of prevalence in 

various ways (75, 79). The screening source, the subjectivity of the reviewer and the choice 

of denominator can impact prevalence estimates. This contributes to a lack of 

comparability of prevalence estimates as described in the review by Lewis et al. (2009) (72). 

 

2.3 Prevalence of hazardous prescribing 

This section provides an overview of studies estimating the overall prevalence of HPEs in 

primary care in the UK. There are relatively fewer studies that have estimated the 

prevalence of HPEs in primary care settings compared with secondary care settings (38, 

39). A recent systematic review by Assiri et al. (2018) summarised studies on medication 

errors and error related ADEs in primary care (93). No study in the systematic review 

estimated the overall prevalence of HPEs. Instead, the prevalence of specific types of HPE, 

such as PIMs for the elderly, drug-drug interactions or contraindications, was assessed. Out 

of the 46 studies around the world on HPEs included in the review, 37 reported PIMs in the 

elderly as described in section 2.1 (93). This restriction to elderly people did not represent 

the overall prevalence of HPEs. One of the limitations of the systematic review by Assiri et 

al. (2018) was that it excluded all studies where the numerator/denominator was not 

defined as errors per patient. To include studies using other denominators and to identify 

if any new studies were published since then for a UK population, an extended literature 

search in Medline and Embase was performed. Search terms included: ‘error’; ‘near miss’; 
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‘preventable adverse event’; AND ‘prescription’ ‘prescribe’; ‘medication order’; AND 

‘incidence’; ‘incident report’; ‘prevalence’; ’rate’; ‘epidemiology’; AND ‘UK’; ‘England’; AND 

‘primary care’; ‘primary healthcare’; ‘general practitioner’. After screening of the abstracts, 

only three studies reported the prevalence of HPEs for a general population in the UK’s 

primary care setting (87, 94, 95). None of these studies were included in the systematic 

review by Assiri et al. (2018). The studies by Shah et al. (2001) (94) and by Quinlan et al. 

(2002) (95) were carried out before the study period of the systematic review (2006-2015). 

Avery et al. (2012) was probably excluded because of a different choice of denominator 

(prescription items) (87). 

 

The study by Shah et al. (2001) analysed prescriptions from 23 physicians in three general 

practices (94). A research pharmacist reviewed 35145 prescription items retrospectively 

that were collected in a two month period. The prevalence of HPEs was estimated to be 

7.46% (CI 95% 7.2% to 7.8%), with a wide variation of HPE rates per general practice. 

Quinlan et al. (2002) used the incident report method to identify HPEs during a two week 

period (95). In 38 pharmacies, 60525 items were dispensed, and 0.69% of these items were 

reported as incidents by the pharmacist. The latter PRACTICE study assessed the prevalence 

of HPEs in 15 general practices (87). 1777 patients were examined with 6048 prescription 

items. HPEs were identified by a pharmacist using medical records and validated by a 

research panel containing a GP, a pharmacologist and three pharmacists. A prevalence of 

4.0% (CI 95% 3.5% to 4.5%) of prescription items was estimated for HPEs. 

 

The estimated prevalence of HPEs by Quinlan et al. (2002) (0.69%) was low (95), compared 

to that estimated by Sha et al. (2001) and Avery et al. (2012). In Quinlan et al. (2002), 

pharmacists completed report forms prospectively to document interventions they made 

when screening the prescriptions. As this was done in addition to their daily routine, a lack 

of time might have led the pharmacists to under-report HPEs. This is in accordance with 

previous findings [2.2] on the effect of incident report, which due to under-reporting does 

not qualify for the assessment of prevalence. Avery et al. (2012) is the only study of these 

three where medical records were included in the HPE identification process. Quinlan et al. 

(2002) and Shah et al. (2001) screened prescriptions without taking the medical records 

into account. According to previous sections, medical record review is the most appropriate 
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measurement method to identify HPEs [2.2]. Additionally, the PRACTICE study is the only 

study that validates the identified errors to reduce subjectivity of the results. Consequently, 

the most recent multi-centre PRACTICE study was assumed to be the most appropriate to 

mirror HPE prevalence in GP practices. 

 

Even though interpretation of prevalence estimates might have its limitations, multicentre 

evaluation of prescribing safety, such as by Avery et al. (2012), provide an overview of the 

level of HPEs in primary care (87). An HPE rate of 4% scaled up to the English population 

would result in almost 45 million HPEs per year based on the 1.12 billion prescriptions in 

England in 2019 (96). Even though 4% seems comparably low, the volume of prescription 

items in primary care makes HPEs a key safety challenge in England. 

 

2.4 Harm from hazardous prescribing 

This section describes consequences of hazardous prescribing and how these have been 

quantified in the published literature. A patient can experience health and non-health 

related consequences. These consequences can generate increased costs for the health 

system or decrease quality of life or patient satisfaction with the health service (30). Solely 

focusing on prevalence of HPEs has historically not been proven effective in increasing 

medication safety in healthcare settings (97-100). The majority of HPEs do not cause harm, 

and a focus on HPEs alone does not reflect the burden appropriately (100). A measurement 

of harm related to hazardous prescribing is therefore required. 

 

The relationship between an HPE and harm to a patient, such as error related ADEs, can be 

difficult to estimate due to ethical and methodological challenges. With respect to 

methodological challenges, large sample sizes are required to estimate the relationship 

prospectively with sufficient power because the proportion of HPEs that lead to ADEs is 

low. In addition, depending on the pathology of the HPE, there can be a delay between the 

occurrence of an HPE and the observed health outcome, which can increase the required 

study follow-up period in prospective designs. With respect to ethical challenges, follow-

up of patients, where potentially harmful HPEs are identified, with ethical obligations to 

intervene, are not an option. Therefore, attempts have been made to assess potential harm 
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from HPEs by more indirect measures. One way is to work back from ADEs. The assessment 

of causality and preventability of ADEs can estimate preventability of drug related 

morbidity (PDRM) [2.4.1]. Another way is to estimate the harm that could potentially occur 

from an HPE. The potential harm can be elicited by experts or observational data could be 

used to link HPEs with outcomes retrospectively [2.4.2]. 

 

2.4.1 Assessment of preventability of drug related harm 

The first measure to estimate harm from HPEs was the retrospective assessment of PDRM. 

PDRM can be used as a proxy to identify the burden of HPEs because medication error 

related harm is considered preventable. ADEs detected are analysed if they could be caused 

by the HPE (causality) and if the harm outcome would have been preventable 

(preventability).  

 

Causality assessment 

Important factors in causality assessment are (i) temporal relationship of drug use and the 

ADE, (ii) physiological plausibility, (iii) de-challenge, and (iv) re-challenge (101).  

De-challenge is the effect of removing the drug exposure on the ADE presence, such as a 

rash that disappears after drug is stopped. Re-challenge is the effect of restarting the drug 

on the ADE presence, such as the restart of the drug causes the rash again.  

 

Different tools or algorithms can be used to estimate the probability that the drug 

contributed to the ADE (102-106). A systematic review of causality assessments 

distinguished between expert judgement, algorithms and Bayesian approaches (107). This 

section briefly explained these assessment methods with an example and subsequently 

discussed strengths and limitations of these methods.  

 

An example for expert judgement is the criteria set by the WHO, called the WHO-UMC 

System for Standardised Case Causality Assessment, that aims to classify the likelihood of 

causality between an ADE and a drug (108). The WHO-UMC system characterises the 

likelihood of causality on a five-category scale: probable, possible, unlikely, conditional or 

unclassifiable causality. The terms ‘conditional and unclassifiable’ describe cases where 
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more information is required to assess the probability of causality of the ADE. Another 

common causality assessment tool was the algorithm developed by Naranjo et al. (1981) 

that uses a weighted scoring system based on ten questions about the ADE and was found 

to be valid and reliable (106). The score characterises the likelihood of causality on a four-

category scale: definite, probable, possible or doubtful causality. An example of a Bayesian 

assessment is the Bayesian Adverse Reaction Diagnostic Instrument (BARDI) (109). The tool 

calculates the probability of causation by combining clinical data (prior probability) and 

case-specific information. Expert judgement is considered the least reliable method to 

assess causality (107). Compared with the WHO-UMC assessment criteria, the inter-rater 

reliability with the Naranjo algorithm score was found to be the highest (110). Potential 

reasons could be the requirement to include personal experience when using the WHO 

scale that increases subjectivity of the assessment. The authors of the review by Agbabiaka 

et al. (2017) consider both algorithm-based and expert judgement-based tools as 

unreliable on the basis of subjectivity of the results. Inconsistent results can be a cause of 

different levels of clinical experience, profession or different interpretations of categories 

in e.g., the WHO-UMC system or of questions in the Naranjo algorithm (111). For example, 

nurses were found to identify fewer ADEs as ‘certain’ or ‘definitely’ associated with the 

drug, compared with physicians and pharmacists in the Naranjo and the WHO-UMC tool 

(110). Bayesian approaches were considered more reliable because they do not rely on 

expert input alone. However, they require a substantial time commitment, resources, 

complex calculations and depend on the availability and quality of available 

epidemiological data for the prior probability (101, 107).  

 

In summary, causality assessment between an ADE and a drug can be difficult and there 

might still be other causes for the experienced harm (54, 112, 113). None of the causality 

assessment methods were considered to provide reliable, reproducible estimates on the 

probability of causality due to the ‘unavoidable subjectivity of judgements’ (107). 
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Preventability assessment 

Different tools can be used to estimate preventability of ADEs. A detailed description of 

different type of tools were reported by Hakkarainen et al. (2012) (111). In this section, 

only the two most common tools are described. According to a systematic review on 

preventable drug related ADEs 59% of studies assessed preventability using the method 

proposed by Hallas et al. (1989) or by Schumock et al. (1992) (114, 115). Hallas et al. (1990) 

proposed specific criteria to group ADEs as definitely, possibly or not preventable. An ADE 

was definitely avoidable for example, if ‘the drug event was due to a drug treatment 

procedure inconsistent with present-day knowledge of good medical practice or was clearly 

unrealistic, taking the known circumstances into account’. Schumock et al. (1992) propose 

and algorithm to determine whether the ADE was preventable or not. The algorithm 

included statements on contraindications, drug-drug interactions, inappropriate dosing or 

monitoring, not considering recorded allergies to the prescribed drug, toxic serum drug 

concentration and treatment compliance. An ADE was considered preventable if one of the 

statements was confirmed. 

 

Limitations of tools previously used to assess preventability were similar to those identified 

for causality assessment (116) and were mainly related to reliability of the assessment 

methods (111). 

 

Assessing preventable drug related medication harm 

Overall, estimating causality and preventability is a complex process that requires detailed 

information on the ADE and the patient, and decisions have to be made case by case. For 

large numbers of ADEs, this is a time consuming and costly process that is only as good as 

the available data (101, 107). Comparability of the results is often not given due to the 

dependence on the type of assessor and the absence of a standardised method to establish 

preventability (111) or causality (110) that resulted in strong variations of reliability of 

studies. So far there is no gold standard to generate comparable estimates on causality and 

preventability of ADEs (101, 111).  
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Prevalence of preventable drug related harm 

Several systematic literature reviews and meta-analyses on preventable harm were 

published recently. Panagioti et al. (2019) reported a systematic review and meta-analysis 

of preventability of any type of patient harm, not specifically PDRM (117, 118). Hodkinson 

et al. (2020) reported a systematic review and meta-analysis of PDRM (116). Alquena et al. 

(2020) reported a systematic review of patient harm from medication errors at the 

transition of care from secondary care to primary care (119). Overall, preventable harm 

occurred in 6% (95% CI 5% to 6%) of patients (118). Half of these were drug related, hence 

a consequence of a HPE (37, 116). The meta-analysis by Hodkinson et al. (2020) found a 3% 

(95% CI 2 to 4) prevalence of PDRM. Of these 26% (95% CI 15% to 37%) were severe or life 

threatening. The prevalence of PDRM increased with age and was higher in secondary care 

settings than in primary care. 

 

Table 2.2: Overview of studies assessing the probability of drug related harm outcomes and 

the percentage of these that are considered definitely or possibly preventable in a UK setting 

Study Harm outcome measure Sample 

size 

Total 

harm (%) 

Percentage of harm outcomes 

considered preventable (%)  

Definitely 

preventablef 

Possibly 

preventableg 

Howard  

2003 (37) 

Drug related hospital 

admissions 

4093 6.5 4.3a/67.0c N/A 

Morris  

2004 (120) 

Potentially drug related 

morbidity in general practice 

49658 N/A 1.0b N/A 

Pirmohamed 

2004 (54) 

Hospital admissions due to 

ADR 

18820 6.5 9.0c 63.0c 

Davies  

2009 (121) 

ADRs in hospital inpatients 3322 15.8 6.4c 46.9c 

Davies  

2010 (112) 

Re-admission to hospital due 

to ADR 

290 20.8 14.3d 42.9d 

Gallagher  

2012 (113) 

Admission to a children’s 

hospital due to ADR 

6821 2.9 7.6e 30.2e 

Tangiisuran  

2012 (122) 

ADRs during patients stay at 

elderly care wards  

560 13.2 69.0h N/A 

Denominator for: aall hospital admissions, ball primary care medical records, ctotal number of ADRs, dall ADR related 

readmissions, eall ADR related admissions; f’The drug event was due to a drug treatment procedure inconsistent with 

present day knowledge of good medical practice or was clearly unrealistic, taking the known circumstances into 

account.’(114), g‘The prescription was not erroneous, but the drug event could have been avoided by an effort exceeding 

the obligatory demands.’(114), hall serious and life threatening ADRs; ADE: adverse drug event; ADR: adverse drug 

reaction 
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From the identified studies in the three systematic reviews, this literature review reports 

the studies from a UK setting (n=7) in detail. The studies assessed preventability of ADEs 

(37, 120) or adverse drug reactions (ADRs) (54, 112, 121-123) (Table 2.2). The harm 

outcomes are detected in a secondary or primary care setting, and both relate to 

medications or drugs prescribed in primary care. A UK study by Parekh et al. (2018) was not 

included because it included medication related harm as a result of non-adherence, and 

harm from medication errors was not reported transparently (124). 

 

ADEs are ‘any undesirable event experienced by a person while they are having a drug or 

any other treatment or intervention, regardless of whether or not the event is suspected 

to be related to or caused by the drug, treatment or intervention’ (125). In contrast, ADRs 

imply a causal relation between drug and occurrence. The WHO has defined an ADR ‘as a 

response to a drug that is noxious and unintended and occurs at doses normally used in 

man for prophylaxis, diagnosis, or therapy of disease or modification of physiological 

function’ (126). As a result, all ADR are considered ADEs, but not every ADE is an ADR. 

 

Howard et al. (2003) found 67% of ADEs to be preventable, resulting in 4.3% of all 

admissions to be preventable (37). Pirmohamed et al. (2004) found similar results for ADRs 

with 72% of ADRs being potentially or definitely preventable (54). Comparability with other 

estimates as seen in Table 2.2 is difficult due to the diversity of chosen denominators. For 

instance, Morris et al. (2004) (120) defined the denominator as all primary care medical 

records in contrast to Pirmohamed et al. (2004) and Howard et al. (2003) that used the 

total number of ADRs.  

 

2.4.2 Assessment potential severity of hazardous prescribing  

The second measure to estimate harm from HPEs was the assessment of potential future 

harm. In this method, the assumed severity of HPEs is estimated. A systematic review by 

Garfield et al. (2013) on severity assessment methods identified various different 

assessment tools (127). In 17 studies performed in the UK identified in the review by 

Garfield et al. (2013), 14 different tools were used (68, 128-143). Severity scales in these 

tools ranged from two to eight severity levels or were continuous scales. All UK studies, 
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except Webbe et al. (2007), included ‘minor’, ‘insignificant’ or ‘low’ harm as severity levels 

of HPEs. Webbe et al. (2007) excluded minor HPEs in the severity assessment (134). Two 

studies used a detailed lists of what kind of HPE belonged to which severity level (131, 133). 

Overall, methods were found to produce highly variable severity ratings, reliability of the 

tools was often low, and validity in other settings were not assessed (127, 144). 

 

Potential severity of HPEs in the UK 

The PRACTICE study is the only UK study rating severity of HPEs in primary care GP practices 

(87). The median severity, evaluated using the visual continuous scale (1-10) by Dean et al. 

(1999), was 3.0 for HPEs. Consequently, most errors are of minor (score of 0-2.9) to 

moderate severity (score of 3-7). The CHUMS study in nursing homes uses the same 

severity scale as the PRACTICE study, which allows comparability of severity results to some 

extent (145). Nevertheless, ratings still depend on the qualification, training and number 

of assessors and are therefore not directly comparable. In accordance with findings from 

the PRACTICE study, most HPEs in the CHUMS study are judged to be minor to moderate 

with a mean severity score of 2.6 compared to a mean severity score of 3.5 in the PRACTICE 

study. Whereas the highest score in the CHUMS study was 6.6, the highest rating in the 

PRACTICE study was 8.6. This may imply that, on average, HPEs in general practices are 

more severe than in care homes. 

 

2.5 Economic impact of hazardous prescribing 

This section describes how hazardous prescribing can affect patient outcomes and costs. A 

systematic review by Walsh et al. (2017) on the economic impact of medication errors, 

updated by Elliott et al. (2018), found evidence assessing patient outcomes and healthcare 

resource use associated with HPEs to be scarce (31, 146).  

 

Health related patient outcomes 

Patient health can be impacted by HPE related ADEs, lack of treatment efficacy and 

suboptimal patient adherences (23). These can directly affect patient outcomes, such as 

health status, health related quality of life and death. Changes in these outcomes can be 
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measured in life-years gained or in QALYs. QALYs describe not only the quantity of life but 

also the quality (147). Health outcomes could also be measured indirectly as an increase in 

the number of hospital admissions, or specific ADEs related to the HPE, such as strokes or 

GI bleeding events. Only few studies reported direct measures of patient outcomes 

associated with HPEs (31).  

 

One study measured health related quality of life dependent on exposure to PIMs in Ireland 

(2017) (148). The exposure to PIMs as defined by the STOPP and Beers criteria and was 

assessed using pharmacy claims data. The questionnaire was sent by post and results were 

available for 663 (98.4%) patients. The study identified a significant reduction in the EQ-5D 

utility for patients with more than two PIMs compared with patients without PIMs (beta-

coefficient -0.11, 95% CI -0.16 to -0.06). While this shows that the use of more than one 

PIM might be independently associated with decreased utility, this does not actually link 

HPEs and patient outcomes. The negative association between EQ-5D and PIM could be 

confounded by disease severity. 

 

Studies linking HPEs with patient outcomes either relied on expert elicitation or focused on 

specific HPE types. Karnon et al. (2009) elicited QALY decrements associated with HPEs by 

severity level. For significant, serious, severe or life-threatening preventable ADEs, 

hypothetical QALY decrements and effect durations were estimated in discussions within 

the research team. A similar approach was taken by Yao et al. (2012). This form of using 

QALYs attached to HPEs introduces a high level of uncertainty around the estimates (31). 

Other studies focused on specific type of HPEs to estimate patient outcomes (149-152). If 

specific types of HPEs are used, the ADEs associated with these can be linked with QALY 

estimates from the literature. An ADE associated with a type of HPE known to increase the 

risk of GI bleeding events, can be linked directly to a utility. Evidence on quality of life 

decrements associated with GI bleeding event incidence can then be used instead of quality 

of life estimate of HPEs in general. 
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Costs associated with ADEs 

This section starts with a description of what information an ideal study assessing cost of 

HPEs would contain, followed by a brief overview of the existing evidence that provides 

this information. The systematic review on the economic impact of medication errors by 

Walsh et al. (2017) provides a detailed overview of how resource use was estimated when 

assessing the economic impact of HPEs. This was further discussed in the EEPRU report by 

Elliott et al. (2018) (31). Details of studies reporting cost of HPEs are therefore not be 

repeated here. This section ends with the description of an example study that aimed to 

estimate the cost of medication errors in the UK to demonstrate how studies deal with the 

sparsity of data available on the economic impact of HPEs. 

 

HPEs that cause ADEs are likely to have economic consequences, due to an increase of the 

use of health services as a result of, e.g., an increase in the number of hospital admissions 

(23). The resource use associated with HPEs is dependent on the incidence of HPEs and the 

related health services required to manage ADEs. Ideally, detailed information on (i) how 

many HPEs reach the patient that are not intercepted before the patient takes the 

medication, (ii) how many of these lead to ADEs that require additional health services, and 

(iii) what costs these generate are available. No studies were identified that provided the 

ideally available information. Cost had to be attached to intermediate outcomes, such as 

preventable ADEs or severity levels of ADEs. Costs were most often assessed for generic 

outcomes related to HPEs, e.g., the number of hospitalisations and/or medication related 

costs (146, 153). However, no standardised approach to the costs of HPEs was apparent. 

The EEPRU report evaluated all these studies as moderate quality evidence stating that 

there is a lack of good quality data. A review on the methods of calculating cost of HPEs 

came to a similar conclusion (153).  

 

In a UK setting, cost estimates exist on some specific error types. Administration errors in 

anaesthesia (154), prescribing errors related to inhaler prescriptions (155), costs of 

dispensed PIMs in the elderly (57), or preventable ADEs at hospital admission state (156). 

However, these estimates usually represent a specific time frame or setting. They either do 

not report a cost per error (57, 154) or focus solely on medication cost not including the 

cost required to manage ADEs (155).  
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The EEPRU report aimed to estimate the costs associated with HPEs in the UK overall. Due 

to lack of data linking medication errors directly with ADEs, the resource use associated 

with medication errors in primary care had to rely on literature around preventable ADEs 

as described in section 2.4.1. Incidence of hospital admissions due to PDRM, for instance, 

were based on results from Pirmohamed et al. (2004) (54) and Howard et al. (2003) (37) 

[Table 2.2]. From Pirmohamed et al. (2004) the average number of days at hospital in 

patients with preventable ADEs was compared with a national average of length of hospital 

stay to estimate the additional cost of medication errors. Results on the healthcare cost to 

the NHS related to HPEs show a high level of uncertainty. The authors explain this 

uncertainty with the sparse data available. In order to estimate the healthcare costs 

associated with HPEs in more detail, a direct link between HPEs and ADE related resource 

use is required.  

 

2.6 Non-health impact of hazardous prescribing 

The evidence described in section 2.5 focused on health related consequences and 

associated costs of HPEs. As a result, the impact of HPEs is restricted to its impact on health 

related outcomes. Expressing the impact of reducing HPE rates on patient outcomes solely 

by its effect on health status, measured in QALYs, might underestimates the overall value 

of reducing HPE rates. Improving safety by reducing HPE rates is associated with benefits 

other than maximising health (157). Patients might be impacted by other aspects of unsafe 

prescribing than harm from ADEs. Decision makers not only consider impact on these 

health outcomes but also enhancements of patient experience, patient empowerment and 

improvement of public trust and confidence as outcomes (158). Trust issues as a 

consequence of HPEs in the health system have been reported (159-161). Patients need to 

trust healthcare professionals with personal and potentially intimate problems and trust 

the competencies of the physician (162). Experiencing an ADE due to a HPE can reduce trust 

in the decisions of the prescriber. Trust can be undermined towards the healthcare 

provider, such as the GP, or the healthcare system itself. Consequences of undermining 

trust could lead to patients not utilizing required healthcare services or not adhering to the 

proposed treatment (163-165). A meta-analysis of the effect of trust in the healthcare 

system on health outcomes reported that increased trust was associated with healthier 
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behaviours, an increased quality of life and satisfaction with the treatment with less severe 

symptoms (166). However, contributors to diminishing trust of patients have not been 

investigated widely (167) and evidence on regaining trust after disclosure of mistakes is 

sparse (168).  

 

Estimations of consequences for the healthcare system caused by HPEs so far did not 

include decreased trust in the healthcare system or other non-health outcomes related to 

improved safety (169, 170). The effect of trust on health outcomes and its association 

needs to be investigated further because evidence so far is weak or of low quality (166, 

167, 169, 171). Other potentially relevant aspects of safety improvements that require 

further research, were assessed by Steuten et al. (2010) (157). The authors identified 

specific attributes patients consider relevant in addition to the prevalence, health status 

and costs associated with prevention of HPEs and safety incidences in general. 

Preventability of harm, dread and controllability, as well as trust in the intervention were 

identified as additional attributes.  

 

A literature review by Perry-Duxbury et al. (2019) of valuation methods in safety identified 

two methods used to estimate the value of safety in health (170): (i) discrete choice 

experiments (DCEs) and (ii) contingent evaluation. Stated preference methods, such as 

DCEs, are increasingly used in economic evaluations to estimate patient preferences (172, 

173). DCEs ask patients to choose between alternative hypothetical scenarios that differ in 

specific attributes. A patient could be asked to choose between scenarios with different 

levels of attributes, e.g., health related consequences, preventability of incidences and 

trust in the safety system as identified by Steuten et al. (2010). In DCEs, preferences can be 

revealed without explicitly asking for the preferred levels for each attribute. Contingent 

valuation surveys also allow to identify the monetary valuation of effects in healthcare 

(174, 175). In this stated preference model, patients can express their preference for 

hypothetical scenarios in monetary values. Survey questions directly ask the patient to 

state the willingness to pay (WTP) for a non-monetary good, such as safety improvements. 

In comparison, DCEs indirectly assess patient’s valuation by analysing the choices patients 

made between different scenarios.  
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Both methods require a clear definition of what is being valued, which can be difficult with 

regards to improvements in safety. The review by Perry-Duxbury (2019) found that studies 

valuating safety defined safety as a reduction in event risks or reduction in event cases. The 

studies did not include the feeling of safety or trust in the definition. The authors also report 

the challenges in designing and analysing DCEs and contingent valuation surveys and 

highlight the need for a more standardised approach to be able to compare results among 

studies. This could involve more standardised definitions of safety, guidance on the order 

of questions, relevant attributes and the level of information provided. A challenge 

particularly for contingent valuation was embedding effects with regards to safety 

interventions (176). Asking how much a participant is willing to pay for a pharmacist service 

that reduces the number of HPEs implicitly asks their WTP for the pharmacist service, a 

reduction of the probability of getting a hazardous prescription and a reduction in the risk 

of ADEs from HPEs. This was for example done in a Malaysian study that found 67% of 100 

participants to be willing to pay for a pharmacist service and estimated a WTP of ten 

Malaysian Ringgit equivalent to £1.42 (177). A challenge reported for contingent valuation 

methods was that participants are often willing to pay the same for the combination of all 

these different effects, as for them individually (170, 178). Overall, studies valuating safety 

in healthcare are rare and so far, no studies used the available methods to assess the value 

of non-health benefits of safety using preference-based methods. 

 

2.7 Overview of interventions aiming to reduce hazardous prescribing 

This section provides a brief overview of the type of interventions that were developed to 

reduce hazardous prescribing in primary care with examples of how these interventions 

are constituted. Subsequently, the effectiveness of interventions and aspects contributing 

to varying results are briefly described. The aim is to create an understanding of existing 

interventions, before section 2.8 reports a systematic review of the literature around 

economic evaluations of interventions aiming to reduce hazardous prescribing. 

Interventions were grouped as (i) educational interventions, (ii) computerized alert 

systems, (iii) electronic audit and feedback interventions (e-A&F), (iv) pharmacist-led 

interventions, and (v) multifaceted interventions. 
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Educational interventions 

Educational interventions provide interactive workshops, provision of educational material 

with audit data or practice visits to educate patients, carers or healthcare professionals 

(179). An example of an educational intervention was developed by Pimlott et al. (2003) 

that discusses the results of an audit of proton pump inhibitor (PPI) use with GPs to reduce 

inappropriate prescribing of these medications (180, 181). Another interventions provided 

audit data via mail aiming to reduce prescribing of benzodiazepines (181).  

 

Computerised alert systems 

Computerised alert systems utilize patient information, e.g., from electronic health 

records, and provide advice to the healthcare professional during encounters with the 

patient. The given advice can be variable, for example, on treatment alternatives, 

monitoring reminders or dosing suggestions, and is usually based on some form of best 

practice as proposed by guidelines or clinician consensus. Computerised alert systems are 

used at the point of patient care and alerts are flagged during the consultation.  

 

Electronic audit and feedback interventions 

In contrast to computerised alert systems that are used at the point of patient care, e-A&F 

are delivered outside of clinical consultations (182). Dealing with the computerised alert 

system during consultations can interrupt the workflow and can be time consuming. This 

can cause overriding of the alerts without considering them and reduces face-to-face time 

with the patient (183). A study by Gurwitz et al. (2014) investigated an e-A&F intervention 

that informed the GP about discharge medications of patients discharged from hospital 

including a medication review and an alert system to schedule a GP follow-up visit (184). 

Another e-A&F intervention screened medical records of patients with mild hypertension 

and displayed suggestions for optimal antihypertensive therapy based on the relevant 

guidelines (185).  
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Pharmacist-led interventions 

Pharmacist-led interventions propose new roles of pharmacists to increase prescribing 

safety (179, 186-189). Medication review by the pharmacist is the most common 

pharmacist-led intervention (179, 186). Feedback can be given to either the patient with a 

subsequent consultation with the prescriber (190-192) or to the prescriber with 

subsequent information of the patient on agreed medication changes (193-196). The 

consultation with the prescriber can be oral (192), in written form (196) or both (193, 195, 

197). Most pharmacist-led studies used defined sets of HPEs by Beers [2.1] (198, 199) or 

the medication appropriateness index criteria (MAI) criteria (192-195, 197-199) to guide 

medication reviews and measure the effect of the intervention.  

 

Multifaceted interventions 

Multifaceted interventions combine aspects of multiple intervention types. For example, 

in addition to a medication review by pharmacists, some studies included further education 

of the patient by the pharmacist on adherence or the care plan (193-195). Another example 

of a multifaceted intervention is PINCER that combines aspects of an e-A&F intervention in 

form of an audit report and a pharmacist-led medication review (44, 45). A software creates 

a report that highlights patients with HPEs by screening electronic patient records from the 

practices. The pharmacist intervention comprises a review of the medications of patients 

flagged in the report, meetings with GPs to discuss results of the HPE report and to agree 

actions required to solve the prescribing hazards in the report. 

 

Effectiveness of interventions aiming to reduce hazardous prescribing 

A large number of reviews has recently been published that compare the design and 

effectiveness of interventions preventing hazardous prescribing in primary care (200). 

Evidence on effectiveness of interventions aiming to reduce hazardous prescribing has 

been mixed (179, 186, 187, 201-203). Aspects contributing to this mixed effect were often 

the chosen outcome measures or challenges associated with the specific type of 

intervention.  
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Unspecific outcome measures that can be influenced by various other factors made it 

difficult to identify differences attributable to the intervention types (204). The systematic 

review and meta-analysis of interventions targeting medication errors in primary care by 

Khalil et al. (2017) reported that interventions often showed an improvement on process 

indicators, such as HPE rates or medication changes; however, changes in hospital 

admissions or mortality were small or not statistically significant (187). The authors 

reported that this is a result of small sample sizes and that further research is required with 

larger studies with higher quality study designs that test patient related outcomes of 

interventions aiming to reduce HPEs. A focus on more specific patient outcomes related to 

the prescribing hazards, such as drug related admissions instead of any admission, could 

be beneficial to demonstrate the impact of the interventions (204).  

 

The challenges associated with implementing different types of interventions could also be 

contributing to the mixed effectiveness of interventions. Educational interventions showed 

varying effectiveness due to their heterogeneity and different outcome measures that 

often focused on testing prescribing skills rather than measuring HPEs avoided in routine 

care (205, 206). Computerised alert systems and e-A&F were found effective in reducing 

medication errors in only half of the interventions (202). Multiple studies investigated the 

challenges with implementing these types of interventions and found that embedding the 

interventions in existing routine care, as well as acceptance by users are key factors 

contributing to the varying effectiveness (207-209). Most effective were computerised 

alert systems and e-A&F interventions that focus on a limited number of hazards and clearly 

define these (202). Pharmacist-led interventions demonstrated effectiveness only in a few 

studies and reviews found the quality of evidence to be low (179, 186). Communication 

and integrating pharmacists into multi-disciplinary teams were reported as important 

factors for effective pharmacist-led interventions (186, 210). Multifaceted interventions 

that included aspects of multiple intervention types were found to be most effective in 

reducing hazardous prescribing (179, 186, 203). An RCT comparing the multifaceted 

intervention PINCER that combines aspects of e-A&F and pharmacist-led interventions with 

an intervention only providing the e-A&F aspect of the PINCER intervention identified 

PINCER as the more effective and cost-effective strategy (45).  
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Overall, effectiveness of interventions does not only vary between different types of 

interventions but also within these types. This chapter identified key aspects that were 

associated with beneficial interventions in primary care: (i) combining multiple intervention 

types; (ii) pharmacist-led services can contribute to the effectiveness of information 

technology interventions, e.g., clinical alert systems and e-A&F; (iii) outcome measures 

should be specific to the hazards the intervention aims to reduce. 

 

2.8 Systematic review of economic evaluations of interventions aiming to reduce 

hazardous prescribing      

This section begins with an overview of economic evaluations in general and ends with a 

detailed review of the existing evidence on cost-effectiveness of interventions aiming to 

reduce hazardous prescribing. 

 

Economic evaluations in healthcare 

Economic evidence is required to inform healthcare resource allocation decisions at the 

population-level. Economic evaluations typically compare alternative strategies in relation 

to costs and patient outcomes (4). The European Council highlighted the need for evidence 

especially on the cost-effectiveness of interventions in patient safety (16). Different types 

of economic evaluations exist. Cost-benefit analysis measures the benefits in monetary 

units. Cost-effectiveness analysis (CEA) evaluates the costs and health outcomes of 

interventions, where health outcomes are expressed as natural units. Results are presented 

as cost per unit of health outcome gained (4). A special case of CEAs are cost-utility analyses 

(CUA). The health outcome is described as a preference-based valuation of outcome, such 

as quality of life. QALYs can be used as a measure to assess the quality of life. On a scale 

from zero to one quality of life scores can be used to weight each year of life remaining for 

a patient in a specific health state (125). The use of QALYs is encouraged by decision maker 

bodies because it enables comparison across diseases and type of interventions (3). The 

CUA identifies the QALY gain by the intervention and the associated opportunity cost. If the 

intervention is less costly and more effective than the comparator, the intervention is 

considered to be the dominant strategy. A second possibility for cost-effectiveness is to 
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prove that the cost of the QALY gain is reasonable. In CEAs assessing cost-effectiveness of 

an intervention compared with standard care, this can be shown by the extra costs per 

additional QALY generated by the intervention, the incremental cost-effectiveness ratio 

(ICER). Decision makers, such as NICE, provide a threshold for this ICER to define the 

maximum WTP for each unit of effect (QALY) generated. The ICER enables decision makers 

to compare different interventions and to decide how to allocate resources. NICE 

recommends treatments for use in the NHS if the ICER is not greater than £20000 - 30000 

per QALY (3).  

 

Economic evaluations of interventions reducing hazardous prescribing 

A systematic review was conducted by the author of this thesis alone to identify existing 

economic evaluations that assessed the cost-effectiveness of interventions designed to 

reduce medication errors. The aim of this review was to inform the de novo economic 

evaluation of SMASH in how to incorporate medication errors into the model. To meet the 

aim, the following objectives were set:  

• Objective One: identify all published model-based economic evaluations of medication 

errors; 

• Objective Two: compare models on the basis of structural assumptions to incorporate 

medication errors;  

• Objective Three: compare approaches on the basis of how they incorporate harm from 

medication errors. 

 

Search strategy 

Inclusion criteria for the systematic review were developed to include all economic 

evaluations where different levels of medication error rates were modelled. This included 

medication errors in the whole medication use process: (i) prescribing errors, (ii) dispensing 

errors, (iii) administration errors, and (iv) monitoring errors. A study was included if the 

economic evaluation analysed comparators with different medication error rates using a 

decision-analytical model. The focus on decision-analytical models was based on the 

importance of these for the conceptualisation of a de novo model based economic 

evaluation. Articles were eligible if they were written in English or German and were full 



  

 
51 

 

text publications. Search databases were EMBASE and Medline because they are the only 

recently updated databases recommended by NICE and the Cochrane handbook (211). The 

NHS EED database stopped being updated in 2015 and was therefore not be used for this 

review. For the systematic review the databases Medline (1946 to December week 4 2019) 

and Embase (1974 to 3 January 2019) were searched on 4 January 2019.  

 

To identify key concepts for the review search strategy, it was planned to use the PICO 

criteria (212) as recommended by NICE (213). The main concepts were based on adapted 

PICO-S criteria (Population-Intervention/exposure-Comparator-Outcome-Study type). The 

concept of population and comparator were not prespecified because they were not 

relevant in this search. The search strategy was based on search terms for the concepts: (i) 

Intervention/Exposure: ‘Medication error’; (ii) study type I: ‘decision-analytical model’; (iii) 

Study type II: ‘Health economics’. The focus of the review was on the study design and 

therefore two concepts to precisely identify the study type of interest, which was economic 

evaluations based on decision-analytic models, were chosen. The search terms for each of 

the concepts consisted of free-text and index terms. Search terms for concept (i), 

medication error, consisted of a search strategy previously used by Elliott et al. (2018) (31) 

and Walsh et al. (2017) (146) with additional use of index terms appropriate for each 

database and free text search on hazardous prescribing. For concept (ii) ‘decision-analytic 

model’, a keyword list previously used in NICE guidelines was applied (214, 215). Search 

terms for concept (iii) ‘Health economics’ were combined from the Centre for Reviews and 

Dissemination (216) as suggested by NICE (213) and from previous NICE guidelines that 

used an identical search strategy for ‘health economics’ (214, 215, 217). Search terms for 

each category can be found in Appendix A. 

 

Results of systematic literature review 

The search based on the search terms for ‘medication error’ AND ‘decision-analytic model’ 

AND ‘health economics’ found 368 articles after excluding duplicates, conference abstracts, 

and non-English or non-German articles. A flowchart of the review process is presented in 

Figure 2.1. After the articles were screened by the author of this thesis, 13 studies were 

identified that fulfilled the inclusion criteria (149-151, 156, 218-226). 
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Figure 2.1: Flowchart of economic evaluations included in the systematic review 

 

 

Table 2.3 summarises study characteristics from full text screening. Most economic 

evaluations investigated interventions in secondary care settings. Only Elliott et al. (2013), 

Forrester et al. (2014), Foster et al. (2018) and Moriarty et al. (2019) (4 out of 13) looked at 

medication errors in primary care. The majority of studies were from the US (4 out of 13) 

or the UK (4 out of 13). Intervention types were clinical alert systems (218, 222, 225), 

pharmacist interventions (219, 221) or multifaceted interventions (149, 156). Two studies 

looked at the effect of hypothetical interventions effecting medication error rates (151, 

224). Roselli et al. (2014) and Forster et al. (2018) compare different drug administration 

processes and Maviglia et al. (2014) compared bar-coding-based dispensing with standard 

drug dispensing methods. In contrast to these studies looking at interventions or 

hypothetical interventions that aim to reduce medication errors, Samp et al. (2014) and 

Moriarty et al. (2019) investigated the difference between medication error and no 

medication error. The majority of economic evaluations used a decision tree (8 out of 13). 

State-transition models were used in only three studies (149-151). In the following sections, 

the identified studies are compared with regards to structural assumptions (i) made to 

incorporate medication errors [Objective Two], (ii) on how harm from medication errors 

was linked with health outcomes and costs [Objective Three], or (iii) on evidence on 

robustness of the results to assumptions around the consequences of medication errors.
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Table 2.3: Study characteristics of economic evaluations identified in the review 

Reference Setting 

Type of 

economic 

analysis 

Perspective 

of cost 

Intervention under investigation and 

comparators 
Type of model 

Error type and subdivision 

categories if any 
Result measure 

Elliott 

2013 (149) 

Primary 

care, UK 

CUA Healthcare 

provider 

Pharmacist-led IT intervention vs. 

simple feedback 

Two stage model 

decision tree and 

Markov model 

Prescribing, monitoring 

(pre-defined set) 

Incremental 

cost per QALY 

Forrester 

2014 (218) 

Primary 

care, US 

CEA Healthcare 

provider 

Electronic prescribing vs. hand 

prescribing 

Decision tree Prescribing (clinical or 

administrative error) 

Incremental 

cost per error 

or per ADE 

Forster 

2018 (150) 

Primary 

care, UK 

CUA Healthcare 

provider 

Population with no handling errors vs 

current inhaler 1 vs current inhaler 2 

Two state Markov 

model 

Administration (one 

specific error) 

Incremental 

cost per QALY  

Ghatnekar 

2013 (219) 

Secondary 

care, 

Sweden 

CUA Healthcare 

provider 

Multi-disciplinary team model for (i) 

review process at admission; or (ii) 

discharge report vs current practice 

Decision tree Any medication error Incremental 

cost per QALY 

Karnon 

2009 (156) 

Secondary 

care, UK 

CUA Healthcare 

provider 

5 pharmacist-led IT medicines 

reconciliation interventions vs. standard 

care 

Decision tree Any medication error 

(error due to omission, 

commission or allergies) 

Incremental 

cost per QALY 

Maviglia 

2007 (220) 

Secondary 

care, US 

CA Healthcare 

provider 

Bar-code assisted medication-

dispensing vs normal dispensing 

Decision tree Dispensing  Net costa  

Moriarty 

2019 (151) 

Primary 

care, Ireland 

CUA Healthcare 

provider 

Potentially inappropriate prescribing 

versus appropriate prescribing 

Markov model Prescribing error (pre-

defined set) 

Incremental 

cost per QALY 
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Reference Setting 

Type of 

economic 

analysis 

Perspective 

of cost 

Intervention under investigation and 

comparators 
Type of model 

Error type and subdivision 

categories if any 
Result measure 

Nerich 

2013 (221) 

Secondary 

care, France 

CA Healthcare 

provider 

Pharmaceutical analysis, vs no 

pharmacist involvement 

Decision tree Prescribing (in 

antineoplastic drugs) 

Net cost a 

Nuckols 

2015 (222) 

Secondary 

care, US 

CUA Societal 

perspective 

CPOE vs paper ordering Decision tree Any medication error Cost and QALYs 

gained 

Rosselli 

2014 (223) 

Secondary 

care, 

Colombia 

CC Healthcare 

provider 

4 drug administration systems Decision tree Administration (only with 

dopamine) 

Errors leading 

to harm, errors 

causing death 

Samp  

2014 (224) 

Secondary 

care, US 

CC Healthcare 

provider 

Medication error vs. no medication 

error 

Decision tree Any medication error Cost per error 

Westbrook 

2015 (225) 

Secondary 

care, 

Australia 

CEA Healthcare 

provider 

Electronic medication management 

system vs paper-based prescribing 

Decision tree Prescribing Incremental 

cost per ADE 

avoided 

Yao 

2012 (226) 

Secondary 

care, UK 

CUA Healthcare 

provider 

Educational intervention for patient 

discharge vs no intervention 

Decision tree Any medication error Incremental 

cost per QALY 

a Aggregated cost including cost savings due to avoided ADEs and cost of intervention; ADE: adverse drug event; CA: cost analysis; CC: cost consequence; CEA: cost-effectiveness analysis; 

CUA: cost utility analysis; ENB: expected net benefit; EMB: expected monetary benefit; ICER: incremental cost-effectiveness ratio; QALY: quality-adjusted life-years
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Structural assumptions to incorporate medication errors [Objective Two] 

This review looked at medication errors in any part of the medication use process. Types 

of medication errors used in the models were in most of the cases either any medication 

error (156, 219, 222, 224, 226) (5 out of 13) or any prescribing error (218, 225) (2 out of 

13). Some studies focused on a subset of a specific error group (149-151). Elliott et al. 

(2013) and Moriarty et al. (2019) analysed a predefined subset of medication errors based 

on likelihood and seriousness of error types, similar to Forster et al. (2018), who 

investigated one error that had shown an effect on harm outcomes in a previous study. 

Other studies focused on only one drug or drug group that was representative of the setting 

(221, 223). Karnon et al. (2009) combined prescribing, dispensing and administration errors 

into one group but categorised them by the source of error whether it was an act of 

omission, commission or due to an undetected allergy (156). The studies used different 

effect sizes of the interventions. Most often the impact of the intervention on error rates 

was used (149, 150, 156, 218, 221-225). However, Gathnekar et al. (2013) and Maviglia et 

al. (2007) applied a more indirect measure of medication errors and used ADEs caused by 

or potentially caused by the medication error. 

 

Methods to link medication errors with health outcomes [Objective Three] 

Objective Three incorporates how medication errors were linked to harm in form of health 

outcomes or costs in decision-analytic models in the literature. None of the studies 

prospectively followed patients with a medication error to observe their direct effect on 

ADE rates or applied results from such a study from the literature. All estimations of ADEs 

were generated retrospectively or were projections of potential future harm by healthcare 

professionals even if evidence was derived from a single primary study. Medication errors 

were linked with patient outcomes either indirectly or directly. Direct measurement refers 

to studies that directly link the error with a specific ADE that can be clearly associated with 

the medication error (increased likelihood of specific ADE). The specific ADE, such as GI 

bleeding, has a measurable impact on costs and patient outcomes that can be included in 

the economic evaluation. Indirect measurement refers to estimating the potential severity 

of the identified medication errors (assessment of severity) or identifying all ADEs and 

estimating whether these can be linked to the error and were preventable (assessment of 
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preventability). These two methods were described in sections 2.4.1 and 2.4.2. The 

difference of these indirect measurements compared with direct measurements was that 

multiple steps were required to interpret the severity levels or the preventable ADEs. These 

usually involved several assumptions that induced further uncertainty. Methods applied in 

the economic evaluation are reported in Figure 2.2. The risk of harm was required either 

by assessing the potential severity of errors or the preventability of ADEs, as well as some 

form of quantification of the impact of harm on health outcomes or costs. This second step 

referred to as the method to quantify harm, requires an assumption on consequences of 

each severity level, for example, what severity levels are considered to cause a hospital 

admission, or estimating costs associated with different severity levels. The method used 

to estimate the risk of harm from the medication error was reviewed separately from the 

method used to quantify harm or to generate health outcomes related to patient harm.  

 

Figure 2.2: Flow diagram of potential pathways to quantify patient harm indirectly 

 

 

Only three of 13 studies incorporated the increased likelihood of specific ADEs associated 

with the medication errors [Table 2.4] (150, 151, 227). The advantage of the availability of 

specific ADEs, such as the increased risks of asthma exacerbations in Forster et al. (2018) 

associated with the administration error, is that quality of life and costs can be attached to 

these ADEs very specifically. The three studies by Forster et al. (2018), Elliott et al. (2013) 

and Moriarty et al. (2019) used data from the literature on the increased likelihood of 

specific ADEs.  
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Table 2.4: Details on incorporation of medication errors and linkage with patient outcomes estimated from economic evaluations from literature review 

Reference Measurement 

of error 

Source for 

harm 

Method to obtain 

probability of harm 

Method to quantify harm 

estimate 

Measurement of cost 

of error 

Measurement of 

effectiveness 

Robustness of link 

between error 

and harm 

Elliott  

2013 (149) 

Error rate Literature Increased likelihood of 

specific ADE 

Not required Healthcare resource 

use by health state 

from literature 

Utilities for each 

health state 

PSA, OSA 

Forrester 

2014 (218) 

Error rate Expert 

elicitation  

Assessment of 

preventability of ADEs 

(Naranjo score) 

Severity of pADEs assessed by 

experts (NCC MERP categories) 

No cost for ADEs or 

harm 

Incremental errors 

or ADEs 

PSA  

Forster 

2018 (150) 

Error rate Literature Increased likelihood of 

specific ADE 

Not required Healthcare resource 

use by health state 

from literature 

QALY from Asthma 

Quality-of-Life 

Questionnaire 

scores 

PSA, OSA 

Ghatnekar 

2013 (219) 

ADE related 

hospital 

admission 

Expert 

elicitation 

  

Assessment of 

preventability of ADEs 

(WHO-UMC criteria) 

Certain, probable and possible 

pADE are used as hospitalisation 

Cost of additional 

hospitalisation for ADE 

from literature 

Disutility of 

hospitalisation or 

outpatient contact  

PSA  

Karnon 

2009 (156) 

Error rate Literature Assessment of 

preventability of ADEs 

(preventable, not 

preventable, no harm 

expected) excluding 

intercepted errors  

 

Weighted average of two 

published severity distribution of 

ADEs 

Cost by ADE severity 

from literature 

QALY decrement by 

ADE severity 

(hypothetical 

estimates)  

PSA  
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Reference Measurement 

of error 

Source for 

harm 

Method to obtain 

probability of harm 

Method to quantify harm 

estimate 

Measurement of cost 

of error 

Measurement of 

effectiveness 

Robustness of link 

between error 

and harm 

Maviglia 

2007 (220) 

Potential ADE 

rate 

Literature Assessment of 

preventability of ADEs 

(preventable, not 

preventable, no harm 

expected) excluding 

intercepted errors  

All pADE are used as 

hospitalisation 

Cost of additional 

hospitalisation for ADE 

from literature 

Cost of pADEs PSA and relevant 

OSA (probability 

and cost of harm) 

Moriarty 

2019 (151) 

Error rate Literature Increased likelihood of 

specific ADE  

Not required Healthcare resource 

use by health state 

from literature 

Utilities for each 

health state 

PSA, OSA 

Nerich  

2013 (221) 

Error rate Expert 

elicitation 

Assessment of severity 

(Hatoum scale) 

Two panels assessed probability 

of hospitalisation following 

medication error 

Cost of additional 

hospitalisation from 

literature (length of 

stay and ward elicited 

by experts) 

Benefit based on 

avoided cost and 

hospitalisation  

PSA and relevant 

OSA (changing 

category 

definitions) 

Nuckols 

2015 (222) 

Error rate Literature Assessment of 

preventability of ADEs 

(meta-analysis of 7 studies) 

Distribution of severity of ADE 

from 4 studies (Folli scale or NCC 

MERP) 

Cost by ADE severity 

from literature 

QALY decrement by 

severity of ADE and 

age from literature 

and assumptions 

PSA and relevant 

OSA 

Rosselli 

2014 (223) 

Error rate Literature Severity categories 

developed from expert 

panel and probabilities of 

categories from different 

sources in the literature 

Harm attached to severity 

categories based on NCC MERP 

categories 

Cost by ADE severity 

from literature and 

adjusted by experts 

None  PSA and relevant 

OSA (probability 

of harm) 
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Reference Measurement 

of error 

Source for 

harm 

Method to obtain 

probability of harm 

Method to quantify harm 

estimate 

Measurement of cost 

of error 

Measurement of 

effectiveness 

Robustness of link 

between error 

and harm 

Samp  

2014 (224) 

Error rate Literature Assessment of severity 

(temporary or permanent 

harm, prolonged 

hospitalization, harm that 

required life-sustaining 

intervention) 

Severity levels transformed into 

categories [probability of 

hospitalisation with errors 

reaching the patient with 

permanent or temporary harm 

from pharmacist assessment and 

based on assumptions] 

Cost of additional 

hospitalisation from 

literature and 

medication changes 

None PSA and relevant 

OSA (probability 

and costs of 

harm) 

Westbrook 

2015 (225) 

Error rate Expert 

elicitation 

Assessment of severity by 

pharmacist (severity 

assessment code) and 

recording of intercepted 

errors 

Moderate, major and serious 

medication errors were seen as 

potential ADE. Proportion of 

potential ADE resulting in actual 

ADE and weighted average of two 

published severity distribution of 

ADEs 

Cost of ADE and excess 

length of stay by 

severity level from 

literature 

Incremental ADEs Relevant OSA 

(probability of 

ADE and severity 

distributions)  

Yao  

2012 (226) 

pADE Literature 

 

Expert elicitation of 

potential reduction of 

pADEs by the intervention 

Distribution of ADE severity based 

on level of impairment (two 

studies) 

Cost by ADE severity 

from literature 

QALY decrement by 

severity level from 

literature 

No relevant OSA 

ADE: adverse drug event; OSA: one-way sensitivity analysis; pADE: preventable ADE; PSA; probabilistic sensitivity analysis; QALY: quality-adjusted life-year 
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All other studies estimated the risk of harm either by assessing severity of medication 

errors or preventability of ADEs. Of 13 studies, four estimated the risk of harm within the 

study using expert elicitation (218, 219, 221, 225). Experts either elicited preventability and 

casual relation to the medication error of identified ADEs (218, 219) or assessed severity of 

the medication errors (221, 225). In Forrester et al. (2014), clinical data was reviewed in 

the six months after the medication error was detected and searched for admissions based 

on ICD10-codes that might have been medication related. (218). The Naranjo algorithm 

[2.4.1] was used to assess the probability that the drug contributed to the hospitalisation 

(228). The intervention by Gathnekar et al. (2013) consisted of two parts: (i) An admission-

based review process of patient records to reduce re-admission due to medication error 

(ii) a medication report at discharge that aimed to reduce re-admissions due to medication 

error after discharge. Medication error rate was linked to patient harm by assessing the 

likelihood of events to be due to medication error from other studies of the same research 

group in the same area of Sweden. It was not clear if this was the same hospital. The first 

part of the intervention was evaluated by Hellstrom et al. (2011) (229). A team of clinicians 

and senior researchers estimated the causality of re-admissions within three months and 

medication error in the intervention using the WHO causality scale [2.4.1] (108). The effect 

of a discharge report on required medical care in hospitals from the second part was 

assessed in a study by Midlov et al. (2008) (230). Any primary and secondary care contact 

within three months of discharge was evaluated and the association with medication errors 

assessed using the WHO causality scale. For the pharmacist medication review, evaluated 

by Nerich et al. (2013), physicians assessed the severity of each medication error identified 

in terms of their clinical impact using a scale by Hatoum et al. (1998) (231). According to 

Hatoum’s categories, medication errors were significant if stopping them either saved a 

patient’s life or a major organ function was preserved. A not clinically significant medication 

error was judged to improve drug therapy to an acceptable level based on current 

guidelines or evidence standards.  

 

Most studies based their risk of harm on studies from the literature unrelated to their 

intervention (149, 150, 156, 219, 220, 222-224, 226). Two of 13 studies used data derived 

from experts that estimated the potential harm of each medication error based on severity 

assessment (223, 224). Other models retrieved the potential risk of harm from studies that 
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assessed likelihood of ADE to be due to a medication error, hence preventable (219, 220, 

222, 226). For example, Yao et al. (2007) applied results from a study that based the 

causality assessment on expert judgement without using an algorithm (232). Nuckols et al. 

(2015) used results from a meta-analysis of different studies linking errors with patient 

harm. The meta-analysis included six studies analysing the probability of preventable ADE 

from medication errors, excluding, if reported, medication errors with no or almost no 

potential for harm.  

 

Methods to quantify the impact of harm on costs and health outcomes 

In Figure 2.2, this step is shown in the lower part described as ‘method to quantify harm’. 

It needs to be considered, which severities should be included and how consequences are 

quantified. Some studies estimated the probability of each severity level to lead to 

hospitalisation as a quantifiable health outcome related to harm (221, 224). After rating 

the severity of medication errors in Nerich et al. (2013), further clinical expertise of six 

specialist physicians was acquired in order to estimate probabilities for hospitalisation for 

each severity level. Rosselli et al. (2014), on the other hand, allocated costs to each of the 

levels of severity based on expert recommendations.  

 

When preventable ADEs were linked with the medication errors, authors included them in 

different ways in the model. Forrester et al. (2014) used the number of ADEs itself as the 

effectiveness outcome and reported results in cost per preventable ADE avoided without 

accounting for costs generated by the ADE (218). Hospitalisation was used as the health 

outcome to quantify harm by considering all preventable ADE to be hospitalisations (220) 

or only ADEs with certain, probable and possible causality (219). The more common 

approach was to apply severity distributions of ADEs from the literature. Severity scales 

were used that are based on levels of impairment, such as the scale by Brennan et al. (233) 

in the economic evaluation by Yao et al. (2012) (226). Other severity categories applied in 

for example Nuckols et al. (2015) and Karnon et al. (2009) were based on the probability to 

cause harm, such as the Folli scale (234) or the American NCC MERP categories (235). The 

NCC MERP categories were developed to assess severity of medication errors, but they 

were also used to assess severity of preventable ADEs. The categories are grouped into 
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different levels of harm (death, harm, no harm). The three economic evaluations assessing 

severity of preventable ADEs all used combined estimates from multiple studies. Nuckols 

et al. (2009), for instance, calculated the distribution of severity of preventable ADEs from 

four different studies (19, 236-238) using either the severity criteria by Folli et al. (1087) or 

the US NCC MERP categories.  

 

In summary, the two-step process of linking medication errors with harm by assessing the 

potential risk of harm and subsequently making assumptions on how to interpret this 

potential risk to generate health outcomes and costs, heavily relied on assumptions and 

expert opinions. No gold standard on how to interpret severity levels exists, and each study 

interpreted it differently. Compared with estimates on the increased likelihood of a specific 

ADE associated with a specific medication error, the assumptions underlying the two-step 

process introduce a lot of uncertainty. 

 

Measurement of the cost of error 

This section describes if and how studies incorporated the impact of medication errors on 

costs in their cost assessment. All but one study accounted for the cost from patient harm 

associated with medication errors (218). The studies that estimated the increased 

likelihood of specific ADEs associated with the error attached costs to the specific health 

states, such as costs of uncontrolled asthma (149-151). The other nine studies attached 

costs to severity levels of preventable ADEs (156, 222, 223, 225, 226) or attached costs to 

additional hospitalisations from preventable ADEs (219-221, 224). The latter followed some 

form of assumption of which preventable ADEs (e.g., probable and definitely preventable 

ADEs) or which severity levels (e.g., serious, fatal ADEs) result in hospitalisations. 

 

Of these nine economic evaluations, four applied costs from a case-control study in the US 

from 1997 by Bates et al. (156, 220, 224, 225). Bates et al. (1997) provided an estimate of 

cost of preventable ADEs, used by Maviglia et al. (2007) and Samp et al. (2014), and cost of 

preventable ADEs by severity levels of ADEs, applied by Westbrook et al. (2015) and Karnon 

et al. (2009). The cost of preventable ADEs were not significantly different (p > 0.05) in 

Bates et al. (239). This introduces further uncertainty into probabilistic analyses and might 
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bias the results of deterministic analyses when only mean estimates are used. The study by 

Nuckols et al. (2015) (222) applied more recent estimates by ADE severity from a US study 

in 30 community hospitals (240) with ranges based on estimates from other studies. Only 

two of the nine studies used country specific cost estimates from the literature on cost of 

ADEs (220, 224).  

 

Measure of effectiveness of interventions 

The measurement of effectiveness in the economic evaluations was either incremental 

ADEs (218, 225), cost savings from prevented ADEs (220, 221), QALY decrements from ADEs 

(156, 219, 222, 226) or QALYs gained (149-151) from the intervention. None of the models 

measured non-health benefits as described in section 2.6. Of the four studies applying QALY 

decrements to severity levels of ADEs, two economic evaluations used hypothetical 

estimates from Karnon et al. (2009) (156, 222). Yao et al. (2012) estimated a utility by 

simulating ‘typical EQ-5D states’ for the different severity levels (226). The typical utility for 

the most severe ADE level, was for example based on guessed utilities for stroke. Gathnekar 

et al. (2013) interpreted preventable ADEs as hospitalisations and attached a weighted 

average of utilities based on utilities from the literature for the most common diagnoses 

for preventable ADEs identified in the study.  

 

The studies simulating the increased likelihood of specific ADEs associated with specific 

medication errors attached QALYs from the literature that were associated with the specific 

ADE, such as quality of life with uncontrolled asthma (149-151). 

 

Robustness of results to estimates around harm assessment 

Eleven of 13 studies used probabilistic sensitivity analysis (PSA) to test robustness of the 

model results (149-151, 156, 218-224). This review was particular interested in the 

sensitivity of the results to estimates associated with assessing harm. Sensitivity to relevant 

individual parameters was investigated by six of the ten studies not directly measuring 

actual harm. In the one-way sensitivity analyses, the results were most sensitive to 

estimates around harm from medication errors, such as probability of harm from 

medication error and cost of preventable ADEs (220, 222, 224, 225). Changing the severity 
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categories in Nerich et al. (2013) almost decreased the benefit to cost ratio by half. 

Westbrook et al. (2015) reported that the results were more sensitive to the probability of 

harm parameters than to changes of the applied severity distributions. Only the economic 

evaluation from Colombia found staff costs to have a higher impact on the results than the 

estimates of probability of harm (223). 

 

Conclusion from literature review of economic evaluations 

The review showed that most research has been conducted in secondary care settings, and 

that primary care in the UK has been under researched as reported in other reviews (31, 

146, 241). One of the key limitations of most of the identified models were the assumptions 

required to estimate the impact of error related harm on health outcomes and costs. In 

sensitivity analyses, uncertainty around harm estimates was found to have a substantial 

impact on the estimates of relative cost-effectiveness. Studies often relied on weak 

estimates from studies, where no confidence intervals, ranges or significance levels were 

presented, such as Bates et al. (1995) that has been used directly or indirectly in four of the 

13 identified models (156, 220, 222, 225). A review by Nuckols et al. (2014) also highlighted 

the weak design of studies assessing the risk of preventable ADEs (242). Those studies that 

used expert elicitation within the study (218, 219, 221) and those applying estimates on 

the risk of harm from the literature used methods that were dependent on judgement by 

healthcare professionals (107, 127). The use of potential severity of HPEs elicited by experts 

does not account for the probability that errors might be intercepted before they reach the 

patient. 

 

Errors were often grouped together as any medication error or by severity of error. The 

underlying assumption that an error always has the same probability of leading to harm, is 

a simplification for pragmatic reason that over simplifies the problem. If the intervention 

only reduces a specific set of medication errors, these might result in different risks of ADEs 

than errors prevented by a second intervention.  

 

The second step, after the risk of ADEs is assessed, is the quantification of harm. To 

generate quantifiable estimates of harm, often depended on expert elicitation or vague 
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estimates from the literature. The more severity levels the model contained, the more 

challenging the data availability became. In Nuckols et al. (2015), for example, probabilities 

for severity levels were taken from four different studies (19, 236-238) because no study 

provided probabilities for all levels, which impedes reliability of the results.  

 

While estimates on the risk of ADEs and to quantify harm already introduced substantial 

uncertainty, attaching costs and utilities proved difficult as well. The estimates were often 

derived from studies in different settings or countries, were not associated with the 

intervention under investigation, and were outdated. For example, the US study by Bates 

et al. (1997) that was widely used to estimate cost of preventable ADEs was applied in an 

Australian (225) and a UK setting (156). The study is over 20 years old and cost structures 

and payment systems have potentially changed. A more recent review of economic impact 

of ADEs and preventable ADEs found the cost of ADEs to vary considerably between 

healthcare setting, population, methodology and the publication date (30). QALY 

estimates, when used, were usually based on hypothetical estimates. This was probably 

due to the lack of availability of any such data in the literature (151, 232, 241). A review 

mandated by the European Commission supported these findings and criticised the 

suitability of studies used for cost and quality of life estimates (241). 

 

In conclusion, the lack of robust data linking patient harm and medication errors, as well as 

on applicable costs identified in sections 2.4 and 2.5 impacted the quality of results from 

modelling studies. The only economic evaluations, where more precise input parameters 

were applied, focused on a specific subset of errors (149-151). However, these only cover 

a small number of medication errors. This underlines the need for further research on the 

impact of medication errors on health outcomes and costs. 

 

2.9 The Safety Medication dASHboard (SMASH) 

This dissertation explores a method to assess the cost-effectiveness of SMASH in reducing 

hazardous prescribing. In this section, the intervention itself is described, with a specific 

focus on the set of HPEs targeted by SMASH, and the choice of study design to evaluate the 

effectiveness of SMASH in Peek et al. (2020) is critiqued (48).  
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SMASH is an e-A&F intervention that aims to reduce hazardous prescribing in primary care 

(40). It is a system level DHI with three key components: (i) training of clinical pharmacists 

to deliver SMASH; (ii) a web-based dashboard providing actionable, patient-level feedback; 

and (iii) pharmacists reviewing individual at-risk patients and initiating remedial actions or 

advising GPs on doing so. SMASH is a local development of the previously described PINCER 

intervention [2.7], developed and tested in Salford. Compared with PINCER, SMASH uses 

continuous feedback instead of reports at set points in time. SMASH can be accessed at any 

time via a secure login and is updated every 24 hours. A clinical pharmacist supports the 

GP in responding to the identified patients and to find solutions similarly to the PINCER 

intervention, but the pharmacist visits the practices constantly in SMASH (243). Policy 

developments encouraging the employment of clinical pharmacist in general practices, 

supported the implementation of this continuous surveillance in SMASH (244). Salford 

Clinical Commissioning Group (CCG) was a forerunner to this and decided to fund up to 20 

clinical pharmacists to work in general practice across the CCG. SMASH works with these 

pharmacists that are continuously linked with general practices. PINCER on the other hand, 

used a pharmacist outreach approach where they could spend up to 12 weeks with a 

practice. 

 

SMASH contains a web-based electronic system that combines active aspects of an e-A&F 

interventions with aspects from an educational intervention. The educational component 

of the dashboard provides generic information on each of the types of HPEs and HMEs 

targeted by SMASH. The provided information educates the user on available evidence on 

the risks associated with the specific HPE types and recommendations how to resolve it. 

The e-A&F component of the dashboard actively reports on the patients currently exposed 

to HPEs and HMEs in the general practice. The electronic health records are screened for 

specific prescribing safety indicators that describe 12 different HPEs or HMEs. How these 

were developed is described in section 2.9.1. The dashboard has a user interface that 

provides a visual presentation of performance indicators, in this case the number of 

patients potentially exposed to HPEs. Examples of hypothetical aggregated patient lists are 

reported in Williams et al. (2018) (40). The patients exposed to an HPE are presented as 

affected patients (numerator), and the patients at risk of the HPE denoted as eligible 

patients (denominator). The patient list is linked via NHS number to the electronic health 
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records of the patients. The lists of patients for whom potential HPEs were identified are 

updated every 24 hours and accessible at any time via a remote log in through a secure 

server. In addition, the dashboard enabled users to track changes in number of patients 

potentially exposed to HPEs within the practice as well as in comparison to other practices. 

These changes were presented as numbers or in graphical form. This form of multimodal 

presentation of feedback, tracking of performance, as well as clear illustration of actions 

required is considered best practice when designing e-A&F interventions (245). 

 

Practice-based pharmacists interpret the feedback from the dashboard by reviewing each 

patient identified with a potential HPE (246, 247). The review incorporated an assessment 

of the validity and relevance of the HPE for the specific patient based on the patient’s 

history. The relevance for the patient is essential to select those cases where the hazardous 

prescription was correct and no alternative treatment options were available for this 

patient. If the pharmacist assessment found the HPE to be valid and relevant, they 

consulted with the GP regarding appropriate actions to solve the HPE. For some of the 

HMEs the pharmacist ordered the pending monitoring test without consulting the GP. 

Actions varied depending on the HPE or practice and could include the removal of a drug, 

an additional drug or a reminder for the patient to collect prescriptions (246). Actions were 

pursued by the GP or the pharmacist if the pharmacists were trained as independent 

prescribers.  

 

In summary, SMASH is a complex, multifaceted intervention that combined elements from 

educational interventions (evidence summaries in dashboard), e-A&F (dashboard 

screening patient records) and pharmacist-led interventions (medication review). The 

educational aspect of SMASH was in the form of the HPE audit function within the 

dashboard and the provision of evidence summaries on the impact of the HPE and possible 

actions to resolve it. Kaur et al. (2009) mentioned the importance of reinforcing contact 

with the prescriber in educational interventions to enhance effectiveness, which is done in 

SMASH with the incorporation of the pharmacist service. To encourage social interactions 

when giving feedback was also identified as a key feature required for sustained effects of 

electronic feedback interventions (46). The e-A&F function of the intervention in form of 

the interactive dashboard supported pharmacist in identifying patients with HPEs from 
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electronic health records and provided performance reviews. A panel of clinical and policy 

experts judged these digital technologies to be most effective and cost-effective (169). The 

use of electronic health records in safety interventions was found to be promising in 

reducing the occurrence of ADEs (241). This potentially allowed pharmacists to review 

more patients compared to other pharmacist interventions (190-195, 197-199, 248). A 

common challenge with e-A&F interventions was alert fatigue (46, 249). Alert fatigue is 

defined as: ‘Mental fatigue experienced by healthcare providers who encounter numerous 

alerts and reminders from the use of clinical decision support systems. As the numbers of 

alerts and reminders designed to provide meaningful assistance to the patient care process 

increases, many health personnel may ignore them’ (250). SMASH only focused at a specific 

set of HPE types based on likelihood and seriousness to avoid alert fatigue, as it is best 

practice for e-A&F interventions (245). Similar approaches were found in the literature, 

where interventions focus on specific sets of HPEs, e.g., Beers (198, 199) or specific 

conditions. The approach to target specific burdensome ADEs on a clinical level, was 

considered most effective and less costly compared with national or organisational level 

interventions by clinical and policy experts (169). Overall, the development of SMASH was 

in line with best practice guidance on designing and implementing e-A&F interventions (46, 

47, 245).  

 

2.9.1 Development of a set of HPE types  

This section starts with the rationale for using a specific defined set of HPE types followed 

by a description of how the set of HPEs targeted by SMASH was developed. The challenges 

with estimating HPE prevalence were summarised in section 2.2. Focusing on a specific set 

of HPEs with specific criteria, such as prescribing safety indicators, seems to be a valid 

alternative to solve the challenges around varying definitions, measurement methods, 

qualification of reviewers and inter-rater reliability. These specific criteria define HPEs that 

can be transformed into something computable in order to reduce variability and 

subjectivity in the identification process. The approach to use specific criteria has been 

widely used, particularly in older populations, using the Beers or STOPP criteria (93) as 

shown by the literature review by Assiri et al. (2018) that found that the majority of studies 

analysed PIMs using these criteria. A policy by the Short Life Working Group, commissioned 
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to inform the Department of Health and Social Care on measures for England to reduce 

medication errors, suggested to use a specific set of HPE types to identify HPEs and to track 

effectiveness of measures to reduce HPE prevalence (35). 

 

Prescribing safety indicators are generally used to define HPEs, representing potential 

deviations from best practice. The challenge with defining a specific set of HPE types is to 

cover those HPEs that are relevant based on likelihood to occur and to cause harm (183). 

Over the past decade progress has been made in defining patient safety indicators. The 

Royal College of General Practitioners commissioned the development of prescribing safety 

indicators for a UK setting. Based on indicators developed by Morris et al. (2004) in the US 

(120), UK specific indicators were defined using a RAND appropriateness measure (251) to 

achieve a consensus among GPs (42). The PINCER trial (45) was the first intervention using 

the developed prescribing safety indicators to target HPEs in a pharmacist-led information 

technology intervention. This first set of prescribing safety indicators used in the original 

PINCER trial is referred to as PINCER 1 indicators [Table 2.5]. The PINCER trial assessed 

prevalence of the PINCER 1 indicators in 72 English general practices and showed a 

significant reduction of HPEs (OR 0.71, 95% CI 0.59 to 0.86) and HMEs (OR 0.56, 95% CI 

0.44 to 0.70) after six months in practices using the complex intervention compared with 

simple feedback (45). The PINCER 1 intervention was accessible free of charge for all 

general practices in the NHS until July 2015 and can still be purchased from PRIMIS (252). 

A study by Spencer et al. (2014) updated these prescribing indicators based on other sets 

in the literature, using the RAND appropriateness measure and asking GPs to weigh the 

importance of different prescribing safety indicators (43). The PINCER 2 indicators were 

based on this new set and were used for pilot studies for the PINCER rollout in Rushcliffe 

CCG. Results from the pilot study were combined with results from a large epidemiological 

study on prevalence of the HPE types by Stocks et al. (2015) (56) to derive the final PINCER 

3 indicators for the PINCER rollout in the East Midlands (253).  

 

For SMASH, that was rolled out in Salford, Greater Manchester, specific additional HPE 

types related to chronic kidney disease and treatment monitoring indicators were 

requested by the CCGs at the development stage. The Salford Integrated Record (SIR), 

combining health records from primary and secondary care, used by the practices in Salford 
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does not provide data on mental health. As a result, PINCER 3 HPE types related to mental 

health were excluded from the SMASH set [Table 2.5]. A description of each prescribing 

safety indicator divided in to definitions on patients at risk and patients exposed by the HPE 

type is reported in Appendix B. Overall, the HPE types in SMASH and PINCER 3 are based 

on almost the same prescribing safety indicators. The set was developed based on 

extensive literature reviews and consensus processes (42, 43).  

 

Table 2.5: Overview of prescribing safety indicators used in different interventions  

Prescribing Safety Indicator PINCER  

1 (45) 

PINCER  

3 (253) 

SMASH 

(40) 

Patients aged ≥75 years who have been prescribed an ACE inhibitor or loop 

diuretic long-term who have not had a recorded check of their U+E in the 

previous 15 months 

x   

Patients receiving amiodarone for ≥six months who have not had a THY within 

the previous six months 
x  x 

Patients receiving methotrexate for ≥three months who have not had a FBC 

and/or LFT within the previous three months 
x  x 

Patients receiving lithium for ≥three months who have not had a recorded check 

of their lithium concentrations in the previous three months 
x   

Patients receiving warfarin for ≥three months who have not had a recorded INR 

check within the previous 12 weeks 
x   

Prescription of an oral NSAID, without co-prescription of GPA, to a patient aged 

≥65 years 
 x x 

Patients with a past medical history of peptic ulcer who have been prescribed a 

non-selective NSAID without a GPA 
x x x 

Prescription of an antiplatelet drug without co-prescription of a GPA, to a 

patient with a history of peptic ulcer or GI bleed  
 x x 

Prescription of OAC in combination with an oral NSAID   x x 

Prescription of OAC and an antiplatelet drug in combination without co-

prescription of a GPA  
 x x 

Prescription of aspirin in combination with another antiplatelet drug without co-

prescription of a GPA  
 x x 

Prescription of antipsychotics for >6 weeks in a patient aged ≥65 years with 

dementia but not psychosis 
 x  

Prescription of a CHC to a woman with a history of venous and/or atrial 

thrombosis 
x   

Prescription of a long-acting beta-2 agonist inhaler to a patient with asthma 

(unresolved) who is not also prescribed an inhaled corticosteroid 
 x x 

Prescription of a non-selective beta-blocker to a patient with asthma 

(unresolved) 
x x x 

Prescription of an oral NSAID to a patient with a history of HF  x x 

Prescription of an oral NSAID to a patient with eGFR <45  x x 

FBC: full blood count; GPA: gastroprotective agent; HF: heart failure; INR: international normalized ratio; LFT: liver 

function test; NSAID: non-steroidal anti-inflammatory drugs; OAC: oral anticoagulant including warfarin and direct 

oral anticoagulants (DOACs) THY: thyroid function; U+E: urea (renal) and electrolytes; ICS: inhalative cortisone 
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2.9.2 SMASH effectiveness study in Salford 

SMASH was evaluated using a quasi-experimental study design. This section aims to create 

an understanding of quasi-experimental designs in general, the strengths and limitations 

of specific study designs, and then focuses on why this was an appropriate design to 

estimate effectiveness of SMASH in reducing hazardous prescribing. 

 

Risk of bias in quasi-experimental study designs in general 

RCTs are the gold standard to evaluate interventions in healthcare and to establish causal 

relationships (3, 254). However, RCT designs are not always practical or possible (255). 

Quasi-experimental studies manifested their position as a valid alternative in cases were 

RCTs are not an option (7). By definition, quasi-experimental studies lack the randomisation 

process utilised in RCTs (255). Randomisation of the intervention reduces the risk of 

selection bias in assignment of treatment and it avoids imbalance of the intervention and 

comparator with regards to patient characteristics (256). Without randomisation, it cannot 

be guaranteed that the estimated effect of the intervention is not distorted by unmeasured 

confounders. The vulnerability to unmeasured confounding depends on the study design 

of the quasi-experimental study (13, 14, 257).  

 

Quasi-experimental study designs can be divided into those without a concurrent 

comparator and those with a concurrent comparator. This counterfactual can be a similar 

local, regional, national or synthetic control were the intervention was not implemented 

(concurrent) or can be a historic control (subjects serve as own control) (13). In this section, 

an overview of quasi-experimental study designs using concurrent controls is provided with 

a brief summary of typical biases and different methods used to construct comparison 

groups. Subsequently, the use of historic controls is described focussing on potential bias 

associated with this design. After potential biases with and without concurrent controls are 

explained, common data analysis methods used in quasi-experimental studies are 

described. It is distinguished between design methods for constructing comparison groups 

and methods for data analysis as it has been elsewhere (256). Other studies compare 

methods for constructing comparison groups, for example, matching and synthetic 
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controls, and analysis methods, for example, Difference-in-Difference (DID) all as different 

evaluation methods (258). 

 

Quasi-experimental studies with concurrent controls 

Concurrent controls can be used in quasi-experimental studies if data are not only available 

for the intervention group but also for a comparator that did not implement the 

intervention. A concurrent control has the advantage that it minimises confounding due to 

unobserved time-variant confounding. These could be changes in the population over time 

or intercurrent events affecting the effectiveness outcome occurring around the same time 

as the intervention. The latter is referred to as history bias (14, 259). As a consequence of 

the non-randomised assignment of the intervention, observed and unobserved time-

invariant confounding could still be present. Observed treatments effects can then be 

biased because of systematic differences between the comparator groups. 

 

There are two main study designs with concurrent controls: those with pre-test (pre-

intervention) and post-test (post-intervention) observations and those with only post-test 

observations. The aim is to select a comparator that is similar to the intervention group and 

is said to predict what would have happened to the intervention group if the interventions 

had not been implemented (256). With only post-test data available a suitable comparator 

can only be identified based on the observed baseline characteristics. Without any pre-test 

data, it is difficult to test if the comparator is appropriate and historic trends cannot be 

included in the assessment. The availability of pre-test observations from both strategies 

with and without the intervention enables to determine the comparability of the two 

groups beyond the baseline characteristics at initiation of the intervention (13). With no 

reasonable comparator, the observed effect can be a result of differences in the compared 

groups (13, 257). By comparing pre-test observations with regards to levels and trends of 

the effectiveness outcome, reasonable comparators can be identified.  

 

Various methods are available that aim to reduce bias due to time-invariant observable 

confounding by identifying reasonable comparators with balanced characteristics. These 

methods are referred to here as methods to construct comparison groups. A common 
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method to construct comparison groups is by matching subjects with characteristics similar 

to those of the intervention group. The matching methods, such as propensity score 

matching (PSM), can be used to increase balance of observed baseline characteristics 

between the compared groups (256, 260). Even if observed baseline characteristics are 

balanced between the comparators, it cannot be guaranteed that unobserved 

characteristics are balanced too. The estimated effect could be explained away by 

differences in unobserved baseline characteristics (time-invariant confounder).  

 

A form of matching that matches not only on characteristics at one point in time but on 

trends in outcomes in the pre-test period is the use of synthetic controls. Synthetic controls 

are increasingly used when evaluating policy interventions (261, 262). It is a data driven 

approach that aims to generate a comparator that mimics characteristics and outcomes of 

the intervention group before the intervention was implemented. The actual observed 

effectiveness outcomes can then be compared to the effectiveness outcomes predicted by 

the synthetic control in the post-test period. The synthetic controls are generated by linear 

programming from actual controls without the intervention. A weighted average of some 

of the potential control units is used to build the synthetic control group. The potential 

control units are matched based on pre-defined characteristics thought to impact the 

effectiveness outcome of interest from the pre-test period (261, 262). As with normal 

matching, synthetic controls only generate controls based on observable characteristics 

and cannot fully account for unobserved confounders. 

 

Another method used to construct comparison groups is regression discontinuity (256). 

This option is possible when exposure or assignment of the intervention is bound to a 

defined threshold or cut-off. Assuming subjects or units just below and just above the 

threshold have similar characteristics, this method is thought to reduce the risk of time-

invariant observed and unobserved confounding.  

 

Quasi-experimental studies with historic controls 

In longitudinal datasets with at least one pre-test observation, this pre-test observation can 

be used as a historic control. Each subject or unit serves as its own control. A historic control 
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minimises confounding due to time-invariant confounding (257). Because the intervention 

and comparator population are the same and observed and unobserved base line 

characteristics are thought to be distributed evenly when each subject serves as its own 

control. The use of historic controls, however, is susceptible to maturation effects and time-

variant confounding. Maturation effects are described by secular trends over time that can 

be mistaken as a treatment effect (14). It can also not be ruled out that the observed effect 

is due to unobserved concurrent interventions or events occurring at the same time 

(history bias). Another problem in using historic controls is regression to the mean that can 

lead to wrong interpretation of an observed effect as a treatment effect that is due to 

chance (14). This is especially problematic in simple pre-test/post-test designs with pre-test 

being a period before the intervention and post-test after the intervention, such as cost 

before and cost after an intervention. Where multiple pre-test and post-test datapoints are 

available the risk of regression to the mean can be minimised (257). 

 

Data analysis methods used in quasi-experimental study designs 

Different evaluation methods are used in impact evaluation studies with concurrent and 

historic controls. While here matching methods and identification of controls were 

considered as design methods, the actual analysis of the data after the cohorts were 

identified is referred to in this section on data analysis methods. Table 2.6 compares key 

features and associated biases of different methods for data analysis. 

 

The analysis method is driven by the availability of pre-test data and a reasonable control 

(13). Hinde et al. (2019) and the International Society for Pharmacoeconomics and 

Outcomes Research (ISPOR) Good Research Practice Task Force report on quasi-

experimental study designs by Berger et al. (2012) provide an informative overview of 

possible methods, their strengths and limitations. 

 

In a simple pre-test/post-test or before and after study, the difference between observed 

outcomes before and after the intervention are calculated. As described before, this 

method cannot account for time-varying confounding, maturation effects, such as secular 

trends and seasonality, or regression to the mean. If a control group is available, observed 
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mean outcomes post-intervention can be compared. The comparator minimises the risk of 

time-variant confounders, but this method is susceptible to time-invariant confounding 

and it can be challenging to identify reasonable comparators (13). 

 

Table 2.6: Comparison of data analysis methods in quasi-experimental study designs 

Method of 

analysis  

Concurrent 

control  

(yes, no)  

Pre-test data available 

(yes, no; single, 

multiple observations)  

Risk of confounding and 

potential bias 

Can bias be 

mitigated? 

Simple before and 

after comparison 

 No Yes; single observation Time-variant confounding, 

history biasa, maturation 

biasb, regression to the 

mean 

No 

Simple before and 

after comparison 

using average of 

historical data 

No Yes; multiple 

observations 

Time-variant confounding, 

history biasa, maturation 

biasb 

No 

Comparison of 

control and 

intervention 

outcomes 

Yes No; single observation Time-invariant 

confounding, selection 

biasc 

No 

Interrupted time 

series analysis 

(ITSA) 

No Yes; multiple 

observations 

Time-variant confounding, 

history biasa 

No 

Difference-in-

Difference 

analysis (DID) 

Yes Yes; multiple 

observations 

Time-invariant and variant 

unmeasured confounding 

affecting trend in 

outcomes, selection biasc 

Yes 

Controlled 

interrupted times 

series analysis 

Yes Yes; multiple 

observations 

Time-variant confounding, 

selection biasc 

Yes 

aHistory bias, e.g., intercurrent events; bmaturation bias, e.g., seasonality or inter-annual trends, secular trends in 

outcomes or population characteristics; csystematic differences between compared groups, unreasonable 

comparators 

 

When multiple pre-test observations exist, time series techniques can be used. Interrupted 

time series analysis (ITSA) utilises the availability of pre-test data to account for potential 

pre-intervention trends. The advantage of this methods is that it can account for secular 

trends and seasonality and is not susceptible to common time-invariant confounding and 

regression to the mean [Table 2.6]. The most common ITSA method is segmented 

regression (263, 264) that can be used without a control available. More advanced ITSA 

methods use multistage regression modelling or when a regional, national or synthetic 
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control is available, controlled ITSA methods (7, 265). The controlled design allows to 

account for history bias if an appropriate control was identified (264). Hence, the time-

invariant confounding can be mitigated. 

 

When control area data are available, a frequently used statistical methods to analyse 

longitudinal data is DID (258). The core assumptions in DID is the assumption of parallel 

trends (266). As described earlier, with pre-test data available, trends can be used to assess 

if a comparator is reasonable. The underlying assumption is that the trend in the post-test-

period is the same in intervention and control group. In DID the difference before and after 

the intervention starts are estimated for the intervention and control group. The treatment 

effect is then estimated by subtracting the before and after difference of the control group 

from the before and after difference in the treatment group. Consequently, DID can 

mitigate biases due to potential intercurrent events (history bias) that impact the observed 

effectiveness [Table 2.6] that is not possible in designs without concurrent controls (257). 

Time-invariant confounding is compared to simple comparison of control and intervention 

only a problem if it affects the trend in outcomes post-intervention. If trends pre-

intervention are comparable and not distorted by differences in baseline characteristics, 

the risk of these differences to impact the post-intervention trend in outcomes is 

considered low. 

 

In summary, various study designs and data analysis methods are available that each 

introduce different biases. A key challenge in designs with and without concurrent controls 

is unmeasured confounding (14, 267, 268). An understanding of the different types of bias 

relevant for the specific design is necessary to interpret the results correctly. Overall, 

controlled designs that account for trends in the pre-test period, e.g., DID and controlled 

ITSA, are found to be stronger than designs using historic controls alone (13, 257, 259, 264). 

The key strength is that they are more robust against history bias and time-variant 

confounding because of the controlled design (264). However, controlled designs only 

produce robust results, when the control group is similar to the intervention group or 

differences can be adjusted for in the analysis (selection bias). Depending on the data 

analysis method, a reasonable control can be a control with no systematic difference with 

regards to base line characteristics (256) or with a common trend and the same exposure 
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to events happening at the same time as the intervention (259, 266). When no reasonable 

concurrent control is available, and methods to construct the control group do not produce 

a control similar to the intervention group, the risk of confounding is high and ITSA designs 

are the next best alternative (269). 

 

Observational studies as an alternative where RCTs are not an option 

A common criticism of randomised trials is the lack of generalisability to real world settings 

and quasi-experimental designs allow to test the effect of the intervention in a real world 

population (7, 268). Other reasons why RCTs are not practical can be (i) the higher cost of 

randomised trials (7, 267, 270), (ii) the implications of limited numbers of eligible 

participants on the validity of the results (14), and (iii) the intention not to withhold a 

beneficial intervention from a random sample of practices (14, 270). 

 

NICE acknowledged challenges with randomised trials and included quasi-experimental 

study designs in their recent evidence framework (12). The ‘Evidence Standards Framework 

for Digital Health Technologies’ published by NICE in 2019 stated clear rules for when quasi-

experimental evidence is appropriate to use (12). Evidence standards were classified 

depending on the risk for the patient associated with the intervention defined by evidence 

tiers. For each evidence tier NICE provides study design options and minimal evidence 

standards that need to be fulfilled. With increasing risk of the intervention to harm the 

patient, the required evidence level increased proportionally. The evidence levels ranged 

from providing evidence of successful implementation of the intervention to providing 

evidence from high quality RCTs.  

 

NICE provides a detailed list of criteria to stratify interventions into the appropriate 

evidence tier. Evidence Tier 2 interventions are defined as simply providing information or 

allowing simple monitoring or communication services. SMASH provided these services 

within the dashboard, but the intervention went beyond that. The involvement of 

pharmacists and the intention to achieve measurable reduction in HPE rate that might 

incorporate behaviour changes for the GP and the pharmacist differs substantially from the 

definition of a Tier 2 intervention. According to NICE, Tier 3a digital health technologies aim 
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to prevent and manage diseases, may be used alongside treatment and are likely to have 

measurable user benefits as the SMASH intervention does. For an intervention to also 

qualify for evidence Tier 3b, it needs to directly impact or provide treatment or diagnosis 

or ‘guide treatment decisions’. SMASH aimed to reduce HPE rates (measurable benefit) by 

guiding decisions to resolve HPEs, change treatment and was used alongside normal 

treatment (40). Consequently, SMASH classifies as a Tier 3b digital health technology 

according to the classification system. The evidence standards framework recommends 

RCTs as the best practice standard for Tier 3b interventions. If this is not an option, NICE 

suggests high quality intervention studies (experimental or quasi-experimental) as the 

minimum evidence standard. 

 

Salford CCG decided an RCT was not appropriate to implement and evaluate SMASH. Firstly, 

because of scarce resources, conducting an expensive and long randomised trial was not 

an option for SMASH (255). Secondly, SMASH required a specific data sharing infrastructure 

that was only available in Salford at the time. The limited number of practices in Salford 

restricted the sample size and could have limited the power of an RCT (267). Thirdly, the 

SMASH intervention was an adaption of the already successfully implemented PINCER trial 

that showed effectiveness (45) and cost-effectiveness (227) in general practices. CCGs in 

Salford considered random withholding of SMASH for some practices was not justifiable 

(14). Therefore, SMASH was implemented in a way that facilitated a quasi-experimental 

study design to estimate its effectiveness. Because no control area was available with a 

similar healthcare infrastructure as in Salford, controlled data analysis methods (controlled 

ITSA or DID) were not an option. The availability of multiple pre- and post-test observations 

allowed an ITSA design using each practice as its own historic control. 

 

2.10 Conclusion  

The problem of hazardous prescribing in England 

The prevalence of HPEs in England seems considerably low with 4.0% (CI 95% 3.5% to 4.5%) 

of prescription items being identified as an HPE [2.3]. In relation to the volume of 

prescriptions in England, this was found to result into almost 45 million HPEs per year. This 
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imposes a considerable risk to the health of the patients and requires actions to minimise 

HPE rates in England (35).  

 

The lack of quantifiable evidence on harm from hazardous prescribing 

Not all of these 45 million HPEs actually cause harm to the patient. They could be of low 

severity and not impact patients health or be intercepted before they reach the patient 

(235). To estimate the true burden related to patient outcomes and costs of HPEs, 

information on how many HPEs reach the patient and cause harm is required. In section 

2.4, the methodological limitations of the two most common methods to estimate harm 

from HPEs are highlighted. Instead of directly linking HPEs to harm, they either identify 

ADEs and assess if they are related to the HPE (causality) and if they were preventable 

(preventability), or they estimate the potential future harm by eliciting the severity of 

identified HPEs. Both methods rely on expert judgement and considerable staff resources 

to elicit causality and preventability, on the one hand, and potential severity, on the other 

hand, on a case by case basis. Both methods generate informative measures to get an 

understanding of the burden of harm from HPEs, but they do not provide a direct link 

between HPE and harm to the patient. Further research on the direct link between HPE and 

harm is needed (31). 

 

In this dissertation this knowledge gap is addressed. The focus on specific HPE types 

enables an analysis of more specific outcomes directly linked with the HPEs. In Chapter 

Four, a case study of one of the HPE types targeted by SMASH demonstrates how harm 

from hazardous prescribing can be estimated. Large electronic health record datasets are 

used that allow a retrospective follow-up of patients exposed to a specific HPE type. From 

onset of the HPE, these patients can be followed based on their electronic health records 

in primary and secondary care and occurring ADEs can be detected. Instead of identifying 

all ADEs and assessing causality and preventability, only ADEs associated with the specific 

type of HPE are assessed. An assessment of any hospitalisation might have diluted the 

effect, especially when the population at risk of HPEs are considerably old and multiple 

other comorbidities could have caused the hospitalisation. 
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The role of SMASH in the context of patient safety interventions 

A large number of interventions are reported in the literature aiming to reduce hazardous 

prescribing (200). Results on effectiveness of educational interventions, computerised alert 

systems, e-A&F and pharmacist-led interventions have been mixed [2.7]. There is need for 

future research to demonstrate not only a reduction of HPE rates but also the impact of 

interventions on patient outcomes, such as hospitalisations or mortality (187). Based on 

changes in HPE rates alone, conclusions on the impact on patient outcomes cannot be 

made (179, 186, 200, 203). Evidence on cost-effectiveness of interventions reducing HPEs 

was subject to a lot of uncertainty. The key factor driving uncertainty was the link between 

the medication error and harm [2.8]. This covered the probability of harm, the health 

outcomes associated with harm and the costs and utilities attached to these health 

outcomes. The lack of high quality evidence on resource use [2.5] associated with harm 

from HPEs, resulted in many economic evaluations not incorporating these at all.  

 

A new type of multifaceted interventions that was first introduced with PINCER, combines 

aspects from pharmacist-led interventions and educational outreach with information 

technology interventions. The need for interventions combining different aspects of each 

intervention type was highlighted in different reviews on interventions aiming to reduce 

hazardous prescribing (179, 186, 203). The use of computerised screening tools to search 

electronic health records enabled a quick and objective measure of effectiveness of the 

study. By searching for explicit criteria that are defined by patient safety indicators, the HPE 

rates can be assessed automatically and the labour intensive and often subjective 

measurement of error rates as described in section 2.2 is not required. In the evaluation of 

PINCER, a new approach to investigate cost-effectiveness of interventions aiming to reduce 

HPE rates was used (149). One state-transition model was built for each HPE type to 

acknowledge the varying effects on patient harm, healthcare costs and quality of life of 

each individual HPE type. This approach was taken up by Moriarty et al. (2019) and 

Forrester et al. (2014) and was found to be more robust than economic evaluations not 

incorporating the increased risk of ADEs associated with HPEs [2.8]. The PINCER RCT has 

been evaluated and was found to be effective and cost-effective (45). Since then, the 

prescribing safety indicators have been developed further [2.9.1]. The local development 

of PINCER that is SMASH, the intervention under investigation in this thesis, contains an 
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updated set of prescribing safety indicators. SMASH already showed a reduction of these 

new HPE rates in the primary rollout in Salford (48), but the economic impact of these new 

HPE types still needs to be estimated. 

 

In summary, SMASH represents a new type of intervention combining various aspects of 

previous interventions, in an area where not many economic evaluations were conducted. 

This dissertation aims to explore how to conduct an economic analysis of a quasi-

experimental study that relies on routinely collected health data to measure exposure and 

outcomes using one particular type of HPE as an example.  

 

Implications for thesis 

Chapter Two identified different evidence gaps that were addressed in subsequent 

chapters: (i) the lack of quantifiable evidence on the increased risk of ADEs associated with 

HPEs, (ii) the lack of evidence on the economic impact of HPEs on patient outcomes and 

healthcare costs, and (iii) the lack of an economic evaluation of SMASH. This thesis 

addressed these evidence gaps by generating quantifiable evidence for one of the HPE 

types targeted by SMASH. In Chapter Four, the increased risk of specific ADEs associated 

with this HPE is assessed. In Chapter Five, the economic impact of this HPE on quality of life 

and healthcare costs is estimated. The last evidence gap on the economic evaluation of 

SMASH is addressed in Chapter Three and Chapter Six. While Chapter Three investigates 

the cost per HPE avoided, Chapter Six takes this analysis further by assessing the cost per 

QALY. 
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Chapter 3 - Cost-effectiveness analysis of SMASH 

 

Chapter Three reports on a study that estimates the incremental cost per HPE avoided by 

the SMASH intervention compared with standard care. It entails detailed descriptions of 

the methods used to cost the intervention, as well as how the effectiveness estimates were 

derived. The total cost of the intervention is reported relative to the number of HPEs 

avoided, and the findings are discussed in the context of this thesis. 

 

3.1 Introduction 

System-level DHIs, such as e-A&F, are used increasingly with many new interventions being 

introduced in healthcare practice. The recent WHO guideline on DHIs highlights the need 

for countries to ‘be guided by evidence to establish sustainable harmonized digital systems, 

not (to be) seduced by every new gadget’ (271). An example of an e-A&F is the pharmacist-

led information technology intervention SMASH. SMASH interrogates the electronic health 

record database of general practices and feeds back practice and patient-level information 

on potentially hazardous prescribing and inadequate monitoring to clinicians via a web-

based dashboard (40). The aim of SMASH is to reduce the number of HPEs that are 

associated with an increased probability of harm for the patient (37, 113, 120).  

 

The UK government recently made the reduction of HPEs, often referred to as medication 

errors, a policy objective (35) following recommendations from the WHO (33) and the 

EDQM (36). The policy encourages the implementation of interventions aiming to reduce 

HPEs. The effectiveness of SMASH has previously been demonstrated (48), but the cost of 

providing the intervention is not known to date. This chapter aims to (i) assess the cost of 

providing SMASH and (ii) combine the cost and effectiveness estimates to assess the cost-

effectiveness of SMASH compared with standard care. 
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(i) Assess the cost of SMASH 

In Chapter Two [2.9], the complex structure of SMASH that entailed an e-A&F component 

in form of the dashboard, the pharmacist services provided and an educational aspect was 

described. SMASH generates costs for the dashboard, pharmacist service, GP involvement, 

training and meeting costs. The different components of SMASH have their own specific 

challenges. DHIs are often implemented across a group of providers such that the cost is 

shared. How to allocate costs associated with the dashboard is therefore an important 

decision in the cost assessment. While the intervention is led by pharmacists, other staff is 

involved in the management of the HPEs, such as the GP, or in the support with the 

dashboard usage. Quantifying the involvement of each of these parties is challenging. As 

often with DHIs, there are differences in the delivery of the intervention between practices, 

for instance, the types of staff involved, methods of feedback and interactions among the 

involved staff, usage and acceptance of the intervention. In addition, these factors are likely 

to change over time in DHIs, when specific actions are taken over by other types of staff or 

processes become more efficient (272). Overall, there are various components of this 

complex intervention that need to be accounted for when assessing the cost of SMASH. 

 

The cost of similar interventions targeting HPEs were reported by Elliott et al. (2014) for 

PINCER and Foy et al. (2020) for Action to Support Practices Implementing Research 

Evidence (ASPIRE) (149, 152). Another comparable intervention was the DQIP study in 

Scotland from 2012-2014 that planned to conduct a cost-effectiveness study according to 

the study protocol that has not been reported yet (51). The studies aimed to reduce the 

incidence of a similar set of HPEs. The studies were used to inform a costing framework 

and provided a helpful structure for cost components of such interventions. However, costs 

for these interventions were very specific to the interventions itself and could not be 

transferred to this study. PINCER did not entail a dashboard function that was always 

accessible as SMASH did and neither did ASPIRE. The DHI component was therefore a new 

aspect that needed to be included in this chapter. 

 

While evidence on effectiveness of e-A&F exists as reported in a recent systematic review 

(273), evidence on cost-effectiveness was found to be scarce and/or of low quality in 

various systematic reviews (274-277). Unit costs, sources for estimates and calculations 
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were often not described sufficiently (274). Another review reported that key cost 

components, such as for training needs or personnel expenses, were not included (277). A 

more transparent reporting of costing studies is generally considered to be required for 

future CEAs (274, 276).  

 

(ii) Combine cost and effectiveness estimates 

One of the potential reasons for the low quality of existing economic evidence for DHIs is 

the lack of guidelines on how to conduct economic evaluations in DHIs (272). Where there 

is limited incentive or opportunity to implement clinical trials, evidence of effectiveness 

often relies on quasi-experimental methods (12, 272), such as it was the case for SMASH 

(48). NICE acknowledged this with the publication of the evidence standard framework 

described in Chapter Two [2.9.2] (12). While the evidence standard framework from NICE 

provides guidance on what minimal evidence standards should be fulfilled depending on 

the potential risk of harm for the patients involved in the interventions, there is no clear 

guidance on methodology of how to apply the new evidence standards or what impact the 

use of quasi-experimental studies has in the context of economic evaluations. Challenges 

that impact the interpretation of casual inference in different quasi-experimental designs 

were described in detail in Chapter Two [2.9.2]. Keeping in mind the limitations of quasi-

experimental methods, this chapter explored how the effectiveness estimates can be used 

in the economic evaluation and what implications the specific quasi-experimental study 

design had.  

 

Applying the new NICE evidence standards, the aim of this study was to assess the cost-

effectiveness of SMASH as cost per HPE avoided. This adds to the identified gap of cost-

effectiveness studies in e-A&F interventions. The chapter focuses on a transparent 

presentation of the cost of SMASH and the impact the use of effectiveness estimates from 

the quasi-experimental study had. 
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3.2 Methods 

3.2.1 Design of economic evaluation 

This chapter presents a cost-effectiveness analysis of SMASH compared with current 

practice over a time horizon of 12-months. The 12-months time horizon was chosen 

because effectiveness data was available up to 12 months for this study. Extrapolating the 

effectiveness of the intervention beyond the available data was not considered appropriate 

because of the chosen method of analysis that assumes a linear effect. The linear trend 

observed in the first 12 months after start of the intervention is not assumed to continue 

in the subsequent months (48). The economic evaluation followed guidelines from the 

Consolidated Health Economic Evaluation Report Standard (CHEERS) (278). The CHEERs 

checklist that reports where key criteria are addressed in this document is presented in 

Appendix C. Where guidance more specific to DHIs was required, the NICE ‘evidence 

standards framework for digital health technologies’ (12) was referred to. 

 

3.2.1.1 Target Population 

The target population of SMASH were patients at least 18 years of age in an average 

practice in Salford, Greater Manchester. The unit of analysis was each practice itself. The 

average number of patients at risk of HPEs in an average practice was estimated by dividing 

the total number of patients at risk (n= 47163) by the number of practices SMASH was 

implemented in (n=43). Patients at risk of a HPE fulfil the denominator requirements of at 

least one of the HPEs described in Appendix B. Patients can be at risk of multiple HPE types. 

The number of patients at risk of an HPE in a practice fluctuates over time. An average 

practice in Salford had 1097 patients at risk of an HPE based on the number of patients at 

risk at 12 months after intervention start.  

 

3.2.1.2 Strategies compared 

The intervention was a system level DHI where an e-A&F intervention was combined with 

a medication review by a pharmacist. SMASH was rolled out in 43 practices in Salford, 

Greater Manchester. The intervention is described in more detail in Chapter One [2.9]. 

Williams et al. (2018) and Peek et al. (2020) report further details of the rollout (40, 48). 
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Standard care was chosen as the alternative strategy and describes current practice. It was 

assumed that SMASH was an addition to standard care, and it did not substitute other 

activities in the GP practices to resolve HPEs, for instance, annual patient reviews by the 

GP. It was further assumed that current practice was constant and did not change in 

standard care or with implementing SMASH. Hence, the economic evaluation compared 

SMASH with standard care as it would have been without SMASH.  

 

3.2.1.3 Primary outcomes 

The primary effectiveness outcome was the number of HPEs avoided by SMASH. Costs were 

estimated from the NHS and Personal Social Services (NHS/PSS) perspective with regard to 

direct costs in providing SMASH in general practices. Costs were estimated in 2019 British 

pounds (£) and were not discounted because the time horizon did not exceed one year. No 

quantifiable estimates on resource use for services aiming to reduce HPEs before the 

intervention was implemented were available. There was no indication that these services 

stopped after SMASH was implemented. Due to lack of more specific information and 

quantifiable estimates, it was assumed that any service aiming to reduce HPEs in the 

comparator would also be available in practices with SMASH. Consequently, no additional 

costs were included for these services in the intervention or comparator. Cost per HPE 

avoided was used to express relative cost-effectiveness of SMASH versus standard care. 

 

3.2.1.4 Structure of Decision-analytic model 

A decision-analytic model (decision tree) followed the patients at risk of HPEs in an average 

practice in Salford. Two branches of the decision tree compared a practice using SMASH 

with standard care [Figure 3.1]. The full list of all HPEs reviewed by SMASH can be found in 

Appendix B. The CEA was conducted based on the relative effectiveness (difference in HPE 

rate) and mean cost of SMASH and standard care in order to generate cost per HPE avoided 

at practice level. The generation of cost per HPE avoided consisted of three parts: (i) 

estimating the relative effectiveness of the intervention compared with standard care 

[3.3.1], (ii) estimating the total cost of the intervention and control [3.3.2 and 3.3.3], and 

(iii) combining cost and effectiveness estimates to generate cost per HPE avoided by 

practice [3.3.4]. 
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Figure 3.1: Decision tree describing the economic model used to assess cost-effectiveness of 
SMASH compared with standard care 

 

 

3.2.2 Effectiveness of SMASH 

The effectiveness of SMASH was described by the reduction in HPE rates. HPE rate was 

defined as the proportion of actual HPEs (numerator) within patients at risk of HPEs 

(denominator) [Appendix B]. The denominator is not equal to the practice size but 

described by the number of patients at risk. 

 

The effectiveness of SMASH was estimated outside of this thesis, and the method used was 

a practice-based ITSA using segmented regression and subsequent meta-analysis (48). The 

author of this thesis had no influence on the analysis. The outcome measures in Peek et al. 

(2020) were prevalence of exposure to any HPE (composite of ten types) and exposure to 

any inadequate blood-test monitoring (composite of two types). This chapter focuses on 

probabilities of HPEs. HPE rates were measured daily from 12 months before until twelve 

months after SMASH was initiated.  

 

Because of the unique healthcare infrastructure in Salford and the rollout of the 

intervention in all eligible practices, there is no suitable contemporary comparator and the 

pre-intervention period was used as a historic comparator. Without a contemporary 

comparator, methods, such as DID or controlled ITSA, were not an option. Details about 

these methods are provided in Chapter Two [2.9.2]. Hinde et al. (2019) compared different 

methods to analyse time series datasets to inform decision making and suggested ITSA for 

analyses where a historical comparator is available (13). The advantage of ITSA over other 

methods, for example, simple before and after analysis, is that it allows accounting for the 

observed decreasing trend in HPE rates before the intervention and not just for the mean 
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before intervention start (7). The underlying regression model of the ITSA is visualised in 

Figure 3.2. No adjustments were made for transitional noise. It was assumed that the 

intervention effect will be observable immediately after the intervention starts because 

trainings and introductory meetings took place before the intervention start. In Peek et al 

(2020) or any related work no explorations were made to investigate learning or decay 

effects. 

 

Figure 3.2: Graphical presentation of fictitious results of regression analysis from ITSA and  
their potential relation to HPE rates observed during the rollout 

 

 

The ITSA was performed on each practice separately to account for and quantify practice 

variation regarding the effectiveness of SMASH and the nested structure of the data. The 

HPE rate at six and 12 months after intervention start was estimated from the pre-

intervention trend generated by the expected values for β1(T) at these time points [dotted 

line in Figure 3.2]. The extrapolated pre-intervention trend estimated the HPE rate in the 

comparator and is referred to as the counterfactual. The HPE rate for SMASH could be 

described by the ITSA results from the expected values of the regression or the observed 

values. Therefore, the absolute risk reduction could be described by two methods, 
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illustrated in Figure 3.2, as the difference in HPE rates between: ‘(a)’ the observed HPE rate 

and standard care extrapolation (counterfactual), or by ‘(b)’ the expected HPE rate from of 

the regression values denoted as β3(X*T) and the counterfactual. Depending on how well 

the predicted trend fits the observed data and the time point at which the effectiveness is 

assessed, results from the two methods can differ. A continuous linear decrease of the 

observed HPE rates over time would result in the same estimates for the absolute 

difference between observed and extrapolated HPE rates over time (a=b). This would be 

the ideal scenario where the regression models predict the HPE rate with SMASH precisely. 

In a scenario where the observed HPE rate reaches a floor effect, the absolute difference 

measured with method ‘(b)’ increases over time (b>a). Because the HPE rate cannot 

decrease below 0 and a continuous decreasing trend is assumed for the hypothetical 

comparator, this does occur eventually.  

 

The ITSA per practice was followed by a random effects meta-analysis. The random effects 

meta-analysis acknowledged practice heterogeneity that could have been derived from 

varying patient characteristics or the implementation of SMASH between practices. For 

SMASH, a bootstrap version of the DerSimonian-Laird method was carried out in order to 

assess this practice heterogeneity. In a re-analysis of almost 60000 meta-analyses 

identified from the Cochrane database, this method was found to be the most precise to 

identify between study variance and to estimate the effect size (279). Details about the 

methods for the ITSA and the meta-analysis used in Peek et al. (2020) that were not 

described in this paragraph or the publication can be found in Appendix D. A comparison 

of the ITSA with other data analysis methods is provided in Chapter Two [2.9.2].  

 

The analysis team provided observed HPE rates with SMASH, the absolute difference 

between regressed estimates, regressed HPE rates with SMASH, HPE rates for the 

counterfactual for each HPE separately and for the composite of all HPEs. The number of 

HPEs avoided was calculated by multiplying the number of patients at risk of HPEs with the 

absolute difference in HPE rates at that time point between SMASH and the hypothetical 

comparator. Data was provided for the base case analysis at 12 months after intervention 

start and also for a six month scenario. The HPE rate in SMASH (𝐻𝑃𝐸𝑟𝑎𝑡𝑒𝑆𝑀𝐴𝑆𝐻) was based 

on the observed results for SMASH and the denominator (𝑁𝑜 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑎𝑡 𝑟𝑖𝑠𝑘) based 
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on the observed number of patients at risk of the HPE at 12 months. The absolute 

difference from meta-analysed results of the ITSA was added to the observed HPE rates to 

generate the HPE rate for standard care (𝐻𝑃𝐸𝑟𝑎𝑡𝑒𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑎𝑟𝑒). The absolute difference 

[scenario ‘(a)’ in Figure 3.2] was adjusted for the pre-intervention trend and accounted for 

the heterogeneity between practices.  

 

To get an understanding on how well the regression model predicts the observed values 

over time, the number of HPEs avoided in scenario ‘(a)’ and ‘(b)’ were compared. The 

number of HPEs avoided was generated by multiplying the absolute difference between 

SMASH and standard care for both scenarios with the denominator. The smaller the 

difference the more closely the regressed HPE rate for SMASH matched the observed 

values. 

 

3.2.3 Cost of SMASH 

The cost of SMASH was assessed retrospectively after SMASH had been rolled out across 

Salford, Greater Manchester. The unit of analysis was cost of SMASH in an average practice. 

Resources consumed implementing SMASH were assessed using a micro-costing approach, 

where each step of the service pathway was incorporated (280). For standard care, the cost 

was constant and, thus, no additional resource use was assumed to have been generated 

that was not also generated with current practice in SMASH. SMASH was seen as an 

addition to standard care. First, resource components that were necessary to deliver 

SMASH were identified based on a conceptualisation of the service pathway. Published 

qualitative (208, 243, 246, 247) and quantitative data relating to the delivery of SMASH (40) 

were used to identify a service pathway from which key cost components relevant for the 

resource use estimation could be derived. Subsequently, the amount of each resource 

component was estimated using micro-costing methods for each practice. For resource use 

of SMASH, a mixed bottom-up and top-down approach was chosen. Where activity or 

usage records were available on practice level, these were used to quantify resource use 

(bottom up costing). If only aggregated resource use across all practices was available, 

these were allocated between the practices enrolled in the study (top down costing) (281, 

282).  
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3.2.3.1 Conceptualisation of resources 

In order to identify relevant cost components of the intervention, the processes of 

deploying and using the intervention in practice needed to be fully understood (283). 

Resource use and cost were divided into set-up and maintenance costs. Development costs 

to design the dashboard were not considered in this analysis because they would not be 

relevant for decision-makers considering a wider rollout of SMASH (272, 284). Figure 3.3 

illustrates the resource components that were identified to deliver SMASH from the 

conceptualisation of the service pathway. 

 

Figure 3.3: Components of the service pathway relevant to estimate resource use of SMASH 
required for (A) set-up of the intervention and (B) intervention maintenance 

 

 

Set-up costs entailed one time fixed costs required to initiate the intervention, such as 

resources for training needs or equipment requirements (283). The software was installed 

on the Salford Royal NHS Foundation Trust server. After installation, the dashboard was 

accessible for all practices via web log in (40). Each practice had one pharmacist advising 

on SMASH that received training to use SMASH. An initial practice meeting took place 

where the pharmacists introduced the dashboard to the practice and explained the 

dashboard (40). Cost related to server installations, pharmacist training and the initial 

practice meeting were identified as fixed set-up cost [Figure 3.3].  

 

All recurrent costs were considered as maintenance costs, e.g., personnel, supplies, 

information and communication costs (283). Maintenance costs also included an IT service 

that covered (i) adding new users to the dashboard, (ii) responding to queries regarding 
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specific identified HPEs and (iii) fixing issues with the dashboard. The cost for IT service 

support were fixed costs. HPEs identified by the dashboard needed to be managed. This 

involved a review of identified HPEs, a GP contact and actions to resolve HPEs [Figure 3.3]. 

The management of HPEs was the only variable costs that changed with the volume of HPEs 

that were identified by the dashboard.  

 

Based on SMASH design and details on the rollout of SMASH the following key cost 

components were identified for set-up costs: (i) server costs; (ii) training of pharmacists; 

(iii) initial staff meeting; and for maintenance costs: (i) management of HPE alerts by the 

dashboard; (ii) IT support [Figure 3.3]. 

 

3.2.3.2 Quantifying the resource use 

Resources consumed for each cost component were estimated retrospectively by using 

data collected routinely during the rollout of SMASH (pharmacists’ field notes) and expert 

elicitation (interviews with staff). Individuals were selected purposively for the interviews 

to obtain insight into three elements of resource use for SMASH: training of staff, delivery 

of SMASH, and IT infrastructure. A snowballing approach was used to identify subjects that 

could provide the information required. All interviews were conducted by the author of 

this thesis. Two pharmacists [participant 1 and 2] (involved in the delivery of SMASH) and 

a software engineer [participant 3] (who developed the dashboard, was involved in the 

implementation phase of SMASH and is responsible of the server maintenance and IT 

service) were interviewed. Where the required values on resource use were not available 

from the published papers, questions for experts to estimate these values were developed 

by the author of this thesis. This semi-structured schedule of questions was followed to 

guide the interviews [Appendix E]. Questions were asked around delivery of the 

intervention with the focus to assess cost for an average practice. 

 

3.2.3.3 Resource use items of cost components 

Each cost component identified in 3.2.3.1 entailed various resource use items and the 

methods how they were derived are reported in Table 3.1. 
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Table 3.1: Methods used to quantify resource use by cost component and details of the resource 

use items relevant to estimate 

Resource use Method Resource use items Source 

Server costs 

Installing 

software 

Total cost of installing the server was 

allocated between practices and 

distributed over the minimum lifetime of 

SMASH 

Number of practices 

sharing costs, 

expected minimum 

lifetime of server 

(40), 

assumption on 

expected 

lifetime 

Pharmacist training 

Number of 

training events 

Multiple trainings were provided with an 

average number of attendees. The 

number of trainings conducted to train all 

pharmacists was calculated by the 

number of pharmacists delivering SMASH 

divided by the average number of 

attendees per training. Total number of 

trainings was allocated between practices 

Number of attendees 

per training, length of 

training, number of 

pharmacists requiring 

training, salary bands 

of trainer and 

trainees, expenses, 

Number of practices 

sharing cost 

Interview 

[participant 1,2] 

(Williams et al. 

2018) 

 

Staff resources  The time trainees and the trainer spent 

per training were based on salary bands 

and training length 

Initial meeting 

Staff resources The time attendees spent were based on 

salary bands and meeting length 

Attendees of meeting, 

length of meeting, 

salary bands of 

meeting attendees, 

expenses 

Interview 

[participant 1,2] 

Management of HPEs 

Number of HPEs 

reviewed 

Sum of all HPEs at baseline and new HPEs 

recorded over 12 months.  

Number of HPEs 

reviewed, percentage 

of HPEs requiring 

patient contact, time 

pharmacists and GPS 

spent with managing 

HPEs requiring and 

not requiring patient 

contact 

Dashboard 

records, 

interview 

[participant 

1,2,3], field 

notes 

Percentage of 

HPEs requiring 

patient contact 

Mean of suggested percentage of 

participant 1, participant 2 and field 

noted written by pharmacists during 

intervention 

Time spent 

managing HPEs  

Managing HPEs requiring no patient 

contact were managed by pharmacists. 

HPEs requiring patient contact were 

managed by pharmacists and GPs. The 

average times were reported in the 

interviews 

IT services 

Staff resources Average time of IT services provided per 

week and salary bands of the provider 

were reported 

Weekly support, 

salary band of 

provider of IT services 

Interview 

[participant 3] 

GPs: general practitioners; HPE: hazardous prescribing event; IT: information technology; SMASH: Safety Medication 

Dashboard 
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Server access costs included two servers on which SMASH was installed and any further 

support, for example, for backups and maintenance, that was required [participant 3]. 

Once the dashboard was installed on the servers, it was accessible even after the follow-

up of the SMASH implementation study ended without any additional costs. Allocating the 

server costs to the 12-months time horizon only would overestimate the true cost. 

According to the tutorial on costing of eHealth interventions by Bergmo et al. (2015) this 

type of costs can be distributed over the ‘expected lifetime’ using an appropriate discount 

factor (280). The minimum lifetime was used as a conservative estimate for the expected 

lifetime in the base case. Minimum lifetime was defined as the years since start of SMASH 

up to the time of this study resulting in four years. The 12 months cost estimate is not 

discounted. Only for longer time horizons the subsequent yearly payments would be 

discounted. 

 

Resource use for pharmacist training and the initial meetings were quantified by assessing 

time that staff spent with this activity as proposed by Bergmo et al. (2015). This required 

evidence of the type of staff and time investment of the trainer, the attendees and the 

number of events that took place. The resource use of training of pharmacists was 

estimated based on the total number of pharmacists working on SMASH (40) and the 

average duration and number of attendees for the training sessions [participant 1, 2]. The 

initial meeting incorporated resource use for the time the pharmacist spent at the meeting 

and the number and type of participants from the practice staff. Additionally, resources for 

room bookings or travel expenses for staff were included.  

 

The quantity of resource use items for the cost for managing HPE constituted the number 

of HPEs reviewed, the time inputs for pharmacist and GPs per HPE and the percentage of 

HPEs reviewed that required patient contact. During the study period of the SMASH 

effectiveness study, the time staff spent managing HPEs was not recorded. Pharmacists 

reported that the time spent on reviewing HPEs varied considerably between practices and 

between weeks or months. As a result, an average time per practice was not possible to 

quantify. Pharmacists did recall time spent per HPE on average [participant 1, 2]. This was 

used as a proxy together with the number of HPEs reviewed. The average time per HPE was 

multiplied with the number of unique HPEs identified by the dashboard assuming each 
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unique HPE was reviewed once. The dashboard recorded all HPEs at any day during follow-

up but not how many of these were actually reviewed by pharmacists. ‘All HPEs’ includes 

those that remained unresolved that re-occurred the following days. Assuming each 

patient with a HPE identified was reviewed exactly once, the HPE at baseline and on each 

following day only the new HPEs identified were counted.  

 

Pharmacist and GP time spent per HPE in minutes was estimated based on experiences of 

the pharmacists [participant 1 and 2]. Pharmacists distinguished between HPEs requiring 

patient contact and those that did not. HPEs not requiring patient contact were solely dealt 

with by the pharmacist. When patient contact was required, an action to resolve the HPE 

was agreed on with the GP, and the patient was contacted. Consequently, HPEs requiring 

patient contact involved time of the pharmacist to review the HPE and time for the 

consultation of the pharmacist and the GP. 

 

To assess the percentage of reviewed HPEs that required patient contact, expert elicitation 

[participant 1, 2] and field notes from pharmacists, written during SMASH follow-up, were 

analysed. During the rollout, pharmacists were encouraged to take field notes on each HPE 

they reviewed with key points on relevant patient history, relevance of HPE for this patient 

and suggested or taken actions. Each HPE was screened individually by a clinical 

pharmacist, the author of this thesis, and grouped to either not requiring patient contact 

or requiring patient contact. The percentage of HPEs that required patient contact was 

estimated as the mean of the values elicited from participant 1 and 2 and the results from 

the field notes.  

 

Assumptions about the resource use on the basis of the interviews and/or the field notes 

were fed back to the healthcare professionals involved in SMASH for face validation. This 

entailed confirming that the assumptions and estimated were reasonable. 

 

3.2.3.4 Unit costs 

Unit costs were used from the most recent published reference costs at the time of 

analysis. Staff salary levels (GPs and pharmacists) were based on the NHS pay scales or 
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University of Manchester salaries. The unit cost from the University of Manchester pay 

scale are analogous to those that would occur in a wider roll-out of SMASH. The cost can 

be seen as generalisable because, e.g., in the current roll-out of SMASH to Greater 

Manchester the University of Manchester is providing the IT service. Where multiple hourly 

salaries were available per band, the midpoint of the band was used. NHS reference costs 

were taken from the 2019 Personal Social Services Research Unit (PSSRU) publication (285) 

as recommended by NICE (12). The unit costs are reported in the results section [3.3.2]. 

 

3.2.4 Incremental economic analysis 

 

Effectiveness 

The number of HPEs were generated from the HPE rate with SMASH (𝐻𝑃𝐸𝑆𝑀𝐴𝑆𝐻) or with 

standard care (𝐻𝑃𝐸𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑎𝑟𝑒) multiplied by the number of patients at risk. For the base 

case analysis, the HPE rate with SMASH was the observed proportion of patients with a HPE 

(𝐻𝑃𝐸𝑟𝑎𝑡𝑒𝑆𝑀𝐴𝑆𝐻). The HPE rate in standard care (𝐻𝑃𝐸𝑟𝑎𝑡𝑒𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑎𝑟𝑒) was calculated by 

adding the absolute difference generated in the ITSA and meta-analysis to the HPE rate 

with SMASH (𝐻𝑃𝐸𝑟𝑎𝑡𝑒𝑆𝑀𝐴𝑆𝐻).  

 

Costs 

The cost components for set-up and maintenance costs were summed up to estimate the 

cost of delivering SMASH in the 12 months of follow-up (𝐶𝑜𝑠𝑡𝑆𝑀𝐴𝑆𝐻). The cost of standard 

care was assumed to be zero (𝐶𝑜𝑠𝑡𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑎𝑟𝑒). 

 

Base case 

An incremental analysis of the HPE rate and cost per practice in SMASH and standard care 

was performed. Incremental cost was calculated as the difference between the total cost 

of the intervention and the cost of standard care per practice. Incremental effectiveness 

was calculated as the number of HPEs avoided, generated by multiplying the absolute 

difference with the number of patients at risk. If SMASH was not dominant (incremental 

cost < 0; incremental effectiveness > 0) or dominated (incremental cost > 0; incremental 
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effectiveness < 0), an incremental cost-effectiveness ratio (ICER) was calculated (4). An ICER 

describes the additional cost of each unit of effect denoted as 

 

Equation 1:    𝐼𝐶𝐸𝑅 =  
𝑐𝑜𝑠𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝐴−𝑐𝑜𝑠𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝐵

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝐴−𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝐵
. 

 

For SMASH, the cost per HPE avoided (ICER) was measured as described in Equation 2. 

 

Equation 2:   𝐼𝐶𝐸𝑅 =  
𝐶𝑜𝑠𝑡𝑆𝑀𝐴𝑆𝐻−𝐶𝑜𝑠𝑡𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑎𝑟𝑒

𝐻𝑃𝐸𝑆𝑀𝐴𝑆𝐻−𝐻𝑃𝐸𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑎𝑟𝑒
. 

 

Base case analysis 

A probabilistic analysis was conducted using TreeAge Pro Healthcare 2021 to account for 

the effect of parameter uncertainty on cost per HPE avoided (286). A random seed of 345 

was used. Uncertain input parameters were characterised by probability distributions. For 

probabilities and utilities beta distributions and for costs gamma distributions were applied 

when necessary as suggested by the ISPOR taskforce report in 2012 (287). For the absolute 

difference, a normal distribution was chosen because the absolute difference can take on 

values above and below zero. To identify a distribution around the number of HPEs 

reviewed where individual data was available, multiple distributions were fitted and the 

best fit was identified following recommendations by Delignette-Muller et al. 2009 (288) 

using the R fitdistrplus command. Results for 10000 iterations sampled from uncertainty 

around the input parameters were plotted in a cost-effectiveness plane. Cost-effectiveness 

planes can be used to visualise the incremental costs and effectiveness pairs graphically 

(289).  

 

3.2.5 Sensitivity analysis 

Uncertainty associated with the analysis output can be investigated in deterministic or 

probabilistic sensitivity analysis (PSA). In PSA, different scenarios were tested changing 

assumptions compared with the base case analysis. In a deterministic one-way sensitivity 

analysis (OSA), specific input parameters are changed while all other input parameters stay 

constant. This allowed the analysis of the impact of specific input parameters or 
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assumptions on the results from the base case. Results of the OSA were presented 

graphically in a tornado diagram where each horizontal bar represents the changes in the 

ICER that resulted from varying the specific input parameter in the specified range.  

 

3.2.5.1 Scenario analysis 

Probabilistic sensitivity analyses were conducted to test robustness of assumptions made 

in the economic model or cost assessment. Details of these scenario analyses are 

summarised in Table 3.2 and compared with the base case analysis. 

 

Impact of costs included 

Economic evaluations of comparable interventions, for example, the study by Risor et al. 

(2017), only costed resources for maintenance and excluded set-up costs (290). In order to 

compare the results, scenario analysis 1 was conducted that did not incorporate set-up 

costs.  

 

Impact of change in effect size over time 

The rollout of SMASH showed a reduction of HPEs over time (48). The decreasing effect got 

smaller over time and HPE rates seemed to reach a ceiling effect after six months where no 

further reduction in HPEs was observed. To estimate cost of delivering SMASH for six 

months, the set-up costs stayed the same, but the maintenance costs were adjusted to six 

months. The number of HPEs avoided was calculated using the HPE rate at six months for 

SMASH and standard care using the same number of patients at risk as the base case 

analysis. 

 

Table 3.2: Summary of parameters and assumptions in the probabilistic scenario analyses 

compared with the base case 

Parameter Base case Scenario 1 Scenario 2 

Time horizon 12 months 12 months 6 months 

Cost components Set-up and maintenance Maintenance Set-up and maintenance 
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3.2.5.2 Deterministic sensitivity analysis 

Deterministic OSA were conducted to test robustness of assumptions made in the 

economic model or cost assessment (model uncertainty) and for uncertainties around the 

input parameters (parameter uncertainty). The OSA investigated how further changes in 

single parameters affected estimates of cost per HPE avoided. Parameters were selected 

for the OSA if there were alternative assumptions possible or where there was uncertainty 

around the input parameters. The ranges of parameters applied in the OSA are reported in 

Table 3.3. 

 

Cost parameters 

Server costs were based on the assumption that the lifetime of the server, would be the 

minimal observed time the server was running (model uncertainty). However, according to 

the IT expert [participant 3] working with the server, the server was assumed to run for 

much longer than four years. The effect of allocating the one-time server costs to one 

(minimum expected lifetime) and eight years (maximum expected lifetime) was analysed 

to test different scenarios on how long the intervention could be used.  

 

The costs of managing HPEs depended on the number of HPEs reviewed and the 

percentage of HPEs that required patient contact. In the base case analysis, the uncertainty 

around the two estimates was accounted for by applying a probability distribution. The OSA 

was used to estimate the impact of them separately.  

 

The base case assumed that 36 pharmacists were trained to use SMASH. Sensitivity analysis 

assumed that 29 (lower value) and 43 (upper value, equivalent to one pharmacist per 

practice) were trained. The number of practices between costs were shared was adjusted 

(20 and 600 practices). The maximum of 600 was chosen to represent the number of 

practices for a discussed rollout of SMASH to 600 more practices in Greater Manchester.  
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Outcome parameters 

Uncertainty around costs of managing HPEs derived from the range in percentage of HPEs 

requiring patient contact and the number of HPEs (parameter uncertainty). Standard 

deviations of these two parameters were used in OSA. The uncertainty of the absolute 

difference in the HPE rate in SMASH and in standard care was applied in the OSA as the 

lower and upper bound of the 95% CI resulting from the ITSA and subsequent meta-analysis 

(parameter uncertainty).  

 

Table 3.3: Parameter ranges applied in one-way sensitivity analysis 

Parameter Mean 
Low 

range 
High range Assumption/source of range 

Expected lifetime of 

server, years 

4 1 8 Allocation of server costs 

over the expected lifetime  

Pharmacists delivering 

SMASH 

36 29 43 Number of trainings required 

to train all pharmacists 

% of HPEs requiring 

patient contact 

43.04% 22.75% 63.32% SD (between pharmacist 

views and field notes) 

Number of HPEs 

reviewed per practice 

105.77 29.69 181.84 SD (between practices) 

Absolute difference in 

HPE rates 

0.96% 0.79% 1.12% Confidence interval of meta-

analysed absolute difference 

HPE: hazardous prescribing event; SC: standard care; SD: standard deviation; SMASH: Safety Medication 
Dashboard 

 

3.2.6 Ethical considerations 

The University of Manchester Ethics Decision Tool (291) and the NHS Medical Research 

Council decision tool (292) were used to establish whether a formal ethical review of the 

interviews was required as data were collected from human participants. The Ethics 

Decision Tool confirmed that a formal ethical review was not required because data were 

collected about individuals acting in their own professional capacity. Further, the 

participants were not from a vulnerable group, were not at-risk of disclosing unprofessional 

conduct, and personal or sensitive data were not collected. 
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3.3 Results 

3.3.1 Effectiveness of SMASH 

The relative HPE reduction by SMASH was 50.68% (absolute reduction of 0.96%, 95% CI 

0.79% to 1.12%) resulting in 10.5 (95% CI 8.6 to 12.3) HPEs avoided by SMASH per practice 

with 1097 patients at risk of a HPE [Table 3.4]. The authors of Peek et al (2020) report a 

substantial variation between practices [I2 = 91.1%]. Table 3.4 reports the number of HPEs 

avoided for scenario (a), the difference between observed HPEs; or (b) based on ITSA result 

on predicted HPE rate for the effectiveness of SMASH compared with the counterfactual 

representing standard care. 

 

Table 3.4: HPE rates with SMASH and standard care (Peek et al., 2020) (48) 

Time point HPE rate, in % with 95% CI Absolute difference, HPE avoideda 

 SMASH Standard carec in % with 95% CI per practice 

Expected ITSA values, scenario (b)   

At 12 months 1.40 (0.95; 1.91) b 2.36 (2.07; 2.70) 0.96 (0.79; 1.12) 10.5 (8.6; 12.3) 

At 6 months 1.77 (1.37; 2.22) b 2.46 (2.17; 2.79) 0.69 (0.57; 0.80) 7.5 (6.2; 8.8) 

Observed values, scenario (a)  

At 12 months 1.60 (1.49; 1.72) d 2.36 (2.07; 2.70) 0.76 (0.58; 0.98) 8.4 (6.3; 10.7) 

At 6 months 1.83 (1.71; 1.95) d 2.46 (2.17; 2.79) 0.63 (0.46; 0.84) 6.9 (5.1; 9.2) 

aNumber of HPE avoided generated by multiplying the number of patients at risk with the absolute difference in HPE 

rates between SMASH and standard care; bexpected values from ITSA regressions of HPE rate for SMASH; cHPE rate 

extrapolated from pre-intervention trend; dobserved values of HPE rates with SMASH; CI: confidence interval; HPE: 

hazardous prescribing event; ITSA: interrupted time series analysis; SMASH: Safety Medication Dashboard; in bold 

are estimates used in the base case analysis of the economic evaluation of SMASH vs. standard care 

 

The number of HPEs avoided with SMASH was sensitive to the method used to estimate 

effectiveness. The estimated number of HPE avoided using the two methods and potential 

differences were graphically presented in Figure 3.2 as ‘a)’ and ‘b)’ and are reported in 

absolute numbers in Table 3.4 as scenario (a) and scenario (b).  

 

At 12 months, the number of HPEs avoided was 25% larger when the ITSA results were used 

compared to when the observed values were used (10.5 vs. 8.4). At six months, the number 

of HPE avoided was 9% larger with ITSA results alone (7.5 vs. 6.9). While the expected 
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values regressed in the ITSA constantly decreased, the observed values decreased more 

rapidly, with a steeper slope in the beginning compared with the regression and showed a 

floor effect (48) as indicated by the hypothetical illustration in Figure 3.2 where the 

regression slope was still negative.  

 

In the economic evaluation the effect of the intervention is described by the absolute 

difference as in scenario (b) that is applied to the observed HPE rate with SMASH [estimates 

presented in bold in Table 3.4]. Table 3.5 reports the final effectiveness estimates used in 

the decision-analytic model. 

 

3.3.2 Resource use and unit costs 

Resource use items relevant to quantify resource use for each cost component and relevant 

unit costs are reported in Table 3.5.  

 

Table 3.5: Summary of input parameters (resource use, unit costs, effectiveness) with the 

distribution used in the probabilistic analysis 

Resource use Expected value Source  Distribution 

Server costs    

   Installation on server 1 (40) Fixed 

   No of practices sharing costs 43 (40) Fixed 

   Expected lifetime of server 4 years Assumption (current 

lifetime since SMASH-start 

2016) 

Fixed 

Pharmacist training    

    No of attendees per training 2.5 Interview [participant 1,2] Fixed 

    Length of training  2 hours Interview [participant 1,2] Fixed 

    No. of pharmacists trained 36 pharmacists (40) Fixed 

    Salary band of trainer NHS pay scale: 

band 8a 

Interview [participant 1] Fixed 

    Salary bands of attendees NHS pay scale: 7 

with band 8a 

and 29 with 7 

Interview [participant 1] Fixed 

    Room, travel expenses 0 Interview [participant 1,2] Fixed 

Initial meeting    

    Attendee from practice staff GP or practice 

manager 

Interview [participant 1,2] Fixed 

    Length of meeting 0.17 hours Interview [participant 1,2] Fixed 

    Salary band of pharmacist NHS pay scale: 7 

(band 8a), 29 

(band 7) 

Interview [participant 1,2] Fixed 
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    Salary band practice manager NHS pay scale: 

band 5 or 6 

(293) Fixed 

    Room, travel expenses 0 Interview [participant 1,2]  

Management of HPE    

    No. of HPEs reviewed, 12 months  18 (SD ±14) Dashboard records, 

interview [participant 3] 

Gamma 

    Percentage of HPE requiring  

    patient contact 

46% (SD ±20) Interview [participant 1,2], 

field notes 

Beta 

    Time pharmacist spend reviewing         

    HPE requiring patient contact 

0.33 hours Interview [participant 1,2] Fixed 

    Time GP spent with HPE requiring 

    patient contact 

0.08 hours Interview [participant 1,2] Fixed 

    Time pharmacists spend with HPE  

    not requiring patient contact 

0.17 hours Interview [participant 1,2] Fixed 

IT services    

   Weekly support in first 3 months 3.75 hours Interview [participant 3] Fixed 

   Weekly support after 3 months 1.88 hours Interview [participant 3] Fixed 

   Salary band of provider of IT  

   services 

University of 

Manchester 

staff: band 6 

Interview [participant 3] Fixed 

Unit costs Expected value Source  Distribution 

Server costs    

    Installing software on the servers £14082 Interview [participant 3] Fixed 

    Accessing software in practices £0 Interview [participant 3] Fixed 

NHS pay scale for scientific and 

professional staff: 

    Band 8a 

    Band 7 

    Band 6 

    Band 5 

    General practitioner 

 

 

£63 per hour 

£53 per hour 

£44 per hour 

£34 per hour 

£110 per hour 

PSSRU 2019 Fixed 

University of Manchester pay scale 

    Band 6 

 

£21 per houra 

 

Directorate of Human 

Resources (2019) 

 

Fixed 

Effectiveness Expected value Source  Distribution 

HPE rate SMASH (observed)  1.60% (95% CI 

1.49% to 1.72%) 

(48) Beta 

Absolute difference in HPE rates (ITSA) 0.96% (95% CI 

0.79% to 1.12%) 

(48) Normal 

Patients at risk of HPE 47163 (48) Fixed 

aMidpoint of hourly salary in this band; CI: confidence interval; HPE: hazardous prescribing event; PSSRU: Personal 

Social Services Research Unit; SD: standard deviation; SMASH: Safety Medication Dashboard 
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The one-time cost for installing the dashboard on the servers was £14082 [participant 3]. 

The costs were allocated to each practice equally and distributed over four years (the 

minimum lifetime of SMASH). There were no further costs associated with the server. The 

total server cost per practice was £81.87 [Table 3.6].  

 

The number of pharmacists trained to use the dashboard was 36 (40). No costs were 

generated for room bookings or expenses due to the close proximity of the practices to 

each other [participant 1 and 2]. The cost for training the 36 pharmacists that ran the 

intervention was shared between the 43 enrolled practices. Based on the length and 

number of trainings required, each practice got allocated 0.67 hours of trainer time and 

1.67 hours of the attending pharmacists’ time resulting in £137.53 per practice [Table 3.6]. 

 

Table 3.6: Quantifying resource use for key cost components clustered by set-up and 

maintenance costs on practice level 

Cost 

component 
Resource use item 

Quantity of 

resource use 
Unit cost, £ Cost, £ 

Set-up costs 

   Server costs Server cost all practices 0.02 per 

practice 

3520.50 c 81.87 

   Pharmacist 

   training 

Trainer (pharmacist band 8a) 0.67 hours 65.00 a 43.53 

Attendees (pharmacist band 

7/8a) 

1.67 hours 56.14 a 94.00 

Total pharmacist training       137.53 

   Initial meeting SMASH expert (pharmacist 

band 7/8a) 

0.17 hours 56.14 a 9.36 

Staff attendee (practice 

manager) 

0.08 hours 39.50 a 3.29 

Staff attendee (key GP) 0.08 hours 112 a 9.33 

Total initial meeting       21.98 

Maintenance costs 

   Managing HPE Pharmacist 6.33 hours 54.94 a 1415.51 

GPs 0.95 hours 110 a 424.84 

Total managing HPE       1840.35 

   IT service Researcher (university staff) 2.44 hours 20.89 b 51.06 
aPSSRU (2019) (285); bUniversity of Manchester Pay Scale 2019, cinterview with participant 3 

 

According to participants 1 and 2, the initial meeting on average took ten minutes and was 

attended by the pharmacist, as the expert introducing SMASH, and either a key GP or the 
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practice manager. It was assumed that 50% of initial meetings were with the key GP and 

50% with the practice manager. As a result, ten minutes (0.17 hours) of pharmacist time 

per practice were required and the ten minutes of the attending staff member were split 

to 0.08 hours of either the key GP or the practice manager. Salaries of practice managers 

were assumed to be the mean of the hourly salary of band 5 and band 6 (293).  

 

The pharmacists agreed that per HPE requiring patient contact 20 minutes (0.33 hours) 

were spent reviewing the HPE, contacting the GP and contacting the patient [participant 1 

and 2]. For a HPE that did not require patient contact, the review required ten minutes 

(0.17 hours) on average. The contact with the GP required on average five minutes (0.08 

hours). The field notes contained details on 358 HPEs of which 60.89% (218 out of 358) did 

not require patient contact. Estimates from participants 1 and 2 were 25% and 65% of HPE 

requiring patient contact, respectively. The mean of all three estimates was 43.04% with a 

standard deviation of 20.29%. After multiplying the number of HPEs and the staff time per 

HPE for HPEs requiring patient contact and those, not requiring patient contact, total costs 

of managing HPEs resulted in £1840.35 per practice [Table 3.6].  

 

From participant 3, the resource use for IT services was elicited to be 0.1 and 0.05 full time 

equivalents of a band six researcher at the University of Manchester for hypothetical 50 

practices in the first three months and the rest of follow-up, respectively. Assuming 37.5 

hours per week as full time, the researcher spent 3.75 hours per week in the first three 

months and 1.88 hours per week in follow-up. In total, IT services required 122.21 hours of 

a researcher’s time at 12 months for 50 practices and consequently 2.44 hours for one 

practice. Based on the mean salary of a band six researcher, this led to £51.06 per practice 

for 12 months of IT support [Table 3.6]. 

 

3.3.3 Cost of SMASH 

The total cost of SMASH was £2133 per practice after 12 months (deterministic analysis). 

The costs of each resource component are reported in Table 3.7.  
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Table 3.7: Total cost of SMASH by cost component (deterministic analysis) 

Cost item Cost at 12 months, £ Cost at 6 months, £ 

Set-up costs  

   Server costs 82 82 

   Pharmacist training 138 138 

   Initial meeting 22 22 

   Total set-up 241 241 

Maintenance costs 

   Managing HPE 1840 1242 

   IT service 51 27 

   Total maintenance 1891 1269 

Total cost 2133 1510 

HPE: hazardous prescribing event; IT: information technology; SMASH: Safety Medication Dashboard 

 

3.3.4 Incremental economic analysis 

In the base case analysis, the incremental costs were £2149 (2.5% to 97.5% credible interval 

£487 to £5790) at practice-level and the number of HPEs was reduced by 10.53 (2.5% to 

97.5% credible interval 8.80 to 12.25) compared with a standard care practice [Table 3.8]. 

The expected incremental cost per HPE avoided for SMASH compared with standard care 

was £205 (2.5% to 97.5% credible interval £46 to £559). The deterministic analysis gave 

very similar results. 

 

Table 3.8: Results of the base case and scenario analyses  

Scenario definition 
Incremental 

costs, £ b  
HPEs avoided a,b Cost per HPE 

avoided, £b 

Base case (probabilistic analysis)    

Total cost, 12 months 2149 (487; 5790) 10.53 (8.80; 12.25) 205 (46; 560) 

Deterministic analysis    

Total cost, 12 months 2133 10.53 203 

Scenario 1 (probabilistic)    

Only maintenance costs, 12 months 1907 (246; 5548) 10.53 (8.80; 12.25) 182 (23; 535) 

Scenario 2 (probabilistic)    

Total cost, 6 months 1509 (377; 4179) 7.56 (6.30; 8.82) 201 (50; 561) 
aIncremental effectiveness; bcredible interval: 2.5% to 97.5% percentile; HPE: hazardous prescribing event; 

ITSA: interrupted time series analysis; SMASH: Safety Medication Dashboard 

 

In the cost-effectiveness plane incremental costs and HPEs avoided from 10000 iterations 

sampled from parameter uncertainty were plotted [Figure 3.4]. A cost-effectiveness plane 
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is divided in four quadrants and the incremental effects are plotted on the x-axis and the 

incremental costs on the y-axis (294). Data points in the north-east quadrant represent 

interventions that are more costly and generate an additional health gain compared with 

the comparator. Dominant interventions that are more effective and less costly would 

generate results in the south-east quadrant. All data points left of the y-axis describe 

simulations where the intervention was less effective than the comparator.  

 

Figure 3.4: Cost-effectiveness plane for SMASH vs. standard care (base case)

 

 

All observations were in the north-east quadrant, which indicated that SMASH is likely to 

be more effective but also more costly than standard care. The incremental costs were 

estimated to have a minimum value of £292 in the PSA. This was visible as a horizontal floor 

to the joint distribution of costs and HPE avoided in Figure 3.4. This was because all set-up 

costs and the IT service costs were fixed in the probabilistic analysis. 
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3.3.5 Sensitivity analysis 

3.3.5.1 Scenario analysis 

In scenario analysis 2, excluding set-up costs reduced the cost per HPE avoided by SMASH 

by £23 per practice [Table 3.8]. The incremental costs and effectiveness were smaller in the 

six months scenario compared with 12 months (£4 difference). 

 

3.3.5.2 Deterministic sensitivity analysis 

According to the results of the OSA reported in Figure 3.5, the cost per HPE avoided by 

SMASH was most sensitive to the parameter uncertainty around the number of HPEs 

reviewed. The cost per HPE avoided ranged from £77 to £328. The uncertainty around the 

absolute difference between HPE rates with SMASH and standard care changed the cost 

per HPE avoided by -14% (to £174) and +122% (to £247) compared with the mean expected 

cost per HPE avoided of £203for the minimum and maximum expected value, respectively. 

The OSA showed that of the individual cost components the uncertainty around managing 

HPE (number of HPEs reviewed and percentage of HPE requiring patient contact) had an 

impact on the cost per HPE avoided. The number of pharmacists that require training had 

the smallest impact on the total cost followed by the number of practices sharing the costs 

for server and the expected lifetime of the server. 

 

Figure 3.5: Tornado diagram on impact of individual input parameters on the cost per HPE  
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3.4 Discussion 

3.4.1 Principal findings 

The study estimated the incremental costs per HPE avoided when using SMASH compared 

with standard practice in NHS England. Key findings were (i) a significant reduction of the 

relative number of HPEs by SMASH compared with standard care (10.53, 2.5% to 97.5% 

credible interval 8.80 to 12.25); (ii) incremental costs showed that this reduction came at a 

greater costs to NHS England (£2149, 2.5% to 97.5% credible interval £487 to £5790); (iii) 

main driver of the cost-effectiveness of SMASH were the costs of managing HPEs and the 

absolute difference in HPE rates between SMASH and standard care. The overall results of 

this study were robust to using any of the assumptions that were explored in the sensitivity 

analysis.  

 

3.4.2 Comparison with findings from prior work 

Not many interventions were found that identified cost per HPE or medication error 

avoided. The pharmacist-led information technology intervention (PINCER) used a similar 

design and setup as SMASH, aiming to reduce a similar set of HPEs [2.9.1]. PINCER was 

found to cost £80 per HPE avoided at 12 months (£79 at six months) in contrast to £205 in 

SMASH (227). The difference could be explained by the more regular reviews in SMASH 

(PINCER only reviewed patients with HPE three times in 12 months) or the fact that GP 

involvement was not included in the total cost of PINCER. The PINCER estimates were 

assessed for the 2012 cost year and older compared to the 2019 costs in SMASH.  

 

A UK study testing the effectiveness of an intervention to reduce HPEs as part of ASPIRE in 

a trial setting did not report cost per HPE avoided but reported cost and effectiveness that 

can be compared to those of SMASH (152). ASPIRE aimed to reduce nine HPEs that were 

overlapping with the ten HPEs SMASH is aiming to reduce. The cost of ASPIRE for eleven 

months were £2439 per practice including intervention preparation, delivery and receipt. 

Not included in this estimate were costs associated with GPs and medication changes 

associated with actions to resolve HPEs. These were used in the subsequent cost-utility 

analysis and were dependent on the effect size. In SMASH, the total cost of £2149 included 
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costs for GP time spent with discussing actions to resolve HPEs with the pharmacist that 

costed £425 [Table 3.6]. Without GP resources SMASH costs were £1708, which is 

considerably less. ASPIRE was also less effective in reducing HPE rates. It reduced the HPE 

rates only to 4.94% compared with 5.99% in the control arm of the RCT with an OR of 1.03 

(97.5% CI 0.89 to 1.18). The number of patients at risk in an average practice was not 

reported, hence, cost per HPE avoided could not be generated from the HPE rates and the 

cost estimates. 

 

A Danish study implementing an automated medication system aiming to reduce 

administration errors costed €2.01 per administration error avoided at 6 months (290). The 

cost estimates only covered maintenance costs and did not include set-up or development 

costs. Cost of SMASH without set-up costs were £177 per HPE avoided at 12 months. The 

higher cost of SMASH could be explained by the time frame of 12 months compared with 

6 months or the fact that the study aimed to automate the prescribing processes and not 

to add another layer of safety procedures to identify more HPEs, which comes at an 

additional cost for staff time.  

 

3.4.3 Strengths and limitations of the cost analysis of SMASH  

The assessment of costs of a complex DHI that involves multiple healthcare professionals 

required a complex costing approach. A strength of this analysis was the involvement of 

healthcare professionals in identifying resource use and validation of required 

assumptions. The healthcare professionals involved in the study rollout identified no 

further cost components that might have been missed and agreed that we used the limited 

available resources in the best way possible. The economic evaluation included costs from 

set-up to maintenance, which was often not done by other studies (290). Focussing solely 

on maintenance costs can underestimate the relevant costs that fall on budget constraints 

for healthcare (272). Additionally, this analysis was conceptually based on the real-world 

implementation of SMASH, and resource use was not estimated based on a hypothetical 

best-case scenario. Experiences of the real set-up of SMASH including potential challenges 

with pharmacists dropping out and meetings being adapted due to lack of time, which can 

impact the implementation, were used to increase external validity of the cost estimates.  
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The estimation of the specific cost generated in the 12 months roll-out of SMASH can 

introduce challenges with applicability of the costs to other settings. The cost for the server 

might vary between different providers or their expected lifetime might be different. This 

can affect allocation of the server cost and future discounting. The discounting strategy 

could impact the cost for the server or the cost for the IT support might differ, if not 

provided by the University of Manchester. In sensitivity analysis, however, the impact of 

varying these cost components on the overall results was small. Potential changes are 

therefore considered negligible. 

 

The economic evaluation of the intervention was conducted retrospectively. Limitations of 

the intervention mainly derive from lack of quantitative information on resource use and 

the use of records, such as the field notes, that were not collected for costing purposes. 

Ideally, resource use would have been assessed prospectively to record purchased 

equipment, duration and participants of trainings or meetings, and time each staff member 

spent dealing with managing HPE or IT services. The use intensity of the dashboard was 

challenging to quantify. Use of the dashboard varied between pharmacists (246). While 

some pharmacists printed patient lists from the dashboard, others interacted with the 

various dashboard features to different extents. Recorded dashboard user interactions 

(247) could therefore not be used to estimate the real time pharmacists spent to review 

the HPEs. Results were sensitive to uncertainties around the time pharmacists and GPs 

spent with the intervention. The analysis relied on process indicators, such as the HPEs 

flagged by the intervention at specific time points and times they spent with each HPE on 

average, rather than records from the pharmacists how many HPEs were actually reviewed. 

Results from the sensitivity analysis supported the importance of these estimate for the 

cost per HPE avoided. To account for the uncertainty arising from the lack of recorded data, 

the mean of all new HPEs recorded and those possibly seen were used in the probabilistic 

analysis.  

 

Because no information was available on the management of monitoring hazards detected 

by the dashboard, the cost assessment is limited to the cost of SMASH in managing HPEs. 

Monitoring hazards were responsible for about 7% of all hazards (monitoring and 

prescribing) identified at baseline. The effectiveness of SMASH in reducing monitoring 
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hazards and HPEs was analysed separately in Peek et al. (2020), and no combined 

effectiveness estimates were assessed. As a consequence, this analysis estimated the cost 

per HPE avoided, which potentially is higher than the cost per HPE and monitoring hazards 

avoided. The management of monitoring hazards is potentially less costly than managing 

HPEs, and the number of HPEs and monitoring hazards avoided is higher than the number 

of HPEs avoided alone. 

 

A challenge encountered in this study was allocating costs between providers. SMASH was 

implemented across a group of providers, such that costs for server usage and IT services 

were shared. A systematic review of DHIs highlighted the lack of appropriate reporting of 

how costs were shared (277). In this study, the limitations of assumptions made to share 

costs between a group of practices was therefore reported in detail. Set-up costs per 

practice would decrease if costs were allocated to more practices. Practice sizes varied 

substantially from 970 to 15104 patients per practice in the SMASH rollout (48). The 

allocation of costs to practices is based on a ‘typical’ practice. No practice level data on HPE 

rates and practice size were reported in Peek et al. (2020) (48). Consequently, no sensitivity 

analysis was possible to estimate the effect of practice size on cost per HPE avoided. The 

sensitivity analysis of total cost showed that changes in the number of practices affected 

the total cost only minimally. Additionally, this study was robust against a change in the 

number of practices that shared the costs.  

 

3.4.4 Strength and limitations of the cost-effectiveness analysis  

The cost-effectiveness analysis in this chapter was based on the best available evidence 

and the findings present a real-world estimate of the cost per HPE avoided when SMASH is 

implemented. The probabilistic nature of the chosen analysis allowed to account for the 

uncertainty introduced by, for example, the substantial heterogeneity between practices 

with respect to effectiveness estimates.  

 

So far, the cost per HPE avoided analysis only incorporates cost of SMASH. This neglects 

the fact that HPEs are associated with increased costs to the NHS and elevated levels of 

harm and death for patients (31). Walsh et al. (2017) found in a review on the economic 
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impact of HPEs that cost per general HPE ranged from €2.58 to €6432.16 (in 2015 €) (146). 

While SMASH directly effects HPE rates and it is sensible to measure these to indicate 

prescribing quality, this does not represent the potential cost-savings in the long term. The 

cost per HPE avoided reported in this study, thus, potentially overestimate the cost of 

SMASH. Additionally, incorporating clinical outcomes and quality of life into the CEA was 

recommended in the NICE framework for DHIs (12) and the CHEERS checklist [Appendix C]. 

Because no WTP threshold exists for reductions of HPE rates, the measure of cost per HPE 

avoided alone is not a useful statistic for decision makers.  

 

The short time horizon contributes to these problems on the relevance of this CEA for 

decision makers. The CEA so far only generates estimates for a 12-months time horizon. 

Short time horizons were a common feature in CEAs of DHIs and have been criticised in a 

recent review (274). The effectiveness data in this study were only available for 12 months. 

No extrapolations were possible beyond this time frame because it was unclear how the 

HPE rates might change over time. Learning or decay effects were not explored in Peek et 

al. (2020)(48). Pharmacists working on the interventions suggested a flooring effect as 

indicated in the observed HPE rates but this could not be verified. In addition, no 

information on resource use after the 12 months was available. 

 

Another limitation of this cost-effectiveness analysis was the lack of data on resource use 

in standard care. The analysis relied on the assumption that in standard care no resources 

are used that are not also used in the SMASH intervention. It cannot be completely ruled 

out that the medication review process in place before SMASH was introduced did not 

change during SMASH. For example, annual medication reviews were potentially less costly 

with SMASH because the number of potential HPEs that can be detected during these 

reviews is smaller with SMASH. However, there was no data available on how this might 

have changed and it will be difficult to quantify any such changes without a concurrent 

comparator. 
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3.4.5 Implications of quasi-experimental study design  

A quasi-experimental study design was used to evaluate the effectiveness of SMASH. 

Deidda et al. (2019) and Kreif et al. (2012) provide checklists on how to assess the quality 

of the quasi-experimental evidence to be included in an economic evaluation. Both studies 

highlight the need to appropriately address potential biases and check if the main 

assumptions hold. As described in detail in Chapter Two [2.9.2], it is important to 

distinguish between different quasi-experimental analysis methods because they 

introduce different type of biases. This section describes the potential biases of the analysis 

method used in Peek et al. (2020) and how these were addressed. The second part focuses 

on the implications of the design on the economic evaluation in this study. 

 

The method of analysis 

SMASH was analysed using ITSA that is considered to be the strongest statistical analyses 

in quasi-experimental designs, where no comparator and only historical controls are 

available (13, 14, 264). Using a historical comparator, it was assumed that the population 

characteristics in each practice did not change significantly within the data collection 

period. This made control and intervention group comparable even without randomisation 

(minimises risk of time-invariant confounding). Also, the ITSA allowed for adjustments for 

any pre-intervention trends (295, 296). The HPE rates in SMASH were analysed using ITSA 

methods that allows for investigation of potential biases that might be present, for 

instance, secular trends, seasonality, random fluctuations and auto-correlation (297, 298). 

Testing for these biases, as performed for SMASH and as described in Appendix D, and 

accounting for them if required is pivotal to generate unbiased estimates (263, 264). 

 

As described in section 2.9.2, ITSA designs are susceptible to history bias. For example, it 

cannot be ruled out that other factors or intercurrent events besides SMASH might have 

influenced the HPE rate in Salford. A concurrent intervention providing training for GPs to 

avoid HPEs could for example reduce HPE rates and explain away the observed effect. 

However, there were no indication of such interventions taking place concurrently. 

Compared with the RCTs conducted to assess the effectiveness of ASPIRE (152) and PINCER 

(45), the quasi-experimental evidence is more likely to be biased by intercurrent events if 
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no control data are available. By initiating SMASH at different time points between 2016 

and 2017, the study design aimed to reduce this time-variant unmeasured confounding. 

For short-term effects, such as the 12-months in SMASH, bias due to potential external 

events affecting the outcome is low (299). Only with longer term interventions the risk of 

shocks to the effectiveness outcome is more likely to be a problem. 

 

Another key assumption was that practices did not change over time to be representative 

comparators for the historic counterfactual. If the population at risk changes over time, this 

can introduce maturation bias. It is known that the number of patients at risk did not 

change a lot in the pre- and post-intervention period. In Peek et al. (2020), it was not 

reported how other characteristics of practices changed over time (48). The number of new 

GPs for example could have biased the results. If no GPs started post implementation, the 

learning effect over time could have been increased compared with a setting where GPs 

are replaced regularly. If there is imbalance between pre- and post-intervention 

characteristics in each practice, these could have been addressed by adjusted ITSA 

methods, such as a propensity score-based weighted method proposed by Linden and 

Adams (2011) (300). Detailed practice information was not available and so no adjustments 

were performed. 

 

Another limitation of the methods applied in Peek et al. (2020) was the assumption of 

linearity in the ITSA. In this chapter, the difference between using regressed ITSA results 

and using the observed HPE rates was calculated. The available ITSA output was used to 

report the impact this had on the number of HPEs avoided. The number of HPEs avoided 

were sensitive to the regression model [Table 3.4]. At 12 months, applying the observed 

values for SMASH (not the regressed values) would have yielded a smaller incremental 

effectiveness. The difference between the two methods, however, was smaller at six 

months where the incremental effectiveness was more similar in SMASH and the 

counterfactual. This effect was indicated in Figure 3.2 that graphically represents the HPE 

rates observed and the regressions applied. The assumed linear trend is one of the 

challenges with this type of ITSA where linearity of the effect before and after the 

intervention is assumed. If the regressed values would predict the observed values 

appropriately, the two methods should produce the same effectiveness estimates. In 
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SMASH, there was a visible and explainable floor effect of the HPE rate after initiation of 

the intervention. This supports the findings in this study that the difference between 

expected values in the ITSA and the observed values increases with time. This was one of 

the reasons why the regressed values for the HPE rate with SMASH cannot be extrapolated 

beyond the 12 months where the fit of the regression was still reasonable. Future research 

could use a more flexible modelling approach to model the post-intervention HPE rates. 

Consequently, the results could not be extrapolated further and this CEA had a time horizon 

of 12 months equal to the observation time in the effectiveness study. 

 

The random effects meta-analysis after the ITSA allowed the researchers to generate an 

estimate of heterogeneity between practices. Not accounting for heterogeneity was seen 

as a key limitation of many ITSA methods identified by the systematic review by Ewusie et 

al. (2020) (263). The authors criticized the use of aggregate data, which introduces 

aggregation bias that segmented linear regression does not account for (263). The 

systematic review by Ewusie et al. (2020) highlighted one study positively that introduced 

pooling methods using meta-analysis as was done for SMASH. HPE rates of individual 

indicators were often low with a mean number of three HPEs per practice. Performing ITSAs 

on these low numbers could weaken the segmented regression compared to pooled data 

that could provide a larger sample size. This could result in wider standard errors of the 

effectiveness estimates that further increases the uncertainty in the cost-effectiveness 

analysis. Future research could investigate a best practice method when pooling data from 

different practices and whether this should be conducted before or after the ITSA. 

 

Quasi-experimental studies in economic evaluation 

While guidelines exist on how to plan and conduct ITSA to measure effectiveness (265), the 

literature around applying these results to estimating cost-effectiveness was sparse. The 

available literature on guidelines how to use quasi-experimental study designs in economic 

evaluations focuses mainly on quasi-experimental designs in general (10) or controlled 

observational studies in particular (11). Deidda et al. (2019) provide a detailed checklist of 

requirements for the use of observational data in economic evaluations (10). The checklist 

by Deidda et al. (2019) is targeted at studies estimating not only effectiveness outcomes 
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but also costs prospectively. Peek et al. (2020) did not assess costs and only provided 

estimates of effectiveness. The majority of criteria were therefore not applicable to the 

retrospective cost assessment conducted in this study. The checklist items around the 

statistical methods, however, were applicable. The statistical analysis by Peek et al. (2020) 

fulfilled most of the requirements to estimate effectiveness described by Deidda et al. 

(2019). As described before, Peek et al. (2020) addressed the potential for history and 

selection bias by study design. Sufficient data points were available pre- and post-

intervention start. Peek et al. (2020), however, did not address the checklist item to apply 

multiple statistical design methods. This would have been useful in sensitivity analysis of 

the economic evaluation and is a limitation of the provided data from Peek et al. (2020). 

 

A literature review found only one model based economic evaluation that used results from 

a quasi-experimental study using ITSA (301). The lead author of this study was contacted 

to obtain insight into the detailed methods used. The study calculated a population average 

for the outcome and added an absolute difference based on the ITSA results for the 

comparator group. Only the absolute difference from the ITSA was used as the effect size, 

but the baseline probabilities were derived from a different population. In this Chapter, the 

absolute difference based on the expected values of the ITSA were also used in the base 

case analysis. Compared with the described study, the observed HPE rate with SMASH at 

12 months was used as the baseline probability. This had the advantage that both estimates 

were from the same population. The OSA showed how sensitive the cost-effectiveness 

estimates were to the absolute difference of HPE rates in SMASH and standard care. The 

uncertainty derived from the ITSA results greatly affected the cost per HPE avoided. Future 

research could investigate the effectiveness of SMASH in a larger sample than the 43 

practices in Salford, such as the rollout of SMASH to Greater Manchester, that could reduce 

the uncertainty around the effect size generated in Peek et al. (2020). 

 

3.4.6 Implications of the use of process indicators 

In SMASH, the economic evaluation depended on the use of HPE rates, a process indicator 

generated from routine data, rather than patient outcome data as recommended in the 

checklist by Deidda et al. (2019) (10). The HPE rate, as a process indicator, recorded by the 
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dashboard was difficult to interpret. HPEs could have been resolved automatically due to 

routine stopping of treatment and not due to SMASH. This stopping of treatment would 

still be shown as a resolved HPE in the dashboard records. HPE rates, therefore, introduce 

some form of measurement bias. However, the effectiveness data compared against 

extrapolations of historical rates for the last 24 months before use of SMASH. This 

accounted for prior trends for routine stopping, assuming routine stopping did not change 

over time. Additionally, SMASH did not resolve all HPEs. This can be explained by the fact 

that some HPEs can be prescribed intentionally. One example would be that the patient’s 

condition requires the hazardous prescriptions because the risk of harm, e.g., stroke, 

without the hazardous prescription outweighs the risk of harm from ADEs with the 

hazardous prescription. Some HPEs were not resolved because patients refused a change 

in treatment or did not request follow-up prescriptions as reported in the field notes from 

pharmacists. In some cases, the GP refused to change prescriptions if the patient tolerated 

them well in the past despite the increased risk of ADEs. Future research could investigate 

what the optimal (possible) HPE rate would be acknowledging the measurement error and 

reasons why HPEs cannot be resolved. The optimal HPE rate could be used as a reference 

to evaluate the observed effectiveness. 

 

3.4.7 Implications for thesis 

This analysis was not able to estimate economic impact of harm, as only HPEs were 

recorded, not patient outcomes. Defining outcome measures was found to be one of the 

major challenges in evaluating DHIs (280). A review of DHIs found effectiveness studies not 

to report outcome measures that can be translated into health economic endpoints, such 

as QALYs (276). The review recommends measuring the effect on harm outcomes or 

hospitalisations. However, capturing the long-term effect of DHIs was reported to be 

challenging and rarely done (277). To analyse the relationship between HPEs and patient 

harm in a cohort creates methodological and ethical challenges. Methodological difficulties 

arise in prospective study designs with the small percentage of HPEs that actually lead to 

harm for the patient resulting in extremely large populations required to obtain sufficient 

power to detect differences in outcome events. The rollout of SMASH was limited to 

practices within Salford, and the population size was not expected to be sufficient to detect 
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a difference in serious harm outcomes associated with HPE prevalence. In addition, 

depending on the pathology of the HPE, there can be a delay between the occurrence of 

an HPE and the actual outcome, which could not have been detected in the 12 months 

follow-up. Ethical concerns impede the follow-up of patients where potentially harmful 

HPEs are identified with ethical obligations to intervene to avoid serious harm. In Chapter 

Two, the most common effectiveness measures in economic evaluations of interventions 

aiming to reduce HPE rates were either HPE rates or incidence of ADEs. Because the analysis 

of SMASH in Peek et al. (2020) was not powered to detect a difference between ADE rates, 

this latter method was not an option for this study (48).  

 

The current CEA might underestimate the benefit of SMASH due to the short time horizon 

and the neglection of long term consequences of HPEs as described in 3.4.4. Under the 

assumption that higher HPE rates result in higher healthcare resource use and decrease 

quality of life, SMASH could generate fewer costs and higher quality of life in the long term. 

However, as described in Chapter Two [2.4 and 2.5], quantitative evidence on 

consequences of HPEs is sparse (31), and data used in other economic models were not 

appropriate for the setting and or population in this study. Future research can use data 

collected in routine practice to quantify the association between HPEs, harm to patients 

and direct costs to the healthcare system. This study can be extended to include estimates 

of long-term harm to estimate the cost per QALY gained. In the subsequent chapters, this 

dissertation demonstrates how these harm estimates can be generated using electronic 

health records [Chapter Four] and how harm estimates can be utilised to estimate the 

economic impact of HPEs [Chapter Five]. A state-transition model is used to extrapolate 

long-term costs and quality of life associated with the ADEs related to a specific HPE. The 

incremental costs and QALYs can then be compared to the cost-effectiveness threshold 

used by NICE to enable a better understanding of whether SMASH provides value for 

money to the NHS. 

 

3.4.8 Implications for decision makers 

The UK government aims to reduce hazardous prescribing and harm related to it (35). 

System level DHIs, such as SMASH, offer a solution to this. The additional resource required 
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probably increases costs. Evidence on long-term effectiveness and impact on health 

outcomes is uncertain. Hence, we need robust economic evidence to extrapolate the long-

term impact of SMASH. In the meantime, a rollout of SMASH to about 600 new practices in 

Greater Manchester started in late 2020. This raises the question of transferability of 

intervention costs. Costs were found to be robust with regard to the number of practices 

recruited. For the implementation of SMASH in Salford, the Salford Royal Foundation Trust 

charged for accessing the server. For the rollout in Greater Manchester, different hosting 

costs might arise for the server itself and for annual server support. However, the total cost 

per HPE avoided were only slightly sensitive to these input parameters [Figure 3.5].  

 

The majority of costs generated by SMASH resulted from managing HPEs. Participant 2 

suggested that costs of running SMASH will reduce over time based on their experiences 

with SMASH after the follow-up phase of the rollout. There may be a substitution of labour 

inputs responsible for initially reviewing each HPE as relevant (pharmacist technicians 

instead of pharmacists) and for resolving identified HPEs (independent prescriber 

pharmacists instead of GPs). This evolving nature of the implementation of DHIs over time 

and difficulties with accounting for this in economic analysis has also been identified by 

other authors (272). 

 

The results reported in this chapter are only generalizable to practices with no initiatives in 

place that aim to reduce HPEs. SMASH is part of the Neighbourhood Integrated Practice 

Pharmacists in Salford (NIPPS) service (302). Employed by the trust, pharmacists provide 

services to the practices in their neighbourhood, including reviewing HPEs flagged by 

SMASH. The NIPPS service aimed to involve pharmacists more in primary care to improve 

patient safety. If the intervention was to be implemented in other practices where 

pharmacist’s services are already in place, this might reduce the additional costs for the 

pharmacists to review the flagged HPEs. If reviewing HPEs is already integrated in the 

practice routine, the dashboard could potentially make the review process more time 

efficient and consequently less costly. In such practices, the time pharmacists spend with 

dealing with HPEs would not be solely allocated to the intervention arm but would also be 

generating costs in the comparator. Depending on the pre-intervention state of practices 

with regard to practice pharmacists or pharmacist services, such as NIPPS, the cost for the 
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standard care arm might change. So far, the cost in the standard entailed no additional 

resource use because SMASH was seen as an addition to standard care not a substitution 

of services already in place. If pharmacist services are already standard practice, the 

resources for this service would be costed in the standard care arm. This would result in 

higher costs for standard care and therefore lower incremental costs for SMASH. 

 

3.4.9 Conclusion 

This study represents a first step towards assessing the economic impact of SMASH. While 

SMASH reduced the number of HPEs per practice, these now need to be translated into 

tangible health outcomes and costs that are associated with HPEs. Expressing health 

outcomes in terms of QALYs, instead of the proportion of HPEs avoided, enables the 

analysis of the full value for money of SMASH. 
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Chapter 4  - Examining the increased likelihood of adverse drug events 

associated with hazardous prescribing of NSAIDs  

 

Chapter Four reports the methods and results of a cohort study using routinely collected 

health data to examine the increased likelihood of ADEs in the presence of NSAIDs in 

anticoagulated patients. The methods provide information on the study design, the data 

source and statistical analysis. Challenges encountered when using routinely collected data 

and how these were addressed in this study are described in the discussion of this chapter. 

 

4.1 Introduction 

ADEs affect almost one in ten hospitalised patients (303). The burden from six of these 

ADEs as a result of safety incidents was found to be higher than the burden of HIV and 

tuberculosis, or the burden of multiple sclerosis or cervical cancer measured as DALYs in 

English hospitals (304). Harm from ADEs was associated with 15% of the activity and 

expenditure of hospitals in developed countries in a recent review of the literature 

undertaken by the Organisation for Economic Co-operation and Development (OECD) 

(169). Almost half of ADEs are considered to be preventable, hence potentially due to a 

HPE (303). The WHO’s third global patient safety challenge calls for actions to reduce harm 

from HPEs by 50% by 2021 (33). While the problem of HPEs was discussed in detail in the 

technical reports of the WHO safety challenge, it did not state how harm associated with 

HPEs can and should be measured. Estimating harm from HPEs is necessary to understand 

the burden of HPEs for the healthcare system. Various interventions have been developed 

aiming to reduce HPE rates, but studies evaluating these interventions often did not 

measure harm from HPEs as an outcome [2.8]. The studies assessing cost-effectiveness of 

interventions aiming to reduce HPEs relied on estimates of harm from the literature or 

estimates were elicited by experts, but there is a lack of high quality quantitative evidence 

on harm associated with HPEs (31). Quantitative evidence on the health and economic 

impact of HPEs is required to understand the relevance of HPE reductions by new 

interventions. Cost-effectiveness of interventions aiming to reduce HPE rates cannot be 

estimated appropriately without quantitative evidence on the link between HPEs and 
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harm. Methods used to study harm from HPEs have substantial limitations as described in 

Chapter Two [2.4]. The low incidence of HPEs and potentially long delays until onset of risk 

of harm require long follow-up times and large population sample sizes. Conducting a 

prospective study with long follow-up in a large population, such as an RCT, would be 

extremely costly. An RCT might also introduce ethical challenges, when estimating the 

natural history of harm from a HPE because patients known to have a HPE cannot be 

followed without ethical obligations to intervene. Overall, prospective study designs to 

estimate the harm from HPEs are not a method of choice due to financial, organisational 

and ethical reasons.  

 

In the literature review in Chapter Two [2.4] on consequence of HPEs, two common 

methods were identified to estimate harm without the financial commitment of 

prospective follow-up of patients. In previous economic evaluations, potential harm from 

HPEs was either (i) estimated by experts or (ii) harm in the form of ADEs was measured and 

its preventability or association with HPEs was assessed. So, either healthcare professionals 

predicted potential future harm of identified HPEs, or real harm was tested for associations 

with HPEs. In the first method, the potential future risk of harm of an incident HPE is 

estimated by healthcare professionals. Often healthcare professionals used severity scales 

or algorithms to guide their judgement on harm. However, this method was found not to 

produce reproducible and reliable estimates. Harm estimates greatly differed between 

different scales or algorithms used, the healthcare professional’s experience or the 

healthcare profession (144). Another limitation of this method is that it does not 

acknowledge that some HPEs are picked up and resolved before the harm occurs. This 

estimate of potential harm is therefore not a good measure to quantify harm from HPEs 

that actually reach the patient. 

 

In the second method used in economic evaluations of interventions targeting HPEs, harm 

is measured directly as ADEs, and retrospectively healthcare professionals assess if these 

were caused by preventable HPEs or are a result of other medical conditions (117). Similar 

to estimating future risk of a HPEs, identifying causality between the observed ADEs and 

the HPEs is dependent on subjective assessment by healthcare professionals (54, 112, 113). 

Even though new instruments using an algorithm to judge on preventability aim to reduce 
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the input required by the healthcare professional to increase reliability of the results, the 

impact of the assessor on the results cannot be eliminated (107). Similar to the severity 

scales or algorithms used to estimate future harm from HPEs, the instruments used for the 

retrospective assessment of preventability and causality showed varying reliability and 

evidence on external validity of the instruments was often missing (111). In SMASH, 

incidences of ADEs were not measured and this method was therefore not an option to 

estimate harm from HPEs targeted by SMASH. 

 

A third method identified in economic evaluations in Chapter Two [2.8] used harm 

estimates for specific HPEs from the literature. By narrowing down the possible ADEs to 

those with a clear association with the HPE, incidence of harm for a population with the 

HPE present and for those at risk of the HPE can be used from observational studies. The 

use of routinely collected data offers the analysis of a large cohort at a lower cost (305). 

 

This chapter delineates how to conduct a retrospective cohort study using routinely 

collected data to investigate the association of HPEs with harm outcomes, using the 

example of NSAID use in anticoagulated patients. Linked primary and secondary care health 

record data were used in a UK setting. The primary care database used was the Clinical 

Practice Research Datalink (CPRD Gold) and the secondary data were used from Hospital 

Episodes Statistics (HES). The retrospective cohort study design used in this chapter 

focusses on specific harm outcomes that are potentially caused by the presence of a 

specific HPE. NSAID use is associated with various potential ADEs (306). The risk of GI 

bleeding events in anticoagulated patients, for example, is known to be particularly 

increased in situations where NSAIDs are co-prescribed with OACs (307-310). Under the 

assumption that the additional bleeding events identified in the patients exposed to the 

HPE (compared to those not exposed) are related to the HPE, further judgement on 

preventability or potential future harm is not required. This potentially allows for a more 

reliable estimation of the association between HPE and harm because subjective 

assessment methods are not needed.  

 

The aim of this chapter is to estimate the association between NSAID use and related ADEs 

in patients receiving treatment with OACs in a UK ‘real world’ setting.  
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4.2 Background 

OACs and NSAIDs are reported to be the drugs most commonly associated with preventable 

harm and preventable drug related hospital admissions (26, 311-314). The frequency of 

OAC prescriptions is increasing in the UK from 15.0 million doses per month in 2014 to 33.0 

million doses per month in 2019 (315). With increasing prescription rates, the population 

at risk of this type of HPE is increasing.  

 

4.2.1 The impact on GI bleeding events 

OACs reduce cardiovascular risk by intervening in blood-clotting mechanisms and are used 

in the prevention of thrombotic cardiovascular events, such as stroke and systemic 

embolism. The same mechanism that reduces cardiovascular risk, also increases the risk of 

unwanted bleeding events of all kinds. While OACs can cause multiple types of bleeding, 

NSAIDs are specifically associated with GI side effects. NSAIDs alone are considered to 

increase the GI bleeding event risk (316-323). NSAIDs can cause damage to the GI system 

by various mechanisms (324). For example, NSAIDs can inhibit gastroprotective enzymes, 

e.g., prostaglandins, by blocking the enzyme cyclooxygenase. These enzymes are required 

to protect the GI system from peptic ulcers or bleeding events. NSAIDs also interact with 

phospholipids. The mucosa integrates NSAIDs instead of the phospholipids due to 

similarities in the chemical structure. As a result, the mucosa’s sensitivity to acid, pepsin 

and other aggressors in the GI tract is increased. This amplifies the risk of GI bleeding 

events. 

 

GI bleeding events are among the most common side effects of OACs and NSAIDs 

individually (318, 325-327). In general, GI bleeding events are rare but often have severe 

consequences (328). A review of the epidemiology of GI bleeding events reported GI bleed 

rates with NSAID use of 2.4%-12%, and with OACs between 0.7 to 1.4 per 1000 patient 

years (329). According to an observational study using the CPRD, 40% of GI bleeding events 

under antithrombotic treatment led to death within two years (330). Pirmohamed et al. 

(2004) found that more than 50% of deaths due to ADEs were caused by GI bleeding events 

(54). OAC and NSAIDs individually introduce a high risk of GI bleeding events, but evidence 

on their effect on GI bleeding events when prescribed concomitantly is sparse. Overall, 
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evidence suggests that the presence of NSAIDs in anticoagulated patients affects bleeding 

event risks and hospitalisations due to bleeding (307-309, 331, 332). 

 

In Table 4.1, published studies on the increased risk of GI bleeding in anticoagulated 

patients with NSAIDs compared with no NSAIDs are reported. Evidence in the literature 

often describes non-UK populations (307, 330, 331, 333), or describes populations slightly 

different from the HPE definitions.  

 

Table 4.1: Increased risk of GI bleeding events associated with NSAID use in anticoagulated 

patients from published studies 

Reference Risk ratio (95% CI) Population Dataset 

Battistella  

(2005) (331) 

Adj. OR 1.90 (1.40; 3.7) Warfarin treated patients 

aged ≥66 years 

Canadian 

administrative data 

Lamberts  

(2014) (307) 

Adj. HR 3.54 (3.29; 3.82) Warfarin treated patients 

with AF 

Danish registry 

Schjerning  

(2019) (310) 

Adj. HR 2.01 (1.40; 2.61) DOAC treated patients 

with AF 

Danish registry 

Kent (2018)  

(308) 

Adj. HR 1.68 (1.40; 2.02) Rivaroxaban or warfarin 

treated patients with AF 

Subgroup analysis of 

RE-LY RCT 

Dalgaard  

(2020) (309) 

Adj. HR 1.16 (0.88; 1.52) Dabigatran or warfarin 

treated patients with AF 

Subgroup analysis of 

ARISTOTLE RCT 

Adj: adjusted risk ratio; AF: atrial fibrillation; ARISTOTLE: Apixaban for Reduction in Stroke and Other Thromboembolic 

Events in Atrial Fibrillation; DOAC: direct oral anticoagulant; GI: gastro-intestinal; NSAID: non-steroidal anti-

inflammatory drug; HR: hazard ratio; OR: odds ratio; RCT: randomised controlled trial; RE-LY: The Randomized 

Evaluation of Long-Term Anticoagulation Therapy 

 

Differences can be a restriction to specific indications, drugs or exclusion of patient groups. 

For example, most studies were restricted to patients with atrial fibrillation (AF) (307-309, 

333). OACs are initiated for AF in 60% and for VTE in 30% of the cases identified in the UK 

CPRD population (334). The RCTs in Table 4.1 for example describe subgroup analyses of 

clinical trials to compare the new DOACs with established warfarin treatment restricted to 

AF (308, 309, 335). The restriction to one of the indications does not represent the average 

OAC user, since this excludes 40% of the users (335). Other studies only investigate warfarin 

and not all OACs as defined for the HPE (307, 331, 333). These are usually studies conducted 

before the introduction of DOACs, for example, the Canadian study by Battistella et al. 
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(2005) that only included warfarin and other vitamin-K antagonists (331). DOACs already 

accounted for 74% of OAC prescriptions in the UK in 2019 and need to be considered 

because these might have a different risk of ADEs (315). The subgroup analyses of the RCTs 

often exclude high risk patient groups, e.g., patients with a high bleeding risk are excluded 

from the trial (308, 335). Patients might also withdraw from the trial as soon as they show 

any GI symptoms, so the numbers of serious events could be artificially small. This impedes 

generalisability of the results because the relative risk of bleeds might differ between high 

and low-risk patients.  

 

Overall, the published literature did not provide any UK estimates on harm associated with 

NSAID use in anticoagulated patients. The studies all included restrictions limiting the 

generalisability to a UK setting and to the HPE type targeted by SMASH.  

 

In response to the global safety challenge of the WHO, the UK government introduced the 

NHS Medication Safety Dashboard that links specific patients exposed to a specific HPE type 

with hospital admissions in England (336). The dashboard provides useful estimates on the 

number of patients exposed to the specific types of HPEs in England (HPE prevalence) and 

their risk of admissions due to specific ADEs. The dashboard, however, does not analyse 

the risk ratio of patients exposed and unexposed to the HPE.  

 

The dashboard is accessible online and provides information on the same HPE types 

associated with an increased GI bleeding risk as used in SMASH and PINCER. Information 

on prescription items is derived from NHS Business Services Authority reimbursement 

records that only include dispensed drugs. Admission data are obtained from Hospital 

Episodes Admitted Patient Care, covering all admissions at NHS hospitals in England. 

Patient records and admissions were linked by NHS number, date of birth and gender. The 

dashboard’s results include, for example, any hospital admission in a month due to GI 

bleeds in patients with prescriptions of an OAC and an NSAID in this month. In the fourth 

quarter of the financial year 2019/2020 (most recent available in November 2020), 29 out 

of 10000 patients with concomitant OAC and NSAID were admitted to hospital for GI 

bleeding events (336). The NHS Medication Safety Dashboard presents an estimate of harm 

from an English population in OAC users from any OAC indications without any restrictions 
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of the population, compared to the previously discussed published harm estimates. 

However, exposure status in the dashboard is estimated on a monthly basis. An 

anticoagulated patient that is, for example, hospitalised for a GI bleeding event in the 

beginning of the month and receives a prescription of an NSAID in the end of this month 

would be counted as an admission in a patient with the HPE even though the prescriptions 

were not really prescribed concomitantly before the admission. Consequently, the 

dashboard might overestimate the number of patients exposed to the HPE. 

 

Overall, the dashboard does not provide the increased likelihood of ADEs of NSAID users 

compared with no NSAID users, but it provides an estimate of prevalence of the type of 

HPEs. The additional GI bleeding risk associated with NSAID use in all anticoagulated 

patients including DOACs has not been studied yet in a real-world population. This is also 

the first study to investigate the increased risk of NSAIDs in OAC patients in the UK.  

 

4.2.2 The impact on cardiovascular events 

Besides GI bleeding events, in recent years NSAID use has also been associated with an 

increased risk of cardiovascular events (337). Because patients treated with OACs are 

already at an increased risk of thrombotic cardiovascular events, the impact of NSAIDs in 

anticoagulated patients is of particular interest. Four studies were identified that 

investigated NSAID use in anticoagulated patients on cardiovascular ADEs, for example, 

stroke, systemic embolism, heart failure and myocardial infarction (307-309, 338). In a 

subgroup analysis of the Randomized Evaluation of Long-Term Anticoagulation Therapy 

(RE-LY) trial [Table 4.1] comparing dabigatran and warfarin, NSAIDs were significantly 

associated with stroke and systemic embolism (308). The combined stroke and systemic 

embolism outcome were also significantly increased with NSAID use in a Danish 

observational study [Table 4.1] (307). Contrary, a Japanese observational study found 

NSAID use not to be an independent risk factor of stroke/systemic embolism risk (338). In 

a subgroup analysis of the Apixaban for Reduction in Stroke and Other Thromboembolic 

Events in Atrial Fibrillation (ARISTOTLE) trial [Table 4.1] comparing apixaban and warfarin, 

NSAIDs were also not significantly associated with the combined stroke or systemic 

embolism outcome (309). Overall, these studies indicate a potentially increased risk of 
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stroke with NSAID use in an AF population treated with OACs. The risk of systemic 

embolism in both OAC, and OAC and NSAID users was considerably small (308, 309). The 

rarity of systemic embolism might have contributed to the often non-significant results on 

the relative risk increase with NSAIDs. Heart failure (309) and myocardial infarction (308) 

were not significantly associated with NSAID use in the respective trial subgroup analysis. 

Due to lack of evidence to suggest otherwise both events were not considered in this 

analysis. These findings do not completely rule out the chance that the risk of these ADEs 

is elevated in anticoagulated patients in the presence of NSAIDs. However, for this analysis 

potential ADEs were prioritised where data was available indicating an elevated risk.  

 

In summary, evidence exists that the risk of stroke and systemic embolism in 

anticoagulated patients might be increased with concomitant NSAID use. Consequently, 

this study aims to investigate the increased likelihood of strokes and systemic embolism in 

anticoagulated patients in the presence of NSAIDs.  

 

4.3 Methods 

This section illustrates the methods used to estimate the association of NSAID use with 

ADEs in anticoagulated patients. The RECORD, RECORD-PE, STROBE reporting guidelines for 

studies using routinely collected health data were followed (339). The checklists are 

reported in Appendix F with references where in this study the items of the guidelines were 

addressed. The overall study design [4.3.1] and the data source used in this observational 

study are described [0]. Criteria to define the study population, exposure and identification 

of outcome measures are explained in sections 4.3.3 to 4.3.5. After the data were made 

available, it was cleaned and prepared for data analysis as described in section 4.3.6. The 

process how potential confounding variables were assessed and the method used to 

control for confounding are presented in section 4.3.7. Finally, this section introduces the 

statistical analysis and planned sensitivity analysis [4.3.8, 4.3.9]. 
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4.3.1 Study design 

The study estimated the incidence of HPEs and the association between the HPE type and 

clinical outcomes using an observational cohort design for a population from the linkage of 

CPRD GOLD, HES and ONS from 1 April 2007 to 31 December 2017. Temporal anchors 

relevant to the study design and the study population are listed in Table 4.2 as 

recommended by Patorno et al. (2020) to increase transparency (340). 

 

Table 4.2: Temporal anchors for the observational cohort study  

Term Definition 

Study period 1 April 2007- 31 December 2017 

Cohort entry First OAC prescription in study period in patients ≥18 years, at least 12 months of 

follow-up in an up to standard practice; cohort entry=index date 

Outcome event date Day of first serious GI event or stroke as recorded in hospital records (episode 

start date in HES inpatient data) 

Washout window for 

denominator 

Not applicable 

Washout window for 

exposure 

NSAID prescriptions prescribed 90 days before index date 

Washout window for 

outcome 

Not applicable; different assumptions tested in sensitivity analysis 

Exclusion assessment 

window 

At baseline, index date  

Covariate assessment 

window 

For comorbidities, all entries before index were considered. For concomitant 

drugs, prescriptions 6 months before index were assessed; BMI and blood 

pressure were identified from records 12 months before index 

Exposure assessment 

window 

Time varying exposure of NSAID use during continuous OAC use 

Follow-up start Start of follow-up at index date (first OAC prescription in study period) 

Follow-up end First occurrence of either: (i) Outcome event; (ii) transfer out date; (iii) last 

collection data in CPRD GOLD; (iv) death date (ONS/CPRD); calculated OAC stop 

date with a 30d grace period of last consecutive OAC prescription; or (v) end of 

study period.  

BMI: body mass index; CPRD GOLD: Clinical Practice Research Datalink GOLD; GI: gastro-intestinal; HES: Hospital 
Episodes Statistics; NSAID: non-steroidal anti-inflammatory drugs; OAC: oral anticoagulant; ONS: Office for National 
Statistics 

 

4.3.2 Data source 

This study used the CPRD GOLD, HES and ONS linkage dataset, which offered the 

opportunity to analyse the incidence of HPEs from prescription and diagnosis records in 

primary care and to link these with mortality records and serious harm outcomes in 
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secondary care. For example, linkage to inpatient HES data is required to identify bleeding 

complications leading to hospital admission. Linkage to ONS mortality records is used as an 

additional information source for the identification of cause-specific death. 

 

CPRD is a research service funded by the government that provides anonymised health 

record data from general practices in the UK since 1987. The CPRD Gold dataset, from here 

on referred to as CPRD, is one of the largest longitudinal datasets in primary care (341) and 

collects clinical and prescription data on patient level from around 600 practices in the UK 

covering 11.3 million patients (342). Around 4.4 million patients of these 11.3 million were 

currently registered on 2 July 2013, covering approximately 7% of the UK population. The 

dataset has been shown to be broadly representative of the UK population in terms of age, 

sex and ethnicity (342, 343), and validity of diagnostic coding is high (344, 345).  

 

This study linked the primary care records from CPRD with secondary care records from 

HES Admitted Patient Care records. HES comprised admission details and clinical data for 

all secondary care attendances in England. 58% of primary care practices in CPRD have 

agreed to data linkage with HES (342). Patient level data where HES linkage is available 

were linked to the ONS mortality dataset. The ONS mortality records provide patient level 

death records including cause and date of death for patients in England and Wales (346). 

The data were also linked with the Index of Multiple Deprivation (IMD) at the patient 

postcode level. SMASH and PINCER were implemented in English practices, hence the 

linked records of English patients, was an optimal choice to identify HPE presence and 

patients at risk of HPEs.  

 

Access to the linked dataset is subject to protocol approval by the Independent Scientific 

Advisory Committee for MHRA database research (ISAC). ISAC is a non-statutory expert 

advisory body, established in 2006 to give advice on research-related requests to access 

data from the CPRD and linked datasets. The protocol is required to report feasibility, 

quality and public health value of the planned research, as well as detailed descriptions of 

the data analysis plan and limitations of the study design. The protocol (No 18_235) was 

written as part of this dissertation and was approved on 12 August 2018 with no revisions. 
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After access was granted, a data management plan was developed to guarantee the 

appropriate use, storage and deletion of the data once the project has ended (347). 

 

4.3.3 Study population 

The cohort was based on the denominator and numerator descriptions of the HPE 

[Appendix B]. Patients were at risk of the HPE (denominator) if they were at least 18 years 

of age and had any prescription of an OAC. OACs include the traditional VKAs, such as 

warfarin, and the DOACs that cover rivaroxaban, edoxaban, dabigatran and apixaban. 

Application of exclusion criteria is reported in Figure 4.1, which uses a reporting design 

recommended by best-practice guidelines by Patorno et al. (2020) (340).  

 

Figure 4.1: Exclusion criteria and time anchors for cohort entry and follow-up of patients  
at risk of the HPE (patients with oral anticoagulants) (340) 
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Patients were excluded if they received a prescription of an NSAID 90 days before the index 

date, referred to as the ‘new user’ design, as proposed by Ray et al. (2003) (348). Of all 

NSAID prescriptions in anticoagulated patients in the study period, 99% of the prescriptions 

had a length of less than 60 days. Assuming a maximum prescription length of 60 days and 

adding a 30-day grace period resulted in an interval of 90 days. The 90 days were 

considered appropriate to exclude all prevalent users of NSAIDs. Including prevalent users 

can introduce various biases (348, 349). Firstly, the bleeding risk associated with NSAIDs is 

time-dependent with a higher absolute risk in the first three months of treatment (307). 

This can introduce bias due to left censoring because (i) patients who received an NSAID 

and had GI bleeding events in the high risk initiation phase before the index date are not 

included and (ii) patients who died before index date under NSAID treatment do not 

contribute any follow-up time (349). In the prevalent user design, it is assumed that no 

events can happen in the time before index date. Secondly, there may be a ‘healthy user 

effect’ if patients with prevalent NSAID treatment are more likely to continue treatment if 

no bleeding event had occurred. When a bleeding event occurred under NSAID treatment 

patients are more likely to discontinue and not to reinitiate NSAID treatment. Hence, the 

NSAID exposure group would include more ‘healthy’ patients that used NSAIDs without 

complications and include fewer patients who did not tolerate NSAIDs. Another advantage 

of the new user design is that baseline characteristics are automatically pre-treatment 

covariates. In the prevalent user design, it is difficult to separate pre- and post-treatment 

covariates. Conditioning on post-treatment covariates can lead to over-adjustment (349).  

 

Patients from the study period were eligible for entry into the cohort if they were 18 years 

of age or older, were registered with a CPRD-participating practice (up-to-standard 

practices only) for at least 12 months prior to cohort entry and fulfilled the following 

requirements: The ‘at-risk’ population included all patients with a prescription of an OAC 

in the study period. Start of follow-up was defined as the first prescription of an OAC in the 

study period (index date). The follow-up was described as a continuous treatment episode 

of OACs. Treatment was considered to be continuous if the time between stopping and 

starting an OAC prescription was 30 days or less [Figure 4.2a]. A grace period of 30 days 

was considered to be an appropriate time to account for overlapping repeat prescriptions, 

where the patient has doses left at the end of treatment or potential hospital stays of 
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patients where no new prescriptions were issued from the GP because the hospital 

provides the medication during the stay. A US study found that 95% and 89% of gaps were 

<30 days, and 98% and 94% of gaps were <60 days, for prescriptions of dabigatran and 

warfarin, respectively (350). For the base case analysis, a 30-day grace period was 

considered appropriate, as this was around the median prescription length of OACs and 

NSAIDs in the CPRD dataset in the study period. A 60-day grace period was analysed in 

sensitivity analysis. Figure 4.2 illustrates how the 30-day grace period was applied using 

three hypothetical examples of patients who were prescribed OACs over time. Patients 

who switched between OAC treatments with a gap of less than 30 days were followed 

continuously. 

 

Figure 4.2: Graphical presentation of follow-up times of three hypothetical patients  

 

 

 

Follow-up ended at the first occurrence of either: (i) stop of OAC for more than 30 days 

(Figure 4.2: Patient a); (ii) transfer out date when patient leaves the practice; (iii) last data 

collection date for the practice in CPRD; (iv) death date (Figure 4.2: Patient b); (v) end of 



  

135 
 

study period (Figure 4.2: Patient c); (vi) or the ADE outcome event, whichever occurred first 

[Table 4.2; Figure 4.1].  

 

4.3.4 Exposure 

A patient was considered to be exposed to hazardous prescribing when they received the 

hazardous prescription. The numerator consisted of the number of at-risk patients that 

received the hazardous prescription, here the NSAID. If a patient fulfilled the requirements 

for the numerator and the denominator, hence a prescription of an OAC and an NSAID, the 

patient is considered exposed to the HPE. If a patient met the requirements for the 

denominator but not the numerator, they belonged to the population at risk of but 

unexposed to the HPE. If the anticoagulated patient did not receive an NSAID during follow-

up time, the whole follow-up period was seen as unexposed. NSAIDs are often repeatedly 

prescribed for short term use. Due to the time-varying nature of NSAID prescriptions, 

NSAID exposure was used as a time-dependent binary variable. The time periods where 

patients had a continuous prescription triggering the HPE were defined as exposure periods 

(including a 30-day grace period after the calculated prescription stop date). Exposure 

periods are assessed based on prescribing records of NSAIDs and do not include over the 

counter (OTC) purchases of NSAIDs. 

 

4.3.5 Outcome measures 

GI bl as described in the background sections 4.2.1 and 4.2.2. The primary serious harm 

outcome for this study was GI bleeding events, referred to as serious GI events. Serious GI 

events were identified in the HES records that excludes minor bleeding events recorded in 

primary care that did not lead to hospitalisation. Minor bleeding events were not 

considered relevant for this thesis, as they do not have a large impact on costs (351, 352) 

and quality of life (353). Serious GI events were identified using ICD-10 codes. The list of 

ICD-10 codes to identify the serious GI events are reported in Appendix J. Section 4.3.6.1 

provides further detail about how this code list was developed. Events were extracted from 

HES if any of the ICD-10 codes was a primary diagnosis in a hospital episode as done 

previously in studies investigating bleeding risk in the linked CPRD/HES dataset (354-356). 

The primary diagnosis describes the main cause that contributed to the hospital stay and is 
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more likely to be correct compared with using secondary diagnoses (357, 358). From the 

ONS data, deaths with the primary cause coded as a serious GI event were also included as 

serious GI events. ONS death records are recovered from death certificates and considered 

most appropriate when assessing mortality and cause of death (359).  

Four of the studies investigating the increased risk of serious GI events associated with 

NSAIDs in anticoagulated patients in Table 4.1 also estimated the increased risk of major 

bleeding (307-309, 332). While the impact of NSAIDs on the risk of serious GI events was 

higher than on major bleedings in anticoagulated patients in Kent et al. (2018) and 

Schjerning Olsen et al. (2015) and in warfarin users in Dalgaard et al. (2020) and Lamberts 

et al. (2014), this study investigates major bleeding as a secondary outcome for 

comparability reasons (307-309, 332). Major bleedings include ICD-10 codes for GI 

bleeding, intracranial haemorrhage (ICH), respiratory, urinary and rectal bleeding, 

haemoptysis, and other unspecified bleeding. The risk of stroke and systemic embolism as 

a potential ADE related to NSAID use were tested as a secondary outcome. OACs are 

primarily prescribed for stroke prevention (354) and NSAIDs have been associated with an 

increased cardiovascular risk (360). Death as a competing risk event was also assessed as a 

secondary outcome. Information on mortality were generated from ONS records.  

 

4.3.6 Preparation for data analysis 

Preparing the CPRD data to generate a survival time dataset that could be analysed, was a 

complex process. Various assumptions were made during the process that are presented 

in Appendix I. The CPRD, HES and ONS data were provided in separate files. Access to the 

CPRD data was not limited, but HES and ONS records were only available for patients 

eligible for linkage and with an OAC prescription in the study period. The process of 

identifying code lists and on identifying continuous medication use, are described here in 

more detail. 

 

4.3.6.1 Identifying clinical code lists 

Product code lists were required to identify the prescription dates in CPRD that define 

follow-up and exposure periods. Keywords for drugs were identified from the relevant BNF 

chapter covering the individual substance names (361) and applied in a search command 



  

137 
 

for Stata developed by Kontopantelis (362) that searches look up files for the keywords 

[pcdsearch]. The keywords are listed in Appendix I. In a second step, the Code browser 

application provided by the MHRA was used that searched the look up files for substance 

and product names. The derived code lists were compared with published code lists on the 

website ‘ClinicalCodes.org’, an online clinical codes repository introduced by the University 

of Manchester (363), or those available in other observational studies investigating 

bleeding event risk. A complete list of all codes identified in any of these lists was 

generated. The author of this dissertation used her clinical knowledge as a pharmacist to 

screen code lists and to exclude non-relevant codes.  

 

ICD10-code lists were required for data extraction of diagnoses from HES records and were 

required to identify outcome events. Published code lists were searched using the same 

sources already used for the product codes for drugs. A similar search for published code 

lists on serious GI events was conducted by a different researcher to guarantee that all 

potential code lists were captured. The summary of all possible codes identified in the 

literature was discussed in the wider project team of PROTECT and with GPs to verify that 

the correct diagnoses were covered [Appendix I]. The final list of ICD-10 codes used to 

identify outcomes in HES records is reported in Appendix J. 

 

Data about relevant covariates were mainly accessed from CPRD, which required Read 

code lists. Where available, code lists provided by PRIMIS, from the University of 

Nottingham, were used that were developed for the wider PROTECT project to programme 

the algorithm to identify patients with HPEs in PINCER. Where these were not available, 

code lists provided by a research team from the University of Nottingham that worked with 

a similar cohort in observational data (354) or other published code lists (364) were used. 

If no published code lists were available a keyword search was conducted in the MHRA 

code browser. These were screened for non-relevant codes based on the clinical knowledge 

of the author of this thesis. 
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4.3.6.2 Identifying periods of continuous medication use 

Definitions for follow-up as well as for exposure were based on the assessment of 

continuous medication use [4.3.3]. Continuous medication use was described as 

consecutive prescriptions of the same drug class with a grace period of 30 days between 

calculated stop of the prescription and the start date of the next. Because the stop date 

was not recorded in CPRD, it was calculated from available records on quantity of units, 

e.g., tablets or capsules, and the daily dose prescribed. Pye et al. (2018) criticized the lack 

of guidance on how to process medication data and the authors developed an algorithm 

guiding how to report the processing of prescription data in CPRD to increase transparency 

(365). The first step to report was how missing and implausible records were cleaned. For 

DOACs and NSAIDs recorded daily doses were considered implausible if dose units were 

not in tablets but in milligrams or millilitres because these generated extreme durations 

and could not be used in the calculation of the prescription length. Daily doses of zero were 

also assumed to be implausible. All implausible daily doses were set to missing. Those daily 

doses missing or set to missing were replaced by the standard dose described in the British 

National Formulary (BNF) if this did not vary for different indications or formulations. For 

DOACs standard doses were identified from the BNF and replaced the missing daily doses. 

NSAIDs with many possible daily doses for the same strength were kept as missing.  

 

Then, stop dates of each prescription were generated by adding the prescription length to 

the prescription date. The prescription length was calculated by dividing the prescribed 

quantity by the daily dose. If daily doses were recorded in the CPRD for more than 50% of 

the prescriptions of a drug group, the prescription length was calculated using the recorded 

daily dose and the recorded quantity. This was the case for NSAIDs with a missingness of 

all NSAID substances of 18% and for DOACs with missingness ranging from 22% to 27% 

depending on the substance.  

 

The use of warfarin or other VKAs was different. In practice, daily doses are adapted 

according to International Normalized Ratio (INR) measurements (366). Patients can have 

prescriptions of warfarin with different strength tablets prescribed together, so that the 

daily dose can easily be adjusted at home without a new prescription being issued if the 

dose changed. The daily dose was therefore often not recorded. In about 85% of the 
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prescriptions of VKAs the daily dose was missing. The few daily doses recorded were not 

assumed to be consistent over the prescription length and were not used to calculate 

prescription lengths as done for available records for DOACs. For VKAs and NSAIDs missing 

prescription lengths were replaced by the sample’s median prescription length, which was 

considered most representative of an average user. The median length was generated from 

time between prescription dates if missingness for daily dose records was ≥50%, as was the 

case for VKA prescriptions. If missingness of daily doses was <50%, the median of available 

calculated lengths was used, as it was the case for NSAIDs. Because missing daily doses for 

DOACs were already replaced by the standard BNF dose, this step was not required for 

DOACs.  

 

For each prescription, the stop date was generated by adding the prescription length to the 

date the prescription was issued. Continuous prescription periods started with the issue of 

the first prescription and ended with the calculated stop date of the last prescription plus 

the 30-day grace period. The described approach to identify stop dates and then periods 

of continuous prescriptions was considered reasonable by pharmacists and epidemiologists 

of the PROTECT team. Further assumptions made were listed in Appendix I. 

 

4.3.7 Confounding variables 

This section reports (i) the process used to identify potential confounding variables, (ii) the 

relations between variables, outcomes and exposure, and (iii) the method used to adjust 

for covariates. 

 

4.3.7.1 Identifying potential confounding variables 

The risk of bleeding from using NSAIDs is highly dependent on a patient’s specific 

comorbidities and concomitant medication (355). The choice to prescribe an NSAID might 

also be influenced by these comorbidities or medications. Neglecting the relationships 

between variables can introduce bias, for instance, confounder bias or collider bias (367, 

368). A confounder is defined as a variable that has (direct or indirect) causal influence on 

both the exposure and the outcome. In contrast, a collider is defined as any variable that is 

causally influenced (direct or indirect) by the exposure and the outcome (368, 369).  
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Not conditioning on confounders introduces confounder bias and conversely, conditioning 

on colliders introduces collider bias. Both biases yield distorted estimates of the causal 

effect between exposure and outcome (367, 370). 

 

A literature search of studies using observational datasets to assess bleeding risks with 

antithrombotic treatments was conducted to identify covariates used as controls for 

observable confounders. Details of the review are not reported, but the majority of studies 

controlled for a mix of cardiovascular risk factors and bleeding risk factors. The 

cardiovascular risk factors often represented variables of the CHA2DS2-VASc score. The 

score is calculated from the following parameters: (i) Congestive heart failure, 

(ii) uncontrolled hypertension, (iii) age over 65 years, (iv) diabetes mellitus, 

(v) stroke/transient ischaemic attack, (vi) vascular disease, e.g., myocardial infarction, and 

(vii) sex. The CHA2DS2-VASc score was developed to quantify the risk of stroke in patients 

with AF to measure the need for antithrombotic therapy and has been validated externally 

in numerous AF populations (371, 372). In recent years, it was also used to predict stroke 

risk in non-AF populations (373, 374), such as in acute coronary syndrome (ACS) (375), ACS 

with diabetes (376), heart failure (377) and interatrial block (378).  

 

To identify bleeding risk, different scores have been developed: HAS-Bled score (379), 

ATRIA (380), ORBIT (381) and HEMORR2HAGES (382). The HAS-Bled score has proven to be 

the most accurate to predict clinically relevant bleeding events (383-386). The score has 

been validated in patients with AF, venous thromboembolism (VTE) (387) and ACS (388). 

The score is calculated from the following parameters: (i) uncontrolled hypertension 

defined as a systolic blood pressure above 160 mmHg, (ii) renal disease defined as CKD 

stage 4 or worse, dialysis or transplant patients, (iii) severe chronic liver disease, (iv) history 

of stroke, (v) prior major bleeding or predisposition to bleeding, (vi) labile INR with a time 

in therapeutic range under 60%, (vii) age over 65 years, (viii) medication use predisposing 

bleeding (antiplatelets, aspirin, corticosteroids and specific antidepressants), and 

(ix) alcohol dependence. Together with the CHA2DS2-VASc score, the HAS-BLED score is 

recommended by NICE to make decisions on antithrombotic treatment in AF (41). In 

addition to treatment decisions regarding the need for OACs, the scores are also used in 

studies assessing stroke and bleeding events with different antithrombotic treatments 
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(330, 389-391). Due to the influence on treatment decisions of the two scores, covariates 

that are part of these scores were also considered potential confounders. A set of variables 

was created that included all potential confounders used in other observational studies 

from the review or that were part of the risk scores. 

 

4.3.7.2 Understanding the relations between variables 

For each identified variable, the literature was screened to identify if there was evidence 

for a causal relationship with the exposure or the outcomes. With three GPs, previously 

involved in this project, the variables from the list of potential confounders from the 

literature were discussed in a video conference facilitated by the author of this dissertation. 

The variables were grouped by consensus into categories according to whether each 

variable (i) was a confounder (affected NSAID exposure and GI bleeding outcome directly), 

(ii) was a collider (affected simultaneously by NSAID exposure and GI bleeding outcome), 

(iii) was a GI bleeding risk factor only (affected GI bleeding outcomes), or (iv) had no 

effecting on bleeding outcomes. The GPs also gave input in the video conference on 

potentially relevant variables missed in the literature review. Confounders were identified 

as variables that affect prescribing of NSAIDs and GI bleeding risk. NSAID prescribing can 

be negatively influenced if GPs are hesitant to prescribe an NSAID because of an existing 

condition predisposing bleeding. The GI risk factors were conditions indirectly associated 

with the outcome, e.g., when the condition itself affects bleeding risk through other 

mediators. The GI risk factors were assumed not to effect NSAID prescriptions but with the 

potential to increase GI bleeding risk. A list of variables identified in the review and by GPs 

grouped by their relation to the exposure and the outcome into confounder, collider, GI 

risk factors and variables with no assumed effect on the outcome or exposure is reported 

in Table 4.3.  

 

The theoretical associations identified by the GPs were tested in univariate analysis in the 

dataset. All variables identified as risk factors, confounders or collider had a statistically 

significant (p < 0.05) association on the risk of serious GI events. Those variables with no 

assumed effect on the outcome did not have a significant effect in the dataset. This 

additional analysis supported the assessment of the GPs.  
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INR measurements are recorded in the CPRD but not consistently (392, 393). INRs tend to 

be measured more regularly for patients with labile INR and are not measured at all in 

anticoagulated patients treated with DOACs because their treatment dose is not adjusted 

to the INR measurement in contrast to warfarin doses. INR measurements are used to 

guide dosing regimens in patients treated with warfarin (41). They are particularly relevant 

after initiation of OAC treatment, hence after start of follow-up. Because of the inconsistent 

records, INR was not considered in baseline characteristics. Labile INR is a confounder, and 

not conditioning on a confounder potentially introduces confounder bias, but since it is 

only relevant for half of the patients using warfarin, relevance is questionable. 

 

Table 4.3: Relation of potential confounders with NSAID use and serious GI events 

Relation  Variables  

Confounder  Patient demographics: age 

 

Comorbidities: alcohol dependence, severe chronic renal disease (CKD stage 4 or worse, 

dialysis, transplant patients), severe chronic liver disease, uncontrolled blood pressure 

(>160mmHg), bleeding event (primary care records: serious GI events including ulcer 

perforation and ulcer bleeding, rectal bleeds, intracranial haemorrhage; secondary care 

records: major bleeding events as defined in outcome measures), peptic ulcer (excluding 

haemorrhagic or perforated ulcers), oesophageal varices, anaemia, labile INR 

 

Medications: antiplatelets, aspirin, antidepressants (SSRI,TCA), corticosteroids 

Collider Gastroprotective agents (proton pump inhibitors, H2-receptor antagonists, misoprostol) 

GI bleeding 

risk factor 

Patient factors: gender, socio-economic status (index of multiple deprivation on patient 

level), ethnicity, smoking, high BMI (obese: BMI >30 kg/m2) 

 

Comorbidities: coronary heart disease (heart failure, myocardial infarction, angina), 

cerebrovascular events (stroke, transient ischaemic attack), peripheral artery disease, 

venous thrombo-embolism (pulmonary embolism or deep vein thrombosis), valvular heart 

disease, hypertension (controlled), valvular heart disease, diabetes, COPD, cancer, adverse 

GI events (dyspepsia, heartburn), GI inflammation (gastritis, duodenitis and oesophagitis), 

helicobacter pylori infection, anti-epileptic drugs (phenytoin or carbamazepine) 

No effect Patient factors: diet 

 

Medications: statins, antibiotics (macrolides), nitrates 

BMI: body mass index; COPD: chronic obstructive pulmonary disease; CKD: chronic kidney disease; GI: gastro-

intestinal; GPs: general practitioner; INR: international normalized ratio; mmHg: millimetre of mercury;  

SSRI: selective serotonin reuptake inhibitor; TCA: tricyclic antidepressant 
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A causal diagram, a directed acyclic graph (DAG), was used to get an overview of relations 

between the variables, exposure and outcome (potential confounders and colliders). DAGs 

can guide the process to obtain an unbiased estimate on the causal inference between 

exposure and the outcome, by providing a formal mathematical framework to describe the 

relations between relevant variables (367, 368, 394, 395). Identifying these relations is 

paramount to understand how statistical conditioning on these variables would impact the 

effect estimates. The software DAGitty was used to draw the DAG that was used to guide 

discussions on relations between the variables with the three GPs (396). The DAG is 

presented in Appendix G [Figure G.1]. Due to the high number of confounders and the 

multiple relations between the variables and the exposure or outcome but also among the 

variables the DAG became very complex.  

 

4.3.7.3 Covariate adjustment 

The complexity of the DAG made it challenging to identify a sufficient set of covariates for 

covariate adjustment in a regression model without including mediators with the risk of 

over adjustment. Methods not requiring to specify a regression model to relate exposure 

and covariates to the outcome are propensity score based balancing methods (397). The 

choice of regression model can influence estimates using covariate adjustment, which 

contains the risk to be tempted to use a model with results closer to a priori expected 

results (398). Propensity score related methods are an alternative, when regression 

analysis is not appropriate, e.g., when the difference between distributions of the 

covariates varies substantially (397-400). Propensity score methods aim to achieve balance 

between exposed and unexposed group by stratification, inverse probability weighting 

(IPTW) or propensity score matching (PSM). These methods are described in detail in the 

literature, for example by Austin et al. (2011) (260), and is not described in this chapter. 

 

Nearest neighbour PSM was chosen as the base case analysis. Greedy matching was used 

without a calliper. The matched cohort was used in the statistical analysis [4.3.8]. To predict 

the scalar propensity score from the covariate vector, a probit model was used, regressing 

exposure status on observed covariates.  
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Paramount for successful PSM is the selection of the correct variables to predict the 

propensity score (401-403). Selecting all variables associated with the outcome (risk 

factors) yielded best balancing scores compared with including only confounders (variables 

associated with outcome and exposure) or adding variables associated with the treatment 

alone (403). Consequently, all GI risk factors and confounders identified in Table 4.3 were 

included in the propensity score model. All variables are required to be baseline variables 

because only these are predictive of NSAID assignment.  

 

Different methods are available to test if the matching process was successful and yields 

balanced cohorts for exposed and unexposed patient groups (404). Balance of the matched 

cohort in this chapter was tested firstly by comparing the standardised difference between 

treated and untreated groups. The standardised difference of the means of continuous or 

binary variables and the percentages in each category of non-binary categorical variables, 

was used as an indicator to identify variables not evenly distributed between treatment 

groups. The differences in means are reported as units of the pooled standard deviation. A 

variable with a standardised difference higher than 0.10 was considered not adequately 

distributed (260, 404). The pstest command in Stata 2015 was used to generate the 

mean standardised differences (reported in %) and to visualise the variables with a 

standardised difference of more than 10% (402). The advantage of the standardised 

difference over t-test statistics was that it is not dependent on the sample size (260, 401, 

405). In addition to comparing the standardised difference, Austin et al. (2011) 

recommends graphical methods. A density plot was used to identify the distribution of the 

propensity score among NSAID and never NSAID users (twoway(histogram) command 

in Stata 2015). The area of common support should include all patients in a well-balanced 

cohort.  

 

4.3.8 Statistical analysis 

Baseline characteristics were reported before and after matching (i) for the population 

exposed to NSAIDs at least once during follow-up (NSAID user), and (ii) for the population 

never exposed during follow-up (Never NSAID user). Details on assumptions made to 

extract covariates can be found in Appendix G [Table G.1]. Characteristics are reported as 
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mean with standard deviations for continuous measures, and as percentages for 

categorical measures. 

 

After careful consideration of potential model approaches, the effect of NSAID use on the 

ADEs (serious GI events, stroke, systemic embolism, major bleeding) and death was 

estimated using a cause-specific Cox proportional hazard model. After the matching 

process created a balanced cohort and the balancing tests did not indicate otherwise, it 

was assumed that treatment assignment (NSAID exposure) was independent of the 

baseline characteristics. Consequently, no further adjustment of covariates was included 

in the Cox proportional hazard model. The median follow-up time of patients was 0.6 

person years and it was assumed that baseline characteristics were unlikely to change in 

this short period of time.  

 

This was applicable to all outcomes under the assumption that variables chosen included 

relevant variables for the non-primary outcomes as well. Multiple studies investigating 

major bleeding risk factors did not report additional risk factors that were not balanced in 

the matched cohort (406, 407). For stroke and systemic embolism, no risk factors were 

reported in various studies investigating risk factors in anticoagulated patients or in AF that 

were not considered for the primary outcome (408-410). However, the consulted GPs 

identified slightly different relationships of potential confounders with stroke compared 

with the primary outcome. Hypertension and statin use were not identified as direct risk 

factors for serious GI events [Appendix G], but they are considered direct risk factors for 

stroke and systemic embolism. The GPs considered hypertension and statin use to only 

indirectly impact the risk of serious GI events. The consulted GPs also considered 

hypertension and statin use not to be associated with NSAID use, hence they are not 

considered confounders for the estimation of stroke or serious GI event risks [Appendix G]. 

Because only direct risk factors for serious GI events, such as previous bleeding and 

uncontrolled blood pressure, were included in the propensity score assessment, the 

additional stroke risk factors were not included in the propensity score. However, the 

matching process generated cohorts that were balanced on these two risk factors as well.  
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The model was able to incorporate censored data if censoring occurred at random, hence 

independent of ADEs (411). Censoring due to loss of follow-up for other reasons, either the 

patients transferred out of the practice, data collection of the practice stopped or the end 

of the study period were considered non-informative. This assumption was used in other 

studies in the CPRD analysing bleeding events in OAC cohorts using Cox proportional hazard 

models (354, 355, 412). The Cox proportional hazard model also allows to encompass the 

time-varying nature of the internal covariate of NSAID exposure (413). Death and bleeding 

events were not considered to be independent. A patient who died cannot have the failure 

event in the future. The competing risk event of death therefore needed to be accounted 

for. By censoring the competing risk event, the model estimates the instantaneous risk of 

failure given that failure from any cause, competing or failure event, has not happened yet. 

The interpretation of these cause-specific hazards should always take into account the 

cause-specific hazard of the competing risk event (414). Other methods that account for 

competing risk events, such as the Fine and Gray method, could not encompass time-

varying covariates and were therefore not considered (414, 415). The cause-specific hazard 

function denoted as (416) 

 

Equation 3:  H(t) = limΔt→0

𝑃𝑟(𝑡 < 𝑇 ≤ 𝑡 + 𝛥𝑡, 𝐾 = 𝑘|𝑇 > 𝑡

𝛥𝑡
 

 

where the instantaneous risk H(t) of the occurrence of event K (where 𝑘 is one of the 

competing events here serious GI event or death) given that any kth event did not happen 

until time t. For each event k a separate proportional hazard model is used (414). This study 

was interested in GI bleeding risk and deaths in association with NSAID use. The cause-

specific hazard for serious GI events at time t provided the instantaneous rate of serious GI 

events in patients with no serious GI event conditional on survival until time t. The cause-

specific hazard for death at time t provided the instantaneous rate of death given that 

death or a serious GI event have not happened yet (416). The proportional hazard model 

for the cause-specific hazards for each event k (1= serious GI event; 2= death) denoted as  

 

Equation 4:   𝐻(𝑡|𝑋(𝑠), 𝑠 ≤ 𝑡) = 𝐻𝑜𝑗(𝑡)𝑒𝑥𝑝𝛽𝑘𝑋(𝑡) 
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was found most appropriate to estimate the regression coefficient 𝛽𝑘 of the time-varying 

covariate effects of NSAID use. The proportional hazard assumption was tested using 

Schoenfeld residuals (417). The proportional hazard assumption was considered to hold if 

the null hypothesis of zero slope of the scaled Schoenfeld residuals regressed over time 

was not rejected. The proportional hazard assumption was also tested graphically. A log-

log plot of survival versus analysis time was plotted that shows parallel lines if the 

proportional hazard assumption is not violated. 

 

The proportional hazard model was not used to obtain cumulative incidence of serious GI 

events or deaths because the application of the exposure as a time-varying covariate and 

the competing risk of death did not allow to make inference from the cause-specific hazard 

function on the cumulative incidence function (414, 418, 419). The results of the Cox 

proportional hazard model were reported as HR with 95% CI. Stata 2015 was used to 

perform the analysis. 

 

4.3.9 Sensitivity analysis 

Sensitivity analysis tested the assumptions that were made during the data preparation, 

with exclusion criteria, on conditioning or confounding. Primarily the sensitivity analysis 

aimed to test robustness of the increased risk estimated for the primary outcome of serious 

GI events. Because during the analysis of the secondary outcomes stroke risk was found to 

be substantially increased with NSAID exposure, robustness of this outcome was also 

tested. 

 

Robustness of assumptions made during the data preparation and exclusion criteria 

In sensitivity analysis, a 60-day grace period during continuous treatment use was explored. 

Additionally, various changes to the washout periods were investigated for the exposure 

and the serious GI event at baseline. A shortened washout period of 30 days for NSAID use 

was tested to explore if a smaller washout period influenced the results. 30 days was the 

median prescription length of NSAIDs. An extended washout of six months was also tested. 

A serious GI event washout window was also considered to explore if excluding patients 

with a hospitalisation for a serious GI event prior to the index date, would impact the HR. 
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Patients with a serious GI event ever before index were excluded. In the sensitivity analysis 

for stroke events, previous stroke events were used accordingly. 

 

Robustness of assumptions on conditioning on confounding variables 

For the base case analysis, all variables affecting the serious GI event outcome were 

considered in the propensity score model. However, it was suggested that including a 

collider in the propensity score model can introduce a small bias (420). The propensity 

score model was therefore rerun not including the collider of baseline GPA use. 

 

Matching on the propensity score was chosen as the balancing method for the base case 

(PSM). In the sensitivity analysis, IPTW on the propensity score was investigated. The IPTW 

methods is of particular interest because it preserves the original sample size that could be 

useful in rare events, such as serious GI events. Because the probability of treatment 

assignment was low, resulting in low propensity score, the use of stabilised weights has 

been recommended (421, 422).  

 

NSAID use was incorporated as a time-varying exposure in the Cox proportional hazard 

model. The exposure could be influenced not only by the baseline characteristics but also 

by changes in confounders during follow-up. In the base case analysis, it was assumed that 

baseline characteristics do not change over time and no further adjustment for 

confounders was required in the balanced population. In the sensitivity analysis, the 

proportional hazard model was adjusted for confounders identified in Table 4.3, ethnicity 

and deprivation level and the variables were included in the regression model as time-

varying variables. For this analysis the covariates assessed at the index date were updated 

before each change in the exposure status. In the respective sensitivity analysis for stroke 

variables in the CHA2DS2-VASc stroke risk score [4.3.7.1], ethnicity and deprivation level 

were used. 

 

For the variables smoking (1%), body mass index (BMI) (51%) and ethnicity (21%), not all 

patients had records. In the base case, missing records were considered as an additional 

category and the missing category was included in the matching process. Even though 
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these patients are potentially not missing at random, a sensitivity analysis was run dropping 

patients with missing smoking, BMI or ethnicity record. 

 

E-value 

Unmeasured confounding is a common problem in observational studies. While it is 

difficult to quantify the bias associated with unmeasured confounding, there are tools 

available to test if the observed effect is likely be explained away by unmeasured 

confounding (423, 424). In this study, the e-value was calculated. E-values are used to 

estimate the minimal strength of association an unmeasured confounder must have with 

the outcome and the exposure to be able to explain away the observed effect (424). For 

the mean HR and the lower range of the confidence interval for serious GI events and 

stroke, the e-value was calculated. For risk ratios (RR) greater than one, the e-value is 

calculated as follows (424) 

 

Equation 5:  𝐸 − 𝑣𝑎𝑙𝑢𝑒 =  𝑅𝑅 +  √(𝑅𝑅𝑥(𝑅𝑅 − 1)) . 

 

To be able to interpret the e-value, it was compared to the impact of known risk factors for 

the two outcomes as recommended in the published literature (423, 425). If known 

confounders conditional on exposure have a smaller impact than the estimated e-value, it 

is unlikely that an unmeasured confounder has a greater influence on the outcome (423). 

Hence, the risk that the observed effect can be nullified by an unmeasured confounder is 

low. The impact of variables on the risk of the outcome conditional on exposure was 

assessed either as a confounder of the effect of NSAIDs on serious GI events in Table 4.3 or 

for the stroke outcome variables in the CHA2DS2-VASc. The stroke risk score was described 

in section 4.3.7.1. 
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4.4 Results 

4.4.1 Descriptive statistics 

From CPRD, 121908 patients were identified with at least one OAC prescription during 

the study period (2007 to 2017) that were eligible for linkage. Figure 4.3 presents a flow 

diagram to illustrate how the final sample was derived. There were 117566 patients 

eligible for the cohort after the exclusion criteria were applied. The new user design 

requires exclusion of patients with NSAID use three months prior the index date. 

Afterwards 109861 patients were available for the statistical analysis. Of these patients 

with an OAC prescription and at risk of a hazardous prescription of a NSAID, 2.99% 

(n=3177) had at least one NSAID prescription. 

 

Figure 4.3: Flow of the patients from the dataset included in the analysis of the primary outcome 

 

 

Baseline characteristics are reported in Table 4.4 for the cohort never exposed to NSAIDs 

(labelled as ‘Never NSAID user’), and the population exposed to NSAIDs at least once 

over the study period (labelled as ‘NSAID user’). The unmatched cohorts had a mean 

standardised difference of 4.0% and proportions of individual characteristics were 

similar.  
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Table 4.4: Baseline characteristics of patients in the cohort before matching and in the propensity score matched cohort  

Variable Before matching After matching 

Never NSAID user (n=106742)a  NSAID user (n=3177)b Never NSAID user (n=3177)a  NSAID user (n=3177)b 

Propensity score (mean, SD) 0.029 (±0.009) 0.031 (±0.009) 0.031 (±0.009) 0.031 (±0.009) 

Standardised difference (mean) 4.0    2.0    

Age (mean and SD) 72  (14) 70  (14) 70  (14) 70  (14) 

Women 48413 (45%) 1311 (41%) 1331 (42%) 1311 (41%) 

Ethnicity 
        

   White 82260 (77%) 2456 (77%) 2495 (79%) 2456 (77%) 

   Other 496 (0%) 15 (0%) 16 (1%) 15 (0%) 

   Asian 940 (1%) 33 (1%) 25 (1%) 33 (1%) 

   Black 711 (1%) 21 (1%) 12 (0%) 21 (1%) 

   Missing 22335 (21%) 652 (21%) 629 (20%) 652 (21%) 

Deprivation index (IMD) 
       

   1 (least deprived) 25332 (24%) 671 (21%) 658 (21%) 671 (21%) 

   2 24545 (23%) 725 (23%) 736 (23%) 725 (23%) 

   3 23140 (22%) 686 (22%) 678 (21%) 686 (22%) 

   4 18647 (17%) 590 (19%) 614 (19%) 590 (19%) 

   5 (most deprived) 15014 (14%) 503 (16%) 491 (15%) 503 (16%) 

   Missing 64 (0%) N/A (<0%) 0 (<0%) N/A (<0%) 

Smoking status 
        

   Current smoker 15379 (14%) 504 (16%) 540 (17%) 504 (16%) 

   Ex-smoker 54463 (51%) 1677 (53%) 1704 (54%) 1677 (53%) 

   Missing 941 (1%) 25 (1%) 29 (1%) 25 (1%) 

   Never smoker 35959 (34%) 971 (31%) 904 (28%) 971 (31%) 

Blood pressure control 
       

   Uncontrolled blood pressure 4529 (4%) 128 (4%) 118 (4%) 128 (4%) 

   Controlled blood pressure 87439 (82%) 2587 (81%) 2623 (83%) 2587 (81%) 

   Missing 14774 (14%) 462 (15%) 436 (14%) 462 (15%) 

BMI (mean and SD) 29  (6) 30  (6) 30  (6) 30  (6) 
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Variable Before matching After matching 

Never NSAID user (n=106742)a  NSAID user (n=3177)b Never NSAID user (n=3177)a  NSAID user (n=3177)b 

BMI by category 
        

   17.5-22.49 6342 (6%) 136 (4%) 152 (5%) 136 (4%) 

   22.5-24.9 7795 (7%) 178 (6%) 217 (7%) 178 (6%) 

   25.0-29.9 18959 (18%) 573 (18%) 538 (17%) 573 (18%) 

   30.0-34.9 11443 (11%) 437 (14%) 427 (13%) 437 (14%) 

   35.0-39.9 4736 (4%) 186 (6%) 178 (6%) 186 (6%) 

   ≥40.0 2859 (3%) 121 (4%) 117 (4%) 121 (4%) 

   Missing BMI 54608 (51%) 1546 (49%) 1548 (49%) 1546 (49%) 

Concomitant drugs (6 months before index date) 

Antiplatelet 7954 (7%) 188 (6%) 150 (5%) 188 (6%) 

Aspirin 31482 (29%) 937 (29%) 882 (28%) 937 (29%) 

Gastroprotective agent 34796 (33%) 1147 (36%) 1068 (34%) 1147 (36%) 

Antidepressant 16280 (15%) 570 (18%) 574 (18%) 570 (18%) 

Corticosteroids 9667 (9%) 314 (10%) 288 (9%) 314 (10%) 

Anti-epileptic drug 1256 (<1%) 42 (<1%) 30 (<1%) 42 (<1%) 

Statin 48811 (46%) 1433 (45%) 1427  (45%)      1433  (45%)      

Comorbidities (before index date) 

Peptic ulcer 5452 (5%) 126 (4%) 131 (4%) 126 (4%) 

Any adverse GI event 23351 (22%) 772 (24%) 716 (23%) 772 (24%) 

GI inflammation 14719 (14%) 473 (15%) 467 (15%) 473 (15%) 

Alcoholism 2286 (2%) 79 (2%) 86 (3%) 79 (2%) 

Anaemia 13326 (12%) 352 (11%) 316 (10%) 352 (11%) 

Cancer 12928 (12%) 365 (11%) 342 (11%) 365 (11%) 

Any bleeding (primary care records) 13505 (13%) 426 (13%) 391 (12%) 426 (13%) 

    GI bleeding 9731 (9%) 304 (10%) 284 (9%) 304 (10%) 

    Intracranial bleeding 915 (1%) 19 (1%) 29 (1%) 19 (1%) 

    Rectal bleeding 2876 (3%) 104 (3%) 79 (3%) 104 (3%) 

Coronary heart disease 26726 (25%) 836 (26%) 778 (24%) 836 (26%) 
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Variable Before matching After matching 

Never NSAID user (n=106742)a  NSAID user (n=3177)b Never NSAID user (n=3177)a  NSAID user (n=3177)b 

COPD 9060 (8%) 278 (9%) 244 (8%) 278 (9%) 

Diabetes 17124 (16%) 516 (16%) 496 (16%) 516 (16%) 

Renal disease (severe) 3455 (3%) 89 (3%) 87 (3%) 89 (3%) 

Liver disease (severe) 645 (1%) 14 (0%) 20 (1%) 14 (0%) 

Peripheral vascular disease 3200 (3%) 88 (3%) 79 (2%) 88 (3%) 

Atrial fibrillation 57356 (54%) 1660 (52%) 1658 (52%) 1660 (52%) 

Heart failure 14035 (13%) 396 (12%) 363 (11%) 396 (12%) 

Hypertension 56139 (53%)  1674 (53%)  1673 (53%) 1674 (53%) 

Stroke 17836 (17%) 451 (14%) 432 (14%) 451 (14%) 

Valvular heart disease 11407 (11%) 257 (8%) 235 (7%) 257 (8%) 

Venous thromboembolism 27531 (26%) 850 (27%) 852 (27%) 850 (27%) 

Data are presented as mean (standard deviation) for continuous measures, and n (%) for categorical measures; GI varices are not reported because the percentage was 0 in all groups; apatients 

never exposed to NSAIDs and OACs at the same time (Never NSAID user); bpatients exposed to NSAIDs at least once (NSAID user); BMI: body mass index; COPD: chronic obstructive pulmonary 

disease; GI: gastro-intestinal; IMD: index of multiple deprivation; NSAID: non-steroidal anti-inflammatory drug 
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The matched cohort consisted of 3177 NSAID users and 3177 never NSAID users [Table 4.4]. 

The tests conducted to test for balance between NSAID users and never NSAID users after 

matching indicated that the PSM was successful. The mean propensity score was 0.031 (SD 

±0.09) in both groups. The histogram comparing the propensity score distribution in the 

two groups demonstrated a comparable distribution and had the same area of common 

support reported in Appendix H [Figure H.1]. The propensity score matched cohort in Table 

4.4 showed a higher level of balance indicated by the lower mean standardised difference 

in the cohort after matching. The mean standardised difference was reduced from 4.0% to 

2.0%. The mean standardised difference of individual estimates is reported in Appendix H 

[Figure H.2]. After matching, none of the observed variables had a standardised difference 

greater than 10% indicating balance between NSAID users and non NSAID users. The 

matched cohort had a mean age of 70 (SD±14) years of age, and the majority of patients 

was male. Missingness of deprivation indices, smoking status and blood pressure 

measurements was low, but half of BMI records were missing. 

 

4.4.2 Base case analysis 

The incidence of outcomes in the matched cohort for person time spent (in person years) 

with NSAID exposure (NSAID use) and without (no NSAID use) is reported in Table 4.5.  

 

Table 4.5: Incidence rates, IRR and cause-specific HR of serious GI events, major bleeding, stroke, 

systemic embolism and all-cause death 

Outcome 
Person time with Incidence rate a 

IRR b HR b 

NSAID  No NSAID  NSAID use No NSAID use 

Serious GI 

event 

635 7734 20.49        

(11.90; 35.28) 

6.98         

(5.35; 9.12) 

2.93       

(1.47; 5.45) 

2.96  

(1.60; 5.46) 

Major 

bleeding 

621 7461 45.06        

(31.11; 65.25) 

16.08     

(13.45; 19.24) 

2.80       

(1.79; 4.26) 

2.86    

(1.89; 4.33) 

Stroke 634 7641 20.52        

(11.92; 35.33) 

8.38         

(6.56; 10.70) 

2.45       

(1.24; 4.49) 

2.48     

(1.36; 4.53) 

Systemic 

embolism 

633 7644 3.16             

(0.79; 12.64) 

1.70          

(0.99; 2.93) 

1.86       

(0.20; 8.21) 

1.62      

(0.36; 7.22) 

All-cause 

death 

626 7575  92.36        

(71.24; 119.73) 

26.76  

(23.28; 30.76) 

3.45       

(2.52; 4.66) 

3.40    

 (2.52; 4.58) 
aIncidence rate per 1000 person years (95% confidence intervals); bunadjusted IRR and HR reported for NSAID users 

relative to no NSAID users with 95% confidence intervals; HR: hazard ratio; IRR: incidence risk ratio 
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The incidence rate for serious GI events was 6.98 (95% CI 5.35 to 9.12) per 1000 person 

years during person time without NSAID use and 20.49 (95% CI 11.90 to 35.28) per 1000 

person years during person time with NSAID use. This resulted in an incidence risk ratio of 

2.93 (95% CI 1.47 to 5.45) for serious GI events when exposed to NSAIDs during follow-up.  

The regression analysis identified a HR in the presence of the HPE of 2.96 (95% CI 1.60 to 

5.49) for serious GI events. Testing the proportional hazard function showed no indication 

that the assumption might have been violated. Testing for non-zero-slope using Schoenfeld 

residuals was significant (p-value 0.67) and plotting the hazards of exposed and unexposed 

patients on a logarithmic scale showed no significant violation of the proportional hazard 

function [Appendix H: Figure H.3]. 

 

The incidence rates of major bleeds were higher compared to those of GI bleeds, with 45.06 

(95% CI 31.11 to 65.25) and 16.08 (95% CI 13.45 to 19.24) per 1000 person years during 

NSAID use and no NSAID use, respectively. The HR comparing NSAID use and no NSAID use 

was slightly smaller for the risk of major bleeding compared with serious GI events. NSAID 

use was also associated with an increased risk of stroke. No significant association with 

NSAID use was found for the rarer event of systemic embolism. The tests for proportional 

hazards did not indicate any violations of the assumptions for the secondary outcomes 

[Appendix H]. 

 

4.4.3 Sensitivity analysis 

Results of the sensitivity analysis for the primary outcome and the secondary stroke 

outcome are presented in Table 4.6. With extending the assessment window for NSAID 

washout as part of the new user design of the study, the sample size decreased. The 

number of patients in the total cohort for serious GI outcomes was 11448 patients with an 

assessment window of one month and decreased to 5298 patients with the six months 

washout window. The confidence intervals became larger with increasing the washout 

window. Excluding patients with serious GI events prior the index date resulted in a larger 

HR and a larger confidence interval compared to the base case without this exclusion 

criterion. Excluding patients with missing records for BMI, ethnicity or smoking status 

reduced the cohort size by more than half and resulted in a smaller and non-significant HR. 

The same effects were observed for the stroke outcome. 
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Table 4.6 Results of the sensitivity analysis testing the impact of assumptions on the number of events, the follow-up time and HRs for serious GI events and stroke 

Sensitivity analysis (n=number of patients) 
Number of events Person time, years HR (95% CI)a,b 

NSAID use No NSAID use NSAID use No NSAID use base no NSAID use 

Serious GI events 
     

Base case (n=6354) 13 54 635 7734 2.96 (1.60; 5.46) 

Assumptions on data preparation 

     

60-day grace period (n=9824) 26 135 1509 18323 2.53 (1.66; 3.86) 

NSAID washout assessment window 6 months (n=5308) 13 46 496 6755 3.81 (2.04; 7.09) 

NSAID washout assessment window 1 months (n=11460) 24 91 1190 11632 2.40 (1.52; 3.78) 

Excluding patients with serious GI events (n=6180) 13 49 620 7645 3.37 (1.81; 6.25) 

Assumptions around confounding variables 

Stabilised IPTW instead of PSM (n=109894) 16 1067 626 103975 2.47 (1.40; 4.34) 

GPA not used as variable in PSM (n=6354) 13 50 635 7761 3.29 (1.77; 6.11) 

Cox regression with time varying confounder (n=6354) 13 54 635 7734 3.00 (1.62; 5.59)c 

Excluding patients with missing records (n=2610) 4 20 247 2854 2.05 (0.70; 6.00) 



  

157 
 

Sensitivity analysis (n=number of patients) 
Number of events Person time, years HR (95% CI)a,b 

NSAID use No NSAID use NSAID use No NSAID use base no NSAID use 

Stroke      

Base case (n=6342) 13 64 634 7641 2.48 (1.36; 4.53) 

Assumptions on data preparation          

60-day grace period (n=9796) 21 157 1509 18337 1.79 (1.13; 2.84) 

NSAID washout assessment window 6 months (n=5298) 11 49 495 6739 3.11 (1.61; 6.01) 

NSAID washout assessment window 1 months (n=11448) 18 106 1192 11708 1.67 (1.00; 2.76) 

Excluding patients with stroke (n=5450) 6 34 539 6378 2.33 (0.97; 5.59) 

Assumptions around confounding variables 

Stabilised IPTW instead of PSM (n=109894) 16 1570 627 103779 1.71 (0.95; 3.08) 

GPA not used as variable in PSM (n=6342) 13 60 634 7704 2.61 (1.42; 4.78) 

Cox regression with time varying confounder (n=6342) 13 64 634 7641 2.75 (1.50; 5.02)d 

Excluding patients with missing records (n=2610) 2 23 247 3002 1.20 (0.28; 5.10) 

aHazard ratio (HR) reported for NSAID users relative to no NSAID users; btests indicated no violation of the proportional hazard assumption. Tests for non-zero slope were not 

significant (p-value>0.05) and the log-log plots were parallel [Appendix H]. HRs unadjusted for all sensitivity analyses but the time-varying confounder model; cadjusted for age, 

antiplatelet, aspirin, antidepressant and cortisone use, gender, race, deprivation, uncontrolled blood pressure, alcohol dependence, bleeding events, peptic ulcer disease, GI 

varices, renal and liver disease, anaemia; dadjusted for heart failure, stroke/transient ischaemic attack, hypertension, coronary artery disease, diabetes, female gender; PSM: 

propensity score matching; GPA: gastroprotective agent; IPTW: inverse probability of treatment weighting; NSAID: non-steroidal anti-inflammatory drug 



  

158 
 

E-values 

The calculated e-values and the results on the impact of other variables on the risk of the 

outcome conditional on NSAID exposure are reported in Appendix H [Table H.1]. For serious 

GI events an e-value of 5.25 (lower bound: 2.58) was calculated. The observed risk ratio 

could be explained away by an unmeasured confounder that was associated with both the 

NSAID prescription and serious GI events by a risk ratio of 5.25-fold each, but weaker 

confounding could not do so (424). In comparison, the maximal impact a measured 

confounder had on the outcome conditional on NSAID exposure was 2.25, for the HR for 

peptic ulcer [Table H.1]. Hence, all measured confounders had a smaller association with 

NSAID use and serious GI events compared with the mean e-value and its lower bound. For 

stroke the observed risk ratio could be nullified by an unmeasured confounder that was 

associated with both the NSAID prescription and the stroke by a risk ratio of 4.23 (lower 

bound, 2.06). The stroke risk factors tested for their association with NSAID use and the 

outcome from the CHA2DS2-VASc generated smaller HRs than the mean e-value. The HRs 

for previous stroke or transient ischaemic attack (HR 3.81), hypertension (HR 2.77), 

peripheral artery disease (HR 2.24) and coronary heart disease (HR 2.46) had an association 

with the outcome conditional on NSAID use that was larger than the lower bound of the e-

value. 

 

4.5 Discussion 

4.5.1 Principal findings  

This is the first study presenting methods to identify the link between harm from ADEs 

associated with NSAID use in anticoagulated patients in the UK. Concomitant NSAID and 

OAC use was associated with an increased risk of serious GI events (HR 2.96, 95% CI 1.60 

to 5.46), major bleeding (HR 2.86, 95% CI 1.89 to 4.33), stroke (HR 2.48, 95% CI 1.36 to 4.53) 

in a population of anticoagulated patients with NSAIDs compared to anticoagulated 

patients without concomitant NSAID treatment. The association between NSAID use and 

an increase risk of systemic embolism was not significant (HR 1.62, 95% CI 0.36 to 7.22). 

The analysis showed that the methods were robust to various changes in assumptions 
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tested in the sensitivity analysis. The HPE of NSAID use in anticoagulated patients was 

found to have substantial impact on bleeding events and other ADEs.  

 

4.5.2 Comparison with published literature 

In the background section of this chapter, studies investigating the impact of NSAIDs on 

ADE risks were briefly introduced to show the novelty of the cohort study in this 

dissertation [4.2]. This section aims to compare not only the investigated cohorts as done 

in section 4.2 but also the methods and results of these studies.  

 

Three studies investigated the impact of NSAIDs on both the risk of serious GI events, and 

stroke/systemic embolism (307-309). The study by Dalgaard et al. (2020) and by Kent et al. 

(2018) were subgroup analyses of RCTs comparing DOACs with warfarin, and the study by 

Lamberts et al. (2014) used routinely collected data from a Danish registry. Dalgaard et al. 

(2020) analysed a subgroup of the ARISTOTLE trial that compared warfarin and apixaban 

use in AF, while Kent et al. (2018) looked at a subgroup of the RE-LY trial that investigated 

warfarin and two doses of dabigatran. Both were multinational trials with similar 

population groups and population size. Both studies used Cox proportional hazard models 

with time-varying NSAID exposure as was done in this chapter. In the ARISTOTLE and RE-LY 

trial, 2185 (13.2%) and 2279 (12.6%) patients on OAC treatment were NSAID users, 

respectively. While the RE-LY trial comparing dabigatran and warfarin users identified a 

significant increase in serious GI events (HR 1.81, 95% CI 1.35 to 2.43) in the subgroup 

analysis of NSAID users during the trial and non NSAID users (308), the ARISTOTLE trial 

comparing apixaban and warfarin did not identify a significant increase in the risk of serious 

GI events (HR 1.08, 95% CI 0.64 to 1.82) (309). Stroke events in the RE-LY trial were also 

significantly increased with NSAID use (HR 1.55, 95% CI 1.11 to 2.16) as was systemic 

embolism (HR 2.43, 95% CI 1.08 to 5.46). Dalgaard et al. (2020) investigated the combined 

risk increase associated with NSAIDs of stroke/systemic embolism but did not report 

significant results.  

 

The results of our study with regards to serious GI event and stroke risks are in line with 

the estimates from the RE-LY trial with the difference that the analysis conducted in this 
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study included all patients with an OAC and applied less exclusion criteria. The ARISTOTLE 

trial subgroup analysis did not identify a significant increase in bleeding event risk or 

stroke/systemic embolism risk and also the point estimates showed only a small increase 

in the hazard rate for patients not reporting a concomitant prescription of an NSAID. The 

analysis by Dalgaard et al. (2020) also used a new user design and excluded NSAID users at 

baseline as was done in this chapter. Person years of NSAID users with actual NSAID 

exposure was 1898 person years. Hence, almost three times more than in this study even 

though the number of patients with at least one NSAID during the trial was smaller. 

However, no information was available from trial related publications (309, 326) or from 

the trial registration website ‘clinicaltrials.gov’ on how the concomitant medication use was 

assessed during the trial. The trial protocol only planned assessment of co-medication at 

baseline not during the trial (426). An unprecise definition of exposure to NSAIDs could 

have diluted the effect of the NSAID in ARISTOTLE. The exposure time with NSAIDs was 

much higher than in this study. While the NSAID prescribing rate could have been much 

higher in the ARISTOTLE trial, compared with the CPRD cohort, it is more likely that the 

exposure time in Dalgaard et al. (2020) overestimated the NSAID exposure. 

 

Kent et al. (2018) was the only study reporting a significant association of NSAIDs and the 

increased risk of systemic embolism. Despite the slightly larger cohort of NSAID users in 

this chapter compared with Kent et al. (2018), the analysis did not yield significant results. 

There was no information reported on person years with actual NSAID exposure among the 

patients with at least one NSAID during follow-up in Kent et al. (2018). This could have been 

larger despite the smaller cohort size. The authors reported that NSAID use was assessed 

at regular patient meetings. ‘Follow-up visits occurred 14 days after randomization, at 1 

and 3 months, every 3 months thereafter in the first year, and then every 4 months until 

the study ended’ (308). There was no evidence, however, on what exactly was asked at 

these meetings or what questionnaires were filled in. The study also did not exclude 

patients with baseline NSAID use, which could have resulted in selection bias. Differences 

among the study results could be a result of the vague definitions of how NSAID exposure 

was identified in the subgroup analyses of the trials. 
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The third study was a retrospective cohort study by Lamberts et al. (2014) that used the 

Danish registry dataset to identify the effect of NSAID use on serious GI events, major 

bleeding and stroke/systemic embolism in an AF population treated with warfarin or 

phenprocoumon (307). NSAID exposure was identified as prescriptions recorded in the 

dataset for NSAIDS and coxibes with 4897 patient years with NSAID use. Person time with 

NSAID exposure was much lower in this chapter with 635 person years. Lamberts et al. 

(2014) reported an adjusted HR of 3.54 (95% CI 3.29 to 3.82) for serious GI events. This 

estimate is slightly higher compared with the HR of 2.96 (95% CI 1.60 to 5.46) identified in 

this study. For major bleedings a HR of 2.96 (95% CI 2.64 to 3.31) was identified in Lamberts 

et al. (2014) (307).  

 

The authors also used NSAID use as a time-varying exposure in a proportional hazard model 

but excluded patients with NSAID use only 30 days before baseline. When patients with 

NSAID use only one month before the index date, instead of the three months in the base 

case analysis in this chapter, were excluded from the analysis, the HR was smaller (HR 2.4, 

95% CI 1.52 to 3.78). In Lamberts et al. (2014), the covariates included covered a whole 

range of variables that we identified as mediators in the DAG, such as hypertension, chronic 

renal failure, liver failure, previous stroke, history of alcohol misuse, previous bleeding 

event, heart failure, diabetes, previous embolism or vascular disease. This could have 

resulted in overfitting of the regression model, which could contribute to the different 

results. The authors did not adjust for gastroprotective agents. Gastroprotective agents are 

a collider because both NSAID use and serious GI events are a cause for gastroprotective 

agent prescriptions. Adjusting for colliders can distort the observed relationship because it 

opens the collider path that is otherwise blocked. Not adjusting for the collider is therefore 

the correct thing to do, but this can be problematic if the cohorts are systematically 

different in the proportion of patients with this variable at baseline. The baseline 

characteristics in Lamberts et al. (2014) cohorts with and without NSAIDs differed by more 

than 5% in the proportion of patients with gastroprotective agents. Standardised 

differences were not reported. This can result in selection bias. Patients with NSAIDs are 

more likely to be prescribed the gastroprotective agents that reduce the risk of serious GI 

events. In the matched cohort in this chapter, NSAID users and never users only differed by 

2%, reducing the selection bias caused by differences in baseline characteristics.  
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The other outcome assessed in Lamberts et al. (2014) was the impact of NSAIDs on 

stroke/systemic embolism events. NSAID use was significantly associated with a risk 

increase (HR 1.67, 95% CI 1.41 to 1.98). The risk increase of systemic embolism associated 

with NSAIDs was much smaller (HR 1.62, 95% CI 0.36 to 7.22) than that of stroke in the 

study in this chapter (HR 2.48, 95% CI 1.36 to 4.53). A combined outcome would potentially 

result in similar results.  

 

Overall, this study adds to the literature on NSAID use in OAC populations and supports the 

assumptions that NSAIDs increase the risk of not only serious GI events but also of stroke 

in anticoagulated patients. The impact of NSAIDs on systemic embolism was often only 

estimated as a combined outcome with stroke and did not yield significant results similar 

to the cohort study reported in this chapter. This study was the first UK study investigating 

the increased risk of NSAID use on ADEs in anticoagulated patients and it can be argued 

that the study design is more robust than that of studies in the existing literature. The 

exposure periods are well defined and based on prescribing records and not on patient self-

report as in the trial subgroup analyses by Kent et al. (2018) and Dalgaard et al. (2020). The 

detailed discussions with clinicians around confounders and colliders and the resulting 

propensity score matched cohort enabled an analysis of two cohorts that did not differ 

systematically in the observed baseline characteristics. The study design in this study was 

therefore considered stronger than the regression adjustment for mediators and 

confounders in Lamberts et al. (2014).  

 

4.5.3 Implications of the study design 

A key advantage of this study was the use of a clear definition of the HPE type. In Chapter 

Two [2.1], the challenges of identifying HPEs without clear definitions were discussed. In 

this study, objective criteria could be used that did not require any subjective assessment 

what situations qualify as an HPE. The complicated and time-consuming process of 

identifying whether the ADE was actually caused by the HPE (causality assessment) as well 

as assessing whether the ADE would not have occurred without the NSAID prescription 

(preventability assessment) was not feasible as part of this programme of work or within 

the dataset. Challenges of these methods were described in detail in Chapter Two [2.4]. 
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The data, available from the datasets, would potentially not be sufficient to test causality 

or preventability because individual medical record charts from the hospital were not 

available for review. It would also not be feasible to do these assessments for the number 

of events identified in the datasets. It was assumed that by limiting the harm outcomes to 

those potentially associated with the HPE, the risk difference identified between patients 

with and without the HPE would be attributable to the presence of the HPE. Every 

combination of OAC and NSAIDs was considered an HPE. There might still be patients, 

where the combination of an OAC with the NSAID was indicated and it cannot be identified 

from the data if the hazardous prescription was justified or was prescribed by error, but 

the association with the bleeding outcomes is the same independent of the intention of 

the prescriber. The associated harm from the HPE is the same, but it might not always be 

considered preventable. 

 

4.5.4 Implications of the use of routinely collected data 

The use of routinely collected data, such as the electronic health records from the CPRD 

and HES, yielded a large sample size that enabled the analysis not just of HPEs as a 

composite but to estimate the specific risk of a single type of HPE. The dataset offered 

results from a ‘real-world’ setting. Compared to clinical trial settings, where regular follow-

up visits or reminders for GPs and patients could have resulted in HPEs being resolved 

earlier or patients being reminded to ask for repeat prescriptions, where they might not 

have done so in a real-world setting. Results from observational data are therefore 

considered to have a higher external validity (427). However, this increased external 

validity comes at the cost of an often decreased internal validity due to confounding. In 

observational studies, one cannot exclude that there was unmeasured or residual 

confounding.  

 

Unmeasured confounding in routinely collected data 

Unmeasured confounding is a common challenge in routinely collected data that were not 

collected for research purposes (428). While unmeasured confounding cannot be ruled out 

completely, this study took different measures to get an understanding of potential 

unmeasured confounding. First, clinicians were consulted discuss if they are aware of any 
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unmeasured confounders not recorded in the dataset. Second, e-values were calculated 

and compared to known risk factors and confounders. 

 

In this study, close collaboration with GPs aimed to generate a comprehensive 

understanding of potential confounders and relations of variables with the exposure and 

outcome. The discussions did not suggest any unmeasured factors that affected an 

outcome (serious GI events, major bleeding, stroke, systemic embolism) and the NSAID 

exposure simultaneously. Even if this suggests a low risk of unmeasured confounding, there 

might be other biases present resulting from unmeasured variables. While the clinicians 

were not aware of any unmeasured confounders, there were a few risk factors for the 

outcomes not recorded in the datasets. For serious GI events diet was identified as an 

indirect risk factor and is not recorded in the CPRD [Appendix G]. For stroke or systemic 

embolism, multiple risk factors exist that were not recorded in the CPRD dataset, e.g., 

psychological stress, physical activity and diet (429). The clinicians consulted did not 

consider these risk factors as confounders because they were not thought to be associated 

with NSAID use, but they could still introduce other biases. It could, for example, not be 

checked if these unmeasured variables were balanced in the base line cohorts that could 

have introduced selection bias. 

 

The other approach to understand the risk of unmeasured confounding in this study was 

the use of e-values. E-values describe the association of an unmeasured confounder with 

the outcome and the exposure required to explain away the observed effect (424). The e-

value is a useful tool to understand the risk of unmeasured confounding without any 

assumptions on the nature of the unmeasured confounder, but they can only be 

interpreted in the context of the study. It has been criticised that e-values presented on 

their own, can be interpreted in different ways (425), and are only useful when compared 

with the impact of other confounders (369, 423).  

For serious GI events, the e-value indicated that an unmeasured confounder would be 

required to be associated with both the serious GI events and NSAID exposure by a risk 

ratio of 5.25 (lower bound 2.58). The measured risk factors recorded in the CPRD and 

conditional on the exposure had a maximum association with the outcome of a HR of 2.25 

for the risk factors of history of peptic ulcer [Appendix H: Table H.1]. The second highest 
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association was found with prior bleedings. The association of the strongest predictor 

identified within the dataset was much lower than the identified mean e-value and lower 

than the lower bound of that e-value. This is in line with other published studies 

investigating the risk factors of bleeding events with anticoagulants. A Swedish study found 

the strongest risk factor for serious bleedings in anticoagulated patients to be previous 

bleedings with and adjusted HR of 1.85 (95% CI 1.74 to 1.97) (407). All other risk factors 

had a smaller impact. A prospective registry dataset for patients receiving rivaroxaban 

identified heavy alcohol use of more than 80g alcohol per day compared with no alcohol 

consumptions as the risk factors with the strongest association with major bleeding 

(HR 2.37, 95% CI 1.24 to 4.53) (406). Overall, risk factors for serious GI events are in general 

less associated with serious GI events than the estimate of the e-value or its lower bound. 

Unmeasured confounders are less likely to have a stronger association than the key known 

risk factors in our study and in the literature. The risk of unmeasured confounding for 

serious GI events was therefore considered low. 

 

For stroke, the mean e-value was 4.23 (lower bound 2.06). The risk factor with the strongest 

association with stroke conditional on NSAID use was prior stroke or transient ischaemic 

attack with a HR of 3.81 followed by hypertension (HR 2.77) and coronary heart disease 

(HR 2.46) [Appendix H: Table H.1]. The association of the strongest predictor identified 

within the dataset was lower than the identified mean e-value but not lower than the lower 

bound of that e-value. In line with these findings, a case-control study in 22 countries by 

O’Donnell et al. (2010) found the first ever stroke to be associated with hypertension by an 

OR of 2.64, followed by coronary heart disease with an OR of 2.38 (429). However, these 

key risk factors were all measured in the CPRD and were accounted for in this chapter. 

More interesting were risk factors that were not measured in the CPRD. The association of 

these in this chapter unmeasured risk factors were all comparably lower in the case control 

study by O’Donnell et al. (2010). The diet risk score (OR 1.35, for highest vs lowest tertile), 

regular physical activity (OR 0.69), psychosocial stress (OR 1.30), and ratio of 

apolipoproteins B to A1 (OR 1.89 for highest vs lowest tertile) were not associated with the 

outcome by a risk ratio greater than the lower bound of the e-value. Overall, risk factors 

for stroke that are not measured in the dataset in this chapter had a weaker association 

with stroke than the e-value and its lower bound. Unmeasured confounders are less likely 
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to have a stronger association conditional on NSAID treatment than the risk ratios by 

O’Donnell et al. (2010) predicted. The risk of unmeasured confounding for stroke was 

therefore considered low. 

 

Residual confounding in routinely collected data 

Residual confounding is any distortion of the results present after controlling for 

confounders by design or analysis. This can be a result of the aforementioned unmeasured 

confounders or of measurement error. In routinely collected data, measurement errors, 

such as misclassified diagnoses or misclassified ICD-codes used to screen for outcomes, 

cannot be ruled out. A UK study found that the quality, completeness or correctness of 

recordings of serious GI events or systemic embolism in the HES dataset was better than in 

primary care (430). Primary care data alone, for example, were found to only record about 

20% of the bleeding events in AF patients recorded in secondary care (431). In the US, 

routinely collected health records based on ICD-10 codes were found to have a high 

predictive value for bleeding events (432). For stroke the positive predictive value of stroke 

diagnosis in linked CPRD/HES data was high with 79% and a negative predictive value of 

100% (433). To minimise the uncertainty around the outcome events, the code lists used 

to identify the events were based on extensive literature searches by the author of this 

dissertation and a second researcher. The code lists went through a rigorous consensus 

process with GPs and pharmacists to identify a comprehensive set of codes for the relevant 

outcomes.  

 

Misspecification of treatment episodes was also possible as a result of the process to 

generate prescription stop dates that are not recorded in the CPRD. In the process of 

generating consecutive treatment episodes, various assumptions had to be made that 

potentially affected the outcome. If a treatment episode with NSAIDs was assumed to last 

longer than it actually did, an outcome event occurring in this misspecified period could be 

counted as an event in the wrong exposure group. To test robustness of the assumptions 

made to identify treatment episodes, the impact of different grace periods in sensitivity 

analysis was analysed. The larger grace period of 60 days resulted in lower HRs for serious 

GI events and stroke events as expected due to a less precise NSAID exposure definition. 
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With larger grace periods, the often short periods of continuous NSAID exposure are 

overestimated, diluting the increased risk estimate. 

 

Other misspecifications can be a result of unmeasured variables. NSAIDs, for instance, are 

a drug often sold over the counter (OTC) in pharmacies. These OTC prescriptions were not 

recorded in the CPRD. If patients, not exposed to NSAIDs according to the CPRD records, 

acquired OTC NSAIDs, the measured effect of NSAID exposure on harm outcomes would 

have been underestimated. However, this analysis was conducted to estimate the harm 

between NSAID users and non-users to predict the consequences of SMASH in reducing 

NSAID prescribing in patients receiving OACs in primary care. SMASH is implemented in 

primary care practices and has no effect on OTC NSAID use. Patients in practices with 

SMASH can therefore still buy OTC NSAIDs, as it is possible in the cohort study in this 

chapter. Therefore, the increased likelihood of ADEs with NSAID use observed in this 

chapter is representative of the patients targeted by SMASH with regards to potential OTC 

NSAID use. 

 

Adherence to treatment is also not reported in the dataset. From the CPRD data alone, it 

was not known if the patients collected the prescribed drug at the pharmacy and took the 

drugs as prescribed. The NSAID exposure time measured in the cohort study in this chapter, 

might not result in the patient actually taking the medicine. The assumption was made that 

patients who received a prescription of a drug, picked it up at the pharmacy and were 

adherent to the GP treatment. If patients considered exposed in this study did not actually 

take the prescribed drug, this could have had a diluting effect on the analysis. The results 

report a significant association of NSAID use with the ADEs despite this diluting effect of 

potential non-adherence. 

 

Another challenge that can introduce residual bias, was missingness. While missingness for 

smoking status, ethnicity and blood pressure measurements were low, about half of 

patients had no BMI recorded in the 12 months before the index date. It is unclear how 

many of these missing patients potentially had a high BMI that was reported as a risk factor 

for serious GI events. If patients exposed to the NSAID were less likely to have a missing 

BMI record than unexposed patients, this could have reduced the risk increase associated 
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with the NSAID exposure. However, high BMI was only an indirect GI risk factor and not a 

confounder and it was assumed the missingness was tolerable. In the sensitivity analysis, 

NSAID use was still associated with an increased risk of serious GI events and stroke, when 

patients with missing BMI, smoking or ethnicity records were excluded. The HRs estimated 

for this sensitivity analysis are smaller than those for the respective base case analysis. 

Other authors speculated that patients with missing BMI, smoking and ethnicity records 

are those with only minimal contact with primary care (434). Patients with missing records 

are therefore likely to be systematically different from those without missing records and 

cannot be considered missing at random. This is one of the key assumptions required to do 

multiple imputation (434). Multiple imputation techniques were not used in this study 

because the data were not considered missing at random. The potential to distort the 

observed effect was considered low because the variables were not considered 

confounders by the GPs. 

 

Another variable with inconsistent reporting was INR. Time in therapeutic range from INR 

measurements is rarely available and not recorded systematically in CPRD. In the 

discussions with GPs, uncontrolled INR was considered a potential confounder. While 

records exist for warfarin users, INRs are not measured routinely for DOAC users. This has 

therapeutic reasons but makes the systematic assessment as a covariate difficult. It is also 

known that not all practices receive INR records from anticoagulation clinics, which adds to 

the inconsistency of the records (56). According to the GPs involved in this study, they 

would be hesitant to prescribe a NSAID to a patient with uncontrolled INR. This could have 

led to a higher proportion of patients with controlled INRs in the exposed group, which 

could have had a diluting effect on the impact of NSAIDs. 

 

4.5.5 Implications of the analysis 

The challenges of electronic health records that derive from unmeasured and residual 

confounding were explored in this discussion. By using a robust study design, this study 

aimed to minimize the effects of such confounding. PSM aimed to resolve imbalance 

between observable baseline characteristics of NSAID users and non NSAID users and the 

new user design aimed to mitigate selection bias, such as healthy user bias.  
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The propensity score 

There are several advantages to the propensity score matched analysis chosen for this 

study. In PSM, the analysis is separate from the study design, similar to a clinical trial, and 

only one model is needed to estimate the propensity score. Another advantage of 

propensity score method is their transparency. To test if the propensity score balances the 

distribution of base line characteristics in the propensity score matched samples, various 

diagnostic measures are available (404). Testing for balance of covariates in standard 

regression methods is a ‘black box’ (435) and specification of adequacy of the applied 

model is easier in propensity scores analysis compared to regression adjustment (260). 

Matching on the propensity score was found to be an effective propensity score method 

to balance out the difference between treatment groups compared with IPTW or 

stratification on the propensity score (401). This was tested in an empirical case study and 

Monte Carlo simulations were used to identify the methods eliminating a greater degree 

of the systematic difference between exposed and unexposed individuals using within-

quintile standardised differences (401). 

 

The new user design 

The study only included new NSAID users to increase internal validity of the study. New 

user designs are used to reduce bias due to healthy user effect or time-dependent event 

risks and to replicate a trial like design more appropriately. This had also the advantage 

that the baseline characteristics were all pre-treatment variables. For estimating the 

propensity score, it is important not to include any post-treatment covariates, as it is 

supposed to represent the probability of treatment assignment. In a prevalent user design, 

propensity score methods were considered less effective in adjusting for confounding (436) 

because the propensity score does not estimate the probability of treatment but a mix of 

the probability of continuing treatment and initiating treatment (349). This could be a result 

of including post-treatment covariates that were potential mediators. Severe renal disease 

pre-treatment, for example, is included in the propensity score as a confounder because it 

effects the bleeding risk and NSAID prescribing. Including the pre-treatment variable in the 

propensity score model adjusted for the decreased likelihood of GPs to prescribe an NSAID 

to this patient group because of the already elevated bleeding risk. After treatment 
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assignment, severe renal disease is not a confounder anymore but a mediator. NSAIDs can 

have severe renal side effects and renal insufficiency is associated with an increased 

bleeding risk. Conditioning on these outcome mediators, such as severe renal disease, can 

result in a reduction of the total causal effect [4.3.7]. 

 

The increased internal validity through a reduction of prevalent user bias came at the cost 

of a reduced sample size. The three-months washout period excluded more than half (5074 

out of 8251) of patients with at least one NSAID prescription during follow-up. The washout 

period did potentially not cover all prevalent NSAID users. Extending the washout period 

would have led to the loss of even more patients. The washout period was based on the 

maximum observed prescription length (99% percentile) plus a grace period of 30 days. The 

few prescriptions potentially overlapping with the index date were considered negligible. 

Longer washout periods were considered to include more previous NSAID users and only a 

small number of additional prevalent users. The new user design did not include all 

previous NSAID users, but it aimed to remove those with continuous or prevalent use of 

NSAIDs as identified as sufficient by Ray et al. (2003) (348). Any residual effect NSAID use 

had on pre-treatment characteristics is supposed to be captured by the baseline 

characteristics that were balanced between treatment groups and therefor considered 

negligible. As a result of the reduced sample size, precision of the results was reduced in 

sensitivity analysis looking at changes in washout windows for NSAIDs. The confidence 

intervals got larger with extending the washout period. The three-months washout period 

was considered to be appropriate to remove the most prevalent user bias and still yield 

significant results. 

 

Another trade-off existed between the increased internal validity and a reduced 

generalisability. The new user design gives a less biased estimate, but results are not 

generalisable to all OAC users anymore. The association measured compared NSAID users 

with patients with similar characteristics to NSAID users, not with all OAC users in the 

general population. If the aim of this study would have been to identify the difference in 

OAC users from the general UK population, this would be a clear limitation. However, the 

aim of this study was to utilise these estimates in the overall economic evaluation of 

SMASH. Patients identified in SMASH were taken off the NSAID if the intervention was 
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successful and were then grouped as patients without the HPE. Hence, the characteristics 

of the patients with and without the NSAID should be similar as they were in this chapter.  

 

Statistical limitations 

This study was not able to estimate the cumulative incidence of serious GI events in the 

exposure groups. The presence of competing risk events and time-varying exposure as 

described in section 4.3.8 did not allow inference from the cause-specific hazard function 

on the cumulative incidence function (414, 418, 419).  

 

4.5.6 Implications for thesis 

In order to estimate the economic impact of HPEs, their effect on harm needs to be 

quantified. Subsequently, consequences in form of costs and quality of life associated with 

harm (ADEs) can be assessed. This study helped to understand the ADEs affected by NSAID 

use in anticoagulated patients. Serious GI events and stroke were significantly associated 

with NSAID use in anticoagulated patients. Assessment of the economic impact of this 

specific HPE should entail the consequences associated with these two ADEs. Incidence of 

systemic embolism was very low with fewer than two events in 1000 person years in non-

NSAID users [Table 4.5]. The non-significant HR (95% CI) of the increased risk could be due 

to the fact that the analysis was not powered to find a difference. However, the low 

incidence rate suggests that this ADE has only a small effect on the economic impact of this 

HPE type compared with the effect of the more frequent serious GI events and stroke.  

 

This study focused on events recorded in secondary care that led to hospital admission. 

Not all ADEs associated with NSAIDs lead to hospitalisation. Serious GI events and strokes 

are predominantly managed in secondary care, but other ADEs common to NSAIDs, such 

as dyspepsia, would usually be managed in primary care (306). The subsequent chapters 

need to assess how NSAIDs impact ADEs that occur outside of the hospital as well.  

 

Going forward, different aspects of this study can be used to assess the economic impact 

of NSAID use in anticoagulated patients. The HRs reported here are used to project long-

term consequences of the HPE. This study also provides a detailed description of 
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characteristics of patients at risk of this HPE type. Quality of life, for example, is dependent 

on age (437), and information on the mean age of an anticoagulated patient in England is 

necessary to project impact of ADEs on quality of life.  

 

4.5.7 Considerations for future work 

As described in Section 4.5.6, the subsequent chapters extrapolate the long term 

consequences of exposure to the hazardous prescription by estimating the cost and quality 

of life associated with the ADEs. Future post-doctoral research will extent this analysis to 

estimate the total healthcare cost and the differences of exposed and unexposed patients 

from the dataset in this study as outlined in the ISAC protocol (No 18_235). The CPRD 

provides information on resource use in primary care on GP consultations, diagnostic tests 

and prescriptions. For secondary care resource use, information about outpatient visits, 

hospital day care, admissions and A&E attendances can be identified from different HES 

datasets. Unit costs will be taken from the available sources for UK health care. Primary 

care unit cost will be obtained from the PSSRU publication (438) and secondary care unit 

cost from the national reference cost schedule (439). Healthcare resource group (HRG) will 

be linked to each HES record using the latest HRG reference Costs Grouper software.  

 

Future research could also consider exploring other potential ADEs not included in this 

chapter. While non-significant, there is an indication that the hazardous prescription also 

affects the risk of other cardiovascular events such as MI (308) and heart failure (309). The 

increased risk assessed could be due to chance or findings are non-significant because the 

study was not powered to identify a difference. As described before both studies do not 

transparently report how NSAID exposure is identified and rely on patient recall. As a result 

of mis-specification of exposure periods, the effect could have been diluted which makes 

finding a significant difference more difficult. The availability of more precise data on NSAID 

prescriptions from the CPRD records might reduce these diluting effects. Hence, the 

possibility to find a significant difference might be higher.
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Chapter 5 - Economic impact of NSAID use in anticoagulated patients 

 

Chapter Five reports on a study estimating the economic impact of NSAID use in 

anticoagulated patients using a state-transition model. The methods describe how the 

state-transition model was conceptualised, and how it was populated. The results illustrate 

the impact of hazardous prescribing of NSAIDs on incremental costs and QALYs. In the 

discussion, the relevance of this projection of harm and healthcare costs associated with 

this type of HPE are described. 

 

5.1 Introduction 

The health burden of ADEs that were potentially caused by HPEs in the UK was estimated 

to be almost £100 million per year (31). In Chapter Four, the increased risk of ADEs 

associated with the presence of a specific HPE type were quantified. This chapter takes this 

analysis further to project costs and health outcomes associated with NSAID use in 

anticoagulated patients.  

 

Evidence on the estimated economic impact of HPEs varies between countries, care 

settings and time of the study (30, 146). No UK estimates on the economic burden of HPEs 

in general were identified in two systematic reviews of cost of HPEs (146, 153). Because 

evidence on cost (in 2015 Euros) of HPEs varies substantially by HPE type from €68 per 

hazardous inhaler prescription to €6.9 million for litigation claims associated with 

anaesthetic error (146), it was important to estimate the economic impact of each HPE type 

separately. For the economic impact of NSAID use in anticoagulated patients, no evidence 

was found in the literature. In order to generate precise and specific estimates, the 

economic impact of NSAID use in anticoagulated patients is assessed in this chapter. QALYs 

are used as a patient outcome measure to estimate quality and quantity of life as 

recommended by NICE (3). Instead of attaching a fixed cost and QALY estimate to the ADEs 

identified in the cohort study in Chapter Four, this study used a modelling approach. 

Modelling approaches, often used in economic evaluations, represent a simplified version 

of reality and allow generation of estimates of healthcare outcomes and costs not captured 
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in the primary analysis (440). Models can present a realistic pathway or sequence of events 

that patients with and without HPE would experience. The modelling approach also allows 

inclusion of primary and secondary care events as well as associated costs. Solely costing 

secondary care events was criticised in earlier studies by reviews on the economic impact 

of HPEs because it does not account for long-term consequences on costs and quality of 

life (146, 441).  

 

The overall aim of this chapter was to estimate the economic impact of NSAID use in 

anticoagulated patients. This was achieved through the following: (i) identifying the type 

and probability of ADEs associated with NSAID use, (ii) constructing a state-transition 

model representing the treatment pathways of anticoagulated patients with and without 

a prescription of an NSAID, (iii) populating the model with UK relevant transition 

probabilities, utilities and resource use data, and (iv) generating an estimate of the impact 

of NSAID use on patient outcomes (measured as QALYs) and healthcare costs to NHS/PSS. 

 

5.2 Methods 

The methods describe the development, input parameters and analysis of the decision-

analytic model. The Assessment of the Validation Status of Health-Economic decision 

models (AdViSHE) criteria were followed and are reported in Appendix L (442). 

 

5.2.1 Developing the model 

The economic impact of hazardous prescribing of NSAIDs on anticoagulated patients was 

estimated via construction of a cohort-level state-transition model (Semi-Markov model). 

This approach was selected over a decision tree approach because state-transition models 

are more flexible and useful when a decision problem involves a risk that is not constant 

over time, such as mortality. More advanced approaches, for instance, using patient-level 

discrete event simulation, were not used, as it was expected that the higher data needs of 

these approaches would not be met. Health states included were specific to the HPE type 

under investigation representing key ADEs associated with NSAID use in anticoagulated 

patients and the probability of these events in the presence and absence of the NSAID.  
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Literature searches 

The literature was searched for existing model structures and ADEs associated with the HPE 

type, transition probabilities, health related quality of life and resource use data. Literature 

searches were conducted through the electronic databases Medline, Embase and the HTA 

database using HPE and treatment pathway-specific search terms. Search terms for the 

literature searches conducted are reported in Appendix K [Table K.1]. Search terms 

describing OAC and NSAID users were based on all medications relevant for these drug 

groups. The search terms for NSAIDs included general terms for NSAIDs and specific terms 

for the most common seven NSAIDs according to the 2009 NHS NSAID safety audit (443) 

and mesh terms/subheadings for these if available in Medline or Embase. Search terms for 

OACs were based on the drug substances available in the UK and the main diagnoses of 

OACs. To identify input parameters associated with the chosen health states, the literature 

was searched for serious GI events, GI discomfort, symptomatic ulcer and stroke. 

Justifications for the choice of health states are provided later. Search terms for adverse GI 

events were developed using published search criteria of functional dyspepsia from Agah 

et al. (2020) (444) and the diagnoses defining GI discomfort in the MUCOSA trial that were 

diarrhoea, abdominal pain, dyspepsia, nausea, vomiting and flatulence. Because, for 

symptomatic ulcer, various subheadings were available in Medline and Embase, the search 

was mainly based on those with the addition of keywords on typical locations in the upper 

GI tract with ulcerations, such as gastric ulcer. To identify studies looking at mortality, 

search terms were used from a recent review by Tian et al. (2020) (445). Search terms to 

identify existing model structures, resource use and health related quality of life were used 

in line with search terms used to inform state-transition models developed for other HPE 

types in PROTECT. 

 

References in English or German and limited to humans were included. After excluding 

duplicate records, references that remained for further evaluation were selected on title 

and abstract. Studies were included if they reported relevant economic models or 

examined issues on the incidence and/or prevalence, treatment health related quality of 

life or resource use of the consequences of NSAID use in anticoagulated patients. 

Subsequently, full texts of the retrieved references of the previous section were evaluated. 

Finally, reference lists of the retrieved papers were reviewed. The results of the literature 
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searches are reported in Appendix K [Table K.2] with the number of studies available for 

abstract screening and a list of the relevant studies identified. If multiple studies provided 

potentially relevant records used to inform model structure or identify potential model 

parameters, studies were considered preferable if they were UK-based/relevant, large and 

recent (i.e., published since 2010).  

 

Model structures reported in the literature 

The literature search identified no previous state-transition models comparing patients 

with concomitant OAC and NSAID treatment with patients treated with OACs only. The 

search terms are presented in Appendix K [Table K.1] for the search ‘state-transition 

models comparing NSAID use in anticoagulated patients’. An additional literature review 

was performed to identify state-transition models that incorporated health states following 

treatment with NSAIDs for patients with any health condition. The results of this review 

informed the health states for the state-transition model in this thesis by identifying 

relevant outcomes of patients who were either exposed or not exposed to NSAIDs 

[Appendix K: Table K.2].  

 

There were 70 published state-transition models that compared either (i) different NSAIDs 

or (ii) an NSAID strategy to a non-NSAID strategy [Appendix K: Table K.2]. Among the 

identified models on NSAIDs, nine examined the impact of gastroprotection on GI events 

in people prescribed NSAIDs (227, 446-453). Others investigated different treatment 

strategies including NSAIDs for lower back pain, rheumatoid or osteo-arthritis (454-459). 

Only two models were identified that assessed the economic impact of a type of HPE (149, 

151). These models had the advantage that they described in detail, how and when actions 

to resolve the HPE type were taken. Moriarty et al. (2019) compared patients over 65 years 

of age with the hazardous prescription of an NSAID and without the NSAID. The original 

economic evaluation of the PINCER trial by Elliott et al. (2014) compared patients with a 

history of peptic ulcer with a concomitant prescription of an NSAID or without. The latter 

was used as a starting point for developing the new model (227). This model was chosen 

because forgoing literature searches, methods and results were reported more 

transparently and, in more detail, than in Moriarty et al. (2019). The other NSAID models 
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identified were searched for any developments in more recent models in this area and 

more recent data to inform model parameters so that the resulting model reflects current 

evidence.  

 

While NSAIDs have always been associated with GI adverse events, their cardiovascular risk 

was under-recognized for a long time (337). The following sections describe how and if GI 

adverse events and cardiovascular ADEs were included in published state-transition 

models: first, in models around the exposure to NSAIDs and, second, models in the 

denominator population of anticoagulated patients. 

 

GI adverse events reported in NSAID models 

The de novo state-transition model in this thesis aims to represent key GI adverse events 

associated with NSAID use as health states. The published state-transition models 

comparing NSAID treatment strategies, referred to as NSAID models, had in common that 

they included ‘no GI complications’, ‘GI discomfort’, ‘serious GI event’ and ‘dead’ as health 

states. In addition to these health states, symptomatic ulcer was included in the de novo 

state-transition model in this thesis. While most health states were consistent between 

models, the models differed with regards to how and if peptic ulcer was incorporated. The 

model structures based on de Groots’ state-transition model (151, 452, 453) incorporated 

peptic ulcers that caused bleeding or perforation within a broader serious GI event health 

state. Most other models included a separate mutually exclusive health state for 

symptomatic ulcer (an ulcer diagnosed after the patient reported GI symptoms). 

Asymptomatic ulcers refer to ulcers identified in endoscopies that did not cause any 

symptoms (460). The published models based on the state-transition model developed by 

Latimer et al. (2009) for clinical guidelines on osteo-arthritis from NICE (450, 454, 456-458, 

461) and the model used in the PINCER evaluation included symptomatic ulcer as a 

separate health state. A single centre study in South Korea reported NSAID use to be an 

independent risk factor for symptomatic ulcers, but the study did not find asymptomatic 

ulcers to be a risk factor (460). Asymptomatic ulcers are because of their asymptomatic 

nature, not assumed to impact health related quality of life. Asymptomatic ulcers are not 

reported to GPs by the patient and are not likely to result in hospital admissions if no 
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symptoms are present. Symptomatic ulcers, on the other hand, are thought to impact 

health related quality of life and are associated with resource use for managing the 

condition. Consequently, only symptomatic ulcers were relevant in the de novo state-

transition model in this thesis. 

 

GI adverse events in decision-analytic models evaluating OACs 

To get an understanding of how serious GI events were modelled, not only in NSAID models 

but also in the denominator population, a literature search on models comparing different 

OAC treatments in AF was conducted [Appendix K]. The main published models identified 

that were frequently used by other researchers were (i) a state-transition model by 

Sorensen et al. (2009) (462) used in a health technology appraisal for NICE (TA249) (463) 

and other studies (351, 464-471), (ii) the model by Dorian et al. (2014) used in TA275 (472) 

and multiple other studies (473-480), and (iii) a structure by Gage et al. (1995) (481) that 

was adapted by Lee et al. (2012) (482-484). Five additional model structures were identified 

that used a different model structure from the three main published models (485-488).  

 

The review of the published models focused on how serious GI events were included in the 

model structure. Of the GI adverse events described in the NSAID models, only serious GI 

events, such as GI bleeding, were modelled in the published models on OACs. Serious GI 

events were mainly modelled as extracranial haemorrhages of which the majority of the 

events are serious GI events. Long-term impact of serious GI events was not incorporated 

in the structures of the three main models (462, 472, 481). Serious GI events were included 

as temporary events or transient states with no effect on future transition probabilities but 

with a case-fatality, a one-time cost and disutility in the three main published models. Only 

three of the five models using a different structure form the three main published models 

predicted a long-term effect of serious GI events in subsequent cycles. Ademi et al. (2015 

and 2016) (487, 489) included a separate health state for the time after a serious GI event 

to account for a prolonged reduced quality of life and Sing et al. (2013) (486) and Lopez-

Lopez et al. (2017) (485) expected an increased mortality in subsequent cycles. In the 

published models, only acute costs for the serious GI event were included. For the de novo 
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state-transition model in this chapter, it was assumed that a serious GI event does not 

impact subsequent cycles with regards to healthcare costs. 

 

Inclusion of cardiovascular adverse events 

In the original PINCER model, cardiovascular events associated with NSAID use were not 

included as a health state, as this evidence was not mature at this stage (227). More 

recently, evidence has suggested that NSAIDs could be associated with an increased risk of 

cardiovascular events (337). For anticoagulated patients, the effect of NSAIDs on 

thrombotic cardiovascular adverse events, such as stroke, was of specific interest because 

anticoagulated patients already have an increased risk of these events. In the literature 

review evidence on an increased risk of stroke, systemic embolism, heart failure and MI 

was investigated [Appendix K]. 

 

The mixed results on the effect of NSAIDs on stroke and systemic embolism were discussed 

in detail in Chapter Four [4.2.2, 4.5.2]. The results of the cohort study in Chapter Four 

indicate a significant increase of the stroke risk in the presence of concomitant NSAID 

therapy. This confirmed the results from Kent et al. (2018) in a post-hoc analysis of the  

RE-LY trial data in anticoagulated patients. Consequently, stroke was included as a 

cardiovascular ADE in the de novo state-transition model developed in this thesis. The 

incidence of systemic embolism in both OAC, and OAC and NSAID users was low and the 

difference non-significant [4.4.2]. Heart failure (309) and MI (308) were also not 

significantly associated with NSAID use. To avoid introducing more uncertainty into the 

model by including systemic embolism, heart failure and MI that were not significantly 

associated with NSAID use, these were not included as ADEs. Because potential harm from 

the HPE related to these ADEs is not included in the model, this could underestimate the 

incremental cost and QALYs. Not including these events was, therefore, a conservative 

assumption. It was assumed that these ADEs, however, are rare and only have a small effect 

on the incremental cost and QALYs associated with the HPE type.  
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Expert consultation 

Different experts were involved in the design of the de novo state-transition model and to 

assess face validity of the assumptions made during the model conceptualisation. The 

model structure and key assumptions were discussed with the multi-disciplinary members 

(including GPs, pharmacists, epidemiologists, health economists and lay collaborators) of 

the PROTECT study team. A summary of key assumptions made were sent to two GPs from 

the PROTECT study team, to confirm these were reasonable. Questions with feedback are 

reported in Appendix M. The final model was also presented to a patient representative in 

a video conference call for face validation. The patient is diagnosed with AF and is 

experienced in NSAID use and NSAID related ADEs. The face validation included a sense 

check of input parameters, and a discussion on comprehensibility of the model structure 

and assumptions made. The de novo state-transition model also underwent an internal 

validity check. A health economist, experienced in conceptualising models around NSAID 

use, checked for errors in the working models and written report following a checklist 

developed within the PROTECT study team that is reported in Appendix N. 

 

5.2.2 Final model structure 

In this section the final model structure is described with the model specifications and the 

cohort characteristics. The health states in the state-transition model for this study were 

based on the original NSAID model used in the PINCER evaluation (227), newer models 

identified through literature searches and expert input.  

 

Figure 5.1 illustrates a simplified structure of the state-transition model. A list of 

assumptions with regards to the model structure is provided in Appendix M.  
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Figure 5.1: Final model structure  

 

 

Two cohorts are followed through the same state-transition model. The non-HPE cohort 

consisted of patients with OAC treatment and the HPE cohort consisted of patients with 

OAC and concomitant NSAID treatment. The two cohorts only differ in specific transition 

probabilities as described later. All patients are assumed to start in the no adverse event 

state. ADEs potentially attributable to NSAID use were stroke and GI adverse events. The 

GI adverse events were serious GI events (GI bleeding events, ulcer perforation and ulcer 

bleeding), GI discomfort (diarrhoea, abdominal pain, dyspepsia, nausea, vomiting, 

flatulence) and symptomatic ulcer (excluding ulcers identified during endoscopy that did 

not cause symptoms). From all health states patients could transition to the dead state. 

 

After entering an ADE health state (serious GI event, GI discomfort, symptomatic ulcer or 

stroke), the model assumes that the HPE is resolved and the NSAID is removed in the 

subsequent cycle. The model structure assumes that there is no impact of the NSAID on 

the risk of having a subsequent ADE. Once any initial ADE is resolved, the patient either 

experiences a recurrent event or transitions to a post-event state. In the two post-event 

states, it is assumed that there is no increased risk of any adverse event compared with the 

non-HPE cohort (who received no NSAID treatment). The post-GI event state is equivalent 
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to the no adverse event state in the non-HPE cohort with regards to transition probabilities, 

resource use and health related quality of life. This structural assumption was supported 

by the two GPs and two pharmacists consulted. All four experts agreed with the 

assumptions that the HPE was preferably resolved by removing the NSAID and that 

following any GI adverse event, removing the NSAID would be the first choice. For stroke, 

the GPs indicated that they would remove the NSAID in only 50% of the cases. This was not 

reflected in the model because data to populate this were not available. There was no 

evidence on how NSAIDs increase the risk of stroke recurrences. Assuming the recurrence 

risk is the same, the only difference would be the cost of the NSAID, which is negligibly 

small. Therefore, it was considered justifiable to assume that patients moving to the post-

stroke state stop the NSAID treatment if they were exposed to the HPE. 

 

From the post-stroke state, patients could either die, experience a second stroke or remain 

in the health state. Stroke was considered the most severe ADE, and no GI adverse events 

were possible afterwards. This approach to use stroke as a semi-absorbing state is widely 

used in the decision models comparing OAC treatments (473-480). In contrast, after 

entering the post-GI event state transitions to all other ADE states are possible. 

 

There are no transitions possible between the ADE states. The ADEs are not precursor 

events but alarming events. Patients go to the state of the worst ADE that happens and 

then the HPE is resolved. All patients have a risk of death according to the health state they 

are in. Death can be a result of the ADEs or death as a consequence of age. ‘Dead’ is an 

absorbing state. 

 

The model specifications are summarised in Table 5.1. The costs and outcomes were 

discounted at the recommended rate of 3.5% per annum and half cycle correction was 

applied (3). The cost year used was 2019. Costs were assessed from the perspective of the 

NHS/PSS. 
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Table 5.1: Model specifications 

Specification Details Justification 

Time horizon Lifetime (100 years of age) As per NICE reference case (3) 

Cycle length 3 months, half cycle correction Appropriate time period to observe outcome  

Perspective  NHS and social care As per NICE reference case (3) 

Discounting 3.5% costs and benefits As per NICE reference case (3) 

Health states Description of health state 

No adverse event This is the point of model entry for either the HPE cohort (OAC+NSAID) or the non-HPE 

cohort (OAC only) 

GI discomfort  People experience GI discomfort (diarrhoea, abdominal pain, dyspepsia, nausea, vomiting, 

flatulence), requiring treatment by a general practitioner 

Symptomatic ulcer  People have a clinical diagnosis of a peptic ulcer following adverse GI symptoms, which may 

include endoscopic confirmation 

Serious GI event People experience a serious GI event (GI bleeding, peptic ulcer bleeding or GI ulcer 

perforation) requiring treatment in hospital 

Post-GI event Following an alarming GI event, people return to a health state where the risk of subsequent 

events is the same as in the non HPE cohort; from here, they can experience further events 

Stroke  People experience stroke requiring hospitalisation. 

Post-stroke Following an alarming stroke event, people return to a health state where the risk of 

subsequent events is the same as in the non HPE cohort; from here, they can experience 

only further stroke or die 

Dead There is a risk of death from all health states. Mortality rates depend on age and sex and 

can be increased when ADEs occur 

ADE: adverse drug event; GI: gastro-intestinal; HPE: hazardous prescribing event; NICE: National Institute for Health and Care 

Excellence; NSAID: non-steroidal anti-inflammatory drug; OAC: oral anticoagulant 

 

Where it was necessary to inflate costs, the Hospital & Community Health Services (HCHS) 

index was used to inflate costs up to 2014/15 and then the newer NHS Cost Inflation Index 

(NHSCII) was used to inflate from 2014/15 to 2018/19 (285). The inflation indices are 

summarized in Table 5.2 below. 

 

Table 5.2: Inflation indices for different cost years since 2009/2010 

 Price year HCHS Pay and Prices Index (1987/8=100) NHSCII Pay and Prices Index (2014/15=100) 

2009/10 268.6 
 

2010/11 276.7 
 

2011/12 282.5 
 

2012/13 287.3 
 

2013/14 290.5 
 

2014/15 293.1 100.0 

2015/16 
 

100.4 

2016/17 
 

102.5 

2017/18 
 

103.7 

2018/19 
 

106.1 

HCHS: Hospital & Community Health Services; NHSCII: NHS Cost Inflation Index 
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To extrapolate the impact a change in HPE rates had on health outcomes and costs, the 

cost-utility analysis followed the HPE and non-HPE cohort for a life time. The time horizon 

should capture all health effects and costs relevant to answer the decision problem as 

recommended by the ISPOR good modelling task force (490). Following the 

recommendations in the NICE reference case, a lifetime horizon was used that followed 

patients up to a 100 years of age (3). A cycle length of three months was considered 

appropriate to represent the frequency of clinical events and interventions. Three month 

cycles were consistently used among OAC models in AF (TA249 (463) and TA275 (491)) and 

NSAID models, such as the osteoarthritis model used for national clinical guidelines (492). 

Clinicians expressed agreement with the choice of the cycle length [Appendix M]. 

 

5.2.3 Cohort characteristics 

The non-HPE and the HPE cohort consisted of anticoagulated patients. Cohort 

characteristics were selected to reflect the target population in the UK as closely as 

possible. Results from the epidemiological study conducted as part of this dissertation on 

patient characteristics were used to define the cohort characteristics in this model. This 

study was described in detail in Chapter Four and is referred to as the cohort study 

conducted as part of this dissertation. The baseline characteristics of the cohort were 

representative of patients who were prescribed an OAC in primary care and were reported 

in Table 4.4. The mean age of 70 years in the CPRD/HES/ONS cohort study was used as the 

age at model entry. The proportion of men (55.11%) and women (44.89%) was also used 

from the primary care records. 

 

5.2.4 Input parameters  

This section describes the sources of evidence for input parameters (transition 

probabilities, health state resource use and costs, as well as health related quality of life) 

used to inform the de novo state-transition model. Summaries of values for each input 

parameter type are provided in the individual sections. 
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5.2.4.1 Transition probabilities 

In this section the transition probabilities used in the model are reported. Ordered by ADE 

type, the evidence on transition probabilities in the non-HPE cohort from (i) the no adverse 

event state to the ADE health states, (ii) the probability of death from the ADE (fatality of 

events) and (iii) the probability of a recurrence of the ADE are described. The transition 

probabilities for the HPE cohort only differ from the non-HPE cohort in the transition 

probabilities from the no adverse event state to the individual ADE states. The increased 

likelihood of the ADEs in the presence of NSAIDs is described at the end of this section. A 

summary table of the values for transition probabilities used in the state-transition model 

is reported in Table 5.5. 

 

Probability of GI discomfort in the absence of an NSAID 

In the phase 3 trials of DOACs compared with warfarin, ARISTOTLE, ROCKET-AF and Engage 

AF TIMI 48, the risk of GI discomfort was not increased in patients with the DOAC under 

investigation compared with warfarin, and therefore the incidence of GI discomfort was 

not reported. The only DOAC that was found to have an impact on dyspepsia in particular 

was dabigatran (326). Due to this increased risk, results on the effect on GI discomfort were 

reported in more detail for the RE-LY trial comparing dabigatran and warfarin. A combined 

outcome including upper abdominal pain, abdominal pain, abdominal discomfort and 

dyspepsia was reported for the dabigatran and warfarin cohort. Because dabigatran is 

rarely used in the UK (315) and the other RCTs in AF found no difference in the probability 

of GI discomfort between warfarin and the DOAC, the probability for warfarin was assumed 

to be representative of the OAC cohort. The mean age in the RE-LY trial was 71, which is 

very close to the age at cohort entry in this state-transition model. The probability of GI 

discomfort was 5.8% (348 out of 6022 patients on warfarin) in a mean duration of warfarin 

treatment of 23 months. This probability was used to derive a three-months probability for 

GI discomfort. Risk of GI discomfort was assumed to be constant over time for warfarin and 

dabigatran users as reported in a Danish observational study (493). 
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Probability of death from GI discomfort 

Following consultation with the GPs, it was assumed that subsequent to a primary-care 

managed episode of GI discomfort there would be no increase in the risk of death 

[Appendix M]. Therefore, age and sex adjusted general population mortality rates, as per 

Office for National Statistics (494), were applied to this health state. Other decision-analytic 

models, such as by Dorian et al. (2014) (472) or Lip et al. (2012 and 2014) (477, 495), also 

used a constant probability of dyspepsia with no fatal events. 

 

Probability of recurring GI discomfort in subsequent cycle 

No literature was identified regarding the short-term recurrence/resolution of GI 

discomfort. Following consultation with the GPs, it was assumed that once somebody 

entered the GI discomfort state, their risk of recurring dyspepsia for the following cycle is 

the same as the risk of recurring serious GI events for which there is some observational 

data [see subsection below on ‘Probability of recurring serious GI events’]. After a 

maximum of two cycles in the GI discomfort state, it was assumed that the GI discomfort 

was resolved, and the person entered the post-GI event state. Consultation with the GPs 

confirmed this was a reasonable approach [Appendix M]. 

 

Probability of symptomatic ulcer in the absence of an NSAID 

No evidence was found in epidemiological studies that OACs were associated with an 

increased risk of symptomatic ulcers compared with the general population (460, 496, 497). 

Clinically, the mucosa is not affected by OACs and the RCTs did not report an increased risk 

of peptic ulcer. The probability of reported peptic ulcer was low in the ARISTOTLE trial with 

0.01% of warfarin and 0.01% of apixaban patients and in the ROCKET-AF trial with 0.03% 

for rivaroxaban and 0.00% for warfarin according to results presented on the website 

‘clinicaltrials.gov’ on reported ADEs during the trials. The ADEs reported in the RCTs were 

not seen as representative, as it was not clear if these self-reported events were complete. 

An observational cohort study using The Health Improvement Network (THIN) database 

analysed trends in symptomatic ulcer incidence until 2005 for a UK primary care setting. 

High risk patients with bleeding or peptic ulcer history were excluded. The risk of 
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uncomplicated peptic ulcer per 1000 person years was 1.4 (95% CI 1.3 to 1.5) and 1.1 (95% 

CI 1.0 to 1.2) for men and women, respectively (497). This rate for the age group 65-74 

years of age by Cai et al. (2009) was used to calculate the three-months peptic ulcer risk in 

the OAC cohort weighted by the proportion of female and male patients in the model 

population.  

 

A similar incidence rate was reported in a systematic review of peptic ulcer incidence 

including studies until February 2009. Incidence of uncomplicated peptic ulcer was 0.9 (95% 

CI 0.78 to 1.04) per 1000 person years with most studies dated before 2000 and only one 

from the UK (498). 

 

Probability of death from symptomatic ulcer 

An observational study in Denmark collected data on 4421 patients with incident 

uncomplicated ulcer (i.e., non-bleeding) between 1993 and 2002 (499). The study reported 

a standardised mortality ratio of 11.6 (95% CI 9.6 to 13.9) in the first month following the 

diagnosis (499). A Finnish observational study by Malmi et al. (2016) collected data on 4154 

patients with uncomplicated peptic ulcers between 2000 and 2008 (500). The reported 

standardised mortality ratio was 2.16 (95% CI 2.05 to 2.29) at one year. The Finnish study 

was chosen for the model because data were more recent and the estimate seemed more 

reasonable compared with mortality related to other ADEs. The standardised mortality 

ratio represents a factor by which the expected number of deaths in the absence of an 

ulcer in the normal population is multiplied to generate the number of deaths in patients 

with an ulcer. The factor was multiplied by the death rate in the no adverse event state and 

converted into probabilities.  

 

Probability of recurring symptomatic ulcer 

No study was found that assessed the risk of symptomatic ulcer recurrence. A Korean and 

a Finnish study were available that looked at any ulcer recurrence reporting a cumulative 

incidence over five and one year, respectively (501, 502). The Finnish study by Malmi et al. 

(2014) included all types of hospitalised peptic ulcers, e.g., perforated, bleeding, 

asymptomatic and symptomatic ulcers. The observational study collected data from 
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hospitals in a district in Finland and reported a cumulative incidence of recurrent ulcers of 

13.1% (95% CI 12.4% to 13.9%) in the first year (502, 503). The Korean observational study 

by Yoon et al. (2013) investigated recurrences of NSAID induced peptic ulcers and reported 

a five-year cumulative incidence of 10.9% (95% CI 2.6% to 19.2%). However, sample sizes 

were small with only 57 NSAID related ulcers. Both studies did not report a three-months 

probability of the recurrence. Assuming a constant increase of the recurrence risk over 

time, a three-months probability could be calculated, but Malmi et al. (2014) showed that 

the recurrence risk is highest in the first months. They also did not measure recurrence of 

symptomatic ulcer but measured ulcers in hospital, including bleeding events that were 

considered serious GI events in this model. Instead of using these estimates that were 

reported for a general population, the meta-analysed estimates in anticoagulated patients 

used for serious GI events were considered more appropriate (504). Tapaskar et al. (2020) 

reported a three-months probability of 10.1% that did not need to be transformed further. 

The two GPs involved in the clinical validation considered 10.1% a reasonable probability 

of recurrence for symptomatic ulcer. 

 

Probability of serious GI events in the absence of an NSAID 

Incidence rates for serious GI events in anticoagulated patients from Chapter Four were 

used to derive the three-months probability of serious GI events. The mean age of 

anticoagulated patients was 72 years, and the incidence rate was 7.78 (95% CI 6.03 to 

10.04) serious GI events per 1000 person years for anticoagulated patients with no 

concurrent NSAID use. To adjust for the increasing risk of serious GI events with age, a risk 

adjustment factor was previously used in a NICE technology appraisal (491) and other 

models (473-480). The risk adjustment factor was based on a systematic review on 

intracranial haemorrhage (505). However, more recent data from the The AnTicoagulation 

and Risk factors In Atrial fibrillation (ATRIA) study, a cohort study using routinely collected 

health data in the US, reported a two-fold increase of the bleeding risk for warfarin patients 

between 70 and 79 years of age compared to patients aged under 60 years. The ATRIA 

study, however, only reported an adjusted RR of 2.1 (95% CI 0.7 to 6.4) for patients ≥80 

years compared with patients aged under 60. The entry age of this cohort is already after 
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the risk levelled off and, therefore, no increased risk of serious GI bleeding events over time 

was applied. 

 

Probability of death from serious GI events 

No UK study was found that reported fatality of serious GI events in anticoagulated 

patients. Serious GI event rates reported in Chapter Four were too small to show robust 

incidence rates of death subsequent to these.  

 

An observational study using Swedish routinely collected health data assessed 90-day 

mortality of anticoagulated patients after 4291 hospitalisations for GI bleeding events 

(506). Of 652 DOAC patients with a serious GI event, 71 (10.9%) died within 90 days. For 

the 1293 warfarin users, the 90-day mortality was 11.4% (n=147) and 10.9% for the 652 

DOAC users. The mean age of the cohort was 78 years for warfarin and DOAC patients 

experiencing GI bleeding events. The incidence estimates for warfarin and DOACs reported 

in the study were combined (weighted by the number of patients in each group) and used 

as three-months probability of death following the serious event in the age group 75-79 

years. After validation from GPs, for other age groups the estimate was adjusted using the 

relative relationship to the respective mortality in the general population (494).  

 

Probability of recurring serious GI events 

A systematic review and meta-analysis of studies published up to February 2019 assessing 

the risk of GI bleeding recurrence, thromboembolism and mortality in patients with a GI 

bleeding event conducted a meta-analysis of the 90 day re-bleeding probability (504). The 

identified studies investigated OAC users from the incident bleeding event taking the OAC 

for AF, deep vein thrombosis or pulmonary embolism. The mean age in the studies was 75 

years. For 192 patients that continue OAC therapy after the incident bleeding event as was 

assumed in this model, a 90-day probability of recurrence of 10.1% was reported. A Danish 

observational study reported almost no change in the cumulative incidence of recurrent GI 

bleeding after three months (330). Therefore, people were permitted to remain in the 

serious GI event state for a maximum of one additional cycle, after which they move to the 

post-GI event state. 
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Probability of stroke in the absence of an NSAID 

Incidence rates for stroke in anticoagulated patients reported in Chapter Four [4.4.2] were 

used to derive the three-months probability of stroke. The incidence rate of strokes that 

lead to hospital admission in anticoagulated patients without NSAID treatment was 7.12 

(95% CI 5.46 to 9.30) per 1000 person years for anticoagulated patients with no concurrent 

NSAID use and a mean age of 72 years. From this incidence rate, a three-months probability 

of 0.18% was generated and applied in the model. This estimate was considered reasonable 

because it was in line with estimates from the ARISTOTLE trial (325). From the one-year 

probability in ARISTOTLE a three-months probability of stroke of 0.24% for apixaban and 

0.26 for warfarin was calculated. 

 

The risk of stroke increased with age in patients with and without OACs and was adjusted 

for the age groups over 79 years (507). An analysis of the Atrial Fibrillation Investigators 

database with patient level data from 12 RCTs comparing treatments in AF reported a 1.45 

(95% CI 1.26 to 1.66) increase in stroke risk with every ten year increase in age for patients 

on OAC, antiplatelet or placebo (508). The data suggested that the HRs of the effect of age 

were similar between OAC, antiplatelet and placebo treatment. Lip et al. (2015) also 

demonstrated similar trends with age in stroke and thromboembolism Kaplan-Meier 

curves for patients with and without OACs (507). As a result, it was assumed that estimates 

from an AF population including patients with OACs, antiplatelets and non OAC users were 

appropriate to estimate the risk increase due to age in a population on OAC treatment.  

 

Probability of death from stroke 

A study by Komen et al. (2019), using Swedish routinely collected health data, investigated 

the 90-day mortality after 6017 strokes. Of those patients with warfarin or DOAC treatment 

296 patients died resulting in a 90-day mortality of 17.6% (506). Compared with trial 

estimates from ARISTOTLE, this estimate seemed reasonable. The one-year probability of 

death after a stroke was found to be 30.1%, with over half of these deaths within 30 days 

after the event (325). 
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Probability of recurring stroke 

The probability of experiencing a second stroke in the subsequent cycle after a stroke event 

was highest in the first three months after the incident event (509, 510). Data from the 

South London Stroke Registry, a register of all first stroke incidences in a defined population 

in London, reported cumulative mortality rates from Kaplan-Meier estimates. The three-

months probability of a recurrent stroke was 2.1% (CI 95% 1.3% to 3.4%) (511).  

 

A multivariate analysis found an increased risk of stroke recurrences with every ten years 

of age (HR 1.16, 95% CI 0.98 to 1.37) (509). This HR was applied to the probability of 

recurring stroke for the age groups over 79 years. 

 

Probability of stroke in the post-stroke state  

The probability of experiencing a stroke event in secondary prevention of stroke, hence the 

probability of transitioning from the post-stroke state to the stroke state was investigated 

in subgroup analyses of the RCTs comparing DOACs and warfarin according to a systematic 

review (512). The three most common OACs in the UK are apixaban, rivaroxaban and 

warfarin that were compared in the ROCKET-AF and ARISTOTLE trial. The subgroup analyses 

of patients with a history of stroke or transient ischaemic attack identified a three-months 

probability of stroke of 0.69% for rivaroxaban and warfarin (513), or 0.67% for apixaban 

and warfarin (514). A weighted average weighted by the number of patients with a previous 

stroke in each study was used to generate the three-months probability of experiencing a 

stroke in the post-stroke health state.  

 

Probability of death in the post-stroke state 

A subgroup analysis of the ARISTOTLE trial investigated the impact on death of the 

existence of a previous stroke or transient ischaemic attack in patients with warfarin and 

apixaban compared with patients without a previous stroke or transient ischaemic attack 

(514). Previous stroke or transient ischaemic attack was associated with an increased risk 

of death with a HR of 1.27 (95% CI 1.11 to 1.45). This study was seen as representative of 

the post-stroke population because it represented two of the three most common OACs in 

the UK (315).  
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Probability of death from the no adverse event or post-GI event state 

OAC use is associated with a reduced mortality rate compared with non-use in an AF 

population (515). A meta-analysis of AF trials identified a mortality rate of 46.3 (CI 95% 39.9 

to 53.2) per 1000 person years (516). Age varied with a mean or median age of 70 to 73 

years between the trials. Age and a predominance of men were similar to the patient 

characteristics in Chapter Four chosen for the de novo state-transition model.  

 

Table 5.3: Age-specific three-months probability of death by health state 

Health state Age group (years) Source of base valuea 

70–74 75–79 80-84 85-89 

No adverse event/  

Post-GI event 

1.15% 2.03% 3.59% 6.69% Gomez-Outes (2016) (516) 

Serious GI event 6.37% 11.23% 19.85% 37.01% Komen (2019) (506) 

GI discomfort 1.15% 2.03% 3.59% 6.69% Gomez-Outes (2016) (516) 

Symptomatic ulcer 2.47% 4.33% 7.59% 13.89% Malmi (2016) (500) 

Stroke 5.64% 9.96% 17.60% 32.81% Komen (2019) (506) 

Post-stroke 1.70% 3.01% 5.31% 9.90% Easton 2012 (514) 

aBase value is the value identified in the literature for the respective age group. The base value is in bold letters. The 
probability of death for other age groups was estimated from this value based on the relative risk of death by age in 
general population as per Office for National Statistics 

 

Because patients age with time while they move through the cohort model, the probability 

of death was adjusted with age. The probability of death for other age groups was 

estimated from the identified base value according to the relative risk of death by age in 

the general population. The death probabilities in the general population by age group that 

were used as reference were derived from the ONS (494). The probability of death 

dependent on age groups in the model is summarised in Table 5.3. 

 

Impact of absence/presence of NSAIDs on the probability of adverse events 

This section reports the probabilities affected by the presence of NSAIDs in patients with 

OACs. The probability of these ADEs in the absence of NSAIDs was outlined before. The key 

feature of the HPE and the non-HPE cohort was that the transition probabilities only 

differed in the no adverse event health state. All other transition probabilities were the 

same. Hence, the probabilities affected by the presence of the NSAID are those from no 
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adverse event to any of the ADEs (stroke, serious GI events, symptomatic ulcer, GI 

discomfort). Risk ratios were used to reflect the effect of NSAIDs on the likelihood of the 

ADEs in the model and are summarised in Table 5.4. 

 

Table 5.4: Summary of impact of the presence of the NSAID on transition probabilities 

Description Risk ratio (95% CI) Distributiona Reference 

Increased likelihood of serious 

GI event 

HR 2.96 (1.60; 5.46) Lognormal Chapter Four 

Increased likelihood of GI 

discomfort 

OR 2.12 (1.73; 2.58) Lognormal (517) 

Increased likelihood of 

symptomatic ulcer 

OR 1.70 (1.49;1.94) Lognormal (518) 

Increased likelihood of stroke HR 2.48 (1.36; 4.53) Lognormal Chapter Four 

aDistribution for probabilistic analysis; GI: gastro-intestinal; HR: hazard ratio; NSAID: non-steroidal anti-inflammatory 

drug; OR: odds ratio 

 

The impact of NSAIDs on death was assumed to be captured by the fatal events in the ADE 

health states. As a result, the probability of transitioning from the no adverse event state 

to the dead state was the same in the HPE and non-HPE cohort. From the cohort study in 

Chapter Four, hazard ratios were derived for the increased risk of serious GI events and 

stroke events. The cohort study only investigated events recorded in secondary care. Risk 

ratios for the increased likelihood of symptomatic ulcer and GI discomfort were defined as 

ADEs managed in primary care in the model specifications [Table 5.1]. Consequently, the 

risk ratios need to be derived from other sources. The results of the conducted literature 

search are reported in the Appendix K [Table K.2].  

 

The impact of NSAIDs on the risk of symptomatic ulcer was investigated among other risk 

factors in a case-control study using the UK THIN database (518) that is broadly 

representative of the UK population (519). For 3914 cases of uncomplicated peptic ulcer 

disease and 9969 controls, an OR of 1.70 (95% CI 1.49 to 1.94) was reported for current 

NSAID use. The increased risk of GI discomfort with NSAIDs was investigated in a case-

control study using health records from the UK QRESEARCH database (517). In the study 

period from 2000 to 2004, uncomplicated GI adverse events were more likely in patients 

with NSAID use. The risk of GI discomfort with different NSAIDs varies. The risk ratio of the 
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most common NSAID, with 59% of prescriptions in the UK, was used to represent the 

general population in the model (443). The OR of GI discomfort for naproxen compared to 

no naproxen use was 2.12 (95% CI 1.73 to 2.58) (517) and was used in the base case 

analysis. This study represented a UK population and has been used for the transition 

probabilities to GI discomfort/dyspepsia in a previous economic model that informed 

national guidelines in the management of osteoarthritis (492). 

 

The increased transition probabilities in the HPE cohort are applied for a maximum of four 

cycles Table 5.5. At 12 months, it is assumed that the HPE is detected and resolved even if 

no ADE occurred. Annual reviews of medications are performed in GP practices that are 

thought to detect the hazardous prescription. After 12 months, the transitions probabilities 

in the HPE cohort are the same as in the non-HPE. This assumption was supported by the 

GPs [Appendix M].  
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Table 5.5: Summary of transition probabilities in the non-HPE and the HPE cohort 

From  To  Three months probability (95% CI)  Distribution Reference 

Non-HPE HPEb 

No adverse 

event 

Well 1—AOP 1—AOP N/A N/A 

Serious GI 

event 

0.26% 

(0.24%; 0.27%) 

0.76% 

(0.41%; 1.39%) 

Dirichlet Chapter Four 

GI discomfort 0.79%        

(0.59%; 0.99%)a 

1.66%        

(1.36%; 2.01%) 

Dirichlet (326), risk ratio 

(517) 

Symptomatic 

ulcer 

0.03%        

(0.03%; 0.04%)# 

0.06%        

(0.05%; 0.07%)c 

Dirichlet (497), risk ratio 

(518) 

Strokec 0.18%        

(0.13%; 0.23%) 

0.44% 

(0.24%; 0.80%) 

Dirichlet Chapter Four 

Deadc 1.15%        

(0.99%; 1.32%) 

1.15% 

(0.99%; 1.32%) 

Dirichlet (516) 

Serious GI 

event 

Serious GI 

event 

10.10% (7.58%; 12.63%)a,d Dirichlet (504) 

Post-event 1—AOP N/A N/A 

Deadc 6.37% (4.77%; 7.96%)a Dirichlet (506) 

GI discomfort GI discomfort 10.10% (7.58%; 12.63%)a,d Dirichlet (504) 

Post-event 1—AOP N/A N/A 

Deadc 1.15% (0.99%; 1.32%) Dirichlet (516) 

Symptomatic 

ulcer 

Symptomatic 

ulcer 

10.10% (7.58%; 12.63%)a,d Dirichlet (504) 

Post-event 1—AOP N/A N/A 

Deadc 2.47% (1.85%; 3.09%)a Dirichlet (500) 

Post-GI event Post-event 1—AOP N/A N/A 

Serious GI 

event 

0.26% (0.24%; 0.27%) Dirichlet CPRD 

GI discomfort 0.79% (0.59%; 0.99%)a Dirichlet (326)  

Symptomatic 

ulcer 

0.03% (0.02%; 0.04%)c Dirichlet (497)  

Strokec 0.18% (0.13%; 0.23%) Dirichlet CPRD 

Deadc 1.15% (0.99%; 1.32%) Dirichlet (516) 

Stroke Strokec 2.10% (1.30%; 3.40%) Dirichlet (511) 

Post-stroke 1—AOP N/A N/A 

Deadc 5.64% (4.23%; 7.05%)a Dirichlet (506) 

Post-stroke Post-stroke 1—AOP N/A N/A 

Strokec 0.67% (0.50%; 0.83%)a Dirichlet (513, 514) 

Deadc 1.70% (1.49%; 1.94%) Dirichlet (514) 

Dead Dead 1 Fixed - 

aNo measure of variance reported (ranges are based on +/-25% of the mean); bcalculated from risk ratios reported in 

Table 5.4; cage dependent probability reported for age group 70-74; dapplied for first cycle after event only, then 

assumes people move to post-GI event; AOP: all other probabilities 
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5.2.4.2 Health state resource use and costs 

This section summarises the resource use and unit costs by health state. It was assumed 

that people in all health states (other than dead) in the HPE and the non-HPE cohort would 

receive their standard OAC treatment, which was not included in the health state costs. 

Temporary discontinuations of OACs after serious GI or stroke events were considered 

negligible and were not included. At the end of this section, a table reports resource use, 

unit costs and the total health state costs [Table 5.6].  

 

No adverse event (HPE and non-HPE) 

In the no adverse event state and the post-GI event state, no cost other than the resource 

use required for the hazardous prescription or the alternative treatment are generated. 

After consultation with the GPs, and in accordance with other published state-transition 

models (151, 450), paracetamol was used as the alternative non-hazardous prescription 

[Appendix M]. The cost of paracetamol for 90 days is included in the no adverse event state 

in the non-HPE cohort and in the post-GI event state. The cost of NSAIDs for 90 days is 

included in the no adverse event health state in the HPE cohort. NSAIDs were costed in the 

HPE cohort in the no adverse event health state until the HPE is resolved. After a maximum 

of 12 months, equivalent to four cycles in the no adverse event state of the state-transition 

model, it was assumed that the HPE would be detected and resolved and patients are 

switched to paracetamol. Hence, once the HPE is resolved the same resource use applies 

in the HPE and the non-HPE cohort in the no-adverse event state.  

 

The resource use of treatment with the two drugs was generated as follows: The most 

commonly prescribed NSAID in England was naproxen with 59% of all oral NSAID 

prescriptions (443) and most frequently dispensed as 500mg tablets (96). The defined daily 

dose was 500mg, resulting in one naproxen tablet per day (520). Paracetamol was most 

commonly dispensed as 500 mg tablets (96) and its defined daily dose is 3000mg. The daily 

dose paracetamol was set to six tablets per day. 
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Resource use associated with GI discomfort 

Previous work by Elliott et al. (2006) provided relevant disaggregated resource use data for 

GI discomfort (521). This paper was from 2006 and therefore expert opinion was sought 

from two GPs to confirm whether this still reflects current practice [Appendix M]. Resource 

use included costs of treatment according to UK guidelines and costs of one GP visit. The 

UK guideline recommendations for uninvestigated dyspepsia include a full dose proton-

pump inhibitor (PPI) for four weeks once per day (522). Of the full dose PPIs listed in 

Appendix A of the guideline, omeprazole 20mg was the most frequently dispensed PPI in 

England as of June 2020 (96).  

 

Resource use associated with symptomatic ulcer 

For symptomatic ulcer, Elliott et al. (2006) reported resource use in the NHS (521). To 

reflect current practice, GPs were consulted to adjust the reported resource use to the 

current care practice [Appendix M]. The updated resource use included one diagnostic 

endoscopy, two GP visits, one outpatient visit, one H. pylori test and prescriptions of PPIs. 

For peptic ulcer, UK treatment guidelines recommend treatment of a full dose PPI for eight 

weeks (522). 

 

Resource use associated with serious GI events 

Healthcare costs in the serious GI event state were derived from a multi-centre, 

randomised trial assessing resource use of GI bleeding events in six UK hospitals (523). The 

study reported resource use of the initial admission to hospital and 28 days after discharge. 

It was the only study that reported post-discharge costs in addition to in-patient hospital 

resource use and included a comprehensive list of resource use items. The in-hospital 

admission incorporated resource use for intravenous fluids, lab tests, medication, fluids, 

blood component transfusion, endoscopies, surgery or radiological interventions to control 

bleeding, and ADEs. Resource use for post-discharge care for 28 days included re-

admission, admission to nursing homes/residential care, A&E visits, outpatient clinic visits, 

GP visits etc. Unit costs were attached to resource use from the cost year 2012/2013 using 
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UK sources for reference costs. Inflated to 2018/2019 cost a serious GI event generated 

£3137.44 (SD 757.29). 

 

Other published models calculated a mean cost of serious GI events based on the HRG unit 

costs (472, 524). This approach only accounts for resources related to the in-hospital 

episode and was therefore not used in this model. Unit costs for HRG codes are available 

from the NHS reference costs (525). The weighted average, weighted by activity of each 

HRG codes including ‘gastrointestinal bleed’ in their description as done by Dorian et al. 

(2014) (472), resulted in a mean cost of £1204.58 (SD 820.13).  

  

Resource use associated with stroke and post-stroke 

The majority of the patients in the UK prescribed an OAC have a diagnosis of AF (354). 

Stroke severity and costs are higher in patients with AF than in non AF populations (526). 

Resource use of stroke was therefore applied from an AF population. Luengo-Fernandez et 

al. (2015) reported the cost of stroke events by event severity from patients in the Oxford 

Vascular study (OXVASC), a prospective cohort study of all vascular events in Oxfordshire, 

UK (527). The reported acute and long-term cost estimates were previously used in two 

NICE technology appraisals (491, 524). Resource use for the acute event was assessed for 

the in-hospital episode (diagnostic tests) and post discharge care for 90 days after stroke 

event (re-admission, emergency transport, A&E visits, outpatient clinic visits, admission to 

nursing homes/residential care, GP/nurse visits etc). Resource use for long-term care after 

stroke include resources used for re-admission, inpatient diagnostic tests, emergency 

transport, A&E visits, outpatient clinic visits, admission to nursing homes/residential care 

and GP/nurse visits. Costs were reported for the first 90 days of each event (acute event 

costs) and long-term costs were calculated as the mean annual excess costs of five years 

after the event. The reported acute event costs were used to generate costs for the stroke 

health state and the excess long-term annual costs were used to generate costs in the post-

stroke health state of this model. The annual costs were divided by four to generate three-

months costs. Costs were reported by stroke severity in Luengo-Fernandez et al. (2015). To 

generate input parameters for this study, a weighted average based on the severity 
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distribution of strokes in patients with apixaban and warfarin in the ARISTOTLE trial was 

(477). The costs (cost year 2008/2009) were inflated to the cost year 2018/2019. 

 

Unit costs 

Unit costs associated with the non-drug related resources, for instance, GP visits or 

outpatient visits, were used from the PSSRU: Unit costs of health and social care (285), and 

NHS reference costs database (525). At the time of analysis, the most up to date unit costs 

were used (2018/2019) from the PSSRU: Unit costs of health and social care (285), and NHS 

reference costs database (525). Unit costs of drug treatment were used from the NHS 

electronic drug tariff (528).  

 

Table 5.6: Summary of resource use, unit costs and total health state cost  

Resource use 

Health state  Resource item  Amount  Distribution  Source 

No adverse event 

HPE model 

One naproxen 500mg tablet 

daily, 90 days 

1 Fixed (96, 443, 520) 

No adverse event 

non-HPE model 

Six paracetamol 500mg tablets 

daily, 90 days 

1 Fixed (96, 520) 

GI discomfort 

  

One GP visit 1 Fixed (521), expert opinion 

Omeprazole 20mg/day, 28 days 1 Fixed (96, 522) 

Symptomatic 

ulcer 

  

  

  

  

Endoscopy 1 Fixed (521), expert opinion 

GP visit 2 Fixed (521), expert opinion 

Omeprazole 20mg/day, 56 days 1 Fixed (521), expert opinion 

Out-patient visit 1 Fixed (521), expert opinion 

H. pylori test 1 Fixed (521), expert opinion 

Serious GI event In-hospital episode and 29 days 

post discharge 

1 Fixed  (523) 

Stroke In-hospital episode and 90 days 

post discharge care  

1 Fixed (477, 527) 

Post-GI event No resource use  N/A N/A Assumption 

Post-stroke Total annual excess healthcare 

resource use  

1 Fixed (477, 527) 

Unit Costs 
  

 

Unit cost item Cost Distribution Source 

28 naproxen 500mg tablets £2.93 Fixed NHS drug tariffe 

100 paracetamol 500mg tablets £3.53 Fixed NHS drug tariffe 

28 omeprazole 20mg tablets £1.18 Fixed NHS drug tariffe 

GP visit £33.00 Fixed PSSRU 2019c 

Outpatient visit (gastro-enterology) £141.00 Fixed NHS reference costsd 
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H. pylori test £8.00 Fixed NHS reference costsd 

Diagnostic endoscopic upper gastrointestinal 

tract procedures (outpatient procedure)  

£354.00 Fixed NHS reference costsd 

In-hospital episode - serious GI event  £3,137.44       

(SD 247.61) 

Gamma  (523) 

In-hospital episode - stroke £10645.86      

(SD 12048.60)  

Gamma (527) 

Excess healthcare post-stroke  235.20           

(SD 133.26) 

Gamma (527) 

Total health state cost    

Health state Cost Distribution Source 

No adverse event (HPE model) £7.68 Gammab NHS drug tariffe 

No adverse event (Non-HPE model) £19.06 Gammab NHS drug tariffe 

GI discomfort £34.18 Gammab Elliott 2006; PSSRUc; 

NHS reference costsd; 

NHS drug tariffe 

Symptomatic ulcer £523.52   Gammab Elliott 2006; PSSRUc; 

NHS reference costsd; 

NHS drug tariffe 

Serious GI event £3137.44         

(SD 757.29) 

Gamma  (523) 

Post-event £19.06 Gammab NHS drug tariffe 

Stroke £10645.86      

(SD 12048.60) 

Gamma (477, 527) 

Post-stroke £235.20          

(SD 133.26) 

Gamma (477, 527) 

Dead £0.0001a N/A Assumption  

aA cost of £0.0001 was used in TreeAge Pro Healthcare 2021 because an input cost of £0 is not possible; 
bwhen no standard deviation was available, the mean itself was used in the Gamma distribution; cPersonal 
Social Services Research Unit 2019 (285); dNHS reference costs database 2018/2019 (525); eNHS electronic 
drug tariff (528); GI: gastro-intestinal; GP: general practitioner; NHS: National Health Service  

 

5.2.4.3 Health related quality of life 

We used published estimates of health related quality of life for each health status in the 

state-transition model. Preferentially, we used utility estimates derived from UK 

populations using EQ-5D-3L (529) or EQ-5D-5L (530) questionnaires, with UK tariffs. The 

EQ-5D-3L were used in preference to 5L when presented with a choice as recommended in 

the NICE reference case (531). If the utility estimates were derived from non-UK 

populations, UK tariffs were used where possible. The exact estimates applied in the model 

adjusted to the three-months cycle length are reported in Table 5.7. 
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Utilities associated with no adverse event/post-GI event  

The Euro heart survey collected data on quality of life in patients with AF, the most common 

diagnosis associated with the use of OACs, in 35 European countries from 2003 to 2004 

(532). The study used the EQ-5D-3L questionnaire and results were translated into utilities 

using UK tariffs for the different dimensions. The Euro heart survey estimates have been 

used in other peer-reviewed models (485, 533) and in a NICE technology appraisal (524, 

534). Mean age of participants in the survey was slightly lower than the start age of this 

model with a mean age of 66 years. Percentages of men (60%) and women (40%) were very 

similar to the proportions in the population in the de novo state-transition model. The 

majority of patients (68%) were prescribed OACs. A mean utility of 0.779 (SD 0.253) was 

reported. This utility was used to calculate QALYs generated in the no adverse event health 

state in the HPE and non-HPE model and in the post-GI event state. To account for quality 

of life decreasing with age, the utility was multiplied by the ratio of the utility for a given 

age range relative to a reference age (66–70 years), based on general population utilities 

estimate. Estimate for the general population were derived from Ara et al. (2011) that 

pooled EQ-5D-3L data from four consecutive Health Surveys for England from 2003 to 2006. 

The Health Survey for England is conducted annually and in a random sample of the 

population living in private households. The method to account for the decreasing utility 

with age, was also used in a HTA (524). The pooled dataset included 41174 respondents 

with completed EQ-5D-3L questionnaires (437). The relative relationship between the 

general population estimate from the for the age group 66-70 years in Ara et al. (2011) 

(437), and the utility estimate from Berg et al. (2010) (532), was used to calculate age 

dependent utilities.  

 

Utilities associated with GI discomfort 

The reduction in health related quality of life due to GI discomfort was assumed to be a 

constant absolute decrement relative to having no GI discomfort. A UK-based RCT recruited 

people aged 18 to 65 presenting in primary care with dyspepsia (535). This study reported 

a baseline utility of 0.74 for 679 people based on the EQ-5D-3L questionnaire. The mean 

age of the sample is not reported in the paper, however based on the general population 

utility values for the 55-60 age group (0.8222) (437), this would be a decrement of 0.08. A 
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small study in Malaysia asked people with headaches to complete the EQ-5D-3L and then 

compared the derived utility values by whether or not people also had dyspepsia (536). The 

24 people with both conditions had a mean utility value of 0.82 (SD 0.18), and the 69 

people, who only had headaches, had a mean utility value of 0.90 (SD 0.16). The utility 

decrement for dyspepsia from this study is also 0.08. A 2001 study by Groeneveld et al. 

(2001) included a time trade-off study and reported that the QALY loss associated with 

dyspeptic symptoms was 0.09 (537). The estimates from all three of these sources are 

similar. Because two studies reported a utility decrement of 0.08, this value was used in 

the model. 

 

Utilities associated with symptomatic ulcer 

The reduction in health related quality of life due to symptomatic ulcer was assumed to be 

a constant absolute decrement relative to having no symptomatic ulcer. No study directly 

measured a utility estimate for symptomatic ulcer in a UK population. Three studies were 

found that reported potential utility estimates (437, 538, 539). A study from 2001 by 

Groeneveld et al. assessed utilities for 73 patients with a diagnosis of peptic ulcer and 

dyspeptic symptoms in the US (537). Groeneveld et al. (2001) conducted interviews with 

patients to generate utilities for dyspepsia and peptic ulcer using time trade-off methods. 

However, the methods for the utility assessment were not described transparently. They 

reported a QALY decrement associated with a peptic ulcer, including peptic ulcer bleeding, 

of 0.11 (range from 0.05 to 0.19). In the second study by Maetzel et al. (2003), quality of 

life associated with symptomatic ulcer in arthritis patients was assessed for a Canadian 

cost-effectiveness analysis of NSAIDs (538). A survey of 60 randomly selected participants 

was conducted. Rating scale and standard gamble methods were used to identify utility 

weights for symptomatic ulcer compared with arthritis without ADEs. However, the exact 

methods were not reported transparently. The raw data, any participant information or 

calculations were not presented. For symptomatic ulcer, a utility multiplier of 0.5523 was 

found with a range from 0.4651 to 0.6511 for patients with arthritis and symptomatic ulcer 

relative to arthritis patients without the event over three months. Ranges were not 

provided as standard deviation or confidence intervals, and it was unclear what the ranges 

described. Nevertheless, the utility weights were used in the economic model informing 

the National Guidelines for osteoarthritis in the UK (492) and other published models (450, 
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451). The third study by Ara et al. (2011), used EQ-5D-3L data from the Health Survey for 

England (437). The large survey collects information on different conditions and links it with 

the EQ-5D-3L. The survey is based on self-report of patients and their perception of 

potential conditions they have. The study does not report symptomatic ulcer as one of the 

conditions but, following a discussion with the patient representative, symptoms from GI 

discomfort would most likely be similar to bowel/colon symptoms reported in the survey.  

 

In this model, the utility reported in the third study was used. It was the only English study, 

was the most recent and used the preferred EQ-5D-3L questionnaire. This was also the only 

study transparently reporting the methods how the utility estimates were derived and 

contained the largest sample size. Despite the strong assumption that utilities from 

symptomatic ulcer are similar to those with colon/bowel symptoms, this was considered 

the best available evidence. For the 70-75 age group, the general population utility value 

was 0.7790 whereas for the group with bowel complaints it was 0.6455 – a decrement of 

0.1335 (437). The fact that this decrement is comparable to the three-months decrement 

identified by Groenveld et al. (2001) (0.11) and the derivative of this study used in the 

economic evaluation of the PINCER trial (0.13), showed that the utility estimate for 

colon/bowel conditions was comparable to that of earlier studies. 

 

Utilities associated with serious GI events 

The reduction in health related quality of life due to serious GI events was assumed to be 

a constant absolute decrement relative to having no serious GI event. A recent systematic 

literature review of utility decrements associated with bleeding events in people taking 

dual antiplatelet therapy reported that for gastrointestinal bleeds the decrements ranged 

from 0.005 to 0.016 (540). A paper published in 2015 by Campbell et al. (2015) reported 

utility values derived from EQ-5D-3L for a cohort of 936 participants who were admitted to 

one of six UK university hospitals with an upper GI bleed (541). Another study investigating 

the utility of GI bleeding in an anticoagulated population reported utilities from the 

ENGAGE-AF TIMI RCT that compares edoxaban and warfarin treatment (542). The EQ-5D-

3L was used and utilities assessed every three months at routine check-up visits. US tariffs 

were applied.  
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In the state transition model in this thesis, the same utility decrement as used in the 

previous PINCER model (0.18) was used (227). The mean utility was calculated over three 

months based on the temporary utilities in Spiegel et al. (2005) for inpatient treatment for 

ulcer haemorrhage (0.46 for ten days) (543) and the dyspepsia after the inpatient stay (0.87 

for 80 days). This decrement of the three-months utility was found to better represent the 

utility of serious GI events over three months, than other studies. In Campbell et al. (2015), 

participants completed the EQ-5D-3L 28 days after they were admitted. Because of this 

delay in reporting, this does not capture the utility associated with the serious GI event 

itself (541). The utility values from the RCT were not used in the base case because they 

used US tariffs and utility was only assessed every three months at routine check-up visits 

not specifically after the event (542). 

 

Utilities associated with stroke 

The reduction in health related quality of life due to stroke was assumed to be a constant 

absolute decrement relative to having no stroke. The OXVASC study collected utilities of all 

stroke events (544). From 2002-2007, EQ-5D-3L utilities were available for 445 patients 

with stroke and 381 controls, with a mean age of 75 years. Other OAC models used in HTAs 

submitted to NICE (524, 534) used utilities from a time trade-off study published in 2001. 

From 57 patients, utilities for mild and severe stroke were assessed showing highly skewed 

utilities. The state-transition model by Sterne et al. (2015) used the utility for severe stroke 

for all severities of strokes identified in their model (524). This overestimates the disutility 

of stroke neglecting the impact of the more common minor and moderate strokes (544). 

Edwards et al. (2011) applied the utility for the different severity levels in their model 

submitted as part of an HTA (534). In the de novo state-transition model in this thesis, the 

utility from the OXVASC study was used (544). This was the largest and most recent study 

and the only English study that used the preferred utility elicitation method. Both HTAs 

assumed that the disutility from Robinson et al. (2001) persisted over the cycle length of 

three months. The more recent data from the OXVASC study, however, clearly showed that 

the utility after one months was much higher than this (544). The reported utility at one 

month after the stroke were assumed to capture the average utility over the first three 

month after the event. The utility difference between stroke compared with the controls 
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was of 0.22 (95% CI 0.18 to 0.26). This difference was used as the three-months decrement 

applied to the age dependent utility. 

 

Utilities associated with the post-stroke state 

The reduction in health related quality of life due to long-term consequences of stroke was 

assumed to be a constant absolute decrement relative to no prior stroke. The OXVASC 

study reported not only utilities at one month after the stroke event but also long-term 

utilities (544). The study reported a utility difference between patients with a previous 

stroke and patients in the control group of 0.18 (95% CI 0.13 to 0.23, p < 0.001).  

 

The only comparable study, assessing the long-term utilities impact of stroke, was a 

prospective cohort study by Haacke et al. (2006) in Germany (545). The study investigated 

long-term quality of life in patients that experienced a stroke . The utility estimates were 

used in an earlier HTA of rivaroxaban (534). Overall, 77 patients completed the EQ-5D-3L 

questionnaire and utility estimates were generated using German tariffs. A utility of 0.68 

(SD 0.34) and 0.64 (SD 0.33) was reported for patients aged 65-75 and over 75 years, 

respectively.  

 

As described earlier, utility estimates were preferably used from UK studies. Therefore, the 

more recent English utility difference estimated in the OXVASC study was used as the three-

months utility decrement for post-stroke. 

 

Disutility of correcting HPE 

Correction of this HPE involved the discontinuation of the NSAID and a switch to 

paracetamol therapy. According to the GPs and pharmacists, this was the preferred action 

to resolve the HPE in practice [Appendix M: Table M.2]. It was assumed that this switch did 

not affect utilities. Alternative treatments were considered to have the same treatment 

effect (i.e., the same pain relief as NSAIDs). The same assumption was previously made in 

a HPE model involving NSAID use in the elderly (151). The patient representative 

highlighted that this might not be the case because paracetamol has a slightly smaller effect 

on pain relief. This could, however, not be included in the model because no quantitative 
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data exist on the disutility of paracetamol treatment compared with NSAID treatment. As 

a result, the same utilities were used in the HPE and non-HPE cohort in the no adverse 

event state. 

 

Table 5.7: Utility estimate of the reference group health state (no adverse drug event) and utility 

decrements associated with the adverse drug events 

Health state Utility score Source/assumption Distribution 

Reference group health statea  

No adverse event 0.78 (SD 0.25) EQ-5D-3L data from Euro heart survey of 

patients with atrial fibrillation (532) 

Beta 

Post-GI event 0.78 (SD 0.25) Same as for no adverse event Beta 

Adverse drug event related utility decrements applied to reference groupb 

GI discomfort -0.08 (± 25%)c (535, 536) Gammae 

Symptomatic ulcer -0.14 (-0.21; -0.07)d Estimate for colon/bowel symptoms from 

the Household Survey for England (437) 

Gamma 

Serious GI event -0.18 (±25%)c  Decrement based on 10 days in hospital and 

80 days post discharge (149) 

Gammae 

Stroke -0.22 (-0.26; -0.18)d (544) Gamma 

Post-stroke -0.18 (-0.23; -0.13)d (544) Gamma 

Dead 0 Utility of 0 for dead N/A 

aAge dependent utility; the reported estimate is from the reference age group of 66-70 years; adjustment to age with 
the relative relation to estimates from the reference age group in the Household Survey for England (437); 
bdecrements were assumed to last for three months; cno uncertainty level provided and an arbitrary range of ±25% 
was assumed appropriate to reflect uncertainty; d95% confidence intervals; ewhen no standard deviation was 
available, the mean itself was used in the Gamma distribution 

 

5.2.5 Analysis 

The state-transition model was built in TreeAge Pro Healthcare 2021 (546). The model was 

populated with probability, cost and health status data [5.2.4] to allow the generation of 

the point estimates and distributions of discounted outcomes (QALYs) and NHS costs in a 

cohort exposed to the HPE, and a cohort not exposed. The input parameters identified in 

section 5.2.4 were fit uncertainty distributions. Distributions appropriate for the different 

input parameters were chosen based on recommendations by Briggs et al. (2006) (547). A 

gamma distribution was used for costs and for absolute utility decrements, a beta 

distribution for utility values and either a beta distribution or Dirichlet distribution was used 

for transition probabilities. Hazard ratios were sampled from a lognormal distribution. Total 

cost of the health states per cycle were fitted a gamma distribution because it reflected the 
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natural skewness of healthcare costs. Single resource use and unit cost estimates were 

considered fixed values. The beta distribution is bound by zero and one and was therefore 

used for probabilities. However, beta distributions were only appropriate if there was one 

pathway leaving the health state (4). Hence, if the probability described a binary event or 

no event situation, the beta distribution was used. If multiple pathways were possible in 

the model, such as the probabilities leaving the no adverse event state, the beta 

distribution was not appropriate. A multivariate generalisation of the beta distribution that 

can incorporate multiple pathways, the Dirichlet distribution, was used then. If no measure 

of uncertainty was available for the beta or gamma distribution, the conservative 

assumption was made that the standard deviation defining the distribution equals the 

mean as recommended by Briggs et al. (2006) (4).  

 

Base case analysis 

In the base case analysis, probabilistic estimates were generated. The specifications of the 

model were reported in Table 5.1. The probabilistic analysis was based on 10000 samples. 

A random seed of 345 was used. Results were reported as incremental costs and 

incremental QALYs per patient. The results were scaled up to population level to 

demonstrate the economic burden of the HPE type for NHS England. The NHS dashboard 

reports the number of patients with concomitant OAC and NSAID treatment in England by 

quarters of the financial year (55). The estimate for the fourth quarter 2019/2020 (last 

available quarter at time of analysis) was used as a prevalence estimate of the HPE. The 

number of patients with the HPE was applied in the probabilistic model in TreeAge Pro 

Healthcare 2021 to generate the incremental costs and QALYs the patients with the HPE 

generate compared with the hypothetical scenario that they were not exposed to the HPE. 

The results are presented in a scatter plot. 

 

Deterministic analysis 

A deterministic analysis was conducted using the expected mean values without the 

uncertainty distributions applied in the probabilistic analysis. One deterministic analysis 

was conducted using a lifetime horizon as in the base case analysis. To test if the effects of 
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changing time horizons are comparable in the deterministic model and the probabilistic 

model, an additional deterministic analysis with a ten-year time horizon was run. 

 

5.2.6 Sensitivity analysis 

Various assumptions were changed to test robustness of the results in the probabilistic 

model. A summary of the sensitivity analyses and the values that changed is reported at 

the end of this section. 

 

Assumptions on model specifications 

The time horizon of the model was varied to understand how this impacts the results. First, 

a shorter time horizon was tested. Patients were not only followed until they reached 100 

years of age or died but for five, ten and 20 years. A five-year time horizon was used in the 

state-transition models applied in the PINCER economic evaluation (149). Results were 

thought to be more comparable if the same time horizon was chosen. A subgroup analysis 

investigated the impact of a change in the start age to 80 years to see if the intervention 

effect is age dependent. For the base case, costs and outcomes were discounted. In 

sensitivity analysis, a discount rate of 0% was tested, compared to 3.5% in the base case 

analysis. 

 

Assumptions on resolving the HPE 

In the base case, it was assumed for the HPE state-transition model that the NSAID was 

removed after a maximum of one year in no adverse event with the increased probabilities 

in the presence of the NSAID. This was used to account for the fact that practices might 

identify the HPE and remove the NSAID as part of routine monitoring. The cohort in the 

HPE model is therefore only for a maximum of four cycles at a higher risk of the ADEs. From 

the fifth cycle on, the same probabilities were applied as in the non-HPE model. In the 

sensitivity analysis, the cost-effectiveness analysis was run without this assumption, such 

that patients could experience the HPE over a longer time period. This is referred to as the 

‘No HPE correction scenario’. 
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Assumptions on input parameter choices 

The risk ratios that describe the increase in the likelihood of serious GI events and stroke 

were used from the cohort study in Chapter Four. The results of the sensitivity analysis 

conducted in Chapter Four showed varying results when specific assumptions were 

changed. To identify the impact these changes have not only on the HR but also on the 

incremental costs and QALYs, these were investigated in this chapter. The first assumption 

tested was changing the grace period added to the calculated prescription length and 

exposure periods from 30 days to 60 days (HR Chapter Four – 60-day grace). The second 

assumptions tested was using IPTW instead of PSM (HR Chapter Four – IPTW). The third 

assumption tested was a change in the washout window applied for NSAID users from three 

months to six months (HR Chapter Four – NSAID washout 6 months). The fourth 

assumptions tested was and additional exclusion criterion restricting the cohort to patients 

that have not had the respective outcome before the index date (HR Chapter Four – 

Exclusion of patients with outcome before index). In addition to varying assumptions in the 

analysis conducted in Chapter Four, the impact of using the HRs identified in the subgroup 

analysis of the ARISTOTLE trial were also tested (HR – RCT subgroup analysis) (309). A 

detailed comparison of the subgroup analysis of the ARISTOTLE trial and the observational 

cohort study conducted for this dissertation is presented in in Chapter Four [4.5.2]. 

 

The risk ratio of the impact of NSAIDs on the incidence of GI discomfort was also varied in 

sensitivity analysis. An alternative source, a systematic review and meta-analysis of RCTs, 

reviewing studies published until 1997, that defined dyspepsia as diagnoses of epigastric 

pain, dyspepsia, discomfort, nausea, bloating and anorexia reported a risk ratio of 1.19 

(95% CI 1.03 to 1.39) for NSAID users (548). The RCT data were not used for the base case 

because the estimate was older, and the meta-analysis did not represent the NSAID 

prescribing patterns in the UK. The utility associated with symptomatic ulcer was also 

varied. In the base case analysis, estimates in a population with bowel-disease were used 

as a proxy for symptomatic ulcer. In sensitivity analysis, the estimates reported for arthritis 

patients with and without symptomatic ulcer were used (538). 
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Table 5.8: Descriptions of sensitivity analyses conducted in the probabilistic model 
Scenario analysis Base case  

parameter value 

Scenario analysis parameter value Source 

No HPE correction HPE related changes in transition 

probabilities and costs applied for 

first 4 cycles in ‘no adverse event’ 

state. Then the non-HPE values 

are used. 

HPE related changes are applied as 

long as patients stay in ‘no adverse 

event’ state in the HPE model. 

N/A 

Time horizon: 20 years Lifetime (120 cycles) 20 years (80 cycles) N/A 

Time horizon: 10 years Lifetime (120 cycles) 10 years (40 cycles) N/A 

Time horizon: 5 years Lifetime (120 cycles) 5 years (20 cycles) N/A 

Start age: 80 years 70 years of age 80 years of age N/A 

Discount rate: 0% 3.5% discount rate 0% discount rate N/A 

HR Chapter Four - ---------  

60-day grace 

HR serious GI event 2.96 (1.60; 

5.46); HR stroke 2.48 (1.36; 4.53) 

HR serious GI event 2.53 (1.66; 3.86); 

HR stroke 1.79 (1.13; 2.84) 

Chapter 

Four 

HR Chapter Four ---------- 

IPTW 

HR serious GI event 2.96 (1.60; 

5.46); HR stroke 2.48 (1.36; 4.53) 

HR serious GI event 2.47 (1.40; 4.34); 

HR stroke 1.71 (0.95; 3.08) 

Chapter 

Four 

HR Chapter Four ---------- 

NSAID washout 6 months 

HR serious GI event 2.96 (1.60; 

5.46); HR stroke 2.48 (1.36; 4.53) 

HR serious GI event 3.81 (2.04; 7.09); 

HR stroke 3.11 (1.61; 6.01) 

Chapter 

Four 

HR Chapter Four ----------       

Exclusion of patients with 

outcome before index 

HR serious GI event 2.96 (1.60; 

5.46); HR stroke 2.48 (1.36; 4.53) 

HR serious GI event 3.37 (1.81; 6.25); 

HR stroke 2.33 (0.97; 5.59) 

Chapter 

Four 

HR RCT dataset HR serious GI event 2.96 (1.60; 

5.46); HR stroke 2.48 (1.36; 4.53) 

HR serious GI event 1.26 (0.59; 2.73; 

HR stroke 1.44 (0.63; 3.28) 

Dalgaard 

2020 (309) 

HR GI discomfort HR GI discomfort 2.12 (1.73; 2.58) HR GI discomfort 1.19 (1.03; 1.9) Strauss 

2000 (548) 

Utility of symptomatic 

ulcer 

Utility decrement of 0.13 Utility decrement of 0.37 Maetzel 

2003 (538) 

HR: hazard ratio with 95% confidence interval; GI: gastro-intestinal; IPTW: inverse probability of treatment weighting; RCT: 
randomised controlled trial 

 

5.3 Results 

5.3.1 Base case analysis 

The results of the analysis are reported in Table 5.9. The base case analysis reported 

incremental costs of £244 (2.5% to 97.5% credible interval -£149 to £1073) and incremental 

QALYs of -0.04 (2.5% to 97.5% credible interval -0.17 to 0.05). Both the deterministic and 

probabilistic analyses estimate higher costs and less QALYs for people who are co-

prescribed NSAIDs. The results of the deterministic and the probabilistic analysis produced 

similar results for a lifetime horizon and a ten-year time horizon.  
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Table 5.9: Costs and QALYs accrued in the HPE and the non-HPE cohort 

Analysis  
Costs generated per patient, £ QALYs generated per patient, QALY Incremental 

HPE Non-HPE HPE Non-HPE Costs, £ QALYs 

Base case analysisd 

Probabilistic analysis 2090 (464; 5731) 1846 (383; 4922) 5.80 (5.28; 6.03) 5.84 (5.42; 6.09) 244 (-149; 1073) -0.04 (-0.17; 0.05) 

Deterministic analyses 

Time horizon: lifetime 2080 1856 5.80 5.84 224 -0.04 

Time horizon: 10 years 1602 1386 4.80 4.83 216 -0.03 

Sensitivity analyses in Probabilistic model d 

No Camacho correction  2774 (582; 8489) 1846 (383; 4922) 5.70 (4.94; 5.96) 5.84 (5.42; 6.09) 928 (-703; 4186) -0.14 (-0.56; 0.11) 

Time horizon: 20 years 2070 (460; 5683) 1826 (379; 4874) 5.77 (5.26; 6.00) 5.81 (5.39; 6.05) 244 (-149; 1073) -0.04 (-0.17; 0.05) 

Time horizon: 10 years 1614 (344; 4558) 1379 (264; 3735) 4.80 (4.46; 4.96) 4.83 (4.57; 5.00) 235 (-150; 1050) -0.03 (-0.14; 0.04) 

Time horizon: 5 years 1026 (196; 3045) 815 (132; 2306) 3.06 (2.90; 3.14) 3.08 (2.97; 3.16) 211 (-158; 1010) -0.02 (-0.08; 0.03) 

Start age 80 1369 (254; 4006) 1105 (195; 3093) 2.87 (2.65; 3.01) 2.91 (2.73; 3.07) 265 (-140; 1195) -0.04 (-0.13; 0.03) 

Discount rate: 0%  2628 (594; 7135) 2364 (499; 6288) 7.15 (6.46; 7.47) 7.20 (6.63; 7.54) 264 (-146; 1131) -0.05 (-0.21; 0.06) 
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Analysis  
Costs generated per patient, £ QALYs generated per patient, QALY Incremental 

HPE Non-HPE HPE Non-HPE Costs, £ QALYs 

HR Chapter Four - 60-day grace 1956 (431; 5313) 1846 (382; 4922) 5.82 (5.36; 6.04) 5.84 (5.42; 6.09) 110 (-203; 645) -0.02 (-0.11; 0.06) 

HR Chapter Four - IPTW 1959 (429; 5379) 1846 (382; 4920) 5.82 (5.36; 6.05) 5.84 (5.42; 6.09) 114 (-210; 690) -0.02 (-0.11; 0.06) 

HR Chapter Four - NSAID washout 6 months 2301 (516; 6283) 1845 (385; 4924) 5.78 (5.16; 6.02) 5.84 (5.42; 6.09) 456 (-84; 1779) -0.06 (-0.27; 0.04) 

HR Chapter Four - Exclusion of patients with 
outcome before index 

2098 (457; 5840) 1846 (382; 4922) 5.81 (5.30; 6.03) 5.84 (5.42; 6.09) 252 (-166; 1249) -0.04 (-0.17; 0.05) 

HR - RCT datasetb 1888 (417; 5058) 1845 (385; 4908) 5.83 (5.38; 6.05) 5.84 (5.42; 6.09) 42 (-260; 506) -0.01 (-0.11; 0.07) 

HR GI discomforta 2095 (464; 5748) 1846 (385; 4915) 5.80 (5.28; 6.03) 5.84 (5.42; 6.09) 249 (-150; 1099) -0.04 (-0.17; 0.05) 

Utility symptomatic ulcerc 2090 (464; 5731) 1846 (383; 4922) 5.80 (5.28; 6.03) 5.84 (5.42; 6.09) 244 (-149; 1073) -0.04 (-0.17; 0.05) 

aHazard ratio from Strauss et al. (2002) (548); bhazard ratio from analysis of the ARISTOTLE trial dataset (309); cutility from Maetzel et al. (2003) (538); dall expected values describe the 

mean with 2.5% and 97.5% percentile, the credible interval; HPE: hazardous prescribing event (Concomittant OAC and NSAID use); HR: hazard ratio; GI: gastro-intestinal; IPTW: inverse 

probability of treatment weighting; NSAID: non-steroidal anti-inflammatory drugs; RCT: randomised controlled trial; QALY: quality-adjusted life-years 

 



  

213 
 

5.3.2 Sensitivity analysis 

Results of the sensitivity analysis are reported in Table 5.9. Releasing the assumption that 

HPEs are detected and resolved after at least one year, generated 3.5 times more QALYs 

and 3.8 times higher costs than the base case. With increasing time horizon, the 

incremental costs and QALYs increased as well. After ten years (40 cycles), 50.7% of the 

patients died in the non-HPE cohort and 51.7% in the HPE cohort (results not reported). At 

100 years of age (lifetime horizon), all patients were dead in both scenarios. Changing the 

source for the HR of GI discomfort, the utility of symptomatic ulcer or applying HRs for 

stroke and serious GI events from an analysis that excludes patients with the respective 

outcome prior to the index date did not impact the incremental costs and QALYs. The 

smaller HRs for serious GI events and stroke (IPTW and 60-day grace period), as well as the 

HRs from the subgroup analysis of the ARISTOTLE trial reduced the incremental costs and 

QALYs. Excluding patients with NSAID use up to six months before index date in Chapter 

Four increased the HR for stroke and serious GI events and resulted in higher incremental 

costs and QALYs.  

 

Incremental costs and QALYs at population level 

According to the NHS dashboard, 13399 patients are exposed to the HPE with a 

concomitant NSAID and OAC prescription (336). Over their lifetimes, these patients are 

expected to incur over £3 million more and generate more than 500 fewer QALYs than 

would be expected without exposure to the HPE. The state-transition model assumed that 

the HPE is corrected after a maximum of one year. The probabilistic results for 10000 

iterations are reported in Figure 5.2. Over 70% of the data points are in the North-West 

quadrant, resulting in higher costs and lower QALYs for patients with the HPE.  
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Figure 5.2: Scatter plot for the probabilistic analysis of 13999 patients with and without the HPE 
with 10000 iterations 

 

 

5.4 Discussion 

5.4.1 Principal findings 

In this chapter, a state-transition model was constructed modelling treatment pathways 

related to ADEs associated with NSAID use in anticoagulated patients [Dissertation 

Objective Four]. The key ADEs associated with NSAID use in anticoagulated patients were 

GI discomfort, symptomatic ulcer, serious GI events and stroke. Where possible, input 

parameters were generated from data of the cohort study conducted in Chapter Four, e.g., 

the increased likelihood of serious GI events and stroke associated with NSAID use. The 

probabilistic analysis suggests that exposure to the HPE generates £244 (2.5% to 97.5% 

credible interval -£149 to £1073) of incremental costs to NHS England and -0.04 (2.5% to 

97.5% credible interval -0.17 to 0.05) QALYs over a lifetime, assuming the HPE is detected 

-4000000

1000000

6000000

11000000

16000000

21000000
In

cr
em

e
n

ta
l C

o
st

, £

Incremental Effectiveness, QALYs

Incremental Cost-Effectiveness, HPE vs. non-HPE



  

215 
 

and resolved after a maximum exposure of 12 months [Dissertation Objective Five]. Even 

under the assumption that the HPE is automatically identified and resolved after a 

maximum of 12 months, the incremental costs increased and the incremental QALYs 

decreased with longer time horizons. This suggests that even if the HPE is resolved after a 

maximum of one year, the long-term consequences of the HPE, in this example mainly the 

long-term care costs and increased mortality after a stroke event, increase with time. 

Changing the start age to the age of 80 increased the incremental costs and QALYS 

compared to the start age of 70 years. This could be a result of the decreasing utility with 

age. Utility decrements were applied as absolute decrements; hence, the relative decrease 

is higher when the base utility is smaller. 

 

The correction of the HPE after a maximum of 12 months sojourn time in the no adverse 

event state with the HPE was found to generate less than a third of the incremental costs 

and QALYs compared with the sensitivity analysis without this assumption. The HPE 

correction was assumed to acknowledge the potential that HPEs were detected in annual 

patient reviews in the practices. However, the HPE was associated with higher costs and 

fewer QALYS even with the conservative adjustment. 

 

While the incremental costs and QALYs were robust to most changes tested in sensitivity 

analysis, the results were sensitive to the source for the HRs for serious GI events and 

stroke. Serious GI events and strokes are the ADEs associated with the highest costs and 

loss of quality of life in this chapter. Changing the impact of the HPE on the risk of these 

events was expected to affect the results in this chapter. Depending on the method applied 

in Chapter Four to generate the HRs, the extend of the effect of the HPE on incremental 

costs and QALYs changed. Smaller HRs, such as in the analysis using IPTW or a 60-day grace 

period, resulted in smaller incremental effects. When non-significant HRs were applied 

from RCT subgroup analysis, the incremental economic impact was smaller. Reasons why 

the results from the RCT subgroup analysis might have been diluted were discussed in 

Chapter Four [4.5.2].  

 

Exposure to the HPE was associated with a substantial financial burden to the healthcare 

provider. If prevalent cases of the HPE were avoided and these anticoagulated patients 
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would not have had a concomitant NSAID prescription, NHS England could save about £3 

million in healthcare costs and health related quality of life could be improved by over 500 

additional QALYs. While this estimate describes all prevalent cases, future research could 

investigate incident cases per year to estimate the yearly economic burden to NHS England. 

 

5.4.2 Comparison to other studies 

Only one study was found that used a cohort state-transition model to estimate the impact 

of NSAID use in anticoagulated patients (152). Foy et al. (2020) assessed the economic 

impact of various NSAID related HPEs including NSAID use in anticoagulated patients to 

inform a cost-effectiveness analysis of an intervention. The same state-transition model 

was used by Foy et al. (2020) for all NSAID related HPEs. Hence, the model structure was 

not specific to the population of anticoagulated patients. The results were not reported for 

the individual models, so no direct comparison of the results could be made. The model 

structure was based on a previously published model in a clinical guideline for 

osteoarthritis from 2008 (492). In addition to the ADEs modelled in this chapter, Foy et al. 

(2020) also modelled heart failure and myocardial infarction as ADEs affected by NSAID 

use. In the OAC specific model in this chapter, there was no indication that the risk of 

myocardial infarction or heart failure was increased with NSAID use in anticoagulated 

patients (308, 309) and no other OAC population specific estimates were available. The risk 

ratios used in Foy et al. (2020) to describe the increased risk with NSAIDs were derived from 

electronic health records from the CPRD. The dataset was not linked with hospital data as 

was done in Chapter Four. The number of GI bleeding events in primary care alone is known 

to underestimate the risk of GI bleedings (431), which might have overestimated the costs 

and QALY loss associated with the HPE type. 

 

Similar to this study, Foy et al. (2020) assumed that patients are switched from the NSAID 

to paracetamol once an ADE occurs. Different was that patients in the ASPIRE model 

sojourn in a post-GI event state until the end of the time horizon or until they die. Hence in 

contrast to this model, no further events are possible once any of the post-GI event states 

is reached. This simplification of the model by Foy et al. (2020) might result in an 

underestimation of the overall costs and QALYs generated in the model.  
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Another difference between the models was how long-term effects of ADEs were 

modelled. The ASPIRE model assumes no long-term effect on utilities for all ADEs except 

for stroke, similar to the model in this study. However, Foy et al. (2020) assumed long-term 

costs associated with symptomatic ulcer and serious GI events of £20.00 per three-months 

cycle over the lifetime of the patients. The costs are based on prescriptions costs of 

continuous treatment with PPIs (492). The most common full-dose PPI, however, costs 

£3.79 for three months (528). It was unclear how the £20.00 were derived. In the de novo 

state transition model in this thesis, no long-term costs were assumed for these health 

states. According to the NICE guidelines on peptic ulcer, treatment with PPIs is only 

recommended for eight weeks and therefore covered in the cost of the acute health state 

(522).  

 

In the published literature, two additional models were identified that assessed the 

economic impact of NSAID related HPEs (151, 227). Elliott et al. (2014) presented cost per 

QALY associated with NSAID use without a PPI in patients with a history of peptic ulcer 

compared with concomitant NSAID and PPI use (227). A history of peptic ulcer is associated 

with an increased risk of serious GI events, similar to OAC use but not with a risk of stroke. 

A prescription of the gastroprotective PPIs is assumed to reduce this impact. The model 

structure is very similar to the structure chosen for this chapter. However, the comparator 

is slightly different because the HPE is not resolved by removing the NSAID but by adding a 

PPI. The authors did not find a difference in QALYs but identified higher costs in the HPE 

cohort of £399. This suggests that this NSAID related HPE has a smaller impact on 

healthcare costs compared with NSAID use in anticoagulated patients. However, the 

comparison has to be interpreted with caution. Some key assumptions differed in the 

analyses, such as the time horizon that was only five years in the study by Elliott et al. 

(2014), and the costs associated with the ADEs that were much lower than today.  

 

Moriarty et al. (2019) built a state-transition model to estimate incremental costs and 

QALYs associated with NSAID use in patient at least 65 years of age (151). NSAID users 

generated incremental costs of €806 and 0.07 less QALYS compared to paracetamol users. 

These estimates were higher compared with the incremental costs and QALYs in this 

chapter (incremental costs: £244; incremental QALYS: 0.04). This comparison, however, 
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has to be treated with caution because the model structure and design differed, such as a 

time horizon of 35 years and no correction of the HPE after one year’s exposure in Moriarty 

et al. (2019). The estimates in this chapter without the HPE correction yielded estimates 

more similar to the result in Moriarty et al. (2019) with regards to costs (incremental costs: 

£928) but not with regards to QALYs (incremental QALYs: 0.14). The higher QALY gain 

estimated for NSAID users in this chapter could be a result of the baseline characteristics 

of the OAC cohort. The OAC population did not only include the risk factor for serious GI 

events that was OAC use but also included patients over 65 years, which is associated with 

an increased risk of bleeding on its own and was therefore investigated by Moriarty et al. 

(2019). 

 

5.4.3 Strengths and limitations 

This was the first study to estimate projected harm and healthcare costs of NSAIDs in a 

population with OACs using specific input parameters for the OAC population. The various 

sensitivity analyses suggested that the conclusions from the model were robust to changes 

in model specifications and most parameter changes [Table 5.9]. The model was 

conceptualised in cooperation with clinicians and patient representatives to face-validate 

required assumptions. The final model was also reviewed by another health economist to 

improve internal validity.  

 

Another key strength of this model was the availability of real-world evidence from the 

cohort study conducted in the linked CPRD/HES/ONS dataset. Evidence on HPE related 

harm is sparse (31), and one of the main limitations in previous models was the lack of data 

to populate the model with appropriate estimates of HPE related harm (227). A challenge 

in cohort models is the heterogeneity of studies that contribute input parameters to the 

model (440). Even though the state-transition model in this thesis still incorporated data 

from other studies, key input parameters that define the difference between the HPE and 

non HPE model were derived from the same cohort, the same methods and were from UK 

specific data. This increased the internal validity of the estimates and estimates could be 

adjusted to the specific requirements of the model. For example, baseline transition 

probabilities were generated for patients with and without NSAIDs. This was not reported 
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in other studies. The example of the ASPIRE study demonstrates the challenges of using 

estimates from the literature that are often not fit for purpose. In ASPIRE, instead of 

assessing the increased likelihood of ADEs in anticoagulated patients, the authors used the 

likelihood of events from a normal population with NSAIDs and paracetamol. This approach 

has various limitations compared to assessing the risk of NSAIDs in anticoagulated patients 

directly as was done in Chapter Four. First of all, the model by Foy et al. (2020) applied a 

risk ratio that does not describe what it was used for in the model. The risk ratio described 

the increased risk of serios GI events of OAC and NSAIDs compared to no treatment at all. 

Secondly, the authors also assumed that OACs have the same effect on transition 

probabilities of symptomatic ulcer as on serious GI events. In the reviews conducted as part 

of this chapter, no evidence was found that OACs effect the risk of symptomatic ulcer (460, 

496, 497). Finally, the impact of OAC treatment on stroke was not accounted for. Overall, 

the model by Foy et al. (2020) did adjust probabilities for some events to the increased risk 

of ADEs in patients with OACs but did not adjust the increased likelihood associated with 

the HPE to the specific model population. Compared to the model by Foy et al. (2020), the 

strength of this chapter was that it reports HPE and non-HPE probabilities for the specific 

OAC population. This was only possible because the specific harm estimates could be 

generated from linked health records to inform the state-transition model. Estimates from 

the literature are often not fit for purpose, as with the model by Foy et al. (2020), and 

methods are often not clearly described to appraise the quality of data difficult. 

 

A general limitation of cohort models, such as the de novo state-transition model in this 

chapter, is that they only represent a simplification of reality to be workable (440). More 

complex patient level simulation models (micro-simulation models) can accommodate 

patient heterogeneity and it is easier to model event history compared with cohort models. 

In order to accommodate patient heterogeneity, micro-simulation models require patient 

level data to describe outcomes based on specific baseline characteristics. In the cohort of 

anticoagulated patients, data on each different type of OAC would be required because the 

risk of serious GI events depends on the type of OAC used. If these data are available, micro-

simulation models simulate outcomes for each patient with specific characteristics and 

uses these to estimate a distribution of outcomes in a potentially heterogenous sample 

(549). Another advantage of micro-simulation models is the ability to ‘memorize’ prior 
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health states. In state-transition models, input parameters can only depend on the current 

health state not on those before. This is particularly helpful in state-transition models that 

become too complex when multiple tunnel states and post-GI event states are included. 

However, most ADEs associated with NSAID use were not associated with long term impact 

on input parameters and data availability around subsequent events was very low. 

Therefore, the ability of a micro-simulation model to account for patient history, would not 

have been required. 

 

An example for simplification of reality in the de novo state-transition model, was the 

assumption that NSAID use lasted for one year until the HPE was detected by the practice 

or an ADE occurred. NSAIDs in the UK are usually prescribed on a short-term basis for 

example for episodes of pain or gout, especially in patients over 65 years of age. These 

episodes are often recurring and if the patient had no ADEs in the first NSAID treatment 

episode, the GP might prescribe the NSAID again. This recurring pattern was not 

represented in the model. It was assumed that a patient in the no adverse event state could 

have a maximum of 12 months of NSAID prescriptions after which the HPE would have 

been detected. For the model, it made no difference if this one-year NSAID use was 

incorporated in a recurring pattern or in the first four cycles. Experts contacted for face 

validation of the model assumptions agreed that this was a reasonable approach, but it 

does not represent reality.  

 

5.4.4 Implications for thesis 

This chapter projected harm and costs associated with NSAID use in anticoagulated 

patients to estimate incremental costs and QALYs. To assess the economic impact a 

reduction of HPE rates has on healthcare costs and patient outcomes, this research is 

pivotal. The state-transition model can be combined with the decision-analytic model 

[3.2.1.4] to answer the question of cost-effectiveness of SMASH including consequences of 

HPEs that were not reported or incorporated in the cost-effectiveness analysis in Chapter 

Three. 
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5.4.5 Implications for policy makers 

The Department of Health and Social Care already acknowledged the high risk and potential 

burden of NSAID use in anticoagulated patients by choosing it as one of the key HPE types 

as part of a programme of work to reduce medication error and promote safer use of 

medicines (55). Part of this programme of work was the NHS Medication Safety Dashboard. 

The dashboard links the HPE with hospitalisation rates for GI bleeding. The study in this 

chapter takes this approach to quantify the burden of HPEs further. By incorporating 

multiple ADEs associated with the HPE, primary and secondary care managed ADEs, and 

modelling the consequences over a lifetime provides an estimate of the burden of this HPE 

type in England. The patients exposed to the HPE cost the NHS about £3 million, and more 

than 500 QALYs are lost over their lifetime. These estimates are likely to inform policy 

decisions on which HPEs should be targeted by interventions. Compared to the incremental 

costs and QALYs associated with the HPE of NSAID use in patients with peptic ulcer by Elliott 

et al. (2014) and NSAID use in patients over 65 years of age, this HPE seems to have a higher 

impact on costs and outcomes (149, 151). It is therefore important to develop interventions 

that effectively reduce HPE types with a high economic burden as demonstrated in this 

dissertation for NSAID use in anticoagulated patients. Policy makers should focus on 

supporting the implementation of interventions that target HPE types that are associated 

with a high economic burden and occur frequently in England.  

 

5.4.6 Considerations for future work 

One of the limitations of this state-transition model was the data availability already 

pointed out in earlier models (149). While some of the gaps could be filled by generating 

the estimates from electronic health records [Chapter Four], other gaps remained. Utility 

estimates for the GI adverse event states were under researched and up to date utilities in 

UK populations assessed using EQ-5D-3L questionnaires rarely available. Of those 

estimates reported, methods were often not described transparently and sample sizes 

were small (537, 538). Future research could focus on assessing utilities for the GI adverse 

event to reduce uncertainty in the model. However, sensitivity analysis showed only minor 

effects of changing the utility of symptomatic ulcer. A value of information analysis could 

be performed to assess which parameters are worth studying in more detail. 
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Future research could also look at the economic impact of other HPE types. As part of the 

PROTECT programme grant, state-transition models are already being developed for other 

HPE types targeted by SMASH and PINCER. Comparing the economic impact of the different 

HPE types will be informative to identify those where a reduction in HPE rates would be 

most favourable. Net monetary benefits at the UK WTP threshold could be used not only 

to identify the most severe HPE types but also to get an understanding of an upper bound 

of potential intervention costs. An intervention resolving all HPEs cannot cost more than 

the incremental net monetary benefit estimated for the HPE types it targets to be cost-

effective at the WTP threshold. 

 

5.4.7 Conclusion 

NSAID use in anticoagulated patients is not recommended and patients with concomitant 

NSAID and OAC treatment generate higher costs and less QALYs compared with 

anticoagulated patients without NSAID use. Under the premises that HPEs and their 

economic impact are mostly avoidable, resolving the HPEs could reduce the overall 

healthcare costs and improve quality of life in anticoagulated patients. 

 

This chapter reported a method to utilise state-transition models to project long term 

consequences of HPEs associated with HPE related ADEs managed in primary and 

secondary care. How this can be achieved was illustrated for the HPE of NSAID use in 

anticoagulated patients. The method can also be used to estimate the economic impact of 

other types of HPEs.
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Chapter 6 - Cost-utility analysis of SMASH 

 

Chapter Six reports an economic evaluation of SMASH in reducing NSAID use in 

anticoagulated patients. It is described how harm from NSAIDs in anticoagulated patients 

is combined with the cost and effectiveness of the intervention to estimate incremental 

costs and QALYs. The discussion elaborates on the interpretation and the wider 

implications of this study. 

 

6.1 Introduction 

The economic analysis presented in Chapter Three generated the cost per HPE avoided by 

SMASH. This estimate is informative in identifying and valuing the resource use associated 

with SMASH but does not allow an interpretation of the overall effect of the intervention 

on patient related health outcomes and healthcare costs.  

 

A key limitation of existing economic evaluations of patient safety programmes was either 

not including overall effect of the intervention on patient related health outcomes and 

healthcare costs, or having to rely on the scarce literature available on linking HPE with 

harm, patient outcomes and healthcare costs if they did (31, 146, 241) [Chapter Two]. Cost-

effectiveness analyses of patient safety programmes rarely used patient outcomes as a 

measure of effectiveness and quality of life estimates were often derived from studies with 

weak study designs as pointed out in a review of economic evidence under the mandate of 

the European Commission (241). In the NICE reference case, utility weights for health 

related quality of life are recommended as the outcome measure of choice. The authors 

highlight the need to use quality of life (measured in QALYs) as the effectiveness outcome 

measure to enable comparability of interventions and to incorporate the potential benefit 

of interventions on health related quality of life. Additionally, cost estimates of ADEs 

associated with HPEs were diverse and variability of the reported results was high (146, 

241). In the literature review of decision-analytic models assessing the economic impact of 

HPEs [2.8], the link between harm and the associated costs and outcomes was found to be 

one of the main sources of uncertainty. The majority of studies relied on estimates from 
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the literature on the cost of ADEs by ADE severity (156, 220, 222, 224, 225) and relied on 

expert elicitation for QALYs for each severity level (156, 219, 222, 226). The severity levels 

were estimated by experts or by using severity distributions from the literature. There are 

several limitations to this approach. First, the data availability was a major limitation (30, 

441). Estimates by severity level were derived from studies that were run in different 

countries, all of which were outdated and based on small sample sizes (241). These were 

all factors considered to have a major impact on the cost of ADEs according to a systematic 

review of cost of ADEs (30). Consequently, it is important to use country specific and up to 

date estimates to avoid biased cost estimates for ADEs. Another limitation of existing cost 

estimates was the focus on costs of secondary care events alone. This underestimates the 

true economic burden by not including ADEs managed in primary care or the impact on 

death rates (441). A third limitation of this approach was that the cost of ADEs in the 

literature are too variable to obtain precise cost estimates (30). Often studies did not 

investigate individual HPE types, and the use of cost estimates assessed for a different type 

of HPE or a group of HPE types was not considered appropriate because of the huge 

variation between cost of ADEs associated with a specific HPE type. 

 

The literature review in Chapter Two also identified key features of the study design that 

enabled studies to conduct cost-utility analyses. The first one was to focus on specific HPEs 

that can be linked to an actual measure of harm, for instance, a specific ADE associated 

with the HPE type. Studies modelling the economic impact of each HPE type individually, 

instead of different types of HPEs grouped by severity, were able to use more robust 

estimates on costs and QALYs. The second feature was to attach costs and utilities not to 

the HPE itself but to attach them to specific health states related to harm from the HPE. 

Four studies were found that used this approach, and this chapter utilises these features 

(149-152). Not any type of ADE is simulated, but the occurrences of specific ADEs 

associated with each HPE targeted by the intervention are simulated. 

 

The cohort study conducted for this dissertation [Chapter Four], aimed to fill the gap in the 

literature on harm from HPEs. In Chapter Five, the economic impact that results from harm 

associated with this HPE type was assessed. In this chapter, the cost per HPE avoided 

analysis conducted in Chapter Three was extended to enable further interpretation of the 
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consequences of reductions of NSAID use in anticoagulated patients by SMASH. The overall 

aim was to determine the cost-effectiveness of SMASH in reducing NSAID use in 

anticoagulated patients compared with standard practice beyond the data from the 

primary effectiveness study. This aim was achieved by combining the HPE specific state-

transition model [Chapter Five] with the cost per HPE avoided analysis [Chapter Three] to 

identify probabilistic cost per QALY generated by SMASH. SMASH targets a defined set of 

HPE types. For the analysis reported in this thesis, NSAID use in anticoagulated patients 

was used as an example case study to demonstrate how these different analyses can be 

combined. 

 

6.2 Methods 

The methods describe the design of the economic evaluation, the input parameters for the 

effectiveness of SMASH, the intervention cost of SMASH and the economic impact of the 

HPE type and how these are combined and analysed to assess the cost-effectiveness of 

SMASH in reducing NSAID use in anticoagulated patients. 

 

6.2.1 Design of the economic evaluation 

This chapter reports on a cost-utility analysis of SMASH compared with standard care in 

reducing NSAID use in anticoagulated patients in primary care. Cost-utility analysis were 

described in Chapter Two [2.8]. The economic evaluation followed guidelines from CHEERS 

(278). The CHEERS checklist can be found in Appendix C, where sections addressing key 

CHEERS criteria in this document are reported. The state-transition model conceptualised 

in Chapter Five and used in this analysis followed AdViSHE reporting and validating 

standards (442). The AdViSHE checklists and how its requirements were met is reported in 

Appendix L. 

 

6.2.1.1 Target population 

The target population in this cost-utility analysis were patients at risk of the HPE type in an 

average practice in Salford. Patients at risk had a mean age of 70 years, 55% were men and 

45% were women based on population characteristics in Chapter Four [4.4.1]. The mean 
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age and gender distribution identified in the cohort of anticoagulated patients in CPRD 

practices is reported to be representative of the UK population (342, 343). The same cohort 

characteristics at baseline were used in Chapter Five in the state-transition model 

estimating the economic impact of the HPE type.  

 

6.2.1.2 Strategies compared 

The intervention investigated in this chapter was SMASH, a pharmacist-led electronic audit 

and feedback intervention. The alternative strategy that SMASH was compared to in this 

economic evaluation was standard care. In standard care, no interventions or measures to 

reduce HPEs, other than standard annual reviews by the GP, were in place. The intervention 

was described in Chapter Two [2.9], and the intervention and comparing strategies were 

discussed in detail Chapter Three [3.2.1.2].  

 

6.2.1.3 Primary outcomes 

The primary health outcome was health related quality of life measured in QALYs [2.8] as 

recommended in the NICE reference case (3). Costs were estimated from the NHS/PSS 

perspective for the 2019 cost year. Costs and QALYs were used to measure the incremental 

cost-effectiveness of SMASH versus standard care. Costs and benefits were discounted 

using a 3.5% discount rate from the treasury (550) as recommended by NICE (3).  

 

6.2.1.4 Structure of decision-analytic model 

The underlying decision-analytic model of the cost-utility analysis is reported in Figure 6.1. 

It consisted of two stages: (i) the cost per HPE avoided analysis based on a decision tree, 

and (ii) the HPE specific state-transition model. In the decision tree, the short-term impact 

of the decision to implement SMASH, or not, on HPE rates (12-months time horizon) and in 

the state-transition model the longer-term sequelae of HPE exposure were modelled 

(lifetime horizon). The HPE specific state-transition model is populated with input 

parameters for the HPE cohort (M1) or input parameters for the non-HPE cohort (M2).  
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Figure 6.1: Decision-analytic model of the two-stage economic analysis estimating cost per QALY 
generated by SMASH compared with standard care 

 

 

Details of the input parameters that differ between HPE and non-HPE cohort were reported 

in Chapter Five [5.2.4]. In the decision tree, the absolute number of patients exposed to an 

HPE and not exposed but at risk of the HPE in an average practice was assessed. Combined 

with the patient-level expected costs and QALYs in the state-transition model, the 

incremental costs and QALYs associated with SMASH in reducing NSAID use in 

anticoagulated patients was generated for an average practice. 

 

6.2.2 Effectiveness of SMASH 

The effectiveness of SMASH was described by the reduction in HPE rates as described in 

detail in Chapter Three [3.2.2]. In Chapter Three, effectiveness was reported for a 

composite of all HPEs. In this chapter, only the effectiveness of SMASH in reducing NSAID 

prescribing in anticoagulated patients is relevant. The probability of NSAID use in 

anticoagulated patients (𝐻𝑃𝐸𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑀𝐴𝑆𝐻) was based on the regressed ITSA results 

for SMASH and the denominator (𝑁𝑜 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑎𝑡 𝑟𝑖𝑠𝑘) based on the observed number 

of patients with an OAC prescription at 12 months. 

 

6.2.3 Cost of SMASH 

The cost of SMASH was estimated in Chapter Three. The majority of cost components were 

fixed and independent of the number of HPEs reviewed: (i) server costs, (ii) pharmacist 

training, (iii) initial practice training, and (iv) IT support. The costs for managing HPEs, on 

the other hand, was variable dependent on the number of HPEs reviewed. Including the 

overall costs of managing all HPEs in this HPE specific cost-utility analysis would 
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overestimate the costs generated for only one HPE type. The variable costs were therefore 

allocated to the specific HPE (NSAID/OAC HPE). The resource use items required to 

estimate the cost component of managing HPEs were reported in detail in Chapter Three 

[3.2.3.3]. In summary, resource use for the management of HPEs entailed (i) the number of 

HPEs reviewed, (ii) the percentage of HPEs requiring patient contact, and (iii) the time 

pharmacists and GPs spent with managing HPEs that require patient contact and those that 

do not require patient contact. To allocate the cost, of managing HPEs to the specific 

NSAID/OAC HPE type, the number of HPEs reviewed was adjusted to represent only 

NSAID/OAC HPEs compared with the analysis in Chapter Three. The number of NSAID/OAC 

HPEs reviewed were assessed based on the number of new patients flagged by SMASH that 

had concomitant treatment with OACs and NSAIDs within 12 months. The time spent 

managing HPEs and the percentage of HPEs requiring patient contact were not adjusted. It 

was assumed that these are the same for all type of HPEs because no HPE specific data was 

available. 

 

6.2.4 Economic impact of NSAID use in anticoagulated patients 

The state-transition model conceptualised to assess the economic impact of NSAID use in 

anticoagulated patients was reported in Chapter Five. The impact the HPE had on the 

incidence of HPE specific ADEs was modelled. HPE specific ADEs were GI discomfort, 

symptomatic ulcer, serious GI events and stroke. The economic impact of NSAID use in 

anticoagulated patients was reported as incremental costs and QALYs. 

 

6.2.5 Incremental economic analysis 

The unit of analysis in this economic evaluation was an average practice in Salford. The 

observed practice-level HPE rates and costs at 12 months (base case) for the impact of 

SMASH versus standard care were incorporated into the HPE-specific model to generate an 

estimate of incremental QALYs and NHS costs associated with a reduction of NSAID use in 

anticoagulated patients, per practice, for SMASH versus standard care.  
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Base case analysis 

The incremental cost per additional QALY generated by SMASH was denoted as 

 

Equation 6: 
(𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝑆𝑀𝐴𝑆𝐻 − 𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑎𝑟𝑒)

(𝑇𝑜𝑡𝑎𝑙 𝑄𝐴𝐿𝑌𝑠𝑆𝑀𝐴𝑆𝐻 − 𝑇𝑜𝑡𝑎𝑙 𝑄𝐴𝐿𝑌𝑠 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑎𝑟𝑒)
 

 

Monte Carlo simulation with 10000 iterations was conducted, utilising Microsoft Excel to 

obtain the 2.5% and 97.5% percentiles of the cost per QALY generated distribution. The 

incremental costs and QALYs from the probabilistic analysis were plotted on a cost-

effectiveness plane. The probability of SMASH being cost-effective at different WTP 

thresholds was illustrated in a cost-effectiveness acceptability curve (CEAC). Results were 

also presented as incremental NMB for the WTP threshold of £20000 (551). 

 

Equation 7: 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑁𝑀𝐵 = 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡 ∗ £20000 − 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 

 

A threshold analysis of the cost of SMASH, the absolute difference in HPE rates between 

SMASH and standard care, and the number of patients at risk of a HPE were conducted in 

TreeAge Pro Healthcare 2021 to identify the scenarios under which SMASH is cost-effective 

in reducing NSAID use in anticoagulated patients at the WTP threshold of £20000. 

 

6.2.6 Sensitivity analysis 

 

Scenario analyses in probabilistic model 

The PSA was run to identify how different scenarios of model specifications or key 

structural assumptions would change the incremental costs and QALYs. Parameter changes 

or structural assumptions that impacted the results in the cost per HPE avoided analysis 

[Chapter Three] or the economic impact analysis of the HPE [Chapter Five] were tested in 

this cost-effectiveness analysis, as well as different allocation methods of the intervention 

costs. The former sensitivity analyses were described in the respective chapters and the 

relevant assumptions are reported in Table 6.1.  
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Table 6.1: Description of the scenarios tested in the probabilistic model 

Scenario  Assumption 

Decision tree  

   Delivery of 

   SMASH for  

   6 months 

The cost of delivering SMASH, the HPE rate with SMASH and the HPE rate 

with standard care were changed to the estimates assessed at 6 months after 

intervention start. 

State-transition model 

   Time horizon:  

   10 years 

Instead of 120 cycles, the state-transition model was run for 40 cyclesa. 

   Time horizon:  

   5 years 

Instead of 120 cycles, the model was run for 20 cyclesa. 

   No HPE 

   correction 

The NSAID was only removed after ADEs occurred. The HPE was not detected 

and resolved after a maximum of 12 months as assumed in the base case.  

   Discount rate: 

   0% 

The base case analysis applies a 3.5% discount rate to costs and outcomes. To 

test what impact his makes, a scenario was run with no discounting. 

State-transition model – HR stroke/serious GI sourcea 

HR Chapter Four - ------

60-day grace 

Extending the grace period after calculated prescription stop dates to 60 days 

in the cohort study in Chapter Four; HR serious GI event 2.53 (1.66; 3.86); HR 

stroke 1.79 (1.13; 2.84). 

HR Chapter Four -------

IPTW 

Using IPTW instead of propensity score matching in the cohort study in 

Chapter Four; HR serious GI event 2.47 (1.40; 4.34); HR stroke 1.71 (0.95; 

3.08). 

HR Chapter Four --------

NSAID washout 6 

months 

Extending the washout period for NSAID use before index date to 6 months in 

the cohort study in Chapter Four; HR serious GI event  

3.81 (2.04; 7.09); HR stroke 3.11 (1.61; 6.01). 

HR - RCT dataset 

(Dalgaard (2020)) 

Using increased risk ratios from a subgroup analysis of the ARISTOTLE arm 

instead of results from the cohort study in Chapter Four; HR serious GI event 

3.37 (1.81; 6.25); HR stroke 2.33 (0.97; 5.59). 

Allocation of costs 

   Total cost by 

   number of 

   HPE types 

Fixed and variable costs depend on the number of HPE types (n=10) targeted 

by the intervention. Each HPE type contributes to the total cost in the same 

way. 

   Variable cost 

   by number of 

   HPE types 

Only variable costs depend on the number of HPE types (n=10) targeted by 

the intervention. Each HPE type contributes to the variable costs in the same 

way. 

   Total cost by 

   proportion of 

   HPE type 

Fixed and variable costs depend on the number of HPEs (n=1283) identified at 

baseline. How much each HPE type contributes to the total cost is dependent 

on its proportion of all HPEs. Of all HPEs, 3.43% were NSAID/OAC HPEs. 

   Variable cost 

   by proportion 

   of HPE type 

Only variable costs depend on the number of HPEs (n=1283) identified at 

baseline. How much each HPE type contributes to the total cost is dependent 

on its proportion of all HPEs. Of all HPEs 3.43% were NSAID/OAC HPEs. 
aDetails were reported in Chapter Five [5.3.2]; ADEs: adverse drug events 
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Three different methods were tested to allocate the costs compared with the analysis in 

Chapter Three. In the base case analysis, costs and HPE rates were adjusted to describe 

only the cost and HPE rate of the specific NSAID/OAC HPE. In one scenario analysis, the 

total intervention cost of £2135 as estimated in Chapter Three [3.3.3], was divided by the 

number of HPE types targeted by SMASH, assuming each of these ten HPE types 

contributed the same to the total intervention cost. In a second sensitivity analysis, the 

intervention costs were allocated to the HPE type by using a weight based on the 

prevalence of the HPE. This prevalence weight was generated from the proportion of 

NSAID/OAC HPEs among all HPEs at baseline. The absolute number of HPEs in the SMASH 

study in all practices was 1283 at baseline and 44 (3.43%) of these were anticoagulated 

patients with concomitant NSAID treatment (48). The third sensitivity analysis of an 

allocation method of costs adjusted only the variable cost of £1840. The first and second 

scenario adjusted the total cost, fixed and variable, of the intervention. The variable costs 

were the cost for HPE management that depended on the number of HPEs reviewed. These 

were allocated to the specific HPE type by dividing them by the total number of HPE types 

that was ten in one scenario and by the proportion of the HPE among all HPEs in another 

scenario. The intervention costs derived from each allocation method are reported in the 

results.  

 

One-way sensitivity analysis in the deterministic model 

Parameter uncertainty was already accounted for in the PSA. Additionally, one-way 

sensitivity analysis was conducted in the deterministic model to identify how individual 

parameters impact the incremental NMB. Parameters were tested for the input for the 

decision tree (effectiveness estimate, number of patients at risk and intervention costs) 

and the state-transition model (health state costs, health state utilities and decrements, 

mortality estimates, increased risk ratios for ADEs associated with the HPE and the discount 

rate). The parameter values applied in the sensitivity analysis are reported in Table 6.2. The 

confidence intervals or standard deviations reported in the respective sources were used 

to identify ranges for the one-way sensitivity analysis. Where no measure of uncertainty 

was reported in the source, a range of ±25% was used. 
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Table 6.2: Parameter ranges applied in one-way sensitivity analysis 

Variable in decision-analytic model 
Expected 
value 

Low 
range 

High 
range 

Source of 
uncertainty 

Input decision tree      

Absolute difference, HPE rate with SMASH vs. 
historical comparator 

0.08% -0.12% 0.26% 95% CI 

HPE rate SMASH 1.12% 0.82% 1.50% 95% CI 

Number of patients at risk per practice 91.16 73.00 109.00 SD 

Cost of SMASH, £ 380 73 478 Allocation 
method of costs  

Input state-transition model 
    

Health state cost, £ 
    

   No adverse event, with HPE 
7.68 5.76 9.6 ±25% 

   No adverse event, no HPE 
19.06 14.30 23.83 ±25% 

   Serious GI event 
3137.45 2652.00 3623.00 95% CI 

   Symptomatic ulcer 
571.36 428.52 714.20 ±25% 

   GI discomfort 
34.18 25.64 42.73 ±25% 

   Stroke 
10645.86 8937.12 12354.60 95% CI 

   Post-stroke 
235.20 212.80 257.60 95% CI 

Health state utilities and decrements 

   Utility no adverse event, age 70-74 
0.78 0.77 0.82 95% CI 

   Utility no adverse event, age 75-79 
0.75 0.74 0.76 95% CI 

   Utility decrement, serious GI events 
0.05 0.03 0.06 ±25% 

   Utility decrement, GI discomfort 
0.02 0.02 0.03 ±25% 

   Utility decrement, symptomatic ulcer 
0.03 0.05 0.07 95% CI 

   Utility decrement, stroke 
0.06 0.05 0.07 ±25% 

   Utility decrement, post-stroke 
0.05 0.03 0.07 95% CI 

Mortality  

   Mortality, serious GI event, age 70-74 
6.37% 4.77% 0.08% ±25% 

   Mortality, serious GI event, age 75-79 
11.23% 8.42% 0.14% ±25% 

   Mortality, symptomatic ulcer, age 70-74 
2.47% 1.85% 0.03% ±25% 

   Mortality, symptomatic ulcer, age 75-79 
4.33% 3.25% 0.05% ±25% 

   Mortality, stroke, age 70-74 
5.64% 4.23% 0.07% ±25% 

   Mortality, stroke, age 75-79 
9.96% 7.47% 0.12% ±25% 

   Mortality, post-stroke, age 70-74 
1.70% 1.49% 0.02% 95% CI 

   Mortality post-stroke, age 75-79 
3.01% 2.80% 0.03% 95% CI 

   Mortality no adverse event, age 70-74 
1.15% 0.99% 1.32% 95% CI 

Increased risk ratios for adverse drug events 

   HR serious GI event 
2.60 1.39 4.87 95% CI 

   OR GI discomfort 
2.12 1.73 2.58 95% CI 

   OR symptomatic ulcer 
1.70 1.49 1.94 95% CI 

   HR stroke 
2.98 1.62 5.50 95% CI 

Discounting of costs and outcomes     

   Discount rate 1.04 1.00 1.07 No or twice the 
discount rate 

CI: confidence interval; GI: gastro-intestinal; HR: hazard ratio; OR: odds ratio; SD: standard deviation 
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6.2.7 Validation 

Model validation is required to ensure that the model represents the treatment pathway 

and the system accurately and that results are plausible. In the NICE guidance on the 

methods of technology appraisal, results and methods of model validation are required (3). 

Nevertheless, NICE does not provide further detail on what the validation should 

incorporate. The AdViSHE tool (442) was developed to set a framework of model validation 

that is necessary to ensure model validity. Various types of validity assessment are possible: 

(i) face validity; (ii) cross validity; (iii) internal validity; and (iv) external validity. 

 

(i) Face validity: To determine face validity, the model structure was presented to clinical 

experts (GPs, pharmacists), health economists, and lay members of the PROTECT study 

team (other researchers, patients) in oral presentations. The participants were asked 

whether the structure mirrors the treatment pathway of the population under 

investigation and whether assumptions on long-term effects, input parameters and 

distributions made within the model and model outcomes are reasonable. Additionally, the 

model was validated throughout the development process from health economist and 

pharmacists in the research team.  

 

(ii) Cross validity: The construction process of the model included a literature review of 

models published on the cost-effectiveness of interventions aiming to reduce HPEs [2.5] 

and on HPE specific models [Appendix K]. The identified models were used to compare 

assumptions they make and transition states and data input they use.  

 

(iii) Internal validity: To verify internal validity, the model went through a rigorous 

debugging process. The correctness of chosen equations, statistical distributions, coding 

language and consistency with the model specification was checked by different parties 

from the research team at various time points. The state-transition model was examined 

by a health economist, who has experiences with NSAID related HPE models from various 

previous projects. Results of this validation were reported in Appendix N. The results were 

checked for unrealistic results, such as negative costs, more events than possible or more 

QALYs than life years that undermine the credibility of the model. This was done by using 

algorithms to verify that transition probabilities per state equal one or that the number of 
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patients stayed constant in each cycle. Sensitivity analyses were carried out to identify 

whether the model behaves as expected or whether any anomalies were found (552). One-

way sensitivity analysis was used changing input values beyond a plausible range in order 

to identify any bugs in the model. Transition probabilities and utilities were tested for every 

value between zero and one and values for costs from zero to extreme high values.  

 

(iv) External validity: An independent external validation was not possible as part of this 

programme of work. 

 

6.3 Results 

6.3.1 Effectiveness of SMASH 

SMASH reduced the overall probability of NSAID exposure by 0.08% (95% CI -0.12% to 

0.26%) to 1.12% (95% CI 0.82% to 1.50%) after 12 months [Table 6.3]. The relative HPE 

reduction was 5.37% (absolute reduction of 0.08%), resulting in 1.1 HPE avoided by SMASH 

per practice with 91 patients with an OAC prescription per practice. 

 

Table 6.3: HPE rate at 6 and 12 months for SMASH and standard care calculated from Peek et al. 

(2020) with the resulting number of HPEs avoided per practice (48) 

Time point Mean with 95% CI Distribution 

Observed HPE rate with SMASH (in % of all at risk) 

   At 12 months (base case) 1.12 (0.82; 1.50) Beta 

   At 6 months 1.11 (0.80; 1.51) Beta 

HPE reduction with SMASH 

 Absolute differencea Number of HPEs avoidedb  

   At 12 months (base case) 0.08 (-0.12; 0.26) 1.1 (1.6; 0.4) Normalc 

   At 6 months 0.13 (-0.01; 0.24) 0.7 (1.1; 0.2) Normalc 

aInterrupted time series analysis output from Peek et al. (2020); bnumber of HPE avoided generated by 

multiplying the number of patients at risk with the absolute difference in HPE rates between SMASH and 

standard care (not used in the decision-analytic model); cdistribution applied to absolute difference; HPE: 

hazardous prescribing event; SMASH: Safety Medication Dashboard 
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6.3.2 Cost of SMASH 

Resource use and unit costs were reported in detail in Chapter Three [1023.3.2]. In the base 

case analysis in this chapter, the costs were allocated to be representative for SMASH in 

reducing NSAID use in anticoagulated patients. The only parameter that changed compared 

with Chapter Three was the number of HPEs reviewed. Pharmacists are assumed to review 

three (SD ±3) and five (±4) HPEs at six and 12 months, respectively. The total cost of SMASH 

adjusted to the specific HPE was £380 (2.5% to 97.5% credible interval £347 to £417) per 

practice after 12 months [Table 6.4]. Cost of SMASH applied in scenarios analyses are also 

reported in Table 6.4. Allocating the variable costs by number of NSAID/OAC HPEs reviewed 

over 12 months (base case), by HPE type or by the proportion of the HPE among all HPEs 

at baseline resulted in higher costs, compared to allocation methods that allocated the 

total costs. 

 

Table 6.4: Total cost of SMASH for reviewing anticoagulated patients with NSAID use 

Cost item Total cost Low rangea High rangea SD Distributionb 

Base case  

   Total cost at 12 monthsc  380 347 417 19 Gamma 

Scenario: Delivery of SMASH for 6 months 

   Total cost at 6 monthsc 321 301 343 11 Gamma 

Scenario: Different allocation methods 

   Total cost by  

   number of HPE types 

215 49 579 143 Gamma 

   Variable cost by  

   number of HPE types 

478 312 842 143 Gamma 

   Total cost by  

   proportion of HPE type 

73 17 197 49 Gamma 

   Variable cost by  

   proportion of HPE type 

356 299 479 49 Gamma 

a2.5% (low range) to 97.5% (high range) credible interval; bdistribution applied in probabilistic analysis; callocated by 

adjusting the number of HPEs reviewed to only NSAID/OAC HPEs; HPE: hazardous prescribing event; SD: standard 

deviation, used to describe gamma uncertainty distributions in TreeAge Pro Healthcare 2021; SMASH: Safety 

Medication Dashboard 

 

6.3.3 Economic impact of NSAID use in anticoagulated patients 

The state-transition model with applied transition probabilities, health state utilities and 

costs with distributions is reported in Chapter Five [5.2.2, 5.2.4].  
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6.3.4 Incremental economic analysis 

The results generated by the decision-analytic model comparing SMASH and standard care 

in reducing NSAID use in anticoagulated patients are reported in Table 6.5. SMASH 

generated higher costs (£363, 2.5% to 97.5% credible interval £248 to £424) and more 

QALYs (0.003 QALYs, 2.5% to 97.5% credible interval -0.008 to 0.019) compared with 

standard care resulting in an ICER of £141411. 

 

Table 6.5: Results of cost-effectiveness analysis of SMASH compared with standard care per 

practice in deterministic and probabilistic analysis (n=91 patients at risk)a 

 Deterministic Probabilistic b 

Costs generated, £      

   SMASH 169771 169333 (34632; 449511) 

   Standard care 169408 168970 (34251; 449148) 

   Incremental costs 363 363 (248; 424) 

Effectiveness, QALYs     

   SMASH 532.185 532.414 (493.573; 554.539) 

   Standard care 532.182 532.412 (493.572; 554.531) 

   Incremental effectiveness 0.003 0.003 (-0.008; 0.019) 

Cost-effectiveness     

   ICER, £/QALY 142012 141411c 

   Incremental NMB, £ -312 -311 (-542; 73) 

aLifetime horizon of state-transition model, costs and outcomes discounted at 3.5%; cost and HPE rates 

for SMASH after 12 months; bmean estimates with bootstrapped 2.5% to 97.5% percentile credible 

interval; cno confidence interval reported because they are not interpretable if some of the ICERs are <0; 

ICER: incremental cost-effectiveness ratio; NMB: net monetary benefit; QALYs: quality-adjusted life-years; 

SMASH: Safety Medication Dashboard 

 

The incremental costs and QALYs of the 10000 simulations are presented in Figure 6.2 in a 

scatter plot. Of all the estimates 0.07% were in the south-east quadrant (SMASH more 

effective, less costly: dominant) compared with 65.25% in the north-east quadrant (SMASH 

more effective, more costly), 0.01% in the south-west quadrant (SMASH less effective, less 

costly) and 34.67% in the north-west quadrant (SMASH less effective, more costly: 

dominated).  
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Figure 6.2: Scatter plot for the probabilistic analysis with 10000 iterations 

 

Quadrant North-east South-east South-west North-west 

Percentage in quadrant 65.25% 0.07% 0.01% 34.67% 

 

 

Estimates that fall in the north-east (higher costs, higher effectiveness) quadrant can be 

cost-effective if the ICER is below a specified WTP threshold. Those estimates that fall in 

the south-west quadrant are considered cost-effective if the ICER is greater the threshold.  

 

The cost-effectiveness acceptability curve of SMASH compared with standard care presents 

the probability of SMASH being cost-effective at different WTP thresholds [Figure 6.3]. At 

the UK WTP threshold of £20000 per QALY gained, the probability of SMASH being cost-

effective in reducing NSAID use in anticoagulated patients was 4%. The incremental NMB 

was -£311 (2.5% to 97.5% credible interval -£542 to £73) at a WTP of £20000 [Table 6.5]. 
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Figure 6.3: Cost-effectiveness acceptability curve (CEAC) – base case analysis 

 

 

The threshold analysis identified that the cost of SMASH would have to be £68 or lower to 

be cost-effective. The absolute difference in HPE rates would need to be at least 0.45% for 

SMASH to be cost-effective in reducing NSAID use in anticoagulated patients. With a 

number of patients at risk of at least 513 patients with OAC treatment, SMASH would be 

cost-effective at the WTP threshold. 

 

6.3.5 Sensitivity analysis 

Sensitivity analysis in the probabilistic model 

Results of the sensitivity analysis in the probabilistic model on the impact of different 

assumptions are reported in Table 6.6. The analyses changed the results as expected. None 

of the changes in assumptions changed the fact that SMASH generated higher costs and 

more QALYs compared with standard care. The incremental NMB showed that SMASH was 

not cost-effective in reducing NSAID use in anticoagulated patients in all scenarios. The 

scenario under which SMASH generated the largest incremental NMB in reducing NSAID 

use in anticoagulated patients was when the total cost of SMASH was allocated by the 

proportion of the NSAID/OAC HPE among all HPEs (incremental NMB, -£5). The second 

highest incremental NMB was generated, when the assumption that the HPE is corrected 

without the occurrence of an ADE after a maximum of one year was released. The scenario 

resulted in an incremental NMB of -£105. In this scenario, patients exposed to the HPE are 

at an increased risk of ADEs until they die or experience an ADE and not only for a maximum 

of 12 months. 
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Table 6.6: Results of probabilistic sensitivity analysis of SMASH compared with standard care in reducing NSAID use in anticoagulated patients 

Analysis  Costs generated per patient, £ QALYs generated per patient, QALY Incremental 

SMASH Standard care SMASH Standard care Costs, £ QALYs 

Base case analysis             

Probabilistic  169333 (34633; 449511) 168970 (34251; 449148) 532.41 (493.57; 554.54) 532.41 (493.57; 554.53) 363 (248; 424) 0.003 (-0.008; 0.019) 

        ICER, NMB:  £141411 per QALY, -£311 

Deterministic  169772 169408 532.18 532.18 363 0.003 

        ICER, NMB:  £142012 per QALY, -£312 

Sensitivity analysis in probabilistic model  

No HPE correction 170189 (34753; 451812) 169888 (34407; 451923) 532.31 (493.44; 554.35) 532.30 (493.43; 554.35) 301 (-132; 489) 0.010 (-0.021; 0.061) 

        ICER, NMB:  £30728 per QALY, -£105 

Delivery of SMASH for 

6 months 

  

169271 (34566; 449423) 168977 (34274; 449166) 532.42 (493.57; 554.54) 532.41 (493.57; 554.54) 294 (178; 346) 0.004 (-0.007; 0.023) 

      ICER, NMB:  £66016 per QALY, -£205 

Time horizon: 10 years 125783 (24522; 341824) 125420 (24154; 341829) 440.39 (416.12; 455.22) 440.38 (416.12; 455.23) 362 (247; 424) 0.002 (-0.006; 0.015) 

        ICER, NMB:  £188501 per QALY, -£324 

Time horizon: 5 years 74539 (12717; 209419) 74175 (12343; 208929) 280.42 (270.58; 288.05) 280.42 (270.58; 288.05) 364 (254; 424) 0.001 (-0.004; 0.009) 

        ICER, NMB:  £330672 per QALY, -£311 

Start age 80 103683 (17591; 288044) 103321 (17236; 287637) 265.45 (248.30; 279.83) 265.45 (248.29; 279.82) 362 (242; 426) 0.003 (-0.006; 0.018) 

        ICER, NMB:  £131648 per QALY, -£307 

Discount rate: 0%  217584 (44998; 574574) 217222 (44644; 574274) 656.33 (603.40; 686.62) 656.33 (603.38; 686.62) 362 (245; 425) 0.003 (-0.010; 0.024) 

        ICER, NMB:  £110222 per QALY, -£296 
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Analysis  Costs generated per patient, £ QALYs generated per patient, QALY Incremental 

SMASH Standard care SMASH Standard care Costs, £ QALYs 

Increased risk ratios for stroke and serious GI events 

HR Chapter Four -  

60-day grace 

169200 (34597; 449260) 168828 (34210; 448983) 532.43 (493.65; 554.55) 532.43 (493.66; 554.55) 373 (302; 424) 0.001 (-0.008; 0.014) 

      ICER, NMB:  £269264 per QALY, -£345 

HR Chapter Four -  

IPTW 

169206 (34583; 448694) 168834 (34194; 448315) 532.43 (493.59; 554.55) 532.43 (493.59; 554.54) 372 (301; 425) 0.001 (-0.008; 0.014) 

      ICER, NMB:  £269885 per QALY, -£345 

HR Chapter Four -

NSAID washout 6 m 

169544 (34711; 449615) 169196 (34317; 449399) 532.39 (493.39; 554.48) 532.38 (493.39; 554.47) 348 (181; 435) 0.005 (-0.008; 0.029) 

      ICER, NMB:  £76723 per QALY, -£257 

HR - RCT dataset  

(Dalgaard (2020)) 

169140 (34567; 449531) 168763 (34187; 449156) 532.44 (493.86; 554.54) 532.44 (493.86; 554.54) 377 (320; 428) 0.001 (-0.009; 0.013) 

      ICER, NMB:  £475760 per QALY, -£361 

Allocation method of costs for SMASH 

Total cost by number  

of HPE types 

  

169168 (34575; 449319) 168970 (34251; 449148) 532.41 (493.57; 554.54) 532.41 (493.57; 554.53) 198 (-8; 570) 0.003 (-0.008; 0.019) 

      ICER, NMB:  £77028 per QALY, -£146 

Variable cost by 

number of HPE types 

  

169433 (34651; 449629) 168970 (34251; 449148) 532.41 (493.57; 554.54) 532.41 (493.57; 554.53) 463 (208; 788) 0.003 (-0.008; 0.019) 

      ICER, NMB:  £180395 per QALY, -£411 

Total cost by 

proportion of HPE type 

  

169026 (34269; 449172) 168970 (34251; 449148) 532.41 (493.57; 554.54) 532.41 (493.57; 554.53) 56 (-69; 191) 0.003 (-0.008; 0.019) 

      ICER, NMB:  £21829 per QALY, -£5 

Variable cost by 

proportion of HPE type 

169309 (34607; 449458) 168970 (34251; 449148) 532.41 (493.57; 554.54) 532.41 (493.57; 554.53) 339 (208; 455) 0.003 (-0.008; 0.019) 

      ICER, NMB:  £132062 per QALY, -£287 

aSource for HRs describing the increased risk of stroke and serious GI events associated with NSAID use in patients with oral anticoagulants; GI: gastro-intestinal; HPE: hazardous prescribing event; 

ICER: incremental cost-effectiveness ratio; NMB: incremental net monetary benefit; SMASH: Safety Medication Dashboard; QALY: quality-adjusted life-year 
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One-way sensitivity analyses in deterministic model 

Figure 6.4: Tornado diagram on impact of individual input parameters on the incremental net 
monetary benefit (£312)  
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The results of the one-way sensitivity analysis are reported in Figure 6.4. The results were 

most sensitive to changes in the cost of SMASH, the absolute difference of the HPE rates in 

SMASH and standard care, and the risk increase of stroke with NSAIDs. The uncertainty 

around the absolute difference of SMASH vs. standard care ranged from -£481 to -£160. 

The minimum and maximum expected values for the HR of stroke changed the incremental 

NMB from -£352 to -£241, respectively. All other parameters did not vary the incremental 

NMB by more than £33. 

 

6.4 Discussion  

6.4.1 Principal findings 

The reduction of NSAID use in anticoagulated patients by SMASH generated higher costs 

and more QALYs compared with standard care. The cost-effectiveness plane showed that 

incremental cost and incremental QALY estimates were distributed across all four 

quadrants. At a WTP threshold of £20000, SMASH had a 4% probability of being cost-

effective in reducing NSAID use in anticoagulated patients with an incremental NMB of  

-£311 (2.5% to 97.5% credible interval -£542 to £72). The absolute effect of SMASH on 

reducing NSAID use in anticoagulated patients was small and not significant with an 

absolute difference in HPE rates of 0.08% between SMASH and standard care. Threshold 

analysis showed that an absolute difference of at least 0.45% would be required for SMASH 

to be cost-effective in reducing NSAID use in anticoagulated patients at the WTP threshold. 

The average absolute reduction of HPE rates with SMASH among all ten HPEs was 0.96% 

[3.3.1]. SMASH was less effective in reducing NSAID use in anticoagulated patients 

compared with other HPE types targeted by SMASH. One possible explanation for this 

result is that the ITSA was underpowered to detect a change in the relatively low 

prevalence of the HPE type. The rollout of SMASH to practices in Greater Manchester will 

show if an increased sample size can detect a change if a change is associated with SMASH. 

 

The deterministic sensitivity analysis showed that uncertainty around most of the chosen 

estimates did not change the overall results. Only three input parameter changes varied 

the incremental NMB by more than £30 [Figure 6.4]. The incremental NMB of SMASH was 

most sensitive to the allocation method of the costs of SMASH, the absolute difference 
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between the HPE rates in the two strategies and the increased risk of stroke and serious GI 

events associated with NSAID use. The uncertainty range of the increased risk ratios 

derived from the cohort study in Chapter Four was substantial. In the state-transition 

model, they describe the increased risks of the ADEs associated with the highest economic 

and health related burden. This explains the impact changes in these parameters have on 

the incremental NMB. The results were also sensitive to the number of patients at risk of 

the HPE per practice. This was expected because a larger sample size increases the number 

of HPEs avoided by SMASH. In a practice with a minimum of 513 patients at risk of the HPE 

type, SMASH was found to be cost-effective at the WTP threshold of £20000. 

 

Changing key model assumptions in the probabilistic sensitivity analysis affected the results 

as anticipated. A key assumption that impacted the incremental costs and QALYs was the 

correction of the HPE after a maximum of one year in the no adverse event state exposed 

to the HPE. This conservative assumption was made to acknowledge the potential that 

HPEs were detected in annual patient reviews in the practices. The scenario analysis 

showed that the incremental NMB was -£5, hence almost cost-effective for this scenario. 

However, the less conservative assumption is unlikely to be reasonable because NSAIDs are 

rarely prescribed indefinitely.  

 

6.4.2 Comparisons with prior work 

The results do not represent the overall cost-effectiveness of SMASH. The results of this 

cost-effectiveness analysis were, therefore, not compared to results of other economic 

evaluations aiming to reduce HPEs. The aim of this chapter was to demonstrate how the 

decision tree and the state-transition model can be combined. This method of linking the 

process indicator of HPE rates with patient outcomes and costs is, therefore, compared to 

methods in the literature to quantify the impact of HPEs. This process is divided into (i) a 

comparison with methods to quantify harm from HPEs and (ii) a comparison with CUAs 

modelling harm of specific HPE types. 
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Comparison with methods to quantify harm from HPEs 

In previous studies, HPEs were grouped not by type of HPE but by severity or their potential 

to cause an ADE. In the literature, harm was either estimated by (i) expert elicitation (225), 

or (ii) based on severity distributions from the literature unrelated to the actual HPEs 

detected (156, 222-224). The limitations of these approaches were discussed in Chapter 

Two [2.4; 2.8] and lead to the decision to estimate harm for each individual HPE type 

targeted by SMASH separately as was done for NSAID use in anticoagulated patients in this 

chapter.  

 

The first method of expert elicitation can estimate the potential to cause harm for 

individual cases, but some of these HPEs will be intercepted and will not reach the patient. 

Assessment by experts was also found not to produce reproducible estimates of harm [2.4]. 

Besides these general limitations of the methods, they were also not actionable in the 

context of the SMASH effectiveness study. In SMASH, the severity of occurring HPEs was 

not assessed as part of the intervention (48). Asking experts to estimate the potential harm 

of each HPE identified by SMASH would be an expensive and time-consuming process. 

Additional staff resources would be required that would further increase the cost of the 

intervention. Consequently, assessing the potential severity of HPEs by experts to estimate 

harm from HPEs does not only have methodological limitations but was also not practical 

for SMASH. 

 

The other method economic evaluations in the published literature applied to estimate 

harm from HPEs, was the use of severity distributions from other sources. The use of 

severity distributions from the literature relies on the assumptions that the type of HPEs 

and their severity are the same in the population in the economic evaluation and the 

population in the study that estimated the severity distribution of HPEs. However, the 

populations are often not comparable because the underlying types of HPEs differ. HPE 

types and their distributions were found to differ between countries (553), settings and 

available care or HPE management (554) [Chapter Two]. For SMASH, the type of HPEs 

reduced was known and there were no UK specific estimates linking exactly this set of HPE 

types with harm.  
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Because neither expert elicitation or severity distributions from the literature were 

considered appropriate and robust methods to estimate harm from HPEs avoided by 

SMASH, a third option identified in the literature review was used. The alternative 

approach in the literature was to estimate harm for each HPE type separately. This study 

demonstrated this for NSAID use in anticoagulated patients. Harm from the HPE types was 

measured as the increased risk of specific ADEs associated with the HPE type [Chapter 

Four]. Using linked primary and secondary care data, the cohort study in Chapter Three was 

able to link HPEs in primary care with specific ADEs in secondary care (e.g., serious GI 

events), instead of generic harm outcomes (e.g., hospitalisations). This allowed a more 

robust link between harm and HPE, than expert elicitation or severity distributions from 

the literature. 

 

Comparison with CUAs modelling harm of specific HPE types 

Three cost-effectiveness studies were found in the literature that modelled costs and 

outcomes of specific types of HPEs to estimate cost-effectiveness of interventions (150, 

152, 227). Elliott et al. (2014) and Foy et al. (2020) assessed the cost-effectiveness of an 

intervention aiming to reduce multiple HPE types (152, 227). To estimate harm from each 

HPE type, separate state-transition models were built. Both studies relied on estimates 

from the literature to inform the increased risk of harm associated with each HPE type and 

highlighted the scarce data availability as a limitation. Foy et al. (2020) built a model on the 

same HPE as presented in this chapter (152). Due to lack of available data the link of the 

HPE with patient harm was solely based on the risk increases of ADEs associated with 

NSAIDs in general, not with the specific population of anticoagulated patients. As discussed 

in Chapter Five, the availability of the results from the cohort study in this economic 

evaluation enabled a more precise estimation of harm that acknowledges the impact OAC 

use has on the ADEs related to NSAIDs. Elliott et al. (2014) applied results from a meta-

analysis of RCTs of the relative impact of adding a gastroprotective agent on endoscopic 

ulcer occurrence (227). The relative risk was applied to serious GI events in the state-

transition model. It was assumed that the relative effect of gastroprotective agents on 

serious GI events was the same as for endoscopic ulcers because no other data were 

available. 
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The third study by Forster et al. (2018) investigated an intervention aiming to reduce 

administration errors of asthma inhalers. The CRITIKAL study measured harm associated 

with the exact administration error targeted by the intervention investigated by Forster et 

al. (2018) (555). Similar to the cohort study in Chapter Four, the CRITIKAL study used 

observational data. The relationship between administration errors and harm outcomes 

was estimated using logistic regression. The types of outcomes considered in the economic 

evaluation were restricted to those measured in the CRITIKAL study. Other potential ADEs 

or consequences of the outcome, such as mortality, were not included in the state-

transition model. In the de novo state-transition model developed as part of this thesis, 

primary care managed ADEs (symptomatic ulcer and GI discomfort) were also included, 

even though these were not measured in the cohort study. The projected costs and quality 

of life estimates in Forster et al. (2018) were also limited to one year, the time period of 

the CRITIKAL study. The advantage of the modelling approach chosen in this chapter was 

that it allowed extrapolation of harm beyond the primary data. This way, a long-term 

estimate of the consequences of HPEs was possible beyond the 12 months observation 

period in the SMASH effectiveness study (48). 

 

These three studies were selected for discussion because they estimated the effectiveness 

of strategies to reduce HPEs by modelling harm from HPEs using state-transition models. 

Essential to this economic evaluation was the availability of linked primary and secondary 

care data. This allowed to estimate the increased risk of ADEs for the specific population at 

risk of the HPEs and filled the gap in the literature where estimates on the increased risk of 

harm from HPEs in general is scarce. The economic evaluation in this thesis did not rely on 

the best available data from the literature on the increased risk of the major ADEs 

associated with the HPE. This was one of the major limitations of the economic evaluations 

by Elliott et al. (2014), Forster et al. (2018) and Foy et al. (2020). Especially in areas with 

scarce literature, such as harm from HPEs, evidence from the literature might not ideally 

describe the population or outcomes modelled. Assessing the required input parameters 

as part of the economic evaluation allowed complete control over the methods and 

outcome definitions. Consequently, less assumptions had to be made to find suitable data 

or to adjust available data to the requirements of the state-transition model. This improves 

robustness of the economic evaluation. 
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6.4.3 Strengths and limitations 

One of the key strengths of the economic evaluation in this chapter was that it projected 

costs and patient outcomes for an effectiveness study where only the process indicator of 

HPE rates was available. The decision tree reported in Chapter Three [3.2.1.4] presents the 

results of the quasi-experimental study on the effectiveness of SMASH. The availability of 

electronic health records allowed to inform model parameters previously under-reported 

in the literature [Chapter Four]. The combination with the state-transition model built in 

Chapter Five [5.2.2] enables the analysis reported in this chapter to extrapolate harm and 

costs associated with the process indicator of HPE rates. The challenge with combining 

these to analyses were the different time horizons. The cost per HPE avoided represent the 

delivery of SMASH over 12 months and the incremental cost per QALY estimated in the 

presence of the HPE were estimated over a life time horizon. In this thesis, it was assumed 

that the cost and changes in HPE rates related to SMASH appear in the beginning of the 

first cycle of the state transition mode instead of gradually over the first 12 months. As a 

result, some of the patients the state transition model considers to be unexposed to the 

HPE from the beginning might actually be still exposed. Only later by the end of the 12 

months these HPEs are definitely resolved. This double counting could result in an 

overestimation of the effect of the intervention. However, the effectiveness data of the 

intervention reported by Peek et al. (2020) indicates a rapid reduction of the HPE rates in 

the first months and suggests a flooring effect after five months (48). The double counting 

is, therefore, only present in these first five months before the HPE rates stay almost 

constant. There was almost no difference in the HPE rate at six and 12 months for NSAID 

use in anticoagulated patients [Table 6.3]. In theory, this double counting could be 

problematic if the effect size is very large and huge numbers of patients are affected. 

However, this is not the case for SMASH. Per practice only one OAC/NSAID HPE is avoided 

by SMASH over 12 months [Table 6.3] in 91 patients at risk of the HPE type.  

 

A strengths of the economic evaluation, reported in this dissertation, was the validation on 

multiple levels and stages of the project to improve robustness of the results. In addition 

to continuous discussions with the supervisory team and the health economists’ team from 

the PROTECT programme, experts were consulted throughout the economic evaluation. 

Assumptions made when retrospectively estimating the cost of SMASH were based on 
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interviews with two pharmacists involved in the interventions and the final decisions were 

run by the interviewees for validation. The use of results from ITSA and the costing of 

SMASH were reviewed by a health economist and discussed at a conference from the 

Health Economists' Study Group (HESG). GPs and pharmacist were also included in 

decisions made to identify confounders in the cohort study in Chapter Four, and results 

were presented to clinicians and health economists on conferences. The conceptualisation 

of the decision-analytic model also underwent continuous validation processes throughout 

the development stages. Face validation was checked by clinical experts (GPs and 

pharmacists), patient representatives, health economists, as well as qualitative 

researchers. Assumptions and choices of input parameters were found to be reasonable 

[Appendix M]. The final work product was reviewed by an experienced health economist 

not involved in this programme of work, who checked the model structure, the chosen 

input parameters, the computerised model in TreeAge Pro Healthcare 2021 and the results. 

The feedback and how identified problems were dealt with is reported in Appendix N.  

 

As described in the section on comparison with prior work, methodological strengths were 

the focus on generating HPE-specific harm estimates, instead of generic harm measures. 

Modelling each HPE individually is considered to generate more precise estimates of harm 

but has the limitation that the process is time consuming. In an intervention targeting a 

limited number of HPE types, such as the intervention by Forster et al. (2018) that only 

looked at the consequences of two administration errors, modelling them separately is 

manageable. For the original CUA of the PINCER trial, six state-transition models were 

developed using the best available data from the literature (227). This thesis developed the 

state-transition model and generated the required increased risk estimates from electronic 

health records instead of relying on estimates from the literature. In a complex intervention 

targeting ten HPE types, such as SMASH, considerable time resources are required to 

conduct this for each HPE type. 

 

Allocation of costs of SMASH 

In the economic evaluation, the impact on only a subset of the complex SMASH 

interventions was analysed. Costs, therefore, had to be allocated to represent the costs 

relevant for the subset of the intervention’s functions relevant to the study in this chapter. 
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The probabilistic sensitivity analysis demonstrated how sensitive the incremental NMB of 

SMASH in reducing NSAID use in anticoagulated patients was to assumptions about the 

allocation of intervention costs [6.3.4]. This study extrapolated the harm and costs of one 

HPE type and investigated at the ability of SMASH to reduce NSAID use in anticoagulated 

patients, allocating a hypothetical portion of the overall cost of SMASH. Where the variable 

costs that are dependent on the number of HPEs were allocated, the scenarios resulted in 

higher interventions costs compared to those allocation methods that allocated the total 

costs of SMASH [Table 6.4]. Allocating the total costs by the proportion of the NSAID/OAC 

HPE among all HPEs at baseline resulted in the largest incremental NMB. Allocating the 

total costs assumes that for each HPE type only a proportion of the fixed costs is required. 

These scenarios are thought to underestimate the intervention cost because the cost for 

the server, the initial meeting, as well as the training needs would be required independent 

of the number of HPE types the interventions targets or of the number of HPEs the 

pharmacists review. Allocating only the variable costs assumes that the fixed costs stay the 

same because these are not dependent on the number of HPEs or HPE types. However, this 

represents a hypothetical cost estimate. The intervention was not implemented to only 

target one HPE type. In reality, SMASH has been designed to reduce the incidence of a suite 

of HPEs.  

 

These assumptions on how to allocate costs to represent only a subset of the intervention’s 

functions is complex and often subjective. For the base case analysis, the more 

conservative assumption of allocating the variable costs was chosen. Because this might 

overestimate the cost of the intervention, the results of other allocation methods were 

reported alongside. The allocation of costs is not only a problem in this study. In complex 

interventions, often only subsets of the available functions are analysed or different 

programme streams are evaluated separately (556). Evaluating subsets allows for 

comparison between different interventions that target similar subsets, even if the overall 

interventions include different functions. SMASH and PINCER, for example, aim to reduce 

hazardous prescribing by targeting specific HPE types. As part of the PROTECT programme 

grant, these interventions are compared to the clinical decision support system, Optimse-

Rx (53). Since this intervention not only includes a function to identify hazardous 

prescribing as PINCER and SMASH do but it also includes functions to prescribe in a more 
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cost-effective way, these different parts of the intervention need to be assessed separately. 

To compare the cost-effectiveness of Optimise-Rx in reducing hazardous prescribing alone 

to the cost-effectiveness of PINCER and SMASH, the fixed costs need to be allocated to the 

specific subset of functions. In this chapter, the challenges of allocating the joint costs to a 

subset were illustrated showing the need to report different allocation methods. This 

allows an understanding of the impact of the different allocation method on the cost-

effectiveness results. 

 

6.4.4 Implications for policy 

Subsequent to the third WHO safety challenge aiming to reduce HPE related patient harm 

by 50% in five years, the UK started various initiatives to reach this goal (33). A new policy 

objective by the Department of Health and Social Care encourages new interventions 

aiming to reduce HPEs, such as the PINCER intervention (35). While the new policy calls for 

the wider rollout of proven interventions in primary care that reduce HPEs, there is no 

mentioning in the policy’s key priorities that this should be achieved in a cost-effective way. 

Nevertheless, when not all interventions that are effective in reducing HPE rates can be 

funded, CEAs will gain importance. The metric of cost per QALY is a useful tool to identify 

which intervention is more cost-effective in reducing HPEs (557). On a UK national level, 

the measure of cost per QALY is used to prioritise new technologies. The measure of cost 

per HPE avoided as estimated in Chapter Three is less relevant to UK decision makers at 

the national level because no willingness to pay threshold is available for cost per HPE 

avoided.  

 

The measure of cost per QALY, however, might not be useful for decision making processes 

on all levels (557). Cost per QALY was found to be difficult to interpret (558, 559) and often 

not relevant on a local level. On a local level, such as for CCGs, measures that directly affect 

their budgets, and provide short term outcomes, are more important in decision making 

processes (560). Budget impact analyses focussing on the economic consequences of new 

interventions in the specific setting and over a short time period are more useful on a local 

level (561). 
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The cost per QALY for individual HPE types, as reported in this chapter, could also aid 

decision making on whether to include a HPE type in the set of HPE types targeted by 

SMASH. The type of HPEs targeted by SMASH can be adapted to the specific needs of the 

practices that implement SMASH. The number of HPE types should not overwhelm 

healthcare professionals working with SMASH to avoid alert fatigue, but the types of HPEs 

targeted can be changed. This was already done in practice by the Salford CCG. For the 

implementation of SMASH in Salford, the original set of HPE types was adjusted to the 

specific requirements of the Salford CCG [2.9.1]. So far, HPE types were included if they 

were considered to be likely to cause harm, be computable and relevant for GPs (42, 43) or 

were requested by the practices. The economic evidence provided in this chapter could 

take this further by choosing HPEs under the premises of maximising cost-effectiveness. An 

optimal set of HPEs would depend on the prevalence, the harm associated with the HPE 

type, the costs associated with correcting the HPE and the effectiveness of the intervention 

at reducing the HPE. Once the cost-effectiveness of multiple HPE types is assessed, decision 

makers could use this information to inform decisions on which HPE types to include when 

SMASH is implemented. 

 

The HPE investigated in this dissertation was associated with a high burden for patients and 

healthcare providers. NSAID use in anticoagulated patients was found to have a substantial 

impact on patient health and healthcare costs [5.3.1]. This suggests that preventing this 

HPE is important for patients and decision makers. However, SMASH was not found to 

significantly reduce the occurrence of NSAID use in anticoagulated patients [6.3.1] and was 

not cost-effective [6.3.4]. Consequently, the intervention would need to be adapted to 

provide different information on this HPE to increase effectiveness in reducing its 

occurrence. Further research could aim to understand the extent to which success or 

failure of the intervention are a result of features of the intervention or rather the type of 

HPE. The development and delivery of the intervention was consistent with best practice 

guidance (245) but there could be features with potential for improvement to make SMASH 

more effective for this HPE type. Alternatively, other interventions aiming to reduce the 

occurrence of this severe HPE type would need to be developed.  
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6.4.5 Implications for patients 

After an HPE is identified by SMASH, a pharmacist takes actions to resolve the HPE. For 

NSAID use in anticoagulated patients, this action involves stopping the NSAID. On a case by 

case basis, it was checked if the NSAID was necessary and if it was what alternative 

treatment strategies were available. After consultation with GPs, the patients are most 

likely switched to paracetamol. These changes can affect patients in several ways. As part 

of this study, a patient familiar with NSAID treatment was consulted to understand the 

patient view towards removing the NSAID. The patient raised the sensitive issue of pain 

management. Individual patients might be reluctant to change a beneficial treatment that 

allows them to reduce the pain to a manageable level. Paracetamol is known to have a 

slightly smaller effect on pain reduction than NSAIDs (562). The second issue raised by the 

patient was the inconvenience of taking paracetamol. While the most common NSAID in 

the UK, naproxen, is taken once a day, paracetamol is taken three times a day. There might 

be considerable effects on the patient’s adherence to treatment if the dosing frequency is 

increased (563). Because of these inconveniences of removing the NSAID, patients might 

be reluctant to resolve the HPE. This could have contributed to the small and non-

significant effect SMASH had on the occurrence of this HPE type. The patient highlighted 

the need to improve communication of the risks associated with NSAIDs. Future research 

on how to communicate medication changes to resolve HPEs could support effective 

actions to resolve HPEs.  

 

6.4.6 Considerations for future work 

This dissertation assessed the economic impact of the presence and the absence of NSAID 

use in anticoagulated patients and risk estimates from routinely collected health data were 

generated for this HPE type. The overall cost-effectiveness of SMASH can only be estimated 

once the economic impact of each of these HPE types is assessed. Because this 

comprehensive approach is time consuming, this dissertation focused on one specific HPE 

type. A similar approach is used for the other HPE types targeted by SMASH and PINCER as 

part of the five-year PROTECT research programme grant (53). Post-doctoral work will 

focus on working on estimating the economic impact of the other HPE types as part of 

PROTECT and to generate an overall estimate of cost-effectiveness of SMASH. The use of 
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this approach for the other HPE types raises the question of generalisability to other HPE 

types targeted by SMASH. The following describes the specific steps required to apply the 

approach reported in this dissertation to the remaining HPEs and hazardous monitoring 

events identified by SMASH. This section is divided by the different steps of the CUA 

conducted for this dissertation: (i) generalisability of the cohort study design, (ii) 

generalisability of the cohort study analysis, and (iii) generalisability of the methods to 

assess the economic impact of HPEs. Subsequently, it is briefly described how the overall 

cost-effectiveness of SMASH can be assessed. The final section touches on the impact of 

SMASH not only on health related outcomes but also on non-health related outcomes. 

 

(i) Generalisability of cohort study design  

The first step to assess the economic impact of an HPE type was the quantification of ADE 

risks in the presence and absence of the HPE. Where high quality data from randomised 

trials or observational studies from the UK is available on the increased risk of ADEs 

associated with the HPE type, these can be applied in the economic analysis. For example, 

for the HPE of prescribing a non-selective beta-blocker to a patient with asthma, high 

quality estimates were available from the CPRD on the incidence in the at-risk populations 

and the increased risk of asthma exacerbations in the presence of the HPE (564-566). 

Where no appropriate data are available, a cohort study as conducted in Chapter Four can 

be a useful tool to estimate the increased risk of the ADE in the at-risk population and the 

patients exposed to the HPE. This is possible for all HPE types that include a history of 

specific diagnoses, information about age or current drug use. All of these are recorded in 

the CPRD. Clinical code lists were already generated to inform the queries for the 

dashboard and will not need to be developed from scratch. The only HPE types that 

potentially require additional code sets and data beyond those recorded in the CPRD were 

those that included test results. Test results were required for the HPE of the prescription 

of an oral NSAID to a patient with chronic renal failure (eGFR <45 ml/min). There are 

diagnoses codes for chronic renal failure, but the analysis could benefit from adding records 

from CPRD test files that include measurements of eGFR to verify the diagnoses was really 

associated with a reduced eGFR of less than 45 ml/min.  

 



  

254 
 

(ii) Generalisability of the cohort study analysis 

After the dataset is structured as time series data with exposed and unexposed time 

periods for each patient, the data can be analysed. For each HPE type and ADE outcome, 

the potential confounders could be identified using a DAG and could be validated by 

clinicians to identify the appropriate set of variables to include in the generation of the 

propensity score. Five other HPEs are associated with an increased bleeding risk, and risk 

factors for the GI bleeding outcome were already assessed in this thesis. For the three HPE 

types, where exposure is defined as a prescription of an NSAID and the associated health 

outcomes are serious GI events, the same potential confounders can be used as for the 

propensity score assessment in Chapter Four. For each HPE type, however, other health 

outcomes might be associated with the HPE that should be considered for analysis. For 

each health outcome, new ICD-10 code lists would need to be generated and checked if 

HES data is the appropriate dataset to identify the ADE cases. 

 

Consequently, and depending on the HPE, different adaptions of the identification of 

exposure times, covariates or outcomes is required, but the overall approach with using 

CPRD/HES/ONS to identify the patients and use time series analysis to estimate HRs is 

possible. The ISAC protocol, written as part of this dissertation that was approved in 2018, 

included data usage for four of the HPE types. For these, no additional costs would occur 

for the usage of the data. The analysis of these other HPE types will be conducted in post-

doctoral work. 

 

(iii) Generalisability of the methods to assess the economic impact of HPEs 

The state-transition model structure used to estimate the economic impact of NSAID use 

in anticoagulated patients was based on ADEs that were associated with the HPE type. The 

ADEs from the cohort study in Chapter Four and two ADEs predominantly managed in 

primary care (symptomatic ulcer and GI discomfort) were modelled to project patient 

related harm and costs. For the other five HPE types associated with an increased risk of 

serious GI events, the economic impact analysis is based on a similar model. This is work in 

progress conducted within the PROTECT economics research team. In all six HPE types, the 

hazardous prescription was an antiplatelet or an NSAID, which were associated with similar 
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implications on GI related ADEs (serious GI events, symptomatic ulcer and GI discomfort) 

(567, 568). However, as part of the face validation of the action taken to resolve the HPE 

conducted for this thesis, it was also assessed how other HPE types would have been 

resolved that were implicated in an increased risk of serious GI events. Contrary to the 

removal of the NSAID as the dominant action to resolve the HPE once detected, the 

addition of a gastroprotective agent was often found to be the action of choice by the 

pharmacists and GPs questioned. In this case, assumptions on the choice of health states 

might need to be adapted to account for this change of medication. In the state-transition 

model on NSAID use in anticoagulated patients in this study, for example, the addition of a 

gastroprotective agent would reduce the risk of the GI related ADEs, but there is no clinical 

evidence that this would affect the risk of stroke (569-573). Hence, even though the 

hazardous prescription of the NSAID might be associated with an increased risk of stroke, 

this would not be included in the model because the action to resolve the HPE does not 

affect cardiovascular outcomes. Independent of the possibility to use the state-transition 

model structure developed for NSAID use in anticoagulated patients, the input parameters 

would need to be adapted to fit the specific HPE cohort. For the other HPE types, new state-

transition models are being constructed as part of the PROTECT programme grant.  

 

Estimating the overall cost-effectiveness 

The final step will entail the construction of a composite model. This has been done in the 

earlier economic evaluation of the PINCER trial (45). By combining the state-transition 

models, the cost-effectiveness of SMASH can be estimated. The incremental costs and 

QALYs generated in the presence and absence of the HPE will be weighted by the number 

of patients with the HPE in an average practice. 

 

Feasibility of assessing the cost-effectiveness of SMASH 

Overall, this programme of work showed the complex process of how to estimate the 

economic impact associated with one HPE type. The methods are assumed to be applicable 

to the other HPE types as well. In the PROTECT programme, substantial workforce is 

committed to analyse the health records and to conceptualise the state-transition models 

for each of the HPE types where no such data or model structures exist.  
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Non-health benefits of SMASH 

The cost-utility analysis is used as a metric to assess the value for money of an intervention. 

Under the assumption that the change in HPE rates translated into a change in health 

related quality of life, measured in QALYs, the cost per QALY was estimated. This restricts 

the value of the intervention to outcomes that affect health status. Non-health benefits, 

potentially associated with the intervention, are not captured by health related quality of 

life, which could underestimate the value of the intervention (574, 575). In the context of 

patient safety interventions, such as SMASH, other factors have been found to impact the 

value of the interventions and the WTP for the improvements (157). In addition to health 

related consequences, preventability of the incidences and trust in safety devices or 

systems were key aspects for patients and decision makers to estimate the value of an 

intervention. As described in Chapter Two [2.6], evidence on non-health benefits of safety 

improvements is rare. Future research could identify and quantify the relative importance 

that patients attach to the outcomes of safer prescribing. This could support the 

interpretation of the relevance of the cost per QALY generated. Future research could use 

discrete choice experiments that are increasingly used in health economics and a useful 

tool to estimate stated preferences of patients and the general population (172, 173). 

Alternatively, contingent valuation methods have been used valuating safety in health. 

Compared with DCEs, contingent valuation methods directly assess stated preferences 

compared with the revealed preference methods DCEs are based on (170). Both methods 

could be a useful tool to generate an understanding of how patients value non-health 

benefits with regards to patient safety and reductions of HPEs. 

 

6.4.7 Conclusion 

The overall aim of this chapter was to determine the cost-effectiveness of SMASH in 

reducing NSAID use in anticoagulated patients compared with standard practice beyond 

the data from the primary effectiveness study. This aim was achieved by combining the 

HPE specific state-transition model [Chapter Five] with the cost per HPE avoided analysis 

[Chapter Three] to generate probabilistic cost per additional QALY generated by SMASH. 

SMASH targets a defined set of HPE types. For the analysis reported in this thesis, NSAID 
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use in anticoagulated patients was used as an example case study to demonstrate how 

these different analyses can be combined. 

 

SMASH was found to improve health outcomes at a greater direct costs to the NHS 

compared to standard care in the hypothetical scenario where SMASH only targets NSAID 

users with concomitant OAC treatment. For policy making, however, other outputs might 

need to be accounted for, such as policy incentives, e.g., the WHO third global patient 

safety challenge and potential non-health benefits of improving safety.
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Chapter 7 - Discussion 

 

This chapter summarizes the principal findings reported in previous chapters and describes 

how the objectives outlined in Chapter One were met. Specific strengths and weaknesses 

of the different studies were detailed in the individual chapters and are not discussed here. 

The subsequent section reflects on the methods used in this dissertation to use 

observational data in economic evaluations. This is divided into a section reflecting on the 

use of the ITSA design to estimate effectiveness and the feasibility of using routinely 

collected health data to project patient outcomes from the process indicator of HPE rates. 

The final section of this chapter discusses the implications of this work for policy. A 

summary of the key contributions and an overall conclusion of this dissertation is provided 

at the end of this section. 

 

7.1 Summary of key findings 

The aim of this dissertation was to conduct an economic evaluation of a system level DHI 

as part of a quasi-experimental study that relied on routinely collected health data to 

measure exposure and outcomes. The intervention in focus was an e-A&F intervention with 

an integrated pharmacist service aiming to reduce hazardous prescribing in primary care, 

called SMASH. The cost-effectiveness of SMASH in reducing the number of patients with a 

specific type of HPE was used as an example to illustrate the different steps required to 

estimate the cost-effectiveness using routinely collected health data. The specific type of 

HPE under investigation included patients receiving oral anticoagulation with a 

concomitant hazardous prescription of an NSAID. To achieve the aim, several objectives 

were stated in Chapter One. This section contains a summary of the key findings of this 

dissertation ordered by the objectives proposed in Chapter One. 

 

Objective One was to identify costs associated with the provision and implementation of 

the SMASH intervention. No guidelines exist on how to conduct economic evaluations of 

complex system level DHIs where multiple healthcare professionals are involved, such as 

SMASH (272), and various reviews found existing evidence on cost-effectiveness to be 
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scarce and of low quality (274-277). One key recommendation from systematic reviews of 

cost-effectiveness studies of DHIs was the need for more transparent reporting of costing 

studies (274, 276). Chapter Three reports the micro-costing approach of the cost 

components identified, as well as the assumptions required to estimate resource use in 

detail. Key cost components were server costs, the training of pharmacists, an initial 

meeting with the practice to introduce SMASH, the management of the HPEs identified by 

SMASH, and IT services. Healthcare professionals involved in the delivery of the 

interventions validated key assumptions made to increase face validity of the costing 

approach and were consulted throughout the study. The cost of SMASH per practice was 

estimated to be £241 during set-up and £1891 for maintaining the intervention for 12 

months [Chapter Three].  

 

Objective Two was to assess the cost per HPE avoided by combining the cost of SMASH 

with the effectiveness data from the quasi-experimental study in a decision-analytic model 

[Chapter Three]. The method used to derive effect size in the quasi-experimental study was 

based on a historical comparator, and no information on resource use in the comparator 

was available. In the cost-effectiveness analysis, SMASH was compared with standard care, 

assuming that standard care involved no measures that aim at reducing HPEs. The 

incremental costs of SMASH were £2149 (2.5% to 97.5% credible interval £487 to £5790) 

at practice-level, and the number of HPEs was reduced by eleven compared with standard 

care, on average, resulting in £205 (2.5% to 97.5% credible interval £46 to £559) per HPE 

avoided by SMASH. Expressing outcomes in natural units (cost per HPE avoided) does not 

allow decision-makers to compare cost-effectiveness estimates across different 

interventions for patient safety targets other than HPEs avoided. To generate an analysis 

consistent with the NICE reference case and to inform allocative efficiency of population 

resources for healthcare, the impact of SMASH on patient outcomes was estimated.  

 

This thesis reports how consequences of HPEs related to patient harm and healthcare costs 

were projected for one of the HPE types. To quantify patient harm associated with NSAID 

use in anticoagulated patients, Objective Three was to measure the risk difference in harm 

outcomes of patients exposed to the HPE and those at risk of the HPE but not exposed 

using routinely collected health data [Chapter Four]. NSAID use in anticoagulated patients 
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was associated with an increased risk of serious GI events (HR 2.96, 95% CI 1.60 to 5.46) 

and stroke (HR 2.48, 95% CI 1.36 to 4.53) based on results from the cohort study using 

routinely collected health data from linked CPRD/HES and ONS records [Chapter Four]. This 

is the first UK study that assessed the ADE risk increase associated with NSAID use in 

anticoagulated patients. This estimate contributes to the evidence on harm from HPEs, 

which was identified as a gap in the literature in Chapter Two. 

 

In the subsequent step (Objective Four), a state-transition model was conceptualised to 

model potential treatment pathways related to the consequences of NSAID use in 

anticoagulated patients informed by findings on ADEs related to the HPE [Chapter Five]. 

Objective Five was to generate input parameters for estimated harm to populate the state 

transition model on HPE consequences to estimate the economic impact [Chapter Five]. 

ADEs managed in secondary care, i.e., stroke and serious GI events, were generated from 

estimates in the cohort study in Chapter Four. The state-transition model also included 

ADEs associated with NSAID use managed in primary care: symptomatic ulcer and GI 

discomfort. This is the first state-transition model that estimates the economic impact of 

ADEs associated with NSAID use in anticoagulated patients. In previous economic 

evaluations, the occurrence of ADEs associated with HPEs was often not available and harm 

from HPEs had to be modelled through proxies, such as assessment of preventability of 

ADEs or expert elicitation of estimates of potential future harm [Chapter Two]. The overall 

economic impact of the presence of the HPE was estimated as £244 (2.5% to 97.5% credible 

interval -£149 to £1073) incremental costs and 0.04 (2.5% to 97.5% credible interval -0.17 

to 0.05) reduction in QALYs per patient, from an NHS/PSS perspective, over a life time 

horizon, with both costs and outcomes discounted at 3.5% [Chapter Five]. Based on the 

prevalence of the HPE in the English population (estimate from 2019), consequences of the 

HPE generate additional costs to NHS England of almost £3 million over the life time of 

these patients and patients lose more than 500 QALYs. This estimate accounts for the 

probability that the HPE is identified and resolved after a maximum of a year. 

 

To meet Objective Six, the cost-effectiveness of the SMASH intervention in reducing this 

specific HPE was assessed by combining results on cost per HPE avoided by SMASH with 

the modelled patient harm and costs associated with the HPE occurrence [Chapter Six].  
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In the cost-utility analysis, the cost per additional QALY and costs associated with the HPE 

were incorporated. The cost-utility analysis of SMASH combined the decision-analytic 

model developed in the cost per HPE avoided analysis [Chapter Three] with the state-

transition model on the economic impact of HPEs [Chapter Five]. The cost of SMASH per 

practice in reducing NSAID use in anticoagulated patients were allocated to the specific HPE 

type (£380, 2.5% to 97.5% credible interval £347 to £417). SMASH was associated with 

higher costs (£363, 2.5% to 97.5% credible interval £248 to £424) and 0.003 (2.5% to 97.5% 

credible interval -0.008 to 0.019) more QALYs compared with standard care under the 

(fictional) assumption that SMASH only targets NSAID use in anticoagulated patients. At 

the UK WTP threshold of £20000, the incremental NMB of SMASH in reducing the HPE was 

estimated to be -£311 (2.5% to 97.5% credible interval -£542 to £73). SMASH would 

therefore not be cost-effective at the UK WTP and should not be implemented for this one 

type of HPE alone. However, as discussed in Chapter Six, SMASH was not designed for this 

one HPE type alone, thus, decisions on whether SMASH overall is cost-effective are only 

possible once projected harm and costs are available for all HPE types targeted by SMASH. 

Post-doctoral work will focus on combining the state-transition models for the other HPE 

types that are developed as part of the PROTECT programme grant with the cost per HPE 

avoided analysis of SMASH in Chapter Three. Cost-effectiveness of SMASH in reducing 

NSAID use in anticoagulated patients was mainly driven by the effectiveness of SMASH in 

reducing HPE rates [Chapter Six]. SMASH reduced overall HPE rates significantly (p-value < 

0.005) and did not reduce HPE rates significantly for NSAID use in anticoagulated patients. 

It is therefore assumed that SMASH can be cost-effective even though it was not cost-

effective at the UK WTP for this specific HPE type.  

 

Objective Seven aimed to reflect on conducting an economic evaluation as part of a quasi-

experimental study that relied on routinely collected health data to measure exposure and 

outcomes. The next two sections reflect on the use of evidence from observational data 

[1.1] from a quasi-experimental effectiveness study and from routinely collected health 

data [7.4].  
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7.2 Reflections on using a quasi-experimental effectiveness study 

This thesis relied on the use of effectiveness estimates from a quasi-experimental ITSA in 

the economic evaluation of SMASH. Various quasi-experimental methods have been 

reported, and these might differ in how they are used in economic evaluations and with 

regards to strengths and limitations of importance (10). This section reflects on the quasi-

experimental method ITSA with historical controls as performed for SMASH. The 

segmented regression using a historical comparator was the strongest available option 

given practical and ethical considerations, the lack of a concurrent comparator, and the 

availability of sufficient pre- and post-intervention measurement points (13). The strengths 

and limitations of quasi-experimental study designs compared with RCTs have been 

discussed in the literature in multiple publications (7, 267, 270, 576), and are summarised 

in Chapter Two [2.9.2]. Strengths and limitations of the quasi-experimental method of ITSA 

used to evaluate SMASH were described in detail in Chapter Three [3.4.4]. This section 

focuses on the specific implications of the use of a historical comparator for the economic 

evaluation. 

 

For SMASH, no concurrent control was available. The intervention was implemented across 

all practices in the Salford CCG and because of the unique healthcare infrastructure in 

Salford no suitable comparator existed. The analysis therefore relied on the use of a 

historical comparator. A recent systematic review by Hategeka et al. (2020) of health 

system quality improvement interventions using ITSA methods found only 18.3% (22 out 

of 120) of interventions to use controlled designs (264). Without a concurrent comparator, 

as a result of potential unmeasured time-varying confounders, it cannot be ruled out that 

the measured effect would have occurred without the intervention and can be explained 

away due to confounding factors (259, 577). Unmeasured time-varying confounding can be 

caused by other unexpected events or intercurrent events and undermine assumptions on 

causal inference. The use of concurrent controls can minimise the risk of time-varying 

confounding. As described in Chapter Two [2.9.2] and Chapter Three [3.4.4], controlled 

ITSA methods were found to produce more robust estimates because they allow within-

group and between-group comparisons. The use of a historical comparator has not only 

implications on the robustness of the effectiveness estimate of the intervention 
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evaluated [1.1], but it also had implications on the interpretation for the economic 

evaluation and the cost assessment. 

 

In longitudinal observational studies, a change of the at-risk population over time can be a 

problem because this violates the key assumption that the pre-intervention trend of the 

historical comparator is predictive of the current outcome measure (13). In the SMASH 

effectiveness study, this was not a problem because the at-risk population did not change 

over the follow-up time of 12 months. This has been criticised in other ITSAs and is difficult 

to control for (264, 578). The time horizon can be adjusted to only measure the effect in a 

time interval where the at risk population is constant or some form of concurrent control 

is necessary in addition to the historic control (259).  

 

Another challenge of the historical control design in this specific example was that resource 

use of the comparator was not available (48). This had consequences on the cost 

assessment of the comparator in the economic evaluation. With no information on what 

measures were in place to reduce HPE rates before the intervention, it was assumed that 

there were none, so no additional costs were incurred by the comparator. If some of the 

services of SMASH substituted services already part of standard care before SMASH, the 

incremental costs of SMASH would have been smaller as mentioned by pharmacists during 

interviews conducted as part of the cost assessment in Chapter Three. 

 

On reflection, some challenges were encountered in the economic evaluation as a result of 

the ITSA design. These were mainly a consequence of the use of a historical comparator. 

With robust study methods to minimise bias and sensitivity analysis to test the impact of 

assumptions where possible, this dissertation addressed the challenges of using 

effectiveness estimates from a quasi-experimental study design. However, the use of ITSA 

data in economic evaluation relies on the assumption that the effectiveness estimate is 

robust and not biased because of time-varying confounding. Compared with controlled 

quasi-experimental designs, the ITSA design using historical controls is considered to be 

less robust (579). With no concurrent control available, the results from the ITSA provide 

the best available estimate. One way to check validity of the effect size is to compare results 

with similar studies. PINCER reduced the HPE rate (composite of all HPEs) from 3% to 2% 
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(OR 0.78, 95% CI 0.64 to 0.94) after 12 months compared with simple feedback (45). SMASH 

reduced the HPE rate from 2% to 1% compared with standard care before intervention start 

(48). This suggests that the measured effects in SMASH are of the same order as another 

similar intervention, which increases confidence in the results to some extent. 

 

7.3 Feasibility of the use of routinely collected health data to link process 

indicators with patient outcomes 

Only process indicators, in the form of HPE rates, were available from the effectiveness 

study by Peek et al. (2020) (48). While SMASH directly impacts HPE rates, its indirect impact 

on patient outcomes is not known. This section examines the feasibility of the use of 

routinely collected health data to link those process indicators to patient outcomes to 

determine the probability of the patient outcome, given the frequency of the HPE. Firstly, 

it is reflected on the use of routinely collected health data in the specific case study of 

NSAID use in anticoagulated patients. Then, the ability to generalise this approach beyond 

the immediate context of the SMASH intervention is explored. The feasibility of the 

assessment of health outcomes associated with the HPE presence depends on the 

definitions of the cohort, the exposure and outcome, the routinely collected health data 

available and the study design. 

 

Definition of cohort and exposure 

The intervention specifies how the cohort and exposure are defined. The cohort at risk and 

the HPE types were designed as described in Chapter Two [2.9.1] to be identifiable from 

electronic health records. Consequently, definitions for patients at risk of the HPE 

(denominator) and exposed to the HPE (numerator) are clearly defined and can, thus, be 

included in search algorithms. The electronic health records from primary (CPRD Gold) and 

secondary care (HES) utilised in this thesis provide the data not only to identify patients 

with the HPE but also variables required to identify periods of exposure to the HPE. This 

allowed an analysis of exposure as a time-varying variable. Assumptions made to identify 

exposure start and stop dates were tested in sensitivity analysis and the results were robust 

to changes in these assumptions [4.4.3].  
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Dataset 

The dataset is crucial to ensure a robust analysis. The results can only be as good as the 

data available. This has been referred to as a ‘fit for purpose’ dataset (580). The CPRD 

dataset has been found to broadly represent the UK population in terms of age, sex and 

ethnicity (342, 343). With about 600 practices in the UK covering 11.3 million patients, 

CPRD Gold is one of the largest available longitudinal datasets in primary care (341, 342). 

This enables analysis of rare outcomes that require large sample sizes. The linkages enable 

researchers to follow patients through electronic health records in primary and secondary 

care until death. Validity of diagnostic coding is high (344, 345), as well as the quality of the 

detailed information on prescribing data (581). For the outcome of stroke, for example, the 

positive predictive value of a recorded stroke diagnosis in linked CPRD/HES data was high 

with 79% and a negative predictive value of 100% (433). The linked dataset contains data 

on patient demographics, prescriptions, diagnoses, referrals, tests, symptoms and life style 

factors (342, 581). For the analysis, it is important that outcomes, exposure variables and 

potential confounders are recorded in the dataset.  

 

The assessment of ADEs associated with HPEs avoided by SMASH in this dataset was 

reasonably robust because the dataset is representative of the study population, 

sufficiently large, contains high quality data, and provides a comprehensive set of variables, 

i.e., prescribing records, diagnoses, patient demographic and life-style factors. However, 

an observational dataset was used that always imposes the risk of unmeasured 

confounding, missing data and measurement error as discussed in Chapter Four [4.5.4]. 

While positive predictive values of diagnoses used in the analysis were high, patients 

without a recorded diagnosis might still have the condition but where never diagnosed. A 

recent observational study conducted in England demonstrated the impact the COVID-19 

pandemic had on recorded diagnosis for different conditions in the Salford Integrated 

Record (SIR) system, the electronic health record available in the area where SMASH was 

rolled out (582). The electronic health records recorded much less diagnoses compared 

with previous years, not because less patients had these conditions, but because they did 

not report them to their GP. While the COVID-19 pandemic is an extreme example and no 

such events were present at the time of analysis in this thesis, the example illustrates the 

potential impact of measurement error in electronic health records. 
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Study design 

A robust study design and analysis plan are key to robust results. Especially in observational 

studies, these are crucial to minimise selection and confounding bias. In Chapter Four, it 

was described how different types of confounding were addressed in the cohort 

study [4.3.7]. This section focuses on providing evidence on whether specific methods used 

to minimise bias were effective. One study by Kreif et al. (2013) was found that provided a 

critical appraisal tool to evaluate the study design of observational studies that are used in 

economic evaluations (11). Kreif et al. (2013) defined five key items relevant to critically 

appraise statistical methods in observational studies that are used in economic evaluations. 

Because this was the only guidance found to evaluate if observational studies appropriately 

address confounding to be used in economic evaluations, this section uses the checklist by 

Kreif et al. (2013) to critically appraise the study design in Chapter Four.  

 

For the case study in Chapter Four, a robust study design consisting of propensity score 

matched cohorts was used to balance out observable patient characteristics at baseline. 

The knowledge derived from clinicians and the literature on potential confounders was 

used to identify variables to predict the propensity score. PSM is a widely accepted method 

to reduce treatment selection bias (583). The overlap of baseline covariates between 

comparators was assessed with histograms and standardised differences before and after 

the matching as recommended by Kreif et al. (2013). After matching on the propensity 

score, balance tests showed no substantial difference between the two cohorts at baseline 

demonstrating the success of the matching process [Table 4.4; Appendix H]. If this can be 

achieved through matching, the average treatment effect, similar to an RCT, can be 

estimated (260). If this balance cannot be achieved, other measures such as further 

regression adjustment would have been required. 

 

However, balanced baseline characteristics only demonstrate that observable variables 

were evenly distributed between the matched cohorts. Unobserved confounding could still 

be present. Unobserved confounding is a major challenge of observational studies (428, 

584). The study would not be feasible if the risk of unobserved confounding was high. This 

study addressed unmeasured confounding in different ways. GPs and pharmacists of the 

PROTECT team were involved in the identification of potential confounders. Potential 
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confounder and collider relationships were investigated in detail by drawing a DAG based 

on external literature and discussions with clinicians [Appendix G]. Clinicians involved in 

the validation were asked if they can think of confounders or colliders not observable in 

the dataset. No relevant confounder was reported by the clinicians. In addition, sensitivity 

analysis tested how strong the relation of outcome and exposure with the unmeasured 

confounder had to be to negate the measured effect using e-values (424). Assessment of 

the e-value showed that the relation of the unmeasured confounder with the outcome and 

the exposure must be strong to explain away the identified effect compared with other risk 

factors observable in the dataset or in the literature (423). The statistics as well as the 

clinicians suggested that the risk of unmeasured confounding was small [4.5.4]. According 

to Kreif et al. (2013), the combination of evidence from the literature, involvement of 

clinical experts and the use of DAGs is the preferred approach to address unmeasured 

confounding (11). 

 

According to Kreif et al. (2013), it is essential to assess the specification of the regression 

model. In this thesis, statistical tests and plots were used to assess if the proportional 

hazard function hold [Appendix H]. The tests were used to identify possible violations of 

underlying assumptions and indicated no such violations in Chapter Four. 

 

Another pivotal checklist item involved structural uncertainty of the statistical method. To 

address structural uncertainty, Chapter Four provided estimates for different matching 

methods, different regression models and changes in exclusion criteria [4.4.3]. The 

different estimates were use in sensitivity analysis in the economic evaluation and how 

they impacted the cost-effectiveness analysis is reported in Chapter Six [6.3.5].  

 

In accordance with the checklist by Kreif et al. (2013), the study design in Chapter Four 

fulfilled all requirements to sufficiently address confounding in observational studies. Kreif 

et al. (2013) also reviewed the literature on economic evaluations using observational data 

and critically appraised the statistical methods of these studies according to their checklist 

(11). The authors found study designs to rarely address confounding appropriately. The 

study design in Chapter Four, however, addressed confounding appropriately and can be 

used in economic evaluations. 
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Summary of feasibility of the use of routinely collected health data 

Overall, the assessment of health outcomes associated with the HPE rates measured in the 

SMASH effectiveness study was found to produce robust estimates. The definitions 

specified for denominator and numerator by the intervention, the fit for purpose dataset 

with regards to relevance, availability and reliability of records, and the chosen study design 

allowed a robust analysis of the increased likelihood of ADEs associated with the HPE. 

Where no RCT data is available or no RCT is possible, such as in the analysis of ADEs 

associated with hazardous prescribing, and the analysis relies on the use of real-world 

evidence, the use of routinely collected health data to link process indicators with patient 

outcomes was feasible. It is essential, however, to decide on feasibility of the use of 

evidence from routinely collected health data on a case to case basis. The study designs 

and, thus, quality of observational studies are highly variable (557), and only robust 

methods as used in this thesis can provide appropriate evidence to inform economic 

evaluations. 

 

Generalisability of the applied methods to other settings 

The use of routinely collected health data to estimate health outcomes as proposed in this 

dissertation is not restricted to HPE types targeted by SMASH and PINCER. There are, 

however, certain criteria that are crucial for this approach to work.  

 

(i) Denominator and numerator need to be clearly defined and be observable in the 

dataset. The denominator describes the population at risk and the numerator the presence 

of the process indicator if this is a binary outcome. If the presence of the process indicator 

is variable over time, for example, the onset and end of an infection or drug treatment, 

start and stop dates of the exposure periods need to be defined and be available in the 

dataset. In the linked CPRD/HES dataset, this is manageable for process indicators that are 

defined by the presence of a prescription or a disease and even some test results. The 

linked CPRD/HES dataset does not provide information on administration of medications 

or adherence to treatment. It is therefore not suitable for process indicators, such as 

administration errors.  
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(ii) The patient outcome needs to be clearly defined and be observable in the dataset. If 

only primary care data is available, and the patient outcome is usually managed in hospital, 

the completeness of recording of these secondary care events in the primary care record 

needs to be known. Examples for patient outcomes recorded in the CPRD/HES/ONS dataset 

are diagnosis codes, causes of hospital admissions and mortality. Not recorded in the 

dataset are life style changes (e.g., diet, quality of life measures or non-health related 

outcomes). Other datasets might be restricted to only diagnoses recorded in primary care, 

so that outcomes mainly managed in secondary care might not be appropriate to be 

investigated in this dataset. 

 

(iii) The patient outcome must be linkable to the process indicator. A causal link between 

the exposure to the process indicator and the patient outcome needs to be likely, so that 

the association measured between patient outcome and exposure can be attributable to 

the exposure. A relevant factor in causality assessment is physiological plausibility (101).  

 

(iv) Availability of data on potential confounders in the dataset is required. One of the key 

limitations of the use of observational data in general are unobservable confounders. While 

randomisation balances baseline characteristics between two groups on observable and 

unobservable confounders, this is not possible using observational data. The methods 

proposed mimic a randomised process by using PSM. This matching process, however, can 

only balance out characteristics that are observable in the dataset. An example is 

confounding by indication, where often not all confounding factors are observed in the 

dataset and can therefore not all be adjusted for (585). In contrast to RCTs, where exposure 

is randomly allocated, in routinely collected datasets the exposure assignment by a 

prescriber is driven by the patient’s health state (586, 587). Prescribers are, for example, 

more likely to prescribe gastroprotective agents to patients at higher bleeding risk, and 

studies investigating the association of gastroprotective agent use in patients with NSAIDs 

on GI bleeding risk are at risk of confounding by indication (588). In the example study, this 

resulted in an increased risk of GI bleedings in patients exposed to the gastroprotective 

agent. It is not possible in all cases to fully resolve confounding by indication with 

adjustment methods, such as regression adjustment or matching (585). Observational 
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datasets are only useful to assess an association between exposure to a medication if 

confounding by indication is small or can be minimised. 

 

(v) Balance between patient groups must be achievable. Creating balanced cohorts is not 

always possible. If the proposed propensity score method does not provide balanced 

comparator groups, other balancing methods can be tested. If patient characteristics differ 

considerably and sample sizes are low, appropriate matches might be limited.  

 

In under-researched areas, primary data collection, such as in RCTs, with complete control 

over study design and analysis is not always practical given resource and time constraints 

and ethical considerations. The use of retrospectively collected data from electronic health 

records, such as linked CPRD/HES data, enable to analyse a large sample size, requiring 

considerably less resource use than primary data collection at the cost of no control over 

the quality of the data recorded. Compared with other alternatives, such as expert 

elicitation, routinely collected health data provides a less subjective measure of association 

that can be used in economic evaluation. In conclusion, acknowledging the limitations of 

routinely collected health data with regards to confounding, the proposed analysis was a 

valid alternative. The analysis is only feasible for other interventions if the available data 

source contains comprehensive information on the relevant cohorts, required patient 

outcomes and potential confounders. Collaboration with clinicians is highly recommended 

to get an understanding of confounder relations and if the dataset contains the required 

data.  

 

7.4 Implications of this work for policy 

The main objective of this dissertation was to use observational data for the economic 

assessment of a system level DHI intervention where it was not possible to conduct an RCT. 

This section outlines implications the use of quasi-experimental methods has for policy 

decision making. 
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How evidence from quasi-experimental studies inform policy decisions 

Policy decisions should be made on the basis of the best available evidence. There are two 

main scenarios relevant for policy makers. The first one is to evaluate a new technology or 

intervention and the second is to evaluate one that is already introduced. The policy 

decision to be made is slightly different if the intervention is already in place compared to 

evaluating a new technology. Effectiveness and cost-effectiveness estimates of new 

technologies assessed alongside an RCT aim to aid decision making on market authorisation 

(e.g., MHRA in the UK) or reimbursement (e.g., NICE in the UK) of the new treatment. 

Decision makers then decide whether this new treatment should be used or not. The gold 

standard for this type of decision making are RCTs (3, 557, 589). In the example of a 

pragmatic ‘real world’ study, where the intervention is already in place, the nature of the 

decision to be made is different (557). The decision to use or implement the intervention 

has already been made. Effectiveness and cost-effectiveness evidence then aid decision 

making on whether to roll out the intervention further or to revoke the intervention.  

 

The decision maker on a CCG level in Salford, Greater Manchester, decided to implement 

SMASH. After implementation, the effectiveness of SMASH was evaluated based on the 

longitudinal data of this rollout. The evidence on effectiveness of SMASH in reducing HPE 

rates suggests that SMASH is effective (48) but comes at a higher cost compared with 

standard care [Chapter Three]. The evidence on cost-effectiveness of SMASH overall, is not 

assessed yet. Once the economic impact of all HPE types is know, this can provide 

information of the impact of SMASH not only on HPE rates but also on patient outcomes. 

Once the cost-utility analysis of SMASH is complete, the results can inform future policy 

decisions by the Salford CCG. If SMASH overall is cost-effective, the evidence supports 

decisions to continue with the programme and potentially roll SMASH out further. 

However, if SMASH is not found to be cost-effective, the evidence from the cost-utility 

analysis would suggest revoking the intervention. For CCGs, the decision to revoke an 

existing intervention that was found to be effective and that aims to improve patient safety 

could be objected by general practices that use and value SMASH. Improving patient safety 

by reducing HPE rates is not only associated with health related improvements, as they are 

measured in the cost-utility analysis, but could also have non-health related benefits, for 

instance, improving trust in the healthcare system [2.6]. The decisions by policy makers 
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can, thus, often not be made solely on the basis of the cost-effectiveness evidence but need 

to consider other factors. 

 

Other factors with implications for policy making 

The context of when the intervention is being developed and implemented plays a major 

role in policy decisions. The PINCER intervention is used as an illustrative example where a 

quasi-experimental study informed policy decisions, where the context played a major role 

in policy decisions. The effectiveness and cost-effectiveness of PINCER were first assessed 

in an RCT (45). The positive findings informed policy decisions on a regional rollout in the 

East Midlands (253). The regional rollout was evaluated using quasi-experimental methods 

because it was not justifiable to withhold the proven intervention from a subset of 

practices. The evidence on the effectiveness of PINCER in reducing the process indicator of 

HPE rates from the quasi-experimental study informed policy decisions on a national rollout 

of PINCER without any evidence on cost-effectiveness. An important factor that 

contributed to the national rollout of PINCER was the topicality of the aim of PINCER. The 

WHO’s call to action by policy makers to reduce harm from medication errors in its third 

global patient safety challenge (33) and the subsequent UK policy objectives to support 

implementation of interventions aiming to reduce medication related harm, such as 

PINCER (35), potentially contributed to the policy decision to nationally roll out PINCER.  

 

Additionally, policy developments pushing the introduction of more clinical pharmacists 

into general practices might have contributed to the decision of rolling out PINCER 

nationally. The NHS has encouraged the employment of clinical pharmacists in general 

practices. Since 2015, the Clinical Pharmacists in General Practice Scheme and since 2019, 

the GP Contract Framework reform the Network Contract Directed Enhanced Services were 

introduced (244). PINCER and SMASH both support the work of clinical pharmacists in 

general practices, with SMASH taking full advantage of continuous surveillance by a 

pharmacist compared with the occasional pharmacist review in PINCER.  

 

The context could have also contributed to the rollout of SMASH to Greater Manchester 

before evidence on its cost-effectiveness was available. The topicality of the reduction of 
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HPE rates and the support for practices to employ clinical pharmacists seem to have driven 

the decision to roll out SMASH on the basis of the effectiveness evidence alone.  

 

In the long term, PINCER and SMASH, however, will need to demonstrate their value for 

money in order to justify continuous funding needs. The Department of Health and Social 

Care might need to amend their policy (35) to prioritize interventions that reduce harm 

from HPEs in a cost-effective way. So far, the UK policy only calls for the wider rollout of 

interventions such as PINCER and SMASH. Estimates on cost per QALY generated by 

interventions can enable a comparison of the cost-effectiveness of interventions even if 

they, for example, reduce different set of HPEs and, thus, avoid other ADEs. The ability to 

compare the value for money of interventions is essential under the prospect that more 

and more interventions aiming to reduce hazardous prescribing will be developed in the 

future.  

 

Guidelines in the use of evidence from quasi-experiments 

The NICE evidence standard framework for effectiveness and cost-effectiveness data 

acknowledges that quasi-experimental evidence can be appropriate to inform policy 

decisions in interventions with a low risk of harm for the patient (12). The possibility of 

using quasi-experimental evidence is acknowledged, but no exact guidance on how to use 

this evidence is provided. A targeted grey literature review of key stakeholder and decision 

maker websites by Jaksa et al. (2021) identified a lack of comprehensive guidance on how 

‘high-quality’ real world evidence can and should be generated (580). Existing 

recommendations were found to be fragmented and often did not provide the required 

level of detail to conduct such analysis. As a result, Deidda et al. (2019) developed the first 

checklist with best practice guidance for economic evaluations alongside quasi-

experimental studies (10). The checklist was designed for prospective economic 

evaluations that estimate costs and effectiveness outcomes within the same study. Deidda 

et al. (2019) highlight the need for more comprehensive frameworks that describe a best 

standard or common approach for the use of quasi-experimental cost-effectiveness 

evidence (10).  
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For the specific example in this thesis where costs and patient outcomes were projected 

based on changes in the process indicator of HPE rates, and costs were estimated 

retrospectively, the guidance from Deidda et al. (2019) cannot be applied. Future 

frameworks should address not only challenges with economic evaluations where patient 

outcomes can be measured alongside the quasi-experimental study but also challenges of 

economic evaluations that rely on the use of process indicators. 

 

It is possible, and it would be useful, to provide more guidance on the choice of quasi-

experimental designs and analysis methods by summarising available designs and methods, 

comparing their strengths and limitations, and describing implications for the 

interpretation of economic evidence. For interventions, such as SMASH, the evidence 

standard framework mentions the use of a high-quality quasi-experimental study as an 

alternative to RCTs without defining what this term includes (12). In Chapter Two [2.9.2], 

quasi-experimental methods were described, and their different biases and how they can 

be mitigated are explained. Not for all studies the same study design is appropriate or can 

be considered to be of high quality. Controlled designs, e.g., DID and controlled ITSA, were 

identified as the strongest designs (13, 257, 259, 264). With a suitable control, these 

controlled designs are able to mitigate time-variant confounding and can be considered 

high-quality quasi-experimental studies. With no appropriate control, selection bias is 

introduced that cannot be mitigated and the study design cannot be considered high 

quality. It was assumed that a high-quality quasi-experimental study as recommended by 

NICE is defined as a study design that appropriately addresses confounding. In the example 

of SMASH, where no appropriate control was available, the evaluation relied on the use of 

historical data from the same practices. For the economic evaluation, this was the only data 

available. The lack of data from a concurrent control potentially introduces time-variant 

confounding from intercurrent events that cannot be mitigated. After careful 

considerations, the study design assessing the effectiveness of SMASH by Peek et al. (2020), 

was considered to appropriately address potential confounding and to be at low risk of bias 

[3.4.4; 1.1]. The statistical analysis minimised biases due to regression to the mean, 

seasonality, maturation bias and time-invariant confounding [2.9.2]. The risk of time-

variant confounding was considered low because practices introduced the interventions at 

different points in time, and the follow-up period was short with 12 months. There was no 



  

275 
 

indication that the population at risk changed over the study period and no intercurrent 

events were identified. Under the assumption that studies that appropriately address 

confounding are considered to be of high quality as recommended by NICE, the ITSA in 

Peek et al. (2020) is a valid alternative to experimental designs for the specific case of 

evaluating SMASH.  

 

Guidance, however, is not only required for the choice of study design and method of 

analysis but it is also pivotal to identify if the data set is fit for purpose. Recommendations 

exists that describe the need for elements, i.e., relevance, reliability, accuracy and validity 

of records but these lack detail of how this translates into practice and do not provide 

thresholds or minimum criteria how to meet these elements (580). A comprehensive 

guidance could define thresholds of what level of missingness of variables, for example, is 

still appropriate to generate ‘high-quality’ results. The thresholds should be specific to the 

type of variables, such as those used to identify the study population, exposure or 

covariates used for balancing scores or regression adjustment. In Chapter Four, more than 

50% of BMI measurements were missing. High BMI was not considered a confounder but 

clinicians indicated that it is an indirect risk factor of the serious GI event outcome. It was 

assumed that the high level of missingness was acceptable and patients with missing BMI 

were assigned to a ‘missing BMI’ category for the subsequent PSM. In sensitivity analysis it 

was explored how excluding patients with missing values would affect the results. The small 

difference in the estimated HRs was interpreted as an indication that missingness only 

affects the results to a small extent. For future studies, it would be useful if guidance existed 

that defines clear criteria on how to meet the proposed standards for data sets to be fit for 

purpose (580). 

 

A comprehensive guideline from institutions, such as NICE, on how to conduct ‘high-quality’ 

real-world evidence studies, should specify criteria for (i) fit for purpose study designs, such 

as which biases are problematic with different study designs, (ii) appropriate methods of 

analysis, such as how biases need to be mitigated, and (iii) fit for purpose datasets, such as 

minimal levels of completeness for specific variables. Future research should focus on 

comparing the consequences of different quasi-experimental designs for economic 

evaluations. Consensus methods with researchers and decision makers could be used to 
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identify best-practice guidelines (580). Including researchers in the development is 

important to understand methodological strengths and limitations. The inclusion of 

decision makers would ensure that the recommendations are helpful and acceptable to aid 

decision making. 

 

7.5 Summary of key contributions 

The key contributions of this thesis are as follows: 

• Prescribing NSAIDs to anticoagulated patients is a serious hazardous prescribing event 

that is not only associated with an increase in ADE rates, such as serious GI events and 

major bleeding, but also with a decreased effectiveness of the anticoagulant therapy in 

reducing the risk of stroke [Chapter Four]. 

• The consequences of prescribing NSAIDs to anticoagulated patients impose a health 

economic burden to the NHS England with higher healthcare costs and fewer QALYs in 

the presence of the HPE. This highlights the need to develop and implement 

interventions that effectively and cost-effectively reduce this HPE type [Chapter Five]. 

• SMASH was not found to be cost-effective in reducing NSAID use in anticoagulated 

patients. This does not automatically imply that SMASH is not cost-effective overall but 

indicates that the intervention as it is now might not be suitable to reduce this specific 

HPE type [Chapter Three, Chapter Six]. 

• For interventions in cross-therapeutic areas outcomes are variable, as it is often the 

case for safety interventions. For SMASH, where the HPE types cover different 

therapeutic areas, a single outcome, such as hospitalisations or mortality, is not useful 

to fully explain the effect of the intervention [Chapter Two]. This thesis showed the 

importance to explore consequences of each HPE type individually and illustrated how 

this can be done using routinely collected data [Chapter Two to Chapter Six]. 

• To date there are no comprehensive guidance or standards for reliable real world 

evidence studies (580). This thesis illustrated a robust and transparent approach to 

conduct an economic evaluation that relied on real world evidence from routinely 

collected data to estimate exposure and outcomes [Chapter Seven]. 
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7.6 Conclusion 

Overall, the methods proposed in this thesis of conducting an economic analysis as part of 

a quasi-experimental ‘real world’ study that relies on routinely collected data to measure 

exposure and outcomes was feasible for the type of HPE investigated in this particular 

study. The objectives set out at the beginning of this dissertation were met, and this is the 

first study providing an estimate of cost per HPE avoided for SMASH and illustrating the 

process of how patient outcomes (QALYs) can be projected from this estimate. 

 

As detailed in Chapter Six [6.4.6], the method of using routinely collected data to inform 

state-transition models on the economic impact of HPE types is applicable to other HPE 

types targeted by SMASH. Interventions that aim to reduce the same or similar type of HPEs 

and where effectiveness is assessed using quasi-experimental study designs, can use the 

same approach. As part of the PROTECT programme grant, state-transition models for 

other HPE types are being developed and where no appropriate data on the increased 

likelihood of ADEs associated with these types of HPEs exists, routinely collected health 

data is used to estimate this. The state-transition models developed as part of this 

dissertation and as part of the PROTECT programme grant will be used to estimate the 

overall cost-effectiveness of SMASH and PINCER in post-doctoral work. 

 

The proposed methods do not depend on the type of HPE or the specific interventions per 

se. The methods are not restricted to patient safety interventions and patient outcomes 

associated with HPE rates as a process indicator. The methods are feasible in various 

potential interventions, especially for those where the process indicator is related to 

prescribing. This is not limited to process indicators measured in quasi-experimental 

studies and can be applied to RCTs reporting process indicators as well. Nevertheless, the 

methods are only feasible if certain criteria are fulfilled relating to data quality and 

availability of necessary variables in the data source. 



  

278 
 

References 

1. Department of Health. Guidelines for preparing a submission to the Pharmaceutical 
Benefits Advisory Committee. Australia; 2016. 
2. Ministry of Health and Long-Term Care. Ontario Guidelines for drug submission and 
evaluation. Ontario; 2016. 
3. National Institute for Health and Care Excellence. Guide to the methods of technology 
appraisal. London; 2013. 
4. Briggs A, Sculpher M, Claxton K. Decision Modelling for Health Economic Evaluation. 
Oxford, UK: Oxford University Press; 2006. 
5. Glick HA, Doshi JA, Sonnad SS, Polsky D. Economic Evaluation in Clinical Trials. Oxford, 
UK: Oxford University Press; 2014. 
6. Raftery J, Young A, Stanton L, et al. Clinical trial metadata: defining and extracting 
metadata on the design, conduct, results and costs of 125 randomised clinical trials funded by the 
National Institute for Health Research Health Technology Assessment programme. Southampton 
(UK); 2015. 
7. Kontopantelis E, Doran T, Springate DA, Buchan I, Reeves D. Regression based quasi-
experimental approach when randomisation is not an option: interrupted time series analysis. BMJ. 
2015;350:h2750. 
8. West SG, Duan N, Pequegnat W, Gaist P, Des Jarlais DC, Holtgrave D, et al. Alternatives 
to the randomized controlled trial. Am J Public Health. 2008;98(8):1359-66. 
9. Miller CJ, Smith SN, Pugatch M. Experimental and quasi-experimental designs in 
implementation research. Psychiatry Res. 2020;283:112452. 
10. Deidda M, Geue C, Kreif N, Dundas R, McIntosh E. A framework for conducting 
economic evaluations alongside natural experiments. Soc Sci Med. 2019;220:353-61. 
11. Kreif N, Grieve R, Sadique MZ. Statistical methods for cost-effectiveness analyses that 
use observational data: a critical appraisal tool and review of current practice. Health Econ. 
2013;22(4):486-500. 
12. National Institute for Health and Care Excellence. Evidence Standards Framework for 
Digital Health Technologies. 2019. 
13. Hinde S, Bojke L, Richardson G. Understanding and addressing the challenges of 
conducting quantitative evaluation at a local level: a worked example of the available approaches. 
BMJ Open. 2019;9(11):e029830. 
14. Harris AD, McGregor JC, Perencevich EN, Furuno JP, Zhu J, Peterson DE, et al. The use 
and interpretation of quasi-experimental studies in medical informatics. J Am Med Inform Assoc. 
2006;13(1):16-23. 
15. Council of the European Union. Council Recommendations of 9 June 2009 on patient 
safety, including the prevention and control of healthcare associated infections (2009/C 151/01). 
Brussels; 2009. 
16. European Commission. Report form the Commission to the Council on the basis of 
Member States' reports on the implementation of the Council Recommendation (2009/C 151/01) 
on patient safety, including the  revention and control of healthcare associated infections. Brussels; 
2012. 
17. NHS Business Services Authority. Prescribing costs 2019 [Available from: 
https://www.nhsbsa.nhs.uk/prescribing-costs-2019-published]. 
18. Bates DW, Cullen DJ, Laird N, et al. Incidence of adverse drug events and potential 
adverse drug events: Implications for prevention. JAMA. 1995;274(1):29-34. 
19. Hug BL, Witkowski DJ, Sox CM, Keohane CA, Seger DL, Yoon C, et al. Adverse drug event 
rates in six community hospitals and the potential impact of computerized physician order entry 
for prevention. J Gen Intern Med. 2010;25(1):31-8. 
20. Jolivot PA, Pichereau C, Hindlet P, Hejblum G, Bige N, Maury E, et al. An observational 
study of adult admissions to a medical ICU due to adverse drug events. Annals of Intensive Care. 
2016;6(1):1-12. 

https://www.nhsbsa.nhs.uk/prescribing-costs-2019-published


  

279 
 

21. Kongkaew C, Noyce PR, Ashcroft DM. Hospital admissions associated with adverse drug 
reactions: a systematic review of prospective observational studies. Ann Pharmacother. 
2008;42(7):1017-25. 
22. Hakkarainen KM, Hedna K, Petzold M, Hagg S. Percentage of patients with preventable 
adverse drug reactions and preventability of adverse drug reactions - a meta-analysis. PLoS One. 
2012;7(3):e33236. 
23. World Health Organization (WHO). Medication error: Technical Series on Safer Primary 
Care. Geneva 2016. 
24. National Coordinating Council for Medication Error Reporting and Prevention. About 
medication errors: What is a medication error  [Available from: http://www.nccmerp.org/about-
medication-errors]. 
25. Winterstein AG, Sauer BC, Hepler CD, Poole C. Preventable drug-related hospital 
admissions. Ann Pharmacother. 2002;36(7-8):1238-48. 
26. Howard RL, Avery AJ, Slavenburg S, Royal S, Pipe G, Lucassen P, et al. Which drugs cause 
preventable admissions to hospital? A systematic review. Br J Clin Pharmacol. 2007;63(2):136-47. 
27. Kohn L, Corrigan J, Donaldson M. To err is human-building a safer health system. 
Washington DC: Institute of Medicine; 1999. 
28. Stelfox HT, Palmisani S, Scurlock C, Orav EJ, Bates DW. The "To Err is Human" report 
and the patient safety literature. Qual Saf Health Care. 2006;15(3):174-8. 
29. Donaldson LJ. An organisation with a memory. Clin Med. 2002;2(5):452-7. 
30. Agbabiaka TB, Lietz M, Mira JJ, Warner B. A literature-based economic evaluation of 
healthcare preventable adverse events in Europe. Int J Qual Health Care. 2017;29(1):9-18. 
31. Elliott RA, Camacho E, Campbell F, Jankovic D, Martyn St James  M, Kaltenthaler E, et 
al. Prevalence and economic burden of medication errors in the NHS in England. Rapid evidence 
synthesis and economic analysis of the prevalence and burden of medication error in the UK. Policy 
Research Unit in Economic Evaluation of Health and Care Interventions; 2018. 
32. National Institute for Health and Care Excellence. Medicines optimisation: the safe and 
effective use of medicines to enable the best possible outcomes. 2015. 
33. Donaldson LJ, Kelley ET, Dhingra-Kumar N, Kieny M-P, Sheikh A. Medication Without 
Harm: WHO's Third Global Patient Safety Challenge. The Lancet. 2017;389(10080):1680-1. 
34. World Health Organization (WHO). Metrics: Disability-Adjusted Life Year (DALY) 2020 
[Available from: https://www.who.int/healthinfo/global_burden_disease/metrics_daly/en/]. 
35. Short Life Working Group. The report of the Short Life Working Group on reducing 
medication-related harm. London; 2018. 
36. European Directorate for the Quality of Medicines & HealthCare (EDQM). 
Pharmaceutical care, policies and practices for a safer, more responsible and cost-effective health 
system Strasbourg; 2012. 
37. Howard RL, Avery AJ, Howard PD, Partridge M. Investigation into the reasons for 
preventable drug related admissions to a medical admissions unit: observational study. Quality and 
Safety in Health Care. 2003;12:280-5. 
38. Avery AJ, Ghaleb M, Barber N, Dean Franklin B, Armstrong SJ, Serumaga B, et al. The 
prevalence and nature of prescribing and monitoring errors in English general practice: a 
retrospective case note review. Br J Gen Pract. 2013;63(613):e543-53. 
39. Akbarov A, Kontopantelis E, Sperrin M, Stocks SJ, Williams R, Rodgers S, et al. Primary 
care medication safety surveillance with integrated primary and secondary care electronic health 
records: a cross-sectional study. Drug Saf. 2015;38(7):671-82. 
40. Williams R, Keers R, Gude WT, Jeffries M, Davies C, Brown B, et al. SMASH! The Salford 
medication safety dashboard. J Innov Health Inform. 2018;25(3):183-93. 
41. National Institute for Health and Care Excellence. Atrial fibrillation: management. 
2014. Report No.: ISBN: 978-1-4731-0603-1. 
42. Avery AJ, Dex GM, Mulvaney C, Serumaga B, Spencer R, Lester HE, et al. Development 
of prescribing-safety indicators for GPs using the RAND Appropriateness Method. Br J Gen Pract. 
2011;61(589):e526-36. 
43. Spencer R, Bell B, Avery AJ, Gookey G, Campbell SM. Identification of an updated set 
of prescribing--safety indicators for GPs. Br J Gen Pract. 2014;64(621):e181-90. 

http://www.nccmerp.org/about-medication-errors
http://www.nccmerp.org/about-medication-errors
https://www.who.int/healthinfo/global_burden_disease/metrics_daly/en/


  

280 
 

44. Avery AJ, Rodgers S, Cantrill JA, Armstrong S, Boyd M, Cresswell K, et al. PINCER trial: a 
cluster randomised trial comparing the effectiveness and cost-effectiveness of a pharmacist-led IT-
based intervention with simple feedback in reducing rates of clinically important errors in medicines 
management in general practices. Birmingham; 2010. 
45. Avery AJ, Rodgers S, Cantrill JA, Armstrong S, Cresswell K, Eden M, et al. A pharmacist-
led information technology intervention for medication errors (PINCER): a multicentre, cluster 
randomised, controlled trial and cost-effectiveness analysis. The Lancet. 2012;379(9823):1310-9. 
46. Brehaut JC, Colquhoun HL, Eva KW, Carroll K, Sales A, Michie S, et al. Practice Feedback 
Interventions: 15 Suggestions for Optimizing Effectiveness. Ann Intern Med. 2016;164(6). 
47. Ivers N, Jamtvedt G, Flottorp S, Young JM, Odgaard-Jensen J, French SD, et al. Audit 
and feedback: effects on professional practice and healthcare outcomes. Cochrane Database Syst 
Rev. 2012(6):Cd000259. 
48. Peek N, Gude WT, Keers RN, Williams R, Kontopantelis E, Jeffries M, et al. Evaluation 
of a pharmacist-led actionable audit and feedback intervention for improving medication safety in 
UK primary care: An interrupted time series analysis. PLoS Med. 2020;17(10):e1003286. 
49. Guthrie B, McCowan C, Davey P, Simpson CR, Dreischulte T, Barnett K. High risk 
prescribing in primary care patients particularly vulnerable to adverse drug events: cross sectional 
population database analysis in Scottish general practice. BMJ. 2011;342:d3514. 
50. Dreischulte T, Grant AM, McCowan C, McAnaw JJ, Guthrie B. Quality and safety of 
medication use in primary care: consensus validation of a new set of explicit medication assessment 
criteria and prioritisation of topics for improvement. BMC Clin Pharmacol. 2012;12:5-. 
51. Dreischulte T, Grant A, Donnan P, McCowan C, Davey P, Petrie D, et al. A cluster 
randomised stepped wedge trial to evaluate the effectiveness of a multifaceted information 
technology-based intervention in reducing high-risk prescribing of non-steroidal anti-inflammatory 
drugs and antiplatelets in primary medical care: The DQIP study protocol. Implementation Science. 
2012;7(1):24. 
52. Dreischulte T, Donnan P, Grant A, Hapca A, McCowan C, Guthrie B. Safer Prescribing — 
A Trial of Education, Informatics, and Financial Incentives. N Engl J Med. 2016;374(11):1053-64. 
53. Avery A, Elliott R. Avoiding patient harm through the application of prescribing safety 
indicators in English general practices University of Nottingham: NIHR Programme Grants for 
Applied Research; 2016. 
54. Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ, et al. Adverse drug 
reactions as cause of admission to hospital: prospective analysis of 18820 patients. BMJ. 
2004;329(7456):15-9. 
55. NHS Business Services Authority. Medication Safety Indicators Specification. 2018. 
56. Stocks SJ, Kontopantelis E, Akbarov A, Rodgers S, Avery AJ, Ashcroft DM. Examining 
variations in prescribing safety in UK general practice: cross sectional study using the Clinical 
Practice Research Datalink. BMJ. 2015;351:h5501  
57. Bradley MC, Fahey T, Cahir C, Bennett K, O'Reilly D, Parsons C, et al. Potentially 
inappropriate prescribing and cost outcomes for older people: a cross-sectional study using the 
Northern Ireland Enhanced Prescribing Database. Eur J Clin Pharmacol. 2012;68(10):1425-33. 
58. Cahir C, Fahey T, Teeling M, Teljeur C, Feely J, Bennett K. Potentially inappropriate 
prescribing and cost outcomes for older people: a national population study. Br J Clin Pharmacol. 
2010;69(5):543-52. 
59. Dean B, Barber N, Schachter M. What is a prescribing error? Qual Health Care. 
2000;9(4):232-7. 
60. Beers MH. Explicit criteria for determining potentially inappropriate medication use by 
the elderly: An update. Arch Intern Med. 1997;157(14):1531-6. 
61. van der Hooft CS, Jong GW, Dieleman JP, Verhamme KM, van der Cammen TJ, Stricker 
BH, et al. Inappropriate drug prescribing in older adults: the updated 2002 Beers criteria--a 
population-based cohort study. Br J Clin Pharmacol. 2005;60(2):137-44. 
62. Gallagher P, Ryan C, Byrne S, Kennedy J, O'Mahony D. STOPP (Screening Tool of Older 
Person's Prescriptions) and START (Screening Tool to Alert doctors to Right Treatment). Consensus 
validation. Int J Clin Pharmacol Ther. 2008;46(2):72-83. 



  

281 
 

63. American Geriatrics Society Beers Criteria Update Expert Panel. Updated Beers Criteria 
for Potentially Inappropriate Medication Use in Older Adults. J Am Geriatr Soc. 2015;63(11):2227-
46. 
64. Hamilton H, Gallagher P, Ryan C, Byrne S, O'Mahony D. Potentially inappropriate 
medications defined by STOPP criteria and the risk of adverse drug events in older hospitalized 
patients. Arch Intern Med. 2011;171(11):1013-9. 
65. O'Mahony D, O'Sullivan D, Byrne S, O'Connor MN, Ryan C, Gallagher P. STOPP/START 
criteria for potentially inappropriate prescribing in older people: version 2. Age Ageing. 
2015;44(2):213-8. 
66. Ble A, Masoli JA, Barry HE, Winder RE, Tavakoly B, Henley WE, et al. Any versus long-
term prescribing of high risk medications in older people using 2012 Beers Criteria: results from 
three cross-sectional samples of primary care records for 2003/4, 2007/8 and 2011/12. BMC 
Geriatr. 2015;15:146. 
67. Gandhi TK, Seger DL, Bates DW. Identifying drug safety issues: from research to 
practice. Int J Qual Health Care. 2000;12(1):69-76. 
68. Barber N, Franklin BD, Cornford T, Klecun E, Savage I. Safer, faster, better? Evaluating 
electronic prescribing. London; 2006. 
69. Flynn E, Barker K, Pepper G, Bates D, Mikeal R. Comparison of methods for detecting 
medication errors in 36 hospitals and skilled-nursing facilities. Am J Health Syst Pharm. 
2002;59(5):436-46. 
70. James KL, Barlow D, McArtney R, Hiom S, Roberts D, Whittlesea C. Incidence, type and 
causes of dispensing errors: a review of the literature. Int J Pharm Pract. 2009;17(1):9-30. 
71. Thomas EJ, Petersen LA. Measuring Errors and Adverse Events in Health Care. J Gen 
Intern Med. 2003;18(1):61-7. 
72. Lewis PJ, Dornan T, Taylor D, Tully MP, Wass V, Ashcroft DM. Prevalence, incidence and 
nature of prescribing errors in hospital inpatients: a systematic review. Drug Saf. 2009;32(5):379-
89. 
73. Franklin BD, O’Grady K, Paschalides C, Utley M, Gallivan S, Jacklin A, et al. Providing 
feedback to hospital doctors about prescribing errors; a pilot study. Pharm World Sci. 
2007;29(3):213-20. 
74. Cheung K-C, Bouvy ML, De Smet PAGM. Medication errors: the importance of safe 
dispensing. Br J Clin Pharmacol. 2009;67(6):676-80. 
75. Brown C, Hofer T, Johal A, Thomson R, Nicholl J, Franklin BD, et al. An epistemology of 
patient safety research: a framework for study design and interpretation. Part 3. End points and 
measurement. Quality and Safety in Health Care. 2008;17(3):170-7. 
76. Berdot S, Gillaizeau F, Caruba T, Prognon P, Durieux P, Sabatier B. Drug Administration 
Errors in Hospital Inpatients: A Systematic Review. PLoS One. 2013;8(6):e68856. 
77. Olaniyan JO, Ghaleb M, Dhillon S, Robinson P. Safety of medication use in primary care. 
Int J Pharm Pract. 2015;23(1):3-20. 
78. National Reporting and Learning System. General Practice; Patient Safety Incident 
Report Form: NHS Improvement;  [Available from: https://report.nrls.nhs.uk/GP_eForm]. 
79. Franklin BD, Vincent C, Schachter M, Barber N. The Incidence of Prescribing Errors in 
Hospital Inpatients. Drug Saf. 2005;28(10):891-900. 
80. Tully MP, Buchan IE. Prescribing errors during hospital inpatient care: factors 
influencing identification by pharmacists. Pharm World Sci. 2009;31(6):682-8. 
81. Olsen S, Neale G, Schwab K, Psaila B, Patel T, Chapman EJ, et al. Hospital staff should 
use more than one method to detect adverse events and potential adverse events: incident 
reporting, pharmacist surveillance and local real‐time record review may all have a place. Qual Saf 
Health Care. 2007;16(1):40-4. 
82. Zegers M, de Bruijne MC, Wagner C, Groenewegen PP, van der Wal G, de Vet HC. The 
inter-rater agreement of retrospective assessments of adverse events does not improve with two 
reviewers per patient record. J Clin Epidemiol. 2010;63(1):94-102. 
83. Hanskamp-Sebregts M, Zegers M, Vincent C, van Gurp PJ, de Vet HC, Wollersheim H. 
Measurement of patient safety: a systematic review of the reliability and validity of adverse event 
detection with record review. BMJ Open. 2016;6(8):e011078. 

https://report.nrls.nhs.uk/GP_eForm


  

282 
 

84. Ashcroft DM, Lewis PJ, Tully MP, Farragher TM, Taylor D, Wass V, et al. Prevalence, 
Nature, Severity and Risk Factors for Prescribing Errors in Hospital Inpatients: Prospective Study in 
20 UK Hospitals. Drug Saf. 2015;38(9):833-43. 
85. Dornan T, Ashcroft DM, Heathfield H, Lewis P, Miles J, Taylor D, et al. An in depth 
investigation into causes of prescribing errors by foundation trainees in relation to their medical 
education. EQUIP study. Manchester: Hope Hospital (University of Manchester Medical School 
Teaching Hospital); 2009. 
86. Keers RN, Williams SD, Vattakatuchery JJ, Brown P, Miller J, Prescott L, et al. 
Prevalence, nature and predictors of prescribing errors in mental health hospitals: a prospective 
multicentre study. BMJ Open. 2014;4(9):e006084. 
87. Avery AJ, Ghaleb M, Barber N, Franklin BD, Armstrong S, Slight SP, et al. Investigating 
the prevalence and causes of prescribing errors in general practice: The practice study. 
Pharmacoepidemiol Drug Saf. 2012;21:4. 
88. Lilford R, Edwards A, Girling A, Hofer T, Di Tanna GL, Petty J, et al. Inter-rater reliability 
of case-note audit: a systematic review. J Health Serv Res Policy. 2007;12(3):173-80. 
89. Lisby M, Nielsen LP, Brock B, Mainz J. How are medication errors defined? A systematic 
literature review of definitions and characteristics. Int J Qual Health Care. 2010;22(6):507-18. 
90. Miller MR, Robinson KA, Lubomski LH, Rinke ML, Pronovost PJ. Medication errors in 
paediatric care: a systematic review of epidemiology and an evaluation of evidence supporting 
reduction strategy recommendations. Qual Saf Health Care. 2007;16(2):116-26. 
91. Ferner RE. The epidemiology of medication errors: the methodological difficulties. Br J 
Clin Pharmacol. 2009;67(6):614-20. 
92. Lynskey D, Haigh SJ, Patel N, Macadam AB. Medication errors in community pharmacy: 
an investigation into the types and potential causes. Int J Pharm Pract. 2007;15(2):105-12. 
93. Assiri GA, Shebl NA, Mahmoud MA, Aloudah N, Grant E, Aljadhey H, et al. What is the 
epidemiology of medication errors, error-related adverse events and risk factors for errors in adults 
managed in community care contexts? A systematic review of the international literature. BMJ 
Open. 2018;8(5). 
94. Shah NS, Aslam M, Avery A. A survey of prescription errors in general practice. Pharm 
J. 2001;276:860-2. 
95. Quinlan P, Ashcroft DM, Blenkinsopp A. Medication errors: a baseline survey of 
interventions recorded during the dispensing process in community pharmacies. Int J Pharm Pract. 
2002;10(S1):R67-R. 
96. NHS Business Services Authority. English Prescribing Dataset - Jun 2020. 2020. 
97. Rozich JD, Haraden CR, Resar RK. Adverse drug event trigger tool: a practical 
methodology for measuring medication related harm. Qual Saf Health Care. 2003;12(3):194-200. 
98. Classen DC, Metzger J. Improving medication safety: the measurement conundrum and 
where to start. Int J Qual Health Care. 2003;15(suppl_1):i41-i7. 
99. Cullen DJ, Bates DW, Small SD, Cooper JB, Nemeskal AR, Leape LL. The incident 
reporting system does not detect adverse drug events: a problem for quality improvement. Jt 
Comm J Qual Improv. 1995;21(10):541-8. 
100. Resar RK, Rozich JD, Classen D. Methodology and rationale for the measurement of 
harm with trigger tools. Qual Saf Health Care. 2003;12 Suppl 2(Suppl 2):ii39-45. 
101. Pande S. Causality or Relatedness Assessment in Adverse Drug Reaction and Its 
Relevance in Dermatology. Indian J Dermatol. 2018;63(1):18-21. 
102. Jones JK. Adverse drug reactions in the community health setting: approaches to 
recognizing, counseling, and reporting. 1982;5(2):58-67. 
103. Kane-Gill SL, Kirisci L, Pathak DS. Are the Naranjo criteria reliable and valid for 
determination of adverse drug reactions in the intensive care unit? Ann Pharmacother. 
2005;39(11):1823-7. 
104. Kramer MS. A Bayesian Approach to Assessment of Adverse Drug Reactions: Evaluation 
of a Case of Fatal Anaphylaxis. Drug Inf J. 1986;20(4):505-17. 
105. Kramer MS, Leventhal JM, Hutchinson TA, Feinstein AR. An Algorithm for the 
Operational Assessment of Adverse Drug Reactions: I. Background, Description, and Instructions for 
Use. JAMA. 1979;242(7):623-32. 



  

283 
 

106. Naranjo CA, Busto U, Sellers EM, Sandor P, Ruiz I, Roberts EA, et al. A method for 
estimating the probability of adverse drug reactions. 1981;30(2):239-45. 
107. Agbabiaka TB, Savović J, Ernst E. Methods for causality assessment of adverse drug 
reactions. Drug Saf. 2008;31(1):21-37. 
108. Uppsala Monitoring Centre. The use of the WHO-UMC system for standardized case 
causality assessment. 2018 [Available from: https://www.who-
umc.org/search/?s=criteria&searchButton=]. 
109. Naranjo CA, Lanctôt KL. A Consultant's View on the Role of Bayesian Differential 
Diagnosis in the Safety Assessment of Pharmaceuticals. Drug Inf J. 1992;26(4):593-601. 
110. Davies EC, Rowe PH, James S, Nickless G, Ganguli A, Danjuma M, et al. An Investigation 
of Disagreement in Causality Assessment of Adverse Drug Reactions. Pharmaceut Med. 
2011;25(1):17-24. 
111. Hakkarainen KM, Andersson Sundell K, Petzold M, Hägg S. Methods for assessing the 
preventability of adverse drug events: a systematic review. Drug Saf. 2012;35(2):105-26. 
112. Davies EC, Green CF, Mottram DR, Rowe PH, Pirmohamed M. Emergency re-admissions 
to hospital due to adverse drug reactions within 1 year of the index admission. Br J Clin Pharmacol. 
2010;70(5):749-55. 
113. Gallagher RM, Mason JR, Bird KA, Kirkham JJ, Peak M, Williamson PR, et al. Adverse 
Drug Reactions Causing Admission to a Paediatric Hospital. PLoS One. 2012;7(12):e50127. 
114. Hallas J, Harvald B, Gram LF, Grodum E, BrØSen K, Haghfelt T, et al. Drug related 
hospital admissions: the role of definitions and intensity of data collection, and the possibility of 
prevention. J Intern Med. 1990;228(2):83-90. 
115. Schumock GT, Thornton JP. Focusing on the preventability of adverse drug reactions. 
Hosp Pharm. 1992;27(6):538. 
116. Hodkinson A, Tyler N, Ashcroft DM, Keers RN, Khan K, Phipps D, et al. Preventable 
medication harm across health care settings: a systematic review and meta-analysis. BMC Med. 
2020;18(1):313. 
117. Panagioti M, Khan K, Keers R, Abuzour A, Phipps D, Bower P, et al. Preventable patient 
harm across health care services: a systematic review and meta-analysis. 2017. 
118. Panagioti M, Khan K, Keers RN, Abuzour A, Phipps D, Kontopantelis E, et al. Prevalence, 
severity, and nature of preventable patient harm across medical care settings: systematic review 
and meta-analysis. BMJ. 2019;366:l4185. 
119. Alqenae FA, Steinke D, Keers RN. Prevalence and Nature of Medication Errors and 
Medication-Related Harm Following Discharge from Hospital to Community Settings: A Systematic 
Review. Drug Saf. 2020;43(6):517-37. 
120. Morris CJ, Rodgers S, Hammersley VS, Avery AJ, Cantrill JA. Indicators for preventable 
drug related morbidity: application in primary care. Quality and Safety in Health Care. 
2004;13(3):181-5. 
121. Davies EC, Green CF, Taylor S, Williamson PR, Mottram DR, Pirmohamed M. Adverse 
Drug Reactions in Hospital In-Patients: A Prospective Analysis of 3695 Patient-Episodes. PLoS One. 
2009;4(2):e4439. 
122. Tangiisuran B, Davies JG, Wright JE, Rajkumar C. Adverse drug reactions in a population 
of hospitalized very elderly patients. Drugs Aging. 2012;29(8):669-79. 
123. Gallagher AM, de Vries F, Plumb JM, Hass B, Clemens A, van Staa TP. Quality of INR 
control and outcomes following venous thromboembolism. Clin Appl Thromb Hemost. 
2012;18(4):370-8. 
124. Parekh N, Ali K, Stevenson JM, Davies JG, Schiff R, Van der Cammen T, et al. Incidence 
and cost of medication harm in older adults following hospital discharge: a multicentre prospective 
study in the UK. Br J Clin Pharmacol. 2018;84(8):1789-97. 
125. National Institute for Health and Care Excellence. NICE glossary  [Available from: 
https://www.nice.org.uk/glossary?letter=q]. 
126. World Health Organization (WHO). International Drug Monitoring: The Role of National 
Centers. Geneva; 1972. 
127. Garfield S, Reynolds M, Dermont L, Franklin BD. Measuring the severity of prescribing 
errors: a systematic review. Drug Saf. 2013;36(12):1151-7. 

https://www.who-umc.org/search/?s=criteria&searchButton
https://www.who-umc.org/search/?s=criteria&searchButton
https://www.nice.org.uk/glossary?letter=q


  

284 
 

128. Dale MA, Copeland R, Barton R. Prescribing errors on medical wards and the impact of 
clinical pharmacists. Int J Pharm Pract. 2003;11(1):19-24. 
129. Shulman R, Singer M, Goldstone J, Bellingan G. Medication errors: a prospective cohort 
study of hand-written and computerised physician order entry in the intensive care unit. Crit Care. 
2005;9(5):R516-21. 
130. Dobrzanski S, Hammond I, Khan G, Holdsworth H. The nature of hospital prescribing 
errors. British Journal of Clinical Governance. 2002;7(3):187-93. 
131. Abdel-Qader DH, Harper L, Cantrill JA, Tully MP. Pharmacists' interventions in 
prescribing errors at hospital discharge: an observational study in the context of an electronic 
prescribing system in a UK teaching hospital. Drug Saf. 2010;33(11):1027-44. 
132. Dean B, Schachter M, Vincent C, Barber N. Prescribing errors in hospital inpatients: 
their incidence and clinical significance. Qual Saf Health Care. 2002;11(4):340-4. 
133. Tully MP, Parker D, Buchan I, al. e. Patient Safety Research Programme: Medication 
errors 2:  Pilot study. 2006. 
134. Webbe DD, S.; Roberts, C.M. Improving junior doctor prescribing: the positive impact 
of a pharmacist intervention. Pharm J. 2007;278:136-9. 
135. Haw C, Stubbs J. Prescribing errors at a psychiatric hospital. Pharm Pract. 2003;13:64–
6. 
136. Conroy S. Association between licence status and medication errors. Arch Dis Child. 
2011;96(3):305-6. 
137. Ridley SA, Booth SA, Thompson CM, Intensive Care Society's Working Group on 
Adverse Incidents. Prescription errors in UK critical care units. Anaesthesia. 2004;59(12):1193-200. 
138. Stubbs J, Haw C, Taylor D. Prescription errors in psychiatry - a multi-centre study. J 
Psychopharm. 2006;20(4):553-61. 
139. Sagripanti M, Dean B. An evaluation of the process-related medication risks for elective 
surgery patients from pre-operative assessment to discharge. Int J Pharm Pract. 2002;10(3):161-70. 
140. Wang JK, Herzog NS, Kaushal R, Park C, Mochizuki C, Weingarten SR. Prevention of 
pediatric medication errors by hospital pharmacists and the potential benefit of computerized 
physician order entry. Pediatrics. 2007;119(1):e77-85. 
141. Rees S, Thomas P, Shetty A, al. e. Drug history errors in the acute medical assessment 
unit quantified by use of the NPSA classification. Pharm J. 2007;279:469–71. 
142. National Patient Safety Agency. Safety in doses: medication safety incidents in the NHS. 
London; 2007. 
143. Franklin BD, Reynolds M, Shebl NA, Burnett S, Jacklin A. Prescribing errors in hospital 
inpatients: a three-centre study of their prevalence, types and causes. Postgrad Med J. 
2011;87(1033):739-45. 
144. Walsh KE, Harik P, Mazor KM, Perfetto D, Anatchkova M, Biggins C, et al. Measuring 
Harm in Health Care: Optimizing Adverse Event Review. Med Care. 2017;55(4):436-41. 
145. Alldred D, Barber N, Buckle P, Carpenter J, Dickinson R, Franklin B. Care home use of 
medicines study (CHUMS) Medication errors in nursing and residential care homes–prevalence, 
consequences, causes and solutions. Report to the Patient Safety Research Portfolio. 2009. 
146. Walsh EK, Hansen CR, Sahm LJ, Kearney PM, Doherty E, Bradley CP. Economic impact 
of medication error: a systematic review. Pharmacoepidemiol Drug Saf. 2017;26(5):481-97. 
147. Kind P, Lafata JE, Matuszewski K, Raisch D. The Use of QALYs in Clinical and Patient 
Decision-Making: Issues and Prospects. Value Health. 2009;12(s1):S27-S30. 
148. Wallace E, McDowell R, Bennett K, Fahey T, Smith SM. Impact of Potentially 
Inappropriate Prescribing on Adverse Drug Events, Health Related Quality of Life and Emergency 
Hospital Attendance in Older People Attending General Practice: A Prospective Cohort Study. J 
Gerontol A Biol Sci Med Sci. 2017;72(2):271-7. 
149. Elliott RA, Putman K, Franklin M, Verhaeghe N, Annemans L, Eden M, et al. Economic 
evaluation of a pharmacist-led IT-based intervention with simple feedback in reducing rates of 
clinically important errors in medicines management in general practices (PINCER). Birmingham, 
UK; 2013. 



  

285 
 

150. Forster R, Ratcliffe A, Lewis M, Crossley A, Bastida JL, Dunlop WCN. Cost-utility analysis 
of an intervention designed to reduce the critical handling error of insufficient inspiratory effort. 
Eur J Health Econ. 2018;19(9):1303-18. 
151. Moriarty F, Cahir C, Bennett K, Fahey T. Economic impact of potentially inappropriate 
prescribing and related adverse events in older people: a cost-utility analysis using Markov models. 
BMJ Open. 2019;9(1):e021832. 
152. Foy R, Willis T, Glidewell L, McEachan R, Lawton R, Meads D, et al. Developing and 
evaluating packages to support implementation of quality indicators in general practice: the ASPIRE 
research programme, including two cluster RCTs. Southampton (UK); 2020. 
153. Patel K, Jay R, Shahzad MW, Green W, Patel R. A systematic review of approaches for 
calculating the cost of medication errors. European Journal of Hospital Pharmacy. 2016;23(5):294-
301. 
154. Cranshaw J, Gupta KJ, Cook TM. Litigation related to drug errors in anaesthesia: an 
analysis of claims against the NHS in England 1995-2007. Anaesthesia. 2009;64(12):1317-23. 
155. Zaidi S, Mordaunt C, Durnin N, Cooke S, Blakey JD. Quantifying and reducing inhaler 
prescription errors in secondary care. Int J Clin Pharm. 2015;37(6):1028-32. 
156. Karnon J, Campbell F, Czoski‐Murray C. Model‐based cost‐effectiveness analysis of 
interventions aimed at preventing medication error at hospital admission (medicines 
reconciliation). J Eval Clin Pract. 2009;15(2):299-306. 
157. Steuten L, Buxton M. Economic evaluation of healthcare safety: which attributes of 
safety do healthcare professionals consider most important in resource allocation decisions? Qual 
Saf Health Care. 2010;19(5):e6. 
158. Shah K, Praet C, Devlin N, Sussex J, Appleby J, Parkin D. Is the aim of the English health 
care system to maximize QALYs? J Health Serv Res Policy. 2012;17(3):157-63. 
159. Wittich CM, Burkle CM, Lanier WL. Medication errors: an overview for clinicians. Mayo 
Clin Proc. 2014;89(8):1116-25. 
160. Whittaker CF, Miklich MA, Patel RS, Fink JC. Medication Safety Principles and Practice 
in CKD. Clin J Am Soc Nephrol. 2018;13(11):1738-46. 
161. Offe C. How can we trust our fellow citizens? (1999).  In: Institutionen, Normen, 
Bürgertugenden. vol. 3. Wiesbaden: Springer Fachmedien Wiesbaden; 1999. p. 147-90. 
162. Quick O. Outing Medical Errors: Questions of Trust and Responsibility. Med Law Rev. 
2005;14(1):22-43. 
163. Altice FL, Mostashari F, Friedland GH. Trust and the acceptance of and adherence to 
antiretroviral therapy. J Acquir Immune Defic Syndr. 2001;28(1):47-58. 
164. Krause TM, Yay Donderici E, Ganduglia Cazaban C, Franzini L. Future expenditure risk 
of silent members: a statistical analysis. BMC Health Serv Res. 2016;16:319. 
165. LaVeist TA, Isaac LA, Williams KP. Mistrust of health care organizations is associated 
with underutilization of health services. Health Serv Res. 2009;44(6):2093-105. 
166. Birkhauer J, Gaab J, Kossowsky J, Hasler S, Krummenacher P, Werner C, et al. Trust in 
the health care professional and health outcome: A meta-analysis. PLoS One. 2017;12(2):e0170988. 
167. Smith CP. First, do no harm: institutional betrayal and trust in health care organizations. 
Journal of multidisciplinary healthcare. 2017;10:133-44. 
168. Thompson TL. Encyclopedia of Health Communication: SAGE Publications; 2014. 
169. Slawomirski L, Auraaen A, Klazinga N. The Economics of Patient Safety: Strengthening 
a value-based approach to reducing patient harm at national level. 2017. 
170. Perry-Duxbury M, van Exel J, Brouwer W. How to value safety in economic evaluations 
in health care? A review of applications in different sectors. Eur J Health Econ. 2019;20(7):1041-61. 
171. Entwistle V, Quick O. Trust in the context of patient safety problems. Journal of health 
organization and management. 2006;20:397-416. 
172. Clark MD, Determann D, Petrou S, Moro D, de Bekker-Grob EW. Discrete choice 
experiments in health economics: a review of the literature. Pharmacoeconomics. 2014;32(9):883-
902. 
173. de Bekker-Grob EW, Ryan M, Gerard K. Discrete choice experiments in health 
economics: a review of the literature. Health Econ. 2012;21(2):145-72. 



  

286 
 

174. Klose T. The contingent valuation method in health care. Health Policy. 1999;47(2):97-
123. 
175. O'Brien B, Gafni A. When do the "dollars" make sense? Toward a conceptual 
framework for contingent valuation studies in health care. Med Decis Making. 1996;16(3):288-99. 
176. Halvorsen B. Ordering effects in contingent valuation surveys. Environ Resource Econ. 
1996;8(4):485-99. 
177. Shafie AA, Hassali MA. Willingness to pay for a pharmacist's dispensing service: a cross-
sectional pilot study in the state of Penang, Malaysia. Pharm Pract (Granada). 2010;8(2):116-21. 
178. Beattie J, Covey J, Dolan P, Hopkins L, Jones-Lee M, Loomes G, et al. On the Contingent 
Valuation of Safety and the Safety of Contingent Valuation: Part 1-Caveat Investigator. J Risk 
Uncertainty. 1998;17(1):5-26. 
179. Kaur S, Mitchell G, Vitetta L, Roberts MS. Interventions that can Reduce Inappropriate 
Prescribing in the Elderly. Drugs Aging. 2009;26(12):1013-28. 
180. Batuwitage BT, Kingham JG, Morgan NE, Bartlett RL. Inappropriate prescribing of 
proton pump inhibitors in primary care. Postgrad Med J. 2007;83(975):66-8. 
181. Pimlott NJ, Hux JE, Wilson LM, Kahan M, Li C, Rosser WW. Educating physicians to 
reduce benzodiazepine use by elderly patients: a randomized controlled trial. CMAJ. 
2003;168(7):835-9. 
182. Brown B, Peek N, Buchan I. The Case for Conceptual and Computable Cross-Fertilization 
Between Audit and Feedback and Clinical Decision Support. Stud Health Technol Inform. 
2015;216:419-23. 
183. Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI. An overview 
of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit Med. 
2020;3:17. 
184. Gurwitz JH, Field TS, Ogarek J, Tjia J, Cutrona SL, Harrold LR, et al. An electronic health 
record-based intervention to increase follow-up office visits and decrease rehospitalization in older 
adults. J Am Geriatr Soc. 2014;62(5):865-71. 
185. Murray MD, Harris LE, Overhage JM, Zhou XH, Eckert GJ, Smith FE, et al. Failure of 
computerized treatment suggestions to improve health outcomes of outpatients with 
uncomplicated hypertension: results of a randomized controlled trial. Pharmacotherapy. 
2004;24(3):324-37. 
186. Riordan DO, Walsh KA, Galvin R, Sinnott C, Kearney PM, Byrne S. The effect of 
pharmacist-led interventions in optimising prescribing in older adults in primary care: A systematic 
review. SAGE Open Med. 2016;4:2050312116652568. 
187. Khalil H, Bell B, Chambers H, Sheikh A, Avery AJ. Professional, structural and 
organisational interventions in primary care for reducing medication errors. Cochrane Database 
Syst Rev. 2017;10:CD003942. 
188. Garcia RM. Five ways you can reduce inappropriate prescribing in the elderly: a 
systematic review. J Fam Pract. 2006;55(4):305-12. 
189. Cooper JA, Cadogan CA, Patterson SM, Kerse N, Bradley MC, Ryan C, et al. Interventions 
to improve the appropriate use of polypharmacy in older people: a Cochrane systematic review. 
BMJ Open. 2015;5(12):e009235. 
190. Zermansky AG, Petty DR, Raynor DK, Freemantle N, Vail A, Lowe CJ. Randomised 
controlled trial of clinical medication review by a pharmacist of elderly patients receiving repeat 
prescriptions in general practice. BMJ. 2001;323(7325):1340-3. 
191. Lowrie R, Mair FS, Greenlaw N, Forsyth P, Jhund PS, McConnachie A, et al. Pharmacist 
intervention in primary care to improve outcomes in patients with left ventricular systolic 
dysfunction. Eur Heart J. 2012;33(3):314-24. 
192. Bryant LJ, Coster G, Gamble GD, McCormick RN. The General Practitioner-Pharmacist 
Collaboration (GPPC) study: a randomised controlled trial of clinical medication reviews in 
community pharmacy. Int J Pharm Pract. 2011;19(2):94-105. 
193. Hanlon JT, Weinberger M, Samsa GP, Schmader KE, Uttech KM, Lewis IK, et al. A 
randomized, controlled trial of a clinical pharmacist intervention to improve inappropriate 
prescribing in elderly outpatients with polypharmacy. Am J Med. 1996;100(4):428-37. 



  

287 
 

194. Richmond S, Morton V, Cross B, Wong ICK, Russell I, Philips Z, et al. Effectiveness of 
shared pharmaceutical care for older patients: RESPECT trial findings. Br J Gen Pract. 
2010;60(570):e10. 
195. Taylor CT, Byrd DC, Krueger K. Improving primary care in rural Alabama with a 
pharmacy initiative. Am J Health Syst Pharm. 2003;60(11):1123-9. 
196. Krska J, Cromarty JA, Arris F, Jamieson D, Hansford D, Duffus PR, et al. Pharmacist-led 
medication review in patients over 65: a randomized, controlled trial in primary care. Age Ageing. 
2001;30(3):205-11. 
197. Crotty M, Rowett D, Spurling L, Giles LC, Phillips PA. Does the addition of a pharmacist 
transition coordinator improve evidence-based medication management and health outcomes in 
older adults moving from the hospital to a long-term care facility? Results of a randomized, 
controlled trial. Am J Geriatr Pharmacother. 2004;2(4):257-64. 
198. Brown BK, Earnhart J. Pharmacists and their effectiveness in ensuring the 
appropriateness of the chronic medication regimens of geriatric inpatients. Consult Pharm. 
2004;19(5):432-6. 
199. Rhoads M, Thai A. Physician acceptance rate of pharmacist recommendations to 
reduce use of potentially inappropriate medications in the assisted living setting. Consult Pharm. 
2003;18(3):241-7. 
200. de Araujo BC, de Melo RC, de Bortoli MC, Bonfim JRA, Toma TS. How to Prevent or 
Reduce Prescribing Errors: An Evidence Brief for Policy. Front Pharmacol. 2019;10:439. 
201. Reis WC, Bonetti AF, Bottacin WE, Reis AS, Jr., Souza TT, Pontarolo R, et al. Impact on 
process results of clinical decision support systems (CDSSs) applied to medication use: overview of 
systematic reviews. Pharm Pract (Granada). 2017;15(4):1036. 
202. Lainer M, Mann E, Sönnichsen A. Information technology interventions to improve 
medication safety in primary care: a systematic review. Int J Qual Health Care. 2013;25(5):590-8. 
203. Manias E, Kusljic S, Wu A. Interventions to reduce medication errors in adult medical 
and surgical settings: a systematic review. Ther Adv Drug Saf. 2020;11:2042098620968309. 
204. Royal S, Smeaton L, Avery AJ, Hurwitz B, Sheikh A. Interventions in primary care to 
reduce medication related adverse events and hospital admissions: systematic review and meta-
analysis. Quality and Safety in Health Care. 2006;15(1):23-31. 
205. Omer U, Danopoulos E, Veysey M, Crampton P, Finn G. A Rapid Review of Prescribing 
Education Interventions. Medical Science Educator. 2020. 
206. O'Brien MA, Rogers S, Jamtvedt G, Oxman AD, Odgaard-Jensen J, Kristoffersen DT, et 
al. Educational outreach visits: effects on professional practice and health care outcomes. Cochrane 
Database Syst Rev. 2007;2007(4):Cd000409. 
207. Greenhalgh T, Swinglehurst D, Stones R. Health Services and Delivery Research.  
Rethinking resistance to ‘big IT’: a sociological study of why and when healthcare staff do not use 
nationally mandated information and communication technologies. Southampton (UK): NIHR 
Journals Library; 2014. 
208. Jeffries M, Phipps DL, Howard RL, Avery AJ, Rodgers S, Ashcroft DM. Understanding the 
implementation and adoption of a technological intervention to improve medication safety in 
primary care: a realist evaluation. BMC Health Serv Res. 2017;17(1):196. 
209. Burgin A, O'Rourke R, Tully MP. Learning to work with electronic patient records and 
prescription charts: experiences and perceptions of hospital pharmacists. Res Social Adm Pharm. 
2014;10(5):741-55. 
210. Luetsch K, Rowett D, Twigg MJ. A realist synthesis of pharmacist-conducted medication 
reviews in primary care after leaving hospital: what works for whom and why? BMJ Quality & Safety. 
2020:bmjqs-2020-011418. 
211. Thielen FW, Van Mastrigt G, Burgers LT, Bramer WM, Majoie H, Evers S, et al. How to 
prepare a systematic review of economic evaluations for clinical practice guidelines: database 
selection and search strategy development (part 2/3). Expert Rev Pharmacoecon Outcomes Res. 
2016;16(6):705-21. 
212. Schardt C, Adams MB, Owens T, Keitz S, Fontelo P. Utilization of the PICO framework 
to improve searching PubMed for clinical questions. BMC Med Inform Decis Mak. 2007;7:16. 



  

288 
 

213. National Institute for Health and Care Excellence. Developing NICE guidelines: the 
manual. 2014. 
214. National Institute for Health and Care Excellence. NICE guideline 50-Cirrhosis in over 
16s-Appendices A–H. 2016. 
215. National Institute for Health and Care Excellence. NICE guideline 81-Glaucoma-
Appendices A-T. 2017. 
216. Centre for Reviews and Dissemination. Search strategies 2019 [Available from: 
http://www.crd.york.ac.uk/crdweb/searchstrategies.asp#nhseedmedline]. 
217. National Institute for Health and Clinical Excellence. NICE guideline 59-Low back pain 
and sciatica in over 16s: assessment and management-Appendix. 2016. 
218. Forrester SH, Hepp Z, Roth JA, Wirtz HS, Devine EB. Cost-effectiveness of a 
computerized provider order entry system in improving medication safety ambulatory care. Value 
Health. 2014;17(4):340-9. 
219. Ghatnekar O, Bondesson A, Persson U, Eriksson T. Health economic evaluation of the 
Lund Integrated Medicines Management Model (LIMM) in elderly patients admitted to hospital. 
BMJ Open. 2013;3(1). 
220. Maviglia SM, Yoo JY, Franz C, Featherstone E, Churchill W, Bates DW, et al. Cost-benefit 
analysis of a hospital pharmacy bar code solution. Arch Intern Med. 2007;167(8):788-94. 
221. Nerich V, Borg C, Villanueva C, Thiery-Vuillemin A, Helias P, Rohrlich PS, et al. Economic 
impact of prescribing error prevention with computerized physician order entry of injectable 
antineoplastic drugs. J Oncol Pharm Pract. 2013;19(1):8-17. 
222. Nuckols TK, Asch SM, Patel V, Keeler E, Anderson L, Buntin MB, et al. Implementing 
Computerized Provider Order Entry in Acute Care Hospitals in the United States Could Generate 
Substantial Savings to Society. Jt Comm J Qual Patient Saf. 2015;41(8):341-50. 
223. Rosselli D, Rueda JD, Silva MD, Salcedo J. Economic Evaluation of Four Drug 
Administration Systems in Intensive Care Units in Colombia. Value Health Reg Issues. 2014;5:20-4. 
224. Samp JC, Touchette DR, Marinac JS, Kuo GM. Economic Evaluation of the Impact of 
Medication Errors Reported by U.S. Clinical Pharmacists. Pharmacotherapy: The Journal of Human 
Pharmacology and Drug Therapy. 2014;34(4):350-7. 
225. Westbrook JI, Gospodarevskaya E, Li L, Richardson KL, Roffe D, Heywood M, et al. Cost-
effectiveness analysis of a hospital electronic medication management system. J Am Med Inform 
Assoc. 2015;22(4):784-93. 
226. Yao GL, Novielli N, Manaseki-Holland S, Chen Y-F, van der Klink M, Barach P, et al. 
Evaluation of a predevelopment service delivery intervention: an application to improve clinical 
handovers. BMJ Quality & Safety. 2012;21(Suppl 1):i29-i38. 
227. Elliott RA, Putman KD, Franklin M, Annemans L, Verhaeghe N, Eden M, et al. Cost 
Effectiveness of a Pharmacist-Led Information Technology Intervention for Reducing Rates of 
Clinically Important Errors in Medicines Management in General Practices (PINCER). 
Pharmacoeconomics. 2014:1-18. 
228. Devine EB, Hansen RN, Wilson-Norton JL, Lawless NM, Fisk AW, Blough DK, et al. The 
impact of computerized provider order entry on medication errors in a multispecialty group 
practice. J Am Med Inform Assoc. 2010;17(1):78-84. 
229. Hellstrom LM, Bondesson A, Hoglund P, Midlov P, Holmdahl L, Rickhag E, et al. Impact 
of the Lund Integrated Medicines Management (LIMM) model on medication appropriateness and 
drug-related hospital revisits. Eur J Clin Pharmacol. 2011;67(7):741-52. 
230. Midlov P, Deierborg E, Holmdahl L, Hoglund P, Eriksson T. Clinical outcomes from the 
use of Medication Report when elderly patients are discharged from hospital. Pharm World Sci. 
2008;30(6):840-5. 
231. Hatoum HT, Hutchinson RA, Elliott LR, Kendzierski DL. Physicians' review of significant 
interventions by clinical pharmacists in inpatient care. Drug Intell Clin Pharm. 1988;22(12):980-2. 
232. Forster AJ, Murff HJ, Peterson JF, Gandhi TK, Bates DW. The Incidence and Severity of 
Adverse Events Affecting Patients after Discharge from the Hospital. Ann Intern Med. 
2003;138(3):161-7. 
233. Brennan TA, Leape LL, Laird NM, Hebert L, Localio AR, Lawthers AG, et al. Incidence of 
Adverse Events and Negligence in Hospitalized Patients. N Engl J Med. 1991;324(6):370-6. 

http://www.crd.york.ac.uk/crdweb/searchstrategies.asp#nhseedmedline


  

289 
 

234. Folli HL, Poole RL, Benitz WE, Russo JC. Medication error prevention by clinical 
pharmacists in two children's hospitals. Pediatrics. 1987;79(5):718-22. 
235. National Coordinating Council for Medication Error Reporting and Prevention. NCC 
MERP Index for Categorizing Medication Errors 2001 [Available from: 
http://www.nccmerp.org/types-medication-errors]. 
236. Bates DW, Kuperman GJ, Rittenberg E, Teich JM, Fiskio J, Ma’luf N, et al. A randomized 
trial of a computer-based intervention to reduce utilization of redundant laboratory tests. The 
American Journal of Medicine. 1999;106(2):144-50. 
237. Bates DW, Leape LL, Cullen DJ, et al. Effect of computerized physician order entry and 
a team intervention on prevention of serious medication errors. JAMA. 1998;280(15):1311-6. 
238. van Doormaal JE, van den Bemt PM, Zaal RJ, Egberts AC, Lenderink BW, Kosterink JG, 
et al. The influence that electronic prescribing has on medication errors and preventable adverse 
drug events: an interrupted time-series study. J Am Med Inform Assoc. 2009;16(6):816-25. 
239. Bates DW, Spell N, Cullen DJ, Burdick E, Laird N, Petersen LA, et al. The costs of adverse 
drug events in hospitalized patients. Adverse Drug Events Prevention Study Group. JAMA. 
1997;277(4):307-11. 
240. Hug BL, Keohane C, Seger DL, Yoon C, Bates DW. The costs of adverse drug events in 
community hospitals. Jt Comm J Qual Patient Saf. 2012;38(3):120-6. 
241. Zsifkovits J, Zuba M, Geißler W, Lepuschütz L, Pertl  D, Kernstock E, et al. Costs of unsafe 
care and cost-effectiveness of patient safety programmes. Gesundheit Österreich Forschungs-und 
Planungs GmbH and SOGETI; 2016. 
242. Nuckols TK, Smith-Spangler C, Morton SC, Asch SM, Patel VM, Anderson LJ, et al. The 
effectiveness of computerized order entry at reducing preventable adverse drug events and 
medication errors in hospital settings: a systematic review and meta-analysis. Systematic Reviews. 
2014;3(1):56. 
243. Jeffries M, Keers RN, Phipps DL, Williams R, Brown B, Avery AJ, et al. Developing a 
learning health system: Insights from a qualitative process evaluation of a pharmacist-led electronic 
audit and feedback intervention to improve medication safety in primary care. PLoS One. 
2018;13(10):e0205419. 
244. National Health Service (NHS England). Clinical Pharmacists 2019 [Available from: 
https://www.england.nhs.uk/gp/expanding-our-workforce/cp-gp/]. 
245. Jamtvedt G, Flottorp S, N. I. Audit and Feedback as a Quality Strategy. In: Busse R, 
Klazinga N, Panteli D, et al., editors. Improving healthcare quality in Europe: Characteristics, 
effectiveness and implementation of different strategies [Internet]. Copenhagen (Denmark): 
European Observatory on Health Systems and Policies; 2019. 
246. Jeffries M. The implementation of electronic audit and feedback systems for medicines 
optimisation in primary care: understandings from a sociotechnical perspective: University of 
Manchester; 2017. 
247. Jeffries M, Gude WT, Keers RN, Phipps DL, Williams R, Kontopantelis E, et al. 
Understanding the utilisation of a novel interactive electronic medication safety dashboard in 
general practice: a mixed methods study. BMC Med Inform Decis Mak. 2020;20(1):69. 
248. Coleman EA, Grothaus LC, Sandhu N, Wagner EH. Chronic care clinics: a randomized 
controlled trial of a new model of primary care for frail older adults. J Am Geriatr Soc. 
1999;47(7):775-83. 
249. Wasylewicz ATM, Scheepers-Hoeks AMJW. Clinical Decision Support Systems. In: 
Kubben P, Dumontier M, Dekker A, editors. Fundamentals of Clinical Data Science. Cham: Springer 
International Publishing; 2019. p. 153-69. 
250. U.S. National Library of Medicine. Medical Subject Headings (MeSH) - alert fatigue, 
health personnel 2017 [Available from: 
https://www.ncbi.nlm.nih.gov/mesh?term=alert%20fatigue]. 
251. Fitch K, Bernstein SJ, Aguilar MD, Burnand B, LaCalle JR, Lazaro P, et al. The RAND/UCLA 
Appropriateness Method User's Manual. Santa Monica; 2001. 
252. PRIMIS. The PINCER tool  [Available from: 
https://www.nottingham.ac.uk/primis/tools-audits/tools-audits/pincer/pincer.aspx]. 

http://www.nccmerp.org/types-medication-errors
https://www.england.nhs.uk/gp/expanding-our-workforce/cp-gp/
https://www.ncbi.nlm.nih.gov/mesh?term=alert%20fatigue
https://www.nottingham.ac.uk/primis/tools-audits/tools-audits/pincer/pincer.aspx


  

290 
 

253. Rodgers S, Salema N, Waring J, Armstrong S, Mehta R, Bell B, et al. Improving 
medication safety in general practices in the East Midlands through the PINCER intervention: 
Scaling Up PINCER. Report to the Health Foundation. 2018. 
254. Cartwright N. What are randomised controlled trials good for? Philosophical Studies. 
2009;147(1):59. 
255. Schweizer ML, Braun BI, Milstone AM. Research Methods in Healthcare Epidemiology 
and Antimicrobial Stewardship-Quasi-Experimental Designs. Infect Control Hosp Epidemiol. 
2016;37(10):1135-40. 
256. White H, Sabarwal S. Quasi-Experimental Design and Methods. Florence; 2014. 
257. Berger ML, Dreyer N, Anderson F, Towse A, Sedrakyan A, Normand S-L. Prospective 
Observational Studies to Assess Comparative Effectiveness: The ISPOR Good Research Practices 
Task Force Report. Value Health. 2012;15(2):217-30. 
258. Fredriksson A, Oliveira GMd. Impact evaluation using Difference-in-Differences. RAUSP 
Management Journal. 2019;54(4):519-32. 
259. Bernal JL, Cummins S, Gasparrini A. The use of controls in interrupted time series 
studies of public health interventions. Int J Epidemiol. 2018;47(6):2082-93. 
260. Austin PC. An Introduction to Propensity Score Methods for Reducing the Effects of 
Confounding in Observational Studies. Multivariate Behavioral Research. 2011;46(3):399-424. 
261. Abadie A, Diamond A, Hainmueller J. Synthetic Control Methods for Comparative Case 
Studies: Estimating the Effect of California’s Tobacco Control Program. J Amer Statistical Assoc. 
2010;105(490):493-505. 
262. Abadie A, Gardeazabal J. The Economic Costs of Conflict: A Case Study of the Basque 
Country. J American Economic Review. 2003;93(1):113-32. 
263. Ewusie JE, Soobiah C, Blondal E, Beyene J, Thabane L, Hamid JS. Methods, Applications 
and Challenges in the Analysis of Interrupted Time Series Data: A Scoping Review. J Multidiscip 
Healthc. 2020;13:411-23. 
264. Hategeka C, Ruton H, Karamouzian M, Lynd LD, Law MR. Use of interrupted time series 
methods in the evaluation of health system quality improvement interventions: a methodological 
systematic review. BMJ Glob Health. 2020;5(10). 
265. Bernal JL, Cummins S, Gasparrini A. Interrupted time series regression for the 
evaluation of public health interventions: a tutorial. Int J Epidemiol. 2017;46(1):348-55. 
266. Lechner M. The Estimation of Causal Effects by Difference-in-Difference Methods. 
Foundations and Trends(R) in Econometrics. 2011;4(3):165-224. 
267. Grimshaw J, Campbell M, Eccles M, Steen N. Experimental and quasi-experimental 
designs for evaluating guideline implementation strategies. Fam Pract. 2000;17(suppl_1):S11-S6. 
268. Victora CG, Habicht J-P, Bryce J. Evidence-Based Public Health: Moving Beyond 
Randomized Trials. 2004;94(3):400-5. 
269. Lopez Bernal J, Cummins S, Gasparrini A. Difference in difference, controlled 
interrupted time series and synthetic controls. Int J Epidemiol. 2019;48(6):2062-3. 
270. Bonell CP, Hargreaves J, Cousens S, Ross D, Hayes R, Petticrew M, et al. Alternatives to 
randomisation in the evaluation of public health interventions: design challenges and solutions. J 
Epidemiol Community Health. 2011;65(7):582. 
271. World Health Organization (WHO). WHO Guideline: Recommendations on digital 
interventions for health system strengthening. Geneva; 2019. 
272. McNamee P, Murray E, Kelly MP, Bojke L, Chilcott J, Fischer A, et al. Designing and 
Undertaking a Health Economics Study of Digital Health Interventions. Am J Prev Med. 
2016;51(5):852-60. 
273. Tuti T, Nzinga J, Njoroge M, Brown B, Peek N, English M, et al. A systematic review of 
electronic audit and feedback: intervention effectiveness and use of behaviour change theory. 
Implement Sci. 2017;12(1):61. 
274. Sanyal C, Stolee P, Juzwishin D, Husereau D. Economic evaluations of eHealth 
technologies: A systematic review. PLoS One. 2018;13(6):e0198112. 
275. Palmer MJ, Barnard S, Perel P, Free C. Mobile phone-based interventions for improving 
adherence to medication prescribed for the primary prevention of cardiovascular disease in adults. 
Cochrane Database Syst Rev. 2018;6:CD012675. 



  

291 
 

276. Valenzuela Espinoza A, Steurbaut S, Dupont A, Cornu P, van Hooff RJ, Brouns R, et al. 
Health Economic Evaluations of Digital Health Interventions for Secondary Prevention in Stroke 
Patients: A Systematic Review. Cerebrovasc Dis Extra. 2019;9(1):1-8. 
277. Grustam AS, Severens JL, van Nijnatten J, Koymans R, Vrijhoef HJ. Cost-effectiveness of 
telehealth interventions for chronic heart failure patients: a literature review. Int J Technol Assess 
Health Care. 2014;30(1):59-68. 
278. Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, et al. 
Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. Value Health. 
2013;16(2):e1-5. 
279. Kontopantelis E, Springate DA, Reeves D. A re-analysis of the Cochrane Library data: 
the dangers of unobserved heterogeneity in meta-analyses. PLoS One. 2013;8(7):e69930. 
280. Bergmo TS. How to Measure Costs and Benefits of eHealth Interventions: An Overview 
of Methods and Frameworks. J Med Internet Res. 2015;17(11):e254-e. 
281. Chapko MK, Liu CF, Perkins M, Li YF, Fortney JC, Maciejewski ML. Equivalence of two 
healthcare costing methods: bottom-up and top-down. Health Econ. 2009;18(10):1188-201. 
282. Olsson TM. Comparing top-down and bottom-up costing approaches for economic 
evaluation within social welfare. Eur J Health Econ. 2011;12(5):445-53. 
283. Smith P, Morrow R, Ross D, editors. Field Trials of Health Interventions: A Toolbox. 3rd 
ed. Oxford (UK)2015. 
284. Tate DF, Finkelstein EA, Khavjou O, Gustafson A. Cost effectiveness of internet 
interventions: review and recommendations. Ann Behav Med. 2009;38(1):40-5. 
285. Curtis LA, Burns A. Unit Costs of Health and Social Care 2019. Kent, UK: Personal Social 
Services Research Unit (PSSRU); 2019. 
286. Briggs A. Probabilistic Analysis of Cost-Effectiveness Models: Statistical Representation 
of Parameter Uncertainty. 2005;8(1):1-2. 
287. Briggs AH, Weinstein MC, Fenwick EAL, Karnon J, Sculpher MJ, Paltiel AD. Model 
Parameter Estimation and Uncertainty: A Report of the ISPOR-SMDM Modeling Good Research 
Practices Task Force-6. Value Health. 2012;15(6):835-42. 
288. Delignette-Muller ML, Pouillot  Re, Denis  J-B, Dutang C. Use of the package fitdistrplus 
to specify a distribution from non-censored or censored data. 2009. 
289. Cohen DJ, Reynolds MR. Interpreting the results of cost-effectiveness studies. J Am Coll 
Cardiol. 2008;52(25):2119-26. 
290. Risør BW, Lisby M, Sørensen J. Cost-Effectiveness Analysis of an Automated Medication 
System Implemented in a Danish Hospital Setting. Value Health. 2017;20(7):886-93. 
291. University of Manchester. Ethics decision tool Manchester: University of Manchester;  
[Available from: http://www.training.itservices.manchester.ac.uk/ 
uom/ERM/ethics_decision_tool/story_html5.html]. 
292. Medical Research Council (MRC) Regulatory Support Centre. Is my study research? 
2017 [Available from: http://www.hra-decisiontools.org.uk/research/]. 
293. Campbell R. Practice Manager pay – Part 3: Should I have a pay rise? London: Practice 
Index Ltd; 2018 [Available from: https://practiceindex.co.uk/gp/blog/practice-manager-pay-part-3-
pay-rise/]. 
294. Klok RM, Postma MJ. Four quadrants of the cost-effectiveness plane: some 
considerations on the south-west quadrant. Expert Rev Pharmacoecon Outcomes Res. 
2014;4(6):599-601. 
295. Goodacre S. Uncontrolled before-after studies: discouraged by Cochrane and the EMJ. 
2015;32(7):507-8. 
296. Wagner AK, Soumerai SB, Zhang F, Ross-Degnan D. Segmented regression analysis of 
interrupted time series studies in medication use research. 2002;27(4):299-309. 
297. Cruz M, Bender M, Ombao H. A robust interrupted time series model for analyzing 
complex health care intervention data. Stat Med. 2017;36(29):4660-76. 
298. Ramsay CR, Matowe L, Grilli R, Grimshaw JM, Thomas RE. Interrupted time series 
designs in health technology assessment: lessons from two systematic reviews of behavior change 
strategies. Int J Technol Assess Health Care. 2003;19(4):613-23. 

http://www.training.itservices.manchester.ac.uk/
http://www.hra-decisiontools.org.uk/research/
https://practiceindex.co.uk/gp/blog/practice-manager-pay-part-3-pay-rise/
https://practiceindex.co.uk/gp/blog/practice-manager-pay-part-3-pay-rise/


  

292 
 

299. Abadie A. Using Synthetic Controls: Feasibility, Data Requirements, and 
Methodological Aspects. J Econ Lit. Forthcoming. 
300. Linden A, Adams JL. Applying a propensity score-based weighting model to interrupted 
time series data: improving causal inference in programme evaluation. J Eval Clin Pract. 
2011;17(6):1231-8. 
301. Franklin M, Wailoo A, Dayer MJ, Jones S, Prendergast B, Baddour LM, et al. The Cost-
Effectiveness of Antibiotic Prophylaxis for Patients at Risk of Infective Endocarditis. Circulation. 
2016;134(20):1568-78. 
302. Nelson PA, Bradley F, Hogdgson D. Salford Primary Care Workforce Strategy: 
Contribution to a Safer Salford. University of Manchester 2018. 
303. de Vries EN, Ramrattan MA, Smorenburg SM, Gouma DJ, Boermeester MA. The 
incidence and nature of in-hospital adverse events: a systematic review. Qual Saf Health Care. 
2008;17(3):216-23. 
304. Hauck KD, Wang S, Vincent C, Smith PC. Healthy Life-Years Lost and Excess Bed-Days 
Due to 6 Patient Safety Incidents: Empirical Evidence From English Hospitals. Med Care. 
2017;55(2):125-30. 
305. Jorm L. Routinely collected data as a strategic resource for research: priorities for 
methods and workforce. Public Health Research & Practice. 2015;25(4). 
306. Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. A Comprehensive 
Review of Non-Steroidal Anti-Inflammatory Drug Use in The Elderly. Aging Dis. 2018;9(1):143-50. 
307. Lamberts M, Lip GY, Hansen ML, Lindhardsen J, Olesen JB, Raunso J, et al. Relation of 
nonsteroidal anti-inflammatory drugs to serious bleeding and thromboembolism risk in patients 
with atrial fibrillation receiving antithrombotic therapy: a nationwide cohort study. Ann Intern Med. 
2014;161(10):690-8. 
308. Kent AP, Brueckmann M, Fraessdorf M, Connolly SJ, Yusuf S, Eikelboom JW, et al. 
Concomitant Oral Anticoagulant and Nonsteroidal Anti-Inflammatory Drug Therapy in Patients With 
Atrial Fibrillation. J Am Coll Cardiol. 2018;72(3):255-67. 
309. Dalgaard F, Mulder H, Wojdyla DM, Lopes RD, Held C, Alexander JH, et al. Patients With 
Atrial Fibrillation Taking Nonsteroidal Anti-Inflammatory Drugs and Oral Anticoagulants in the 
ARISTOTLE Trial. Circulation. 2020;141(1):10-20. 
310. Schjerning Olsen AM, McGettigan P, Gerds TA, Fosbol EL, Olesen JB, Sindet-Pedersen 
C, et al. Risk of gastrointestinal bleeding associated with oral anticoagulation and non-steroidal anti-
inflammatory drugs in patients with atrial fibrillation: a nationwide study. Eur Heart J Cardiovasc 
Pharmacother. 2019. 
311. Bayoumi I, Dolovich L, Hutchison B, Holbrook A. Medication-related emergency 
department visits and hospitalizations among older adults. Can Fam Physician. 2014;60(4):e217-22. 
312. Budnitz DS, Pollock DA, Weidenbach KN, Mendelsohn AB, Schroeder TJ, Annest JL. 
National Surveillance of Emergency Department Visits for Outpatient Adverse Drug Events. JAMA. 
2006;296(15):1858-66. 
313. Warlé-van Herwaarden MF, Kramers C, Sturkenboom MC, van den Bemt PM, De Smet 
PA. Targeting outpatient drug safety: recommendations of the Dutch HARM-Wrestling Task Force. 
Drug Saf. 2012;35(3):245-59. 
314. Wester K, Jönsson AK, Spigset O, Druid H, Hägg S. Incidence of fatal adverse drug 
reactions: a population based study. Br J Clin Pharmacol. 2008;65(4):573-9. 
315. Ho KH, van Hove M, Leng G. Trends in anticoagulant prescribing: a review of local 
policies in English primary care. BMC Health Serv Res. 2020;20(1):279. 
316. Johnson DA. Upper GI risks of NSAIDs and antiplatelet agents: key issues for the 
cardiologist. Rev Cardiovasc Med. 2005;6 Suppl 4:S15-22. 
317. Lanas A. Gastrointestinal injury from NSAID therapy. How to reduce the risk of 
complications. Postgrad Med. 2005;117(6):23-8, 31. 
318. de Abajo FJ, Gil MJ, Bryant V, Timoner J, Oliva B, García-Rodríguez LA. Upper 
gastrointestinal bleeding associated with NSAIDs, other drugs and interactions: a nested case–
control study in a new general practice database. Eur J Clin Pharmacol. 2013;69(3):691-701. 



  

293 
 

319. Moore RA, Derry S, Phillips CJ, McQuay HJ. Nonsteroidal anti-inflammatory drugs 
(NSAIDs), cyxlooxygenase-2 selective inhibitors (coxibs) and gastrointestinal harm: review of clinical 
trials and clinical practice. BMC Musculoskelet Disord. 2006;7:79. 
320. Lanas A, Sopena F. Nonsteroidal anti-inflammatory drugs and lower gastrointestinal 
complications. Gastroenterol Clin North Am. 2009;38(2):333-52. 
321. Sikiric P, Seiwerth S, Rucman R, Turkovic B, Rokotov DS, Brcic L, et al. Toxicity by NSAIDs. 
Counteraction by stable gastric pentadecapeptide BPC 157. Curr Pharm Des. 2013;19(1):76-83. 
322. Sostres C, Gargallo CJ, Lanas A. Nonsteroidal anti-inflammatory drugs and upper and 
lower gastrointestinal mucosal damage. Arthritis Res Ther. 2013;15 Suppl 3(Suppl 3):S3-S. 
323. Goldstein JL, Cryer B. Gastrointestinal injury associated with NSAID use: a case study 
and review of risk factors and preventative strategies. Drug Healthc Patient Saf. 2015;7:31-41. 
324. Bjarnason I, Scarpignato C, Holmgren E, Olszewski M, Rainsford KD, Lanas A. 
Mechanisms of Damage to the Gastrointestinal Tract From Nonsteroidal Anti-Inflammatory Drugs. 
Gastroenterology. 2018;154(3):500-14. 
325. Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, et al. Apixaban 
versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981-92. 
326. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. Dabigatran 
versus Warfarin in Patients with Atrial Fibrillation. N Engl J Med. 2009;361(12):1139-51. 
327. Giercksky KE, Husby G, Rugstad HE, Revhaug A. Epidemiology of NSAID-induced 
gastrointestinal problems and the role of cimetidine in their prevention. Aliment Pharmacol Ther. 
1988;2 Suppl 1:33-41. 
328. Hearnshaw SA, Logan RF, Lowe D, Travis SP, Murphy MF, Palmer KR. Acute upper 
gastrointestinal bleeding in the UK: patient characteristics, diagnoses and outcomes in the 2007 UK 
audit. Gut. 2011;60(10):1327-35. 
329. Oakland K. Changing epidemiology and etiology of upper and lower gastrointestinal 
bleeding. Best Pract Res Clin Gastroenterol. 2019;42-43:101610. 
330. Staerk L, Lip GYH, Olesen JB, Fosbøl EL, Pallisgaard JL, Bonde AN, et al. Stroke and 
recurrent haemorrhage associated with antithrombotic treatment after gastrointestinal bleeding 
in patients with atrial fibrillation: nationwide cohort study. BMJ. 2015;351. 
331. Battistella M, Mamdami MM, Juurlink DN, Rabeneck L, Laupacis A. Risk of upper 
gastrointestinal hemorrhage in warfarin users treated with nonselective NSAIDs or COX-2 
inhibitors. Arch Intern Med. 2005;165(2):189-92. 
332. Schjerning Olsen AM, Gislason GH, McGettigan P, Fosbol E, Sorensen R, Hansen ML, et 
al. Association of NSAID use with risk of bleeding and cardiovascular events in patients receiving 
antithrombotic therapy after myocardial infarction. JAMA. 2015;313(8):805-14. 
333. Hansen ML, Sørensen R, Clausen MT, et al. Risk of bleeding with single, dual, or triple 
therapy with warfarin, aspirin, and clopidogrel in patients with atrial fibrillation. Arch Intern Med. 
2010;170(16):1433-41. 
334. Loo SY, Dell'Aniello S, Huiart L, Renoux C. Trends in the prescription of novel oral 
anticoagulants in UK primary care. Br J Clin Pharmacol. 2017;83(9):2096-106. 
335. Davidson BL, Verheijen S, Lensing AA, et al. Bleeding risk of patients with acute venous 
thromboembolism taking nonsteroidal anti-inflammatory drugs or aspirin. JAMA Internal Medicine. 
2014;174(6):947-53. 
336. NHS Business Services Authority. NHS Medication Safety Dashboard 2018 [Available 
from: https://www.nhsbsa.nhs.uk/epact2/dashboards-and-specifications/medication-safety]. 
337. Varga Z, Sabzwari SRA, Vargova V. Cardiovascular Risk of Nonsteroidal Anti-
Inflammatory Drugs: An Under-Recognized Public Health Issue. Cureus. 2017;9(4):e1144. 
338. Sakuma I, Uchiyama S, Atarashi H, Inoue H, Kitazono T, Yamashita T, et al. Clinical risk 
factors of stroke and major bleeding in patients with non-valvular atrial fibrillation under 
rivaroxaban: the EXPAND Study sub-analysis. Heart Vessels. 2019;34(11):1839-51. 
339. Langan SM, Schmidt SA, Wing K, Ehrenstein V, Nicholls SG, Filion KB, et al. The reporting 
of studies conducted using observational routinely collected health data statement for 
pharmacoepidemiology (RECORD-PE). BMJ. 2018;363:k3532. 

https://www.nhsbsa.nhs.uk/epact2/dashboards-and-specifications/medication-safety


  

294 
 

340. Patorno E, Schneeweiss S, Wang S. Transparency in real‐world evidence (RWE) studies 
to build confidence for decision‐making: Reporting RWE research in diabetes. Diabetes, Obesity and 
Metabolism. 2020;22:45-59. 
341. Clinical Practice Research Datalink. Clinical Practice Research Datalink website  
[Available from: https://www.cprd.com/home/]. 
342. Herrett E, Gallagher AM, Bhaskaran K, Forbes H, Mathur R, van Staa T, et al. Data 
Resource Profile: Clinical Practice Research Datalink (CPRD). Int J Epidemiol. 2015;44(3):827-36. 
343. Mathur R, Bhaskaran K, Chaturvedi N, Leon DA, vanStaa T, Grundy E, et al. 
Completeness and usability of ethnicity data in UK-based primary care and hospital databases. 
Journal of Public Health. 2014;36(4):684-92. 
344. Khan NF, Harrison SE, Rose PW. Validity of diagnostic coding within the General 
Practice Research Database: a systematic review. Br J Gen Pract. 2010;60(572):e128-36. 
345. Herrett E, Thomas SL, Schoonen WM, Smeeth L, Hall AJ. Validation and validity of 
diagnoses in the General Practice Research Database: a systematic review. Br J Clin Pharmacol. 
2010;69(1):4-14. 
346. Office for National Statistics. Office for National Statistics website  [Available from: 
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths]. 
347. Michener WK. Ten Simple Rules for Creating a Good Data Management Plan. PLoS 
Comput Biol. 2015;11(10):e1004525-e. 
348. Ray WA. Evaluating Medication Effects Outside of Clinical Trials: New-User Designs. Am 
J Epidemiol. 2003;158(9):915-20. 
349. Yoshida K, Solomon DH, Kim SC. Active-comparator design and new-user design in 
observational studies. Nature reviews Rheumatology. 2015;11(7):437-41. 
350. Zalesak M, Siu K, Francis K, Yu C, Alvrtsyan H, Rao Y, et al. Higher persistence in newly 
diagnosed nonvalvular atrial fibrillation patients treated with dabigatran versus warfarin. Circ 
Cardiovasc Qual Outcomes. 2013;6(5):567-74. 
351. Sorensen SV, Kansal AR, Connolly S, Peng S, Linnehan J, Bradley-Kennedy C, et al. Cost-
effectiveness of dabigatran etexilate for the prevention of stroke and systemic embolism in atrial 
fibrillation: a Canadian payer perspective. Thromb Haemost. 2011;105(5):908-19. 
352. Gopi B, Sushmitha C, Nikitha Ksv, Monika M , Raghavendra Kumar G, Satanarayana V, 
et al. Cost-Effectiveness Analysis in the Management of Stroke. Asian Journal of Pharmaceutical and 
Clinical Research. 2017;10(7):127. 
353. Wells G, Coyle D, Cameron C, Steiner S, Coyle K, Kelly S, et al. Safety, Effectiveness, and 
Cost-Effectiveness of New Oral Anticoagulants Compared with Warfarin in Preventing Stroke and 
Other Cardiovascular Events in Patients with Atrial Fibrillation. Ottawa (ON); 2012. 
354. Vinogradova Y, Coupland C, Hill T, Hippisley-Cox J. Risks and benefits of direct oral 
anticoagulants versus warfarin in a real world setting: cohort study in primary care. BMJ. 
2018:k2505. 
355. Hippisley-Cox J, Coupland C. Predicting risk of upper gastrointestinal bleed and 
intracranial bleed with anticoagulants: cohort study to derive and validate the QBleed scores. BMJ. 
2014;349:g4606. 
356. Gallagher AM, van Staa TP, Murray-Thomas T, Schoof N, Clemens A, Ackermann D, et 
al. Population-based cohort study of warfarin-treated patients with atrial fibrillation: incidence of 
cardiovascular and bleeding outcomes. BMJ Open. 2014;4(1):e003839. 
357. Spencer A. Hospital Episode Statistics (HES): Improving the quality and value of hospital 
data. 2011. 
358. Herbert A, Wijlaars L, Zylbersztejn A, Cromwell D, Hardelid P. Data Resource Profile: 
Hospital Episode Statistics Admitted Patient Care (HES APC). Int J Epidemiol. 2017;46(4):1093-i. 
359. Gallagher AM, Dedman D, Padmanabhan S, Leufkens HGM, de Vries F. The accuracy of 
date of death recording in the Clinical Practice Research Datalink GOLD database in England 
compared with the Office for National Statistics death registrations. Pharmacoepidemiol Drug Saf. 
2019;28(5):563-9. 
360. Salvo F, Fourrier-Réglat A, Bazin F, Robinson P, Riera-Guardia N, Haag M, et al. 
Cardiovascular and Gastrointestinal Safety of NSAIDs: A Systematic Review of Meta-Analyses of 
Randomized Clinical Trials. Clin Pharmacol Ther. 2011;89(6):855-66. 

https://www.cprd.com/home/
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths


  

295 
 

361. National Institute for Health and Care Excellence. Prescription writing  [Available from: 
https://bnf.nice.org.uk/guidance/prescription-writing.html]. 
362. Kontopantelis E. PCDSEARCH: Stata module to extract code lists from primary care 
databases. Statistical Software Components: Boston College Department of Economics; 2015. 
363. Springate DA, Kontopantelis E, Ashcroft DM, Olier I, Parisi R, Chamapiwa E, et al. 
ClinicalCodes: an online clinical codes repository to improve the validity and reproducibility of 
research using electronic medical records. PLoS One. 2014;9(6):e99825. 
364. van den Ham HA, Klungel OH, Singer DE, Leufkens HGM, van Staa TP. Comparative 
Performance of ATRIA, CHADS2, and CHA2DS2-VASc Risk Scores Predicting Stroke in 
Patients With Atrial Fibrillation: Results From a National Primary Care Database. J Am Coll Cardiol. 
2015;66(17):1851-9. 
365. Pye SR, Sheppard T, Joseph RM, Lunt M, Girard N, Haas JS, et al. Assumptions made 
when preparing drug exposure data for analysis have an impact on results: An unreported step in 
pharmacoepidemiology studies. Pharmacoepidemiol Drug Saf. 2018;27(7):781-8. 
366. Joint Formulary Committee. British National Formulary (online) London [Available 
from: http://www.medicinescomplete.com]. 
367. Shrier I, Platt RW. Reducing bias through directed acyclic graphs. BMC Med Res 
Methodol. 2008;8:70. 
368. Elwert F, Winship C. Endogenous Selection Bias: The Problem of Conditioning on a 
Collider Variable. Annu Rev Sociol. 2014;40:31-53. 
369. VanderWeele TJ. Principles of confounder selection. Eur J Epidemiol. 2019;34(3):211-
9. 
370. Luque-Fernandez MA, Schomaker M, Redondo-Sanchez D, Jose Sanchez Perez M, 
Vaidya A, Schnitzer ME. Educational Note: Paradoxical collider effect in the analysis of non-
communicable disease epidemiological data: a reproducible illustration and web application. Int J 
Epidemiol. 2019;48(2):640-53. 
371. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for 
predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based 
approach: the euro heart survey on atrial fibrillation. Chest. 2010;137(2):263-72. 
372. Olesen JB, Lip GYH, Hansen ML, Hansen PR, Tolstrup JS, Lindhardsen J, et al. Validation 
of risk stratification schemes for predicting stroke and thromboembolism in patients with atrial 
fibrillation: nationwide cohort study. BMJ. 2011;342. 
373. Saliba W, Gronich N, Barnett-Griness O, Rennert G. The role of CHADS2 and CHA2 DS2 
-VASc scores in the prediction of stroke in individuals without atrial fibrillation: a population-based 
study. J Thromb Haemost. 2016;14(6):1155-62. 
374. Xing Y, Sun Y, Li H, Tang M, Huang W, Zhang K, et al. CHA2DS2-VASc score as a predictor 
of long-term cardiac outcomes in elderly patients with or without atrial fibrillation. Clin Interv Aging. 
2018;13:497-504. 
375. Mitchell LB, Southern DA, Galbraith D, Ghali WA, Knudtson M, Wilton SB, et al. 
Prediction of stroke or TIA in patients without atrial fibrillation using CHADS2 and CHA2DS2-VASc 
scores. Heart. 2014;100(19):1524-30. 
376. Hudzik B, Szkodzinski J, Hawranek M, Lekston A, Polonski L, Gasior M. CHA2DS2-VASc 
score is useful in predicting poor 12-month outcomes following myocardial infarction in diabetic 
patients without atrial fibrillation. Acta Diabetol. 2016;53(5):807-15. 
377. Melgaard L, Gorst-Rasmussen A, Lane DA, Rasmussen LH, Larsen TB, Lip GY. 
Assessment of the CHA2DS2-VASc Score in Predicting Ischemic Stroke, Thromboembolism, and 
Death in Patients With Heart Failure With and Without Atrial Fibrillation. JAMA. 2015;314(10):1030-
8. 
378. Wu JT, Wang SL, Chu YJ, Long DY, Dong JZ, Fan XW, et al. CHADS2 and CHA2DS2-VASc 
Scores Predict the Risk of Ischemic Stroke Outcome in Patients with Interatrial Block without Atrial 
Fibrillation. J Atheroscler Thromb. 2017;24(2):176-84. 
379. Pisters R, Lane DA, Nieuwlaat R, de Vos CB, Crijns HJ, Lip GY. A novel user-friendly score 
(HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart 
Survey. Chest. 2010;138(5):1093-100. 

https://bnf.nice.org.uk/guidance/prescription-writing.html
http://www.medicinescomplete.com/


  

296 
 

380. Fang MC, Go AS, Chang Y, Borowsky LH, Pomernacki NK, Udaltsova N, et al. A new risk 
scheme to predict warfarin-associated hemorrhage: The ATRIA (Anticoagulation and Risk Factors in 
Atrial Fibrillation) Study. J Am Coll Cardiol. 2011;58(4):395-401. 
381. O'Brien EC, Simon DN, Thomas LE, Hylek EM, Gersh BJ, Ansell JE, et al. The ORBIT 
bleeding score: a simple bedside score to assess bleeding risk in atrial fibrillation. Eur Heart J. 
2015;36(46):3258-64. 
382. Gage BF, Yan Y, Milligan PE, Waterman AD, Culverhouse R, Rich MW, et al. Clinical 
classification schemes for predicting hemorrhage: results from the National Registry of Atrial 
Fibrillation (NRAF). Am Heart J. 2006;151(3):713-9. 
383. Apostolakis S, Lane DA, Guo Y, Buller H, Lip GYH. Performance of the HEMORR2HAGES, 
ATRIA, and HAS-BLED Bleeding Risk–Prediction Scores in Patients With Atrial Fibrillation Undergoing 
Anticoagulation. The AMADEUS (Evaluating the Use of SR34006 Compared to Warfarin or 
Acenocoumarol in Patients With Atrial Fibrillation) Study. 2012;60(9):861-7. 
384. Roldan V, Marin F, Fernandez H, Manzano-Fernandez S, Gallego P, Valdes M, et al. 
Predictive value of the HAS-BLED and ATRIA bleeding scores for the risk of serious bleeding in a 
"real-world" population with atrial fibrillation receiving anticoagulant therapy. Chest. 
2013;143(1):179-84. 
385. Senoo K, Proietti M, Lane DA, Lip GY. Evaluation of the HAS-BLED, ATRIA, and ORBIT 
Bleeding Risk Scores in Patients with Atrial Fibrillation Taking Warfarin. Am J Med. 2016;129(6):600-
7. 
386. Zhu W, He W, Guo L, Wang X, Hong K. The HAS-BLED Score for Predicting Major 
Bleeding Risk in Anticoagulated Patients With Atrial Fibrillation: A Systematic Review and Meta-
analysis. Clin Cardiol. 2015;38(9):555-61. 
387. Kooiman J, van Hagen N, Iglesias Del Sol A, Planken EV, Lip GY, van der Meer FJ, et al. 
The HAS-BLED Score Identifies Patients with Acute Venous Thromboembolism at High Risk of Major 
Bleeding Complications during the First Six Months of Anticoagulant Treatment. PLoS One. 
2015;10(4):e0122520. 
388. Smith JG, Wieloch M, Koul S, Braun O, Lumsden J, Rydell E, et al. Triple antithrombotic 
therapy following an acute coronary syndrome: prevalence, outcomes and prognostic utility of the 
HAS-BLED score. EuroIntervention. 2012;8(6):672-8. 
389. Azoulay L, Dell'Aniello S, Simon T, Renoux C, Suissa S. The concurrent use of 
antithrombotic therapies and the risk of bleeding in patients with atrial fibrillation. Thromb 
Haemost. 2013;109(3):431-9. 
390. Olesen JB, Lip GY, Lindhardsen J, Lane DA, Ahlehoff O, Hansen ML, et al. Risks of 
thromboembolism and bleeding with thromboprophylaxis in patients with atrial fibrillation: A net 
clinical benefit analysis using a 'real world' nationwide cohort study. Thromb Haemost. 
2011;106(4):739-49. 
391. Peacock WF, Tamayo S, Patel M, Sicignano N, Hopf KP, Yuan Z. CHA2DS2-VASc Scores 
and Major Bleeding in Patients With Nonvalvular Atrial Fibrillation Who Are Receiving Rivaroxaban. 
Ann Emerg Med. 2017;69(5):541-50 e1. 
392. Alikhan R, Lefevre C, Menown I, Lister S, Bird A, You M, et al. Risk of Recurrent Bleeding 
Events in Nonvalvular Atrial Fibrillation Treated with Vitamin K Antagonists: A Clinical Practice 
Research Datalink Study. TH Open. 2019;3(4):e316-e24. 
393. Lacoin L, Lumley M, Ridha E, Pereira M, McDonald L, Ramagopalan S, et al. Evolving 
landscape of stroke prevention in atrial fibrillation within the UK between 2012 and 2016: a cross-
sectional analysis study using CPRD. BMJ open. 2017;7(9):e015363-e. 
394. Tennant PWG, Harrison WJ, Murray EJ, Arnold KF, Berrie L, Fox MP, et al. Use of 
directed acyclic graphs (DAGs) in applied health research: review and recommendations. medRxiv. 
2019:2019.12.20.19015511. 
395. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. 
Epidemiology. 1999;10(1):37-48. 
396. Textor J, van der Zander B, Gilthorpe MS, Liśkiewicz M, Ellison GTH. Robust causal 
inference using directed acyclic graphs: the R package ‘dagitty’. Int J Epidemiol. 2016;45(6):1887-
94. 



  

297 
 

397. Zanutto EL. A comparison of propensity score and linear regression analysis of complex 
survey data. Journal of data Science. 2006;4(1):67-91. 
398. Rubin DB. Using Propensity Scores to Help Design Observational Studies: Application 
to the Tobacco Litigation. Health Services and Outcomes Research Methodology. 2001;2(3):169-88. 
399. Cochran WG, Rubin DB. Controlling Bias in Observational Studies: A Review. The Indian 
Journal of Statistics. 1973;35(4):417-46. 
400. Stuart EA. Matching methods for causal inference: A review and a look forward. Stat 
Sci. 2010;25(1):1-21. 
401. Austin PC. The Relative Ability of Different Propensity Score Methods to Balance 
Measured Covariates Between Treated and Untreated Subjects in Observational Studies. Med Decis 
Making. 2009;29(6):661-77. 
402. Bergstra SA, Sepriano A, Ramiro S, Landewe R. Three handy tips and a practical guide 
to improve your propensity score models. RMD Open. 2019;5(1):e000953. 
403. Wyss R, Girman CJ, LoCasale RJ, Brookhart AM, Sturmer T. Variable selection for 
propensity score models when estimating treatment effects on multiple outcomes: a simulation 
study. Pharmacoepidemiol Drug Saf. 2013;22(1):77-85. 
404. Zhang Z, Kim HJ, Lonjon G, Zhu Y, written on behalf of AMEB-DCTCG. Balance 
diagnostics after propensity score matching. Annals of translational medicine. 2019;7(1):16-. 
405. Imai K, King G, Stuart EA. Misunderstandings between experimentalists and 
observationalists about causal inference. J Roy Stat Soc Ser A (Stat Soc). 2008;171(2):481-502. 
406. Kirchhof P, Haas S, Amarenco P, Hess S, Lambelet M, van Eickels M, et al. Impact of 
Modifiable Bleeding Risk Factors on Major Bleeding in Patients With Atrial Fibrillation 
Anticoagulated With Rivaroxaban. Journal of the American Heart Association. 2020;9(5):e009530. 
407. Rydberg DM, Linder M, Malmstrom RE, Andersen M. Risk factors for severe bleeding 
events during warfarin treatment: the influence of sex, age, comorbidity and co-medication. Eur J 
Clin Pharmacol. 2020;76(6):867-76. 
408. Albertsen IE, Rasmussen LH, Overvad TF, Graungaard T, Larsen TB, Lip GY. Risk of stroke 
or systemic embolism in atrial fibrillation patients treated with warfarin: a systematic review and 
meta-analysis. Stroke. 2013;44(5):1329-36. 
409. Kjerpeseth LJ, Ellekjær H, Selmer R, Ariansen I, Furu K, Skovlund E. Risk factors for 
stroke and choice of oral anticoagulant in atrial fibrillation. Eur J Clin Pharmacol. 2018;74(12):1653-
62. 
410. Paciaroni M, Agnelli G, Caso V, Silvestrelli G, Seiffge DJ, Engelter S, et al. Causes and 
Risk Factors of Cerebral Ischemic Events in Patients With Atrial Fibrillation Treated With Non-
Vitamin K Antagonist Oral Anticoagulants for Stroke Prevention. 2019;50(8):2168-74. 
411. Leung K-M, Elashoff RM, Afifi AA. Censoring issues in survival analysis. 1997;18(1):83-
104. 
412. Loo SY, Coulombe J, Dell’Aniello S, Brophy JM, Suissa S, Renoux C. Comparative 
effectiveness of novel oral anticoagulants in UK patients with non-valvular atrial fibrillation and 
chronic kidney disease: a matched cohort study. BMJ Open. 2018;8(1). 
413. Zhang Z, Reinikainen J, Adeleke KA, Pieterse ME, Groothuis-Oudshoorn CGM. Time-
varying covariates and coefficients in Cox regression models. Ann Transl Med. 2018;6(7):121. 
414. Austin PC, Latouche A, Fine JP. A review of the use of time-varying covariates in the 
Fine-Gray subdistribution hazard competing risk regression model. Stat Med. 2020;39(2):103-13. 
415. Poguntke I, Schumacher M, Beyersmann J, Wolkewitz M. Simulation shows undesirable 
results for competing risks analysis with time-dependent covariates for clinical outcomes. BMC Med 
Res Methodol. 2018;18(1):79. 
416. Austin PC, Lee DS, Fine JP. Introduction to the Analysis of Survival Data in the Presence 
of Competing Risks. Circulation. 2016;133(6):601-9. 
417. Cleves M, Gould W, Gutierrez R, Marchenko Y. An Introduction to Survival Analysis 
Using Stata: Stata Press; 2010. 
418. Cortese G, Andersen PK. Competing risks and time-dependent covariates. Biom J. 
2010;52(1):138-58. 
419. Lesko CR, Lau B. Bias Due to Confounders for the Exposure-Competing Risk 
Relationship. Epidemiology. 2017;28(1):20-7. 



  

298 
 

420. Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-
dimensional propensity score adjustment in studies of treatment effects using health care claims 
data. Epidemiology (Cambridge, Mass). 2009;20(4):512-22. 
421. Xu S, Ross C, Raebel MA, Shetterly S, Blanchette C, Smith D. Use of Stabilized Inverse 
Propensity Scores as Weights to Directly Estimate Relative Risk and Its Confidence Intervals. Value 
Health. 2010;13(2):273-7. 
422. Austin PC. Variance estimation when using inverse probability of treatment weighting 
(IPTW) with survival analysis. Stat Med. 2016;35(30):5642-55. 
423. Haneuse S, VanderWeele TJ, Arterburn D. Using the E-Value to Assess the Potential 
Effect of Unmeasured Confounding in Observational Studies. JAMA. 2019;321(6):602-3. 
424. VanderWeele TJ, Ding P. Sensitivity Analysis in Observational Research: Introducing the 
E-Value. Ann Intern Med. 2017;167(4):268-74. 
425. Blum MR, Tan YJ, Ioannidis JPA. Use of E-values for addressing confounding in 
observational studies-an empirical assessment of the literature. Int J Epidemiol. 2020;49(5):1482-
94. 
426. Sebag-Montefiore D. ARISTOTLE - A phase Ill trial comparing standard versus novel CRT 
as pre-operative treatment for MRI defined locally advanced rectal cancer - Protocol. London: 
University College London; 2015. 
427. Blonde L, Khunti K, Harris SB, Meizinger C, Skolnik NS. Interpretation and Impact of 
Real-World Clinical Data for the Practicing Clinician. Adv Ther. 2018;35(11):1763-74. 
428. Fewell Z, Davey Smith G, Sterne JAC. The Impact of Residual and Unmeasured 
Confounding in Epidemiologic Studies: A Simulation Study. Am J Epidemiol. 2007;166(6):646-55. 
429. O'Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al. Risk factors for 
ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-
control study. The Lancet. 2010;376(9735):112-23. 
430. Crooks CJ, Card TR, West J. Defining upper gastrointestinal bleeding from linked 
primary and secondary care data and the effect on occurrence and 28 day mortality. BMC Health 
Serv Res. 2012;12:392. 
431. McDonald L, Sammon CJ, Samnaliev M, Ramagopalan S. Under-recording of hospital 
bleeding events in UK primary care: a linked Clinical Practice Research Datalink and Hospital Episode 
Statistics study. Clin Epidemiol. 2018;10:1155-68. 
432. Shehab N, Ziemba R, Campbell KN, Geller AI, Moro RN, Gage BF, et al. Assessment of 
ICD-10-CM code assignment validity for case finding of outpatient anticoagulant-related bleeding 
among Medicare beneficiaries. Pharmacoepidemiol Drug Saf. 2019;28(7):951-64. 
433. Kivimäki M, Batty GD, Singh-Manoux A, Britton A, Brunner EJ, Shipley MJ. Validity of 
Cardiovascular Disease Event Ascertainment Using Linkage to UK Hospital Records. Epidemiology 
(Cambridge, Mass). 2017;28(5):735-9. 
434. Mansfield K, Crellin E, Denholm R, Quint JK, Smeeth L, Cook S, et al. Completeness and 
validity of alcohol recording in general practice within the UK: a cross-sectional study. BMJ Open. 
2019;9(11):e031537. 
435. Ali MS, Prieto-Alhambra D, Lopes LC, Ramos D, Bispo N, Ichihara MY, et al. Propensity 
Score Methods in Health Technology Assessment: Principles, Extended Applications, and Recent 
Advances. Front Pharmacol. 2019;10:973-. 
436. Johnson ES, Bartman BA, Briesacher BA, Fleming NS, Gerhard T, Kornegay CJ, et al. The 
incident user design in comparative effectiveness research. Pharmacoepidemiol Drug Saf. 
2013;22(1):1-6. 
437. Ara R, Brazier JE. Using health state utility values from the general population to 
approximate baselines in decision analytic models when condition-specific data are not available. 
Value Health. 2011;14(4):539-45. 
438. Curtis LA, Burns A. Unit Cost of Health and Social Care 2017. University of Kent; 2017. 
Report No.: https://doi.org/10.22024/UniKent/01.02/65559. 
439. Department of Health and Social Care. NHS Reference Costs 2015 to 2016. London: 
Department of Health; 2016. 

https://doi.org/10.22024/UniKent/01.02/65559


  

299 
 

440. Saramago P, Manca A, Sutton AJ. Deriving Input Parameters for Cost-Effectiveness 
Modeling: Taxonomy of Data Types and Approaches to Their Statistical Synthesis. Value Health. 
2012;15(5):639-49. 
441. de Rezende BA, Or Z, Com-Ruelle L, Michel P. Economic evaluation in patient safety: a 
literature review of methods. BMJ Qual Saf. 2012;21(6):457-65. 
442. Vemer P, Corro Ramos I, van Voorn GA, Al MJ, Feenstra TL. AdViSHE: A Validation-
Assessment Tool of Health-Economic Models for Decision Makers and Model Users. 
Pharmacoeconomics. 2016;34(4):349-61. 
443. NHS Specialist Pharmacy Service. Community Pharmacy NSAID Safety Audit 2018-19. 
2019. 
444. Agah S, Akbari A, Heshmati J, Sepidarkish M, Morvaridzadeh M, Adibi P, et al. 
Systematic review with meta-analysis: Effects of probiotic supplementation on symptoms in 
functional dyspepsia. J Funct Foods. 2020;68:103902. 
445. Tian W, Jiang W, Yao J, Nicholson CJ, Li RH, Sigurslid HH, et al. Predictors of mortality 
in hospitalized COVID-19 patients: A systematic review and meta-analysis. J Med Virol. 2020. 
446. Chau SH, Sluiter RL, Kievit W, Wensing M, Teichert M, Hugtenburg JG. Cost 
Effectiveness of Gastroprotection with Proton Pump Inhibitors in Older Low-Dose Acetylsalicylic 
Acid Users in the Netherlands. Drugs Aging. 2017;34(5):375-86. 
447. Chau SH, Sluiter RL, Hugtenburg JG, Wensing M, Kievit W, Teichert M. Cost–Utility and 
Budget Impact Analysis for Stopping the Inappropriate Use of Proton Pump Inhibitors After 
Cessation of NSAID or Low-Dose Acetylsalicylic Acid Treatment. Drugs Aging. 2019:1-8. 
448. Saini S, Fendrick A, Scheiman J. Cost‐effectiveness analysis: cardiovascular benefits of 
proton pump inhibitor co‐therapy in patients using aspirin for secondary prevention. Aliment 
Pharmacol Ther. 2011;34(2):243-51. 
449. Takabayashi N, Murata K, Tanaka S, Kawakami K. Cost-effectiveness of proton pump 
inhibitor co-therapy in patients taking aspirin for secondary prevention of ischemic stroke. 
Pharmacoeconomics. 2015;33(10):1091-100. 
450. Latimer N, Lord J, Grant RL, O'Mahony R, Dickson J, Conaghan PG. Cost effectiveness of 
COX 2 selective inhibitors and traditional NSAIDs alone or in combination with a proton pump 
inhibitor for people with osteoarthritis. BMJ. 2009;339:b2538. 
451. Latimer N, Lord J, Grant RL, O'Mahony R, Dickson J, Conaghan PG. Value of information 
in the osteoarthritis setting: cost effectiveness of COX-2 selective inhibitors, traditional NSAIDs and 
proton pump inhibitors. Pharmacoeconomics. 2011;29(3):225-37. 
452. de Groot NL, Spiegel BM, van Haalen HG, de Wit NJ, Siersema PD, van Oijen MG. 
Gastroprotective strategies in chronic NSAID users: a cost-effectiveness analysis comparing single-
tablet formulations with individual components. Value Health. 2013;16(5):769-77. 
453. de Groot NL, van Haalen HG, Spiegel BM, Laine L, Lanas A, Focks JJ, et al. 
Gastroprotection in low-dose aspirin users for primary and secondary prevention of ACS: results of 
a cost-effectiveness analysis including compliance. Cardiovasc Drugs Ther. 2013;27(4):341-57. 
454. Wielage R, Bansal M, Wilson K, Klein R, Happich M. Cost-effectiveness of duloxetine in 
chronic low back pain: a Quebec societal perspective. Spine (Phila Pa 1976). 2013;38(11):936-46. 
455. Wielage RC, Myers JA, Klein RW, Happich M. Cost-effectiveness analyses of 
osteoarthritis oral therapies: A systematic review. Applied Health Economics and Health Policy. 
2013;11(6):593-618. 
456. Brereton N, Pennington B, Ekelund M, Akehurst R. A cost-effectiveness analysis of 
celecoxib compared with diclofenac in the treatment of pain in osteoarthritis (OA) within the 
Swedish health system using an adaptation of the NICE OA model. J Med Econ. 2014;17(9):677-84. 
457. Brereton N, Winn B, Akehurst R. The cost-effectiveness of celecoxib vs diclofenac in the 
treatment of osteoarthritis in the UK; an update to the NICE model using data from the CONDOR 
trial. J Med Econ. 2012;15(3):465-72. 
458. Nasef SA, Shaaban AA, Mould-Quevedo J, Ismail TA. The cost-effectiveness of celecoxib 
versus non-steroidal anti-inflammatory drugs plus proton-pump inhibitors in the treatment of 
osteoarthritis in Saudi Arabia. Health Econ Rev. 2015;5(1):53. 



  

300 
 

459. Chung S-J, Park H-J, Park M-C. Cost-effectiveness of Non-steroidal Anti-inflammatory 
Drugs Adjusting for Upper and Lower Gastrointestinal Toxicities in Rheumatoid Arthritis Patients. 
Journal of Rheumatic Diseases. 2017;24(1). 
460. Lee SP, Sung IK, Kim JH, Lee SY, Park HS, Shim CS. Risk Factors for the Presence of 
Symptoms in Peptic Ulcer Disease. Clin Endosc. 2017;50(6):578-84. 
461. Wielage RC, Bansal M, Andrews JS, Klein RW, Happich M. Cost-utility analysis of 
duloxetine in osteoarthritis: a US private payer perspective. Appl Health Econ Health Policy. 
2013;11(3):219-36. 
462. Sorensen SV, Dewilde S, Singer DE, Goldhaber SZ, Monz BU, Plumb JM. Cost-
effectiveness of warfarin: trial versus "real-world" stroke prevention in atrial fibrillation. Am Heart 
J. 2009;157(6):1064-73. 
463. Spackman E, Burch J, Faria R, Corbacho B, Fox D, Woolacott N. Dabigatran etexilate for 
the prevention of stroke and systemic embolism in atrial fibrillation (TA 249). 2011. 
464. González-Juanatey JR, Álvarez-Sabin J, Lobos JM, Martínez-Rubio A, Reverter JC, 
Oyagüez I, et al. Cost-effectiveness of Dabigatran for Stroke Prevention in Non-valvular Atrial 
Fibrillation in Spain. Revista Española de Cardiología (English Edition). 2012;65(10):901-10. 
465. Kansal AR, Sharma M, Bradley-Kennedy C, Clemens A, Monz BU, Peng S, et al. 
Dabigatran versus rivaroxaban for the prevention of stroke and systemic embolism in atrial 
fibrillation in Canada. Comparative efficacy and cost-effectiveness. Thromb Haemost. 
2012;108(4):672-82. 
466. Kansal AR, Sorensen SV, Gani R, Robinson P, Pan F, Plum JM, et al. Cost-effectiveness 
of dabigatran etexilate for the prevention of stroke and systemic embolism in UK patients with atrial 
fibrillation. Heart. 2012;98(7):573-8. 
467. Janzic A, Kos M. Cost effectiveness of novel oral anticoagulants for stroke prevention 
in atrial fibrillation depending on the quality of warfarin anticoagulation control. 
Pharmacoeconomics. 2015;33(4):395-408. 
468. Langkilde LK, Bergholdt Asmussen M, Overgaard M. Cost-effectiveness of dabigatran 
etexilate for stroke prevention in non-valvular atrial fibrillation. Applying RE-LY to clinical practice 
in Denmark. J Med Econ. 2012;15(4):695-703. 
469. Zheng Y, Sorensen SV, Gonschior AK, Noack H, Heinrich-Nols J, Sunderland T, et al. 
Comparison of the cost-effectiveness of new oral anticoagulants for the prevention of stroke and 
systemic embolism in atrial fibrillation in a UK setting. Clin Ther. 2014;36(12):2015-28.e2. 
470. Andrikopoulos GK, Fragoulakis V, Maniadakis N. Economic evaluation of dabigatran 
etexilate in the management of atrial fibrillation in Greece. Hellenic J Cardiol. 2013;54(4):289-300. 
471. Bergh M, Marais CA, Miller-Janson H, Salie F, Stander MP. Economic appraisal of 
dabigatran as first-line therapy for stroke prevention in atrial fibrillation. S Afr Med J. 
2013;103(4):241-5. 
472. Dorian P, Kongnakorn T, Phatak H, Rublee DA, Kuznik A, Lanitis T, et al. Cost-
effectiveness of apixaban vs. current standard of care for stroke prevention in patients with atrial 
fibrillation. Eur Heart J. 2014;35(28):1897-906. 
473. Giorgi MA, Caroli C, Giglio ND, Micone P, Aiello E, Vulcano C, et al. Estimation of the 
cost-effectiveness of apixaban versus vitamin K antagonists in the management of atrial fibrillation 
in Argentina. Health Economics Review. 2015;5 (1)(17). 
474. Athanasakis K, Boubouchairopoulou N, Karampli E, Tarantilis F, Savvari P, Bilitou A, et 
al. Cost Effectiveness of Apixaban versus Warfarin or Aspirin for Stroke Prevention in Patients with 
Atrial Fibrillation: A Greek Perspective. Am J Cardiovasc Drugs. 2017;17(2):123-33. 
475. Baron Esquivias G, Escolar Albaladejo G, Zamorano JL, Betegon Nicolas L, Canal 
Fontcuberta C, de Salas-Cansado M, et al. Cost-effectiveness Analysis Comparing Apixaban and 
Acenocoumarol in the Prevention of Stroke in Patients With Nonvalvular Atrial Fibrillation in Spain. 
Rev Esp Cardiol (Engl Ed). 2015;68(8):680-90. 
476. Kongnakorn T, Lanitis T, Lieven A, Thijs V, Marbaix S. Cost effectiveness of apixaban 
versus aspirin for stroke prevention in patients with non-valvular atrial fibrillation in Belgium. Clin 
Drug Investig. 2014;34(10):709-21. 



  

301 
 

477. Lip GY, Kongnakorn T, Phatak H, Kuznik A, Lanitis T, Liu LZ, et al. Cost-effectiveness of 
apixaban versus other new oral anticoagulants for stroke prevention in atrial fibrillation. Clin Ther. 
2014;36(2):192-210.e20. 
478. Pradelli L, Calandriello M, Di Virgilio R, Bellone M, Tubaro M. Comparative 
pharmacoeconomic assessment of apixaban vs. standard of care for the prevention of stroke in 
Italian atrial fibrillation patients. Farmeconomia Health economics and therapeutic pathways. 
2014;15(1S):15. 
479. Lanitis T, Kongnakorn T, Jacobson L, De Geer A. Cost-effectiveness of apixaban versus 
warfarin and aspirin in Sweden for stroke prevention in patients with atrial fibrillation. Thromb Res. 
2014;134(2):278-87. 
480. Hallinen T, Soini EJ, Linna M, Saarni SI. Cost-effectiveness of apixaban and warfarin in 
the prevention of thromboembolic complications among atrial fibrillation patients. Springerplus. 
2016;5(1):1354. 
481. Gage BF, Cardinalli AB, Albers GW, Owens DK. Cost-effectiveness of warfarin and 
aspirin for prophylaxis of stroke in patients with nonvalvular atrial fibrillation. JAMA. 
1995;274(23):1839-45. 
482. Lee S, Anglade MW, Meng J, Hagstrom K, Kluger J, Coleman CI. Cost-effectiveness of 
apixaban compared with aspirin for stroke prevention in atrial fibrillation among patients 
unsuitable for warfarin. Circ Cardiovasc Qual Outcomes. 2012;5(4):472-9. 
483. Lee S, Anglade MW, Pham D, Pisacane R, Kluger J, Coleman CI. Cost-effectiveness of 
rivaroxaban compared to warfarin for stroke prevention in atrial fibrillation. Am J Cardiol. 
2012;110(6):845-51. 
484. Lee S, Mullin R, Blazawski J, Coleman CI. Cost-effectiveness of apixaban compared with 
warfarin for stroke prevention in atrial fibrillation. PLoS One. 2012;7(10):e47473. 
485. Lopez-Lopez JA, Sterne JAC, Thom HHZ, Higgins JPT, Hingorani AD, Okoli GN, et al. Oral 
anticoagulants for prevention of stroke in atrial fibrillation: systematic review, network meta-
analysis, and cost effectiveness analysis. BMJ. 2017;359:j5058. 
486. Singh SM, Micieli A, Wijeysundera HC. Economic evaluation of percutaneous left atrial 
appendage occlusion, dabigatran, and warfarin for stroke prevention in patients with nonvalvular 
atrial fibrillation. Circulation. 2013;127(24):2414-23. 
487. Ademi Z, Pasupathi K, Liew D. Cost-effectiveness of apixaban compared to warfarin in 
the management of atrial fibrillation in Australia. European Journal of Preventive Cardiology. 
2015;22(3):344-53. 
488. Nshimyumukiza L, Duplantie J, Gagnon M, Douville X, Fournier D, Lindsay C, et al. 
Dabigatran versus warfarin under standard or pharmacogenetic-guided management for the 
prevention of stroke and systemic thromboembolism in patients with atrial fibrillation: A cost/utility 
analysis using an analytic decision model. Thrombosis Journal. 2013;11 (1) (no pagination)(14). 
489. Ademi Z, Pasupathi K, Liew D. Clinical and Cost Effectiveness of Apixaban Compared to 
Aspirin in Patients with Atrial Fibrillation: An Australian Perspective. Applied Health Economics and 
Health Policy. 2016:1-12. 
490. Siebert U, Alagoz O, Bayoumi AM, Jahn B, Owens DK, Cohen DJ, et al. State-transition 
modeling: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--3. Value 
Health. 2012;15(6):812-20. 
491. Edwards S, Hamilton V, Trevor N, Nherera L, Karnar C, Thurgar E. Apixaban (Eliquis®)for 
the prevention of stroke and systemic embolism in people with non-valvular atrial fibrillation (TA 
275). 2012. 
492. National Collaborating Centre for Chronic Conditions. Osteoarthritis: National Clinical 
Guideline for Care and Management in Adults. UK; 2008. 
493. Staerk L, Gislason GH, Lip GY, Fosbol EL, Hansen ML, Lamberts M, et al. Risk of 
gastrointestinal adverse effects of dabigatran compared with warfarin among patients with atrial 
fibrillation: a nationwide cohort study. Europace. 2015;17(8):1215-22. 
494. Office for National Statistics. Deaths registered in England and Wales (2018). 2019. 
495. Lip GHY, Kongnakorn T, Phatak H, Kuznik A, Rublee D, Lanitis T, et al. Cost-effectiveness 
of apixaban against other novel oral anticoagulants (NOACs) for stroke prevention in atrial 
fibrillation patients. Eur Heart J. 2012;1):54. 



  

302 
 

496. Rosenstock S, Jørgensen T, Bonnevie O, Andersen L. Risk factors for peptic ulcer 
disease: a population based prospective cohort study comprising 2416 Danish adults. Gut. 
2003;52(2):186-93. 
497. Cai S, Garcia Rodriguez LA, Masso-Gonzalez EL, Hernandez-Diaz S. Uncomplicated 
peptic ulcer in the UK: trends from 1997 to 2005. Aliment Pharmacol Ther. 2009;30(10):1039-48. 
498. Lin KJ, Garcia Rodriguez LA, Hernandez-Diaz S. Systematic review of peptic ulcer disease 
incidence rates: do studies without validation provide reliable estimates? Pharmacoepidemiol Drug 
Saf. 2011;20(7):718-28. 
499. Lassen A, Hallas J, de Muckadell OBS. Complicated and uncomplicated peptic ulcers in 
a Danish county 1993–2002: a population-based cohort study. Am J Gastroenterol. 
2006;101(5):945-53. 
500. Malmi H, Kautiainen H, Virta LJ, Farkkila MA. Increased short- and long-term mortality 
in 8146 hospitalised peptic ulcer patients. Aliment Pharmacol Ther. 2016;44(3):234-45. 
501. Yoon H, Kim SG, Jung HC, Song IS. High Recurrence Rate of Idiopathic Peptic Ulcers in 
Long-Term Follow-up. Gut Liver. 2013;7(2):175-81. 
502. Malmi H, Kautiainen H, Virta LJ, Farkkila N, Koskenpato J, Farkkila MA. Incidence and 
complications of peptic ulcer disease requiring hospitalisation have markedly decreased in Finland. 
Aliment Pharmacol Ther. 2014;39(5):496-506. 
503. Malmi H, Färkkilä MA, Virta LJ. Peptic ulcer disease - incidence, associated morbidity 
and mortality. Helsinki: University of Helsinki; 2018. 
504. Tapaskar N, Pang A, Werner DA, Sengupta N. Resuming Anticoagulation Following 
Hospitalization for Gastrointestinal Bleeding Is Associated with Reduced Thromboembolic Events 
and Improved Mortality: Results from a Systematic Review and Meta-Analysis. Dig Dis Sci. 2020. 
505. Ariesen MJ, Claus SP, Rinkel GJ, Algra A. Risk factors for intracerebral hemorrhage in 
the general population: a systematic review. Stroke. 2003;34(8):2060-5. 
506. Komen JJ, Forslund T, Mantel-Teeuwisse AK, Klungel OH, von Euler M, Braunschweig F, 
et al. Association of Preceding Antithrombotic Therapy in Atrial Fibrillation Patients With Ischemic 
Stroke, Intracranial Hemorrhage, or Gastrointestinal Bleed and Mortality. Eur Heart J Cardiovasc 
Pharmacother. 2019. 
507. Lip GY, Clementy N, Pericart L, Banerjee A, Fauchier L. Stroke and major bleeding risk 
in elderly patients aged >/=75 years with atrial fibrillation: the Loire Valley atrial fibrillation project. 
Stroke. 2015;46(1):143-50. 
508. van Walraven C, Hart RG, Connolly S, Austin PC, Mant J, Hobbs FD, et al. Effect of age 
on stroke prevention therapy in patients with atrial fibrillation: the atrial fibrillation investigators. 
Stroke. 2009;40(4):1410-6. 
509. Hillen T, Coshall C, Tilling K, Rudd AG, McGovern R, Wolfe CDA. Cause of Stroke 
Recurrence Is Multifactorial. 2003;34(6):1457-63. 
510. Hankey GJ, Jamrozik K, Broadhurst RJ, Forbes S, Burvill PW, Anderson CS, et al. Long-
term risk of first recurrent stroke in the Perth Community Stroke Study. Stroke. 1998;29(12):2491-
500. 
511. Flach C, Muruet W, Wolfe CDA, Bhalla A, Douiri A. Risk and Secondary Prevention of 
Stroke Recurrence: A Population-Base Cohort Study. Stroke. 2020;51(8):2435-44. 
512. Rasmussen LH, Larsen TB, Graungaard T, Skjøth F, Lip GYH. Primary and secondary 
prevention with new oral anticoagulant drugs for stroke prevention in atrial fibrillation: indirect 
comparison analysis. BMJ : British Medical Journal. 2012;345:e7097. 
513. Hankey GJ, Patel MR, Stevens SR, Becker RC, Breithardt G, Carolei A, et al. Rivaroxaban 
compared with warfarin in patients with atrial fibrillation and previous stroke or transient ischaemic 
attack: a subgroup analysis of ROCKET AF. The Lancet Neurology. 2012;11(4):315-22. 
514. Easton JD, Lopes RD, Bahit MC, Wojdyla DM, Granger CB, Wallentin L, et al. Apixaban 
compared with warfarin in patients with atrial fibrillation and previous stroke or transient ischaemic 
attack: a subgroup analysis of the ARISTOTLE trial. The Lancet Neurology. 2012;11(6):503-11. 
515. Pamela J B, Joseph H, Matthew K, Thomas G B, Lee N, Judith M K, et al. Warfarin Use 
and Mortality, Stroke, and Bleeding Outcomes in a Cohort of Elderly Patients with non-Valvular 
Atrial Fibrillation. Journal of atrial fibrillation. 2019;12(1):2155-. 



  

303 
 

516. Gomez-Outes A, Lagunar-Ruiz J, Terleira-Fernandez AI, Calvo-Rojas G, Suarez-Gea ML, 
Vargas-Castrillon E. Causes of Death in Anticoagulated Patients With Atrial Fibrillation. J Am Coll 
Cardiol. 2016;68(23):2508-21. 
517. Hippisley-Cox J, Coupland C, Logan R. Risk of adverse gastrointestinal outcomes in 
patients taking cyclo-oxygenase-2 inhibitors or conventional non-steroidal anti-inflammatory 
drugs: population based nested case-control analysis. BMJ. 2005;331(7528):1310-6. 
518. Gonzalez-Perez A, Saez ME, Johansson S, Nagy P, Garcia Rodriguez LA. Risk factors 
associated with uncomplicated peptic ulcer and changes in medication use after diagnosis. PLoS 
One. 2014;9(7):e101768. 
519. Blak BT, Thompson M, Dattani H, Bourke A. Generalisability of The Health 
Improvement Network (THIN) database: demographics, chronic disease prevalence and mortality 
rates. Inform Prim Care. 2011;19(4):251-5. 
520. WHO Collaborating Centre for Drug Statistics Methodology. ATC/DD Index 2020: 
Norwegian Institute of Public Health; 2020 [Available from: 
https://www.whocc.no/atc_ddd_index/]. 
521. Elliott RA, Hooper L, Payne K, Brown TJ, Roberts C, Symmons D. Preventing non-
steroidal anti-inflammatory drug-induced gastrointestinal toxicity: are older strategies more cost-
effective in the general population? Rheumatology. 2006;45(5):606-13. 
522. National Institute for Health and Care Excellence. NICE guideline 184-Gastro-
oesophageal reflux disease and dyspepsia in adults: indyspepsia in adults: investigation and 
management. 2014. 
523. Campbell HE, Stokes EA, Bargo D, Logan RF, Mora A, Hodge R, et al. Costs and quality 
of life associated with acute upper gastrointestinal bleeding in the UK: cohort analysis of patients 
in a cluster randomised trial. BMJ Open. 2015;5(4):e007230. 
524. Sterne JA, Bodalia PN, Bryden PA, Davies PA, Lopez-Lopez JA, Okoli GN, et al. Oral 
anticoagulants for primary prevention, treatment and secondary prevention of venous 
thromboembolic disease, and for prevention of stroke in atrial fibrillation: systematic review, 
network meta-analysis and cost-effectiveness analysis. Health Technol Assess. 2017;21(9):1-386. 
525. Department of Health and Social Care. National Schedule of Reference Costs 2017-
2018. London; 2018. 
526. Ali AN, Abdelhafiz A. Clinical and Economic Implications of AF Related Stroke. Journal 
of atrial fibrillation. 2016;8(5):1279-. 
527. Luengo-Fernandez R, Yiin GS, Gray AM, Rothwell PM. Population-based study of acute- 
and long-term care costs after stroke in patients with AF. Int J Stroke. 2013;8(5):308-14. 
528. NHS Prescription Services. NHS Electronic Drug Tariff 2019 [Available from: 
http://www.drugtariff.nhsbsa.nhs.uk/]. 
529. EuroQol Group:EuroQol. A new facility for the measurement of health related quality 
of life. Health Policy. 1990;16:199-208. 
530. van Reenen M, Janssen, B. . EQ-5D-5L User Guide: Basic information on how to use the 
EQ-5D-5L instrument. 2015. 
531. National Institute for Health and Care Excellence. Position statement on use of the EQ-
5D-5L valuation set for England (updated November 2018) 2018 [Available from: 
https://www.nice.org.uk/about/what-we-do/our-programmes/nice-guidance/technology-
appraisal-guidance/eq-5d-5l]. 
532. Berg J, Lindgren P, Nieuwlaat R, Bouin O, Crijns H. Factors determining utility measured 
with the EQ-5D in patients with atrial fibrillation. Qual Life Res. 2010;19(3):381-90. 
533. Thom HHZ, Hollingworth W, Sofat R, Wang Z, Fang W, Bodalia PN, et al. Directly Acting 
Oral Anticoagulants for the Prevention of Stroke in Atrial Fibrillation in England and Wales: Cost-
Effectiveness Model and Value of Information Analysis. MDM policy & practice. 
2019;4(2):2381468319866828-. 
534. Edwards S, Hamilton V, Nherera L, Trevor N, Barton S. Rivaroxaban for the  prevention 
of stroke and systemic embolism in people with atrial fibrillation (TA 256). 2011. 
535. Delaney BC, Qume M, Moayyedi P, Logan RF, Ford AC, Elliott C, et al. Helicobacter pylori 
test and treat versus proton pump inhibitor in initial management of dyspepsia in primary care: 
multicentre randomised controlled trial (MRC-CUBE trial). BMJ. 2008;336(7645):651-4. 

https://www.whocc.no/atc_ddd_index/
http://www.drugtariff.nhsbsa.nhs.uk/
https://www.nice.org.uk/about/what-we-do/our-programmes/nice-guidance/technology-appraisal-guidance/eq-5d-5l
https://www.nice.org.uk/about/what-we-do/our-programmes/nice-guidance/technology-appraisal-guidance/eq-5d-5l


  

304 
 

536. Tai M-LS, Norhatta N, Goh KJ, Moy FM, Sujarita R, Asraff AA, et al. The impact of 
dyspepsia on symptom severity and quality of life in adults with headache. PLoS One. 2015;10(1). 
537. Groeneveld PW, Lieu TA, Fendrick AM, Hurley LB, Ackerson LM, Levin TR, et al. Quality 
of life measurement clarifies the cost-effectiveness of Helicobacter pylori eradication in peptic ulcer 
disease and uninvestigated dyspepsia. The American journal of gastroenterology. 2001;96(2):338-
47. 
538. Maetzel A, Krahn M, Naglie G. The cost effectiveness of rofecoxib and celecoxib in 
patients with osteoarthritis or rheumatoid arthritis. Arthritis Rheum. 2003;49(3):283-92. 
539. Groeneveld PW, Lieu TA, Fendrick AM, Hurley LB, Ackerson LM, Levin TR, et al. Quality 
of life measurement clarifies the cost-effectiveness of Helicobacter pylori eradication in peptic ulcer 
disease and uninvestigated dyspepsia11This work was conducted at the Division of Research, Kaiser 
Permanente Medical Care Program, Oakland, CA; University of California, San Francisco; and VA 
Medical Center, San Francisco, CA. The American Journal of Gastroenterology. 2001;96(2):338-47. 
540. Doble B, Pufulete M, Harris JM, Johnson T, Lasserson D, Reeves BC, et al. Health-related 
quality of life impact of minor and major bleeding events during dual antiplatelet therapy: a 
systematic literature review and patient preference elicitation study. Health & Quality of Life 
Outcomes. 2018;16(1):191. 
541. Campbell H, Stokes E, Bargo D, Logan R, Mora A, Hodge R, et al. Costs and quality of 
life associated with acute upper gastrointestinal bleeding in the UK: cohort analysis of patients in a 
cluster randomised trial. BMJ open. 2015;5(4):e007230. 
542. Wang K, Li H, Kwong WJ, Antman EM, Ruff CT, Giugliano RP, et al. Impact of 
Spontaneous Extracranial Bleeding Events on Health State Utility in Patients with Atrial Fibrillation: 
Results from the ENGAGE AF-TIMI 48 Trial. J Am Heart Assoc. 2017;6(8). 
543. Spiegel BM, Chiou CF, Ofman JJ. Minimizing complications from nonsteroidal 
antiinflammatory drugs: cost-effectiveness of competing strategies in varying risk groups. Arthritis 
Rheum. 2005;53(2):185-97. 
544. Luengo-Fernandez R, Gray AM, Bull L, Welch S, Cuthbertson F, Rothwell PM, et al. 
Quality of life after TIA and stroke: ten-year results of the Oxford Vascular Study. Neurology. 
2013;81(18):1588-95. 
545. Haacke C, Althaus A, Spottke A, Siebert U, Back T, Dodel R. Long-Term Outcome After 
Stroke. Stroke. 2006;37(1):193-8. 
546. TreeAge Pro Healthcare 2021. [computer software]. Williamstown, MA; 2020. 
547. Badeaux J, Bonanno L, Au H. Effectiveness of ondansetron as an adjunct to lidocaine 
intravenous regional anesthesia on tourniquet pain and postoperative pain in patients undergoing 
elective hand surgery: a systematic review protocol. JBI Database Of Systematic Reviews And 
Implementation Reports. 2015;13(1):27-38. 
548. Straus WL, Ofman JJ, MacLean C, Morton S, Berger ML, Roth EA, et al. Do NSAIDs cause 
dyspepsia? A meta-analysis evaluating alternative dyspepsia definitions. Am J Gastroenterol. 
2002;97(8):1951-8. 
549. Krijkamp EM, Alarid-Escudero F, Enns EA, Jalal HJ, Hunink MGM, Pechlivanoglou P. 
Microsimulation modeling for health decision sciences using R: A Tutorial. Med Decis Making. 
2018;38(3):400-22. 
550. Freeman M, Groom B, Spackman M. Social discount rates for cost–benefit analysis: a 
report for HM treasury 2018 [Available from: https://www.gov.uk/government/publications/the-
green-book-appraisal-and-evaluation-in-central-governent]. 
551. Stinnett AA, Mullahy J. Net health benefits: a new framework for the analysis of 
uncertainty in cost-effectiveness analysis. Med Decis Making. 1998;18(2 Suppl):S68-80. 
552. Krahn MD, Naglie G, Naimark D, Redelmeier DA, Detsky AS. Primer on Medical Decision 
Analysis: Part 4-Analyzing the Model and Interpreting the Results. Med Decis Making. 
1997;17(2):142-51. 
553. Schwappach DL. Risk factors for patient-reported medical errors in eleven countries. 
Health Expect. 2014;17(3):321-31. 
554. Patel I, Balkrishnan R. Medication Error Management around the Globe: An Overview. 
Indian J Pharm Sci. 2010;72(5):539-45. 

https://www.gov.uk/government/publications/the-green-book-appraisal-and-evaluation-in-central-governent
https://www.gov.uk/government/publications/the-green-book-appraisal-and-evaluation-in-central-governent


  

305 
 

555. Price DB, Román-Rodríguez M, McQueen RB, Bosnic-Anticevich S, Carter V, Gruffydd-
Jones K, et al. Inhaler Errors in the CRITIKAL Study: Type, Frequency, and Association with Asthma 
Outcomes. The Journal of Allergy and Clinical Immunology: In Practice. 2017;5(4):1071-81.e9. 
556. Batura N, Pulkki-Brännström A-M, Agrawal P, Bagra A, Haghparast- Bidgoli H, Bozzani 
F, et al. Collecting and analysing cost data for complex public health trials: reflections on practice. 
Global Health Action. 2014;7(1):23257. 
557. Franklin M, Lomas J, Richardson G. Conducting Value for Money Analyses for Non-
randomised Interventional Studies Including Service Evaluations: An Educational Review with 
Recommendations. Pharmacoeconomics. 2020;38(7):665-81. 
558. Detsky AS, Laupacis A. Relevance of Cost-effectiveness Analysis to Clinicians and Policy 
Makers. JAMA. 2007;298(2):221-4. 
559. Chen L-C, Ashcroft DM, Elliott RA. Do economic evaluations have a role in decision-
making in Medicine Management Committees? A qualitative study. Pharm World Sci. 
2007;29(6):661-70. 
560. Garattini L, van de Vooren K. Budget impact analysis in economic evaluation: a proposal 
for a clearer definition. Eur J Health Econ. 2011;12(6):499-502. 
561. Trueman P, Drummond M, Hutton J. Developing guidance for budget impact analysis. 
Pharmacoeconomics. 2001;19(6):609-21. 
562. Moore RA, Derry S, Wiffen PJ, Straube S, Aldington DJ. Overview review: Comparative 
efficacy of oral ibuprofen and paracetamol (acetaminophen) across acute and chronic pain 
conditions. European Journal of Pain. 2015;19(9):1213-23. 
563. Srivastava K, Arora A, Kataria A, Cappelleri JC, Sadosky A, Peterson AM. Impact of 
reducing dosing frequency on adherence to oral therapies: a literature review and meta-analysis. 
Patient preference and adherence. 2013;7:419-34. 
564. Morales DR, Dreischulte T, Lipworth BJ, Donnan PT, Jackson C, Guthrie B. Respiratory 
effect of beta‐blocker eye drops in asthma: population based study and meta‐analysis of clinical 
trials. Br J Clin Pharmacol. 2016. 
565. Morales D. Quantifying the risk of beta-blockers and non-steroidal anti-inflammatory 
drugs in asthma: University of Dundee; 2014. 
566. Morales DR, Lipworth BJ, Donnan PT, Jackson C, Guthrie B. Respiratory effect of beta-
blockers in people with asthma and cardiovascular disease: population-based nested case control 
study. BMC Med. 2017;15(1):18. 
567. Scheiman JM. Strategies to reduce the GI risks of antiplatelet therapy. Rev Cardiovasc 
Med. 2005;6 Suppl 4:S23-31. 
568. Serebruany VL, Dinicolantonio JJ, Can MM, Pershukov IV, Kuliczkowski W. 
Gastrointestinal adverse events after dual antiplatelet therapy: clopidogrel is safer than ticagrelor, 
but prasugrel data are lacking or inconclusive. Cardiology. 2013;126(1):35-40. 
569. Abraham NS, Hartman C, Castillo D, Richardson P, Smalley W. Effectiveness of national 
provider prescription of PPI gastroprotection among elderly NSAID users. Am J Gastroenterol. 
2008;103(2):323-32. 
570. Al-Taee AM, Ghoulam E, Lee P, Sbertoli R, Hachem C. Under-utilization of proton pump 
inhibitors in the prevention of NSAID-related peptic ulcer disease in the elderly. Am J Gastroenterol. 
2019;114 (Supplement):S684-S5. 
571. Anonymous. Nonsteroidal anti-inflammatory drugs: add an anti-ulcer drug for patients 
at high risk only. Always limit the dose and duration of treatment with NSAIDs. Prescrire Int. 
2011;20(119):216-9. 
572. Arora G, Singh G, Triadafilopoulos G. Proton pump inhibitors for gastroduodenal 
damage related to nonsteroidal anti-inflammatory drugs or aspirin: twelve important questions for 
clinical practice. Clin Gastroenterol Hepatol. 2009;7(7):725-35. 
573. Blandizzi C, Tuccori M, Colucci R, Gori G, Fornai M, Antonioli L, et al. Clinical efficacy of 
esomeprazole in the prevention and healing of gastrointestinal toxicity associated with NSAIDs in 
elderly patients. Drugs Aging. 2008;25(3):197-208. 
574. Payne K, McAllister M, Davies LM. Valuing the economic benefits of complex 
interventions: when maximising health is not sufficient. Health Econ. 2013;22(3):258-71. 



  

306 
 

575. Lorgelly PK. Choice of Outcome Measure in an Economic Evaluation: A Potential Role 
for the Capability Approach. Pharmacoeconomics. 2015;33(8):849-55. 
576. Cousens S, Hargreaves J, Bonell C, Armstrong B, Thomas J, Kirkwood BR, et al. 
Alternatives to randomisation in the evaluation of public-health interventions: statistical analysis 
and causal inference. J Epidemiol Community Health. 2011;65(7):576. 
577. Degli Esposti M, Spreckelsen T, Gasparrini A, Wiebe DJ, Bonander C, Yakubovich AR, et 
al. Can synthetic controls improve causal inference in interrupted time series evaluations of public 
health interventions? Int J Epidemiol. 2020. 
578. National Institute for Health and Care Excellence. Prophylaxis against infective 
endocarditis (CG64.1). 2015. 
579. Shadish W, Cook T, Campbell D. Experimental and Quasi-Experimental Designs for 
Generalized Causal Inference. 2 ed: Houghton Mifflin; 2002. 
580. Jaksa A, Wu J, Jónsson P, Eichler H-G, Vititoe S, Gatto NM. Organized structure of real-
world evidence best practices: moving from fragmented recommendations to comprehensive 
guidance. Journal of Comparative Effectiveness Research. 2021;10(9):711-31. 
581. Ghosh RE, Crellin E, Beatty S, Donegan K, Myles P, Williams R. How Clinical Practice 
Research Datalink data are used to support pharmacovigilance. Ther Adv Drug Saf. 
2019;10:2042098619854010. 
582. Williams R, Jenkins DA, Ashcroft DM, Brown B, Campbell S, Carr MJ, et al. Diagnosis of 
physical and mental health conditions in primary care during the COVID-19 pandemic: a 
retrospective cohort study. The Lancet Public Health. 2020;5(10):e543-e50. 
583. Morgan CJ. Reducing bias using propensity score matching. J Nucl Cardiol. 
2018;25(2):404-6. 
584. Landewe R, van der Heijde D. Primer: challenges in randomized and observational 
studies. Nat Clin Pract Rheumatol. 2007;3(11):661-6. 
585. Bosco JL, Silliman RA, Thwin SS, Geiger AM, Buist DS, Prout MN, et al. A most stubborn 
bias: no adjustment method fully resolves confounding by indication in observational studies. J Clin 
Epidemiol. 2010;63(1):64-74. 
586. Grobbee DE, Hoes AW. Confounding and indication for treatment in evaluation of drug 
treatment for hypertension. BMJ. 1997;315(7116):1151. 
587. McMahon AD. Approaches to combat with confounding by indication in observational 
studies of intended drug effects. Pharmacoepidemiol Drug Saf. 2003;12(7):551-8. 
588. McMahon AD. Observation and Experiment with the Efficacy of Drugs: A Warning 
Example from a Cohort of Nonsteroidal Anti-inflammatory and Ulcer-healing Drug Users. Am J 
Epidemiol. 2001;154(6):557-62. 
589. Caro JJ, Eddy DM, Kan H, Kaltz C, Patel B, Eldessouki R, et al. Questionnaire to assess 
relevance and credibility of modeling studies for informing health care decision making: an ISPOR-
AMCP-NPC Good Practice Task Force report. Value Health. 2014;17(2):174-82. 
590. Linden A. Conducting Interrupted Time-series Analysis for Single- and Multiple-group 
Comparisons. 2015;15(2):480-500. 
591. Stevens S, Valderas JM, Doran T, Perera R, Kontopantelis E. Analysing indicators of 
performance, satisfaction, or safety using empirical logit transformation. 2016;352:i1114. 
592. Penfold RB, Zhang F. Use of interrupted time series analysis in evaluating health care 
quality improvements. Acad Pediatr. 2013;13(6 Suppl):S38-44. 
593. Wooldridge JM. Introductory econometrics: a modern approach. 5th ed. Mason, Ohio: 
South-Western Cengage Learning; 2012. 
594. Baum CF, Schaffer ME. ACTEST: Stata module to perform Cumby-Huizinga general test 
for autocorrelation in time series. Statistical Software Components. Boston College Department of 
Economics2013. 
595. Prais S, Winsten C. Trend estimators and serial correlation. Commission Discussion 
Papers, Statistics. Chicago: Cowles Foundation for Research in Economics; 1954. 
596. Nelson BK. Statistical methodology: V. Time series analysis using autoregressive 
integrated moving average (ARIMA) models. Acad Emerg Med. 1998;5(7):739-44. 
597. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 
1986;7(3):177-88. 



  

307 
 

598. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 
2002;21(11):1539-58. 
599. Huedo-Medina TB, Sanchez-Meca J, Marin-Martinez F, Botella J. Assessing 
heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11(2):193-206. 
600. Petropoulou M, Mavridis D. A comparison of 20 heterogeneity variance estimators in 
statistical synthesis of results from studies: a simulation study. Stat Med. 2017;36(27):4266-80. 
601. DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemp Clin Trials. 
2015;45(Pt A):139-45. 
602. Dumic I, Nordin T, Jecmenica M, Stojkovic Lalosevic M, Milosavljevic T, Milovanovic T. 
Gastrointestinal Tract Disorders in Older Age. Can J Gastroenterol Hepatol. 2019;2019:6757524-. 
603. Lallana MJ, Feja C, Aguilar-Palacio I, Malo S, Rabanaque MJ. Use of Non-Steroidal Anti-
Inflammatory Drugs and Associated Gastroprotection in a Cohort of Workers. Int J Environ Res 
Public Health. 2018;15(9):1836. 
604. Cullen DJE, Seager J, Holmes S, Doherty M, Wilson J, Garrud P, et al. 
Pharmacoepidemiology of non-steroidal anti-inflammatory drug use in Nottingham general 
practices. Aliment Pharmacol Ther. 2000;14:177-85. 
605. Crooks CJ, West J, Card TR. Comorbidities affect risk of nonvariceal upper 
gastrointestinal bleeding. Gastroenterology. 2013;144(7):1384-e19. 
606. Eastwood GL. The role of smoking in peptic ulcer disease. J Clin Gastroenterol. 1988;10 
Suppl 1:S19-23. 
607. Strate LL, Singh P, Boylan MR, Piawah S, Cao Y, Chan AT. A Prospective Study of Alcohol 
Consumption and Smoking and the Risk of Major Gastrointestinal Bleeding in Men. PLoS One. 
2016;11(11):e0165278. 
608. Braekkan SK, van der Graaf Y, Visseren FL, Algra A. Obesity and risk of bleeding: the 
SMART study. J Thromb Haemost. 2016;14(1):65-72. 
609. Molnar AO, Bota SE, Garg AX, Harel Z, Lam N, McArthur E, et al. The Risk of Major 
Hemorrhage with CKD. 2016;27(9):2825-32. 
610. Saeed F, Agrawal N, Greenberg E, Holley JL. Lower Gastrointestinal Bleeding in Chronic 
Hemodialysis Patients. International Journal of Nephrology. 2011;2011:272535. 
611. Brown JD, Goodin AJ, Lip GYH, Adams VR. Risk Stratification for Bleeding Complications 
in Patients With Venous Thromboembolism: Application of the HAS-BLED Bleeding Score During the 
First 6 Months of Anticoagulant Treatment. J Am Heart Assoc. 2018;7(6). 
612. Yuet WC, Derasari D, Sivoravong J, Mason D, Jann M. Selective Serotonin Reuptake 
Inhibitor Use and Risk of Gastrointestinal and Intracranial Bleeding. J Am Osteopath Assoc. 
2019;119(2):102-11. 
613. Narum S, Westergren T, Klemp M. Corticosteroids and risk of gastrointestinal bleeding: 
a systematic review and meta-analysis. 2014;4(5):e004587. 
614. Jahromi SR, Togha M, Fesharaki SH, Najafi M, Moghadam NB, Kheradmand JA, et al. 
Gastrointestinal adverse effects of antiepileptic drugs in intractable epileptic patients. Seizure. 
2011;20(4):343-6. 
615. De Leon J. A practitioner's guide to prescribing antiepileptics and mood stabilizers for 
adults with intellectual disabilities. New York: Springer; 2012. 
616. van den Ham HA, Klungel OH, Leufkens HGM, van Staa TP. The patterns of 
anticoagulation control and the risk of stroke, bleeding and mortality in patients with non-valvular 
atrial fibrillation. J Thromb Haemost. 2013;11(1):107-15. 
617. Lue A, Lanas A. Protons pump inhibitor treatment and lower gastrointestinal bleeding: 
Balancing risks and benefits. World J Gastroenterol. 2016;22(48):10477-81. 
618. Parisi R, Rutter MK, Lunt M, Young HS, Symmons DPM, Griffiths CEM, et al. Psoriasis 
and the Risk of Major Cardiovascular Events: Cohort Study Using the Clinical Practice Research 
Datalink. J Invest Dermatol. 2015;135(9):2189-97. 
619. Lamberts M, Olesen JB, Ruwald MH, Hansen CM, Karasoy D, Kristensen SL, et al. 
Bleeding after initiation of multiple antithrombotic drugs, including triple therapy, in atrial 
fibrillation patients following myocardial infarction and coronary intervention: a nationwide cohort 
study. Circulation. 2012;126(10):1185-93. 



  

308 
 

620. Nielen JTH, Dagnelie PC, Emans PJ, Veldhorst-Janssen N, Lalmohamed A, van Staa T-P, 
et al. Safety and efficacy of new oral anticoagulants and low-molecular-weight heparins compared 
with aspirin in patients undergoing total knee and hip replacements. Pharmacoepidemiol Drug Saf. 
2016;25(11):1245-52. 
621. Komen JJ, Hjemdahl P, Mantel-Teeuwisse AK, Klungel OH, Wettermark B, Forslund T. 
Concomitant Anticoagulant and Antidepressant Therapy in Atrial Fibrillation Patients and Risk of 
Stroke and Bleeding. Clin Pharmacol Ther. 2019. 
622. Wright AK, Kontopantelis E, Emsley R, Buchan I, Sattar N, Rutter MK, et al. Life 
Expectancy and Cause-Specific Mortality in Type 2 Diabetes: A Population-Based Cohort Study 
Quantifying Relationships in Ethnic Subgroups. Diabetes Care. 2017;40(3):338. 
623. Iwagami M, Tomlinson LA, Mansfield KE, Douglas IJ, Smeeth L, Nitsch D. 
Gastrointestinal bleeding risk of selective serotonin reuptake inhibitors by level of kidney function: 
A population-based cohort study. Br J Clin Pharmacol. 2018;84(9):2142-51. 
624. Brown TJ, Hooper L, Elliott RA, Payne K, Webb R, Roberts C, et al. A comparison of the 
cost-effectiveness of five strategies for the prevention of non-steroidal anti-inflammatory drug-
induced gastrointestinal toxicity: A systematic review with economic modelling. Health Technol 
Assess. 2006;10(38):iii-183. 
625. Halvorsen S, Storey RF, Rocca B, Sibbing D, Ten Berg J, Grove EL, et al. Management of 
antithrombotic therapy after bleeding in patients with coronary artery disease and/or atrial 
fibrillation: expert consensus paper of the European Society of Cardiology Working Group on 
Thrombosis. Eur Heart J. 2017;38(19):1455-62. 
626. Staerk L, Fosbol EL, Lamberts M, Bonde AN, Gadsboll K, Sindet-Pedersen C, et al. 
Resumption of oral anticoagulation following traumatic injury and risk of stroke and bleeding in 
patients with atrial fibrillation: A nationwide cohort study. Eur Heart J. 2018;39(19):1698-705. 
627. Baker CL, Dhamane AD, Mardekian J, Dina O, Russ C, Rosenblatt L, et al. Comparison of 
Drug Switching and Discontinuation Rates in Patients with Nonvalvular Atrial Fibrillation Treated 
with Direct Oral Anticoagulants in the United States. Adv Ther. 2019;36(1):162-74. 
628. Coleman CI, Tangirala M, Evers T. Treatment Persistence and Discontinuation with 
Rivaroxaban, Dabigatran, and Warfarin for Stroke Prevention in Patients with Non-Valvular Atrial 
Fibrillation in the United States. PLoS One. 2016;11(6):e0157769. 
629. Groot AE, Vermeij JM, Westendorp WF, Nederkoorn PJ, van de Beek D, Coutinho JM. 
Continuation or Discontinuation of Anticoagulation in the Early Phase After Acute Ischemic Stroke. 
Stroke. 2018;49(7):1762-5. 
630. Hellfritzsch M, Grove EL, Husted SE, Rasmussen L, Poulsen BK, Johnsen SP, et al. Clinical 
events preceding switching and discontinuation of oral anticoagulant treatment in patients with 
atrial fibrillation. Europace. 2017;19(7):1091-5. 



  

309 
 

Appendix 

 – Search criteria for the systematic review of economic evaluations 

on reducing hazardous prescribing in Chapter Two 

 

Table A.1: Search terms for ‘health economics’- Concept 1 

Medline Embase 

CRD NICE CRD NICE 

1 Economics/ economics/ economics/ health economics/ 

2 exp ‘costs and cost 
analysis’/ 

exp ‘costs and cost 
analysis’/ 

exp ‘costs and cost 
analysis’/ 

exp economic evaluation/ 

3 Economics, Dental/   exp Health Care Cost/ 

4 exp economics, hospital/ exp economics, hospital/ exp economics, hospital/ (economic* or 
pharmaco?economic*).ti. 

5 Economics, Medical/ exp economics, medical/ exp economics, medical/ (cost* adj2 (effective* or 
utilit* or benefit* or 
minimi* or unit* or 
estimat* or 
variable*)).ab. 

6 Economics, Nursing/ economics, nursing/ economics, nursing/ cost*.ti 

7 Economics, 
Pharmaceutical/ 

economics, 
pharmaceutical/ 

economics, 
pharmaceutical/ 

budget/ 

8 (economic$ or cost or 
costs or costly or costing or 
price or prices or pricing or 
pharmacoeconomic$).ti,ab. 

cost*.ti. cost*.ti. (value adj2 (money or 
monetary)).ti,ab. 

9 (expenditure$ not 
energy).ti,ab. 

(cost* adj2 (effective* or 
utilit* or benefit* or 
minimi* or unit* or 
estimat* or 
variable*)).ab. 

(cost* adj2 (effective* or 
utilit* or benefit* or 
minimi* or unit* or 
estimat* or 
variable*)).ab. 

budget*.ti,ab. 

10 value for money.ti,ab. (value adj2 (money or 
monetary)).ti,ab. 

(value adj2 (money or 
monetary)).ti,ab. 

exp fee/ 

11 budget$.ti,ab. budget*.ti,ab. budget*.ti,ab. funding/ 

12 or/1-11 exp budgets/ exp budgets/ (price* or pricing*).ti,ab. 

13 ((energy or oxygen) adj 
cost).ti,ab. 

value of life/ value of life/ (financ* or fee or 
fees).ti,ab. 

14 (metabolic adj 
cost).ti,ab. 

exp ‘fees and charges’/ exp ‘fees and charges’/  

15 ((energy or oxygen) adj 
expenditure).ti,ab. 

(financ* or fee or 
fees).ti,ab. 

(financ* or fee or 
fees).ti,ab. 

 

16 or/13-15 (economic* or 
pharmaco?economic*).ti. 

(economic* or 
pharmaco?economic*).ti. 

 

17 12 not 16 (price* or pricing*).ti,ab. (price* or pricing*).ti,ab.  

18 letter.pt.    

19 editorial.pt.    

20 historical article.pt.    

21 or/18-20    

22 17 not 21    
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23 exp animals/ not 
humans/ 

   

24 22 not 23    

25 bmj.jn.    

26 ‘cochrane database of 
systematic reviews’.jn. 

   

27 health technology 
assessment winchester 
england.jn. 

   

28 or/25-27    

29 24 not 28    

30 limit 29 to yr=‘2010 -
Current’ 

   

 

Table A.2: Search terms for ‘Decision-analytic model’ – Concept 2 

Medline  Embase 

exp models, economic/ 1 statistical model/ 

*models, theoretical/ 2 exp economic aspect/ 

*models, organizational/ 3*theoretical model/ 

markov chains/ 4*nonbiological model/ 

monte carlo method/ 5 stochastic model/ 

exp decision theory/ 6 decision theory/ 

(markov* or monte carlo).ti,ab. 7 decision tree/ 

econom* model*.ti,ab. 8 monte carlo method/ 

(decision* adj2 (tree* or analy* or model*)).ti,ab. 9 (markov* or monte carlo).ti,ab. 

 10 econom* model*.ti,ab. 

 (1and2)or 3-10 

 

Table A.3: Search terms for ‘Medication error’ – Concept 3 

Embase and Medline Source for search term 

(medication and error).mp. Elliott 2018 

(inappropriate and prescribing).mp. Elliott 2018 

inappropriate medication.mp. Elliott 2018 

(preventable and adverse and drug and event*).mp. Elliott 2018 

(preventable and adverse and drug and reaction*).mp. Elliott 2018 

(prescribing and error*).mp. Elliott 2018 

(transcription and error*).mp. Elliott 2018 

(medication and discrep*).mp. Elliott 2018 

(medication and omission*).mp. Elliott 2018 

inappropriate prescribing/ added Mesh 

exp medical error/ added Mesh 

exp ME/ added Mesh 

(hazardous and prescr*).mp. added free text 
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 – Prescribing safety indicators defining HPE types in SMASH 

 

Table B.1: Overview of prescribing safety indicators (PSIs) used in SMASH to identify hazardous 

prescribing events (HPE) in the at-risk population (excluding monitoring errors) 

PSI Group at risk of HPE (denominator) Group with HPE identified (numerator) 

1 Patients aged ≥18 years with a history of 

peptic ulcer or GI bleed and not 

prescribed a GPA 

Prescription of an antiplatelet drug without co-

prescription of a GPA, to a patient with a history 

of peptic ulcer or GI bleed 

2 Patients aged ≥18 years prescribed an 

oral anticoagulant (OAC)  

Prescription an OAC in combination with an oral 

NSAID 

3 Patients aged ≥18 years prescribed an 

OAC without co-prescription of a GPA 

Prescription of an OAC and an antiplatelet drug 

in combination without co-prescription of a GPA 

4 Patients aged ≥18 years prescribed 

aspirin without co-prescription of a GPA 

Prescription of aspirin in combination with 

another antiplatelet drug (without co-

prescription of a GPA) 

5 Patients aged ≥65 years without co-

prescription of a GPA 

Prescription of an oral NSAID to patients aged 

≥65 years without co-prescription of a GPA 

6 Patients aged ≥18 years with a history of 

peptic ulcer without co-prescription of a 

GPA 

Prescription of an oral NSAID without co-

prescription of a GPA to a patient with a history 

of peptic ulcer 

7 Patients aged ≥18 years with asthma 

(unresolved) prescribed a LABA 

Prescription of a long-acting beta-2 agonist 

inhaler to a patient with asthma (unresolved) 

who is not also prescribed an inhaled 

corticosteroid 

8 Patients aged ≥18 years with asthma 

(unresolved) 

Prescription of a non-selective beta-blocker to a 

patient with asthma (unresolved) 

9 Patients aged ≥18 years who have a 

diagnosis of heart failure 

Prescription of an oral NSAID to a patient with a 

history of HF 

10 Patients aged ≥18 years with an eGFR 

<45 

Prescription of an oral NSAID to a patient with 

eGFR <45 

GI bleed: gastro-intestinal bleed; GPA: gastroprotective agent; HPE: hazardous prescribing event; NSAID: 

non-steroidal anti-inflammatory drug; OAC: oral anticoagulant including vitamin K antagonist and direct 

oral anticoagulants 



  

312 
 

 – CHEERS checklist for economic evaluations  

Table C.1: CHEERS reporting checklist with key sections reporting recommended criteria of each 

item relevant to the economic evaluation in Chapter Three and Chapter Six (278) 

Item 
Item 

No 
Recommendation 

Chapter 

Three 

Chapter 

Six 

Title and abstract 

Title 1 Identify the study as an economic evaluation or use more 

specific terms, such as ‘cost-effectiveness analysis’, and 

describe the interventions compared. 

 N/A  N/A 

Abstract 2 Provide a structured summary of objectives, perspective, 

setting, methods (including study design and inputs), results 

(including base case and uncertainty analyses), and 

conclusions. 

 N/A  N/A 

Introduction        

Background and 

objectives 

3 Provide an explicit statement of the broader context for the 

study. 

3.1 6.1 

    Present the study question and its relevance for health policy 

or practice decisions. 

3.1 6.1 

Target population 

and subgroups 

4 Describe characteristics of the base case population and 

subgroups analysed, including why they were chosen. 

3.2.1.1 6.2.1.1 

Setting and 

location 

5 State relevant aspects of the system(s) in which the 

decision(s) need(s) to be made. 

 2.9; 

3.2.1 

2.9; 3.2.1 

Study perspective 6 Describe the perspective of the study and relate this to the 

costs being evaluated. 

 3.2.1.3 6.2.1.3 

Comparators 7 Describe the interventions or strategies being compared and 

state why they were chosen. 

2.9; 

3.2.1.2 

2.9; 

6.2.1.2 

Time horizon 8 State the time horizon(s) over which costs and consequences 

are being evaluated and say why appropriate. 

3.2.1 5.2.2; 

6.2.1.4 

Discount rate 9 Report the choice of discount rate(s) used for costs and 

outcomes and say why appropriate. 

3.2.1.3 6.2.1.3; 

5.2.2 

Choice of health 

outcome 

10 Describe what outcomes were used as the measure(s) of 

benefit in the evaluation and their relevance for the type of 

analysis performed. 

3.2.1.3; 

3.2.2; 3.1 

6.1; 

6.2.1.3 

Measurement of 

effectiveness 

11a Single study-based estimates: Describe fully the design 

features of the single effectiveness study and why the single 

study was a sufficient source of clinical effectiveness data. 

3.2.2 3.2.2; 

6.2.2 

  11b Synthesis-based estimates: Describe fully the methods used 

for identification of included studies and synthesis of data. 

 N/A  N/A 

Measurement 

and valuation of 

preference based 

outcomes 

12 If applicable, describe the population and methods used to 

elicit preferences for outcomes. 

 N/A N/A 

Estimating 

resources and 

costs 

13a Single study-based economic evaluation: Describe approaches 

used to estimate resource use associated with the alternative 

interventions. Describe primary or secondary research 

methods for valuing each resource item in terms of its unit 

cost. Describe any adjustments made to approximate to 

opportunity costs. 

 3.2.3  3.2.3; 

6.2.3 

  13b Model-based economic evaluation: Describe approaches and 

data sources used to estimate resource use associated with 

model health states. Describe primary or secondary research 

methods for valuing each resource item in terms of its unit 

cost. Describe any adjustments made to approximate to 

opportunity costs. 

 N/A 5.2.4.2; 

6.2.4 
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Currency, price 

date, and 

conversion 

14 Report the dates of the estimated resource quantities and 

unit costs. Describe methods for adjusting estimated unit 

costs to the year of reported costs if necessary. Describe 

methods for converting costs into a common currency base 

and the exchange rate. 

 3.2.1.3 6.2.1.3 

Choice of model 15 Describe and give reasons for the specific type of decision-

analytical model used. Providing a figure to show model 

structure is strongly recommended. 

 3.2.1.4 6.2.1.4 

Assumptions 16 Describe all structural or other assumptions underpinning the 

decision-analytical model. 

3.2.1 Appendi

x M 

Analytical 

methods 

17 Describe all analytical methods supporting the evaluation. 

This could include methods for dealing with skewed, missing, 

or censored data; extrapolation methods; methods for 

pooling data; approaches to validate or make adjustments 

(such as half cycle corrections) to a model; and methods for 

handling population heterogeneity and uncertainty. 

3.2.4; 

3.2.5 

6.2.5; 

6.2.6; 

6.2.7 

Results        

Study parameters 18 Report the values, ranges, references, and, if used, probability 

distributions for all parameters. Report reasons or sources for 

distributions used to represent uncertainty where 

appropriate. Providing a table to show the input values is 

strongly recommended. 

3.3.2 3.3.2; 

5.2.4; 

6.3.1 

Incremental cost 

and outcomes 

19 For each intervention, report mean values for the main 

categories of estimated costs and outcomes of interest, as 

well as mean differences between the comparator groups. If 

applicable, report incremental cost-effectiveness ratios. 

 3.3.4 6.3.4 

Characterising 

uncertainty 

20a Single study-based economic evaluation: Describe the effects 

of sampling uncertainty for the estimated incremental costs 

and incremental effectiveness parameters, together with the 

impact of methodological assumptions (such as discount rate, 

study perspective). 

 3.3.4 6.3.4 

  20b Model-based economic evaluation: Describe the effects on 

the results of uncertainty for all input parameters, and 

uncertainty related to the structure of the model and 

assumptions. 

 N/A 6.3.4 

Characterising 

heterogeneity 

21 If applicable, report differences in costs, outcomes, or cost-

effectiveness that can be explained by variations between 

subgroups of patients with different baseline characteristics 

or other observed variability in effects that are not reducible 

by more information. 

 N/A  6.3.4 

Discussion        

Study findings, 

limitations, 

generalisability, 

and current 

knowledge  

22 Summarise key study findings and describe how they support 

the conclusions reached. Discuss limitations and the 

generalisability of the findings and how the findings fit with 

current knowledge. 

 1.1 6.4 

Other        

Source of funding 23 Describe how the study was funded and the role of the funder 

in the identification, design, conduct, and reporting of the 

analysis. Describe other non-monetary sources of support. 

 N/A N/A 

Conflicts of 

interest 

24  Describe any potential for conflict of interest of study 

contributors in accordance with journal policy. In the absence 

of a journal policy, we recommend authors comply with 

International Committee of Medical Journal Editors 

recommendations. 

 N/A N/A 
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  –  Detailed description of methods used in SMASH effectiveness 

study  

 

Appendix D.1. The Interrupted times series analysis (ITSA) [Peek et al. 2020] 

The interrupted times series analysis (ITSA) was carried out by researchers from the SMASH 

analysis team using the itsa command in Stata version 15 as described by Linden et al. 

(2015) (590). The itsa command incorporates ordinary least square (OLS) regression-

based models, sometimes referred to as segmented regression. Because OLS regression 

assumes a linear trend and the descriptive statistics showed a ceiling effect after 

intervention was implemented, the observed HPE rates (in percentages) were log 

transformed (591). The ITSA results were back transformed from the log scale after they 

were meta-analysed. The underlying regression model of the ITSA denoted as: 

𝑌𝑡 = 𝛽0 + 𝛽1𝑇1 + 𝛽2𝑋𝑡 + 𝛽3𝑋𝑡𝑇𝑡 + 𝜖𝑡 

Where Yt was the aggregated HPE rate in percent at time t (logit transformed); t was the 

time since start of the observations where each T was one of these observations; Xt was a 

dummy variable for the intervention (before intervention start X=0, after intervention start 

X=1). The intercept, β0, shows the HPE rate at the start of the observations at t=0. While β1 

explains the slope of the pre-intervention trend, β2 and β3 describe the effect of the 

intervention. The immediate effect of the intervention (level change) was indicated by β2 

and β3 was the effect of the intervention over time. 

 

In general with OLS, it is important to check for correlated values or seasonality that often 

occur in time series data (265, 592). The observed values in the SMASH intervention did 

not suggest any seasonality. However, serial correlation between observed HPE rates at 

subsequent months could not be ruled out.  

 

To account for potential serial correlation, the analysts followed suggestions from Linden 

et al. (2015) fitting the OLS using the newey command that is included as default in the 

itsa command in Stata version 15. The newey command fits an OLS but generates 

Newey-West standard errors instead of the usual OLS standard errors. The Newey-west 

method to generate standard errors accounts for autocorrelation up to a specified lag and 

for heteroscedasticity (593). However, it was required to test how well the model fitted by 

testing the autocorrelation in the error term. The analysis team used actest, as 

recommended by Linden et al. (2015) to perform the Cumby-Huizinga general test for 
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autocorrelation (594). The Cumby-Huizinga tests the null hypothesis that the time series is 

a moving average of known order q, which could be zero or a positive value. In this analysis, 

it was tested if autocorrelation was present up to the lag specified in the newey command. 

A lag of 12 was used. If this was not the case further modelling approaches with different 

lags, would have been necessary or other methods, such as the Prais–Winsten method 

(595) that is also incorporated in itsa command, or autoregressive integrated moving 

average (ARIMA) (596).  

 

The reported estimates from itsa command (𝛽1, 𝛽2, 𝛽3) on the log scale were used in 

linear post estimation commands to identify the HPE rate without the SMASH intervention 

based on the extrapolated pre-intervention trend and the difference between intervention 

(observed) and extrapolated pre-intervention trend at different time points post 

intervention (4, 12, 24 and 52 weeks). 

 

The ITSA was carried out at practice level for the two primary outcomes of the study, the 

prevalence of exposure to (i) any potentially hazardous prescribing (10 indicators, Appendix 

B) and (ii) any inadequate blood-test monitoring (2 indicators) among patients with risk 

factors for such prescribing and monitoring (as defined by individual indicators). For the 

individual indicators an overall ITSA for all practices was conducted with pooled HPE rates 

from all practices.  

 

Appendix D.2 – Meta-analysis [Peek et al. 2020] 

The random effects meta-analysis chosen for the SMASH intervention by researchers from 

the SMASH analysis team accounted for practice heterogeneity if compared with a fixed 

effects meta-analysis. Figure:2 shows that the observed effect E in a fixed effect model is 

drawn from a distribution around the true effect θ. The true effect is ‘fixed’ for all practices. 

In random effects meta-analysis, the population effect size θ is assumed to be a continuous 

random variable, not fixed, where each practices true effect θi is drawn from a distribution 

of θ (Figure:1a). For the variable θ the width of the distribution of the true effect is defined 

by the variance τ2, the practice heterogeneity, and the centre is the average intervention 

effect among all practices 𝜇𝜃. The random effects meta-analysis is based on the assumption 

that there is a between practice error ν, additionally to the within practice error α 

(Figure:1).  
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Figure D.1: Visualisation of basic assumptions in (1) random effects and (2) fixed effects models 

 

 

In conclusion, the advantage of the random effects model is the acknowledgment of 

between-practice heterogeneity. To apply a random effects model, it is necessary to 

estimate the heterogeneity between studies before any form of weighting can be 

performed for the meta-analysis. There are various methods that can be used in order to 

assess this between-study variance that is required to estimate the true population average 

effect 𝜇𝜃. The most common approach is the DerSimonian-Laird method (279, 597).  

 

The DerSimonian-Laird study heterogeneity estimator �̂�𝐷𝐿
2  denotes as 

 

Equation 1: �̂�𝐷𝐿
2 =

𝑄�̂�−(𝑘−1)

(∑ �̂�𝑖𝑖 −
∑ �̂�𝑖

2
𝑖

∑ �̂�𝑖𝑖
)

 

 

where 𝑄�̂� is the Q statistic, (k -1) are the degrees of freedom, and �̂�𝑖 =
1

�̂�𝑖
2 the inverse 

within study variance for the Q statistic of a fixed effect model. The Q statistic is a measure 

of total variation among the studies and is a weighted sum of squares of the observed 

effects 𝐸𝑖  over their mean �̅�.,  

 

Equation 2: 𝑄�̂� = ∑ 𝑤𝑖(𝐸𝑖 − �̅�.)
2𝑘

𝑖=1  

 

The degrees of freedom, df, represent the Q statistic assuming only within study variance 

for the k number of practices. Hence, �̂�𝐷𝐿
2 is estimated as the difference between total 

observed variation expressed as 𝑄�̂�and the expected variation df assuming 

homogeneity(�̂�2 = 0). 
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The heterogeneity can also be expressed using the 𝐼2 index (598), which is comparable to 

a percentage of the between study variance from the total variation 𝑄�̂�.  

 

Equation 3: 𝐼2 =  
𝑄�̂�−(𝑘−1)

𝑄�̂�
 

 

Huedo-Medina et al. (2006) found the 𝐼2 index to be a good addition to the normal Q 

statistic with the advantage of quantifying the heterogeneity in a way easy to interpret 

(599). 

 

For the SMASH intervention a bootstrap version of the DerSimonian-Laird method was 

carried out. This method was found to be the most precise to identify between study 

variance and to estimate the effect size in a re-analysis of almost 60,000 meta-analyses 

identified from the Cochrane database (279). This is supported by findings from 

Petropoulou et al. (2017) (600). The bootstrap version of the DerSimonian-Laird method is 

based on �̂�𝐷𝐿
2 (597, 601) and can be performed as part of the STATA version 15 metaan 

command. The bootstrap version of the DerSimonian-Laird method selects random 

samples with replacement (1000 repetitions) from all practices. Each sample contained 43 

practices equal to the number of practices in the study. Within each sampling set practice 

heterogeneity is calculated using the formula for �̂�𝐷𝐿
2  above. The mean of the different �̂�𝐷𝐿

2  

estimaters of each sampled set is generated and referred to as �̂�𝐷𝐿𝑏
2  (279).  

 

Once between study heterogeneity 𝜏2 is estimated, this can be used to apply a weighting 

factor for each practice. For the SMASH intervention inverse variance weighting was 

chosen. Weights 𝑣𝑖  are applied for each practice according to the practice specific within 

study variance 𝛿𝑖
2and the general between study variance 𝜏2among all practices using the 

inverse of the total variance. 

 

Equation 4: 𝑣𝑖 =
1

𝛿𝑖
2+ 𝜏2 

 

Applying the weights estimated using a bootstrap version of the DerSimonian-Laird method 

the average population effect 𝜇𝜃 can be estimated after the log transformed estimates are 

back transformed. The between study heterogeneity is quantified using the 𝐼2 index.  
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 – Semi-structured interviews to inform costing of SMASH  

 

Aim of this costing analysis is to assess the cost of the intervention for a typical practice in 

Salford. According to the qualitative work that has been done the variability between 

practices in how the intervention was implemented was significant. However, to assess the 

cost-effectiveness we need to base our assumptions on costs for a typical practice. 

Variability around this is relevant for sensitivity analysis. Please, feel free to give ranges 

around the average you would estimate. 

1. How was the interviewee involved in the study? 

2. Ask for details on the training pharmacists received as part of the intervention (How 

long, where, provider, expenses, number of attendees) 

3. Ask for details on the initial staff meetings (How long, where, provider, expenses, 

number of attendees) 

4. Ask for quantifiable estimates on managing HPEs: 

a. Time pharmacists spend with HPE 

b. Time GPs spend with HPE 

c. Percentage of HPE requiring further actions 

5. What did the IT service support entail? How often was it used and who provided it? 

6. Where there any costs associated with using and maintaining the dashboard, such 

as server costs? 

7. Ask for details on salary bands of staff involved in the intervention. 

8. Did we miss any relevant resources required to deliver the intervention? 
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 – Checklists for reporting in observational cohort studies 

 

Table F.1: The RECORD, STROBE and RECORD-PE statements and sections the items are referred to 

in Chapter Four  

Item 

No 

STROBE items  RECORD items RECORD-PE items Section 

Title and abstract  

1 (a) Indicate the study’s design 

with a commonly used term in the 

title or the abstract. 

(b) Provide in the abstract an 

informative and balanced 

summary of what was done and 

what was found. 

1.1: The type of data used 

should be specified in the title 

or abstract. When possible, 

the name of the databases 

used should be included. 

1.2: If applicable, the 

geographical region and 

timeframe within which the 

study took place should be 

reported in the title or 

abstract. 

1.3: If linkage between 

databases was conducted for 

the study, this should be 

clearly stated in the title or 

abstract. 

 N/A 

Introduction  

Background rationale 

2 Explain the scientific background 

and rationale for the investigation 

being 

  Chapter 4; 

4.2 

Objectives 

3 State specific objectives, including 

any prespecified hypotheses. 

  4.3 

Methods  

Study design 

4 Present key elements of study 

design early in the paper 

 4.a: Include details of the 

specific study design (and 

its features) and report 

the use of multiple 

designs if used.  

4.b: The use of a 

diagram(s) is 

recommended to 

illustrate key aspects of 

the study design(s), 

including exposure, 

washout, lag and 

observation periods, and 

covariate definitions as 

relevant 

4.3.1; 

4.3.3; 

Figure 4.1; 

Table 4.2 

Setting 

5 Describe the setting, locations, 

and relevant dates, including 

periods of recruitment, exposure, 

follow-up, and data collection. 

  4.3.3; 

Figure 4.1; 

Table 4.2 

Participants 
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Item 

No 

STROBE items  RECORD items RECORD-PE items Section 

6 (a) Cohort study—give the 

eligibility criteria, and the sources 

and methods of selection of 

participants. Describe methods of 

follow-up. Case-control study—

give the eligibility criteria, and the 

sources and methods of case 

ascertainment and control 

selection. Give the rationale for 

the choice of cases and controls. 

Cross sectional study—give the 

eligibility criteria, and the sources 

and methods of selection of 

participants. (b) Cohort study—for 

matched studies, give matching 

criteria and number of exposed 

and unexposed. Case-control 

study—for matched studies, give 

matching criteria and the number 

of controls per case. 

6.1: The methods of study 

population selection (such as 

codes or algorithms used to 

identify participants) should 

be listed in detail. If this is not 

possible, an explanation 

should be provided. 6.2: Any 

validation studies of the codes 

or algorithms used to select 

the population should be 

referenced. If validation was 

conducted for this study and 

not published elsewhere, 

detailed methods and results 

should be provided. 6.3: If the 

study involved linkage of 

databases, consider use of a 

flow diagram or other 

graphical display to 

demonstrate the data linkage 

process, including the number 

of individuals with linked data 

at each stage. 

6.1.a: Describe the study 

entry criteria and the 

order in which these 

criteria were applied to 

identify the study 

population. Specify 

whether only users with a 

specific indication were 

included and whether 

patients were allowed to 

enter the study 

population once or if 

multiple entries were 

permitted. See 

explanatory document for 

guidance related to 

matched designs. 

4.3.3; 

Figure 4.1; 

Table 4.2; 

4.3.6 

Variables 

7 Clearly define all outcomes, 

exposures, predictors, potential 

confounders, and effect 

modifiers. Give diagnostic criteria 

if applicable. 

7.1: A complete list of codes 

and algorithms used to 

classify exposures, outcomes, 

confounders, and effect 

modifiers should be provided. 

If these cannot be reported, 

an explanation should be 

provided. 

7.1.a: Describe how the 

drug exposure definition 

was developed. 7.1.b: 

Specify the data sources 

from which drug exposure 

information for 

individuals was obtained. 

7.1.c: Describe the time 

window(s) during which 

an individual is considered 

exposed to the drug(s). 

The rationale for selecting 

a particular time window 

should be provided. The 

extent of potential left 

truncation or left 

censoring should be 

specified. 7.1.d: Justify 

how events are attributed 

to current, prior, ever, or 

cumulative drug 

exposure. 7.1.e: When 

examining drug dose and 

risk attribution, describe 

how current, historical or 

time on therapy are 

considered. 7.1.f: Use of 

any comparator groups 

should be outlined and 

justified. 7.1.g: Outline 

the approach used to 

handle individuals with 

4.3.4; 

4.3.7; 

Appendix 

H 
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Item 

No 

STROBE items  RECORD items RECORD-PE items Section 

more than one relevant 

drug exposure during the 

study period. 

Data sources/measurement 

8 For each variable of interest, give 

sources of data and details of 

methods of assessment 

(measurement). Describe 

comparability of assessment 

methods if there is more than one 

group. 

 8.a: Describe the 

healthcare system and 

mechanisms for 

generating the drug 

exposure records. Specify 

the care setting in which 

the drug(s) of interest was 

prescribed. 

0; 4.3.6.2 

Bias 

9 Describe any efforts to address 

potential sources of bias. 

  4.3.3; 

4.3.7.3; 

4.3.8 

Study size 

10 Explain how the study size was 

arrived at. 

  Figure 4.3 

Quantitative variables 

11 Explain how quantitative variables 

were handled in the analyses. If 

applicable, describe which 

groupings were chosen, and why. 

  Appendix 

H 

Statistical methods 

12 (a) Describe all statistical 

methods, including those used to 

control for confounding. (b) 

Describe any methods used to 

examine subgroups and 

interactions. (c) Explain how 

missing data were addressed. (d) 

Cohort study—if applicable, 

explain how loss to follow-up was 

addressed. Case-control study—if 

applicable, explain how matching 

of cases and controls was 

addressed. Cross sectional 

study—if applicable, describe 

analytical methods taking account 

of sampling strategy. (e) Describe 

any sensitivity analyses. 

 12.1.a: Describe the 

methods used to evaluate 

whether the assumptions 

have been met. 12.1.b: 

Describe and justify the 

use of multiple designs, 

design features, or 

analytical approaches. 

4.3.7.3; 

4.3.8 

Data access and cleaning methods 

12  12.1: Authors should describe 

the extent to which the 

investigators had access to 

the database population used 

to create the study 

population. 12.2: Authors 

should provide information 

on the data cleaning methods 

used in the study. 

 4.3.6 

Linkage 

12  12.3: State whether the study 

included person level, 

 0 
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Item 

No 

STROBE items  RECORD items RECORD-PE items Section 

institutional level, or other 

data linkage across two or 

more databases. The methods 

of linkage and methods of 

linkage quality evaluation 

should be provided. 

Results 

Participants 

13 (a) Report the numbers of 

individuals at each stage of the 

study (e.g., numbers potentially 

eligible, examined for eligibility, 

confirmed eligible, included in the 

study, completing follow-up, and 

analysed). (b) Give reasons for 

non-participation at each stage. 

(c) Consider use of a flow diagram. 

13.1: Describe in detail the 

selection of the individuals 

included in the study (that is, 

study population selection) 

including filtering based on 

data quality, data availability, 

and linkage. The selection of 

included individuals can be 

described in the text or by 

means of the study flow 

diagram. 

 4.4.1; 

Figure 4.3 

Descriptive Data 

14 (a) Give characteristics of study 

participants (e.g., demographic, 

clinical, social) and information on 

exposures and potential 

confounders. (b) Indicate the 

number of participants with 

missing data for each variable of 

interest. (c) Cohort study—

summarise follow-up time (e.g., 

average and total amount). 

  4.4.1; 

Appendix 

GError! 

Reference 

source 

not 

found. 

Outcome data 

15 Cohort study—report numbers of 

outcome events or summary 

measures over time. Case-control 

study—report numbers in each 

exposure category, or summary 

measures of exposure. Cross 

sectional study—report numbers 

of outcome events or summary 

measures. 

   

Main results 

16 (a) Give unadjusted estimates and 

if applicable, confounder adjusted 

estimates and their precision (e.g., 

95% confidence intervals). Make 

clear which confounders were 

adjusted for and why they were 

included. (b) Report category 

boundaries when continuous 

variables are categorised. (c) If 

relevant, consider translating 

estimates of relative risk into 

absolute risk for a meaningful 

time period. 

  4.4.2 
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Item 

No 

STROBE items  RECORD items RECORD-PE items Section 

Other analyses 

17 Report other analyses done—e.g., 

analyses of subgroups and 

interactions, and sensitivity 

analyses. 

  4.4.2; 

4.4.3 

Discussion 

Key results 

18 Summarise key results with 

reference to study objectives. 

  4.5.1 

Limitations 

19 Discuss limitations of the study, 

considering sources of potential 

bias or imprecision. Discuss both 

direction and magnitude of any 

potential bias. 

19.1: Discuss the implications 

of using data that were not 

created or collected to answer 

the specific research 

question(s). Include 

discussion of misclassification 

bias, unmeasured 

confounding, missing data, 

and changing eligibility over 

time, as they pertain to the 

study being reported. 

19.1.a: Describe the 

degree to which the 

chosen database(s) 

adequately captures the 

drug exposure(s) of 

interest. 

4.5.4; 

4.5.5 

Interpretation 

20 Give a cautious overall 

interpretation of results 

considering objectives, 

limitations, multiplicity of 

analyses, results from similar 

studies, and other relevant 

evidence. 

20.a: Discuss the potential for 

confounding by indication, 

contraindication or disease 

severity or selection bias 

(healthy adherer/sick 

stopper) as alternative 

explanations for the study 

findings when relevant. 

 4.5.1 

Generalisability 

21 Discuss the generalisability 

(external validity) of the study 

results. 

  4.5.5 

Other Information 

Funding 

22 Give the source of funding and the 

role of the funders for the present 

study and if applicable, for the 

original study on which the 

present article is based. 

  N/A 

Accessibility of protocol, raw data and programming code 

23  22.1: Authors should provide 

information on how to access 

any supplemental 

information such as the study 

protocol, raw data, or 

programming code. 

 N/A 

RECORD: reporting of studies conducted using observational routinely collected data; RECORD-PE=RECORD for 

pharmacoepidemiological research; STROBE: strengthening the reporting of observational studies in epidemiology. 

This checklist has been duplicated from table 1 in BMJ 2018;363:k3532, as a standalone document for readers to print 

out or fill in electronically. 
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 – Considerations on confounders in cohort study Chapter Four 

 

Table G.1: Reasoning behind grouping of variables as confounders, collider, indirect/direct risk 

factors and those without any effect on exposure or outcome variable given by GPs and sources from 

the literature to support their assessment 

Covariate definition Link to exposure and outcome [source from literature to support GPs 

decisions]  

Patient specific information 

Sex: male or female GI risk factor (355) [CHA2DS2-VASc] 

Socio-economic status: index of 

multiple deprivation (IMD). Level 1 

(least deprived) to level 5 (most 

deprived) 

GI risk factor (355) 

Ethnicity: subdivided into white, Asian, 

Black, other and unknown 

GI risk factor (355) 

Age: age in the year of index date Confounder [CHA2DS2-VASc, HAS-BLED] 

GI bleeding events more common with age due to thinner stomach 

lining, reduced blood flow and secretion of protective prostaglandins 

or mucin (602). 

NSAID use is associated with age due to increased incidence of 

conditions with age requiring NSAID treatment (for example: 

osteoarthritis and gout) (603, 604). Relationship probably not linear. 

From 65 years on NSAID use is not recommended anymore and GPs 

might be more hesitant to prescribe NSAIDs [NICE guidelines]. 

Smoking: smoking status was 

subdivided into current smoker, ex-

smoker, never smoker and missing 

smoking status.  

GI risk factor [indirect (605)] 

Smoking affects gastric acid secretion, inhibits protective bicarbonate 

secretion, reduces mucosal blood flow, which increases the risk of 

peptic ulcers, which could increase GI bleeding risk (606). However, 

other sources report no significant effect on GI bleeding (607). 

Alcohol dependence: includes heavy 

drinkers and excludes moderate 

alcohol consumption. 

Confounder [HAS-BLED] 

Prescribing of NSAIDs negatively influenced by presence of disease. 

High alcohol consumption can cause exfoliation of the gastric 

epithelium, necrosis of tissue and microvascular erosions resulting in 

increased GI bleeding risk (607). 

High BMI: BMI >30 kg/m2 (obese) GI risk factor [indirect] 

High BMI does not cause GI bleeds, but could increase risk of 

comorbidities associated with bleeding, such as oesophageal varices 

(608). 

Diet No effect 

No effect on bleeding risk found that would not be covered by other 

risk factors already included.  

Comorbidities 

Renal insufficiency: chronic kidney 

disease stage 4 or worse and renal 

insufficiencies with similar severity, 

chronic dialysis, and transplant 

Confounder [HAS-BLED] 

Prescribing of NSAIDs negatively influenced by presence of disease. 

Severe renal disease is considered an independent risk factor of GIB 

and other bleeding by causing albuminuria, platelet dysfunction (609) 

or anaemia in haemodialysis patients(610). 

NSAID treatment can cause renal damage. 

Liver disease: severe liver disease 

[code list was reviewed by GPs and 

found to affect bleeding risk] 

Confounder [HAS-BLED] 

Prescribing of NSAIDs negatively influenced by presence of disease. 

Liver disease and the increased risk of varices and the potentially 

affected haemostasis can increase GI bleeding risk(605). The 

metabolism of OACs in the liver might also be affected. NSAID 

treatment can cause liver damage. 
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Atrial fibrillation (AF)  GI risk factor [indirect] (355) 

In AF OACs are a common treatment that can increase bleeding risk 

(41). 

An impaired blood flow, can increase the workload for the kidneys 

and result in renal insufficiency, which is then linked with an 

increased bleeding risk. 

Coronary heart disease (CHD): 

diagnosis of CHD, heart failure (HF), 

myocardial infarction or angina 

GI risk factor [indirect] (355) [CHA2DS2-VASc] 

Common treatment of coronary heart disease in primary and 

secondary prophylaxis are aspirin and antiplatelets, which increase GI 

bleeding risk. 

Cerebro-vascular disease: diagnosis of 

stroke or transient ischaemic attack  

GI risk factor [indirect] (355) [CHA2DS2-VASc, HAS-BLED] 

 

Peripheral artery disease (PAD) 

diagnosis 

GI risk factor [indirect] [CHA2DS2-VASc] 

Common treatment of peripheral artery disease are OACs that can 

increase bleeding risk. PAD is also associated with an increased risk of 

CHD. 

Venous thrombo-embolism (VTE): 

diagnosis of pulmonary embolism or 

deep vein thrombosis 

GI risk factor [indirect] (355, 611) [CHA2DS2-VASc] 

Common treatment of peripheral artery disease are OACs that can 

increase bleeding risk. 

Valvular heart disease diagnosis GI risk factor [indirect] 

Can result in heart failure or prosthetic valve replacements, which 

often require OAC or aspirin treatment. 

Hypertension diagnosis (controlled or 

uncontrolled) 

GI risk factor [indirect] (355) [CHA2DS2-VASc] 

Uncontrolled hypertension: Blood 

pressure measurements >160mmHg 

Confounder [HAS-BLED] 

Prescribing of NSAIDs negatively influenced by presence of disease. 

Strong predictor of bleeding risk (379) and can be a cause of NSAID 

treatment. 

Labile International Normalized ratio 

(INR) as defined in HAS-BLED(379) 

Confounder [HAS-BLED] 

Prescribing of NSAIDs negatively influenced by presence of disease. 

Strong predictor of bleeding risk (379) and can be a cause of NSAID 

treatment. 

Diabetes diagnosis (type 1 and type 1) GI risk factor [indirect] (355) 

COPD diagnosis GI risk factor [indirect] 

Common treatment of COPD with corticosteroids, which increase GI 

bleeding risk. 

Cancer: diagnosis of the 12 most 

common cancer types (includes most 

GI cancers) 

GI risk factor [indirect] (355, 605) 

Bleeding event: diagnosis of GI 

bleeding events (including perforated 

ulcers), intracranial haemorrhages 

(ICH) and rectal bleeds (haematuria 

and haemoptysis were considered too 

minor to be included when recorded in 

CPRD but were included when 

identified as primary diagnosis in 

hospital records) 

Confounder (355, 605) [HAS-BLED] 

Prescribing of NSAIDs negatively influenced by presence of disease. 

Any previous bleeding event is a strong predicter of a recurrent event 

(379). 

Peptic ulcer: diagnosis of peptic ulcer 

disease (excluded were perforated and 

haemorrhagic ulcers, which were 

included as bleeding events) 

Confounder  

Prescribing of NSAIDs negatively influenced by presence of disease. 

Peptic ulcer is a strong predictor of GI bleeding risk (355, 605) and can 

be a cause of NSAID treatment. 

Diagnosis of dyspepsia and heartburn GI risk factor [indirect] 

Can be symptoms of ulcers and can be caused by NSAID treatment. 

GI inflammation: diagnosis of gastritis, 

duodenitis and oesophagitis 

GI risk factor [indirect] 

Increases the risk of ulcers and erosions that are associated with an 

increased bleeding risk. Can be caused by NSAID treatment.  
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H. pylori: diagnosis of H. pylori 

infection or positive test  

GI risk factor [indirect]  

Infections with H. pylori are associated with an increased risk of 

ulcers. 

Oesophageal varices diagnosis Confounder  

Prescribing of NSAIDs negatively influenced by presence of disease. 

Varices can rupture and bleed.  

Anaemia diagnosis  Confounder [HAS-BLED] 

Prescribing of NSAIDs negatively influenced by presence of disease. 

Anaemia is a strong predictor of bleeding events (379) and a result of 

bleeding events.  

NSAID use can also cause anaemia. 

Medications 

Prescriptions of systemic aspirin Confounder [HAS-BLED] 

Prescribing of NSAIDs negatively influenced by prevalent treatment 

with drug. 

Prescriptions of systemic antiplatelets Confounder [HAS-BLED] 

Prescribing of NSAIDs negatively influenced by prevalent treatment 

with drug. 

Prescriptions of systemic 

antidepressants (SSRI and TCAs) 

Confounder 

Prescribing of NSAIDs negatively influenced by prevalent treatment 

with drug. 

SSRI increase gastric acid and down regulate 5HT- receptors, which 

are also on platelets and are required for various mechanisms to 

activate platelets. This down regulation could increases bleeding 

(612). 

TCA inhibit warfarin metabolism and could increase bleeding risk in 

warfarin patients. 

Prescriptions of systemic 

corticosteroids (excluding inhaled 

corticosteroids) 

Confounder 

Prescribing of NSAIDs negatively influenced by prevalent treatment 

with drug. 

Cortisone can increase bleeding risk especially when used in 

combination with Aspirin. (613) 

Prescription of antibiotics (macrolides) No clear evidence found that it is associated with exposure or 

outcome 

Prescription of antiepileptic drug 

(phenytoin or carbamazepine) 

GI risk factor [indirect] (355) 

Carbamazepine, phenytoin and valproic acid can cause 

thrombocytopenia and are associated with an increased risk of 

dyspepsia and heartburn (614, 615) 

Prescriptions for systemic GPAs (H2-

receptor antagonists, proton-pump-

inhibitors (PPIs) and misoprostol) 

Collider 

GPAs are commonly used to reduce bleeding risk of NSAIDs and to 

treat GI adverse events and GI bleedings. 

Prescriptions for systemic nitrates No effect 

No evidence could be found suggesting an association between 

nitrates and bleedings or NSAID treatment. 

Prescriptions for systemic statins No effect 

Controversial evidence. 

BMI: body mass index; BNF: British National Formulary; COPD: chronic obstructive pulmonary disease; CPRD: 

Clinical Practice Research Datalink; HAS-BLED: bleeding risk score for patients using anticoagulants GI: gastro-

intestinal; GPA: gastroprotective agent; NSAID: non-steroidal anti-inflammatory agent; SSRI: selective serotonin 

re-uptake inhibitor; TCA: tricyclic antidepressants 
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Table G.2: List of potential covariates with details on where code lists were derived from and where 

the records were extracted from 

Covariate Definition Source of code list Source of 

data 

Patient specific information 

Sex Gender (male or female) N/A From CPRD 

records at 

baseline 

Socio-

economic 

status  

Index of multiple 

deprivation (IMD). Level 1 

(least deprived) to level 5 

(most deprived) 

N/A From linked 

patient level 

IMD records 

Ethnicity White, Asian, Black, other 

and unknown 

 From HES and 

CPRD records 

Age Age in the year of index date  From year of 

birth record 

in CPRD 

Smoking Smoking status was 

subdivided into current 

smoker, ex-smoker, never 

smoker and missing smoking 

status.  

Code lists linking records with 

smoking status were derived 

from colleagues and entity type 4 

and 23 were used. 

From 

additional, 

clinical and 

referral file 

records in 

CPRD.  

Alcohol 

dependence 

Alcohol dependence 

includes heavy drinkers and 

excludes moderate alcohol 

consumption. 

Code lists were previously used in 

(354) and provided by the 

authors. 

From clinical 

CPRD records.  

High BMI BMI >30 kg/m2 (obese) Entity type 13 and 14 were used From 

additional 

and clinical 

records in 

CPRD.  

Comorbidities 

Renal 

insufficiency 

Chronic kidney disease stage 

4 or worse and renal 

insufficiencies with similar 

severity, chronic dialysis or 

transplant 

Code lists were previously used in 

(354) and provided by the 

authors. 

From clinical 

CPRD records.  

Liver disease Severe liver disease [code 

list was reviewed by GPs 

and found to affect bleeding 

risk] 

Code lists were previously used in 

(354) and provided by the 

authors. 

From clinical 

CPRD records.  

Atrial 

fibrillation 

(AF) 

Diagnosis of AF Code lists were previously used in 

(354) and provided by the 

authors. 

From clinical 

CPRD records.  

Coronary 

heart disease 

(CHD) 

Diagnosis of CHD, heart 

failure (HF), myocardial 

infarction or angina 

Code lists were previously used in 

(354) and provided by the 

authors. Codes for HF were used 

as identified by PRIMIS. 

From clinical 

CPRD records.  

Cerebro-

vascular 

disease 

Diagnosis of stroke and 

transient ischaemic attack  

Codes were used as identified by 

PRIMIS. 

From clinical 

CPRD records.  
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Peripheral 

artery disease 

(PAD) 

Diagnosis of PAD Code list was previously 

published (616) 

From clinical 

CPRD records.  

Venous 

thrombo-

embolism 

(VTE) 

Diagnosis of pulmonary 

embolism or deep vein 

thrombosis 

Codes were used as identified by 

PRIMIS  

From clinical 

CPRD records.  

Valvular heart 

disease 

Diagnosis of valvular heart 

disease 

Code lists were previously used in 

(354) and provided by the 

authors. 

From clinical 

CPRD records 

Hypertension Diagnosis of hypertension Code lists were previously used in 

(354) and provided by the 

authors. 

From clinical 

CPRD records.  

Uncontrolled 

hypertension 

Blood pressure 

measurements >160mmHg 

Entity type 1 was used [The 

closest record within 12 months 

before the index date] 

From 

additional 

and clinical 

records in 

CPRD.  

Labile INR  Entity type 232 was used From test 

records in 

CPRD 

Diabetes Diagnosis of diabetes (type 

1 and type 1) 

Code lists were previously used in 

(354) and provided by the 

authors. 

From clinical 

CPRD records.  

COPD Diagnosis of COPD Codes were used as identified by 

PRIMIS. 

From clinical 

CPRD records.  

Cancer Diagnosis of the 12 most 

common cancer types 

(includes most GI cancers) 

Code lists were previously used in 

(354) and provided by the 

authors. 

From clinical 

CPRD records 

Bleeding 

event 

Diagnosis of GI bleeding 

events (including perforated 

ulcers), intracranial 

haemorrhages (ICH) and 

rectal bleeds (haematuria 

and haemoptysis were 

considered too minor to be 

included when recorded in 

CPRD but were included 

when identified as primary 

diagnosis in hospital 

records) 

Codes were used as identified by 

PRIMIS and combined with codes 

previously used in (354) and 

provided by the authors. From 

HES records the outcome codes 

for major bleeding events were 

used. 

From clinical 

CPRD records.  

Peptic ulcer Diagnosis of peptic ulcer 

disease (excluded were 

perforated and 

haemorrhagic ulcers, which 

were included as bleeding 

events) 

Codes were used as identified by 

PRIMIS. 

From clinical 

CPRD records.  

Dyspepsia Diagnosis of dyspepsia and 

heartburn 

Code lists were previously used in 

(354) and provided by the 

authors. 

From clinical 

CPRD records. 

GI 

inflammation 

Diagnosis of gastritis, 

duodenitis and oesophagitis 

Code list was developed using the 

code browser and PCD search 

From clinical 

CPRD records.  
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(keywords: *gastrit*, *duodeni*, 

*oesophagi*) 

H. pylori  Code list was developed using the 

code browser and PCD search 

(keywords: *pylori* *helicob*) 

From clinical 

CPRD records.  

Oesophageal 

varices 

Diagnosis of oesophageal 

varices 

Code lists were previously used in 

(354) and provided by the 

authors. 

From clinical 

CPRD records.  

Anaemia Diagnosis of anaemia Code list was developed using the 

code browser and PCD search 

(keywords: anemia, anaemia, 

*anaem*) 

From clinical 

CPRD records.  

Medications 

NSAID Prescriptions of systemic 

NSAIDs (excluding aspirin) 

Code list was developed using the 

code browser and PCD search 

(keywords: all drug names of this 

group found in BNF) 

From therapy 

CPRD records.  

Aspirin Prescriptions of systemic 

aspirin 

Code list was developed using the 

code browser and PCD search 

(keywords: all drug names of this 

group found in BNF) 

From therapy 

CPRD records.  

Antiplatelet Prescriptions of systemic 

antiplatelets 

Code list was developed using the 

code browser and PCD search 

(keywords: all drug names of this 

group found in BNF) 

From therapy 

CPRD records.  

OAC Prescriptions of systemic 

warfarin, phenprocoumon, 

phenindione and DOACs. 

Code list was developed using the 

code browser and PCD search 

(keywords: all drug names of this 

group found in BNF) 

From therapy 

CPRD records.  

Anti-

depressants 

Prescriptions of systemic 

SSRI and TCAs 

Code lists were previously used in 

(354) and provided by the 

authors. 

From therapy 

CPRD records.  

Corticosteroid Prescriptions of systemic 

corticosteroids (excluding 

inhaled corticosteroids) 

Code lists were previously used in 

(354) and provided by the 

authors. 

From therapy 

CPRD records.  

Anti-

convulsants 

Prescriptions for phenytoin 

or carbamazepine 

Code lists were previously used in 

(354) and provided by the 

authors. 

From therapy 

CPRD records.  

GPA Prescriptions for systemic 

formulations of H2-receptor 

antagonists, proton-pump-

inhibitors (PPIs) and 

misoprostol 

Code list was developed using the 

code browser and PCD search 

(keywords: all drug names of this 

group found in BNF) 

From therapy 

CPRD records.  

BMI: body mass index; BNF: British National Formulary; CHA2DS2-VASc: stroke risk score for patients with 

atrial fibrillation; CPRD: Clinical Practice Research Datalink; GI: gastro-intestinal; GPA: gastroprotective agent; 

HES: Hospital Episodes Statistics 
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Figure G.1: DAG showing simplified structure of potential variables influencing exposure (NSAID use) and the outcomes (GI bleed/death). The confounder ‘age’ is shown in red. 
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 – Tests performed as part of the statistical analysis of the cohort 

study 

 
Figure H.1: Distribution of the propensity score across NSAID users and non-NSAID users in the 
matched cohort. The area of common support between NSAID users and never NSAID users 

 

 

Figure H.2: Standardised difference between Never NSAID users and NSAID users for each variable 
listed in the baseline characteristics in section 4.1 before [unmatched] and after matching 
[matched]. A standardised difference greater than 10% is considered to indicate imbalance of this 
variable. 
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Figure H.3: Log-Log plot of the survival probability estimated by the GI bleeding Cox proportional 
hazard model over the analysis time to test if the proportional hazard assumption has been 
violated. Parallel graphs indicate no violation. 

 

Figure H.4: Log-Log plot of the survival probability estimated by the GI bleeding Cox proportional 
hazard model over the analysis time to test if the proportional hazard assumption has been 
violated. Parallel graphs indicate no violation. 
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Table H.1: E-values for the HRs calculated for serious GI events and stroke compared with the 

impact of risk factors for each outcome conditional on NSAID exposure from Cox proportional 

hazard model in the matched cohort in the base case analysis 

Serious GI events Stroke 

E-value  

(mean, lower bound) 

5.25, 2.58 E-value  

(mean, lower bound) 

4.23, 2.06 

Variablea Impact on outcome, HR 

(95% CI) 

Variableb Impact on outcome, 

HR (95% CI) 

Renal disease 0.52 (0.07; 3.73) Heart failure 1.13 (0.62; 2.05) 

Chronic liver disease N/A Stroke/Transient 

ischaemic attack 

3.81 (2.42; 5.99) 

Age 1.01 (0.99; 1.03) Age 1.06 (1.03; 1.09) 

Uncontrolled blood pressure 

(>160mmHg) 

0.67 (0.16; 2.75) Hypertension 2.77 (1.60; 4.82) 

Alcohol dependence 1.31 (0.32; 5.35) peripheral artery disease 2.24 (0.91; 5.56) 

Bleeding 2.04 (1.18; 3.55) Coronary heart disease 2.46 (1.57; 3.85) 

Peptic ulcer 2.25 (0.97; 5.21) Diabetes 1.17 (0.68; 1.04) 

Anaemia 1.23 (0.61; 2.49) Female 1.53 (0.98; 2.39) 

Aspirin 1.30 (0.75; 2.23)   

Antiplatelet 1.38 (0.50; 3.8)   

Antidepressants (SSRI, TCA) 1.58 (0.91; 2.74)   

Corticosteroids 0.76 (0.30; 1.89)   

aConfounder identified by clinicians for serious GI events; bmain risk factor for stroke from CHA2DS2-VASc 
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 – List of assumptions used in cohort analysis 

 

Table I.1: List of assumptions made to prepare the electronic health record data, generate code lists, 

extract relevant records, prepare the population and extract information on baseline characteristics 

Data preparation 

Identifying continuous medication use  

Days, where prescriptions of the same drug 

were overlapping, were not added to the end 

of the consecutive treatment 

This did not yield reasonable results. Overlapping days were 

sometimes years in total for OAC patients. It was assumed that 

medication surplus through overlaps was covered by the grace 

period. 

Code list generation  

Keywords identified for OACs Warfarin Xarelto rivaroxaban Lixiana edoxaban apixaban Eliquis 

phenindione Pradaxa dabigatran acenocoumarol Dindevan Marevan 

Keywords identified for NSAIDs Aceclofenac acemetacin celecoxib dexibuprofen dexketoprofen 

diclofenac diflunisal etodolac Etoricoxib Fenbufen fluribuprofen 

Ketoprofen ibuprofen indomethacin meloxicam nabumetone 

naproxen phenylbutazone piroxicam sulindac tenoxicam tiaprofenic 

tolfenamic 

Perforated ulcers were included as serious GI 

events in the ICD10 code list 

NSAIDs can also cause perforations of ulcers. This assumption was 

supported by the 3 clinicians that validated the code list 

Excluded from the ICD-10 code list were 

diagnoses on lower GI bleeding events. 

Even though lower GI bleedings were associated with NSAID and 

OAC use, the clinicians recommended not to include them. While for 

the OAC/NSAID HPE an inclusion would have been reasonable 

according to the clinicians, they suggested to exclude them because 

they were less relevant for the other CV HPE. All other CV HPE were 

resolved by adding a GPA, which do not lower the risk of lower GI 

bleeding events, only upper GI bleeding events (617) 

Cleaning of data on baseline characteristics 

BMI records  

BMI was used as recorded in the additional 

files and if missing calculated from height 

and weight values in entity 13 and 14. 

This approach was chosen to minimise missingness. From height and 

weight values 124 new BMIs could be calculated. 

Extreme BMI (>70), height (<1.2m or >2.4m) 

and weight (<30 or>300) values were 

dropped.  

The applied limits were based on assumptions for adults in the UK. 

The limits were approved by a physician. 

Smoking records  

Smoking status was categorised as never 

smoker, current smoker, ex-smoker or 

missing smoking status 

Colleagues provided a list of medcodes on smoking categorised by 

smoking status that have been used previously (618) 
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To inform the smoking status at baseline 

records from CPRD therapy, referral, clinical 

and additional files were used. 

All these flat files can potentially contain relevant information to 

assess smoking status. Therapy files were searched for prodcodes of 

smoking cessation therapy, such as nicotine patches. Clinical and 

additional files contained information on smoking status and 

cigarettes smoked from recorded medcodes and entities (see entity 

assumption), related to smoking 

Entities 4 and 23 were considered relevant 

entities to identify smoking status  

Entity describes what the observation in the additional file relates 

to. Entity 4 describes records of additional files on smoking status 

[data1] or cigarettes smoked per day [data2]. Entity 23 describes 

additional information on given life-style advice that can be 

associated with current or ex-smoker. 

If duplicate smoking records in merged 

clinical and additional files on same day with 

different smoking status [ex-smoker and 

current smoker], the status recorded before 

this was used and if it was the first recorded 

smoking status the subsequent record was 

used. If smoking records existed only on one 

day that were different, it was kept if data1 

records were in agreement with smoking 

status and if not, the patient was dropped 

It was decided that it is not possible to identify the ‘correct’ record if 

multiple different records were identified for the same patient at 

the same day. The previous value was assumed to be more precise 

and if this was not available the subsequent record was seen to 

represent the status at that time the best. 

The data 1 record from the additional files provided further 

information. Data1=1 indicated a current smoker. Data3=3 indicated 

an ex-smoker. This was used to validate and identify the correct 

smoking status among the duplicates. If not available or data1 

records and smoking status were inconsistent, no decision could be 

made and the patient had to be dropped  

Never smoker records that were recorded 

after a patient had a current or ex-smoker 

record were replaced by ex-smoker records if 

the patient’s additional information suggests 

the patients is or has been a smoker. 

It was assumed that never smoking records that were recorded after 

a current or ex-smoker record, were potentially mis-specified. If the 

additional information [record of entity 23 together with smoking 

medcode, referral with smoking medcode, nicotine replacement 

therapy prodcode or entity 4 data1 entry that suggests the patient 

smokes more than 0 cigarettes per day] suggests the patient is/has 

been a smoker, the assumption that this patient is rather an ex-

smoker than a never smoker was made.  

Blood pressure records  

Uncontrolled blood pressure was identified 

by extracting all patients with blood pressure 

measurements recorded in the additional 

files that had a systolic blood pressure >160 

mmHg [data2] 

Entity 1 records were used to link the observations in the clinical 

files with the additional files. The HAS-BLED bleeding risk score 

identifies uncontrolled blood pressure [>160mmHg] as a key 

bleeding risk indicator. In the clinical validation, the GPs questioned 

agreed that 160mmHg was a good indicator and that additional files 

should be sufficient. 
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If multiple records existed that were 

recorded on the same day, the mean blood 

pressure was used. 

It is not rare that multiple measurements are taken. Blood pressure 

measurements are very sensitive. They can be elevated if the 

patient just walked up the stairs or is nervous to see the doctor or 

nurse. Measurements can also vary due to measurement error. 

Multiple measurements give healthcare professionals the option to 

take a mean value that is more representative of the real blood 

pressure. 

HES data cleaning 

Bleeding events were only extracted if 

recorded as primary diagnosis 

It is common not to include subsequent diagnosis in HES records 

(354-356). Even though there is a chance the primary diagnosis does 

not identify all outcome events, the chance to include a false 

positive or incorrect outcome event when including subsequent 

diagnosis is higher. Including more not real cases, could dilute the 

effect. 

The recorded episode start date was seen as 

the date the event happened 

The episode start date was considered to be closest to the day the 

event occurred because it describes the day of admission due to this 

event. Episodes that started before the start of follow-up of the 

patient and end after start of follow-up were not considered 

relevant because these would not have been cause by the drugs 

(OAC/NSAID) under investigation 

If multiple episode start dates are in the 

same spell with the same date, only the 

episode with the lowest episode identifier 

(epikey) was used, even if the episodes were 

from different spells 

All events recorded at the same day were assumed to describe the 

same event and therefore only one event was kept. The first entry, 

hence the one with the lowest epikey, was assumed to be most 

accurate. 

If multiple discharges with discharge method 

‘died’, and no ONS/CPRD death record was 

available, the last entry was used. 

ONS and CPRD records were considered more accurate. If none of 

these was available, it was assumed that if a patient was readmitted 

to hospital after discharged as dead, he did not die. Hence, the 

latest record was used. (8/117,563 OAC patients were affected) 

Population 

Base line characteristics  

Covariate assessment at baseline for 

conditions ever before the index date 

Diagnosis usually do not change over time. The DAG suggested that 

new conditions after exposure are not confounders. They either lie 

on the causal pathway between exposure and outcome or are not 

related to the exposure. 

Covariate assessment at baseline for drugs in 

6 months prior to index 

Followed approach from other studies reporting characteristics from 

observational data of OAC cohorts that used 6 month as an 

assessment window (619-621). This was considered a reasonable 

time window to capture current use of drugs at baseline. 
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Information on ethnicity were extracted 

from CPRD and HES records 

In order to identify the most appropriate ethnicity estimate in case 

of varying information in the dataset or between dataset, a flow 

chart developed by Alison Wright was followed (622) 

BMI was assessed 12 months before and 12 

months after index date 

BMI measurements further away from the index date, were not 

considered relevant, as the weight might have changed. The BMI 

measurement closest to the index date was considered most 

appropriate. Missingness was high. That’s why we also looked at 

BMI measurements 12 months after index date and considered this 

to be the baseline value. 

Smoking status closest to index date was 

considered baseline smoking status 

Smoking status before index date did not entail a smoking status 

record for 990 of 117,563 patients. Including records after baseline 

yielded smoking status records closer to the index date and only 440 

patients with no record of smoking status. This approach was also 

used previously when bleeding risk in OAC patients and SSRI was 

analysed in CPRD (623). If the smoking status record before and 

after index date had the same distance to the index date, the 

smoking status of the earlier record was used [122 patients]. 

Blood pressure measurements were 

considered within 12 months of the index 

date  

Blood pressure was considered, similar to the assumptions for BMI 

measurements, to vary with time. Measurements more than 12 

months before or after the index date were not considered relevant 

to define baseline blood pressure measurements. 

BMI: body mass index; CHA2DS2-VASc: stroke risk score for patients with atrial fibrillation; CPRD: Clinical Practice Research Datalink; 

HAS-BLED: bleeding risk score for patients using anticoagulants GI: gastro-intestinal; GPA: gastroprotective agent; NSAID: non-

steroidal anti-inflammatory agent; OAC: oral anticoagulants; ONS: Office for National Statistics; SSRI: selective serotonin re-uptake 

inhibitor 
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 – ICD-10 code lists for outcomes in Chapter Four 

This section contains ICD-10 codes used to identify outcomes. Read codes used to identify patients 

on treatment with oral anticoagulants and NSAIDs are not reported here but available from the 

authors on request. Read codes for baseline characteristics are also available on request. 

Table J.1: ICD-10 codes used to identify outcomes in Hospital Episodes Statistics (HES) 

ICD-10 Description  Type 

I61 Intracerebral haemorrhage Stroke, MB 

I61.1 Intracerebral haemorrhage in hemisphere, cortical Stroke, MB 

I61.2 Intracerebral haemorrhage in hemisphere, unspecified Stroke, MB 

I61.3 Intracerebral haemorrhage in brain stem Stroke, MB 

I61.4 Intracerebral haemorrhage in cerebellum Stroke, MB 

I61.5 Intracerebral haemorrhage, intraventricular Stroke, MB 

I61.6 Intracerebral haemorrhage, multiple localized Stroke, MB 

I61.8 Other intracerebral haemorrhage Stroke, MB 

I61.9 Intracerebral haemorrhage, unspecified Stroke, MB 

I63 Cerebral infarction Stroke 

I63.0 Cerebral infarction due to thrombosis of precerebral arteries Stroke 

I63.1 Cerebral infarction due to embolism of precerebral arteries Stroke 

I63.2 
Cerebral infarction due to unspecified occlusion or stenosis of precerebral 
arteries 

Stroke 

I63.3 Cerebral infarction due to thrombosis of cerebral arteries Stroke 

I63.4 Cerebral infarction due to embolism of cerebral arteries Stroke 

I63.5 Cerebral infarction due to unspecified occlusion or stenosis of cerebral arteries Stroke 

I63.8 Other cerebral infarction Stroke 

I63.9 Cerebral infarction, unspecified Stroke 

I64 Stroke, not specified as haemorrhage or infarction Stroke 

G45 Transient cerebral ischaemic attacks and related syndromes Stroke 

G45.0 Vertebro-basilar artery syndrome Stroke 

G45.1 Carotif artery syndrome (hemispheric) Stroke 

G45.2 Multiple and bilateral precerebral artery syndromes Stroke 

G45.3 Amaurosis fugax Stroke 

G45.8 Other transient cerebral ischaemic attacks and related syndromes Stroke 

G45.9 Transient cerebral ischaemic attack, unspecified Stroke 

G46 Vascular syndromes of brain in cerebrovascular diseases Stroke 

G46.0 Middle cerebral artery syndrome Stroke 

G46.1 Anterior cerebral artery syndrome Stroke 

G46.2 Posterior cerebral artery syndrome Stroke 

G46.3 Brain stem stroke syndrome Stroke 

G46.4 Cerebellar stroke syndrome Stroke 

G46.5 Pure motor lacunar syndrome Stroke 

G46.6 Pure sensory lacunar syndrome Stroke 

G46.7 Other lacunar syndromes Stroke 

G46.8 Other vascular syndromes of brain in cerebrovascular disease Stroke 

I26.0 Pulmonary embolism with acute cor pulmonale SE 

I26.9 Pulmonary embolism without acute cor pulmonale SE 

I74.0  Embolism and thrombosis of abdominal aorta SE 

I74.1  Embolism and thrombosis of other and unspecified parts of aorta SE 

I74.2 I74.2 Embolism and thrombosis of arteries of the upper extremities SE 

I74.3 I74.3 Embolism and thrombosis of arteries of the lower extremities SE 

I74.4 I74.4 Embolism and thrombosis of arteries of extremities, unspecified SE 

I74.5 I74.5 Embolism and thrombosis of iliac artery SE 

I74.8 I74.8 Embolism and thrombosis of other arteries SE 

I74.9 I74.9 Embolism and thrombosis of unspecified artery SE 



  

339 
 

I85.0 Oesophageal varices with bleeding GIB, MB 

K22.8 Haemorrhage of oesophagus GIB, MB 

K25.0 Gastric ulcer, acute with haemorrhage GIB, MB 

K25.1 Gastric ulcer - Acute with perforation GIB, MB 

K25.2 Gastric ulcer, acute with both haemorrhage and perforation GIB, MB 

K25.4 Gastric ulcer, chronic or unspecified with haemorrhage GIB, MB 

K25.5 Duodenal ulcer - Chronic or unspecified with perforation GIB, MB 

K25.6 Chronic or unspecified with both haemorrhage and perforation GIB, MB 

K26.0 Duodenal ulcer, acute with haemorrhage GIB, MB 

K26.1 Duodenal ulcer - Acute with perforation GIB, MB 

K26.2 Duodenal ulcer, acute with both haemorrhage and perforation GIB, MB 

K26.4 Duodenal ulcer, chronic or unspecified with haemorrhage GIB, MB 

K26.5 Duodenal ulcer - Chronic or unspecified with perforation GIB, MB 

K26.6 Chronic or unspecified with both haemorrhage and perforation GIB, MB 

K27.0 Peptic ulcer, acute with haemorrhage GIB, MB 

K27.1 Peptic ulcer, site unspecified - Acute with perforation GIB, MB 

K27.2 Peptic ulcer, acute with both haemorrhage and perforation GIB, MB 

K27.4 Peptic ulcer, chronic or unspecified with haemorrhage GIB, MB 

K27.5 Peptic ulcer, site unspecified - Chronic or unspecified with perforation GIB, MB 

K27.6 Chronic or unspecified duodenal ulcer with both haemorrhage and perforation GIB, MB 

K28.0 Gastrojejunal ulcer, acute with haemorrhage GIB, MB 

K28.1 Gastrojejunal ulcer - Acute with perforation GIB, MB 

K28.2 Acute gastrojejunal ulcer with both haemorrhage and perforation GIB, MB 

K28.4 Gastrojejunal ulcer, chronic or unspecified with haemorrhage GIB, MB 

K28.5 Gastrojejunal ulcer - Chronic or unspecified with perforation GIB, MB 

K28.6 Chronic or unspecified ulcer with both haemorrhage and perforation GIB, MB 

K29.0 Acute haemorrhagic gastritis GIB, MB 

K66.1 Haemoperitoneum GIB, MB 

K92.0 Haematemesis GIB, MB 

K92.1 Melaena GIB, MB 

K92.2 Gastrointestinal bleed, unspecified GIB, MB 

J94.2 Haemopneumothorax MB 

H31.3 Choroidal haemorrhage and rupture MB 

H43.1 Vitreous haemorrhage MB 

H45.0 Vitreous haemorrhage in diseases classified elsewhere MB 

R04 
haemorrhage from respiratory passages (epistaxis, throat, cough with 
haemorraghe) 

MB 

R04.1 Haemorrhage from throat MB 

R04.2 Haemoptysis MB 

R04.8 Haemorrhage from other sites in respiratory passages MB 

R04.9 Haemorrhage from respiratory passages, unspecified MB 

R31 Unspecified haematuria MB 

R58 Haemorrhage, not elsewhere classified MB 

M25.0 Haemarthrosis (bleeding into joint spaces) MB 

N02 Recurrent and persistent haematuria MB 

K62.5  Haemorrhage of anus and rectum  MB 

K55.21 Angiodysplasia of colon with bleed MB 

GIB: gastro-intestinal bleeds including ulcer perforations referred to as serious GI events; MB: major bleeding events; 
SE: systemic embolism 
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 – Search terms and results of literature searches informing 

conceptualisation of the state-transition model in Chapter Five 

 

Titles and abstracts of identified studies were screened, and full texts of potentially 

relevant records used to inform model structure or identify potential model parameters. 

Studies were considered preferable if they were large, UK-based/relevant, and recent (i.e., 

published since 2009). Table K.1 reports the search terms and Table K.2 the results of the 

searches. 

 

Table K.1: Literature searches conducted 

Searches Databases Search terms 

State-transition 

models 

comparing 

NSAID use in 

anticoagulated 

patients 

• Medline 

(1946-

February 

Week 1 

2021) and 

Embase 

(1974-10th 

February 

2021) 

 

 

 

 

 

 

 

 

 

• HTA 

database 

(((NSAID or anti-inflammatory drug or coxibe or cyclooxygenase 

inhibitor or cyclooxygenase 2 inhibitor) or (meloxicam or naproxen or 

ibuprofen or diclofenac or mefenamic or celecoxib or etoricoxib)).ab. 

or Anti-Inflammatory Agents, Non-Steroidal/ or Cyclooxygenase 2 

Inhibitors/ or Cyclooxygenase Inhibitors/ or Meloxicam/ or Naproxen/ 

or Ibuprofen/ or Diclofenac/ or Mefenamic acid/ or Celecoxib/ or 

Etoricoxib/) 

AND ( 

((eliquis or pradaxa or lixiana or xarelto) or (doac or NOAC or oral 

anticoagulant or atrial fibrillation) or (rivaroxaban or dabigatran or 

apixaban or edoxaban or warfarin)).ab. or Factor Xa Inhibitors/ or 

Atrial Fribrillation/ or Anticoagulants/ or anticoagulant agent/ or 

rivaroxaban/ or dabigatran/ or warfarin/) 

AND ( 

(Modeling or modelling or Model or Markov or transition or markov 

chains). Mp ) 

AND ( 

(Economics, Pharmaceutical/ or Costs and cost analysis/ or budgets 

/or cost-benefit analysis/ or (cost or pharmacoeconomic or value for 

money or budget or cost-effectiveness or cost-effectiveness 

analysis).mp) ) 

HTA database: 

((rivaroxaban or dabigatran or apixaban or edoxaban or warfarin) OR 

(doac or NOAC or oral anticoagulant or atrial fibrillation)) AND 

((meloxicam or naproxen or ibuprofen or diclofenac or mefenamic or 

celecoxib or etoricoxib) OR (NSAID or anti-inflammatory drug or 

coxibe or cyclooxygenase inhibitor or cyclooxygenase 2 inhibitor)) 

State-transition 

models of 

NSAIDs 

• Medline, 

Embase Jan 

2008 to Jan 

2020 

 

 

(Modeling or modelling or Model or Markov or transition or markov 

chains). Mp AND  

(Economics, Pharmaceutical/ or Costs and cost analysis/ or budgets 

/or cost-benefit analysis/ or (cost or pharmacoeconomic or value for 

money or budget or cost-effectiveness or cost-effectiveness 

analysis).mp) AND 
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• HTA 

database 

AND ((meloxicam or naproxen or ibuprofen or diclofenac or 

mefenamic or celecoxib or etoricoxib) OR (NSAID or anti-inflammatory 

drug or coxibe or cyclooxygenase inhibitor or cyclooxygenase 2 

inhibitor)) 

 

HTA database: 

(meloxicam or naproxen or ibuprofen or diclofenac or mefenamic or 

celecoxib or etoricoxib) OR (NSAID or anti-inflammatory drug or 

coxibe or cyclooxygenase inhibitor or cyclooxygenase 2 inhibitor) 

State-transition 

models of OACs 

• Medline 

(1946-Dec 

week 4 

2018) and 

Embase 

(1974-3rd 

Jan 2019) 

((Modeling or modelling or Model or Markov or transition).mp or 

markov chains) AND  

(Economics, Pharmaceutical/ or Costs and cost analysis/ or budgets 

/or cost-benefit analysis/ or (cost or pharmacoeconomic or value for 

money or budget or cost-effectiveness or cost-effectiveness 

analysis).mp) AND 

(Atrial Fibrillation/ or Anticoagulants/ or Warfarin/ or Factor Xa 

Inhibitors/ or rivaroxaban/ or dabigatran/ (oral anticoagulant or doac 

or NOAC or edoxaban or rivaroxaban or apixaban or dabigatran or 

Eliquis or Pradaxa or Xarelto or lixiana).mp 

Risks (impact of 

NSAIDs in OAC 

patients-GI 

events)  

• Medline 

(1946-26th 

November) 

and 

Embase 

(1974-26th 

November)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• HTA 

database* 

(((NSAID or anti-inflammatory drug or coxibe or cyclooxygenase 

inhibitor or cyclooxygenase 2 inhibitor) or (meloxicam or naproxen or 

ibuprofen or diclofenac or mefenamic or celecoxib or etoricoxib)).ab. 

or Anti-Inflammatory Agents, Non-Steroidal/ or Cyclooxygenase 2 

Inhibitors/ or Cyclooxygenase Inhibitors/ or Meloxicam/ or Naproxen/ 

or Ibuprofen/ or Diclofenac/ or Mefenamic acid/ or Celecoxib/ or 

Etoricoxib/) 

AND ( 

((eliquis or pradaxa or lixiana or xarelto) or (doac or NOAC or oral 

anticoagulant or atrial fibrillation) or (rivaroxaban or dabigatran or 

apixaban or edoxaban or warfarin)).ab. or Factor Xa Inhibitors/ or 

Atrial Fribrillation/ or Anticoagulants/ or anticoagulant agent/ or 

rivaroxaban/ or dabigatran/ or warfarin/) 

AND ( 

(((gastrointestinal or gi) and (symptom or diseases or disorder or 

adverse or diagnosis)) or (dyspepsia or diarrhoea or flatulence or 

vomiting or nausea or abdominal pain or epigastric pain)).ab. OR ( 

Gastrointestinal diseases/ or Dyspepsia/ or Abdominal pain/ or 

gastrointestinal symptoms/ or epigastric pain/) 

OR ( 

((peptic or digestive system or duodenum or gastric or stomach or 

esophagus or jejunum or colon or symptomatic) and (ulcer)).ab. or 

peptic ulcer bleeding/ or ulcer incidence/ or digestive system ulcer/ or 

duodenum ulcer/ or acetic acid-induced gastric ulcer/ or gastric ulcer 

bleeding/ or stomach ulcer/ or duodenal ulcer bleeding/ or esophagus 

ulcer hemorrhage/ or esophagus ulcer/ or jejunum ulcer/ or ulcer 

perforation/ or peptic ulcer/ or recurrent peptic ulcer/ or 

indomethacin-induced gastric ulcer/ or colon ulcer/ or ulcer/) 

OR ( 

(death OR died OR fatal OR mortality OR deceased OR non survivor OR 

non Survival).ab. or Death/ or Hospital Mortality/ or Mortality/ or 
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Fatal Outcome/ or Survivors/ or Survivor/ or Survival Rate/ or 

Survival/ or mortality rate/ or standardized mortality ratio/))) 

 

HTA database: 

((rivaroxaban or dabigatran or apixaban or edoxaban or warfarin) OR 

(doac or NOAC or oral anticoagulant or atrial fibrillation)) AND 

((meloxicam or naproxen or ibuprofen or diclofenac or mefenamic or 

celecoxib or etoricoxib) OR (NSAID or anti-inflammatory drug or 

coxibe or cyclooxygenase inhibitor or cyclooxygenase 2 inhibitor)) 

Risks (impact of 

NSAIDs in OAC 

patients - 

cardiovascular 

events)  

Medline (1946-

week 3 Feb 

2020) 

Embase 

(Embase 1974-

week 3 

February 2020) 

 

 

 

 

 

 

(((NSAID or anti-inflammatory drug or coxibe or cyclooxygenase 

inhibitor or cyclooxygenase 2 inhibitor) or (meloxicam or naproxen or 

ibuprofen or diclofenac or mefenamic or celecoxib or etoricoxib)).ab. 

or Anti-Inflammatory Agents, Non-Steroidal/  

Cyclooxygenase 2 Inhibitors/ or Cyclooxygenase Inhibitors/  

Meloxicam/ or Naproxen/ or Ibuprofen/ or Diclofenac/ or Mefenamic 

acid/ or Celecoxib/ or Etoricoxib/) 

AND 

(Stroke or myocardial or heart failure or cardiovascular or systemic 

embolism or thromboembolic).ab  

AND 

(Atrial Fibrillation/ or Anticoagulants/ or Warfarin/ or Factor Xa 

Inhibitors/ or rivaroxaban/ or dabigatran/ (oral anticoagulant or doac 

or NOAC or edoxaban or rivaroxaban or apixaban or dabigatran or 

Eliquis or Pradaxa or Xarelto or lixiana).mp 

Utility values • Medline 

Embase 

(2011-

November 

2020) 

• Systematic 

review until 

2011 in 

TA249(463) 

and TA275 

(491) and in 

PINCER 

economic 

evaluation 

review of 

utilities 

until 2010 

(149) 

((EQ-5D*) or (SF-12) or (QALY*) or (quality-adjusted*) or (qol) or 

quality of life) or (HRQoL)) .ab. 

AND( 

((((gastrointestinal or gi) and (symptom or diseases or disorder or 

adverse or diagnosis)) or (dyspepsia or diarrhoea or flatulence or 

vomiting or nausea or abdominal pain or epigastric pain)).ab. or 

Gastrointestinal diseases/ or Dyspepsia/ or Abdominal pain/ or 

gastrointestinal symptoms/ or epigastric pain/) 

OR 

(((peptic or digestive system or duodenum or gastric or stomach or 

esophagus or jejunum or colon or symptomatic) and (ulcer)).ab. or 

peptic ulcer bleeding/ or ulcer incidence/ or digestive system ulcer/ or 

duodenum ulcer/ or acetic acid-induced gastric ulcer/ or gastric ulcer 

bleeding/ or stomach ulcer/ or duodenal ulcer bleeding/ or esophagus 

ulcer hemorrhage/ or esophagus ulcer/ or jejunum ulcer/ or ulcer 

perforation/ or peptic ulcer/ or recurrent peptic ulcer/ or 

indomethacin-induced gastric ulcer/ or colon ulcer/ or ulcer/) 

OR 

(stroke.mp. or Stroke/) 

OR 

(Gastrointestinal Hemorrhage/ or gastro intestinal bleeding.mp. or 

Peptic Ulcer Hemorrhage/ or bleeding.mp. or Hemorrhage/ or Peptic 

Ulcer Hemorrhage/ Or Duodenal Ulcer/ Or Peptic Ulcer/ Or Peptic 

Ulcer Perforation/ Or Ulcer/ Or Stomach Ulcer/ Or Ulcer.mp.) 

*HTA = health technology assessment; database updated until 31st March 2018, therefore this search was 

limited to that date 
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Table K.2. Results of literature searches conducted to inform the state-transition model 

Searches Identified studiesa Relevant studies identified 

State-transition 

models on NSAID 

use in OAC 

population 

46  No decision-analytic models were identified that explored the 

effect of NSAIDs in an OAC population [low dose aspirin was not 

considered relevant as an NSAID] 

State-transition 

models of NSAIDs 

70 (Medline and 

Embase), hand 

search 

Various models identified with 4 unique model structures (149, 

151, 227, 450-454, 456-459, 492): (1) de Groots model (151, 452, 

453), (2) NICE model developed by Latimer et al. (2009) (450, 451, 

454, 456-458, 461), (3) the PINCER model (149, 227, 492, 624) and 

(4) a model structure by Moriarty et al. (2019) (151) 

State-transition 

models of OACs 

113 studies 

(Medline and 

Embase and HTA 

after duplicates 

were removed) 

In 13 systematic reviews identified 20 models were reported that 

were relevant for OAC populations in AF [13] and VTE [7]. 8 unique 

model structure were identified. Main models identified that 

were repeatedly used were a state-transition model by Sorensen 

et al. (2009) used in HTA 249 (351, 463-471) and the Dorian model 

used in TA 275 (472) and multiple other studies (473-480) and a 

structure by Gage from 1995 (481) that was adapted by Lee et al. 

(2012) (482-484). Five model structures were identified that used 

a different base model (485-488). 

Risks (impact of 

NSAIDs in OAC 

patients, serious 

GI events)  

717 studies 

(Medline, Embase, 

HTA database) 

Studies were included if they investigated the effect of NSAIDs on 

peptic ulcer, adverse GI effects or mortality in patients on OAC 

treatment. Excluded were studies solely looking at GI bleeding or 

cardiovascular events because these were searched for 

separately. Reviews identified were screened for potentially 

relevant studies missed in the literature search. The systematic 

review identified 701 studies from Embase and Medline on 16th 

July 2020 after duplicates were removed. Abstracts of the articles 

were screened and 41 studies were selected for a full text review. 

None of the studies provided estimates in the specified patient 

group. There were no studies assessing risk of peptic ulcers, GI 

adverse effects or mortality associated with NSAID use in patients 

with OAC treatment. 

Risks (impact of 

NSAIDs in OAC 

patients, 

cardiovascular 

events)  

1410 studies 

(Embase, Medline, 

HTA after 

duplicates were 

removed), 2 from 

hand search 

4 studies were identified that analysed the effect of NSAIDs on 

cardiovascular risk in patients with OACs (307-309, 338) 

Utility values 8357 studies 

(Embase, Medline 

after duplicates 

were removed) 

For each health state the results of this review were discussed in 

the ‘utility’ section of the input parameters if they fulfilled the 

requirements. 

aAbstracts of identified studies were screened 
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 – AdViSHE (Assessment of the Validation Status of Health-Economic 

decision models) 

 

AdViSHE is a questionnaire that modellers can complete to report on the efforts performed 

to improve the validation status of their health-economic decision model. It is not intended 

to replace validation by model users but rather to inform the direction of validation efforts 

and to provide a baseline for replication of the results. In addition to using it after a model 

is finished, the modellers can use AdViSHE to guide validation efforts during the modelling 

process. 

 

The modellers are asked to comment on the validation efforts performed while building 

the underlying HE decision model and afterwards. Many of the questions simply refer to 

the model documentation. AdViSHE is divided into five parts, each covering an aspect of 

validation: 

- Part A: Validation of the conceptual model (2 questions) 

- Part B: Input data validation (2 questions) 

- Part C: Validation of the computerized model (4 questions) 

- Part D: Operational validation (4 questions) 

- Part E: Other validation techniques (1 question) 

No final validation score is calculated, as the assessment of the answers and the overall 

validation effort is left to the model users. It is assumed that the model has been built 

according to prevailing modelling and reporting guidelines. Some questions may not be 

applicable to a particular model. If this is the case, the model builder should take the opt-

out option and provide a justification of why this item is not deemed applicable. Results 

reported in Table L.1. 
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Table L.1: Author responses to the Advishe Model validation tool 

 AdViSHE tool  

Author 

response/section 

reference  

 Part A: Validation of the conceptual model (2 questions) 

Part A discusses techniques for validating the conceptual model. A 

conceptual model describes the underlying system (e.g., progression of 

disease) using a mathematical, logical, verbal, or graphical 

representation. Please indicate where the conceptual model and its 

underlying assumptions are described and justified. 

5.2.1; 5.2.2 

A1 Face validity testing (conceptual model): Have experts been asked to 

judge the appropriateness of the conceptual model? 

If yes, please provide information on the following aspects: 

- Who are these experts? 

- What is your justification for considering them experts? 

- To what extent do they agree that the conceptual model is 

appropriate? 

If no, please indicate why not. 

Aspects to judge include: appropriateness to represent the underlying 

clinical process/disease (disease stages, physiological processes, etc.); 

and appropriateness for economic evaluation (comparators, 

perspective, costs covered, etc.). 

 

5.2.1: Expert 

consultation 

A2 Cross validity testing (conceptual model): Has this model been 

compared to other conceptual models found in the literature or clinical 

textbooks? 

If yes, please indicate where this comparison is reported. 

If no, please indicate why not. 

5.2.1 

 Part B: Input data validation (2 questions) 

Part B discusses techniques to validate the data serving as input in the 

model. These techniques are applicable to all types of models 

commonly used in Health economic modelling. 

Please indicate where the description and justification of the following 

aspects are given: 

- search strategy; 

- data sources, including descriptive statistics; 

- reasons for inclusion of these data sources; 

- reasons for exclusion of other available data sources; 

- assumptions that have been made to assign values to parameters for 

which no data was available; 

- distributions and parameters to represent uncertainty; 

- data adjustments: mathematical transformations (e.g., logarithms, 

squares); treatment of outliers; treatment of missing data; data 

synthesis (indirect treatment comparison, network meta-analysis); 

calibration; etc. 

Details regarding search 

strategy; data sources 

and assumptions that 

have been made to 

assign values to 

parameters for which 

no data was available 

have been provided in 

the appendix. 

Distributions and 

parameters to 

represent uncertainty 

are described in 3.3.2; 

5.2.4; 6.3.1. The other 

points on data 

adjustments were not 

applicable. 

 

B1 Face validity testing (input data): Have experts been asked to judge the 

appropriateness of the input data? 

If yes, please provide information on the following aspects: 

- Who are these experts? 

- What is your justification for considering them experts? 

5.2.1: Expert 

consultation; the 

experts agreed that 

chosen input 
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- To what extent do they agree that appropriate data has been used? 

If no, please indicate why not. 

Aspects to judge may include but are not limited to: potential for bias; 

generalizability to the target population; availability of alternative data 

sources; any adjustments made to the data. 

parameters represent 

the best available data 

B2 Model fit testing: When input parameters are based on regression 

models, have statistical tests been performed? 

If yes, please indicate where the description, the justification and the 

outcomes of these tests are reported. 

If no, please indicate why not 

Examples of regression models include but are not limited to: disease 

progression based on survival curves; risk profiles using regression 

analysis on a cohort; local cost estimates based on multi-level models; 

meta-regression; quality-of-life weights estimated using discrete choice 

analysis; mapping of disease-specific quality-of-life weights to utility 

values. 

Examples of tests include but are not limited to: comparing model fit 

parameters (R2, AIC, BIC); comparing alternative model specifications 

(covariates, distributional assumptions); comparing alternative 

distributions for survival curves (Weibull, lognormal, logit); testing the 

numerical stability of the outcomes (sufficient number of iterations); 

testing the convergence of the regression model; visually testing model 

fit and/or regression residuals. 

 

Various test were 

conducted to generate 

the hazard ratios for the 

increased likelihood of 

stroke and serious GI 

events with NSAID 

treatment 4.4.3; 

Appendix H 

 Part C: Validation of the computerized model (4 questions) 

Part C discusses various techniques for validating the model as it is 

implemented in a software program. If there are any differences 

between the conceptual model (Part A) and the final computerized 

model, please indicate where these differences are reported and 

justified. 

The mathematical 

model is as per the 

conceptual model.  

C1 External review: Has the computerized model been examined by 

modelling experts? 

If yes, please provide information on the following aspects: 

- Who are these experts? 

- What is your justification for considering them experts? 

- Can these experts be qualified as independent? 

- Please indicate where the results of this review are reported, 

including a discussion of any unresolved issues. 

If no, please indicate why not. 

Aspects to judge may include but are not limited to: absence of 

apparent bugs; logical code structure optimized for speed and 

accuracy; appropriate translation of the conceptual model. 

Appendix A  

C2 Extreme value testing: Has the model been run for specific, extreme 

sets of parameter values in order to detect any coding errors? 

If yes, please indicate where these tests and their outcomes are 

reported. 

If no, please indicate why not. 

Examples include but are not limited to: zero and extremely high 

(background) mortality; extremely beneficial, extremely detrimental, 

or no treatment effect; zero or extremely high treatment or healthcare 

costs. 

Yes, extreme value 

testing has been done 

and have been reported 

in this supplement 
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C3 Testing of traces: Have patients been tracked through the model to 

determine whether its logic is correct? 

If yes, please indicate where these tests and their outcomes are 

reported. 

If no, please indicate why not. 

In cohort models, this would involve listing the number of patients in 

each disease stage at one, several, or all time points (e.g., Markov 

traces). In individual patient simulation models, this would involve 

following several patients throughout their natural disease 

progression. 

 

Yes, the number of 

patients in the death 

state were tracked 

through the model and 

logic has been found to 

be correct. In TreeAge 

Pro Healthcare 2021, 

the number of patients 

in each health state can 

be tracked in the 

individual Markov 

models at each cycle. 

The first 10 cycles were 

checked and were 

found to show 

anticipated changes. 

C4 Unit testing: Have individual sub-modules of the computerized model 

been tested? 

If yes, please provide information on the following aspects: 

- Was a protocol that describes the tests, criteria, and acceptance 

norms defined beforehand? 

- Please indicate where these tests and their outcomes are reported. 

If no, please indicate why not. 

Examples include but are not limited to: turning sub-modules of the 

program on and off; altering global parameters; testing messages (e.g., 

warning against illegal or illogical inputs), drop-down menus, named 

areas, switches, labelling, formulas and macros; removing redundant 

elements. 

 

In TreeAge Pro 

Healthcare 2021 

different methods for 

discounting were tested 

[global discounting 

function imbedded in 

the software and 

manual discounting of 

cost and outcomes in 

each health state]. They 

all produced the same 

estimates with and 

without discounting. 

 Part D: Operational validation (4 questions) 

Part D discusses techniques used to validate the model outcomes. 

 

D1 Face validity testing (model outcomes): Have experts been asked to 

judge the appropriateness of the model outcomes? 

If yes, please provide information on the following aspects: 

- Who are these experts? 

- What is your justification for considering them experts? 

- To what extent did they conclude that the model outcomes are 

reasonable? 

If no, please indicate why not. 

Outcomes may include but are not limited to: (quality-adjusted) life 

years; deaths; hospitalizations; total costs. 

The final model and the 

results were reported to 

the PROTECT team 

[5.2.1: Expert 

consultation], the 

results were also 

presented at a 

conference [PRIMM 

2021: Manchester] to 

health policy 

researchers and experts 

in patient safety. 

 

The estimated 

economic burden was 

found to be reasonable. 

D2 Cross validation testing (model outcomes): Have the model outcomes 

been compared to the outcomes of other models that address similar 

problems? 

If yes, please provide information on the following aspects: 

5.4.2 
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- Are these comparisons based on published outcomes only, or did you 

have access to the alternative model? 

- Can the differences in outcomes between your model and other 

models be explained? 

- Please indicate where this comparison is reported, including a 

discussion of the comparability with your model. 

If no, please indicate why not. 

Other models may include models that describe the same disease, the 

same intervention, and/or the same population. 

D3 Validation against outcomes using alternative input data: Have the 

model outcomes been compared to the outcomes obtained when 

using alternative input data? 

If yes, please indicate where these tests and their outcomes are 

reported. 

If no, please indicate why not. 

Alternative input data can be obtained by using different literature 

sources or datasets, but can also be constructed by splitting the 

original dataset in two parts, and using one part to calculate the model 

outcomes and the other part to validate against. 

5.3.2; 6.2.6 

D4 Validation against empirical data: Have the model outcomes been 

compared to empirical data? 

If yes, please provide information on the following aspects: 

- Are these comparisons based on summary statistics, or patient-level 

datasets? 

- Have you been able to explain any difference between the model 

outcomes and empirical data? 

- Please indicate where this comparison is reported. 

If no, please indicate why not. 

No, not applicable.  

D4A Comparison against the data sources on which the model is based 

(dependent validation). 

No, not applicable. 

D4B Comparison against a data source that was not used to build the model 

(independent validation). 

 

No, not applicable. 

 Part E: Other validation techniques (1 question)  

E1 Other validation techniques: Have any other validation techniques 

been performed? 

If yes, indicate where the application and outcomes are reported, or 

else provide a short summary here. 

Examples of other validation techniques: structured ‘walk-throughs’ 

(guiding others through the conceptual model or computerized 

program step-by-step); naïve benchmarking (‘back-of-the-envelope’ 

calculations); heterogeneity tests; double programming (two model 

developers program components independently and/or the model is 

programmed in two different software packages to determine if the 

same results are obtained). 

 

Conducted as part of 

internal validation  
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 – Key structural assumptions and validation of assumptions by 

clinicians for the state-transition model in Chapter Five  

This appendix provides details on model assumptions [Table M.1], reports feedback from clinicians 

on how the HPE is resolved in practice [Table M.2] and on general model assumptions [Table M.3] 

Table 1: Summary of key model assumptions 

Model assumption Justification Approved by 

clinicians* 

Only one type of event 

can occur per three-

months cycle.  

In a state-transition model some form of simplification has to 

be done. A three-monthss cycle was considered appropriate 

and has been used previously in NSAID (45, 452) and AF state-

transition model for NICE TAs (463, 491, 524) 

Yes 

All patients experiencing 

an adverse event stay on 

the OAC therapy they 

used prior to the event 

Guidelines recommend continuing OAC treatment after stroke 

or serious GI events (41, 625) 

Yes 

No long-term effects of GI 

adverse events expected 

on cost, utilities and 

transition probabilities 

expected. All patients not 

experiencing a recurrent 

event or die move to the 

post-GI event state 

There is no sufficient data to support the assumptions that 

there is a prolonged effect of the adverse GI events after the 

cycle in which the event occurred. The impact was always 

highest in the first… months after the event and considered 

negligible thereafter (this was validated by clinicians in the 

team) 

Yes 

NSAID is removed after 

any of the adverse 

events. 

Clinicians suggested that each of the adverse events, would 

trigger a review of the medication and discontinuation of the 

NSAID.  

Yes [Table 2, 

Table 3] 

No disutility associated 

with removing NSAID 

It was assumed that alternative treatments, such as 

paracetamol have the same utility because there was no 

appropriate data to suggest otherwise. One model that 

included a disutility with paracetamol use conducted a meta-

analysis of arthritis index in Ontario (492). However, it was not 

clear how this was achieved. 

Yes [Table 3] 

OAC is not discontinued 

or interrupted after any 

of the adverse events 

Cost of interruptions of OAC treatment were considered 

negligible and is recommended for 7 days. Discontinuation 

rates associated with GI bleeding were very diverse (626-630). 

It was assumed that discontinuation rates were the same in 

the HPE and non HPE model and were therefore not 

considered to impact the overall results. 

N/A 

Only one recurrence per 

adverse GI event after 

initial event 

Observational data on serious GI events and that the majority 

of recurrences occur in the first 3 months (330). It was 

assumed that this was the same for the other adverse GI 

events 

Yes [Table 3] 

*Specific questions are reported in Table M.2 and Table M.3; HPE: hazardous prescribing event; NSAID: 

non-steroidal anti-inflammatory drug; OAC: oral anticoagulant; TA: NICE technology appraisal 
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Table M.2: Feedback on how the HPE is resolved in practice from clinicians [GPs: TA, BG; 

pharmacists: TD, GG 

Assumption Reviewer 

initials 

Agree 

(Y/N) 

Comment 

Only options to 

correct HPE are 

removing 

NSAID or OAC 

TD Y  

TA Y  

BG N Adding gastroprotection is an option but not preferred.  

GG N In some cases, after discussion with the patient, we have not been 

able to stop the NSAID but have lowered the dose and added a 

decent dose of GPA. Agree not ideal outcome and rare cases.  

Removing 

NSAID is the is 

the preferred 

choice after 

flagged up by 

intervention 

TD Y  

TA Y Strong preference 

BG Y NSAID will rarely be indicated, so should usually be removed. 

Sometimes it turns out that the OAC isn’t indicated (although I’d 

guess in SMASH most just came to the end of a short treatment 

course). Gastroprotection is the best you can do if you have no 

choice but is not first choice.  

GG Y  

Removing 

NSAID is the 

preferred 

choice after 

serious harm 

outcome 

occurred 

TD y  

TA Y  

BG Y Same logic.  

GG Y  

HPE: hazardous prescribing event; NSAID: non-steroidal anti-inflammatory drug; OAC: oral anticoagulant 

A 
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Table M.3: Expert consultation with GPs (TA, BG) 

Assumptions  GP1 GP2 

The model looks at the query with patients with 

oral anticoagulation and the hazardous 

prescription of a NSAID. Do you think that the 

following health states cover the potential 

adverse events associated with NSAID use in this 

anticoagulated population: 

Serious GI events (GI bleeds, ulcer bleeding, 

ulcer perforation), symptomatic ulcer (non-

bleeding ulcer with symptoms), GI discomfort 

(abdominal pain, dyspepsia etc.), stroke? The 

risk of MI was not found to be increased in OAC 

patients taking NSAIDs compared to non-NSAID 

patients with OAC (307, 308). 

That looks fine to me, 

and interesting that 

you have the evidence 

around risk of MI not 

being increased 

(presumably because 

the OAC reduces risk 

of coronary 

thrombosis) 

Ditto 

Do you think that after three months GI adverse 

events (GI discomfort, symptomatic ulcer and 

serious GI events) on average do not have an 

impact on healthcare resource use, utilities or 

mortality rates anymore? Or that if no 

recurrence occurs, the impact on quality of life, 

costs or mortality diminishes after 3 months? 

I think that 3 months is 

reasonable for the 

length of the effects of 

GI averse events. 

Yes. Simple GI discomfort 

probably lasts less long, but I 

assume that 3 months is 

your cycle time? If not, then 

one month for that. A few 

people with really serious GI 

events will have longer term 

harm (massive bleed, in ITU, 

long hospital stay, long 

rehab) but rare (and I’ve no 

idea how rare…) 

We could not find any studies looking at the 

likelihood of recurring symptomatic ulcer. For 

serious GI events (bleeding and perforations) a 

systematic review and meta-analysis from 2019 

reported a 90-day rebleeding probability of 

10.1% for anticoagulated patients. Is this a 

reasonable recurrence risk for symptomatic 

ulcer? 

Based on clinical 

impression that would 

seem a reasonable 

and plausible risk of 

recurrence. 

Ditto. I have no quantitative 

idea, but feels not 

unreasonable.  

There is some evidence in existing literature 

which suggests that people are at a higher risk of 

a second GI bleed (health state: serious GI event) 

in first month following the event. In the model, 

we are assuming that there is only a higher risk 

of a recurrent (or an unresolved) serious GI 

event in the first 3 months after the event (as 

this is the cycle length used in the model), after 

which the risk decreases. Is this a reasonable 

assumption? 

Sounds reasonable.  Sounds reasonable 

In the model we assume that the NSAID is 

stopped after GI discomfort. Is it reasonable to 

assume that the NSAID prescription is stopped 

after patient is diagnosed with GI discomfort 

(diarrhoea, abdominal pain, dyspepsia, nausea, 

vomiting, flatulence)?  

Yes Yes 
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In the model we assume that the NSAID is 

stopped after symptomatic ulcer. Is it 

reasonable to assume that the NSAID 

prescription is stopped after patient is 

diagnosed with symptomatic ulcer (People have 

a clinical diagnosis of a peptic ulcer following 

adverse GI symptoms, which may include 

endoscopic confirmation)? 

Yes Yes 

In the model we assume that the NSAID is 

stopped after stroke. Is it reasonable to assume 

that the NSAID prescription is stopped after 

patient is diagnosed with stroke, which is both 

associated with the NSAID use? 

This is less certain as 

some doctors may not 

be aware of the 

association. It would 

be a complete guess if 

I were to suggest what 

proportion of patients 

would have their 

NSAID stopped. If you 

want me to guess, I 

would say 50%, but do 

you have anything in 

CPRD that might help? 

I agree. I don’t think I would 

naturally assume that stroke 

or systemic embolism was 

associated with the NSAID 

unless it was a haemorrhagic 

stroke (although I might well 

take the opportunity to stop 

the NSAID since I really don’t 

like the combination). Some 

data would be better, but 

50% is a reasonable guess. 

Do you think GI discomfort has an impact on 

mortality? In the model the same mortality is 

used as for the general OAC population. 

On its own I would not 

expect this to have an 

impact on mortality.  

Agree.  

If event specific mortality rates were not 

available by age group, it was assumed that the 

mortality increased with age as the mortality of 

the general population would change. Is this a 

reasonable approach to adjust death rates to 

age by assuming the risk of death increases with 

increasing age as it would in the general 

population? 

 

Took me a bit of time 

for me to get my head 

round this when you 

presented this to the 

team, but I now agree 

with the approach. 

Agree (assuming that you 

are describing GI bleeding 

etc mortality not competing 

risk mortality). It’s definitely 

wrong to assume a flat 

distribution of mortality by 

age, so adjusting for general 

population distribution is 

arbitrary but reasonable. 

What about sex though?!? 

Not saying you should 

adjust, but if you did or are, 

then I don’t think the  
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According to the NHS patient information 

website there are 3 different types of test for H. 

Pylori (blood, stool, breath). Which is most 

commonly used in routine practice? 

Very unlikely to be 

breath routinely (trip 

to a hospital). In the 

two health boards I’ve 

worked in, it’s stool 

(blood is less good for 

reinfection).  

 

Most often I think GPs do 

serology (detects 

previous/current infection) 

as it is easy to do. NICE 

Clinical Knowledge Service 

advice is here (favouring 

breath/stool for initial 

detection):https://cks.nice.

org.uk/dyspepsia-

unidentifiedcause#!scenario

As GP1 says, breath testing is 

not easily available from 

general practice. 

In some work conducted by Rachel in the early 

2000s the resource use associated with GI 

discomfort was described. I have combined this 

with current NICE guidance for the model. Does 

the following reflect current treatment of GI 

discomfort in your experience? 

a) GP visit, no secondary care investigation 

b) Prescription of lansoprazole 

Yes. Prescription of 

PPI rather than 

lansoprazole 

(although that’s very 

common, probably 

the most common).  

 

Agree: PPI, which is most 

commonly lansoprazole or 

omeprazole 

The same work also looked at the resource use 

associated with symptomatic ulcer. Does the 

following reflect current treatment of 

symptomatic ulcers in your experience? 

a) 1x diagnostic endoscopy, 1x therapeutic 

endoscopy, 2x GP visits, 2x outpatient visits, 

1x H. pylori test  

b) Prescription of lansoprazole 

Don’t think a 

therapeutic 

endoscopy is normal. 

Doubt most would get 

two outpatient visits. 

Locally GP visits + 

single endoscopy and 

treatment 

recommendation with 

no follow up would be 

pretty normal. Gastric 

ulcer is the only one 

that gets follow up to 

confirm healing.  

Agree. 

CPRD: Clinical Practice Research Datalink; GP: general practitioner; HPE: hazardous prescribing event; MI: 

myocardial infarction; NSAID: non-steroidal anti-inflammatory drug; OAC: oral anticoagulant; PPI: proton 

pump inhibitor 

https://cks.nice.org.uk/dyspepsia-unidentified
https://cks.nice.org.uk/dyspepsia-unidentified
https://cks.nice.org.uk/dyspepsia-unidentified
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 – Internal validation of the state-transition model in Chapter Five 

 
Table N.1: Internal model validation by EC according to a predefined checklist used in PROTECT 

Item Error checks Works  

(yes/no)? 

Comments validator [EC] Comments author [LP] 

Model structure/parameters  

1.  Is the model structure 

appropriate? Are all 

appropriate transitions 

included? Is 'dead' an 

absorbing state? Is it possible 

to die from all appropriate 

states? 

Yes   

2.  Check that the cohort 

numbers & the sum of all the 

health state transition 

probabilities add to 1 in all 

cycles / across the decision 

tree. 

Yes   

3.  Were half cycle corrections 

applied consistently for all 

transitions? 

Yes   

4.  Have subgroup specific 

parameters e.g., mortality 

based on age or disease 

severity etc been applied? 

Yes You will need to include 

more age groups for the 

sensitivity analysis based 

on a 20-year time horizon 

– you may find it easier to 

use Tables (rather than a 

list) within TreeAge Pro 

Healthcare 2021 for this 

More subgroups included 

[start age: 80; 5- and 10-

year time horizon 

5.  Check for unrealistic results 

(negative costs, more events 

than possible …) 

Yes   

Extreme/alternative values   

6.  Set all utilities to 0. The total 

QALY gain should be 0. 

Yes   

7.  Set all costs to 0. The total 

costs should be 0. 

Yes   

8.  Change the time horizon of 

the model and check that the 

outputs/results change 

accordingly. 

Yes   

Discounting  

9.  Confirm that a discount rate 

of 3.5% has been applied for 

costs and QALYs 

 See comments in results 

section – need to check 

discounting [discounting 

produced lower estimates 

than discounted] 

Checked discounting using 

the global function inbuilt 

into TreeAge Pro 

Healthcare 2021 and the 

manual function. Both 
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produce the same results. 

Without discounting 

outcomes are smaller 

10.  Set the discount rates to 0. 

The undiscounted costs and 

QALYs should equal the 

discounted costs and QALYs. 

   

External validity  

11.  Are the utilities in the model 

reasonable compared to 

patients in the general 

population of the same age? 

Check (table below, 

otherwise here):  

Yes   

Probabilistic Sensitivity Analysis  

12.  Are all parameters assigned 

an appropriate distribution 

for probabilistic sensitivity 

analyses?  

Yes   

13.  Check PSA output mean costs, 

QALYS and ICER compared to 

the deterministic results. If 

there is a large discrepancy, is 

this due to the nature of the 

model, or errors in the PSA? 

 See comment above – 

please check that you have 

sent correct PSA model file 

Sent updated files; 

Deterministic and 

probabilistic analyses 

produce very similar 

results with a 10-year time 

horizon. The results differ 

in the lifetime horizon 

analysis. This can be 

explained by the 

lognormal distribution 

applied for the increased 

risk ratios for the adverse 

events. The mean of the 

skewed lognormal 

distribution is higher than 

the mean used in the 

deterministic model. The 

difference between the 

two is more evident over 

time. 

 

https://www.york.ac.uk/media/che/documents/papers/discussionpapers/CHE%20Discussion%20Paper%20172.pdf

